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PROLOGUE

Soil is matter in its own right. Everybody will agree, but how to catch it sci-
entifically? The first draft of this book, written with the intention to reconcile
elastoplasticity and hypoplasticity, was more a cacophony than a symphony.
Screening the literature I got tired by a jungle of data and a morass of equa-
tions. Thinking over the issue I got more and more aware that the physis of
soils can be captured more geometrico by means of attractors. A look into
history and a preview may show what is meant.

Physis (ϕύσις) means nature, early Greek philosophers coined the word
physics (ϕυσικά) for the science of it. They thought that all matter is com-
posed of the four elements fire (πυ
), water (ύδω
), air (αή
) and earth
(γαία). Their mathematics (μαθηματικά) was mainly geometry (γεωμετεία),
and their mechanics (μηχανική) was mainly statics (στατική). Using Ap-
polonius’ cone sections Kepler proposed his three Laws more geometrico, i.e.
in a geometrical way. His Astronomia Nova begins with durissime est hodie
scribendo libros mathematicos (it is very hard today to write mathematical
books) and is full of ellipses, but void of algebra. Introducing gravity and iner-
tia Newton derived Kepler’s Laws more geometrico, hundred years later Euler
proposed the differential equation of motion. Feynman proposed another geo-
metrical proof of Kepler’s Laws (Feynman and Goodstein 2000). Geometrical
presentations and arguments will be used throughout this book for the ease
of understanding, this is called more geometrico.

Astronomers discovered a group of galaxies which tend to one point. This
‘Great Attractor’ can be represented by a plot of radii vs. the inverse of ve-
locities, therein the asymptotic line towards the origin represents an attractor
which may be called state limit. It results from gravity, inertia and conser-
vation of energy. More often cosmic clouds tend to collapse into lumps in
orbits, as e.g. the Solar system. Such periodic attractors, which may be called
state cycles, can also be obtained with Newton’s Laws written as Euler’s dif-
ferential equation of motion. Poincaré discovered that calculated motions of
three neighboured celestial bodies can already get chaotic, and won a prize
for proving that the Solar system will remain stable. Recently a less known
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mathematician found, however, that in the long run the Solar system will end
in deterministic chaos. The trend to disorder can be represented by a strange
attractor, but this is evidently hard to capture.

Other than celestial bodies atoms and molecules attract or repel each
other according to their distance. At a thermodynamic equilibrium an en-
semble of them has equal spatial and temporal averages. Due to the First
and Second Laws this state is an attractor which can be attained by a closed
ensemble. Phase transitions and reactions normally tend to thermodynamic
equilibria with other molecules than at the onset, but under special circum-
stances such ensembles can also get into state cycles. There are no transition
energies at critical points, then phase transitions and reactions occur spon-
taneously. Depending on the boundary conditions such a system is capable
of pattern formation or deterministic chaos, then one may speak of strange
attractors.

The interactions in these cases can be conservative, i.e. celestial bodies,
molecules or atoms need not be changed by encounters and their interaction
forces are given by the relative positions via potentials. Thus the governing
differential equations are linear and the attractors for closed systems are en-
dogeneous. This is not the case with dissipative systems like rearranging soils.
Their mineral particles are changed by each encounter, therefore no two of
them are equal and their contact forces are not given via potentials. There is
no thermodynamic equilibrium without conservative interactions (Feynman
et al. 1966). So how can attractors be of any use for soils?

It is first shown in Chap. 1 that particulate models (e.g. grain by grain)
and continuum solid models cannot suffice for soils, but can provide useful
arguments. Therefore five following chapters begin with ‘preludes on solids’,
and particulate dynamics will sometimes be considered qualitatively. The in-
troduction deals then with continuum soil models in the light of objectivity. It
is argued that such models can be validated and that related parameters can
be calibrated objectively by means of attractors. Fabrics of solid particles are
called skeletons although they have no hinges and thus no preferred configu-
rations. I recommend to judge continuum soil models by means of numerical
simulations and comparative plots. Without getting lost in equations and data
one can see at a glance how well observed attractors and related benchmark
tests are reproduced.

In experiments with sand in a box G.H. Darwin (1883) found that earth
pressures did not obey the theories of Coulomb and Rankine as they depend
on the kind of placement. He asked Maxwell, got the advice that sand has
a historical element and believed that this eludes mathematical treatment.
He observed that sand can be dilated or densified by shearing or shaking,
respectively, but did not realize that this is the clue to the historical el-
ement. Maxwell was evidently aware that the non-conservative interaction
of grains prevents a purely thermodynamic approach. Until now the histor-
ical element is widely ignored in geotechnical teaching and design, although
Casagrande (1936) found an access. He realized that sand attains so-called
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critical states by shearing with constant pressure independently of the onset,
states with higher than critical void ratios by compression from a loose pack-
ing, and densest states by cyclic shearing with constant pressure. Roscoe et
al. (1958) found critical and loosest states more precisely in triaxial tests with
sand and clay. Combination with simple elastoplasticity led to Critical State
Soil Mechanics (CSSM), this was the point of start for further elastoplastic
models.

Critical and loosest states are driven or exogeneous attractors which can
be reached independently of the onset by continued shearing or compression,
respectively, with energy input for dissipation at the solid particle contacts.
Roscoe (1970) proposed tests with initially loose samples in order to avoid
shear localizations. A further exogeneous attractor was discovered by Gude-
hus et al. (1977): proportional strain paths always led to proportional stress
paths. This was called swept out memory (SOM) as then internal variables
are determined by stress and void ratio. Kolymbas (1978) proposed constitu-
tive equations with this attractor, they produced also critical stress states. It
took years until his hypoplasticity incorporated Casagrande’s highest, critical
and lowest void ratios. All that is outlined together with elastoplasticity in
Chap. 2 for psammoids (ψάμμoς = sand), i.e. sand-like soils. Therein driven
attractors named state limits play the key role, they are mainly presented
more geometrico and help to keep the requirements of objectivity.

As for Coulomb’s dry friction rate-independence is a validated assump-
tion for psammoids. Peloids (πηλóς = clay), i.e. clay-like soils, are argotropic
(α
γóς = fast), i.e. rate-dependent, however, as their particles are soft. It is
outlined in Chap. 3 that this is due to thermally activated dislocations, which
can also lead to creep and relaxation by endogeneous attractors. These attrac-
tors are nearly the same in elastoplastic and hypoplastic models with viscosity.
They work for more than two components as required for objectivity and will
first be presented more geometrico. The validation is focused on state limits
as these attractors represent main properties. Post-peak states with localized
shearing and dilation are avoided as then representative soil elements (RSEs)
lose the desired uniformity.

The comparisons in Chaps. 2 and 3 exhibit bigger deviations for path re-
versals. This is shown by means of another kind of exogeneous attractors, viz.
state cycles due to cyclic deformations or ratcheting, i.e. superimposed cyclic
and isochoric monotonous deformations. One can conclude that the state of
RSEs is not sufficiently characterized by void ratio and skeleton stress com-
ponents if reversals have to be captured. The introduction of further state
variables is difficult as these are hidden, i.e. they cannot be observed macro-
scopically. Elastoplastic and hypoplastic relations with hidden variables are
not easily tractable and need a physical justification. After frustrating at-
tempts I realized that state cycles can serve more geometrico to catch the
nature of soils with reversals. Hidden variables are no more needed after suf-
ficient monotonous deformations as they are then determined by the skeleton
stress, the attained SOM-states were introduced above as driven attractors.
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Constitutive relations of so-called simple materials can be represented by
means of uniform RSEs, but soils are not always that simple. Contact forces
of grain skeletons are often concentrated in force chains. This force-roughness
can be reduced by small alternating deformations so that skeletons get almost
hypoelastic (i.e. stress-dependent incrementally linear). It appears that hidden
state variables needed for reversals represent the force-roughness implicitly in
a probabilistic sense. They tend to cycles prior to the external variables of
an RSE, viz. stress components and void ratio. State cycles including force-
roughness can also be attained with peloid RSEs, they are argotropic as the
solid particles due to thermal activation. Waiting times with creep or re-
laxation after reversals were often ignored so that reported state cycles are
distorted with unknown amount by endogeneous attractors.

The pore water of saturated soils can be captured by two brilliant ideas of
Terzaghi (Chap. 6). The principle of effective stress says that the total mean
pressure p can be decomposed into mean skeleton pressure ps and pore water
pressure pw by p = ps + pw, and that volume changes of solid particles are
negligible. This neutrality of skeletons with respect to pw requires pore-free
solid particles. The diffusion of pore water has in common with the one of heat
or dissolved matter that it is thermally activated. In Terzaghi’s linear theory
it is related with a poro-elastic solid, but it can as well occur with anelastic
skeletons. Terzaghi proposed also a cohesive or bound pore water with higher
density and far higher viscosity than free water. Research in physical chemistry
revealed that there is a rather repulsive electro-capillary phase with higher
density and viscosity, but it could not be quantified for soils.

The permeability cannot always be captured by Darcy’s law because of
capillary effects. The pore water of fat clays and of sands with a low degree
of saturation can get stuck. Dissolved substances and pore gas can have so
non-uniform distributions that continuum approaches fail. The diffusion of
pore water is ever-present at least for peloids and implies an attractor in
the large: with suitable conditions the skeleton and its pore water tend to a
thermodynamic equilibrium and get thus more uniform. Such evolutions will
be introduced by experiments and numerical simulations and will be presented
mainly more geometrico.

I do not claim that all properties of soils can be captured by attractors,
but some gaps can thus be bridged (Chap. 7). Saturated peloids can have a
net repulsion (pn > 0) or attraction (pn < 0) for physico-chemical reasons. A
decomposition into partial pressures by p = ps + pw + pn suggests a tensile
strength and lower limit void ratios for pn <0. Actually void ratios are higher
with net attraction due to macropores, and with them state limits get debat-
able. Soils with gas channels and suction have also a kind of net attraction and
macropores. The desired uniformity of RSEs can rarely be achieved as such
soils tend to a deterministic chaos. The cementation of soil particles may be
modelled as an irreversible net attraction, but cracking and re-condensation
can hardly be caught. Abrasion and fragmentation seem to prohibit state
limits and state cycles as these imply permanence of average particle proper-
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ties. This contradiction in terms can be circumvented by means of evolution
equations for skeleton parameters, at least in principle.

RSEs can lose their uniformity spontaneously by localizations (Chap. 8).
Coulomb assumed that shear bands arise with friction and such an inclination
that earth pressures get extremal. Until now this theory is the base of design
models, but it cannot generally be defended as it ignores Maxwell’s historical
element. Shear bands arise alongside with polar stresses and tend to localized
state limits and patterns or rather chaotic evolutions. Such strange attractors
occur with overcritical stress obliquities, i.e. ratios of mean deviatoric stress
and pressure. Shear bands and polar stresses can be ironed out by reversals
with subcritical obliquities, thus state cycle fields work as driven attractors
in the large. Shear bands occur similarly in peloids, but depend on skeleton
viscosity and pore water diffusion in an intricate manner. Therefore peloid
models with polar terms are not yet available and test results with clay beyond
peak can hardly be evaluated.

Cracks are localizations with capillary entry which can lead to patterns or
chaotic rupture. They can disappear by flooding and swelling so that skele-
tons decay into a fluid-like mud. Such evolutions may be vaguely described
by strange attractors, but can as yet hardly be quantified. Fabrics with shear
bands and cracks seem therefore to elude mathematical treatment. To a cer-
tain extent, however, they are reproducible in experiments and may be cap-
tured by spatial averages (Chap. 9). Fabrics by composition are sometimes
regular like a sandwich, but more often irregular, they occur over several or-
ders of magnitude. Such products of nature could also be explained by means
of attractors, but the ones proposed in this book can at best help to substitute
fabrics by simpler composites.

Continuum soil models require conservation laws, constitutive relations,
initial and boundary conditions (Chap. 10). Initial configurations and state
fields are often but arbitrary snapshots of evolutions. Soils, solid bodies and
water come and go, so conditions are needed for changing boundaries of skele-
ton and pore water. Finite element experts demand boundary stresses or ve-
locities and prefer to simulate placement or removal by fictitious increase or
reduction, respectively, of gravity and boundary stresses for suitable sections.
Experience and intuition suggest that sizes, rates and order of evolution steps
may be simplified, but not ad libitum. Attractors in the large can help to
justify and delimit such approaches.

Symmetry plays a key role in systems with conservative interactions, math-
ematical models reflect symmetries of elementary particles with a stupendous
precision. There is less order in the transient cosmos of soils, but symme-
try may often be assumed and can be attained by technical operations due
to attractors. As indicated further above RSEs can get more uniform by ex-
ogeneous or endogeneous attractors, but can also lose their uniformity by
strange attractors. One-dimensional evolutions (Chap. 11) are often assumed
for simplicity and can be approached with parallel layers and creep or shak-
ing. Plane-parallel evolutions with filling or excavation can be approached
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in model tests and in central cross sections in situ (Chap. 12). Conventional
approaches with slip surfaces can thus be justified and delimited, the same
symmetry may also be assumed for certain tectonic evolutions.

Plane-parallelity is often assumed for soil-structure interactions (SSIs,
Chap. 13). Coulomb’s earth pressure and Terzaghi’s punching resistance are
simple special cases. A number of lab and field observations are apt to val-
idate plane-parallel models, this is also the case with several axi-symmetric
evolutions (Chap. 14). Again the symmetry can be enhanced by exo- and en-
dogeneous attractors and can get lost by bifurcations with shear localization
or decay, i.e. by strange attractors. This can also happen with less symmetric
evolutions which can arise by geotechnical operations (Chap. 15). Some lab
and field tests of this kind provide further validations.

Critical phenomena are at the verge of predictability and will only be indi-
cated at the end (Chap. 16). They are rather well understood for systems with
conservative interactions at or near thermodynamic equilibria. Deforming soils
far off equilibrium can similarly exhibit pattern formation or deterministic
chaos. Experiments with minute sand avalanches (Bak et al. 1987) triggered a
euphoria on ‘self-organized criticality’ and enhanced granular physics. In the
meanwhile it was realized that strange attractors for soils are more complex.
Conditions for critical points can be formulated for a number of cases, therein
critical states in the sense of soil mechanics play a key role and seem to deserve
this name. Decay and recombination of skeletons are also critical phenomena,
but not in the reach of present models.

The progress in soil mechanics was and is hampered by inadequate con-
ventions. Often pressure and shortening are called stress and strain, and no-
tions like stiffness, strength and failure are unreflectedly taken over from solid
mechanics. Rather intuitive expressions as softening, liquefaction and cyclic
mobility are used without a convincing definition. Codes of practice tend to
freeze conventions and are sometimes mixed up with science; they may be of
use for contracts and routine work, but hamper innovations. This book was
written for those who want to understand soils beyond conventional methods,
the attribute ‘physical’ in its title is not a pleonasm. It is voluminous as many
publications with different conventions had to be taken into account, and as
soils are really complex matter. Impatient readers may start with interesting
examples to see what can be done, find then in referred sections more on how
and why this may be done, and can thus gradually acquire a deeper under-
standing. You will be fascinated by the fourth element although or just as it
is so manifold.
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1

INTRODUCTION

In TA ΦYΣIKA, the first ever book on physics, Aristoteles defined the differ-
ence of continuous and granular matter by means of ενέργεια, which denoted
action and not energy in a modern sense (this statement was discovered by Th.
Triantafyllidis). Ever since continuum approaches for soils were questioned as
far as these are visibly particulate matter. One may be tempted to simulate
granular aggregates grain by grain with a computer in order to understand
their mechanical properties. On the other hand, engineers are inclined to take
over continuum models from solids to soils, so they work with notions like
stiffness and strength.

It is shown in Sect. 1.1 why both approaches cannot suffice to predict
evolutions with soil. Particulate models have to be simplified, even when using
big computers, to such an extent that they can at best yield qualitative insight.
It is recommended to focus such attempts on attractors, namely state limits,
state cycles and granular phase transitions. For the time being particulate
models are hardly feasible with submicroscopic clay particles due to physico-
chemical effects. One is inclined to catch clay instead as continuous matter
like a solid.

Until present soils are often considered as elastoplastic like solids. Referring
to Coulomb (1773) and Mohr (1914) their strength is attributed to friction
and cohesion, and the bound theorems of plasticity (Koiter 1958) are taken
for granted. The intricate dependence of soil stiffness on density, stress and
direction of stretching is often neglected. Thus, however, soil bodies cannot
properly be judged. Elastoplastic relations are not necessary for solids, these
may aswell be captured by hypoplastic relations. There is a vast variety of
both kinds of constitutive models for soils, which cannot even be touched in
Sect. 1.1. It is only shown that no solid-like continuum model can suffice for
soils. This holds particularly true with respect to pore water and boundary
conditions. For the same reason the preparatory sections of Chaps. 2, 3, 4, 5,
8 and 11 are entitled ‘preludes’, this is not a textbook on solids.

From a pragmatic point of view there is no way around continuum models
for soils. They have to be tractable and feasible, however, and their range of
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validity should be properly known and should be as wide as possible. Following
Popper’s (1959) ‘Logic of Scientific Discovery’ theories can catch parts of real-
ity if they are logically consistent as long as the employed hypotheses are not
refuted by observations. Popper proposed statistical measures for scattering
phenomena so that these do not elude theories from the very beginning. We
cannot take over this standpoint for two reasons. The continuum hypothesis
cannot be proven with mathematical arguments, whatever sophisticated the
employed statistics may be. Moreover, observational soil data will never suf-
fice for sound statistical analyses, and simulated data from numerical models
cannot compensate this lack.

We take over an argument by Babuška and Oden (2006) for solids to
soils. They point out that numerical models should and can be mathemati-
cally consistent, i.e. that numerical artefacts can and have to be avoided by
verification. They show, on the other hand, that currently used constitutive
models for solids miss experimental results with many reversals outside the
elastic range. They call this lack of validation a crisis in computational sci-
ences. This book is focused on the validation of continuum models for soils,
whereas the numerical verification is left aside. Following Popper the outlined
models should not be mixed up with reality, they can at best catch parts of it.

General features of continuum models for soils are introduced in Sect. 1.1 in
the light of their objectivity. Readers should have a textbook knowledge of con-
tinuum mechanics, notions of it are used throughout this book. The required
smoothness can but vaguely be defended by means of representative statis-
tical ensembles. Unit-invariance and frame-indifference can be achieved with
suitably chosen quantities. Constitutive relations can be judged by means of
attractors as thus the partial indeterminacy and arbitrariness of initial states
can be ruled out. Not always, however, as localizations and decay (i.e. phase
transitions at critical points) delimit the range of validity. This argument is
extended to boundary value problems, for them attractors in the large can
again reduce the indeterminacy and arbitrariness. Various kinds of symmetry,
which will be used for simplifications and validations in following chapters,
can thus be defended. Critical phenomena will also be introduced in Sect. 1.1
as they delimit the objectivity of continuum models, though in a cruder sense
than meant by Popper.

1.1 Potential of particulate and solid continuum models

Following Jaeger et al. (1996) sand-like soils may be called granular solids,
but with due caution. Grains are solid bodies, so why not simulate aggregates
of them numerically and apply statistical mechanics? We will see that this
cannot suffice. Grain skeletons may appear solid-like, so how far could they
be captured with continuum models for solids? These do not suffice either,
however, the more so with pore water and gas. Clayey soils may appear rather
continuous like soft solids, but not when they are desiccated and cracked. Their
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particles are not only grains and cannot clearly be identified due to physico-
chemical effects (Sect. 6.1), so numerical simulations with them would be
rather futeless. Let us see how far particulate and solid continuum models
can be of use for soils.

The conservation laws of mass, electric charge, energy and linear and angu-
lar momentum hold for arbitrary sections of space-time and with any kind of
matter and evolutions (apart from relativistic and quantum effects). The be-
haviour of soils is distinguished by the interaction of solid particles with each
other and with the fluid in between. This interaction is not conservative, i.e.
soil particles are changed by encounters and energy is thus dissipated. There-
fore no two soil particles are equal, and forces between them are not fully
determined by mutual positions via potentials. This fact prevents a straight-
forward application of thermodynamics and causes enormous problems with
statistical mechanics.

So what could be achieved by simulations with aggregates of particles as
representative soil elements (RSEs)? Imagine an initially cubical RSE with
grains of size dg. They should not be equal spheres as these could get ar-
ranged in crystalline order, but a mixture of spheres with two sizes may serve
as the simplest substitute. The interactions may be modelled by relations for
elastic contact zones with friction (Johnson 1985), wear and cracking may be
neglected. With due caution such relations may be substituted by non-linear
springs and friction coefficients. As microseismic effects matter for redistribu-
tions in grain skeletons (Sect. 4.6) they should not be suppressed by a fictitious
damping in order to make calculations easier. Mutual rotations should also
not be excluded for simplicity as polar effects can play a role (Sect. 8.2).

How could many idealized grains be put together with contact forces so
that we get an RSE with an initial state? Spatial averages make sense only
with a sufficient number N of grains, i.e. the RSE-size de should exceed the
mean grain size dg. de/dg = 10 will not suffice for stress components as the
forces at ca. 102 grain contacts scatter strongly, so N should exceed ca. 104.
The grains could be placed with a desired void ratio which should not scatter
spatially too much. A set of contact forces may be imposed along the RSE-
boundary so that they sum up to desired initial stress components. This could
be done with different spatial fluctuations, this force-roughness should be the
same in a statistical sense throughout the RSE. We see that Maxwell was right
stating that ‘sand when put together in different ways would exercise different
thrusts’, i.e. that there is a historical element which could elude mathematical
treatment (Darwin 1883).

Evolutions of shape and state of our RSE require changing boundary con-
ditions. For a simple granular solid (more in Chap. 2) the RSE should re-
main statistically uniform so that it suits to equal neighbours. This excludes
localizations (Chap. 8), and also strictly uniform distributions of displace-
ments or contact forces along the boundary. In consistent simulations spatial
fluctuations should be statistically uniform throughout the RSE during any
evolution. Moreover, accelerations should occur at the boundaries as inside
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the RSE, and the force-roughness should remain statistically uniform to be
representative. Similar problems arise with representative elements which are
composed of molecules, then a thermostat is needed to maintain the tempera-
ture T , but with T and conservative interactions the ‘historical element’ is less
intricate.

Assuming that all these requirements could be satisfied, which succession
of boundary conditions should be chosen in order to catch essentials of gran-
ular soils? Only those findings count which do not depend on the inevitable
arbitrariness and indeterminacy of initial states. As far as both are swept out
mechanical properties of our RSE may be called objective. In other words,
simulations should be focused on attractors for evolutions of mean shape and
state with suitable boundary conditions. As with other systems three topolog-
ical kinds of attractors can be discerned, viz. monotonous ones (in particular
points), cyclic or periodic ones, and strange attractors for pattern formation
or chaos.

Such attractors may only be indicated here as the requirements formulated
further above for simulations could as yet only partly be satisfied. So-called
peak states (Sects. 2.2 and 3.8) were obtained with constant mean pressure
(e.g. Thornton and Sun 1994), whereas stationary states for monotonous evo-
lutions with constant volume (called critical states) could not be generated.
State cycles were obtained with cylindrical RSEs and constant confining pres-
sure (e.g. Alonso-Marroquin and Herrmann 2004). Simulations with parallel
rods instead of grains are simpler, but provide less insight:

• force chains can indicate an increasing force-roughness (e.g. Cundall et al.
1982, Radjai et al. 1996, more in Sect. 4.3);

• proportional strain paths lead to proportional stress paths (Pena et al.
2006, supports Sect. 2.2);

• shear bands arise with constant mean pressure (e.g. Åstroem et al. 2000,
D’Addetta et al. 2004, more in Sect. 8.2);

• seismic emissions arise with monotonous overall deformations (Tillemans
and Herrmann 1995, Kondic and Behringer 2004, used in Sect. 4.6).

Experiments with bundles of rods provide less insight than such sim-
ulations as physical boundary conditions for RSEs cannot as well be re-
alized. Force chains were discovered with photoelastic rods (Dantu 1957,
Fig. 4.3.1). An increase of force-roughness was observed with torsional shear-
ing (Behringer and Miller 1997). Polar effects were demonstrated with a tor-
sional device (Bogdanova-Bontcheva and Lippmann 1975). Grains can also
be observed in experiments with RSE-like granular aggregates, but hardly as
many as needed for statistical evaluations. The collapse of force chains can be
concluded from the acoustic emission (Hidalgo et al. 2001).

Simulations and experiments with simplified grains and RSE-like bound-
ary conditions are thus of restricted use, at least until now. They can help to
understand mechanisms and to formulate constitutive relations. More sophis-
ticated simulations could help to establish attractors as those which will be
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used in Chaps. 2 and 4 for granular soils. They could also help to understand
granular phase transitions, viz.

• partial or complete decay of grain skeletons, which may be called granular
melting or evaporation;

• recombination of skeletons, i.e. freezing of a granular fluid or condensation
of a granular gas;

• creation and dwindling of polar quantities with shear localization and re-
versals, respectively (Sect. 8.2);

• formation and cracking of dry masonry (Sect. 2.2).

These may be called critical phenomena as they occur without transi-
tion energies at critical points over many length scales, and apparently with
power laws (Bak et al. 1987, Kadanoff 1991). Critical phenomena may be re-
lated with strange attractors; this generic term will be used throughout this
book without mathematical specification. They delimit the applicability of
the methods outlined in subsequent chapters (Chap. 16). It will take a long
time until statistical mechanics with non-conservative interactions can cope
with such cases.

Taking into account pore water in simulations is easy only with full satu-
ration, slow seepage and not too small grains. No problems arise as long as
Darcy’s law and Terzaghi’s principle of effective stress hold valid. Turbulent
flow of pore water and pressure waves therein are beyond the present reach,
both can influence particularly granular phase transitions. Humid granular
soils do not exhibit such kinetic effects, but capillary phenomena can elude
mathematical treatment (Sects. 6.2 and 7.2). Granular dynamics and ther-
modynamics may be combined in simulations, but the desired stochastic uni-
formity of RSEs cannot easily be maintained. Wetting and drying fronts can
exhibit fingering already with fixed grain skeletons, this indicates further crit-
ical phenomena.

Soils with submicroscopic particles are yet too complex for particulate
numerical simulations. Dust grains with water may get stuck in a skeleton so
that they are not affected by Brownian motion, but a net attraction depending
on the ionic strength enables macropores which enhance spatial fluctuations
(Sect. 7.1). Nano-sized layer silicates can form aggregates so that particles and
skeletons with them can hardly be identified. The matter gets more intricate
with solubles, condensates and pore gas, then thermodynamics may at best
provide qualitative hints (Sects. 6.1, 6.3, 7.2 and 7.3).

Clays with invisible particles may appear like soft solids. Continuum solid
models were often taken over for soils, let us see how far this could be le-
gitimate. The simplest constitutive relations for solids are elastic. Only with
them strain is a state variable, this is related with stress via the elastic en-
ergy. A viscous resistance may be added. The algebraic representation is easy
if such relations are linear, but this has little to do with soils. These can be
plastic (from πλάϑω = to shape) like ductile solids. Elastoplastic relations
are introduced more geometrico alongside with hypoplastic ones in Sect. 2.1
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for pore-free solids. This is no more than a preparation for soils as these are
porous.

Porous solids have changing densities and depend on pressure (imagine a
sponge), i.e. they are pyknotropic and barotropic, but not like soils. Elastoplas-
tic and hypoplastic relations represent another kind of pykno- and barotropy,
this is outlined by means of attractors in Chap. 2. Ductile pore-free solids are
argotropic (rate-dependent) by thermally activated dislocations, viscoplastic
relations for them are presented in Sect. 3.1 for preparation. Porous ductile
solids have another pykno- and barotropy than clayey soils, but their argotropy
is nearly the same (Sect. 3.2).

Pore-free solids exhibit force-roughness which matters with reversals, this
is outlined for preparation in Sect. 4.1 without and in Sect. 5.1 with argotropy.
The required internal state variable can at best be captured indirectly by
means of state cycles, these attractors will be presented only more geometrico.
The presentation of constitutive relations with hidden state variables for sand-
like and clay-like materials in Chaps. 4 and 5, respectively, is also mainly
geometrical. It is focused on state cycles as the indeterminacy of initial states
can thus be ruled out. Constitutive relations with hidden variables remain
complex and rather arbitrary already for solids, algebraic details are left aside
as they will be modified.

Solids with open pores can be saturated with water and can be elastic
like a sponge. This model is used in Sect. 11.1 to introduce Terzaghi’s (1925)
diffusion of pore water, but relations for the pore fluid of soils (Chap. 6) differ
from those for porous solids. Soils with net attraction or condensation bridges
of particles appear more solid-like, but require other constitutive relations
(Chap. 7). Sound differences arise also with localizations (Chap. 8). Pore-
free solids serve for the introduction of polar quantities, cracking and erosion
elude continuum approaches. Localizations in solids are often related with
failure, which denotes the inability to meet requirements. This notion is less
appropriate to characterize soils than solids and therefore largely avoided in
the present book.

The issue of fabric exhibits further differences of solids and soils (Chap. 9).
Dislocations and crystallites in solids have no counterparts for skeletons of
mineral particles, and composites of solids differ fundamentally from those of
soils. Soil fabrics in situ are less determinate than industrial solids. Little can
also be taken over from solids for boundary conditions of soils (Chap. 10).
Free soil boundaries enable phase transitions and are shifted by placement
and removal. Solid bodies can interact with soils via interfaces (which can
also arise within the ground), then separations into near- and far-fields are
of use.

Continuum models for the stability of solid bodies and its loss cannot easily
be taken over to soils. The sum of elastic and gravitational energy is minimal
for a stable elastic solid, but not likewise for soil bodies. Upper and lower
bound theorems (Koiter 1958) may at best be applied with due caution in
a heuristic manner to soils (Gudehus 1972). Decay and recombination of soil
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skeletons differ fundamentally from melting of solids and cooling of melts as
granular phase transitions are driven and occur without transition energies.
Critical phenomena delimit the applicability of continuum models for soils in
other ways than with solids and fluids (Chap. 16). One may only speculate
that strange attractors with common features for solids and soils could be of
use for the verge of stability.

Summing up, particulate and continuum models with or for solids, respec-
tively, can at best be of qualitative use for soils. Simulations with element-like
grain aggregates are inevitably over-simplified, but can help to understand
regular attractors and phase transitions. Such approaches are hardly feasible
for soils with submicroscopic particles. Constitutive relations for solids may
serve to prepare those for soils, but their pykno- and barotropy cannot be
the same as for porous solids. Soils require also other initial and boundary
conditions, and losses of stability differ markedly from those of solids.

1.2 Objectivity of continuum soil models

As always in science continuum models for soils should be objective. Require-
ments of objectivity are outlined in the sequel which will be needed throughout
the book. The advantage of attractors will thus be illustrated, and also the
inevitable indeterminacy of soil behaviour. Particulate models are left aside,
but soil particles are considered again and again. The issue of objective con-
tinuum models is complex and can only be touched in this rather condensed
section.

