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Preface

The 2013 Karl Schwarzschild Meeting on Gravitational Physics (KSM) was a top
international event involving the worldwide highest qualified scientific personalities
in the field of black hole physics, general relativity, and related topics. It featured
the participation of 91 scientists from 15 countries over 4 continents. These
attendees included undergraduate and graduate students, postdoctoral researchers,
as well as junior and senior faculty. We envisioned the foundational spirit of the
conference to be: “by acknowledging the past we open a route to the future.” Here
“the past” refers to the pioneering black hole studies of Karl Schwarzschild, a native
of Frankfurt am Main, who published his first two papers while attending the
Frankfurt-Gymnasium (now the Lessing-Gymnasium) in Fürstenbergerstrabe 166
in the late 1880s.

The year 2013 marked the 140th anniversary of Schwarzschild’s birth. Although
inspired by the key historical work of Karl Schwarzschild, this meeting served to
highlight its various repercussions in a variety of aspects of frontier theoretical
physics. Black holes are no longer pedagogical curiosities of mathematics physics.
Instead, these objects constitute one of the primary testbeds of the ultimate theory of
nature: quantum gravity. Their presence in many distinct branches of physics is
striking. Historically, this is the result of a long process started with the discovery
of the Hawking effect (also known as black hole evaporation), which can be
regarded as the first attempt to reconcile gravity and quantum mechanics. The
Hawking effect has since contributed to the collapse of barriers between gravitation
and particle physics, thermodynamics, and even condensed matter physics.

Over the past decade, black holes have become a central feature of attempts to
address the hierarchy problem through the introduction of extra spatial dimensions.
In such frameworks, it has become commonplace in high energy physics to suppose
that microscopic black holes could be produced in current and future accelerator
experiments. Black holes have also gained a more solid reception in the field of
observational astronomy due to the improved technology of modern
radio-telescopes and are a common topic to astronomers and theoretical particle
physicists. In contrast to the various international meetings on gravitation, the KSM
sought to offer a complementary program: rather than quantity, we aimed for quality.
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A smaller group of eminent scientists came to review groundbreaking frontier results
in gravity research by means of comprehensive plenary lectures.

As a completely new feature, we provided a worldwide platform specifically
dedicated to young scientists. To foster the synergy and the collaborative spirit
among senior academics and forthcoming scientific leaders, a major component
of the KSM featured plenary sessions highlighting the work of the “next generation”
of gravitational physicists. This included a variety of levels of researchers: young
research group leaders, assistant professors, postdoctoral researchers, and even
doctoral candidates. Selected senior scientists served as mentors to the group of
young participants, starting off the week with a “Meet Your Mentor” session to
discuss their research and career paths. A competition for “Best Student Talk” and
“Best Junior Scientist Talk” was sponsored by Springer. The winners were honored
at an evening gala onward the end of the week. The prize for Best Student Talk was
won by Daniel Siegel (MPI, Potsdam), with Honorable Mentions going to
Maximiliano Isi (Loyola Marymount University, Los Angeles), Stefan Janiszewski
(University of Washington, Seattle), and Benjamin Niedner (Oxon). The prize for
Best Junior Scientist Talk was awarded to Daniele Malafarina (Fudan University,
Shanghai), with Honorable Mentions to Shohreh Abdolrahimi (Oldenburg
University), Michele Fontanini (Sao Paolo University), Benjamin Koch (PUC,
Santiago).

In a time of online-journals and electronic communication, the KSM was
envisioned as not merely a venue for exchange of information, but rather as a place
where new ideas are developed through complementary knowledge and encouraged
interactions of the participants. We feel the conference more than met these goals.
In this volume, we share the fruits of this labor.

Frankfurt am Main Piero Nicolini
Matthias Kaminski

Jonas Mureika
Marcus Bleicher
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Chapter 1
Karl Schwarzschild and Frankfurt

Frank Linhard

Abstract This paper will give a short account of the life of Karl Schwarzschild and
his relation to Frankfurt. Focus will be on the early papers he published, while he
was still at school. And his last papers, that made him famous in the community of
astrophysicists focusing on black holes will be mentioned in biographical context as
well.

1.1 Short Overview of Karl Schwarzschild’s Life

1.1.1 Karl Schwarzschild and Jewish Frankfurt

Karl Schwarzschild was a Frankfurt born Astronomer of Jewish descent. The name
Schwarzschild does not only sound similar to the name Rothschild. Actually both
names have their origin in the Frankfurt ghetto. Jews were forced into a ghetto
since 1462. On one hand this was done to separate them from the others, but the
argumentmentioned,was that they should receive protection by theKaiser. Therefore
ghettos were established in the so called free cities of the “Reich”. Of course the
protection had a price: Taxes were raised by the church—in Frankfurt represented
by the Archbishop of Mainz—by the city, i.e. the City Council, and by the Kaiser
himself. In 1806 the French appointed Grand Duke of Frankfurt Karl von Dalberg
ordered that equal rights be granted to all religious creeds. Despite von Dalberg’s
efforts, Frankfurt issued a new set of Jewish regulations in 1807 that attempted to
reestablish the ghetto. Finally in 1811 Dalberg’s Highest Regulation, for the equality
of civil right of the Jewish Municipality eliminated the requirements to live in the
ghetto and abolished all special Jewish taxes.1 Karl Schwarzschild was born after
this, but the former situation had lasted for centuries and thus formed the social
environment. Karl was born on the 9th of October 1873 and died at the age of 42 on

1This description is based on the documentation at theMuseum Judengasse, Frankfurt amMain.
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May 16th 1916. There is still no scientific biography of Karl Schwarzschild, but a
scetch of 25 pagesBiography in theCollectedWorks byVoigt, Göttingen (see [1, 14],
p. 1). Furthermore there is an entry in theDictionary of ScientificBiography byDieke
(6 pages) [2]. For his early years within his Frankfurt family we have a short account
in the memoirs of his brother Alfred—this covers up to 1907 (see [14], p. 2). The
main steps in his life2 were Karls early years in Frankfurt (1873–1891), his studies
in Strasbourg (1891–1893) and Munich (1893–1896). A position at the Observatory
in Vienna (1896–1899), were he did scientific work to do his Habilitation in Munich
(habil. 1899–1901Privatdozent). From there hewas appointedProfessor andDirector
of the Observatory at Göttingen (1901–1909). Finally he changed to Potsdam for the
most prestigious position an astronomer could have at this time in Germany (1909–
1913). Karl was born the eldest of 7 children, the first in his family to become a
scientist. His father Moses Martin was a successful stock broker in Frankfurt and the
family was comparably wealthy [2]. Alfred Schwarzschild described his brother in
his memoirs like this:

He built a telescope around an objective lens, using a tube of newspaper blackened inside,
and showed his brothers and sisters the rings of Saturn. He had piano lessons, but he was
just as interested in the mechanism inside the piano and the theory of sound vibrations as he
was in music itself (see [14], p. 1).

Karl first attended the Jewish Community School and later the municipal Gymna-
sium in Frankfurt (now called Lessing Gymnasium). Apart from pure mathematics,
astronomy soon became a major interest. His fathers friend J. Epstein was a math-
ematician with a private observatory (see [14], p. 1). In his last year at school, Karl
was fully occupied with studies, preparation for the Abitur,3 dance lessons, writing
poems, etc. On September 3rd 1891, he came top in the Abitur and therefore had to
give the farewell address in Latin (see [14], p. 4).

1.1.2 Schwarzschild as a Student and Postdoc

The same year he began to study astronomy in Strasburg with Ernst Becker the
Director of the Observatory in Strasburg, which was German since 1871.

In 1893 he did his Einjähriges—the German military service—at Munich but
continued his studies in 1894 under Hugo von Seeliger at the Ludwig Maximil-
ians University. His doctorate he gained in 1896 with “summa cum laude” on “The
Poincare Theory of the Equilibrium of a Homogeneous, Rotating, Fluid Body”.

After his doctorate he became Assistant at the von Kuffner Observatory near
Vienna, where he did scientific work on photometry.

2For this chronology I will combine the outlines from the biographies mentioned [6], p. 1–28,
[2, 6].
3Final exams that pupils take at the end of their secondary education in Germany.
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Contributions on the Photographic Photometry of Stars (see [14], Vol. 2 [6.2])
was accepted as Habilitationsschrift at Munich and in 1899 he became Privatdozent
at the Ludwig Maximilians University.
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1.1.3 The Göttingen Years

The Göttingen position was very prestigious and Berlin hesitated to appoint a young
scholar like Karl to Director of the Observatory and full Professor. But other can-
didates, like his mentor Seeliger did not want to come to Göttingen. Karl sent his
parents a telegram:

Extraordinarius and Director. Arrive Monday—Karl. (see [14], p. 10)

October the 19th 1901 his appointment as assistant Professor was announced.
Karl was to spend the happiest years of his life in Göttingen. By May 24th 1902 he
was appointed full Professor. In 1904, together with Klein, Hilbert and Minkowski
he organized a seminar on mathematical physics. His main contributions to sci-
ence during the Göttingen years were: The so called Göttingen Actinometry and the
confirmation of the existence of Red Giants and the explanation of the statistical
distribution of luminosities found by Hertzsprung. Furthermore he gained material
for stellar Statistics.

In 1905 Karl published three fundamental papers on geometrical optics, of which
MaxBorn laterwrote, thesewere the backbone for his own “Optics”, themost famous
book in the field for decades. Also in 1905 he did work on solar physics and followed
an Expedition to Algiers for the eclipse on August 30th 1905. He did spectroscopic
and photographic research and documented the entire expedition in a large paper
[8]. In 1906 he did theoretical work on the equilibrium of the Sun’s atmosphere,
and in 1907 he worked on proper motion of the stars, a proposal of the ellipsodial
velocity-distribution. In 1909 he married Else Rosenbach, but that was in his last
year at Göttingen.

1.1.4 Schwarzschild and the Astrophysical Observatory
at Potsdam and World War I

The Astrophysical Observatory at Potsdam was the greatest research institution for
Astronomy in Germany (see [14], p. 18). And while Karl already had problems to
get the appointment at Göttingen, because of his age, the situation was even worth
with Potsdam. It was the most prominent position for an Astronomer in Germany
and Karl was aged only 36. Again he gained the appointement and reached the peak
of his career the young.

What he had to do in Potsdam more than in Göttingen was Administration, as the
research institution was so large, there was a lot to organise and supervise.

But he also did work on stellar statistics and stellar dynamics, and on the spectral
classification of stars. Because of the value of his scientific work, together with his
successful fulfillment of the prestigious Potsdamposition, in 1912 PrussianAcademy
of Sciences Berlin awarded him with the Membership, while a Honorary Professor-
ship at Berlin followed only in 1916. But this was already during the First World
War.
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In 1914: Schwarzschild immediately volunteered for service, although he would
not have been drafted, because of his age and position. Else Schwarzschild later
explained to their children: He felt obliged to take this step, precisely because he was
a German Jew (see [14], p. 23).

From themany contributionsSchwarzschildmade toAstronomyandAstrophysics
some were named after him, as

• the Schwarzschild exponent in photography
• the Schuster–Schwarzschild model
• the Schwarzschild criterion for convection in stellar atmospheres
• the Schwarzschild equation in stellar statistics
• the Schwarzschild distribution of stellar velocities
• and—of course—the famous Schwarzschild radius

As already mentioned his main projects were:

• Photographic stellar Photometry (law of density of photographic films)
• Göttingen Actinometry
• Ellipsoidal hypothesis
• Examination of Stellar-statistical Problems

Karl Schwarzschild published 120 papers in total. He also worked on the con-
struction and theory of instruments, and on geometrical optics: From the theorem
of the shortest light-path a theory of optical instruments was developped (Eikonal
1905).

When Schwarzschild died it was mentioned by 15 addresses and 20 short notices.
Some appeared in the most eminent journals by the greatest scientists of the time, as
in e.g.:

• Astronomische Nachrichten 1916
• The Observatory 1916
• Astrophysical Journal 1917 (Hertzsprung) [5]
• MNRAS 1917 (Eddington) [4]
• Einstein’smemorial address June 29th, 1916BerlinAcademy (see [14], pp. 34–35)

Karl Schwarzschild was born at Frankfurt 1873 October 9. He was educated successively at
the public school at Frankfurt and at Strasbourg and Munich universities. He gave early evi-
dence of remarkable mathematical ability, and when barely sixteen contributed two excellent
papers to the Astronomische Nachrichten on the problem of determining an orbit from three
observations [5].

This is the beginning of the obituary by Hertzsprung (1873–1967), who was a
close friend of Karl since 1902 in Göttingen. He worked with him in Potsdam since
1909 as well.
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1.2 Young Schwarzschild: The Frankfurt Papers

When Karl was a 16 years old pupil at the Gymnasium (now Lessing Gymnasium)
he was already acquainted with his fathers friend Epstein and his son Paul, who
later became Professor of Mathematics at Strasburg. It is recorded, that Karl forgot
his logarithm tables at school, and that he was able, to calculate the required values
himself using a series expansion (see [14], p. 2).

Almost every Obituary or account of Karl’s life mentions his early papers. His
brother Alfred remembered, what happened when he did send his work on orbital
determination to the Astronomische Nachrichten and it was accepted.

Karl gave his father a printed copy at his birthday. The family was very proud
and everybody read through the paper several times. As Alfred says—not one of us
understood a word of it (see [14], p. 2). Karl wrote papers on Celestial Mechanics
during the period between 1890 and 1903 in Frankfurt, Munich and at the Von
Kuffner Observatory, Vienna. The first papers were focused on Methods for the
determination of orbits, later papers on the Capture of Comets by Jupiter, Periodic
Orbits and General Celestial Mechanics.

The Franfurt papers developed a method by Bruns for determining an orbit from
three positions further: Heinrich Bruns (1848–1919) was the director of Leipzig
Observatory.

Karl Schwarzschild puts the finishing touches to the method by taking Bruns’
elements as a first approximation for the computation of further approximations. This
works until satisfactory accuracy is reached. In the paper he applies differentiation of
the equations by Bruns. After that he neglects terms of higher order. With his results
he applies an iteration [3, 9, 10].

Karl gets 6 equations from 3 observations. Likewise Karl Schwarzschild applies
the samemethod to the determination of the orbital elements of visual binaries.Unfor-
tunately most scientists who worked in the field ignored Schwarzschild’s papers. At
least Aitken refers to Karl Schwarzschild’s second paper in his 1935 The Binary
Stars [1]. In Newcomb-Engelmann’s Populäre Astronomie Karl Schwarzschild him-
self admits, that there has not much changed in the method of determining orbits,
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since the days of Gauss andOlbers. He speaks of n̈o substantial improvements during
the last centuries.4

1.3 World War I and the Final Papers

At the outbreak of World War I Karl immediately volunteered and he was appointed
“Offiziersstellvertreter” at a Weather Station in Namur. Later he had to stay with the
Artillery in France and Russia, where he caught an infection at the Eastern front in
late 1915. Eddington gives an account of this final episode in Schwarzschild’s life at
the end of his Eloge for the Astronomical Society:

Soon after the outbreak of war Schwarzschild was placed in charge of a meteorological
station for the German army at Namur. He was afterwards attached to the artillery staff, at
first in France and later on the Eastern front. He received the order of Knight of the Iron
Cross. As might be expected, the German army organisation took care to give scope to his
scientific ability, and in 1915 November he contributed to the Berlin Academy a paper on
“The Effect of Wind and Air-density on the Path of a Projectile”: publication has, of course,
been postponed. On military service he contracted a disease which ultimately proved fatal.
After a long illness, attended with much suffering, he died on 1916 May 11. His lively and
attractive character and his readiness to co-operate with others brought him into cordial
relationship with astronomers in many parts of the world, and his early death is felt as a deep
personal loss. He was elected an Associate on 1909 June 11. A.S.E. [4].

His final papersmade himmost famous: He solved the equations of Einstein’s new
General Theory of Relativity for themetric around a point mass. Then Schwarzschild
solved for the metric inside an incompressible fluid sphere, a solution fundamental
to gravitational collapse and black hole formation.

His solutions exhibited the Schwarzschild radius characterizing Black Holes, but
it also permits the calculation of the precession of the perihelion of elliptical planetary
orbits characteristic of General Relativity. The papers were published as:

K. Schwarzschild: Über das Gravitationsfeld eines Massenpunktes nach der Einstein-
schen Theorie, Sitzungsberichte der Mathematisch Physikalischen Klasse der Deutschen
Akademie der Wissenschaften Berlin 16, 189 (1916) and Ibid. 424 [11, 12].

4The impact of the early work was—as already mentioned—very modest: Methods for determining
a preliminary orbit are programmed today, while the determination of definitive orbits for comets
and asteroids still requires laborious, detailed work [7].
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His very last paper was Zur Quantenhypothese, written during his illness, bears
on the application of the quantum theory to spectral series [13].

Hertzsprung accounted on his last impression of Karl Schwarzschild in his obit-
uary:

The ardent wish for scientific occupation did not leave him until the last. It seemed incredible
to the visitor at his sickbed that he was a man so near death. At such an occasion one feels
the mastery of a strong spirit over earthly misery [5].

Schwarzschild died a week after publication of the last paper. What killed him was
‘pemphigus’ (a form of acute necrotizing ulcerative gingivitis), a disease that is still
quite dreadful and can be extremely resistant even to modern antibiotics [6].

He and Else had three children, Agathe,Martin, andAlfred.Martin Schwarzschild
(1912–1997) fled Nazi Germany in 1935 for an outstanding career in Astrophysics
at Princeton University (see [14], p. 25). Alfred stayed in Nazi Germany and was
murdered in the Holocaust.

I will close this short account of Karl Schwarzschilds life and work with his
own words from his Admission speech before the Berlin Academy of Science 1913,
translated by Eddington:

Mathematics, physics, chemistry, astronomy, march in one front. Whichever lags behind
is drawn after. Whichever hastens ahead helps on the others. The closest solidarity exists
between astronomy and thewhole circle of exact science. […] From this aspect I may count it
well that my interest has never been limited to the things beyond the moon, but has followed
the threads which spin themselves from there to our sublunar knowledge; I have often been
untrue to the heavens (cited from [4]).
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Chapter 2
Black Hole Observations—Towards
the Event Horizon

Silke Britzen

Abstract BlackHoles are probably themost elusive solutions of Einstein’s theory of
General Relativity. Despite numerous observations of the direct galactic environment
and indirect influence of astrophysical black holes (e.g. jets, variable emission across
the wavelength spectrum, feedback processes, etc.)—a direct proof of their existence
is still lacking. This article highlights some aspects deduced frommany observations
and concentrates on the experimental results with regard to black holes with masses
from millions to billions of solar masses. The focus will be on the challenges and
remaining questions. The Event Horizon Telescopce (EHT) project to image the
photon sphere of Sgr A* and its potential is briefly sketched. This instrumental
approach shall lead to highest resolution observations of the supermassive black
hole at the center of the Milky Way (Sgr A*).

2.1 Active Galactic Nuclei (AGN)

Black Holes (hereafter BH) as physical objects play an important role in many astro-
physical environments and processes (e.g. [13]).Whether as the endproduct and final
stages of massive stars or as the central machines at the cores of actively radiating
galaxies as Active Galactic Nuclei (AGN). Many questions related to AGN are still
open. Assuming that the standard big bang scenario describes correctly the early
phases of the Universe (for alternative models see e.g. [57]), then the first question
to ask is: How could the earliest supermassive BHs (with masses in excess of 109

M⊙), observed as luminous AGN at redshifts z > 6, be already in place when the
Universe was less than a billion years old (e.g. [19, 20, 43, 58, 59])? How were
supermassive BHs formed in the early phases of the Universe? Some of the com-
peting theories suggest they formed as the remnants of the first generation of Pop
III stars (e.g. [30, 42]) or through the ‘direct collapse’ of atomic-cooling gas (e.g.
[4, 11]). Did the BHs grow through mergers of their host galaxies with other galaxies
(e.g. [52])? Is accretion the more important process as some investigations (e.g. [1])
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suggest? Are collisions the major and common cause of growth and activity? Major
mergers of galaxies are suspected to be associated with quasar activity (e.g. [2, 3,
38, 50]). Is activity a phase in the life of a BH and how is this activity triggered?
Observations at lower redshifts (z ≤ 1.5) show that only a small fraction of super-
massive BHs are undergoing quasar (the most luminous type of AGN) episodes,
which are estimated to last for 1–100 Myr (e.g. [31, 55]). This would argue against
the expectation of uninterruped accretion. How many life cycles will an average
AGN undergo and how can this be tested? A most influential result was the discov-
ery of a tight correlation between BH mass and the velocity dispersion of the bulge
component of the host galaxy (e.g. [21, 24]). This and similar correlations lead to
the assumption of a coevolution of black holes and galactic bulges. However, recent
investigations showed, that supermassive BHs correlate differently with different
galaxy components (e.g. [39]) and the details remain to be studied. AGN interact
with their astrophysical environment in a variety of ways and can induce feedback
processes, which in turnmay influence the evolution of AGN themselves or members
of galaxy clusters within which they lie. Clusters of galaxies constitute an excellent
laboratory for the study of the feedback between the accretion and star formation
processes. It is still unclear whether the AGN activity can account for the energy
budget in clusters of galaxies and the Intracluster medium.

2.2 Jets

Zooming in on the central BH: Our knowledge regarding supermassive Black Holes
has to be deduced from what is observable and can be extrapolated into the unob-
servable regime. AGN produce up to 5% of the energy content of the Universe. The
energy output can be more easily measured and observed compared to the feeding
process (e.g. [7]). It seems extremely difficult to decipher the details of the accretion
process. A careful monitoring of the complex details of feedback processes on all
observable scales around the central object seems to be required (in the case of Cen
A: e.g. [36]; NUGA-NUclei of GAlaxies—sample: e.g. [29]). Direct imaging of the
accretion disk is beyond the current observational capabilities. Though, by help of
gravitational lensing, a size measurement and spectral data of an AGN accretion disk
could be obtained with HST-measurements [44].

The most obvious and probably best studied observational signatures of super-
massive BlackHoles are their jets (e.g. [33]), which seem to be a natural consequence
of accretion disks with magnetic fields under certain conditions (e.g. [41]). These
plasma-streams extend from the most central region of a galxy much beyond the
optically visible galaxy into intergalactic space. While the jets are observable from
large scales down to micro-arcsecond scales, the jet base as well as the jet-launching
mechanisms are still not amenable to observations and have to be inferred indirectly
[7]. Several theoretical jet launching scenarios have been proposed. The most promi-
nent and often discussed are the Blandford and Znajek [5] and the Blandford and
Payne [6]mechanism.The formermodel describes jet production via electromagnetic
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extraction of energy from Kerr BHs. The latter model explores the possibility that
angular momentum could be removed magnetically from an accretion disk by field
lines that leave the disk surface, and could eventually be carried off in a jet moving
perpendicular to the disk. Acceleration and collimation of jets, the jet composition,
the dominant dissipation and radiation processes remain to be studied and clarified
(e.g. [49]). AGN jets have been studied in great detail in many Very Long Baseline
Interferometry (VLBI) radio observations for several decades. The observational
work has been accompanied by theoretical modelling and simulations (e.g. [32,
51]). Jets, although observed with all available radio telescope arrays at all avail-
able frequencies in the last decades remain enigmatic (e.g. [8, 28]). Many questions
are related to the jet “components” which reveal apparent superluminal motions.
Are these features shocks or instabilities in the plasma flow or do both phenomena
co-exist in one jet? Helicity and geometrical effects seem to play a more impor-
tant role than previously thought and can be used to explain the observed patterns
[10]. These findings quite naturally lead to a questioning of the standard paradigm
inevitably causally connecting broad-band flaring and jet component ejection (e.g.
[9]).

2.2.1 Supermassive Binary Black Holes

The collision of galaxies and subsequent merging of the black holes at the centres
of these galaxies is most likely one of the two relevant processes in the growth
of the supermassive black hole mass and in the evolution of its spin. Theoretical
and computational studies of the evolution of merging binaries taking into account
conservative dynamics (post-Newtonian relativistic and finite size couplings, like
spinorbit, spinspin, mass quadrupole mass monopole) or dissipative elements (grav-
itational radiation, dynamical friction and interaction with accretion disks) are of
importance (e.g. [12]). Of equal importance is the observational evidence for super-
massiv binary BHs through high-resolution radio imaging and optical spectroscopy
as well as modelling of periodicities observed in total flux density and structural
variations (e.g. [40, 48]).

2.2.2 Broadband—Flaring

AGN reveal variability over the entire electromagnetic spectrum on different
timescales. Assuming that variable emission carries information about the structure
and energy changes which occur at the centre of the AGN, non-imaging techniques
(such as time series analysis) can be helpful in studying variable emission. Blazars—
those AGN that are most likely viewed under a small viewing angle, pointing their
jet directly at the observer—are known for significant and rapid variability at all
wavelengths observed. Luminosities can appear to be (quasi)-periodic and might
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reveal important insight into the physics of the BH-system. As an example, [56]
reconfirm based on a detailed analysis of the periodicities in 1156+295 that global
p-mode oscillations of the accretion disc are coupled to the jet. They suspect that
the osciallation of the disc is driven by Kelvin-Helmholtz instabilites in the inner
edge of the accretion disc. High energy emission can probe the inner region around
the BH. In particular, the Fermi Gamma-ray space telescope currently detects and
observesmanyAGNproducing so far unprecedented lightcurves in these wavelength
regimes (e.g. [47]). However, it remains unclear where the ultra-relativistic particles
are produced either close to the core or far outside (e.g. [14, 37]).

2.3 The Galactic Center Black Hole Sgr A*

The closest supermassive BH is the source Sgr A* at the centre of the Milky
Way with a mass of about 4 million solar masses inferred from stellar orbits (e.g.
[17, 25]).Whether this close-by supermassiveBHcan serve as prototype for themore
active but also more distant AGN is so far unclear. Ideally, Sgr A* could be studied
as a less active and lightweight version of the typical BH in AGN. Sgr A* is the most
promising candidate and best case for a direct “image-proof” of the photon sphere
around the dark object, whichmay be detectable bymm- and/or submm-VLBI. Imag-
ing of the shadow of the BHmight probe directly the existence of BHs (e.g. [15, 18]).
It is a technically challenging project and still requires more time and improvement
in resolution (e.g. [15]). 1-mm observations suggest that there might be structure on
sizes below the size of the event horizon [22]. It is not yet clear, whether this indi-
cates the need for an event horizon dependent on BH rotation (BH spin), hot spots
orbiting in the accretion disk, or relativistic distortions of the inner accretion disk
near the last stable orbit. Future (sub-) mm interferometric observations with about
10 micro-arcseconds angular resolution corresponding to a spatial scale of about the
size of the BH in the Galactic Centre (1 Schwarzschild radius) are required to solve
this question. The comparison of the shape and spectrum of the emission around
the BH with BH-simulations will provide information on the observable GR effects
and MHD physics in the accretion disk. Sgr A* displays extremely rapidly variable
outbursts a few times a day in the Near-infrared and X-rays (e.g. [35, 53, 60]). These
flares probe regions in the accretion flow as compact as or even smaller than the
Schwarzschild radius. The interpretation of this flaring and the question whether this
is periodic or not bears potential for a better understanding of the accretion process.
Ever larger numbers of young, massive stars are being found throughout the Nuclear
star cluster around Sgr A (e.g. [25]). Another challenge is to understand how star
formation in this region works and whether the existing evidence for an initial stellar
mass function different from the rest of the Galaxy will be confirmed. Further ques-
tions related to Sgr A* deal with the amount of the current gas inflow rate into the
central parsec around theBH andwhether or not a detectable collimated outflow from
Sgr A* exists. Several scientific teams aim at proving the strength of gravity closer
and closer to the assumed event horizon. Up-coming large observation facilities—
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interferometric beam combiners at the VLTI (GRAVITY, e.g. [27]), instrumentation
for the E-ELT (METIS), andmm/submm-VLBI (Event Horizon Telescope, e.g. [15])
will play an important role in probing the inner regions or providing the first direct
evidence of a BH.

2.3.1 Event Horizon or Apparent Horizon

The observational evidence in favor of an event horizon of Sgr A* seems compelling
[45]. However, recent publications (e.g. [54]) discuss the point that event horizons
are (generically) not physically observable. In contrast, apparent horizons (and the
closely related trapping horizons) seem to be generically physically observable—in
the sense that they can be detected by observers working in finite-size regions of
spacetime. Event horizons thus seem inappropriate tools for defining astrophysical
black holes, or indeed for defining any notion of evolving black hole, (evolving
either due to accretion or Hawking radiation). According to [54] the only situation in
which an event horizon becomes physically observable is for the very highly idealized
stationary or static black holes. This topic was recently discussed by [34] by claiming
that a gravitational collapse produces apparent horizons but no event horizons behind
which information is lost. Most important will be to test theoretical predictions with
regard to the physics of BH versus the observationl results. In particular it will be
as important as challengig to search for possible quantum effects of the BH (e.g.
[16, 26]).

Despite the relevance of BHs in the astrophysical context, the most important
questions related to their pure existence or proof of existence and their physics are
still open. With technological progress, several scientific teams aim at proving the
strength of gravity closer and closer to the assumed event horizon. Many questions
with regard to BHs are still open. Yet they all touch important scientific questions.

Acknowledgments Iwould like to thank the organizers of theKarl SchwarzschildMeeting 2013 for
an excellent scientific conference and awesome hospitality. The here sketched BH-related questions
were subject of projects and collaborations within the scientific theme of the COSTActionMP0905.
This work has been supported by the COST Action MP0905 Black Holes in a Violent Universe.

References

1. M.A. Abramowicz, P.C. Fragile, Foundations of black hole accretion disk theory. Living Rev.
Rel. 16, 1 (2013)

2. V. Allevato, A. Finoguenov, N. Cappelluti, T. Miyaji et al., Astrophys. J. 736, 99 (2011)
3. J.N. Bahcall, S. Kirhakos, D.H. Saxe, D.P. Schneider, Hubbel space telescope images of a

sample of 20 nearby luminous quasars. Astrophys. J. 479, 642 (1997)
4. J.E. Barnes, L.E. Hernquist, Fueling starburst galaxies with gas-rich mergers. Astrophys. J.

370, L65–L68 (1991)



20 S. Britzen

5. M.C. Begelman, M. Volonteri, M.J. Rees, Formation of supermassive black holes by direct
collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006)

6. R.D. Blandford, R.L. Znajek, Electromagnetic extraction of energy from Kerr black holes.
Mon. Not. R. Astron. Soc. 179, 433 (1977)

7. R.D. Blandford, D.G. Payne, Hydromagnetic flows from accretion disks and the production of
radio jets. Mon. Not. R. Astron. Soc. 199, 883 (1982)

8. R.D. Blandford, 199 (2003)
9. S. Britzen, N.A. Kudryavtseva, A.Witzel, R.M. Campbell, et al., The kinematics in the pc-scale

jets of AGN. The case of S5 1803+784. Astron. Astrophys. 511 57 (2010)
10. S. Britzen, A. Witzel, B.P. Gong, J.W. Zhang, et al., Understanding BL Lacertae objects.

Structural andkinematicmode changes in theBLLacobject PKS0735+178.Astron.Astrophys.
515, 105 (2010)

11. V. Bromm, A. Loeb, Formation of the first supermassive black holes. Astrophys. J. 596, 34–46
(2003)

12. M. Colpi, Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence.
Space Science Reviews, Online First (2014)

13. C. DeWitt, Black Holes (Les Houches Lectures) (Harwood Academic, 1972). ISBN 13:978-
0677156101

14. C.D. Dermer, in Jets at all Scales, Proceedings of the International Astronomical Union, IAU
Symposium, vol. 275 (2010), p. 111

15. S. Doeleman et al., Astro 2010: The Astronomy and Astrophysics Decadal Survey, Science
White Papers, No. 68 (2009)

16. G. Dvali, C. Gomez, Black Hole Macro-Quantumness. arXiv:1212.0765
17. A. Eckart, The Galactic black hole. Lectures on general relativity and astrophysics, in Series in

High Energy Physics, Cosmology and Gravitation, eds. by H. Falcke, F.W. Hehl (IoP, Institute
of Physics Publishing, Bristol, 2003), p. 229

18. H. Falcke, F. Melia, E. Agol, Astrophys. J. 528(1), 13–16 (2000)
19. X. Fan, V.K. Narayanan, R.H. Lupton, M.A. Strauss et al., A survey of z > 5.8 quasars in the

sloan digital sky survey. I. Discovery of three new quasars and the spatial density ofluminous
quasars at z > 6. Astrophys. J. 122, 2833 (2001)

20. X. Fan, M.A. Strauss, D.P. Schneider, R.H., Becker et al.: A survey of z > 5.7 quasars in the
sloan digital sky survey. II. Discovery of three additional quasars at z > 6. Astrophys. J. 125,
1649 (2003)

21. F. Ferrarese, D. Merritt, A fundamental relation between supermassive black holes and their
host galaxies. Astrophys. J. 539, L9–L12 (2000)

22. V.L. Fish, S. Doeleman, C. Beaudoin et al., 1.3 mm wavelength VLBI of Sagittarius A*:
detection of time-variable emission on event horizon scales. Astrophys. J. 727(2), 36 (2011)

23. S. Doeleman, E. Agol, D. Backer, F. Baganoff et al., Imaging an event horizon: submm-VLBI
of a super massive black hole, in Astro2010: The Astronomy and Astrophysics Decadal Survey,
Science White Papers, no. 68 (2009)

24. K. Gebhardt et al., A relationship between nuclear black hole mass and galaxy velocity disper-
sion. Astrophys. J. 539, L13–L16 (2000)

25. R. Genzel, E. Eisenhauer, S. Gillessen, Rev. Mod. Phys. 82(4), 3121 (2010)
26. S. Giddings, Possible observational windows for quantum effects from black holes.

arXiv:1406.7001 (2014)
27. S. Gillessen, F. Eisenhauer, G. Perrin, W. Brandner et al., GRAVITY: a four-telescope beam

combiner instrument for the VLTI. Proc. SPIE 7734, 77340Y (2010)
28. Gómez et al., (2004)
29. S. Haan, E. Schinnerer, E. Emsellem, S. Garca-Burillo et al., Dynamical evolution of AGN

host galaxies-gas in/out-flow rates in seven NUGA galaxies. Astrophys. J. 692(2), 1623–1661
(2009)

30. Z. Haiman, A. Loeb, What is the highest plausible redshift of luminous quasars? Astrophys. J.
552, 459 (2001)

http://arxiv.org/abs/1212.0765
http://arxiv.org/abs/1406.7001


2 Black Hole Observations—Towards the Event Horizon 21

31. Z. Haiman, L. Ciotti, J.P. Ostriker, Reasoning from fossils: learning from the local black hole
population about the evolution of quasars. Astrophys. J. 606, 763–773 (2004)

32. P.E. Hardee, AGN jets: a review of stability and structure. Relativistic jets: the common physics
of AGN, microquasars, and gamma-ray bursts. AIP Conf. Proc. 856, 57–77 (2014)

33. D. Homan, Physical properties of jets in AGN. Int. J. Mod. Phys. Conf. Ser. 08, 163 (2012)
34. Hawking, S.: Information Preservation and Weather Forecasting for Black Holes.

arXiv:1401.5761 (2014)
35. J.L. Hora, G. Witzel, M.L.N. Ashby, E.E. Becklin et al., Spitzer/IRAC Observations of the

Variability of Sgr A* and the Object G2 at 4.5 Microns. eprint arXiv:1408.1951 (2014)
36. F.P. Israel, R. Güsten, R. Meijerink, A.F., Loenen et al., The molecular circumnuclear disk

(CND) in Centaurus A. A multi-transition CO and [CI] survey with Herschel, APEX, JCMT,
and SEST. Astron. Astrophys. 562, 96 (2014)

37. A.P. Marscher, S.G. Jorstad, Rapid Variability of Gamma-ray Emission from Sites near the 43
GHz Cores of Blazar Jets (2010). arXiv:1005.5551

38. G. Kauffmann, M. Haehnelt, A unified model for the evolution of galaxies and quasars. Mon.
Not. R. Astron. Soc. 311, 576–588 (2000)

39. J. Kormendy, L.C. Ho, Coevolution (or not) of supermassive black holes and host galaxies.
Ann. Rev. Astron. Astrophys. 51, 511–653 (2013)

40. E. Kun, K.É. Gabányi, M. Karouzos, S. Britzen, L.Á. Gergely, A spinning supermassive black
hole binary revealed by VLBI data on the jet of S5 1928+738. arXiv:1402.2644

41. D. Lynden-Bell, On why discs generate magnetic towers and collimate jets. Mon. Not. R.
Astron. Soc. 341, 1360–1372 (2003)

42. P. Madau, M.J. Rees, Massive black holes as population III remnants. Astrophys. J. 551, L27–
L30 (2001)

43. D.J. Mortlock, S.J. Warren, B.B.P. Venemans, M. Patel et al., A luminous quasar at a redshift
of z = 7.085. Nature 474, 616–619 (2011)

44. J.A.Muoz, E.Mediavilla, C.S. Kochanek, E.E. Falco, A.M.Mosquera, A study of gravitational
lens chromaticity with the hubble space telescope. Astrophys. J. 742(2), 67 (2011)

45. R. Narayan, J.E.McClintock, Advection-dominated accretion and the black hole event horizon.
New Astron. Rev. 51(10–12), 733–751 (2008)

46. R.Narayan, J.E.McClintock,Observational Evidence for Black Holes. arXiv:1312.6698 (2013)
47. P.L. Nolan, Fermi large area telescope second source catalog. Astrophys. J. Suppl. 199(2),

article id. 31, 46 (2012)
48. S.-J. Qian, S. Britzen, A. Witzel, T.P. Krichbaum, et al., A possible precessing nozzle and the

Lense-Thirring effect in blazar 3C 454.3. Res. Astron. Astrophys. 14(3), 249–274 (2014)
49. G.E. Romero, R.A. Sunyaev, T. Belloni, et al., Jets at all scales, in Proceedings of IAU Sympo-

sium, vol. 275 eds. by G.E. Romero, R.A. Sunyaev, T. Belloni (Cambridge University Press,
Cambridge, 2011)

50. D.B. Sanders, B.T. Soifer, J.H. Elias et al., Ultraluminous infrared galaxies and the origin of
quasars. Astrophys. J. 325, 74–91 (1988)

51. M. Sikora, Radiation processes in blazars. in the fourth compton symposium. AIP Conf. Proc.
410, 494–505 (1997)

52. T.L. Tanaka, Driving the growth of the earliest supermassive black holes with major mergers
of host galaxies. arXiv:1406.3023

53. G. Trap, A. Goldwurm, K. Dodds-Eden et al., Concurrent X-ray, near-infrared, sub-millimeter,
and GeV gamma-ray observations of Sagittarius A*. Astron. Astrophys. 528, 140 (2011)

54. M. Visser, Physical observability of horizons. arXiv:1407.7295 (2014)
55. J.-M. Wang, Y.-M. Chen, F. Zhang, Cosmological evolution of the duty cycle of quasars.

Astrophys. J. 647, L17–L20 (2006)
56. J.-Y. Wang, T. An, W.A. Baan, X.-L. Lu, Periodic radio variabilities of the blazar 1156 + 295:

harmonic oscillations. Mon. Not. R. Astron. Soc. 443(1), 58–66 (2014)
57. C. Wetterich, External Universe. Phys. Rev. D 90, 3520 (2014)
58. C.J. Willott, R.J. McLure, M.J. Jarvis, 3× 109 black hole in the quasar SDSS J1148 + 5251 at

z = 6.41. Astrophys. J. 587, 15 (2003)

http://arxiv.org/abs/1401.5761
http://arxiv.org/abs/1408.1951
http://arxiv.org/abs/1005.5551
http://arxiv.org/abs/1402.2644
http://arxiv.org/abs/1312.6698
http://arxiv.org/abs/1406.3023
http://arxiv.org/abs/1407.7295


22 S. Britzen

59. C.J. Willott, P. Delorme, C. Reylé, L. Albert et al., The Canada-France high-z quasar survey:
nine new quasars and the luminosity funtion at redshift 6. Astrophys. J. 139, 906–918 (2010)

60. G. Witzel, A., Eckart, M., Bremer, M., Zamaninasab et al., Source-intrinsic Near-infrared
properties of Sgr A*: total intensity measurements. Astrophys. J. Suppl. 203(2), article id. 18,
36 (2012)



Chapter 3
Primordial Black Holes and Quantum Effects

Bernard J. Carr

Abstract Primordial black holes are of special interest because of the crucial role
of quantum effects in their formation and evaporation. This means that they provide
a unique probe of the early universe, high-energy physics and quantum gravity. We
highlight some recent developments in the subject, including improved limits on the
fraction of the Universe going into evaporating PBHs in the mass range 109–1017 g
and the possibility of using PBHs to probe a cosmological bounce.

3.1 Introduction

A comparison of the cosmological density at a time t after the big bang with the
density associated with a black hole of mass M shows that primordial black holes
(PBHs) should have of order the particle horizon mass, MH (t) ≈ 1015(t/10−23) g,
at formation. PBHs could thus span an enormous mass range: from 10−5 g for those
formed at 10−43 s to 105M� for those formed at 1 s. By contrast, black holes forming
at the present epoch could never be smaller than about 1M�. However, the high
density of the early Universe is not a sufficient condition for PBH formation. One
either needs large-amplitude density fluctuations, possibly of inflationary origin, so
that overdense regions can eventually stop expanding and recollapse, or some sort
of cosmological phase transition at which PBHs can form spontaneously (e.g. via
the collapse of cosmic loops or the collisions of bubbles of broken symmetry). All
these formation mechanisms depend in some sense on quantum effects and they are
discussed in detail in [1] (henceforth CKSY).

The realization that PBHs might be small prompted Hawking to study their quan-
tum consequences. This led to his famous discovery [2] that black holes radiate
thermally with a temperature T ≈ 10−7(M/M�)−1 K and evaporate on a timescale
τ(M) ≈ 1064(M/M�)3y. Only black holes smaller than 1015 g would have evap-
orated by the present epoch and 1015 g ones would be exploding today. Since the
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latter would be producing photons with energy of order 100 MeV, the observa-
tional limits on the γ -ray background intensity imply that their density could not
exceed 10−8 times the critical density. Nevertheless, this does not preclude PBHs
playing other important cosmological roles. Indeed, their study provides a unique
probe of four areas of physics: gravitational collapse for M > 1015 g, high energy
physics for M ∼ 1015 g, the early Universe for M < 1015 g and quantum gravity for
M ∼ 10−5 g.

Since both their formation and evaporation are a consequence of quantum effects,
PBHsmay offer the only astrophysical realization of whatmight be termed “quantum
black holes” (i.e. holes for which quantum effects are important) [3]. This article will
focus on their evaporation rather than their formation. In particular, it will discuss
the upper limit on the fraction of the Universe going into PBHs as a function of mass
because this provides important constraints on models (such as inflation) predicting
their formation. The fraction of the Universe collapsing into PBHs at time t is related
to their current density parameter ΩPBH by

β ≈ 10−6ΩPBH(t/s)1/2 ≈ 10−18ΩPBH(M/1015g)1/2, (3.1)

where the t dependence reflects the decreasing ratio of the PBH and radiation den-
sities at early times. Any limit on ΩPBH therefore places a constraint on β(M). The
constraints on β(M) have been studied by numerous authors but the most recent and
comprehensive discussion is that of [1]. The limits cover the mass range 109–1017 g
and are shown in Fig. 3.1. The important point is that the value of β(M) must be
tiny throughout this mass range, so any cosmological model which entails an appre-
ciable fraction of the Universe going into PBHs is immediately excluded. The most
stringent limits—associated with big bang nucleosynthesis (BBN), the extragalactic

BBN

Y

D/H

6  Li/7  Li
3  He/D Photon background

LSP relics

Galactic -rays

CMB anisotropy
21cm

log10(M/g)

10-30

10-28

10-26

10-24

10-22

10-20

10-18

10-16

9 10 11 12 13 14 15 16 17

p

3

CMB
-distortion

y-distortion SK neutrino

EG antiprotons

PBH

Fig. 3.1 Combined BBN and EGB limits (solid), compared to other constraints on evaporating
PBHs from LSP relics and CMB distortions (short-dashed), extragalactic antiprotons and neutrinos
(dotted), the Galactic γ -ray background (long-dashed), CMB anisotropies (dash-dotted) and the
density limit from the smallest unevaporated black holes (dashed). From [1]
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γ -ray background (EGB) and observation of anisotropies in the cosmic microwave
background (CMB)—are discussed below. Positive evidence for PBHs might come
from cosmic rays or short-period gamma-ray bursts but this is not covered below
since the status of the observations is still ambiguous.

3.2 PBH Evaporations

A black hole with mass M ≡ M10 ×1010 g emits thermal radiation with temperature

TBH = 1

8π G M
≈ 1.06 M−1

10 TeV . (3.2)

The average energy of the emitted particles is (4–6)kTBH, depending on their spin.
Charge and angular momentum are neglected because these will be lost through
quantum emission on a shorter timescale. The mass loss rate can be expressed as

dM10

dt
= −5.34 × 10−5 f (M) M−2

10 s−1 . (3.3)

Here f (M) is a measure of the number of emitted particle species, normalised to
unity for a black hole with M � 1017 g, this emitting only particles which are
(effectively) massless: photons, neutrinos and gravitons. Holes with 1015 g < M <

1017 g emit electrons, while those with 1014 g < M < 1015 g also emit muons,
which subsequently decay into electrons and neutrinos.

Once M falls to around 1014 g, a black hole can also begin to emit hadrons. How-
ever, hadrons are composite particles, made up of quarks held together by gluons, so
for temperatures exceedingΛQCD = 250−300MeV, one would expect the emission
of quark and gluon jets rather than hadrons [5]. The jets would subsequently fragment
into hadrons but only after travelling a distance Λ−1

QCD ∼ 10−13 cm, which is much
larger than the size of the hole. The QCD fragmentation has been calculated using the
PYTHIA [1] and HERWIG codes [6] but with similar results. Since there are many
quark and gluon degrees of freedom, the value of f should roughly quadruple once
the QCD temperature is reached. If we sum up the contributions from all particles in
the Standard Model up to 1 TeV, this gives f (M) = 15.35 and a lifetime

τ ≈ 407

(
f (M)

15.35

)−1

M3
10 s . (3.4)

The critical mass for which τ equals the age of the Universe (t0 ≈ 13.7Gyr) is
M∗ ≈ 5.1 × 1014 g, corresponding to f∗ = 1.9 and TBH(M∗) = 21MeV.

The direct Hawking emission is termed the primary component, while the jet
fragmentation emission is termed the secondary component. The spectrum of sec-
ondary photons is dominated by the 2γ -decay of soft neutral pions and peaks around



26 B.J. Carr

Fig. 3.2 Left Instantaneous emission rate of photons for four typical black hole temperatures,
For each temperature, the curve with the peak to the right (left) represents the primary (secondary)
component and the thick curve denotes their sum.Right Ratios of secondary to primary peak energies
(solid) and fluxes (dashed). From [1]

Eγ � mπ0/2 ≈ 68MeV. The emission rates of primary and secondary photons for
four typical temperatures are shown in Fig. 3.2. Although QCD effects are initially
small for PBHs with M = M∗, only contributing a few percent, they become impor-
tant once M falls to Mq ≈ 0.4M∗ ≈ 2×1014 g since the peak energy becomes com-
parable to ΛQCD then. This means that an appreciable fraction of the time-integrated
emission from the PBHs evaporating at the present epoch goes into quark and gluon
jet products. However, a PBH with somewhat larger initial mass, M = (1 + μ) M∗
will today have amass M(t0) ≈ (3μ)1/3M∗ forμ 	 1. Since this falls below Mq for
μ < 0.02, the fraction of the black hole mass going into secondaries falls off sharply
above M∗. The ratio of the secondary to primary peak energies and time-integrated
fluxes are shown as functions of M in Fig. 3.2.

There has been some dispute about the interactions between emitted particles
beyond the QCD scale. The usual assumption that there is no interaction has been
refuted by Heckler [7], who claims that QED interactions could produce an optically
thick photosphere once the black hole temperature exceeds TBH = 45GeV. He has
proposed that a similar effect may operate at an even lower temperature, TBH ≈
200MeV, due to QCD effects [8]. Variants of these models and their astrophysical
implications have been studied by various authors. However, MacGibbon et al. [9]
have reviewed all these models and identified a number of effects which invalidate
them. They conclude that emitted particles do not interact sufficiently to form a QED
photosphere and that the conditions for QCD photosphere formation could only be
temporarily satisfied (if at all) when the black hole temperature is of order ΛQCD.

3.3 Constraints on β(M) Imposed by BBN, EGB and CMB

PBHs with M ∼ 1010 g and TBH ∼ 1TeV have a lifetime τ ∼ 103 s and there-
fore evaporate at the epoch of big bang nucleosynthesis (BBN). The effect of these
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evaporations on BBN has been a subject of long-standing interest and jet-produced
hadrons are particularly important. Long-lived ones remain long enough in the ambi-
ent medium to leave an observable signature on BBN. These effects were first dis-
cussed for the relatively low mass PBHs evaporating in the early stages of BBN [10]
but the analysis has now been extended by CKSY to incorporate the effects of heavier
PBHs evaporating after BBN.

High energy particles emitted by PBHs modify the standard BBN scenario in
three different ways: (1) high energy mesons and antinucleons induce extra inter-
conversion between background protons and neutrons even after the weak interac-
tion has frozen out in the background Universe; (2) high energy hadrons dissoci-
ate light elements synthesised in BBN, thereby reducing 4He and increasing D, T,
3He, 6Li and 7Li; (3) high energy photons generated in the cascade further dissoci-
ate 4He. The PBH constraints depend on the initial baryon-to-photon ratio (allow-
ing for PBH entropy production) and the ratio of the PBH number density to the
entropy density, YPBH ≡ nPBH/s, which is related to the initial mass fraction by
β = 5.4 × 1021 (τ/1 s)1/2 YPBH.

The results of these calculations are summarized in Fig. 3.3 (left). PBHswith M <

109 g (τ < 10−2 s) are free from BBN constraints because they evaporate before
weak freeze-out. PBHs with M = 109−1010 g (τ = 10−2−102 s) are constrained
by process (1), those with M = 1010−1012 g (τ = 102−107 s) by process (2) and
those with M > 1012−1013 g (τ = 107−1012 s) by process (3). We also show as
a broken line the limits obtained earlier [10]. The helium limit is weaker because
the primordial abundance is now known to be smaller, while the deuterium limit is
stronger because of its extra production by hadrodissociation of helium.

It has been known for 40 years that observations of the diffuse extragalactic γ -ray
background (EGB) constrainΩPBH(M∗) to be less than around 10−8 [11]. This limit
has subsequently been refined by numerous authors and most recently by CKSY. In

Fig. 3.3 Left Upper bounds on β(M) from BBN, with broken line giving earlier limit. Right
Upper bounds on β(M) from the extragalactic photon background, with no other contributors to
the background having been subtracted. From [1]
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order to determine the present background spectrum of photons generated by PBH
evaporations, one must integrate over the lifetime of the black holes, allowing for
the fact that particles generated in earlier cosmological epochs will be redshifted in
energy by now. The highest energy photons are associated with PBHs of mass M∗.
Those from PBHs with M > M∗ are at lower energies because they are cooler, while
those from PBHs with M < M∗ (although initially hotter) are at lower energies
because they are redshifted.

The most recent X-ray and γ -ray observations are summarized by CKSY and
correspond to an intensity I obs ∝ E−(1+ε)

γ 0 where ε lies between 0.1 and 0.4. The
origin of these backgrounds is thought to be primarily distant astrophysical sources,
such as blazars, and in principle one should remove these contributions before cal-
culating the PBH constraints [12]. CKSY do not attempt such a subtraction, so their
constraints may be overly conservative. The limits on β(M) are shown in Fig. 3.3
(right) and depends on the relative magnitude of the primary and secondary com-
ponents. PBHs with M > M∗ can never emit secondary photons and one obtains
β(M) ≤ 4 × 10−26 (M/M∗)7/2+ε. Those with M ≤ M∗ will do so once M falls
below Mq ≈ 2×1014 g and one obtains β(M) ≤ 3×10−27 (M/M∗)−5/2−2 ε. These
M-dependences explain the qualitative features of Fig. 3.3 (right) and the associated
limit on the density parameter is ΩPBH(M∗) ≤ 5 × 10−10. Since photons emit-
ted at sufficiently early times cannot propagate freely, there is a minimum mass
Mmin ≈ 3 × 1013 g below which the above constraint is inapplicable.

If PBHs of mass M∗ are clustered inside our own Galactic halo, as expected,
then there should also be a Galactic γ -ray background. Some time ago it was
claimed that such a background had been detected by EGRET between 30MeV and
120GeV and that this could be attributed to PBHs [13]. A more recent analysis of
EGRET data between 70MeV and 150GeV gives a limit ΩPBH(M∗) ≤ 2.6× 10−9

or β(M∗) < 1.4 × 10−26 [14], which is a factor of 5 above the EGB constraint.
However, CKSY point out that the EGB constraint on β(M) comes from the time-
integrated contribution of the M∗ black holes, which peaks at 120 MeV, whereas
the Galactic background is dominated by PBHs which are slightly larger than
this. The emission from PBHs with initial mass (1 + μ) M∗ currently peaks at
an energy E ≈ 100 (3μ)−1/3 MeV, which is in the range 70 MeV−150 GeV for
0.7 > μ > 0.08. The corrected limit is shown in Fig. 3.1.

TheCMBconstraint arises because electrons and positrons fromPBHswould heat
the matter content of the Universe after recombination, thereby damping small-scale
anisotropies. CKSY find β(M) < 3× 10−30 (M/1013g)3.1 for 2.5× 1013 g < M <

2.4×1014 g. The upper limit corresponds to evaporation at the epoch of reionization
(z = 6), since the opacity is too low for the emitted particles to heat the matter
thereafter. This is stronger than all the other available limits in this mass range.
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3.4 PBHs and Dark Matter

Roughly 30% of the total density of the Universe is now thought to be in the form of
“cold dark matter”. There has been a lot of interest in whether PBHs could provide
this, since those larger than 1015 g would not have evaporated yet andwould certainly
be massive enough to be dynamically cold. One possibility is that PBHs with a mass
of around 1M� could have formed efficiently at the quark-hadron phase transition at
10−5 s because of a temporary reduction in pressure [15]. At one stage there seemed
to be evidence for this from microlensing observations. The data no longer support
this but there are no constraints excluding PBHs in the sublunar range 1020 g < M <

1026 g [16] or intermediate mass range 102 M� < M < 104 M� [17] from having
an appreciable density.

Some people have speculated that black hole evaporation could cease once the
hole gets close to the Planck mass (MP ) due to the influence of extra dimensions,
higher order corrections to the gravitational Lagrangian, string effects, the gener-
alized uncertainty principle etc. The resulting stable relics would then be natural
candidates for the dark matter [18]. In an inflationary scenario, if the relics have a
mass κ MPl and reheating occurs at a temperature TR (when the PBHs form), then
the requirement that the relic density be less than the dark matter density implies
β(M) < 2 × 10−28 κ−1 (M/MPl)

3/2 for (TR/TPl)−2 < M/MPl < 1011 κ2/5 [19].
The lower mass limit arises because PBHs generated before reheating are diluted
exponentially. (If there is no inflationary period, the constraint extends all the way
down to the Planck mass.) The upper mass limit arises because PBHs larger than this
dominate the total density before they evaporate, in which case the current cosmo-
logical photon-to-baryon ratio is determined by the baryon asymmetry associated
with their emission.

3.5 PBHs as a Probe of a Cosmological Bounce

In some cosmological scenarios, the Universe is expected to eventually recollapse
to a big crunch and then bounce into a new expansion phase. Such a bounce may
arise through either classical or quantum gravitational effects. Even if the Universe is
destined to expand forever, it may have been preceded by an earlier collapsing phase.
Both past and future bounces would arise in cyclic models, as reviewed in [20]. It
is therefore interesting to ask whether black holes could either be generated by a
big crunch or survive it if they were formed earlier [20]. We refer to these as “big-
crunch black holes” (BCBHs) and “pre-crunch black holes” (PCBHs), respectively.
If such black holes were detectable today, they would provide a unique probe of the
last cosmological bounce, although this raises the question of whether one could
differentiate between black holes formed just before and just after the bounce.

Let us assume that the universe bounces at some density ρB , Since the density
associated with a black hole of mass M is ρB H = (3M/4π R3

S), this corresponds to a
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Fig. 3.4 This shows the
domain in which black holes
of mass M containing a
fraction f0 of the present
density can form in a big
crunch or avoid merging if
they exist before it.
From [20]

lower limit on the BCBH mass Mmin ∼ (ρP/ρB)1/2MP . There is also a mass range
in which pre-existing PCBHs lose their individual identity by merging with each
other prior to the bounce. If the fraction of the cosmological density in these black
holes at the bounce epoch is fB , then the average separation between them is less
than their size (i.e. the black holes merge) for M > f −1/2

B Mmin. The important point,
as indicated in Fig. 3.4, is that there is a always range of masses in which BCBHs
may form and PCBHs do not merge. However, one must distinguish between fB

and the present fraction f0 of the Universe’s mass in black holes. Since the ratio of
the black hole to radiation density scales as the cosmic scale factor, the fraction of
the universe in black holes at a radiation-dominated bounce is fB ≈ f0

(
ρeq/ρB

)1/4

where ρeq ∼ 1012ρ0 ∼ 10−17g cm−3. The merger condition therefore becomes
f0 > 1028 (ρB/ρP)

−3/4 (M/MP )−2, as indicated by the line on the right of Fig. 3.4.
There are various dynamical constraints on the form of the function f0(M) for

non-evaporating PCBHs. They must have f0 < 1 in order not to exceed the observed
cosmological density and this gives a minimum value for the merger mass, Mmerge ∼
109(tB/tP )3/4 g, where tB is the time of the bounce as measured from the notional
time of infinite density. This is around 1015 g for tB ∼ 10−35 s but as large as
104M� for tB ∼ 10−5 s, so the observational consequenceswould be very significant.
Another important constraint, deriving from Poisson fluctuations in the black hole
number density, is associated with large-scale structure formation [21]. This gives a
limit f0 < (M/104M�)−1, as shown by the line at the top right of Fig. 3.4.
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Chapter 4
There are No Black Holes—Pseudo-Complex
General Relativity

Walter Greiner, Peter O. Hess, Mirko Schäfer, Thomas Schönenbach
and Gunther Caspar

Abstract After a short review on attempts to extend General Relativity, pseudo-
complex variables are introduced and their main properties are restated. A modified
variational principle has to be introduced in order to obtain a new theory. This allows
the appearance of an additional contribution, whose origin is a repulsive, dark energy.
After the presentation of the general formalism, as examples the Schwarzschild and
the Kerr solutions are discussed. It is shown that a collapsing mass increasingly
accumulates dark energy until the collapse is stopped. Rather than a black hole, a
gray star is formed. We discuss a possible experimental verification, investigating
the orbital frequency of a particle in a circular orbit.

4.1 Introduction

General Relativity (GR) is a well accepted theory which has been verified by many
experimental measurements. One prediction of this theory is the existence of black
holes, which are formed once a very large mass suffers a gravitational collapse.
Astronomical observations seem to confirm this prediction, finding large mass con-
centrations in the center of most galaxies. These masses vary from several million
solar masses to up to several billion solar masses. However, a black hole implies the
appearance of an event horizon, which an external observer cannot penetrate, thus,
excluding a part of space from observation. A black hole also implies a singularity at
its center. Both consequences fromGR are, from a philosophical point of view, unac-
ceptable and the task is to find a possibility to avoid them. We postulate: A physical
theory should not have any singularities! A black hole is an extreme object and one
would not be surprised that GR has to be modified for such situations. Eventually,
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the singularity can be avoided considering a quantized GR. This is not clear up to
now.

There have been several attempts to generalize GR. Einstein [1, 2] introduced
complex variables in order to unify GRwith Electrodynamics. Later on, other groups
continued this research calling the new theory complexified GR (see for example [3,
4] and references therein). The real component of the complex variable is given by
xμ while the imaginary component is given by l pμ

m , where pμ is the momentum of
a particle and m is its mass. As a by-product, for dimensional reasons a minimal
length parameter l appears. One of the motivations to continue the investigation
of the complex GR is Born’s equivalence principle. Born noted [5, 6] that in GR
there is an asymmetry between the coordinates and momenta, while in Quantum
Mechanics they occur in a symmetric manner. In order to restore the symmetry
he proposed a modified length element, adding to ds2, the length square element,
an additional term l2gμνduμduν , with uμ as the four velocity and gμν the metric
(Born used instead of uμ the notation pμ/m). Again the minimal length parameter
appears due to dimensional reasons. In [7] it was recognized that the new length
element is related to a maximal acceleration, a ≤ 1/ l. Many other groups joined
this investigation [8–14] and we will show that it is automatically contained in the
proposed pseudo-complex extension of GR (which wewill call from here on pc-GR).
In [15, 16] a non-symmetric metric is considered and we will also show that it is
contained within a pseudo-complex (pc) description.

In Sect. 4.2wewill introduce pc-variables andmention some important properties.
In the same section the formulation of the pc-GR is resumed. In Sect. 4.3 we present
the results of the pc-Schwarzschild and pc-Kerr solution. It will be shown that in the
pc-GRdark energy accumulates around a largemass concentration,whichwill finally
stop the gravitational collapse, forming rather a gray star than a black hole. There
will be no event horizon, thus in principle allowing an external observer to access
all regions of space. As an application of the theory, in the same section the circular
motion of a particle around a gray star is considered, with a possible experimental
verification. In Sect. 4.4 the conclusions will be drawn.

4.2 Formulation of the Pseudo-complex General Relativity

First we resume some basic properties of pc-variables: A pseudo-complex variable is
given by X = X R + I X I , with X R as the pseudo-real and X I the pseudo-imaginary
component. It is of great advantage to write it in terms of the zero divisor basis (the
notation becomes obvious further below) X = X+σ++X−σ−, with σ± = 1

2 (1 ± I ).
The expressions σ± obey the relations σ 2± = σ± and σ+σ− = 0. The last property is
the definition of a zero divisor. When one defines as the pseudo-complex conjugate
X∗ = X R − I X I , which implies σ ∗± = σ∓, then for elements in the zero divisor
basis (X = λσ±) the norm squared | X |2 = X X∗ is zero. One can interpret
this expression as a “generalized” zero. Calculations in the zero divisor basis are
particularly simple. For example, products and quotients of functions can be done
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independently in each zero divisor component. Also differentiation and integration
of pseudo-complex functions can be defined, similar to complex analysis (with some
slight changes). For more details, consult [17, 18]. In the literature there exist several
names for the pc-variables. Sometimes they are called hyper-complex, hyperbolic or
semi-complex.

The consequences of using pc-variables for the Lorentz transformation are as
follows: A finite Lorentz transformation is given by

eiωμνΛμν = eiω+
μνΛ+

μν σ+ + eiω−
μνΛ−

μν σ−
Λμν = Xμ Pν − Xν Pμ

Λ±
μν = X±

μ P±
ν − X±

ν P±
μ

ωμν = ω+
μνσ+ + ω−

μνσ−. (4.1)

It divides into a Lorentz transformation in each zero-divisor component. The genera-
tors look the same, except now the variables are pseudo-complex. In the zero-divisor
component the coordinates are given by X±

μ and the momenta by P±
ν . Because

σ+σ− = 0, the two Lorentz transformations commute, thus we have

SO+(3, 1) ⊗ SO−(3, 1) ⊃ SO(3, 1). (4.2)

The standard Lorentz group is contained in the direct product and is reached by
projecting the pseudo-complex parameters, coordinates and momenta to their real
parts, i.e.,

ωμν → ωR
μν = 1

2

(
ω+

μν + ω−
μν

)

Xμ → xμ

Pν → pν. (4.3)

This projection method has to be applied also to the metric components.
That pseudo-complex variables also proved to be very useful was demonstrated

in [19]: As shown in [19], the field equation for a scalar boson field is obtained from
the Lagrangian density 1

2

(
DμΦDμΦ − M2Φ2

)
, where Φ is the pc-boson field,

M = M+σ+ + M−σ− is a pc-mass and Dμ a pc-derivative. The propagators of
this theory are the ones of Pauli-Villars, which already are regularized. One obtains
the same propagator in the standard theory, with a non-pc scalar field, using the
Lagrange density − 1(

M2+−M2−
)φ

(
∂μ∂μ + M2+

) (
∂μ∂μ + M2−

)
φ, where φ is now a

real valued function, M+ is identified with the physical mass m and M− � M+
is the regularizing mass. Note, that this theory is highly non-linear while the pc-
description is linear. This indicates that a pc-description can substantially simplify
the structure of the theory and we can expect something similar in the pc-formulation
of GR.
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Let us now return to the pc-GR: The pc-extension of GR is quite direct within the
zero divisor components. The first attempts are published in [20, 21] and in a more
recent article [22] which includes modifications. Here we will present a short review.
We introduce the pc-metric via

gμν(X, A) = g+
μν(X+, A+)σ+ + g−

μν(X−, A−)σ−, (4.4)

were the metric is assumed to be symmetric (in Moffat’s theory of a non-symmetric
metric [15, 16], the σ+ component is the metric gμν , while the σ− component is its
transposed, so in principle Moffat’s theory is contained in our theory, if we skip the
restriction to a symmetric metric). The metric components depend on the variables
Xμ

± and parameters, denoted shortly as A±. In each zero-divisor component a GR
is constructed in the same manner as in standard GR. The pc-coordinates have the
structure

Xμ = xμ + I luμ. (4.5)

Again, due to dimensional reasons, a minimal length parameter has to be introduced.
Because it is just a parameter, it is not affected by any relativistic transformation,
contrary to the believe that a minimal length is related to the breaking of Lorentz
symmetry. The error made is to relate a minimal length to a physical length, which
is affected by a Lorentz transformation. Here, the minimal length is a parameter
and thus cannot be affected by such a transformation. The consequences are very
important. For example, in [19] a pc-Field Theory was developed, demonstrating that
a minimal length parameter does not affect the known symmetries: the calculations
of Feynman diagrams remain very simple and the propagators of the theory are
automatically regularized.

In mathematical terms we can explain the pc-extension of GR in terms of the
following chain

G+ ⊗ G+ ⊃ G. (4.6)

In each component a standard GR is formulated. The base manifold is given by Xμ
±

and the tangent spaces are given by Uμ
± . Note, that Uμ includes the acceleration.

Excluding the acceleration leads to G.
The pc-length square element is given by

dω2 = gμν(X, A)DXμ DXν, (4.7)

where D refers to a pc-differential [19, 20].
One may ask, what are the corrections due to the minimal length l? This will

lead to the conclusion that all other theories, mentioned in the introduction, are a
consequence of a pc-description. An expansion up to luμ is given by

gμν(X) ≈ gμν(x) + luλFλ
μν(x). (4.8)
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The norm of the four-velocity can not be larger than 1. Assuming that the minimal
length is probably very small (Planck length), one can safely take into account only
the first term. Thus, in themetric tensor gμν(X) the pc-coordinates Xμ are substituted
by xμ.With this and expressing the pc-coordinates explicitly in terms of their pseudo-
real and pseudo-imaginary components, the dω2 acquires the form

dω2 ≈ gμν(x)
(

dxμdxν + l2duμduν
)

+ 2I lgμν(x)dxμduν . (4.9)

The terms in duμ can not be neglected when effects near the maximal accelerations
are considered. The duμ are differentials of velocities, thus accelerations, and can
reach values of the order of 1/ l. When the motion of a particle is considered, the
dω2 has to be real. This provides the condition

gμν(x)dxμduν = 0, (4.10)

which is nothing but the dispersion relation. With (4.10) the length square element
acquires the form as used in the theories mentioned in the introduction. There, the
dispersion relation is introduced by hand while here it appears as a logical conse-
quence.

When maximal acceleration effects are of no importance, one can also neglect the
terms proportional to l and l2 in (4.9).

All properties of tensors, four derivatives, Christoffel symbols, etc. can be directly
extended from standard GR, defining them in each zero-divisor component as done
in standard GR [20, 22, 23]. The only concept which has to be modified is the
variational principle. If one uses (S denotes the action) δS = δS+σ+ + δS−σ− = 0,
then we would obtain δS± = 0. which correspond to two separated theories. In
order to get a new theory, in [24, 25] a modified variational principle was proposed,
namely that the variation has to be within the zero divisor (it can be interpreted as a
“generalized zero”). This leads to field equations which on their right hand side are
not zero but proportional to an element in the zero divisor. Our convention is to set
it proportional to σ−. Thus the Einstein equations read (c = 1)

Gμν = Rμν − 1

2
gμν R = − 8πκTμνσ−. (4.11)

The Rμν are the components of the pc-Ricci tensor, while R is the Ricci scalar. On the
right hand side appears an energy-momentum tensor which describes the presence
of an additional field which is always there in a pc-description. This field will turn
out to have the properties of a dark energy and it will introduce a repulsion against
gravitational collapse.
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4.3 pc-Schwarzschild and pc-Kerr Solution

In [22] we presented the pc-Schwarzschild and pc-Kerr solutions. Of interest here is
the g00 component, namely

g00 =
(

1 − 2m

r
+ Ω(r)

r

)

. (4.12)

(Here, we neglect for the moment a possible factor e f [22], which we set to 1). We
already restricted to the first term in the expansion in luμ. The Ω(r) is a not yet
known function of the radial distance r . We model it by Ω = B

2r2
. This leads to

a correction in the metric of B
2r3

. The correction to the metric components have to

depend at least on 1/r3, because a dependence on 1/r2 with a large B is excluded
by experiments in the solar system [26].

One may speculate about the origin of the dark energy. One possibility are the
vaccum fluctuations (Casimir effect): In [27] the Casimir effect in a gravitational
backgound is investigated, within the Hartle-Hawking vacuum. No recoupling of the
vacuum fluctuations with the gravitational field is considered. Thus, there is still the
Schwarzschild metric present with an event horizon at the Schwarzschild radius. As
a result, the expectation value of the trace of the energy-momentum tensor, due to
the vacuum fluctuations, falls off proportional to 1/r6. This would mean that the
mass, represented by the energy density, falls of proportional to 1/r3. Because no
recoupling with the gravitational field is considered, the calculation has to stop at the
Schwarzschild radius. Below that, no time can be defined in the same way as outside.
In the pc-GR the recoupling of the dark energy energy-momentum tensor with the
gravitational field is automatically included in (4.11). This leads to the correction in
(4.12). Using the result in [27] literally, would imply a correction to the metric pro-
portional to 1/r4. We will assume that the correction to the metric falls off like 1/r3

instead. This is the minimal correction which can be implemented not yet in conflict
with current astronomical observations [26]. We expect to change the r -dependence,
when the recoupling to the gravitational field is included in the calculation of the
Casimir effect. Therefore, the model assumption that the corrections to the metric
behave as 1/r3 is a rather good one. Higher-order corrections proportional to 1/rn

with n ≥ 4 do not change our results significantly.
After this consideration, we return to the discussion of the pc-GR: In order to

have the same interpretation of time in all regions of space, the g00 component has
to be larger than zero. This introduces a minimal value of B [22].

Note, that the
√

g00 component is proportional to an effective potential, with
angular momentum zero [28]. With this, the effective potential is proportional to

√
g00 =

√

1 − 2m

r
+ B

2r3
. (4.13)
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Fig. 4.1 The
√

g00 component, which is proportional to an effective potential with angular momen-
tum zero [28], as a function of rescaled radius r/2m. The green line indicates the classical theory
with B = 0, whereas the red line and the blue line show

√
g00 for pc-GR with B = Bmin = 64

27m3

and B = 1.1Bmin , respectively. We expect an analogous behavior for cosmological models in
pc-GR, leading to an oscillating universe as a possible solution [21]

In Fig. 4.1 we display
√

g00 for the classical theory and for pc-GRwith the parameter
B equal to the minimal value Bmin or slightly larger.

For large distance, the potential is similar to the standard Schwarzschild solution.
The differences start to appear near the Schwarzschild radius. The event horizon
vanishes, because g00 never becomes zero. At smaller radial distances, the potential
becomes repulsive, which is the consequence of the accumulation of dark energy.
This changes the picture of a gravitational collapse: When a large mass is contracted
due its gravitational influence, dark energy starts to accumulate and increases when
the collapse advances. The collapse is finally stopped when enough dark energy
accumulates and acts against the gravitational attraction. Thus, instead of a black
hole the result is rather a gray star, though the gray star resembles pretty much a
black hole seen from far apart. Therefore, from now on we will always refer to a
gray star.

Today we know that the gray stars in the centers of galaxies rotate nearly at
maximum speed. Thus, instead of the Schwarzschild solution one has to take the
Kerr solution, which describes stars in rotation. The pc-Kerr solution was obtained
in [22].

In order to relate the theory to experiment, we investigated the motion of a particle
in a circular geodesic orbit around a gray star. This may be related to the possible
observation of a plasma cloud orbiting such a star [29]. In Fig. 4.2 the orbital fre-
quency is plotted versus the radial distance. As can be seen, the orbital frequency
differs little from the standard Kerr solution until r is of the order of the Schwarz-
schild radius. Towards smaller radial distances, the orbital frequency is smaller in the



40 W. Greiner et al.

Fig. 4.2 The orbital frequency of a particle in a circular orbit around a gray star, as a function
on the radial distance r . The units of ω are in m

c while the radial distance is in units of half the
Schwarzschild radius. r = 2 corresponds to the Schwarzschild radius and ω = 0.22 is equivalent
to about 0.11/min (For this computation we took the mass of Sagittarius A, the center of our galaxy,
which is of the order 3 × 107Msun). The standard Kerr solution is given by the upper line, while
the pc-solution is given by the lower line

pc-description, showing a maximum value, after which it diminishes. The maximum
is a result of the structure of g00 which has a global minimum at about two-thirds
of the Schwarzschild radius. For radii below that value the expression for the orbital
frequency gets imaginary and we do not expect to observe circular geodesic orbits
anymore. The curve for the pc-Kerr solution stops at this value. The curve for the
standard GR stops at the point of the last stable orbit.

The result was obtained assuming thatΩ = B
2r2

. If it decreaseswith a larger power
in r , the pc-solution approaches the standard Kerr solution, but will always show a
maximum and the last stable orbit will be further out, i.e., the basic results will be
the same. This result has important consequences in the experimental verification of
pc-GR and we refer to [29, 30].

4.4 Conclusions

In this contribution we reviewed some essentials of the pseudo-complex General
Relativity. The extension of the standard GR to pc-variables is direct due to the
property that the zero-divisor components commute. In each component a standard
GR is constructed. In order to obtain a new theory, the variational principle had to
be changed. The variation of the action has now to be within the zero-divisor, i.e., it
has to be a “generalized zero”. This introduces a new energy-momentum tensor in
the Einstein equations, describing a dark energy field.
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As a consequence of this dark energy-field, the gravitational collapse of a large
mass is halted as soon as enough dark energy has accumulated. Due to this, no event
horizon is formed and no singularity either. Instead of a black hole rather a gray star
is formed. A possible experimental verification is proposed, determining the orbital
frequency of a particle around a gray star.

Another important application of pseudo-complex General Relativity is a modi-
fied Robertson-Walker metric, implying consequences for a possible model for the
evolution of the universe [21]. It seems that periodic solutions are possible. That
means that the universe may oscillate! No big bangs are existing. This indicates that
a new “Weltbild” emerges!
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Chapter 5
Analytical Solutions for Geodesic Equation
in Black Hole Spacetimes

Claus Lämmerzahl and Eva Hackmann

Abstract We review the analytical solution methods for the geodesic equation in
Kerr-Newman-Taub-NUT-de Sitter spacetimes and its subclasses in terms of elliptic
and hyperelliptic functions. A short guide to corresponding literature for general
timelike and lightlike geodesic motion is also presented.

5.1 Introduction

Black holes belong to the most fascinating objects in astrophysics and are well
suited to explore the regime of strong gravity. We consider here black holes which
are described by the six parameter family of Kerr-Newman-Taub-NUT-de Sitter
spacetimes including mass, rotation, electric and magnetic charge, gravitomagnetic
mass (or NUT charge), and the cosmological constant. The only way to explore
the gravitational field of such objects is through the observation of the motion of
small massive particles and light, which is described by the geodesic equation. The
complete set of orbits can best be analyzed using analyticalmethods.Already in 1931,
Hagihara [20] used Weierstrass elliptic functions to analytically solve the geodesic
equation in Schwarzschild spacetimes. Later, Darwin [5, 6] solved the geodesic
equations in Schwarzschild spacetime in terms of Jacobian elliptic functions. These
methods and their generalization to hyperelliptic functions can be used to solve the
geodesic equation in the six parameter spacetime under consideration. Although this
requires onlymathematics from the 19th century, surprisingly the geodesic equations
in Schwarzschild-de Sitter spacetime were analytically solved only in 2008 [15, 16].
Based on this development, the geodesic equation for many other spacetimes could
be solved. Here we will review these solution methods and provide a short guide to
the literature.
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5.2 The Kerr-Newman-Taub-NUT-de Sitter Space-Time

We consider here spherically or axially symmetric spacetimes with up to six para-
meters, which are part of the family of type D Plebański-Demiański spacetimes. The
metric is given by [10, 25]

ds2 = Δr

ρ2

(
dt − (a sin2 θ + 2n cos θ)dϕ

)2 − ρ2

Δr
dr2

− Δθ

ρ2 sin2 θ(adt − (r2 + a2 + n2)dϕ)2 − ρ2

Δθ

dθ2 (5.1)

with

ρ2 = r2 + (n − a cos θ)2 ,

Δθ = 1 + 1
3a2Λ cos2 θ − 4

3Λan cos θ, (5.2)

Δr = r2 − 2Mr + a2 − n2 + Q2
e + Q2

m − 1
3Λ

(
r4 + (6n2 + a2)r2 + 3(a2 − n2)n2

)
,

where M is the mass, a = J/M the specific angular momentum,Λ the cosmological
constant, n the gravitomagnetic mass (NUT charge), Qe the electric, and Qm the
magnetic charge of a gravitating source.

5.3 Analytical Solution Methods

The motion of test particles in spacetimes given by the metric (5.1) is given by the
geodesic equation

d2xμ

ds2
+ Γ μ

νρ

dxν

ds

dxρ

ds
= 0 (5.3)

where Γ μ
νρ are the Christoffel symbols and s is an affine parameter. As the metric

(5.1) is axially symmetric there exists the two constants of motion

E = uμξ
μ

(t) , Lz = −uμξ
μ

(ϕ), (5.4)

connected to the Killing vectors ξ(t) and ξ(ϕ), which can be interpreted as the specific
energy and the angular momentum in direction of the symmetry axes. Here uμ =
dxμ/ds denotes the four-velocity. In the case of spherical symmetry, i.e. for a = n =
0, then these two constants of motion together with the restriction of themotion to the
equatorial plane, which is possible without loss of generality, and the normalization
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gμνdxμdxν = ε (where ε = 0 for light and ε = 1 for massive particles) allows to
separate the geodesic equation. This yields then the differential equation

(
dr

ds

)2

= E2 − Δr

r2

(

ε + L2

r2

)

, (5.5)

and the energy and angular momentum take the form

E = gtt
dt

ds
, L = Lz = r2

dϕ

ds
. (5.6)

If the spacetime is axially symmetric, we cannot in general restrict the motion of
test particles to the equatorial plane. Therefore, we need an additional constant of
motion. In 1968 Carter [4] found such a constant of motion, which can be derived as
a separation constant. This constant is not connected to an obvious symmetry of the
spacetime. With this constant the geodesic equation can again be separated and we
get equations of motions in the form

ρ4
(

dr

ds

)2

= ((r2 + a2 + n2)E − aLz)
2 − Δr (εr2 + K ), (5.7)

ρ4
(

dθ

ds

)2

= Δθ(K − ε(n − a cos θ)2) − (E(a sin2 θ + 2n cos θ) − Lz)
2

sin2 θ
, (5.8)

where K is the Carter constant. If n = 0 then K = (aE − Lz)
2 corresponds to

motion restricted to the equatorial plane. From the expression of energy and angular
momentum (5.4) we get the additional equations

ρ2 dϕ

ds
= a

Δr
((r2 + a2 + n2)E − aLz) − E(2n cos θ + a sin2 θ) − Lz

Δθ sin2 θ
, (5.9)

ρ2 dt

ds
= r2 + a2 + n2

Δr
((r2 + a2 + n2)E − aLz)

− a sin2 θ + 2n cos θ

Δθ sin2 θ
(E(2n cos θ + a sin2 θ) − Lz). (5.10)

Note that the (5.7) and (5.8) are still coupled by the factor ρ2. This issue was solved
by Mino in 2003 [27] by introducing a new affine parameter λ defined by ds

dλ
= ρ2.

In the case of spherically symmetric spacetimes the differential equations for r(ϕ)

reads

(
dr

dϕ

)2

= r4

L2

(

E2 − Δr

r2

(

ε + L2

r2

))

. (5.11)
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If the the cosmological constant vanishes then on the right hand side we have a
polynomial of degree three or four. For a nonvanishing cosmological constant the
degree of the polynomial is five or six. The same holds for the differential equations
(5.7) and (5.8). If the polynomial is of degree three or four this kind of differential
equations can be solved in terms of elliptic functions. In the other case the solution
is given in terms of hyperelliptic functions.

5.3.1 Solutions in Terms of Elliptic Functions

For differential equations of the general type

(
dx

dy

)2

= P3,4(x) , x(y0) = x0 (5.12)

where P3,4 is a polynomial of degree three or four, there are basically two (equivalent)
solution methods based on the Jacobian elliptic function sn and on the Weierstrass
elliptic function ℘. The first can be defined as the inverse of an elliptic integral,

z =
∫ w

0

dt
√

(1 − t2)(1 − k2t2)
⇒ sn (z; k) = w (5.13)

where 0 ≤ k ≤ 1 is the modulus, w ∈ [0, 1], and z ∈ R. The Weierstrass elliptic
function ℘ is given as a series

℘(z; 2ω1, 2ω2) = 1

z2
+

∑

ωnm∈Ω

(
1

(z − ωnm)2
− 1

ω2
nm

)

, (5.14)

where 2ω1, 2ω2 are the periods of ℘ (ω1
ω2

/∈ R) and Ω = {ωn,m ∈ C|ωn,m =
2nω1 + 2mω2,n,m ∈ Z, (n, m) �= (0, 0)}. It solves the initial value problem (see
e.g. [21, 26])

(
dx

dy

)2

= 4x3 − g2x − g3 , x(0) = ∞ (5.15)

where g2 = 60
∑

ωnm∈Ω ω−4
nm , g3 = 140

∑
ωnm∈Ω ω−6

nm . Note that both sn and ℘ can
be written in terms of the Riemann theta function

θ [τv + w](z; τ) =
∑

m∈Zg

exp(π i(m + v)t (τ (m + v) + 2z + 2w)), (5.16)

where z ∈ C
g , τ is a g × g symmetric matrix with positive definite imaginary part,

τv + w ∈ C
g is the characteristic, and g is the genus, here g = 1.
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The general differential equation (5.12) can be solved in terms of Jacobian elliptic
functions by applying a substitution which converts the problem to the form

(
dx̃

dy

)2

= (1 − x̃2)(1 − k2 x̃2). (5.17)

This substitution depends on the degree of P3,4 and its number of complex zeros as
well as on the type of orbit you want to obtain. For a list see e.g. [1].

In order to find a solution of (5.12) in terms of the Weierstrass elliptic function
one has to transform the problem to the standard form (5.15), which can be obtained
by first converting a polynomial of degree four to degree three by x = ξ−1 + xP if
P3,4 = ∑

i ai xi and P3,4(xP ) = 0 and subsequently, or if P3,4 was of degree three
in the first place, substituting ξ = 1

b3
(4z + b2

3 ) if P = ∑
i bi xi is the polynomial of

degree three. Note that one always have to take care of the initial condition, too.

5.3.2 Solutions in Terms of Hyperelliptic Functions

To generalize the solution methods outlined in the previous section we first need to
consider the Jacobi inversion problem

yi =
g∑

j=1

∫ x j

∞
t i−1dt√

P(t)
, i = 1, . . . , g (5.18)

where P(t) = 4t2g+1 + ∑2g
n=0 antn is a polynomial of degree 2g + 1 and g is

the genus. Note that for g = 1 and a2 = 0 we recover (5.15). The g solutions
x j (y1, . . . , yg) of (5.18) can be given in terms of generalized Weierstrass functions.
These are defined by the theta function via the Kleinian sigma function

σ(z;ω1, ω2) = Ceizt κzθ [K∞](z;ω−1
1 ω2) , (5.19)

℘i j (z;ω1, ω2) = − ∂

∂zi

∂

∂z j
log σ(z;ω1, ω2), (5.20)

where z ∈ C
g ,ωi are g×g matrices such that τ = ω−1

1 ω2 is symmetric with positive
definite imaginary part, κ = η(2ω1)

−1 with the periods of the second kind 2η, K∞
is the vector of Riemann constants, and C is a constant which does not matter here
(for further details see e.g. [2]; note that K∞ = τ( 12 ,

1
2 )

t + (0, 1
2 )

t if g = 2). The
solutions of (5.18) are then given by the solutions of

xg +
g∑

i=1

℘gi (y1, . . . , yg)xi−1 = 0. (5.21)
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Let us consider now the case g = 2 and a general differential equation of the form

(
dx

dy

)2

= P5,6(x) , x(y0) = x0 (5.22)

where P5,6 is a polynomial of degree five or six. If it is of degree six it can be
reformulated as x̃ d x̃

dy = √
P5(x̃) by a substitution x = x̃−1 + xP , where xP is a

zero of P5,6 and P5 is a polynomial of degree five. Therefore, equation (5.22) can be
written in the form

t i−1 dt

dy
= √

P(t) , i = 1, 2 (5.23)

by an appropriate normalization. We may then find the solution to this equation as
the limiting case x2 → ∞ of the Jacobi inversion problem (5.18) in the following
way: first observe that

t := x1 = lim
x2→∞

x1x2
x1 + x2

= lim
x2→∞

℘12(y1, y2)

℘22(y1, y2)

= lim
x2→∞

σσ12 − σ1σ2

σ 2
2 − σσ22

(y1, y2), (5.24)

where σi (z) is the derivative of σ with respect to zi . From (5.18) with g = 2 and
x2 → ∞ we may identify either y1 (if i = 1 in (5.23)) or y2 (if i = 2) with
our physical coordinate y in the differential equation (5.23). Fortunately, we get
automatically rid of the other y j , j �= i , by the same limiting process x2 → ∞. This
is because the set of zeros of the theta function z 	→ θ [K∞]((2ω)−1z), which is a
one dimensional submanifold of C2, is given by all vectors z = (z1, z2) which can

be written as zi = ∫ x
∞

t i−1dt√
P(t)

with the same x (see e.g. [28]). This is exactly true for

the vector (y1, y2), which means that we may write y j = f (yi ) for some function f .
As the zeros of the theta function are also zeros of σ we can simplify (5.24) yielding

t = −σ1

σ2
(y1, f (y1)) or t = −σ1

σ2
( f (y2), y2). (5.25)

Note that according to the given initial condition yi is the physical coordinate minus
a constant.

5.4 Analytical Solutions in the Literature

In this section we will collect applications of the methods outlined in Sect. 5.3 to
geodesic motion in the Kerr-Newman-Taub-NUT-de Sitter spacetime as given in
Sect. 5.2. For older literature we refer to [29] who collected most of the papers on
geodesic motion in Kerr-Newman spacetime and subclasses, which were available
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at that time. Partly this is still quite complete but we also try to update his collection
(with respect to analytical solutions). Note that we only consider analytical solutions
to general timelike and lightlike geodesics (with an electric or magnetic charge, as
applicable). In particular, we do not list the vast literature on equatorial motion in
Kerr spacetime. Of course, we do not claim that our list is complete.

Schwarzschild: Regarding analytical solution methods the list of Sharp already
contained the complete set of solutions. Most notably, this includes the works by
Hagihara [20], who derived the analytical solutions in terms of Weierstrass elliptic
functions, and Darwin [5, 6], who used Jacobian elliptic functions and integrals.

Reissner-Nordström: Surprisingly, the analytical solutions to the geodesic equa-
tion in Reissner-Nordström spacetime seem to be considered first only in 1983 by
Gackstatter [8] although it can be handled completely analogously to the Schwarz-
schild case.He studiedbound timelike geodesics and light in termsof Jacobian elliptic
integrals and functions. Recently, Slezáková [30] gave a comprehensive analysis of
arbitrary timelike, lightlike, and even spacelike geodesics. Grunau andKagramanova
[11] solved the equations ofmotion of electrically andmagnetically charged particles
in Reissner-Nordström spacetime in terms of Weierstrass elliptic functions.

Taub-NUT: Timelike geodesics were studied byKagramanova et al. [22] in terms
of Weierstrass elliptic functions.

Kerr: Most of the older literature on Kerr spacetime is concerned with the much
simpler particular case of equatorial geodesics. We refer to Sharp [29] here for
these early works. Note that in terms of the proper time (or the corresponding affine
parameter for light) the equations of motion are still coupled. Therefore, before one
introduced the Mino time [27] most of the analytical solutions implicitly included
integrals over the latitude or the radius, see e.g. Kraniotis [23] or Slezáková [30] for
a review. As notable exception, Čadež et al. [3] introduced already in 1998 a similar
parameter (called P , see their (34)) as they considered the motion of light.

After the introduction of the Mino time, in 2009 Fujita and Hikida [7] used this
new affine parameter to derive the analytical solution for bound timelike geodesics in
terms of Jacobian elliptic functions. General timelike geodesics and lightlike motion
were treated shortly after that by Hackmann [12] in 2010.

Note that Kraniotis [24] also derived analytical solutions for lightlike geodesics
in terms of hypergeometric functions.

Kerr-Newman: Charged particle motion was considered by Hackmann and Xu
[19] in terms of Weierstrass elliptic functions.

Schwarzschild-de Sitter also called Kottler space-time: Note that on the level of
the differential equation, lightlike geodesics in Schwarzschild-de Sitter are identical
with the lightlike equations of motion for Schwarzschild, as the cosmological con-
stant can be absorbed in the definition of just a single parameter. Analytical solution
are given e.g. in Gibbons et al. [9]. General timelike geodesics in Kottler spacetime
can be treated in terms of hyperelliptic functions as elaborated by Hackmann and
Lämmerzahl [15, 16].

Reissner-Nordström-de Sitter: The equations of motion for general timelike
geodesics were solved in [13]. The motion of photons was very recently analytically
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calculated by Villanueva et al. [31] for a negative cosmological constants using
Weierstrass elliptic functions.

Taub-NUT-de Sitter: The timelike motion was analyzed in [14].
Kerr-de Sitter: The equations ofmotions for timelike geodesics were analytically

solved by Hackmann et al. [14, 17] in terms of hyperelliptic functions. Note that
Kraniotis [24] also derived analytical solutions for lightlike geodesics in terms of
hypergeometric functions.

Kerr-Newman-Taub-NUT-de Sitter: The general solution for timelike geodesic
was shortly outlined in [14].

For all these solutions there are analytical expressions for the observables (i)
perihelion shift, (ii) Lense-Thirring effect, and (iii) conicity of the orbit [18].

Acknowledgments We thank the German Research Foundation DFG for financial support within
the Research Training Group 1620 “Models of Gravity”.
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Chapter 6
A Physical Derivation of the Kerr–Newman
Black Hole Solution

Reinhard Meinel

Abstract According to the no-hair theorem, the Kerr–Newman black hole solution
represents the most general asymptotically flat, stationary (electro-) vacuum black
hole solution in general relativity. The procedure described here shows how this solu-
tion can indeed be constructed as the unique solution to the corresponding boundary
value problem of the axially symmetric Einstein–Maxwell equations in a straight-
forward manner.

6.1 Introduction: From Schwarzschild to Kerr–Newman

The Schwarzschild solution, depending on a single parameter (mass M), represents
the general spherically symmetric vacuum solution to the Einstein equations. Simi-
larly, theReissner–Nordström solution, depending on two parameters (M and electric
charge Q), is the general spherically symmetric (electro-) vacuum solution to the
Einstein–Maxwell equations. In contrast, the Kerr–Newman solution, depending on
three parameters (M , Q and angular momentum J ), is only a particular station-
ary and axially symmetric electro-vacuum solution to the Einstein–Maxwell equa-
tions. However, one can show under quite general conditions that the Kerr–Newman
solution represents the most general asymptotically flat, stationary electro-vacuum
black hole solution (“no-hair theorem”). Important contributions to the subject of
black hole uniqueness were made by Israel, Carter, Hawking, Robinson and Mazur
(1967–1982), for details see the recent review [3].

Assuming stationarity and axial symmetry, it is indeed possible to derive theKerr–
Newman black hole solution in straightforwardmanner, by solving the corresponding
boundary value problem of the Einstein–Maxwell equations [7]. In the following
sections, an outline of this work will be given. The method is a generalization of the
technique developed for solving a boundary value problem of the vacuum Einstein
equations leading to the global solution describing a uniformly rotating disc of dust in
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terms of ultraelliptic functions [12, 13], see also [9]. It is based on the “integrability”
of the stationary and axisymmetric vacuum Einstein and electro-vacuum Einstein–
Maxwell equations via the “inverse scattering method”, see [1]. In the pure vacuum
case, the method was also used to derive the Kerr black hole solution [9, 10, 13].

6.2 Einstein–Maxwell Equations and Related
Linear Problem

The stationary and axisymmetric, electro-vacuum Einstein–Maxwell equations are
equivalent to the Ernst equations [4]

f ΔE = (∇E + 2Φ̄∇Φ) · ∇E , f ΔΦ = (∇E + 2Φ̄∇Φ) · ∇Φ (6.1)

with f ≡ �E + |Φ|2 , Δ = ∂2

∂ρ2 + 1

ρ

∂

∂ρ
+ ∂2

∂ζ 2 , ∇ = (
∂

∂ρ
,

∂

∂ζ
). (6.2)

The line element reads

ds2 = f −1[ h(dρ2 + dζ 2) + ρ2dφ2] − f (dt + A dφ)2, (6.3)

where the coordinates t and φ are adapted to the Killing vectors corresponding to
stationarity and axial symmetry:

ξ = ∂

∂t
, η = ∂

∂φ
. (6.4)

We assume an asymptotic behaviour as r → ∞ (ρ = r sin θ , ζ = r cos θ ) given
by

�E = 1 − 2M

r
+ O(r−2) , �E = −2J cos θ

r2
+ O(r−3) , Φ = Q

r
+ O(r−2)

(6.5)
corresponding to asymptotic flatness and the absence of a magnetic monopole term
(Q real). The metric functions h and A can be calculated from the complex Ernst
potentials E (ρ, ζ ) and Φ(ρ, ζ ) according to

(ln h),z = ρ

f 2
(E,z + 2Φ̄Φ,z)(Ē,z + 2ΦΦ̄,z) − 4ρ

f
Φ,zΦ̄,z , (6.6)

A,z = iρ

f 2
[(�E ),z − iΦ̄Φ,z + iΦΦ̄,z] (r → ∞ : h → 1, A → 0). (6.7)
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Here complex variables
z = ρ + iζ, z̄ = ρ − iζ (6.8)

have been used instead of ρ and ζ . Note that f has already been given in (6.2). The
electromagnetic field tensor

Fik = Ak,i − Ai,k , Ai dxi = Aφdφ + Atdt (6.9)

can also be obtained from the Ernst potentials:

At = −�Φ, Aφ,z = A At,z − iρ

f
(�Φ),z (r → ∞ : Aφ → 0). (6.10)

The Ernst equations (6.1) can be formulated as the integrability condition of a
related Linear Problem (LP). We use the LP of [11] in a slightly modified form,
which is advantageous in the presence of ergospheres:

Y,z =
⎡

⎣

⎛

⎝
b1 0 c1
0 a1 0
d1 0 0

⎞

⎠ + λ

⎛

⎝
0 b1 0
a1 0 −c1
0 d1 0

⎞

⎠

⎤

⎦ Y, (6.11)

Y,z̄ =
⎡

⎣

⎛

⎝
b2 0 c2
0 a2 0
d2 0 0

⎞

⎠ + 1

λ

⎛

⎝
0 b2 0
a2 0 −c2
0 d2 0

⎞

⎠

⎤

⎦ Y (6.12)

with

λ =
√

K − iz̄

K + iz
, (6.13)

a1 = b̄2 = E,z + 2Φ̄Φ,z

2 f
, a2 = b̄1 = E,z̄ + 2Φ̄Φ,z̄

2 f
, (6.14)

c1 = f d̄2 = Φ,z , c2 = f d̄1 = Φ,z̄ . (6.15)

The integrability condition
Y,zz̄ = Y,z̄z (6.16)

is equivalent to the Ernst equations. The following points are relevant for the appli-
cation of soliton theoretic solution methods:

• The 3× 3 matrix Y depends not only on the coordinates ρ and ζ (or z and z̄), but
also on the additional complex “spectral parameter” K .

• Since K̄ does not appear,we can assumewithout loss of generality that the elements
of Y are holomorphic functions of K defined on the two-sheeted Riemann surface
associated with (6.13), except from the locations of possible singularities.
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• Each column ofY is itself a solution to the LP.We assume that these three solutions
are linearly independent.

• For a given solution E , Φ to the Einstein–Maxwell equations, the solution to the
LP can be fixed (normalized) by prescribing Y at some point ρ0, ζ0 of the ρ-ζ
plane as a (matrix) function of K in one of the two sheets of the Riemann surface.

• Y can be discussed in general as a unique function of ρ, ζ and λ.

Three interesting relations result directly from the structure of the LP (6.11), (6.12):

[ f (ρ, ζ )]−1det Y(ρ, ζ, λ) = C0(K ), (6.17)

Y(ρ, ζ,−λ) =
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ Y(ρ, ζ, λ)C1(K ), (6.18)

[
Y(ρ, ζ, 1/λ̄)

]†

⎛

⎝
[ f (ρ, ζ )]−1 0 0

0 −[ f (ρ, ζ )]−1 0
0 0 −1

⎞

⎠ Y(ρ, ζ, λ) = C2(K ), (6.19)

where C0(K ) as well as the matrices C1(K ) and C2(K ) do not depend on ρ and ζ .

6.3 Solving the Black Hole Boundary Value Problem

After formulating the black hole boundary value problem, we will use the LP to find
its solution. The most important part comprises deriving the Ernst potentials on the
axis of symmetry [7]. It is well known that these “axis data” uniquely determine the
solution everywhere, see [5, 14]. A straightforward method for obtaining the full
solution from the axis data is based on the analytical properties of Y as a function of
λ [8].

6.3.1 Boundary Conditions

The event horizon H of a stationary and axisymmetric black hole is characterized
by the conditions

H : χ iχi = 0 , χ iηi = 0 , (6.20)

where χ i ≡ ξ i + Ωηi and the constant Ω is the “angular velocity of the horizon”
[2, 6]. Because of

ρ2 = (ξ iηi )
2 − ξ iξiη

kηk = (χ iηi )
2 − χ iχiη

kηk (6.21)
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Fig. 6.1 In Weyl coordinates, the horizon is either a finite interval or a point on the ζ -axis (adapted
from [7])

the horizon must be located on the ζ -axis of our Weyl coordinate system:

H : ρ = 0. (6.22)

This results in two possibilities for a connected horizon1: (i) a finite interval on the ζ -
axis and (ii) a point on the ζ -axis, see Fig. 6.1. Note that the two parts of the symmetry
axis, A + and A −, where the Killing vector η vanishes, are also characterized by
ρ = 0. The black hole boundary value problem consists of finding a solution that is
regular everywhere outside the horizon and satisfies (6.20) and (6.5).

6.3.2 Axis Data

At ρ = 0, the branch points K = iz̄ and K = −iz of (6.13) merge to K = ζ and for
K �= ζ holds λ = ±1. Consequently, the solution to the LP, for λ = +1, is of the
form

A ± : Y± =
⎛

⎝
Ē + 2|Φ|2 1 Φ

E −1 −Φ

2Φ̄ 0 1

⎞

⎠ C±, (6.23)

H : Yh =
⎛

⎝
Ē + 2|Φ|2 1 Φ

E −1 −Φ

2Φ̄ 0 1

⎞

⎠ Ch. (6.24)

1A connected horizon means a single black hole. We are not interested here in the problem of
multi-black-hole equilibrium states.
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We fix C+(K ) by the normalization condition

lim
K→ζ

Y+(ζ, K ) =
⎛

⎝
1 1 0
1 −1 0
0 0 1

⎞

⎠ ⇒ C+ =
⎛

⎝
F 0 0
G 1 L
H 0 1

⎞

⎠ (6.25)

and the functions F(K ), G(K ), H(K ) and L(K ), for K = ζ , are given by the
potentials E = E+, Φ = Φ+ on A +:

F(ζ ) = [ f+(ζ )]−1, G(ζ ) =
[
|Φ+(ζ )|2 + i�E+(ζ )

]
[ f+(ζ )]−1, (6.26)

H(ζ ) = −2Φ̄+(ζ )[ f+(ζ )]−1, L(ζ ) = −Φ+(ζ ) (6.27)

and, vice versa,

E+(ζ ) = 1 − Ḡ(ζ )

F(ζ )
, Φ+(ζ ) = − H̄(ζ )

2F(ζ )
. (6.28)

We can calculate C0(K ), C1(K ) and C2(K ) of relations (6.17)–(6.19) for our nor-
malization:

C0 = −2F, C1 =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ , C2 =
⎛

⎝
0 2F 0
2F 0 0
0 0 −1

⎞

⎠ . (6.29)

On A +, (6.19) reads

[
C+(K̄ )

]†

⎛

⎝
0 2 0
2 0 0
0 0 −1

⎞

⎠ C+(K ) =
⎛

⎝
0 2F 0
2F 0 0
0 0 −1

⎞

⎠ . (6.30)

From continuity conditions at the “poles” of the horizon (ρ = 0, ζ = ±l or
r = 0, θ = 0, π ; see Fig. 6.1) and using the boundary conditions, one can calculate
Ch(K ) and C−(K ) in terms of C+(K ), for details I refer to [7]. Closing the path
of integration via infinity (curve C : ρ = R sin θ , ζ = R cos θ with 0 ≤ θ ≤ π ,
R → ∞), where Y is constant because of the LP and (6.5), but λ changes from ±1
at θ = 0 to ∓1 at θ = π , we obtain with (6.18) and (6.29) an explicit expression
for C+(K ) in terms of the parameters Ω , l (with l = 0 for a horizon at r = 0) and
the values of the Ernst potentials at the poles. Using (6.28), we can calculate E+ and
Φ+. The number of free real parameters is reduced to four as a consequence of the
constraint (6.30) and to three if no magnetic monopole is allowed. The final result is

F(K ) = (K − L1)(K − L2)

(K − K1)(K − K2)
, G(K ) = Q2 − 2iJ

(K − K1)(K − K2)
, (6.31)
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H(K ) = − 2Q(K − L1)

(K − K1)(K − K2)
, L(K ) = − Q

K − L1
(6.32)

with L1/2 = −M ± i
J

M
, K1/2 = ±

√

M2 − Q2 − J 2

M2 (6.33)

and, correspondingly,

E+(ζ ) = 1 − 2M

ζ + M − iJ/M
, Φ+(ζ ) = Q

ζ + M − iJ/M
(6.34)

together with the parameter relations

l2

M2 + Q2

M2 + J 2

M4 = 1 and Ω M = J/M2

(1 + l/M)2 + J 2/M4 . (6.35)

6.3.3 Solution Everywhere Outside the Horizon

Relation (6.18) together with the expression for C1(K ) in (6.29) is equivalent to the
following structure of Y:

Y(ρ, ζ, λ) =
⎛

⎝
ψ(ρ, ζ, λ) ψ(ρ, ζ,−λ) α(ρ, ζ, λ)

χ(ρ, ζ, λ) −χ(ρ, ζ,−λ) β(ρ, ζ, λ)

ϕ(ρ, ζ, λ) ϕ(ρ, ζ,−λ) γ (ρ, ζ, λ)

⎞

⎠ , (6.36)

where α(ρ, ζ, λ) = α(ρ, ζ,−λ), β(ρ, ζ, λ) = −β(ρ, ζ,−λ) and γ (ρ, ζ, λ) =
γ (ρ, ζ,−λ). The general solution of the LP for K → ∞ and λ = +1 reads

Y(ρ, ζ, 1) =
⎛

⎝
Ē + 2|Φ|2 1 Φ

E −1 −Φ

2Φ̄ 0 1

⎞

⎠ C, (6.37)

where C is a constant matrix. Equations (6.23), (6.25), (6.31), (6.32) imply C = 1
and lead to the ansatz

ψ = 1 + k1

(
1

κ1 − λ
− 1

κ1 + 1

)

+ k2

(
1

κ2 − λ
− 1

κ2 + 1

)

, (6.38)

χ = 1 + l1

(
1

κ1 − λ
− 1

κ1 + 1

)

+ l2

(
1

κ2 − λ
− 1

κ2 + 1

)

, (6.39)

ϕ = m1

(
1

κ1 − λ
− 1

κ1 + 1

)

+ m2

(
1

κ2 − λ
− 1

κ2 + 1

)

, (6.40)
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α = Φ + α0

K − L1
, β = −Φ

λ(K + iz)

K − L1
, γ = 1 + γ0

K − L1
, (6.41)

where

κμ =
√

Kμ − iz̄

Kμ + iz
(A + : κμ = +1) . (6.42)

According to the LP, Y,zY−1 and Y,z̄Y−1 must be holomorphic functions of λ

for all λ �= 0,∞. The regularity at λ = ±κμ (μ = 1, 2), the poles of the first two
columns of Y, is automatically guarantied, whereas regularity at λ = ±λμ with
λμ = √

(Lμ − iz̄)/(Lμ + iz) (A +: λμ = +1), where poles of the third column
(μ = 1) and zeros of det Y (μ = 1, 2) occur, see (6.17), (6.29), (6.31), is equivalent
to a set of linear algebraic equations, which together with (6.23), (6.25), (6.31), (6.32)
uniquely determine the unknowns kμ(ρ, ζ ), lμ(ρ, ζ ), mμ(ρ, ζ ), α0(ρ, ζ ), γ0(ρ, ζ )

and Φ(ρ, ζ ). With E (ρ, ζ ) = χ(ρ, ζ, 1), see (6.37), this leads to the result

E = 1 − 2M

r̃ − i(J/M) cos θ̃
, Φ = Q

r̃ − i(J/M) cos θ̃
(6.43)

with ρ =
√

r̃2 − 2Mr̃ + J 2/M2 + Q2 sin θ̃ , ζ = (r̃ − M) cos θ̃ . (6.44)

The “domain of outer communication” (the region outside the event horizonH )
is given by r̃ > r̃h = M +√

M2 − J 2/M2 − Q2. The horizon itself is characterized
by r̃ = r̃h, and the axis of symmetry is located at θ̃ = 0 (A +) and θ̃ = π (A −).
Note that (6.35) implies Q2 + J 2/M2 ≤ M2. The equality sign, corresponding to
l = 0, is valid for the extremal Kerr–Newman black hole.

6.3.4 Full Metric and Electromagnetic Field

Using (6.2), (6.6), (6.7), (6.10) we can calculate the full metric and the electromag-
netic four-potential:

ds2 = Σ

Δ
dr̃2 + Σ dθ̃2 +

(

r̃2 + a2 + (2Mr̃ − Q2)a2 sin2 θ̃

Σ

)

sin2 θ̃ dφ2 (6.45)

− (2Mr̃ − Q2)2a sin2 θ̃

Σ
dφ dt −

(

1 − 2Mr̃ − Q2

Σ

)

dt2 (6.46)

with Δ = r̃2 − 2Mr̃ + a2 + Q2, Σ = r̃2 + a2 cos2 θ̃ , a ≡ J/M (6.47)
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and

Ai dxi = Qr̃

Σ
(a sin2 θ̃ dφ − dt). (6.48)

This is thewell-knownKerr–Newman solution in Boyer–Lindquist coordinates r̃ and
θ̃ . For Q = 0 it reduces to the Kerr solution, J = 0 gives the Reissner–Nordström
solution and Q = J = 0 leads back to the Schwarzschild solution.
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Chapter 7
On the Black Holes in Alternative Theories
of Gravity: The Case of Non-linear
Massive Gravity

Ivan Arraut

Abstract It is already known that a positive Cosmological ConstantΛ sets the scale

r0 = ( 3
2rsr2Λ

)1/3
, which depending on the mass of the source, can be of astrophysical

order of magnitude. This scale was interpreted before as the maximum distance in
order to get bound orbits. The same scale corresponds to the static observer position if
wewant to define the Black Hole temperature in an asymptotically de-Sitter space. r0
also appears inside the non-linear theory ofmassive gravity (dRGT) as the Vainshtein
radius for the Λ3 version of the theory. I compare the role that this scale plays inside
these different scenarios.

7.1 Introduction

The Schwarzschild de-Sitter (S-dS) space in static coordinates has been widely stud-
ied in the past. Its analytic extension for S-dS space has been performed by Bażański

and Ferrari [1]. They interpreted the scale r0 = ( 3
2rsrΛ

)1/3
as the distance where

the 0-0 component of the S-dS metric takes a minimum value. As a consequence of
this, it was found in [2] that r0 represents a transition distance after which a photon
suffers a gravitational blue shift when it moves away from a source. The same scale
is used by Bousso and Hawking in order to find the appropriate expression for the
temperature of a black hole immersed inside a de-Sitter space [3]. In such a case,
the distance r0 is interpreted as the position of the static observer in order to find the
appropriate normalization for the time-like Killing vector. Then there exist a mini-
mum temperature for the black hole given by T = 1

2πrΛ
[3, 4]. This analysis differs

in some details from the one done in [5] where the Black Holes thermodynamics
inside the S-dS space was analyzed in detail. The role of r0 as a static radius was
also analyzed in [6] inside the Kerr-de Sitter space. In Balaguera et al. [7], found that
r0 represents the maximum distance within which we can find bound orbits solu-
tions for a test particle moving around a source. In the same manuscript, the velocity
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bounds for a test particle inside the S-dS space were obtained, this work was then
extended by Arraut et al. in [8] in order to incorporate other metric solutions. In [7],
the authors also found that there exist a maximum angular momentum Lmax for the
test particle to be inside a bound orbit. If L = Lmax , then there exist a saddle point
for the effective potential at the distance rx , this analysis was extended recently by
Arraut [9]. In [10, 11], the scale r0 was derived by using a different method and
some conditions for the circular orbits and its stabilities were obtained. The scale r0
plays a central role inside the Λ3 version of the non-linear theory of massive grav-
ity where it represents the distance below which non-linearities become important
and General Relativity is restored [12, 13]. The paper is organized as follows: In
Sect. 7.2, I introduce the basic aspects of the S-dS space in static coordinates and
then derive the scale r0 including its correction due to the angular momentum of a
massive test particle moving around the source. In Sect. 7.2.1, I analyze the Black
Hole temperature as it is defined by Bousso and Hawking. I explain the role of the
scale r0 in such a case. In Sect. 7.3, I introduce the S-dS solution derived from the
non-linear theory of massive gravity and then I explain the role of r0 in this theory.

7.2 The Schwarzschild de-Sitter Space

Schwarzschild-de Sitter metric in static coordinates, is given by:

ds2 = −eν(r)dt2 + e−ν(r)dr2 + r2dθ2 + r2 sin2 θdφ2 (7.1)

where:

eν(r) = 1 − rs

r
− r2

3r2�
(7.2)

With rs = 2G M being the gravitational radius and rΛ = 1√
Λ

defines the Cos-
mological Constant scale. In this coordinate system, with the standard definition of
the effective potential (Uef f (r)), the equation of motion of a massive test particle
becomes:

1

2

(
dr

dτ

)2

+ Uef f (r) = 1

2

(

E2 + L2

3r2�
− 1

)

= C (7.3)

where C is a constant depending on the initial conditions of motion. Uef f has 3

circular orbits. They correspond to the condition
dUef f (r)

dr = 0. For our present
purposes, the most relevant scale corresponding to this condition is given by [9]:

r0(β) =
(
3

2
rsr2�

)1/3

− 1

4β2 (3rsr2�)1/3 (7.4)
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where we make explicit the angular momentum dependence through the parameter
β = L/Lmax , with Lmax = 32/3

4 (r2s r�)1/3 being the maximum angular momentum
if we want to get bound orbits for massive test particles. This scale is the limit where
the attractive effects due to gravity and the repulsive ones due to the Cosmological
Constant (Λ) just cancel. This is the key point in the Bousso-Hawking definition of
temperature as will be explained in the next section.

7.2.1 Black Hole Thermodynamics in an Asymptotically
De-Sitter Space

In agreement with Bousso andHawking, the appropriate way to define the blackHole
thermodynamics is by normalizing the time-like Killing vector such that the static
observer is located at the distance given by (7.4) with β = 0. We assume that the
observer does not have any angular momentum. Then the surface gravity is defined
as [3]:

κB H,C H =
(

(K μ∇μKγ )(K α∇α K γ )

−K 2

)1/2

r=rB H ,rC H

(7.5)

The subindices BH and CH, correspond to the Black Hole Horizon and the Cos-
mological one respectively. The event horizons are obtained from the condition:

grr (rc) = 0 (7.6)

The two horizons become equal when the mass of the Black Hole reach its max-
imum value given by:

Mmax = 1

3

m2
pl

m�

(7.7)

where m pl corresponds to the Planck mass and mΛ = √
�. If the mass of a Black

Hole is bigger than the value given by (7.7), then there is no radiation at all and we
have a naked singularity. As M = Mmax , the two event horizons take the same value
(rB H = rC H = rΛ = 1/

√
Λ), they are degenerate and a thermodynamic equilibrium

is established. As has been explained by Bousso and Hawking [3], as M → Mmax ,
V (r) → 0 between the two horizons (BH and Cosmological) and for that reason
the Schwarzschild-like coordinates simply become inappropriate. In such a case we
need a new coordinate system. In agreement with Ginsparg and Perry [14], the metric
has to be written in a new coordinate system and is given explicitly by:
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ds2 = −r2Λ

(

1 + 2

3
εcosχ

)

sin2χdψ2 + r2Λ

(

1 − 2

3
εcosχ

)

dχ2 + r2Λ(1 − 2εcosχ)dΩ2
2

(7.8)

in these coordinates, the Black Hole horizon corresponds to χ = 0 and the Cosmo-
logical horizon to χ = π [3]. This metric has been expanded up to first order in
ε. Equation (7.8) is of course the appropriate metric to be used as the mass of the
Black Hole is near to its maximum value given by (7.7). It has been found by Bousso
and Hawking that the time-like Killing vector inside the definition (7.12) has to be
normalized in agreement with:

γt =
(

1 −
(
3rs

2rΛ

)2/3
)−1/2

(7.9)

With γt being the normalization factor for the time-like Killing vector defined as
K = γt

∂
∂t . In an asymptotically flat space, γt → 1 when r → ∞. But in the case of

(7.9), the Killing vector is just normalized with respect to an observer at the position
r0 with β = 0 as has been defined previously. When the mass of the Black Hole
reach its maximum value defined by ε → 0 [3], the Black Hole temperature reach
its minimum value given by:

2πTmin=κ B H
min = 1

rΛ

(7.10)

where κ is the surface gravity.

7.3 Black Holes in dRGT Non-linear Theory
of Massive Gravity

In agreement with Koyama, Niz, Tanisato, Gabadadze and colleagues, it is possible
to construct Black Hole solutions inside the non-linear theory of massive gravity. Is
natural to suspect is that such solution should be Schwarzschild de-Sitter, although
other solutions are in principle possible. Inside this formalism, the solution given by
(7.1) can be obtained but surrounded by a Stückelberg background halo of helicity
0 and ±1. One possible solution proposed in [15–18] is given by:

ds2 = −dt2 + (dr ± √
f dt)2 + r2dΩ2 (7.11)

which is free of horizon singularities, such that the invariant gμν∂μφa∂νφ
bηab (de-

fined inside the dRGT theory) remains finite when all the other standard relativistic
invariants are also finite. The metric has to be a solution of the Einstein’s equations,
which in massive gravity are defined as:
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Gμ
ν = −m2Xμ

ν (7.12)

The solution (7.11), after the appropriate coordinate transformations, becomes the
same solution given by (7.1) but surrounded by a Stückelberg background defined
by:

Φ0 = 1

κ
(t + f (r)) Φr =

(

1 + 1

α

)

r Φθ = θ Φφ = φ (7.13)

The previous results correspond to a family of solutions satisfying a specific
relation between the two free parameters of the theory as has been explained in [15–
19]. The scale r0 defined before, inside the Λ3 version of the theory, appears as the
Vainshtein radius if we tune the mass of the graviton with the Λ scale. For distances
satisfying the condition r � r0(β = 0), non-linearities become relevant and General
Relativity is recovered, avoiding in such a way the DVZ discontinuity [20]. The non-
linear solution inside the dRGT theory, admits perturbative expansions in terms of the
mass of the graviton for distances satisfying r � r0(β = 0). On the other hand, the
same solutions admit perturbative expansions in terms of the Newtonian Constant for
distances r � r0(β = 0). Then in some sense, r0(β = 0) (zero angular momentum
of a massive test particle), is a scale which marks the transition between a solution
dominated by the Newtonian constant and the one dominated by the graviton mass
in direct analogy with what happens in the standard theory of General Relativity.
The main difference is that r0(β = 0) in massive gravity is related to the existence
of a strong coupling scale Λ3 = (Mplm2)1/3 which appears in the Lagrangian of the
theory [19].

7.4 Conclusions

The scale r0(β) is relevant for the definition of bound orbits and Black Hole tem-
perature in asymptotically de-Sitter spaces. This inside the framework of General
Relativity. On the other hand, the same scale appears inside theΛ3 theory of massive
gravity, where it marks a limit. For distances shorter than r0(β = 0), non-linearities
become relevant and the standard results of General Relativity are recovered. For dis-
tances larger than r0(β = 0), non-linearities are not relevant, then the new degrees
of freedom become important.
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Chapter 8
The Near-Horizon Limit

Jiří Daněk

Abstract We present a new analytic coordinate system covering the whole global
extension of the ultra-extreme Reissner-Nordström-de Sitter spacetime, analyse
radial motions of two particles of different charges and demonstrate our results in
an exact Penrose diagram. Further, we use the near-horizon limit to analyse the
energy of particles’ collisions near the ultra-extreme horizon, which lead to unbound
collision energy in the center of mass system, and relate our results to the previ-
ously established behavior on simple and extreme horizon of Reissner-Nordström
black hole.

8.1 Introduction

In the past black hole horizons enjoyed great attention because of the misunderstand-
ing of coordinate singularities located on them in the original coordinate systems.
With the understanding of coordinates’ properties and discovery of equivalent non-
singular coordinate systems, the peculiarity of the horizons faded a bit, but black hole
horizons are still drawing attention due to their role in the global causal and geomet-
ric properties of spacetimes. The near-horizon limit is one way of investigating the
direct proximity of an arbitrary horizon and lets us forget about the distant regions we
are not interested in. Behaviour of free test particles can also reveal many interesting
features of spacetimes and is another tool for investigating the near-horizon regions.

Recently, collision processes leading to unbound collision energies in the center
of mass system were found to occur in the direct proximity of the extreme horizon of
Kerr black hole [1]. Later it was proven that the extreme horizon of the static charged
Reissner-Nordström black hole (RN) can also exhibit unbound collision energy and
serve as a particle accelerator as well [7]. Similar investigation was also performed
for the single inner horizon [6] of RN or for the single cosmological horizon of
Reissner-Nordström-de Sitter spacetime (RNdS) [8].
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Article is to search for unbound collision energy near the so far neglected ultra-
extreme (U-E) horizon of the U-E RNdS (i.e., 9M2 = 8Q2 = 2/Λ [2]), the metric
of which can be written as

ds2 = −f (r) dt2 + 1

f (r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (8.1)

with the lapse function f (r) = − Λ
3r2

(r − N )(r − rt )
3 where N = −3rt , rt =

(2Λ)−1/2.
This paper is organized as follows: In Sect. 8.2 we will find a new continuous

coordinate patch covering the whole global extension of RNdS. The geodesics of
radial charged test particles will be investigated in Sect. 8.3. In Sect. 8.4 we will
use the near-horizon limit to investigate the collision energy near the U-E horizon.
Finally, we will demonstrate our results and collision in an exact Penrose diagram
(Fig. 8.1).

8.2 Analytic Coordinates of Ultra-Extreme RNdS

Since the case of the U-E horizon is not sufficiently explored in the literature we
suggest a new coordinate system of compact coordinates (U, V ) continuous across
the triple horizon. We will adapt a method used for Schwarzschild in [4].

Firstly, we need to give the relation for the tortoise coordinate r�
u . Due to the

definition dr�
u

dr = 1
f(r) one gets the following partial fraction decomposition

dr�
u

dr
= Au

(r − rt )3
+ Bu

(r − rt )2
+ Cu

r − rt
+ Du

r − N
, (8.2)

with constants

Au = − 3r3t
2 , Bu = − 21r2t

8 , Cu = − 27rt
32 and Du = + 27rt

32 . (8.3)

Now we can solve the differential equation (8.2) and find a solution

r�
u = −1

2

Au

(r − rt )2
− Bu

(r − rt )
+ Cu ln

∣
∣
∣
∣

r

rt
− 1

∣
∣
∣
∣ + Du ln

∣
∣
∣

r

N
− 1

∣
∣
∣ . (8.4)

Secondly, we will implicitly define new variables
(

Û , V̂
)
as

r�
u = +h(Û ) + h(V̂ ),

t = −h(Û ) + h(V̂ ),
(8.5)
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Fig. 8.1 Weplotted the paths of four critical and two special particles in the global Penrose diagram
of the U-E RNdS with crosses denoting equidistant values of proper time. We distinguish between
critical particles with dt

dr < 0 and dt
dr > 0. As we can see, the points become denser as the critical

particles approach the triple horizon, which demonstrates the inability of critical particles to reach
the U-E horizon at a finite value of their proper time. On the other hand, special particles cross
the horizon with a finite value of their proper time. All special particles have Xsp > 0 along their
paths. In region I collision energy of special particle and critical particle with dt

dr < 0 diverges more
strongly than in the case dt

dr > 0. The stronger divergence does not appear in region II since all
future-oriented particles have Xi > 0 there and the PS effect is causally prohibited. Two special
particles in the diagram differ only in their time of release and the differences in their paths originate
from the nontrivial new coordinate path (U, V ). Critical particles would reach infinities and the
singularity, but we stopped their trajectories at suitable values of the radial coordinate r

where h(x) is a suitable function, which will be discussed later. The new coordinates
are directly connected to the classical Eddington-Finkelstein null coordinates u =
t − r�

u = −2h(Û ) and v = t + r�
u = 2h(V̂ ).
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Thirdly, we rewrite the metric of the U-E case as

ds2 = 4f (r) h′(Û )h′(V̂ )dUdV + r2dΩ2
2 , (8.6)

where prime denotes derivative with respect to the variable of a function.
At last, we have to determine the form of the function h(x) in order to keep the

metric elements smooth and nonzero on the horizon. There is no unique form of h(x)

ensuring our requirements, therefore, we define h(x), which is injective on each of
the distinct intervals x ∈ (−π

2 , 0
)
and x ∈ (

0, π
2

)
separately, to be of the form

h(x) = −1

2

Au

tan2(x)
− Bu

tan(x)
+ Cu ln |tan(x)| − tan2(x). (8.7)

Introduction of tangents ensures compactness of the new coordinates
(

Û , V̂
)
.

The new coordinate system covers the whole U-E RNdS and even its global
extension despite the usual pathological points

(
i π
2 , j π

2

)
, where i, j ∈ {−1, 0, 1}.

Definitions U =
√
2
2

(
Û − V̂

)
and V =

√
2
2

(
Û + V̂

)
only rotate the final Pen-

rose diagram.

8.3 Test Particles in the Ultra-Extreme RNdS

The path of a general radial, massive and charged particle in U-E RNdS spacetime
is given by the differential equation

dt

dr
= ±

(

E − Qε

r

)

×
⎛

⎝f (r)

√
(

E − Qε

r

)2

− f (r)

⎞

⎠

−1

, (8.8)

where the sign sets the direction of motion, E is the constant of motion connected
to the time-like Killing vector and ε is the specific charge of the particle [5].

The equation simplifies enough to be solvable for two special particles listed in
the following subsections.

The solutions involve integrals of the form Intn(r, p) = ∫
(

(r − p)n

√
r2 + Br + A

)−1

dr , the solutions of which are given as
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Int1(r, p) = − 1√
a
ln

∣
∣
∣
∣
∣

2a + b(r − p) + 2
√

a R

r − p

∣
∣
∣
∣
∣

for a > 0, (8.9)

Int2(r, p) =
√

R

a(r − p)
− b

2a
Int1(r, p),

Int3(r, p) =
( −1

2a(r − p)2
+ 3b2

4a2(r − p)

) √
R +

(
3b2

4a2 − c

2a

)

Int1(r, p),

with R = r2 + Br + A, b = 2p + B and a = p2 + Bp + A according to [3].

8.3.1 Special Particle

The special particle is defined by its specific values E = M
Qε

and ε = ±1 where sigh
is chosen to satisfy condition Qε > 0. The trajectory

± t sp
u (r) = Asp

u Int3(r, rt ) + Bsp
u Int2(r, rt ) + Csp

u Int1(r, rt ) + Dsp
u Int1(r, N ) + Esp

u ,

(8.10)
solves (8.8), where Esp

u is one arbitrary constant,

Asp
u = −

√
3r4t
2 Bsp

u = − 19
√
3r3t
8 , Csp

u = − 45
√
3r2t

32 , and Dsp
u = + 45

√
3r2t

32 . (8.11)

We also substituted A = − 2r2t
3 ,B = 0 into the integrals (8.9).

8.3.2 Critical Particle

The critical particle is characterized by a fine-tuned value of its specific charge
ε = Ert

Q , for which (8.8) can be solved as

± tcr
u (r) = Acr

u Int3(r, rt ) + Bcr
u Int2(r, rt ) + Ccr

u Int1(r, rt ) + Dcr
u Int1(r, N ) + Ecr

u ,

(8.12)
with one arbitrary constant Ecr

u , constants Acr
u = E√

6rt
Au , Bcr

u = E√
6rt

Bu , etc.

Expressions A = 3r2t (2E2 − 1), B = 2rt must be substituted into (8.9).
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8.4 Collision with Unbound Collision Energy in C.M.S

A radial charged particle has a 4-velocity uμ
i =

(
Xi

f(r) ,∓Zi , 0, 0
)
, where Xi =

(
Ei − Qεi

r

)
and Zi =

√
X2

i − f (r). Let us examine the collision energy of two

particles in their center of mass system. Let particle i = 1 be critical and particle
i = 2 non-critical (e.g., special).

The total energy in the center ofmass frame of the two colliding particles E2
C.M. =

− (
m1u1μ + m2u2μ

) (
m1uμ

1 + m2uμ
2

)
. If we assume both particles to have the same

rest mass m1 = m2 = m, we can write the last formula as
E2

C.M.

2m2 = 1 + X1X2−Z1Z2
f(r) .

In the near-horizon limit (i.e., r ∼ rt ) we can expand these terms as

Z1 ≈ ∣
∣1 − rt

r

∣
∣
[
|E1| + Λr2

6|E1|
(
1 − N

r

) (
1 − rt

r

)]
, Z2 ≈ |X2(H)| − f(r)

2|X2(H)| ,
(8.13)

with X2(H) = X2(r = rt ) �= 0. Introducing a new near-horizon coordinate εt :=
r−rt

rt
and substituting the above expressions into

E2
C.M.

2m2 , we are led to the expression

E2
C.M.

2m2 ≈ 3

∣
∣E1X2(H)

∣
∣ (1 + εt )δs1,−s2

sign(εt )ε
2
t

+ 1

2

∣
∣
∣
∣

X2(H)

E1εt

∣
∣
∣
∣ + O(ε0t ), (8.14)

where s1 := signX1, s2 := signX2(H) and δi, j is the Kronecker delta. There is a
problem for X1X2 < 0 on the static side as the location of the collision approaches
the horizon (i.e., εt → 0−), since then E2

C.M. → −∞. Fortunately, the so-called
PS process with X1X2 < 0 is prohibited here by a causality violation. Particle with
Xi > 0 would move towards the future while particle with X j < 0 would be past-
oriented. On the nonstatic side, t is not a time-like coordinate and motions with
X1X2 < 0 can occur.

8.5 Conclusions

We have examined paths of radial charged particles and discovered that special
particles are repulsed by the black hole charge and do not fall into the singularity.
They can even reach three regions of globally extended U-E RNdSwith a finite value
of their proper time. Particle collisions involving the critical particle in the proximity
of the U-E horizon exhibit resemblance to the collisions near an extreme horizon and
result in infinite collision energies in C.M. The U-E horizon possesses properties of
the inner and cosmological non-extreme horizons, since the order of collision energy
divergence is not the same on both sides of the triple horizon.
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Chapter 9
Sourcing a Varying-Mass Black Hole
in a Cosmological Background

Michele Fontanini and Daniel C. Guariento

Abstract Systems inwhich the local gravitational attraction is coupled to the expan-
sion of the Universe have been studied since the early stages of General Relativity.
The McVittie metric is an example of such systems, being an exact solution of the
Einstein equations representing a black hole in a cosmological background. Here,
by using imperfect fluids, we construct a generalization of the McVittie solution in
which the mass function of the black hole increases with time, effectively describing
an accreting compact object in an expandingUniverse. A novel mechanism involving
temperature gradients is the key ingredient that leads to this result while still avoiding
phantom fields and fine-tuning.

9.1 A Brief Introduction to the McVittie Solution

In 1933 McVittie published [1] a solution to Einstein equations generalizing the
Schwarzschild-de Sitter metric by allowing for a Friedmann-Lemaïtre-Robertson-
Walker (FLRW in the following) cosmology. His metric is the unique spherically
symmetric solution sourced by a perfect fluid with the following defining character-
istics [2]:

1. shear-free,
2. asymptotically FLRW,
3. containing a black hole singularity at the center.
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In isotropic coordinates the McVittie metric takes the form

ds2 = −
(
1 − m

2ar

)2

(
1 + m

2ar

)2 dt2 + a2
(
1 + m

2ar

)4 (
dr2 + r2dΩ2

)
, (9.1)

where them parameter represents the contribution to theMisner–Sharp mass coming
from the central inhomogeneity [3], and a ≡ a(t) corresponds to the scale factor.
One can easily see that, taking the limit of small mass or large distances (m → 0
or r → ∞ respectively), the metric (9.1) above immediately takes the form of the
FLRWline element. Similarly, taking a(t) → 1 the Schwarzschildmetric in isotropic
coordinates is obtained. Despite its look, it is not obvious what (9.1) can represent,
and in fact, since its first appearance an 80-year-long debate started with the aim of
establishing whether or not this metric could really describe a black hole, rather than
a naked singularity or yet something else. Many contributions to the subject have
been made with contrasting points of view and results (see for instance [4, 5] and
references therein), until the issue was resolved by two groups; in [6] first, and with
a more detailed numerical analysis in [7] later.

The main interest behind looking at the McVittie solution (and others of its class
[8]), is of course related to the fact that it represents a black hole in a quite generic
cosmological background, with no approximations. In other words, the solution rep-
resents a good benchmark to study a cross-scale problem involving collapsed objects
and global behaviors such as the cosmological expansion. Of course theMcVittie so-
lution is still very symmetrical and somehow simple, which is the reason why various
generalizations of it were studied during the years. In particular, the most important
successful attempt has been adding a time dependence for the mass parameter [5],
thus formally obtaining an accreting or depleting black hole. The price to pay for
such result though, has been the introduction of a phantom fluid and the need for a
detailed balance between the latter and the regular fluid component.

In the following we want to show that it is possible to build a set of generalized
McVittie solutions sourced by a realistic imperfect fluid, a key and novel element in
the study of the problem. By introducing heat fluxes in fact, we can transfer energy
into the central object and have its mass increase without disturbing the uniform
density requirement of the metric.

9.2 Properties and Causal Structure of McVittie

In this sectionwe introduce amore convenient set of coordinates to study the problem,
and describe the causal structure of the McVittie solution in the cases of interest,
namely when it can be shown to describe a black hole (or as we will see in short, a
black-hole/white-hole couple).
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9.2.1 Apparent Horizons in Canonical Coordinates

As alreadymentioned, theMcVittie solution (9.1) reduces to familiar formswhen the
limits a(t) → 1 and m/r → 0 are taken, becoming the Schwarzschild (in isotropic
coordinates), and FLRWmetrics respectively. Despite the fact that these limits make
perfect sense, the structure of the spacetime requires a deeper analysis and cannot
be inferred simply by these analogies.

It is convenient to change coordinates since the isotropic ones for a(t) = 1
have the unfortunate property of covering the exterior of the black hole twice for
m/2 < r < ∞ and 0 < r < m/2. Canonical coordinates are then defined by the
transformation (and its inverse)

r → r̂ =
(

1 + m

2a(t)r

)2

a(t)r , a(t)r = m

2

⎡

⎣ r̂

m
− 1 ±

√
(

r̂

m
− 1

)2

− 1

⎤

⎦

−1

,

(9.2)
which, being quadratic, defines two branches; the “−” branch is the physical one,
since in it r̂ → ∞ corresponds to a(t)r → ∞, while r̂ → 2m corresponds to
a(t)r → m/2. The other branch instead, leading to a range 0 < a(t)r < m/2,
describes a patch terminating on spacelike curvature singularities on both past and
future and can therefore be ignored.

For simplicity we drop the hat notation and keep r̂ → r . In this new set of
coordinates, the metric is no longer diagonal and takes the form

ds2 = −R2dt2 +
(
dr

R
− Hrdt

)

+ r2dΩ2 , (9.3)

where for convenience we introduced the functions R(r) ≡ √
1 − 2m/r , and H(t) ≡

ȧ(t)/a(t).
In these coordinates it is easy to see what the surface r = 2m (previously m =

2a(t)riso in isotropic coordinates) represents [6]; it is a spacelike 3-sphere of radius
2m (dr = 0 and gtt = 4m2H(t)2 > 0) that lies in the causal past of each point of the
spacetime. Moreover, using the dot and prime notations for t and r derivatives, the
scalar curvature on it RRicci = 12H + 6Ḣ/R becomes singular; we then call r = 2m
the “McVittie big bang” (alternatively, for a contracting solutionwith H < 0 it would
represent a big crunch).

Studying the apparent horizons of McVittie leads to the other salient features of
the causal structure of the spacetime. Since they are defined as the surfaces where
at least one congruence of null geodesics changes its focusing properties, they are
therefore the locus of vanishing geodesic expansion, which in a spherical symmetric
setup corresponds to the set of extrema of the area of a light front [6]. They can be
found by searching for the zero slope points along radial light geodesics defined by
the equation

ṙ = R(r) [r H(t) ± R(r)] , (9.4)
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Fig. 9.1 Null geodesics
(in- and outgoing), apparent
horizons for the McVittie
spacetime. Some light cones
inside and outside the normal
region enclosed by the two
horizons are also shown

where the “−” sign corresponds to ingoing and the “+” to outgoing geodesics. For
H > 0, outgoing geodesics do not define apparent horizons, and one is left to deal
with a cubic equation (after rationalization) for the ingoing geodesics. Of the three
possible solutions, one is always negative and can be discarded, while the other
two become real after some time t0 (branching time), and can be dubbed as r+(t)
and r−(t), the “outer” and “inner” one respectively. Hence, two horizons branch
off at the bifurcation 2-sphere (t0, r±(t0)), and split the spacetime in two regions: a
normal inner one defined at any time t as the radial values in between the horizons
r−(t) < r(t) < r+(t), and an outer antitrapping region for values of the radial
coordinate outside these limits. It is worth noting that while the time coordinate t is
everywhere timelike, the radial coordinate r remains spacelike only in the normal
region as can be seen in Fig. 9.1.

Continuing with the peculiar features of the McVittie spacetime, one finds that
(see for instance [6, 7, 9]) the outer horizon r+(t) asymptotes to a null surface
defined by limt→∞(r+(t), t) which for H0 ≡ limt→∞ H(t) > 0 is a cosmological
de Sitter-like horizon, while for H0 = 0 becomes a null FLRW infinity at r+ = ∞
and t = ∞. The inner horizon instead remains always finite, asymptotes to a null
surface (r−(∞), t = ∞) that for H0 > 0 is either a regular black hole horizon [6], or
a black-hole/white-hole bifurcation sphere [7, 10], located at a finite proper distance
from all the points in the interior. When H0 = 0 r− becomes a null singularity.

With this information drawing a Penrose diagram of the spacetime reduces to
integrating geodesics and is mostly a numerical effort. An example of McVittie
spacetime is shown in Fig. 9.1 where some light cones are shown, and in Fig. 9.2,
where the causal structure with the features discussed above is shown (in the case
H0 > 0, with and without the presence of a white hole).

9.2.2 The White Hole and H(t)

Besides the general non-convergent view about whether or not the metric (9.3) was
describing a black hole, the authors of [7] also advocated the idea that the inner
apparent horizon r− would not asymptote to a black hole horizon, rather it would
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(a) (b)

Fig. 9.2 a Causal structure for the black hole case. Constant radius curves are also shown. b
Appearance of the white hole in the causal structure

separate the boundary of the spacetime into two sections, a black hole horizon in the
future and a white hole one in the past. Their analysis was supported by extremely
accurate numerics, and yet was in obvious disagreement with all previous works on
the topic, presenting a difficult puzzle.

We recall that in order to establish the characteristics of the inner horizon in the
limit t → ∞ the properties of H are crucial, and that in particular for the existence of
an event horizon it is crucial that H0 > 0. What the authors in [6, 7] did not realize is
that it is not just the limit of the expansion function that decides the asymptotes, but
also how quickly H(t) tends to H0. In [9] in fact, it was shown that the asymptotic
behavior of r−(t) can both produce a black hole horizon and a black-hole/white-hole
separating surface. More in specific, the difference ΔH(t) ≡ H(t) − H0, appearing
in an integral over all times that defines the causal past of the inner apparent horizon,
determines the convergence or divergence of the interval of points on the McVittie
big bang surface that following light geodesics reach r−, and thus selects whether or
not all ingoing geodesics enter the normal patch of the spacetime. In the case inwhich
part of the geodesics starting from the big bang can stay outside the normal region, a
white hole horizon appears to accommodate them. The illustration in Fig. 9.2 shows
in an intuitive and graphical way how the white hole can appear.

It is interesting to note that even realistic and somehow simple models for the
expansion can lead to both behaviors. For instance, in the �CDM model with no
radiation the productm H0, via themethod of [9], completely determines the structure
of the spacetime, except for one value of m H0 for which numerics are needed. In [9]
it is argued though that the method presented fails to give a definitive answer only
for a physically irrelevant class of expansion functions.

9.3 Generalizing McVittie

The McVittie solution can be formally generalized to accommodate a time-varying
mass function m → m(t) that corrects the contribution to the expansion function

ds2 = −R2dt2 +
[
dr

R
−

(

H − M + M

R

)

rdt

]2
+ r2dΩ2 , (9.5)
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where M(t) ≡ ṁ(t)/m(t). The problem then becomes finding an appropriate
stress-energy tensor that can source it. In particular, adding a time dependence in
m introduces off-diagonal terms in the Einstein tensor that, being proportional to ṁ
cannot be set to zero, and need to be matched on the source side.

One way to proceed is using multiple perfect fluids, as was done in [5, 11], but the
price to pay is the appearance of a phantom component, a fluid violating the weak
energy condition, given that it shows w ≡ p/ρ < −1. Moreover, a characteristic
of the McVittie solution, also shared by generalized McVittie with time-dependent
mass, is the so called “spatial Ricci isotropy”, namely the equality of the radial and
angular part of the Einstein tensor with mixed indices: Gr

r = Gθ
θ . Due to Ricci

isotropy, the phantom and other fluids have to balance out in a fine-tuned fashion,
leading to possible stability issues.

The alternative is to abandon the perfect fluid description and make use of the
extra freedom encoded in an imperfect fluid, specifically the presence of heat fluxes.

9.3.1 Imperfect Fluid Source

An imperfect fluid is generically described by a stress-energy tensor that to first order
in gradients takes the form

T μν = (ρ + p) uμuν + pgμν − ζhμνuγ

;γ − χ
(
hμγ uν + hνγ uμ

)
qγ , (9.6)

with
hμν = gμν + uμuν , qμ = ∂μT + T uμ;γ uγ , (9.7)

and where uμ is the four-velocity, T (xμ) the temperature function, χ the heat con-
ductivity, and ζ the bulk viscosity.

The starting point is considering the off-diagonal component of Einstein equa-
tions, now nontrivial due to a non-zero ṁ. This can be used to find the radial depen-
dence of the temperature function

T (t, r) = T∞
R

+ 1

4πχ

M

R
ln (R) , (9.8)

where T∞ = T∞(t) is an arbitrary integration function at spatial infinity. In the
limit of no time dependence of the mass we have T → T∞/

√−gtt , namely the fluid
is in thermal equilibrium (as expected). Using the remaining independent Einstein
equations, it is possible to write an explicit form for the other functions entering the
general stress-energy tensor (9.6) in terms of the functions appearing in the metric.
The energy density reads

ρ(t, r) = 3

8π

[

H − M

R
(R − 1)

]2
, (9.9)
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while the pressure can be written as

p(t, r) = √
6πρ

(

2ζ − m M

6πr R3

)

−ρ− m M2

4πr R4 − 1

4π R

(

Ḣ + Ṁ
1 − R

R

)

. (9.10)

9.3.2 Apparent Horizons

Similarly to what happens with the causal structure of the original McVittie space-
time, the generalized one also contains a spacelike surface in the past of all timelike
curves, the big bang singularity, that now lays at a non-fixed radial value (in canonical
coordinates). As for the apparent horizons, now defined by

R (r H ± R) + r M (1 − R) = 0 , (9.11)

it can be shown that for reasonable choices of the functions H and M (as discussed
below), they still exist, branch off after an initial time t0, and separate a normal region
from an antitrapping one.

An important question has to be asked at this point: is the generalized McVittie
metric still suitable to describe a black hole (now with variable mass) in an FLRW
Universe?We do not have a direct answer to this very general question, butwe can say
for sure that there exist vast families of generalized solutions described by specific
choices of H and M that do describe a black hole (and possibly a black/white-hole
pair) like in the case of the original McVittie metric.

In fact, any choice of H that is allowed by the original metric, and any choice of
M that vanishes fast enough with t , provide the same description for the asymptotics
of the apparent horizons. The analysis of [6, 7] then applies unchanged.

9.3.3 An Explicit Model

We present now a toy model in which we generate families of viable solutions
by patching together generalized McVittie (time dependent) and regular McVittie
(constant) mass functions. A possible choice for the functions H and M can be

H(t) = 2

3t
+ H0 , m(t) =

{
1, t ≤ ti ; and 2, t ≥ t f ;
1
2 [3 + sin (ωt + φ)] ti < t < t f ,

(9.12)

where, with H0 positive, this approximates the cosmology of pressureless dust with
the addition of a cosmological constant. As for themass function,we build it variating
only in a window of times, for some choice of ti and t f , with ω and φ chosen to
smoothly connect to constant values outside.
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When ṁ ceases to be zero, ρ and T acquire gradients toward the singularity where
they themselves go to infinity. The presence of this density gradient in the dynamical
case avoids the rather artificial setup of the original McVittie, whose requirement of
a homogeneous ρ supported by pressure gradients was physically difficult to justify.
Conversely, the pressure, besides showing discontinuities which are a feature of the
oversimplification introduced in this special case (the model above is smooth only
up to first derivative of the mass, while the pressure contains second derivatives),
behaves much like in the static-mass case, going to infinity at the singularity.

9.4 Remarks

We have seen how generalized McVittie can be built satisfying the requirements
to ensure that an event horizon appears in the spacetime, while still allowing the
mass function of the central object to vary. To achieve this, we require the physically
reasonable assumption that the black hole stops accreting after some time.

It is interesting to notice the effect on the apparent horizons due to accretion: as
can be seen in Fig. 9.3, they tend to get closer together. This feature requires more
study, and it of course implies the presence of limits of validity for mass increasing
models. In fact, taking an extreme point of view, one can increase the effect of M
coupled to H and reach a critical point at which r− and r+ touch a second time after
the initial branching t0. Figure9.4 shows this possibility featuring two disconnected
normal regions separated by a region which is everywhere antitrapping.

We have seen then thatMcVittie can be generalized using a realistic fluid as source
for the exact solution; that, in the class of models that have a mass function m → m0
constant at large times, the black-hole (or black/white-hole) interpretation of the

(a) (b)

Fig. 9.3 a Ingoing geodesics and horizons in generalized McVittie. b Detail of r− in the range of
sinusoidal mass variation
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Fig. 9.4 Effect of a radical
choice for the mass function
with increasing cosmological
constant. Once the apparent
horizons merge two
disconnected normal regions
appear

metric still applies; and that some bounds have to be posed to the mass function even
at finite times to retain a physical interpretation of the inner region defined by the
apparent horizons.
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Chapter 10
Tidally Distorted Black Holes

Norman Gürlebeck

Abstract According to the no-hair theorem, static black holes are described by
a Schwarzschild spacetime provided there are no other sources of the gravitational
field. This requirement, however, is in astrophysical realistic scenarios often violated,
e.g., if the blackhole is part of a binary systemor if they are surroundedby an accretion
disk. In these cases, the black hole is distorted due to tidal forces. We show that the
subsequent formulation of the no-hair theorem holds nonetheless: The contribution
of the distorted black hole to the multipole moments that describe the gravitational
field close to infinity is that of a Schwarzschild black hole. This implies that there is no
multipolemoment induced in the black hole and that its second Love numbers, which
measure the distortion, vanish as was already shown in approximations to general
relativity. But here we proof this property of black holes in full general relativity.

10.1 Introduction

The no-hair theorem states that any isolated static black hole is necessarily a Schwarz-
schild black hole and that there is only one free parameter describing the spacetime—
the mass M .1 The metric of a Schwarzschild black hole is given in canonical Weyl
coordinates (ρ, ζ, ϕ, t) by

ds2 = e2kS−2US
(
dρ2 + dζ 2

) + e−2US ρ2dϕ2 − e2USdt2,

US = 1
2 log

[
r++r−−2M
r++r−+2M

]
, kS = 1

2 log
[

(r++r−)2−4M2

4r+r−

]
,

r2± = ρ2 + (ζ ± M)2.

(10.1)

1This means that the black hole has actually one hair.
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The horizon of this spacetime is located at the symmetry axis (ρ = 0, ζ ∈ [−M, M]).
In fact, in canonical Weyl coordinates the horizon can always be located at ρ = 0,
see [4].

For the no-hair theorem to hold, the black hole has to be isolated, i.e., the exterior
of the black hole has to be an asymptotically flat vacuum. However, this is not valid
in many astrophysical situations, like for black holes in binary systems or if the
black hole is surrounded by an accretion disk. In the exterior field of such additional
sources, the black hole is distorted, i.e., the inner geometry of the horizon changes.
This is measured by the Love numbers of the first kind or the multipole moments
of isolated horizons, see [1, 7]. Nonetheless, we show in this paper that this does
not imply that the black holes “grow more hair”. More precisely: Although the total
multipole moments of the spacetime measured at infinity change, this is solely due to
the external sources and not to a different contribution of the black holes themselves.
In fact, distorted black holes have only a mass monopole, cf. [14].

It is of general interest, particularly for inspirals treated in an adiabatic regime, to
quantify distortions of black holes and neutron stars. The imprints of the distortions
in the gravitational wave forms emitted by inspiraling binaries give information
on the equation of state [10, 16] of neutron stars. Similarly, they can be used to
experimentally reveal if a constituent of a binary system is a black hole. Quantifying
the distortion is done with the help of the Love numbers of first and second kind, hr

and kr , cf. [3, 8, 18]. Roughly speaking, the hr measure the changes in the shape
of the horizon and the kr measure the change in the asymptotic multipole moments
caused by the distortion due to an external source, see [3, 5, 7, 8, 17] for their use in
general relativity. They were also applied to establish equation-of-state-independent
relations between certain physical parameters describing neutron stars, see [6, 19,
21, 22] but also [9, 15]. The here considered black hole case is solved analytical
in full general relativity and, thus, it serves as a test for the various approximation
schemes employed for neutron stars.

10.2 Preliminaries

In this section, we will repeat the notions that are necessary in the present paper. We
use geometric units, in which G = c = 1, where c is the velocity of light and G
Newton’s gravitational constant. The metric has the signature (−1, 1, 1, 1). Greek
indices run from 0 to 3 and Latin indices run from 1 to 3.

10.2.1 Distorted Black Holes

In case the exterior sources are static and axially symmetric or allow for a quasi-
static description, the general metric near the horizonH of distorted black hole was
found by Geroch and Hartle in [12]. In a neighborhood of H , we assume vacuum,
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which is physical reasonable if the matter should satisfy the energy conditions, cf.
[2]. Thus, there exists a surface SH , which encloses H and no other sources. If
SH is sufficiently close toH , the metric in between reads

ds2 = e2k−2US−2UD
(
dρ2 + dζ 2

) + ρ2e−2US−2UD dϕ2 − e2US+2UD dt2. (10.2)

The function UD is determined by a Laplace equation

(
∂2

∂ρ2 + 1
ρ

∂
∂ρ

+ ∂2

∂ζ 2

)
UD = 0. (10.3)

The horizon of this spacetime lies still on the ζ -axis. The canonicalWeyl coordinates
allow a shift in the ζ−coordinate. We employ this freedom to place the horizon
symmetrically with respect to that coordinate, i.e., that the “north/south pole” of the
horizon are characterized by ζN/S = ±ζH . At these points, UD has to take the same
value to avoid struts, see [12], which we want to exclude for simplicity. The function
k is obtained by a line integration once UD is known:

k,ζ = 2ρ (UD + US),ρ (UD + US),ζ , k,ρ = ρ
((

US,ρ + UD,ρ

)2 − (
US,ζ + UD,ζ

)2
)

.

(10.4)

The metric (10.2) does neither describe directly the asymptotic behavior nor the
metric in the interior of the external source. In fact, the exterior sources do not have to
be specified for the subsequent conclusions and they could also include other black
holes. We only require that the spacetime is asymptotically flat and that all external
sources are enclosed by a surface Sext, which does not contain H and which does
not extend to infinity.

10.2.2 The Source Integrals

To disentangle the contributions of the black hole and the external sources to the
asymptotic multipole moments, the source integrals proved to be the essential tool.
Theywere recently derived in [13].With these it is possible, to define the asymptotics
of the spacetime including the Geroch multipole moments by evaluating quasi-local
surface or volume integrals. The respective surfaces and volumes need only to enve-
lope or contain all regions with a non-vanishing stress-energy tensor. Here we need
only the surface integrals and introduce the required quantities, subsequently.

The source integrals can be derived for arbitrary static and axially symmetric
spacetimes. Then, themetric can bewritten in theWeyl form under standard technical
assumptions:

ds2 = e2k−2U
(
dρ2 + dζ 2

) + W 2e−2U dϕ2 − e2U dt2, (10.5)
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where the functionsU, k and W depend on ρ and ζ . Note that the metric functionsU
and W can be expressed by the timelike Killing vector ξα and the spacelike Killing
vector ηα:

e2U = −ξαξα, W 2 = −ηαηαξβξβ. (10.6)

The Weyl multipole moments U (r) are defined as the expansion of U along the
axis of symmetry close to infinity, i.e.,

U =
∞∑

r=0

U (r)

|ζ |r+1 . (10.7)

As was shown in [11], from these the Geroch multipole moments mr can be deter-
mined by non-linear algebraic relations. To calculate mr , the U (k) need to be known
for 0 ≤ k ≤ r . Thus, it is sufficient for us to consider here the U (r).

Furthermore, it is beneficial to introduce the functions

N (r)
− (x, y) =

� r
2�∑

k=0

2(−1)k+1r !x2k+1yr−2k

4k(k!)2(r−2k)! ,

N (r)
+ (x, y) =

⌊
r−1
2

⌋

∑

k=0

2(−1)k+1r !x2k+2 yr−2k−1

4k(k!)2(r−2k−1)!(2k+2)
.

(10.8)

As was shown in [13], these functions obey the equations

N (r)
+,x − N (r)

−,y = 0, N (r)
+,y + N (r)

−,x − N (r)
−
x = 0. (10.9)

Additionally, let us introduce the 1-form

Zα = εαβγ δW ,β W −1ηγ ξδ, (10.10)

where εαβγ δ is the volume form of the spacetime. In vacuum, Zα is exact and it is
hypersurface orthogonal in the entire spacetime. Since the surfaces of interest,SH
andSext, lie in the vacuum region or its boundaries, we can introduce a scalar Z via
Z,α = Zα , for technical details and a more general treatment see [13].

With this notation at hand, we can express the Weyl multipole moments by

U (r) = ∫

SH

η
(r)
a n̂adSH + ∫

Sext

η
(r)
a n̂adSext,

η
(r)
a = 1

8π
eU

W

(
N (r)

− U,a − N (r)
+,W Z,aU + N (r)

+,Z W,aU
)

,

(10.11)
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where n̂a denotes the outward pointing unit normal to the surfacesSH andSext and
the functions N (r)

± depend on (x, y) = (W, Z). dSH and dSext are the proper area
elements ofSH andSext, respectively. In vacuum, we can always choose canonical
Weyl coordinates such that W = ρ and Z = ζ .

10.3 The Induced Multipole Moments of Distorted Black
Holes

With (10.11), we can covariantly identify the contribution of the different sources
to the asymptotic Weyl multipole moments. The first term in (10.11), which we

denote U (r)

H , gives the contribution of the distorted black hole and the second term,

U (r)
ext , the contribution of the external sources. The induced multipole moment of a

distorted black hole is now simply defined as U (r)
ind = U (r)

H − U (r)
S , where the U (r)

S
denote theWeyl multipole moments of a undistorted Schwarzschild black hole. They
coincide with the Newtonian multipole moments of a line mass of uniform density,
see [20]. Using a parametrization of SH for constant angles (s ∈ [sN , sS] �→
(ρ(s), ζ(s), ϕ = const.), cf. [13], and (10.2), U (r)

H reads

U (r)

H = 1
8π

sS∫

sN

2π∫

0

[
N (r)

− (US + UD),n −
(

N (r)
−,W Z,n − N (r)

+,Z W,n

)
(US + UD)

]
dϕds,

(10.12)

where we denote by f,n the normal derivative − f,ρ
d
ds ζ(s) + f,ζ

d
ds ρ(s) along the

surfaceSH . Thus, the induced multipole moment is given by

U (r)
ind = 1

8π

sS∫

sN

2π∫

0

[
N (r)

− UD,n − N (r)
+,W Z,nUD + N (r)

+,Z W,nUD

]
dϕds. (10.13)

Applying the divergence theorem, we can rewrite U (r)
ind :

U (r)
ind = 1

8π

∫

VH

1
ρ

[

UD,ρ

(

N (r)
−,ρ + N (r)

+,ζ − N (r)
−
ρ

)

+ UD,ζ

(
N (r)

−,ζ − N (r)
+,ρ

)]

dVH ,

(10.14)

which vanishes by virtue of (10.9). VH is the coordinate volume enclosed by SH
andH in canonical Weyl coordinates. Thus, the induced multipole moments vanish
and the contribution of the distorted black hole to the asymptotic Weyl multipole
moments is the same as for the Schwarzschild black hole. With the results in [11,
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13], this can readily be translated to Geroch’s multipole moments. This generalizes
the no-hair theorem to black holes that are distorted by external matter. This result
simplifies the evaluation of the source integrals in [13] considerably, since only the
mass of the individual black holes has to be calculated to know all U (r)

H .
The vanishing of the induced multipole moments implies that the second Love

numbers kr vanish, too, because they are proportional to U (r)
ind . This is in compliance

with [3, 5, 8, 17]. But here no approximations and linearizations were used and the
result holds in full general relativity. Note that kr = 0 is specific to black holes and
does not hold for neutron stars, cf. [3]. Nonetheless, the source integrals of the Weyl
multipole moments are still tailored to calculate their kr , since the contributions from
the individual sources to the Weyl multipole moments are separated and a definition
of an induced multipole moment becomes possible also in full GR.
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J. Steinhoff for fruitful discussions. Furthermore, I gratefully acknowledge support from the DFG
within the Research Training Group 1620 “Models of Gravity”.
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Chapter 11
Self–completeness in Alternative Theories
of Gravity

Maximiliano Isi, Jonas Mureika and Piero Nicolini

Abstract The possible existence of a minimum black hole horizon radius suggests
that the trans-Planckian regime of gravity may be semiclassical. We explore the
extension of this “self-completeness” of gravity to the beyond-Einstein formalisms
of Randall-Sundrum extra dimensions and the generalized uncertainty principle.

11.1 Introduction

Gravity is problematic from the perspective of quantization. For instance, graviton
path integrals in (3 + 1)-D are readily divergent. As part of the effort to solve this,
it has been shown [6–8, 12, 13] that gravity may be considered “self–complete,” in
that there exists a minimum horizon scale hiding the singularity. Specifically, this
distance is defined by the confluence of the classical Schwarzschild radius and the
Compton wavelength:

rH = λC =⇒ 2G MBH

c2
= h

cMBH
. (11.1)
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In terms of the Planck mass, MPl = √
�c/G, this gives a minimum mass:

MBH ≥
√

hc

2G
= √

π MPl, (11.2)

below which the effective length scale increases as M−1
BH. That is, Planck-mass holes

are the smallest resolvable black objects.

11.2 Randall-Sundrum

The Randall-Sundrum model posits our Universe is a n-dimensional brane in a bulk
with an infinite extra dimension at a distance �, the AdS curvature radius [11].
Einstein’s equations in the bulk are

G̃ AB = κ̃2
[
−Λ̃g̃AB + δ(χ) (−λgAB + TAB)

]
, (11.3)

where the coupling κ̃ = 8π/M̃Pl
3
is a function of the reduced (n + 1)-dimensional

Planck mass M̃Pl. The hierarchy problem is resolved by assuming gravity originates
in the extra brane, causing our effective gravitational constant to be G4 = G5/�,
where G5 is the “true” coupling strength [3].

In the case of an electrically neutral black hole, the induced Einstein equations
on the brane yield a Reissner-Nordström-like solution of the form [3]1

ds24 = −
(

1 − 2G4m

c2r
+ Q

r2

)

c2dt2 + dr2

1 − 2G4m
c2r

+ Q
r2

+ r2dΩ2, (11.4)

with dΩ2 = dθ2 + sin2θdφ2 and the term Q is the tidal charge, resulting from
leakage into the bulk. Knowing that G4 = �c/M2

Pl, we can write (11.4) in terms of
the Planck mass to obtain the (outer) black hole horizon:

rH = �

c

MBH

M2
Pl

(

1 +
√

1 − c2

�2

M4
Pl

M2
BH

Q

)

. (11.5)

For the external horizon to be greater than the Schwarzschild radius, we require
a negative Q. Otherwise, both radii would be smaller than the regular Schwarz-
schild horizon and we would get the usual self–completeness condition from (11.2).
Furthermore, Q < 0 is arguably a more “physical” choice [4]. Regardless of Q,
rH (MBH) becomes linear for large enough mass (Fig. 11.1).

1Note that in [3] β represents the tidal charge and Q for the electric charge, which we take to be
null.
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Fig. 11.1 Black hole
horizon radius as a function
of mass in the
Randall-Sundrum model
(Planck units). The plot
displays (11.5) for different
values (negative) of the tidal
charge Q
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Equating the Compton wavelength to the black hole horizon radius, we obtain an
expression for the minimum black hole mass as a function of Q:

MBH ≥ π MPl
√

π − c2M2
PlQ/4�2

(11.6)

However, Q is not an independent variable. For small length scales, compared
to the AdS radius (r � �), the tidal charge becomes a linear function of the brane
separation distance:

Q ≈
r��

− MB H

M2
Pl

�

c
�. (11.7)

Consequently, the minimum mass is also a function of �. After some basic algebra,
we find:

MBH ≥ A
(

B + B−1 − 1
)

, (11.8)

A ≡ 4π

3

�

c�
, B ≡

⎡

⎣3π

2

(
MPl

A

)2

− 1 + MPl

A

√
(
3π

2

MPl

A

)2

− 3π

⎤

⎦

1/3

. (11.9)

Themeaning of (11.8) can be illuminated bymeans of an expansion in powers of MPl

Mmin = √
π MPl − c�

8�
M2

Pl +
5

128

(
c�

�

)2

π−1/2 M3
Pl + O(M4

Pl). (11.10)

Again, we recover (11.2) for vanishing �, as expected (Fig. 11.2). On the other hand,
note that Mmin → 0 as � → ∞. Furthermore, because (11.8) is continuous for all
positive values of � (which we require in order to have Q < 0), Randall-Sundrum
gravity can always be considered self–complete.
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Fig. 11.2 Minimum black
hole mass (11.8) in
Planck-mass units as a
function of brane separation
(solid line). The shaded
region indicates the allowed
values of the mass. As the
correction is removed (viz.
� → 0+), the minimum mass
is again

√
π MPl (indicated

by a dot), agreeing with
(11.2)
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11.3 Generalized Uncertainty Principle

If additionalmomentumdependent terms exist in the usual commutation relation, this
will result in a modified uncertainty relation of the form ΔxΔp ≥ �

2

(
1 + β(Δp)2

)
.

Suchmodification is known by the name of generalized uncertainty principle (GUP).
In turn, this translates into a non-zero commutator between the coordinate operators:

[xi , x j ] = 2i�β(pi x j − p j xi ). (11.11)

Because the commutator does not vanish unless β = 0, the GUP introduces a non-
zerominimal uncertainty in position, which translates into the existence of a minimal
length. Furthermore, this results in a momentum integration measure

∫
dn p

1 + βp2 |p〉〈p| = 1, (11.12)

which presents a UV cutoff of
√

β [10]. This has important consequences for black
hole evaporation and results in remnant formation.

The GUP replaces the Dirac delta in the description of point particles of regular
quantum mechanics with a wider Gaussian distribution, e−|x|√β . As shown in [9],
we can reproduce these non-local effects by means of the GUP-inspired metric

ds2 = −
(

1 − 2
G M

c2r
γ (2; r/

√
β)

)

dt2−
(

1 − 2
G M

c2r
γ (2; r/

√
β)

)−1

dr2+r2dΩ2

(11.13)
where γ (s; x) = ∫ x

0 t s−1e−tdt is the lower incomplete gamma function. The metric
coefficient 1/grr is shown in Fig. 11.3. Note that the extremal case happens at MBH ≈
1.66

√
β/G and rH ≈ 1.73

√
β.
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Fig. 11.3 Metric coefficient for GUP-inspired metric (11.13). Notice naked singularity, extremal
and regular black hole cases. The Schwarzschild (SBH) case for M = 5MPl is shown for comparison
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Fig. 11.4 GUP auxiliary function (11.14) for different values of minimum area β, shown in Planck
units. The roots indicate the minimum black hole mass for the particular value of β0, where β0 =
β/�2P . Note that there are no roots for β0 ≥ 1/π . This indicates that for large enough minimum
areas, GUP stops being self–complete

It is not possible to find an explicit expression for the horizon radius corresponding
to (11.13). However, we can naively attempt to study the self–completeness of this
metric by numerically solving 1/grr = 0 under the constraint r = λC(M), viz.