The composition of soil materials can be defined by volume or mass frac-
tions of representative averages. The void ratio e is defined with the solid
volume fraction αs by e = (1 − αs)/αs. The water content is defined as
w = mw/ms with the mass fractions mw and ms of water and solid parti-
cles. With mass densities 
w and 
s of only these fractions w can substitute
e by w = e
w/
s. A fraction of pore gas can be expressed by the degree of
saturation Sr = w
s/e
w.

The kind of solid particles and pore water can be expressed by average
sizes, shapes and minerals plus fractions of dissolved substance. Skeleton and
pore fluid can be characterized by constitutive relations and parameters. Soils
as materials are described by means of representative elements (RSE with S
for soil or skeleton). RSEs are to represent ensembles in a probabilistic sense
so that smooth average fields make sense. Mechanical skeleton properties are
usually defined with uniform RSEs although these cannot exactly be achieved
in experiments. Skeletons with polar quantities require RSEs with gradients
(Sect. 8.2), and RSEs with a hydraulic gradient are needed for the permeability
(Sect. 6.2). Finite elements are often also RSEs with gradients of state.

The kinematics can be formulated by means of thought marker particles
which belong to the skeleton of solid particles. The word ‘skeleton’ is chosen
although there are no hinges, contacts and neighbours of soil particles change
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during rearrangements. Such skeletons may be fixed, but there are no preferred
configurations as soils are amorphous (Greek for shapeless). Displacements of
marker particles have to be referred to arbitrarily chosen reference config-
urations. Changes of shape of soil bodies can thus be identified as long as
skeletons do not decay or lose their topological order.

Displacement fields have to be smoothed for continuum models so that
derivatives can be defined. For this purpose the zig-zag paths of marker par-
ticles have to be substituted by averages of probabilistic ensembles. It is as-
sumed that these are representative and thus objective, this assumption can
only be justified indirectly by comparing predictions and observations. Differ-
entiation of displacements with respect to time t leads to fields of the skeleton
velocity vs. The stretching tensor D is defined with the gradient ∇vs of vs as
D = (∇vs + vs∇)/2 (denoting the transpose of ∇vs by vs∇ and omitting
components for brevity). Temporal changes ė of the void ratio e in convected
RSEs are related with D by ė/(1+e) = trD if the solid density 
s is constant.
Deformation tensors could be defined with gradients of displacements, but
they are physically meaningless for soil skeletons. Only elastic bodies have
deformation states, these are uniquely related with stress states and thus dis-
pensible. Deformations of soil skeletons cannot be used to characterize their
state, only related changes of shape and state with time are physically relevant.

For capturing rotations one may imagine marker particles which indicate
their orientation. Again averaging and smoothing of ensembles is required so
that derivatives get possible (more fictitious as rotations of particles scatter
more than translations). As no configuration is distinguished only the rate of
rotation ωs is relevant. It does not agree in general with the skew-symmetric
part of ∇vs, viz. Ws = (∇vs−vs∇)/2. The difference ωc = ωs−Ws appears
as additional quantity in polar continua. These can be used to capture shear
localizations (Sect. 8.1), oriented particles in shear bands indicate that such
polarizations occur (Sect. 8.3).

The seepage velocity of the pore water can be defined as the average volu-
metric flow relative to the skeleton, vw − vs. Imagine a grain skeleton at one
instance along a plane and the flow of water through it per unit of cross section
and time. Convected marker particles in the water would indicate diffusion in
erratic open pore channels. Seepage can occur with a fixed skeleton (vs = 0) or
can be negligible if skeleton and water move together (vw = vs). In case of full
saturation the gradients of vs and vw are linked with ė via e = wγs/γw. With
pore gas vw −vs can likewise be defined, but is less representative because of
stronger spatial fluctuations. Gas bubbles between particles may be harmless,
but if they occur in macropores they can spoil skeletons. Soils with uniformly
distributed gas channels have low Sr and often negligible vw − vs. With gas
pockets or fingers vw − vs can get chaotic so that averages are insufficient
(Sect. 6.2).

Topological changes of solid particle skeletons confine the use of gradi-
ents. Skeletons get meaningless along edges of solid bodies or tips of cracks.
They can no more be identified if their composition is changed by mixing or
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segregation of solid constituents. Soil skeletons get lost by decay and can be
recombined.

Internal forces of saturated soils can be represented by the fields of a sym-
metric skeleton stress tensor Ts and of the pore water pressure pw. According
to the principle of effective stress they are linked with the total stress tensor
T by T = Ts − pw1 (traction positive). This implies p = ps + pw for the
mean pressures p and ps and is justified by the neutrality of solid particles
with respect to pw (Sects. 2.2 and 3.2). Stress vectors ts = Tsn represent
average force densities of skeletons for thought cutting planes with normal n.
pw can be substituted by the hydraulic height hw of thought piezometers. The
gradient ∇hw is related with the seepage force fs between skeleton and pore
water by fs = γw∇hw with the specific weight of water γw.

For understanding ts and hw one may imagine solid particles along a
plane grid or filter. This takes over the skeleton stress vector ts, whereas hw is
indicated as water height in a thought piezometric tube. Thus Ts expresses the
average density of contact forces of RSEs, i.e. of representative probabilistic
ensembles. The spatial fluctuation of contact forces (which may be expressed
by force chains) is thus not captured. This so-called force-roughness is an
internal state property which cannot be captured easily (Sect. 4.3). Stronger
spatial fluctuations of contact forces in shear bands may be described by a non-
symmetric stress tensor and a couple stress. Such polar stresses can be used
to model shear localizations, but their statistical interpretation is debatable
(Sect. 8.2).

The pore pressure pw is a sufficient state variable for the pore water of sat-
urated granular soils if it is close to a thermodynamic equilibrium (Sect. 6.2).
The pore water of saturated clayey soils can have other states, particularly
near particle surfaces and contacts, then the effective stress principle can get
insufficient (Sects. 6.3 and 7.1). Unsaturated and cemented soils may also
be captured with additional partial stresses, but these are debatable because
of stronger spatial fluctuations (Sects. 7.2 and 7.3). Soils with patterns of
shear bands and cracks can hardly be captured by averages (Sect. 9.1). The
desired uniformity of RSEs can get lost spontaneously by localizations at crit-
ical points (Chaps. 8 and 16). A decay of skeletons implies a loss of their mean
pressure ps while pw remains.

If e and Ts suffice as state variables of skeletons these are called sim-
ple. Then constitutive relations usually express how the stress rate,

◦
Ts=

◦
Ts

+WTs − TsW including convection by rotation, depends on the stretch-
ing tensor D and on the state variables Ts and e. This can be written
◦
Ts= Fs(D,Ts, e) with a tensorial function Fs which is non-linear in D. Fs

should be an isotropic function of D and Ts in order to be independent of the
reference frame. There is no reference time as t appears only in the rates. For
unit-invariance reference quantities should be taken from the skeleton. This
can be achieved by referring Ts to a kind of hardness hs and D to a reference
rate Dr.
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Rate-independence is postulated for a class of idealized skeletons, i.e.
Fs(λD,Ts, e) = λFs(D,Ts, e) for any λ > 0. These are called psammoids
(sand-like) and further specified in Sect. 2.2. Therein Fs is first represented
graphically for cylindrical deformations by so-called response polars. It is
shown with them how straight stretching paths lead towards state limits in-
dependently of the onset so that these are attractors. The same is achieved
with algebraic representations of elastoplastic and hypoplastic relations, thus
key properties of skeletons can be defined objectively. Without all alge-
braic details such attractors are then introduced for other than cylindrical
deformations by means of associated paths and response polars, i.e. more
geometrico.

Critical states are isochoric state limits which are related with a critical
friction angle and a ps-dependent critical void ratio ec. Other limit void ratios
range from ps-dependent lower bounds ed to upper bounds ei. As state limits
can be approached from different initial states they are particularly apt for
validations by means of soil element tests. As long as samples remain uniform
(which is not strictly the case) they can thus exhibit properties independently
of the kind of placement. In other words, state limits are objective with respect
to the starting point and can thus serve to identify simple psammoids.

Simple peloids are similarly introduced in Chap. 3 as representatives of
clay-like soils. They are argotropic (rate-dependent) due to thermally activated
dislocations in their solid particles. This can be expressed by state limits which
are attained by proportional stretching with different amounts D =

√
trD2.

For them the dependence of stress directions on directions of streching can be
the same as for psammoids, but the solid hardness hs depends on D so that a
reference rate Dr is needed. Visco-elastoplastic and -hypoplastic relations are
again represented more geometrico without all algebraic details.

Peloids are capable of creep and relaxation with constant skeleton stress
or shape, respectively. Then the skeleton state tends to an endogeneous at-
tractor by thermal activation, whereas state limits are exogeneous or driven
attractors. Relaxation tends to a thermodynamic equilibrium, isochoric creep
can get stationary and contractant creep leads to an eqilibrium. Dilatant creep
occurs with overcritical stress obliquities (i.e. ratios of mean shear stress and
pressure) and leads to localizations so that the uniformity of RSEs gets lost.
Waiting times should be taken into account in the execution and evaluation
of experiments.

Because of the low permeability kf pore pressure pw and void ratio e
of peloid samples are not generally uniform in element tests. Except for iso-
choric deformations pw and e can get uniform by the diffusion of pore water in
drained RSEs (Sects. 10.4 and 11.1). With suitable boundary conditions, creep
and/or relaxation the skeleton can thus get uniform by thermal activation.
This further endogeneous attractor works with subcritical stress obliquities
of the skeleton so that this gets denser and tends to a state of rest. Skele-
tons with overcritical obliquities lose the desired uniformity spontaneously by
localization as with psammoids.
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Evolutions with several reversals are not sufficiently captured by assuming
simple psammoids or peloids. This is revealed by state cycles of skeletons which
are attained by stretching cycles without or with isochoric average stretching
with constant amount D. Without average stretching these driven attractors
can be symmetric in plots of stress components, and they are asymmetric in
the other case which is called ratcheting. Hysteresis and ratcheting of simple
psammoids are exaggerated with hypoplastic relations and underestimated
with elastoplastic ones. It is shown in Chap. 4 for psammoids how this lack
can be reduced by internal variables which can be related with the internal
force-roughness. This approach works also for peloids, but their argotropy is
as yet taken into account only in few constitutive relations (Chap. 5).

State cycles are proposed in order to validate constitutive relations for
evolutions with reversals. If overcritical stress obliquities are avoided samples
get more uniform by reversals in experiments with suitable boundary con-
ditions. The force-roughness tends also to cycles, and its initial values due
to placement are ironed out. This cannot be observed directly as the force-
roughness is hidden, but is indicated indirectly by the asymptotic response
to cyclic stretching or ratcheting. Elastoplastic relations with back stress and
hypoplastic ones with intergranular strain can thus be judged although the
employed internal variables cannot be observed.

Reversals in RSEs for applications are rarely regular, and experiments with
sophisticated control reveal an inevitable intrinsic irregularity. Only many
small cyclic deformations can lead to an almost elastic response with little
hysteresis. Otherwise elastic fractions get smaller with bigger amplitudes and
with higher average stress obliquities, and can hardly be separated in exper-
iments. Numerical simulations get expensive with many anelastic reversals,
and the accumulation of numerical errors is not easily avoided. A kind of seis-
mically activated creep or relaxation can occur with many reversals. This is
outlined for psammoids in Sect. 4.6 with a granular temperature and indi-
cated for peloids in Sect. 5.5. These approaches are as yet heuristic so that
their range of validity can hardly be judged.

The pore fluid is briefly treated in Chap. 6. For saturated psammoids
Darcy’s law and Terzaghi’s principle of effective stress may suffice. Without
saturation capillary effects can lead to the loss of uniformity of psammoid
RSEs, and in more intricate ways of peloid RSEs. Pore fluids with gas and
ions are heuristic substitutes which cannot be objective if deterministic chaos
arises. Insufficiently understood influences of the pore fluid on skeletons are
addressed in Chap. 7. A net attraction by electro-capillarity with full satu-
ration, or by suction with gas channels, increases limit void ratios and can
lead to irregular macropores. Cemented soils can hardly be captured with an
irreversible net attraction, and such approaches are debatable because of the
inherent chaos.

State limits and state cycles require permanence of skeleton properties.
This is not really given as interactions of solid soil particles are not conser-
vative. This contradiction in terms can be overcome by means of evolution
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equations for skeleton parameters which change alongside with evolutions of
skeleton shape and state. Such approaches are only indicated in Sect. 7.3 as
it suffices that they are feasible.

The desired uniformity of RSEs can get lost by localizations (Chap. 8).
The formation of shear bands can be modelled with polar quantities which
arise in a kind of phase transition. Such models can at best be validated
indirectly by comparing experiments and simulations. This works already with
psammoids, but not yet with peloids due to skeleton viscosity and pore water
diffusion. The formation of shear band patterns indicates a strange attractor
with pattern formation or deterministic chaos. Only the onset at critical points
may be predicted, but rarely further evolutions. This is much more so with
the formation of cracks or hydraulic channels, such critical phenomena are
not yet sufficiently understood.

It is often argued that soils have fabrics which can hardly be reconstituted
so that undisturbed samples are needed. This argument seems to rule out
the use of attractors. Well, not quite (Chap. 9). An RSE with a given kind
of solid particles, void ratio and average skeleton stress can certainly have
different fabrics. As indicated further above e and Ts do not suffice as state
variables if there are several reversals, then an internal variable is needed to
catch the force-roughness. This occurs alongside with spatial fluctuations in
the rearrangement of particles. More complex fabrics arise with localizations
in patterns, these can get chaotic or can be ironed out by many reversals.

Fabrics by state are related with attractors and can thus be generated
again and again, although not in arbitrary successions. Fabrics by composition
can likewise principally be reproduced by placement and further treatment.
Net attraction, cementation, transitory particles and mixing/unmixing are
left aside, they cannot be captured by the attractors proposed in this book.

Modelling evolutions of shape and state requires a continuum framework
for displacements and forces, conservation laws and constitutive relations, and
also initial and boundary conditions. Due to necessarily non-linear constitutive
relations of stress and stretching there is no way around numerical methods
with discretization of space and time, and with iterations for solving incre-
mental equations. Following Babuška and Oden (2006) numerical verification
(how to avoid artefacts) and economy (proper use of capacity and effective
equation solvers) may be taken for given. This book is focused on the valida-
tion of numerical models with physical arguments, and on the identification
for applications. Identification of soil bodies means their representation by
a composition into psammoids and peloids with boundaries including pore
water and gas, and the specification of initial and boundary conditions.

State fields of skeleton and pore fluid in continuum models are generally
not uniform. Only RSEs may be uniform by definition, but they can also
have uniform gradients (needed e.g. for seepage or polar effects) or patterns
(e.g. shear bands or sandwich). Boundary conditions have to be specified for
skeleton and pore fluid according to the kind and state of both. As will be
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outlined in Chap. 10 these conditions have to be simplified, attractors can
help to justify and to delimit such approaches.

Skeletons at free surfaces (Sect. 10.1) can have pressure due to net at-
traction or suction. Otherwise they tend to decay or recombination so that
such boundaries get fuzzy. This can be prevented by a skin or a mattress,
i.e. a deformable solid which changes also the hydraulic boundary conditions.
Boundaries in the soil interior can arise by separation or shear localization,
they may also be assumed between different soils or between near- and far-
fields. Their position is variable as it belongs to the evolution of shape and
state, but sometimes it may be estimated or assumed. Complete conditions
can hardly be given for internal boundaries, but transitions can often be spec-
ified along them. Shear bands with shearing resistance constitute a special
case, usual assumptions for them will be discussed in Sect. 10.2.

Interfaces of solid and soil bodies are also internal boundaries (Sect. 10.3).
They can be partly specified for skeletons and pore water according to rough-
ness and permeability of solids. They can get less determinate by shear local-
ization, opening, mixing or fluidization. The soil-structure interaction (SSI)
requires a further specification of composition and boundary conditions of
solid bodies at or in the ground. Placement and removal of soils and solids
determine initial and boundary condition and have to be simplified for sim-
ulations (Sect. 10.4). Owing to attractors in the large natural and technical
evolutions may be substituted by few steps with suitable order and duration.
This could be justified by ground investigation and field monitoring, simula-
tions with different steps can provide more insight. Judgement is needed as the
ranges of attraction cannot be precisely specified, and as strange attractors
for various critical phenomena are hardly known.

The subsequent chapters are organized by means of symmetry. The high-
est symmetry is assumed in Chaps. 2 and 3 for RSEs, viz. uniformity (in a
probabilistic sense which cannot easily be specified). The variable spatial dis-
tribution of internal forces (force-roughness) employed in Chaps. 4 and 5 for
reversals means already a lack of symmetry. This can be captured without
internal lengths by means of state cycles so that the desired uniformity of
RSEs is maintained. The uniformity gets lost spontaneously at critical points,
critical phenomena (shear localization, cracking, decay) come in with pattern
formation or deterministic chaos. In subcritical regimes the uniformity can
be regained by contractant deformations, small deformation cycles, moderate
ratcheting or the trend towards a thermodynamic equilibrium.

To a certain extent the gain or loss of symmetry can be judged by means of
attractors in the large, one or the other may be naturally or technically given
or may be assumed for simplification. One-dimensional evolutions are consid-
ered in Chap. 11. They are rarely given in situ, but can be approached with
horizontal layers by thermal activation or seismic waves. Radial symmetry
may be assumed for getting estimates of near-fields. Plane-parallel evolutions
without SSI (Chap. 12) may be approached in model tests, or assumed in situ
for oblong fills or cuts. Conventional models can thus be partly justified and
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delimited by physical arguments. This kind of symmetry is also of use for evo-
lutions by fast or slow tectonic far-field conditions. Plane-parallel evolutions
with SSI (Chap. 13) are often considered for design. This symmetry was given
in a number of lab and field tests which can therefore serve for validation.
Design estimates can thus be judged and improved.

Axially symmetric evolutions can more easily be attained in the lab than
in situ (Chap. 14). Triaxial and torsion tests can exhibit this symmetry ex-
cept for localizations and collapse. Filling, excavation, penetration, pulling-out
and silo flow will also be considered with this symmetry, but it can get lost
spontaneously at critical points. Less symmetric evolutions are considered in
Chap. 15. These kinds of symmetry are often assumed for geotechnical design,
and sometimes attained to such an extent that validations can be achieved.
Some cases are indicated for which the passage of solids past soils can lead
to state limit or state cycle fields. Altogether the proposed attractors in the
large enable to develop objective prediction models and to delimit their range
of validity.

Principal limitations by critical phenomena are treated in the final Chap. 16.
At critical points of thermodynamic systems at or near equilibrium pattern
formation or deterministic chaos can arise spontaneously. Pattern formation
can also occur in soils, but requires other models as the interactions of soil
particles are not conservative. Like with other systems far off equilibrium,
deterministic chaos can occur with soils at critical points. These may at best
be recognized with the models outlined in this book, particularly by means of
critical states, but then further predictions get fuzzy or unrealistic.

Summing up, continuum approaches for soils can be objective to a certain
extent with the aid of attractors. The mechanical roughness, i.e. the fluctua-
tion of interparticle displacements and forces, may be circumvented by means
of representative averages. This is no more legitimate in the overcritical range
wherein fluctuations grow spontaneously with localizations. Constitutive re-
lations can be validated by means of attractors for representative elements as
far as these are justified. Initial and boundary conditions can be simplified
and justified by means of attractors in the large. This gets difficult or unfea-
sible at the verge of stability where critical phenomena arise. All that will be
outlined in detail in the following chapters.



2

SIMPLE PSAMMOIDS

How to catch essentials of granular soils in a simple way? Allegedly Einstein
said ‘theories should be as simple as possible, but not simpler’, so what is
adequately simple? One can read in the Internet that Einstein’s philosophy
of science was more subtle. He wrote ‘Our experience hitherto justifies us in
trusting that nature is the realization of the simplest that is mathematically
conceivable’, and ‘But what remains unsatisfactory in this is always the ar-
bitrariness in the choice of those elements that one designates as a priori’
(translated by Howard 2004).

Truesdell and Noll (1965) call materials simple if their stress tensor is a
frame-indifferent functional of a suitable stretching tensor. They give algebraic
representations for fluids and elastic solids, but leave aside plastic materials.
Representative elements (RSEs) of a pore-free solid are considered in Sect. 2.1
for preparation in this first chapter on constitutive relations for soils. Baro-,
pykno- and argotropy (i.e. dependence on pressure, density and amount of
strain rate) are neglected. The only state variable is the deviatoric stress
tensor. Its rate is a function of deviatoric strain rate and stress. This function
is not generally linear in strain rate (otherwise it would be hypoelastic), but
homogeneous of degree one if rate-independence is assumed.

Such a function can be represented by a set of equations with two switch
functions in the frame of elastoplasticity (elp), or by a single hypoplastic
equation (hyp). I represent both more geometrico by response polars, and
show with these how attractors are attained. Proportional stretching leads
to roughly the same state limits by elp and hyp. Cyclic deformations with
big amplitudes lead to nearly the same symmetric state cycles by elp and
hyp, whereas such attractors are attained with small amplitudes only by hyp.
Ratcheting, i.e. a combination of proportional and cyclic stretching, leads to
asymmetric state cycles. This works for arbitrary deformations so that frame-
indifference is granted. One could check the range of validity by means of
these attractors, but this is not my intention in this preparatory section on
solids.

G. Gudehus, Physical Soil Mechanics, Advances in Geophysical and Environmental
Mechanics and Mathematics, DOI 10.1007/978-3-540-36354-5 2,
c© Springer-Verlag Berlin Heidelberg 2011
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Grains of psammoids, i.e. sand-like materials, may be assumed to consist
of such a solid. These idealized soils are neutral with respect to pore wa-
ter pressures, and their granulometric properties do not change although the
grains are deformed. They are barotropic and pyknotropic, but not argotropic.
Their properties will be introduced more geometrico in Sect. 2.2 for cylindrical
RSEs (now S for soil) as then only two stress and two strain components are
needed. State limits are again approached by proportional strain paths, but
these can be contractant or dilatant. Stationary (so-called critical) states are
approached by isochoric deformations, otherwise the stress paths get propor-
tional with increase or decrease of pressure. Only at state limits the void ratio
is determined by the skeleton stress components.

Psammoid skeletons are called simple if their state is fully characterized
by stress components and void ratio. This implies that the memory of path
reversals is swept out by sufficiently big monotonous deformations (Gudehus
et al. 1977). The consequences for strain cycles and ratcheting are shown more
geometrico in Sects. 2.2 and 2.6. The thus attained state cycles as attractors
imply an exaggerated anelastic response if the amplitudes between reversals
are small. Test results indicate (Sect. 2.6) that additional state variables are
needed for evolutions with reversals in general (Sect. 4.3), so you have to pay
a price for the proposed simplicity.

There is no need to repeat textbooks on CSSM (Critical State Soil Mechan-
ics), this kind of elp is therefore presented only more geometrico in Sect. 2.3.
You can see without algebra how state limits look like, how they are attained
and in which range they work. In CSSM they are taken as boundaries of
elastic ranges which change with void ratio, and hypoelastic relations are as-
sumed inside. Hypoplastic relations for simple psammoids are also introduced
more geometrico (Sect. 2.4), their algebraic representations are hardly more
transparent than elastoplastic ones. The approach to state limits is shown by
response polars and associated paths. In that respect the differences of elp
and hyp appear minor, but hyp has a wider range of application. Bigger dif-
ferences arise with reversals, in particular in the approach to state cycles as
attractors due to strain cycles and ratcheting.

Cylindrical RSEs were chosen for the ease of presentation, but validation
tests are not easy with them. So-called triaxial tests (I can see only one axis)
tend to a loss of uniformity even if the sample is not slender and the plates
are smooth (Sect. 14.1). State limits cannot be approached with the desired
uniformity, particularly due to shear localization (Sect. 8.2). After evaluating
the literature I came to the conclusion that state limits are better captured
by hyp than by elp (Sect. 2.5). The uniformity is improved by reversals if
overcritical stress obliquities are avoided, but only few tests of this kind were
reported (Sect. 2.6). These confirm elp only for some aspects of single reversals,
and hyp only for sufficient deformations between reversals.

If cuboidal RSEs are deformed without shearing three principal stress and
strain components are needed. Then state limits can be represented by cuts
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through and normal to the isotropic axis in the space of stress components
(Sect. 2.7). Their approach by proportional strain paths is steered by three-
dimensional response polars, only projections of them can be shown. Samples
can remain uniform in biaxial devices with two pairs of smooth plates and
a pressurized membrane. So-called truly triaxial devices can better maintain
the desired uniformity, particularly if they work with nested smooth plates,
reports with them are thus apt for validation. Elp and hyp are presented more
geometrico, major deviations among them and from reality arise again with
reversals (Sect. 2.8).

Simple shearing is not that simple as four stress and two strain compo-
nents are needed, and as the required uniformity can hardly be maintained in
experiments. State limits with elp and hyp, represented more geometrico by
projections with only two components, are rather similar, but only few test re-
ports are apt for validation (Sect. 2.9). Bigger differences of elp and hyp arise
again with reversals, this is particularly revealed by asymptotic state cycles
(Sect. 2.10). As with cylindrical deformations anelastic effects after reversals
are underpredicted by elp and overpredicted by hyp. These lacks could not be
removed by hybrids of elp and hyp.

General deformations of simple psammoids would require six stress and
six strain components. In addition to graphical presentations with projections
you will find tensor relations in Sect. 2.11. This is to show how objectivity
(Sect. 2.2) can be achieved for arbitrary boundary value problems. Attractors
for monotonous, cyclic and pulsating deformations can thus be introduced,
but can hardly be validated in general. This chapter is rather long, and so
is its introduction. On this base the following chapters on soil behaviour are
shorter (I promise you) although the matter will not get easier.

2.1 A prelude on solids

Before dealing with skeletons of solid grains the solid itself may be considered
in order to introduce some concepts. We begin with uniaxial deformations,
i.e. cases where only one stress and one strain component suffice, say σ and
ε (sign convention of mechanics, i.e. pressure and shortening negative). The
rates σ̇ = dσ/dt and ε̇ = dε/dt could be corrected for large strains, but this is
not essential here. There is no radial stress, and volume changes are assumed
to be negligible. A representative solid element (RSE) is assumed to be and
remain homogeneous, thus bulging or necking and shear localization or crack-
ing are excluded. Viscous effects (i.e. rate-dependence, creep and relaxation)
and fatigue are also left aside.

With these idealizing restrictions the mechanical behaviour can be repre-
sented by σ-ε-curves as shown in Fig. 2.1.1a. For monotonous stretching (A)
the response is first linear, then a plastification begins, finally σ remains at a
strength limit (twice cohesion c). For monotonous shortening (B) a reflected
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Fig. 2.1.1. Stress-strain curves of a pore-free solid (a), and of substitutes by an
elastoplastic (b) and a hypoplastic relation (c)

plot is the simplest assumption. Un- and reloading with non-symmetric σ-
changes leads to a stepwise increase of ε (called ratcheting, C). Cyclic defor-
mation leads to increasing hysteresis for bigger amplitudes (D).

The simplest elastoplastic model works with a plastic strain rate ε̇p via

a) σ̇ = E
(
ε̇ − ε̇p

)

b) σ2 < 4c2 : ε̇p = 0

c) σ2 = 4c2 & σε̇ < 0 : ε̇p = 0

d) σ2 = 4c2 & σε̇ > 0 : ε̇p = ε̇

(2.1.1)

and is represented by Fig. 2.1.1b. For a monotonous deformation starting from
σ = 0 the response is linear for | σ |< 2c , and perfectly plastic for | σ |= 2c
(A, B). There is no hysteresis in case of | σ |< 2c (C) for un- and reloading,
and also for cyclic deformations. Hysteresis (D) or ratcheting (E) are only
obtained if | σ |= 2c is repeatedly reached.

The simplest hypoplastic model reads

σ̇ = E(ε̇ − σ

2c
| ε̇ |) (2.1.2)

and is represented by Fig. 2.1.1c. At the onset with σ = 0 the linear relation
σ̇ = Eε̇ is obtained by (2.1.2) as by (2.1.1). Fully plastic flow, i.e. σ̇ = 0 with
σε̇ > 0, is obtained by (2.1.2) for σ = 2cε̇/ | ε̇ |= 2c sgnε̇ , again as by (2.1.1).
For cases in between, i.e. for 0 <| σ |< 2c, the slope of σ − ε-curves changes
smoothly in the range 2E ≥ σ̇/ε̇ ≥ 0 (A, B), whereas it is E by (2.1.1).
For unloading the σ̇/ε̇ by (2.1.2) starts with 2E and reaches E for σ = 0,
for reloading the response is the same as for first loading (C). This leads
to exaggerated ratcheting for asymmetric σ-cycles. For cyclic deformation
hysteresis is obtained which increases smoothly with increasing amplitude (D).

Both (2.1.1) and (2.1.2) relate evolutions of state and shape. The state is
characterized by a single scalar variable, viz. the uniaxial stress σ. There is a
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state limit, described by | σ |= 2c , for which the stress does not change with
further energy input by imposed deformation, i.e. then σ̇ = 0 holds for σε̇ > 0.
The range | σ |≤ 2c cannot be left by deformations. The differential stiffness
σ̇/ε̇ is determined by stress and direction of strain rate, i.e. by σ and sgn(σε̇).
In other words, σ̇ is a function of σ and ε̇, σ̇ = f(σ, ε̇). Rate-independence is
given by f(σ, λε̇) = λf(σ, ε̇) for λ > 0. Differential non-linearity is implied as
f(σ,−ε̇) �= −f(σ, ε̇) holds in general.

Apart from these common features of (2.1.1) and (2.1.2) there are differ-
ences. The function σ̇ = f(σ, ε̇) is represented by three equations and two
switch functions in case of elastoplasticity, or by one hypoplastic equation
without switch function. σ̇/ε̇ is the same in both cases for σ = 0, and for
| σ |= 2c with σε̇ > 0. For the range in between, 0 <| σ |< 2c, elastic be-
haviour is obtained with (2.1.1), whereas (2.1.2) always yields anelastic effects.
Hysteretic σ − ε-cycles and ratcheting with asymmetric stress cycles are ob-
tained with cycles by (2.1.1) only if | σ |= 2c is repeatedly reached, and always
by (2.1.2). A further difference appears for unloading from a state limit, i.e.
for σε̇ < 0 with | σ |= 2c : (2.1.1) yields σ̇/ε̇ = E, and (2.1.2) σ̇/ε̇ = 2E.