1 − 2
G M

c2λC
γ (2; λC/

√
β) = 0 (11.14)

Rather than taking the usual expression for λC, we follow [1, 2] by correcting the
Compton wavelength to account for GUP effects: λGU P = �

Mc (1+βM2). Note that
this step is not strictly necessary (see [9] for a more rigorous approach). The RHS
of (11.14) is plotted in Fig. 11.4 The roots of this function can be interpreted as the
values of MBH at which the horizon radius coincides with the modified Compton
wavelength for a given β, i.e. a minimum black hole mass.
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Fig. 11.5 Black hole mass
in Planck units for varying β.
The allowed values
correspond to the shaded
region. The minimum-mass
curve (solid), which was
obtained numerically,
presents an asymptote at
β = �2P/π ≈ 0.318. For
β = 0, we recover the GR
constraint (dot)
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The allowed black holemasses are shown in Fig. 11.5. TheGUPcorrections can be
undone by letting β → 0, thus recovering (11.2). Furthermore, we find that (11.14)
has no positive roots for β/�2P ≥ 1/π ≈ 0.318, where �P = √

�G/c3 is the Planck
length. Consequently, GUP is not self–complete for β ≥ �2P/π . This can be turned
into an upper bound on the minimum area:

β < �2P/π. (11.15)

Note that this is a constraint several orders of magnitude stronger than those found
in [5] of β0 < 1021 and the corresponding energies are too high to be tested with
current experiments.

11.4 Conclusions

We have explored the self–completeness of gravity under two different and indepen-
dent frameworks: Randall–Sundrum and GUP. In the case of Randall-Sundrum, we
have shown that gravity should be self–complete regardless of the AdS curvature
radius and found an closed-form solution for the minimum mass, (11.8). This is not
the case for GUP: under this formalism, gravity is only self–complete as long as
the minimum area β satisfies (11.15). Such condition could be understood as a con-
straint on GUP. This, however, is a heuristic analysis and should be complemented
by a more formal treatment (c.f. [9]).
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Chapter 12
Gravitational Collapse to Black Holes
and More

Daniele Malafarina

Abstract Are black holes the only possible end state of complete gravitational
collapse? Or is there any alternative outcome, either within general relativity or
coming from some quantum theory of gravity? If so, could the existence of such
exotic objects be in principle inferred from observations?

12.1 Introduction

There is strong observational evidence of the existence ofmany black hole candidates
in the universe. These range from compact objects of the order of a few solar masses
to supermassive ones that can be as massive as a few billion suns. Nevertheless we
don’t know yet if these candidates must all necessarily be black holes nor we know
if black holes are the only possible final outcome of realistic gravitational collapse
as predicted by General Relativity (GR) for very massive objects. Furthermore GR
is expected to require modifications due to quantum effects in the strong field regime
that is reached towards the final stages of collapse. Therefore before concluding that
all collapse processes in the universe above a certain threshold lead to the formation
of a black hole we need to understand more carefully the limits of classical models
and how they might relate to realistic collapse.

One possible approach to a description of collapse in the strong field regime
is provided by a semiclassical treatment of quantum corrections, where we solve
Einstein’s equations for an effective energy momentum tensor that takes into account
the modifications due to quantum gravitational effects (see for example [1, 2]). We
see that following this method the classical singularity at the end of collapse is

D. Malafarina (B)
Center for Field Theory and Particle Physics & Department of Physics,
Fudan University, 220 Handan Road, Shanghai 200433, China
e-mail: daniele@fudan.edu.cn

D. Malafarina
Department of Physics, SST Nazarbayev University,
53 Kabanbay Batyr avenue, Astana 010000, Kazakhstan
e-mail: daniele.malafarina@nu.edu.kz

© Springer International Publishing Switzerland 2016
P. Nicolini et al. (eds.), 1st Karl Schwarzschild Meeting on Gravitational Physics,
Springer Proceedings in Physics 170, DOI 10.1007/978-3-319-20046-0_12

103



104 D. Malafarina

replaced by a bounce and the final Schwarzschild black hole doesn’t form. Instead
we have the formation of two ‘evaporating’ trapped regions, one before and one after
the bounce, that may leave the portion of the spacetime where the bounce occurs
visible to far away observers.

It is clear that such a scenario might have important observational consequences
for astrophysical black hole candidates. Even more so if the dispersal of the cloud
after the bounce leaves behind some kind of exotic compact object. These exotic
remnants might have observational properties that distinguish them from black holes
of the same mass thus allowing for the possibility of detection in future observations
(see for example [3–5]). If true, this would open an important observational window
on the strong field regime of gravity and possibly new physics.

12.2 Classical Collapse and Quantum Bounce

Relativistic gravitational collapse has been studied for many decades (see [6] and
references therein) and it is well known now that under some basic assumptions (i.e.
energy conditions) it ends necessarily with the formation of a spacetime singularity
[7, 8]. The standard paradigm for gravitational collapse leading to the formation of
a black hole is given by the Oppenheimer-Snyder model, which describes collapse
of an homogeneous dust (i.e. pressureless) cloud [9]. The model can be easily gen-
eralized to the case of collapse of homogeneous perfect fluids with a linear equation
of state and it leads to the same final outcome, namely a simultaneous singular-
ity covered by a horizon at all times. The energy momentum tensor is given by
T μ

ν = diag(ρ(t), p(t), p(t), p(t)) and the pressure p can be related to the energy
density ρ via and equation of state of the form p = λρ (with λ ∈ [−1, 1] to satisfy
energy conditions). The metric in comoving coordinates is given by

ds2 = −dt2 + a2

1 + kr2
dr2 + r2a2dΩ2 , (12.1)

where the dimensionless scale factor a(t) determines the evolution of the cloud and
it is taken to be 1 at the initial time ti = 0. Also k is a constant related to the initial
velocity of the infalling particles that we will assume to be zero (a case known as
marginally bound collapse) and dΩ2 represents the line element on the unit two-
sphere. The energy density and pressure are given by ρ = 3M/a3, p = −Ṁ/a2ȧ,
with M(t) = M0/a3λ being a mass profile related to the Misner-Sharp of the system
F(r, t) = r3M(t), which represents the amount of matter enclosed within the shell r
at the time t [10]. From the Misner-Sharp mass we can derive the equation of motion
for a as

M(t) = aȧ2 . (12.2)

Dust collapse is recovered for λ = 0 which implies p = 0 and in this case the cloud
matches to a vacuum Schwarzschild exterior with mass parameter Msc across the
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collapsing boundary surface given by Rb(t) = rba(t). In the perfect fluid case the
matching can be done with an exterior radiating Vaidya spacetime. The total mass
of the collapsing system at any given time is then given by the matching conditions
as F(rb, t) = r3b M(t) that in the case of dust reduces to r3b M0 = 2Msc [11–14].
Solving equation (12.2) to obtain the scale factor a solves the system of Einstein’s
equations completely. The solution can be written as

a(t) =
(

1 − 3(λ + 1)

2

√
M0t

)2/3(λ+1)

. (12.3)

From this solution we see that all matter falls into the central singularity at the time
ts = 2/3(λ + 1)

√
M0. The evolution of the apparent horizon inside the cloud can be

described by a curve tah(r) which describes the time at which the shell r becomes
trapped, and is governed by the equation a(tah(r)) = r2M . We then see that the
cloud becomes trapped at the time

tah(rb) = ts − 2

3(λ + 1)

(
r3(λ+1)

b M0

)1/(3λ+1)
< ts . (12.4)

The above picture is derived within GR by solving Einstein equations Gμν =
8πTμν . We know that GR is a valid theory of gravity in the weak field regime
and therefore we assume Einstein’s equations to hold at the initial time of collapse.
Nevertheless aswe approach the formation of the singularity the energy density grows
arbitrarily high andwe can expect that correction due to quantum-gravitational effects
become important in the strong field limit. We thus expect Einstein’s equations to be
modified in some way. We can in general suppose that we can write Gμν + Gcorr

μν =
8πTμν , where the specific formofGcorr

μν will depend on the theory of quantum-gravity
employed. In order to investigate how such quantum-gravity corrections occurring
in the strong field regime affect the collapse scenario we shall use a semiclassical
approach. This consists in treating the term Gcorr

μν as an ‘unphysical’ matter field to
be added on the right hand side of Einstein’s equations. In this way we solve the
usual equations for relativistic collapse for an effective matter source that takes into
account the original Tμν plus the quantum corrections in the strong field. The simplest
correction that can be implemented and that can be derived by some semiclassical
framework in Loop Quantum Cosmology is given by ρcorr = −ρ2/ρcr (see for
example [15–17]). This choice yields and effective density of the form

ρeff = ρ + ρcorr = ρ

(

1 − ρ

ρcr

)

, (12.5)

where ρcr is a critical density that depends on the specific form of the quantum-
gravity theory and it is of the order of the Planck density. Einstein’s equations then
provide the form for the effective pressure and effective mass as
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Meff = M

(

1 − ρ

ρcr

)

, peff = p

(

1 − 2ρ

ρcr

)

− ρ2

ρcr
. (12.6)

Solving the equation of motion (12.2) with the effective mass in place of the classical
mass gives the scale factor for the quantum corrected scenario as

a(t) =
[

K +
(√

1 − K − 3(λ + 1)

2

√
M0t

)2
]1/3(λ+1)

, (12.7)

where we have defined the critical scale K = a3(λ+1)
cr = 3M0/ρcr. Note that as K

goes to zero (i.e. ρcr goes to infinity) we recover the classical solution. The scale
factor reaches the minimal value acr at the time of the bounce tcr given by

tcr = 2
√
1 − K

3(λ + 1)
√

M0
, (12.8)

when ȧ = 0 and ρ = ρcr (note that at the time of the bounce we have ρeff = 0).
The structure of trapped surfaces inside the cloud for the effective model of col-

lapse can be obtained from the condition

1 − r2Meff

a
= 0 . (12.9)

It is immediately clear that at the time of the bounce for which a = acr �= 0 and
Meff = 0 the radius of the apparent horizon to satisfy (12.9) must be at infinity, and
therefore outside the boundary. Soweconclude that in the limit of asymptotic freedom
at the instant of the bounce the cloud is not hidden behind any horizon. Nevertheless,
since the early stages of collapse follow the classical scenario, a trapped region must
form as collapse passes the Schwarzschild boundary. The trapped region must then
‘evaporate’ before the bounce occurs. After the bounce the cloud re-expands and the
dynamics follows the time reversal of the collapse picture. Therefore another trapped
region forms in the expanding phase only to disappear (as a white hole) when the
cloud’s boundary becomes greater than the Schwarzschild radius (see Fig. 12.1). This
picture is in agreement with similar scenarios studied in the framework of asymptotic
safe gravity (see for example [18–22]),where the gravitational interaction is supposed
to vanish in the limit of small distances and high densities (as towards the end of
collapse). Seen from this context the time of the bounce, where Meff vanishes and
the metric is given by the flat Minkowski spacetime, represents the instant where
asymptotic safety is achieved.
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Fig. 12.1 Comparison between classical and ‘quantum corrected’ homogeneous collapse. The
dashed lines represent the classical picture, the continuous lines represent the modified scenario.
Initially collapse proceeds following the classical evolution as determined by Einstein’s equations.
The trapped region forms initially at the collapsing boundary of the cloud Rb(t). The event horizon
in the exterior Schwarzschild geometry (vertical dashed line) forms in the classical scenario at the
instant of formation of the trapped region. At the same instant the apparent horizon forms in the
interior (curved thick dashed line). The apparent horizon meets the simultaneous singularity at the
center of the cloud at the time of formation of the singularity itself ts . The singularity is entirely
hidden from far away observers. In the quantum corrected scenario the singularity is replaced by a
bounce at the time tcr , the trapped region (the closed continuous curve, thin in the exterior and thick
in the interior) ‘evaporates’ as the cloud shrinks. At the instant of the bounce we have a flat metric
and no trapped surfaces. The evolution after the bounce follows the time reversal of the collapse
scenario

12.3 Concluding Remarks

We have seen that once quantum-gravitational effects occurring in the strong field
regime are considered the standard picture of relativistic gravitational collapse is
changed. The matter cloud bounces without forming a singularity. The event horizon
that is the signature of the Schwarzschild black hole doesn’t form and is replaced by
two trapped regions that ‘live’ for a finite time. Although this time is very short for the
co-moving observers it can be long for observers at spatial infinity thus allowing for
the existence of astrophysical objects that ‘mimic’ a standard black hole.Nevertheless
the lifetime of these objects is limited. An important question that arises naturally at
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this point is whether the expanding cloud, after it has dispersed away, leaves behind
a compact remnant of some sort.

Exotic compact objects as leftovers from gravitational collapse have been con-
sidered for many years in various settings (from gravastar to quark stars and so on)
and the crucial question for astrophysics is whether these hypothetical objects can be
detected and distinguished from black holes. Therefore it is worth asking if similar
objects can form in the universe as the end state of collapse and if they would posses
some observational features that distinguish them from black holes of the samemass.
In classical GR there are many solutions describing static configurations with non
vanishing energymomentum that canbeused as toymodels for compact objects. Such
interior solutions, that match to the Schwarzschild metric at a finite boundary, can
be obtained from relativistic gravitational collapse under certain simple assumptions
and may be considered as a first step towards the theoretical description of compact
objects composed of exotic matter. The tool most widely used in astrophysics to
study the properties of compact objects in the universe is the accretion disk that most
of these objects posses. By studying the light curves emitted by matter in the accre-
tion disk it is possible to determine several features of the black hole candidates that
exist at the center of the disk. Therefore by simulating the same light curves from
accretion disks around theoretical compact objects as the ones mentioned above it is
possible to determine whether these can be observationally distinguished from black
holes.

For example in [23, 24] the properties of accretion disks around a class of perfect
fluid interiors that was obtained by Tolman in [25] was investigated. It was found
that the luminosity spectrum as received by distant observers exhibits a tail at high
frequencies that is absent in the case of black holes. This is supported by simulations
of the kα iron line of absorption that is expected to be present in the disk, which shows
very different behaviour from the black hole case [3–5]. This analysis supports the
claim that certain compact objects for which we have observational data are likely to
posses a horizon, at least a temporary one as described previously. Nevertheless we
can not exclude a priori, given the extremely small sample of available candidates,
that more exotic objects without horizon will be found in the future.
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Chapter 13
Experimental Tests of Pseudo-Complex
General Relativity

Thomas Schönenbach, Gunther Caspar, Peter O. Hess, Thomas Boller,
Andreas Müller, Mirko Schäfer and Walter Greiner

Abstract Based on a recently proposed extension to General Relativity (GR), called
pseudo-complex General Relativity (pc-GR), we present a selection of several tests
of GR near compact massive objects. The investigated phenomena are the redshift,
the orbital frequency of a test particle and the innermost stable circular orbit (ISCO)
around a massive object. We observe that the redshift and orbital frequency are in
general lower in pc-GR compared to Einstein’s GR. Also the orbital frequency for
prograde motion now exhibits a maximum, which is not present in GR. In addition
the concept of an innermost stable circular orbit does not hold in pc-GR as it arises in
GR. All modifications due to pc-GR correction terms appear only at small distances
(mostly below three Schwarzschild radii) and thus can only be observed by mea-
surements in regions of strong gravity. Those and more results have been published
already in [1].

13.1 Introduction

Up to now no experimental evidence suggests that the theory of General Relativity
does not hold. However there exist singularities, e.g. in the centre of black holes.
Also the occurrence of event horizons brings the problem that there exists a region of
spacetime which is not accessible to even nearby external observers. There is a wide
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spectrum of proposed extensions or modifications to GR (just to name some [2–7]),
one of which is the pseudo-complex General Relativity [8, 9]. It includes in addition
to the standard GR a Stress-Energy-Tensor modelling a dark energy. Due to this
modification, gravity is effectively weakened in regions close to compact massive
objects. Basis for the present work is a Kerr like solution of Einstein’s equations in
pc-GR

g00 = r2 − 2mr + a2 cos2 ϑ + B
2r

r2 + a2 cos2 ϑ

g11 = − r2 + a2 cos2 ϑ

r2 − 2mr + a2 + B
2r

g22 = −r2 − a2 cos2 ϑ

g33 = −(r2 + a2) sin2 ϑ − a2 sin4 ϑ
(
2mr − B

2r

)

r2 + a2 cos2 ϑ

g03 = −a sin2 ϑ 2mr + a B
2r sin2 ϑ

r2 + a2 cos2 ϑ
, (13.1)

where m = G M is the gravitational radius of the compact object with mass M , G
is the gravitational constant and all modifications are modelled by the parameter B.
For B > 64

27 m3 the solution does not contain any event horizon.
We use the metric signature (+, −, −, −), the convention a = −κ J

m for the specific
angular momentum or spin parameter of the central object and units with the speed
of light c set to one.

13.2 Results

As already mentioned, General Relativity is one of the best tested theories in physics,
although regions of strong gravity are hard to access experimentally. However, there
are some measurements which can be taken as testbeds for GR in strong regimes. Here
we will focus on orbits around massive objects and the redshift close to these objects.

13.2.1 Orbital Frequencies

Orbiting gas clouds around compact massive objects can serve as a good testbed
for GR. Flares around the black hole candidate Sgr A* in our galaxy already were
observed [10, 11]. At the moment another cloud is starting to pass around Sgr A*
[12], part of might start to orbit the massive object.

We model such clouds as massless point particles moving on geodesics. Their
orbital frequency in an equatorial plane (dϑ = 0, ϑ = π/2) is given by [1]
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Fig. 13.1 Orbital frequency
as a function of r , for stable
geodesic prograde (rotating
in the same way as the
central massive object)
circular motion. This plot is
made with parameter values
of a = −0.995 m and
B = 64

27 m3. ©MNRAS
http://mnras.oxfordjournals.
org/content/430/4/2999/ [1]
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where we introduced the auxiliary function

h(r) = 2m

r2 − 3B

2r4 . (13.3)

In (13.2), ω− describes prograde motion of a particle around a central object, whereas
ω+ describes retrograde motion, respectively. Figure 13.1 displays the orbital fre-
quency of a particle in prograde stable motion around a massive object. For retro-
grade motion differences between GR and pc-GR stay very small, thus we omit this
case here.

For large distances (greater than three Schwarzschildradii) almost no difference
between GR and pc-GR is observable. However for smaller distances we can see
a clear divergence between the plots. In pc-GR the orbital frequency exhibits a
maximum, whose position is independent of the spin parameter a. Thus one is able
to determine a value for the pc-parameter B, if a maximum in the orbital frequency
is measured, without the knowledge of the spin parameter a. This is important, as
the spin parameter is not easily measurable [13].

In Fig. 13.2 we see the limiting curves for orbital motion around a massive object.
They are given by

ω̄± = a f (r) ± √
D(r)

− (
r2 + a2

) − a2 f (r)
, (13.4)

with the two auxiliary functions

http://mnras.oxfordjournals.org/content/430/4/2999/
http://mnras.oxfordjournals.org/content/430/4/2999/
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Fig. 13.2 Limits on the
orbital frequencies of
circular motion in the
equatorial plane. The
frequencies of particles
moving on circular orbits
must lie between the limiting
curves. The parameters are
a = −0.995 m and
B = 64

27 m3. ©MNRAS
http://mnras.oxfordjournals.
org/content/430/4/2999/ [1]
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f (r) = 2m

r
− B

2r3

D(r) = r2 + a2 − 2mr + B

2r
. (13.5)

Again for large distances the differences between GR and pc-GR become negligi-
ble. Observable is the phenomenon of frame-dragging in the GR scenario.1 Curves
for pro- and retrograde motion approach and finally converge. In the pc-GR case this
behaviour is strongly suppressed.

13.2.2 Redshift

The gravitational redshift of an object is a rather easily measurable feature. Never-
theless it carries valuable information about the observed object. It is defined by

z := 1√
g00 − 1

. (13.6)

We investigated two cases here, the view entirely in the equatorial plane (which is
equivalent to the Schwarzschild case, ϑ = π/2) in Fig. 13.3 and the view directly
on the pole of a rotating object (ϑ = 0) in Fig. 13.4. Only in the inner region around
a compact massive object, differences are visible.

1Do not confuse this with the effect of frame-dragging for weak gravitational fields which, according
to the predictions of [14], has been confirmed experimentally, see [15, 16].

http://mnras.oxfordjournals.org/content/430/4/2999/
http://mnras.oxfordjournals.org/content/430/4/2999/
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Fig. 13.3 Redshift of an
emitter at the position r in
the outside field of a
spherically symmetric,
uncharged and static mass
(Schwarzschild metric) and
also for the field at the
equator of a rotating mass
(ϑ = π

2 ). B is set to 64
27 m3

and a = −0.995 m.
©MNRAS http://mnras.
oxfordjournals.org/content/
430/4/2999/ [1]  0
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Fig. 13.4 Redshift for an
emitter at the position r in
the outside field of an axially
symmetric, uncharged and
rotating mass (Kerr metric)
at the poles (e.g. ϑ = 0 or
ϑ = π ). B is again chosen to
be 64

27 m3 and a = −0.995 m.
©MNRAS http://mnras.
oxfordjournals.org/content/
430/4/2999/ [1]
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13.2.3 Innermost Stable Circular Orbit

A feature emerging in GR, which was not present in the Newtonian Theory, is the
existence of critical stable orbits. Beyond the so called innermost stable circular orbit
(ISCO) in GR there is no stable circular motion possible around a compact massive
object. Those orbits can be found by setting ∂2V/∂r2 = 0, where V is the effective
potential, given as [1]

V (r, Ẽ, L̃) = L̃2

2r2 −
(

m

r
− B

4r3

)
⎛

⎜
⎝1 +

(
L̃ + aẼ

)2

r2

⎞

⎟
⎠ + (1 − Ẽ2)a2

2r2 + 1

2
,

(13.7)

with Ẽ and L̃ being the normalised energy at infinity and angular momentum of the
test particle. This equation can be rewritten into

http://mnras.oxfordjournals.org/content/430/4/2999/
http://mnras.oxfordjournals.org/content/430/4/2999/
http://mnras.oxfordjournals.org/content/430/4/2999/
http://mnras.oxfordjournals.org/content/430/4/2999/
http://mnras.oxfordjournals.org/content/430/4/2999/
http://mnras.oxfordjournals.org/content/430/4/2999/
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g′′
33(g00 + ωg03)

2 + g′′
00(g03 + ωg33)

2

− 2g′′
03(g00 + ωg03)(g03 + ωg33)

+ D′′(ω2g33 + 2ωg03 + g00) = 0 , (13.8)

where D = (−g00g33 + g2
03

)
[1]. For B = 0 (GR-limit) it reduces to

r2 − 6mr ± 8a
√

mr − 3a2 = 0 , (13.9)

which is the same as in [17]. Without setting B = 0, (13.8) has a rather complicated
form and no analytical solution can be found anymore. However, it is possible to
solve it numerically, leading to two solutions for a co-rotating particle, but only up to
values of a ≈ −0.42 m. For higher absolute values of the spin parameter there are
no critical stable orbits anymore in pc-GR (Fig. 13.5).
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Fig. 13.5 Critical stable orbits for prograde test masses (The curves describe from top to bottom:
1. The last stable orbit in standard GR (thick solid), 2. the ‘last’ stable orbit in pc-GR (dashed), 3.
the ‘first’ stable orbit in pc-GR (dash-dotted), 4. the limit to general orbits given by (13.4) (dotted)
and 5. the point where the pc-equations become imaginary (r = 4

3 , thin solid)). We now have to
distinguish between four different areas. In the unshaded area (I) orbits are stable both in GR and
pc-GR, whereas in the dark shaded area (II) orbits are only stable in pc-GR. Both lighter shaded
areas (III and IV ) do not contain stable orbits at all. The plot is done for a value of B = 64

27 m3.
©MNRAS http://mnras.oxfordjournals.org/content/430/4/2999/ [1]
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13.3 Conclusion and Outlook

We investigated a set of different phenomena occurring in GR and their alterations in
pc-GR. The key observations are a reduced orbital frequency with a spin independent
maximum of a test particle around a compact massive object (13.2), the weakened
effect of frame-dragging, the reduced redshift (13.6) and the modification of the
concept of a last stable orbit (13.8). These phenomena can serve as testbeds to
discriminate between GR and pc-GR. In future we will extend this list of observables
by calculating iron Kα emission line profiles and images of accretion disks to be able
to discriminate between both theories.
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Chapter 14
Magnetic Field Amplification
in Hypermassive Neutron Stars
via the Magnetorotational Instability

Daniel M. Siegel and Riccardo Ciolfi

Abstract Mergers of binary neutron stars likely lead to the formation of a hyper-
massive neutron star (HMNS), which is metastable and eventually collapses to a
black hole. This merger scenario is thought to explain the phenomenology of short
gamma-ray bursts (SGRBs). The very high energies observed in SGRBs have been
suggested to stem from neutrino-antineutrino annihilation and/or from very strong
magnetic fields created during or after the merger by mechanisms like the magne-
torotational instability. Here, we report on results that show for the first time the
development of the magnetorotational instability in HMNSs in three-dimensional,
fully general-relativistic magnetohydrodynamic simulations. This instability ampli-
fiesmagnetic fields exponentially and could be a vital ingredient in solving the SGRB
puzzle.

14.1 Introduction

A significant fraction of neutron star–neutron star (NS–NS) binary mergers can lead
to the formation of a hypermassive neutron star (HMNS) that eventually collapses
to a stellar-mass black hole, surrounded by a hot and dense accretion torus (e.g. [1,
2]). Besides being among the most promising sources for the first direct detection of
gravitational waves with advanced ground based interferometers such as Advanced
LIGOandVirgo [3, 4], the inspiral and coalescence ofNS–NSbinaries is also thought
to be the progenitor system for short gamma-ray bursts (SGRBs), the most luminous
explosions observed in the universe (see, e.g., [5, 6] for a review). The association of
SGRBs with NS–NS coalescence is supported on both observational [7, 8] and theo-
retical [9, 10] grounds. The observed SGRB fluxes, their cosmological distances and
their duration of <2 s require highly relativistic motion with Lorentz factors of up to
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several hundreds to resolve the so-called compactness problem [5], which states that
in the absence of high Lorentz factors, SGRBs would show a thermal spectrum—in
contradiction to the observed non-thermal spectra. Apart from neutrino-antineutrino
annihilation as one possibility, the enormous amounts of energy needed to generate
such extreme velocities have been suggested to stem from strongmagnetic fields pro-
duced during/after the merger process by mechanisms such as the Kelvin-Helmholtz
(KH) [11–13] and the magnetorotational instability (MRI) [14, 15], or by high field
strengths generated in the torus after the central black hole has formed (as in [9]).
One advantage of the former mechanisms is that they do not depend on the creation
and properties of a torus and that they would already act prior to the collapse. While
the amount of amplification through the KH instability, triggered when the two stars
enter into contact, is controversial and maybe limited to only one order of magnitude
[11, 13], the MRI triggered in the metastable differentially rotating HMNS appears
to constitute a promising amplification mechanism, especially in the light of recent
results indicating a rather stiff equation of state [16, 17]. The latter results suggest
that HMNSs are indeed a likely outcome of NS–NS mergers [18, 19], and that they
are probably longer lived than previously thought, providing more time for a poten-
tial MRI to act. However, simulating the MRI in three dimensions under the extreme
physical conditions of HMNS interiors is a challenge and had not been accomplished
until very recently [20].

Here, we elaborate on these recent results that have shown for the first time direct
evidence for the MRI in the interior of a HMNS in global, three-dimensional and
fully general-relativistic magnetohydrodynamic simulations.

14.2 Capturing the MRI in HMNSs

The magnetorotational instability [21, 22] can be triggered in differentially rotating
magnetized fluids [23] and refers to modes that grow exponentially from initial seed
perturbations. From a linear perturbation analysis of the NewtonianMHD equations,
one can estimate the characteristic timescale τMRI andwavelength λMRI for the fastest-
growing mode with wavevector k by

τMRI ∼ Ω−1 , λMRI ∼
(
2π

Ω

) (
B·ek√
4πρ

)

, (14.1)

where Ω denotes the angular velocity of the fluid, ρ the density, B the magnetic
field, and ek the unit vector in direction of k [23, 24]. We note that there is no
general analytic description of the MRI within general-relativistic MHD to date.
Nevertheless, we can compare our fully general-relativistic numerical results with
the above analytical estimates, provided that theNewtonian predictions are translated
into general relativity by employing equivalence principle arguments [20].

Resolving the MRI in an MHD simulation is a challenge, as λMRI is typically
much smaller than the characteristic length scale of the astrophysical system under
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study. Local simulations of only a small part of the system (e.g. [25]) or simula-
tions in axisymmetry [14, 15] are usually conducted in order to render the problem
computationally affordable. In the case of HMNSs, capturing the MRI for realistic
(i.e. relatively low) magnetic field strengths is particularly demanding due to the
extremely high densities and high angular velocities involved (cf. (14.1)).

Here, we discuss global three-dimensional simulations, which start from a typical
axisymmetric and differentially rotating HMNS model of mass M = 2.23M� and
central angular velocity Ωc = 2π × 7 kHz (representing the outcome of a NS–
NS merger) and employ a four-level nested-boxes grid hierarchy, with the finest
refinement level covering the HMNS at all times. In order to capture the MRI and
despite the very high resolutions used here (with finest grid spacing of h = 44m),
high initial magnetic field strengths of Bin = (1−5) × 1017 G have to be employed,
assuming that these field strengths have previously been generated by compression
during the merger, the KH instability, magnetic winding and previous MRI activity.
However, it is important to point out that these field strengths are still very small in
terms of the average magnetic-to-fluid pressure ratio, which is between (0.045 −
1.2) × 10−2. In order to reduce the computational costs, a reflection symmetry
across the z = 0 plane and a π/2 rotation symmetry around the z-axis have been
applied. By performing two additional simulations, removing either the reflection
symmetry or replacing the rotation symmetry by a π symmetry, we have verified
that these discrete symmetries do not significantly influence our results. For instance,
the relative differences for the maximum of the toroidal field strength (as plotted in
Fig. 14.3) are well below 10−3 up to t ≈ 0.4ms when the star starts collapsing to a
black hole.

14.3 Discussion of Simulation Results

Figure14.1 provides a representative overview of the HMNS evolution: the initial
axisymmetric configuration, which shows a highly flattenedHMNSdue to rapid rota-
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showing the colour-coded norm of the magnetic field (in G) and selected density contours: initial
HMNS model, pronounced MRI development, and early post-collapse phase with a black hole
(horizon is masked) surrounded by a magnetized torus
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tion; the stage of a developed MRI, indicated by the ripples in the magnetic field and
density; the early post-collapse phase showing a black hole surrounded by a magne-
tized and geometrically thick torus. The “ripple patterns” seen in this simulation are
similar to the coherent channel flow structures (WKB-like modes) observed in local
axisymmetric Newtonian MRI simulations, which are the characteristic signatures
of this instability (e.g. [25]). This is the first time in global general-relativistic sim-
ulations of HMNSs that such rapidly-growing and spatially-periodic structures are
observed. Figure14.2 displays the channel flow structures in a zoomed-in version
for the toroidal magnetic field and the toroidal component of the velocity field. The
onset of channel-flow merging (reminiscent of the results reported in [25]) is evident
in the upper part of the panels.

The left panel of Fig. 14.3 shows the maximum field strength for the toroidal,
poloidal and total magnetic field in the region (x, z) ∈ [1.0, 3.0] × [1.0, 2.3] km,
where the instability develops most prominently, along with the analogous quantity
for the total field evaluated over the entire x–z plane. The purely poloidal initial seed
field geometry is lost very soon due to magnetic winding, which leads to a linear
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increase in the toroidal field strength. At t ≈ 0.3ms, exponential magnetic field
amplification due to the MRI sets in and lasts up to t ≈ 0.4ms when the star starts
collapsing to a black hole. It is important to point out that even during this very short
time frame, theMRI contributes significantly to a global magnetic field amplification
of the system (compare local with global maximum of the total field).

The right panel of Fig. 14.3 demonstrates that the onset of the instability is well
resolved. While any sign of the instability is absent in the case where there are less
than five grid points per wavelength of the fastest-growingmode (as given by (14.1)),
we gradually recover the growth rate of the fastest-growing mode with increasing
resolution. The extracted values for this growth rate agreewithin error bars among the
three highest-resolution runs, and the resultingvalueof τMRI = (8.2± 0.4)×10−2 ms
is in order-of-magnitude agreement with the Newtonian analytic prediction from
(14.1) for the considered region once translated to our general-relativistic setting,
τMRI = (4−5) × 10−2 ms. Also the wavelength of the fastest-growing mode as
measured with a Fourier analysis of the magnetic field in the selected region (λMRI ≈
0.4 km) is in order-of-magnitude agreement with the corrected Newtonian analytic
prediction from (14.1) for this region, λMRI ≈ (0.5−1.5) km. For further details and
verification of additional properties of the MRI as expected from local Newtonian
simulations in other astrophysical systems, we refer to [20].

14.4 Conclusion

The simulations discussed here have shown for the first time direct evidence for
the MRI in HMNSs in three-dimensional, fully general-relativistic MHD simula-
tions. This evidence manifests itself, e.g., in the presence of coherent channel flow
structures, which have not been previously observed in three-dimensional general-
relativisticMHDsimulations. The growth of these structures coincideswith exponen-
tial growth in the toroidal field strength. Furthermore, the two characteristic quantities
of the instability, the growth time and wavelength of the fastest-growing mode, were
measured directly, and the resulting values are in order-of-magnitude agreement with
the simplified Newtonian analytical estimates, once the latter have been corrected
for coordinate effects due to the general relativistic framework of the simulations.

It is interesting to note that these simulations also represent the first detailed
observation of the MRI in the strong gravity regime, where the characteristic length
scale of spacetime curvature becomes comparable to the wavelength of the fastest-
growingMRImode. Despite the fact that the existence ofWKB-typemodes becomes
less obvious in this context, these modes are observed and the idealized Newtonian
analytic description still seems to provide reasonable predictions.

The global magnetic field amplification due to the MRI leads to very strong
magnetic fields that at least for some time stay in the vicinity of the newly formed
black hole, and can thus potentially contribute to power a relativistic jet launched by
the black hole torus system. Therefore, the presence of theMRI in HMNSs is of great
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astrophysical importance, as it could be a vital ingredient in solving the compactness
problem of SGRBs.

One open question is to understand how much amplification can be achieved in
a HMNS, before the dominant saturation mechanisms take place. In our model, the
relatively short life of the HMNS limits the amplification to less than one order of
magnitude. At the time of the collapse there is still no sign of saturation, which
suggests the possibility of much higher magnetic field amplification in longer-lived
models. This will be the focus of future studies.
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Chapter 15
Extracting Information on the Equation
of State from Binary Neutron Stars

Kentaro Takami, Luciano Rezzolla and Luca Baiotti

Abstract Recently Bauswein and Janka [6, 7] found that the typical frequency
of a hypermassive neutron star, which is called f2 in this paper, is a simple func-
tion of the average rest-mass density, essentially independently of the equation of
state considered. While expected, this result is very important to decide the system
mass from observed gravitational waves. However in their simulations, the Einstein
equations were solved by assuming conformal flatness and employing a gravita-
tional radiation-reaction scheme within a post-Newtonian framework. Besides this
mathematical approximation, there is also a numerical one in the use of smooth-
particle hydrodynamics code, which is well-know to be particularly dissipative and
that rapidly suppresses the amplitude of the bar-mode deformation and rapidly yields
to an almost axisymmetric system. Therefore we have reinvestigated the calculations
in their work improving on the two approximations discussed above (i.e., conformal
flatness and smooth-particle hydrodynamics) to obtain an accurate description both
during the inspiral and after themerger. Thenwehave found another typical frequency
with a clear peak, which is called fLI in this paper. Finally we show the relations
between the initial masses and the fLI and f2 frequencies of the gravitational waves
emission from a hypermassive neutron stars.
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15.1 Introduction

Binary systems of compact objects, such as neutron-star binaries, neutron star-black
hole binaries and binary black holes, inspiral and merge as a result of the emission of
gravitational waves (GWs). They are the most promising sources of GWs in a series
of advanced detectors such as LIGO [1], Virgo [2] and KAGRA [3], which will be
operated within next five years. Especially binary neutron star mergers (BNSs) may
be the most common source with realistic detection rate of ∼40 yr−1 [4].

It is known that GWs from hypermassive neutron stars (HMNSs) formed after
the merger have a typical peak frequency (see the right panel of Fig. 15.2), which
has been recently identified as the frequency of the fundamental quadrupolar fluid
mode ( f2 mode) [5]. Recently, Bauswein and Janka [6, 7] found that the typical GW
frequency of a HMNS is a simple function of the average mass density, essentially
independent of the EOS considered, by performing a large number of simulations.
This result is very important to deduce the system mass from the observed GWs.

However in their simulations, the Einstein equations were solved by assuming the
conformal flatness condition (CFC) and employing a gravitational radiation-reaction
schemewithin a post-Newtonian framework. Besides this approximation in the equa-
tions, their results may be affected by the numerical technique they use to solve the
equations of relativistic hydrodynamics, namely smoothed-particle hydrodynamics
(SPH), whose well-known large dissipativity probably suppresses rapidly the ampli-
tude of the bar-mode deformation and so rapidly leads to an almost axisymmetric
system.

In this work, we reinvestigate their work by improving on the two approximations
discussed above (i.e., CFC and SPH) to obtain an accurate description both during
the inspiral and after the merger. Unless explicitly stated, we use units in which
c = G = M� = 1.

15.2 Methodology

All of our calculations have been performed in full general relativity. The evolution
of the spacetime is obtained by using a recently developed constraint-damping CCZ4
formalism [8] with a “1+ log” slicing condition and a “Gamma-driver” shift condi-
tion. The general-relativistic hydrodynamics equations are solved using the Whisky
code [9], with the Marquina flux formula and a PPM reconstruction. The grid hier-
archy, with a reflection symmetry condition across the z = 0 plane, a π -symmetry
condition across the x = 0 plane and a moving-mesh refinement, is handled by the
Carpetmesh refinement driver [10], where we have used six refinement levels, the
finest having a resolution of 0.15 M� � 0.221 km. Thanks to this, we can extract
accurate gravitational waveforms in the very far zone from the center of the system
(typically at a radius rex = 500 M� � 738 km). In this work, we analyse only the
� = m = 2 mode of GWs, which is dominated one.
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In order to close the system of equations for the hydrodynamics, we employ a
“hybrid” equation of state (EOS) based on a piecewise polytropic (PP) EOS aug-
mented by a Γ -law EOS. That is, pressure and specific internal energy are

p = pad + pth, ε = εad + εth, (15.1)

where

pth = (Γth − 1) ρ εth,

pad = Ki ρΓi (ρi−1 ≤ ρ < ρi , 1 ≤ i ≤ n) ,

εad = εi + Ki

Γi − 1
ρ(Γi −1), Kl+1 = Kl ρ

(Γl−Γl+1)

l (1 ≤ l ≤ n − 1) .

The detail parameters used by this work are shown in Table15.1.
We use quasi-equilibrium initial data of irrotational equal-mass BNSs with coor-

dinate separation D = 45 km, which are computed by the multi-domain spectral-
method code LORENE [12] under the assumption of a conformally at spacetime
metric. This configurations undergoes ∼3.5 orbits in the inspiral phase and then
creates a HMNS.

15.3 Results

Figure15.1 shows the spectrogram of the � = m = 2 plus polarization of GW, h+.
Clearly there are basically two dominating frequencies, one correspond to the orbital
frequency in the inspiral phase (t < 0) and the other is the typical GW frequency ( f2
mode) of the HMNS after the merger (t > 0). As expected, the f2 mode undergoes a
large variation in time. This behavior is rather different from the one reported in [6,
7] (compare Fig. 15.1 with Fig. 15.2 of [6]). The waveform at 20Mpc is shown in the
left panel of Fig. 15.2. It consist of the part of the inspiral, merger, HMNS and black
hole. In the right panel, we show the power spectral density (PSD) of the effective
amplitude which is defined by

h̃( f ) ≡
√

|h̃+( f )|2 + |h̃×( f )|2
2

, h̃A( f ) ≡
⎧
⎨

⎩

2
∫

hA(t)e−i2π f t dt ( f ≥ 0)

0 ( f < 0)
,

(15.2)
where “A” indicates two polarizationmodes,+ or×. Beside a f2 peak, we can clearly
see another peak labeled fLI (“LI” means “Last Inspiral”) in the figure. These typical
peak frequencies will be observable by advanced LIGO.
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Fig. 15.1 The spectrogram of the � = m = 2 plus polarization of GW, h+, for the model with
MADM ≈ 2.731M� and polyt. EOS, which is equivalent to two NSs with M ≈ 1.378M� at infinity.
The waveform is aligned at the time of the merging [13]

Fig. 15.2 Time evolution of the GW amplitude h+ with the phase of inspiral, merger, HMNS
and BH (left) and the PSD of the effective amplitude h̃( f ) f in the time interval T =
[−1500, 5000] M� ≈ [−7.39, 24.63] ms (right) for the same model of Fig. 15.1. In the right
panel, the black solid line shows the sensitivity curves,

√
Sh( f ) f , of advanced LIGO [14], the

green and blue shaded regions show fL and fR, which are used for the definition of the effective
peak frequencies

Because the peak frequencies change in time, we define its average as

〈 f 〉 =
∫ fR

fL
h̃( f ) f 2 d f

∫ fR
fL

h̃( f ) f d f
(15.3)
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Fig. 15.3 Correlation between the square root of the specific average mass density
√

Mtot/Rmax
3

and the average peak frequency of 〈 fLI〉 (left), 〈 f2〉 (right)

within the time interval T = [−1500, 5000] M� ≈ [−7.39, 24.63] ms, where fL
and fR are defined by the frequencies that satisfy the condition

h̃( f ) f = max
[
h̃( fLI) fLI

]
× 3

4
, h̃( f ) f = max

[
h̃( f2) f2

]
× 1

2
(15.4)

(see the green and blue shaded region in the right panel of Fig. 15.2). In Fig. 15.3 we
show the correlations between the square root of the specific average mass density
(Mtot/Rmax

3)1/2 and the average peak frequency of 〈 fLI〉 and 〈 f2〉 in polyt. EOS,
where Mtot = M1 + M2 and M1,2 are the gravitational masses of each NS at infinity.
We can clearly see a simple linear relation for both 〈 fLI〉 and 〈 f2〉. The similar
correlation for 〈 f2〉 have been already pointed out by [6, 7], while we report the
correlation for 〈 fLI〉 for the fast time. Definitely both cases have tight correlations,
and these can be a powerful tool to extract the information of BNSs such as the
system mass from the observed GWs.

15.4 Final Remark

This work is still in progress. We will provide soon complete results for several
binaries obeying a variety of hybrid EOSs, although we have reported the results for
only one EOS, i.e., polyt. EOS, in this paper.
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Chapter 16
Higher Spin AdS/CFT Correspondence
and Quantum Gravity Aspects of AdS/CFT

Martin Ammon

Abstract The AdS/CFT correspondence is one of the most fascinating develop-
ments in theoretical physics of the past two decades. Using it we can get useful
insights into quantum gravity aspects of non-perturbative string theory. Here, we will
mainly focus on AdS/CFT dualities relating CFTs in two dimensions to higher spin
gravity in three dimensions. These dualities are interesting toy-models of AdS/CFT
since explicit computations can be performed on both sides and since higher spin
gravity may arise as the tensionless limit of string theory. In particular, we dis-
cuss (quantum) gravity aspects of three-dimensional higher spin gravity focussing
on black holes with higher spin charge. We show that due to higher spin gauge
transformations the notion of an event-horizon and singularities is gauge-dependent.
Moreover, we discuss how scalar correlation functions behave in this background
and how a concept of spacetime may be deduced from entanglement entropy.

16.1 Introduction

In the past two decades a lot of progress was made in understanding strongly cou-
pled quantum field theories and quantum gravity. Part of this progress is due to the
discovery of AdS/CFT duality [1] which is one of the most fascinating new devel-
opments within fundamental theoretical physics in the past two decades. AdS/CFT
duality is a conjecture relating quantum theories of gravity and ordinary quantum
field theories containing no gravitons. The most prominent example of such a duality
was discovered by Maldacena [1] and relates N = 4 super-Yang Mills theory and
type IIB string theory on Ad S5 × S5.

In particular, the conjecture states that the Hilbert space of quantum field theory is
identical to the Hilbert space of the dual quantum gravity theory and that the partition
function of the gravity theory is equal to the generating functional of correlation
functions on the quantum field theory side. In other words, we should view ordinary
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quantum field theories and the dual quantum gravity theories as just two sides of
the same coin describing the same physics albeit in seemingly very different degrees
of freedom. In particular states of the Hilbert space of the CFT are encoded in the
geometry of the dual gravity theory. For example, non-extremal black holes on the
gravity side correspond to states of thermal equilibrium on the CFT side [2] with
finite temperature given by the Hawking temperature [3] of the black hole.

In recent years a lot of evidence in favour of the AdS/CFT correspondence was
found. Besides comparing correlation functions (e.g., of BPS operators) of the CFT
side to its gravitational counterpart as well as computing the conformal anomaly
on both sides, integrable structures were found within classical string theory on
Ad S5 × S5 as well as within perturbation theory ofN = 4 super Yang-Mills theory
in the large N limit. For a review and more details see the contribution of V. Forini
in this volume.

Moreover, the AdS/CFT correspondence provides a powerful toolkit for studying
strongly coupled quantum field theories.Much of the usefulness of the duality results
from the fact that it is a strong-weak duality: In particular, in a certain limit of
the AdS/CFT correspondence, the fields of the quantum field theory are strongly
interacting, the ones in the gravitational theory are weakly interacting and thus more
mathematically tractable. This fact has been used to study many aspects of nuclear
and condensed matter physics by translating problems in those subjects into more
mathematically tractable problems in string theory. For concrete applications see
e.g., the articles of A. Karch and D.-W. Pang in this volume.

Finally, the duality represents a major advance in our understanding of string
theory and quantum gravity. Using the framework of the AdS/CFT correspondence it
is possible to study quantumgravity effects within non-perturbative string theory. It is
widely believed that AdS/CFT duality should address profound questions concerning
quantum gravity albeit in spacetimes with asymptotic AdS boundary conditions. For
example, an immediate consequence of AdS/CFT is that the process of forming and
evaporating a black hole must be unitary, since in principle such a process can be
mapped to the dual gauge theory in which states evolve unitary by the standard field
theory Hamiltonian.

However, we are still lacking an understanding of these dualities from first prin-
ciples, in the sense that we do not know how the spacetime on the gravity side is
encoded on the dual CFT side. For example, one may ask how the dual gravitational
description of free field theories in arbitrary dimensions or minimal conformal field
theories in two spacetime dimensions look like.

Given a conformal field theory as well as its gravitational dual description, we
furthermore may ask how to describe local physics, e.g., near the event horizon of
a black hole, in asymptotically AdS spacetime in terms of (presumably non-local)
gauge-invariant operators on the CFT side. Answers to this question may shed light
onwhat is wrongwithHawking’s original semi-classical argument [4] that black hole
evaporation leads to mixed states and thus is not unitary. And if the process is unitary,
information is not lost and we have to ask ourselves how does the information get out
of the black hole. Moreover, in this it is argued that drastic changes have to happen
at the event horizon of the black hole—see e.g., the recent discussion of firewalls
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[5]. These are questions which may be answered within AdS/CFT thus giving new
insights into quantum gravity aspects of string theory.

The original conjecture due to Maldacena [1], relatingN = 4 Super-Yang Mills
theory and string theory on Ad S5 is too complicated as a starting point for these
questions. Thus we use solvable toy models of AdS/CFT correspondence which
may be derived from the string theory and which are helpful in clarifying conceptual
and technical confusions. One candidate for such a toy model of AdS/CFT, which is
discussed in this article, is the duality between higher spin gravity in asymptotically
Ad S3 and conformal field theories in two spacetime dimensions.

Higher spin gravity theories [6–8], studied byVasiliev and collaborators in the past
20 years, contain an infinite set of massless higher spin fields. The classical equations
of motion are known explicitly, but are highly non-linear as well as highly non-local
and involve some auxiliary fields. Higher spin gravity has attracted attention within
the string theory community in recent years since it contains a larger higher spin
gauge symmetry which generalises the spin-2 gauge symmetry of ordinary (super-
)gravity. Sincewe expect that string theory contains also such higher spin symmetries
which may be dynamically broken, we view higher spin gravity as being in-between
Einstein gravity and full-fledged string theory.

16.2 Higher Spin Gravity in AdS Spacetime

Although interacting higher spin theories are inconsistent for asymptotically flat
spacetimes due to various no-go theorems, they play an important role in case of
asymptotically AdS spacetimes. Here, we concentrate on three-dimensional space-
times, since only in three dimensions the infinite tower of higher spin fields can be
truncated to a finite number of higher spin fields. Hence three-dimensional higher
spin theories are a good starting point for the investigation.

Unfortunately, there is no action principle known for higher spin gravity theories.
However, as in ordinary spin-2 gravity with negative cosmological constant, we can
reformulate it in terms of a Chern-Simons theory. The dynamics of spin-2 gravity is
given by the action

S = 1

16πG N

∫

M
d3x

√−g

(

R + 2

l2

)

, (16.1)

where l is the radius of curvature of Ad S3. The metric may be rewritten in terms of
the vielbein ea = ea

μdxμ by gμν = ea
μeb

νηab and the dual spin connection is given

by ωa
μ = 1

2ε
abcωμbc. The action (16.1) is equivalent to the Chern-Simons action

S = SC S[A] − SC S[A] SC S[A] = k

4π

∫

Tr

[

A ∧ d A + 2

3
A ∧ A ∧ A

]

(16.2)
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on the classical level (up to a boundary term), where we have introduced the sl(2,R)

valued gauge fields A = Aμdxμ and A = Aμdxμ by

Aμ = (ωa
μ + ea

μ) La , A = (ωa
μ − ea

μ) La . (16.3)

Here, La witha ∈ {−1, 0, 1},denote the generators of sl(2,R) satisfying [La, Lb] =
(a − b)La+b ,Tr[La Lb] = 1

2ηab. The Chern-Simons level k in (16.2) can be related
toNewton’s constantG N by k = l/(4 G N ).Fromnowon,we set l = 1 for simplicity.
Ad S3 in the Poincaré chart with coordinates (ρ, t, x) and metric

ds2 = dρ2 + e2ρ(−dt2 + dx2) (16.4)

may be written in terms of the gauge fields A, A ∈ sl(2,R) as

A = A+ dx+ + A− dx− + L0 dρ, A = A+ dx+ + A− dx− − L0 dρ , (16.5)

where x± = t ± x, with components

A+ = eρ L1, A− = −eρ L−1, A− = A+ = 0 . (16.6)

It is straightforward to check that Ad S3 satisfies the equations of motion of the
Chern-Simons action (16.2), given by F = d A+ A∧ A = 0 , F = d A+ A∧ A = 0.
Moreover, a spacetime is called asymptotically AdS if the gauge fields A, A satisfy

(A − AAd S)
∣
∣
ρ→∞ = O(1) , A− = 0 , (16.7)

(
A − AAd S

) ∣
∣
ρ→∞ = O(1) , A+ = 0 .

The Chern-Simons action (16.2) is invariant under gauge transformations

A �→ A = g−1 A g + g−1 dg (16.8)

A �→ A = g̃ A g̃−1 − dg̃ g̃−1 ,

where g and g̃ are functions of spacetime coordinates and are valued in SL(2,R). It
was shown in [9] that hence the asymptotic symmetry algebra of spin-2 gravity with
a negative cosmological constant consists of two copies of the Virasoro algebra.

So far we discussed only spin-2 gravity. However, the generalisation to higher
spin gravity turns out to be straightforward in the frame-like notation using the
gauge fields A and A. Let us first consider spin-2 gravity coupled to a single spin-
3 field. In this case the gauge algebra sl(2,R) ⊕ sl(2,R) has to be replaced by
sl(3,R) ⊕ sl(3,R). Let us still denoted the generators of the principal subalgebra
sl(2,R) by Lm, with m ∈ {0,±1}, while the remaining five generators are denoted
by Wm with m ∈ {0,±1,±2}.
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The action of the Chern-Simons theory is still given by (16.2) however, the cor-
responding action (16.1) in the metric-like formulation for this higher spin gravity is
not known, although it is simple to determine the components of the metric and the
spin-3 field from the (Lie-algebra valued) vielbein e = eμdxμ using

gμν = 1

2
Tr(eμeν) , φμνρ = 1

6
Tr(e(μeνeρ)) . (16.9)

The gauge transformations are still given by (16.8) where the functions g and g̃
are now valued in SL(3,R). Note that some of the gauge-transformations (namely
g, g̃ ∈ SL(2,R) ⊂ SL(3,R)) correspond again to ordinary diffeomorphisms and
frame rotations. The remaining gauge transformations of the Chern-Simons action
correspond to higher spin gauge transformations andmay change the causal structure
of the spacetime as we discuss for black holes. This immediately raises the question
what the correct notion of spacetime is in higher spin gravity.

Moreover, the asymptotically AdS boundary conditions are still given by (16.7).
Analysing the asymptotic symmetries left unspecified by the boundary condition,
two copies of the W-algebra W3 were found in [10].

Generalisations: It is straightforward to generalise to higher spin gravity theories
with spin s up to N or up to ∞ as indicated in the following table:

spin content gauge algebra asymptotic symmetry algebra
s = 2, 3 sl(3, ) ⊕ sl(3, ) W3 ⊕ W3
s = 2, . . . , N sl(N , ) ⊕ sl(N , ) WN ⊕ WN
s = 2, . . . ,∞ hs(λ) ⊕ hs(λ) W∞(λ) ⊕ W∞(λ)

The corresponding asymptotic symmetry algebras were worked out in [11–13],
respectively.

Vasiliev higher spin gravity contains besides higher spin fields also a dynamical
scalar field, as well as some auxiliary fields. The equations of motion will not be
displayed here. Setting the scalar field constant, Vasiliev higher spin theory may
be rewritten as a Chern-Simons theory with Lie-algebra hs(λ) ⊕ hs(λ). Moreover,
neglecting the backreaction of the scalar field to the metric it is possible [14] to write
down an equation of motion for the scalar field coupled to the Chern-Simons gauge
fields A and A.

Higher spin AdS/CFT correspondence:Consider the following twodimensional
field theory, a WN minimal model CFT, which may be represented as a coset theory
with a large central charge limit as follows:

su(N )k ⊕ su(N )1

su(N )k+1
k, N → ∞, λ = N

k + N
fixed. (16.10)

According to a conjecture by Gaberdiel and Gopakumar [15] (see [16] for a
refined version) this two dimensional CFT is related to three-dimensional Vasiliev
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gravity. This three dimensional higher spin gravity theory contains the W-algebra
W∞(λ) ⊕ W∞(λ) as (infinite) asymptotic symmetry algebra hence matching the
CFT symmetries. On both sides of the duality we can perform several checks [14,
17–20] giving evidence in favour of the conjecture.

16.3 Black Holes in 3D Higher Spin Gravity

In this section we study black holes1 with higher spin charges in 3D higher spin
gravity. Note that the BTZ black hole [23] is a solution of the higher spin theory
since it can be obtained from pure AdS via discrete identifications. Hence a strategy
is to use the BTZ solution as a starting point and to turn on higher spin charges.

The construction is again efficiently performed in the language of Chern-Simons
theory. First we concentrate on sl(3,R) ⊕ sl(3,R) case. Within this theory, black
hole solutions carrying higher spin charges were constructed in [11, 24, 25]. The
gauge connections read for a rotating higher spin black hole

A+ = eρ L1 − 2π

k
L e−ρ L−1 − π

2k
W e−2ρW−2 (16.11)

A− = μ

(

e2ρW2 − 4π

k
L W0 + 4π2

k2
L 2 e−2ρW−2 + 4π

k
W e−ρ L−1

)

∼ μA2+

A− = −
(

eρ L−1 − 2π

k
L e−ρ L1 − π

2k
W e−2ρW2

)

A+ = −μ

(

e2ρW−2 − 4π

k
L W0 + 4π2

k2
L

2
e−2ρW2 + 4π

k
W e−ρ L1

)

∼ μA
2
−

For the non-rotating case, which we will consider from now on, L = L ,W =
−W , μ = −μ. L corresponds to the energy of the black hole, while W is propor-
tional to the higher spin charge.

The functional dependence of the thermodynamic quantities L , and W on the
inverse temperature β and the chemical potential μ can be determined by assuming
that black hole thermodynamics and in particular its first law also hold for higher spin
black holes. These requirements lead to the holonomy condition [11, 24] associated
with the non-contractible time-like circle, stating that

ω = 2π(τ A+ − τ A−) ω = 2π(τ A+ − τ A−) (16.12)

have the same eigenvalues as the BTZ black hole, namely {0, 2π i,−2π i}. In other
words eω and eω are in the center of SL(3,R).

Using the gauge fields (16.11) it is straightforward to determine the metric of
the non-rotating black hole which schematically reads ds2 = dρ2 − F (ρ)dt2 +

1For a more detailed review as well as other interesting classical solutions see [21, 22].
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G (ρ)dφ2. It turns out that F and G are strictly positive, i.e., there is no horizon
and no singularity. Hence the gauge connection (16.11) was referred to as wormhole
gauge.

Note that this is not a bug of the Chern-Simons approach taken, but rather a
feature of higher spin gravity (and presumably also of string theory). Since the higher
spin gravity theories possess enlarged higher spin symmetry algebras that act non-
trivially and unfamiliarly on the metric, black holes in such theories can be gauge
transformed into traversable wormholes as shown by constructing the explicit gauge
transformation in [11]. Thus the causal structures can be changed and singularities
removed. Hence the very notion of geometry in these theories is not gauge invariant
and must be replaced by some other more general concept. It is simultaneously
exciting and puzzling to imagine how such a concept might look like.

Generalisations: So far, we considered only Chern-Simons theory based on
sl(3,R). However, the construction of higher spin black holes generalises straight-
forward to other Chern-Simons theories, such as sl(N ,R) and hs(λ). In the case of
hs(λ), the partition function and thus the entropy of the dual thermal CFT can be
computed [26] and matches with the gravity calculation – adding more evidence to
the conjectured higher spin AdS/CFT correspondence.

Are these really black holes? In order to answer this question we should allow
for dynamical scalar fields, and hence study black hole solutions in Vasiliev higher
spin theory. In particular, scalar correlation functions are of interested, where both
scalar fields are inserted on the opposite conformal boundaries of the higher spin
black hole in wormhole gauge. In fact, such a correlation function displays the same
characteristic features as if these functions were calculated in an honest black hole
background. Hence this calculation performed in [27] confirms the black hole nature
of the solutions [24]. Subsequently this was also confirmed by the analogous CFT
calculation [28].

Entanglement entropy in higher spin gravity: In the case of higher spin gravity
with asymptotic symmetry group WN ⊕ WN , there is another way to determine
the entropy by considering instead the entanglement entropy of the dual CFT. The
conventional Ryu-Takayanagi prescription [29] for entanglement entropy clearly
requires modification in higher spin gravity. The idea of a proper distance is no
longer meaningful since the line element is no longer gauge invariant under higher
spin transformations.

In [30, 31] the dual gravitational description of entanglement entropy in terms
of a Wilson line is a particular infinite dimensional representation of the Chern-
Simons theory. The calculation of the expectation value may be rephrased in terms
of a field U (s) ∈ SL(n,R) living on the curve associated with the Wilson line. The
conjugated momentum P(s) associated to the field U (s) encodes information about
the representation of the Wilson line.

It is tempting to think of this proposal as defining a new, generalized notion of
geometry for higher spin gravity theories, one that takes as fundamental the notion
of the entanglement of the dual field theory.
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16.4 Conclusion

We reviewed three dimensional higher spin gravity inAdS spacetimes and its relation
to two-dimensional CFTs. In particular, we discussed black hole solutions with non-
vanishing higher spin charge and its properties. A necessary condition for consistent
thermodynamics of the higher spin black hole is the holonomy condition which may
be viewed as a gauge-invariant characterisation of black holes.

The line element is no longer gauge invariant under higher spin transformations
and thus the causal structure may change. This indeed happens and we find gauges
where no event horizon and singularity is present. Coupling dynamical matter into
higher spin gravity, the black hole nature of the solution is confirmed, even in the
gauge where no event horizon and no singularity is present. Finally, the CFT entan-
glement entropy and its dual description is a promising observable for local bulk
physics and to obtain the correct notion of spacetime.
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Chapter 17
Black Holes in the Asymptotic Safety
Program

Alfio Bonanno

Abstract The Asymptotic Safety scenario in quantum gravity provides a powerful
framework to investigate the properties of black holes and spacetime singularities
near the Planck scale. A rather robust prediction of this approach is that the final
state of the black hole evaporation process is a Planck size remnant. Moreover, if the
black hole is formed during a realistic gravitational collapse, quantum gravitational
effects tend to suppress the inflation of the mass function at the Cauchy horizon. The
scalar singularity in the future evolution of the spacetime is still present although its
strength is much weaker than the classical case.

17.1 Introduction

A consistent description of the space-time singularities arising in the interior of a
black hole is one the most important issues that should be addressed by a satisfac-
tory theory of quantum gravity. Far from being a speculative question, its origin is
instead deeply rooted in modern astrophysics, although the history of this problem
has followed a rather peculiar path.

The very existence of black holes, although prefigured byChandrasekhar’s discov-
ery of an upper mass limit for stable white dwarfs, was in the beginning dismissed as
“ridiculous and absurd” by Eddington in 1935, and it stayed substantially unnoticed
until in 1968 the first quasar was discovered. Since then, the astrophysical evidence
for black holes has accumulated up the point that the debate about the existence of
these objects belongs to the history of science. For instance we now have a com-
pelling evidence that the compact radio source at the Galactic Centre, Sagittarius A∗,
is a black hole of about 4 million times the mass of the Sun [1], and for the first time
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in the history of modern astronomy we might also have the possibility to directly
observe matter falling into the black hole [2].

What happens then? At variance with the situation in Cosmology, thanks to the
no-hair property, the initial value problem for the internal evolution is very well
known. Near the outer horizon we have a Kerr-Newman geometry perturbed by a tail
of gravitational waves that produces an inward energy flux decaying as an inverse
power vp of advanced time, where p = 4� + 4 for a multipole of order � [3]. From
this point of view, the study of the pre-Planckian layers emerges as a standard, albeit
nontrivial, mathematical problem, not very different from following the motion of a
fluid up to the onset of turbulence.

The outcome of several studies in this direction is that the final endpoint of the
gravitational collapse is represented by a strong spacelike singularity at r = 0,
preceded by a null, much milder singularity at the Cauchy horizon (CH) [4–9].
The properties of these distinct singularities are rather different. In the first case
the singularity belongs to the future of the spacetime evolution (remember that the
radial coordinate r is timelike inside a black hole), the Weyl curvature Ψ2 becomes
Planckian as r ∼ lPl, and diverges as 1/r3 as r → 0.

In the second case the mass-inflation singularity occurs at macroscopic values of
the radial coordinate for an astrophysical black hole. The Weyl curvature becomes
instead Planckian as the combined inflow and outflow of gravitational waves back-
scattered from the inner potential barrier accumulates along the early evolution of
the CH. Clearly, a consistent theory of quantum gravity should provide a convincing
picture of the spacetime which encompasses the complete internal evolution from
the CH singularity to the future singularity at r = 0.

In recent years the Asymptotic Safety program [10] has a emerged as a possible
framework to address the above questions. It implements Weinberg’s proposal that
quantum gravity might be nonperturbatively renormalizable if its renormalization
group (RG) flow possesses a non-vanishing (in dimensionless units) fixed point at
which the infinite cutoff limit can by taken [11]. This implies that the dimensionful
Newton’s constant reduces its strength at higher energies, it is thus antiscreened.
The key ingredient of approach is the flow equation for the gravitational average
action Γk , a coarse grained effective action dependent on the characteristic energy
scale k where the physics is probed [12]. Since the seminal work of Reuter [13]
several investigations [14–37] have accumulated a significant amount of evidence
suggesting that Quantum Einstein Gravity does indeed have a non-Gaussian fixed
point (NGFP) suitable for the Asymptotic Safety program. In particular the RG flow
seems to be confined in a low dimensional ultraviolet critical manifold (see also [38,
39] for recent reviews).

The firstmodel of an asymptotically safe black hole (ASBH) has been discussed in
[40] where it has been shown that the causal structure of the RG-improved spacetime
is similar to the one of a Reissner-Nordstrom black hole. It has also been argued that
the final point of the evaporation process is a Planck size remnant [41] which could
possibly be part of the Dark Matter. The possibility of a low-energy phenomenology
at LHC have been discussed in [42–47], while the implications of a possible BH
remnant for the Dark Matter problem have appeared in [48]. The extension of the
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ASBH model to the nonspherical case is studied in [49] while ASBH in higher
derivative gravity have been discussed in [50]. In recent times a study of a test scalar
field propagating in an ASBH spacetime has recently put forward in [51].

The aim of this paper is to briefly review the construction of an ASBH spacetime,
addressing the issue of the cutoff identification and of the resolution of spacetime
singularities.

17.2 The Quantum Schwarzschild Black Hole

In its simplest form, according to AS, the the running of G is approximately given by

G(k) = G0

1 + ω G0 k2
(17.1)

where G0 denotes the laboratory value of Newton’s constant, and ω is a positive
number of the order unity.At large distances (k → 0),G(k) approachesG0, and in the
ultraviolet limit (k → ∞), it decreases as G(k) ∝ 1/k2. The information about the
k-dependence ofG can then be exploited as in the case ofQED.There the screening of
the classic potential Vcl(r) = e2/4πr is obtained by replacing e2 with by the running
gauge coupling in the one-loop approximation e2(k) = e2(k0)[1− b ln(k/k0)]−1. If
the renormalization scale k is identified with the inverse of the distance r we obtain

V (r) = −e2(r0)[1 − b ln(r0/r) + O(e4)]/4πr (17.2)

which is the correct Uehling potential obtained with more traditional approaches.
Here the starting point is the classical Schwarzschild metric

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2 (17.3)

with dΩ2 ≡ dθ2+sin2 θdφ2 and the classical lapse function f (r) = 1−2G0M/r ≡
fclass(r). The RG improvement is obtained by substituting, in fclass(r), G0 by the
r -dependent Newton constant G(r) ≡ G(k = k(r)) which obtains from G(k) via an
appropriate “cutoff identification” k = k(r). In flat space the natural choice would
be k ∝ 1/r . In [40] it was argued that in the Schwarzschild background the correct
choice, in leading order at least, is k(r) = ξ/d(r) where ξ is a constant of the order
of unity, and d(r) ≡ ∫ r

0 dr ′| fclass(r ′)|−1/2 is the proper distance from a point with
coordinate r to the center of the black hole. While the integral defining d(r) can be
evaluated exactly, it is sufficient to use the following approximation which becomes
exact for both r → ∞ and r → 0:

d(r) =
(

r3

r + γ G0 M

) 1
2

(17.4)
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The resulting G(r) ≡ G(k = ξ/d(r)) reads

G(r) = G0 r3

r3 + ω̃ G0 [r + γ G0M] (17.5)

where ω̃ ≡ ωξ2 is a nonuniversal constant which cannot be obtained by renormaliza-
tion group arguments alone. However, standard perturbative quantization of Einstein
gravity leads to

V (r) = −G0
m1m2

r

[
1 − G0(m1 + m2)

2c2r
− ω̂

G0�

r2c3
]

(17.6)

at large distances [52], where ω̂ = 118/15π . We are then led to the identification

ω̃ = ω̂ = 118

15π
. (17.7)

for ω̃. In these equations the parameter γ has the value γ = 9/2 if one sets k =
ξ/d(r) as above. It turns out, however, that most of the qualitative properties of the
improved metric, in particular all those related to the structure of its horizons, are
fairly insensitive to the precise value of γ . In particular, γ = 0 (corresponding to
k = ξ/r ) and γ = 9/2 where found [40] to lead to rather similar results throughout.
For this reason one can adopt the choice γ = 0 to simplify the calculation unless
one is interested in the behavior near r = 0, where G(r) = r3/γ ω̃G0M + O(r4).

The metric of the RG improved Schwarzschild black hole is given by the line
element (17.3) with

f (r) = 1 − 2G(r)M

r
(17.8)

Let us briefly list its essential features [40]:

(a) There exists a critical mass value

Mcr = √
ω̃/G0 = √

ω̃ mPl (17.9)

such that f (r) has two simple zeros at r− and r+ > r− if M > Mcr, one double
zero at r+ = r− = √

ω̃G0 if M = Mcr, and no zero at all if M < Mcr. For
M > Mcr the zeros are at

r± = G0M [1 ± √
1 − Ω] (17.10)

with the convenient abbreviation

Ω ≡ M2
cr

M2 = ω̃
(mPl

M

)2
(17.11)
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The spacetime has an outer horizon at r+ and in inner (Cauchy) horizon at r−.
At Mcr, the black hole is extremal, the two horizons coincide, and the spacetime
is free from any horizon if the mass is sufficiently small, M < Mcr.

(b) The Bekenstein-Hawking temperature TBH = κ/2π is given by the surface
gravity at the outer horizon, κ = 1

2 f ′(r+). Explicitly,

TBH(M) = 1

4πG0M

√
1 − Ω

1 + √
1 − Ω

= 1

4πG0Mcr

√
Ω(1 − Ω)

1 + √
1 − Ω

= Mcr

4πω̃

√
Ω(1 − Ω)

1 + √
1 − Ω
(17.12)

This temperature vanishes for M ↘ Mcr, i.e. Ω ↗ 1, thus motivating the
interpretation of the improvedSchwarzschildmetricwith M = Mcr as describing
a “cold” remnant of the evaporation process CITE.

(c) The energy flux from the black hole, its luminosity L , can be estimated using
Stefan’s law. It is given by L = σA (M)TBH(M)4 where σ is a constant and
A ≡ 4πr2+ denotes the area of the outer horizon. With (17.10) and (17.12) we
obtain

L(M) = σ M2
cr

(4π)3 ω̃2

Ω(1 − Ω)2

[1 + √
1 − Ω]2 (17.13)

For a single massless field with two degrees of freedom one has σ = π2/60.
(d) The r = 0 hypersurface is still singular although less violent than in the standard

case as

Rμνρσ Rμνρσ ∼ 1/r2 (17.14)

which has to be contrasted with the standard behavior Rννρσ Rμνρσ ∼ 1/r6.

One should not be surprised that the singularity is still present in this approach.
The RG-improved Schwarzschild metric is not in general a solution of the Einstein
equation, as the Uehling potential in QED is not a solution of the original Maxwell
equation, although the screening of the electric charge is very well described by the
RG-improved Coulomb potential. Similarly we can argue that, as long as we are
in mildly planckian region, the physical predictions of the RG-improved metric are
certainly reliable, but near the singularity, in a deep transplanckian region, a more
consistent approach should be followed to encode the information on the running of
G into the field equations.

17.3 The Quantum Astrophysical Black Hole

We can find a clue to the above issue if we study the singularity occurring in a realistic
black hole. In fact in a dynamical situation the actual cutoff might be different from
a simple measure of distance. In general it is plausible to expect that, provided its
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strength is not negligible compared to the energy scale in a typical graviton loop, the
field itself can act as a cutoff in the graviton propagator.

An instructive example of a singularity occurring in a dynamic situation which
might capture the essential features of the realistic gravitational collapse can be
obtained considering charged spherically symmetric spacetimewith afluid of ingoing
and outgoing photons [4]. In this case it is convenient to introduce a two-dimensional
reduction of the spherisymmetric Einstein equation so that the 4-metric is expressible
as

ds2 = gAB(xC )dx Adx B + r2dΩ2 (A, B . . . = 0.1) (17.15)

where (x0, x1) are an arbitrary pair of co-ordinates which identify a 2-sphere area
4πr . The gradient of r defines the Schwarzschild function M(x A) through

(∇r)2 = g AB(∂Ar)(∂Br) = 1 − 2M/r. (17.16)

The field equations can then be reformulated as two-dimensional covariant equations
involving the two scalars r(x A), M(x A). The final result is a (1 + 1)-dimensional
wave equation for M ,

�M = −16π2r3G2TabT ab (17.17)

which clarifies the nonlinearity of the problem. Here Tab represent the combined
contribution of outgoing and ingoing gravitational waves near the inner horizon,
which, for any practical situation, can be modelled as a fluid of photons. The inner
horizon is a lightlike hypersurface characterized by infinite external advanced time v
but reachable in finite proper time by infalling observers. The presence of any time-
dependent disturbance propagating into the hole experience unbounded blueshift
near the Cauchy horizon, causing the source term in (17.17) to diverge as v → ∞.
In particular, the Weyl curvature behaves as

Ψ2 ∼ |uv|−peκ0(u+v) (17.18)

where u is an internal retarded time, calibrated so that u = −∞ on the event horizon
(EH), and κ0 is the inner surface gravity of the Cauchy horizon of the static black
hole spacetime.

Is there any self-regulator effect which occurs when the curvature has reached
planckian values in order to stop the exponential growof themass function?Clearly if
G decreases near the Planck scale, the divergence of the mass function is diminished,
as the source term is suppressed in (17.17). It is then clear that, if the actual cutoff
in this situation is the curvature itself, a self-regulator effect should be expected in
the AS scenario. Thus, in this case the cutoff identification should not be provided
by the proper distance as in the static case, but by the field strength itself. In the
case of spherical symmetry it has been argued that the right cutoff identification is
k ∝ √|Ψ2|, as discussed in [53]. Following this approach it has been shown in [53]
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that during the early evolution of the Cauchy horizon the mass inflation singularity
is damped because of quantum gravitational effects. (See also [54] for a similar
investigation in the context of a Vaidya model).

17.4 Conclusions

In recent times a number of investigations have further studied the properties of
ASBH. In [55, 56] the combined effect of the running of G andΛ has been discussed.
In particular in [56, 57] it was reassuring to discover that the main properties of the
ASBH can also be obtained by RG-improving the field equations, following the
approach outlined in [58, 59].

On the other hand in [60] an effective action which captures the physics of trans-
planckian physics can be obtained from anRG-improvement at the level of the action.
In particular

L QEG
eff (R) = R2 + bR2 cos

[θ ′′

2
log

( R

μ

)]( R

μ

)−θ ′
(17.19)

where μ is an infrared renormalization scale, θ ′′ and θ ′ are the real and imaginary
part of the critical exponents of the NGFP and b is a positive constant. The solution
of the field equation obtained from (17.19) are characterized by an infinite number
of de-Sitter spacetime with a regular interior. One can then imagine that a regular
de Sitter core could be a generic feature of the interior of ASBH, although further
investigations including higher truncations would be essential to demonstrate the
robustness of this result.
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Chapter 18
Quantum Black Holes and Effective
Quantum Gravity Approaches

Xavier Calmet

One of the most exciting developments in theoretical physics in the last 20 years has
been the realization that the scale of quantum gravity could be in the TeV region
instead of the usually assumed 1019 GeV. Indeed, the strength of gravity can be
affected by the size of potential extra-dimensions [1–4] or the quantum fluctuations
of a large hidden sector of particles [5]. A dramatic signal of quantum gravity in the
TeV region would be the production of small black holes in high energy collisions of
particles at colliders. The possibility of creating small black holes at colliders has led
to some wonderful theoretical works on the formation of black holes in the collisions
of particles.

Long before studying the production of such black holes in the high energy col-
lisions of particles became fashionable, in the 1970s Penrose proved that a closed
trapped surface forms when two shockwaves traveling at energies much larger than
the Planck scale even when the impact parameter is non-zero. Unfortunately, he
never published his work. The result was independently rediscovered by Eardley
and Giddings in 2002 [6] when the high energy community started to discuss the
formation of black holes at colliders. Earlier estimate of the production cross section
had been done using the hoop conjecture. Some did not trust the hoop conjecture,
thinking that in the collision of particles the situation was too asymmetrical to trust
this conjecture. The paper of Eardley and Giddings settled the issue. Proving the
formation of a closed trapped surface is enough to establish gravitational collapse
and hence the formation of a black hole. This work was extended by Hsu [7] into
the semi-classical region using path integral methods. One could thus claim with
confidence that black holes with masses 5 to 20 times the Planck scale, depending on
the model of quantum gravity, could form in the collision of particles at the CERN
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LHC is the Planck scale was low enough. Early phenomenological studies can be
found in [8–14].

However, it is obvious that even if the Planck scale was precisely at 1 TeV not
many semi-classical black holes could be produced at the LHC since the center of
mass energy of the collisions between the protons was at most of 8 TeV so far [15].
Even with the 14 TeV LHC, not many if any semi-classical black holes will be
produced.

We thus focussed on quantum black holes, which are black holes with masses of
the order of the Planck mass which could be produced copiously at the LHC or in
cosmic ray experiments [16–25]. The current bound derived using LHC data on the
fist quantum black hole mass if of the order of 5.3 TeV [26, 27]. Note that this bound
is slightly model dependent. However, this is a clear sign that there are no quantum
gravitational effects at 1 TeV.

At the time we are writing up this paper, there is actually no sign of any physics
beyond the standardmodel in the TeV region. It thus seems that the hierarchy problem
was a red herring; a light Higgs boson has been found, but there is no sign of new
physics to stabilize the Higgs boson’s mass. This is the second nail in the coffin
for fine-tuning problems after the discovery of a small and non-zero cosmological
constant without new physics to stabilize it.

Instead of trying to probe the Planck scale directly by producing small black
holes directly at colliders, it is useful to think of alternative ways to probe the scale
of quantum gravity. Effective field theory techniques are very powerful when we
know the symmetries of the low energy action which is the case for the standard
model of particle physics coupled to general relativity. Integrating out all quantum
gravitational effects, we are left with an effective action which we can use to probe
the scale of quantum gravity at low energies. We thus consider:

S =
∫

d4x
√−g

[(
1

2
M2 + ξ H†H

)

R − Λ4
C + c1R2 + c2Rμν Rμν + L SM + O(M−2

� )

]

(18.1)

The Higgs boson H has a non-zero vacuum expectation value, v = 246 GeV and
thus contribute to the value of the Planck scale:

(M2 + ξv2) = M2
P . (18.2)

The parameter ξ is the non-minimal coupling between the Higgs boson and space-
time curvature. The three parameters c1, c2 and ξ are dimensionless free parameters.
The Planck scale MP is equal to 2.4335× 1018 GeV and the cosmological constant
ΛC is of order of 10−3 eV. The scale of the expansion M� is often identified with
MP but there is no necessity for that and experiments are very useful to set limits
on higher dimensional operators suppressed by M�. Submillimeter pendulum tests
of Newton’s law [28] are used to set limits on c1 and c2. In the absence of acci-
dental cancellations between the coefficients of the terms R2 and Rμν Rμν , these
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coefficients are constrained to be less than 1061 [5]. It has been shown that astro-
physical observations are unlikely to improve these bounds [29]. The LHC data can
be used to set a limit on the value of the Higgs boson non-minimal coupling to space-
time curvature: one finds that |ξ | > 2.6 × 1015 is excluded at the 95% C.L. [30].
Very little is known about higher dimensional operators. The Kretschmann scalar
K = Rμνρσ Rμνρσ which can be coupled to the Higgs field via K H†H has been
studied in [31], but it seems that any observable effect requires an anomalously large
Wilson coefficient for this operator. Clearly one will have to be very creative to find
a way to measure the parameters of this effective action. This is important as these
terms are in principle calculable in a theory of quantum gravity and this might be the
only possibility to ever probe quantum gravity indirectly.

The standard model is very, maybe even, too successful. At what energy scale can
we expect it to break down? In other words, up to what energy scale can one trust
the effective theory described above? We know that this effective theory does not
describe dark matter, but this could be a hidden sector of particles or maybe even
primordial black holes with masses of the order of the Planck mass which would
not affect the effective action and our previous conclusions. It has been recently
pointed out that if gravity is asymptotically safe, the effective theory (18.1) could
offer a description of nature up to arbitrarily energy scale and predict the Higgs
boson’s mass correctly, i.e., at 126 GeV [32]. Within this framework, it is natural
that instead of considering the Higgs boson as a source of the hierarchy problem,
one should look at it as a solution to another type of fine-tuning issue, namely that of
the initial conditions of our universe. The fine-tuning problematic at the beginning
of our universe is very different from the fine-tuning problem in the standard model.
The fine-tuning issue in cosmology is really an initial condition problem. Why did
our universe start from such very specific initial conditions? It has been shown in
[33–38] that the Higgs boson with a non-minimal coupling to the Ricci scalar could
play the role of the inflaton and thus address this problem.

However, getting the right number of e-folding requires a fairly large non-minimal
coupling of the order of 104. This large non-minimal coupling is the source of a
potential issue with perturbative unitarity (see, e.g., [39–42] and references therein).
Naively, unitarity seems to be violated at an energy scale of MP/ξ in today’s Higgs
vacuum, while it would be violated at a scale MP/

√
ξ in the inflationary back-

ground. The breakdown of perturbative unitarity is a sign of strong dynamics or new
physics which kicks in at the scale of the breakdown of perturbative unitarity, thereby
restoring unitarity. However, both new physics and strong dynamics could jeopardize
the flatness of the scalar potential which is needed to obtain the correct number of
e-folding required to explain the flatness of our universe. It was shown in [43] that
at least at one-loop the cutting relation is fulfilled which implies that perturbative
unitarity is fixed by one-loop corrections. This is an example of the self-healing
mechanics discussed in [44]. The implication of this calculation is that the standard
model could be valid at least up to the Planck scale, and describe particle physics
and inflation in one consistent framework.

Unless quantum gravity is asymptotically free, proving or disproving this remains
a calculational challenge as it is a purely non-perturbative problem, the effective
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theory (18.1) will certainly breakdown at the scale at which quantum gravitational
effects become large. The lack of success in finding a consistent theory of quantum
gravity may be an indication that gravity does not need to be quantized in the usual
sense, or that we are trying to quantize the wrong degrees of freedom. The metric
may be something purely classical and emergent. Physics seems to be in a crisis
again as in 1900 when Lord Kelvin said “There is nothing new to be discovered in
physics now. All that remains is more and more precise measurement”. We should
just hope that, as at the start of the 20th century, we will experience a new scientific
revolution. My point of view is that we may have reached the limit of what can be
done within our current theoretical framework. After all, quantum field theory is still
based on very classical concepts namely that of point mechanics: we specify the
energy of a particle which we split into kinetic and potential energies. The couplings
and masses of the standard model are nothing but proportionality constants between
the kinetic terms and the potentials for the corresponding particles. Yes, we quantize
the classical theory to obtain a quantum field theory, but the underlying ideas and
principles are desperately classical. This may be the reason whywe have been unable
to make progress and to calculate some of the fundamental constants of nature such
as the coefficients of our effective action (18.1). Any progress will require some
bright idea. We can hope that black holes will give us some clues of how to proceed
beyond the current paradigm.
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Chapter 19
The Black Hole Uncertainty Principle
Correspondence

Bernard J. Carr

Abstract The Black Hole Uncertainty Principle correspondence proposes a con-
nection between the Uncertainty Principle on microscopic scales and black holes
on macroscopic scales. This is manifested in a unified expression for the Compton
wavelength and Schwarzschild radius. It is a natural consequence of the General-
ized Uncertainty Principle, which suggests corrections to the Uncertainty Principle
as the energy increases towards the Planck value. It also entails corrections to the
event horizon size as the black hole mass falls to the Planck value, leading to the
concept of a Generalized Event Horizon. One implication of this is that there could
be sub-Planckian black holes with a size of order their Compton wavelength. Loop
quantum gravity suggests the existence of black holes with precisely this feature.
The correspondence leads to a heuristic derivation of the black hole temperature and
suggests how the Hawking formula is modified in the sub-Planckian regime.

19.1 Introduction

A key feature of the microscopic domain is the Heisenberg Uncertainty Principle
(HUP) which implies that the uncertainty in the position and momentum of a particle
must satisfy Δx > �/(2Δp). It is well known that one can heuristically understand
this result as reflecting the momentum transferred to the particle by the probing
photon. Since themomentumof a particle ofmass M is boundedby Mc, an immediate
implication is that one cannot localize a particle of mass M on a scale less �/(2Mc).
An important role is therefore played by the reduced Compton wavelength, RC =
�/(Mc), which can be obtained from the HUP with the substitution Δx → R and
Δp → cM but without the factor of 2. In the (M, R) diagram of Fig. 19.1, the region
corresponding to R < RC might be regarded as the “quantum domain” in the sense
that the classical description breaks down there. A key feature of the macroscopic
domain is the existence of black holes. General relativity implies that a spherically
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Fig. 19.1 The division of
the (M, R) diagram into the
classical, quantum,
relativistic and quantum
gravity domains

symmetric object ofmass M forms an event horizon if it fallswithin its Schwarzschild
radius, RS = 2G M/c2. The region R < RS might be regarded as the “relativistic
domain” in the sense that there is no stable classical configuration in this part of
Fig. 19.1.

The Compton and Schwarzschild lines intersect at around the Planck scales,
RP = √

�G/c3 ∼ 10−33 cm, MP = √
�c/G ∼ 10−5 g, and they divide the

(M, R) diagram in Fig. 19.1 into three regimes (quantum, relativistic, classical).
There are several other interesting lines in this diagram. The vertical line M = MP

is often assumed to mark the division between elementary particles (M < MP ) and
black holes (M > MP ), because one usually requires a black hole to be larger than
its own Compton wavelength. The horizontal line R = RP is significant because
quantum fluctuations in the metric should become important below this. Quantum
gravity effects should also be important whenever the density exceeds the Planck
value, ρP = c5/(G2

�) ∼ 1094 g cm−3, corresponding to the sorts of curvature sin-
gularities associated with the big bang or the centres of black holes. This implies
R < (M/MP )1/3RP , which iswell above the R = RP line in Fig. 19.1 for M � MP ,
so one might regard the shaded region as specifying the “quantum gravity” domain.

Although the Compton and Schwarzschild boundaries correspond to straight lines
in the logarithmic plot of Fig. 19.1, this formpresumably breaks down near the Planck
point. As one approaches the Planck point from the left, Adler [1–4] and many others
have argued that the HUP should be replaced by a Generalized Uncertainty Principle
(GUP) of the form

Δx > �/Δp + αR2
P (Δp/�) . (19.1)

Here α is a dimensionless constant (usually assumed positive) which depends on the
particular model and the factor of 2 in the first term has been dropped. A heuristic
argument for the second term in (19.1) is that it represents the gravitational effect
of the probing photon rather than its momentum effect. This form of the GUP is
indicated by the upper curve in Fig. 19.2. Variants of (19.1) can be found in other
approaches to quantum gravity, such as non-commutative quantum mechanics or
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Fig. 19.2 Δx versus Δp for
the GUP in its linear (upper
curve) and quadratic (lower
curve) forms. For α negative,
the smooth minimum is
replaced by a cusp at Δx = 0

quadratic GUP

p

| x|

linear GUP

0

2 1/2 lPl

<
0

| |-1/2 Mp

> 0
(2 )1/2 lPl

general minimum length considerations [5–7]. The GUP can also be derived in loop
quantum gravity because of polymer corrections in the structure of spacetime [8, 9]
and it is implicit in some approaches to the problemof quantumdecoherence [10, 11].
Finally, an expression resembling (19.1) arises in string theory [12–17], although it is
usually assumed that the second term cannot correspond to a black hole for M � MP

because the string is too elongated to form an horizon.
The second term on the right of (19.1) is much smaller than the first term for

Δp � MP c. Since it can be written as αG(Δp)/c3, it roughly corresponds to the
Schwarzschild radius for an object of mass Δp/c. Indeed, if we rewrite (19.1) using
the same substitution Δx → R and Δp → cM as before, it becomes

R > R′
C = �/(Mc) + αG M/c2 = �

Mc

[
1 + α(M/MP )2

]
. (19.2)

The lower limit on R might be regarded as a generalized Compton wavelength, the
last term representing a small correction as one approaches the Planck point from
the left. However, one can also apply (19.2) for M � MP and it is interesting
that in this regime it asymptotes to the Schwarzschild form, apart from a numerical
factor [18]. This suggests that there is a different kind of positional uncertainty for
an object larger than the Planck mass, related to the existence of black holes. This
is not unreasonable since the Compton wavelength is below the Planck scale (and
hence meaningless) here and also an outside observer cannot localize an object on a
scale smaller than its Schwarzschild radius.

The GUP also has important implications for the black hole horizon size, as can
be seen by examining what happens as one approaches the intersect point from the
right. In this limit, it is natural to write (19.2) as

R > R′
S = αG M

c2

[

1 + 1

α
(MP/M)2

]

(19.3)

and this represents a small perturbation to the Schwarzschild radius for M � MP

if one assumes α = 2. However, there is no reason for anticipating α = 2 in the
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heuristic derivation of the GUP. Nor is it clear why amore precise calculation (within
the context of a specific theory of quantum gravity) would yield this value.

This motivates an alternative approach in which the free constant in (19.2) is
associated with the first term rather than the second. After all, the factor of 2 in the
expression for the Schwarzschild radius is precise, whereas the coefficient associated
with the Compton term is somewhat arbitrary. Thus one might rewrite (19.2) and
(19.3) using the expressions

R′
C = β�

Mc

[

1 + 2

β
(M/MP )2

]

, R′
S = 2G M

c2

[

1 + β

2
(MP/M)2

]

. (19.4)

for some constant β, with the latter being regarded as a Generalized Event Horizon
(GEH). The mathematical equivalence of R′

C and R′
S underlies what we have termed

the BHUP correspondence.
An important caveat is that (19.1) assumes the two uncertainties add linearly. On

the other hand, since they are independent, it might be more natural to assume that
they add quadratically:

Δx >

√
(�/Δp)2 + (αR2

PΔp/�)2 . (19.5)

This corresponds to the lower curve in Fig. 19.2. While the heuristic arguments
indicate the form of the two uncertainty terms, they do not specify how one combines
them. We refer to (19.1) and (19.5) as the linear and quadratic forms of the GEP.
Adopting the β formalism, as before, then gives a unified expression for generalized
Compton wavelength and event horizon size

R′
C = R′

S =
√

(β�/Mc)2 + (2G M/c2)2 , (19.6)

leading to the approximations

R′
C ≈ β�

Mc

[

1 + 2

β2 (M/MP)4
]

, R′
S ≈ 2G M

c2

[

1 + β2

8
(MP/M)4

]

(19.7)

for M � MP and M � MP , respectively. These might be compared to the exact
expressions in the linear case, given by (19.4). As shown below, the horizon size of
the black hole solution in loop quantum gravity has precisely the form (19.6).

More generally, the BHUP correspondence might allow any unified expression
for R′

C (M) ≡ R′
S(M) which has the asymptotic behaviour β�/(Mc) for M � MP

and 2G M/c2 for M � MP . One could envisage many other unified expressions
satisfying this condition but they would only be well motivated if based upon some
final theory of quantum gravity. One could also consider models with α < 0, so that
one has a cusp rather than a smooth minimum in Fig. 19.2. Indeed, this may be a
feature of loop quantum gravity [8, 9]. It is intriguing that α < 0 models could have
G → 0 (no gravity) and � → 0 (no quantum discreteness) at the cusp. This relates
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to models, discussed at this meeting, involving “asymptotic safety” [19] and “world
crystals” [20].

19.2 Loop Black Holes

Loop quantum gravity (LQG) is based on a canonical quantization of the Einstein
equations written in terms of the Ashtekar variables [21–25]. One important conse-
quence of this is that the area is quantized, with the smallest possible value being

ao ≡ Amin/8π = √
3 γ ζ R2

P/2 , (19.8)

where γ is the Immirzi parameter and ζ is another constant, both being of order
1. The other relevant constant is the dimensionless polymeric parameter δ, which
(together with a0) determines the deviation from classical theory.

One version of LQG gives a black hole solution, known as the loop black hole
(LBH) [26–30], which exhibits self-duality and replaces the singularity with another
asymptotically flat region. The metric in this solution depends only on the dimen-
sionless parameter ε ≡ δγ , which must be small, and can be expressed as [26–30]

ds2 = −G(r)c2dt2 + dr2/F(r) + H(r)(dθ2 + sin2 θdφ2) , (19.9)

H = r2 + a2
o

r2
, G = (r − r+)(r − r−)(r + r∗)2

r4 + a2
o

, F = (r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
o)

.

Here r+ = 2Gm/c2 and r− = 2Gm P2/c2 are the outer and inner horizons, respec-
tively, and r∗ ≡ √

r+r− = 2Gm P/c2, where m is the black hole mass and

P ≡
√
1 + ε2 − 1√
1 + ε2 + 1

(19.10)

is the polymeric function. For ε � 1, we have P ≈ ε2/4 � 1, so r− � r∗ � r+.
In the limit r → ∞, H(r) ≈ r2, so r is the usual radial coordinate and F(r) ≈

G(r) ≈ 1 − 2G M/(c2r) where M = m(1 + P)2 is the ADM mass. However,
the exact expression for H(r) shows that the physical radial coordinate R = √

H
decreases from ∞ to a minimum

√
2a0 at r = √

a0 and then increases again to ∞
as r decreases from ∞ to 0. In particular, the value of R associated with the event
horizon is

RE H = √
H(r+) =

√
(
2Gm

c2

)2

+
(

aoc2

2Gm

)2

. (19.11)
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Apart from P terms, relating m and M , this is equivalent to (19.6), asymptoting to
the Schwarzschild radius for m � MP and the Compton wavelength for m � MP

if we put β = √
3γ ζ/4.

The important point is that central singularity of the Schwarzschild solution is
replaced with another asymptotic region, so the black hole becomes a wormhole.
Metric (19.9) has three other important consequences: (1) it permits the existence of
blackholeswithm � MP ; (2) it implies a duality between them < MP andm > MP

solutions; (3) it involves a unified expression for the Compton and Schwarzschild
scales, with expression (19.11) suggesting the quadratic GUP. Further details can be
found in [18] and [26–30].

19.3 GUP and Black Hole Thermodynamics

Let us first recall the link between black hole radiation and the HUP [31, 32]. This
arises because we can obtain the black hole temperature for M � MP by identi-
fying Δx with the Schwarzschild radius and Δp with a multiple of the black hole
temperature:

kT = ηcΔp = η�c

Δx
= η�c3

2G M
. (19.12)

This gives the precise Hawking temperature if we take η = 1/(4π). The second
equality in (19.12) relates to the emitted particle and assumes thatΔx andΔp satisfy
the HUP. The third equality relates to the black hole and assumes that Δx is the
Schwarzschild radius. Both these assumptions require M � MP but the GUP and
GEH suggest how they should be modified for M � MP .

Adler et al. [1–4] calculate the modification required if Δx is still associated with
the Schwarzschild radius but Δp and Δx are related by the linear form of the GUP.
In this case, one obtains a temperature

T = ηMc2

αk

⎛

⎝1 −
√

1 − αM2
P

M2

⎞

⎠ ≈ η�c3

2Gk M

[

1 + αM2
P

4M2

]

, (19.13)

where the last expression applies for M � MP and just represents a small per-
turbation to the standard Hawking temperature. However, as indicated in Fig. 19.3,
the exact expression becomes complex when M falls below

√
α MP , indicating a

minimum mass. If we adopt the quadratic form of the relationship between Δp and
Δx , the temperature becomes

T =
√
2 ηMc2

αk

⎛

⎝1 −
√

1 − α2

4

(
MP

M

)4
⎞

⎠

1/2

≈ η�c3

2Gk M

[

1 + α2

32

(
MP

M

)4
]

,

(19.14)
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Fig. 19.3 Comparing black
hole temperature predicted
by Hawking, linear and
quadratic GUP, BHUP
correspondence

T/TP

M/MP
( /2)1/2

( (

linear G
UP

quadratic G
UP

BHUP

Hawking

1/2( /4)1/2
|||

-1/2 _

BHUP

so the deviation from the Hawking prediction is smaller than implied by (19.13)
but the exact expression still goes complex for M <

√
α/2 MP . In either case,

evaporation ceases at about the Planck mass. So the GUP stabilizes the ground state
of a black hole just as the HUP stabilizes the ground state of a hydrogen atom.

The BHUP correspondence suggests that the Alder et al. argument must be modi-
fied sinceΔx is given by (19.11) rather than 2G M/c2. Thismakes amajor qualitative
difference for M � MP becauseΔx then scales as M−1 rather than M and thismeans
that the temperature no longer goes complex. As shown in Fig. 19.3, one obtains the
exact solution

kT = min

[
�ηc3

2G M
,
2ηMc2

α

]

. (19.15)

Thefirst expression is the exactHawking temperature,with no small correction terms.
However, one must cross over to the second expression below M = √

α/4 MP

in order to avoid the temperature going above the Planck value TP . The second
expression can be obtained by putting Δx ≈ �/(Mc) in (19.12). Since this is always
less than TP , the second equality in (19.12) still applies to a good approximation.
The different M-dependences for M < MP and M > MP arise because there are
two different asymptotic spaces in the LBH solution, corresponding to the R and r
coordinates, so the quantity Δx needs to be specified more precisely. Putting r =
2G M/c2 implies (Δx)R/(Δx)r ≈ 1 for M � MP and (M/MP )−2 for M � MP .

Note that one can use another argument which gives a different temperature in the
sub-Planckian regime. If the temperature is determined by the black hole’s surface
gravity [31, 32], (19.11) suggests T ∝ G M/R′2

S ∝ M3 rather than M for M � MP .
The discrepancy arises because the temperature differs in the two asymptotic spaces
by a factor (M/MP )2. The GUP argument only gives the temperature in the same
space as the black hole event horizon, which is our space for M > MP but the other
space for M < MP . So the temperature of a sub-Planckian hole scales as M3 in our
space, as predicted by the surface gravity argument, and as M in the other space, as
predicted by the GUP argument [18]. Although there is no value of M for which T
becomes zero, there are still effectively stable relics since the temperature falls below
the background radiation density—suppressing evaporation altogether—below some
critical mass and such relics might provide the dark matter [30].
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Fig. 19.4 Modification to
Fig. 19.1 for various numbers
of spatial dimensions with
same scale
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19.4 Changing the Dimensionality

The black hole boundary in Fig. 19.1 assumes there are three spatial dimensions
but many theories suggest that the dimensionality could increase on small scales.
Either the extra dimensions are compactified or matter is confined to a brane of finite
thickness in the extra dimensions due to warping. In both cases, the extra dimensions
are associated with some scale RC . If there are n extra dimensions and the black
holes with mass below MC = c2RC/(2G) are assumed to be spherically symmetric
in the higher dimensional space, then the Schwarzschild radius must be replaced
with

RS = RC

(
M

MC

)1/(n+1)

(19.16)

for M < MC , so the slope of the black hole boundary in Fig. 19.1 becomes shallower,
as indicated in Fig. 19.4 for various values of n. The new intersect with the Compton
boundary just corresponds to the revised Planck scales. We note that RS ∝ M−1

for 2-dimensional holes (n = −2). This suggests some link with the idea that
physics becomes 2-dimensional (rather than higher dimensional) close to the Planck
scale [33, 34], which offers an intriguing alternative interpretation of the BHUP
correspondence.
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Chapter 20
Scattering and Unitarity Methods in Two
Dimensions

Valentina Forini, Lorenzo Bianchi and Ben Hoare

Abstract The standard unitarity-cut method is applied to several massive
two-dimensional models, including the world-sheet AdS5 × S5 superstring, to com-
pute 2 → 2 scattering S-matrices at one loop from tree level amplitudes. Evidence is
found for the cut-constructibility of supersymmetric models, while for models with-
out supersymmetry (but integrable) the missing rational terms can be interpreted as
a shift in the coupling.

20.1 Discussion

Unitarity-based methods, whose use in four dimensions has been crucial for an
efficient evaluation of scattering amplitudes [1] in non-abelian gauge theories as
well as gravity theories [2], have never really been applied in two dimensions.1 The
aim of our work [6] (we refer the reader to the independent results of [7]) has been
to initiate the use of unitarity methods in the perturbative study of the S-matrix for
massive two-dimensional field theories. Limiting ourselves to the use of standard
unitarity (therefore placing on shell only two internal lines2) we present a formula
for the one-loop 2 → 2 scattering amplitude built directly from the corresponding
on-shell tree-level amplitudes.

As reviewed below, we have applied our method to various models, finding
enough evidence to postulate that supersymmetric, integrable two-dimensional theo-
ries should be cut-constructible via standard unitarity methods. For bosonic theories

1For the three-dimensional case see [3–5].
2This is nothing but the application of the optical theorem. The case where the loop amplitude
issubdivided into more than two pieces is referred to as generalized unitarity.
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with integrability, we find agreement with perturbation theory up to a finite shift in
the coupling.3 We also successfully apply our method to the light-cone gauge-fixed
sigma-model for the Ad S5 × S5 superstring, where—importantly—standard pertur-
bation theory seems to fail in evaluating the S-matrix beyond the leading order due
to regularization issues.

20.2 Two-Particle S-Matrix from Unitarity
Cuts at One Loop

In two dimensions, the two-body scattering process of a translational-invariant field
theory is described via the four-point amplitude

〈Φ P (p3)Φ
Q(p4) |S| ΦM (p1)ΦN (p2)〉 = A P Q

M N (p1, p2, p3, p4)

≡ (2π)2δ(2)(p1 + p2 − p3 − p4) Ã
P Q

M N (p1, p2, p3, p4) , (20.1)

where S is the scattering operator, the fields Φ have on-shell momenta pi (for us, all
the particles have equal non-vanishing mass set to unity) and can carry flavor indices.
Importantly, the energy-momentum conservation δ-function satisfies

δ(2)(p1 + p2 − p3 − p4) = J (p1, p2)
(
δ(p1 − p3)δ(p2 − p4) + δ(p1 − p4)δ(p2 − p3)

)
,

(20.2)

which accounts for the fact that in d = 2 there is no phase space, and the only thing
particles can do is either preserve or exchange their momenta. Above, p is the spatial
momentum, the Jacobian J (p1, p2) = 1/(∂εp1/∂p1 − ∂εp2/∂p2) depends on the
dispersion relation εp (the on-shell energy associated to p) for the theory at hand,
and spatial momenta are assumed to be ordered p1 > p2. The S-matrix elements
relevant for the description of the 2 → 2 scattering in the two-dimensional case are
then defined4 as

S P Q
M N (p1, p2) ≡ J (p1, p2)

4ε1ε2
Ã P Q

M N (p1, p2, p1, p2) . (20.3)

In applying the standard unitarity rules (derived from the optical theorem) [8] to
the one-loop four point amplitude (20.1) one considers two-particle cuts, obtained by
putting two intermediate lines on-shell. The contributions that follow to the imaginary

3It would be interesting to analyze models which are just supersymmetric and not integrable.
4Without loss of generality, one can consider in (20.1) the amplitudes associated to the first product
of δ-functions δ(p1 − p3)δ(p2 − p4). The denominator in (20.3) is required to make contact with
the standard definition of the S-matrix in two dimensions.
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Fig. 20.1 Diagrams
representing s-, t- and u-
channel cuts contributing to
the four-point one-loop
amplitude
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part of the amplitude are therefore given by the sum of s-, t- and u- channel cuts
illustrated in Fig. 20.1, explicitly

A (1) P Q
M N (p1, p2, p3, p4)|s−cut =

∫
d2l1
(2π)2

∫
d2l2
(2π)2

iπδ+(l1
2 − 1) iπδ+(l22 − 1)

×A (0) RS
M N (p1, p2, l1, l2)A

(0) P Q
S R (l2, l1, p3, p4) (20.4)

A (1) P Q
M N (p1, p2, p3, p4)|t−cut =

∫
d2l1
(2π)2

∫
d2l2
(2π)2

iπδ+(l1
2 − 1) iπδ+(l2

2 − 1)

×A (0)S P
M R(p1, l1, l2, p3)A

(0) RQ
SN (l2, p2, l1, p4) (20.5)

A (1) P Q
M N (p1, p2, p3, p4)|u−cut =

∫
d2l1
(2π)2

∫
d2l2
(2π)2

iπδ+(l1
2 − 1) iπδ+(l2

2 − 1)

×A (0)SQ
M R(p1, l1, l2, p4)A

(0) R P
SN (l2, p2, l1, p3) (20.6)

where A (0) are tree-level amplitudes and a sum over the complete set of interme-
diate states R, S (all allowed particles for the cut lines) is understood. Notice that
tadpole graphs, having no physical two-particle cuts, are by definition ignored in this
procedure.

To proceed, in each case one uses (20.1) and the momentum conservation at the
vertex involving the momentum p1 to integrate over l2, e.g., for the s-channel
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Ã (1) P Q
M N (p1, p2, p3, p4)|s−cut =

∫
d2l1
(2π)2

iπδ+(l1
2 − 1) iπδ+((l1 − p1 − p2)

2 − 1)

× Ã (0) RS
M N (p1, p2, l1, −l1 + p1 + p2) Ã

(0) P Q
S R (−l1 + p1 + p2, l1, p3, p4) , (20.7)

The simplicity of the two-dimensional kinematics and of being at one loop plays now
its role, since in each of the integrals the set of zeroes of the δ-functions is a discrete
set, and the cut loop-momenta are frozen to specific values.5 This allows us to pull out
the tree-level amplitudes with the loop-momenta evaluated at those zeroes.6 In what
remains, following standard unitarity computations [8], we apply the replacement
iπδ+(l2 − 1) −→ 1

l2−1
(i.e., the Cutkowsky rule in reverse order) which sets loop

momenta back off-shell, thus reconstructing scalar bubbles. This allows us to rebuild,
from its imaginary part, the cut-constructible piece of the amplitude and, via (20.3),7

of the S-matrix. It then follows that a candidate expression for the one-loop S-
matrix elements is given by the following simple sum of products of two tree-level
amplitudes8

S(1) P Q
M N (p1, p2) = 1

4(ε2 p1 − ε1 p2)

[
S̃(0) RS

M N (p1, p2)S̃(0) P Q
RS (p1, p2) Ip1+p2 (20.8)

+ S̃(0)S P
M R(p1, p1)S̃(0) RQ

SN (p1, p2) I0 + S̃(0)SQ
M R(p1, p2)S̃(0) P R

SN (p1, p2) Ip1−p2

]

where the coefficients are given in terms of the bubble integral

Ip =
∫

d2q

(2π)2

1

(q2 − 1 + iε)((q − p)2 − 1 + iε)
(20.9)

and read explicitly

Ip1+p2 = iπ − arsinh(ε2 p1 − ε1 p2)

4π i (ε2 p1 − ε1 p2)
, I0 = 1

4π i
, Ip1−p2 = arsinh(ε2 p1 − ε1 p2)

4π i (ε2 p1 − ε1 p2)
.

Few important remarks are in order:

(a) Since the unitarity-cut procedure only ensures the correctness of logarithmic
terms (in general, of those terms associated to branch-cut singularities, typically

5 At two loops, to constrain completely the four components of the two momenta circulating in the
loops one needs four cuts, each one giving an on-shell δ-function. Two-particle cuts at two loops
would result in a manifold of conditions for the loop momenta.
6This is like using f (x)δ(x − x0) = f (x0)δ(x − x0) where f (x) are the tree-level amplitudes in
the integrals.
7This corresponds to the choice p3 = p1, p4 = p2.
8In (20.8), S̃(0)(p1, p2) = 4(ε2 p1 − ε1 p2)S(0)(p1, p2) and the denominator on the right-hand side
comes from the Jacobian J (p1, p2) assuming a standard relativistic dispersion relation (for the
theories we consider, at one-loop this is indeed the case).
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logarithms or polilogarithms), the proposal (20.8) and its fermionic generaliza-
tion [6] crucially need to be tested on known examples.9

(b) The t-channel cut requires a prescription, since if one first uses the δ-function
identity (20.2) to fix, for example, p1 = p3 and p2 = p4 the corresponding
integral is ill-defined. To avoid this ambiguity we follow the prescription that
we should only impose the δ-function identity at the end.10 Furthermore, if we
choose the alternative solution of the conservation δ-function in (20.5), namely
�2 = �1 + p4 − p2, the coefficient of I (0) in (20.8) would be different, which
leads to the consistency condition on the tree-level S-matrix11

S̃(0)S P
M R(p1, p1) S̃(0) RQ

SN (p1, p2) = S̃(0) P S
M R(p1, p2) S̃(0)Q R

SN (p2, p2) . (20.10)

We have checked this for the tree-level S-matrices of all the field theory models
treated below.

(c) As theyonly involve the scalar bubble integral in twodimensions, the result (20.8)
following from our procedure is inherently finite. No additional regularization
is required and the result can be compared directly with the 2 → 2 particle
S-matrix (following from the finite or renormalized four-point amplitude) found
using standard perturbation theory. Of course, this need not be the case for the
original bubble integrals before cutting—due to factors of loop-momentum in the
numerators. These divergences, along with those coming from tadpole graphs,
which we did not consider, should be taken into account for the renormaliza-
tion of the theory. We have not investigated this issue, since all the theories we
consider below are either UV-finite or renormalizable.

To explore the validity of the procedure outlined we have considered both relativistic
and non-relativistic (world-sheet field theory for the AdS5 × S5 superstring) models.

20.3 Relativistic models

In the relativistic, bosonic case, we looked at a class of generalized sine-Gordon
models [9, 10], theories defined by a gauged WZW model for a coset G/H plus a
potential, whose classical integrability can be demonstrated through the existence of
a Lax connection. Considering the coset G/H = SO(n + 1)/SO(n), where asymp-
totic excitations are a free SO(n) vector with unit mass (which is the case we have
considered in our general procedure), this class includes the sine-Gordon (n = 1)
and complex sine-Gordon (n = 2) models, for which the exact S-matrices are known

9Because its bubble integral I0 can only contribute to rational terms, the t-channel contribution has
been neglected in [7], where all rational terms were determined from symmetry considerations.
10In some sense this is natural as, in general dimensions, quantum field theory amplitudes have the
form (20.1), while the δ-function identity (20.2) is specific to two dimensions.
11See [6] for the generalization to the case which includes fermions.
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[11, 12]. In all the cases the one-loop S-matrix got via unitarity cuts agrees–up to a
term proportional to the tree-level S-matrix which can be interpreted as a scheme-
dependent shift in the coupling12—with the one known from perturbation theory.
Importantly, the latter includes one-loop corrections coming from a gauge-fixing
procedure which integrates out unphysical fields [14] and results in contributions to
the one-loop S-matrix which restore various properties of integrability.

As for relativistic, supersymmetric models, which have checked the procedure on
theories obtained as Pohlmeyer reduction of the Green-Schwarz action for the Type
IIB superstring on AdS5 × S5 [15, 16], AdS3 × S3 [17] and AdS2 × S2 [15] which
can be seen as supersymmetric generalizations of the bosonic models considered
above.13 These reduced theories are all classically integrable, demonstrated by the
existence of a Lax connection, and conjectured to be UV-finite [19]. The tree-level
and one-loop S-matrices for these theories were computed in [20, 21], while the
exact S-matrices have been conjectured using integrability techniques in [22] for
the reduced AdS2 × S2 model, [21] for the reduced AdS3 × S3 model and [23] for
the reduced AdS5 × S5 model. In all the cases considered, the agreement is exact
and no additional shift of the coupling is needed. The presence of the supersymme-
try, albeit deformed, may provide an explanation for this, with shifts arising from
bosonic loops cancelled by shifts from fermionic loops. Importantly, in the reduced
AdS3×S3 standard perturbative computation a contribution coming from a one-loop
correction needs to be added so that the S-matrix satisfies the Yang-Baxter equation.
It is this S-matrix that the unitarity technique matches. This is then another example
of how unitarity methods applied to a classically integrable theory seem to provide a
quantum integrable result. This seems to suggest a relationship between integrable
quantization and unitarity techniques which would be interesting to investigate fur-
ther.

20.4 AdS5 × S5 superstring world-sheet theory

We have finally considered the case of the light-cone gauge-fixed superstring on
AdS5 × S5 and its world-sheet S-matrix.14 Assuming the quantum integrability of
the full world-sheet theory and using the global symmetries the exact world-sheet

12In the sine-Gordon case the agreement is exact. For n ≥ 2 the shift in the coupling is by the dual
Coxeter number of the group G = SO(n), a structure appears regularly in the quantization ofWZW
and gauged WZW models, where k is the quantized level (see for example [13]).
13The reduced AdS2× S2 theory is in fact given by theN = 2 supersymmetric sine-Gordon model
and hence is supersymmetric. The reduced AdS3 × S3 and AdS5 × S5 theories have a non-local
N = 4 and N = 8 supersymmetry respectively, which manifests as a q-deformation of the S-
matrix symmetry algebra. Furthermore, we have also checked that the unitarity-cutting procedure
matches the perturbative result at one-loop in theN = 1 supersymmetric sine-Gordon model [18].
14Notice that this is a non-relativistic model, as seen quantizing it perturbatively and noticing that
the choice of a flat Minkowski worldsheet metric is incompatible with Virasoro constraints (see for
example [24]).
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S-matrix has been uniquely determined [25] up to an overall phase, or dressing fac-
tor [26]. The determination of the latter exploited the non-relativistic generalization
of the crossing symmetry [27, 28] as well as perturbative data both from the string
and gauge theory sides [29, 30]. Relaxing the level-matching condition and taking
the limit of infinite light-cone momentum (decompactification limit), the world-
sheet theory becomes a massive field theory defined on a plane, with well-defined
asymptotic states and S-matrix. The scattering of the world-sheet excitations has
been studied at tree-level in [31], while one-loop [32] and two-loop [33] results have
been carried out only in the simpler near-flat-space limit [34] where interactions are
at most quartic in the fields. These studies have also explicitly shown some conse-
quences of the integrability of the model, such as the factorization of the many-body
S-matrix and the absence of particle production in the scattering processes [35].

The tree level matrix element were evaluated in [31] in the generalized uniform
light-cone gauge (showing therefore an explicit dependence on the parameter a label-
ing different light-cone gauge choices [36]) at leading order in perturbation theory,

where the small parameter is the inverse of the string tension g =
√

λ
2π . After hav-

ing explicitly verified that the tree-level matrix elements above verify the sermonic
generalization of the consistency relation (20.10), we could safely use them as input
of our procedure and get the one-loop S-matrix for the light-cone gauge-fixed sigma
model.15 As a first result, an overall phase could be resumed at the one-loop order,
which show the expected gauge dependence [38]. As mentioned above, because of
the complicated structure of interactions of the light-cone gauge-fixed sigma model,
the perturbative S-matrix is known beyond the leading order [32, 33] only in the kine-
matic truncation known as near-flat-space limit [34]. Therefore, to test the validity of
the unitarity method, we needed to compare our one-loop result to the corresponding
limit of the exact world-sheet S-matrix. This was achieved by considering the matrix
elements derived in [25] for a single SU(2|2) sector together with the dressing phase,
here needed at next-to-leading order in the 1/

√
λ expansion.16

In comparing the exact S-matrix with the one found via unitarity cuts17 we found

(SC D
AB )exact = e

i
4 g

(
([A]+2[B]−[C]−2)p1+([B]−2[C]−[D]+2)p2

)

eϕa=0(p1,p2) (SC D
AB )cut + O(1/g3) .

(20.11)

From (20.11) we see that we have agreement up to a phase whose argument is linear
in momenta. This is not surprising, as it simply amounts to moving from the string

15Notice that the non-relativistic dispersion relation ε(p) =
√
1 + λ

π2 sin
2 p
2 [25, 37], when

expanded in the near-BMN limit p → ζp, corresponding to the perturbative regime, leads to a

relativistic energy εi =
√
1 + p2i .

16In the comparison with the world-sheet calculation all dimensional quantities (such as the spin-
chain length and the momenta) should be rescaled via a factor of

√
λ/(2π) [31], for us p → ζ p.

17This is done in the so-called constant-J gauge a = 0.
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frame to the spin-chain frame [39, 40]. As argued already at the tree level [31] such
terms should not affect the physical spectrum following from inputting the S-matrix
into the asymptotic Bethe equations.
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Chapter 21
Gravity Duals to Non-relativistic Quantum
Field Theories

Andreas Karch and Stefan Janiszewski

Abstract We use holography to argue that the zoo of consistent quantum theories
of gravity contains many non-relativistic alternatives to standard Einstein gravity.
The basic argument will be based on symmetry. Non-relativistic diffeomorphisms
are symmetries of a large class of non-relativistic quantum field theories, including
the quantum Hall states and the unitary Fermi gas. Based on these symmetries, we
argue that generic many-body quantum mechanical systems have a dual holographic
description in terms of a modified theory of gravity known as Horava gravity.

21.1 Motivation: Why Non-relativistic Holography

Why study non-relativistic holography? In nature we know the right description for
all matter, including solids, is a relativistic quantum field theory (QFT). Ignoring
the weak interactions for now, the ionic lattice and electrons making up a solid are
described by a local relativistic Lagrangian

L = LQED + LQCD. (21.1)

The field of condensedmatter physics comprises the study of particular (meta)-stable
states of this theory with finite baryon and lepton number and to analyze their low
energy fluctuations. While in principle correct, this viewpoint is hardly useful in
practice. For most condensed matter applications, a more appropriate starting point
is a non-relativistic Hamiltonian

H =
∑

Nuclei,A

p2A
m A

+
∑

electronsi

p2i
me

−
∑

A,i

e2

|xi − xA| +
∑

i �= j

e2

|xi − x j | , (21.2)
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describing themotion of lattice ions and electrons governed by Coulomb interactions
(ignoring spin for now for notational simplicity). This theory can be obtained as a low
energy decoupling limit of (21.1). The description in terms of (21.2) is substantially
easier than the full relativistic Lagrangian governing QCD and QED. Most degrees
of freedom (for example the anti-particles) completely decouple from the dynamics
and only the degrees of freedom responsible for the dynamics of the solid remain.
While (21.2) can be thought of as a low energy limit of (21.1), and in nature that
is how it is realized, it is a consistent quantum theory in its own right. The extra
relativistic degrees of freedom are not needed for a self-consistent description. For a
relativistic QFT with holographic dual (that is, a relativistic theory which is known
to have a completely equivalent description in one higher dimension in terms of a
quantum theory of gravity), it is natural to ask whether we can find a holographic
dual that directly describes the non-relativistic low energy Hamiltonian. As the non-
relativistic Hamiltonian gives a consistent quantum theory in its own right, so should
the dual non-relativistic quantum theory of gravity. In fact, it is much easier to
write down a consistent non-relativistic Hamiltonian than to write down a relativistic
field theory. Neither the issue of anomalies nor the issue of UV divergences arises.
Therefore holography implies, or at least strongly suggests, that there should exist
a large class of non-relativistic self-consistent quantum theories of gravity dual to
generic condensed matter Hamiltonians. And one should be able to construct at least
some of them by starting with a known relativistic holographic pair and taking the
non-relativistic (NR) decoupling limit.

21.2 Prelude: The Role of Symmetries

As most of our arguments will be based on symmetries, let us quickly review some
basic facts about the role of symmetries in physics and establish a few definitions
we will use when talking about symmetries. The most fundamental separation of
symmetries is into gauge and global symmetries. Gauge symmetries are not really
symmetries at all, rather they are redundancies of our chosen description.All physical
observables are gauge invariant and so don’t see the symmetry. One famous example
of this phenomenon in the context of QFTs are Seiberg dualities [5]: two seemingly
different field theory Lagrangians based on two completely different gauge groups
can be shown to represent one and the same physical particle spectrum and interac-
tions. Global symmetries on the other hand are true symmetries of physical observ-
ables. All physical quantities have to furnish a representation of the global symmetry
group. In addition, global symmetries imply conservation laws. One famous exam-
ple is that translation invariance implies momentum conservation. Note that in this
distinction between gauge and global symmetries, we do not rely on a classification
of whether the symmetry acts locally in space and/or time. The difference is simply
how the symmetry acts on physical observables. If we demand that physical reality
is invariant under a certain symmetry, by definition this symmetry does not act on
observables and so is a redundancy of our description. We introduced this gauge
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symmetry simply for convenience. We introduced extra degrees of freedom to sim-
plify the dynamics together with a prescription that, in the end, removes them again
from our physical spectrum. In contrast, global symmetries are the true symmetries
of the system, whether they act globally or locally.

Of special importance to us will be global, spurionic symmetries. Under a spuri-
onic symmetry the Lagrangian is only invariant if couplings, and not just the dynam-
ical fields, transform. Per definition, they contain the “true” global symmetries as a
subgroup—one can simply ask what subgroup of the spurionic symmetries leaves a
given set of couplings invariant. But unlike gauge symmetries, spurionic symmetries
have real physical content. They put strong constraints on the low energy effective
action. While in general they do not give rise to new conserved quantities, they can
often be used to promote a global charge conservation condition to a local current
conservation law. A famous example of a spurionic symmetry are chiral rotations for
a massive Dirac fermion. The free Dirac Lagrangian is given by

L = ψ̄(i∂μγ μ − M)ψ. (21.3)

The massless (M = 0) theory is invariant under chiral rotations

ψ → e−iφγ5/2ψ (21.4)

that independently rotate left and right movers. This symmetry is broken by the mass
term. However it can be restored if we treat it as a spurionic symmetry, that is we let
the mass parameter itself transform as

M → eiφ M. (21.5)

This spurionic symmetry constrains how themass term can show up in the low energy
effective action, for example in the chiral Lagrangian of QCD.

21.3 Diffeomorphisms in General Relativity and QFT

So how do diffeomorphism fit into our classification of symmetries? Under an infin-
itesimal diffeomorphism

xμ → x̃μ = xμ + ξμ (21.6)

the metric transforms as

δgμν = ξλ∂λgμν + gλν∂μξλ + gμλ∂νξ
λ. (21.7)

In General Relativity (GR) the transformations from (21.6) and (21.7) are a gauge
symmetry. The metric is part of the dynamical fields in the theory. Physical
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observables have to be invariant under diffeomorphisms, implying that (quantum)
gravity has no local observables (as the position xμ isn’t gauge invariant). What the
true observables of GR are depends on the asymptotics of spacetime. For example, in
asymptotically flat space the observable quantity is the S-matrix, in asymptotically
Ad S space the boundary correlation functions of a dual CFT. While generic diffeo-
morphisms are a gauge symmetry there is one exception: diffeomorphisms that do
not vanish at infinity. Latter represent a genuine global symmetry of quantum gravity
and act on the asymptotic data, be it S-matrix or boundary correlation function.

This has to be contrasted with the role of diffeomorphisms in a relativistic QFT.
In a QFT diffeomorphisms are still given by (21.6) and (21.7), but this time the
metric is not part of the dynamical fields, rather it should be thought of as a cou-
pling constant. Furthermore, the physical quantities are not required to be invariant
under diffeomorphisms—they are no longer a gauge symmetry. Local observables,
like correlation functions of local operators, can be defined and measured. Note that
diffeomorphisms, despite being a global symmetry, still act locally in space. We
should think of the space-time metric gμν as a set of coupling constants (5 at each
space-time point) that transform non-trivially under the global spurionic symmetry.
In practice we have all used this fact throughout our career. When solving a simple
physics problem, like finding the electromagnetic fields of a point charge, we often
change coordinates from Cartesian to Spherical. Under this transformation our dif-
ferential equations are not invariant—the metric, and hence the Laplacian operator,
do change. But they change in a well defined way and we can change coordinates to
the system that allows us to find the solution most easily.

Thinking of diffeomorphisms as spurionic global symmetries has two important
applications. Spurionic symmetries can be used to constrain the way the coupling
constants (here themetric) appear in the low energy effective LagrangianLeff . These
constraints aremost powerful in gapped systems, where there are no dynamical fields
left in the low energy theory and the dependence on couplings is the only information
captured in the low energy effective action.As an example, put any gapped relativistic
system in a non-trivial curved background geometry. Leff is only a function of the
metric. To the first two orders in a derivative expansion, diffeomorphisms ensure that
it is entirely captured by two unknown coefficients:

Le f f = √
g(2Λ + R + · · · ). (21.8)

From this simple action we can read off the Casimir stress tensor at every point in
space and time up to order (l/L)2, where l is the length scale set by the gap and
L the geometric size of the geometry. The second application is that knowing the
global spurionic symmetries allows us to deduce the true global symmetries for every
particular set of couplings by simply asking which subset of the spurionic symmetry
leaves this given set of couplings, which here means the spacetime metric, invariant.
For example, when asking what diffeomorphisms leave the trival set of couplings
gμν = ημν invariant, we recover the standard global symmetries under translations,
rotations and boosts together with the associated conservation laws.
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21.4 Non-relativistic Diffeomorphisms

In order to understand what the spurionic global symmetries of a generic non-
relativistic QFT are, let us start with the action of the paradigm of a NR QFT:
Schrödinger’s equation for the many particle system comprised of free bosons or
fermions (in the non-relativistic case, both are given by the same action):

S =
∫

dtdd x
√

g

[
i

2
ψ†

↔
∂ tψ − A0ψ

†ψ − gi j

2m
(∂iψ

† − i Aiψ
†)(∂ jψ + i A jψ)

]

(21.9)

where we allowed our free particles to propagate on a non-trivial spatial metric gi j

and in background electro-magnetic fields described by a vector potential Ai and a
scalar potential A0. As before, gi j , A0 and Ai are to be considered coupling constants.
The least we expect this action to be invariant under (as a spurionic global symmetry)
are purely spatial diffeomorphisms as well as the standard “gauge transformations”
(which here are really global spurionic symmetries as well) acting on the background
potentials.What is somewhat surprising at first sight is that the spurionic symmetries

δA0 = −α̇ + ξ k∂k A0 + Ak ξ̇
k

δAi = −∂iα + ξ k∂k Ai + Ak∂iξ
k − mgik ξ̇

k

δgi j = +ξ k∂k gi j + gik∂ jξ
k + gkj∂iξ

k (21.10)

include time dependent spatial diffeomorphisms. The importance of the latter can be
understood by asking, once again, what subgroup of the spurionic symmetry leaves a
particular background invariant. For the trivial background gi j = δi j , Ai = A0 = 0,
we find that in addition to the usual suspects (rotations and translations) the time
dependent spatial diffeomorphisms allow us to perform Galilean boosts:

ξ = vt, α = −mv · x. (21.11)

This is the crucial symmetry which we wanted to implement. While the discussion
so far only applies to free non-relativistic QFTs, it is easy to add interactions that pre-
serve this full spurionic symmetry. This, in particular, includes Coulomb interactions
and short range 2-particle interactions, which means these symmetry considerations
carry over to quantum Hall systems, strongly correlated electron systems, as well as
the unitary Fermi gas.

As anticipated, the transformation laws from (21.10) can be obtained from rela-
tivistic diffeomorphisms as a decoupling limit. Starting with a free, complex scalar
field of mass m coupled to a background space-time metric as well as a background
potentialCμ the non-relativistic decoupling limit is a simple two step procedure. First
we need to turn on a chemical potential equal to the restmass,Ct = mc2. This ensures
that particles and anti-particles have dispersion relation E = √

(cp)2 + (mc2)2∓mc2

respectively. Second, we can now take the limit that c goes to infinity. In this limit the
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anti-particles go to infinite E and hence completely decouple, whereas the particles
pick up a non-relativistic dispersion relation

E = p2

2m
+ · · · . (21.12)

In this limit the spurionic diffeomorphism and gauge invariance of the relativistic
parent descend exactly to the non-relativistic spurionic symmetries of (21.10). Our
goal will be to implement exactly the same decoupling limit in the gravitational dual
description.

As in the relativistic case, the spurionic diffeomorphism symmetry has important
applications. As shown by Hoyos and Son [2], the symmetries of 21.10 significantly
constrain transport in any quantum Hall system. Including the first subleading order
in a derivative expansion, the low energy effective action has three input parameters:
the filling fraction ν (determining, as usual, the fraction of the Landau level being
filled), the Wen-Zee shift κ (which tells us how the density of the system changes
when putting the same state on a sphere instead of flat space—a quantity known for
example for all the Laughlin states) and a thermodynamic susceptibility, ε(B). In
terms of these quantities we can not just determine, as expected, theHall conductivity
as ν/(2π), but also more interesting transport coefficient. The Hall viscosity is fixed
to be κ B/(4π), as had been known before from other methods. A completely novel
prediction based on the spurionic symmetry was the first non-trivial term in the Hall
current due to a slowly spatially modulated electric field:

j i = − 1

B

[ κ

4π
− mε′′(B)

]
εi j∂ j (∇ · E) . (21.13)

This universal formula is in principle accessible to experimental verification, which
would be a great victory for this approach.

The symmetries discussed so far aren’t the complete set of spurionic symmetries
of the free non-relativistic system, as we haven’t addressed transformations that act
on time yet. In the relativistic case, these were of course part of the diffeomorphism
invariance, but here they need to be treated separately. One additional symmetry all
the NR theories discussed so far share is time translations, t → t + const.. The
free non-relativistic systems however have a larger spurionic symmetry; they are
invariant under arbitrary time reparametrizations t → t + f (t) as long as they are
accompanied with a corresponding transformation of the background couplings

δA0 = f Ȧ0 + ḟ A0, δAi = f Ȧi , δgi j = f ġi j − ḟ gi j . (21.14)

These spurionic symmetries in particular contain non-relativistic scale transforma-
tions and conformal transformations as a subgroup that leaves the trivial background
invariant. This spurionic symmetry under time-reparametrizations is only expected
in theories that preserve the full conformal or Schrödinger symmetry of the free
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theory. Unlike for the case of the diffeomorphisms it is much harder to construct
interactions that preserve the full NR conformal invariance, but there is at least one
known example: the unitary Fermi gas. As shown by Son and Wingate [6], in the
unitary Fermi gas the full spurionic symmetry once more gives novel constraints
on the low energy effective action, albeit in this case only at a higher order in the
derivative expansion.

21.5 Spurionic Symmetries and Holography

We have seen that a large class of non-relativistic quantum field theories are invariant
under spurionic symmetries that include gauge transformations on a background
gauge field, time-dependent spatial diffeomorphisms and either time translations
(for a generic NR QFT) or time reparametrizations (for a NR CFT). Time dependent
spatial diffeomorphisms together with time reparametrization invariance are often
referred to as foliation preserving diffeomorphism—they maintain a classical notion
of causality by respecting a preferred time slicing. In order to use this knowledge
to deduce the holographic dual of these theories, we need to remind ourselves how
relativistic holography encodes the full spurionic diffeomorphism symmetry of a
relativisticQFT.Recall that holography is the statement that gravity in asymptotically
AdS space has a dual description in terms of a field theory living on its boundary.
One basic piece of evidence for this equivalence is that the symmetries match. Most
notably the global SO(4, 2) conformal symmetry of a 3+1dimensionalCFTmatches
the isometry of the dual Ad S5 space. But for all symmetries to match the bulk has
to respect the full global (spurionic) diffeomorphism invariance of the QFT. As the
bulk theory is gravitational, diffeomorphisms in the bulk are really a redundancy of
the description. One way to remove the redundancy is to gauge fix, e.g. to Fefferman-
Graham form grμ = 0, grr = r−2 where r is the extra holographic direction. The
leading near-boundary r−2 term in the bulk metric is identified as the field theory
metric. As discussed before, the only diffeomorphisms that should be considered as
a global symmetry of the gravitational bulk theory are those that do not vanish near
the boundary. Here these are radially independent diffeomorphisms. Such radially
independent bulk diffeomorphisms maintain the Fefferman Graham form and act
on the boundary metric exactly as dictated by (21.6) and (21.7)—they are the bulk
manifestation of the spurionic diffeomorphism invariance of the dual field theory.

In order to implement the spurionic symmetry under foliation preserving diffeo-
morphisms of a NR CFT in the same spirit, the holographic dual needs to be built
around a gravitational theory whose defining gauge invariances are not the standard
relativistic diffeomorphisms, but rather the foliation preserving diffeomorphisms of
the NR CFT (together with a U(1) gauge invariance in the bulk in order to implement
the spurionic background gauge transformations). Fortunately such a gravitational
theory has recently been proposed: Hořava gravity [1]. Hořava gravity has been intro-
duced as a contender for a UV complete theory of quantum gravity. The different
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scaling of space and time coordinates under dimensional analysis allows one to con-
struct a power counting renormalizable action. It is this gravitational theory that, by
symmetry, is the natural candidate for the holographic dual of a generic NR CFT.

21.6 Implementing the Duality

Turning this basic observation based on symmetries into a concrete proposal was the
content of our two publications on this topic [3, 5]. Among other things, we were
able to show that (a) Hořava gravity can arise as a consistent limit of a relativistic
theory. In fact, the most direct way to get Hořava gravity out of string theory is to
use a “vector khronon”, that is we set the time component of a gauge field (dual
to the chemical potential) equal to a constant before sending the speed of light to
infinity. This is the direct implementation of the limit we took on the field theory
side. (b) A consistent holographic dictionary can be constructed. The field theory
sources transform as they should under the radially independent diffeomorphisms
in the bulk. (c) While generic Hořava gravity is dual to a Galilean invariant, non-
relativistic QFT, we need to impose an additional redundancy in the bulk, called
α invariance, in order to make sure that all sources transform appropriately under
conformal transformations. (d) Two point functions of probe scalars give correct two
point functions. We believe that this duality has still much to teach us, both about
non-relativistic field theory as well as the richness of quantum gravity.
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Chapter 22
A ‘Regularized’ Schwarzschild Solution

Frans R. Klinkhamer

Abstract An exact solution of the vacuum Einstein field equations over a particular
nonsimply-connected manifold is presented. This solution is spherically symmetric
and has no curvature singularity. It provides a regularization of the Schwarzschild
solution with a curvature singularity at the center.

22.1 Introduction

The main topic of this contribution concerns a nonsingular black-hole solution of
general relativity, which is closely related to (but not identical with) the standard
Schwarzschild solution [1–5]. It was arrived at by a detour which is rather interesting
by itself.

That earlier investigation started from the following simple question: how smooth
is space and what quantitative bounds can be set? In order to get a first partial
answer to this question, certain Swiss-cheese-type spacetime models were consid-
ered, for which the photon propagation can be calculated in the long-wavelength
limit [6]. Specifically, these spacetime models have randomly-positioned identical
static defects.

The simplest type of defect is obtained in the following way: start with
3-dimensional Euclidean space, remove the interior of a ball (r < b), and, finally,
identify antipodal points on the boundary (r = b). The corresponding Swiss-cheese-
type model then has two parameters: the defect size b and the average distance d
between neighbouring defects. The photon propagation over this spacetime model is
described by the isotropic modified Maxwell theory with a single Lorentz-violating
parameter [6]

κ̃tr = π b3/d3 . (22.1)

Note added in proof After the conference, further aspects of this new type of solution have
been studied in [18, 19].
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From the absence of vacuum-Cherenkov radiation for ultrahigh-energy cosmic
rays, the Auger data give the following two-σ upper bound [7]:

κ̃tr < 6 × 10−20 . (22.2)

Two remarks are in order:

1. Bound (22.2), with the particular identification (22.1), also holds for values of b
and d close to LPlanck ≡ (� G N /c3)1/2 ∼ 10−35 m.

2. The extremely small number on the right-hand side of (22.2) then suggest that,
whatever the ultimate theory of quantum gravity may be, this quantum theory
must leave practically no defects/wrinkles/ripples on the emerging classical flat
spacetime.

All this is quite intriguing, but the single defect naively embedded in standard
Minkowski spacetime does not satisfy the vacuum Einstein field equations (there are
delta-function-type curvature singularities at r = b) and the same holds for the cor-
responding Swiss-cheese-type spacetime models. The task, then, is to find a proper
defect solution. It turns out that the construction of this nonsingular defect solu-
tion [8, 9] produces an interesting spin-off: a black-hole solution without curvature
singularity [10–12].

The outline of the present contribution is as follows. In Sect. 22.2, the relevant
topology is discussed. In Sect. 22.3, the nonsingular black-hole solution is presented.
In Sect. 22.4, some questions related to physics are raised.

Let us emphasize, right from the start, that the solution discussed in this contribu-
tion is a solution of general relativity, no more, no less. The only “new” ingredient
is the nontrivial topology.

22.2 Manifold and Coordinates

As mentioned in the Introduction, our goal is to find a nonsingular solution of the
vacuum Einstein field equations with a parameter b > 0 and topology as suggested
by the sketch in Fig. 22.1. In this section, we describe the construction of themanifold

b

Fig. 22.1 Three-space M̃3 obtained by surgery on R
3: interior of the ball with radius b removed

and antipodal points on the boundary of the ball identified (as indicated by open and filled circles)
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and identify appropriate coordinates. The solution proper will be given in the next
section.

The four-dimensional spacetime manifold considered is

M̃4 = R × M̃3 , (22.3a)

where M̃3 is a noncompact, orientable, nonsimply-connected manifold without
boundary. Up to a point, M̃3 is homeomorphic to the 3-dimensional real-projective
space,

M̃3 � RP3 − {point} . (22.3b)

Recall that the 3-dimensional real projective space is topologically equivalent to a
3-sphere with antipodal points identified. Here, and in the following, the notation
is as follows: M̃ with tilde stands for a nonsimply-connected manifold (having a
nontrivial first homotopy group, π1(M̃ ) �= 0) and M without tilde stands for a
simply-connected manifold (having a trivial first homotopy group, π1(M ) = 0).

For the explicit constructionofM̃3,weperform local surgery on the 3-dimensional
Euclidean space E3 = (

R
3, δmn

)
. We use the standard Cartesian and spherical

coordinates on R
3,

x = (x1, x2, x3) = (r sin θ cosφ, r sin θ sin φ, r cos θ) , (22.4)

with xm ∈ (−∞, +∞), r ≥ 0, θ ∈ [0, π ], and φ ∈ [0, 2π). Now, M̃3 is obtained
fromR

3 by removing the interior of the ball Bb with radiusb and identifying antipodal
points on the boundary Sb ≡ ∂ Bb. With point reflection denoted P(x) = −x, the
3-space M̃3 is given by

M̃3 =
{

x ∈ R
3 :

(
|x| ≥ b > 0

)
∧

(
P(x) ∼= x for |x| = b

)}
, (22.5)

where ∼= stands for point-wise identification (Fig. 22.1).
The next step is to identify appropriate coordinates and an exhaustive discussion

of this issue can be found in [8]. The standard coordinates of Euclidean 3-space are
unsatisfactory, because a single point may have different coordinates. For example,
(x1, x2, x3) = (b, 0, 0) and (x1, x2, x3) = (−b, 0, 0) correspond to the same
point.

A relatively simple covering of M̃3 uses three charts of coordinates, labeled by
n = 1, 2, 3. Each chart covers and surrounds part of one of the three Cartesian
coordinate axes but does not intersect the other two Cartesian coordinate axes. For
example, the n = 1 coordinate chart covers and surrounds the |x1| ≥ b parts of the
x1 coordinate axis but does not intersect the x2 and x3 axes. The domains of the
chart-1 coordinates consist of two ‘wedges,’ on both sides of the defect and pierced
by the x1 axis.
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These coordinates are denoted

(Xn, Yn, Zn) , for n = 1, 2, 3 , (22.6)

and have the following ranges:

X1 ∈ (−∞, ∞) , Y1 ∈ (0, π) , Z1 ∈ (0, π) , (22.7a)

X2 ∈ (0, π) , Y2 ∈ (−∞, ∞) , Z2 ∈ (0, π) , (22.7b)

X3 ∈ (0, π) , Y3 ∈ (0, π) , Z3 ∈ (−∞, ∞) . (22.7c)

In each chart, there is one radial-type coordinate with infinite range, one polar-type
angular coordinate of finite range, and one azimuthal-type angular coordinate of
finite range.

In order to describe the interrelation of the coordinates (Xn, Yn, Zn) in the overlap
regions, we express them in terms of the coordinates of the 3-dimensional Euclidean
space E3. For the latter, we use the standard spherical coordinates (r, θ, φ) defined
by (22.4) and the nonstandard spherical coordinates (r, ϑ, ϕ) defined as follows:

(x1, x2, x3) = (r sin ϑ sin ϕ, r cosϑ, r sin ϑ cosϕ) , (22.8)

with r ≥ 0, ϑ ∈ [0, π ], and ϕ ∈ [0, 2π).
Now, the chart-1 and chart-2 coordinates over the appropriate regions (wedges)

of M̃3 are given by

X1 =
{

r − b for cosφ > 0 ,

b − r for cosφ < 0 ,
(22.9a)

Y1 =
⎧
⎨

⎩

φ − π/2 for π/2 < φ < 3π/2 ,

φ − 3π/2 for 3π/2 < φ < 2π ,

φ + π/2 for 0 ≤ φ < π/2 ,

(22.9b)

Z1 =
{

θ for cosφ > 0 ,

π − θ for cosφ < 0 ,
(22.9c)

and

X2 =
{

φ for 0 < φ < π ,

φ − π for π < φ < 2π ,
(22.10a)

Y2 =
{

r − b for 0 < φ < π ,

b − r for π < φ < 2π ,
(22.10b)

Z2 =
{

θ for 0 < φ < π ,

π − θ for π < φ < 2π .
(22.10c)

For the n = 3 chart, we require coordinates of E3 that are regular on the Cartesian
x3 axis. These nonstandard spherical coordinates have already been defined in (22.8).



22 A ‘Regularized’ Schwarzschild Solution 191

Then, the chart-3 coordinates over the relevant regions (wedges) of M̃3 are given by

X3 =
⎧
⎨

⎩

ϕ − π/2 for π/2 < ϕ < 3π/2 ,

ϕ − 3π/2 for 3π/2 < ϕ < 2π ,

ϕ + π/2 for 0 ≤ ϕ < π/2 ,

(22.11a)

Y3 =
{

ϑ for cosϕ > 0 ,

π − ϑ for cosϕ < 0 ,
(22.11b)

Z3 =
{

r − b for cosϕ > 0 ,

b − r for cosϕ < 0 .
(22.11c)

Having expressed the coordinates (Xn, Yn, Zn) in terms of coordinates of the
Euclidean 3-space, it is possible to verify that the (Xn, Yn, Zn) coordinates are
invertible and infinitely-differentiable functions of each other in the overlap regions.
These coordinates therefore describe amanifold.Moreover, themanifold satisfies [8]
the Hausdorff property (two distinct points x and y are always surrounded by two
disjoint open sets U and V : x ∈ U , y ∈ V , and U ∩ V = ∅).

22.3 Nonsingular Black-Hole Solution

We will now present a black-hole solution for the topology (22.3) with parameters

2M ≥ b > 0 , (22.12)

using geometrical units with G N = c = 1. For this new black-hole solution, the
curvature singularity will be eliminated by a spacetime defect, i.e., a “hole” in space-
time.

Instead of starting from an Ansatz based on Kruskal–Szekeres coordinates [2, 3]
as was done in our original article [10], we start from an Ansatz based on Painlevé–
Gullstrand coordinates [13, 14] (a useful review appears in [15]). Turning to the
chart-1 coordinates (22.7a), we arrive at the following line element [12]:

ds2
∣
∣
∣
chart-1

= −dT 2 +
(

X1
√

b2 + (X1)2
d X1 +

√
2M

√
b2 + (X1)2

dT

)2

+
(

b2 + (X1)
2
) (

(d Z1)
2 + (

sin Z1
)2

(dY1)
2
)

, (22.13a)

for mass parameter M > 0 and length parameter b > 0. Remark that the surfaces of
constant T are intrinsically flat [15]. An advantage of the metric (22.13a) is that it
applies not only to the black-hole case 2M ≥ b (including the special case 2M = b)
but also to the defect case 2M < b.
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The metrics for the n = 2 and n = 3 charts are obtained from (22.13a) by
taking the coordinates (X2, Y2, Z2) and (X3, Y3, Z3) instead of (X1, Y1, Z1). The
corresponding metrics are given by the following line elements [12]:

ds2
∣
∣
∣
chart-2

= −dT 2 +
(

Y2
√

b2 + (Y2)2
dY2 +

√
2M

√
b2 + (Y2)2

dT

)2

+
(

b2 + (Y2)
2
) (

(d Z2)
2 + (sin Z2)

2 (d X2)
2
)

, (22.13b)

ds2
∣
∣
∣
chart-3

= −dT 2 +
(

Z3
√

b2 + (Z3)2
d Z3 +

√
2M

√
b2 + (Z3)2

dT

)2

+
(

b2 + (Z3)
2
) (

(dY3)
2 + (

sin Y3
)2

(d X3)
2
)

. (22.13c)

TheRicci tensor andRicci scalar from (22.13) vanish. Hence, the vacuumEinstein
field equations are solved. Furthermore, the Kretschmann scalar is found to be given
by

K ≡ Rμνρσ Rμνρσ = 48
M2

ζ 6 , (22.14)

with ζ 2 = b2 + (X1)
2 for the n = 1 chart, and similarly for the other charts. The

Kretschmann scalar remains finite because b > 0.
Recall that the standard Schwarzschild–Kruskal–Szekeres solution [1–3], with

topology

MSKS = R
2 × S2 , (22.15)

has a physical singularity for r → 0, as shown by the divergence of the Kretschmann
scalar,

K
∣
∣
∣
SKS

≡ Rμνρσ Rμνρσ
∣
∣
∣
SKS

= 48
M2

r6
. (22.16)

The comparison of (22.14) for b �= 0 and (22.16) makes clear that the solution
(22.13) over R × M̃3 may be considered to be a regularized version of the standard
Schwarzschild solution over R

+ ×R× S2, with the curvature singularity eliminated
by a spacetime defect, i.e., a “hole” in spacetime (Fig. 22.1).

For themoment, specialize to the n = 1 chart and transform toSchwarzschild-type
coordinates (denoted by a prime). The coordinate T ′ and the coordinate X ′

1 = X1
are, respectively, spacelike and timelike for the inner Schwarzschild-typemetric [10].
This behavior is analogous to what happens for the standard Schwarzschild solu-
tion [5]. Note that the timelike coordinate X ′

1 of the inner metric ranges from −∞
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to +∞, unlike the usual radial coordinate r . Moreover, this timelike coordinate X ′
1

is part of a topologically nontrivial manifold M̃3. This gives rise to the presence of
closed time-like curves (CTCs). These CTCs imply all possible horrors, but, classi-
cally, these horrors remain confined within the Schwarzschild horizon. Whether or
not CTCs in the interior region are physically acceptable depends on the behavior of
the matter fields.

The problematic CTCs of the modified Schwarzschild solution (22.13) trace back
to the fact that the original singularity was spacelike. But it is well-known that the
singularity of the standard Reissner–Nordström solution [16, 17] is timelike (see,
for example, [4, 5]). This suggests, first, to add a small electric charge and, then, to
modify the resulting Reissner–Nordström solution in order to arrive at a nonsingular
solution. Details can be found in the original article [11] and the review [12].

22.4 Discussion

Apart from the mathematical interest of having a new type of exact solution of the
Einstein field equations, these nonsingular solutions (with or without electric charge)
may also appear in a physical context.

Start from a nearly flat spacetime with a trivial topology R
4 and a metric approx-

imately equal to the Minkowski metric. Next, arrange for a large amount of matter
with total mass M and with vanishing net charge Q = 0 to collapse in a spherically
symmetric way. Within the realm of classical Einstein gravity, one expects to end up
with part of the singular Schwarzschild solution. But, very close to the final curvature
singularity, something else may happen due to quantum effects.

Consider a precursor mass ΔM ∼ �/(b c) � M and use typical curvature values
from the expressions (22.14) and (22.16) for the Kretschmann scalar. Then, the local
spacetime integral of the action density related to the standard Schwarzschild solution
differs from that related to (22.13) by an amount � �. As argued byWheeler [5], the
local topology of the manifold may change by a quantum jump if b is sufficiently
close to the length scale LPlanck ≡ (� G N /c3)1/2.

This quantum process may then result in a transition from the simply-connected
manifold R

4 to the nonsimply-connected manifold M̃4. Hence, if the transition
amplitude between the different topologies is nonzero for appropriate matter con-
tent, quantum mechanics can operate a change between the classical Schwarzschild
solution and the classical solution (22.13). In this way, the curvature singularity
would be removed. (Note that closed timelike curves can be avoided by adding a
small electric charge.)

It is also possible to present an alternative scenariowithout topology change. Now,
the spherical collapse of matter is assumed to occur in Minkowski spacetime with a
relatively sparse sprinkling of massless static defects (each one given by the solution
of Sect. 22.3 with M = 0 and b > 0). Then, the precursor mass ΔM selects one of
the available defect cores and increases its mass (M = 0 → ΔM → M), possibly
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giving it also a charge by electron-positron pair creation with one charge expelled to
infinity. Again, the curvature singularity would be removed.

Many questions remain, the most important of which are the following:

1. Are these regularized Schwarzschild solutions really acceptable, both mathemat-
ically and physically?

2. Are there perhaps other surprises from this regularization, in addition to restricted
elementary flatness (cf. App. D of [12]) and closed time-like curves?

3. Where does the matter go and can the matter be distributed over a thin shell with
ζ ∈ [b, b + Δb) for Δb > 0 ?

4. Does realistic collapse occur with or without topology change?

These are obviously difficult questions. We can perhaps make further progress by
explicitly considering the matter sector.
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Chapter 23
The Chemistry of Black Holes

Robert B. Mann

Abstract I provide a short overview of black hole thermodynamics in extended
phase space, where the cosmological constant is interpreted as thermodynamic pres-
sure. This leads to an understanding of black holes from the viewpoint of chemistry,
in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and
triple points. I discuss first the motivations for the extended phase space, indicating
why the mass of a black hole should be understood as the analogue of thermodynamic
enthalpy. I think go on to describe how charged and rotating black holes exhibit novel
chemical-type phase behaviour, hitherto unseen.

23.1 Introduction

Black hole thermodynamics has remained a subject of interest for four decades,
providing us with interesting clues to the underlying structure of quantum gravity.
The parallel with standard thermodynamics is quite striking:

Energy E ↔ M Mass
Temperature T ↔ �κ

2π
Surface Gravity

Entropy S ↔ A
4G�

Horizon Area

where on the left-hand side we see the basic thermodynamic quantities of a physical
system, and on the right their counterparts in black hole physics. However the first
law of thermodynamics

d E = T d S + V d P + work terms ↔ d M = κ

8Gπ
d A + Ωd J + Φd Q
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does not quite capture this same correspondence, insofar as there is no counterpart
of the “pressure-volume” term; the Ωd J and Φd Q terms are understood as thermo-
dynamic work terms. Where is the PV term in black hole thermodynamics [1]?

Recently there have been interesting new developments that address this question.
They lead to a picture in which the mass of a black hole should be interpreted as the
enthalpy of spacetime. The basic idea is that the cosmological constant of anti de
Sitter (AdS) space-time be considered as a thermodynamic variable [2] analogous to
pressure in the first law [1, 3–14]. Out of this idea emerges a much richer panoply
of thermodynamic behaviour, for both negative and positive [15] cosmological con-
stants. Some of the more interesting results include the discovery of reentrant phase
transitions in rotating [16] and Born-Infeld [10] black holes, the existence of a tri-
critical points in rotating black holes analogous to the triple point in water [17], and
a complete analogy between 4-dimensional Reissner-Nördstrom AdS black holes
and the Van der Waals liquid–gas system [9]; the critical exponents coincide with
those of the Van der Waals system and predicted by the mean field theory, signifi-
cantly modifying previous considerations that emerged from the duality description
[18, 19].

The purpose of this article is to provide a brief overview and summary of these
interesting new developments in black hole thermodynamics. Henceforth we shall
set c = � = G = 1.

23.2 Smarr Relations

The motivation for extending the thermodynamic phase space of black holes orig-
inated from a consideration of the Smarr relation [3, 4]. Consider a Schwarzschild
black hole, whose metric is

ds2 = − f dt2 + dr2

f
+ +r2dΩ2

d−2 (23.1)

where f = 1 − 2M
rd−3 and dΩ2

d is the line element on Sd . The event horizon is at

f (r+) = 0, or rd−3+ = 2M . The associated thermodynamic quantities are

E = M = d − 2

16π
ωd−2rd−3+ T = d − 3

4πr+
S = ωd−2rd−2+

4
=⇒ (d−3)M = (d−2)T S

(23.2)

where ωd = 2π
d+1

2

�
(

d+1
2

) . The relation on the right is known as the Smarr relation,

originally obtained for d = 4 [20].
For a Schwarzschild-AdS black hole, with cosmological constant Λ =

− (d−1)(d−2)

2	2 , the metric is still given by (23.1) but with f = r2

	2 + 1 − 2M
rd−3 . The

associated thermodynamic quantities M and S remain the same, but now
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T = d − 3

4πr+

(
1 + d − 1

d − 3

r2+
	2

)
=⇒ (d − 3)M �= (d − 2)T S (23.3)

and we see that the Smarr relation is no longer satisfied.
A consideration of these quantities indicates that an appropriately modified Smarr

relation could be satisfied. For a homogeneous function h(x, y) and some scaling
parameter α, Euler’s theorem indicates

h(α px, αq y) = αr h(x, y) =⇒ rh(x, y) = p
∂h

∂x
+ q

∂h

∂x
(23.4)

Regarding the mass M = M(A,Λ) we obtain

(d − 3)M = (d − 2)
∂ M

∂ A
A − 2

∂ M

∂Λ
Λ (23.5)

since these quantities scale as M = [L]d−3, A = [L]d−2, and Λ = [L]−2. Since it
is straightforward to show that T = 4 ∂ M

∂ A , relation (23.5) suggests that we regard Λ

as a thermodynamic variable. Writing

P = − Λ

8π
= (d − 1)(d − 2)

16π	2 V = ωd−2r+d−1

d − 1
(23.6)

where V = −8π ∂ M
∂Λ

is the thermodynamic volume conjugate to P [6], we have

(d − 3)M = (d − 2)T S − 2PV d M = TdS + VdP (23.7)

as a modified Smarr relation and extended first law of thermodynamics.
We therefore have the complete thermodynamic correspondence

Enthalpy H ↔ M Mass

Temperature T ↔ �κ
2π

Surface Gravity

Entropy S ↔ A
4G�

Horizon Area

Pressure P ↔ − Λ
8π

Cosmological Constant

1st law d E = T d S + V d P + · · · ↔ 1st law

d M = κ
8Gπ

d A + V d P + · · ·

(23.8)

where the black hole work terms are
∑

i Ωi d Ji + Φd Q for multiply rotating and
charged black holes. If included then the more general Smarr relation

d − 3

d − 2
M = T S +

∑

i

(Ω i − Ω i∞)J i− 2

d − 2
PVh , + ΦQ (23.9)

holds for all possible
[ d

2

]
rotation parameters, where the quantities Ω i∞ allow for

the possibility of a rotating frame at infinity [21]. The quantity P is regarded as a
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thermodynamic pressure. From the perspective of cosmology, this is quite natural,
since a negative cosmological constant induces a vacuum pressure. The mass M is
then understood as a gravitational version of chemical enthalpy: the total energy of
a system, which includes its internal energy and the energy required to “make room
for it” by displacing its environment. For space times with Λ < 0, the PV term can
be regarded as a displacement of vacuum energy.

The above results can be derived from a geometric argument [1], indicating that
the extended Smarr formula (23.9) is on a firm footing.

23.3 Van der Waals Phase Transitions

One of the first things to emerge from treating Λ as a pressure term was the realization
that charged black holes behave as Van der Waals fluids [9]. Recall that Van der Waals’
equation [22]

(
P + a

v2

)
(v − b) = kT =⇒ Pv3 − (kT + bP)v2 + av − ab = 0 (23.10)

where v = V/N is the specific volume of the fluid, P its pressure, T its temperature,
and k is Boltzmann’s constant, is a modification of the ideal gas law that approximates
the behaviour of real fluids, taking into account the nonzero size of molecules and the
attraction between them. Critical points occur at isotherms T = Tc, where P = P(v)

has an inflection point

∂ P

∂v
= 0 ,

∂2 P

∂v
= 0 =⇒ kTc = 8a

27b
, vc = 3b , Pc = a

27b2 (23.11)

in turn implying the universal relation Pcvc
kTc

= 3
8 for any such fluid.

Remarkably, charged black holes in any dimension obey the same basic relation-

ships. The metric is still given by (23.1), but with V = 1− m
rd−3 + q2

r2(d−3) + r2

l2 , where

the charge Q =
√

2(d−2)(d−3)
8π

ωd−2 q. The relation T = V ′(r+)
4π

and (23.6) yield

P = T

v
− (d − 3)

π(d − 2)v2 + q2(d − 3)

4πv2(d−2)κ2d−5
(23.12)

which is the equation of state. To ensure the correct relation between the ‘geometric
quantities’ P and T and the physical pressure and temperature [10] I have identified

v = 4r+ld−2
P

d−2 = r+ld−2
P
κ

as the specific volume of the corresponding fluid (instead of

V ), with ld−2
P = Gd�/c3 the Planck length. The critical points are

(κv)2(d−3)
c = q2(d − 2)(2d − 5) Tc = (d − 3)2

πκvc(2d − 5)
Pc = (d − 3)2

16πκ2vc
2 (23.13)
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Fig. 23.1 P − V diagrams of charged AdS black holes for q = 1. The isotherms decrease in
temperature from top to bottom. The two upper dark lines correspond to the “ideal gas” one-phase
behaviour for T > Tc, the critical isotherm T = Tc is denoted by the thick solid line, the lower
(red) solid lines correspond to a two-phase state occurring for T < Tc. a P versus v in d = 4 for
various values of T. b P versus v in d = 10 for various values of T

yielding Pcvc
Tc

= 2d−5
4d−8 , which reduces to the 3/8 result for d = 4. It is straightforward

to show that the critical exponents (obtained by expanding the equation of state near
the critical point in powers of the critical temperature and volume) are the same as
those for a Van der Waals fluid; so far no black holes have been found that have
different critical exponents. In any dimension, for T < Tc there is a small–large
black hole phase transition in the system; Fig. 23.1 illustrates this for d = 4 and
d = 10. Maxwell’s equal area law, which states two phases will coexist when the
areas above and below a line of constant pressure drawn through a P-v curve are
equal, can be used to compute the onset of the small/large black hole phase transition.

23.4 Reentrant Phase Transitions and the Triple Point

Rotating black holes have even more interesting thermodynamic behaviour than their
charged counterparts. The general form of the metric [23]

ds2 = − W
(

1 + r2

l2

)
dτ2 + 2m

U

(
W dτ −

N∑

i=1

ai μ
2
i dϕi

�i

)2 + Udr2

F − 2m
(23.14)

+
N∑

i=1

r2 + a2
i

�i
μ2

i dϕ2
i +

N+ε∑

i=1

r2 + a2
i

�i
dμ2

i − l−2

W (1 + r2/ l2)

(N+ε∑

i=1

r2 + a2
i

�i
μi dμi

)2

has N independent angular momenta Ji , described by N rotation parameters ai , and
solves the Einstein equations with cosmological constant Rab = − d−1

l2 gab, where
d = 2N +1+ε and ε = ±1 corresponds to even/odd dimensionality. The azimuthal
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Fig. 23.2 Gibbs free energy for single-spinning black holes. Pressures increase from left to right
and solid-red/dashed-blue lines correspond to CP positive/negative respectively; at their joins CP
diverges. For P ≥ Pc, the (lower) large BH branch is thermodynamically stable whereas the upper
branch is unstable, with criticality at P = Pc. In d = 6, P ≈ 0.0564 ∈ (Pt , Pz) we observe a
“zeroth-order phase transition”: a discontinuity in the global minimum of G at T = T0 ≈ 0.2339 ∈
(Tt , Tz) (denoted by the vertical line in the inset) signifying the onset of an reentrant phase transition.
For P < Pt only one branch of stable large BHs exists. a Gibbs free energy in d = 5 for various
values of P and J = 1. b Gibbs free energy in d = 6 for various values of P and J = 1.

coordinates μi obey
∑N+ε

i=1 μ2
i = 1, Ξi = 1 − a2

i
l2 , W = ∑N+ε

i=1
μ2

i
Ξi

, and

U = rε
N+ε∑

i=1

μ2
i

r2 + a2
i

N∏

j

(r2 + a2
j ) F = rε−2

(
1 + r2

l2

) N∏

i=1

(r2 + a2
i ) (23.15)

Consider first the d = 5 case with one rotation parameter J1, which can be
normalized to unity without loss of generality. The behaviour of the Gibbs free energy
G = M − T S is illustrated in Fig. 23.2a: as the pressure decreases a characteristic
swallowtail emerges, indicating a small/large black hole transition. For fixed P in
this range as temperature decreases, G increases and the large black hole becomes
smaller, until the crossover at which point a small black hole globally minimizes G.
This kind of behaviour is qualitatively the same as that for all Reissner-Nordstrom-
AdS black holes, with only the height and width of the swallowtail changing with
dimensionality. The CP < 0 line indicates a local thermodynamic instability where
the Gibbs energy G is not a local minimum; at the cusps of the curves CP diverges.

Novel behaviour is manifest for d > 5; the behaviour of G for d = 6 (and J2 = 0)
is plotted in Fig. 23.2b. For P > Pt there is a standard first order small/large black
hole phase transition below Pc. Above this value, the upper branch corresponds to
small unstable black holes with CP < 0, whereas the lower branch describes stable
large black holes with CP > 0.
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However three separate phases of black holes emerge for for Pc > Pz = P > Pt :
intermediate black holes (on the left), small (middle), and large (on the right). This
holds for T ∈ (Tt , Tz), P ∈ (Pt , Pz). A standard first order phase transition separates
the small and large black holes, but the intermediate and small ones are separated by
a finite jump in G, which in this range has a discontinuous global minimum, as shown
in the inset in Fig. 23.2b. This is the reentrant phase transition [16], first observed
in a nicotine/water mixture [24], and since seen in multicomponent fluid systems,
gels, ferroelectrics, liquid crystals, and binary gases [25]; similar behaviour occurs
for Born-Infeld black holes [10]. For T < Tt only one large black hole phase exists.
The associated P-T diagram is plotted in Fig. 23.3a.

For J1 >> J2 �= 0 the situation completely changes: a new branch of (locally)
stable tiny cold black holes appears. Both the unstable branch of tiny hot black holes
and the J2 = 0 ‘no black hole region’ disappear, and the situation becomes quite
similar to what happens when a small charge is added to a Schwarzschild black hole
[18]. The zeroth-order phase transition is ‘replaced’ by a ‘solid/liquid’-like phase
transition of small to large black holes.

Once J2 becomes sufficiently large, a new phenomenon occurs [17]: a triple point
and a second critical point emerge from the coexistence line at Ptr = Pc2 ≈ 0.09577
and Ttr = Tc2 ≈ 0.30039. As J2/J1 increases, the triple point moves away from the
second critical point (the values of Tt and Pt decrease), and a small/intermediate/large
black hole phase transition occurs, resembling a solid/liquid/gas phase transition. The

Pc1

Pc2

Ptr

2cT 1cTTtr

P

T

INTERMEDIATE BH

SMALL BH

LARGE BH

Tricritical Point

Critical Point 1

Critical Point 2

0

0.1

0.2

0.3

0.2 0.4

(a) (b)

Fig. 23.3 Reentrant phases and triple points. The left/right P-T diagrams respectively depict
reentrant phase behaviour and a triple (tricritical) point. Solid black lines indicate first order phase
transitions between the various small/intermediate/large black hole types. The red solid line (inset
at left) indicates the ‘coexistence line’ of small and intermediate black holes, separated by a finite
gap in G, indicating a reentrant phase transition. It commences from (Tz, Pz) and terminates at
(Pt , Tt ). The “No BH region” is to the left of the dashed oblique curve, containing the (Tz, Pz)

point. The diagram at right is analogous to the solid/liquid/gas phase diagram; note that the solid-
liquid coexistence line does not extend to infinity but rather terminates, similar to the “liquid/gas”
coexistence line, in a critical point. Both diagrams are in d = 6 dimensions. a Reentrant Phase
behaviour for J2 = 0. b Triple point for J2 = 0.05J1
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situation is illustrated in Fig. 23.3b. The first critical point simultaneously moves
towards the triple point (Tc1 and Pc1 decrease), and at J2 = 0.08121J1 both critical
points occur at the same pressure Pc1 = Pc2 ≈ 0.0953, whereas Tc1 ≈ 0.2486 <

Tc2 ≈ 0.2997. Increasing J2/J1 even further, the first critical point moves closer and
closer to the triple point. For J2 ≈ 0.0985J1 the two merge at Ptr = Pc1 ≈ 0.049;
for larger J2/J1 only the second critical point remains.