The simplest multiaxial cases require two stress and two strain compo-
nents. Deformations of cuboidal RSEs without rotation of principal axes be-
long to this group if only deviators are considered. Two of the three deviatoric
stress components

σ∗
i = σi + p (i = 1, 2, 3) (2.1.3)

suffice as the mean pressure

p = −1
3
(σ1 + σ2 + σ3) (2.1.4)

is assumed to have no influence, and two of the three deviatoric strain rate
components

ε̇∗i = ε̇i −
1
3
ε̇v (i = 1, 2, 3) (2.1.5)

suffice if the rate of volume change

ε̇v = ε̇1 + ε̇2 + ε̇3 (2.1.6)

is zero. Thus the asterix may be dropped for strains, ε̇∗i = ε̇i. Their rates should
be referred to the actual length for large deformations. Related evolutions
of state and shape can be represented by associated stress and strain paths
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Fig. 2.1.2. Deviatoric stress paths (a) and related strain paths (b) of a pore-free
solid

in deviator planes, Fig. 2.1.2, with Lode’s stress direction angle ασ. Stress
paths (a) cannot leave a certain range, its boundary represents state limits.
In case of isotropy a change of principal components does not matter, with
this symmetry one 60◦-sector suffices. Thus two deviatoric stress invariants,
viz. the mean shear stress

τ̄ =
2
3

√
σ∗2

1 + σ∗2
2 + σ∗2

3 (2.1.7)

and the Lode parameter

cos 3ασ =

√
2
3

3

√
σ∗3

1 + σ∗3
2 + σ∗3

3 /τ̄ (2.1.8)

suffice as state variables, p by (2.1.4) is not needed. As plotted in Fig. 2.1.2a,
state limits are assumed to be independent of cos 3ασ for simplicity.

Strain paths (Fig. 2.1.2b) are only restricted by ε̇v = 0. Deviatoric strain
invariants are not needed as they are no state variables. The amount of strain
rate

D =
√

ε̇1
2 + ε̇2

2 + ε̇3
2 (2.1.9)

and the strain rate direction angle αε̇ suffice for the kinematics.
A proportional strain path (e.g. A) can be described by its direction αε̇

and by numbers for the sequence (e.g. 1–3). The related stress path is likewise
labelled. It may be straight up to a state limit, and remains there (which means
ductility) with further proportional deformation. Reversals can be represented
by further numbers at the considered lines (e.g. 2–3). It can happen that the
related stress path also remains on the previous straight line (e.g. 2–3 in
Fig. 2.1.2a). This may also work with a second reversal and with further ones.
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Only then, i.e. with fixed ασ and αε̇, stress-strain curves convey the same
information as related stress and strain paths. For instance, Fig. 2.1.1 implies
ασ = αε̇ = 0 and 180◦.

For paths with sideward bends (e.g. B in Fig. 2.1.2) representations by
stress-strain diagrams are insufficient and can be misleading. A strain path
e.g. may consist of two straight sections making an acute angle. The stress
path looks similar, but some steps in it may be confounded if they lie at a
state limit. Response polars serve for graphical representation of stress-strain
relations (Fig. 2.1.3). They represent stress rates related with strain rates of
different directions αε̇ (a) and unit amount, i.e. D = 1. The responses are
polar diagrams of stress rates with directions ασ̇ and labels for the related αε̇

(e.g. a, b...). They can be drawn in the stress plane (b). A polar should not
have jumps or loops as for one strain rate there should be only one stress rate
response. It should also be convex in order to secure physical and numerical
robustness with respect to small changes of αε̇.

The simplest elastoplastic relation (abbreviated: elp) for cuboidal defor-
mations can be written

a) σ̇∗
i = 2Gε̇e

i = 2G(ε̇i − ε̇p
i )

b) f = Σ σ∗2
i − 4

9c2 < 0 : ε̇p
i = 0

c) f = 0 & σ∗
i ε̇i < 0 : ε̇p

i = 0

d) f = 0 & σ∗
i ε̇i > 0 : ε̇p

1/ε̇
p
2 = σ∗

1/σ∗
2

(2.1.10)
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Fig. 2.1.3. Deviatoric stress response polar (b) for unit strain rates with different
directions (a)
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with i = 1, 2, 3 and the summation convention, e.g. σiε̇i = σ1ε̇1 +σ2ε̇2 +σ3ε̇3.
E = 2G holds due to incompressibility. The strain rate is thus decomposed
into elastic and plastic parts (a), the latter disappear in the elastic range
(b). If the flow condition f = 0 holds and work is extracted (unloading) the
response is again elastic (c). Plastic strains appear only for f = 0 if work is
introduced (d). Their direction is given by the gradient of f (associated flow
rule), here the directions of plastic strain rate and stress agree.

Figure 2.1.4a shows deviatoric stress paths by elp due to a proportional
strain path (b). It suffices to consider one strain rate direction αε̇ and two
initial stress states, viz. A inside of and B at the boundary. The response polars
by (2.1.10) are circles inside of and semicircles at the boundary. For B the
stress path moves along the boundary until ασ = αε̇ is attained. With a longer
transition case A leads to the same state limit, this is thus a driven attractor
which depends only on αε̇. The transitions are steered by the response polars,
thus a kind of fixed point theorem works more geometrico.

Figure 2.1.5a shows stress paths by elp due to strain cycles (b) with initial
states A and B as before. A strain cycle with a small amplitude (I) leads to
a stress cycle with the same shape, but different centres which are shifted
differently. A big strain cycle (II) leads repeatedly to state limits, and to a
unique stress cycle of another shape after different shifts for A and B. This
state cycle is another driven attractor. With elp it arises only by sufficient
amplitudes so that state limits are repeatedly attained. Imagine the response
polars of Fig. 2.1.4 to see how this attractor works. According to shape and
size of strain cycles the attained state cycles have different shapes. They are
confined by state limits and only with them symmetric in the deviator plane.

Figure 2.1.6a shows stress paths by elp due to strain-controlled ratcheting,
i.e. superposition of cyclic and proportional straining (b) with initial states
as before. State limits are repeatedly attained in the direction of average
straining. The state cycles are asymmetric therefore, and are attractors as
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Fig. 2.1.4. Stress paths and response polars (a) by the elastoplastic relation (2.1.10)
for proportional straining (b)
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Fig. 2.1.6. Stress paths (a) by the elastoplastic relation (2.1.10) for forced ratch-
eting (b)

they are independent of the initial state. They have the same orientation
as the average strain path, their shape depends on shape and size of the
superimposed strain cycles. Imagine response polars to see that and how such
state cycles are attained.

The simplest hypoplastic relation (abbreviated: hyp) for cuboidal deforma-
tions can be written

σ̇∗
i = 2G(ε̇i −

√
9
5

σ∗
i

2c
D) (2.1.11)

with i = 1, 2, 3 and D by (2.1.9). It is strikingly simpler than (2.1.10). The
transition to state limits by hyp is shown by stress paths in Fig. 2.1.7a for
straight strain paths (b). The response polars are circles with radius 2G. They
are centric for σ∗

i = 0, touch the stress boundary for σ∗
i , and are eccentric

between these bounds. For a strain path with the same direction as the initial
stress, αε̇ = ασ, the stress path is straight and remains at a state limit (A).
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Fig. 2.1.7. Stress paths and response polars (a) by the hypoplastic relation (2.1.11)
for proportional straining (b)

Otherwise the stress path is curved up to the limit (B). These attractors are
thus the same as by elp, but transitions to them are smooth. Response polars
reveal how transitions take place.

The asymptotic response to strain cycles with hyp is shown in Fig. 2.1.8
by associated stress (a) and strain paths (b). Imagine again response polars to
understand transitions. Small centric stress cycles and associated strain cycles
are similar (A). Other than with elp the attained cycles are always symmetric,
transitions need more reversals for smaller amplitudes and wider distances of
onset and asymptote. Asymptotic stress cycles due to bigger strain cycles are
shaped by the stress boundary (B).

Non-symmetric stress cycles are attained by ratcheting (b) with small
amplitude (I) so that the stress bound is never reached (Fig. 2.1.9a). State
limits are repeatedly reached by ratcheting with big amplitude (II), thus stress
cycles are shaped. The asymptotic response does not depend on the initial
state (A or B as before), so the attained state cycles are attractors. This
could be shown by means of the response polars of Fig. 2.1.7, whereas an
algebraic proof would be hard with the non-linearity of (2.1.11).

Shearing requires in-plane and out-of-plane stress and strain components
in general, Fig. 2.1.10a. Constitutive relations can be represented by asso-
ciated stress paths (b) and strain paths (c). Similarly as shown above for

σ3*
σ2*

σ1*

ε3
ε2

ε1

a) b)

I

A

BII

I

II

II I

Fig. 2.1.8. Stress paths (a) by (2.1.11) for cyclic straining (b)
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related shearing paths (c)

cuboidal deformations driven attractors arise for proportional shear paths
(I), cyclic shearing (II) and ratcheting (III). Differences of elp and hyp arise
again in transitions, with small strain cycles and for ratcheting with small
amplitudes. Approaches are only indicated more geometrico as algebraic rep-
resentations will not be needed in the sequel.

One-dimensional stretching or shearing are implied as special cases where
strain paths lie on a straight line. The stress paths tend to parallel lines. Only
thereafter scalars suffice for strength and stiffness, otherwise these notions
can be misleading. Only then ductility and hysteresis can be precisely defined
as with Fig. 2.1.1. As shown e.g. in Fig. 2.1.10, shear ratcheting leads to a
pulsating resistance in the direction of mean shearing which can scarcely be
the one for monotonous shearing.

The outlined relations can be extended for arbitrary deformations. At state
limits the deviatoric stress tensor T∗ is a function of the stretching tensor D
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only (with trD = 0). This function is isotropic due to frame-indifference,
therefore T∗ and D are coaxial and the function can be fully represented in

the deviator plane. The objective stress rate
◦

T∗ (Sect. 1.2) is related with D
and T∗, this can be written as

◦
T∗ = F(T∗,D) (2.1.12)

with an isotropic tensor function F of T∗ and D. Rate-independence requires
F(T∗, λD) = λF(T∗,D) for any λ > 0. Irreversibility requires F(T∗,−D) �=
−F(T∗,D) in general, otherwise the response would be hypoelastic. State
limits should be obtained as asymptotic solutions of (2.1.12) for D = const.
Algebraic representations of F have to satisfy these requirements and to re-
produce the relations for cuboidal deformations. This can be achieved by

F = 2G(D − Da) (2.1.13)

with an anelastic stretching Da. For elp Da is linear in D for sectors separated
by two switch functions, for hyp Da is proportional to T∗ and to D =

√
trD2,

and thus nonlinear in D.
The range of validity may only be touched by means of physical arguments

as this section is a preparation for simple psammoids. Rate-independence
is empirically justified for hard solids although any anelastic behaviour is
at least slighty rate-dependent (Sect. 3.1). Incompressibility and pressure-
independence are sufficiently given for mineral grains (Sect. 2.2), but cannot
hold in general (Sect. 8.1). Anisotropy of grain materials may be neglected as
it will scarcely influence grain skeletons. Ductility is certainly not given in gen-
eral (Sect. 8.1), but implied by assuming granular permanence for psammoids
(Sect. 2.2). Heating by rapid deformations is left aside (Sect. 3.1), and fatigue
by reversals may be neglected as long as no pores or cracks arise (Sect. 8.1).
The asymptotic response to strain cycles or ratcheting reveals substantial dif-
ferences of elp and hyp, this will be further treated in Sect. 4.1.

To sum up, idealized solid elements serve to represent simple elastoplastic
and hypoplastic relations. Semicircular and excentric circular response polars,
respectively, lead to state limits for proportional deformations, and to state
cycles for cyclic deformations and ratcheting. Neglecting pressure and density
changes, and also rate-dependence and fatigue, this is a preparation for simple
psammoids to be introduced in the sequel.

2.2 An introduction of simple psammoids

Consider a statistically homogeneous skeleton of solid grains as a represen-
tative soil element (RSE). It is called a simple psammoid (ψάμμoς = sand,



2.2 An introduction of simple psammoids 27

oίδoς = similar) if its state is sufficiently represented by stress and density,
and if the granular properties are permanent. Adhesion and cementation of
grains are excluded. In the simplest case of cylindrical symmetry two principal
components suffice, e.g. σs1 and σs2 = σs3 with subscript s for skeleton and
the sign convention of soil mechanics, i.e. pressure positive. σs1 and σs2 may
be imagined as grain contact force densities in axial and radial directions.
These spatial averages represent internal forces in the simplest manner. Such
a grain skeleton can only exist with pressure, i.e. σs1 > 0 and σs2 > 0. Other
than for solids, the mean skeleton pressure

ps = (σs1 + 2σs2)/3 (2.2.1)

is evidently important: the bigger ps, the stiffer and stronger the skeleton.
This property is called barotropy (βαρύs = heavy, τ
óπos = kind).

Anisotropic stress states can be represented by points in a plane σs1 vs.√
2σs2, Fig. 2.2.1. Deviations from isotropic states with σs1 = σs2 can be de-

scribed by the deviator

σ∗
s =

2
3
(σs1 − σs2) = σ∗

s1 = −σ∗
s2 (2.2.2)

or by the stress obliquity

tan ψs = tan(σ∗
s /ps) . (2.2.3)

This notion is taken over from Roscoe (1970) and will be substituted by
an invariant in Sects. 2.7 and 2.11. In many papers p′ is written for ps, q
for (σ1 − σ2) and η for (σ1 − σ2)/p′. As far as these symbols were used in
experimental reports they will be taken over in the sequel. Our notations are
more appropriate for extensions later in this chapter. As traction is excluded,
i.e. with σsi ≥ 0 , ψs is bounded by

−1/
√

2 ≤ tan ψs ≤
√

2 . (2.2.4)
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Fig. 2.2.1. Stress (a) and strain components (b) of a cylindrical grain skeleton
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A water-saturated skeleton has an absolute pore water pressure pw, this is
often substituted by u = pw − pa with the atmospheric pressure pa. The total
pressure components can be expressed by

p1 = σs1 + pw , p2 = σs2 + pw , (2.2.5)

or more conventionally by

σ1 = σ′
1 + u , σ2 = σ′

2 + u , (2.2.6)

wherein pa is tacitly subtracted from σ1 and σ2. The so-called effective stress
σ′ is thus identified as skeleton stress σs. Equation (2.2.5) states that a change
of pw in a fixed skeleton changes the total pressure components by the same
amount. Imagine a skeleton kept under stress by filter plates to understand
that the mean pressure of the grains changes by the same amount as pw.
Equation (2.2.5) holds true also if gas bubbles are trapped between the grains.
For skeletons with gas channels or pockets other decompositions than (2.2.5)
are needed (Sect. 6.2). Dry skeletons are included with pw = 0 or u = 0.

As in Sect. 2.1 the solid grain material is assumed to be neutral with
respect to its mean pressure and to have a constant density, so only deviators
are relevant for the grain behaviour. Combined with (2.2.5), the skeleton is
therefore neutral with respect to pw. This is the so-called principle of effective
stress. When proposing (2.2.6) Terzaghi (1936) used already the argument of
neutrality of the grain solid.

As the grain volume is assumed to be constant the density of the skeleton
can be substituted by the void ratio e, i.e. the ratio of void volume and solid
volume. e can range within upper and lower ps-dependent bounds. The pyk-
notropy (πυκνóς = dense), i.e. density-dependence of the skeleton is related
with its barotropy, but uniquely only in cases which will be explained further
below.

Deformations of our cylindrical RSE can be expressed by strain compo-
nents ε1 and ε2 = ε3 (positive for shortening by soil mechanics convention).
Height h and diameter d of the RSE can change with time t. With h = h0

and d = d0 for t = t0 the change of shape can be described by

ε1 = ln(h0/h) , ε2 = ln(d0/d) . (2.2.7)

These logarithmic strains work also for large amounts, for small ones they
imply the simpler definition ε = �l/l. The strain rates

ε̇1 =
dε1

dt
= − ḣ

h
, ε2 =

dε2

dt
= − ḋ

d
(2.2.8)

are independent of the arbitrary reference size. A skeleton of grains has no
preferred configuration as one of bones with joints, therefore its deformation
is not a state variable. Spatial fluctuations of relative grain displacements are
not captured by strain rates.
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The volumetric strain and its rate are given by (densification positive)

ευ = ln(h0d0
2/hd)2 , ε̇υ = ε̇1 + 2ε̇2 . (2.2.9)

Due to the assumed constant grain density ευ is related with e by

ė = −(1 + e)ε̇υ . (2.2.10)

Deviations from isotropic deformations with ε̇1 = ε̇2 can be described by the
deviatoric strain rate

ε̇∗ =
2
3
(ε̇1 − ε̇2) = ε̇∗1 = −ε̇∗2 , (2.2.11)

or by the strain rate obliquity

ψε̇ = arctan(3ε̇∗/ε̇υ) , (2.2.12)

this is shown in Fig. 2.2.1b.
Strain rates are assumed to be related with stress rates, this may be written

as

σ̇si = fi(σsi, e, ε̇i) (2.2.13)

with i = 1 and 2 for cylindrical symmetry. For simple psammoids the functions
fi are assumed to have the properties

a) fi(λσsi) = λmfi(σsi) , λ > 0, 1 ≥ m > 0

b) fi(λε̇i) = λfi(ε̇i) , λ > 0

c) fi(−ε̇i) �= −fi(ε̇i) .

(2.2.14)

(a) reflects barotropy: due to increasing contact flats the skeleton is stiffer
with higher ps, (b) means rate-independence, which seems to be justified if
the grain material is also rate-independent (otherwise cf. Sects. 4.2 and 4.6).
Non-linearity in ε̇i (c) means that the skeleton is not hypoelastic, otherwise
fi(−ε̇i) = −fi(ε̇i) would hold. Pyknotropy means that fi depends also on e.

Algebraic representations of fi should reflect mechanical properties. Before
specifying the latter some selection criteria for the choice of representations
may be listed:

S1: the explanation should be fully tractable,

S2: the representation should be objective and work for arbitrary deforma-
tions,
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S3: a computer code of it should be freely available via Internet,

S4: the set of parameters should be robustly determinable and should cover
the intended range of states and deformations.

As representations tend to be intricate S1 is not always a matter of course.
Without S2 they could not be used in arbitrary boundary value problems. A
user could hardly check the range of applicability without S3. S4 is needed for
safety and economy, and is also reasonable as far as collective grain properties
are permanent.

The most important properties are exhibited at state limits, which may be
assumed as shown in Fig. 2.2.2. For them the stress and strain rate obliquities,
expressed by ψs and ψε̇ via (2.2.3) and (2.2.12), are uniquely related (a).
ψs = ψε̇ = 0 holds in the isotropic case (i). Critical states are stationary for
isochoric (constant volume) proportional deformations. This means ε̇1 = −2ε̇2

by (2.2.9) and (2.2.10), or ψε̇ = ±90◦ instead (c and −c). For them the stress
condition

(σs1 − σs2)2/(σs1 + σs2)2 = sin2 ϕc (2.2.15)

is postulated with a constant critical friction angle ϕc independently of ps, e
and sign of ε̇1. Contractant state limits between i and ± c have |ψε̇| < 90◦

and ṗs > 0. Cracking may be imagined for lower e-bounds (d and −d) with
ψs-bounds by (2.3.4). ψε is bounded by

−1 − 1/
√

2 ≤ tan ψε̇ ≤ 1 +
√

2 . (2.2.16)

Two critical stress obliquities tan ψsc are determined by (2.2.15). Stress states
with |tan ψs| < |tan ψsc| are called subcritical, those with > overcritical. As
the skeleton requires σsi > 0 states with cracking are outside the allowed
range, but they represent reasonable bounds. Dilatant state limits are close
to peak states for which ε∗ changes monotonously with constant σs1 and σs2,
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Fig. 2.2.2. State limits of simple psammoid cylinders: (a) obliquities, (b) limit void
ratios vs. pressure, (c) relative void ratio vs. stress obliquity
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and the amount of stress obliquity is maximal vs. strain. For them a peak
friction angle ϕp can be defined by

(σs1 − σs2)2p/(σs1 + σs2)2p = sin2 ϕp , (2.2.17)

this dependent state variable is sometimes of use. Shear localization is left
aside (Sects. 8.2 and 14.1).

Limit void ratios depend on ps and ψs. They are lower with bigger ps

and with bigger | ψs |, Fig. 2.2.2b, as the grain contact flats get wider with
bigger contact forces and with increasing deviations of them from the contact
normals. ps can be scaled by a granulate hardness hs (Sect. 2.4). A logarithmic
ps – scale is chosen to cover the ps – range from almost 0 to an upper bound
due to grain crushing. For each ps the upper e – bound is ei for ψs = 0, the
lower bound is ed for ψs at one of the bounds by (2.2.4). The critical void
ratio ec for ψs by (2.2.15) and (2.2.3) is about halfway between ei and ed. As
the e vs. log ps curves are similar for different ψs the relative void ratio

re = (e − ed)/(ec − ed) (2.2.18)

with ec and ed for a given ps is of use. re depends on ψs for state limits as
plotted in Fig. 2.2.2c. As a consequence the peak friction angle ϕp by (2.2.17)
depends on re and is nearly the same for axial shortening and extension with
a given re.

State limits should not be mixed up with the so-called failure of initially
cylindrical samples. This is usually defined by the maximum of an average
deviator |σ∗| (‘peak’) which is attained by axial shortening or extension with
constant average confining pressure σ̄s2 (‘drained’) or constant average void
ratio ē (‘undrained’) of saturated granular samples, Fig. 2.2.3. With σ̄s2 =
const peaks in σ̄∗

s vs. ε̄∗ plots (a) are higher with dense than with loose
samples. Peak average stress circles lead to ps- and e-dependent friction angles
ϕp (b). Samples get non-uniform in many devices before a peak, and always
beyond it (Sect. 14.1). ϕp depends on the average relative void ratio r̄e, this
changes differently near a peak (c). With ē=const peaks in σ̄∗ vs. ε̄∗ plots
are enhanced by bulging or necking, more so with loose samples (d). Peak
skeleton stress circles suggest different friction angles (e) instead of a single
ϕc. r̄e attains different values at peak (f). Failure means the inability to meet
requirements and may be used for structures at or in the ground (Chaps. 13
and 15), but this notion is not apt to characterize granular matter.

State limits can be approached with suitable deformations independently
of the initial state. This can be shown graphically by means of response polars
(Gudehus 1979), Fig. 2.2.4. These are polar diagrams of stress rates (a) for
unit strain rates with different ψε̇ (c). For the latter the magnitude of strain
rate

D =
√

ε̇1
2 + 2ε̇2

2 (2.2.19)
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is D = 1 so that ψε̇-labels suffice for a set of polars. Different σ̇si-polars with
labels for re exhibit pyknotropy; ė by (2.2.10) and ṗs could be depicted by
a further polar (b), but this is rarely needed. For representing a continuous
and unique response the polars have to enclose the origin, and they should be
convex and continuous. Barotropy and pyknotropy require bigger polars for
higher ps and lower e, respectively. The shape of σ̇si-polars depends on ψs as
the spatial distribution of grain contact forces depends on the skeleton stress
components.

The approach to state limits can be shown by suitable associated strain
and stress paths with the aid of response polars, Fig. 2.2.5. Straight strain
paths (a) are chosen with constant ψε̇ in the range by (2.2.16). A contractant
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Fig. 2.2.5. Proportional strain paths (a) are related with stress paths (b) and void
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state limit between i and c or −c as by Fig. 2.2.2 is approached with increasing
ps and constant re and ψs for the given ψε̇ (A). An isochoric (i.e. volume-
conserving) path leads to a critical state with ψs by (2.2.15), re = 1 and ps by
Fig. 2.2.2b, and the state should not change afterwards. In the transition ps

decreases for initial re > ca. 0.5 (B), otherwise ps increases. A dilatant state
limit is approached with decreasing ps, it has an overcritical |ψs| and a lower
than critical re by Fig. 2.2.2 between ± c and ± d (C).

An algebraic representation of fi in (2.2.13) should reproduce state limits
as attractors, i.e. asymptotic solutions independently of the start, for strain
paths with constant ψε̇ in the range by (2.2.16). This is exhibited by response
polars. The plot of e vs. log(ps/hs) (Fig. 2.2.2c) reveals that state limits cannot
be approached with arbitrary initial relative void ratios re. Contractant and
isochoric deformations can lead to grain crushing if they start with a too low
e. Dilatant deformations with a too high e initially can lead to a decay of the
skeleton before a state limit is reached. Isochoric deformations can lead to a
decay if e exceeds the ec for ps → 0.

Further well-known properties should be reproduced for certain monoto-
nous strain paths, i.e. with constant sign of the deviatoric strain rate ε̇∗, viz.
(Fig. 2.2.6)

M1: isochoric (i.e. constant e) deformations with re > 1 initially lead to a
critical state via a peak of |σ∗

s | ,

M2: isobaric (i.e. constant ps) deformations with re < 1 initially lead to a
critical state via a peak of |σ∗

s | ,

M3: for isobaric deformations the directions of stress and strain rate are nearly
proportional to each other.

The response at the onset in such cases is less important as initial states in
experiments are rather arbitrary, whereas the named properties count for the
vicinity of state limits. M1 was observed with undrained saturated samples
if they were looser than critical at the onset. M2 was observed with dry or



34 2 Simple psammoids

εs1

a)

√2εs2

σs1

√2σs2

c)

i

–c

ic

–c

d)

e

log (ps/hs)

i
c
d

M1

M2

σs

ε

b)

M1

M2

*

*

M1

M2

M2

M1

Fig. 2.2.6. Monotonous deformations (a) with constant e (A) or ps (B) are related
with stress paths (b) so that the curves of stress deviator vs. strain deviator (c)
go through a peak if the initial void ratio is high or low enough, respectively (d)
(qualitative)

saturated and drained samples, also if any linear combination of σs1 and σs2

instead of ps was kept constant. As shear localizations cannot be avoided
beyond a peak critical states appear in narrow shear zones (Sect. 8.2). This
problem can be circumvented by assuming uniform deformations, i.e. by con-
sidering psammoids as simple materials in the sense of Sect. 3.2. M3 is often
written as

ε̇p
1

ε̇p
2

= −2
σs2

σs1
tan2(45◦ ∓ ϕc/2) (2.2.20)

with plastic strain rates and + for axial shortening and − for extension.
Equation (2.2.20) was introduced as stress-dilatancy relation by Rowe (1962).
He derived it by assuming a minimum of the ratio of ‘work in’ and ‘work
out’, σ1ε̇1/2σ2ε̇2, with respect to different sliding directions. De Josselin de
Jong (1976) derived (2.2.20) without this extremum principle and pointed out
that it cannot hold in general. A precursor of (2.2.20) was proposed by Taylor
(1948) for simple shearing (Sect. 2.8). Extensions of (2.2.20) for other than
cylindrical deformations will be treated in Sects. 2.7 and 2.8.
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Plots like Fig. 2.2.6c are conventionally described by means of stiffness and
strength. This is avoided here as it can be misleading due to barotropy and
pyknotropy. The differential stiffness is so variable by (2.2.14) that it cannot
be captured by a modulus. Peak stress deviators depend on the instantaneous
e and ps and the kind of deformation, e.g. isochoric or isobaric, therefore
they should not be treated as shear strengths with given parameters. In a
qualitative sense a psammoid may at best be called more or less ductile if a
peak as in Fig. 2.2.6c is less or more marked.

Further properties are revealed by reversals, i.e. with sudden changes of
path directions so that the sign of the mechanical power

P = σs1ε̇1 + 2σs2ε̇2 (2.2.21)

changes. One may speak of loading for P > 0 just before a reversal, and of
unloading for P < 0 just after it. Grain skeletons exhibit ṗs < 0 for isochoric
and ė < 0 for isobaric unloading. This can lead to a cumulative decrease of ps

or e, respectively, for repeated reversals, and also to a cumulative deformation
for stress cycles, i.e. ratcheting. The asymptotic response to paths with many
reversals is particularly revealing, it can be represented by state cycles. As
with simple solids (Sect. 2.1) these are attained by cyclic deformations or
ratcheting, with big or small amplitudes so that state limits are repeatedly
approached or not, respectively. The spectrum is wider than for solids due to
barotropy and pyknotropy.

Strain cycles (Fig. 2.2.7a) may be big (I) or small (II) and rather isochoric
(A) or isobaric (B). In case A (e.g. full saturation and no drainage) the stress
path (b) tends to a double loop (butterfly), and the average asymptotic pres-
sure (c) is lower for smaller amplitudes with a given void ratio. In case B the
pressure ps is kept nearly constant, this requires a butterfly-like strain cycle;
then the asymptotic average e is lower for smaller amplitudes. Changes of
paths with a reversal are intricate due to the non-linearity by (2.2.14c), this
could be represented by response polars with labels for void ratio. Isochoric
cyclic deformations can lead to skeleton decay if e is too high, and to grain
crushing with big amlitudes if e is too low, in both cases asymptotic state cy-
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cles are not reached. With small amplitudes e approaches the lower bound ed

for case B, and ps tends to the value related with the given e = ed for case A.
With so big amplitudes that the stress obliquity gets repeatedly overcritical
the RSE can lose its uniformity by shear localizations, this is left aside here.

Ratcheting (Fig. 2.2.8a) can likewise occur with big (I) or small amplitude
(II) and can be rather isochoric (A) or isobaric (B). In case A (saturated, no
drainage) the stress path (b) tends to a lenticular cycle, and critical obliquities
are repeatedly approached. With a given e the average asymptotic ps is lower
for smaller amplitudes. Asymptotic cycles cannot be reached due to skeleton
decay with a too high e, and due to grain crushing with a too low e. In case B
garland-like strain paths are needed to keep ps constant, and the asymptotic
average e is lower for smaller amplitudes, but not as close to ed as with
strain cycles. With very big amplitudes the amount of stress obliquity gets
repeatedly overcritical, this leads to shear localizations and is left aside here
(Sect. 8.2).

The state cycles attained by cyclic deformations or ratcheting are driven
attractors of simple psammoid RSEs. As long as skeleton decay, degradation
of grains and localizations are avoided skeletons could be driven to such state
cycles and would remain uniform. By definition the state of simple psammoids
is determined by stress components (σs1 and σs2 = σs3 in case of cylindrical
symmetry) and void ratio e. The relation of stress rates and strain rates can
be represented by response polars (Fig. 2.2.3) which depend on σs1, σs2 and
e only. Asymptotic state cycles are thus simplified as the variation of spatial
force fluctuations (Sect. 4.3) is neglected.

Algebraic representations of the constitutive functions fi by (2.2.13) and
(2.2.14) will be outlined for cylindrical RSEs in the next two sections. It will
be shown that big differences of asymptotic state cycles can arise for different
constitutive relations even if their state limits are close to each other. One
could reduce these differences by means of hybrid relations (Sect. 2.11), but
the actual asymptotic response can thus not be captured much better. This
can only be achieved with internal variables which are not determined by the
external ones (here σs1, σs2 and e) in general (Sect. 4.3).
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The so-called liquefaction of saturated granular soils (e.g. Casagrande
1936, 1971) is not explicitly treated in this introduction. Instead of this rather
subjective notion one should speak of skeleton decay with vanishing ps. This
can lead to a kind of suspension if a skeleton with e > eco for ps = 0 is
deformed monotonously without drainage. Cyclic isochoric deformations of a
denser skeleton can lead to its temporary decay and recombination, the former
should not be called liquefaction. The likewise rather subjective notion cyclic
mobility (Castro 1975) should better be replaced by isochoric ratcheting with
reduction of ps. Decay and recombination cannot be modelled by means of
simple psammoid relations.