23.5 Summary

The physics associated with extended black hole thermodynamics is only just begin-
ning to be explored. There are many other issues to consider, including a full analysis
of rotating black holes in higher dimensions, the significance of Λ > 0, and higher
curvature theories such as Lovelock theory though some work has been done on
these latter aspects [15, 26].

One of the most interesting avenues for future research are the implications of the
extended phase space for gauge-gravity duality. Since neither the existence of the
reentrant phase transition nor of the triple point depends on a variable Λ ∼ P , for any
fixed P within the allowed range, these phenomena will take place. Consequently
there will be a corresponding reentrant phase transition in the AdS/CFT context
within the allowed range of N in the dual SU (N ) gauge theory.
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Chapter 24
Black Holes in Supergravity

Kellogg S. Stelle

Abstract A brief review is given of the use of duality symmetries to form orbits of
supergravity black-hole solutions and their relation to extremal (i.e. BPS) solutions
at the limits of such orbits. An important technique in this analysis uses a timelike
dimensional reduction and exchanges the stationary black-hole problem for a nonlin-
ear sigma-model problem. Families of BPS solutions are characterized by nilpotent
orbits under the duality symmetries, based upon a tri-graded or penta-graded decom-
position of the corresponding duality group algebra.

24.1 Introduction

Aside from the general mathematical interest in classifying black hole solutions of
any kind, the study of families of such solutions is also of current interest because it
touches other important issues in theoretical physics. For example, the classification
of BPS and non-BPS black holes forms part of a more general study of branes in
supergravity and superstring theory. Branes and their intersections, as well as their
worldvolumemodes and attached string modes, are key elements in phenomenologi-
cal approaches to the marriage of string theory with particle physics phenomenology.
The related study of nonsingular and horizon-free BPS gravitational solitons is also
central to the “fuzzball” proposal of BPS solutions as candidate black-hole quantum
microstates.

The search for supergravity solutions with assumed Killing symmetries can be
recast as a Kaluza-Klein problem [1–4]. To see this, consider a 4D theory with a
nonlinear bosonic symmetry G4 (e.g. the “duality” symmetry E7 for maximal N = 8
supergravity). Scalar fields take their values in a target space Φ4 = G4/H4, where
H4 is the corresponding linearly realized subgroup, generally the maximal compact
subgroup of G4 (e.g. SU(8) ⊂ E7 for N = 8 SG). The search will be constrained by
the following considerations:
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• We assume that a solution spacetime is asymptotically flat or asymptotically Taub-
NUT and that there is a ‘radial’ function r which is divergent in the asymptotic
region, gμν∂μr∂νr ∼ 1 + O(r−1).

• Searching for stationary solutions amounts to assuming that a solution possesses a
timelike Killing vector field κμ(x). Lie derivatives with respect to κμ are assumed
to vanish on all fields. The Killing vector κμ will be assumed to have W :=
−gμνκ

μκν ∼ 1 + O(r−1).
• We also assume asymptotic hypersurface orthogonality, i.e. κν(∂μκν − ∂νκμ) ∼
O(r−2). In any vielbein frame, the curvature will then fall off as Rabcd ∼ O(r−3).

The 3D theory obtained after dimensional reduction with respect to a timelike
Killing vector κμ will have an Abelian principal bundle structure, with a metric

ds2 = −W (dt + Bi dxi )2 + W −1γi j dxi dx j (24.1)

where t is a coordinate adapted to the timelike Killing vector κμ and γi j is the metric
on the 3-dimensional hypersurfaceM3 at constant t . If the 4D theory also hasAbelian
vector fields Aμ, they similarly reduce to 3D as

4
√
4πGAμdxμ = U (dt + Bi dxi ) + Ai dxi (24.2)

The timelike reduced 3D theory will have a G/H∗ coset space structure similar to
the G/H coset space structure of a 3D theory reduced with a spacelike Killing vector.
Thus, for the spacelike reduction of maximal supergravity down to 3D, one obtains
an E8/SO(16) theory from the sequence of dimensional reductions descending from
D = 11 [5]. The resulting 3D theory has this exceptional symmetry because 3D
Abelian vector fields can be dualized to scalars; this also happens for the analogous
theory subjected to a timelike reduction to 3D. The resulting 3D theory contains 3D
gravity coupled to a G/H∗ nonlinear sigma model.

Although the numerator group G for a timelike reduction is the same as that
obtained in a spacelike reduction, the divisor group H∗ for a timelike reduction is
a noncompact form of the spacelike divisor group H [2]. A consequence of this
H → H∗ change and the dualization of vectors is the appearance of negative-sign
kinetic terms for some 3D scalars.

Consequently, maximal supergravity, after a timelike reduction to 3D and the
subsequent dualization of 29 vectors to scalars, has a bosonic sector containing 3D
gravity coupled to a E8/SO∗(16) nonlinear sigma model with 128 scalar fields. As a
consequence of the timelike dimensional reduction and vector dualizations, however,
the scalars do not all have the same signs for their “kinetic” terms:

• There are 72 positive-sign scalars: 70 descending directly from the 4D theory, one
emerging from the 4D metric and one more coming from the D = 4 → D = 3
Kaluza-Klein vector, subsequently dualized to a scalar.

• There are 56 negative-sign scalars: 28 descending directly from the time compo-
nents of the 28 4D vectors, and another 28 emerging from the 3D vectors obtained
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from spatial components of the 28 4D vectors, becoming then negative-sign scalars
after dualization.

The sigma-model structure of this timelike reduced maximal theory is E8/

SO∗(16). The SO∗(16) divisor group is not an SO(p, q) group defined via preser-
vation of an indefinite metric. Instead it is constructed starting from the SO(16)
Clifford algebra {Γ I , Γ J } = 2δ I J and then by forming the complex U(8)-covariant
oscillators ai := 1

2 (Γ2i−1 + iΓ2i ) and ai ≡ (ai )
† = 1

2 (Γ2i−1 − iΓ2i ). These satisfy
the standard fermi oscillator annihilation/creation anticommutation relations

{ai , a j } = {ai , a j } = 0, {ai , a j } = δi
j (24.3)

The 120 SO∗(16) generators are then formed from the 64 hermitian U(8) gen-
erators ai

j plus the 2 × 28 = 56 antihermitian combinations of ai j ± ai j . Under
SO∗(16), the vector representation and the antichiral spinor are pseudo-real, while
the 128-dimensional chiral spinor representation is real. This is the representation
under which the 72 + 56 scalar fields transform in the E8/SO∗(16) sigma model.

The 3D classification of extended supergravity stationary solutions via timelike
reduction generalizes the 3D supergravity systems obtained from spacelike reduction
[6]. This also connects with N = 2models with coupled vectors [7] and N = 4mod-
els with vectors, where solutions have also been generated using duality symmetries
[8, 9]

The process of timelike dimensional reduction down to 3 dimensions togetherwith
dualization of all form-fields to scalars produces an Euclidean gravity theory coupled
to aG/H∗ nonlinear sigmamodel, Iσ = ∫

d3x
√

γ (R(γ )− 1
2G AB(φ)∂iφ

A∂ jφ
Bγ i j ),

whereG AB(φ) is theG/H∗ sigma-model target-spacemetric andγi j is the 3Dmetric.
Varying this action produces the 3D field equations

1√
γ

∇i (
√

γ γ i j G AB(φ)∂ jφ
B) = 0 (24.4)

Ri j (γ ) = 1
2G AB(φ)∂iφ

A∂ jφ
B (24.5)

where ∇i is a doubly covariant derivative (for the 3D space M3 and for the G/H∗
target space).

Now one can make the simplifying assumption that φA(x) = φA(σ (x)), with a
single intermediatemap σ(x). Subject to this assumption, the field equations become

∇2σ
dφA

dσ
+ γ i j∂iσ∂ jσ [∂

2φA

dσ 2 + Γ A
BC (G)

dφB

dσ

dφC

dσ
] = 0 (24.6)

Ri j =
(

1
2G AB(φ)

dφA

dσ

dφB

dσ

)

∂iφ
A∂ jφ

B (24.7)

Now one uses the gravitational Bianchi identity ∇ i (Ri j − 1
2γi j R) ≡ 0 to obtain

1
4

d
dσ

(G AB(φ)
dφA

dσ
dφB

dσ
)(∇ iσ∂iσ) = 0. Requiring separation of the σ(x) properties
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from the d
dσ

properties leads to the conditions

∇2σ = 0 (24.8)

d2φA

dσ 2 + Γ A
BC (G)

dφB

dσ

dφC

dσ
= 0 (24.9)

d

dσ

(

G AB(φ)
dφA

dσ

dφB

dσ

)

= 0 (24.10)

The first equation (24.8) above implies that σ(x) is a harmonic map from the 3D
spaceM3 into a curve φA(σ ) in the G/H∗ target space. The second equation (24.9)
implies that φA(σ ) is a geodesic in G/H∗. The third equation (24.10) implies that
σ is an affine parameter. The decomposition of φ : M3 → G/H∗ into a harmonic
map σ : M3 → R and a geodesic φ : R → G/H∗ is in accordance with a general
theorem on harmonic maps [10] according to which the composition of a harmonic
map with a totally geodesic one is again harmonic. Such factorization into geodesic
and harmonic maps is also characteristic of general higher-dimensional p-brane
supergravity solutions [1, 3, 4].

Here is a sketch of the map composition:

xi

σ(x)

∇ σ = 02

GH*/
D=3 Space M

3

φ
(σ

)
ge

od
es

icΑ

Now define the Komar two-form K ≡ ∂μκνdxμ ∧dxν . This is invariant under the
action of the timelike isometry and, by the asymptotic hypersurface orthogonality
assumption, is asymptotically horizontal. This condition is equivalent to the require-
ment that the scalar field B dual to the Kaluza-Klein vector arising out of the 4D
metric must vanish like O(r−1) as r → ∞. In this case, one can define the Komar
mass and NUT charge by (where s∗ indicates a pull-back to a section) [11]

m ≡ 1

8π

∫

∂M3

s∗ � K n ≡ 1

8π

∫

∂M3

s∗K (24.11)

TheMaxwell field also defines charges. Using theMaxwell field equation d�F =
0, where F ≡ δL /δF is a linear combination of the two-form field strengths F
depending on the 4D scalar fields, and using theBianchi identity d F = 0, one obtains
conserved electric and magnetic charges:

q ≡ 1

2π

∫

∂M3

s∗ � F p ≡ 1

2π

∫

∂M3

s∗F . (24.12)

Now consider these charges from the three-dimensional point of view in order
to clarify their transformation properties under the 3D duality group G The three-
dimensional theory is described in terms of a coset representative V ∈ G/H∗. The
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Maurer–Cartan form V −1dV for g decomposes as

V −1dV = Q + P , Q ≡ Qμdxμ ∈ h∗ , P ≡ Pμdxμ ∈ g � h∗ . (24.13)

Then the three-dimensional scalar-field equation of motion can be rewritten as d �

V PV −1 = 0, so the g-valued “Noether current” is �V PV −1. Since the three-
dimensional theory is Euclidean, one cannot properly speak of a conserved charge.
Nevertheless, since �V PV −1 is d-closed, the integral of this 2-form over a given
homology cycle does not depend on the particular representative of that cycle.

As a result, for stationary solutions, the integral of this three-dimensional 2-form
current, taken over any spacelike closed surface ∂M3 containing in its interior all the
singularities and topologically non-trivial subspaces of a solution, defines a g � h∗-
valued Noether-charge matrix C :

C ≡ 1

4π

∫

∂M3

�V PV −1 (24.14)

This transforms in the adjoint representation of the duality group G in accordance
with the standard non-linear action of G on V ∈ G/H∗. For asymptotically-flat
solutions, V can be arranged to tend asymptotically at infinity to the identity matrix;
the charge matrix C in that case is simply given by the asymptotic value of the
one-form P:

P = C
dr

r2
+ O(r−2) . (24.15)

Now follow the evolution of the duality group G down a couple of steps in dimen-
sional reduction. In D = 5, maximal supergravity has the maximally noncompact
duality group E6,6, with the 42 D = 5 scalar fields taking their values in the coset
space E6,6/USp(8), while the 1-form (i.e. vector) fields transform in the 27 of E6,6.

Proceeding on down to 4D, the 27 D = 5 vectors produce new scalars upon
dimensional reduction, and one also gets a new Kaluza-Klein scalar emerging from
the D = 5 metric, making up the total of 70 scalars in the 4D theory. These take
their values in E7,7/SU(8), while the 4D vector field strengths transform in the 56
of E7,7. The new KK scalar corresponds to a gl1 grading generator of E7,7, leading
to a tri-graded decomposition of the E7,7 algebra as follows:

e7,7  27
(−2) ⊕ (gl1 ⊕ e6,6)

(0) ⊕ 27(2) (24.16)

where the superscripts indicate the gl1 grading.
Continuing on down to 3D via a timelike reduction, one encounters a newphenom-

enon: 3D vectors can now be dualized to scalars. This is already clear in the timelike
reduction of pure 4D GR to 3D, where one obtains a two-scalar system taking values
in SL(2,R)/SO(2), where SL(2,R) is the Ehlers group [12]. Its generators can be
written
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γ h ⊕ εe ⊕ ϕ f =
(

γ ε

ϕ −γ

)

(24.17)

and its Lie algebra is [h, e] = 2e, [h, f ] = −2 f , [e, f ] = h.
Accordingly, in reducing from 4D to 3D a supergravity theory with 4D symmetry

group G4, with corresponding Lie algebra g4 and with vectors transforming in the
l4 representation of g4, one obtains a penta-graded structure for the 3D Lie algebra
g, with the Ehlers h now acting as the grading generator 1(0):

g  1(−2) ⊕ l4
(−1) ⊕ (1 ⊕ g4)

(0) ⊕ l
(+1)
4 ⊕ 1(2) (24.18)

For example, in 3D maximal supergravity one obtains in this way e8,8:

e8,8  1(−2) ⊕ 56
(−1) ⊕ (1 ⊕ e7,7)

(0) ⊕ 56(+1) ⊕ 1(2) (248 generators) (24.19)

Now apply this to the decomposition of the coset-space structure for the 3D scalar
fields and the chargematrixC . In 4D, the scalars are associated to the coset generators
g4 � h4, where h4 is the Lie algebra of the 4D divisor group H4. The representation
carried by the 4D electric and magnetic charges q and p is l4. Then the 3D scalars
and the charge matrix C can be decomposed into three irreducible representations
with respect to so(2) ⊕ h4 according to

g � h∗ ∼= (
sl(2,R) � so(2)

) ⊕ l4 ⊕ (
g4 � h4

)
(24.20)

The metric induced by the g algebra’s Cartan-Killing metric on this coset space
is positive definite for the first and last terms, but is negative definite for λ4. One
associates the sl(2,R)�so(2) componentswith theKomarmass and theKomarNUT
charge, while the l4 components are associatedwith the electromagnetic charges. The
remaining g4 � h4 charges belong to the Noether current of the 4D theory.

Breitenlohner et al. [2] proved that if G is simple, all the non-extremal single-
black-hole solutions of a given theory lie on the H∗ orbit of aKerr solution.Moreover,
all static solutions regular outside the horizonwith a chargematrix satisfyingTrC 2 >

0 lie on the H∗-orbit of a Schwarzschild solution. (Turning on and off angular
momentum requires consideration of the D = 2 duality group generalizing the
Geroch A1

1 group.)
Using Weyl coordinates, where the 4D metric takes the form

ds2 = f (x, ρ)−1[e2k(x, ρ)(dx2 + dρ2) + ρ2dφ2] + f (x, ρ)(dt + A(x, ρ)dφ)2 ,

(24.21)
the coset representative V associated to the Schwarzschild solution with mass m can
be written in terms of the non-compact generator h of the Ehlers sl(2,R) only, i.e.

V = exp

(
1

2
ln

r − m

r + m
h
)

→ C = mh (24.22)
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For the maximal N = 8 theory with symmetry E8(8) (and also for the excep-
tional ‘magic’ N = 2 supergravity [13] with symmetry E8(−24)), one has h =
diag[2, 1, 0,−1,−2], so

h5 = 5h3 − 4h (24.23)

Consequently, the charge matrix C satisfies in all cases the characteristic equation

C 5 = 5c2C 3 − 4c4C (24.24)

where c2 ≡ 1
Tr h2

Tr C 2 is the extremality parameter (c2 = 0 for extremal static

solutions; c2 = m2 for Schwarzschild). Moreover, for all but the two exceptional E8
cases, a stronger constraint is actually satisfied by the charge matrix C :

C 3 = c2C (24.25)

The characteristic equation selects acceptable orbits of solutions, i.e. orbits not exclu-
sively containing solutions with naked singularities. It determines C in terms of the
mass and NUT charge and the 4D electromagnetic charges.

The parameter c2 is the same as the (target space velocity)2 of the harmonic-
map discussion: c2 = v2. The Maxwell-Einstein theory is the simplest example
with an indefinite-signature sigma-model metric, for the scalar-field target space
G/H∗ = SU(2, 1)/S(U(1, 1) × U(1)). The Maxwell-Einstein charge matrix is

CME =
⎛

⎝
m n −z/

√
2

n −m iz/
√
2

z̄/
√
2 iz̄/

√
2 0

⎞

⎠ ∈ su(2, 2) � u(1, 1) (24.26)

where z = q + ip is the complex electromagnetic charge. The Maxwell-Einstein
extremality parameter is c2 = m2 + n2 − zz̄. Solutions fall into three categories:
c2 > 0 nonextremal, c2 = 0 extremal and c2 < 0 hyperextremal. The hyperextremal
solutions have naked singularities, while the nonextremal and extremal solutions
have their singularities cloaked by horizons.

Extremal solutions have c2 = 0, implying that the charge matrix C becomes
nilpotent: C 5 = 0 in the E8 cases and C 3 = 0 otherwise.

For N extended supergravity theories, one finds H∗ ∼= Spin∗(2N ) × H0 and
the charge matrix C transforms as a Weyl spinor of Spin∗(2N ) also valued in
a representation of h0 (where h0 acts on the matter content of reducible N = 4
theories). As in the SO∗(16) case considered earlier, one defines the Spin∗(2N )

fermionic oscillators

ai := 1

2

(
Γ2i−1 + iΓ2i

)
ai ≡ (ai )

† = 1

2

(
Γ2i−1 − iΓ2i

)
(24.27)

for i, j, . . . = 1, . . . ,N . These obey standard fermionic annihilation and cre-
ation anticommutation relations. Using this annihilation/creation oscillator basis,
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the charge matrix C can be represented as a state (where ai |0 >= 0)

|C >≡
(

W + Zi j a
i a j + Σi jkla

i a j akal + · · ·
)

|0〉 (24.28)

From the requirement that the dilatino fields be left invariant under the unbroken
supersymmetry of a BPS solution, one derives a ‘Dirac equation’ for the charge state
vector, (

εi
αai + Ωαβε

β
i ai

)
|C 〉 = 0 (24.29)

where (εi
α, εα

i ) is the asymptotic (for r → ∞) value of the Killing spinor and Ωαβ

is a symplectic form on C2n in cases with n/N preserved supersymmetry.
Note that c2 = 0 ⇐⇒ 〈C |C 〉 = 0 is a weaker condition than the supersymmetry

Dirac equation. Extremal and BPS are not always synonymous conditions, although
they coincide forN ≤ 5 pure supergravities. They are not synonymous forN = 6
and 8 or for theories with vector matter coupling.

Earlier analysis of the orbits of the 4D symmetry groups G4 [14] heavily used the
Iwasawa decomposition

g = u(g,Z) exp
(
ln λ(g,Z) z

)
b(g,Z) (24.30)

with u(g,Z) ∈ H4 and b(g,Z) ∈ BZ where BZ ⊂ G4 is the parabolic subgroup that
leaves the charges Z invariant up to a multiplicative factor λ(g,Z). This multiplica-
tive factor can be compensated for by ‘trombone’ transformations combining Weyl
scalings with compensating dilational coordinate transformations, leading to a for-
mulation of active symmetry transformations that map solutions into other solutions
with unchanged asymptotic values of the spacetime metric and scalar fields.

The 4D ‘trombone’ transformation finds a natural home in the parabolic subgroup
of the 3D duality group G. The 3D structure is characterized by the fact that the
Iwasawa decomposition breaks down for noncompact divisor groups H∗.

The Iwasawa decomposition does, however work “almost everywhere” in the 3D
solution space. The places where it fails are precisely the extremal suborbits of the
duality group. This has the consequence that G does not act transitively on its own
orbits. There are G transformations which allow one to send c2 → 0, thus landing
on an extremal (generally BPS) suborbit. However, one cannot then invert the map
and return to a generic non-extremal solution from the extremal solution reached on
a given G trajectory.

The above framework applies equally tomulti-centered as to single-centered solu-
tions [15, 16]. One may start from a general ansatz

V (x) = V0 exp(−
∑

n

H n(x)Cn) (24.31)
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with Lie algebra elementsCn ∈ g�h∗ and functionsH n(x) to be determined by the
equations ofmotion.Defining as aboveV −1dV = Q+P and restricting P to depend
linearly on the functionsH n(x), one finds the requirement [Cm, [Cn,Cp]] = 0. The
Einstein and scalar equations of motion then reduce to

Rμν − 1

2
gμν R =

∑

mn

∂μH
m∂νH

n Tr CmCn d � dH n = 0 (24.32)

Restricting attention to solutionswhere the 3-space is flat then requires TrCmCn = 0.
The resulting system generalizes that found in [3, 4]. Solving [Cm, [Cn,Cp]] = 0 =
Tr CmCn is now reduced to an algebraic problem amenable to the above nilpotent-
orbit analysis: non-extremal and extremal stationary solutions can be formed from
extremal single-hole constituents.

In summary, what has been developed here is a quite general framework for
the analysis of stationary supergravity solutions using duality orbits. The Noether
charge matrix C satisfies a characteristic equation C 5 = 5c2C 3 − 4c4C in the
maximal E8 cases and C 3 = c2C in the non-maximal cases, where c2 ≡ 1

Tr h2
Tr C 2

is the extremality parameter. Extremal solutions are characterized by c2 = 0, and C
becomes nilpotent (C 5 = 0 or C 3 = 0) on the corresponding extremal suborbits.
BPS solutions have a charge matrix C satisfying an algebraic ‘supersymmetry Dirac
equation’ which encodes the general properties of such solutions. This is a stronger
condition than the c2 = 0 extremality condition. The orbits of the 3D duality group
G are not always acted upon transitively by G. This is related to the failure of the
Iwasawa decomposition for noncompact divisor groups H∗. The Iwasawa failure set
corresponds to the extremal suborbits.
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Chapter 25
Thermodynamic of Distorted
Reissner-Nordström Black Holes
in Five-Dimensions

Shohreh Abdolrahimi

Abstract In this paper, we study mechanics and thermodynamics of distorted, five-
dimensional, electrically charged (non-extremal) black holes on the example of a
static and “axisymmetric” black hole distorted by external, electrically neutralmatter.
Such a black hole is represented by the derived here solution of the Einstein-Maxwell
equationswhich admits an IR1×U (1)×U (1) isometry group.We study the properties
of this distorted black hole.

25.1 Introduction

This is based on a paper [1], which has been presented as a talk in the Karl Schwarz-
schild Meeting in Frankfurt. Einstein equations are very complex and describing
black hole interaction with external matter and fields usually requires involved
numerical computations. To construct exact solutions which would model to some
extend the interaction of a black hole with the external matter, Geroch and Har-
tle [2] proposed to consider static (or stationary), axisymmetric space-times which
are not asymptotically flat. Such solutions represent black holes distorted by exter-
nal matter. Four-dimensional, distorted, axisymmetric, black holes were studied in,
e.g., [3–5]. Distorted black holes can show some strange and remarkable properties
[6, 7].

In four dimensions, the general static, axisymmetric solution of the vacuum Ein-
stein equations can be written in the form of Weyl solution [8]. Using Weyl form of
the metric distorted black hole solutions can be constructed. As it was done in the
case of four-dimensions, one can use the generalized Weyl solution [9] to construct
distorted black objects by adding the distortion fields to the Newtonian potentials,
which define the solution. Here, we shall analyze a solution representing a dis-
torted five-dimensional Reissner-Nordström black hole. This is a static solution of
the Einstein-Maxwell equations which has IR1 × U (1) × U (1) isometry group. The
construction is based on the gauge transformation of the matrix which is an element
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of the coset target space SL(2, IR1)/U (1) of the scalar fields which define our model
(see, e.g., [10]). We use the following convention of units: G(5) = c = � = kB = 1,
where G(5) is the five-dimensional gravitational constant. The space-time signature
is +3 and the sign conventions are that adopted in [11].

25.1.1 The Solution

Applying the generating transformation presented in [1] to the distorted five-
dimensional Schwarzschild-Tangherlini solution, we derive the solution representing
distorted charged black hole,

ds2 = −4p2(η2 − 1)

Δ2 e2(Û+Ŵ )dt2 + mΔ

2

(

e2(V̂ +Û+Ŵ ) dη2

4(η2 − 1)
+ dΩ̂2

)

,

(25.1)

Δ = (1 + p)(η + 1) − (1 − p)(η − 1)e2(Û+Ŵ ) , (25.2)

dΩ̂2 = 1

4

(
e2(V̂ +Û+Ŵ )dθ2 + 2(1 + cos θ)e−2Ŵ dχ2 + 2(1 − cos θ)e−2Û dφ2

)
,

(25.3)

Φ =
√
3(1 − p2)

Δ

(
η + 1 − (η − 1)e2(Û+Ŵ )

)
, (25.4)

where Φ is the electrostatic potential. Here, the functions Û , Ŵ , and V̂ are the
distortion fields given by the following expressions:

Û (η, θ) =
∑

n≥0

an Rn Pn , Ŵ (η, θ) =
∑

n≥0

bn Rn Pn , (25.5)

V̂ = V̂1 + V̂2 , R = (η2 − sin2 θ)1/2 , Pn ≡ Pn(η cos θ/R) , (25.6)

V̂1(η, θ) = −
∑

n≥0

{
3(an/2 + bn/2)Rn Pn + (an + bn/2)

n−1∑

l=0

(η − cos θ)Rl Pl

+ (an/2 + bn)

n−1∑

l=0

(−1)n−l(η + cos θ)Rl Pl

}
, (25.7)

V̂2(η, θ) =
∑

n,k≥1

nk

n + k
(anak + anbk + bnbk)Rn+k[Pn Pk − Pn−1Pk−1] , (25.8)

When the distortion fields Û , Ŵ , and V̂ vanish, the solution represents a five-
dimensional Reissner-Nordström solution in an empty, asymptotically flat universe.
For p = 1, this solution represents the distorted five-dimensional Schwarzschild-
Tangherlini black hole. If the distortion fields vanish, this solution represents the
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five-dimensional Reissner-Nordström solution. The parameters m and q are related
to the five-dimensional Komar mass of the black hole M and its five-dimensional
electric charge Q as follows: M = 3πm/4 and Q = 2

√
3 q. In these coordinates, the

event (outer) horizon is at η = 1 and the (inner) Cauchy horizon is at η = −1, and the
space-time singularity is at η = −1/p. Distortion fields defined by exterior multi-
pole moments correspond to asymptotically flat solutions. To have a regular horizon
we shall consider non-asymptotically flat solutions distorted by the external sources
only, whose distortion fields are defined by the interior multipole moments. This
represents a black hole distorted by external sources. Such fields must be regular and
smooth at the horizon. The distortion fields Û , Ŵ , and V̂ given above satisfy this con-
dition. If the sources of the distortion fields are included into the solution, then their
energy-momentum tensor satisfies the strong energy condition. The strong energy
condition implies that Û + Ŵ ≤ 0. Then, it follows that, on the “semi-axes” θ = 0
and θ = π , at the black hole horizon η = 1, we have

∑
n≥0(±1)n(an + bn) ≤ 0,

where +1 corresponds to θ = 0 and −1 corresponds to θ = π . One can show that,
the space-time curvature invariants diverge in the regionwhereΔ = 0. If Û +Ŵ ≤ 0,
that is if the sources of the distortion fields satisfy the strong energy condition, then
the space-time singularities are located behind the inner (Cauchy) horizon.

In addition, for a regular horizon there should be no conical singularities on the
“semi-axes” θ = 0 and θ = π , and thus on the horizon. For the metric (25.1)–(25.3)
this condition implies (for details see [7]), V̂ +2Û + Ŵ |θ=0 = 0, for the “semi-axis”
θ = 0, and V̂ +Û +2Ŵ |θ=π = 0, for the “semi-axis” θ = π , which can be written in
the following form

∑
n≥0(a2n −b2n)+3

∑
n≥0(a2n+1 +b2n+1) = 0. This condition

implies the black hole equilibrium condition.

25.2 Properties of the Distorted Black Hole Solution

In this section we shall discuss the properties of the distorted black hole solution
(25.1)–(25.4). The three-dimensional surface of the outer horizon is defined by
t = const and η = 1. The three-dimensional surface of the inner horizon is defined
by t = const and η = −1. One can show that the metrics of the outer and inner
horizon surfaces are related to each other by the following transformation, i.e., an
exchange between the “semi-axes” and reverse of signs of the multipole moments,
(θ, χ, φ) −→ (π − θ, φ, χ), an −→ −an, bn −→ −bn . We shall call this trans-
formation the duality transformation between the outer and inner horizons of the
distorted black hole. This transformation is exactly the same as the duality transfor-
mation between the horizon and the stretched singularity surfaces of the distorted
five-dimensional Schwarzschild-Tangherlini black hole (see (135)–(137), [7]). The
horizon areas of the distorted black hole solution are

A± = 2π2
√

m3(1 ± p)3 e∓ 3
2 γ . γ =

∑

n≥0

a2n +
∑

n≥0

b2n + 1

3
(
∑

n≥0

a2n+1 −
∑

n≥0

b2n+1).

(25.9)
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One can see that the area product has the same form as that of the Reissner-Nordström
black hole:

A+ A− = 4π4q3 = π4

6
√
3

Q3 . (25.10)

We can define the lower and upper limits for the inner and outer horizon areas of

a general distorted Reissner-Nordström black hole, A− < π2Q
3
2 /(3

3
4
√
2) < A+,

which can be written in the following form: A− <
√

A− A+ < A+. Thus, the
geometric mean of the inner and outer horizon areas of the distorted black hole
represents the upper and lower limits of its inner and outer horizon areas, respectively.
It is easy to see that, the values of the electrostatic potential at the black hole horizons
does not change under the distortion. One can also check that the Smarr formula

± M = 3

16π
κ± A± ± π

8
Φ±Q . (25.11)

holds for the distorted black hole as well. Here M defines the black hole Komarmass,
assuming that the space-time (25.1)–(25.3) can be analytically extended to achieve
its asymptotic flatness.

25.3 Mechanics and Thermodynamics of the Distorted
Black Hole

In this section, we derive mechanical laws of the distorted black hole and present
the corresponding laws of thermodynamics. The zeroth law says that a black hole
surface gravity (and accordingly, its temperature) is constant at the blackhole horizon.
The surface gravity is defined up to an arbitrary constant which depends on the
normalization of the time-like Killing vector. However, the normalization does not
affect the zeroth law. The surface gravity at the horizons is

κ± = 2p e± 3
2 γ

√
m(1 ± p)3

. (25.12)

We see that due to distortion fields, the surface gravity differs from that of the

Reissner-Nordström (undistorted) black hole by the factor e± 3
2 γ . The zeroth law

holds for both horizons of our distorted black hole. The corresponding temperature
is defined in terms of the surface gravity as T± = κ±/2π . This definition, however,
requires a proper normalization of theKilling vector at the spatial infinity. Taking into
account the description of black holeswithin string theory [12], one can view the inner
horizon thermodynamics, “temperature” T−, as the difference of the thermodynamics
corresponding to the right- and left-moving excitations of the strings.
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Global first law correspond to the total system of the black hole plus the distorting
matter. Local first law corresponds to the system of the black hole only. To define a
global first law one needs to extend the space-time to achieve its asymptotic flatness.
The extension is achieved by requiring that the distortion fields Û , Ŵ , and V̂ vanish
at the asymptotic infinity and by extending the corresponding space-time manifold.
In the extended manifold there exists an electrovacuum region in the interior of the
black hole and part of the exterior region where the solution (25.1)–(25.4) is valid.
Then, there is a region where the external sources are located. Beyond that region
there is asymptotically flat electrovacuum region. Having this extension one can
normalize the timelike Killing vector ξ (t) at the spatial infinity as ξ2(t) = −1. As it is
done, one naturally finds that the komarmassM of undistorted black hole correspond
to the mass of black hole not including the mass of external matter. We derive the
global first law of the black hole mechanics,

± δM = κ±
8π

δA± ± π

8
Φ±δQ + Mloc± δγ, (25.13)

where the local black hole mass, Mloc± = ±3πmp/4, does not depend on the distor-
tion fields. From the global first law of the black hole mechanics, by using the defini-
tion of temperature and the black hole entropy, S± = A±/4.We derive the global first
law of the black hole thermodynamics, ±δM = T±δS± ± (π/8)Φ±δQ + Mloc± δγ .
Here the term Mloc± δγ is interpreted as the work done on the black hole by the
variation of the external potential γ due to the distorting matter. If the distortion is
adiabatic, δS± = 0, i.e., such that neither matter nor gravitational waves cross the
black hole horizons, and in addition, the black hole charge Q does not change, then
the work Mloc± δγ results in the change of the black hole mass δM .

The local first law does not include the distorting matter into consideration of the
black hole mechanics. The observers who live near the black hole consider the black
hole as an isolated, undistorted object. Thus, assuming that there is no other matter
present and the space-time is asymptotically flat, they define its surface gravity κ̃+,
the outer horizon area Ã+, electrostatic potential Φ̃+, electric charge Q̃, and the
black hole Komar mass M̃ . Thus, these observers construct the local first law of the
black hole mechanics as that of the Reissner-Nordström (undistorted) black hole,

± δM̃ = κ̃±
8π

δ Ã± ± π

8
Φ±δQ . (25.14)

With the definitions of temperature and entropy the local first law of black hole
thermodynamics reads ±δM̃ = T̃±δ S̃± ± (π8)Φ±δQ. The measurements of the
observers define the black hole area as that which is exactly equal to the black hole
area when the presence of the distortion fields is taken into account, i.e.,

Ã± = 2π2
√

m̃3(1 ± p̃)3 = A± = 2π2
√

m3(1 ± p)3 e∓ 3
2 γ , (25.15)
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where M̃ = 3πm̃/4 and p̃ = √
m̃2 − q2/m̃. The following relations provide us with

the correspondence between the local and the global forms of the first law:

M̃ = M

2

[
(1 + p)e−γ + (1 − p)eγ

]
, p̃ = (1 + p)e−γ − (1 − p)eγ

(1 + p)e−γ + (1 − p)eγ
,

(25.16)

κ̃± = 2 p̃
√

m̃(1 ± p̃)3
= κ±

2p

[
(1 + p)e−γ − (1 − p)eγ

]
, Φ̃± =

√
3(1 − p̃2)

1 ± p̃
= Φ±eγ ,

(25.17)

25.4 Conclusion

We have studied the mechanic and thermodynamic of a distorted, five-dimensional
Reissner-Nordström black hole solution. The space-time singularities are located
behind the black hole’s inner (Cauchy) horizon, provided that the sources of the
distortion satisfy the strong energy condition. The inner (Cauchy) horizon remains
regular if the distortion fields are finite and smooth at the outer horizon. There exists
a certain duality transformation between the inner and the outer horizon surfaces
which links surface gravity, electrostatic potential, and space-time curvature invari-
ants calculated at the black hole horizons. The product of the inner and outer horizon
areas depends only on the black hole’s electric charge and the geometric mean of the
areas is the upper (lower) limit for the inner (outer) horizon area. The horizon areas,
electrostatic potential, and surface gravity satisfy the Smarr formula. We formulated
the zeroth and the first laws of mechanics and thermodynamics of the distorted black
hole and found a correspondence between the global and local forms of the first law.
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Chapter 26
What Is the Schwarzschild Radius
of a Quantum Mechanical Particle?

Roberto Casadio

Abstract A localised particle in QuantumMechanics is described by a wave packet
in position space, regardless of its energy. However, from the point of view ofGeneral
Relativity, if the particle’s energy density exceeds a certain threshold, it should be
a black hole. In order to combine these two pictures, we introduce a horizon wave-
function determined by the position wave-function, which yields the probability that
the particle is a black hole. The existence of a (fuzzy) minimummass for black holes
naturally follows, and we also show that our construction entails an effective Gen-
eralised Uncertainty Principle simply obtained by adding the uncertainties coming
from the two wave-functions.

26.1 The Schwarzschild Link

In natural units, with c = 1 (and � = �p mp), the Newton constant is given by

GN = �p/mp , (26.1)

where �p and mp are the Planck length and mass, respectively, and converts mass
(or energy) into length. This naive observation stands behind Thorne’s hoop conjec-
ture [1]: A black hole forms when the impact parameter b of two colliding objects
is shorter than the Schwarzschild gravitational radius of the system, that is for

RH ≡ 2 �p
E

mp
� b , (26.2)
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where E is total energy in the centre-of-mass frame. The emergence of the Schwarz-
schild radius is indeed easy to understand in a spherically symmetric space-time,
where the metric gμν can be written as

ds2 = gi j dxi dx j + r2(xi )
(
dθ2 + sin2 θ dφ2

)
, (26.3)

with xi = (x1, x2) coordinates on surfaces of constant angles θ and φ. The location
of a trapping horizon, a sphere where the escape velocity equals the speed of light,
is then determined by

0 = gi j ∇i r ∇ j r = 1 − 2 M

r
, (26.4)

where∇i r is the covector perpendicular to surfaces of constant areaA = 4π r2. The
active gravitational (or Misner-Sharp) mass M represents the total energy enclosed
within a sphere of radius r , and, if we set x1 = t and x2 = r , is explicitly given by

M(t, r) = 4π �p

3mp

∫ r

0
ρ(t, r̄) r̄2 dr̄ , (26.5)

where ρ = ρ(xi ) is the matter density. It is usually very difficult to follow the
dynamics of a given matter distribution and find surfaces satisfying (26.4), but an
horizon exists if there are values of r such that RH = 2 M(t, r) > r , which is a
mathematical reformulation of the hoop conjecture (26.2).

26.2 Horizon Wave-Function

The hoop conjecture was formulated having in mind black holes of astrophysical
size [2], for which a classical metric and horizon structure are reasonably safe con-
cepts. However, for elementary particles quantum effects may not be neglected [3].
Consider a spin-less point-like source of mass m, whose Schwarzschild radius is
given by RH in (26.2) with E = m. The Heisenberg principle introduces an uncer-
tainty in its spatial localisation, of the order of the Compton-de Broglie length,
λm � �p mp/m. Assuming quantum physics is a more refined description of reality
implies that RH only makes sense if it is larger than λm ,

RH � λm ⇒ m � mp (or M � �p) . (26.6)

Note that this argument employs the flat spaceCompton length, and it is likely that the
particle’s self-gravity will affect it. However, we can still assume the condition (26.6)
holds as an order of magnitude estimate, hence black holes can only exist with mass
(much) larger than the Planck scale.
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We are thus facing a deeply conceptual challenge: how can we describe sys-
tems containing both quantum mechanical particles and classical horizons? For this
purpose, we shall define a horizon wave-function that can be associated with any
localised quantummechanical particle [4, 5], and thatwill put on quantitative grounds
the condition (26.6) that distinguishes black holes from regular particles.

The quantum mechanical state representing an object, which is both localised in
space and at rest in the chosen reference frame,must be described by awave-function
ψS ∈ L2(R3), which can be decomposed into energy eigenstates,

|ψS〉 =
∑

E

C(E) |ψE 〉 , (26.7)

where the sum represents the spectral decomposition in Hamiltonian eigenmodes,

Ĥ |ψE 〉 = E |ψE 〉 , (26.8)

and H can be specified depending on the model we wish to consider. If we also
assume the state is spherically symmetric, we can introduce a Schwarzschild radius
RH = RH(E) associated to each component ψE of energy E , by inverting (26.2),
and define the (unnormalised) horizon wave-function as

ψ̃H(RH) = C

(

E = mp
RH

2 �p

)

. (26.9)

The normalisation is finally fixed by employing the inner product

〈ψH | φH 〉 = 4π

∫ ∞

0
ψ∗
H(RH) φH(RH) R2

H dRH . (26.10)

We interpret the normalised wave-function ψH as yielding the probability that we
would detect a horizon of areal radius r = RH associated with the particle in the
quantum state ψS. Such a horizon is necessarily “fuzzy”, like the particle’s position,
unless the width ofψH is negligibly small. Moreover, the probability density that the
particle lies inside its own horizon of radius r = RH will be given by

P<(r < RH) = PS(r < RH) PH(RH) , (26.11)

where PS(r < RH) = 4π
∫ RH
0 |ψS(r)|2 r2 dr is the probability that the particle

is inside the sphere of radius r = RH, and PH(RH) = 4π R2
H |ψH(RH)|2 is the

probability that the horizon is located on the sphere of radius r = RH. Finally, by
integrating (26.11) over all possible values of the radius,

PBH =
∫ ∞

0
P<(r < RH) dRH , (26.12)

the probability that the particle is a black hole will be obtained.
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26.2.1 Gaussian Particle

The above construction can be straightforwardly applied to a particle described by
the Gaussian wave-function

ψS(r) = e
− r2

2 �2

�3/2 π3/4 , (26.13)

where the width � ∼ λm . This wave-function in position space corresponds to the
momentum space wave-function

ψS(p) = e− p2

2Δ2

Δ3/2 π3/4 , (26.14)

where p2 = p · p and Δ = �/� = mp �p/�. For the energy of the particle, we simply
assume the relativistic mass-shell relation in flat space, E2 = p2+m2, and we easily
obtain the normalised horizon wave-function

ψH (RH) = �3/2 e
− �2 R2H

8 �4p

23/2 π3/4 �3p
. (26.15)

Note that, since 〈 r̂2 〉 � �2 and 〈 R̂2
H 〉 � �4p/�

2, we expect the particle will be inside

its own horizon if 〈 r̂2 〉 � 〈 R̂2
H 〉, which precisely yields the condition (26.6) if

� � λm . In fact, the probability density (26.11) can now be explicitly computed,

P<(r < RH) = �3 R2
H

2
√

π �6p
e
− �2 R2H

4 �4p

[

Erf

(
RH

�

)

− 2 RH√
π �

e
− R2H

�2

]

, (26.16)

from which we derive the probability (26.12) for the particle to be a black hole,

PBH(�) = 2

π

[

arctan

(

2
�2p

�2

)

+ 2
�2 (4 − �4/�4p)

�2p (4 + �4/�4p)
2

]

. (26.17)

In Fig. 26.1, we show the probability (26.17) that the particle is a black hole as a
function of the Gaussian width � (in units of �p). From the plot of PBH, it appears
that the particle is most likely a black hole, PBH � 1, if � � �p. Assuming � =
λm = �p mp/m, we have thus derived a result in qualitative agreement with the
condition (26.6), but from a totally quantum mechanical picture. Strictly speaking,
there is no black hole minimum mass in our treatment, but a vanishing probability
for a particle of “small” mass (say m � mp/4, that is � � 4 �p), to be a black hole.
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Fig. 26.1 Probability that a
particle of width � is a black
hole as a function of �/�p

1 2 3 4

0.2

0.4

0.6

0.8

1.0

26.2.2 Generalised Uncertainty Principle

For the Gaussian packet described above, the Heisenberg uncertainty in radial posi-
tion is given by

〈Δr2 〉 = 4π

∫ ∞

0
|ψS(r)|2 r4 dr −

(

4π

∫ ∞

0
|ψS(r)|2 r3 dr

)2

= 3π − 8

2π
�2 ,

(26.18)
and, analogously, the uncertainty in the horizon radius will be given by

〈ΔR2
H 〉 = 4

3π − 8

2π

�4p

�2
. (26.19)

Since 〈Δp2 〉 = ( 3π−8
2π

)
m2

p
�2p

�2
≡ Δp2, we can also write

�2 = 3π − 8

2π
�2p

m2
p

Δp2
. (26.20)

Finally, by combining the uncertainty (26.18) with (26.19) linearly, we find

Δr ≡
√

〈Δr2 〉 + γ

√
〈ΔR2

H 〉 = 3π − 8

2π
�p

mp

Δp
+ 2 γ �p

Δp

mp
, (26.21)

where γ is a coefficient of order one, and the result is plotted in Fig. 26.2 (for γ = 1).
This is precisely the kind of result one obtains from the generalised uncertainty
principles considered in [6–10], leading to a minimum measurable length

Δr ≥ 2

√

γ
3π − 8

π
�p � 1.3

√
γ �p . (26.22)
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Fig. 26.2 Uncertainty
relation (26.21) (solid line)
as a combination of the
Quantum Mechanical
uncertainty (dashed line) and
the uncertainty in horizon
radius (dotted line) (lengths
in units of �p and momentum
in units of mp)
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Of course, one might consider different ways of combining the two uncertain-
ties (26.18) and (26.19), or even avoid this step and just make a direct use of the
horizon wave-function. In this respect, the present approach appears more flexible
and does not require modified commutators for the canonical variables r and p.

26.3 Final Remarks

So far, the idea of the horizon wave-function was just applied to the very simple
case of a spinless massive particle, and expected results (existence of a minimum
black hole mass and generalised uncertainty relation) were recovered and refined
[4, 5]. Next, it should be applied to more realistic systems. For example, one could
investigate dispersion relations derived from quantum field theory in curved space-
time, and what a localised state is in the latter context [11]. Regardless of such
improvements, the conceptual usefulness of our construction should already be clear,
in that it allows us to deal with very quantum mechanical sources, and to do so in
a quantitative fashion. For example, one could review the issue of quantum black
holes [12, 13] in light of the above formalism, as well as finally tackle the description
of black hole formation and dynamical horizons in the gravitational collapse of truly
quantum matter [3, 14–16].
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Chapter 27
The Background Effective Average Action
Approach to Quantum Gravity

Giulio D’Odorico, Alessandro Codello and Carlo Pagani

Abstract We construct a consistent closure for the beta functions of the cosmolog-
ical and Newton’s constants by evaluating the influence that the anomalous dimen-
sions of the fluctuating metric and ghost fields have on their renormalization group
flow. In this generalized framework we confirm the presence of an UV attractive
non-Gaussian fixed-point, which we find characterized by real critical exponents.
Our closure method is general and can be applied systematically to more general
truncations of the gravitational effective average action.

27.1 Introduction

As is well known, a quantum field theory of gravity based on the Einstein-Hilbert
action is perturbatively non-renormalizable [1]. The Asymptotic Safety scenario [2]
is a promising approach which suggests instead that the theory is non-perturbatively
renormalizable at a non-Gaussian ultraviolet (UV) fixed-point of the renormalization
group (RG) flow. To inquire if a theory is renormalizable in a non-perturbative way
one needs non-perturbative tools. One of these tools is the exact functional RG
equation satisfied by the (background) effective average action (EAA), first derived
in the context of quantum gravity by Reuter [3]. The EAA can be derived from the
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path integral by adding to the action a regulator term which suppresses low energy
modes and acts effectively as a scale dependent mass term. A standard Legendre
transform then gives the EAA, which can be seen as a coarse-grained version of the
standard QFT effective action.

So far, various applications of the EAA formalism to the problem of quantum
gravity [3, 4] have supported the Asymptotic Safety scenario. Evidence has been
found for the existence of a non-Gaussian fixed-point with a finite dimensional UV-
critical surface [5–7]. All previous applications of the EAA formalism to quantum
gravity were based on the specific closure of the beta functions first proposed in
[3]; here we propose a more consistent approach that accounts for the non-trivial
influence that the anomalous dimensions of the fluctuating metric and ghost fields
have on the RG flow of the cosmological and Newton’s constants. Our results show
that even in this enlarged framework, these two couplings are characterized by a
non-Gaussian fixed point.

The application of these techniques to theories characterized by local symmetries
requires overcoming the problem of performing the coarse-graining procedure in a
covariantway.A solution to this problemcomes from the combinationof theEAAand
the background field formalisms [8]. The preservation of gauge invariance along the
flow comes at the cost of enlarging theory space to include invariants constructedwith
both background and fluctuating fields. This defines the background EAA (bEAA).

In the construction of the background EAA one introduces, in the path integral,
source, gauge-fixing and cutoff terms; in these the background and fluctuating metric
do not appear via their sum gμν . As a consequence, the RG flow generates invariants
which depend on ḡμν and hμν separately.

The background EAA for gravity splits as follows:

Γk[ϕ; ḡ] = Γ̄k[ḡ + h] + Γ̂k[ϕ; ḡ] , (27.1)

where ϕ = (hμν, C̄μ, Cν) is the fluctuating multiplet comprising the fluctuating
metric and the ghost fields. In (27.1) we defined the gauge invariant EAA Γ̄k[ḡ] and
the remainder EAA Γ̂k[0; ḡ]. The main virtue of the background EAA for gravity is
that it satisfies an exact [3]:

∂tΓk[ϕ; ḡ] = 1

2
Tr

(
Γ

(2;0)
k [ϕ; ḡ] + Rk[ḡ]

)−1
∂t Rk[ḡ] , (27.2)

which defines a mathematically consistent RG flow, i.e. UV and IR finite, despite
the theory being perturbatively non-renormalizable: this is the non-perturbative tool
that is used to inquire if gravity is asymptotically safe.

It is important to note that the RGflow described by (27.2) is driven by theHessian
of the background EAA taken with respect to the fluctuating multiplet ϕ, thus the
RG flow equation for Γ̄k[ḡ], resulting from setting ϕ = 0 in (27.2), is not closed
since its rhs depends also on Γ̂k[ϕ; ḡ]. This fact forces us to consider the flow of
the full Γk[ϕ, ḡ] instead of only that of Γ̄k[ḡ], which we would like to consider the
physically interesting one.
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27.2 Consistent Closure

Our truncation ansatz for the gauge invariant part of theEAAwill be theRG improved
version of the Einstein-Hilbert action:

Γ̄k[g] = 1

16πGk

∫

dd x
√

g (2Λk − R) . (27.3)

Wave-function renormalizations of the fluctuating fields,

hμν → Z1/2
h,k hμν C̄μ → Z1/2

C,kC̄μ Cν → Z1/2
C,kCν , (27.4)

will also generate the relative anomalous dimensions:

ηh,k = −∂t log Zh,k ηC,k = −∂t log ZC,k . (27.5)

Finally, the remainder functional Γ̂k[ϕ, ḡ] will contain the classical background
gauge-fixing and ghost actions [4] in the gauge α = β = 1.

To obtain the beta functions of the physical couplings one computes the Hessian
of the background EAA with respect to the fluctuating fields ϕ, inserts it into the rhs
of the RG flow equation (27.2) and then sets ϕ = 0. The trace on the rhs of (27.2) can
then be expanded in terms of invariants of the background metric using heat kernel
techniques in a standard way [4].

After introducing dimensionless cosmological and Newton’s constants, Λ̃k =
k−2Λk and G̃k = kd−2Gk , one finds the following general, non-closed, system of
beta functions:

∂tΛ̃k = −2Λ̃k

+
[

Ad(Λ̃k) + Cd(Λ̃k) ηh,k + Ed(Λ̃k) ηC,k

]
G̃k

∂t G̃k = (d − 2)G̃k

+
[

Bd(Λ̃k) + Dd(Λ̃k) ηh,k + Fd(Λ̃k) ηC,k

]
G̃2

k , (27.6)

where Ad , Bd , Cd , Dd , Ed , Fd depend on the cutoff choice.
The first way in which one can close the beta functions (27.6) is the trivial one

where one sets ηh,k = ηC,k = 0. This amounts to a one-loop approximation, which
discards the nonperturbative information contained in the functional flow equation.

The second closure method is the “standard” RG improvement adopted in most
previous studies [3, 4, 9]:

ηh,k = ∂t Gk

Gk
= 2 − d + ∂t G̃k

G̃k
ηC,k = 0 . (27.7)
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Table 27.1 Fixed-points and critical exponents for the various closures of the beta functions of Λk
and Gk , in d = 4

Λ̃∗ G̃∗ θ ′ ± iθ ′′ Λ̃∗G̃∗ ηh,∗ ηC,∗
One-loop 0.121 1.172 −1.868 ± 1.398i 0.142 0 0

Reuter [3] 0.193 0.707 −1.475 ± 3.043i 0.137 −2 0

Groh and
Saueres-
sig [13]

0.135 0.859 −1.774 ± 1.935i 0.116 −2 −1.8

This work −0.062 1.617 −4.119,−1.338 −0.100 0.686 −1.356

The beta functions obtained in this way are exactly those first obtained in [3]. In
d = 4, they have a non-Gaussian fixed-point for the values of Λ̃∗ and G̃∗ reported
in Table27.1. The non-Gaussian fixed-point is UV attractive in both directions; thus,
within this truncation, quantum gravity is asymptotically safe. The stability matrix
has a pair of complex conjugated critical exponents with negative real part. These
are also reported in Table27.1.1

The third way to close (27.6) is to separately calculate the anomalous dimensions
of the fluctuating metric and ghost fields that enter it. These can be determined as
functions of Λ̃k and G̃k that can successively be reinserted in the beta functions. In
doing so we make a step further in considering the flow in the enlarged theory space
where the background EAA lives.

Our calculations of the anomalous dimensions ηh,k and ηC,k have been performed
using the diagrammatic techniques presented in [10, 11], where one uses the flow
equations for the zero-field proper-vertices of the background EAA to extract the
running of the couplings [12].

Both ηh,k and ηC,k turn out not to depend on the cutoff operator type (i.e. on the
cutoff operator used to separate fast from slow field modes) and have the following
general form:

ηh,k =
[
ad(Λ̃k) + cd(Λ̃k) ηh,k + ed(Λ̃k) ηC,k

]
G̃k

ηC,k =
[
bd(Λ̃k) + dd(Λ̃k) ηh,k + fd(Λ̃k) ηC,k

]
G̃k . (27.8)

Their explicit form is long and will be given in [12]. Equation (27.8) constitutes a
linear system for ηh,k and ηC,k that can be solved to yield the anomalous dimensions
as functions solely of the physical couplings Λ̃k and G̃k .

1Here we follow the convention of [4] that a negative value for the critical exponent implies that
the relative eigendirection is UV attractive.
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Fig. 27.1 RG flow in d = 4
in the (Λ̃k , G̃k) plane for the
closure of the beta functions
obtained by inserting back in
(27.6) the independently
computed anomalous
dimensions ηh,k and ηC,k

0.1 0.0 0.1 0.2 0.3
k0.0

0.5
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27.3 Results

The result of the numerical integration of these beta functions, in d = 4, is plotted in
Fig. 27.1.Note that, despite these newbeta functions differ non-trivially from the one-
loop and standard RG improved ones, we still find one UV attractive non-Gaussian
fixed-point.

This time the critical exponents are real. This is clearly reflected in the fact that the
flow next to the non-Gaussian fixed-point is no more spiraling as instead was in the
previous cases. Real critical exponents are also suggested by the analysis of [14]. The
fixed-point values of the dimensionless couplings and the critical exponents are also
given inTable27.1.Our fixed-point value of the dimensionless cosmological constant
is negative and very small; however, the necessary inclusion of matter contributions
will in any case change its value.

If we insert the fixed-point values of the cosmological and Newton’s constants
in the solution of the eta-system, we can determine the fixed-point values for the
anomalous dimensions ηh∗ and ηC∗. The numerical values we find are reported in
Table27.1, togetherwith previous estimates. The anomalous dimension of hμν results
positive, while the anomalous dimension of the ghost fields is negative, as also found
in [13, 15].

27.4 Conclusions

We have shown how to account for the non-trivial influence that the anomalous
dimensions ηh,k and ηC,k of the fluctuating fields have on the RG flow of the cosmo-
logical and Newton’s constants. We have derived new RG improved beta functions
for these couplings which still exhibit a UV attractive non-Gaussian fixed-point, but
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we have found real critical exponents. These results reinforce the Asymptotic Safety
scenario in quantum gravity.

The closure method proposed here is general and can be applied to the beta
functions of higher derivative gravity [16–19], to the beta functions obtained using
the first-order formalism [20–23] and even to the beta functions present in non-
local truncations of the gravitational EAA [24]. The method can also be extended to
non-linear sigma models [25–27], membranes [28, 29] or Horava-Liftshitz gravity
[30].

It is also important to understand the relation between our closure method and
other complementary strategies proposed in the literature. In [31–33] bi-metric trun-
cations were constructed using invariants made with both gμν and ḡμν ; in [34] the
problem has been studied using theVilkovisky-DeWitt formalism; in [35] an analysis
similar to ours has been performed, finding too a non-Gaussian fixed point with real
critical exponents.
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Chapter 28
Phase Transitions of Regular
Schwarzschild-anti-deSitter Black Holes

Antonia M. Frassino

Abstract We study a solution of the Einstein’s equations generated by a self-
gravitating, anisotropic, static, non-singular matter fluid. The resulting Schwarz-
schild like solution is regular and accounts for smearing effects of noncommutative
fluctuations of the geometry. We call this solution regular Schwarzschild spacetime.
In the presence of an Anti-deSitter cosmological term, the regularized metric offers
an extension of the Hawking-Page transition into a van der Waals-like phase dia-
gram. Specifically the regular Schwarzschild-Anti-deSitter geometry undergoes a
first order small/large black hole transition similar to the liquid/gas transition of
a real fluid. In the present analysis we have considered the cosmological constant
as a dynamical quantity and its variation is included in the first law of black hole
thermodynamics.

28.1 Regular Schwarzschild-anti-deSitter Spacetime

The regular Schwarzschild anti-deSitter (AdS) metric is a static, spherically sym-
metric solution of the Einstein’s equations with negative cosmological constant
Λ = −3/b2 and a Gaussian matter source [1–4]. To obtain this metric we replace
the vacuum with a Gaussian distribution having variance equivalent to the parameter√

θ

ρ (r) ≡ M

(4πθ)3/2
e−r2/4θ . (28.1)
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This type of matter distribution emulates non-commutativity of space-time through
the parameter θ that corresponds to the area of the elementary quantum cell, account-
ing for a natural ultraviolet spacetime cut-off (see [2] and references therein). The
resulting energy momentum tensor describes an anisotropic fluid, whose compo-
nents, fixed by ∇μT μν = 0 and the condition g00 = −g−1

rr , read

T 0
0 = T r

r = −ρ (r) T φ
φ = T θ

θ = −ρ (r) − r

2

∂ρ (r)

∂r
. (28.2)

The spherically symmetric solution of the Einstein’s equations with this energy
momentum tensor and the cosmological constant Λ is given by the line element

ds2 = −V (r) dt2 + dr2

V (r)
+ r2dΩ2 (28.3)

where dΩ2 = dϑ2 + sin2 ϑdϕ2 and

V (r) = 1 + r2

b2
− ωM

r
γ

(
3

2
,

r2

4θ

)

. (28.4)

Here ω = 2GN/Γ (3/2), GN is the four-dimensional Newton’s constant and b is the

curvature radius of the AdS space. The function γ
(
3
2 ,

r2
4θ

)
is the incomplete gamma

function defined as γ (n, x) ≡
x∫

0

dt tn−1e−t . The line element (28.3) has an event

horizon at r = r+, where r+ is solution of the horizon equation V (r) = 0. The event
horizon radius coincides with the Schwarzschild radius in the limit

√
θ/r+ → 0. The

metric (28.3) admits an inner horizon r− < r+, that coalesces with r+ in the extremal
black hole configuration at r0 = r+ = r−. Such a degenerate horizon occurs even
without charge or angular momentum.

28.2 Thermodynamics and Equation of state

The temperature associated to the event horizon r+ can be computed through the
formula T = 1

4π V ′ (r)
∣
∣
r=r+ and reads

T = 1

4πr+

{

1 + r2+
b2

(

3 − r+
γ ′ (r+)

γ (r+)

)

− r+
γ ′ (r+)

γ (r+)

}

, (28.5)

where γ (r+) ≡ γ

(
3
2 ,

r2+
4θ

)

, γ ′ (r+) = r2+
4θ3/2

e−r2+/4θ is its derivative with respect to

r+. In contrast to the standard Schwarzschild-anti-deSitter case, extremal solution
exists with vanishing Hawking temperature (28.5).
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Recently, the idea of including the variation of the cosmological constant in the
first law of black hole thermodynamics has been considered [5–7] with interesting
consequences: If the cosmological constant Λ behaves like a pressure, we have that
for negative cosmological constant the pressure turns to be positive [6, 8], i.e.,

1

b2
= −Λ

3
≡ 8π P

3
, (28.6)

giving rise to several effects (see for example [9–11]). In such a case the equation of
state P (V, T ) for the regular AdS black hole becomes

P = 3γ (r+)

(3γ (r+) − r+γ ′ (r+))

{
T

2r+
− 1

8πr2+
+ γ ′ (r+)

8πr+γ (r+)

}

. (28.7)

Here T is theHawking temperature of the black hole, i.e. (28.5). Using the equation of
state (28.7) it is possible to plot the isotherm functions in a P-V diagram for a regular
black hole that resembles the van der Waals pressure-volume diagram (Fig. 28.1).

28.2.1 Gibbs Free Energy

In order to complete the analogy between the regular black hole and a van der Waals
gas, we proceed by calculating the Gibbs free energy [6, 7]. This can be done by
calculating the action of the Euclidean metric (see for example [12]). Such an action

P Pc

P PC

P PC

0 5 10 15 20 25 30
r+

20

40

60

80

1/T

Fig. 28.1 The inverse temperature as function of r+ (with θ = 1). When P < Pc, there are
three branches. The middle branch is unstable, while the branch with the smaller radii and the one
with bigger radii are stable. This graph reproduces the pressure-volume diagram of the van der
Waals theory, provided one identifies the black hole thermodynamic variables β ≡ 1/T , r+ and P
respectively with pressure, volume and temperature of the van der Waals gas
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provides the Gibbs free energy via G = I/β where β is the period of the imaginary
timeβ ≡ 1/T . Then, theGibbs free energy can be expressed as a function of pressure
and temperature. The Hawking-Page transition [13] for the standard Schwarzschild-
AdS black hole is first order phase transition between a large black hole phase and
the purely thermal AdS spacetime. Such a transition takes place when the Gibbs
energy changes its sign from positive to negative. In the regular black hole case and
considering the cosmological constant as a pressure we find

G = r+
12 G N

[

3 − 8Pπr2+ + r+
(
3 + 8Pπr2+

)
γ ′ (r+)

γ (r+)

]

(28.8)

and the Gibbs free energy (28.8) exhibits a characteristic swallowtail behavior (see
Fig. 28.2). This usually corresponds to a small black hole/large black hole first-order
phase transition [7, 14]. By performing the classical limit for r � θ we get the usual
result for a classical uncharged Schwarzschild-AdS black hole that is G (T, P) =
(1/4G N )

(
r+ − 8π

3 P r3+
)
[7]. Remarkably, in the regular Schwarzschild-AdS black

hole case, as in the Reissner-Nordström-AdS (RN-AdS) black hole spacetime, there
is a phase transition that occurs at positive Gibbs energy. This fact is visible from the
presence of the swallowtail in Fig. 28.2. To investigate this aspect we need to study
the sign of the heat capacity. As underlined in [6], the specific heat related to the

Fig. 28.2 Gibbs free energy as function of the black hole pressure and temperature. The Gibbs free
energy G changes its sign at a specific T and P (intersection of the function with the T -P-plane).
As in the van der Waals case, the phases are controlled by the universal ‘cusp’, typical of the theory
of discontinuous transitions [14]. The Gibbs free energy shows the “swallowtail” shape, a region
where G(T, P) is a multivalued function. This region ends in a point (Tc, Pc). In the region with
P < Pc and T < Tc we can see a transition between small black hole/large black hole. Note that
r+ is a function of temperature and pressure via the equation of state (28.7). For large value of P
(or T ) there is only one branch allowed
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black hole is calculated at constant pressure

C p =
(

∂ H

∂T

)

P
=

(
∂ H

∂r+

)

P

(
∂r+
∂T

)

P
, (28.9)

where the enthalpy H is identifiedwith the black holemass M [6]. Nowone can study
the phase transitions from the change of the sign of the specific heat: the stability
requires that the specific heat at fixed pressure isC p ≥ 0 and the specific heat at fixed
volume is Cv ≥ 0. In the case under investigation Cv is always equal to zero because
the entropy is only volume dependent. This means that the heat capacity Cv does not
diverge at the critical point and its critical exponent is α = 0. By studying the sign of
the function C p, we can see that for P > Pc the quantity C p is always positive and
the black hole is stable. In the limit P → Pc there is a critical value for r+ for which
C p diverges. For P < Pc there are two discontinuities of the specific heat and the
situation is the same as in the Reissner-Nordström-AdS black holes [15]. Thus, in the
regular Schwarzschild-AdS case for P < Pc it seems that a different phase transition
is allowed because the heat capacity changes again from positive values to negative
values. For large r+ we have the Hawking-Page behavior in which the branch with
negative specific heat has lower mass and thus falls in an unstable phase, while the
branch with larger mass is locally stable and corresponds to a positive specific heat.
Thus, the resulting phase diagram presents a critical point at a critical cosmological
constant value in Plank units and a smooth crossover thereafter.

28.2.2 Critical Exponent

We already determined α = 0 in the previous section. Now, by defining the variable
t ≡ (T − Tc) /Tc, we can compute the critical exponent ofC p by evaluating the ratio
ln

(
C p (t)

)
/ ln (t) in the limit t → 0. We find that the limit exists and the critical

exponent is γ = 1. This result implies that the heat capacity diverges near the critical
point like C p ∝ |t |−1. Then using the scaling relations

α + 2β + γ = 2 (28.10)

α + β (1 + δ) = 2 (28.11)

is possible to calculate the other two exponents, i.e., δ that determines the behaviour
of the isothermal compressibility of aVdWsystem andβ that describes the behaviour
of the difference between of the volume of the gas phase and the liquid phase. For
the regular black hole, the scaling relations give δ = 3 and β = 1/2, result that
coincides with the case of charged black holes [7]. These critical exponents are
consistent with the Ising mean field values (α, β, γ, δ) = (0, 1/2, 1, 3) allowing for
an efficient mean field theory description. Since it is believed that the determination
of critical exponents define universality classes , i.e., they do not depend on the details
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of the physical system (exept the number of dimensions), we can say that the phase
transitions in the regular Schwarzschild-AdS black holes and in the RN-AdS black
holes in four-dimensional spacetime have the same nature.

28.3 Final Remarks

After almost hundred years since the Karl Schwarzschild’s exact solution of Ein-
stein’s equation, black hole physics is nowadays at the forefront of current research
in several branches of theoretical physics. Specific interest has been developed in the
thermodynamics of charged black holes in asymptotically AdS spacetime, largely
because they admit a gauge duality description via a dual thermal field theory [12].
In recent studies it has been shown that charged Reissner-NordströmAdS black holes
exhibit critical behaviour similar to a van der Waals liquid gas phase transition [7].
This analogy become “complete” if the cosmological constant Λ is considered as a
dynamical quantity and its variation is included in the first law of black hole thermo-
dynamics [7, 9]. This extended phase space shows new insights with respect to the
conventional phase space of a four dimensional black hole in AdS background con-
sisting only of two variables: entropy and temperature. In this work the cosmological
constant has been considered as a thermodynamical pressure and its conjugate quan-
tity as a thermodynamical volume. The black hole equation of state (28.7) obtained
by considering the regular Schwarzschild-AdS solution shows analogy with the van
der Waals liquid-gas system where the parameter θ plays an analogue role of the
charge. Note that a detailed description of the not-extended phase space has been
presented in [3].
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Chapter 29
Vector Fields and Kerr/CFT Correspondence

Amir M. Ghezelbash

Abstract We use the appropriate boundary action for the vector fields near the
horizon of near extremal Kerr black hole to calculate the two-point function for
the vector fields in Kerr/CFT correspondence. The gauge-independent part of the
two-point function is in agreement with what is expected from CFT.

29.1 Introduction

The Kerr/CFT correspondence provides us a new type of holography that may have
a connection to the realistic astrophysical objects. In the early days of Kerr/CFT
correspondence the discussions were concentrated to the extremal or near extremal
case, which are still realistic since the X-ray astrophysical observations support the
existence of near extremal rotating black hole candidates [1].Amore general proposal
for Kerr/CFT correspondence, which is not limited to extremal rotating black holes,
was appeared in [2]. In generic Kerr/CFT correspondence, the conformal symmetry
for the generic rotating black holes (also known as hidden conformal symmetry)
is revealed from the solution space of the wave function of scalar (or higher spin)
fields. The proposal has been applied to several types of generic rotating black holes
[3]. In both types of extremal and generic Kerr/CFT correspondence, the results for
some physical quantities of rotating black holes, such as the Bekenstein-Hawking
entropy and scattering cross section, are in perfect agreement with the corresponding
physical quantities in the dual CFT.

Quite recently the authors of [4] found the two-point function of spinor fields
in Kerr/CFT correspondence by variation of boundary action for spin-1/2 particles.
They determined an appropriate boundary term for the spinors in NHEK geometry
and used it to calculate the two-point function of spinors. Moreover they found a
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relation between spinors in the four-dimensional bulk and the boundary spinors liv-
ing in two dimensions. The two-point function of spinor fields is in agreement with
the correlation function of a two-dimensional CFT. Inspired by Becker et al. [4], we
derive the two-point function forMaxwell fields inKerr spacetime by varying the cor-
responding boundary action. Unlike the analysis of spin-1/2 particles that there is no
gauge condition, one needs to perform a more careful treatment for the gauge fields
where they are subjected to the gauge condition.

29.2 Two-Point Function of Vector Fields

We consider the Maxwell fields in background of Kerr metric in Boyer-Lindquist
coordinates,

ds2 = − Δ

ρ2

(
dt − a sin2 θdφ

)2 + ρ2

Δ
dr2 + ρ2dθ2 + sin2 θ

ρ2

(
adt − (

r2 + a2) dφ
)2

,

(29.1)
where ρ2 = r2 + a2 cos2 θ and Δ = r2 + a2 − 2Mr . The action for the Maxwell
fields is given by

S = 1

4

∫

d4x
√−gF∗

μνFμν + c.c. (29.2)

The c.c. term should be added in (29.2) to ensure that the action is real valued as we
will notice that the Chandrasekhar solutions (29.3)–(29.6) for the Maxwell fields in
Kerr spacetime are basically complex quantities. The existence of ∂t and ∂φ Killing
vectors in Kerr geometry leads to write down the dependence of Maxwell fields A

on coordinates t and φ as A =

⎛

⎜
⎜
⎝

At

Ar

Aθ

Aφ

⎞

⎟
⎟
⎠ = e−iωt+imφ

⎛

⎜
⎜
⎝

At

Ar

Aθ

Aφ

⎞

⎟
⎟
⎠ , where Aμ’s are given

by

At = ia

ρ2
√
2

(ΔR+ζ+ − R−ζ− − sin θ (ξ+S+ − ξ−S−)) , (29.3)

Ar = ia√
2

(

R+ζ+ + R−ζ−
Δ

)

, (29.4)

Aθ = − 1√
2

(ξ+S+ + ξ−S−) , (29.5)

Aφ = −i

ρ2
√
2

(
a2 sin2 θ (ΔR+ζ+ − R−ζ−) − sin θ

(
r2 + a2

)
(ξ+S+ − ξ−S−)

)
.

(29.6)
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The functions ζ± and ξ± are defined by

ξ+ = 1

2C K

((
irλ + 2α2ω

)
R− − irCΔR+

)
, (29.7)

ξ− = 1

2C K

(
−

(
irλ − 2α2ω

)
ΔR+ + irC R−

)
, (29.8)

ζ+ = 1

2C Q

((

−λ cos θ − 2α2ω

a

)

S− − C S+ cos θ

)

, (29.9)

ζ− = 1

2C Q

((

λ cos θ − 2α2ω

a

)

S+ + C S− cos θ

)

, (29.10)

in terms of Teukolsky radial and angular functions R± and S±. The functions K , Q
and parameters C and α are

K = −
(

r2 + a2
)

ω + am, Q = −aω sin θ + m (sin θ)−1 , (29.11)

|C |2 = λ2 − 4α2ω2, α2 = a2 − am

ω
, (29.12)

where λ is the separation constant in separated Teukolsky equations for the massless
particles with spin 1. We note that in (29.2), Fμν = ∂μAν − ∂νAμ and so we can
write S = 2S0 where S0 = 1

4

∫
d4x

√−g
(
∂μA∗

ν

)
Fμν + c.c.. The integrand of S0

can be written as the difference of a total derivative term and other term which is,
in fact, proportional to the Maxwell’s equations. Taking a spherical boundary with
radius rB that is the boundary of near-NHEK geometry of Kerr black hole, we can
convert the total derivative term to a boundary term, given by

SB = 1

2

∫

d3x
√−gA∗

νFrν
∣
∣
r=rB

+ c.c., (29.13)

where d3x stands for dtdφdθ . The field strength tensor components

Frν = grr gνβFrβ = grr gνβ
(
∂r Aβ − ∂βAr

)
, (29.14)

canbewritten simply asF = ΞAwhereΞ = grr

⎛

⎝

gtt ∂r − (
gtt ∂t + gtφ∂φ

)
0 gtφ∂r

0 0 0 0
0 −gθθ ∂θ gθθ ∂r 0

gφt ∂r − (
gφt ∂t + gφφ∂φ

)
0 gφφ∂r

⎞

⎠ .

Using the above expressions, we can rewrite the boundary action (29.13) accordingly
as

SB = 1

2

∫

d3x
√−gA†ΞA

∣
∣
∣
r=rB

+ c.c., (29.15)
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where

A†ΞA = grr
(

gtt (
A∗

t ∂r At − iωA∗
t Ar

) + gtφ (
A∗

t ∂r Aφ + im A∗
t Ar

) − gθθ
(

A∗
θ ∂θ Ar − A∗

θ ∂r Aθ

)

+ gφt
(

A∗
φ∂r At − iωA∗

φ Ar

)
+ gφφ

(
A∗

φ∂r Aφ + im A∗
φ Ar

))
. (29.16)

Tofind the explicit formof (29.16),we have tomake some approximations to simplify
the calculation. The Teukolsky radial functions in the matching region can be read
as [5]

R+ = N+τ
−1−in/2
H

(

A+
(

r

τH

)β−3/2

+ B+
(

r

τH

)−β−3/2
)

+ · · · , (29.17)

R− = N−τ
1−in/2
H

(

A−
(

r

τH

)β+1/2

+ B−
(

r

τH

)−β+1/2
)

+ · · · , (29.18)

where β is given by β2 = 1
4 + Kl − 2m2 and τH is the dimensionless Hawking

temperature. The parameter Kl is related to separation constant λ by Kl = λ+2amω

and we consider Kl ≥ 2m2 −1/4 and so β is a real number. The coefficientsA± and

B± areA± = Γ (2β)Γ (1∓1−in)

Γ
(
1
2+β−i(n−m)

)
Γ

(
1
2+β∓1−im

) ,B± = Γ (−2β)Γ (1∓1−in)

Γ
(
1
2−β−i(n−m)

)
Γ

(
1
2−β∓1−im

) ,

where n = ω−m�H
2πTH

and �H = a
r2++a2

is the angular velocity of the horizon. We

notice that since TH is a very small number and n is a finite number, so ω ∼ m�H .
This means we consider only the Maxwell fields with frequency that is around the
superradiant bound. The coefficients N+ and N− are the normalization constants that

their ratio is N−
N+ = − Kl r2+

n(n+i) where Kl =
√

K 2
l + m2(m2 + 1 − 2Kl). In deriving

this ratio, we considered the near horizon limit r → r+. To compact the notation,
we rewrite the Maxwell fields in a matrix form as

A = e−iωt+imφ(R+Kv+ + R−Lv−), (29.19)

where the matrices K and L are given by

K =

⎛

⎜
⎜
⎝

ΔB f1 0 0 ΔB f2
f5 κ1 0 f6

ΔB f9 0 κ2 ΔB f10
ΔB f13 0 0 ΔB f14

⎞

⎟
⎟
⎠ , L =

⎛

⎜
⎜
⎝

κ3 f3 f4 0
0 f7Δ

−1
B f8Δ

−1
B 0

0 f11 f12 0
0 f15 f16 κ4

⎞

⎟
⎟
⎠ , (29.20)

and v+ = (
S− 0 0 S+

)T
, v− = (

0 S− S+ 0
)T

. For later convenience, we show
the first and the second term of (29.19) by A+ and A−, respectively. The functions
fi , i = 1, . . . , 16 are given explicitly in [6]. The arbitrary constants κi , i = 1, 2, 3, 4
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in (29.20) are introduced to provide the invertibility for matrices K and L. We set
κi → 0 at the end of calculation wherever κi ’s appear. We may find that there is a
relation between the vectors v+ and v− as v− = χv+ where the matrix χ is given

by χ =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ . Denoting the Maxwell fields and the Teukolsky functions

on the boundary by AB± and RB± respectively, we get
AB

+
RB+

= e−iωt+imφKv+, and

AB
−

RB−
= e−iωt+imφLv−. Using the relation between v+ and v−, we get

A = (R+K + R−Lχ) e−iωt+imφv+ = (
R+ + R−LχK−1)

(
AB+

)

RB+
. (29.21)

A very lengthy calculation shows that the integrand A†ΞA of the boundary action
(29.15) is given by

A†ΞA = grr

(
AB+

)†

(
RB+

)∗ R∗+ (R+(Π1 + Θ) − Q+Π2)
AB+
RB+

+ grr

(
AB+

)†

(
RB+

)∗ R∗+ (R−(Π3 + Θ) − Q−Π4) LχK−1 AB+
RB+

+ grr

(
AB+

)†

(
RB+

)∗
(

R−LχK−1
)†

(R+(Π1 + Θ) − Q+Π2)
AB+
RB+

+ grr

(
AB+

)†

(
RB+

)∗
(

R−LχK−1
)†

(R−(Π3 + Θ) − Q−Π4) LχK−1 AB+
RB+

,

(29.22)

where Πi , i = 1, . . . , 4 and Θ are given explicitly in [6]. Furnished by (29.22) and
performing the functional derivative of (29.15) with respect to the real part of the
rescaled boundary fields A B

i+, we get the two-point function as

δ2SB

δA B
i+δA B

j+
= r2β−4

B

(
RB−

)∗
RB−

(
RB+

)∗
RB+

Z i j , (29.23)

where Z i j = ∫ π

0 dθ sin(θ){θ̃ i j
4 θ̃i θ̃

∗
j + θ̃

∗i j
4 θ̃∗

i θ̃ j }n.s.
. The functions θ̃i and θ̃

i j
4 are

presented in [6] and n.s. means there is no summation over indices i and j . Moreover
we note from the results of [6] that the leading terms in (29.23) correspond to indices
i and j to be t and φ only. We can simplify (29.23) to
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δ2SB

δA B
i+δA B

j+
= Z i j r2βB

(

M4 +
(

Kl M2

n (n − i)

)

r−2β
B

N−A−
N+A+

G∗
R

+
(

Kl M2

n (n + i)

)

r−2β
B

N∗−A ∗−
N∗+A ∗+

G R + N−N∗−
N+N∗+

τ
4β
H

r4βB

B−B∗−

)

. (29.24)

In (29.24), G R stands for G R(nL , nR) = −n (i + n) T 2β
R

Γ (−2β)
Γ (2β)

Γ
(
β+ 1

2 −inR

)
Γ

(
β− 1

2 −inL

)

Γ
(
1
2 −β−inR

)
Γ

(
3
2 −β−inL

) ,

where nL and nR are related to m and ω by m = nL , and n = nL + nR . The first
term in bracket in (29.24) clearly is a constant term compared to the other terms.
The second term in (29.24) is the complex conjugate of the third term. Moreover,
we can ignore the fourth term of (29.24) compared to the other terms, as this term is
proportional to τ

4β
H . Dropping the complex conjugate term in (29.24) according to [4,

7], we find that the field theoretical two-point function (29.23) is equal to G RZ i j

up to a multiplicative factor that depends on momentum and is not a part of the
retarded Green’s function. The existence of multiplicative factor has also been found
for the field theoretical two-point function of spinors [4].We note that G R(nL , nR) is
in exact agreement with the proposed retarded Green’s function for the spin-1 fields
in [8]. Using the optical theorem for the obtained retarded Green’s function, we get
exactly the absorption cross section of spin-1 fields scattered off of the Kerr black
hole [9]. Interestingly enough, as we mentioned before, the boundary vector field
components that contribute to the leading term of two-point function are only A B

t+
and A B

φ+. This fact is in agreement with the statement of Kerr/CFT correspondence
that the dual boundary theory is a two-dimensional CFT. The two-point function
(29.23) (or (29.24)) is a function of ω and m which are the conjugate momenta in t
and φ directions, respectively. The two-point function (29.23) (or (29.24)) also is in
agreement with the correlator of vector operators in the dual boundary CFT to Kerr
black hole [6].

29.3 Concluding Remarks

We have obtained the two-point function for the vector fields on the near horizon
of near extremal Kerr black holes by varying the appropriate boundary action for
the vector fields with respect to the boundary vector fields. One interesting result
that emerges from the explicit calculation of the boundary action is that the degrees
of freedom of boundary vector fields (which is two) supports the original idea of
Kerr/CFT correspondence that the dual theory to the four-dimensional Kerr black
hole is a two-dimensional CFT. This is in contrast to the well known AdSd+1/CFTd

result that the dimension of bulk theory is exactly one more than the dimension of
dual CFT. Moreover the two-point function for the vector fields factorizes in two
terms. The first term is not sensitive to the vector indices while the second term
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depends on vector indices as well as the gauge condition. The structure of the two-
point function is exactly in agreement with the correlator of vector operators in a
CFT.
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Chapter 30
Black Holes in Non-relativistic Holography

Stefan Janiszewski

Abstract Manynon-relativistic quantumfield theorieswith conserved particle num-
ber share a common set of symmetries: time dependent spatial diffeomorphisms act-
ing on the background metric and U(1) invariance acting on the background field
which couples to particle number. These symmetries are used to deduce a holographic
gravity dual for any such theory in terms of Hořava gravity, a non-relativistic theory
of gravity. The behavior of black holes in Hořava gravity are studied due to their
importance in holography. The existence of causal horizons in this non-relativistic
theory is shown, as well as examples of their thermodynamic properties.

30.1 Non-relativistic Holography from Hořava Gravity

The holographic principle is a powerful duality in theoretical physics. It has allowed
the exploration of various strongly coupled systems, and has provided understanding
of the information paradox in black hole physics. In its traditional form holography
is inherently relativistic. Below we formulate a proposal to extend this duality to
non-relativistic (NR) physics.

30.1.1 Holography

In its most general form, the holographic principle is the statement that any quantum
theory of gravity in d dimensions is equivalent to a non-gravitational theory in d − 1
dimensions. This means that any question asked in one theory can, in principle, be
translated to the other theory, answered there, and then translated back. As with most
dualities, this approach to problem solving is especially powerful when one of the
theories in the correspondence is strongly coupled but the other is in a perturbative
regime.
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The most understood holographic duality is that between general relativity (GR)
on the Anti-de Sitter (AdS) spacetime and the conformal field theory (CFT) known
asN = 4 super [1]. This calculational tool has been used to great effect, pertinently
in studying analogues of the strongly coupled plasma of QCD [2]. On the other hand,
many interesting strongly coupled systems explorable in the lab are in a NR regime.
Motivated by this, we will propose a form of NR holography below.

For the purposes in that direction, AdS/CFT provides us with two important
lessons. The first is that the symmetry structure between the two dual theories needs
to match. For example, relativistic quantum field theories (QFTs) have the global
symmetry of coordinate changes. We can always work in what ever coordinates
make a problem simpler, as long as we remember to correctly change things like
the volume measure in integrals and any other coupling to the metric. In the dual
gravitational theory, coordinate changes are of fundamental importance: reparame-
trization invariance is the defining gauge symmetry of the dynamic metric of general
relativity. This matching of symmetries is necessary in the duality, relativistic or not.

The second important lesson to be gained from AdS/CFT is the importance of
black holes to holography. Black holes have long been known to have a temperature
and other thermodynamic properties. In holography these quantities match those of
the dual field theory state, so studying finite temperature QFTs requires knowledge
of black hole solutions. The nature of causality and horizons in NR theories such as
Hořava gravity is distinct from the everyday black holes of GR, and are thoroughly
explored in Sect. 30.2.

30.1.2 Non-relativistic Gravity

Hořava gravity [3], like GR, is a metric theory of a manifold M . Unlike GR, the
manifold comes fundamentally equipped with a co-dimension one foliationF . The
leaves of this foliation are events that take place simultaneously in a global time.
Consequently, the theory is not Lorentz invariant as it has this preferred frame.

Coordinate changes that respect this foliation structure are gauge symmetries of
Hořava gravity. These foliation preserving diffeomorphisms are arbitrary time depen-
dent changes of the spatial coordinates, xI → x̃ I (t, xJ ), as well as reparametriza-
tions of the global time, t → t̃(t). Spatially dependent temporal diffeomorphisms,
t → t̃(t, xJ ), are disallowed as they would mix space into time and violate the
simultaneity set by the global time foliation.

There are some interesting properties of Hořava gravity that make it a promising
candidate for a NR holographic duality. Foremost, the so-called Lifshitz spacetimes,

ds2 = −dt2

r2z
+ dr2

r2
+ dx2

r2
, (30.1)

which have an anisotropic scaling symmetry between time and space, are vacuum
solutions to Hořava gravity, while GR requires somewhat unnatural additional matter
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fields to support these backgrounds. This scaling symmetry applies to many NR
field theories, and therefore is something that would need to be captured in the dual
gravitational theory.

Another interesting property of Hořava gravity, especially from a holographic
viewpoint, concerns its high energy behavior. Unlike GR, which requires something
like string theory as aUVcompletion,Hořava gravity is expected to be aUVcomplete
theory, and therefore is a quantum theory of gravity all by itself. This, in principle,
allows exploration of the full regime of the gravitational theory, whereas traditional
holography has been limited to exploring the low energy perturbative sector given
by GR. Such explorations are promising future work.

The final ingredient that leads to our proposal for a NR holography is an under-
standing of NR field theories. In [4] it was first discovered that foliation preserving
diffeomorphisms play the role of a global symmetry of many NR QFTs. Guided by
this, and in analogy to AdS/CFT, we propose that any holographic dual of such a
NR QFT must have foliation preserving diffeomorphisms as its gauge symmetry. As
discussed above, Hořava gravity is such a theory, and gives us a concrete framework
for NR holography [5, 6].

30.2 Black Holes in Hořava Gravity

Due to its lack of Lorentz invariance, the notions of causality and black holes need
to be reexamined in the context of Hořava gravity. Despite no light cone structure,
causality is maintained by the preferred global time, while horizons that trap signals
of any speed are seen to exist. Therefore, black holes can rightly be said to be part
of Hořava gravity, and there properties can be explored.

30.2.1 Causality and Universal Horizons

The foliation of Hořava gravity breaks the Lorentz invariance that the manifold itself
enjoyed. This means that there is no speed limit set by light, and signals can travel
arbitrarily fast. One familiar with GR might think this also throws out any notion
of causality, which is normally enforced by the time-like or space-like invariant
separation of events, as determined by light cones. Luckily, the offending foliation
itself comes into play to enforce causal behavior. Since the leaves of the foliation
are events that happen at a constant global time, signals propagating arbitrarily fast
will still propagate causally as long as they only move forward in global time. In
this way, with respect to a given event, the spacetime divides itself into “past” and
“future” along a leaf of the foliation, whereas GR causally divides spacetime into
these categories inside the light cone, but has the additional “elsewhere” region
outside of it.
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Fig. 30.1 A Penrose
diagram of Minkowski
space. The thick diamond is
past and future infinity. The
thin lines are the foliation by
Minkowski time

This leads into the discussion of causal horizons in Hořava gravity. In GR a black
hole is understood as a light-like surface from which behind no signal can propagate
to future infinity. This is plausible from the above context: when inside a black hole
future infinity is in your “elsewhere” region and therefore there is no causal way you
can reach it. Such an object is well defined in GR because light cones are invariant.
On the other hand, the causal division of spacetime into only “past” and “future” in
Hořava gravity seems to leave no possibility for horizons to hide behind. To clear
up this issue it pays to examine the foliations of some spacetimes, as this is what
encodes the causal structure.

Figure30.1 shows the foliation of Minkowski space by the canonical time coor-
dinate. This is a solution of Hořava gravity, meaning not only is the manifold an
acceptable spacetime, but the foliation by Minkowski time is a global time coordi-
nate. The lack of causal horizons is apparent: from any event on the spacetime future
infinity can be reached by only moving forward in global time, that is from one leaf
to the next.

Figure30.2 shows the foliation of the Schwarzschild black hole by the canonical
time. Here we see that the foliation that covers the asymptotic region does not cover
the entire manifold, the leaves all bunch up at the Killing horizon. In GR this is irrele-
vant, our choice of time coordinate is not invariant and a Lorentzian diffeomorphism
can change the foliation to cover the entire manifold. Instead, the Killing horizon
is an invariant causal horizon in GR because it is light-like. In Hořava gravity the
situation is different. First off, as presented, Fig. 30.2 is not a solution. The problem
can be seen to be that the foliation is not a global time: in Hořava gravity the foliation
is dynamically determined and Schwarzschild time does not solve the equations of
motion. The bunching of the foliation is irrelevant for this trivial reason.

Figure30.3 shows the foliation of the AdS-Schwarzschild black hole. Here the
foliation has been dynamically determined and therefore this is a solution of Hořava
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Fig. 30.2 A Penrose
diagram of Schwarzschild
space. The solid thick line is
past and future infinity. The
thick dashed lines are the
Killing horizons, while the
thick dash-dot line is the
singularity. The thin lines are
the foliation by
Schwarzschild time

Fig. 30.3 A Penrose
diagram of the
AdS-Schwarzschild black
hole. The solid thick line is
asymptotic infinity. The thick
dashed lines are the Killing
horizons, while the thick
dotted line is the singularity.
The thin lines are the
foliation by the dynamically
determined global time

gravity [7]. The fact that the asymptotic foliation does not cover the entire manifold
is an invariant statement: the allowed time reparametrizations cannot change this
property. We now see how causal horizons can arise in Hořava gravity. Even though
the foliation penetrates theKilling horizon, allowing fast signals to propagate past that
surface, it does not penetrate the full interior. Events inside where the leaves all bunch
up are to the future of any event on the foliation shown in Fig. 30.3, including the
entire asymptotic boundary! Thismeans that causal signals, traveling only forward in
global time, can never escape this region to reach asymptotic infinity, even traveling
arbitrarily fast. At last we have seen a black hole in Hořava gravity. Generically, they
can be identified by foliations that cover the entire asymptotic region of a manifold,
but do not penetrate the entire interior. The boundary of this foliation,where the leaves
all bunch up, is called the universal horizon, and is the causal boundary defining the
black hole.
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30.2.2 Thermodynamics of an Analytic Black Hole

In [7] an analytic Hořava black hole is presented. This allows an exploration of the
thermodynamics of these objects, crucial knowledge in the holographic context. The
metric can be written as

ds2 = − (r3 − r3h )2

r2r6h
dt2 + r6h

r2(r3 − r3h )2

(

dr + r3(r3 − r3h )√
1 − c3r6h

dt

)2

+ dx2

r2
, (30.2)

where c3 is a coupling constant of Hořava gravity and rh is the radial location of the
universal horizon. The asymptotic region is as r → 0, where it is AdS space. Of
importance is that the time coordinate t is a global time, that is, the leaves given by
its level sets is a preferred foliation of Hořava gravity.

By examining theHamiltonian of this black hole itsmass density can be calculated
to be M = 1/(4π(1− c3)r3h G H ), where G H is the gravitational constant of Hořava
gravity. By examining the near-horizon geometry of the black hole its temperature
can be argued to be T = 3/(2πrh

√
1 − c3). This can also be calculated by the

method of [8], where the rate of particles quantum mechanically tunneling through
the horizon is seen to be thermal. Lastly, the entropy of this black hole can be
calculated by examining the on-shell action, which is the free energy. This gives an
entropy density of S = 1/(4

√
1 − c3r2h G H ). Bringing these properties together we

can check that the first law of thermodynamics d M = T d S is satisfied, and therefore
the black hole is a consistent thermal object.
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Chapter 31
Black Holes and Running Couplings:
A Comparison of Two Complementary
Approaches

Benjamin Koch, Carlos Contreras, Paola Rioseco and Frank Saueressig

Abstract Black holes appear as vacuum solutions of classical general relativity
which depend on Newton’s constant and possibly the cosmological constant. At the
level of a quantum field theory, these coupling constants typically acquire a scale-
dependence. A quantum treatment of a black hole should thus take this effect into
account. In these proceedings we briefly summarize two complementary approaches
to this problem: the renormalization group improvement of the classical solution
based on the scale-dependent gravitational couplings obtained within the gravita-
tional Asymptotic Safety program and the exact solution of the improved equations
of motion including an arbitrary scale dependence of the gravitational couplings.
Remarkably the picture of the “quantum black holes” obtained from these very dif-
ferent improvement strategies is strikingly similar.

31.1 Introduction

The emergence of scale-dependent couplings is one of the central phenomena
encountered in quantum field theory. While the quest for a consistent and predic-
tive quantum formulation for gravity is still ongoing, it is natural to expect that this
feature will emerge in this case as well. This expectation is supported by perturba-
tive computations in the framework of higher-derivative gravity [1–10] as well as
the non-perturbative computations carried out within the gravitational Asymptotic
Safety program [11–14].
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An important testing ground for ideas related to modified theories of gravity or
quantum gravity is given by the black hole solutions obtained from classical general
relativity. Striving for a quantumdescription of these classical black holes, it is natural
to study the effect of scale-dependent coupling constants on the physics of the black
holes. In this proceedings paper we will focus on two complementary strategies for
capturing these effects:

• The first approach discussed in Sect. 31.2 was pioneered in [15, 16] and performs
a renormalization group (RG) improvement of the classical black hole solution.
Here the classical coupling constants are promoted to scale-dependent couplings
whose flow is governed by beta functions computed within Asymptotic Safety
[17–26].

• The second approach covered in Sect. 31.3 has been advocated in [27] and looks
for consistent solutions of the improved equations of motion. Those equations can
be solved without making further assumptions on the actual scale dependence of
the couplings, leading two a new, spherically symmetric metric. This metric can
be seen as a promising candidate for a physical black hole metric that incorporates
general effects of scale dependent couplings.

In Sect. 31.4 we will compare those results and conclude.

31.2 Improved Solutions from Asymptotic Safety

This section basically follows [28]. Thus, we will summarize concepts and results,
rather than detailed calculations. For more details the reader is referred to [28] and
references therein.

The key ingredient for investigating Weinberg’s Asymptotic Safety conjecture
[29] is the gravitational effective average action Γk [30], a Wilson-type effective
action that provides an effective description of physics at the momentum scale k.
As its main virtue, the scale-dependence of Γk is governed by an exact functional
renormalization group equation [30]

∂kΓk = 1

2
Tr

[(
Γ

(2)
k + Rk

)−1
∂kRk

]

. (31.1)

Here Rk is an IR-regulator that renders the trace finite and peaked on fluctuations
with momenta p2 ≈ k2 (Fig. 31.1).

For the study of (A)dS black holes conducted in this work, we restrict the gravi-
tational part of Γk to the (euclidean) Einstein-Hilbert action

Γ
grav

k [g] = 1

16πGk

∫

d4x
√

g [−R + 2Λk] (31.2)



31 Black Holes and Running Couplings … 265

Fig. 31.1 a RG flow originating from the Einstein-Hilbert truncation (31.2) obtained with a
sharp cut-off. The arrows point in the direction of increasing coarse-graining, i.e., of decreas-
ing k. From [31]. b Schematic flow of the scale dependent couplings λU (r) and gU (r) for
g∗

U = 0.707, λ∗
U = 0.193, gI = 2.5, and G0 = Σ = 1. The different curves correspond to

lI = {−0.05, −0.005, 0, 0.005, 0.05}

and include two scale-dependent couplings, Newton’s constant Gk and the cosmo-
logical constant Λk . The beta functions resulting from this truncation have first been
derived in [30] and are most conveniently expressed in terms of the dimensionless
coupling constants

gk = Gk k2, λk = Λk k−2. (31.3)

The phase diagram resulting from the flow has been constructed in [31] and is shown
below.

The flow is governed by the interplay of a Gaussian fixed point (GFP) located at
the origin, g∗ = 0, λ∗ = 0 and an NGFP which, for an optimal cutoff, is located at

λ∗ = 0.193 , g∗ = 0.707 , g∗λ∗ = 0.137 . (31.4)

One way to investigate the implications of the scaling gravitational couplings on
black hole physics is the improvement of the classical black hole solution pioneered
by Bonanno and Reuter [15, 16] and subsequently refined by several groups [17,
19, 20, 23–26]. This procedure starts from the classical (Schwarzschild-de Sitter or
anti-de Sitter) line-element

ds2 = − f (r) dt2 + f (r)−1 dr2 + r2dΩ2
2 (31.5)

with

f (r) = 1 − 2G M

r
− 1

3
Λ r2 , (31.6)

and replaces Newton’s constant and the cosmological constant by their scale depen-
dent counterparts, G → Gk , Λ → Λk . The crucial step following this improvement
is the scale setting procedure, which relates the momentum scale k to the radial
scale r
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k(P(r)) = ξ

d(P(r))
, (31.7)

where ξ is an a priory undetermined constant. Following [], a natural candidate for
d(P) is the radial proper distance between the origin and the the test particle is
located at the point P . Based on the symmetries of the classical solution and the
coordinate invariance of the identification we expect that d(P) is the distance scale
which is the relevant cutoff k.

Performing this analysis for improved (A)dS black holes led to various novel
conclusions, which are largely independent of the details underlying the scale setting
procedure:

(a) Including the effect of a scale-dependent cosmological constant in the RG-
improvement process drastically affects the structure of the quantum-improved
black holes at short distances. Thus a consistent RG-improvement procedure
requires working in the class of Schwarzschild-(A)dS solutions of Einstein’s
equations.

(b) The short-distance structure of all quantum-improved black holes is governed
by the non-Gaussian RG fixed point. This entails that the structure of light
black holes is universal. In particular it is independently of the IR-value of
Newton’s constant and the cosmological constant and therefore identical for
classical Schwarzschild, Schwarzschild-dS and Schwarzschild-AdS black holes.

(c) In the presence of the cosmological constant, the curvature singularity at r = 0
is not resolved.

31.3 Solving Improved Equations of Motion

An alternative strategy for modeling the quantum properties of the classical black
holes, based on “improving the equations of motion”, has been developed in [32]. In
this case, the scale-setting procedure is carried out at the level of the (wick-rotated)
Einstein-Hilbert action (31.2) where the k-dependence of the couplings is replaced
by a generic r -dependence. The resulting equations of motion are [33, 34]

Gμν = −gμνΛ(r) + 8πG(r)Tμν − Δtμν , (31.8)

with

Δtμν = G(r)
(
gμν� − ∇μ∇ν

) 1

G(r)
. (31.9)

With the metric ansatz

ds2 = −F(r)dt2 + 1/F(r)dr2 + r2dθ2 + r2 sin(θ)dφ2 , (31.10)
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the equations ofmotion canbe solved exactly, for the functions F(r), Λ(r), andG(r).
This solution is non-trivial, leading to four constants of integration c1, c2, c3, c4.
These constants can be related to familiar properties of the classical solution such
as M0, G0, Λ0 together with a possible correction. Alternatively, they can be traded
for the adimensional parameters gI , gU , λI , and λU which naturally appear in the
induced coupling flow

gU (r) = G(r)Σ2 , λU (r) = −Λ(r)
r

Σ
, (31.11)

whereΣ is an arbitrarymatching constant which hasmass dimension one. The values
of the UV fixed points of this “flow” are

gU (r → 0) = g∗
U , λU (r → 0) = λ∗

U . (31.12)

Plotting the “flow” for those two couplings induced be the solution of the equations
of motion one finds a surprisingly similar shape to the flow shown in the attached
figure. Some of the main conclusions of this research can be summarized as

(a) There exists a non-trivial solution of the improved equations of motion (31.8)
whichwould not be possible to findwithout the cosmological term. Thus, includ-
ing a scale dependent cosmological term is crucial for this approach.

(b) In the UV limit, the new solution is dominated by the fixed points g∗
U and λ∗

U .
(c) The new solution F(r) exhibits a singularity at the origin, which is of the same

grade as the singularity of the Schwarzschild solution. In this limit the solution
is dominated by the non-trivial fixed point of the induced “flow”.

(d) Interpreting the solution for the dimensionless couplings (31.11) as “flow” one
finds interesting similarities with the RG flow derived from the effective average
action Γk .

31.4 Comparison of the Two Approaches

We have summarized two strategies for modeling quantum corrections to classical
black hole solutions based on implementing scale-dependent couplings. The first
approach is based on improving the classical solutions and uses the beta functions
obtained from Asymptotic Safety to fix the scale-dependence of the gravitational
coupling constants (see Sect. 31.2). The second approach is based on simply solving
the equations of motion that have to be fulfilled in the presence of scale dependent
couplingsΛ(r) and G(r) in a generally covariant theory (31.8). The most interesting
overlapping results are

(a) Λ matters:
In both approaches the cosmological constant has a significant effect. InSect. 31.2
this term strongly dominated the UV behavior of the improved solution, while
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in Sect. 31.3 this term was actually crucial for obtaining a non-trivial solution at
all.

(b) Fixed points control UV:
In both approaches the short distance behavior is dominated by the non-trivial
fixed point of the true flow in Sect. 31.2 or of the induced “flow” in Sect. 31.3.

(c) Singularity persists:
Rather surprisingly, both approaches exhibit the same type of black hole singu-
larity located at the origin. Since it is a general expectation that quantum gravity
should be capable of resolving this singularity, it would be very interesting to
understand this result in more detail.

To conclude we want to emphasize that we found several common main features of
black holes in the context of scale dependent couplings, by using two very different
approaches. These coincidences consolidates the findings of both approaches.
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Chapter 32
Quantum Harmonic Black Holes

Alessio Orlandi and Roberto Casadio

Abstract Inspired by the recent conjecture that black holes are condensates of gravi-
tons, we investigate a simple model for the black hole degrees of freedom that is
consistent both from the point of view of Quantum mechanics and of General Rela-
tivity. Since the two perspectives should “converge” into a unified picture for small,
Planck size, objects, we expect our construction to be a useful step for understanding
the physics of microscopic, quantum black holes. In particular, we show that a har-
monically trapped condensate gives rise to two horizons, whereas the extremal case
(corresponding to a remnant with vanishing Hawking temperature) is not contained
in the spectrum.

32.1 Introduction

One of themajormysteries inmodern theoretical physics is to understand the internal
degrees of freedom of black holes (BHs). Our best starting point is the classical
description of BHs provided by General Relativity [6], along with well established
semiclassical results, such as the predicted Hawking radiation [15, 16].

It was recently proposed by Dvali and Gomez that BHs are Bose-Einstein Con-
densates (BECs) of gravitons at a critical point, with Bogoliubov modes that become
degenerate and nearly gapless representing the holographic quantum degrees of free-
dom responsible for the BH entropy and the information storage [10–13]. In order to
support this view, they consider a collection of objects (gravitons) interacting via the
Newtonian gravitational potential VN ∼ −GN μ/r and whose effective mass μ is
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related to their characteristic quantum mechanical size via the Compton/de Broglie
wavelength � � �/μ = �p mp/μ.

These bosons can superpose and form a “ball” of radius �, and total energy
M = N μ, where N is the total number of constituents. Within the Newtonian
approximation, there is then a value of N for which the whole system becomes a
BH. In details, given the coupling constant α = �2p/�

2 = μ2/m2
p there exists an

integer N such that no constituent can escape the gravitational well it contributed to
create, and which can be approximately described by the potential

U (r) � μN VN(�) � −N α
�

�
Θ(� − r), (32.1)

whereΘ is theHeaviside step function. This implies that components in the depleting
region are “marginally bound” when the kinetic energy given by EK � μ equals the
potential energy

EK + U � 0 ⇐⇒ N α = 1. (32.2)

Consequently, the effective boson mass and total mass of the BH scale according to

μ � mp√
N

and M = N μ � √
N mp. (32.3)

Note that one has here assumed that the ball is of size � (since bosons superpose)
and, therefore, the constituents will interact at a maximum distance of order r ∼ �,
with fixed �. The Hawking radiation and the negative specific heat spontaneously
result from quantum depletion of the condensate for the states satisfying (32.2). This
description is partly QuantumMechanics and partly classical Newtonian physics, but
noGeneral Relativity is involved, in that geometry does not appear in the argument. In
this work, we will show how this picture, which draws from the conjectured UV-self-
completeness of gravity [9], can be both improved within Quantum Mechanics and
reconciled with the usual geometric description of space-time in General Relativity.
Some considerations about the possible existence of remnants will also follow.

32.2 Quantum Mechanical Model

We can improve on the former model by employing the QuantumMechanical theory
of the harmonic oscillator as a (better) mean field approximation for the Newtonian
gravitational interaction acting on each boson inside the BEC.1 The potential U in
(32.1) is therefore replaced by2

1We shall use units such that c = 1, � = �p mp and the Newton constant GN = �p/mp.
2This is nothing but the Newton oscillator, which would correspond to a homogenous BEC distri-
bution in the Newtonian approximation.
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V = 1

2
μω2(r2 − d2)Θ(d − r) ≡ V0(r)Θ(d − r) (32.4)

and we further set V (0) = U (0), so that μω2 d2/2 = N α �/�. We also assume that
the effective mass, length and frequency of a single graviton mode are related by
μ = � ω = �/�, which leads to d = √

2 N α � = √
2 N �p.

If we neglect the finite size of the well, the Schrödinger equation in polar coordi-
nates yields the well-known eigenfunctions

ψnlm(r, θ, φ) = N rl e
− r2

2 �2 1F1(−n, l + 3/2, r2/�2) Ylm(θ, φ), (32.5)

where N is a normalization constant, 1F1 the Kummer confluent hypergeometric
function of the first kind and Ylm(θ, φ) are the usual spherical harmonics. The cor-
responding energy eigenvalues are given by Enl = � ω [2 n + l + 3/2 − V (0)] =
� ω

[
2 n + l + (

3 − d2/�2
)
/2

]
, where n is the radial quantum number and l the

angular momentum (not to be confused with �). Following the idea in [10–13],
we view the above spectrum as representing the effective Quantum Mechanical
dynamics of depleting modes, which can be described by the first (non-rotating)

excited state3 ψ100(r) = √
2 e− r2

2 �2
(
2 r2 − 3 �2

)
/
√
3 �7

√
π . The marginally bind-

ing condition (32.2), that is E10 � 0, then leads to the desired scaling laws
� = √

2 N/7 �p and μ = √
7/(2 N ) mp. We can now estimate the effect of the

finite width of the potential well (32.4) by simply applying first order perturbation
theory and obtaining ΔE10 = − ∫ ∞

d r2 dr ψ2
100(r) V0(r) � −0.1/

√
N mp. This can

now be compared, for example, with the ground state energy E00 = −√
14/N mp �

−3.7mp/
√

N . Since |ΔE10| 	 |E00|, our approximation appears reasonable. We
however remark that the ground state energy in this model has no physical meaning.
Indeed, the Schrödinger equation must be viewed as describing the effective dynam-
ics of BH constituents, and the total energy of the “harmonic black hole” is still given
by the sum of the individual boson effective masses,

M = N μ �
√
7 N

2
mp, (32.6)

in agreement with the “maximal packing” of (32.3) and the expected mass spectrum
of quantum BHs (see, for example, [2, 14]).

32.3 Regular Geometry

It is now reasonable to assume that the actual density profile of the BEC gravitational
source is related to the ground state wave function in (32.5) according to

3Note we have already integrated out the angular coordinates.
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ρ(r) � M ψ2
000 � 72 mp e

− 7 r2

2 N �2p

√
π N �3p

. (32.7)

Similar Gaussians profiles have been extensively studied in [17–19], where it was
proven that such densities satisfy the Einstein field equations with a “de Sitter vac-
uum” equation of state, ρ = −p, where p is the pressure. Curiously, BECs can
display this particular equation of state [7, 8, 20]. This feature provides a connection
between Quantum Mechanics and the geometrical description.

Let us indeed take the static and normalised, energy density profile of [18],4

ρ(r) = M e− r2
4 θ√

4π θ3/2
, (32.8)

where
√

θ is viewed as a fundamental length related to space-time noncommuta-
tivity, and r is the radial coordinate such that the integral inside a sphere of area
4π r2 gives the total Arnowitt-Deser-Misner (ADM) mass M of the object for
r → ∞, i.e.: M(r) = ∫ r

0 ρ(r̄) r̄2 dr̄ = M γ (3/2, r2/4θ)/Γ (3/2). Here, Γ (3/2)
and γ (3/2, r2/4θ) are the complete and upper incomplete Euler Gamma func-
tions, respectively. This energy distribution then satisfies the Einstein field equa-
tions together with the Schwarzschild-like metric ds2 = − f (r) dt2 + f −1(r) dr2 +
r2 dΩ2, where f (r) = 1 − 2 GN M(r)/r. According to [18], one has a BH only if
the mass-to-characteristic length ratio is sufficiently large, namely for

M � 1.9

√
θ

GN
= 1.9mp

√
θ

�p
≡ M∗. (32.9)

If the above inequality is satisfied, the metric function f = f (r) has two zeros
and there are two distinct horizons. For M = M∗, f = f (r) has only one zero
which corresponds to an “extremal”BH,with two coinciding horizons (and vanishing
Hawking temperature). The latter represents the minimummass BH, and a candidate
BH remnant of the Hawking decay [3]. Further, the classical Schwarzschild case
is precisely recovered in the limit GN M/

√
θ → ∞, so that departures from the

standard geometry become quickly negligible for very massive BHs.
Going back to the BEC model, whose total ADM mass is given in (32.6), and

comparing the Gaussian profile (32.7) with (32.8), that is setting θ = N �2p/14, one

finds that the condition in (32.9) reads 1.8
√

N � 0.5
√

N , and is always satisfied
(for N ≥ 1). We can therefore conclude that harmonic black holes always have two
horizons, and the degenerate case is not realised in their spectrum. Although this
mismatch might appear as a shortcoming of our construction, it is actually consistent
with the idea that the extremal case should have vanishing Hawking temperature and

4The squared length θ should not be confused with one of the angular coordinates of the previous
expressions. Also, note ρ has already been integrated over the angles.
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therefore no depleting modes. It also implies that the final evaporation phase, if it
ends in the extremal case, must be realised by a transition that most likely drives
the BEC out of the critical point. The precise nature of such a “quantum black hole”
state remains, however, unclear.

32.4 Conclusions and Outlook

We have shown that the scenario of [10–13], in which BH inner degrees of freedom
(as well as the Hawking radiation) correspond to depleting states in a BEC, can be
understood and recovered in the context of General Relativity by viewing a BH as
made of the superposition of N constituents, with a Gaussian density profile, whose
characteristic length is given by the constituents’ effective Compton wavelength.
From the point of view of Quantum Mechanics, such states straightforwardly arise
from a binding harmonic oscillator potential. Moreover, requiring the existence of
(at least) a horizon showed that the extremal case, corresponding to a remnant with
vanishing Hawking temperature, is not realised in the harmonic spectrum (32.6).
Such states will therefore have to be described by a different model.

At the threshold of BH formation (see, for example, [5]), for a total ADM mass
M � mp (thus N � 1), the above description should allow us to describe Quantum
Mechanical processes involving BH intermediate (or metastable) states. However,
we can already anticipate that quantum BHs with spin should be relatively easy to
accommodate in our description, by simply considering states in (32.5) with l > 0.
This should allow us to consider more realistic quantum BH formation from particle
collisions.

Many questions are still left open. First of all, the discretisation of the mass has
an important consequence in the classical limit. For example, let us look again at
(32.6), and consider two non-rotating BHs with mass M1 = √

(7/2) N1 mp and
M2 = √

(7/2) N2 mp, where N1 and N2 are positive integers, which slowly merge
in a head-on collision (with zero impact parameter). The resulting BH should have
a mass M which is also given by (32.6). However, there is in general no integer
N3 such that

√
N3 = √

N1 + √
N2. It therefore appears that either the mass should

not be conserved, M = M1 + M2, or the mass spectrum described by (32.6) is not
complete. This problem, which is manifestly more significant for small BH masses
(or, equivalently, integers N ), is shared by all those models in which the BH mass
does not scale exactly like an integer. If we wish to keep (32.6), or any equivalent
mass spectrum, we might then argue that a suitable amount of energy (of order
M1 + M2 − M3) should be expelled during the merging, in order to accommodate
the overall mass into an allowed part of the spectrum. In this case, one may also
wonder if this emission can be thought of as some sort of Hawking radiation,5 or if
it is completely different in nature.

5Note that for vanishing impact parameter, one does not expect any emission of classical gravita-
tional waves.



276 A. Orlandi and R. Casadio

Another issue regards the assumption in (32.7), i.e. the idea that the classical den-
sity profile corresponds to the square modulus of the (normalised) wavefunction. At
the semiclassical level, this seems reasonable and intuitive, but necessarily removes
the concept of “point-like test particle” from General Relativity, thus forcing us to
reconsider the idea of geodesics only in terms of propagation of extended wave
packets, which might show unexpected features or remove others from the classical
theory. Also, elementary particles would not differ from extended massive objects
and therefore should have an equation of state (see, for instance, the old shell model
in [1, 4]).

Last but not least, there is the question of describing the formation of a BECduring
a stellar collapse. Condensation is usually achieved at extremely low temperature,
when the thermal de Broglie wavelength becomes comparable to the inter-particle
spacing. Whereas one has no doubt that particles inside a BH are extremely packed,
it is not clear how such a dramatic drop of temperature could occur.

Acknowledgments This work is supported in part by the European Cooperation in Science and
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Chapter 33
Holographic Entanglement Entropy
of Semi-local Quantum Liquids

Da-Wei Pang, Johanna Erdmenger and Hansjörg Zeller

Abstract Weconsider the holographic entanglement entropy of (d+2)-dimensional
semi-local quantum liquids, forwhich the dual gravity background in the deep interior
is Ad S2 × Rd multiplied by a warp factor which depends on the radial coordinate.
The entropy density of this geometry goes to zero in the extremal limit. For the
case of an asymptotically AdS UV completion of this geometry, we show that the
entanglement entropy of a strip and an annulus exhibits a phase transition as a typical
length of the different shapes is varied, while there is no sign of such a transition for
the entanglement entropy of a sphere.

33.1 Introduction

Gauge/gravity duality has beenproven to be a powerful tool for studying the dynamics
of strongly coupled field theories, and has in particular been applied to understand
the low-temperature physics of strongly-coupled electron systems (AdS/CMT).

One extensively studied example is (d + 2)-dimensional Einstein-Maxwell-
Dilaton theory, which admits a metric with hyperscaling violation as an exact solu-
tion. For this case, the entropy density at finite temperature scales as s ∼ T (d−θ)/z ,
where z denotes the dynamical exponent and θ is the hyperscaling violation parame-
ter (i.e. the spatial volume scales with reduced dimension d −θ ). It has been observed
in [1] that by taking the limit z → ∞, θ → −∞ while keeping η = −θ/z fixed,
the (undesirable) ground state entropy density vanishes and low energy modes at all
momenta may exist. This behavior resembles features found in fermionic systems.
In the same limit the resulting metric is Ad S2 × Rd multiplied by a warp factor,
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which depends on the radial coordinate. In [2] the Ad S2 × Rd near horizon geom-
etry of the (d + 2)-dimensional extremal Reissner-Nordström-AdS black hole is
referred to as a holographic semi-local quantum liquid, characterized by a finite spa-
tial correlation length, an infinite correlation time and a non-trivial scaling behavior
in the time direction. The background discussed here may be seen as a generalization
of the dual of holographic semi-local quantum liquids.

We study the holographic entanglement entropy of (d + 2)-dimensional semi-
local quantum liquids for entangling regions with different shapes (strip, disk/sphere
and annulus). We start by constructing the full (d + 2)-dimensional geometry which
is asymptotically AdS near the boundary and possesses semi-locality in the interior.
Moreover, we compute the holographic entanglement entropy for the different shapes
in this geometry. For the strip, the entanglement entropy for small values of the strip
width l ≤ lcrit corresponds to a connected hypersurface in the bulk. For values larger
than lcrit we see a phase transition to two parallel slabs going from the boundary
into the deep interior of the bulk (disconnected solution). For the disk/sphere case
we do not find such a transition. We also calculate the entanglement entropy for an
annulus entangling surface in order to interpolate between the sphere and the strip
case. We find that there is a phase transition taking place between two concentric
spheres (disconnected solution) and a deformed annulus (connected solution) at a
critical value of the difference between the outer and inner radius. Depending on the
parameters the transition may be either first or second order.

33.2 The Full Solution

We start from the action of Einstein-Maxwell-Dilaton theory,

S =
∫

dd+2x
√−g

[

R − 1

2
(∇Φ)2 − V (Φ) − 1

4
Z(Φ)Fμν Fμν

]

(33.1)

and the ansatz for the metric and the gauge field

ds2d+2 = L2

z2

[

− f (z)dt2 + g(z)dz2 +
d∑

i=1

dx2i

]

, At = At (z). (33.2)

A physically sensible solution is

f (z) = kz−p, g(z) = z2F
z2

, (33.3)

where p ≡ 2d/η and k is a positive constant. This solution is conformal to Ad S2×Rd ,
which can be seen by taking the coordinate transformation z = ξ2/p. We call this
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solution the IR solution. The UV completion with an asymptotically AdS geometry
reads

f (z) = k

k + z p
, g(z) = z2F

z2 + z2F
. (33.4)

We see that this solution has f (0) = g(0) = 1, while f (z) and g(z) reduce to the
IR solution (33.3) in the z → ∞ limit.

33.3 The Holographic Entanglement Entropy

33.3.1 The Strip

Let us consider the strip case,

x1 ≡ x ∈
[

− l

2
,

l

2

]

, xi ∈ [0, Lx ], i = 2, . . . , d, (33.5)

where l 
 Lx . The minimal surface area is given by

A(γ ) = 2Ld Ld−1
x

∫
dz

zd

√

g(z) + x ′2, (33.6)

where we have parameterized x = x(z). We evaluate the boundary separation length
l for the IR solution and we obtain the constant value

l = lcrit = π zF

d
. (33.7)

For the full background solution the behavior of l versus z∗ is plotted on the left
side of Fig. 33.1 for d = 2 with zF = 1. It can be seen that l is a smooth function
of z∗. When z∗ is small, significant difference between l and lcrit can be observed.
However, when z∗ is sufficiently large, l approaches lcrit .

The holographic entanglement entropy is determined by [3, 4]

S = A(γ )

4G(d+2)
N

, (33.8)

where A(γ ) denotes the minimal surface area. The behavior of ΔA = Afinite −
Adis,finite for d = 2 is plotted in the right part of Fig. 33.1,where Adis,finite corresponds
to the disconnected case given by substituting x ′ = 0 into (33.6). Note that we have
subtracted the divergent terms following [4]. It is apparent that when l < lcrit , the
connected surface dominates, as l → lcrit, the difference tends to zero,which signifies
that the disconnected surface will dominate. This behavior agrees with the proposal
of [5].
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Fig. 33.1 Left plot The boundary separation length in the full solution (blue curve) and the IR
solution (red curve). l and lcrit have significant differences when z∗ is sufficiently small, which
means that the minimal surface just probes the geometry near the UV. As z∗ increases, the minimal
surface goes deeper into the IR and l approaches lcrit . Right plot The difference between the HEE of
the connectedminimal surface and the disconnected one.When l is sufficiently small, the connected
minimal surface dominates. As l → lcrit the disconnected one dominates

33.3.2 The Sphere

The spherical entangling region is parameterized by
∑d

i=1 x2i = R2, which leads to
the minimal surface area

Asphere = LdVol(Ωd−1)

∫
dz

zd
ρd−1

√

g(z) + ρ′2. (33.9)

Note that in this case there is no trivial solution ρ′ = 0. We are interested in the
deviation of the finite part of HEE from the area law [5], which can be analyzed by
performing a fit on the numerical data. The resulting behavior reads

Afinite = −0.625328 − 0.796679R, d = 2, (33.10)

which may indicate that for large R the finite HEE is still governed by the area law,
consistent with the conclusion in [5] (Fig. 33.2).

33.3.3 The Annulus

In the annulus case we expect to approximate a sphere in the limit of vanishing inner
radius and the strip for both, the inner and outer radius, large in comparison to their
difference.

We show generic results for the entanglement entropy for d = 2 in Fig. 33.3.
There we plot Afinite versus the difference of the radii Δρ = ρ2 − ρ1. We find
two connected solutions (deformed annulus) for values of Δρ ≤ (Δρ)max and one
disconnected solution (two concentric balls) for all values of Δρ. Note that for each
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Fig. 33.2 The finite part with spherical entangling region. The dots are data from numerical eval-
uations and the curves denote the fits
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Fig. 33.3 The finite part of the annulus entangling region for d = 2 versus the difference of the
radii Δρ = ρ2 −ρ1 for the values ρ2 = 0.1zF and ρ2 = 4zF . For small differences Δρ ≤ (Δρ)max
we see different solutions, two connected (deformed annulus) solutions with the lower one being
preferred (blue and red) and the concentric balls solution (yellow). The transition between the
connected and disconnected solutions at (Δρ)crit is first order for small values of ρ2 (swallow tail
form of the left plot). For larger values of ρ2 we have a second order transition (right plot). If
Δρ > (Δρ)max the disconnected solution is the only solution

value ofΔρ the preferred solution is the onewith smaller value of Afinite. In the d = 2
case, at a value (Δρ)crit we find a first order transition from the preferred connected to
the disconnected solution for small values of the radii and a second order transition for
larger ones. This behavior is very similar to the strip case discussed in Sect. 33.3.1,
where there also only exists a connected solution for l ≤ lcrit , however, there the
transition is always second order. The analogy goes further: increasing the values
of the radii ρ1, ρ2 leads to (Δρ)crit → π/d, with zF = 1. Looking closer at this
limit in d = 2 we see the swallow tail becomes smaller turning into a second order
transition (see right part of Fig. 33.3). From this behavior we deduce that the annulus
tends towards the strip solution for large radii. The other limit, however, where we
aim at approximating a sphere, does not work entirely as expected, since for each
given pair of radii of the annulus solution, we always find a maximal difference
(Δρ)max between both which is smaller than the outer radius ρ2. Therefore we can
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at most approximate two concentric spheres, but never one sphere alone. Finally, the
similarity inmost of the parameter space to the behavior seen in confining geometries
is astonishing [6, 7]. It would be interesting to understand if there is a common
origin to this resemblance.

33.4 Conclusions

We considered holographic entanglement entropy of semi-local quantum liquids,
whose gravity dual in (d+2)-dimensions is described by ametric which is conformal
to Ad S2 × Rd in the IR. For the case of a strip entangling region we observe a
second order phase transition: When the boundary separation length l ≤ lcrit the
connected surface dominates, otherwise the disconnected one is preferred. Such a
phase transition is not observed for the spherical entangling region. We also study
the annulus case as an interpolating geometry between the sphere and the strip. For
this shape we find two connected solutions, with one being preferred, i.e. it has lower
entanglement entropy. For a certain value of Δρ (difference between the outer and
inner radius of the annulus) we see a transition from the preferred connected solution
to a disconnected solution (two concentric spheres). In the d = 2 case there always
seems to be a transition, which is first order for small values of the outer radius and
becomes a second order transition for increasing values of the radii. For a detailed
analysis of the results presented here and the plots for the d > 2 case see [8].
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Humboldt Foundation.
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Chapter 34
Quadratic Palatini Gravity and Stable Black
Hole Remnants

Diego Rubiera-Garcia, Francisco S.N. Lobo and Gonzalo J. Olmo

Abstract Wepresent a four-dimensional Planck-scale corrected quadratic extension
of General Relativity (GR) where no a priori relation between metric and connec-
tion is imposed (Palatini formalism). Static spherically symmetric electrovacuum
solutions are obtained in exact analytical form. The macroscopic properties of these
solutions are in excellent agreement with GR, though the region around the central
singularity is modified. In fact, the singularity is generically replaced by a wormhole
supported by the electric field, which provides a non-trivial topology to the space-
time.Moreover, for a certain charge-to-mass ratio the geometry is completely regular
everywhere. For such regular solutions, the horizon disappears in the microscopic
regime below a critical number of charges (N < 17), yielding a set ofmassive objects
that could be naturally identified as black hole remnants.

34.1 Introduction

Almost one hundred years after its foundation, General Relativity (GR) has success-
fully passed a wide range of experimental tests [1]. However, there exist arguments
suggesting that GR should be extended to encompass for new phenomena. One of
them is represented by the existence of singularities both in the Big Bang and deep
inside black holes, where the classical geometry breaks down. Such singularities are
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believed to be an artifact of the classical description, to be resolved within a quantum
theory of gravity. Even though the specific details of such a theory are not at hand,
we could gain useful insights on its nature by studying classical gravity theories
including higher-order curvature terms. Indeed such terms are needed for a high-
energy completion of the Einstein-Hilbert Lagrangian [2], and moreover appear in
some approaches to quantum gravity such as those based on string theory [3]. In this
sense, if the underlying structure of spacetime is assumed to be a priori Riemmanian
such terms usually give rise to fourth-order field equations and exhibit ghosts. How-
ever, the fact is that the metric and the connection are independent entities by their
own, and thus, in the absence of further evidence for the physics beyond GR, one
could apply the variational principle to both objects, instead of relying on a tradition
or convention basis to keep the Riemannian assumption at all energies/scales. In this
(Palatini) formulation of the theory, quadratic gravity Lagrangians satisfy second-
order equations and contain Minkowski as a vacuum solution of the theory, which
guarantees the absence of ghosts.

34.2 Theory and Solutions

We consider Palatini Lagrangian densities defined as

S = 1

2κ2

∫

d4x
√−g f (R, Q) + SM [gμν, Ψ ] , (34.1)

with R = gμν Rμν , Q = Rμν Rμν and Sm the matter action. We apply the variation
principle independently to the metric and connection, and impose vanishing torsion,
Γ λ[μν] = 0, a posteriori, which leads to R[μν] = 0 [4]. Under these conditions the
field equations become

fR Rμν − f

2
gμν + 2 fQ Rμα Rα

ν = κ2Tμν , (34.2)

∇β

[√−g
(

fRgμν + 2 fQ Rμν
)] = 0 . (34.3)

To solve them, we note that the equation for the connection can be solved by
defining a rank-two tensor hμν as ∇β [√−hhμν] = 0, related to the metric gμν as

hμν = gμαΣα
ν

√
detΣ

, hμν = (
√
detΣ)[Σ−1]μα

gαν , Σν
α = ( fRδν

α + 2 fQ Pα
ν) ,

(34.4)
and thus the independent connection Γ λ

μν is the Levi-Civita connection of hμν . We
have defined Pα

ν ≡ Rαμgμν which, according to (34.2) is a function of Tμ
ν . In

terms of hμν the equation for the metric (34.2) become [5]

Rμ
ν(h) = 1√

detΣ

(
f

2
δν
μ + κ2Tμ

ν

)

. (34.5)
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This shows that the auxiliary metric hμν satisfies an Einstein-like set of partial
differential equations. Moreover, since gμν is algebraically related with hμν , the
field equations for gμν are also second-order. Note also that in vacuum Rμ

ν = Λδν
μ

and thus we recover GR with a cosmological constant term. This shows that these
theories have the same number of propagating degrees of freedom as GR.

Next we consider the quadratic model f (R, Q) = R + l2P (R + aQ), with l2P ≡
�G/c3 representing the Planck length squared and a is a free parameter. To probe
the theory, we study electrovacuum solutions, as given by the action

Sm[g, ψm] = − 1

16π

∫

d4x
√−gFαβ Fαβ, (34.6)

where Fμν = ∂μ Aν−∂ν Aμ is the field strength tensor. The energy-momentum tensor

reads Tμ
ν = − 1

4π [Fμ
α Fα

ν − Fα
β Fβ

α

4 δν
μ], while the field equations ∇μFμν = 0

in a spherically symmetric background ds2 = gtt dt2 + grr dr2 + r2dΩ2 satisfy
Ftr = q

r2
1√−gtt grr

. For this theory, the field equations (34.5) in the geometry hμν can
be analytically solved, and putting that solution in terms of gμν using (34.4) leads to
[5–7]

gtt = − A(z)

σ+
, grr = σ+

σ− A(z)
, A(z) = 1 − [1 + δ1G(z)]

δ2zσ 1/2
−

,
dG

dz
= z4 + 1

z4
√

z4 − 1
,

where z = r/rc, rc ≡ √
rqlP , r2q ≡ κ̃2q2 = κ2q2/(4π), δ1 = 1

2rS

√
r3q / lP , δ2 =

√
rqlP/rS and σ± = 1 ± 1/z4. The function G(z) behaves as follows: far from the

center we have G(z) ≈ − 1
z − 3

10z5
+ · · · , and thus the GR limit is quickly recovered

for z � 1. However, at z → 1 the metric undergoes important modifications, as
here we obtain G(z) ≈ β + 2

√
z − 1 − 11

6 (z − 1)3/2 + · · · , where β ≈ −1.74804
is a constant needed to match the far and near expansions. At z = 1, in general, the
curvature invariants become divergent, but for the particular choice δ1 = δ∗

1 = −1/β
they behave as

r2c R(g) ≈
(

−4 + 16δc

3δ2

)

+ · · · , r4c Q(g) ≈
(

10 + 86δ2c
9δ22

− 52δc

3δ2

)

+ · · ·

r4c K (g) ≈
(

16 + 88δ2c
9δ22

− 64δc

3δ2

)

+ · · ·

and thus all of them are finite.
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34.3 Wormhole Structure and Black Hole Remnants

Using Eddington-Finkelstein type coordinates, ds2 = gtt dv2 + 2dvdr∗ + r2(r∗)dΩ2,
the line element at the surface z = 1 becomes

gtt = (1 − δ1/δc)

4δ2
√

z − 1
− 1

2

(

1 − δ1

δ2

)

+ O(
√

z − 1), (34.7)

with z(z∗) defined by (dz/dz∗)2 = σ−, being z∗ = r∗/rc. For δ1 = δc, we find that
gtt is smooth everywhere, and r∗ can be extended to the negative axis by considering
the two branches of the equation (dz/dz∗) = ±σ

1/2
− . This equation indicates that the

radial function has a minimum at r = rc (or z = 1), which can be integrated to yield
z∗ = 2F1[− 1

4 ,
1
2 ,

3
4 ,

1
z4

]z if z∗ ≥ z∗
c and z∗ = 2z∗

c − 2F1[− 1
4 ,

1
2 ,

3
4 ,

1
z4

]z if z∗ ≤ z∗
c ,

where z∗
c ≈ 0.59907. The bounce in the radial function z(z∗) is reminiscent of a

wormhole geometry, with z = 1 representing the wormhole throat. This wormhole
structure naturally leads to the concept of geon originally introduced by Wheeler
in 1955 as “sourceless self-consistent gravitational electromagnetic entities” with a
multiply-connected geometry [8]. This follows from the fact that the lines of force of
the electric field enter through one of themouths of thewormhole and exit through the
other, creating the illusion of a negatively charged object on one side and a negatively
charged on the other but without having real sources or charges generating the field.
The locally measured electric charge arises from the computation of the flux Φ ≡∫

S ∗F = 4πq through any 2-surface S enclosing the wormhole throat. This implies
that the electric flux per surface unit at z = 1, which represents the density of lines of
force crossing the wormhole throat, namely, Φ/(4πr2c ) = q/r2c = √

c7/(2(�G)2),
turns out to be a universal quantity, independent of the specific amounts of charge
and mass. Moreover, the dependence of Φ

4πr2c
on fundamental constants (irrespective

of M and q) indicates that the geon structure persists for those solutions showing
curvature divergences (δ1 �= δ∗

1).
The evaluation of the action on the solutions yields

ST = q2

rcδ
∗
1

∫

dt = 2
δ1

δ∗
1

Mc2
∫

dt, (34.8)

which can be interpreted as the addition of the electromagnetic plus gravitational
binding energy. This value, which is finite for arbitrary δ1, coincides with the action
of an isolated particle ofmass M at rest, Sp.p. = mc2

∫
dt

√
1 − v2/c2, when δ1 = δc.

From (34.5), one may easily find the conditions for the existence of an event
horizon when δ1 = δc. It turns out that the sign of (1 − δ1/δc) determines if there
is an event horizon. Expressing q = Nqe, we find that rq = 2lP Nq/N c

q , where
N c

q ≡ √
2/αem ≈ 16.55. Thus, if δc/δ2 = Nq/N c

q > 1 there is an event horizon,
which is absent otherwise. Therefore, for δ1 = δc we find a family of horizonless
objects not affected by Hawking’s quantum instability and with a mass spectrum
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given by M ≈ 1.23605(Nq/N c
q )3/2m P . The topological nature of the charge of these

solutionsmakes them stable against arbitrary classical perturbations that preserve the
topology.

It is worth mentioning that Hawking’s estimates on the generation of primordial
black holes by large density perturbations in the early universe [9], which are based
entirely on the process of classical collapse, predict that objects with M ≥ m P

and Nq < 30 could have been formed in the early universe. Such numbers are in
excellent quantitative agreement with the characteristics of the horizonless δ1 = δc

solutions found here. Thus, since large numbers of objects with M ∼ m P and
Nq < 30 could have been formed in the early universe, a fraction of them could
reach the stability conditions found here. The evaporation of more massive objects
could also yield this type of particles. The existence of stable states in the lowest part
of the mass and charge spectrum which can be continuously connected with black
hole states, supports the view that these objects can be naturally identified as black
hole remnants. The existence of these objects suggests that a maximum temperature
should be reached in the evaporation process, which is compatible with the lack of
observations of black hole explosions.

We note that the robustness of our results can be tested by considering nonlin-
earities (coming e.g. from pair production) in the matter sector through nonlinear
electrodynamics. Proceeding in this way, we find that exact solutions, provided by
Born-Infeld electrodynamics, are in qualitative agreement with the Maxwell case
[11]. Moreover, it turns out that the mass spectrum can be reduced by many orders
of magnitude.

34.4 Dynamical Generation

The above wormhole solutions can be dynamically generated as follows. Consider
a presure less flux of ingoing charged matter with stress-energy tensor T f lux

μν =
ρinkμkν . This flux conveys a current J ν ≡ Ω(v)kν (with Ω(v) a function to be
determined) in the electromagnetic equations of motion as ∇μFμν = 4π J ν . The
field equations (34.5) admit a solution [12], which is formally similar to that of
(34.5) with the replacements t → v, δ1 → δ1(v), δ2 → δ2(v), and gtt → gtt +
2l2Pκ2ρin/(σ−(1 − 2r4c /r4)), where v is the advanced time coordinate.

If we assume the initial state to be Minkowski space, a charged perturbation of
compact support propagating within an interval [vi , v f ] makes the area of the 2-
spheres of constant v to never become smaller than r2c (v). Once the flux is switched
off (v > v f ), the result is a static geometry identical to that given by (34.2). This
change in the geometry can be interpreted as the formation of a wormhole whose
throat has an area AW H = 4πr2c (v f ). The existence or not of curvature divergences
at r = rc(v f ) depends on the (integrated) charge-to-mass ratio of the flux. This result
seems to imply a change in the global properties of space-time and, in particular, in
its topology. However, a different viewpoint emerges if one accepts that curvature
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divergences are not necessarily as pathologically as usually regarded. Indeed, the
existence of a well-defined electric flux flowing across the wormhole throat supports
the idea that the wormhole structure is present even in those cases with curvature
divergences. Within this interpretation, the region v < vi would be made of two
disconnected pieces of Minkowski space-time which are separated by a vanishing
radius throat that, once electric charge comes into play, is opened up.

34.5 Ending Comments

An important lesson that follows from our analysis is that given the puzzles that
Nature presents us in understanding the physics beyond GR, the consideration of
foundational aspects of gravity, such as the validity of the Riemannian assumption on
the space-time at all scales/energies, cannot be overlooked any longer. This important
aspect has consequences on the formulation of classical gravity theories, as the
metric and Palatini approach yield, in general, inequivalent results [13] (an important
exception is precisely GR). Working in the Palatini approach we have found the
existence of wormhole solutions with a geonic structure that can be interpreted as
black hole remnants. The existence of a non-trivial topology conveyed by these
solutions raises several questions on the true meaning of curvature divergences in
this theory, and on the very nature of space-time that requires further investigation.

Work supported by FCT grants CERN/FP/123615/2011 and CERN/FP/123618/
2011 (F.S.N.L.); grant FIS2011-29813-C02-02, the Consolider Programme CPAN
(CSD2007-00042), and the JAE-doc program of CSIC (G.J.O.); CNPq grant 561069/
2010-7 (D.R.-G.).
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Chapter 35
Kermions

Elizabeth Winstanley

Abstract In the framework of quantum field theory in curved space-time, we study
the quantization of a massless fermion field on a non-extremal Kerr black hole. The
key theme in this note is the fundamental difference between scalar and fermion fields
for the process of defining quantum states. In particular, we define two new states for
fermions on Kerr which cannot be defined for quantum scalar fields on Kerr. These
two states are the analogues of the standard Boulware and Hartle-Hawking states on
a Schwarzschild black hole.

35.1 Canonical Quantization

In the canonical quantization of a free field on a curved space-time, an object of
fundamental importance is the vacuum state |0〉. On a general curved space-time,
there is no unique vacuum state.

For a quantum scalar field, the process starts by expanding the classical field Φ in
terms of an orthonormal basis of field modes, which are split into positive frequency
modes φ+

j and negative frequency modes φ−
j :

Φ =
∑

j

a jφ
+
j + a†

j φ
−
j . (35.1)

The choice of positive/negative frequency modes is constrained by the fact that posi-
tive frequencymodes must have positive Klein-Gordon norm and negative frequency
modes have negativeKlein-Gordon norm (by “norm”, herewemean the inner product
of a field mode with itself). With this restriction, quantization proceeds by promoting
the expansion coefficients in (35.1) to operators satisfying the usual commutation
relations. The â j are interpreted as particle annihilation operators and the â†

j as par-
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ticle creation operators. The vacuum state |0〉 is then defined as that state annihilated
by all the particle annihilation operators: â j |0〉 = 0. The definition of a vacuum
state is therefore dependent on how the field modes are split into positive and nega-
tive frequency modes, which is restricted for a quantum scalar field by the fact that
positive frequency (particle) modes must have positive norm.

For a fermion fieldΨ , we again start with an expansion in terms of an orthonormal
basis of field modes analogous to (35.1):

Ψ =
∑

j

b jψ
+
j + c†jψ

−
j . (35.2)

In this case, both positive and negative frequency fermion modes have positive Dirac
norm, so the split of the field modes into positive and negative frequency is much
less constrained for a fermion field compared with a scalar field. As in the scalar field
case, the expansion coefficients are promoted to operators but now they satisfy anti-
commutation relations. The vacuum state |0〉 is again defined as that state annihilated
by all the particle annihilation operators: b̂ j |0〉 = 0 = ĉ j |0〉. Compared with the
scalar field case, there is much more freedom in how the vacuum state is defined
for a fermion field, because there is much more freedom in how positive frequency
modes can be chosen.

35.2 Quantum Field Theory on Schwarzschild Space-Time

Before studying the construction of quantum states on a Kerr black hole, we briefly
review the Boulware [1] and Hartle-Hawking [3] states on a Schwarzschild black
hole. We emphasize that the construction of these two states is the same for quantum
fermion and scalar fields.

Modes for both a massless scalar field and massless fermion field are indexed by
the quantum numbers ω, � (a total angular momentum quantum number) and m (the
azimuthal quantum number). The quantum number ω is the frequency of the modes
as seen by a static observer either near the event horizon or at infinity. For scalar field
modes, the Klein-Gordon norm is proportional to ω. We emphasize that all fermion
modes have positive Dirac norm. A suitable basis of field modes consists of the “in”
and “up” modes shown in Fig. 35.1a, b.

35.2.1 Boulware State |B〉 [1]

To define this state we choose positive frequency modes as seen by a static observer
at infinity. The resulting vacuum state |B〉 contains no particles in the “in” and “up”
modes with ω > 0. This state is as empty as possible at infinity I ± but diverges on
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Fig. 35.1 a “In” modes: a wave is incident from infinity; part of the wave is reflected back to
infinity and part goes down the event horizon of the black hole. b “Up” modes: a wave is outgoing
from the event horizon; part of the wave is reflected back down the event horizon and part escapes
to infinity

the event horizon H±. The unrenormalized expectation value of the stress-energy
tensor (UEVSET) for a fermion field in this state is

〈B|T̂μν |B〉 = 1

2

∞∑

�= 1
2

�∑

m=−�

∫ ∞

0
dω

{
Tμν

[
ψ in

ω�m

]
+ Tμν

[
ψ

up
ω�m

]}
. (35.3)

Here, and in subsequent expressions, we write the UEVSET as a mode sum to show
the differences between the various states considered. The expression Tμν[ψ in/up

ω�m ]
denotes a classical field mode contribution to the total UEVSET.

35.2.2 Hartle-Hawking State |H〉 [3]

In this case we choose positive frequency modes with respect to Kruskal time near
the event horizon H±. The “in” and “up” modes with ω > 0 become thermally
populated with energy ω. The resulting state |H〉 is regular at both the event horizon
and infinity; however it is not empty at infinity. It represents a black hole in thermal
equilibrium with a heat bath at the Hawking temperature TH . The UEVSET for a
fermion field in this state is

〈H |T̂μν |H〉 = 1

2

∞∑

�= 1
2

�∑

m=−�

∫ ∞

0
dω tanh

(
ω

2TH

) {
Tμν

[
ψ in

ω�m

]
+ Tμν

[
ψ

up
ω�m

]}
.

(35.4)
For a quantum scalar field, the thermal “tanh” factor becomes a “coth”.
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35.3 Quantum Field Theory on Kerr Space-Time

TheKerr space-time represents a black holewhose event horizon rotates with angular
velocity ΩH . Some key features of the geometry are shown in Fig. 35.2a, b. In each
figure, the central black region is the interior of the event horizon, and the axis of
rotation runs vertically down the middle of each diagram. Two further surfaces are
important in our later discussion:

• The stationary limit surface (the short-dashed surface in Fig. 35.2a, b) is the surface
inside which it is not possible for an observer to remain at rest relative to infinity;

• The speed of light surface (the long-dashed surface in Fig. 35.2a, b) is the surface
outside which it is not possible for an observer to co-rotate with the black hole
event horizon.

A suitable basis of field modes is made up of “in” and “up” modes as in the
Schwarzschild case, indexed by the quantum numbers ω, � and m. A static observer
near infinity measures ω to be the frequency of a particular field mode. Choosing
modes with positive frequency at infinity therefore corresponds to choosing ω > 0.
Due to the rotation of the black hole, the corresponding frequency near the horizon
is no longer ω but is shifted by the angular velocity of the black hole to be ω̃ =
ω − mΩH . Choosing modes with positive frequency with respect to Kruskal time
near the horizon therefore corresponds to thermally populating the “in” and “up”
modes with energy ω̃ rather than ω. A further complication is that, for scalar fields,
the “in” modes have positive norm only if ω > 0 whereas the “up” modes have
positive norm only if ω̃ > 0. As previously, for a fermion field all modes have
positive norm.

Fig. 35.2 a Regularity properties of |B〉. The UEVSET (35.5) is subtracted from (35.6). Dark
regions indicate where this difference is divergent and light regions where it is finite. Taken from
[2]. b Regularity properties of |H〉. The UEVSET (35.5) is subtracted from (35.7). Dark regions
indicate where this difference is divergent and light regions where it is finite. Taken from [2]
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We now describe three quantum states on Kerr space-time, including analogues
of the Boulware and Hartle-Hawking states defined above for Schwarzschild black
holes.

35.3.1 “Past” Boulware State
∣
∣B−〉

[5]

Based on the norms of the scalar field modes, the natural frequency for the “in”
modes is ω, while for the “up” modes it is ω̃. Choosing ω > 0 for the “in” modes
and ω̃ > 0 for the “up” modes as the definition of positive frequency leads to the
“past” Boulware [4, 5] state, for which the UEVSET for a fermion field is [2]

〈B−|T̂μν |B−〉 = 1

2

∞∑

�= 1
2

�∑

m=−�

{∫ ∞

0
dω Tμν

[
ψ in

ω�m

]
+

∫ ∞

0
dω̃ Tμν

[
ψ

up
ω�m

]
}

.

(35.5)
Like the Boulware state on a Schwarzschild black hole, the “past” Boulware state
is divergent on the event horizon of a Kerr black hole, but it is regular everywhere
outside the event horizon. Unlike the Boulware state on a Schwarzschild black hole,
it is not empty at infinity; there is an outgoing flux of radiation at I + [5]. The
construction of the “past” Boulware state is identical for both scalar and fermion
fields.

35.3.2 “Boulware” State |B〉 [2]

We next seek to construct an analogue of the Boulware state on Schwarzschild space-
time, which is as empty as possible at both future and past null infinity, I ±. Wewould
therefore like to choose ω > 0 as positive frequency for both “in” and “up” modes.
For scalar fields there is an immediate problem: the “up” modes have positive norm
for ω̃ > 0, not ω > 0. As a result for scalar fields no state empty at both future and
past null infinity I ± can be defined [4]. However, for fermion fields all modes have
positive norm and in this case we can construct a state, the “Boulware” state |B〉, by
taking ω > 0 as the definition of positive frequency for all modes. The UEVSET for
a fermion field in this state is [2]

〈B|T̂μν |B〉 = 1

2

∞∑

�= 1
2

�∑

m=−�

∫ ∞

0
dω

{
Tμν

[
ψ in

ω�m

]
+ Tμν

[
ψ

up
ω�m

]}
. (35.6)

To determine where the state |B〉 is regular, we subtract from (35.6) the UEVSET
(35.5), since the state

∣
∣B−〉

is regular everywhere outside the event horizon. It can be
seen from Fig. 35.2a that this difference in expectation values is regular outside the
stationary limit surface of the Kerr black hole, but diverges in the ergosphere. We
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therefore deduce that the state |B〉 is also regular outside the stationary limit surface
but divergent in the ergosphere.

35.3.3 “Hartle-Hawking” State |H〉 [2]

To define an analogue of the Hartle-Hawking state on Schwarzschild space-time, we
would like to construct a state representing a Kerr black hole in thermal equilibrium
with a heat bath at the Hawking temperature TH . Since the frequency of the modes
near the horizon is ω̃, this would correspond to thermally populating the “in” and
“up” modes with energy ω̃. For a quantum scalar field, this cannot be done because
the “in” modes are defined in terms of frequency ω, not ω̃.

On the other hand, for fermions on Kerr we are able to define a “Hartle-Hawking”
state for which both the “in” and “up” modes are thermalized with energy ω̃. In this
case the UEVSET for the fermion field is [2]

〈H |T̂μν |H〉 = 1

2

∞∑

�= 1
2

�∑

m=−�

∫ ∞

0
dω̃ tanh

(
ω̃

2TH

) {
Tμν

[
ψ in

ω�m

]
+ Tμν

[
ψ

up
ω�m

]}
.

(35.7)

To determine where the state |H〉 is regular, we subtract from (35.7) the UEVSET
(35.5). It can be seen from Fig. 35.2b that this difference in expectation values is
regular between the event horizon and the speed-of-light surface, but diverges outside
the speed-of-light surface. We therefore deduce that the state |H〉 is also regular
between the event horizon and the speed-of-light surface but diverges outside the
speed-of-light surface.
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Other Topics in Contemporary Gravitation



Chapter 36
Quantum Gravity and the Cosmological
Constant Problem

John W. Moffat

Abstract A finite and unitary nonlocal formulation of quantum gravity is applied to
the cosmological constant problem. The entire functions in momentum space at the
graviton-standard model particle loop vertices generate an exponential suppression
of the vacuum density and the cosmological constant to produce agreement with
their observational bounds.

36.1 Introduction

Anonlocal quantumfield theory and quantumgravity theory has been formulated that
leads to a finite, unitary and locally gauge invariant theory [1–14]. For quantum grav-
ity the finiteness of quantum loops avoids the problem of the non-renormalizabilty
of local quantum gravity [15, 16].

The finiteness of the nonlocal quantum field theory draws from the fact that fac-
tors of exp[K (p2)/Λ2] are attached to propagators which suppress any ultraviolet
divergences in Euclidean momentum space, where Λ is an energy scale factor. An
important feature of the field theory is that only the quantum loop graphs have non-
local properties; the classical tree graph theory retains full causal and local behavior.

Consider first the 4-dimensional spacetime to be approximately flat Minkowski
spacetime. Let us denote by f a generic local field and write the standard local
Lagrangian as

L [ f ] = LF [ f ] + LI [ f ], (36.1)

whereLF andLI denote the free part and the interaction part of the action, respec-
tively, and
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LF [ f ] = 1

2
fiKi j f j . (36.2)

In a gauge theory the actionwould be theBecchi, Rouet, Stora, Tyutin (BRST) gauge-
fixed action including ghost fields in the invariant action required to fix the gauge
[17, 18]. The kinetic operatorK is fixed by defining a Lorentz-invariant distribution
operator:

E ≡ exp

(
K

2Λ2

)

(36.3)

and the operator:

O = E 2 − 1

K
=

∫ 1

0

dτ

Λ2 exp

(

τ
K

Λ2

)

. (36.4)

The regularized interaction Lagrangian takes the form

L̂I = −
∑

n

(−g)n f I [F n,O(n−1))] f, (36.5)

where g is a coupling constant andF is a vertex function form factor. The decompo-
sition ofI in order n = 2 is such that the operatorO splits into two partsF 2/K and
−1/K . For Compton amplitudes the first such term cancels the contribution from
the corresponding lower order channel, while the second term is just the usual local
field theory result for that channel. The action is then invariant under an extended
nonlocal gauge transformation. The precise results for QED were described in [2].

The regularized action is found by expanding L̂I in an infinite series of interaction
terms. SinceF andO are entire function ofK the higher interactions are also entire
functions ofK . This is important for preserving the Cutkosky rules and unitarity, for
an entire function does not possess any singularities in the finite complex momentum
plane.

The Feynman rules are obtained as follows: Every leg of a diagram is connected
to a local propagator,

D(p2) = i

K (p2) + iε
(36.6)

and every vertex has a form factor F k(p2), where p is the momentum attached to
the propagator D(p2), which has the form

F k(p2) ≡ E k(p2) = exp

(
K

2Λk

)

, (36.7)

where k denotes the particle nature of the external leg in the vertex. The formalism is
set up in Minkowski spacetime and loop integrals are formally defined in Euclidean
space by performing a Wick rotation. This facilitates the analytic continuation; the
whole formalism could from the outset be developed in Euclidean space.
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We will demonstrate how the nonlocal transcendental entire function in momen-
tum space that generates the finite and unitary standard model (SM) and quantum
gravity (QG) loops to all orders of perturbation theory, produces an exponential
suppression of the estimated very large vacuum density and cosmological constant
in local quantum field theory. This can solve the severe fine-tuning cosmological
constant problem, avoiding a naturalness problem and the need for an anthropic and
multiverse solution.

36.2 Nonlocal Quantum Gravity

We expand the metric around a smooth fixed background spacetime:

gμν = ḡμν + hμν. (36.8)

By restricting ourselves to perturbation theory and a fixed geometrical background,
we lose general covariance (diffeomorphism invariance). However, we still main-
tain gauge invariance of the gravitational calculations under the gauge group of the
fixed background metric, e.g., for a fixedMinkowski metric background the action is
invariant under local Poincaré transformations, while for a de Sitter backgroundmet-
ric the action will be invariant under the group of de Sitter transformations. Although
we lose general covariance in our perturbation calculations of gravitational scatter-
ing amplitudes, the basic physical properties such as finiteness of loop amplitudes,
gauge invariance and unitarity will be expected to lead to correct and reliable physi-
cal conclusions. For the sake of simplicity, we shall only consider expansions about
Minkowski spacetime.

Let us define gμν = √−ggμν , where g = det(gμν) and ∂ρg = gαβ∂ρgαβg. We
can then write the local gravitational action Sgrav in the form [19]:

Sgrav =
∫

d4xLgrav = 1

2κ2

∫

d4x[(gρσ gλμgκν

− 1

2
gρσ gμκgλν − 2δσ

κ δ
ρ
λ gμν)∂ρgμκ∂σ gλν

− 2

α
∂μgμν∂κgκληνλ + C̄ν∂μ XμνλCλ], (36.9)

where κ2 = 32πG and we have added a gauge fixing term with the parameter α, Cμ

is the Fadeev-Popov ghost field and Xμνλ is a differential operator:

Xμνλ = κ(−∂λγμν + 2η(μλγκν)∂
κ) + (η(μλ∂ν) − ημν∂λ). (36.10)

We expand the local interpolating graviton field gμν as

gμν = ημν + κγ μν + O(κ2). (36.11)
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Then,
gμν = ημν − κγμν + κ2γμ

αγαν + O(κ3). (36.12)

The gravitational Lagrangian density is expanded as

Lgrav = L (0) + κL (1) + κ2L (2) + · · · (36.13)

In the limit α → ∞, the Lagrangian density Lgrav is invariant under the gauge
transformation

δγμν = Xμνλξ
λ, (36.14)

where ξλ is an infinitesimal vector quantity.
To implement nonlocal quantum gravity, we introduce the “stripping” graviton

propagator in the gauge α = −1:

D̃αβμν(p) = 1

2
(ηαμηβν + ηανηβμ − ηαβημν)O0(p), (36.15)

while the ghost stripping propagator is given by

D̃ghost
μν (p) = ημνO0(p), (36.16)

where

O0(p) = E 2
0 − 1

p2
. (36.17)

We choose E 2
0 = exp(−p2/2Λ2

G) and we see that the local propagator can be
obtained from the nonlocal propagator minus the stripping propagator

1

p2
= exp(−p2/2Λ2

G)

p2
− O0(p). (36.18)

The stripping propagators are used to guarantee that the tree-level graviton-graviton
scattering amplitudes are identical to the local, point-like tree-level amplitudes,which
couple only to physical gravitons.

The graviton propagator in the fixed deDonder gauge α = −1 [20, 21] inmomen-
tum space is given by

Dμνρσ (p) = ημρηνσ + ημσ ηνρ − ημνηρσ

p2 + iε
, (36.19)

while the graviton ghost propagator in momentum space is

Dghost
μν (p) = ημν

p2 + iε
. (36.20)
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The on-shell vertex functions are unaltered from their local antecedents, while
virtual particles are attached to nonlocal vertex function form factors. This destroys
the gauge invariance of e.g. graviton-graviton scattering and requires an iteratively
defined series of “stripping” vertices to ensure the decoupling of all unphysical
modes. Moreover, the local gauge transformations have to be extended to nonlinear,
nonlocal gauge transformations to guarantee the over-all invariance of the regularized
amplitudes. The quantum gravity perturbation theory is invariant under generalized,
nonlinear field representation dependent transformations, and it is finite to all orders.
At the tree graph level all unphysical polarization states are decoupled and nonlocal
effects will only occur in graviton and graviton-matter loop graphs. Because the
gravitational tree graphs are purely local there is a well-defined classical GR limit.
The finite quantum gravity theory is well-defined in four real spacetime dimensions
or in any higher D-dimensional spacetime.

We quantize by means of the path integral operation

〈0|T ∗(O[g])|0〉E =
∫

[Dg]μ[g](gauge fixing)O[g] exp(i Ŝgrav[g]). (36.21)

The quantization is carried out in the functional formalism by finding a measure
factor μ[g] to make [Dg] invariant under the classical symmetry. Because we have
extended the gauge symmetry to nonlinear, nonlocal transformations, we must also
supplement the quantization procedure with an invariant measure

M = Δ(g, C̄, C)D[gμν]D[C̄λ]D[Cσ ] (36.22)

such that δM = 0.

36.3 The Cosmological Constant Problem

The cosmological constant problem is considered to be the most severe hierarchy
problem in modern physics [22–25].

We can define an effective cosmological constant

λeff = λ0 + λvac, (36.23)

where λ0 is the ‘bare’ cosmological constant in Einstein’s classical field equations,
and λvac is the contribution that arises from the vacuum density λvac = 8πGρvac.
The observational bound on ρvac is

ρvac ≤ 10−47 (GeV)4, (36.24)
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corresponding to the bound on λvac:

λvac ≤ 10−84 GeV2. (36.25)

Zeldovich [26] showed that the zero-point vacuum fluctuations must have a
Lorentz invariant form

Tvacμν = λvacgμν, (36.26)

consistent with the equation of state ρvac = −pvac. Thus, the vacuum within the
framework of particle quantum physics has properties identical to the cosmological
constant. In quantum theory, the second quantization of a classical field of mass m,
treated as an ensemble of oscillators each with a frequency ω(k), leads to a zero-
point energy E0 = ∑

k
1
2�ω(k). An evaluation of the vacuum density obtained from

a summation of the zero-point energy modes gives

ρvac = 1

(2π)2

∫ Mc

0
dkk2(k2 + m2)1/2 ∼ M4

c

16π2 , (36.27)

where Mc is the cutoff. Taking Mc ∼ MPlanck ∼ 1019 GeV, we get ρvac ∼ 122 orders
of magnitude greater than the observed value. Already at the level of the standard
model, we get ρvac ∼ (102 GeV)4 which is 55 orders of magnitude larger than the
bound (36.24). To agree with the experimental bound (36.24), we would have to
invoke a very finely tuned cancellation of λvac with the ‘bare’ cosmological constant
λ0, which is generally conceded to be theoretically unacceptable.

We adopt a model consisting of a photon field Aμ coupled to gravity. We have for
the effective field Lagrangian density:

LA = −1

4
(−g)−1/2gμνgαβ Fμα Fνβ, (36.28)

where
Fμν = ∂ν Aμ − ∂μ Aν . (36.29)

We have

L (0)
A = −1

4
ημνηαβ Fμα Fνβ, (36.30)

and

L (1)
A = −1

4

(

ημνγ αβ + ηαβγ μν − 1

2
ημνηαβγ

)

Fμα Fνβ . (36.31)

We include in the Lagrangian densityL (0)
A an additional gauge-fixing piece − 1

2 (∂
μ

Aμ)2. For a particular gauge no Faddeev-Popov ghost particles and diagrams con-
tribute to the lowest order photon-graviton self-energy calculation. The local photon
propagator has the form
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DA
μν(p) = ημν

p2 + iε
. (36.32)

The graviton-A-A vertex in momentum space is given by

Vαβλσ (q1, q2) = ηλσ q1(αq2β) − ησ(βq1α)q2λ − ηλ(αq1σ q2β)

+ ησ(βηα)λq1·q2 − 1

2
ηαβ(ηλσ q1·q2 − q1σ q2λ), (36.33)

where q1, q2 denote the momenta of the two V s connected to the graviton with
momentum p.

The lowest order correction to the graviton vacuum loop will have the form

ΠGA
μνρσ (p) = −κ2 exp(−p2/Λ2

G)

∫

d4qVμνλα(p, q)F (q2)D A λδ(q)

×Vρσκδ(p, q − p)F ((q − p)2)D A ακ(q − p). (36.34)

Let us adopt the entire functions F (p2)SM = exp(−p2/2Λ2
SM) and F (p2) =

exp(−p2/2Λ2
G) in Euclidean momentum space, scaled by the SM energy scaleΛSM

and the gravitational energy scale ΛG , respectively. We obtain

ΠGV
μνρσ (p) = −κ2 exp(−p2/Λ2

G)

∫
d4qηλδηακ

q2(q − p)2
Vμνλα(p, q)

×Vρσκδ(p, q − p) exp

(

−q2/2Λ2
SM

)

exp

(

−(q − p)2/2Λ2
SM

)

. (36.35)

As usual, we must add to (36.35) the contributions from the tadpole vector-graviton
diagrams and the invariant measure diagram.

We observe that from power counting of the momenta in the integral (36.35), we
obtain

ΠGA
μνρσ (p) ∼ κ2 exp(−p2/Λ2

G)Nμνρσ (ΛSM, p2), (36.36)

where Nμνρσ (ΛSM, p2) is a finite contribution to ΠGA
μνρσ (p). ΠGA

μ
μσ

σ
(p) vanishes

at p2 = 0, as it should because of gauge invariance to this order and the massless
graviton.

The vector field vertex form factor, when coupled to SM gauge bosons, will have
the form

E SM(p2) = exp

(

−p2/2Λ2
SM

)

. (36.37)

If we chooseΛSM � 1 TeV, then we will reproduce the low energy SM experimental
results and F SM(p2) becomes F SM(0) = 1 on the mass shell p2 = 0 [1, 2].
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36.4 Cosmological Constant Problem and Quantum Gravity

The cosmological constant problem is considered to be the most severe hierarchy
problem in modern physics [22–25]. Can our quantum gravity theory solve the cos-
mological constant problem? The cosmological constant is a non-derivative coupling
in the Lagrangian density Lgrav:

Lλ = − 4

κ2 λ
√−g. (36.38)

In diagrammatic terms, it is a sum of zero momentum and zero temperature vacuum
fluctuation loops coupled to external gravitons. The problem is to explain why the
magnitude of λ is suppressed to be zero or a very small value when compared to
observation.