To sum up, evolutions of shape and state of cylindrical simple psammoid
RSEs can be captured by relations of stress rate and strain rate with stress and
void ratio as state parameters. These relations can be represented graphically
by response polars. Their asymptotic solutions or attractors are state limits
for proportional straining, and state cycles for cyclic straining or ratcheting.
Skeleton decay, degradation of grains, shear localization and internal state
variables are left aside in this approach, which will be further considered in
the next three sections and extended thereafter to more than two components.

2.3 A shortcut of CSSM

In their book on Critical State Soil Mechanics (CSSM) Schofield and Wroth
(1968) propose essentially the concept of state limits – without using this
name – for a peloid (Cam clay) and a psammoid (Granta gravel). The limit
void ratios are approximated by Terzaghi’s (1925) formula (Fig. 2.3.1a)

ei − eir = ec − ecr = ed − edr = −λ ln(ps/pr) , (2.3.1)

with a constant compression index λ and reference values eir, ecr, edr for a
reference pressure p which is arbitrarily chosen, e.g. pr = 100 kPa. As this pr

has nothing to do with the material (2.3.1) is not unit-invariant. The lower
bound ed was added later by Schofield (2005) and linked with tensile cracking.
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ratios (qualitative, dotted for tension)
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Equation (2.3.1) works for a certain ps-range, but fails evidently for ps → 0
and ps → ∞.

For critical states the stress ratio is given by (2.2.15). In some variants of
CSSM another ϕc is assumed for axial extension than for shortening, this
difference is left aside as there is no evidence for a substantial difference
(Sect. 2.5). The dependence of strain rate direction on stress direction for
state limits is plotted in Fig. 2.3.1b. It comes up to a nearly linear interpo-
lation between isotropic compression (i) and critical states (± c). In CSSM
state limits ± d as introduced in Sect. 2.2 do not occur explicitly, but tensile
stresses (dotted) are excluded by a cut-off.

An overconsolidation ratio

OCR = pe/ps (2.3.2)

can be introduced by means of an equivalent pressure

pe = pr exp(
eir − e

λ
) , (2.3.3)

which substitutes e as proposed by Hvorslev (1937) by means of (2.3.1). For a
given ps one can take ecr or edr in (2.3.3) instead of eir, the overconsolidation
ratios may then be called OCRc = pec/ps and OCRd = ped/ps. With them
the relative void ratio by (2.2.18) can be written

re =
ln OCRd − ln OCR

ln OCRd − ln OCRc
(2.3.4)

by means of (2.3.1), (2.3.2) and (2.3.3). This re can be related with the stress
obliquity for state limits as plotted in Fig. 2.3.1c. Beyond the bounds d and
−d the dotted lines plotted in Fig. 2.3.1b and c can be formally obtained
by CSSM, but such states have to be excluded as they imply tensile stresses
(more in Gudehus and Mašin 2010).

Been and Jefferies (1985) proposed a state parameter ψe which plays a
similar role within CSSM as re. As shown in Fig. 2.3.1a it is the difference
ec−e of the critical void ratio ec for a given ps and the actual one e. Without a
lower bound ed as by (2.3.4) ψe can replace e in a useful combination with ps.

Elastoplastic relations (elp) are formulated in the frame of CSSM as shown
in Fig. 2.3.2. State limits for a given void ratio e, or an equivalent pressure pe

by (2.3.3) instead, appear as a closed state boundary curve in a plot of σs1/pe

vs.
√

2σs2/pe and are assumed to bound elastic ranges. Usually this curve is
taken as smooth everywhere (a), and the part of it with tensile stress (dotted)
has to be cut off. This flaw can be avoided by means of an apex at the origin
(b), e.g. Vermeer (1978). Plastic strain rates, with components ε̇p

1 and ε̇p
2 = ε̇p

3,
were first assumed to be normal to the boundary curve (associated flow rule).

In later variants the flow rule for overcritical stress obliquities is not asso-
ciated, but follows Rowe’s (1962) stress-dilatancy relation (2.2.20). For critical
states with stress ratios by (2.2.15) plastic deformations are isochoric, thus



2.3 A shortcut of CSSM 39

  p.

√2σs2 /pea)

c

i

–c

σs1

√2σs2 /peb)

c

i

–c

√2ε2
.

ε1
p.

√2ε2
 p.

ε1
p.

pe

σs1
pe

Fig. 2.3.2. State boundary curves by CSSM without (a) or with an apex (b), and
with associated plastic strain rate (qualitative)

the tangents of the boundary line are parallel to the i-line σs1 = σs2. For lower
than critical amounts of stress obliquity |ψs| plastic deformations are contrac-
tant. Their direction is taken as normal to the state boundary line, which
is called cap in the contractant range. Plastic deformations are isotropic for
isotropic stress states, then the tangent to the boundary line for σs1 = σs2

is normal to the i-line. For higher than critical |ψs| plastic deformations are
dilatant.

The state boundary line is convex and essentially determined by the point
for isotropic compression, the two points for critical states and a smooth shape
or an apex at the origin σs1 = σs2 = 0. The indeterminacy of plastic strain
rates near the origin does not matter as ps → 0 has to be avoided with (2.3.1)
anyway.

Within the elastic range the relation of stress rates and strain rates as-
sumed in several versions of CSSM is hypoelastic, viz.

ṗs = ε̇υps/κ

σ̇∗
s = ε̇∗

ps

κ

ν

1 − ν
(2.3.5)

with a swelling index κ < λ and a Poisson ratio ν. Therein the volumetric
and deviatoric components are defined by (2.2.1), (2.2.2), (2.2.9) and (2.2.11).
Formally (2.3.5) is an isotropic linear elastic relation of σ̇si and ε̇i with bulk
modulus K = ps/κ and shear modulus G = Kν/(1 − ν) which allows for
barotropy in the simplest possible manner. The grain skeleton is thus substi-
tuted by a kind of sponge. Niemunis and Cudny (1998) have shown that such
relations should be derived from a strain-dependent elastic energy. Only this
approach is physically sound, other elastic relations which have been proposed
for CSSM can lead to inconsistencies.

Strain rates have elastic and plastic parts by

ε̇i = ε̇e
i + ε̇p

i (2.3.6)

with i=1 and 2 for cylindrical symmetry. The elastic part ε̇e
i is related with the

stress rate σ̇si by (2.3.5). Plastic strain rates arise for ‘loading’ at state limits
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and are directed as the normal of the boundary line (Fig. 2.3.2). ‘Loading’
means that the strain rate ε̇i would imply an elastic stress rate σ̇si by (2.3.5)
which leaves the elastic range. The volumetric strain rate ε̇v is related with
the rate of void ratio ė by (2.2.10), and thus with changes of the equivalent
pressure pe by (2.3.3).

Vermeer (1978, 1984) replaced (2.3.5) by a power law like (4.5.2) this is
advantageous for low ps but does not remove the flaw of (3.3.1) for ps → 0. He
proposes an associated flow rule for subcritical stress obliquities and the stress-
dilatancy relation (2.2.20) otherwise. As other authors he uses the deviatoric
plastic strain as a further state variable, but this is not physically tenable
(Sect. 1.2). This so-called strain hardening enables an approach to state limits,
but cannot produce state cycles by cyclic deformation or ratcheting. This lack
could be revealed by numerical simulations, but software for Vermeer’s relation
is not freely available.

Instead of algebraic expressions, which have been proposed for CSSM, this
kind of elp is represented by response polars in Fig. 2.3.3 for two variants. As
in Fig. 2.3.2 stress components are normalized by pe. In the elastic range the
polars are centric ellipses (Gudehus 1979, Vermeer 1984). According to (2.3.5)
their long axis is aligned as the i-line, their shape is given by the assumed
Poisson ratio ν and their size is proportional to ps (e.g. A and B). This means
that for a given ps changes of stress deviator σ∗

s do not matter (e.g. B and
C). For stress states along the state boundary curve the hypoelastic response
holds only for unloading, this part of the response polar is thus a half-ellipse
which is cut off by the tangent of the boundary curve.

The response polar for ‘loading’ is a section of an ellipse which is attached
to the elastic half-ellipse (Gudehus 1979, Vermeer 1984). For critical states the
outer half-ellipse degenerates to a straight line as the state is not changed by
continued isochoric deformation (D and E). For an isotropic state the outer
elliptic section is flatter than the inner one (F) by the factor λ/κ, this can
be derived from (2.3.1) and (2.3.5). For states with subcritical stress obliq-
uities response polars can be estimated by a monotonous interpolation (G).
For states with overcritical stress obliquities the anelastic part of the response
polar is an inwards elliptic section which is flatter than the elastic half-ellipse
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(H). The notion ‘loading’ is thus ambiguous for softening by dilation. Differ-
ences between smooth (Fig. 2.3.3a) and bullet-shaped boundary lines (b) are
more marked near the origin σsi = 0. Niemunis (2003) gives algebraic details
for such response polars.

Approaches to state limits are shown in Fig. 2.3.4. Proportional strain
paths (a) may be contractant (A), isochoric (B) or dilatant (C). With the
same initial state (0) the related stress paths (b) are straight in the assumed
elastic range with different directions. With the assumed onset of plastification
(1) the stress path turns to a straight line with ps-increase (A), and tends to a
critical stress point (B) or to a straight line with ps-decrease (C), respectively.
Response polars would indicate how state limits according to Fig. 2.3.1 work
as driven attractors. This requires convex state boundary curves with an apex,
otherwise the uniqueness gets lost and parts with tension have to be cut off.
In the e vs. log ps plot (c) the state path tends to the relative void ratio by
Fig. 2.3.1c with increasing (A), stationary (B) or increasing ps (C). Other than
explained with Fig. 2.2.2b the skeleton cannot decay with constant e and limit
void ratios by (2.3.1), whereas a contractant deformation would thus destroy
grains if e is low.

Isobaric evolutions by elp within CSSM are shown in Fig. 2.3.5 for a higher
(A) and a lower initial isotropic pressure (B) than the one related with the
same initial e for critical states. In the elastic range (0–1) the strain paths
(a) are isochoric until the stress paths (b) reach the state boundary line. A
monotonous further deformation (1–2) leads to a critical state after contrac-
tion for A and dilation for B, thus the boundary curve gets wider or smaller
(dotted curves). Un- and reloading thereafter (2–3–4) are elastic and isochoric.
In the e vs. log ps plot e tends to ec for the given ps (c). In a plot of stress
deviator σ∗ vs. strain deviator ε∗ (d) straight lines appear for elastic sections.
The response to a montonous deformation is less ductile for B than for A. A
plot of e vs. ε∗ (e) exhibits contraction for A and dilation for B only during
the first loading. The plots (d) and (e) are implied by the previous ones, but
convey less information.

Isochoric evolutions by elp are shown in Fig. 2.3.6 for a higher (A) and
a lower initial isotropic pressure (B) than the one related with the given e
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for critical states. The strain paths (a) exhibit reversals (2–3–4, numbers for
the sequence). The stress paths (b) show a reduction or an increase of ps,
respectively, for A and B in the sections with assumed plastification (1–2).
This change appears also in the plot of e vs. log ps (c). A deviatoric stress-
strain plot (d) suggests hardening by plastification. A plot of ps vs. strain
deviator (e) shows a decrease or an increase of ps by plastification. The plots
(d) and (e) are implied by the former three, but are not as comprehensive.

Cyclic deformations (Fig. 2.3.7a) lead to asymptotic cycles of stress (b) and
of e vs. log ps (c) by consistent CSSM-elp relations. With a small amplitude
(A) a stress cycle is attained near the onset, and a small e vs. log ps cycle. This
is achieved with the self-similarity by (2.3.1) and (2.3.5) for different initial pe,
the underlying elastic potential prevents cumulative changes of mean stress.
With a bigger amplitude (B) the stress path tends to a cycle with elastic and
anelastic sections, and with more marked e vs. log ps cycles. This attractor is
attained with different initial states (σs1, σs2 and e) with bullet-shaped state
boundary curves and suitable hypoelastic relations. In a periodic continuation
the boundary curve is expanded and diminished in each cycle.

Ratcheting (Fig. 2.3.8a) leads to stress cycles (b) and cycles of e vs. log ps in
the asymptote. These attractors are obtained with consistent state boundary
lines and hypoelastic relations. Critical states are periodically attained with
small (A) or big amplitudes (B) of state cycles in the continuation. With a
nearly isochoric deformation as chosen for A the asymptotic stress cycles are
nearly isobaric. With wider garlands of the strain path as chosen for B both
e and ps cycle more markedly. State cycles cannot be achieved with elp if the
deviatoric plastic strain is used as further state variable. This would increase
indefinitely in case of ratcheting and would thus prevent an asymptotic state
cycle.

Inserting response polars as in Fig. 2.3.3 into stress plots as in Figs. 2.3.4b,
2.3.7b, and 2.3.8b would reveal how the attractors are approached. This graph-
ical version of a fixed point theorem cannot reveal all details, nor the range of
attraction. Both could be achieved by numerical element tests. The range of
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validity will be discussed in Sects. 2.5 and 2.6 for cylindrical RSEs by means
of experiments. As long as RSEs remain uniform and grain properties are not
markedly changed consistent CSSM-elp relations should produce state lim-
its and state cycles as shown in Figs. 2.3.4, 2.3.5, 2.3.6. The assumed elastic
response to small strain cycles will be discussed in Sect. 4.2.

To sum up, elastoplastic relations within CSSM (elp) can reproduce ob-
servable attractors of psammoids to a certain extent. Contractant and iso-
choric state limits can be obtained except for low pressures ps, dilatant ones
without tension can be obtained with bullet-like state boundary curves. The
flow rule, i.e. the direction of the plastic strain rate, is associated (i.e. nor-
mality rule) with the state boundary curve for subcritical stress oqliquities.
In the overcritical regime Rowe’s stress-dilatancy is more suitable than an
associated flow rule. Hypoelastic relations with elastic potential and stiffness
proportional to ps lead to state cycles for strain cycles and for ratcheting.
The deviatoric plastic strain is not tenable as further state variable because
it excludes state cycles as attractors.

2.4 A shortcut of hypoplasticity

State limits of hypoplastic relations for simple psammoids are shown in
Fig. 2.4.1. The limit void ratios (a) are approximated by Bauer’s (1996) for-
mula

ei

ei0
=

ec

ec0
=

ed

edo
= exp

[
−

(
3ps

hs

)n]
. (2.4.1)

The exponent n ranges from ca. 0.3 for angular to ca. 0.6 for round grains. The
granulate hardness hs ranges from ca. 100 MPa for angular calcite to almost
10GPa for round quartz grains, and is bigger with less uniform grain sizes.
Other than (2.3.1), (2.4.1) does not fail for ps → 0 and ps → ∞, and it is
unit-invariant.
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The limit void ratios eio, eco and edo for ps = 0 are material parameters. As
eio/eco ≈ 1.1–1.2 and edo/eco ≈ 0.6 – 0.7 holds for a wide range of granular soils
eco is a key parameter. In the vicinity of ps = 0 (2.4.1) can be approximated
by the power law

ps =
1
3
hs(1 − e/e0)1/n, (2.4.2)

wherein the subscript i, c or d may be added to e and e0. This indicates a kind
of percolation (Guyon and Troadec 1994): e is lower than e0 for higher ps due to
wider contact flats. The exponent n may be related with the fractal dimension
of the grain surface. If this is very smooth and thus two-dimensional n = 2/3
should hold as by the theory of Hertz (Johnson 1985). If the grain surface
is very rough and thus three-dimensional n → 0 appears more appropriate,
but then (2.4.2) would fail. The turning point of e vs. log ps at ps = hs/3 by
(2.4.1) can scarcely be reached without fragmentation of grains (Sect. 7.3).

The relative void ratio re by (2.2.18) is plotted vs. the stress direction angle
ψs by Fig. 2.2.1a for hypoplastic state limits in Fig. 2.4.1b. Its maximum
(eio − edo)/(eco − edo) holds for isotropic compression (i) from the highest
possible void ratio eio and ps = 0 onwards. re = 1 holds for critical states
with axial shortening or extension (c or −c). For contractant state limits re

ranges from re > 1 to the maximum for i. re = 0 holds for the extreme cases
d and −d with σs1 = 0 or σs2 = 0. For dilatant state limits re has values
between 0 and 1.

Strain rate directions ψε̇ (Fig. 2.2.1) are plotted vs. stress directions ψs for
hypoplastic state limits in Fig. 2.4.1c. For isotropic compression (i) ψε̇ = ψs =
0 is evident. Critical states with axial shortening (c) have ψε̇ = 90◦, ψε̇ = −90◦

holds with extension (−c). The related positive and negative critical values
of ψs are determined by (2.2.15) with (2.2.2), and (2.2.3). The extreme state
limits with ψs-bounds by (2.2.4) and ψε̇-bounds by (2.2.16) are not explicitly
represented by hyp, these states (d and −d) are inattainable asymptotes. The
interpolations for contractant and dilatant state limits are nearly linear.
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For cylindrical symmetry hypoplastic relations (hyp) can be written

σ̇s1 = fs(L11ε̇1 + L12ε̇2 − fdN1D),
σ̇s2 = fs(L21ε̇1 + L22ε̇2 − fdN2D). (2.4.3)

They are rate-independent, and non-linear in ε̇i as is the amount of stretching
D by (2.2.19). The coefficients Lij and Ni (i, j = 1, 2) are functions of the
stress obliquity ψs with ϕc as material parameter, their order of magnitude is
1. The density factor fd depends on the relative void ratio via

fd = rα
e (2.4.4)

with an exponent α ranging from ca. 0.1 for non-uniform to ca. 0.4 for uniform
grain sizes. re < 0 has to be excluded. Peak states with vanishing stress rates
come close to dilatant state limits; thus (2.4.3) yields relations of ψε̇ and re

with ψs which are determined by ϕc and α. ψs may be substituted by a peak
friction angle via (2.2.17). The stiffness factor fs in (2.4.3) is given by (Herle
and Gudehus 1999)

fs =
hs

n

(ei

e

)β 1 + ei

ei

(
3ps

hs

)1−n [
3 + a2 −

√
3a

(
eio − edo

eco − edo

)α]−1

(2.4.5)

with

a =
√

3(3 − sinϕc)
2
√

2 sin ϕc

. (2.4.6)

Using algebraic representations for Lij and Ni by von Wolffersdorff (1996), fs

is derived from (2.4.1) and (2.4.3) for an isotropic compression as then both
relations must coincide (Bauer 1996, Gudehus 1996). ei in (2.4.5) depends on
ps by (2.4.1). As the exponent β ranges from ca. 1.1 to 1.2 the factor fs de-
pends on ps mainly via (ps/hs)1−n. Pyknotropy is thus linked with barotropy
(Kolymbas 1991) as both fd and fs depend on e and ps.

Equation (2.4.3) can be represented by response polars with labels for
directions and re, Fig. 2.4.2. According to (2.4.3) they are ellipses with size by
ps and re, shape by ψs and eccentricity by fd and ψs. The advantages of such
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ellipses were first shown by Wu (1992). Unit strain rates (a) with direction ψε̇

may in particular be isotropic compression (i) or expansion (−i), and isochoric
with axial shortening (c) or extension (−c). Some response polars are shown
in the stress plane (Fig. 2.4.2b) and in the e vs. log ps plot (c).

For isotropic states the stress polars are aligned with the i-axis (e.g. A),
wider and less eccentric with lower re, and smaller with lower ps (B) by the
power law in (2.4.5). In case of a critical stress obliquity (C) the stress polar
touches the line by (2.2.15) for re = 1 and ψε̇ = 90◦, and cuts it for re < 1.
This means that critical states are stationary, whereas with lower than critical
void ratios (i.e. re < 1) the stress obliquity |ψs| can get bigger than critical.
For a peak state (D) the polar passes the reference point, for it ψε̇ and ψs

are related with re. This means that the peak friction angle ϕp by (2.2.17)
is determined by the critical friction angle ϕc and the relative void ratio re.
Response polars in the plot of e vs. log ps (which are implied by stress polars
plus (2.2.10) for isochoric grains) show that ps can decrease by isochoric defor-
mations for subcritical |ψs| with re > 1, and increase for overcritical |ψs| with
re < 1.

Response polars are of use to demonstrate the approach to state limits,
as was shown with Fig. 2.2.5. The evolution of state related with straight
strain paths (a) in the sector by (2.2.16) is depicted by stress paths (b),
evolutions of e vs. log ps are also plotted (c). A proportional compression
(A) leads to a proportional stress path asymptotically with re and ψs for
the given ψε̇ by Fig. 2.4.1. This works without excessive ps-increase if the
initial re is not too low. A proportional extension (B) leads to a maximal |ψs|
which is related with the given ψε̇ and the achieved re via Fig. 2.4.1 with a
low initial re. Isochoric stretching (C) leads to a critical state for e < eco as
specified with Fig. 2.4.1, which remains with further stretching. The skeleton
decays by isochoric stretching with e ≥ eco. State limits are thus attractors,
i.e. asymptotic solutions of the hypoplastic relations. This can be seen from
response polars, our geometrical consideration is a substitute of a fixed point
theorem.

Isobaric evolutions by hyp are plotted in Fig. 2.4.3 for a higher (A) and
a lower than critical (B) initial relative void ratio re and an isotropic initial
stress. The strain path (a) is initially contractant (0–1), then (1–2) less con-
tractant for A and dilatant for B. After deviatoric unloading (b, 2–3) it is
more contractant, and with reloading (3–4) it is less dilatant for A than for
B. In the e vs. log ps plot (c) e reaches ec for A and tends to ec for B, therein
contraction and dilation for deviatoric un- and reloading are hardly visible. In
a plot of stress deviator σ∗ vs. strain deviator ε∗ (d) the response to unloading
is seemingly elastic, but not in a plot of e vs. ε∗ (e). Reloading (3–4) is related
with nearly the same change of shape and void ratio as loading in the same
stress range (1–2). With monotonous further deformation the state would re-
main critical for A and would go through a peak for B. These continuations
are dotted in Fig. 2.4.4 as they cannot occur uniformly even in perfect testing
devices because of shear localization (Sect. 8.2).
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Isochoric evolutions by hyp are plotted in Fig. 2.4.4, again for a higher (A)
and lower than critical initial re (B), and with an isotropic initial pressure.
The strain paths (a) have two reversals. The stress paths (b) start with a
reduction of ps, this goes on for A and leads to a critical state if the skeleton
does not decay due to e > eco. For B ps increases up to the value for a critical
state, and two subsequent reversals lead to a stress loop as for A. In the e vs.
log ps plot (c) ps-changes can better be seen in an insert. The plot of stress
deviator σ∗ vs. strain deviator ε∗ (d) exhibits a peak for A, seemingly elastic
unloading and anelastic reloading branches. The plot of ps vs. ε∗ (e) exhibits
anelastic ps-changes, particularly after reversals, which depend strongly on
the instantaneous re. This behaviour cannot be characterized by notions like
stiffness and strength, one may at best speak of a more or less ductile response
for low or high initial void ratios.

The response by hyp with many reversals is revealed by asymptotic state
cycles. These are shown already in Fig. 2.2.7 for strain cycles (a) with nearly
constant void ratio e (A) or so that the mean skeleton pressure ps gets nearly
constant (B), both with lower than critical initial e. The skeleton stress path
(b) tends to a double loop for A, whereas a lenticular asymptotic stress cycle
with ps ≈ const is achieved with a double strain loop (B). Evolutions tend to
rather horizontal (A) or vertical cycles (B) in an e vs. log ps-plot (c). Variants
can be obtained with other amplitudes and shapes of strain cycles. As long as
overcritical stress obliquities |ψs| and too high or low relative void ratios are
avoided state cycles are obtained as attractors which are determined by the
strain cycle and the initial void ratio.

Ratcheting, i.e. strain cycles plus proportional isochoric straining, leads
also to state cycles by hyp, this can be seen as for hyp in Fig. 2.2.8 for a nearly
constant e (A) or so that ps is nearly constant in the periodic asymptote (B).
The strain path (a) remains nearly on the c-line (A) or resembles a garland
(B). The stress path (b) tends to a lenticular loop which touches the c or −c
line and is wider for B than for A due to the chosen amplitude of pilgrim’s
steps. The e vs. log ps paths (c) tend to lenticular loops with horizontal (A) or
vertical alignment (B). Transitions to the attractors are omitted for simplicity,
the sequence could be denoted in associated paths by numers for reversals.

Algebraic representations of hyp have been proposed by Gudehus (1996),
von Wolffersdorff (1996), and others. Niemunis (2003) discusses variants and
limitations in mathematical detail. Software for numerical element tests can be
found in his homepage (www Andrzej Niemunis). One can produce plots more
quantitatively with assumed material parameters, initial states and boundary
conditions of cylindrical RSEs. The approach to state cycles by strain cycles
and ratcheting can thus be confirmed, this is a numerical substitute of a fixed
point theorem. The latter could hardly be applied in a strict mathematical
sense, but one can at least ascertain by means of response polars that state
cycles are consistent.

To sum up, hypoplastic relations for cylindrical RSEs of simple psammoids
produce state limits and state cycles as proposed in Sect. 2.2. The ps-range
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of limit void ratios and the range of stress obliquities are not restricted as
by CSSM. Other than by elp there is no elastic range, thus state cycles are
attained even by strain cycles with small amplitudes. Simply speaking, elastic
effects after reversals are underestimated by hyp and overestimated by elp,
but hybrids of elp and hyp won’t do better. Differences of elp and hyp appear
particularly after reversals for isobaric and isochoric evolutions.

2.5 Validations near state limits with cylindrical
symmetry

The range of validity of the concepts outlined in Sect. 2.2, 2.3, and 2.4 can
principally be explored by means of so-called oedometric, triaxial and cuboidal
tests with granular samples. Some prerequisites are presented first, they will
be referred to also in subsequent sections. State limits are then treated in the
order of increasing deviation from isotropic states.

Granular samples in testing devices may be considered as RSEs (repre-
sentative soil elements) of simple psammoids if the following prerequisites are
satisfied:

PR1: homogeneity of composition and state at the onset,

PR2: validity of the effective stress principle,

PR3: permanence of granular properties,

PR4: exclusion of viscous effects,

PR5: compatibility of boundary conditions,

PR6: uniformity of changes of shape and state.

Careful selection and preparation are needed for PR1, ideally gravity should
be compensated with a heavy pore fluid. PR5 and PR6 are already needed
for producing a uniform initial state, which is arbitrary anyway. Neutrality of
the grains with respect to pore water pressure pw, as necessary for PR2, is
achieved with pore-free grains. If a capillary skeleton pressure pcs (Sect. 6.2)
is employed to produce a high initial e flooding afterwards leads to pcs = 0.
With grain sizes below ca. 10−5 m a net intergranular attraction (Sect. 7.1)
should be avoided by a suitable ionic strength. Uniformity of pw requires a
slow enough drainage.

Strictly speaking, PR3 is a contradiction in terms as grains are principally
changed by encounters (Sect. 7.3). For the evolutions considered here, how-
ever, abrasion and fragmentation can be kept small enough so that the gran-
ular properties are not changed noticeably. PR4 can be achieved by keeping
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the modulus of strain rate within one order of magnitude. Otherwise rate-
dependance, creep and relaxation play a role even with hard grains (Sect. 4.6).

PR5 means average uniformity of displacements and state along the bound-
aries. In a perfect RSE relative grain displacements and contact forces should
fluctuate around desired mean values along the boundary as in the interior.
The shear stress along a boundary can be diminished by a smooth hard plate,
but near it e is inevitably high. The latter can be avoided by a membrane,
but this causes a variable penetration of grains and develops parasitary forces.
Keeping these effects low requires careful compensation.

Even with PR1 and PR5 it is not generally possible to secure PR6 as
the skeleton tends to lose its uniformity of itself. This bifurcation can be
diffuse, and then called bulging or necking for axial shortening or extension
(Sect. 14.1), and is not necessarily linked with a state limit. It is localized
with the formation of shear bands near a peak (Sect. 8.2), then mean values
of strain and void ratio can be misleading.

Proportional compressions, i.e. deformations with constant direction ψε̇

and |ψε| < 90◦, require a high initial e for reaching a state limit without
violating PR3. Ishihara (1993) reports on isotropic compression tests with a
uniformly graded quartz sand and different initial e. His upper curve of e vs.
p′, Fig. 2.5.1, comes close to a sequence of state limits ei with the highest
possible e. This was achieved by moist placement, i.e. by using the capillary
skeleton pressure pcs (Sect. 6.2). The onset of compression can be approxi-
mated by (2.4.2), but certainly not by (2.3.1). This indicates a percolation of
the skeleton. Up to p′ = ps ≈ 4 MPa a good approximation is obtained by
(2.4.1) with n = 0.5, hs = 400 MPa and eio = 1.06. Equation (2.3.1) works

Fig. 2.5.1. Reduction of void ratios of a quartz sand by isotropic compression
(Ishihara 1993)
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Fig. 2.5.2. Uniaxial compression (ε2 = 0) of a quartz sand with different densities
(Cornforth 1974)

with pr = 1 MPa, eir ≈ 0.98 and λ ≈ 0.02 for p′ from ca. 1 to 4 MPa. For
the lower e given in Fig. 2.5.1 these approximations do not work as these void
ratios do not belong to contractant state limits.

Cornforth (1974) reports on triaxial compression tests with ε2 = 0, i.e.
ψε̇ = arctan(1/

√
2) = 55◦, with a non-uniformly graded quartz sand and

different initial e. He found a linear increase of volumetric strain ευ = ε1 with√
σ1 for every initial e, Fig. 2.5.2. For initially very loose samples the line

comes close to a sequence of contractant state limits. It confirms (2.4.2) with
n = 0.5 and refutes (2.3.1). With Cornforth’s data e0 ≈ 0.75 and hs ≈ 1 GPa
can be estimated. Empirically the observed stress ratio can be approximated
by σs2/σs1 ≈ 1 − sin ϕc, thus ψs could be calculated and compared with the
one by Fig. 2.3.1 or 2.4.1.

The approach to proportional stress paths by proportional strain paths was
proposed by Gudehus et al. (1977), and confirmed by Goldscheider (1984) by
means of cuboidal tests with high initial density. This property was called
swept-out of memory (SOM) and was reproduced by Kolymbas (1978) with
a rate-type constitutive relation. This led to hypoplasticity, but only years
later state limits with relative void ratios were properly incorporated (Bauer
1992, Wu and Bauer 1993, Gudehus 1996). With the employed high density
contractant state limits were not attained by Goldscheider (1984). His results
will be used in Sect. 2.8 for evaluations off state limits.

Chu and Lo (1994) imposed proportional strain paths to initially dense
quartz sand samples in triaxial tests. The stress paths tend to lines with
constant component ratio. This holds true for different initial stress states, also
after cyclic preloading. There is a unique dependence of the asymptotic stress
ratio on the prescribed strain ratio. For bigger than critical stress ratios this is
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fairly well approximated by Rowe’s (1962) stress-dilatancy relation (2.2.20).
For the biggest stress ratios and dilatancy ratios both relations agree with each
other, and also with the observed peak ratio for isobaric stretching. A more
detailed evaluation is not feasible as Chu and Lo (1994) do not communicate
changes of void ratios.