Let us initially consider the basic lowest order vacuum fluctuation diagram com-
puted from the matrix element in flat Minkowski spacetime:

ρvac ∼ ρ(2)
vac ∼ g2

∫

d4 pd4 p′d4kδ(k + p − p′)δ(k + p − p′)

× 1

k2 + m2 Tr

(
iγ σ pσ − m f

p2 + m2
f

γ μ iγ σ p′
σ − m f

p′2 + m2
f

γμ

)

exp

[

−
( p2 + m2

f

2Λ2
SM

)

−
( p′2 + m2

f

2Λ2
SM

)

−
(

k2 + m2

2Λ2
SM

)]

, (36.39)

where g is a coupling constant associated with the standard model. We have consid-
ered a closed loop made of a SM fermion of mass m f , an anti-fermion of the same
mass and an internal SM boson propagator of mass m; the scale ΛSM ∼ 1 TeV. This
leads to the result

ρvac ∼ ρ(2)
vac ∼ 16π4g2δ4(a)

∫ ∞

0
dpp3

∫ ∞

0
dp′ p′3

[−P2 + p2 + p
′2 + 4m2

f

(P + a)(P − a)

]
1

(p2 + m2
f )(p′2 + m2

f )

× exp

[

− (p2 + p′2 + 2m2
f )

2Λ2
SM

− P2 + m2

2Λ2
SM

]

, (36.40)

where P = p − p′ and a is an infinitesimal constant which formally regularizes the
infinite volume factor δ4(0). We see that ρvac ∼ Λ4

SM. By choosing our nonlocal
energy scale for the standard model, ΛNL ∼ ΛSM ∼ 1TeV = 103 GeV, we have
reduced the magnitude of the vacuum density by 64 orders of magnitude compared
to having ΛSM ∼ ΛPlanck ∼ 1019 GeV.
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In Minkowski spacetime, the sum of all disconnected vacuum diagrams is a con-
stant factor C in the scattering S-matrix S′ = SC . Since the S-matrix is unitary
|S′|2 = 1, then we must conclude that |C |2 = 1, and all the disconnected vacuum
graphs can be ignored. This result is also known to follow from the Wick ordering
of the field operators. However, due to the equivalence principle gravity couples to
all forms of energy, including the vacuum energy density ρvac, so we can no longer
ignore these virtual quantum fluctuations in the presence of a non-zero gravitational
field.

We can view the cosmological constant as a non-derivative coupling of the form
λ0

√−g in the Einstein-Hilbert action (See Fig. 36.1). Quantum corrections to λ0
come from loops formed from massive SM states, coupled to external graviton lines
at essentially zero momentum. The massive SM states are far off-shell. Experimental
tests of the standardmodel involving gravitational couplings to the SM states are very
close to being on-shell. Important quantum corrections to λ0 are generated by a huge
extrapolation to a region in which gravitons couple to SM particles which are far
off-shell.

To reduce the size of the vacuum density to agree with the observational bound,
we must discover how gravity can couple to the vacuum energy density and generate
an exponential damping of the very large ρvacSM. This exponential suppression of
ρvacSM can be produced by nonlocalQG.Therewill be virtual graviton legs connected
to the quantum gravity-standard model loops by a nonlocal vertex entire function,
exp(−p2G/2Λ2

G). We see from (36.36) that the standard model vacuum polarization
and vacuum density are reduced by the nonlocal graviton vertex interaction:

ρvac ∼ exp(− p̄2G/2Λ2
G)ρvacSM, (36.41)

where p̄G is an average mean of the virtual graviton momentum pG . If we choose
p̄G = 16.49ΛG , then we have

ρvac ∼ exp(− p̄2G/2Λ2
G)ρvacSM ∼ 10−47 GeV4, (36.42)

and we have reduced the cosmological constant contribution, λvac = 8πGρvac, to
the observed bound λvacObs ≤ 10−84 GeV2, where we have used the nonlocal energy
scale ΛSM ∼ 1 TeV in the coupling to standard model particles. The size of ΛG

Fig. 36.1 Electron vacuum fluctuation loops coupled to gravitons generating a vacuum density
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should be small enough to allow for soft graviton momenta. This can be achieved
by choosing ΛG < 1 MeV, so that the mean virtual graviton momentum p̄G =
16.5Λg < 17 MeV. The size of the exponential suppression of the vacuum energy
in (36.42) can be related to a violation of the weak equivalence principle through
the electrostatic energy associated with the vacuum polarization of atomic hydrogen
coupled to external gravitons [23, 24], so the choice ofΛG can play an important role.
However, the violation of the equivalence principle can be affected by the material
environment, namely, the difference between the atomic matter environment versus
the vacuum energy density in empty space at extra-galactic distance scales.

36.5 Conclusions

The nonlocal formulation of quantum gravity provides a finite, unitary and locally
gauge invariant perturbation theory. The vertex functions associated with point-like
interactions in local quantumfield theory are replaced by smeared out nonlocal vertex
functions controlled by transcendental entire functions. The choice of entire function
in momentum space exp(−p2/2Λ2), where Λ = ΛSM ∼ 1 TeV and Λ = ΛG for
the standard model and quantum gravity, respectively, guarantees the finiteness of
all quantum loops. We have demonstrated how the vacuum fluctuations involving
SM loops can be exponentially dampened by the entire functions for the graviton-
standard model particle vertex functions. For a mean value of the virtual graviton
momenta the exponential suppression can reduce the vacuum density fluctuations
and the cosmological constant to agree with the cosmological observational bounds.
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Chapter 37
Emergent Gravity and the Cosmological
Constant

Tanu Padmanabhan

Abstract Several recent results suggest that gravity is an emergent phenomenon
with its field equations having the same status as the equations of fluid dynamics or
elasticity. Interestingly, these investigations have provided fresh insights into several
aspects of classical gravitational dynamics itself, including the problem of cosmo-
logical constant.

37.1 A Route to Gravitational Dynamics

Recent research [1] motivated by the emergent paradigm of gravity shows that the
description of classical gravity simplifies significantly if we use the variables f ab ≡√−ggab and the corresponding canonical momentum N c

ab. These ‘old variables’
were studied in the early days of general relativity (and were used sporadically later
on in the literature) but have not acquired the popularity they deserve. My first task
is to advertise the virtues of this description.1

The Hamilton’s equations in classical mechanics can be obtained from an action
principle based on either of the two Lagrangians: Lq(p, q, q̇) = pq̇ − H(p, q)

or L p(q, p, ṗ) = −q ṗ − H(p, q) which differ by a time derivative, i.e., L p =
Lq − (d(pq)/dt). In either action principle, we vary both q and p as independent
variables and let the action principle itself tell us what should be held fixed at the
end points. We will find that we get the standard equations if we keep q fixed with
Lq and p fixed with L p (which explains the subscripts).

What is not stressed in textbooks is that we can do the same thing in field theory.
The field equations, �φ = −V ′(φ) for a scalar field φ, say, can be obtained using

1 I will concentrate and elaborate here on some results of interest to relativists, which I couldonly
brieflymention inmy lecture at KSM-I, rather than review older results in emergent gravity paradigm
which exist in published literature [2, 3]. I have omitted detailed references and proofs of the
assertions due to lack of space [4].
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either of the two Lagrangians: Lφ = pa∂aφ − H or L p = −φ∂a pa − H = Lφ −
∂a(φpa) with H = (1/2)pa pa + V (φ). These Lagrangians, again, differ by a total
divergence. In contrast to text book description, we are here treating H as a Lorentz
scalar rather than as time component of a four-vector; further, full Lorentz invariance
is maintained without any (1+3) split. Note that, while pa∂aφ term does not involve
a metric, pa pa = ηab pa pb needs a background metric to ‘lower the index’ on pa .
It is straightforward to generalize the description to a curved spacetime by the usual
prescriptions. We can also work out the dynamics of a vector field and, in particular,
U (1) gauge field in an analogous manner.

It becomes really interesting when we consider the theory of a symmetric sec-
ond rank tensor field described by a matrix f with elements denoted by f ab. The
“momenta” corresponding to f ab will be denoted by N c

ab which, in turn, can be
thought of as elements of four matrices N c. As in the previous cases, we can con-
sider two possible Lagrangians (which differ from each other by a four-divergence)
to describe the theory:

L f = N c
ab∂c f ab −Hg( f i j , N k

lm); L N = − f ab∂c N c
ab −Hg = L f − ∂c( f ab N c

ab)

(37.1)
with a specific choice:

Hg = f ab(N c
ad N d

bc − 1

3
N c

ac N d
bd) (37.2)

These Lagrangians can be defined without the use of any metric (in contrast to
the scalar/vector field theories) and the contractions in (37.1) and (37.2) are purely
combinatorics operations involving only δi

j . In fact, instead of thinking of f ab as a
field in spacetime etc., we can think of these Lagrangians as describing the (abstract)
dynamics of five 4 × 4 matrices ( f, N c), the elements of each of which depends on
four parameters qi . The matrix action is determined by integrating the L f or L N

over d4q. The variational principle using L f (with f fixed at the boundary) or with
L N (with N c fixed at the boundary) will lead to the dynamical equations for the
matrices.

Incredibly enough, the resulting equations are identical to those of Einstein’s
gravity (without sources; it can be easily extended to take care of matter sources [1])
if we identify the arbitrary curved spacetime coordinates xi with the parameters qi

and set f ab ≡ √−ggab. The equations then imply the further identification:

N a
bc = −Γ a

bc + 1

2
(Γ d

bdδa
c + Γ d

cdδa
b ) , (37.3)

(For a detailed proof, see [1].) Thus, gravitational dynamics in anarbitrary coordinate
systemwith labels xi andmetric functions gab(xi ) can be obtained from the dynamics
of five matrices ( f, N c). I will now comment on several aspects of this description,
which are novel from a conceptual point of view.
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(1) We achieve “general covariance without general covariance” by not using the
metric in the action. If we choose another set of coordinates in the spacetime, the
metric functions will change. But we do not have to change anything as regards the
abstract matrix description; in particular we do not have to change d4q by a Jaco-
bian. We simply identify the new coordinates with qi and new

√−ggab with f ab

and quite trivially everything will work out. This separation of kinematics (coordi-
nates, explicit form ofmetric functions, their change under coordinate transformation
etc.) from the dynamics (described once and for all by the equations satisfied by the
matrices ( f, N a)) is an attractive conceptual feature of this approach.

(2) One can easily introduce more ‘pre-geometric’ variables λA, say, into the
matrix dynamics and treat f ab(qi ) as some kind of coarse-grained object after aver-
aging over λA, like f ab(qi ) = 〈 f ab(qi ; λA)〉 where the averaging is over the pre-
geometric variables λA with some measure. This opens up interesting avenues for
further work [4].

(3) Another surprise in the case of gravity is that L N is numerically just
√−gR

where R is the curvature scalar! That is, treating N i
jk as a function of f ab given by

(37.3), one can show [1] that L N = L f − ∂c( f ab N c
ab) = − f ab∂c N c

ab − Hg =√−gR. The reason Einstein-Hilbert action leads to second order equations is now
clear: It is a momentum space Lagrangian of a special structure.

(4) The structure of gravitational dynamics simplifies tremendously when we
use the variables ( f ab, N c

ab). For example, it is known that LE H = √−gQab
cd Rcd

ab
(where Qcd

ab = (1/2)(δc
aδd

b −δd
a δc

b) is the determinant tensor) can be decomposed into
a quadratic Lagrangian (called Γ 2 Lagrangian) and a divergence term as: LEH =
Lquad+Lsur, withLquad ≡ 2

√−gQ bcd
a Γ a

dkΓ
k

bc andLsur ≡ 2∂c
[√−gQ bcd

a Γ a
bd

]
.

These expressions take simpler formswhenwe use the variables f ab and N a
bc treating

N a
bc as a specified function of f ab given by (37.3). We again have

LE H = Lquad + Lsur ; Lquad = 1

2
N a

bc∂a f bc; Lsur = −∂c( f ab N c
ab) (37.4)

(5) Though N a
bc is not a tensor, its variation δN a

bc is a tensor which can be related to
the variation of Ricci tensor δRab in a remarkably simple form: δRab = −∇c(δN c

ab).
This, in turn, allows us to formulate gravitational field equations in a novel manner.
Suppose we have a source �ab(s) ≡ (Tab − (1/2)gabT ) where Tab(s) is the stress-
tensor which depends on some parameter s (mass, charge, cosmological constant,
anything....). For every value of s we can, in principle, solve the field equations and
obtain gab(s), fab(s), N c

ab(s), . . . etc. Let an overdot denote derivative of any of
these wrt s like �̇ab = d�ab/ds etc. Then the gravitational field equations can be
written simply as:

∇c(Ṅ c
ab) = −8π �̇ab (37.5)

which tells us how the geometry changes when we change the source. Given �̇ab,
we can solve (37.5) for Ṅ a

bc(s) and find N a
bc(s) by integrating Ṅ a

bc(s) over s with
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flat spacetime as initial condition, say. We again see, from (37.5), the importance of
N a

bc; the field equations directly determine how it changes when the source changes.
(6) In the variation of the Einstein-Hilbert action we have:

δ(
√−gR) = δ(Rab f ab) = Rabδ f ab + f abδRab = Rabδ f ab − ∂c[ f ikδN c

ik],
(37.6)

So that the boundary term which arises in the variation of action has the form:

(16π)δAsur = −
∫

V
d4x∂c[ f abδN c

ab] = −
∫

∂V
d3x

√
hncgabδN c

ab (37.7)

It turns out that this variation can be given a simple thermodynamic interpretation.
Consider a null surface with temperature T = κ/2π and entropy density s = √

σ/4
attributed to it by local Rindler observers who perceive it as a horizon with κ being
the surface gravity defined using a suitable null congruence and

√
σ being the area

element of the local horizon surface: Then, (see [1] for details) the following results
hold:

• The boundary term in the action, evaluated over a null surface, can be interpreted
as its heat content T s (if we ignore unimportant contributions at the end points
λ = λ1, λ2); that is:

1

16π

∫

d3Σc(N c
ab f ab) =

∫

dλd2x
( κ

2π

) (√
σ

4

)

=
∫

dλd2x T s (37.8)

• More remarkably, the variations f δN and Nδ f have corresponding thermody-
namic interpretations for a class of variations which preserve the null surface:

1

16π

∫

d3Σc(N c
abδ f ab) =

∫

dλd2x
( κ

2π

)
δ

(√
σ

4

)

=
∫

dλd2x T δs;
(37.9)

1

16π

∫

d3Σc( f abδN c
ab) =

∫

dλd2x

(√
σ

4

)

δ
( κ

2π

)
=

∫

dλd2x sδT

(37.10)

We see that ( f, N c) are not only dynamically conjugate variables but their variations
(δ f, δN c) exhibit thermodynamic conjugacy in terms of corresponding variations in
(δT, δS). For example, if we consider the gravitational action principle in a region of
spacetime (‘causal diamond’) bound by null surfaces, then the boundary condition on
the surface corresponds to isothermality (δT = 0) with respect to the local Rindler
observerswho perceive the null surfaces as a local Rindler horizons. It is obvious how
thermodynamic considerations enhance our understanding of standard gravitational
dynamics.
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37.2 Conserved Currents from Geometry

I will next show how the variables ( f, N a) are closely related to conserved (Noether)
currents for vector fields purely because of some—rather trivial—identities in dif-
ferential geometry. This delinks the existence of conserved (Noether) currents from
the invariance properties of any action principle or such dynamical considerations.

We begin by noting that the derivative ∇kv j of any vector field vk can be decom-
posed into the anti-symmetric and symmetric parts by ∇ j vk + ∇kv j ≡ S jk and
∇ j vk − ∇kv j ≡ J jk . The antisymmetric part J lm immediately leads to a conserved
current J i ≡ ∇k J ik ; in other words, from every vector field vk in the spacetime
we can trivially obtain a conserved current! This has obviously nothing to do with
diffeomorphism invariance or action principles.

If we substitute the decomposition, ∇ j vk = (1/2)
(
J jk + S jk

)
, in the standard

identity∇k
(∇ j vk

)−∇ j
(∇kvk

) = R j
l vl , we get J j +∇k(S jk −g jk S) = 2R j

l vl . The
first term is the conserved (Noether) current, while the second term can be related to
the Lie derivative of N c

ab (which is a tensor) by: gab£v N c
ab = −∇b(Sbc − gcb S) ≡

Bc[v].We thus get an explicit expression for the conserved (Noether) current in terms
of the Lie derivative of N c

ab as:

J a[v] = ∇b J ab[v] = 2Ra
b vb + gi j£v N a

i j = 2Ra
b vb + Ba[v] (37.11)

An alternate way of obtaining the same result is as follows: From the Lie derivative
of the connection £vΓ

a
bc = ∇b∇cva + Ra

cmbvm , one can obtain, on using (37.3) the
relation

2Qadc
e£vΓ

e
cd = gbc£v N a

bc = ∇b J ab − 2Ra
b vb = J a − 2Ra

b vb (37.12)

which is the same as the one (37.11).
So there are two ways of obtaining the standard Noether current (either (i) from

the antisymmetric part of ∇i v j using identity for Ri
j v

j or (ii) by contracting the Lie

derivative ofΓ suitably) associated with a vector field vi without ever mentioning the
action principle for gravity or its diffeomorphism invariance!2 This emphasizes the
fact that (37.12), for example, is just a differential geometric identity and has nothing
to do with the gravitational dynamics. Delinking the form of Noether current from
any action principle allows us to reinterpret gravitational dynamics later on using
Noether currents without introducing any circuitous reasoning.

2The connection with the usual approach can be made using the fact that the symmetric part S jk is
the change in the metric tensor g jk under the diffeomorphism xa → xa + va ; i.e., Sab = δgab =
−£vgab; this identifies Bc[v] with the boundary term in the variation of the Hilbert action under a
diffeomorphism.
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37.3 Noether Charge as Surface Heat Content

Consider a spacetime foliated by a series of space-like hypersurfaces defined by
constant values for the scalar field t (x). We define the unit normal to t = constant
surfaces by ua = −N∇at ; if we choose our time coordinate to coincide with the
hypersurface label, then ua = −Nδ0a . we next define a ‘time-development’ vector
ζ a by the invariant condition ζ a∇at = 1. (In the preferred coordinate system, we
can choose ζ a = δa

0 ). In general, ζ
a and ua will not be in the same direction and we

have ζ a = −(ζ bub)ua + βa where uaβa = 0 and βa = ha
bζ b. In component form

ζ a = Nua + βa with βa = (0, Nα). This decomposition also introduces the vector
ξa ≡ −(ζ bub)ua = Nua which will turn out to be of considerable importance in
what follows. When we impose the coordinate condition such that g0α = 0 in a local
region, we will have ζ a = ξa and if the spacetime is static we can identify ξa with
the time-like Killing vector.

Thus, in any spacetime, there exists a natural diffeomorphism, with vector field
ξa = Nua = −N 2∇at . TheNoether current for ξa leads to interesting consequences.
To calculate this current, it is convenient to use an identity connecting Noether
currents for two vector fields qa and va ≡ f (x)qa . It can be shown that [4]

qa J a[ f q] − f qa J a[q] = ∇b

[(
qaqb − q2gab

)
∇a f

]
(37.13)

which is particularly useful if qa = ∇aφ so that J ab[q] = 0. If we use (37.13)
with qa = −ξa/N 2, f = −N 2 one can obtain a nice result for the Noether charge
density:

ua J a(ξ) = 2Dα(Naα) (37.14)

where ai ≡ u j∇ j ui is the acceleration and Di ai = Dαaα = ∇i ai − a2 where
Di is the covariant derivative on the t = constant surface. Integrating (37.14) over√

hd3x to obtain the total Noether charge, we find that the flux of the acceleration is
essentially the total Noether charge contained inside a volume. Noting that we have
set 16πG = 1 and adding the correct proportionality constant (with G = 1!), we
get:

∫

V

√
hd3xua J a[ξ ] =

∫

V
dΣa J a[ξ ] =

∫

∂V

√
σd2x

8π
(Nrαaα) (37.15)

This result is valid for any region V in any spacetime. If we choose ∂V to be an N =
constant 2-surface (within a t = constant 3-surface), then ri ∝ Di N ∝ h j

i ∇ j N is in
the direction of ai and rαaα = a. So we can interpret T = Nrαaα/2π = Na/2π as
the (Tolman redshifted) Unruh temperature and s = √

σ/4 as the entropy density.
Then we get a remarkably simple interpretation of the Noether charge as the heat
(enthalpy) content (T S) of the surface:
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∫

V

√
hd3xua J a[ξ ] =

∫

∂V
d2x T s (37.16)

So far we have only used results from quantum field theory in curved space and
have not used gravitational field equations. I will now show how gravitational field
equations acquire an interesting interpretation in this language.

37.4 Gravitational Dynamics and Holographic Equipartition

Since the Noether charge is related to T S while δN is related to δT , it is obvious
that one can interpret the gravitational dynamics in terms of thermodynamic vari-
ables using Noether currents. To do this, we rewrite (37.11) using (37.14), integrate
the result over a 3-dimensional region R with the measure

√
h d3x , and introduce

gravitational dynamics by substituting Rab = 8π T̄ab to get

∫

R

d3x

8π

√
h uagi j£ξ N a

i j =
∫

∂R
d2x

√
σ

(
Naαrα

4π

)

−
∫

R
d3x N

√
h (2uaubT̄ab)

(37.17)
where rα is the normal to the boundary of the 3-dimensional region.Again, taking ∂R
to be a N = constant surface, the first term on the right hand side can be interpreted
as an integral over d A(1/2)kB Tloc where Tloc ≡ (Naαrα/2π) is the local Unruh
temperature. In the second term, we identify 2N T̄abuaub = (ρ+3p)N as the Komar
energy density. Thus the above result can be summarized in the form

1

8π

∫

d3x
√

h uagi j£ξ N a
i j =

∫

∂R
d2x

√
σ

(
1

2
kB Tloc

)

−
∫

R
d3x

√
h ρKomar

(37.18)
This result, again, has a remarkable physical meaning. If the spacetime is static and
we choose the foliation such that ξa is a Killing vector, then £ξ N a

i j = 0 and the left
hand side vanishes. The equality of two terms on the right hand side can be thought of
as representing the holographic equipartition [5–7] if we define the bulk and surface
degrees of freedom along the following lines: We take the number of surface degrees
of freedom to be:

Nsur ≡ A

L2
P

=
∫

∂V

√
σ d2x

L2
P

(37.19)

We next define an average temperature Tavg to the surface ∂V by:

Tavg ≡ 1

A

∫

∂V

√
σ d2x Tloc (37.20)
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and the number of bulk degrees of freedom by

Nbulk ≡ |E |
(1/2)kB Tavg

= ± 1

(1/2)kB Tavg

∫

V

√
hd3x ρK omar (37.21)

where E is the total Komar energy in the bulk region V contributing to gravity. If
the energy E in the bulk region has reached equipartition with the average surface
temperature, then, this is indeed the correct number for the bulk degrees of freedom.
Our result in (37.18) then says that comoving observers in any static spacetimes will
find:

Nsur = Nbulk (Holographic equipartion) (37.22)

What is more (37.18) suggests that the discrepancy from holographic equi-
partition—resulting in a non-zero value for the right hand side—is what drives the
dynamical evolution of the spacetime. (Even in a static spacetime non-static observers
e.g., freely falling observers will perceive a departure from holographic equiparti-
tion because (37.18) is generally covariant but foliation dependent through ui .) A
straightforward computation also shows that

√
huagi j£ξ N a

i j = −hab£ξ pab; pab ≡ √
h(K hab − K ab) (37.23)

So we can rewrite (37.18) as

−
∫

d3x

8π
hab£ξ pab = 1

2
kB Tavg(Nsur − Nbulk) (37.24)

which clearly shows how the departure fromholographic equipartition drives the evo-
lution of geometry [4, 8], providing an interesting alternative description of spacetime
dynamics.

37.5 Where Did We Go Wrong with Gravity?

The results described above, as well as several other pieces of work [2, 3] in this area,
suggest an intriguing connection between (i) the thermodynamics attributed to null
surfaces by local Rindler observers and (ii) dynamics of gravity. But in the description
given above, I have only re-interpreted the standard gravitational dynamics—which,
I think, is actually flawed—in the thermodynamic language. I will now show how it is
possible to provide a completely independent, stand-alone, derivation of the correct
gravitational field equations from a thermodynamic perspective.

To motivate this, I begin by stressing the single most important fact about grav-
itational dynamics which—purely by historical accident—is usually completely
ignored: Gravity does not couple to bulk energy density arising from the addition of
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a constant to matter Lagrangian. Any attempt to describe gravity without incorpo-
rating this feature is bound to be wrong.

This fact, in turn, requires that gravitational field equations must be invariant
under the symmetry transformation Lmatter → Lmatter + constant, resulting in T a

b →
T a

b + (constant) δa
b . (The electroweak symmetry breaking, for example, is equivalent

to shifting of the standard model Lagrangian by a large constant and we know that
the evolution of the universe was unaffected by this transition.) It can be proved that
this invariance cannot be maintained in any action principle satisfying the following
two criteria: (a) The action is local and the Lagrangian is generally covariant. (b)
The metric is varied in the action in an unrestricted form. Since we do not want to
sacrifice condition (a), we must modify condition (b) to achieve our result.

A simpleway to incorporate this symmetry is to demand that [Rab−8πTab]�a�b =
0 for all null vectors �a . This equation is clearly invariant under T a

b → T a
b +

(constant) δa
b and has the first integral Ra

b − 8πT a
b = f (x)δa

b which, on using
∇a Ra

b = 0 = ∇aT a
b leads toEinstein’s equationswith an undetermined cosmological

constant term arising as an integration constant. It is the freedom to choose this
constant that allows us to incorporate the shifting of the matter Lagrangian by a
constant.

It is possible to derive the demand [Rab − 8πTab]�a�b = 0 as a thermodynamic
variational principle [9]. A useful version of such a variational principle can be
obtained by noting that for a null congruence �a on a null surfacewe have: Rab�

a�b =
−∇i (θ�i ) − S where ∇i�

i = θ + κ and we have defined

S = [∇i�
j∇ j�

i − (∇i�
i )2] (37.25)

which we shall later identify with the heat (enthalpy) density associated with the
null surface. While integrating over a null surface with the measure dλd2x

√
σ , we

can ignore terms of the kind ∇i (φ�i ) (for any scalar φ) since they produce only
boundary contributions. (This follows from the fact that, for any scalar φ, we have√

σ∇i (φ�i ) = d/dλ(
√

σ φ)). Ignoring the boundary contributions, we then have

∫ λ2

λ1

dλd2x

16π

√
σ [−2Rab + 16πTab] �

a�b =
∫ λ2

λ1

dλd2x

16π
[2S + 16πTab�

a�b]
(37.26)

where we have reintroduced 16πG with G = 1. It is easy to show that extremising
this functional with respect to all �a , subject to the constraint �2 = 0, will lead
to Ra

b − 8πT a
b = f (x)δa

b which, on using ∇a Ra
b = 0 = ∇aT a

b leads to Einstein’s
equations with an undetermined cosmological constant term arising as an integration
constant. It follows that we now have an alternative variational principle (in which
we vary �a) based on the expression:

Q ≡
∫ λ2

λ1

dλd2x

16π

√
σ [2S + 16πTab�

a�b] (37.27)



320 T. Padmanabhan

Since Tab�
a�b can be thought of as the heat (enthalpy) density T S/V = T s ofmatter,

we can again think of (S /8π) as essentially the heat density of the null surface.
It is possible to re-express this result in terms £�N c

ab. Let �a be a null congruence
defining a null surface which may not be affinely parametrized. If we take �a =
A(x)∇a B(x), then it is easy to prove that �i∇i� j = κ� j where κ = ∇i A∇ i B =
�a∇a ln A. We can compute the Noether current for �a using our (37.13) and noting
that the Noether current for qa = �a/A is zero. Straightforward calculation gives
�a J a(�) = ∇b(κ�b) − κ2. One can further show that ∇a(κ�a) − κ2 = Da(κ�a) +
dκ/dλ where Da is the covariant derivative operator on the 2 dimensional cross-
section of the null surface. We thus find the Noether charge corresponding to the null
congruence to be:

�a J a(�) = 2Rab�
a�b + �agi j£�N a

i j = Da(κ�a) + dκ

dλ
= ∇a(κ�a) − κ2 (37.28)

If we integrate (37.28) over the null surface with the measure dλd2x
√

σ and ignore
the pure boundary contribution, we get:

∫

dλd2x
√

σ�a J a(�) =
∫

dλd2x
√

σ
dκ

dλ
(37.29)

Using these results we find that we can obtain the field equations by varying �a in
the functional

Q ≡
∫ λ2

λ1

dλd2x
√

σ

[
1

16π

(
gi j�a£�N a

i j − £�κ
)

+ Tab�
a�b

]

=
∫ λ2

λ1

dλd2x
√

σ

[
1

16π

(

gi j�a£�N a
i j − dκ

dλ

)

+ Tab�
a�b

]

(37.30)

Since Tab�
a�b can be thought of as the heat (enthalpy) density T S/V = T s ofmatter,

we can think of the rest as essentially the heat density of the null surface. When �a is
affinely parametrized with κ = 0 (which is a choice we can always make) then the
variational principle can be based on the integral

Q1 ≡
∫ λ2

λ1

dλd2x
√

σ

[
1

16π
gi j�a£�N a

i j + Tab�
a�b

]

(37.31)

This shows that the quantity gi j�a£�N a
i j plays a vital role even in the derivation of

field equations from an alternative extremum principle. We see from (37.10) that the
integral of this term on a null surface has a very simple physical meaning in terms
of the heat content of the null surface. This term, therefore, can be interpreted in
thermodynamic language. (The fact that κ2 ∝ T 2

loc in (37.30) is proportional to the
energy density of 2D thermal gas has interesting implications [4] which I will not
discuss here).
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37.6 The Value of the Cosmological Constant

Once we accept that gravitational field equations are invariant under T a
b → T a

b +
(constant) δa

b , the solution will have an undetermined cosmological constant arising
as integration constant. We then need a new physical principle to determine its value
which I will now describe [10, 11].

Observations indicate that our universe can be characterized by (i) an early infla-
tionary phase with approximately constant density ρin f , (ii) a phase dominated by
radiation and matter, with ρ = ρeq [x−4 + x−3] where x(t) ≡ a(t)/aeq and ρeq

is another constant and (iii) an accelerated phase expansion at late time dominated
by the energy of the cosmological constant ρΛ. Thus, there are three undetermined
densities [ρin f , ρeq , ρΛ]which describe the dynamics of our universe. It is generally
believed that high energy physics will eventually determine ρin f and ρeq but we need
a new principle to fix the value of ρΛ.

It turns out that, a universewith these three phases has a conserved quantity, viz. the
number N of length scaleswhich cross theHubble radius during each of these phases.
It can be shown that N (a2, a1) = (2/3π) ln(H2a2/H1a1) during a1 < a < a2. Any
physical principle which fixes the value of N during the radiation-matter dominated
phase, say, will relate ρΛ to [ρin f , ρeq ]. We have given arguments elsewhere [10,
11] as to why we expect N = 4π which leads to remarkable relation connecting the
three densities:

ρΛ ≈ 4

27

ρ
3/2
inf

ρ
1/2
eq

exp(−36π2) (37.32)

For the observed range of ρeq , and the range of inflationary energy scale ρ
1/4
inf =

(1.084 − 1.241) × 1015 GeV, we get ρΛL4
P = (1.204 − 1.500) × 10−123, which

is consistent with observational results! I will conclude with two brief comments;
more details can be found in [10, 11].

(a) This is a very novel approach to solving the cosmological constant problem
based on a unified view of cosmic evolution, connecting all the three phases through
(37.32). This is in contrast to standard cosmology where the three phases are put
together in an unrelated, ad hoc, manner.

(b) It is difficult to incorporate N = 4π into the standard cosmological par-
adigm. But it fits naturally into the concept of holographic equipartition [8].
I described earlier and writing the Friedmann equation in the form dV/dt =
L2

P (Nsur−Nbulk);withV = (4π/3H3), Nsur = (4π/L2
P H2), T = H/2π, Nbulk =

−ε(2(ρK omar V/kB T ) and ε = +1 if (ρ + 3p) < 0 and ε = −1 if (ρ + 3p) > 0.
In this approach, the assumption N = 4π arises very naturally.

Acknowledgments I thank the organizers of KSM-1 for their excellent hospitality. My work is
partially supported by J.C. Bose fellowship of DST, India.



322 T. Padmanabhan

References

1. K. Parattu, B. Ranjan Majhi, T. Padmanabhan. Phys. Rev. D 87, 124011 (2013).
arXiv:1303.1535

2. T. Padmanabhan, Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004
3. T. Padmanabhan, J. Phys. Conf. Ser. 306, 012001 (2011). arXiv:1012.4476 and references

therein
4. T. Padmanabhan (2014) papers in preparation
5. T. Padmanabhan, Class. Quan. Grav. 21, 4485 (2004). arXiv:gr-qc/0308070
6. T. Padmanabhan, Mod. Phys. Letts. A 25, 1129–1136 (2010). arXiv:0912.3165
7. T. Padmanabhan, Phys. Rev. D 81, 124040 (2010). arXiv:1003.5665
8. T. Padmanabhan, Res. Astro. Astrophys. 12, 891 (2012). arXiv:1207.0505
9. T. Padmanabhan, A. Paranjape, Phys. Rev. D 75, 064004, (2007). arXiv:gr-qc/0701003
10. H. Padmanabhan, T. Padmanabhan, Int. J. Mod. Phys. D 22, 1342001 (2013). arXiv:1302.3226
11. T. Padmanabhan, arXiv:1210.4174

http://arxiv.org/abs/1303.1535
http://arxiv.org/abs/0911.5004
http://arxiv.org/abs/1012.4476
http://arxiv.org/abs/gr-qc/0308070
http://arxiv.org/abs/0912.3165
http://arxiv.org/abs/1003.5665
http://arxiv.org/abs/1207.0505
http://arxiv.org/abs/gr-qc/0701003
http://arxiv.org/abs/1302.3226
http://arxiv.org/abs/1210.4174


Chapter 38
Tunnelling Methods and Unruh-DeWitt
Detectors in Curved Spacetimes

Giovanni Acquaviva

Abstract In this contribution we describe some interesting interplay between quan-
tum theory, general relativity and thermodynamics. In order to highlight the con-
nection between these theories, we describe two approaches that allow to calculate
thermal features as perceived by different observers in curved spacetimes. the tun-
nelling method and the Unruh-DeWitt detector. In this context, the semi-classical
tunnelling approach is applied to the issue of Hawking radiation and allows the cal-
culation of the horizon temperature in a wide variety of scenarios. TheUnruh-DeWitt
model is instead a quantum field-theoretical approach that should give a more exact
answer in terms of transition rates between energy levels of an idealized detector.

38.1 Introduction

Since the theoretical discovery of thermal radiance from black holes made by
Hawking [3], the connections between gravitational systems (GR), quantum theory
(QT) and thermodynamics (TD) have become undeniable matter of interest, mainly
because of the longstanding purpose of syncretizing GR and QT in a coherent way.
The problems that arise when trying to directly (and naively) quantize GR are just
one indication that a new theory is desirable which includes both original theories
in its very foundations. Leaving aside the task of formulating such a theory (a task
that the present work does not deal with), one is lead to consider instead scenarios
in which semi-classical or even quantized fields are coupled to a classical geometric
background. This kind of approach could be regarded only as an effective version
of the full (yet hypotetical) quantum-gravitational theory, while at the same time it
could be useful in order to highlight a first degree of interaction between GR and QT.

Many approaches have been brought forward in order to reproduce and extend
Hawking’s result, which essentially states that
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Γem

Γabs
= e−ω/TH , (38.1)

where the probability for a quantum of energy ω to be emitted from a gravitational
horizon is found to have a Boltzmannian form: hence the outgoing radiation can be
expressed as a thermal state and the associated temperature is given by the surface
gravity evaluated on the horizon, i.e., TH = κH /2π . One of the limitations of this
result is the stationarity of the geometric background needed for its derivation.

In this contribution we present two approaches that are able to confirm this result
as well as to extend its range of validity to more general scenarios. In Sect. 38.2 we
sketch the so-called tunnelling method: this is essentially a variant of the original
method used by Hawking and—equipped with suitable ingredients—can be applied
to dynamical (both black hole’s and cosmological) horizons. In Sect. 38.3 instead a
model of Unruh-DeWitt detector is presented: this approach makes use of quantum
field-theoretical tools in order to build a quantum thermometer endowed with a
trajectory in a curved spacetime. In Sect. 38.4 we draw some conclusions.

38.2 Tunnelling Methods

It iswell known that in aWKBapproximation, a tunnelling probability rate is given by

Γ ∝ e−2 I m(S) (38.2)

where S is the classical action along the trajectory. The presence of a non-vanishing
imaginary contribution in S is thus linked to a non-zero probability associated to the
tunnelling trajectory.

Historically one can actually identify two different (but equivalent in the stationary
regime) approaches that fall under the denomination of tunnelling method:

• the null-geodesic method, introduced by Kraus, Parikh and Wilczek [6, 7] and
• the Hamilton-Jacobi method, formulated by Padmanabhan and collaborators [8]

Here we will focus on the latter.1 The procedure to be followed is easily spelled in
the following steps:

1. the action S of the massive tunnelling particle is assumed to satisfy the relativistic
Hamilton-Jacobi equation

gμν ∂μS ∂ν S + m2 = 0 (38.3)

where gμν is the inverse metric of the spacetime considered;

1See [10] for details of both methods and a discussion on why the H-J method is preferable.
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Fig. 38.1 Eternal Schwarzschild black hole. The oriented null path abc crosses the horizon H +
once, before escaping towards null infinity

2. then one makes use of the identity

S =
∫

γ

∂μS dxμ (38.4)

giving an ansatz for the form of the action based on the symmetries of the metric;
the integration is carried along an oriented, piecewise null curve γ crossing the
horizon at least in one point, as shown in Fig. 38.1 for an eternal black hole
spacetime;

3. eventually one expresses the integrand of (38.4) through (38.3) and performs
a near-horizon approximation, treating the divergence through Feynman’s −Iε

prescription.2

The solution of the integral acquires a non-vanishing imaginary part,

I m(S) = π ω

κ
(38.5)

where ω is the energy of the tunnelling particle and κ is the surface gravity of the
horizon. Inserting the expression for the imaginary contribution in (38.2), and by
comparison with the Boltzman distribution (38.1), one can identify the temperature
associated to the emitted radiation:

TH = κ

2π
(38.6)

2The choice of the sign in the prescription is related to the choice of positive-energy particles
propagating towards infinity.
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The result is easily extended to the whole Kerr-Newman class, for both scalar and
fermionic tunnelling particles.

In order to treat the dynamical metric regime, the introduction of Kodama-
Hayward theoretical results (see [4, 5]) has been shown to be determinant in the
spherically symmetric case. Identifying the areal radius of the metric spheres with
R, the definition of a Kodama vector is fairly simple: K μ = εμν∂ν R. This vector
field can be regarded as a sort of generalization of what the Killing vector field in
stationary cases is: in fact it allows to define a particle’s conserved energy through
its flow and a surface gravity associated to the trapping horizon, respectively

ωH = −K i ∂i S (38.7)

κH = 1

2
√−γ

∂i

(√−γ γ i j∂ j R
)

|H (38.8)

where γi j is the (1 + 1) metric normal to the spheres of symmetry. Applying the
same procedure as before with these quantities in mind, the invariant imaginary
contribution I m(S) = πωH /κH is found and one can thus identify the temperature
TH = κH /2π associated to the dynamical trapping horizon.

The main features regarding the tunnelling picture include:

• the possibility of proving the covariance of the method as well as the equivalence
of its two aforementioned versions;

• the consistency of the result in a wide variety of situations: higher-dimensional
solutions, Taub and Taub-NUT solutions, decay of unstable particles, emission
from cosmological horizons and naked singularities.

38.3 Unruh-DeWitt Detectors

As it is often reasonably argued, in the context of diffeomorphism invariant theories
like GR one can not ignore the fact that particle is an observer-dependent concept.
As a consequence, the description of phenomena like the Hawking effect should be
better treated from the point of view of specific observers.

The so-called Unruh-DeWitt detector [2, 9] can in fact be used in order to distin-
guish whether an observer is in a vacuum or not by means of three ingredients: (i)
a real scalar field φ(x0, x) coupled to (ii) a curved metric gμν and (iii) a localized
two-level quantum system with energy eigenstates {|E0〉, |E1〉} and endowed with a
trajectory

(
x0(τ ), x(τ )

)
. The idea is to evaluate the probability for the transition

|0〉|E0〉(τ0) → |φ〉|E1〉(τ1) (38.9)

irrespective of the final state of the field |φ〉, i.e., to witness whether or not the two-
level system gets excited under the action of field modes while moving along a given
trajectory in the curved metric. The interpretation of such excitations in terms of
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particles is not straightforward: nevertheless, in certain cases, one can associate a
thermodynamical meaning to the result.

Leaving aside the details of the derivation (see [1]), the relevant quantity that
allows such a calculations is the transition rate given in general form by

Ḟ(E) = 2
∫ Δτ

0
Re

[
e−IE s W (x(τ ), x(τ − s))

]
ds (38.10)

where E is the energy gap of the detector, Δτ is the duration of the detection (the
temporal window during which the coupling is switched on, from τ to τ ′ = τ − s)
and W is the Wightman function evaluated on the trajectory. The particular form
of the Wightman function clearly depends on the metric of the spacetime and on
the trajectory of the detector. Considering a conformally coupled scalar field in a
4-dimensional, conformally flat spacetime with conformal factor a(x), it acquires
the form

4π2 W (τ, s) = 1

σ 2(τ, s)
= 1

a(τ )a(τ − s) × σ 2
M (τ, s)

(38.11)

where σ 2 (resp. σ 2
M ) is the separation between xμ(τ) and xμ(τ ′) in the gμν metric

(resp. in Minkowski spacetime). The problem of the divergence of W for s → 0
can be dealt with in a comfortable way through a pole-subtraction scheme and the
resulting expression of the transition rate for this case is

Ḟ = − E

2π
θ(−E) + 1

2π2

∫ ∞

0
cos(E s)

(
1

σ 2(τ, s)
+ 1

s2

)

ds +

− 1

2π2

∫ ∞

Δτ

cos(E s)

σ 2(τ, s)
ds (38.12)

In this expression it is possible to identify three contributions: the first term regards
the process of spontaneous emission; the second term is an asymptotic contribution,
which evaluates the response of the detector during an infinite time of detection; the
last term modifies the second one by taking into account the effects of a finite-time
window of detection.

We now specialize to the case of two stationary spacetimes, de Sitter and Schwarz-
schild, considering a particular observer which is sitting at constant distance from
the horizon (a so-called Kodama observer, in the terminology of [1]). In both cases
the Wightman function has the form

W (s) = 1

4π2

κ2

4V sinh2
(

κ

2
√

V
s
) (38.13)

where κ is the horizon’s surface gravity and V is the Tolman redshift factor. Equation
(38.13) is (i) stationary and (ii) periodic in imaginary time, two conditions that qualify
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the Wightman function as thermal. This denomination is justified: the contribution
of the asymptotic term—calculated by summing the residues of the infinite poles in
the lower half complex s-plane—is given by

Ḟ∞(E) = 1

2π

E

exp
(
2π

√
V

κ
E

)
− 1

(38.14)

which is a Planckian distribution. Hence the detector registers a thermal radiation at
temperature T = κ

2π
√

V
. Some comments regarding this result are in order:

• the redshift factor that appears in the expression of the temperature is consistent
with Tolman’s theorem on thermodynamical equilibrium in a gravitational field:
the product T

√−g00 is constant—in this case proportional to the horizon’s surface
gravity;

• thanks to the redshift factor, the expression for the temperature can be separated in
two contributions T 2 = T 2

A + T 2
H : the first one is proportional to the acceleration

of the detector and hence related to its proper motion (Unruh effect), while the
second one is purely related to the presence of the horizon.

Eventually, one can also evaluate the contribution to the transition rate coming from
the finite-time term in (38.12). The result is an oscillating behaviour exponentially
damped in time. No thermal contribution comes from this term, representing only a
transient towards the equilibrium.

38.4 Conclusions

Thet womethods presented in this contribution have beenwidely adopted throughout
the literature in order to shed some light on possible thermodynamical interpretations
of the gravitational field (or specific observables thereof). The results obtained in both
frameworks are clearly consistent if one limits the analysis to stationary space-times.
Moreover, the main feature arising from the Unruh-DeWitt method is the explicit
observer-dependence of the result (through the Tolman factor), to be compared with
the observer-independence of the tunnelling’s outcome.

It is in the non-stationary cases that the two methods show less consistency (see
[1]). The roots of this deviation in more general cases could be due (i) to an actually
different interpretation of the results or perhaps (ii) to the role of the observer, which
has a crucial weight in the Unruh-DeWitt picture. In the latter case, it should be
possible to identify a particular observer whose measurement gives the tunnelling
result as an outcome.

Acknowledgments GA would like to thank Luciano Vanzo, Sergio Zerbini and Roberto Di Cri-
scienzo for valuable discussions and groupwork that lead to the results presented in this contribution.
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Chapter 39
Fermions on AdS

Victor E. Ambruş and Elizabeth Winstanley

Abstract We construct the Feynman propagator for Dirac fermions on anti-de Sitter
space-time and present an analytic expression for the bi-spinor of parallel transport.
We then renormalise the vacuum expectation value of the stress-energy tensor and
end by analysing its renormalised expectation value at finite temperatures.

39.1 Introduction

Quantum field theory (QFT) on curved spaces (CS) is a semi-classical theory for
the investigation of quantum effects in gravity. Due to its simplicity, the scalar field
has been the main focus of QFT on CS. However, due to the fundamental difference
between the quantum behaviour of fermions and bosons, it is important to also study
fermionic fields. In this paper, we consider the propagation of Dirac fermions on the
anti de Sitter (adS) background space-time, where the maximal symmetry can be
used to obtain analytic results.

We start this paper by presenting in Sect. 39.2 an expression for the spinor parallel
propagator [7]. Using results from geodesic theory [1, 7], an exact expression for the
Feynman propagator is obtained in Sect. 39.3. Section39.4 is devoted to Hadamard’s
regularisationmethod [8], while, in Sect. 39.5, the result for the renormalised vacuum
expectation value (v.e.v.) of the stress-energy tensor (SET) is presented using two
methods: the Schwinger-deWitt method [4] and theHadamardmethod [6]. The exact
form of the bi-spinor of parallel transport is then used in Sect. 39.6 to calculate the
thermal expectation value (t.e.v.) of the SET for massless spinors. More details on
the current work, as well as an extension to massive spinors, can be found in [2].
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39.2 Geometric Structure of adS

Anti-de Sitter space-time (adS) is a vacuum solution of the Einstein equation with a
negative cosmological constant, having the following line element:

ds2 = 1

cos2 ωr

[

−dt2 + dr2 + sin2 ωr

ω2

(
dθ2 + sin2 θdϕ2

)]

. (39.1)

The time coordinate t runs from −∞ to ∞, thereby giving the covering space of
adS. The radial coordinate r runs from 0 to the space-like boundary at π/2ω, while
θ and ϕ are the usual elevation and azimuthal angular coordinates. In the Cartesian
gauge, the line element (39.1) admits the following natural frame [5]:

ωt̂ = dt

cosωr
, ωî = dx j

cosωr

[
sinωr

ωr

(

δi j − xi x j

r2

)

+ xi x j

r2

]

, (39.2)

such that η
α̂β̂

ωα̂
μω

β̂
ν = gμν , where η

α̂β̂
= diag(−1, 1, 1, 1) is the Minkowski metric.

A key role in the construction of the propagator of the Dirac field is played by the
bi-spinor of parallel transportΛ(x, x ′), which satisfies the parallel transport equation
nμ DμΛ(x, x ′) = 0 [7]. On adS, the explicit form of Λ(x, x ′) is [2]:

Λ(x, x ′) = cos(ωΔt/2)

cos(ωs/2)
√
cosωr cosωr ′

{
cos

ωr

2
cos

ωr ′

2
+ x · γ̂

r

x′ · γ̂

r ′ sin
ωr

2
sin

ωr ′

2

− γ t̂ tan
ωΔt

2

(
x · γ̂

r
sin

ωr

2
cos

ωr ′

2
− x′ · γ̂

r ′ cos
ωr

2
sin

ωr ′

2

)}
, (39.3)

where γ α̂ = (γ t̂ , γ̂ ) are the gamma matrices in the Dirac representation and s is the
geodesic distance between x and x ′.

39.3 Feynman Propagator on adS

The Feynman propagator SF (x, x ′) for a Dirac field of mass m can be defined as
the solution of the inhomogeneous Dirac equation, with appropriate boundary con-
ditions:

(i /D − m)SF (x, x ′) = (−g)−1/2δ4(x − x ′), (39.4)

where Dμ denotes the spinor covariant derivative and g is the determinant of the
background space-time metric. Due to the maximal symmetry of adS, the Feynman
propagator can be written in the following form [7]:

SF (x, x ′) = [
αF (s) + /n βF (s)

]
Λ(x, x ′). (39.5)
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The functions αF and βF can be determined using (39.4):

αF = ω3k

16π2 cos
ωs

2

{

− 1

sin2 ωs
2

+ 2(k2 − 1) ln
∣
∣
∣sin

ωs

2

∣
∣
∣ 2F1

(
2 + k, 2 − k; 2; sin2 ωs

2

)

+ (k2 − 1)
∞∑

n=0

(2 + k)n(2 − k)n

(2)nn!
(
sin2

ωs

2

)n
Ψn

}

, (39.6)

βF = iω3

16π2 sin
ωs

2

{

1 + k2 sin2(ωs/2)

[sin(ωs/2)]4 − k2(k2 − 1) ln
∣
∣
∣sin

ωs

2

∣
∣
∣ 2F1

(
2 + k, 2 − k; 3; sin2 ωs

2

)

− k2(k2 − 1)

2

∞∑

n=0

(2 + k)n(2 − k)n

(3)nn!
(
sin2

ωs

2

)n
(

Ψn − 1

2 + n

)}

, (39.7)

where an = Γ (a + n)/Γ (a) is the Pochhammer symbol, Γ (z) = ∫ ∞
0 xz−1e−x dx is

the gamma function, k = m/ω,

Ψn = ψ(k + n + 2) + ψ(k − n − 1) − ψ(n + 2) − ψ(n + 1) (39.8)

and ψ(z) = d lnΓ (z)/dz is the digamma function.

39.4 Hadamard Renormalisation

To regularise SF , it is convenient to use the auxiliary propagator GF , defined by
analogy to flat space-time [8]:

SF (x, x ′) = (i /D + m)GF . (39.9)

On adS, GF can be written using the bi-spinor of parallel transport:

GF (x, x ′) = αF

m
Λ(x, x ′), (39.10)

where αF is given in (39.6).
According to Hadamard’s theorem, the divergent part GH of GF is

state-independent, having the form [8]:

GH (x, x ′) = 1

8π2

[
u(x, x ′)

σ
+ v(x, x ′) lnμ2σ

]

, (39.11)
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where u(x, x ′) and v(x, x ′) are finite when x ′ approaches x , σ = −s2/2 is Synge’s
world function and μ is an arbitrary mass scale. The functions u and v can be found
by solving the inhomogeneous Dirac equation (39.4), requiring that the regularised
auxiliary propagator G reg

F ≡ GF − GH is finite in the coincidence limit:

u(x, x ′) = √
Δ(x, x ′)Λ(x, x ′), (39.12)

v(x, x ′) = ω2

2
(k2 − 1) cos

ωs

2
2F1

(
2 − k, 2 + k; 2; sin2 ωs

2

)
Λ(x, x ′), (39.13)

where the Van Vleck-Morette determinant Δ(x, x ′) = (ωs/ sinωs)3 on adS.

39.5 Renormalised Vacuum Stress-Energy Tensor

To remove the traditional divergences of quantum field theory, we employ two regu-
larisation methods: the Schwinger–deWitt method in Sect. 39.5.1 and the Hadamard
method in Sect. 39.5.2. Due to the symmetries of adS, the regularised v.e.v. of the
SET takes the form 〈Tμν〉regvac = 1

4Tgμν , where T = Tμ
μ is its trace. The renormali-

sation process has the profound consequence of shifting T for the massless (hence,
conformal) Dirac field to a finite value, referred to as the conformal anomaly.

39.5.1 Schwinger–de Witt Regularisation

By using the Schwinger–de Witt approach to investigate the singularity structure of
the propagator of the Dirac field in the coincidence limit, Christensen [4] calculates
a set of subtraction terms which only depend on the geometry of the background
space-time, using the following formula:

〈Tμν〉 = lim
x ′→x

tr

{
i

2

[
γ(μDν) − γ(μ′ Dν′)

]
SF (x, x ′)

}

Λ(x ′, x). (39.14)

After subtracting Christensen’s terms, we exactly recover the result obtained by
Camporesi and Higuchi [3] using the Pauli-Villars regularisation method:

〈T〉SdWvac = − ω4

4π2

{
11

60
+ k − k2

6
− k3 + 2k2(k2 − 1)

[
ln

μ

ω
− ψ(k)

]}

, (39.15)

where μ is an arbitrary mass scale.
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39.5.2 Hadamard Regularisation

The Hadamard theorem presented in Sect. 39.4 allows the renormalisation to be
performed at the level of the propagator. To preserve the conservation of the SET,
the following definition for the SET must be used [6]:

〈Tμν〉 = lim
x ′→x

tr

(
i

2

[
γ(μDν) − γ(μ′ Dν′)

] + 1

6
gμν

[
i

2
( /D − /D′

) − m

]

Sreg
F (x, x ′)

)

×Λ(x ′, x), (39.16)

where Sreg
F (x, x ′) = (i /D+m)(GF−GH ) is the regularised propagator. The coefficient

of gμν is proportional to the Lagrangian of the Dirac field and evaluates to zero when
applied to a solution of (39.4). However, Sreg

F (x, x ′) is not a solution of (39.4). The
v.e.v. obtained from (39.16) matches perfectly the result obtained by Camporesi and
Higuchi [3] using the zeta-function regularisation method (γ is Euler’s constant):

〈T〉Hadvac = − ω4

4π2

{
11

60
+ k − 7k2

6
− k3 + 3k4

2
+ 2k2(k2 − 1)

[

ln
μe−γ

√
2

ω
− ψ(k)

]}

.

(39.17)
Even though the results (39.15) and (39.17) are different for general values of the
mass parameter k, they yield the same conformal anomaly. We would like to stress
that the omission of the term proportional to gμν in (39.16) would increase the value
of the conformal anomaly by a factor of 3.

39.6 Thermal Stress-Energy Tensor

The renormalised thermal expectation value (t.e.v.) of the SET can be written as:

〈Tμν〉regβ = 〈: Tμν :〉β + 〈Tμν〉renvac , (39.18)

where β = T −1 is the inverse temperature and the colons :: indicate that the operator
enclosed is in normal order, i.e. with its v.e.v. subtracted. The bi-spinor of parallel
transport can be used to show that

〈: Tμ
ν :〉

β
= diag(−ρ, p, p, p), (39.19)

where ρ is the energy density and p is the pressure. If m = 0, we have p = ρ/3 and:

ρ	m=0 = −3ω4

4π2 (cosωr)4
∞∑

j=1

(−1) j cosh( jωβ/2)

[sinh( jωβ/2)]4 , (39.20)
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Fig. 39.1 a ρ between the origin (r = 0) and the boundary (rω = π/2) for βω = 0.8, 1.0, 1.2
and 1.4; b log-log plot of ρ in terms of βω; comparison with the asymptotic results in (39.21) and
(39.22)

with the coordinate dependence fully contained in the (cosωr)4 prefactor. The first
term in the sum over j is within 6% of the sum, while the first two terms together
are less than 1% away, for all values of ωβ. The small and large ωβ limits can be
extracted:

ρ	m=0 = (cosωr)4
[
7π2

60β4 − ω2

24β2 + O(ω4)

]

, (39.21)

ρ	m=0 = 6ω4

π2

(cosωr)4

1 + e3βω/2

[

1 + 5e−ωβ 1 + e−3ωβ/2

1 + e−5ωβ/2
+ O(e−2ωβ)

]

. (39.22)

Figure39.1 shows a graphical representation of the above results.
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Chapter 40
Study on Rescaling Extrinsic Curvature
in Gravitational Initial Data

Shan Bai and Niall Ó Murchadha

Abstract Vacuum solutions to the Einstein equations can be viewed as the interplay
between the geometry and the gravitational wave energy content. The constraints on
initial data reflect this interaction. We assume we are looking at cosmological solu-
tions to the Einstein equations so we assume that the 3-space is compact, without
boundary. In this articlewe investigate, using both analytic and numerical techniques,
what happens when the extrinsic curvature is increased while the background geom-
etry is held fixed. This is equivalent to trying to magnify the local gravitational wave
kinetic energy on an unchanged background. We find that the physical intrinsic cur-
vature does not blow up. Rather the local volume of space expands to accommodate
this attempt to increase the kinetic energy.

40.1 Introduction

Initial data for the Einstein equations consists of two parts: the first part is a manifold
equipped with a Riemannian 3-metric gi j , and the second is a symmetric tensor K i j

on the same manifold. K i j is the extrinsic curvature of the 3-slice, i.e., the time
derivative of the 3-geometry. The metric and extrinsic curvature should satisfy the
Hamiltonian constraint and the Momentum constraint. A comprehensive discussion
of the constraints can be found in [1]. Interesting physics tends to occur at the
boundaries of the space of free data: one gets at the very least some insight into the
limitations of the conformal method. Parts of the boundary of the free data are easily
accessible.We can scale any one of the three parts by multiplying it by a constant and
letting the constant become either large or small. Such an action can be done easily
in the Maxwell theory to increase the electromagnetic energy density (E2 + B2)

without limit. But it is not clear what happens with the Einstein equations because
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the gravitational wave energy interacts in a very nonlinear way with the geometry.
One natural question about the recalling is what effect has this on the physics? For
example, does the solution just cease to exist, does the volume of the spacetime
blow up (or shrink to zero), do apparent horizons (which may be interpreted as
cosmological horizons) appear?

In this article, we discuss one such rescaling of the gravitational free data. The
work is a combination of analytic and numerical works. In Sect. 40.2 we describe
the conformal method of solving the constraints. In Sect. 40.3 we show that if the
extrinsic curvature vanishes nowhere on a compact manifold and we increase it,
the conformal factor uniformly blows up. However, when the extrinsic curvature
vanishes somewhere, the analysis in Sect. 40.3 is no longer valid. To investigate this
special case, we revert to a spherically symmetric toy model, deriving some analytic
results and showing the relevant numerical work in Sect. 40.4. Here we supply strong
evidence that we do not get blow-up in regions of vanishing extrinsic curvature. We
conclude with a summary and an outline of future work.

40.2 Solving the Einstein Constraints

Let us start on the Hamiltonian constraint,

R − Ki j K i j + K 2 = 0 , (40.1)

where R is the 3-scalar curvature of gi j and K is the trace of K i j , i.e., K = gi j K i j .
The terminology and notation comes from [2]. The standard way of generating solu-
tions is by means of a conformal transformation which means ḡi j = φ4gi j where
φ is any function positive function. On any given manifold, it is easy to construct
tracefree and divergencefree (TT) tensors. For example, any K i j is the sum of a
constant trace and a trace-free part, i.e., K i j = K i j

T T + 1
3 K gi j , where the constant

K is conformal invariant and satisfies the momentum constraint. K i j
T T is TT tensor

[3]. TT tensors are conformally covariant. Now the (40.1) reduces to the famous
Lichnerowicz-York equation [3, 4]

∇2φ − R

8
φ + 1

8
A2φ−7 − K 2

12
φ5 = 0 (40.2)

where A2 = K T T
i j K i j

T T . This equation is very well behaved [5]. In this article we
focus on the situation where the topology of the 3-manifold is compact and without
boundary. It can be shown that (40.2) has a unique positive solution if K �= 0 and if
K i j

T T is not identically zero [5]. Let us remind the reader that K is a constant, while

K i j
T T is a function. In the special cases, where either K = 0 or K i j

T T ≡ 0, we have
an extra condition related to the sign of the scalar curvature. However, in the general
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case no such restriction applies. This existence result does not depend either on the
metric, other than it be uniformly elliptic, or on the topology of the 3-manifold.

To recapitulate: we start with a triplet, i.e., the free data, (gi j , K i j
T T , K ), and con-

struct a new set (ḡi j , K̄ i j
T T , K ) = (φ4gi j , φ

−10K i j
T T , K ) that satisfies the constraints.

40.3 Harnack Type Inequality for the Conformal Factor

In this section we consider such a rescaling. We pick one triplet (gi j , K i j
T T , K ), and

use it to construct a family of free data of the form (gi j , α
12K i j

T T , K ), where α is a
running parameter. We also wish to show that φ scales linearly with α as α becomes
large, so we write φ̃ = φ/α and then (40.2) becomes

∇2φ̃ − R

8
φ̃ + α4(

1

8
A2φ̃−7 − K 2

12
φ̃5) = 0 . (40.3)

We wish to solve the family of equations on a compact manifold without boundary.
It turns out that the sign of the scalar curvature plays a minor role in the behaviour
of the solutions. We can always set the scalar curvature to a constant value because
of the Yamabe theorem [6], which tells us that any Riemannian metric on a compact
manifold can be conformally transformed to a metric of constant scalar curvature.
The key quantity is the Yamabe number

Y = inf

∫ [(∇θ)2 + 1
8 Rθ2]dv

[∫ θ6dv]1/3 , (40.4)

where the infimum is taken over all smooth functions θ . The sign of the Yamabe
number fixes the sign of the constant scalar curvature. Since (40.3) is conformally
covariant, and since conformal transformations form a group under composition, we
can set R to a constant value without losing any generality. However, we do need to
handle the three separate cases, Y > 0, R > 0; Y < 0, R < 0 and Y = 0, R = 0
independently. In each case we will set the value of K 2 = 9. This choice does not
change in any fundamental way the behaviour of the solution. To illuminate our
treatments, we take the case of Y > 0, R > 0 as an example.

We assume that we are in the positive Yamabe class and set the scalar curvature
R = +24; the specific number can be chosen freely. Now (40.3) reduces to

∇2φ̃ − 3φ̃ + α4(
1

8
A2φ̃−7 − 3

4
φ̃5) = 0 (40.5)

(40.5), because it is just a rescaled version of the original Lichnerowicz-York equation
(40.2), which is extremely well behaved, has a regular positive solution. Let us look
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at what happens at the maximum of φ̃, which we shall assume occurs at a point
r = rmax . The first two terms in (40.5) will be negative at r = rmax so we get

[
1

8
A2φ̃−7 − 3

4
φ̃5

]

rmax

> 0 . (40.6)

This becomes

[max φ̃]12 <
1

6
A2|rmax ≤ 1

6
max A2 . (40.7)

We get a uniform lower bound by looking at (40.5) when φ̃ is a minimum, which
we shall assume occurs at r = rmin . At r = rmin we get

1

6
min A2 ≤ 1

6
A2|rmin ≤ 4

[min φ̃]8
α4 + [min φ̃]12 . (40.8)

Using the bounds on both min φ and max φ, we have shown that there exists a
universal constant C0 independent of α such that

min φ

max φ
> C0

[
min A2

max A2

]1/3

. (40.9)

The maximum and minimum of φ both increase together proportional to α so that
their ratio remains bounded independent of α. This can be regarded as a version of
the Harnack inequality [7] for the non-linear equation (40.5).

The Harnack inequalities are clearly only valid when min(A2) = min(K i j
T T K T T

i j )

�= 0. For the case that A2 vanishes in a region, we will prove that the φ has minimum
varying α and show the order of α proportional to the minimum φ numerically in
the next section. Meanwhile, in the region where A2 �= 0, we can show numerically
that φ has the standard linear scaling with α which is in consistent with the above
statement.

40.4 Spherical Toy Model: Analytical Results
and Numerical Results

When dealing with spherical symmetry, we are free to take advantage of the fact
that a round 3-sphere can be decompactified to flat 3-space, and that conformal
transformations form a group under composition of which the conformal factor is
θ = √

b/
√

b2 + r2 for any b > 0. Denote the new conformed solution to be φ̂ =
θ−1φ. We note that φ will be finite at the ‘point at infinity’ in the compact manifold,
while φ̂ ≈ √

b/r at the corresponding infinity in R3. A spherical region around
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the north pole corresponds to a disc 0 ≤ r < r1 on which A2 = 0. We can write
down the conformed solution that φ̂ = √

a/
√

a2 − r2,where a is a parameter. These
functions blow up at r = a, and since the total solution is regular, the blow-up must
occur outside the range of validity of these functions. So it gives a lower bound for
a, i.e., a ≥ r1. Clearly, the minimum value of φ̂ for these special solutions occurs at
the origin,

min φ̂ = φ̂(r = 0) =
√
1

a
≤

√
1

r1
. (40.10)

Thereforemin φ does not blowup likeα but reaches some limit,whilemax φ becomes
unboundedly large. A similar argument holds when A2 vanishes near the south pole.
We can repeat this argument when A2 vanishes on some belt r1 < r < r2. Fix the
location of the minimum, in this case in the interval (r1, r2), and fix the value of φ̂

at the minimum. This uniquely determines the solution. The solution is ‘U’ shaped,
blowing up twice at rA and rB . The bigger the min φ̂, the narrower the ‘U’, i.e.,
(rB − rA)(min φ̂)2 is bounded [8] where rA < r1, rB > r2 and rB − rA > r2 − r1,
and so the value of min φ̂ is bounded above.

In the numerical calculation, we assume A2 to be vanishing in (r1, r2)where r1 or
r2 could be zero.We solve the ordinary differential equation for a range of parameters
α by pseudo-spectral method. We can observe that the value of φ̂, on the support of
A2, tends to a stationary limit, while φ̂ collapses off the support of A2. This shows
that φ scales linearly with α, on the support of A2, while in the region where A2 is
zero, φ̂ continues to diminish so that φ approaches a stationary value. In the above
analysis, we showed that min φ = αmin φ̂ increases with α but approaches some
fixed upper bound. The bound could be figured out here numerically in the Fig. 40.1.

Fig. 40.1 The first figure is φ̂ on S3. The parameters used are α = 1.000, 2.154, 4.642, 10.00,
21.54, 53.13, 79.37, and 100.0. These correspond to the red, green, blue, pink, light blue, yellow,
dark blue, and mauve lines respectively. The minimum φ occurs around θ = 1.35. The second
figure is to show the asymptotic behavior of the min φ when α is larger. It is shown that minφ ∼
α0.03



342 S. Bai and N. Ó Murchadha

40.5 Conclusions

We have shown that if we scale K i j
T T K T T

i j by α12, we find that the conformal factor,

in general, scales like α. However, the physical K̄ i j
T T K̄ T T

i j = φ−12α12K i j
T T K T T

i j =
φ̃−12K i j

T T K T T
i j , and as α becomes larger and larger φ̃ remains finite. This means that

K̄ i j
T T K̄ T T

i j remains finite. Hence the velocity part of the gravitational wave energy
density remains bounded even though the corresponding ‘free’ data blows up. On
the other hand, the volume of space becomes unboundedly large, because

√
ḡ =

φ6√g = α6φ̃6√g blows up. Therefore the total gravitational wave energy in a
coordinate sphere becomes larger and larger while the local energy density remains
bounded.

It would be interesting to repeat this analysis in the asymptotically flat case. We
would probably want to work with maximal initial data, i.e., K = 0, and just have a
metric and a T T tensor as free data. It is clear that one can change the metric so that
the ADM mass becomes unboundedly large and trapped surfaces appear [9]. What
happens if we blow-up the extrinsic curvature on a fixed background metric? Will
we get the same behaviour? Preliminary investigations indicate that we do: the ADM
mass diverges and trapped surfaces appear. We intend to investigate this further.
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Chapter 41
Massive Gravities

Dennis D. Dietrich

Abstract Massive gravities (here exclusively in 4 dimensions) could provide solu-
tions for longstanding challenges, e.g. the vacuum- and dark-energy problems. They
are, however, facing a multitude of constraints, which allow us to select viable
approaches. Models with variable mass are the most promising candidates.

41.1 Introduction

Motivations for studying massive gravities are the vacuum- and dark-energy prob-
lems:Massive gravities can degravitate [1] the huge spacetime homogeneous energy-
momentum source represented by the vacuum energy, which is predicted by quantum
field theory. For intact equivalence principle it would imply a strongly curved uni-
verse in conflict with its observed approximate flatness. Moreover, massive gravities
can provide self-accelerating solutions in the absence of dark energy.

41.1.1 Degravitation

In Maxwell theory with a constant source Jμ,

LM = −1

4
FμνFμν − AμJμ ⇒ Γ μκλν∂κ∂λAν = Jμ != const.
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we find that Aμ (Fμν) grows quadratically (linearly). To the contrary, Proca theory,

LP = −1

4
FμνFμν − m2

2
AμAμ − AμJμ ⇒ Γ μκλν∂κ∂λAν − m2Aμ = Jμ != const.,

allows for Aμ = constant and Fμν = 0. Analogously, when we expand general
relativity (GR) with a cosmological constant (CC) Λ around a flat background,

LEH = √−g(R + 2Λ) ⇒ Gμν = Λgμν,

gμν = ημν + hμν such that Λ = O(hμν) and Gμν(ημν) = 0,

an hμν growing quadratically ad infinitum solves the linearised equations of motion

E κλαβ
μν ∂α∂βhκλ = Λημν.

At variance, in Fierz-Pauli theory (FP) [2] around a Minkowski background,

LFP = √−g(R + 2Λ)|quad − √−η
m2

4
(ημκηνλ − ημνηκλ)hμνhκλ

⇒ E κλαβ
μν ∂α∂βhκλ − m2(δκ

μδλ
ν − ημνη

κλ)hκλ = Λημν, ⇒

hμν ∝ ημν and thus flat space is a solution. In both cases the infrared modification
due to the mass screens the constant source and makes it physically ineffective.

41.1.2 Self-Acceleration

Matter slows down the expansion of the universe at late times. If the matter’s long-
range effect is lessened by a graviton mass this can mimic the opposite effect arising
from a CC. Indeed, the difference between the potentials in the Newtonian limits of
GR and in FP, respectively, is as between the Coulomb and the Yukawa potentials,

VC = #

r
→ VY = #

e−mr

r
versus VN = �

r
→ VFP = 4

3
�

e−mr

r
.

Interestingly, it is this aspect of degravitation and self-acceleration that originally
motivated Einstein [3] to introduce the cosmological constant.
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41.2 Challenges

Challenges for massive gravities arise at the linear and the non-linear levels.

41.2.1 Linear Level

In the limit m → 0 the m = 0 result is not recovered, as the scalar degree of freedom
(dof) in the decomposition over a flat background,

hμν = hTT
μν + ∂(μVT

ν) + ∂μ∂νφ,

does not decouple and, e.g. gives rise to the factor 4/3 above. (hTT
μν is transverse

and traceless, VT
ν traceless.) This is known as van Dam-Veltman-Zakharov (vDVZ)

discontinuity [4, 5], which need not be present over a curved background [6, 7]. The
factor affects the gravitational interaction of macroscopic bodies, but not the bending
of light in a gravitational field, which makes it detectable.

Furthermore, there can be unitarity violations and classical instabilities for mas-
sive graviton theories formulated relative to curved backgrounds, Gμν(ημν) �= 0,

hμν = hTT
μν + ∇(μVT

ν) + ∇(μ∂ν)φ.

(Mass as Casimir of the Poincaré group is of course only strictly defined over a
Minkowski background, but wewill address FP-related theories as massive gravities.
They all have additional dofs like a massive vector has a longitudinal dof.)

According to the Goldstone-boson equivalence theorem φ dominates at large
graviton momenta. The φ Lagrangian reads (i, j ∈ {1; 2; 3}, φ̇ = ∂φ/∂t)

L = √−η[Aφ̇2 + Bij(∂iφ)(∂jφ) + φ̇Di∂iφ],

where the functions A, Bij, and Di depend on the background. The Hamiltonian

H = π2

4
√−ηA

− √−ηBij(∂iφ)(∂jφ)

signals unitarity violation by a negative A and a classical instability by a positive def-
inite Bij. Here π = ∂L /∂φ̇. The unitarity violation arises from the wrong sign (neg-
ative norm) in the canonical commutation relations for the generators/annihilators

[a(k), a†(k′)] = sgn(A)δ(3)(k − k′).

The classical instability implies that the condition ||hμν || 
 ||ημν || is violated and
perturbation theory breaks down. The latter, however, does not signal a fundamental
problem of the theory, but only the failure of the analysis tool.
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On a Friedmann-Robertson-Walker (FRW) background L simplifies to

LFRW = √−η[Aφ̇2 + B(∇φ/a)2].

A < 0 leads to unitarity violation, B > 0 to a classical instability. In an expanding
FRW background the unitarity violation happens at m2 > H2 + Ḣ, which can never
be reached from our observation point, i.e. from late times, without first violating
the stability requirement m2 > H2 + Ḣ/3, i.e. within the range of applicability of
perturbation theory, as Ḣ < 0. (Exceptions are a pure CC [7], where Ḣ ≡ 0 and
phantom matter with Ḣ > 0.) We call this mechanism self-protection [8]. It is an
example for the phenomenon of classicalisation [9, 10]. The result persists to low
graviton momenta [11], where another stability bound comes from the vector sector,

m2 > − 3
2 Ḣ.

While avoiding theoretical inconsistencies, a self-protected theory does not allow
for an approximately homogeneous early universe. This requires a model that is
stable and unitary at all times. Therefore, we extend the mass term beyond the naive
FP term [12]. The requirement that only second-order equations of motion arise
necessitates thatM μναβ in the mass term hμνM μναβhαβ must have the symmetries
of Rμανβ . Then the unique choice to second adiabatic order reads [12]

M μναβ = (m2
0 + αR0)g

μ[ν
0 gβ]α

0 + β(gμ[ν
0 Rβ]α

0 + Rμ[ν
0 gβ]α

0 ) + γ Rμανβ
0 .

On FRW backgrounds, which are conformally flat, the γ term can be expressed by
a combination of the α and β terms. Hence, we set γ = 0 without loss of generality.
Then absolute stability is achieved for β = 0 and α either equal to m2

0/ΩΛ or smaller
than a constant αmax < 0 without a simple analytical expression [12]. (See Fig. 41.1.)
ΩΛ is the current relative density parameter of the CC. What this difference means
concretely for the backward evolution of a scalar mode is shown in Fig. 41.2. Taking
stock, this generalisation cures the instability issues at least over FRW spacetimes.
Next, after further checks of the linearmodel, e.g. for other backgrounds, a non-linear
completion of the model must be found and subjected to further tests.

41.2.2 Nonlinear Level

The vDVZ discontinuity is cured at the nonlinear level by the Vainshtein mechanism
[13]. The solution of the nonlinear equations of motion belonging to the Lagrangian

LFP,nlin = √−gR|��quad − √−η
m2

4
(ημκηνλ − ημνηκλ)hμνhκλ
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Fig. 41.1 Adapted from [12]. Parameter plot in the α–β plane, for m0 = 0 and γ = 0

Fig. 41.2 Taken from [12].
Scalar mode on a matter
dominated background,
m0 = H0, β = 0 = γ . The
solid red line for α = −1
represents an absolutely
stable case, while the dashed
blue line for α = 0
represents an unstable one
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are non-analytic in rV/r (around a spherically symmetric source), where rV =
5
√

rSm−4 is the Vainshtein and rS the Schwarzschild radius. GR is recovered for
r < rV, although the perturbative solution is a power series in rV/r, which diverges
in the limit m → 0.

Beyond the linear level 6 instead of 5 dofs propagate: In ADM variables [14]

LEH = π ij ġij − NR0 − NiR
i.

The variation wrt. the non-dynamic lapseN and shiftNi variables yields 4 constraints
eliminating a total of 8 variables. This leaves the 2 transverse traceless modes of the
10 independent components of a 4d symmetric tensor. The mass term
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Lm2 = −m2

4
[(hij)

2 − (hii)
2 − 2Ni

2 + 2h(1 − N2 − Nig
ijNj)]

contains non-quadratic terms. There are still 4 non-dynamic variables, which, how-
ever, appear non-linearly. Thus, only they can be eliminated, leaving 6 dofs. (After
a preceding linearisation in hμν one more mode can be eliminated.) The 6th is the
Boulware-Deser (BD) ghost [15, 16] resulting in unbounded (from below) energy,

H ∼ m−2(R0)2/h

here for Ri = 0. Then a small negative h leads to arbitrarily negative energy for
non-zero R0. The effective mass of the ghost becomes infinite when the background
becomes flat, in which case the ghost cannot be excited.

One class of non-linear generalisations of FP that avoid the BD ghost [17–28] has
been proposed, although this remains disputed [29–31], and they seem to be acausal
[32, 33]. These no-go theorems do not extend to models with variable mass.

41.3 Summary

The history of massive gravities is marked by an up-and-down between challenges
and their subsequent solutions. At present, models with variable mass seem most
promising insofar as they appear to be able to avoid instabilities and unitarity violation
at the linear level and no-go theorems at the non-linear. The models from [12],
however, still require a non-linear completion before they can be checked for the
absence of ghosts and acausalities at that level.

Acknowledgments The work of the author was supported in part by the Humboldt foundation.
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Chapter 42
Self Sustained Traversable Wormholes
and Topology Change Induced
by Gravity’s Rainbow

Remo Garattini

Abstract We consider the effects of Gravity’s Rainbow on the self-sustained equa-
tionwhich is responsible to find new traversable wormholes configurations which are
sustained by their own gravitational quantum fluctuations. The same self-sustained
equation is also used to discover if topology change is possible. In this contribution,
we will show that in both uses, the self-sustained equation will produce a Wheeler
wormhole, namely a wormhole of Planckian size. This means that, from the point of
view of traversability, the wormhole will be traversable in principle, but not in prac-
tice. From the topology change point of view, the background metric will be fixed to
be Minkowskian in the equation governing the quantum fluctuations, which behaves
essentially as a backreaction equation, and the quantum fluctuations are let to evolve.
Analyzing this procedure, we will show that the self-sustained equation, endowed
with a Gravity’s Rainbow distortion, will be responsible of a topology change with
the appearance of a Planckian wormhole.

42.1 Introduction

A wormhole is often termed Einstein-Rosen bridge because a “bridge” connect-
ing two “sheets” was the result obtained by Einstein and Rosen in attempting to
build a geometrical model of a physical elementary “particle” that was everywhere
finite and singularity free [1]. It was Wheeler who introduced the term wormhole
[2], although his wormholes were at the quantum scale. We have to wait for Mor-
ris and Thorne [3] to see the subject of wormholes seriously considered by the
scientific community. In practice a traversable wormhole is a solution of the Ein-
stein’s Field equations, represented by two asymptotically flat regions joined by a
bridge or, in other word, it is a short-cut in space and time. To exist, traversable
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wormholes must violate the null energy conditions, which means that the matter
threading the wormhole’s throat has to be “exotic”. Classical matter satisfies the
usual energy conditions. Therefore, it is likely that wormholes must belong to the
realm of semiclassical or perhaps a possible quantum theory of the gravitational
field. Since a complete theory of quantum gravity has yet to come, it is important
to approach this problem semiclassically. On this ground, the Casimir energy on a
fixed background has the correct properties to substitute the exotic matter: indeed,
it is known that, for different physical systems, Casimir energy is negative. Usually
one considers some matter or gauge fields which contribute to the Casimir energy
necessary to the traversability of the wormholes, nevertheless nothing forbids to use
the Casimir energy of the graviton on a background of a traversable wormhole. In
this way, one can think that the quantum fluctuations of the gravitational field of a tra-
versable wormhole are the same ones which are responsible to sustain traversability.
Nevertheless, Casimir energy is a form of Zero Point Energy (ZPE) which, usually
manifests Ultra Violet (UV) divergences. To keep under control the UV divergences,
usually one invokes a standard regularization/renormalization process. However, an
alternative procedure can be taken under consideration by distorting spacetime since
the beginning. This distortion is better known as Gravity’s Rainbow. Since Gravity’s
Rainbow switches on at the Planck scale it is likely that ZPE can be used as a tool
to produce a topology change. Note that in [4], the ZPE was used as an indicator
for a topology change without a Gravity’s Rainbow scheme. In this contribution we
will explicitly show how Gravity’s Rainbow comes into play to produce a topology
change as a ZPE consequence.

42.2 Self-sustained Traversable Wormholes

In this section we shall consider the formalism outlined in detail in [5–7], where the
graviton one loop contribution to a classical energy in a wormhole background is
used. The spacetimemetric representing a spherically symmetric and staticwormhole
is given by

ds2 = −e2Φ(r) dt2 + dr2

1 − b(r)/r
+ r2 (dθ2 + sin2 θ dφ2) , (42.1)

whereΦ(r) and b(r) are arbitrary functions of the radial coordinate, r , denoted as the
redshift function, and the shape function, respectively [3]. The radial coordinate has
a range that increases from a minimum value at r0, corresponding to the wormhole
throat, to infinity.A fundamental property of awormhole is that a flaring out condition
of the throat, given by (b − b′r)/b2 > 0, is imposed [3, 8], and at the throat b(r0) =
r = r0, the condition b′(r0) < 1 is imposed to have wormhole solutions. Another
condition that needs to be satisfied is 1 − b(r)/r > 0. For the wormhole to be
traversable, one must demand that there are no horizons present, which are identified
as the surfaces with e2Φ → 0, so that Φ(r) must be finite everywhere. The classical
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energy is given by

H (0)
Σ =

∫

Σ

d3x H (0) = − 1

16πG

∫

Σ

d3x
√

g R ,

where the background field super-hamiltonian,H (0), is integrated on a constant time
hypersurface. R is the curvature scalar, and using metric (42.1), is given by

R = −2

(

1 − b

r

) [

Φ ′′ + (Φ ′)2 − b′

r(r − b)
− b′r + 3b − 4r

2r(r − b)
Φ ′

]

.