Critical states can principally be approached by monotonous isochoric or
isobaric stretching. Shear localization can be avoided by starting with higher
than critical void ratios. Verdugo and Ishihara (1996) achieved that in a tri-
axial setup with a saturated quartz sand and closed or open drainage. As
plotted in Fig. 2.5.3 the critical stress ratio (a) and void ratio (b) are the
same for both cases. This was obtained with axial shortening independently
of the initial state. With short samples (h ≈ d) and lubricated guided end
plates the observed deformations were rather uniform (Sect. 14.1). The crit-
ical stress condition (2.2.15) is thus confirmed with q = σs1 − σs2, it yields
ϕc = 31◦. The observed dependency of e on log p′ can be well approximated
by (2.4.1) for p′(= ps) from ca. 0.02 to 1 MPa with n = 0.5, hs = 400 MPa

Fig. 2.5.3. Critical shear stresses (a) and void ratios (b) vs. effective mean pressure
of a saturated quartz sand, from undrained triaxial tests by Verdugo and Ishihara
(1996)
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and eco ≈ 0.96. The highest isotropic compression line in Fig. 2.5.1, which was
obtained with the same sand, is matched with the same n and hs, and with
eio = 1.06 ≈ 1.2eco. This confirms (2.4.1), whereas (2.3.1) for CSSM works at
best for ps between ca. 0.2 and 1 MPa.

In the range ps > ca. 1 MPa (2.4.1) is not apt for matching with the same
parameters, whereas it serves to the purpose for isotropic compression up to
ca. 4 MPa (Fig. 2.5.1). This indicates that the ps-threshold by the degradation
of grains is lower for bigger relative stress deviators |ψs|. For ps beyond this
threshold (2.3.1) enables a better matching than (2.4.1) up to ca. 50 MPa (e.g.
Hirschfeld and Poulos 1963), but this is not the range of simple psammoids
as then the grains are crushed (Sect. 7.3).

Miura and Toki (1982) produced asymptotic states in a triaxial setup
with saturated quartz sand without drainage by axial shortening and exten-
sion, Fig. 2.5.4. For both cases the critical stress ratio can be described by
(2.2.15) with nearly the same ϕc, which is thus confirmed. The same ϕc was
obtained with different placement methods, i.e. there is no ‘inherent’ or ‘in-
duced’ anisotropy (Sect. 9.1) for critical states.

So-called peak states were often produced in triaxial tests with monotonous
isobaric stretching. With adequate boundary conditions in the sense of PR5
and PR6 spatial mean values may be used to describe peaks although shear
band patterns arise already (Sects. 8.2 and 14.1). Barden and Khayatt (1966)
observed nearly the same peak friction angle ϕp by (2.2.17) for axial shortening
and extension with the same e and ps, Fig. 2.5.5. Rowe’s stress-dilatancy
relation (2.2.20) produces a good approximation. This confirms the concept
of state limits outlined with Fig. 2.2.2. Unfortunately Barden and Khayatt do
not report void ratios at peak, such data are rare in the literature. One can
only conclude from Fig. 2.5.5 that the relative void ratio re at peak was lower

Fig. 2.5.4. Stress paths (a) and stress ratio vs. strain (b) of saturated undrained
quartz sand samples in triaxial tests (Miura and Toki 1982); q = σs1 − σs2, p′ = ps,
γ = (ε1 − ε2)/2
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Fig. 2.5.5. Peak friction angles (ϕmax = ϕp by (2.2.17)) for different initial porosi-
ties (n = e/(1 + e)) in triaxial tests with different (a) or nearly equal (b) pressures
(σm = ps), Barden and Khayatt (1966)

for axial extension with a lower ps (a) than with a constant ps (b). Thus the
second plot could better serve for calibration.

Triaxial tests by Lam and Tatsuoka (1988) indicate markedly different
peak friction angles for axial shortening and extension, different aspect ratios
h/d and different directions of σ1 with respect to the previous placement, all
that for the same relative density. Stress-dilatancy works only with different ϕc

in (2.2.20). These findings seem to refute our concept of state limits, but they
can be attributed to non-uniformity by placement and localization (Sects. 9.1
and 14.1) so that our prerequisites PR1 and PR6 are violated.

Cuboidal tests with plates, which will be described in Sect. 2.7, enable more
uniform evolutions, in particular with cylindrical symmetry. Only Lanier et al.
(1991) made such tests with an initially loose quartz sand. Stretching with
constant ps produced very flat peaks, so critical states were nearly reached.
The friction angle was 30◦ for axial extension and 29◦ for shortening. This may
be considered as validation of (2.2.15). Using a similar device, Goldscheider
(1976) observed the peak friction angles ϕp ≈ 42◦ for cylindrically symmetric
axial shortening and ϕp ≈ 44◦ for axial extension of a dense quartz sand. The
initial void ratio was the same, but as with Fig. 2.5.5a ps, and thus re, was
lower at peak for axial extension than for shortening. Although void ratios
at peak are not reported the small difference of ϕp may be considered as a
further validation.

To sum up, the concept of state limits outlined for cylindrical symmetry
in Sect. 2.2 is essentially validated, and its representation by hypoplasticity
is more realistic than by CSSM. Bauer’s formula (2.4.1) for limit void ratios
works from ps = 0 up to a threshold by grain degradation, whereas the CSSM
formula (2.3.1) works only in a narrower ps-range without degradation. For
a given relative void ratio peak friction angles are practically equal for axial
shortening and extension. Rowe’s stress-dilatancy relation, which is approxi-
mately implied by elp and hyp, works in the vicinity of critical states. State
limits can be approached by monotonous stretching in the direction sector
by (2.2.16) independently of the initial state. They can be characterized by



56 2 Simple psammoids

equations of state which delimit the possible range of states. As they are
driven the strain rate direction plays a decisive role. It appears that RSEs
inevitably lose the defining uniformity near state limits.

2.6 Validation off state limits with cylindrical symmetry

The range of validity in case of cylindrical symmetry can be explored also off
state limits with the devices and prerequisites outlined in Sect. 2.5. This will
first be shown for proportional strain paths, then for monotonous isochoric and
isobaric deformations. Path reversals exhibit bigger differences among CSSM,
hypoplasticity and reality. They reveal that relations of stress rates with strain
rates require more than the state variables σs1, σs2 and e in general.

Let us first analyze again the response to proportional compression starting
from ps = 0 as shown in Sect. 2.5, but now with lower e than for state limits.
Calculated e vs. p′(= ps) plots (Rebstock 2010) for the isotropic case agree
pretty well with Fig. 2.5.1 when using hyp with n = 1/2, Fig. 2.6.1a, whereas
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CSSM fails near ps = 0. Close to ps = 0 the power law (2.4.2) can be derived
from (2.4.3) and (2.4.5), with the same exponent n and a bigger factor fs for
lower e, both is confirmed by Fig. 2.5.1. Good matching requires a suitable
β in (2.4.5), this can thus be determined. Rather good predictions are also
obtained for compression with ε2 = 0 by hyp, Fig. 2.6.1b with calculated
plots of ευ vs.

√
σ1 shows this by comparison with Fig. 2.5.2. This confirms

n ≈ 1/2.
Turning to reversed isochoric deformations, we can make further use of

test results by Verdugo and Ishihara (1996). Figure 2.6.2 shows stress-strain
curves (a) and stress paths (b) for different initial pressures and a lower than
critical initial void ratio. The skeleton stress components in the nearly attained
critical states are solely determined by e and ϕc as shown by Fig. 2.5.3. After
the reversal the response is independent of the initial p′, this indicates that
for critical states the only state variable relevant for the response is e. The
‘stiffness’ dq/dε1 and the initial reduction of p′(= ps) are markedly higher for
bigger initial p′. The increase of ps is enhanced by the penetration of grains
into the membrane so that the void ratio decreaes, the decrease of ps is likewise
enhanced.

Stress-strain curves and stress paths calculated with hyp (Prada 2010)
are shown in Fig. 2.6.2c, d. The observed onset with dp′/dε1 = 0 is not re-
produced, but would be obtained with elp. The subsequent reduction of p′ is
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Fig. 2.6.2. Deviatoric stress-strain curves (a) and stress paths (b) of a saturated
undrained quartz sand (Verdugo and Ishihara 1996), hypoplastic simulation (c and
d. Prada 2010)
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underestimated with hyp and cannot be reproduced by elp. The deviation can
be partly attributed to the variable membrane penetration. Simply speaking,
the response to monotonous isochoric deformations after a start with isotropic
pressure and a lower than critical relative void ratio re is first rather elasto-
plastic and gets then rather hypoplastic, whereas close to critical states both
theories work realistically. The response to a reversal from a critical state
is apparently hypoelastic in the q vs. ε1 plot, but rather hypoplastic in the
stress path.

As proposed with Fig. 2.2.5 (B) the response of loose undrained saturated
cylindrical sand samples to axial shortening implies a peak of the stress devia-
tor σ1−σ3. This can be seen from stress-strain curves and stress paths observed
by Ishihara (1993) for rather high initial pressures. The samples bulge beyond
such a peak (Sect. 14.1) so that this part should not be judged by assuming
an RSE. The stress ratio at this peak is well below the so-called critical one by
(2.2.15). The onset of bulging is a critical point far off a conventional critical
state (Sect. 16.3). As indicated in Sect .3.2 it may be related with a lack of duc-
tility, but this notion is rather subjective. An observed ps-increase beyond the
peak indicates a slight dilation after a contraction with changing penetration
of grains into the membrane, cf. Ramana and Raju (1981). Simulated stress-
strain curves would have no peaks by CSSM (cf. Fig. 2.3.6a) and less marked
peaks by hyp than in experiments. Peaks of deviatoric stress vs. strain could
be reproduced with hyp, but not with elp. Observed purely deviatoric stress
paths just after an isotropic onset could be reproduced by elp, but not by hyp.

Undrained triaxial experiments are no more feasible with very loose sam-
ples as then the skeleton tends to decay. This is predicted by hyp if e exceeds
eco in (2.4.1). After this phase transition into a suspension the lower part
of a sample bulges by gravity, and simulations with psammoid relations get
impossible. One may speak of a lack of ductility in the sense outlined with
Fig. 2.2.6, or more vaguely of sensitivity. Evolutions near peaks could be cap-
tured by numerical simulations of a diffuse bifurcation (Sect. 14.1), but not
up to a collapse with decay.

A typical response of sand to monotonous isobaric deformations, observed
by Miura et al. (1998) in triaxial tests, can be seen in Fig. 2.6.3a. Hypoplastic
simulations by Rebstock (2010) are shown in Fig. 2.6.3b. For the onset with
σ′

1 = σ′
2 the observed initial contraction, dευ/dε1 > 0, is obtained with any

initial relative void ratio re. The observed zero contraction for the critical
stress ratio, dευ/dε1 = 0 for σ′

1/σ′
2 by (2.2.15) independently of re, is repro-

duced. The decreasing stiffness dτm/dε1 prior to the peak for increasing stress
obliquity |ψs| is also reproduced by hyp. The lower attained |ψs| for extension
than for shortening is at variance with Fig. 2.5.5, it appears that both cases
were mixed up by Miura et al. (1998). The continued dilation beyond peak is
fairly well reproduced. A similar matching could be obtained with Vermeer’s
(1978, 1984) elp, but this is no proper validation as the employed deviatoric
plastic strain as additional state variable is not physically tenable for repeated
reversals up to state cycles.
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Fig. 2.6.3. Evolutions of stress ratio and volumetric strain with axial strain in
drained triaxial tests and constant σs2 (a) observed by Miura et al. (1998), (b)
hypoplastic simulation by Rebstock (2010). σm = ps, τm = |σs1 − σs2|/2, εa = |ε1|;
moderate densification by vibration or moist placement (MSP).

Lam and Tatsuoka (1988) investigated the influence of different prepa-
rations on the response to monotonous isobaric deformations. Prismatic
quartz sand samples were pluviated with different orientations and nearly
the same initial, lower than critical void ratio. For cylindrical shortening
(σs1 > σs2 = σs3) σs1 was transmitted by lubricated plates, σs2 and σs3

by membranes. The evolution of stress ratio σs1/σs2 and volumetric strain
with deviatoric strain depends on the orientation. This indicates an inherent
anisotropy up to and beyond the peak. However, stress ratios and dilation are
bigger for cuboidal than for flat samples, this indicates that the samples are
not uniform as required for RSEs. The anisotropy can be explained by means
of initial inhomogeneity and shear localization (Sect. 9.1).

Cylindrical shortening (σs1 < σs2 = σs3) with lubricated plates for σs2

and membranes for σs1 and σs3 led to a wider variation of peaks and dilation
with orientation and slenderness (Lam and Tatsuoka 1988). Shear bands arose
beyond the peak at different sites depending on the slenderness of the sample.
Then the uniformity of RSE gets evidently lost (Sect. 8.2). Shear localiza-
tion occurs already prior to a peak (Sects. 8.2 and 14.1), and the inherent
anisotropy can be attributed to an oriented non-homogeneity by placement
(Sect. 9.1).

Drained reversals from critical or peak state limits are rarely described in
‘triaxial’ test reports, although they are usually carried out after a monotonous
deformation. Jefferies (1997) imposed three cycles of deviatoric un- and reload-
ing to dense saturated sand samples with constant lateral pressure, Fig. 2.6.4.
The plot of stress ratio vs. deviatoric strain (a) looks rather elastoplastic. The
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Fig. 2.6.4. Stress ratio (a) and volumetric strain (b) vs. deviatoric strain in triaxial
experiments with quartz sand by Jefferies (1997), hypoplastic simulation (c and d,
Prada 2010)

course of volumetric strain (b), however, exhibits contraction for deviatoric
unloading and dilation for reloading. Jefferies made standard tests with slen-
der samples and rough endplates, so his findings are biased by non-uniformities
(Sect. 14.1). Wu (1992) obtained similar results with squat samples and lubri-
cated plates, but even thus a loss of uniformity cannot be avoided near state
limits (Sect. 14.1).

Plots simulated with hyp (Prada 2010) for stress ratio (c) and volumetric
strain (d) vs. deviatoric strain differ substantially from the ones by Jefferies
(1997). The calculated deviatoric stiffness for the second half of reloading is
too low, and the contraction at the onset of unloading is missed. Simulations
with elp would yield an elastic response for un- and reloading, this is more
evidently refuted by Fig. 2.6.4b than by Fig. 2.6.4a. A qualitative flaw of hyp
is that it produces no loop in the first plot and a loop in the second one. We
will see in Sect. 4.5 that this flaw cannot be avoided with an additional hidden
variable, and that the observed sharp bends at the end of reloading may be
attributed to a sudden shear localization. We note that apparently familiar
triaxial tests are rarely apt to judge constitutive relations, and that the ones
by Jefferies (1997) do not convincingly support elp or hyp.
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Repeated reversals of simple psammoid RSEs will now be discussed more
geometrico as this suffices for qualitative features known from the few ac-
ceptable experimental reports. Consider first rather large strain cycles with
nearly constant void ratio e (isochoric, A) or skeleton pressure (isobaric, B),
Fig. 2.6.5. ‘Rather large’ means that SOM-states are repeatedly reached by
monotonous deformations between reversals so that the memory is swept out
except for skeleton stress σsi and e (Gudehus et al. 1977). Unit strain rates
(a, moons for ψε̇) are isochoric (A), or alternately dilatant and contractant (B,
arrows for change by repetition). Stress paths (b) with response polars and e
vs. log ps paths (c) exhibit two reversals (cf. Figs. 2.2.7 and 2.2.8). According
to the introduction by Fig. 2.2.4 the polars are assumed as rather hyp (cf.
Fig. 2.4.2) than elp (cf. Fig. 2.3.3). Details will now be discussed by inserts
and then by the sparse experimental results.

The upper reversal may be close to a critical state with σs1 > σs2, thus
the north-west point of its polar is closest to the reference point, Fig. 2.6.5d.
More precisely speaking, for an isochoric deformation (A) the increase of ps

per unit of strain is bigger before the reversal than the decrease afterwards.
As long as the attractor by Fig. 2.2.7 is not reached repeated strain cycles
cause a gradual reduction of ps and thus of re, the two isochoric points on the
polar are thus shifted as indicated by arrows. For an isobaric deformation (B)
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the rate of dilation (ψε̇ > 90◦) before the reversal is bigger than the rate of
contraction afterwards. As long as a periodic attractor is not reached there is
a gradual densification and thus again a reduction of re, this is indicated by
arrows at the isobaric points on the unit strain rate cycle.

At the opposite reversal the south-east (ψṡ = −90◦) point of the response
polar is closest to the reference point, Fig. 2.6.5e. The further specification
for A and B is the same as above. Together with Fig. 2.6.5a this explains the
stress path crossing near isotropic points and a gradual reduction of ps for A,
and a strain path crossing as in Fig. 2.2.7a (B) with a gradual reduction of e
for B. One can thus see that state cycles are attained with response polars by
Fig. 2.2.4, at least in case of rather big strain cycles.

Triaxial tests of this kind have not been carried out, but some reports with
several stress reversals enable to judge the range of validity of the proposed
asymptotic state cycles. Wichtmann (2005) imposed deviatoric stress cycles
to a saturated sand. Without drainage alternations of q(= σs1 −σs2) lead to a
double-loop (butterfly) stress path which is only determined by e and max|q|,
Fig. 2.6.6a. In the transition the gradual reduction of ps is faster without than
with previous cycles. For parts of the butterfly the skeleton pressure ps tends
to zero between reversals, this indicates a temporary skeleton decay. This
observed attractor is distorted and shifted due to the penetration of grains
into the membrane which increases with higher ps and reduces the void ratio.
Without it the butterfly would have a bigger amplitude and a lower average
of ps.

A simulation with hyp (Fig. 2.6.6b) leads to a skewer and flatter than ob-
served double stress cycle (butterfly) after less reversals than observed without
precycling. The deviating shape of the butterfly cannot be attributed to the
membrane penetration, this could be taken into account for a better valida-
tion and calibration. The influence of precycling cannot be captured by hyp.
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Fig. 2.6.6. Response of undrained saturated sand to an alternating stress deviator
in a triaxial test (a, Wichtmann 2005), and in a hypoplastic simulation (b, Prada
2010)
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We can conclude that further (internal or hidden) state variables are needed
in general to capture the memory of previous reversals (Sect. 4.2). With the
approach of a butterfly bigger monotonous deformations between reversals
may suffice to sweep out this memory so that σs1, σs2 and e suffice as state
variables (SOM, Gudehus et al. 1977).

Stress cycles were imposed to saturated cylindrical sand samples with
drainage by Luong (1982) and by Chang and Whitman (1988), and with more
variants by Wichtmann (2005). If critical stress obliquities are not reached the
skeleton is gradually deformed and densified, and the strain increments per cy-
cle by hyp get smaller due to densification. No such accumulation is obtained
by elp as the e-dependent elastic range is not left. The cumulative deforma-
tion is grossly overestimated by hyp, only an asymptotic void ratio near ed

is realistically obtained. One can conclude again that the memory of rever-
sals is not swept out so much that the skeleton state is sufficiently captured
by stress components and void ratio. Additional internal state variables are
needed for small amplitudes to reduce the exaggerated hysteresis and double
e- vs. (σ1 − σ2) loops by hyp (Sect. 4.2).

Luong (1982) reports also on ratcheting (‘cyclic mobility’) with undrained
triaxial tests, but this is no more than a qualitative finding. Hyodo et al.
(1989) imposed stress deviators to undrained cylindrical quartz sand samples.
With a rather dense sample (re ≈ 0.5 initially) the stress path (Fig. 2.6.7a)
tends to a lense as proposed in Fig. 2.2.8b, and the plot of deviator stress vs.
deviator strain (b) indicates a transition to ratcheting. Loose samples decay
repeatedly after a transition, the completely different diagrams are left aside
therefore. A simulation with elp would produce an elastic response far off
reality. hyp (Prada 2010) leads to wider stress cycles after a shorter transition
than observed (c), and to an exaggerated ratcheting (d). It appears that the
differential response is rather hypoplastic near maximal stress deviators, but
not near isotropic states. One can again conclude that the skeleton state is not
sufficiently captured by stress and void ratio only if monotonous deformations
between reversals are not so big that the memory of previous reversals is swept
out.

Ratcheting of cylindrical granular RSEs with stress control, particularly
with constant ps or σs2, was approached in triaxial tests as yet only with small
amplitudes. This means that each forward deformation step is so small that
the memory of previous reversals is not swept out (Sect. 4.2). The gradual
densification or relaxation for deviatoric stress cycles with constant pressure
or volume, respectively, and the cumulative deviatoric deformation is grossly
overstimated by hyp and missed by elp. It will be shown in Sect. 4.3 how these
lacks can be reduced by means of hidden state variables.

To sum up, the behavior of cylindrical psammoid RSEs can be better
captured by hyp than by elp as long as deformations between reversals are not
too small. Hyp works as long as the memory of previous reversals is swept out
by sufficient monotonous deformations. Asymptotic state cycles by repeated
strain cycles and ratcheting are at least qualitatively captured by hyp, but
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Fig. 2.6.7. Response of rather dense saturated cylindrical sand samples without
drainage to a pulsating stress deviator: stress path (a) and stress-strain plot (b)
observed by Hyodo et al. (1989), simulation by hyp (c and d, Prada 2010). εa = ε1,
q = σ1 − σ2, p = ps

gradual changes of pressure or void ratio are thus overestimated. Ratcheting
with small amplitudes is missed by elp and grossly over-predicted by elp. The
loss of uniformity at state limits prevents a precise validation in their vicinity.

2.7 Cuboidal deformations near state limits

The three principal stress components σs1, σs2, σs3 of a cuboidal grain skeleton
may share with it the principal axes, Fig. 2.7.1a. Changes of the three edge
lengths d1, d2, d3 can be expressed as strains and strain rates by

εi = ln(di0/di) , ε̇i = ḋi/di , i = 1, 2, 3. (2.7.1)

Strain rates ε̇i are related with stress rates σ̇si, rate-independence is assumed.
In a stress component space the deviator plane ps = const with the mean
skeleton pressure

ps =
1
3
(σs1 + σs2 + σs3) (2.7.2)
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Fig. 2.7.1. Representation of three principal stress components: (a) cuboid, (b)
component space, (c) deviator plane

cuts a triangle in the octant σi ≥ 0 (b). The straight line connecting a point
on it with the origin makes an angle ψs with the space diagonal. The straight
line connecting a point (σs1, σs2, σs3) with the central point of the devia-
tor plane makes an angle αs with the bisectrix σs2 = σs3 on the deviator
plane.

In case of cylindrical symmetry with αs = 0, ±60◦, ±120◦ or ±180◦ ps

and ψs suffice to represent the skeleton stress state, state limits and evolutions
can then be shown in a σs1 vs.

√
2σs2 plane. Otherwise two projections are

needed. The one onto a deviator plane shows αs and ψs, Fig. 2.7.1c. Assuming
e and σs1, σs2, σs3 to be sufficient state variables for simple psammoids,
an interchange of the labels 1,2,3 does not matter due to frame-indifference
(Sect. 1.2). One can see from Fig. 2.7.1 that ps, cos 3αs and tan ψs are invariant
with respect to this interchange. Thus the sector 0 ≤ αs ≤ 60◦ suffices for
representation. Analogous angles ψε̇ and αε̇ can be defined for strain rates by
means of the volumetric strain rate

ε̇υ = ε̇1 + ε̇2 + ε̇3 . (2.7.3)

It can be of use to plot the deviatoric strain rate direction αε̇ in the stress
deviator plane.

The concept of state limits, introduced in Sect. 2.2 for cylindrical symme-
try, can be extended as shown in Fig. 2.7.2. In a deviator plane (a) αs and
αε̇, as by Fig. 2.7.1, appear for states with equal re-dependent peak friction
angles by (2.2.17). In a plot of cos 3αε̇ vs. cos 3αs (b) the influence of re may
be neglected. The two lines of ψε̇ vs. ψs (c) for αs = 0◦ and 60◦ suffice as
the interpolation is monotonous. The same holds true for the plot of re vs.
ψs (d). Apart from the only positive sign of ψs by Fig. 2.7.1c the curves in
Fig. 2.7.2c, d are the same as in Fig. 2.2.2a, c, this is indicated by the labels
i, ±c and ±d. Contractant state limits with re > 1 and dilatant ones with
re < 1 are defined as for cylindrical symmetry, but now with related αs and
αε̇ in the range from 0 to 60◦ via Fig. 2.7.2b, c.
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Fig. 2.7.2. State limits of a cuboidal psammoid RSE: (a) deviator plane, (b) relation
of deviatoric invariants, (c) relation of strain rate and stress obliquities, (d) relative
void ratio vs. stress obliquity

Biaxial deformations are defined by fixing one edge length of a cuboid, say
ε2 = 0. With this choice critical states have ε̇1 = −ε̇3, this means αε̇ = 30◦

and cos 3αε̇ = 0 for any choice of axes. Then cos 3αs > 0 can be read from
Fig. 2.7.2b, i.e. αs < 30◦ holds for our choice of axes. A biaxial critical friction
angle ϕcb can be defined by

(σs1 − σs2)2c/(σs1 + σs2)2c = sin2 ϕcb, (2.7.4)

formally as ϕc for cylindrical symmetry by (2.2.15). Mohr (1914) assumed ϕ
to be independent of αs, this means a straight line in the deviator plot instead
of the arc in Fig. 2.7.2a.

Biaxial peak states imply dilatancy, i.e. ε̇1 + ε̇3 < 0, and thus cos 3αε̇ > 0.
A biaxial peak friction angle ϕpb can be defined for them by

(σs1 − σs2)2p/(σs1 + σs2)2p = sin2 ϕpb (2.7.5)

as ϕp by (2.2.17) for cylindrical symmetry, it is slightly bigger than ϕp for the
same re. Similarly as (2.2.20) Rowe’s (1962) stress-dilatancy relation can be
written as

ε̇p
1/ε̇

p
3 = − tan2(45◦ ∓ ϕcb/2)σs3/σs1 (2.7.6)

with − for ε̇1 > 0 and + for ε̇1 < 0. This renders possible interpolations
between critical and extremely dilatant state limits.

Cuboidal state limits should not be confused with so-called failure con-
ditions, Fig. 2.7.3. Leaving aside the inherent anisotropy, the former can be
represented in one sixth of a deviatoric stress plane (a). It is a straight line
for the so-called Mohr-Coulomb condition, then the stress circles for a given
ps (b) have a tangent whose slope ϕp does not depend on the intermediate
principal stress. Based on tests (some of which will be outlined below) variants
of rounded envelopes have been proposed, with them ϕp is bigger for biaxial
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Fig. 2.7.3. Cuboidal ‘failure’ conditions in a deviator plane (a), and with stress cir-
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deformation (B)

deformations (B) than for axial shortening (S) and extension (E) with the
same ps and two equal stress components. As with ‘triaxial’ tests (Fig. 2.2.3)
the loss of uniformity and changes of the relative void ratio re in cuboidal
tests up to peak (=failure) are often ignored. Similarly as in Fig. 2.2.3c, f the
average r̄e is rarely equal for a set of peak states, this is thus not apt for a
proper validation of state limits.

Different extensions from cylindrical symmetry to cuboidal deformations
have been proposed for elastoplastic relations (elp) with volumetric hardening
in the framework of CSSM. Limit void ratios are taken by (2.3.1), OCR by
(2.3.3) is normally used instead of re, both with ps by (2.7.2). The stress
condition for critical states can be written as

tan ψs = tan ψsc = fc(cos 3αs, ϕc) (2.7.7)

with a function fc representing the curve in Fig. 2.7.4a. In earler versions of
CSSM a bigger tanψc by (2.2.15) was assumed for αs = 90◦ than for αs = 0.
In improved CSSM versions ψs depends on ϕc by (2.2.15) for αs = 0 and
60◦, i.e. the same critical friction angle holds for cylindrical shortening and
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Fig. 2.7.4. State limits by CSSM: (a) deviator plane, (b) obliquities of strain rate
and stress, (c) relative void ratios vs. stress obliquity (range with tension dotted)
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lengthening. An associated deviatoric flow rule, as shown in Fig. 2.7.4a, can
be represented by

cos αε̇ = fα(cos 3αs) (2.7.8)

with a function fα. OCR = 1 holds for isotropic first compression, and OCR ≈
2 for critical states.

Contractant state limits occur in the range 1 ≤ OCR < ca. 2, 0 ≤ tan ψs <
tan ψsc and 0 < cos 3αε̇. Dilatant state limits by CSSM have OCR >ca. 2 and
ψε̇ > 90◦. As shown in Fig. 2.7.4a a deviatoric flow rule with normality was
repeatedly assumed, also for critical states and for proportional compressions
with OCR < ca. 2. For big OCR tensile stresses can occur in some CSSM-
versions, they are excluded by a cut-off for σsi ≤ 0. Tensile stresses lie outside
the pyramid in Fig. 2.7.1b by (2.2.4), i.e. outside a straight line in the sector
0 ≤ αs ≤ 60◦ of a deviator plane (Fig. 2.7.4a). Cross sections through the
space diagonal exhibit state boundary lines as in Fig. 2.3.2a or b. For arbitrary
αs and constant void ratio e they represent a state boundary surface, this
changes with e as outlined in Sect. 2.3. CSSM-versions with a tension cut-off
imply similar plots of ψε and re vs. ψs in the sector 0 ≤ αs ≤ 60◦ as by
Fig. 2.7.2c, d, but without the extreme state limits labelled ± d (Fig. 2.7.4b,
c, dotted for tensile stress).

Transitions to state limits and response polars by CSSM are shown in
Fig. 2.7.5. Therein planes appear uniformly grey and convex surfaces have a
graded grey for giving a three-dimensional impression. The straight deforma-
tion paths (a) may be contractant (A), isochoric (B) and dilatant (C), now
with other deviatoric directions than for cylindrical symmetry. These direc-
tions appear as points on the sphere D =

√
ε̇2
1 + ε̇2

2 + ε̇2
3 = 1 above, on and

below the circle ε̇1 + ε̇2 + ε̇3 = 0 (b). In the stress component space the state
boundary surface is cut along the i-line σs1 = σs2 = σs3 and by the plane
ps =const for critical states with a constant e (c). The chosen bullet shape
corresponds to the state boundary line in Fig. 2.3.2b for αs = 0 and 60◦, the
extension of Fig. 2.3.2a would require a tension cut-off.

For a starting point 0 in the assumed elastic range, i.e. inside the bullet for
the initial e, the response polar is a centric rotational ellipsoid (Fig. 2.7.5d).
With the hypoelastic relation (2.3.5) it has the same shape and alignment
throughout the elastic range, and its size changes in proportion with ps. Thus
the stress paths can be straight until the boundary surface is reached (0–1).
Then the polars consist of an elastic half-ellipsoid and a flatter anelastic cap.
With contraction the polar with a convex cap widens (e), and the stress path
tends to a straight line with increasing ps (A). Without volume change the cap
gets flatter (f) until a stationary critical state is reached (B). With dilation
the polar with a concave cap shrinks (g) and the stress path tends to a straight
line with decreasing ps (C). The latter attractor could not be achieved with a
rounded state boundary surface near the origin. The void ratios tend to the
state limit values shown in Fig. 2.3.4c as the latter do not depend on αs.
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Fig. 2.7.5. Approach to state limits by CSSM (with a bullet-like elastic range): (a)
strain paths, (b) strain rate directions, (c) stress space with state boundary surface
and paths; response polars for onset (d) and contraction (e), and for isochoric (f)
and dilatant (g) state limits

Extending (2.4.3) to three components, simple hypoplastic relations can be
written as

σ̇si = fs(Lij ε̇j − fdNiD) (2.7.9)

with i = 1, 2, 3 and summation for repeated j = 1, 2, 3. Therein the modulus
of strain rate is

D =
√

ε̇2
1 + ε̇2

2 + ε̇2
3 . (2.7.10)

The factors fd and fs depend on ps and on e via (2.4.4) and (2.4.5). Lij and
Ni depend on ψs and αs with ϕc as material parameter, representations were
proposed e.g. by Gudehus (1996) and von Wolffersdorff (1996).

Relations between ψs, ψε̇, αs, αε̇ and re can be derived from (2.7.9) as
follows. For critical states ε̇υ = 0 and re = 1 hold by definition, and σ̇si = 0
holds for D > 0. ε̇υ = 0 means ψε̇ = ±90◦, for any assumed αε̇ the ψs and
αs can be calculated from (2.7.9). Peak states, which are close to dilatant
state limits, have also σ̇si = 0 for D > 0, but ε̇υ < 0 and re < 1. Assuming
any αε̇ and an re > 0 one can calculate ψs, αs and ψε̇ from (2.7.9) with
σ̇si = 0. For contractant state limits σ̇si/σ̇sj = σsi/σsj holds by definition,
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Fig. 2.7.6. Approach to state limits by hyp with strain paths as by Fig. 2.7.5a, b:
stress paths (a), response polars for the onset (b) and near contractant (c), isochoric
(d) and dilatant (e) state limits

and re = const > 1. This suffices to calculate ψs, αs and re for any assumed
strain path direction ψε̇ < 90◦ and αε̇. Typical relations are shown in Fig. 2.7.2
which was used for introduction.

The approach to state limits and response polars by hyp are shown in
Fig. 2.7.6. Strain paths and their directions may be the same as in Fig. 2.7.5a
and b, stress paths (a) may start from the same point. The relative void ratios
evolve as in Fig. 2.4.3c with negligible influence of αs. The response polars
are eccentric ellipsoids, labels for re are dropped for simplicity. They steer the
stress paths from the very beginning. In case of contraction (A) the polars
align the stress path with increasing ps. Without volume change (B) the polars
steer the stress path towards a critical state. With dilation (C) the polars align
the stress path with decreasing ps. A kind of state boundary surface could be
constructed for state limits with constant e, but it is not needed for showing
the approach to attractors.

True triaxial tests of three kinds are principally apt for validation, Fig. 2.7.7.
Stress control by six pressurized membranes (a) requires separating edges, but
these prohibit uniform large deformations. At best fairly uniform peak states
can thus be approached, but no critical states. A better uniformity can be
achieved by six nested and mutually guided smooth plates (b, Goldscheider
and Gudehus, 1973). Rather uniform peak states may thus be attained, but
in their vicinity shear localizations cannot be prevented (Sect. 8.2). Uniform
critical states may be approached if e is high at the onset. Mixed devices with
two oversized and two undersized plates and a pressurized membrane at two
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a) b) c)

Fig. 2.7.7. True triaxial devices with (a) membranes and fixed edges, (b) nested
plates (without top plate), (c) membranes and plates (two of them omitted)

faces (c) can at best produce fairly uniform small deformations up to peak.
The penetration of grains into the membrane by up to about one third of a
grain diameter should be taken into account.

Biaxial tests keep one edge length of a cuboidal sample constant via two
fixed plates with membrane and lubrication, Fig. 2.7.8. With two mutually
guided plates and two pressurized membranes (a) plane deformations can be
rather uniform up to peak. With four mutually guided plates (b), smooth with
membrane and lubrication, bigger uniform deformations are possible. With
both devices shear localizations cannot be avoided near a peak (Sect. 8.2).

True triaxial tests are more expensive than biaxial ones, and much more
than ‘triaxial’ tests. So they have rarely been made, and the few available
reports are often incomplete. For all that such results are important for vali-
dation, in particular with respect to state limits, as the deformations can be
more uniform than with ‘triaxial’ tests. The prerequisites PR1 to PR6 out-
lined at the beginning of Sect. 2.5 have to be kept in mind as with cylindrical
symmetry.

Lanier et al. (1991) report on cuboidal tests with a quartz sand in a device
as by Fig. 2.7.7b. Some tests with σs2 = σs3 = 0.5 MPa and ε1 < 0 (Fig. 2.7.9)

a) b)

Fig. 2.7.8. Biaxial devices with (a) membranes and plates (without front and top
plate), (b) nested plates (without top plate)
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Fig. 2.7.9. Cuboidal test results by Lanier et al. (1991) with a differently bedded
saturated quartz sand at σs1 = σs2 = 0.5 MPa and ε1 < 0. Stress ratio and volume
vs. strain deviator for dense (a, b) and loose samples (c, d)

exhibit a good repeatability of stress ratio and volume change vs. deviatoric
strain with dense (a, b) and loose samples (c, d). These curves could be
better matched by hyp than by elp, but they differ substantially for different
orientations with respect to the bedding plane of placement. Dilatancy and
stress ratios towards state limits get independent of the initial anisotropy
(Sect. 9.1). As outlined in Sect. 2.5 loose samples yielded almost the same ϕc

for cylindrically symmetric shortening and lengthening.
The memory of placement direction is also swept out by monotonous iso-

choric deformations (Lanier et al. 1991) from stress paths and stress ratio vs.
strain deviator curves for axial shortening and lengthening with dense sand
and σs2 = σs3. The transitions cannot be matched with elp or hyp as both
do not imply an inherent anisotropy (Sect. 9.1), but state limits as attractors
are confirmed.

More cuboidal test results are available for peak states. Goldscheider
(1976) observed relations of tan ψs with αs and of αε̇ with αs with a dense
dry sand in a device as by Figs. 2.7.7b, 2.7.10a and b. Values of ψε̇ and e at
peak are not given in the same publication, only one ψε̇ for one αs is given
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Fig. 2.7.10. Cuboidal test results by Goldscheider (1976) with a dense dry quartz
sand at constant ps: (a) stress obliquities and strain rate directions at peak, (b)
Lode invariant of stress vs. the one of strain rate

elsewhere (Goldscheider 1975). With estimated void ratios, limit values ec and
ed by (2.4.1) and data for the same sand re ≈ 0.4 is obtained, but this is not
precisely the same for the different peak states attained with the same initial
re and constant ps. Biaxial test results (type Fig. 2.7.8a) by Vardoulakis et al.
(1978) with the same sand and about the same re yield nearly the same ψs

for plane strains as by Fig. 2.7.10.
Other reports on peak states of sands do not render possible such pre-

cise conclusions. Arthur and Menzies (1972) worked with a device as by
Fig. 2.7.7a and found that the orientation of the initial deposition of a dense
sand influenced the stress obliquity ψs at peak by no more than ±1◦. Lam and
Tatsuoka (1988) observed a bigger influence of the initial bedding direction
on peak stress ratios and dilation ratios with a dense quartz sand in a device
as by Fig. 2.7.7c. It appears, however, that the deformations near a peak were
not uniform enough to disprove our concept of state limits without inherent
anisotropy.

Lade and Duncan (1973) produced peak states with sand in a device as by
Fig. 2.7.7a. The stress obliquity tanψs depends on the deviatoric direction αs

(Fig. 2.7.11a), this could be expresed by peak friction angles ϕp. This depends
markedly on e, but the latter is not the one of the onset. The plotted directions
of deviatoric strain rates are nearly normal to the peak deviator curve. Ibsen
and Praastrup (2002) observed tanψs vs. αs for peak states (Fig. 2.7.11b), and
a reduction of ψs for higher ps with a quartz sand in a device as by Fig. 2.7.6b.
An influence of the bedding direction is visible, but not so strong that our
concept of state limits is refuted. Relative void ratios re at peak cannot be
concluded from the report, they were certainly not equal for all peaks. It ap-
pears that the inherent anisotropy was stronger than in Goldscheider’s (1976)
tests. Note, however, that peak states can at best come close to dilatant state
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Fig. 2.7.11. Observed peak stress states of sand in a deviator plane; (a) by Lade
and Duncan (1973), (b) by Ibsen and Praastrup (2002)

limits, and can be influenced by shear bands which depend on the orientation
of placement (Sects. 8.2 and 9.1).

In a seminar talk 1982 Goldscheider (we have the manuscript) reported on
cuboidal experiments where extremely dilatant state limits were approached.
Dense dry sand samples were first brought to a stress state with σs2 > σs1 =
σs3 and a slight densification. A reversed proportional deformation path was
then imposed with ε2 ≈ ε3 ≈ 0 and dilation. The stress path tended to a
straight line with a direction as for state limits. These states exhibit higher
stress obliquities tan ψs than for the peak states shown in Figs. 2.7.10 and
2.7.11. Although relative void ratios re are not precisely known it appears
that these states come close to state limits by Fig. 2.7.2 with an uncommonly
high dilation. It would not make sense to characterize them by peak friction
angles. Goldscheider mentions that eccentric normal forces observed at the
plates indicate shear localizations (cf. Sect. 8.2).

Biaxial tests were less often carried out with sand than cuboidal ones
although they are less expensive. Cornforth (1964) built a device as by
Fig. 2.7.8a and produced different initial densities by a vibrator at the base,
this led to uniform and rather isotropic saturated sand samples. In a typi-
cal drained test with medium density both major and intermediate principal
stress go through a peak. A marked shear band arises at peak (Sect. 8.2) so
that strains beyond it differ substantially from spatial averages. The void ra-
tio decreases first and increases then, with a maximal dilation ratio ε̇v/ε̇1 at
peak. This evolution could be matched by hyp, but not by elp.

Peak friction angles, volumetric and axial strains were thus determined for
different initial porosities (n = e/(1 − e)), and compared with ‘triaxial’ test
results with the same sand. These findings could be matched with elp or hyp,
peak friction angles could also be reproduced by elp. Results by Tatsuoka et al.



2.8 Cuboidal deformations off state limits 75

(1990) with a device as by Fig. 2.7.8a, however, exhibit a marked influence of
the bedding direction on peak values (cf. Fig. 2.6.5). This inherent anisotropy
can be attributed to a sandwich fabric and arising shear bands (Sect. 9.1).

To sum up, cuboidal deformations of granular samples in the vicinity of
state limits can be captured by simple psammoid models, better by hyp than
by elp, but only few test reports reveal the range of validity. An approach to
state limits by proportional strain paths was rarely observed. Observed peak
states are debatable substitutes of dilatant state limits as their relative void
ratio was rarely reported, and because of shear localization. The anisotropy
by placement can be swept out by uniform deformations or increased by
shear localization.

2.8 Cuboidal deformations off state limits

Aiming at uniformity, cuboidal and biaxial devices as by Figs. 2.7.7b and
2.7.8b were first built in Cambridge and used with clay (Roscoe 1970, more in
Sect. 2.7). The first device of this kind for sand was built and used in Karlsruhe
(Goldscheider and Gudehus 1973). It took some time to achieve controlled
evolutions with a correction for the penetration of grains into the membrane,
and with reversals a precise control turned out impossible. One morning the
technician told me that he had started a test with an error, but corrected it
without opening the device so that the error could not be detected. Thereafter
Goldscheider (1975) discovered that proportional deformation paths lead to
proportional stress paths independently of the initial stress, and that isobaric
reversals cause a stronger contractancy than the previous dilatancy. On this
base I postulated a swept-out of memory (SOM) by big enough monotonous
deformations so that the skeleton state is sufficiently characterized by stress
components and void ratio (Gudehus et al. 1977).

Proportional stress paths were again attained with proportional deforma-
tions by Goldscheider (1984), later also by Lanier et al. (1991) and by Chu
and Lo (1994). SOM-states were attained with dense sand samples and so
that limit void ratios were not reached, they are thus attractors but no state
limits. More precisely speaking, the response for a succession of SOM-states
can be captured by constitutive relations of the type

σ̇si = fi(σsj , e, ε̇j) (2.8.1)

with i, j = 1, 2, 3 for cuboidal RSEs. This extension of (2.2.13) means that in-
ternal variables are not needed for simple psammoids. The void ratio is needed
except for state limits where it is determined by ps, ψs and αs. The functions
fi can be represented algebraically, e.g. by elastoplastic or hypoplastic rela-
tions, or graphically by response polars. One can see from Figs. 2.7.5 and 2.7.6
that elp and hyp are similar for the approach to state limits, but less just after
reversals and definitely not off state limits. We will see in the sequel how well
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elp and hyp are confirmed by cuboidal test results off state limits, and when
(2.8.1) cannot suffice.

Reversals from SOM-states were observed in some cuboidal tests as by
Fig. 2.7.7b. Goldscheider (1975) observed that even dense dry sand contracts
after isobaric reversals and that its ps is reduced just after isochoric reversals.
The same is obtained with hyp as can be seen with response polars (Fig. 2.7.5),
but not with elp (Fig. 2.7.4). Later results with dense dry sand by Goldscheider
(1984) are better apt for quantification. The samples were first isotropically
compressed with 1 MPa and then decompressed to improve their homogeneity
and isotropy. Results of a test with an isochoric reversal are shown in Fig. 2.8.1.
Starting from ps ≈ 0 the sample was first compacted with σs2 = σs3, then
deformed with constant volume and reversed ε̇1. The deviatoric strain path
(c) and the plot of volume change vs. strain path length (d) consist of two
nearly straight sections. The stress path in the deviator plane (a) and the plot
of mean stress vs. deviator (b) is first also straight as with ps = 0 at the onset.
After the reversal the stress path bends before reaching a straight line, and
exhibits a loop in one projection.
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Fig. 2.8.1. Cuboidal test with dense dry sand by Goldscheider (1984): stress paths
in a deviator plane (a) and in a plane through the space diagonal (b), deviatoric
strain path (c) and volumetric strain vs. strain path length (d). Replotted and
simulated with hyp (dotted lines) by Rebstock (2010)
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A simulation with hyp, also plotted in Fig. 2.8.1, was carried out by Reb-
stock (2010) with smooth strain paths. It leads to a radial stress path after
the reversal, but not quite with the observed directions and with other on-
sets (a, b). The latter may be attributed to the homogenization by isotropic
prestressing which cannot be simulated by means of an RSE. The observed
zig-zag cannot be reproduced, it results from manual corrections for the pen-
etration of grains into the membrane and eludes a precise control.

Yamada and Ishihara (1982) tested loose saturated undrained sand samples
with one reversal in a device as by Fig. 2.7.7a. Other than in Goldscheider’s
(1984) tests their samples were initially anisotropic by placement, and the
changing penetration of grains into the membranes was not compensated. In
three of their tests with nearly the same e and αs = 30◦, the angle between
the major σsi and the direction of sedimentation was θ = 30◦, 90◦ and 150◦.
The stress paths depend markedly on θ. As with cylindrical samples they start
with ṗs = 0, go on with ṗs < 0 and exhibit then ṗs > 0 with nearly constant
obliquity. The latter can be attributed to a slight dilation by membrane pen-
etration. The plots of εi vs. stress obliquity are different for θ = 30◦, 90◦ and
150◦. They do not reach a peak as in Fig. 2.6.3a, and indicate that nearly the
same tan ψs is attained with bigger strains for θ = 90◦ than for 30◦ and 150◦.

This inherent anisotropy by placement is presumably due to a sandwich-
like pattern of initial void ratios, the grains are too squat for preferred ori-
entations (Sect. 9.1). With the reported strains of up to ±0.02 the edges in
the device by Fig. 2.7.7a could hardly spoil the uniformity, but the presumed
sandwich could thus remain. The attained strains suffice to align the skeleton
until its state is determined by σsi and e in fine layers so that the overall be-
haviour exhibits anisotropy. Assuming a composite of two simple psammoid
half-cuboids with different e on two sides of a skew separatrix (Sect. 9.1) one
could match the plots by hyp. This would not yield the initial ṗs = 0, but at
least roughly the subsequent ṗs < 0, then the ṗs > 0 with membrane penetra-
tion and the response just after the reversal for different inclinations θ of the
separatrix. This is to say that the assumption of SOM-states could suffice to
capture evolutions with monotonous deformation path sections of moderate
amount (say ca. 0.01).

Goldscheider (1984) tested also two isobaric reversals with a dense dry
sand, Fig. 2.8.2. The deviatoric stress path (a) and the ps-level with changing
ψs after an almost isotropic compression (b) could not be kept precisely on
straight lines, an exact stress control with adaption of membrane penetration
was impossible. The deviatoric strain path (c) exhibits more drift than the
deviatoric stress path. The plot of volume change vs. strain path length (d)
exhibits first densification and then dilation. This occurs mainly by the initial
increase of isotropic pressure, the contraction after each reversal with nearly
constant ps exceeds the previous dilation (both referred to the same small
deformation).

This evolution could be partly matched by Rebstock (2010) with hyp
and smooth path sections (elp fails as with cylindrical symmetry), also in
Fig. 2.8.2. The deviatoric strain path has another drift than observed (c),
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Fig. 2.8.2. Cuboidal test with dense dry sand by Goldscheider (1984): stress paths
in a deviator plane (a) and in a plane through the isotropic axis (b), deviatoric strain
path (c) and volumetric strain vs. strain path length (d). Replotted and simulated
with hyp (dotted lines) by Rebstock (2010)

volume changes are better reproduced (d). This suggests again that the dif-
ferential response is sufficiently determined by the state variables σsi and e if
and only if the previous deformation was monotonous and big enough (here
|ε| > ca. 0.005). Otherwise the internal state is no more determined by the
named external state variables as assumed for SOM-states, thus hyp yields
exaggerated anelastic effects.

Isochoric reversals with a dense sand were investigated in a cuboidal device
as shown in Fig. 2.7.7b by Lanier et al. (1991), Fig. 2.8.3. The stress path (a)
approaches ps = 0 after reversals, this indicates temporary skeleton decay.
The deviatoric stress-strain plot (b) exhibits sections without stiffness. This
was similarly observed by Hyodo et al. (1989) and by Wichtmann (2005) with
triaxial tests. One cannot capture decay and recombination of the skeleton by
psammoid models, but for the other path sections with rather big deformations
a sequence of SOM-states may be assumed. Off-decay parts could be captured
with hyp.
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Fig. 2.8.3. Cuboidal test (Lanier et al. 1991) with undrained saturated dense sand.
Stress path (a) and deviatoric stress-strain curve (b)

For lack of comprehensive experiments it is only briefly discussed now how
far cuboidal deformations with several reversals could be captured by simple
psammoid models. After the previous discussion elp can be left aside, and
hyp can be expected to work at best if the deformations between reversals
are so big that SOM-states are repeatedly attained. Then state cycles can
be reached as attractors for cyclic deformation and ratcheting, but they are
more intricate than with cylindrical RSEs. Stress cycles are no more in one
plane in general, thus a constricted loop can be attained in a stress compo-
nent space instead of a double loop in a stress plane. Asymptotic stress loops
by ratcheting are presumably not constricted and will touch critical obliqui-
ties, but do not resemble lenses in three dimensions. One could explore such
properties with response polars as in Figs. 2.7.5 and 2.7.6 or by numerical
simulations.

It appears that only Lanier and Zitouni (1988) approached an attractor of
this kind with a cuboidal device, Fig. 2.8.4. They worked with a dense satu-
rated quartz sand. With a constant mean pressure the deviatoric stress path
was first straight and then steered twice through a circle (a, with directions
of strain rate). The deviatoric strain path approached a rounded triangle (c),
the direction of the deviatoric strain rate (b) and the strain components (d)
attained almost periodic changes with the deviatoric stress direction αs. The
volume change εv vs. αs got nearly periodic during the second stress cycle
(e). A plot of ε̇v along the stress path exhibits three intermittent phases of
dilation and contraction (f). This shows that a state cycle can be approached
with two symmetric stress cycles, and that void ratio and shape tend to cyclic
changes with three pulsations for one stress cycle.

A hypoplastic simulation by Rebstock (2010) is shown in Fig. 2.8.5. The
strain path (a) tends to a similar cycle as observed. The calculated initial shift
does not appear in Fig. 2.8.4c, it is rather indeterminate in the experiment
as the initial state is not sufficiently known and as a precise stress control is
impossible. The caculated volumetric strain (b) pulsates similarly as observed
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Fig. 2.8.4. Isobaric cuboidal test with saturated dense sand under stress cycles
(Lanier and Zitouni 1988): deviatoric stress (a) and strain path (c), deviatoric strain
rate direction (b) and strain components (d) vs. rotation of stress direction, volu-
metric change vs. rotation (e), signs of volumetric strain rates along the deviatoric
stress path (f)

(cf. Fig. 2.8.4e), deviations may be attributed to the variable penetration of
boundary grains into the confining membrane. The good reproduction of strain
rates indicates a succession of SOM-states so that hyp is justified. Elastoplastic
simulations would be less realistic.

It is a pity that ratcheting was not investigated with cuboidal devices. With
constant ps the deviatoric paths would resemble Fig. 2.1.9, and the plot of εv

vs. αs would presumably resemble Fig. 2.8.4e (cf. Sect. 2.6). With big reverse
strain amplitudes this could be matched by hyp as the skeleton goes through
SOM-states. Experiments by Yamada and Ishihara (1981) with initially loose
quartz sand in a cuboidal device as by Fig. 2.7.7a help to clarify the issue. The
deformations were so small that a loss of uniformity due to the fixed edges
may be neglected. The deviatoric stress path consisted of radial sections with
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reversals and increasing intensity. In a drained test with constant ps the de-
viatoric strain path exhibited a kind of ratcheting with increasing amplitude,
and the density increased gradually. In an undrained test the ratcheting was
stronger and the mean pressure ps was gradually reduced. The authors note
that ‘the memory of previous load paths disappears almost completely’, this
confirms the SOM-hypothesis by Gudehus et al. (1977).

Main features of these tests were reproduced in a hypoplastic simulation by
Rebstock (2010). With constant ps deviatoric strain path and density changes
are rather realistic, but somewhat exaggerated. The deviations are bigger after
αs-reversals by 1800 than with 600. This shows that the SOM-hypothesis can
work also for repeated reversals. In other words, with big enough deformation
the skeleton is sufficiently determined by void ratio and stress components
(Sect. 4.3). Elastoplastic simulations would be less realistic with the implied
wide elastic range. The experiments by Yamada and Ishihara (1982) were
planned and represented by assuming an elastoplastic response to imposed
stress paths, the results show that this assumption is too restrictive. Rebstock
(2010) deduces some objective qualitative conclusions and shows that such
tests are not well apt for validations.

Summing up, the response of cuboidal psammoid RSEs can be captured
by simple psammoid models, better by hyp than by elp, as long as deforma-
tions between reversals are not too small. Otherwise the skeleton state is not
sufficiently characterized by stress components and void ratio. Then anelastic
effects are overpredicted by hyp and underpredicted by elp. Experiments are
better apt for validation and calibration with strain control than with stress
control as the latter is earlier spoiled by loss of uniformity.
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2.9 Simple shearing at state limits

Simple shearing means changing height h and obliquity γ of a parallelogram,
Fig. 2.9.1a. For convenience the two deformation rates are called

ε̇ = −ḣ/h , γ̇ = ṡ/h (2.9.1)

with ε̇ > 0 for compression and with shift s. For large deformations ε =
ln (h0/h) may be used, the correct counterpart for γ is more intricate. ε̇1 and
ε̇2 may be written here for the principal components −D1 and −D2 of Dij .
The default could be overcome with stretching components Dij . Then −ε̇ and
γ̇ are replaced by D11 and D12 = D21, the other Dij are zero. The rate of
volume change is

ε̇υ = ε̇ = −D11 = −Dii = −e/(1 + e) (2.9.2)

for isochoric grains, with summation for i. A dilatancy angle νs can be defined
by

tan νs = −ε̇/γ̇. . (2.9.3)

In a Mohr diagram (Fig. 2.9.1b) the two principal strain rate components and
the inclination χε̇ of ε̇1 against the vertical are represented by a circle and a
pole P.

There are four skeleton stress components, Fig. 2.9.1c. Two of them cor-
respond to the conventional normal and shear stress,

τ = T12
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Fig. 2.9.1. Quantities for simple shearing: (a) RSE with strain rates, (b) strain
rate circle, (c) RSE with stresses, (d) stress circle
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σs = −Ts11 , τ = τs = Ts12 , (2.9.4)

τ = τs holds as the pore water pressure is isotropic. σ3 = −T33 is normal to
the considered plane. In a Mohr diagram (Fig. 2.9.1c, pressure positive) two
principal skeleton stress components σs1, σs2 and their inclination χσ appear
in a circle with a pole. The intermediate principal stress can be related with
the other two via

σs3 = m(σs1 + σs2) (2.9.5)

with a factor m which varies in general.
For state limits coaxiality of stress and strain rate, i.e. χσ = χε̇, and a con-

stant m may be assumed (these assumptions will be discussed in the sequel).
They can be represented by plots (Fig. 2.9.2) of νs (a), χσ (b) and re (c) vs.
τ/σs. Negative γ̇, τ and χσ refer to leftwards shearing. The e vs. log ps rela-
tion is assumed as by Fig. 2.2.2b, now with ps ≈ σs (justified further below).
Three special cases are represented by Mohr circles with poles, assuming the
same amount of strain rate (d) and the same vertical stress (e). For vertical
compression (p) τ = 0, νs = −90◦ and χσ = 0 hold with σs2/σs1 ≈ 1− sin ϕc

and re somewhere between 1 and (ei0 − ec0)/(ec0 − ed0). For critical states (c)
with νs = 0 and χσ = ±45◦

| τ | /σs = tan ϕcs = sin ϕcb (2.9.6)

holds with the critical friction angles ϕcs for shearing and ϕcb by (2.7.4) for
biaxial deformation, this will be defended further below. In their vicinity the
stress-dilatancy relation (Taylor 1948)

τ/σs = tan ϕcs + tan νs (γ̇ > 0) (2.9.7)
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Fig. 2.9.2. State limits for simple shearing: (a) dilatancy angle vs. stress obliquity,
(b) direction of major principal stress vs. stress obliquity, (c) relative void ratio vs.
stress obliquity, (d) strain rate circles, (e) stress circles
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Fig. 2.9.3. Proportional strain paths with shearing (a) lead to state limits in a
stress plane (b)

holds approximately. Extreme state limits with one zero principal stress (d),
χσ = ±90◦ and νs = ±90◦ are fictitious as they cannot be reached.

Approaches to state limits are sketched in Fig. 2.9.3. Proportional strain
paths (a) may be contractant (A), isochoric (B) or dilatant (C). The stress
paths (b) tend to radial ones with σs-increase for A and with σs-decrease
for C, and to a point for B. They are steered by the response polars which
are indicated at four stress points, and are approached with different onsets
so that the state limits are attractors. As in Fig. 2.2.5b the polars increase
with σs (barotropy), as in Fig. 2.2.4 they are wider for lower re (pyknotropy),
and limit void ratios are attained as in Fig. 2.2.5c. As the proper response
polars are four-dimensional and depend on re the polars in Fig. 2.9.3b are
sections for certain values of re, intermediate stress ratio m and inclination
χσ of the major principal stress. For frame-indifference χσ must attain the
given χε̇ (Sect. 2.11). As χε̇-dependent stress component ratios are attained
in a hyperspace of four stress components (which could be represented by sets
of projected response polars) m tends to a constant for state limits, it ranges
from ca. 0.3 to 0.5. This outline is not correct with large strains and co-rotated
stress rates (Sect. 2.11).

In simple elastoplastic relations (elp) m ≈ 0.5 and χσ = χε̇ = 45◦ (−45◦

for τ < 0) is often assumed for state limits. These are taken as elastic range
(cf. Sects. 2.3 and 2.7) which depends on e, and the limit void ratios depend
on ps by (2.3.1). A flow rule, i.e. ε̇p/γ̇p vs. τ/σs, is assumed for critical and
peak states. In some versions a tension cut-off is needed for high overconsoli-
dation ratios OCR. A hypoelastic relation like (2.3.5) is often assumed for the
elastic range. Analogously with Fig. 2.3.3 such constitutive relations may be
represented in a stress plane, Fig. 2.9.4a, with response polars for unit strain
rates (b). The stress components τ and σs are normalized by the equivalent
pressure pe by (2.3.3), the two further ones (or χσ and m instead) are thus
not represented.

The elastic range, i.e. a section through the state boundary hyper-surface,
resembles an ellipse or a drop. In the elastic range (e.g. I) the (cut of the)
response polar is a horizontal centric ellipse which increases in proportion with
σs. For a subcritical τ/σs and a σs at the boundary (A) the outer half of the
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Fig. 2.9.4. State boundary line for simple shearing by CSSM (a) with response
polars for unit strain rates (b)

polar is flatter, and the boundary is widened. At a critical state (B) one half of
the polar is cut off, and the boundary is stationary. With an overcritical τ/σs

and a σs at the boundary (C) the latter shrinks by dilation, thus the polar
has a concave cap. Approaches to state limits as in Fig. 2.9.3 are thus rather
evident (cf. Fig. 2.3.4). It is harder to imagine further projections of stress
hyperspace and response polars, and to understand thus how the component
ratios χσ and m come into play. This constitutive concept fails for ps → 0 due
to (2.3.1).

Simple hypoplastic relations (hyp) can be written as

Ṫs11 = fs(L1111D11 + L1112D12 + fdN11D)

Ṫs12 = fs(L1211D11 + L1212D12 + fdN12D)

Ṫs22 = fs(L2211D11 + L2212D12 + fdN22D)

Ṫs33 = fs(L3311D11 + L3312D12 + fdN33D)

(2.9.8)

with the modulus of stretching

D =
√

D2
11 + 2D2

12 =
√

ε̇2 + 2γ̇2. (2.9.9)

The stress rates Ṫij =dTij/dt are taken without co-rotational terms here for
simplicity (Sects. 1.2 and 2.11). The factors fd and fs depend on e and ps

by (2.4.4) and (2.4.5) as for cylindrical symmetry. The factors Lijkl and Nij

depend on the stress direction

T̂sij = Tsij/ps (2.9.10)

with the mean pressure

ps = −1
3
Tsii = −1

3
(Ts11 + Ts22 + Ts33) , (2.9.11)

in this dependence only ϕc appears as a material constant.
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Relations for state limits can be obtained as follows. Using the hypoplastic
relations by von Wolffersdorff (1996), Bauer (2000) derived Ts11 = Ts22 =
Ts33 = −ps, χσ = χε̇ = ±45◦ and

tan ϕsc = 2/

√
1 + 3/ sin2 ϕc (2.9.12)

for critical states. For peak states m, χσ ≈ χε̇, ε̇/γ̇ vs. τ/σs and re vs. τ/σs

can be calculated numerically with Ṫsij = 0 from (2.9.8). With proportional
compressions relations for the same quantities can be obtained iteratively
from (2.9.8) by means of the proportionality of Ṫsij and Tsij . These state
limits are qualitatively represented by Fig. 2.9.2. Approaches to state limits
by hyp look like Fig. 2.9.3b. The (sections of) response polars by (2.9.8) are
ellipses with properties as outlined already in Sect. 2.4. χσ = χε̇ is attained
due to frame-indifference (Sect. 2.11) as at state limits the stress components
suffice as state variables. A constant intermediate stress ratio m by (2.9.5) is
attained as all asymptotic stress ratios tend to values which are determined
by the direction of stretching.