We shall henceforth consider a constant redshift function,Φ ′(r) = 0, which provides
interestingly enough results, so that the curvature scalar reduces to R = 2b′/r2. Thus,
the classical energy reduces to

H (0)
Σ = − 1

2G

∫ ∞

r0

dr r2√
1 − b(r)/r

b′(r)

r2
. (42.2)

A traversable wormhole is said to be “self sustained” if

H (0)
Σ = −ET T , (42.3)

where ET T is the total regularized graviton one loop energy. Basically this is given
by

ET T = −1

2

∑

τ

[√
E2
1 (τ ) +

√
E2
2 (τ )

]

, (42.4)

where τ denotes a complete set of indices and E2
i (τ ) > 0, i = 1, 2 are the eigenvalues

of the modified Lichnerowicz operator

(
�̂m

L h⊥)

i j
=

(
�Lh⊥)

i j
− 4Rk

i h⊥
k j + 3R h⊥

i j , (42.5)

acting on traceless-transverse tensors of the perturbation and where �L is the Lich-
nerowicz operator defined by

(�L h)i j = �hi j − 2Rik jl hkl + Rik hk
j + R jk hk

i , (42.6)

with� = −∇a∇a . For the background (42.1), one can define two r-dependent radial
wave numbers

k2i
(
r, l, ωi,nl

) = ω2
i,nl − l (l + 1)

r2
− m2

i (r) i = 1, 2 , (42.7)
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where ⎧
⎪⎪⎨

⎪⎪⎩

m2
1 (r) = 6

r2

(
1 − b(r)

r

)
+ 3

2r2
b′ (r) − 3

2r3
b (r)

m2
2 (r) = 6

r2

(
1 − b(r)

r

)
+ 1

2r2
b′ (r) + 3

2r3
b (r)

(42.8)

are two r-dependent effective masses m2
1 (r) and m2

2 (r). When we perform the
sum over all modes, ET T is usually divergent. In [5–7] a standard regulariza-
tion/renormalization scheme has been adopted to handle the divergences. In this
contribution, we will consider the effect of Gravity’s Rainbow on the graviton to one
loop. One advantage in using such a scheme is to avoid the renormalization process
and to use only one scale: the Planck scale.

42.3 Gravity’s Rainbow at Work and Topology Change

One of the purposes of (42.3) is the possible discovery of a traversable wormhole
with the determination of the shape function. When Gravity’s Rainbow is taken
under consideration, spacetime is endowed with two arbitrary functions g1 (E/EP )

and g2 (E/EP ) having the following properties

lim
E/EP→0

g1 (E/EP ) = 1 and lim
E/EP→0

g2 (E/EP ) = 1. (42.9)

g1 (E/EP ) and g2 (E/EP ) appear into the solutions of the modified Einstein’s Field
Equations [9]

Gμν (E/EP ) = 8πG (E/EP ) Tμν (E/EP ) + gμνΛ (E/EP ) , (42.10)

where G (E/EP ) is an energy dependent Newton’s constant, defined so that G (0)
is the low-energy Newton’s constant and Λ(E/EP ) is an energy dependent cosmo-
logical constant. Usually E is the energy associated to the particles deforming the
spacetime geometry. Since the scale of deformation involved is the Planck scale, it is
likely that spacetime itself fluctuates in such a way to produce a ZPE. However the
deformed Einstein’s gravity has only one particle available: the graviton. As shown
in [10], the self sustained equation (42.3) becomes

b′(r)

2Gg2 (E/EP ) r2
= 2

3π2 (I1 + I2) . (42.11)

Equation (42.11) is finite for appropriate choices of the Rainbow’s functions g1
(E/EP ) and g2 (E/EP ). We assume that

g1 (E/EP ) = exp
(
−αE2/E2

P

)
g2 (E/EP ) = 1 , (42.12)
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where α ∈ R and g2 (E/EP ) = 1, to avoid Planckian distortions in the classical
term. We find

I1 = 3
∫ ∞

√
m2
1(r)

exp(−α
E2

E2
P

)E2
√

E2 − m2
1 (r)d E , (42.13)

and

I2 = 3
∫ ∞

√
m2
2(r)

exp(−α
E2

E2
P

)E2
√

E2 − m2
2 (r)d E . (42.14)

Following [10], after the integration one finds that (42.11) can be rearranged in the
following way

b′(r)

2Gr2
= E4

P

2π2

[
x21
α

exp

(

−αx21
2

)

K1

(
αx21
2

)

+ x22
α

exp

(
αx22
2

)

K1

(
αx22
2

)]

,

(42.15)

where x1 =
√

m2
1 (r) /E2

P , x2 =
√

m2
2 (r) /E2

P and K1 (x) is a modified Bessel
function of order 1. Note that it is extremely difficult to extract any useful information
from this relationship, so that in the following we consider two regimes, namely the
cis-planckian regime, where xi 
 1 (i = 1, 2), and the trans-planckian régime,
where xi � 1. In [10], it has been shown that the cis-planckian regime does not
produce solutions compatible with traversability. On the other hand when we fix our
attention on the trans-planckian regime, i.e., x1 � 1 and x2 � 1, we obtain the
following approximation

1

2G

b′(r)

r2
� E4

P

8
√

α3π3

[

exp
(−αx21

)
x1 + O

(
1

x1

)

+ exp
(−αx22

)
x2 + O

(
1

x2

)]

.

(42.16)
Note that in this regime, the asymptotic expansion is dominated by theGaussian expo-
nential so that the quantum correction vanishes. Thus, the only solution is b′(r) = 0
and consequently we have a constant shape function, namely, b(r) = rt . It is inter-
esting to observe that (42.11) can be interpreted also in a different way. Indeed, if
we fix the background on the r.h.s. of (42.11) and consequently let the quantum fluc-
tuations evolve, one can verify what kind of solutions it is possible to extract from
the l.h.s. in a recursive way. In this way, if we discover that the l.h.s. has solutions
which topologically differ from the fixed background of the r.h.s., we can conclude
that a topology change has been induced from quantum fluctuations of the graviton
for any spherically symmetric background on the r.h.s of (42.11). Of course, this is
not a trivial task, therefore the simplest way to see if a topology change is realized,
we fix the Minkowski background on the r.h.s. of (42.11). This means that b(r) = 0
∀r and the effective masses become m2

1 (r) = m2
2 (r) = 6/r2. Then (42.15) reduces

to
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1

2G

b′(r)

r2
= E4

P

π2

[
6

α (r EP)2
exp

(

− 3α

(r EP)2

)

K1

(
3α

(r EP )2

)]

. (42.17)

Let us fix our attention on the trans-planckian regime, i.e., r EP 
 1, where we can
write

b′(r)

r2
� E2

P

2
√

α3π3

[

exp

(

−α
6

(r EP)2

) √
6

r EP
+ O (r EP )

]

. (42.18)

Since this is a particular case of (42.16), we conclude that the only solution is b′(r) =
0 and consequentlywehave a constant shape function, namely,b(r) = rt . A comment
to the result (42.18) is in order. One could think that (42.18) is only a special case of
(42.16). Of course this is not true, because (42.16) uses a different initial condition
with respect to (42.18). Indeed, in (42.16) the background is arbitrary,while in (42.18)
one considers aMinkowski line element and the solution is obtained with an iterative
process. One can observe that this procedure could be approached also distorting the
one loop graviton by means of a Noncommutative geometry like in [11–13], where
the classical Liouville measure is modified into [11]

dni = d3xd3k

(2π)3
exp

(

−θ

4

(
ω2

i,nl − m2
i (r)

))

, i = 1, 2. (42.19)

m2
i (r) are the effective masses described in (42.8) and θ is the Noncommutative

parameter. While nothing can be said about the effect of Noncommutative geometry
on topology change, a result can be extracted from the traversability of the wormhole.
Indeed, if one fixes the form of the shape function to be b (r) = r20/r, which is the
prototype of the traversable wormholes [3], one gets r0 = 0.28lP ,with θ fixed at θ =
7. 43 × 10−2l2P . If we compare the result obtained in [10] using Gravity’s Rainbow,
one finds the following value for the radius rt = 1. 46lP , which is slightly larger than
r0. The conclusion is that Gravity’s Rainbow and Noncommutative geometry keep
under control the UV divergences in this ZPE calculation connected with the self-
sustained equation [14]. In both cases we find that the result is a Wheeler wormhole.
This means that, from the point of view of traversability, the wormhole will be
traversable in principle, but not in practice.
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Chapter 43
A General Maximum Entropy Principle
for Self-Gravitating Perfect Fluid

Sijie Gao

Abstract Weconsider a self-gravitating system consisting of perfect fluid in a spher-
ically symmetric spacetime. Using the Gibbs-Duhem relation, we extremize the total
entropy S under the constraints that the total number and energy of particles are fixed.
We show that the extrema of S coincides precisely with the relativistic Tolman-
Oppenheimer-Volkoff (TOV) equation of hydrostatic equilibrium. Furthermore, we
show that themaximum entropy principle is also valid for a charged perfect fluid. Our
work provides a strong evidence for the fundamental relationship between general
relativity and ordinary thermodynamics.

43.1 Introduction

The four laws of black hole mechanics were originally derived from the Einstein
equation at the purely classical level [1, 2]. The discovery of the Hawking radiation
[3] confirms that black holes are thermodynamic objects with Hawking temperature.
In fact, the relations between gravity and ordinary thermodynamics had been studied
even before the establishment of black hole mechanics. In 1965, Cocke [4] proposed
a maximum entropy principle for self-gravitating fluid spheres. Cocke showed that
the requirement that the total entropy S be an extremum leads to the equation of
hydrostatic equilibrium which was originally derived from the Einstein equation.
However, a critical assumption in Cocke’s derivation is that the fluid is in adiabatic
motion so that the total entropy is invariant. In relation to Cocke’s work, Sorkin et al.
(SWZ) [5] proved an entropy principle for radiation, where the adiabatic condition
was not needed in SWZ’s derivation. SWZ’s discussion was restricted to radiation.
In this paper, we prove a maximum entropy principle for a general self-gravitating
perfect fluid with spherical symmetry. In addition to the Einstein constraint equation,
we onlymake use of the ordinary thermodynamic laws such asGibbs-Duhem relation
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to derive the Tolman-Oppenheimer-Volkoff (TOV) equation. Finally, we extend our
treatment to a general charged fluid and derive the generalized TOV equation for a
charged fluid.

43.2 Maximum Entropy Principle for Perfect Fluid

We consider a static spacetime with spherical symmetry, which can be described by
the metric

ds2 = gtt (r)dt2 +
[

1 − 2m(r)

r

]−1

dr2 + r2dΩ2 . (43.1)

We assume the spacetime is filled with a perfect fluid with stress-energy tensor

Tab = ρuaub + 1

3
ρ(gab + uaub) , (43.2)

It is not difficult to find that the constraint Einstein equation, which is the time-time
component of the Einstein equation, yields

ρ = m′(r)

4πr2
(43.3)

Our purpose is to show that the TOV equation can be derived from the extrema of
total entropy and (43.3).

We start with the familiar first law of thermodynamics

d S = 1

T
d E + p

T
dV − μ

T
d N , (43.4)

where S, E, N represent the total entropy, energy and particle number within the
volume V . Rewrite (43.4) in terms of densities s, ρ, n

d(sV ) = 1

T
d(ρV ) + p

T
dV − μ

T
d(nV ) , (43.5)

which gives

sdV + V ds = 1

T
ρdV + V dρ + p

T
dV − μ

T
ndV − μ

T
V dn . (43.6)

Applying (43.4) to a unit volume, we find

ds = 1

T
dρ − μ

T
dn . (43.7)
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Combining (43.6) and (43.7), we arrive at the integrated form of the Gibbs-Duhem
relation [6]

s = 1

T
(ρ + p − μn) . (43.8)

Note that this is a general expression for perfect fluid. We shall treat (ρ, n) as two
independent variables, e.g.,

s = s(ρ, n), μ = μ(ρ, n), p = p(ρ, n) . (43.9)

Our task is to extremize the total entropy

S = 4π
∫ R

0
s(r)

[

1 − 2m(r)

r

]−1/2

r2dr . (43.10)

Now S can be treated as a functional of m(r). It is natural to require that

δm(0) = δm(R) = 0 (43.11)

for all variations.
In addition to the constraint (43.11), we also impose that the total number of

particles

N = 4π
∫ R

0
n(r)

[

1 − 2m(r)

r

]−1/2

r2dr (43.12)

be fixed, i.e.,

δN = 0 . (43.13)

Following the standard method of Lagrange multipliers, the extrema of S leads
to

δS + λδN = 0 . (43.14)

Define the “total Lagrangian” by

L(m, m′, n) = s(ρ(m′), n)

[

1 − 2m(r)

r

]−1/2

r2 + λn(r)

[

1 − 2m(r)

r

]−1/2

r2 .

(43.15)
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Now the constrained Euler-Lagrange equation is given by

∂L

∂n
= 0 , (43.16)

d

dr

∂L

∂m′ + ∂L

∂m
= 0 . (43.17)

Thus, (43.16) yields

∂s

∂n
+ λ = 0 . (43.18)

Using (43.7), we have

− μ

T
+ λ = 0 , (43.19)

which shows that μ
T must be a constant for self-gravitating fluid.

From (43.15), we have

∂L

∂m
= r

(

1 − 2m

r

)−3/2

(nλ + s) , (43.20)

and

∂L

∂m′ = ∂s

∂m′ r
2
(

1 − 2m

r

)−1/2

. (43.21)

Here

∂s

∂m′ = ∂s

∂ρ

∂ρ

∂m′ = 1

T

1

4πr2
, (43.22)

where (43.3) and (43.7) have been used. Hence

∂L

∂m′ = 1

4πT

(

1 − 2m

r

)−1/2

, (43.23)

and

d

dr

∂L

∂m′ = T (m′r − m) − r(r − 2m)T ′

4πT 2(r − 2m)3/2r2
. (43.24)
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Using (43.8) and (43.19), (43.20) becomes

∂L

∂m
= r

(

1 − 2m

r

)−3/2 (
ρ + p

T

)

. (43.25)

So the Euler-Lagrange (43.17) yields

(4πpr3 + m)T + (r − 2m)rT ′ = 0 . (43.26)

The constraint (43.19) yields

μ′ = λT ′ . (43.27)

Rewrite (43.8) as

p = T s + μn − ρ , (43.28)

and then

dp = T ds + sdT + μdn + ndμ − dρ . (43.29)

By substituting (43.7), we have

dp = sdT + ndμ . (43.30)

It follows immediately that

p′(r) = sT ′(r) + nμ′(r) . (43.31)

Substituting (43.8), (43.19) and (43.27) into (43.31), we have

T ′ = T

p + ρ
p′(r) . (43.32)

Substituting (43.32) into (43.26), we obtain the desired TOV equation

p′ = − (p + ρ)(4πr3 p + m)

r(r − 2m)
. (43.33)

Note that this equationwas originally derived fromEinstein’s equation. The above
result suggests that the TOV equation is consistent with the entropy principle for
perfect fluid.
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43.3 Maximum Entropy Principle for Charged Fluid

In this section, we sketch the proof of the entropy principle for a charged self-
gravitating fluid. Detailed proof can be found in [7, 8]. In coordinates (t, r, θ, φ),
assume that a spherically symmetric charged fluid is associated with the metric

ds2 = gtt (r)dt2 +
[

1 − 2m(r)

r
+ Q2(r)

r2

]−1

dr2 + r2dθ2 + r2 sin2 θdφ2 .

(43.34)

One can show fromMaxwell’s equation that Q(r) is the total charge up to the radius r .
Then the time-time component of Einstein’s equation is modified as

m′(r) = 4πr2ρ + Q Q′

r
. (43.35)

Now we derive the hydroelectrostatic equation by extremizing the total entropy

S =
∫ R

0
s(r)

[

1 − 2m

r
+ Q2

r2

]−1/2

r2dr . (43.36)

For simplicity, we assume that all the particles have the same charge q. Thus, the
charge density is proportional to the particle number density n

ρe = qn . (43.37)

Then the conservation of particle number N is equivalent to the conservation of
charge with the radius R.

In addition to m, m′, we can also treat Q(r), Q′(r) as independent variables in
the Lagrangian formalism. So the Lagrangian is written as

L(m, m′, Q, Q′) = s

[

1 − 2m

r
+ Q2

r2

]−1/2

r2 . (43.38)

with the constraints

m(0) = Q(0) = 0, m(R) = constant, Q(R) = constant . (43.39)

The extrema of S leads to the following Euler-Lagrange equations

d

dr

∂L

∂ Q′ + ∂L

∂ Q
= 0 (43.40)

d

dr

∂L

∂m′ + ∂L

∂m
= 0 (43.41)
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Using these equations, together with thermodynamic relations used in last section,
one can derive

p′ = Q Q′

4πr4
− (ρ + p)

(

4πr p + m

r2
− Q2

r3

) (

1 − 2m

r
+ Q2

r2

)−1

. (43.42)

This is exactly the generalized Oppenheimer-Volkoff equation for charged fluid [9].

43.4 Conclusions

We have discussed a general self-gravitating fluid with spherical symmetry. We have
derived the TOV equation of hydrostatic equilibrium by applying the maximum
entropy principle. The TOV equation is an important equation for self-gravitating
system which was originally derived from the Einstein equation. Our results show
that the Einstein equation is consistent with the ordinary thermodynamic laws.
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Chapter 44
Dynamical Holographic QCD Model:
Resembling Renormalization Group
from Ultraviolet to Infrared

Mei Huang and Danning Li

Abstract Resembling the renormalization group from ultraviolet (UV) to infrared
(IR), we construct a dynamical holographic model in the graviton-dilaton-scalar
framework, where the dilaton background field Φ and scalar field X are responsi-
ble for the gluodynamics and chiral dynamics, respectively. At the UV boundary,
the dilaton field is dual to the dimension-4 gluon operator, and the scalar field is
dual to the dimension-3 quark-antiquark operator. The metric structure at IR is auto-
matically deformed by the nonperturbative gluon condensation and chiral conden-
sation in the vacuum. The produced scalar glueball spectra in the graviton-dilaton
framework agree well with lattice data, and the light-flavor meson spectra generated
in the graviton-dilaton-scalar framework are in good agreement with experimental
data. Both the chiral symmetry breaking and linear confinement are realized in this
dynamical holographic QCD model.

44.1 Introduction

Quantumchromodynamics (QCD) is accepted as the fundamental theoryof the strong
interaction. In the ultraviolet (UV) or weak coupling regime of QCD, the perturbative
calculations agree well with experiment. However, in the infrared (IR) regime, the
description of QCD vacuum as well as hadron properties and processes in terms of
quarks and gluons still remains an outstanding challenge in the formulation of QCD
as a local quantum field theory.

In order to derive the low-energy hadron physics and understand the deep-
infrared sector of QCD from first principle, various non-perturbative methods have
been employed, in particular lattice QCD, Dyson-Schwinger equations (DSEs), and
functional renormalization group equations (FRGs). In recent decades, an entirely
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Fig. 44.1 Duality between d-dimensional QFT and (d + 1)-dimensional gravity as shown in [9]
(Left-hand side). Dynamical holographic QCD model resembles RG from UV to IR (Right-hand
side): in the UV boundary the dilaton bulk fieldΦ(z) and scalar field X(z) are dual to the dimension-
4 gluon operator and dimension-3 quark-antiquark operator, which develop condensates in the IR

newmethod based on the anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence and the conjecture of the gravity/gauge duality [1–3] provides a revolutionary
method to tackle the problem of strongly coupled gauge theories. Though the original
discovery of holographic duality requires supersymmetry and conformality, the holo-
graphic duality has been widely used in investigating hadron physics [4–8], strongly
coupled quark gluon plasma and condensedmatter. It is widely believed that the dual-
ity between the quantum field theory and quantum gravity is an unproven but true
fact. In general, holography relates quantum field theory (QFT) in d-dimensions to
quantum gravity in (d + 1)-dimensions, with the gravitational description becoming
classical when the QFT is strongly coupled. The extra dimension can be interpreted
as an energy scale or renormalization group (RG) flow in the QFT [9] as shown in
Fig. 44.1.

In this talk, we introduce our recently developed dynamical holographic QCD
model [10, 11], which resembles the renormalization group from ultraviolet (UV)
to infrared (IR). The dynamical holographic model is constructed in the graviton-
dilaton-scalar framework, where the dilaton background field Φ(z) and scalar field
X(z) are responsible for the gluodynamics and chiral dynamics, respectively. At the
UV boundary, the dilaton field Φ(z) is dual to the dimension-4 gluon operator, and
the scalar field X(z) is dual to the dimension-3 quark-antiquark operator. The metric
structure at IR is automatically deformed by the nonperturbative gluon condensation
and chiral condensation in the vacuum. In Fig. 44.1, we show the dynamical holo-
graphic QCD model, which resembles the renormalization group from UV to IR.

44.2 Pure Gluon System: Graviton-Dilaton Framework

For the pure gluon system, we construct the quenched dynamical holographic QCD
model in the graviton-dilaton framework by introducing one scalar dilaton fieldΦ(z)
in the bulk. The 5Dgraviton-dilaton coupled action in the string frame is given below:
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SG = 1

16πG5

∫

d5x
√

gse
−2Φ

(
Rs + 4∂MΦ∂MΦ − Vs

G(Φ)
)

, (44.1)

where G5 is the 5D Newton constant, gs, Φ and Vs
G are the 5D metric, the dilaton

field and dilaton potential in the string frame, respectively. The metric ansatz in the
string frame is often chosen to be

gs
MN = b2s (z)(dz2 + ημνdxμdxν), bs(z) ≡ eAs(z). (44.2)

To avoid the gauge non-invariant problem and to meet the requirement of
gauge/gravity duality, we take the dilaton field in the form of

Φ(z) = μ2
Gz2 tanh(μ4

G2z2/μ2
G). (44.3)

In this way, the dilaton field in the UV behaves Φ(z)
z→0→ μ4

G2z4, and is dual to

the dimension-4 gauge invariant gluon operator TrG2, while in the IR it takes the

quadratic form Φ(z)
z→∞→ μ2

Gz2. By self-consistently solving the Einstein equa-
tions, the metric structure will be automatically deformed in the IR by the dilaton
background field, for details, please refer to [10, 11].

We assume the glueball can be excited from the QCD vacuum described by the
quenched dynamical holographic model, and the 5D action for the scalar glueball
G (x, z) in the string frame takes the form as

SG =
∫

d5x
√

gs
1

2
e−Φ

[
∂MG ∂MG + M2

G ,5G
2]. (44.4)

The Equation of motion for G has the form of

− e−(3As−Φ)∂z(e
3As−Φ∂zGn) = m2

G ,nGn, (44.5)

where n the excitation number. After the transformation Gn → e− 1
2 (3As−Φ)Gn, we

get the Schroedinger like equation of motion for the scalar glueball

− G
′′
n + VG Gn = m2

G ,nGn, (44.6)

with the 5D effective Schroedinger potential

VG = 3A
′′
s − Φ

′′

2
+ (3A

′
s − Φ

′
)2

4
. (44.7)

Then from (44.6), we can solve the scalar glueball spectra and the result is shown
in Fig. 44.2. It is a surprising result that if one self-consistently solves the metric
background under the dynamical dilaton field, it gives the correct ground state and
at the same time gives the correct Regge slope.
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Fig. 44.2 The scalar
glueball spectra for the
dilaton field Φ(z) =
μ2

Gz2 tanh(μ4
G2 z2/μ2

G) with
μG = μG2 = 1GeV. The
dots are lattice data taken
from [12–15]
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44.3 Dynamical Holographic QCD Model for Meson Spectra

We then add light flavors in terms of meson fields on the gluodynamical background.
The total 5D action for the graviton-dilaton-scalar system takes the following form:

S = SG + Nf

Nc
SKKSS, (44.8)

with

SG = 1

16πG5

∫

d5x
√

gse
−2Φ(

R + 4∂MΦ∂MΦ − VG(Φ)
)
, (44.9)

SKKSS = −
∫

d5x
√

gse
−ΦTr(|DX|2 + VX(X†X, Φ) + 1

4g25
(F2

L + F2
R)),

(44.10)

where SKKSS takes the same form as in [4].
In the vacuum, it is assumed that there are both gluon condensate and chiral

condensate. The dilaton background field Φ is supposed to be dual to some kind
of gluodynamics in QCD vacuum. We take the dilaton background field Φ(z) =
μ2

Gz2 tanh(μ4
G2z2/μ2

G). The scalar field X(z) is dual to dimension-3 quark-antiquark
operator, and χ(z) is the vacuum expectation value (VEV) of the scalar field X(z).
For detailed analysis please refer to [10, 11]. The equations of motion of the vector,
axial-vector, scalar and pseudo-scalar mesons take the form of:

− ρ
′′
n + Vρρn = m2

nρn, (44.11)

−a
′′
n + Vaan = m2

nan, (44.12)

−s
′′
n + Vssn = m2

nsn, (44.13)
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Table 44.1 Two sets of parameters

G5/L3 mq (MeV) σ 1/3(MeV) μG = μG2 (GeV)

Mod A 0.75 8.4 165 0.43

Mod B 0.75 6.2 226 0.43

2 4 6 8
n0
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m2
n GeV2

2 4 6 8
n

-2-2
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6

m2
n GeV2

(Mod B)(Mod A)

Fig. 44.3 Meson spectra in the dynamical soft-wall model with two sets of parameters in Table44.1
comparing with experimental data. The red and black lines are for scalars and pseudoscalars, the
green and blue lines are for vectors and axial-vectors

−π ′′
n + Vπ,ϕπn = m2

n(πn − eAsχϕn),

−ϕ′′
n + Vϕϕn = g25eAsχ(πn − eAsχϕn). (44.14)

with Vρ, Va, Vs, Vπ,ϕ, Vϕ are Schroedinger like potentials given in [10, 11]. For our
numerical calculations, we take two sets of parameters for G5/L3 with L the AdS5
radius, the current quark mass mq, chiral condensate σ 1/3,μG andμG2 in Table44.1.
The parameters in Mod A have a smaller chiral condensate, which gives a smaller
pion decay constant fπ = 65.7MeV, and the parameters in Mod B have a larger
chiral condensate, which gives a reasonable pion decay constant fπ = 87.4MeV.
The meson spectra are shown in Fig. 44.3. It is observed from Fig. 44.3 that in our
graviton-dilaton-scalar system, with two sets of parameters, the generated meson
spectra agree well with experimental data.

44.4 Discussion and Summary

In this work, we construct a quenched dynamical holographicQCD (hQCD)model in
the graviton-dilaton framework for the pure gluon system, and develop a dynamical
hQCD model for the two flavor system in the graviton-dilaton-scalar framework by
adding light flavors on the gluodynamical background. The dynamical holographic
model resembles the renormalization group from UV to IR. The dilaton background
field Φ and scalar field X are responsible for the gluodynamics and chiral dynamics,
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respectively. At the UV boundary, the dilaton field is dual to the dimension-4 gluon
operator, and the scalar field is dual to the dimension-3 quark-antiquark operator.
The metric structure at IR is automatically deformed by the nonperturbative gluon
condensation and chiral condensation in the vacuum. The produced scalar glueball
spectra in the graviton-dilaton framework agree well with lattice data, and the light-
flavor meson spectra generated in the graviton-dilaton-scalar framework are in well
agreement with experimental data. Both the chiral symmetry breaking and linear
confinement are realized in the dynamical holographic QCD model.
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Chapter 45
Modified Theories of Gravity
with Nonminimal Coupling and the Faint
Young Sun Paradox

Lorenzo Iorio

Abstract Acertain general class ofmodified gravitational theorieswith nonminimal
coupling predicts a “pressure”-type, non-geodesic acceleration for a non-rotating,
massive test particle. The resulting orbital perturbations for a two-body system con-
sist of secular rates of change of all the standard orbital elements. The resulting
variation of the mutual distance yields a physical mechanism which has the poten-
tial capability to explain, in principle, the Faint Young Sun Paradox in terms of a
recession of the Earth from the Sun during the Archean.

45.1 The Faint Young Sun Paradox

The so-called “Faint Young Sun Paradox” (FYSP) [20] consists in the fact that,
according to consolidated models of the Sun’s evolution history, the energy output
of our star during the Archean, from 3.8 to 2.5 Ga ago, would have been too low to
keep liquid water on the Earth’s surface. Instead, there are compelling and indepen-
dent evidences that, actually, our planet was mostly covered by liquid water oceans,
hosting also forms of life, during that eon. For a recent review of the FYSP, see [4]
and references therein.

Setting the origin of the time t at the Zero-Age Main Sequence (ZAMS) epoch,
i.e. when the nuclear fusion ignited in the core of the Sun, a formula which accounts
for the temporal evolution of the solar luminosity L(t) reasonably well over the eons,
with the possible exception of the first ≈0.2 Ga in the life of the young Sun, is [6]

L(t)

L0
= 1

1 + 2
5

(
1 − t

t0

) , (45.1)
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where t0 = 4.57 Ga is the present epoch, and L0 is the current Sun’s luminosity. The
formula of (45.1) is in good agreement with recent standard solar models such as,
e.g., [1].

According to (45.1), at the beginning of the Archean 3.8 Ga ago, corresponding
to tAr = 0.77 Ga in our ZAMS-based temporal scale, the solar luminosity was just

LAr = 0.75L0. (45.2)

Thus, if the heliocentric distance of the Earth was the same as today, (45.2) implies
a solar irradiance I as little as

IAr = 0.75I0. (45.3)

As extensively reviewed in [4], there is ample and compelling evidence that the
Earth hosted liquid water, and even life, during the entire Archean eon spanning
about 1.3 Ga. Thus, our planet could not be entirely frozen during such a remote
eon, as, instead, it would have necessarily been if it really received only ≈75 % of
the current solar irradiance, as it results from (45.3).

Although intense efforts by several researchers in the last decades to find a satis-
factory solution to the FYSP involving multidisciplinary investigations, it not only
refuses to go away [4, 5, 9], but rather it becomes even more severe [10] in view of
some recent studies.

45.2 Was the Earth Closer to the Sun Than Now?

As a working hypothesis, let us provisionally assume that, at tAr, the solar irradiance
IAr was approximately equal to a fraction of the present one I0 large enough to allow
for a global liquid ocean on the Earth. As noticed in [4], earlier studies required an
Archean luminosity as large as 98–85%of the present-day value to have liquidwater.
Some more recent models have lowered the critical luminosity threshold down to
about 90–86 % [8, 11], with a lower limit as little as [11]

Loc ≈ 0.82L0. (45.4)

Since the same heliocentric distance as the present-day one was assumed in the
literature, (45.4) is equivalent to the following condition for the irradiance required
to keep liquid ocean

Ioc ≈ 0.82I0. (45.5)

By assuming IAr = Ioc, together with (45.2), implies

rAr = 0.956r0, (45.6)
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i.e. the Earth should have been closer to the Sun by about ≈4.4 % with respect
to the present epoch. As a consequence, if one assumes that the FYSP could be
resolved, to some extent, by a closer Earth, some physical mechanism should have
subsequently displaced out planet to roughly its current heliocentric distance by
keeping the irradiance equal to at least Ioc over the next 1.3 Ga until the beginning
of the Proterozoic era 2.5 Ga ago, corresponding to tPr = 2.07 Ga with respect to
the ZAMS epoch, when the luminosity of the Sun was

LPr = 0.82L0, (45.7)

according to (45.1). Thus, by imposing

I (t) = 0.82I0, 0.77 Ga ≤ t ≤ 2.07 Ga, (45.8)

one gets

r(t)

r0
= 1

√

0.82
[
1 + 2

5

(
1 − t

t0

)] , (45.9)

ṙ(t)

r(t)
= 1

7t0
(
1 − 2

7
t
t0

) . (45.10)

The plots of (45.9) and (45.10) are depicted in Figs. 45.1 and 45.2.
It can be noticed that a percent distance rate as large as

ṙ

r
≈ 3.4 × 10−11 a−1 (45.11)

is enough to keep the irradiance equal to about 82 % of the present one during the
entire Archean by displacing the Earth towards its current location.

Fig. 45.1 Temporal
evolution of the Earth-Sun
distance r(t), normalized to
its present-day value r0, over
the Archean according to
(45.9). The constraint
I (t) = 0.82I0 throughout
the Archean was adopted
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Fig. 45.2 Temporal
evolution of ṙ(t)/r(t) over
the Archean according to
(45.10). The constraint
I (t) = 0.82I0 throughout
the Archean was adopted
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45.3 Modified Gravitational Theories with Nonminimal
Coupling

Standard general relativity does not predict notable cosmological effects able to
expand the orbit of a localized two-body system [3]. Instead, it can potentially occur
in a certain class [17] of modified gravitational theories with nonminimal coupling
between the matter and the gravitational field. This is not the place to delve into
the technical details of such alternative theories of gravitation predicting a violation
of the equivalence principle [2, 17]. Suffice it to say that a class of them, recently
investigated in [17], yields an extra-acceleration Anmc for a test particle orbiting a
central body which, in principle, implies a long-term impact on its distance.

In the usual four-dimensional spacetime language, a non-geodesic four-
acceleration of a non-rotating test particle [17]

Aμ
nmc = cξ

m

(

δμ
ν − vμvν

c2

)

K ν, μ = 0, 1, 2, 3 (45.12)

occurs. In (45.12),m is themass of the test particle as defined inmultipolar schemes in
the context of general relativity [18, 19], ξ is an integrated quantity depending on the
matter distribution of the system, K μ .= ∇μ ln F, where ∇μ denotes the covariant
derivative, and the nonminimal function F depends arbitrarily on the spacetime
metric gμν and on the Riemann curvature tensor R β

μνα . From (45.12), the test particle
acceleration

Anmc = −ξ
[
c2K − cK0v + (K · v) v

]

cm
, (45.13)

written in the usual three-vector notation, can be extracted. In deriving (45.13), we
assumed the slow-motion approximation in such a way that vμ ≈ {c, v}.

A straightforward but cumbersome perturbative calculation can be performed
with the standard Gauss equations for the variation of the Keplerian orbital elements,
implying the decomposition of (45.13) along the radial, transverse and normal direc-
tions of an orthonormal trihedron comoving with the particle and their evaluation
onto a Keplerian ellipse, usually adopted as unperturbed reference trajectory. Such
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a procedure, which has the advantage of being applicable to whatsoever perturb-
ing acceleration, yields, to zero order in the eccentricity e of the test particle, the
following percent secular variation of its semimajor axis

ȧ

a
= 2ξ K0

m
+ O (e) . (45.14)

Itmust be stressed that, for the quite general class of theories covered in [17],m, ξ, K0
are, in general, not constant. As a working hypothesis, in obtaining (45.14) we
assumed that they can be considered unchanging over the period of the test par-
ticle. Thus, there is still room for a slow temporal dependence with characteristic
time scales quite larger that the test particle’s period. Such a feature is important
to explain the fact that, at present, there is no evidence for any anomalous increase
of the Sun-Earth distance as large as a few meters per year, as it would be required
by (45.11). Indeed, it can always be postulated that, in the last ≈2 Ga, m, ξ, K0
became smaller enough to yield effects below the current threshold of detectability
which, on the basis of the results in [15], was evaluated to be of the order of [16]
≈1.5×10−2 m a−1 for the Earth. The rate of change of (45.14) is an important result
since it yields an effect which is rooted in a well defined theoretical framework. It
also envisages the possibility that a modification of the currently accepted laws of
the gravitational interaction can, in principle, have an impact on the ancient history
of our planet and, indirectly, even on the evolution of the life on it.

45.4 Competing Classical Orbital Effects

According to [12], a gravitational billiard involving planet-planet scattering between
the Earth itself and a rogue rocky protoplanetesimal X, with mX ≈ 0.75m⊕, which
would have impacted on Venus, might have affected the Earth in the desired way
during the Archean. However, compelling evidences for it are still missing.

Another classical physical mechanismwhich, in principle, may lead to the desired
orbit expansion is a steady mass loss from either the Sun [7] or the Earth itself
[13, 14]. However, it presents some difficulties both in terms of the magnitude of the
mass loss rate(s) required, especially as far as the Earth’s hydrosphere is concerned,
and of the timescale itself. Suffice it to say that the Earth should have lost about
2% of its current mass during the Archean. Moreover, it is generally accepted that
a higher mass loss rate for the Sun due to an enhanced solar wind in the past could
last for just (0.2–0.3) Ga at most.
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45.5 Conclusions

In conclusion, it is entirely possible that the FaintYoungSunparadox can be solved by
a stronger greenhouse effect on the early Earth; nonetheless, the quest for alternative
explanations should definitely be supported and pursued.

Acknowledgments I thank the organizers of the Karl Schwarzschild Meeting 2013 for their kind
invitation and for their financial support.
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Chapter 46
A Practical Look at Regge Calculus

Dimitri Marinelli and Giorgio Immirzi

Abstract Regge calculus is the classical starting point for a bunch of different
models of quantum gravity. Moreover, it is often considered a finite-element dis-
cretization of general relativity, providing so a potential practical scheme for numer-
ical relativity. Despite these important roles, not many sample calculations have been
studied. I will present one detailed example which, step-by-step, will show the power
and the limits of this model. Many interesting aspects and open problems related to
the Lorentzian structure of the discrete system will emerge.

Regge Calculus is a dynamical theory of space-time introduced in 1961 by Regge
as a discrete approximation of the Einstein theory of gravity [1]. The basic idea is to
replace a smooth space-time with a collection of simplices. The collective dynamics
of these geometric objects is driven by the Regge action and the dynamical variables
are their edge lengths (which play the role of the metric tensor of General Relativity).
Simplices are generalizations of triangles and tetrahedra to arbitrary dimensions. In
this context, they are convex pieces of space and they can be suitably glued together
to build an extended geometric object e.g. triangles (or 2−simplices) glued together
can form a 2-dimensional surface. An important point is that even if simplices are
flat (so are “pieces” of space with zero curvature) the spaces they may generate, in
general, are not (Fig. 46.1).

Coming back to General Relativity, from a heuristic point of view, we can think
to build a (discrete) space-time gluing together pieces of 4−dimensional Minkowski
space getting thus in general a globally non-flat space-time. Mathematically we are
associating to a space-time a piecewise-linear simplicial manifold (PL-manifold in
short).

A very illustrative example is the study of the discretized version of the Freedman-
Robertson-Walker closed universe. The topology of this space-time is S3 × I
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Fig. 46.1 On the left, geometric view of a PL-manifold with a non-null deficit angle at the central
vertex (the two edges pointed by the arrow are identified). On the right, The PL-manifold of Fig. 46.1
embedded in R

3, the curvature is concentrated in the vertex 0

(a 4-dimensional cylinder), that is particularly convenient, in fact, there is a clear
distinction between time and space, moreover, its spatial foliation (S3) is compact,
so it can be described with a finite number of simplices making the calculation easier.
This example corresponds to the 33th Problem listed by Wheeler in 1964 [2].

46.1 Triangulations

The first step to implement the Regge Calculus is to find a suitable PL-manifold to
be associated with the space-time we want to approximate.

In this example, we want a foliated space-time. We can build a triangulation for
a 3-dimensional hypersurface and then “evolve” it in a 4-dimensional PL-manifold.

We can use the boundaries of convex regular 4-polytopes with tetrahedral faces
as triangulations for S3 (in the same way as boundaries of tetrahedra, octahedra and
icosahedra can be triangulations of S2). 4-simplex (5-cell), 16-cell and 600-cell are
the 4-polytopes with respectively 5, 16 and 600 boundary tetrahedra and they can be
thought as triangulation refinements: 600-cell will better approximate the 3-sphere
then the 5-cell. Here we choose 5-cell for the initial triangulation.

Nowwehave to build a triangulation that fills up the portion of space-time between
two 3-dimensional compact foliations in a sort of “sandwich”. Once fixed the arrow
of time, namely choosing a future direction, and normalizing the interval I := [0, 1],
we can call one hypersurface “future” the one with t = 1 and “past” with t = 0.

We have implemented two different triangulations. One is found following an
algorithm, the tent-like triangulation, proposed in [3] (See Fig. 46.2). The second
triangulation is found combinatorially and is completely represented in the graph in
Fig. 46.3.

This topology allows to compose “wider” space-times (longer evolutions) piling
up several copies of these triangulations, identifying the past 3-dimensional foliation
of one with the future of another one, and constructing thus a triangulation for a
potentially infinitely long cylinder
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Fig. 46.2 An illustration of the tent-like evolution algorithm for the (2 + 1) dimensional case
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Fig. 46.3 Dual graph of the symmetric evolution: each vertex is a 4-simplex, each edge a tetrahedron

Some combinatorial relations must be fulfilled to check that the triangulationΔ is
the result of an appropriate gluing process. Those relations are theDehn-Sommerville
relations. In cases where the triangulation has a boundary ∂Δ, they read

Nk(Δ) − Nk(∂Δ) =
4∑

i=0

(−1)i+4
(

i + 1
k + 1

)

Ni (Δ), k = 0, . . . , 4
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where Ni (Δ) is the number of i−simplices in the triangulation Δ.

46.2 Dynamics

Five tetrahedra bound each 4-simplex, and each tetrahedron is bounded by four tri-
angles. The curvature resides on these triangles, the ‘bones’ of the triangulation,
manifesting itself as ‘defects’ when one circles a bone. The basic variables are
assumed to be the lengths of the legs of the triangulation. In this approximation,
the action of general relativity is a sum of contributions from each of the bones
of the triangulation, to be calculated as functions of the lengths of the legs. For a
given triangulation, one has to decide a priori which bones are time-like (i.e., that
with a coordinate transformation can be brought to lie in the t − z plane) and which
space-like (i.e., that can be brought to the x − y plane). For a time-like bone, an
argument by Sorkin [3] gives a nice derivation of the form of the contribution to
the Einstein-Hilbert action. Suppose the bone is in the t − z plane, and that it has
a defect θ ; in the space-time around it is possible to introduce the cylindrical coor-
dinates x = r cosφ, y = r sin φ, but deleting the wedge 2π − θ ≤ φ ≤ 2π .
Smooth the metric to: gtt = −1, gzz = grr = 1, gφφ = e2λ(r), with e2λ(r) = r2

for small r , e2λ(r) = r2(1 − θ
2π )2 for large r . With this metric one can calculate

R = 2(λ′′ + (λ′)2), √−g = eλ, R
√−g = 2(eλ)′′, and therefore

−1

2

∫

R
√−gdr dφ = −2π

∫ ∞
0

dr(eλ)′′ = −2π(eλ)′
∣
∣
∣
∞
0

= −2π(1 − θ

2π
− 1) = θ

→ − 1

2

∫

R
√−g dr dφdzdt = θ

∫

dzdt = θ A

A similar argument for a space-like bone in the plane x − y is said [3] to give ηA
with η positive if the defect is in the |t | < z wedge of the (Minkowski) t − z plane,
negative if the defect is in the t > |z| wedge.

To each 4-dimensional simplicial space-time, is thus associated an action of the
form

SR

[{
l2i j

}]
:=

∑

f

A f θ f , (46.1)

where the sum is over all the triangles (the “bones”) and the A f and θ f are the area
and “defect” associated with the triangle f . The action (46.1) can diverge (e.g., in
a non-compact curved space-time), but its variation with respect to the dynamical
variables (the square of the lengths) is well defined, and leads to a set of implicit
equations: The discrete counterpart of the Einstein equations.

To evaluate this action it is useful to define two 4-vectors as shown in the paper
[4]: Each tetrahedron in a 4-simplex has a unique outward pointing vector associated
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with it (up to a normalization factor) V μ orthogonal to all its edges; each triangle
inside this tetrahedron can have a vector orthogonal to V μ and orthogonal to all
of three its edges Nμ. If we normalize these vectors to +1 for time-like vectrs and
-1 for space-like ones, we can give a neat definition of defect angle following the
prescription of [5]:

• time-like bone:

θ f = 2π −
∑

σ4( f )

(φ f )σ4 , cosφ f = N̂ · N̂ ′ (46.2)

• space-like bone:

θ f = −
∑

σ4( f )

(φ f )σ4 , sinh φ f = ε(N̂2)ε(V̂ · N̂ ′)N̂ · N̂ ′ if |N̂ · N̂ ′| < |V̂ · N̂ ′|

sinh φ f = ε(N̂2)ε(N̂ · N̂ ′)V̂ · N̂ ′ otherwise|
(46.3)

the first case will occur if V̂ 2 = −V̂ ′2, the second if V̂ 2 = V̂ ′2 = −1.

Here we have denoted with a hat the normalized 4-vectors, (φ f )σ4 is the dihedral
angle of the 4-simplex σ4 in the triangular face f , σ4( f ) is all the 4-simplices sharing
the triangle f and ε(a) is the sign of the scalar a. Edge lengths of the simplices are
scalar quantities, so they are invariant under coordinate changes

(l2i j ) = ημν(vi − v j )
μ(vi − v j )

ν = gμ′ν′(v′
i − v′

j )
μ′

(v′
i − v′

j )
ν′

(46.4)

where vμ
i are the coordinates of the i th vertex of a simplex in the usual orthogonal

coordinates where the metric is η = diag(−1,+1,+1,+1). It is possible [6] to
associate with each 4-simplex a metric such that a vertex v0 lies in the origin of
the Minkowski space while vectors to the other vertices build an orthonormal base,
namely vμ

i = δ
μ
i−1 and the metric reads

gμν = −1

2
δi+1
μ δ j+1

ν (l2i j − l2i0 − l2j0).. (46.5)

Using this coordinate system, the coordinates 4-vectors N , V are simply linear com-
bination of Kronecker deltas and the scalar products in (46.2) and (46.3) are just
functions of the metric (46.5) and its inverse.

The variation of the action w.r.t. the edge lengths, gives a set of implicit equations.
A matter part have to be considered in the non-vacuum case. These equations can be
solved numerically as described in [7]. A numerical study of the evolution, will be
published in a paper in preparation by the same authors of this work.
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46.3 Discussion

The two PL-manifolds presented in Sect. 46.1 are not the best choice if one is inter-
ested in Numerical Relativity. They are both a coarse-grained approximation of a
cylindrical space-time, which for the homogeneous and isotropic case can even be
solved analytically. But, the interest in this particular triangulations resides on the fact
that they are composed of a very small number of simplices (20 and 30 4-simplices).
In particular, the “tent-like triangulation”, can be generalized to initial surface with
different topologies, and initial triangulations with different number of simplices,
making the evolution local and even parallelizable [7], providing thus a practical
framework for Numerical Regge Calculus.

The PL-manifold described by the graph in Fig. 46.3, instead, is not easily gen-
eralizable to different initial simplicial surfaces (combinatorial constrain apply). On
the other hand, it provides a triangulation which is homogeneous: All the 4-simplices
are treated on the same footing. Moreover, due to its homogeneity, it has only four
different kind of simplices (only two if we considered the symmetry with respect
to time inversion). These features make this triangulation an ideal candidate to be
promoted as a base triangulation for a spinfoam model (the path integral approach
to quantum gravity) as proposed in [4].

Dynamical evolution, in General Relativity, is driven by equations of motion of
hyperbolic type, namely we are dealing with a causal evolution. In Regge Calculus,
on the other hand, the role of causality is not well understood with consequences
also in those quantum gravity model based on a discrete space–time. Looking at
Regge Calculus as a finite element approximation of space-time, causality have to be
connected to theCourant–Friedrichs–Lewy condition [8] and themodelwe presented
can be a useful tool to study this issue.

Acknowledgments DM acknowledges partial support from PRIN 2010-11 Geometrical and ana-
lytical theories of finite and infinite dimensional Hamiltonian systems.
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Chapter 47
Boundary States of the Potts Model
on Random Planar Maps

Benjamin Niedner, Max R. Atkin and John F. Wheater

Abstract We revisit the 3-states Potts model on random planar triangulations as a
Hermitian matrix model. As a novelty, we obtain an algebraic curve which encodes
the partition function on the discwith both fixed andmixed spin boundary conditions.
We investigate the critical behaviour of this model and find scaling exponents consis-
tent with previous literature. We argue that the conformal field theory that describes
the double scaling limit is Liouville quantumgravity coupled to the (A4, D4)minimal
model with extended W3-symmetry.

47.1 Introduction

Matrix models provide a powerful tool for defining quantum gravity partition func-
tions in two dimensions. The conformal field theories describing their critical points
generically correspond to Euclidean quantum gravity interacting with conformal
matter [1]. The spectrum of the theory is then determined by the consistent boundary
states and as a result, the computation of such boundary states using matrix mod-
els has been of continued interest [2–5]. In this contribution, we shall consider this
problem for the 3-states Potts model coupled to gravity, whose partition function can
be written as the U (N ) × Z3-invariant matrix integral
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Z(N , c, g) =
∫ 3∏

i=1

dXi e
−N tr[∑3

i=1 V (Xi )−∑
〈i j〉 Xi X j ] , (47.1)

where we have set V (x) = cx2/2 + gx3/3 and the Xi are N × N Hermitian
matrices. This matrix model was first partially solved in [6], followed by the more
detailed investigations [7–9]; related results have been obtained from combinatorial
approaches [10, 11].

To find the relevant observables in this matrix model, we note that in flat space, the
critical point of the 3-states Potts model is described by the (A4, D4)minimal model,
the simplest model in which the presence of an additional higher-spin current extends
the Virasoro algebra to the W3-algebra. Its conformally invariant boundary states
were classified in [12, 13] and are listed in Table47.1 together with their discrete
counterparts. Accordingly, we introduce the generating function for triangulations
of the disc with fixed color i on the boundary,

wi (x) = 1

N

∞∑

k=0

〈tr Xk
i 〉x−k−1 = 1

N

〈

tr
1

x − Xi

〉

. (47.2)

We see from Table47.1 that the continuum limit of these observables should corre-
spond to the 3 states 1, ψ and ψ†. The mixed-color boundary conditions ε, σ and
σ † may be imposed by considering

w+(x) = 1

N

〈

tr
1

x − (Xi + X j )

〉

, i �= j . (47.3)

The remaining boundary conditions F and N correspond to operators not contained
in the bulk spectrum of (A4, D4); these will not be discussed herein. The purpose of

Table 47.1 Boundary states in the (A4, D4) minimal model, their decomposition in (A4, A5)

Virasoro modules, their conformal weights h, their Z3 charge q, and the corresponding microscopic
boundary conditions

(A4, D4) (A4, A5) h q

1 (1, 1) (1, 1) ⊕ (1, 5) 0, 3 0 X1

F (1, 2) (1, 2) ⊕ (1, 4) 1/8, 13/8 – X1 + X2 + X3

ψ (1, 3) (1, 3) 2/3 +1 X2

ψ† (1, 4) (1, 3) 2/3 −1 X3

ε (2, 1) (2, 1) ⊕ (3, 1) 2/5, 7/5 0 X2 + X3

N (2, 2) (2, 2) ⊕ (2, 4) 1/40, 21/40 –

σ (2, 3) (2, 3) 1/15 +1 X1 + X3

σ † (2, 4) (2, 3) 1/15 −1 X1 + X2
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this note is then to compute the functions (47.2) and (47.3) at large N .1 In the next
section, we shall demonstrate that this can be achieved by requiring the saddle point
equations to have a consistent analytic continuation in this limit.

47.2 Discrete Solution

In this section, we determine the disc partition functions with boundary conditions
corresponding to the orbits {1, ψ,ψ†} and {ε, σ, σ †} under the action of Z3 in
Table47.1 for generic values of the couplings c and g. Consider the change of vari-
ables

X1 = 1

2
(X+ + X−) − c + 1

2g
, X2 = 1

2
(X+ − X−) − c + 1

2g
, (47.4)

so that the resolvent of X+ coincides with the expression (47.3) for the disc partition
function with boundary condition σ † up to a shift in X+ which leaves Z invariant.
Wemay pick w+(x) and w3(x) as representatives of eachZ3 orbit. In these variables,
the integrand in (47.1) is Gaussian in X−, which can hence be integrated out, leaving
us with an integral over just two matrices. Upon gauge-fixing the U (N )-symmetry,
we can then carry out the integral over the unitary group using the well-known result
[14]. Denoting the respective eigenvalues of X+ and X3 by xi+ and xi

3, i = 1 . . . N ,
the resulting saddle point equations read

∂U+(xi+)

∂xi+
= 1

N

⎛

⎝ ∂

∂xi+
ln det

k,l
eN xk+xl

3 +
∑

j<i

1

xi+ − x j
+

−
∑

j

1

xi+ + x j
+

⎞

⎠ ,

(47.5a)

∂U3(xi
3)

∂xi
3

= 1

N

⎛

⎝ ∂

∂xi
3

ln det
k,l

eN xk+xl
3 +

∑

j<i

1

xi
3 − x j

3

⎞

⎠ . (47.5b)

Here, U+ and U3 are polynomials of degree 3 with coefficients determined by V (x)

and (47.4). Since the left-hand side of (47.5) is holomorphic, the above equations
can be analytically continued to the complex plane for any N . On the other hand,
for N → ∞, individual expressions on the right-hand side will develop branch cuts
located at the support of the densities of eigenvalues. To determine their analytic
continuations, we follow [15] in introducing the functions

x3(x) = lim
N→∞

1

N

∂

∂xi+
ln det

k,l
eN xk+xl

3

∣
∣
∣
∣
∣
xi+=x

, x+(x) = lim
N→∞

1

N

∂

∂xi
3

ln det
k,l

eN xk+xl
3

∣
∣
∣
∣
∣
xi
3=x

.

(47.6)

1Note that whilst on the disc, the individual boundary conditions that form an orbit under the Z3
action are indistinguishable, this will generally not be the case for higher topologies.
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Fig. 47.1 Analytic structure of the function x3(x). Horizontal lines depict sheets, vertical lines
cuts. Of the latter, double lines correspond to finite cuts on the real axis and single lines to cuts that
extend to ∞

Let us denote the spectral density of X+ by ρ+, whose support we assume connected.
It was shown in [15] that for N → ∞,

1. ∃γ ∈ R such that the function x3(x) is analytic on C \ (−∞, γ ] ∪ supp ρ+,
2. its discontinuity across supp ρ+ coincides with that of w+(x) and
3. it is the functional inverse of x+(x).

By the symmetry of the definitions (47.6), the analogous statements apply to x+(x).
Furthermore, let x∗

3 (x) (resp. x∗+(x)) be the function obtainedby analytic continuation
through supp ρ+ onto the next sheet. Using properties 1 and 2 above, the large N
limit of equations (47.5) for x /∈ (−∞, γ ] ∪ supp ρ+ can then be written as

U ′+(x) = x∗
3 (x) + w+(x) + w+(−x) , (47.7a)

U ′
3(x) = x∗+(x) + w3(x) . (47.7b)

These equations determine the desired disc partition functions in terms of the multi-
valued function x3(x) and its inverse: w3(x) follows straightforwardly from (47.7b),
and w+(x) may be obtained as the solution to the Riemann-Hilbert problem defined
by properties 1 and 2, with the condition that w+(x) = x−1 + O(x−2) as x → ∞
as a consequence of the definition (47.3).

It remains to determine the function x3(x). To this purpose, note first that property
3 allows us to write (47.7b) as U ′

3(x3(x)) = w3(x3(x)) + x , which when expanded
about x = ∞ gives the asymptotic behaviour ±√

x of x3(x) on the initial sheet
(47.6) and another sheet connected to it through (−∞, γ ]. We may then use (47.7a)
to determine the cut structure and asymptotic behaviour on all other sheets by circling
around the various branch points. The result of this procedure is depicted in Fig. 47.1.
We thusmake an ansatz that the function x3(x) takes values on an algebraic curve2 C ,

C = {(x3, x+)|Q(x3, x+) = 0} (47.8)

Q(x3, x+) =
5∏

k=1

(x3 − x (k)
3 (x+)) . (47.9)

2Closely related generating functions were proven to satisfy algebraic equations in [10]. We expect
similar theorems to hold in our case.
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Demanding that the coefficients of x+ themselves be polynomials in x3 fixes
Q(x3, x+) up to 10 unknown functions of the coupling constants. These unknowns
are fully determined if we restrict to solutions for which the genus of the curve van-
ishes: in that case, wemay parametriseC by two rational functionsCP1\{zi } → C .
The poles zi of these functions will correspond to the asymptotic regions on each
sheet of x3(x). For concreteness, we may position these poles at the canonical points
0, 1 and ∞ using a conformal transformation of z. A possible parametrisation then
reads

x+(z) =
∑5

k=0 αk zk

z2(z − 1)
, x3(z) =

∑5
k=0 βk zk

z(z − 1)2
. (47.10)

These functions are single-valued on the punctured Riemann sphere and cover C
exactly once. Demanding that their Laurent expansion about each pole reproduce
the appropriate asymptotic behaviour, we obtain 4 conditions per pole allowing us
to solve for the 12 unknowns αk , βk , k = 0 . . . 5. This completes our solution for the
disc partition functions with fixed and mixed boundary conditions.

47.3 Critical Behaviour

To explore the phase diagram of the model, we do not need to solve for the coef-
ficients in (47.10) explicitly. Instead, we note that the possible critical exponents
are determined by the multiplicity of the singularity at the left edge of the spectral
density, which controls the large-order behaviour of the generating function w+(x).
As we let g and c approach their critical values, the various branch points on the
curve merge so that at the highest critical point C will exhibit a single singularity.
Its multiplicity is fixed to 5 if the genus of C vanishes. This results in the conditions

∂m+n

∂xm+∂xn
3

Q(x3, x+) = 0 , m + n < 5 , (47.11)

giving the critical values cc = 2 + √
47, gc = √

105/2 in agreement with [6, 9];
the singularity is located at x+,c = 0, x3,c = −g−1

c (4 + cc)/2. To find the scaling
behaviour of w+(x) near this point, it is useful to resolve the branch points at γ via
the change of variables x(ζ ) = γ (1−2ζ 2). We also introduce the auxiliary function

f (ζ ) = P(ζ ) −
∫

ζ(supp ρ+)

dζ ′ ρ+(x(ζ ′))
ζ − ζ ′ , ζ /∈ ζ(supp ρ+) , (47.12)

where P(ζ ) is a polynomial of degree 4 and we integrate over the image of the
support of ρ+ obtained by selecting the positive branch of ζ(x). For a suitable choice
of coefficients in P , (47.7a) then has the equivalent homogeneous form
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2 Re f (ζ ) + f (−ζ ) + f (
√
1 − ζ 2) + f (−

√
1 − ζ 2) = 0 , ζ ∈ ζ(supp ρ+) .

(47.13)
If we parametrise the vicinity of the singularity as ζ ∝ cosh φ so that f (ζ ) ∝
cosh(μφ), we find that (47.13) implies 5μ = ±4n + 20m with n ∈ {1, 2} and
m ∈ Z. Taking into account the upper bound on μ implied by the degree of C leads
to the conclusion that μ = 12/5 for g = gc, c = cc and hence that at the critical
point, w+(x) has scaling exponent 6/5. Indeed, the corresponding value of the string
susceptibility γs = −1/5 agrees with that found for fixed boundary conditions
[6, 8, 9].

47.4 Discussion

In this contribution, we computed the partition function for the 3-states Potts model
on the randomly triangulated disc with both fixed and mixed boundary conditions.
By requiring that the large N saddle point equations possess a consistent analytic
continuation, we found that both boundary conditions can be encoded in a single
algebraic curve and determined the scaling behaviour of the disc partition functions
at the highest critical point from its singularities. As expected, the resulting value of
the string susceptibility γs = −1/5 is independent of the chosen boundary conditions
and consistent with Liouville quantum gravity coupled to conformal matter with
central charge c = 4/5. Given the symmetries of the model, the identification of the
latter sector with the (A4, D4) modular invariant hence appears justified.

The algebraic curve (47.8) forms part of the initial data for topological recur-
sion [16] which enables systematic computation of finite N corrections to various
observables. Of particular interest would be the computation of cylinder amplitudes
between different boundary states to probe the spectrum of the continuum theory
beyond the planar limit. This would allow a check of the conjecture made in [17] that
in the presence of gravity, not all states in Table47.1 are independent.3 We intend to
address these and related issues in a forthcoming publication.
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Chapter 48
One-Loop Effective Action in Quantum
Gravitation

Leslaw Rachwal, Alessandro Codello and Roberto Percacci

Abstract We present the formalism of computing one-loop effective action for
Quantum Gravitation using non-local heat kernel methods. We found agreement
with previous old results. In main part of my presentation I considered the system
of E-H gravitation and scalar fields. We were able to derive nonlocal quantum effec-
tive action up to the second order in heat kernel generalized curvatures. By going to
flat spacetime expressions for gravitational formfactors are possible to construct and
compare with the results from effective field theory for gravity.

In this work we will review the results of computation of 1-loop effective action
in a system, where we have standard Einstein-Hilbert gravitation and a minimally
coupled scalar field. Standard computation, known in the literature, are mainly based
on perturbative quantizationmethods and they exploit Feynman diagrams techniques
[1]. Here we will follow a different route. Namely we will obtain 1-loop quantum
effective action as the effect of integrating average effective action along the RG flow
trajectory from UV down to IR limit. Moreover in the core of our calculation we
will use non-local heat kernel techniques to evaluate some functional traces. We will
pay special attention to the appearance of nonlocal terms in the quantum effective
action. All the calculations will be performed in Euclidean spacetimes and later we
will specify to four spacetime dimensions. One of the goal of such calculation is the
quantum effective action per se. Another is related to gravitational formfactors of
simple interactions with scalars.
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48.1 Effective Average Action

First wewant to introduce the notion of the average effective action (EAA). The EAA
is a scale-dependent generalisation of the standard effective action, that interpolates
smoothly between the bare action for k → ∞ and the standard quantum effective
action for k → 0. In this way, we avoid the problems of performing the functional
integral. Instead they are converted into the problem of integrating the exact flow of
the EAA from the UV to the IR. The EAA formalism deals naturally with several
different aspects of quantum field theories. One aspect is related to the discovery
of non-Gaussian fixed points of the RG flow. In particular, the EAA framework is
a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to
arbitrarily high energy scales. A second aspect, in which the EAA reveals its big
usefulness, is the domain of nonperturbative calculations. In fact, the exact flow, that
EAA satisfies is a valuable starting point for inventing new approximation schemes.

In EAA the crucial point is the separation between high and small energymodes of
quantum fields. The elimination of higher energy modes is performed by separating
the low energy modes, to be integrated out, from the high modes in a covariant way.
To do thiswe introduce a cutoff action constructed using the covariant d’Alembertian,
that respects the symmetries of the underlying theory. In full generality in order to
construct EAA we add to the bare action S an infrared (IR) “cutoff” or regulator
term �Sk of the form:

�Sk = 1

2

∫

dd x
√

g φRk(�)φ . (48.1)

In above formula the operator kernel Rk is chosen in such a way to suppress the field
modes φn , eigenfunctions of the covariant second order differential operator �, with
eigenvalues smaller than the cutoff scale vn < k2. Generic fields of our quantum field
theory are denoted here by φ. We will call�Sk the cutoff action. The functional form
of the cutoff kernels Rk(z) is arbitrary except for the requirements that they should
be monotonically decreasing functions in both z and k arguments, i.e. rigorously
that Rk(z) → 0 for z � k2 and that Rk(z) → k2 for z � k2. It is important to
recall two limits of EAA. First in the IR limit (k = 0) quantum effective action is
obtained. On the other hand, when k → ∞, then EAA equals to the bare action of
considered quantum theory. In this way we obtain the scale dependent generalisation
of the standard effective action, which interpolates between the two.

48.2 Truncation Ansatz and ‘Inverse Propagator’

Quantum gravity gives unambiguous predictions at low energy in the framework of
effective field theories. The low energetic action contains only the simplest Einstein-
Hilbert term (with a possibility of adding a cosmological constant, whichwe however
neglect here). In this effective theory there exist observables, which do not depend on
the particular way of UV completion. They are genuine predictions of quantum grav-
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ity. The quantum divergences, which must be absorbed during the renormalization
procedure, are contained in local, but not universal terms in the quantum effective
action. We are mainly interested in nonlocal terms in quantum effective action. The
reason for this is that they are universal terms in low-energetic effective field theory
of quantum gravity [2, 3]. They do not depend on any specific way of UV completion
of gravity. There exist different ways, by which, one can obtain quantum effective
action in the infrared limit. However it is without any doubt that low-energetic pre-
dictions of quantum gravity are calculable and solid, regardless of any complicated
dynamics, which saves the theory in UV. In our method for integration RG flows we
will use exact (also known as functional) Renormalization Group equations. In inte-
gration of RG flow of scale-dependent effective action such nonlocal terms originate
from the part of integration done for the lowest momentum scales.

We will use the following ansatz for the form of the action of our system

S =
∫

dd x
√

g

[
1

K 2 R − 1

2
(∂φ)2 − V (φ)

]

− 1

2K 2α

∫

dd x
√

g χ2

+
∫

dd x
√

g C̄μ

(−�δμ
ν − Rμ

ν

)
Cν , (48.2)

where d’Alembertian is given by � = ∇μ∇μ. Due to the gauge diffeomorphism
symmetry present in the system we are forced to introduce gauge fixing conditions
necessary for perturbative quantization of the system: χμ = ∇νhμν − 1

2∇μh . More-
over another consequence of this gauge redundancy is that for consistency, we also
had to add vector ghosts denoted by Cμ in the second line of (48.2). In our computa-
tion we use the background field method and we take the metric perturbations in the
form hμν = δgμν and in contracted version h = gμνhμν . All covariant derivatives
are with respect to the background metric. As we can see in the action (48.2) we
included minimally coupled scalar field φ and we allowed for the existence of poten-
tial V (φ) for it. Gravitational coupling appears there as K , which has the inverse
energy dimension. In the gravitational part of the action R is the only present cur-
vature invariant built out of the full metric gμν . Additionally constant α is a gauge
parameter in our gauge fixing condition.

When we have the explicit form of the action, then the next step is to compute the
second variational derivative w.r. to all fluctuating quantum fields like in [4]. Usually
this takes the form of second order differential operator, which is of fundamental
importance in our construction of the cutoff kernels in the EAA.

48.3 Exact RG Flows

Using the methods of nonlocal heat kernel we will now exploit the power of Exact
RG formalism applied to the EAA. At the beginning we need to know flows of which
terms to consider and for this reason we first look for simple task related to local
terms.



398 L. Rachwal et al.

48.3.1 Local Terms of One-Loop Effective Action

Firstly we will look for local terms in 1-loop effective action for our system. They
are related to UV divergences of the theory. In general these divergences give rise to
the renormalization of couplings in front of local terms. They are not universal and
depend on the precise way of UV completion. However we assume, that the bare
action (in UV) is given by (48.2). At one loop order the quantum effective action is
given by the integral

Γ [φ, g] = −1

2

∫ ∞

0

ds

s
Tr e−s Ŝ(2)

, (48.3)

where Tr e−s Ŝ(2)
is the functional trace of some differential operator, which we are

going to computewith the heat kernel techniques. For our applications in the exponent
of heat kernel we use inverse propagator, spoken about in the previous section,
denoted here by Ŝ(2) (second variational derivative of the action S with respect to all
fluctuating fields). This operator, as other quantities with a hat over, is a matrix in
field space of gravitons and scalar field perturbations. In order to find logarithmically
divergent part of one-loop effective action to second order in curvature we can use
the Schwinger-DeWitt method for quadratic operators:

Tr e−s Ŝ(2) = 1

(4πs)d/2

∫

dd x
√

g tr

{

1̂ + s P̂ + s2
[
1

2
P̂2 + 1

12
R̂μνR̂

μν

+ 1

180
Riem21̂ − 1

180
Rμν Rμν 1̂

]}

. (48.4)

We will restrict ourselves to second order contribution in operators P̂ , R̂μν and
gravitational curvatures. (We don’t consider here application of this method to the
ghost part of the action, becausewe aremainly interested in termswith nonminimally
coupled matter.) Using Schwinger-DeWitt technique we reduced the functional trace
to matrix traces. The terms, which appear explicitly in the above expression are the
basis for consideration of RG flows for nonlocal operators.

48.3.2 Nonlocal Terms and Their Exact RG Flows

In order to go beyond Schwinger-DeWitt technique and find form of nonlocal part
of one-loop action we insert nonlocal structure functions. They are functions of s
parameter and box operator � = ∇μ∇μ (acting under the integral). We insert these
structure functions between two matrix operators present at the second order as in
the detailed formula below
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1

(4πs)d/2

∫

dd x
√

g s2 tr
{

P̂ fP (−s�) P̂ + R̂μν fR (−s�) R̂μν

+ P̂ fP R (−s�) R + R fR (−s�) R 1̂ + Rμν fRic (−s�) Rμν 1̂
}

. (48.5)

It must be emphasised, that the leading order in s contribution is equal to constants,
which were written in the formula (48.4) in section above (for P̂ R operator this
constant vanishes). Moreover we have used the Euler identity here. The traces of
matrix terms of order curvature square are modified with respect to expressions
given in previous section by the appearance of structure functions fP , fR , fP R , fR

and fRic.
Now we want to consider the exact RG flow of EAA, which will be denoted here

by Γ̄k . As the ansatz for it we choose the nonlocal expression above, understood that
all the couplings and structure functions now acquire dependence on the momentum
scale k. The exact RG flow equation for the background effective average action
(bEAA) is the following

∂t Γ̄k[φ, g] = 1

2
Tr

∂t Rk(−D2))

−D2 + Rk(−D2)
− Tr

∂t Rk(�gh)

�gh + Rk(�gh)
. (48.6)

In the above formula D is a general operator of the covariant derivative and Rk are
cutoff kernels (suitably chosen functions of momenta to suppress the contributions
from high energy modes in the path integral. We denote by �gh the kinetic operator
in the vector ghost sector.). The r.h.s. of this equation expresses itself by functional
traces of some differential operators and the RG time derivatives of cutoff kernels
where t = log k/k0. We note that in the denominator we have differential partD2 of
our inverse propagator operator. The r.h.s. of the flow equation is then schematically
given as

∂t Γ̄k[φ, g] = 1

(4π)d/2

∫

dd x
√

g

{

Oi,1

[∫ ∞

0
ds h̃k(s) s2−

d
2 f̃i (−s�)

]

Oi,2

}

,

(48.7)

where the structure functions f̃i (x) were derived combining non-local heat kernel
structure functions and Oi,1,2 stand for operators in between which we insert these
structure functions. In this derivation we follow [5].

48.4 Effective Action and Formfactors

Finally integrating the flow (48.7) and putting some boundary conditions in UV, we
arrive to the following explicit form for one-loop quantum effective action in our
model of scalar field interacting minimally with Quantum Gravitation:
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Γ̄0
∣
∣
R2 = 1

32π2

∫

d4x
√

g

{
43

30
Rμν log

(
−�
k20

)

Rμν + 1

20
R log

(
−�
k20

)

R

+ 5

2
K 4m4φ2 log

(
−�
k20

)

φ2 − 2K 2m4φ log

(
−�
k20

)

φ (48.8)

− 13

3
K 2m2R log

(
−�
k20

)

φ2 − 1

6
m2R + 1

2
m4 + 5

2
K 4 (∇φ)2 log

(
−�
k20

)

(∇φ)2

+ K 4m2φ2 log

(
−�
k20

)

(∇φ)2 − 2

3
K 2R log

(
−�
k20

)

(∇φ)2 − K 2m2 (∇φ)2

}

.

This 1-loop quantum effective action is the main, solid result of this work.
The goal of this section would be to compute one-loop corrections to three-point

vertex from above action. Abovewe have computed it to the second order in operators
of heat kernel and we arrived at a nonanalytic expression with low-energetic loga-
rithms.Wewant to consider the simplest vertex of interactionwithin our theory—with
one gravitons and two scalar fields. That’s whywe shall compute the third variational
derivative with respect to mentioned fluctuations. At the end we specify flat gravita-
tional background and vanishing background scalar field. We also prefer to write the
expression for the vertex in the momentum space and in such way we can compare
to the perturbative results. Such comparison and more details of this computation
and these techniques can be found in [6]. However in this short contribution we shed
light only on the most important aspects of the lengthy calculations.
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Chapter 49
Heavy Probes in Strongly Coupled Plasmas
with Chemical Potential

Andreas Samberg and Carlo Ewerz

Abstract We study the properties of heavy probes moving in strongly coupled plas-
mas at finite chemical potential. Using the gauge/gravity duality we consider large
classes of gravity models consisting in deformed AdS5 spacetimes endowed with
Reissner–Nordström-type black holes. We report on our analysis of the screening
distance of a quark–antiquark pair, its free energy, and the running coupling. These
observables show a certain insensitivity as to which model and deformation is used,
pointing to strong-coupling universal behavior. Thus, the results may be relevant
for modeling heavy quarkonia traversing a quark–gluon plasma at finite net baryon
density, and their suppression by melting.

49.1 Introduction

Over the past years, gauge/gravity duality ([1–3]; see e.g. [4] for a review) has been
successfully applied to the physics of theQCDmediumcreated in heavy ion collisions
at RHIC and LHC. One of the most prominent theoretical results is the computation
of a universal value for the ratio of the shear viscosity η to the entropy density s in
a large class of strongly coupled deconfined plasmas [5, 6] and the conjecture that
this value (η/s = 1/(4π)) may be a lower bound for all physical substances [7]. On
the experimental side, it was found that the Quark–Gluon Plasma (QGP) created at
RHIC and LHC has a value of η/s in the ballpark of the holographic result, indicating
strong coupling at the accessible temperatures.
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Beyond current high-energy heavy ion programs, which mainly study the high-
temperature, low-chemical potential regime of QCD, a major open question is the
phase structure of QCD at nonzero baryon chemical potential. Experimentally, this
will be addressed for example at future FAIR experiments. Theoretically, the ability
to handle nonzero chemical potential in QCD or at least QCD-like theories is crucial.

We explore, by means of the gauge/gravity duality, the phase structure of strongly
coupled non-conformal theories similar to QCD by investigating the physics of
probes in the thermal plasmas of these theories with nonzero chemical potential.
In a spirit similar to the holographic computation of η/s we search for universal-
ity in the behavior of heavy quark–antiquark (Q Q̄) bound states in large classes of
holographic theories. This may yield insight into certain QCD processes relevant
for the QGP produced in heavy ion collisions, e.g. suppression of charmonia [8] or
bottomonia.

Specifically, we analyze the Q Q̄ screening distance, the Q Q̄ free energy in
the medium (roughly speaking the interaction potential), and the running coupling
extracted from the free energy. Previous work on similar problems includes [9, 10]
for vanishing chemical potential, and [11, 12] for nonzero chemical potential in
N = 4 supersymmetric Yang–Mills theory. Amore detailed account of our findings
will be published elsewhere.

We startwith the prototype of gauge/gravity duality between classical supergravity
on AdS5 and conformal N = 4 supersymmetric Yang–Mills theory (SYM) with
gauge group SU(Nc) in the limit of infinite number of colors, Nc → ∞, and large ’t
Hooft coupling λ ≡ g2

YMNc. A thermal bath for the gauge theory is dual to a black
hole in AdS5. Putting charge on the black hole, we can induce a chemical potential
in the dual theory. Therefore, as a starting point we consider AdS5 with a Reissner–
Nordström black hole (AdS-RN), in Poincaré coordinates,

ds2 = R2

z2

(

−h(z)dt2 + dx2 + dz2

h(z)

)

(49.1)

with h(z) = 1 −
(
1 + Q2

) (
z

zh

)4

+ Q2
(

z

zh

)6

.

Here, R is the curvature scale and the black hole horizon is at z = zh. The dual theory
is in a thermal state with temperature T = (1− 1

2 Q2)/(π zh) and chemical potential
μ = √

3Q/zh. We have 0 ≤ Q ≤ √
2.

To come closer to real-world physics, we study models in which conformality is
explicitly broken by deforming the AdS spacetime. On the one hand, we consider
the CGN model proposed by Colangelo et al. [13]. It is specified by the metric
(49.1) with an additional overall warp factor ec2z2 with deformation parameter c.
On the other hand, we study a family of 1-parameter models which we derive from
the action used in [14], which adds to 5-dimensional gravity with metric gμν and
negative cosmological constant a scalar field φ and a U(1) gauge field Aμ whose
boundary value equals the chemical potential in the dual gauge theory. Our ansatz
with deformation parameter κ is
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gμνdxμdxν = e2A(z)
(
−h(z)dt2 + dx2

)
+ e2B(z)

h(z)
dz2 , (49.2)

A(z) = log

(
R

z

)

, φ(z) =
√
3

2
κz2, Aμdxμ = Φ(z)dt , (49.3)

where R is a constant and h(z) is the redshift factor induced by the black hole. We
derive two classes of models from this ansatz, treating φ as the dilaton or not, called
‘string frame’ and ‘Einstein frame’ models, respectively. The solutions can be given
in closed form [15]. At fixed (μ, T ), a maximal deformation κmax exists that still
allows a black hole solution representing (μ, T ). Since these models solve gravity
equations of motion (EOMs) they are expected to be thermodynamically consistent,
as opposed to models in which the metric is deformed ‘by hand’.

In the CGN model we find unusual behavior in some observables at low tem-
peratures and chemical potentials. Such behavior occurs when we consider moving
probes, for example in the case of the drag force. We believe that these artifacts are
unphysical. Indeed, they do no longer occur in models obtained as solutions of grav-
ity EOMs. In particular, they are absent in our 1-parameter models. We will report
on this in detail elsewhere [16].

49.2 Screening Distance

We study a dipole of an infinitely heavy quark and its antiquark, separated by a
distance L , in the deconfined plasma of the gauge theory. The quarks are situated
at the 4-dimensional boundary (z = 0 in our coordinates) and are connected by a
macroscopic string in the bulk (see e.g. [4]). We accommodate a finite velocity v of
the Q Q̄ system with respect to the surrounding medium by boosting the bulk metric
with rapidity η = artanh(v). In order to find the classical string configuration we
have to extremize the Nambu–Goto action in the given gravity background.

There is a distance Ls, such that for L < Ls there are two string configurations
connecting the dipole, while no such solution exists for L > Ls. Thus, Ls is called
the screening distance of the Q Q̄ interaction in the thermal medium. In the studies
[17–19] it was found that at any temperature T the screening distance is bounded
frombelow by LN =4 SYM

s (T ) under consistent deformations ofAdS-Schwarzschild,
the dual of N = 4 SYM at μ = 0 (where we understand consistency in the sense
of solving equations of motion of a suitable 5-dimensional gravity action).

The question arises whether this bound holds under the inclusion of a chemical
potential. We find that in the CGN and similar models, depending on (sign) choices
in the metric, Ls can change in both directions. More interesting are consistent
deformations which in our case are the two classes of 1-parameter models.

As can be seen from Fig. 49.1, the bound on Ls is violated in the Einstein frame
models at large chemical potential, approximately whenμ � √

κ . In the string frame
models it is only violated for Q Q̄ pairs moving sufficiently fast at large μ � √

κ .
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However, for all deformations, the amount of violation of the bound is relatively
small such that there might exist a slightly lower, improved bound. Moreover, in the
Einstein framemodels, the screening distance is a robust observable, depending only
weakly on the deformation.

We also study the dependence of Ls on the Q Q̄ rapidity η. Figure49.1 illustrates
that the ultrarelativistic scaling of the screening distance Ls ∝ cosh−1/2(η) is robust
and remains valid in all models, at all chemical potentials. It is interesting to note
that this robustness against deformation is different from what was found in [11] for
other explicitly non-conformal models.

49.3 Free Energy and Running Coupling

The free energy F(L) of the Q Q̄ system can be extracted from the extremal classical
string action following a well-known procedure (see e.g. [4]). The typical features in
the consistently deformed models can be seen in Fig. 49.2. Here, F(L) is normalized
such that a configuration having F < 0 has less free energy than the non-interacting,
unbound Q Q̄ system. Thus, we see that the effect of increasing the chemical potential
is a decrease in binding energy. Taking this together with our findings concerning the
screening distance, we see that in these holographic models an increased net density
around the Q Q̄ dipole weakens its binding by screening the interaction. We find this
effect regardless of the specific model under consideration.

To explore the impact of non-conformality on the interaction in more detail, we
study the running coupling defined via the derivative of the free energy,
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αQ Q̄(L) ≡ 3

4
L2 dF(L)

dL
. (49.4)

In the conformal case, where F(L) ∝ 1/L is Coulombic, αQ Q̄ = const. Hence, any
non-trivial dependence on L measures the deviation from conformality.

In Fig. 49.3 we show αQ Q̄(L) for the 1-parameter string frame models. The qual-
itative picture is the same in the Einstein frame models; however, in these models,
αQ Q̄ is very robust under deformations, so that the curves for different κ deviate only
very little from each other.

FromFig. 49.3we see thatαQ Q̄ is constant in theUV, i.e. at small distances L . One
can also see this from the free energy itself in Fig. 49.2 which approaches Coulombic
form in the UV. This is due to the restoration of conformality in the UV, the bulk
realization of which is the condition on the metric to be asymptotically AdS.

At larger distance, both the explicit non-conformality and the thermal medium
affect the Q Q̄ interaction. In effect, the running coupling starts to deviate from its
asymptotic value. We find a robust increase above the UV value at intermediate
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length scales due to non-conformality in all deformed models, at vanishing μ [17]
but also at nonzero chemical potential.

The plasma starts to take effect at the thermal scale, roughly L th ∼ 1/T , leading
to a drop-off ofαQ Q̄ , before the Q Q̄ interaction is entirely screened. (The endpoint of
the curvesαQ Q̄(L) is at the screening distance Ls.) This pattern is also found in lattice
QCD studies of αQ Q̄ in the deconfined phase [20]. While the lattice calculations are
presently restricted to vanishing chemical potential due to the sign problem, the
holographic models allow us to explore the effect of a chemical potential in strongly
coupled QCD-like theories.

We find that the effect of the chemical potential is relatively weak: the drop-off
scale is only weakly dependent on the chemical potential while it strongly depends
on the temperature.

49.4 Conclusion

We have reported on some results of our studies of deformed, i.e. non-conformal,
gauge/gravity models for strongly coupled plasmas at nonzero chemical potential.
Studying large classes of holographic models, we address the problem of the strong
coupling dynamics of moving heavy mesons in deconfined plasmas by looking for
universality. In particular, we include a nonzero chemical potential μ in our studies.

We find a certain robustness of the screening distance Ls at nonzero μ under
deformations. However, when switching on the chemical potential, LN =4 SYM

s no
longer is a lower bound on the screening distance under deformations, unlike in the
case of μ = 0.

Furthermore,weobserve aweak impact of the chemical potential on the qualitative
features of the quark–antiquark interaction. Even quantitatively, the dependence of
characteristic scales on the chemical potential is generally significantly weaker than
their dependence on temperature
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