Casagrande (1936) introduced a kind of state limits for simple shearing of
sand. He explained the effect of shearing on the specific volume of sand with
drawings, Fig. 2.9.5. For constant pressure σ an initially dense sand is dilated
by shearing (a, b), whereas an initially loose sand is contracted (c, d). The
shearing resistance tends to the same asymptotic value, after going through
a peak in case of dilation. The void ratio tends to the same asymptotic value
(porosity n = e/(1 + e)). Casagrande proposed (2.9.6) for critical states with
a constant ϕcs, and a lower void ratio for higher σs. In the same diagram (e)
he gives also an upper bound of n for ‘compression from loosest state’, and
a lower bound named ‘compression for densest state’. Critical states are not
named in this diagram, but certainly meant as in the text. The upper bound
is nearly the same as ei by Sect. 3.2, but our lower bound ed is not the same
as by Casagrande (cf. Fig. 2.5.1). Peak states were not explicitly recognized
as state limits by Casagrande, let alone extremely dilatant state limits with
vanishing pressure in one direction. For low ps ≈ σs his limit void ratios
cannot be approximated by (2.3.1), the power low (2.4.2) is more suitable.

Casagrande does not describe his experimental basis, he mentions only
a report by Rutledge (1935). One figure therein (here Fig. 2.9.6) indicates
shearing between two rough plates with a normal load, leading to dilation
of dense sand with small displacement and to contraction of loose sand with
bigger displacement. Leaving aside hints to fine-grained soils and clay, we note
that this device cannot produce uniform stresses and strains as required for
RSEs, particularly near the mutually displaced frames. The latter transmit
unknown parasitary forces and impede contractant shearing (which occurs at
the onset in better devices with any density). Rutledge’s findings are therefore
at best qualitative.

May Casagrande’s statements nevertheless be considered as valid? His
upper e-bound resembles the one observed by Ishihara (1993) after a moist
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Fig. 2.9.5. Shearing behaviour (a–d) and void ratios vs. pressure (e) of sand by
Casagrande (1936)
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Fig. 2.9.6. Shearing device and behaviour by Rutledge (1935)

placement, Fig. 2.5.1. One can only conjecture that Casagrande and Rutledge
applied a similar placement. A similar ec vs. σ′ dependance as in Fig. 2.9.5e
was found by Verdugo and Ishihara (1996), Fig. 2.5.3b. The critical stress
condition (2.9.6) with constant ϕcs was certainly observed by Casagrande,
it is reported already by Terzaghi (1925) and was taken for granted ear-
lier since Coulomb (1773). Casagrande does not mention shear localizations,
so his statements on peak and dilation up to the same critical state as for
contraction are conjectures. His lower e-bound is not explicitly related with
cyclic shearing of suitable amplitude, but his hint to ‘vibratory densification’
is clear enough. So Casagrande may be called a pioneer of the concept of state
limits.

In a so-called simple shear apparatus (SSA) the plates of a shear box consist
of load cells so that mean lateral stresses and stress distribution in the top and
base plates can be observed, Fig. 2.9.7. Roscoe (1970) reports that stresses and
deformations (the latter observed with X-rays via lead shot markers) get non-
uniform with increased shearing, so that only the middle third may be used
for evaluations. He shows that the directions of spatially averaged principal
strain rate and stress approach each other and get stationary at χσ ≈ 45◦.
Budhu (1985) reports that the principal stress ratio m by (2.9.5) approaches
ca. 0.4 both for loose and dense sand.
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Fig. 2.9.7. Cambridge simple shear apparatus (Roscoe 1970)

Roscoe (1970) reports that the stress ratio t/s = (σs1 − σs3)/(σs1 + σs3)
increases with shearing under constant vertical pressure up to a peak which
is higher and earlier for a lower initial e. Beyond it the reduction of t/s gets
imprecise due to shear localization. After a slight initial decrease the void
ratio e increases with shearing up to a maximal angle of dilatancy ν(≈ νs

by (2.9.3)) at the peak of stress ratio. Beyond it void ratios observed with
X-rays tend to critical values for the given σs in zones of localized shearing.
A stationary t/s could not be attained. These findings support our concept
of state limits as outlined further above, but simulations with elp or hyp with
a single RSE are not legitimate. Non-uniform plane-parallel evolutions could
be followed up with finite elements, but the shear localization starting from
the corners would require polar quantities (Sects. 8.2 and 13.3).

Cylindrical shear tests are apparently simpler. An initially cylindrical sam-
ple was laterally confined by a membrane with a helical wire (Budhu 1985),
by control of radial strain via pressure and membrane (Franke et al. 1979) or
by a guided stack of ring disks (Bjerrum and Landva 1966). The sample was
fixed at the bottom and sheared via a top plate, usually with constant normal
force. As stresses and deformations are inevitably non-uniform, in particular
near the edges, such tests can at best yield qualitative information. They are
not apt for the validation of state limits and the determination of parameters
for them.

Thin layer shear tests (Nasuno et al. 1997, Balthasar et al. 2006) are more
appropriate, Fig. 2.9.8a. A granular sample with height h and far bigger length
a and width b is kept and sheared via filter plates, its narrow rim is kept by
capillary cohesion or by a soft rubber strip. Moist sand is filled with a high
initial e, compressed by a normal force N and sheared with constant N . The
shear force T increases, h decreases until both get almost stationary. The
stresses calculated with hypoplasticity are uniform over the major part of the
layer, and very small at the rim (b). One can thus determine ϕcs from T/N ,
and ec from the sample size for the average pressure p̄s ≈ N/ab. Therein the
pressure ps = σs normal to shearing is justified as T11 = T22 = T33 was proven
by Bauer (2000) for critical states. The attained T/N and e confirm (2.9.12)
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a)a)

b)

Fig. 2.9.8. Thin layer shear test with sand: (a) exposed sample with initially vertical
markers (courtesy K. Balthasar), (b) simulated distribution (courtesy C. Slominski)
of normal stress before (1) and after shearing (2)

and (2.4.1), respectively, with ϕc, eco, hs and n determined from triaxial tests
with the same sand. The capillary skeleton pressure pcs (Sect. 6.2) should be
allowed for in case of pcs/p̄s > ca. 0.02. The potential of thin layer tests will
be further discussed in Sects. 2.11 and 3.9.

Ring shear devices of different kind have been developed (Bishop et al.
1971). The annular specimen with rectangular cross section has no end in
the shearing direction, the ratio of width and radius is small so that changes
along the radius may be neglected. Upper and lower halves of the sample are
twisted past each other under constant axial force or constant height, average
τ and σ are determined via torque and axial force. Radial displacements are
prevented by outer and inner pairs of ring walls. For a more uniform shearing
stacks of ring discs can be employed which slide past each other and the top
and bottom ring plates. Often only two pairs of rings with a gap in between
are used. The shearing is localized at the gap if the upper ring walls are fixed
to the top plate. The height of the shear zone can be estimated afterwards by
means of markers.
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Fig. 2.9.9. Ring shear tests by Garga and Infante Sedano (2002); (a) device, (b)
circumferential displacements vs. depth, (c) stress obliquity vs. shearing, (d) void
ratio vs. pressure in the shear zone, (e) attained shear vs. normal stress

Hungr and Morgenstern (1984) carried out ring shear tests with different
granular materials, pressures σs and shearing velocities ṡ. They observed sta-
tionary behaviour for constant σs, and a constant ϕcs for σs from ca. 20 to
200 kPa and ṡ from ca. 10−3 to 1 ms−1. This supports the assumptions of
Coulomb dry friction and granular permanence. Garga and Infante Sedano
(2002) report on ring shear tests with constant σs (CL) and also with con-
stant height (CV), Fig. 2.9.9a. Crushed quartz sand with fines was placed dry
or under water with different densities. Cutting afterwards revealed a shear
localization in the upper third (b), there considerable crushing was observed.
For CL and CV the stress ratio τ/σ′ attained the same plateau after ca. 60mm
shearing (c). Asymptotic void ratio (d) and stress ratio (e) are the same for
CL and CV both for dry and saturated samples.

These findings support the critical state concept for simple shearing. Shear
localization could be allowed for by taking e from this zone. Crushing for
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Fig. 2.9.10. Principle of torsional shearing (Pradhan et al. 1988a)

σs ≈ 250 kPa reduces ec more than with subrounded sand (Fig. 2.5.4b). For
lower σs the rather scattering data in Fig. 2.9.9d can as well be matched by
(2.3.1) and (2.4.1). ec is evidently lower with more fines, whereas ϕcs is not
changed by them. The reported ϕc = 33◦ from triaxial tests confirms (2.9.12)
which yields ϕcs = 31◦ as observed.

More sophisticated devices enable torsion of thick-walled tubes, Fig. 2.9.10.
The tube is sheared past its rough base by a rough top ring which keeps
height or axial force constant. Radial pressures pi and pa are imposed via
an inner and an outer membrane, so the sample can be saturated. pi and pa

are controlled so that inner and outer radius are constant, grain penetration
into the membranes can be allowed for. Saturated sand can be tested with
or without drainage and pore pressure control. Average stresses and strains
are calculated for a middle part wherein an RSE undergoes nearly simple
shearing. Deformations are fairly uniform up to the peak of τ vs. γ, beyond
it shearing gets markedly localized (Sect. 8.2).

Pradhan et al. (1988a) tested saturated quartz sand of different densities
with and without drainage. For peak states they observed

• coaxiality of stress and strain rate, χσ = χε̇ ≈ 45◦,
• nearly constant stress ratio m as by (2.9.5),
• same peak principal stress ratio σs1/σs2 as for biaxial deformations with

same density (and same bedding direction),
• same dilation ratio ε̇3/ε̇1 at peak as for biaxial deformations.

This supports the assumptions outlined further above with Fig. 2.9.2. These
findings were confirmed by the same authors (Pradhan et al. 1988b) for lower
pressures ps. As shown by Fig. 2.5.5 for the same sand limit void ratios change
only little with ps, this is captured by (2.4.1) and not by (2.3.1). As plotted
in Fig. 2.9.2 stress and strain rate obliquities for state limits are determined
by the relative void ratio re, this was apparently almost the same in the two
studies by Pradhan et al. (1988a, b).
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Summing up, as far as uniform simple shearing can be attained in experi-
ments these confirm the concept of state limits with four stress components,
which is similarly implied by elp and hyp. With the same dilation angles and
relative void ratios the principal stress ratios are the same as for biaxial defor-
mations, and the directions of major principal stress and strain rate agree. The
last two properties hold for state limits due to frame-indifference (Sect. 2.11),
but not otherwise.

2.10 Shearing off state limits

Counting reversals is not correct if you don’t know how many occurred already
before you start. We will first discuss how far this problem can be avoided
by sweeping out the memory of shear reversals. Another way out are state
cycles as attractors for suitable repeated reversals. Available shear test results
confirm this approach for big amplitudes, for small ones simple psammoids
turn out insufficient (cf. Sects. 2.6 and 2.8).

Roscoe (1970) describes a shear test with dense dry sand in a so-called
simple shear apparatus as by Fig. 2.9.7 with two reversals of shear stress τ
under constant normal stress σ. The deviatoric stress-strain curves suggest
an almost elastic response to un- and reloading. In between the directions
of principal stress rate and strain rate agree as by isotropic elasticity. With
monotonous further shearing the memory of the two reversals is apparently
swept out: the stress-strain curve swivels towards the one as without reversals,
and the directions of principal stress and strain rate tend to agree. These
findings seem to support elp and to refute hyp. A plot of volumetric strain vs.
shearing, however, would suggest the opposite (cf. Fig. 2.6.4a, b). Deviatoric
unloading, i.e. τ γ̇ < 0 with σs = const, densifies the skeleton, with reloading
it is dilated if it is not loose. Simulations are not presented as Roscoe (1970)
did not consider such volume changes, they would look like Fig. 2.6.4c, d.
One can conclude again that anelastic effects between reversals are missed by
elp and exaggerated by hyp. A state with swept-out memory (SOM, Gudehus
et al. 1977) can be attained by sufficient monotonic shearing so that stress
components and void ratio suffice as state variables.

If thick-walled cylinders are twisted back and forth they remain rather
uniform as long as they do not approach state limits. This was achieved by
Pradhan et al. (1989) with saturated drained sand which was sheared by
an alternating torque with gradually increased amplitude and constant mean
pressure ps, Fig. 2.10.1. With a loose sample this led to a spiral plot of stress
ratio vs. shear strain (a), and to a cumulative densification with minute di-
lation before the last two reversals (b). With a dense sample the spiral with
kinks got wider (c), and the sample dilated and contracted between subsequent
reversals with net contraction for small and net dilation for bigger amplitudes
(d). The dilation is underestimated for overcritical stress obliquities as then
it is localized to shear bands (Sect. 8.2).
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Fig. 2.10.1. Alternating torsion of drained thick-walled cylinders (Pradhan et al.
1989). Stress ratio and volumetric strain vs. shearing for loose (a, b) and dense sand
(c, d)

Simulations by Prada (2010) with hyp and an RSE as by Fig. 2.9.10
show again that anelastic effects just after reversals are exaggerated by hyp,
Fig. 2.10.2. They would be missed by elastoplastic simulations without inter-
nal state variables as the assumed elastic range is too wide. For loose sand the
calculated spiral stress-strain plot (a) is fairly realistic (successive heights are
given), and also the gradual densification except for a final dilation (b). For
dense sand the simulated hysteresis loops are too wide (c), and the dilation
is exaggerated after the initial contraction (d). The deviation is due to the
localized dilation for overcritical stress obliquities (Sect. 8.2) which cannot be
taken into account in such simulations. Some sections before reversals are bet-
ter captured than those just thereafter. This indicates that SOM-states were
repeatedly attained by the bigger deformations between later reversals, but
not before. We will use the observations by Pradhan et al. (1989) in Sects. 4.4
and 4.5 as a touchstone for constitutive relations with internal variables.

Shear cycles of sand samples have been investigated in different devices,
e.g. Fig. 2.10.3, but due to non-uniformities the observations are at best of
qualitative use. In the device by Bjerrum and Landva (1966) a cylindrical sam-
ple is confined by a reinforced membrane (a) and sheared by translating the
top plate. In a variant by Budhu (1985) load cells in the top and bottom plates
(b) can indicate stress distributions. Wood et al. (1979) observed markedly
non-uniform stress distributions from the very beginning of shearing.
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Fig. 2.10.2. Hypoplastic simulation (Prada 2010) of torsion tests by Pradhan et al.
(1989), (a–d) as in Fig. 2.10.1

Fig. 2.10.3. Devices for shearing cylindrical samples with reinforced membrane;
(a) enclosed sample (Bjerrum and Landva 1966), (b) cross section with load cells
(Budhu 1985)

Youd (1972) describes isobaric tests with up to 105 cycles with satu-
rated sand in a device as by Fig. 2.9.7, Fig. 2.10.4. In a typical test with
medium initial density the sample was contracted after each reversal, less di-
lated thereafter and thus gradually densified (a). With a given pressure σs the
densification is more rapid with a higher amplitude, but tends to the same
asymptotic void ratio (b). With a given shear amplitude the asymptotic e is
slightly reduced by a higher σs (c). The gradual change of e for any given σs
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Fig. 2.10.4. Isobaric cyclic shear tests with sand by Youd (1972): (a) void ratio vs.
shearing, void ratio vs. number of cycles for different shearing amplitudes (b) and
different pressures (c)

and amplitude does not depend on the frequency, the response is thus rate-
independent. The results with more than ca. 0.01 shear strain are certainly
biased by shear bands (Roscoe 1970) and grain crushing therein (Fig. 2.9.9),
and therefore not apt for validations.

The gradual densification is not obtained with elp as thus the skeleton
would remain in the elastic range. A simulation of Fig. 2.10.4a with hyp (Prada
2010) exhibits contraction just after each reversal and dilation with further
shearing, but a too rapid gradual densification, Fig. 2.10.5a. The asymptotic
mean void ratio ē is higher for a bigger amplitude due to stronger dilation (b),
which is suppressed by crushing in Fig. 2.10.3b, and is attained with too few
cycles by hyp. For small amplitudes the calculated asymptotic ē approaches ed

by (2.4.1), its observed slight reduction with bigger σs could be obtained with a
realistic hs. The asymptotic double loop of e vs. γ (butterfly) is reproduced for
the rather big amplitude of Fig. 2.10.4a, this indicates that SOM-states were
repeatedly attained. Internal variables would be needed for smaller amplitudes
as they are then no more determined by stress and void ratio (Sect. 4.3).

Budhu (1985) determined lateral stress components of dense sand in a
device by Fig. 2.10.3b for shearing with big amplitude and constant mean
vertical pressures. The normal stress components out of plane and in the
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Fig. 2.10.5. Hypoplastic simulation (Prada 2010) of Youd’s (1972) tests in
Fig. 2.10.4a, b

plane of shearing attained double loops already in one cycle. Such loops could
be similarly obtained with hyp by assuming a uniform RSE. The test results
are debatable because of the observed non-uniformity, but provide a quali-
tative confirmation of hyp. It appears that cyclic shearing with constant σs

and big amplitude leads to a periodic succession of SOM-states in state cy-
cles after a transition which is too fast by hyp. Budhu (1985) indicates that
stress ratios and void ratio get also nearly periodic after a few shear cycles,
although he does not report on contraction after each reversal. As pointed out
by Roscoe (1970) the big amplitudes lead to repeated shear localizations so
that evaluations without them are misleading.

Ishihara and Towhata (1983) report on isochoric cyclic shear tests with
torsion of thick-walled cylindrical samples as by Fig. 2.9.10. In a test with
medium density and alternating shear stress τ the stress path tended to a
symmetric butterfly (Fig. 2.10.6a), and the hysteresis loops attained sections
without shearing resistance (b). The latter indicates repeated decay and re-
combination of the skeleton (cf. Figs. 2.6.6 and 2.8.3). As outlined with Fig.
2.6.6 the asymptotic response is distorted and shifted by the variable pene-
tration of grains into the membrane.

The simulation by hyp (Prada 2010) exhibits a flatter butterfly after less
reversals (c), and widening hysteresis loops (d) instead of partly concave loops
which indicate a temporary decay. A similar behaviour was observed by An-
dersen and Berre (1999) with undrained shear cycles in a device as by Fig.
2.10.3a. A better validation could be achieved by taking into account the
membrane penetration and by avoiding a temporary decay. It appears that an
almost periodic succession of SOM-states was attained just before the skeleton
decay, but that in the transition before the internal state was not sufficiently
determined by skeleton stress and density (more in Sects. 4.4 and 4.5).

If strain cycles with shearing are imposed to a psammoid RSE this tends
to state cycles by hyp (but not by elp) as long as the skeleton does not decay
(shear localization and grain crushing are left aside), Fig. 2.10.7. Big enough
amplitudes lead to a succession of SOM-states, whereas cycles with small
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Fig. 2.10.6. Stress path (a) and stress-strain curve (b) of an undrained hollow
cylindrical sand sample, observed with a cyclic torque by Ishihara and Towhata
(1983) and by a hypoplastic simulation (c and d, Prada 2010)

amplitudes cannot be captured without internal variables. The strain cycle
may be almost isochoric (A), or butterfly-like (B) so that a rather constant
normal stress may be expected. The plots of τ(= T12) vs. γ tend to hysteresis
loops after a reduction of height (and ps) for A, and after an increase (by
densification) for B (b). The plot of principal directions χ against the vertical
vs. shearing (c) shows only the attractors. Just after each reversal the direction
χε̇ of strain rate is near the direction of stress rate χσ̇, with further shearing χε̇

approaches the principal stress direction χσ. The paths of the two horizontal
stresses σs22 and σs33 (−T22 and −T33 by Fig. 2.9.1c) tend to a double loop
for A and B (d). In the plot of e vs. log ps the state path tends to a minute
double loop for A and B (e).

Uniform shear tests with measurement of all components are not possi-
ble, and state cycles could only be attained with granular permanence and
periodic boundary conditions. Stress control on some boundaries, e.g. vertical
for a thin layer or radial for a thick-walled cylinder, would require iterations
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shearing (a): (b) shear stress vs. normal stress, (c) principal directions vs. shearing,
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both in physical and numerical tests, and would give more freedom for shear
localization. In the range of subcritical stress obliquities the uniformity could
be enhanced by shear cycles (Sect. 4.6), thus tests with them up to a cyclic
response would be rewarding.

Andersen and Berre (1999) approached an isochoric ratcheting with a
dense saturated quartz sand in a device as by Fig. 2.10.3a, Fig. 2.10.8.
A pulsating shear stress τ > 0 was imposed without drainage. The shear
strain increased gradually with decreasing net amount per τ -cycle (a), but a
stationary ratcheting was not attained. The stress path in a τ vs. σs plane
tends to a skew loop which touches the critical line after a reduction of ps (b).
This test was simulated with hyp (Prada 2010) by assuming a single RSE with
the same initial state and pulsating τ . The plot of τ vs. γ exhibits an exag-
gerated ratcheting (c). The simulated stress path tends to a nearly lenticular
cycle at the critical line after a few reversals (d). As with cylindrical symme-
try (Fig. 2.6.7) the cumulative anelastic effects are underestimated by elp and
exaggerated by hyp. One can conclude again that small deformations between
reversals do not suffice for sweeping out their relics.

This kind of ratcheting (called cyclic mobility by Castro 1975) was not
investigated up to stationarity in simple shear tests. Thus the range of validity
of hyp is unknown in that respect, simulations with other boundary conditions
and more components would be premature. Tests in devices as by Fig. 2.9.7 or
2.10.3a could be made with imposed ratcheting, in spite of the inevitable loss
of uniformity they could at least provide a qualitative validation. Thin layer
tests (Fig. 2.9.8) could provide more insight as the major inner part of the
flat sample remains uniform in case of subcritical stress obliquities (Sect. 8.2),
particularly with reversals. As with other evolutions treated in this chapter
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Fig. 2.10.8. Stress-strain plot (a) and stress path (b) of undrained sand under
pulsating shear stress (Andersen and Berre 1999); hypoplastic simulation (c and d,
Prada 2010)

one can expect a swept-out of memory for sufficient deformations between
reversals so that internal variables are not needed.

Summing up, simple shearing off state limits can be captured by simple
psammoid models as long as SOM-states may be assumed, but only crudely
with reversals by hyp and hardly by elp. SOM-states require sufficient defor-
mations between reversals, then the rather subjective number of cycles is not
needed. Otherwise internal variables are no more determined by stress and
void ratio, and are needed explicitly so that simple psammoid models cannot
suffice. The desired uniformity of RSEs gets lost in shear tests so that these
are not apt for precise validations. Tests with shear cycles and ratcheting will
nevertheless be of use to better explore the range of validity. As always in
this chapter skeleton decay, shear localization and grain crushing cannot be
captured thus.

2.11 General and outlook

Imagine a tetrahedron in a deforming psammoid body, Fig. 2.11.1. As in a
finite element mesh the velocity vs of the skeleton may be linearly distributed
between the four convected corners or marker points (a). Thus the velocity
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Fig. 2.11.1. General RSE with velocities (a) and principal stresses (b)

gradient ∇vs is constant within this general RSE, and so are the stretching
D = (∇vs − vs∇)/2 and the rate of rotation W = (∇vs − vs∇)/2. The
volumetric stretching is related with the change of void ratio of the convected
RSE by

trD = ė/(1 + e) (2.11.1)

with ė =de/dt + tr(∇e · vs) and isochoric grains. The amount of stretching
D = ||D|| =

√
trD2 is another invariant of D. As D is symmetric is has three

principal values (D1,D2,D3) and three principal direction (χD1, χD2, χD3) in
general.

The symmetric (Cauchy) skeleton stress tensor Ts may be uniform in our
RSE (in a first approximation). It can be represented by three principal values
Tsi and three principal directions χsi (Fig. 2.11.1b). The skeleton cannot have
tension, thus Tsi < 0 is needed and Tsi → 0 means its decay. The mean
skeleton pressure ps = −trTs/3 is a first invariant. A saturated skeleton with
pore pressure pw has the total stress tensor

T = Ts − pw1 (2.11.2)

with unit tensor 1. The stress deviator is thus independent of pw,

T∗
s = Ts − ps1 = T∗ = T − (ps + pw)1 . (2.11.3)

Two suitable deviatoric invariants are

tan ψs =
√
trT∗2

s /ps (2.11.4)

and

cos 3αs =
√

6trT∗3
s /(trT∗2

s )3/2 . (2.11.5)

We call tanψs stress obliquity and cos 3αs Lode parameter. The two angles ψs

and αs appear in the space of principal components as shown in Fig. 2.7.1. The
state of our RSE can be represented independently of its orientation by two
plots, Fig. 2.11.2, viz. e vs. log(ps/hs) (a) and tanψs vs. cos3αs (b). Isotropic
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states have tanψs = 0, cylindrically symmetric ones have cos 3αs = ±1. States
with lower than critical stress obliquity tanψs < tan ψsc(cos 3αs) are called
subcritical, otherwise they are critical or overcritical. These are no state limits
in general as the void ratios need not have the limit values. The latter are
upper bounds for a given ps, i.e. the relative void ratio re cannot exceed the
tan ψs-dependent limit value (more further below).

The (debatable, Temmen et al. 2000) co-rotated stress rate

T̊s = Ṫs + TsW − WTs (2.11.6)

of our convected RSE is assumed to be related with the stretching tensor via

T̊s = Fs(Ts,D, e) (2.11.7)

with an isotropic tensor function Fs of D and the state variables Ts and e.
This isotropy is due to frame-indifference (Sect. 1.2). Unit-invariance requires
that Ts is referred to a material property with the dimension of stress, this
is achieved with the granulate hardness hs (Sect. 2.2). For simple psammoids
Fs has the properties

(a) Fs(λTs,D, e) = λmFs(Ts,D, e), 0 < λ < 1, 0 < m ≤ 1

(b) Fs(Ts, λD, e) = λFs(Ts,D, e), λ > 0

(c) Fs(Ts,−D, e) �= −Fs(Ts,D, e) in general.

(2.11.8)

In this generalization of (2.2.14) the barotropy (a) enables SOM-states and
state limits. The rate-independence (b) is not at variance with the non-
linearity in D (c). The pyknotropy via e in Fs implies state limits as shown
further below. As assumed for simple materials in the sense of Truesdell and
Noll (1965) (2.11.8) holds also if Ts and D have gradients, this enables finite
element calculations with other than linear interpolations of vs.

Algebraic representations of Fs with the outlined properties may only be
sketched here as they are so intricate in detail that the physics therein is hardly
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visible, and also as they are subject to further improvements. Elastoplastic
relations (elp) can be abbreviated as

Fs = E(D − Dp) = E(D − shP) (2.11.9)

with a Ts-dependent fourth-order stiffness tensor E and a plastic stretching
Dp. E is usually assumed as isotropic and proportional to (ps/pr)m with an
exponent m between 1/2 and 1. The switch factor s disappears if Ts is within
an e-dependent elastic range, and also if T̊s with Dp = 0 points there. The
direction P of Dp (flow rule) depends on the stress direction Ts/ps. The factor
h is determined by the change of e by (2.11.1) for continued plastification
(volumetric hardening). In original CSSM a quadratic form is used as yield
function which enables tensile stress and implies the same tan ψs for cos 3αs =
±1, and P is given by its normal (associated flow rule). In more recent versions
the yield function is composed of quadratic forms so that the same tanψs

for cos 3αs = ±1 and traction are avoided, and so that the flow rule is not
associated for overcritical tan ψs (e.g. Vermeer 1978). Ts and Dp are coaxial,
this is achieved by means of invariants.

Hypoplastic relations can be abbreviated by

Fs = fb(LD − fdND) . (2.11.10)

Other than by elp in the elastic range, i.e. for (2.11.9) with s = 0, (2.11.10)
is always non-linear in D by D = ||D||. The fourth-order tensor L and the
second order tensor N depend on Ts/ps so that Fs is isotropic in Ts/ps and
D, therein ϕc appears as material constant. The factor fd is given by (2.4.4),
thus (2.11.8a) holds with m = 1−n. The pyknotropy is mainly captured with
the factor fd by (2.4.4).

Although (2.11.10) is formally easier without a switch function than
(2.11.9), both representations of Fs are not very transparent. Instead, Fs

can be represented graphically by generalized response polars, Fig. 2.11.3.
Components therein are referred to the convected Cartesian system of instan-
taneous principal stresses, this is an objective base. A unit stretching, i.e. D
with D = ||D|| = 1, is depicted by points on a sphere in the space of com-
ponents (a) plus a point in a space of three principal directions of D referred
to the ones of Ts (b). The stress rate response (for given Ts and e) is repre-
sented by a polar in the space of three stress rate components (c) plus a point
for the principal directions of T̊s, these are also referred to the instantaneous
principal axes of Ts (d).

The response polars should be continuous and convex, this property sur-
vives projections from the six-dimensional hyperspace of T̊s-components to
the three-dimensional component space of Fig. 2.11.3b. Their size increases
with the mean pressure ps = −trTs/3 via (ps/hs)m with 0 ≤ m < 1. This
barotropy satisfies (2.11.8a) and is the same as proposed in Sect. 2.2 for two
components. elp means m = 1 by original CSSM and m ≈ 1/2 in modi-
fied versions (the latter is not consistent with (2.3.1)). hyp means a constant
exponent 0 < m < 1 according to the increase of contact flats (Sect. 2.4).
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unit stretching components, (b) stress rate components, (c) stretching directions,
(d) stress rate directions

The non-linearity by (2.11.8c) means that the polars are no centred ellip-
soids in general. The latter holds only in the e-dependent elastic range by elp,
then the principal directions of D and T̊s agree in the sense of Fig. 2.11.3. Un-
til present there is no stress-induced hypoelastic anisotropy in elp. Otherwise
the polars by elp are composed of a centred half-ellipsoid and a non-centred
one as in Fig. 2.7.5. The directions of T̊s and D agree in the elastic range
by elp, whereas for plastification the direction of Ts agrees with the one of
the plastic stretching Dp. For hyp the polars are eccentric ellipsoids as in
Fig. 2.7.6, and the direction of D does not agree with those of Ts and of T̊s

in general. Thus the response polars for hyp are less intricate than the ones for
elp. Both depend on the stress direction Ts/ps as for cuboidal deformations
(Figs. 2.7.5 and 2.7.6), but the additional influence of changing principal direc-
tions cannot easily be visualized. The response polar for a given Ts depends
also on the relative void ratio, this could be represented by nested polars as
in Fig. 2.2.4.

State limits of our general RSE are characterized by relations of stress
direction and stretching direction, i.e.

Ts/ps = Gs(D/D), (2.11.11)
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and of limit void ratio with mean pressure and stress obliquity, i.e.

e = fe(ps/hs, tanψs). (2.11.12)

Gs is isotropic in D/D due to frame-indifference, thus Ts and D are coaxial for
state limits and (2.11.11) can be expressed by relations of deviatoric invariants.
The third stretching invariant cos 3αD, defined by (2.11.6) with D∗ = D −
(1/3)trD instead of T∗

s, depends on cos 3αs as shown in Fig. 2.7.2b, therein
the influence of tan ψs may be neglected. The stretching obliquity tanψD by
(2.11.5) with D and −trD/3 instead of Ts and ps depends on tan ψs and
cos 3αs as shown in Fig. 2.7.2c with ψε̇ instead of ψs.

Equation (2.11.12) can be represented by plots of e vs. log(ps/hs) and of
re vs. tan ψs as Fig. 2.11.2a and 2.7.2d. Isochoric (or critical) state limits are
stationary, then a convected RSE has ė = 0, ṗs = 0 and the critical stress
obliquity tanψsc which depends on cos 3αs (Fig. 2.11.2b). Invariant relations
could be calculated from the stationarity condition T̊s = Fs = 0 with a given
representation of Fs and a given D. Contractant state limits are subcritical
with increasing pressure, i.e. with trD < 0 they have tanψs < tan ψsc and
ṗs > 0. Dilatant state limits are overcritical with decreasing pressure, i.e. with
trD > 0 they have tanψs > tan ψsc. Invariant relations could be calculated
for trD ± 0 from the proportionality of stress and stress rate, i.e.

T̊s/ṗs = Fs/ṗs = Ts/ps (2.11.13)

with a given representation of Ts and a given D. The obtained tanψs and
cos 3αs could be used to calculate the relation of ṗs with ė by (2.11.1) and
(2.11.11).

Representations of Fs by elp and hyp are essentially formulated so that
observed state limits are captured. As was shown with cylindrical symmetry
in Sect. 2.2 the range of stretching directions is bounded to avoid tensile
stresses. elp is further bounded as small ps are not captured by (2.3.1). State
limits are assumed to be attainable by stretching with constant D and suitable
initial re. This is achieved with the response polars as shown in Figs. 2.7.5
and 2.7.6, plus an alignment of the principal direction of Ts to the one of D,
which could be shown with a sequence of plots as Fig. 2.11.3. Using algebraic
representations of Fs as by (2.11.9) or (2.11.10) one could also obtain these
attractors by numerical element tests, whereas a strict mathematical proof is
not yet in sight.

The range of attainable states is restricted. If the initial re is too high for
a given trD the skeleton decays before a state limit is reached with a constant
Ts/ps. If re is too low for a given trD stretching with constant D can crush the
grains so that a state limit is not approached with the initial granular prop-
erties. State limits can nearly be attained with a constant stretching deviator
D∗ = D − (1/3)trD and a constant ps. This can lead to a generalized peak
state with bigger tanψs and dilation ratio trD/D than before and afterwards.
These are no exact state limits as D is not constant in alignment with bfTs,
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and as shear bands with polar quantities arise spontaneously (Sect. 8.2). One
may call a peak of tanψs or pstanψs strength, but this depends on the actual
re and direction of stretching and is thus not objective. Therefore hardening,
softening and ductility are rather vague notions.

Void ratios in the possible range by Fig. 2.11.2a cannot be attained ar-
bitrarily by deformations with constant D or D∗. Very loose skeletons, say
with e > eco by (2.4.1), cannot be obtained by decompression or isobaric
stretching, but by moist placement with capillary attraction. Densification by
monotonous contractant deformations is limited by grain crushing. As shown
e.g. with Fig. 2.10.4 skeletons can get denser by isobaric reversals, but how
can this behaviour be captured objectively with the six degrees of freedom of
our RSE?

Changes of sign of the power

P = trTsD (2.11.14)

indicate reversals objectively, but little specifically. Deformation cycles may
be imposed from an inevitably arbitrary initial configuration and state. More
precisely speaking, starting with a set Ts and e in the allowed range an evo-
lution D(t) may lead to a deformation H with dH/dt = D (Hencky strain
tensor H) which returns to zero after a period t = tp, 2tp etc. This may be
represented by a closed curve in a six-dimensional component space of H,
but how to describe it objectively? An amplitude may be defined by a norm
||H||, but when is this small or big? The shape of a H-component-path may
be described by means of a circumscribing hyper-ellipsoid, but are properties
as slenderness or convexity of physical use? How could reversals be defined
invariantly, and how could the arbitrariness of the onset be ruled out?

These questions cannot be answered without the associated evolution of
Ts and e, and restrictions are needed for focussing on key properties of simple
psammoids. To begin with, let us confine to deformation cycles which imply
only two changes of sgnP . Furthermore the cycles may be isochoric or isobaric,
i.e. ė = 0 or ṗs = 0. Initial states and deformation cycles may be chosen so
that skeleton decay (ps → 0), peak states with marked shear localization and
crushing (by too high ps) are avoided. This can hardly be judged in advance,
but would be exhibited by physical or numerical RSE-tests so that trial and
error could show what is allowable.

Within this frame deformation cycles may be repeated so often that state
cycles are attained. These do not depend on the arbitrary reference shape,
but only on the deformation cycles and the average void ratio ē or pressure
p̄s. These attractors could be represented by three associated plots of tan ψs

vs. cos 3αs (Fig. 2.11.4a), e vs. log(ps/hs) (b) and principal directions of Ts

in two projections (c). The third plot is objective by referring the angles to
the principal axes of the average stress T̄s for one deformation cycle. Taking
angles in rad and normalizing the e vs. log(ps/hs) plot so that both range
from ca. 0 to 1, one can define the amplitude of a state cycle by
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as =
1√
7

[
(Δ tan ψs)2 + (Δ cos 3αs)2 + Σ(Δχi)2 + (Δe/eo)2

+ (Δb ln(ps/hs)2
]1/2

(2.11.15)

with ranges Δ and normalizing factors eo and b. As indicated in Fig. 2.11.4
one can speak of big and small cycles if as attains 1 or does not exceed 0.1
(say). Mean state values are more evident for small cycles, but could also be
calculated for bigger ones with representations of Fs in (2.11.7).

We can now characterize the response of simple psammoids to deforma-
tion cycles more generally than in previous sections. Observations indicate
that isochoric deformation cycles with two changes of sgn P cause a reduc-
tion of the average pressure p̄s and lead to state cycles with a double cycle
of ps, whereas isobaric deformation cycles cause a reduction of the mean void
ratio ē and lead to a double cycle of e. Furthermore, the average stress obliq-
uity tan ψ̄s tends to almost zero, i.e. Ts tends to cycles around ps1. These
properties are missed by elp as Ts remains in the elastic range after at most
two reversals. Hyp reproduces reduction and double cycles, but with the more
exaggerated progression and hysteresis the smaller the amplitude is. As ob-
served the average asymptotic relative void ratio r̄e by hyp is closer to zero
for smaller amplitudes. The average principal directions of average stress T̄s

agree with the ones of average stretching D̄ for state cycles. This result of
alignment is necessary for frame-indifference, but as yet not confirmed.

The work per unit of skeleton volume which is dissipated in one state cycle,
viz.
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Wsc =
∮

Pdt =
∮

trTsDdt, (2.11.16)

is always positive by hyp and observations. An objective hysteresis ratio can
be defined by referring it to the mean pressure p̄s in one cycle, i.e. as

rh = Wsc/p̄s . (2.11.17)

It is rate-independent by (2.11.8b) and implies that the work is dissipated by
dry friction. For big amplitudes, i.e. as > ca. 1/2 by (2.11.15), rh is apparently
captured by hyp, this means that the skeleton passes through SOM-states. For
convex slender deformation cycles with smaller amplitudes (say as < 1/4) rh

is grossly overestimated by hyp. Then the internal state of the skeleton is no
more determined by Ts and e so that hidden variables are needed (Sect. 4.7). It
appears that the threshold amplitude for a more hypoelastic than hypoplastic
behaviour is lower for concave and squat state cycles, but this could not yet
be quantified in an objective way.

Ratcheting can be defined for our general RSE by a superposition of a cyclic
deformation and an isochoric stretching with constant direction. For objec-
tivity the reference configuration has to be updated after each deformation
cycle according to the simultaneous shift. This ratcheting can in particular
be isochoric or isobaric. Both elp and hyp predict an alignment of average
principal stress T̄s and stretching D̄ as required for frame-indifference. State
cycles can be represented by three associated plots, this is also shown with
Fig. 2.11.4. An amplitude could again be expressed by (2.11.15), the shift per
cycle is bigger with a bigger average obliquity ψ̄s. As observed the asymptotic
tan ψs attains repeatedly tanψsc both by elp and hyp. Observations indicate
a lower asymptotic average relative void ratio r̄e for smaller amplitudes, but
higher than without shift. The latter is not obtained with elp, whereas shift
and hysteresis are overpredicted by hyp for smaller amplitudes.

It appears that available experimental data and simulations of them do
not enable a further quantification. Ratcheting with big amplitude and shift
may be captured by hyp as then successions of SOM-states may be assumed.
Otherwise hidden variables have to be taken into account explicitly, but such
approaches are preliminary (Sect. 4.7). The dissipated work by (2.11.16) and
the hysteresis ratio by (2.11.17) have to be taken for the cyclic part of de-
formation, the dissipation by the simultaneous shift has also to be taken into
account.

Numerical simulations with elp and hyp could exhibit when and how the
proposed state cycles are attained by cyclic deformations or ratcheting. The
range of these attractors can as yet only be explored by trial and error, gen-
eralized response polars may be of use, but a strict mathematical proof is not
in sight. The range of validity can be judged objectively by these attractors as
the arbitrary onset is ruled out, but experiments with uniform general RSEs
are hardly feasible. Such attractors could also be attained with gradients of
stretching and state in shearing, torsion and tumbling experiments (Sects. 2.9,
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14.6, and 15.5). Simulations of them with simple psammoid relations may in-
dicate their range of validity, but less precisely than with element tests as
boundary conditions require additional assumptions (Sect. 10.3).

So how can material parameters be determined as far as simple psammoids
may be assumed, i.e. how can these be identified? This can be achieved by
means of attractors without and with reversals as thus the partial indeter-
minacy of initial states can be ruled out. State limits come first, and among
them critical states play the key role. The critical friction angle ϕc of a dry
or submerged granular soil can be determined from the slope of a loose cone
(Sect. 14.2) or by simple shearing (Sect. 2.9), whereas uniform cylindrical
samples are an expensive exception (Sect. 14.1). The critical void ratio ec for
ps ≈ 0 can be estimated with a loose free fill, and more precisely determined
with uniform cylindrical samples, thus parameters for (2.3.1) or (2.4.1) can
be adapted.

As shown with Fig. 2.5.1 upper bound void ratios ei can be determined
by isotropic compression of loose samples, but this is expensive and not re-
liable. Oedometric compression tests with loose samples by moist placement
are easier and may suffice to catch the ps-dependence by (2.3.1) or (2.4.1).
One can only guess when SOM-states are attained, and when these go over
into state limits. This cannot be judged with elp as (2.3.1) fails for ps → 0,
and as the assumed elastic ranges are not realistic. Plotting volume changes
εv vs. (ps/hs)1−n with tentative hs and n can reveal n by hyp for SOM-states
as the power law holds approximately by (2.4.3) with (2.4.5). Variation of the
initial e can reveal the approach to a contractant state limit, cf. Fig. 2.5.2.
SOM-sections for different initial e, recognizable from εv ≈ (ps/hs)1−n with
a single n, enable to estimate β in (2.4.5) by matching.

Dilatant state limits with tanψs > tanψsc and e < ec for a given ps may
be captured by peak states as far as marked shear localizations are avoided
when approaching them. Void ratio and dilatancy ratio trD/D at peak are
needed for different stress obliquities tanψs. Matching such data yields pa-
rameters for dilatant yielding by elp and for α in (2.4.4) by hyp. The samples
should be densified by vibration or slow isobaric cycling under pressure, not
by pluviation as this can produce an anisotropic sandwich (Sect. 9.1). The
lower bound ed can be approached by isobaric shaking or cycling, but not
precisely. This is excluded by elp, whereas the extreme state limits enabled by
hyp cannot be attained. As ed cannot be determined exactly it may suffice to
estimate edo for ps = 0 by shaking with a free surface, and to take for given
the same n and hs by (2.4.1) as for smaller tanψs. The differential deviatoric
stiffness dσ∗/dε∗ from triaxial tests may be used to improve the identification
if the assumption of uniform SOM-states is justified. An objective differential
stiffness, e.g. ||T̊s||/||D||, is of little use as it varies extremely with ps, e and
the directions Ts/ps plus D/D.

Apart from preparatory compaction, experiments with reversals can con-
tribute to the identification as they can reveal the range of validity of simple
psammoid models. Hypoelastic parameters for elp may be estimated from the
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response to a reversal after a state limit, but even then the absence of an elas-
tic range should not be ignored. Experiments with strain cycles or ratcheting
can indicate how far SOM-states may be assumed, preferably after attractors
have been attained. Alignment of average stress and double frequency of ps

or e may be observed in sophisticated experiments, but the desired unifor-
mity can hardly be maintained with so big amplitudes that a sequence of
SOM-states may be assumed. This means that the validity range of simple
psammoid models for evolutions with several reversals cannot be specified
precisely.

Summing up, stress and void ratio may suffice as state variables for big
enough monotonous deformations of general RSEs, but with reversals anelastic
effects are missed by elp and exaggerated by hyp. An alignment of stress
and stretching occurs near state limits due to frame-indifference, tests with
cylindrical symmetry suffice therefore to determine state limit parameters. An
alignment of average stress and stretching is also obtained by objectivity in the
asymptotic response to deformation cycles and ratcheting. Average reduction
and asymptotic double frequency of pressure or void ratio are obtained by
hyp for isochoric or isobaric ratcheting, respectively, but exaggerated except
for big amplitudes. The range of validity of simple psammoid models without
hidden variables cannot easily be demarcated.



3

SIMPLE PELOIDS

Mach (1912) stated ‘The economy of communication and perception belongs
to the essence of science’. Which are the essentials of soils like clay, and how
can they be captured in Mach’s sense? Which properties and concepts can
be taken over from psammoids, what should be added in the first place, and
what could be left aside?

Imagining a lump of clay one is tempted to name cohesion as primary
property. However, the tensile strength of clays is mainly due to the suction
of pore water. The net attraction of solid clay particles in water (Sect. 6.3)
is often negligible against the mean pressure ps of the skeleton. Nevertheless
it can enable higher void ratios, this cannot easily be captured (Sect. 7.1)
and is left aside here. Terzaghi (1931) attributed the observed cohesion to the
bound pore water, but this turned out as an error (Sect. 6.1). Cracking of clays
suggests also cohesion, but is due to the cavitation of pore water (Sect. 6.3).
We leave aside unsaturated and cemented clays as they are intricate (Sects. 7.2
and 7.3).

Remoulded clays can have much higher void ratios e than granular soils,
and their e is far more reduced by increasing the effective pressure p′(= ps).
This could be expressed by higher reference values eo and a lower granulate
hardness hs in (2.4.1), and would be a quantitative difference. However, satu-
rated clays exhibit also viscous effects which cannot be attributed to the pore
water. For preparation it is outlined in Sect. 3.1 how rate-dependence, creep
and relaxation of a pore-free solid can be captured by two parameters, and
how it can be attributed to thermally activated dislocations.

Introducing simple peloids (from πηλóς=clay, i.e. clay-like materials) in
Sect. 2.2 the skeleton viscosity is likewise captured with only two parame-
ters. Rate-dependence and creep could be modelled with an argotropic solid
hardness, but relaxation requires a viscosity factor as for solids. In visco-
elastoplastic and -hypoplastic relations (v-elp and v-hyp, Sects. 2.3 and 2.4)
this factor depends on the ratio ps/pe of actual and equivalent pressures ps

and pe and on a viscosity index Iv. Thus state limits and state cycles can be
nearly the same as for psammoids in case of a constant stretching rate D.

G. Gudehus, Physical Soil Mechanics, Advances in Geophysical and Environmental
Mechanics and Mathematics, DOI 10.1007/978-3-540-36354-5 3,
c© Springer-Verlag Berlin Heidelberg 2011
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Differences arise with dramatic changes of D, viz. jumps or waiting intervals.
As with solids v-elp and v-hyp are similar for monotonous evolutions, but
differ in case of reversals.

The range of validity of v-elp and v-hyp is first discussed in Sects. 3.5
and 3.6 for cylindrical samples. These are not uniform with diffusion of pore
water, therefore undrained tests are preferred, drained ones can also be more
intricate due to shear localization. The few available reports with reversals
indicate that internal variables are needed as for psammoids in case of small
amplitudes.

The concept of simple peloids can be extended to cuboidal deformations
(Sect. 3.7), simple shearing (Sect. 3.8) and arbitrary deformations (Sect. 3.9).
Although pore water diffusion and skeleton viscosity come into play this chap-
ter is shorter than Chap. 2 as there are less experimental reports. The state
of simple peloid RSEs is again characterized by skeleton stress and void ratio,
but the amount of stretching D is also needed.

3.1 A second prelude on solids

Other than assumed in Sect. 2.1 ductile solids – e.g. lead at room tempera-
ture – exhibit viscous effects. For uniaxial cases the resistance to monotonous
stretching is markedly bigger if the strain rate | ε̇ | is increased by orders of
magnitude, Fig. 3.1.1a. After a jump to another ε̇ the σ vs. ε curve tends to
the one for the new ε̇ from the very beginning, this is indicated by dotted
curves. The observed argotropy (i.e. rate-dependence, α
γóς = fast) of the
resistance can be approximated by

(a) | σ | = 2cr[1 + Iv ln(| ε̇ | /ε̇r)]

(b) ≈ 2cr(| ε̇ | / | ε̇r |)Iv

(3.1.1)

σ/2cr
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Fig. 3.1.1. Viscous behaviour of a pore-free solid: (a) rate-dependence, (b) creep,
(c) relaxation
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with a reference cohesion cr for a convenient reference rate ε̇r. Following
Leinenkugel (1976), Iv is called viscosity index, it ranges from ca. 0.01 to 0.1.
Equation (3.1.1a) fails for | ε̇ |→0, and σ →0 for | ε̇ |→0 by (3.1.1b) cannot be
observed as the low Iv would require extremely low | ε̇ |. Equation (3.1.1a, b)
agree fairly well for some decades of | ε̇ | /ε̇r. Creep is obtained if σ is kept
constant (Fig. 3.1.1b). The time t can be replaced by the dimensionless tε̇r.
After a transition the creep rate ε̇ is the one by the inversion of (3.1.1), and
its sign agrees with the one of σ, i.e.

(a) ε̇ = ε̇r · sgn(σ) · exp
(
| σ | /2cr − 1

Iv

)

(b) ≈ ε̇r · sgn (σ) ·
(
| σ |
2cr

)1/Iv

.

(3.1.2)

Equation (3.1.2b) is empirically known as Norton’s (1929) law. Relaxation,
i.e. reduction of | σ | with time t for ε = 0 occurs as indicated by Fig. 3.1.1c.
It happens the more rapidly the bigger | σ | /2cr initially is. An asymptotic σ
for t → ∞ cannot be observed, only with big Iv observations indicate σ → 0.

The response after reversals resembles the one of Fig 2.1.1a. With constant
| ε̇ | hysteresis loops are obtained, but max | σ | depends on ε̇ as by (3.1.1).
The loops get wider if | ε̇ | is reduced just before a reversal and increased
just after it. Nearly elastic behaviour is observed for | σ | /2cr < ca. 0.5 with
| ε̇ | / | ε̇r |> ca. 10−3.

Prandtl (1928) explained these viscous effects by means of thermally ac-
tivated dislocations. His mechanistic model may be substituted by the one
shown in Fig. 3.1.2. Imagine a pendulum with a magnet above a row of repul-
sive magnets upon an incline (a, you can easily assemble it). The free energy
F of the suspended magnet has a maximum in the middle due to repulsion,
and two sidewards minima with a lower F on the lower side due to gravity (b).

}

b)

x

a)

F

ΔF
}Ea

x

Fig. 3.1.2. A mechanistic model of thermal activation: (a) pendulum with repulsive
magnets, (b) free energy vs. distance from middle position
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The energy difference between upper and lower minimum may be called drift
ΔF . The excess of the maximum against the gravitational part is called acti-
vation energy Ea. The released pendulum experiences a chaotic motion which
comes to an end by damping. The base may now be shaken chaotically with
an average kinetic energy Ek. Every now and then the pendulum crosses the
middle gate, far more often downwards than upwards and more often with
bigger Ek/Ea.

The magnets are to represent groups of molecules and may be named
dislocation units. The forces acting between them are conservative, i.e. they
are determined by the relative positions via potentials. A system of such units
is capable of chaotic oscillations with leading frequencies, here we take only
the lowest one fc (imagine the pendulum without magnets under it). The
average chaotic kinetic energy may represent the absolute temperature T via
Ek = kBT with the Boltzmann constant kB . The probability distribution of
the kinetic energy E is exponential,

p =
kBT

e
exp(1 − E/kBT ) (3.1.3)

with e = 2.7183 and the prefactor from
∫

pdE = 1. Thus the entropy, i.e. a
measure of missing information or disorder,

S =

∞∫

0

p ln p dE , (3.1.4)

is bigger than with any other distribution, this means maximal disorder. Our
shaking base represents a thermostat that keeps T constant, otherwise Ek

would disappear by radiation of waves. The average number ν of passages
down- (+) or upwards (−) through the gate, i.e. of dislocations, per unit of
time can be derived with (3.1.3) as

ν ≈ fc
kBT

Ea
exp

(
±ΔF − Ea

kBT

)
. (3.1.5)

For ΔF > kBT the upwards part may be neglected. Comparison of (3.1.5)
with (3.1.1) yields

Iv ∼ kBT/Ea,

ε̇r ∼ fckBT/Ea.
(3.1.6)

Thus Prandtl (1928) concluded that the two parameters called Iv and ε̇r in
(3.1.1) are proportional to the absolute temperature, and that an internal
frequency is needed to get an objective reference rate.

Persson (2000a) derived similar relations with modern condensed matter
physics and achieved further conclusions. The dislocation units are imagined
as nano-sized blocks of length dd with shear modulus G and cohesion cd.
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This means a dislocation energy Ea ≈ cdd
3
d and a reference frequency fc ≈√

G/ρ/dd with mass density ρ. For stationary stretching with σ > 0 and ε̇ >
0 Persson gets

σ = 2cd

[
1 +

kBT

Ea
ln

(
3G

cd

Ea

kBT

ε̇

fc

)]
(3.1.7)

in the range

exp
(
−Ea

kBT

)
� 3G

cd

Ea

kBT

ε̇

fc
� 1 . (3.1.8)

Towards the upper bound by (3.1.8) the dissipated energy leads to heating
and melting so that σ is lower than by (3.1.7). Towards the lower bound
(3.1.7) has to be replaced by a linear relation of σ with ε̇ as for a viscous
fluid. Evaluation of published creep test results with different T by means of
(3.1.7) leads to activation energies up to Ea ≈ 5 eV (electron volt) for steel
(1 eV=40kBT holds for T=293 K).

Comparison of (3.1.7) with (3.1.1) confirms (3.1.6). As the reference rate
implied by (3.1.7) is extremely high, and as the variation of T is small in most
geotechnical applications, it is of use to transform (3.1.7) into

σ = 2cd

[
1 − kBT

Ea
ln

(
fc

mε̇r

)] [
1 +

kBT/Ea

1 − (kBT/Ea) ln(fc/mε̇r)
ln

(
ε̇

ε̇ r

)]

(3.1.9)
with m = (3G/cd)(Ea/kBT ) and a convenient reference rate ε̇r in the
working range of ε̇. ε̇r is a suitable fraction of fc and thus likewise objec-
tive, though somewhat arbitrary as the size dd of dislocation units is not
precisely known. The crude estimates 3G/cd ≈ 10, Ea/kBT ≈ 102 and
fc/ε̇r ≈ 1012 s−1/10−6 s−1 = 1018 lead to ln(fc/mε̇r) ≈ ln 1015 ≈ 35. This
means that the average resistance cr for ε̇ = ε̇r is well below the one of dislo-
cation units, and that Iv by (3.1.1) with a convenient ε̇r and the usual T is
related with the activation energy by

Iv =
kBT/Ea

1 − (kBT/Ea) ln(fc/mε̇r)
. (3.1.10)

Iv can be determinated from σ-changes due to changes of ε̇ with constant T
via (3.1.1), viz.

Iv =
σ − 2cr

ln(ε̇/ε̇r)
(3.1.11)

with σ for ε̇ �= ε̇r. Thus the argotropy of the resistance for isothermal sta-
tionary stretching reveals the dislocation energy via the inversion of (3.1.10)
if ln(fc/mε̇r) can be estimated.

A constitutive relation for the uniaxial case can be written as

σ̇ = E(ε̇ − ε̇a) (3.1.12)

with the anelastic stretching rate



116 3 Simple peloids

ε̇a = Afvsgn(σ)ε̇r (3.1.13)

and the viscosity factor

fv = exp
(
| σ | /2cr − 1

Iv

)
≈

(
| σ |
2cr

)1/Iv

. (3.1.14)

The prefactor A = 1 is assumed for visco-hypoplastic relations (abbreviated v-
hyp in the sequel). For visco-elastoplastic relations (v-elp) the switch condition

a) A = 1 for σε̇ ≥ 0,
b) A = 0 for σε̇ < 0 (3.1.15)

is proposed, cf. Sect. 3.1 This can be abbreviated as A = H(σε̇) with the
Heaviside function

H(x) = 1 for x ≥ 0,
0 for x < 0.

(3.1.16)

For monotonous evolutions with σε̇ ≥ 0 there is no difference between v-elp
and v-hyp due to A = 1. Stationary stretching means σ̇=0 for ε̇=const, i.e.
ε̇ = ε̇a by (3.1.12). With (3.1.13) and (3.1.14) this leads to (3.1.1) and its in-
version (3.1.2). This is achieved as fv is the inversion of the factor in (3.1.1).
Depending on the sign of σ and ε̇ there are two argotropic state limits for
uniaxial stationary deformations. They are described by (3.1.1) or its inver-
sion and correspond to (3.1.7) or (3.1.9), i.e. viscoplastic deformations are
thermally activated.

Typical evolutions which could be calculated with (3.1.12), (3.1.13) and
(3.1.14) for A = 1 are shown in Fig. 3.1.3. With an imposed constant stretch-
ing rate, and independently of the initial stress, the stress tends to an ar-
gotropic state limit which is thus a driven attractor (a). This is achieved
with (3.1.12) as fv by (3.1.14) tends to | ε̇ | /ε̇r so that ε̇a → ε̇ is produced
by (3.1.13). If ε̇ is suddenly changed by Δε̇ from a state limit the stress rate
switches to an elastic σ̇ = EΔε̇ and disappears thereafter with further stretch-
ing. Creep with constant σ tends to the state limit with ε̇ by (3.1.2), depending

σ/2cr
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Fig. 3.1.3. Viscous behaviour by (3.1.12) to (3.1.14): (a) argotropy, (b) creep, (c)
relaxation
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Fig. 3.1.4. Hysteresis and ratcheting with visco-elastoplastic (v-elp) (a) and visco-
hypoplastic (v-hyp) relations (b)

on the initial σ and ε̇ the transition exhibits acceleration or deceleration (b).
Relaxation according to

σ̇ = −Efvsgn(σ)ε̇r (3.1.17)

is obtained for ε̇=0 (c). A similar relation was derived by Persson (2000a).
The similarity of observed and predicted monotonous evolutions (Figs. 3.1.1
and 3.1.3) confirms the proposed constitutive relation.

Differences among v-elp and v-hyp arise with reversals, Fig. 3.1.4. For v-
elp the response is elastic after each reversal as long as σε̇ is negative, thus
ε̇a=0 holds by (3.1.15a). ε-cycles with constant | ε̇ | and a small amplitude, so
that | σ | remains well below the limit value by (3.1.1), lead to a practically
elastic response (A). For intervals with σε̇ ≥0, and thus A = 1 by (3.1.15),
ε̇a is negligible against ε̇ as then (3.1.16) yields fv � 1. That’s why only one
switch function is needed for A, not two as in (2.1.1). ε-cycles with constant
| ε̇ | and bigger amplitude lead to a markedly hysteretic asymptotic cycle (B).
The response to small stress cycles is practically elastic. Non-symmetric bigger
stress cycles lead to ratcheting (C). Hysteresis and ratcheting are increased
by waiting intervals due to relaxation or creep, respectively.

With v-hyp (Fig. 3.1.4b) the response to small strain cycles (A) is nearly
the same as with v-elp due to fv � 1. For bigger strain cycles the asymp-
totic hysteresis is smaller than with v-elp (B), whereas ratcheting due to non-
symmetric stress cycles is bigger (C). Hysteresis and ratcheting increase again
with waiting intervals. It appears that the plots for strain cycles produced
with v-hyp are somewhat more realistic than with v-elp, whereas ratcheting
is apparently better modelled by v-elp.

For cuboidal deformations we use the same notations and representations as
in Sect. 2.1, but now with allowance for viscous effects. Argotropic state limits
appear in associated deviator planes with strain rate and stress components,
Fig. 3.1.5. The ε̇i are represented by the deviatoric direction angle αε̇ and the
normalized intensity (D/Dr)Iv with reference rate Dr (b). Cycles for equal D
are markedly different only for a variation of D over several decades due to
0 < Iv � 1. Associated limit stress states (b) have the same direction due to
the assumed isotropy, ασ = αε̇, and have the intensity
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Fig. 3.1.5. Deviatoric argotropic response of a solid cuboid: (a) substitute strain
rates, (b) state limits, general (c) and special (d) response polars

σ∗ =
√∑

σ∗2
i =

4√
5

cr(D/Dr)Iv . (3.1.18)

With the factor 4/
√

5 this implies the uniaxial version (3.1.1) for cos 3α = ±1.
Argotropic response polars represent stress rates, Fig. 3.1.5c, related with

strain rates as shown in Fig. 3.1.5a. Strain rates with constant D can be
represented by directions αε̇ and circles in a deviator plane with di =
(2|ε̇i|/3Dr)Iv sgn(ε̇i) (a). The polars should be convex and continuous and
are eccentric in general (c). They can be plotted in the stress plane, two evi-
dent cases are shown in Fig. 3.1.5d. For a state limit the polar with the same
D touches the limit stress circle with ασ = αε̇ so that σ̇i=0 holds (A). For
the state σi=0 the polar is circular with the assumed isotropy (B).

The extension of (3.1.12), (3.1.13) and (3.1.14) can be written as

σ̇∗
i = G(ε̇i − ε̇i

a) (3.1.19)

with the anelastic stretching rate

ε̇a
i = Afv

√
5
4

σ∗
i

cr
Dr (3.1.20)

and the viscosity factor

fv = exp

(
4
√

5σ∗/cr − 1
Iv

)

≈
(

4√
5

σ∗

cr

)1/Iv

. (3.1.21)
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The uni-axial case ist implied for cos 3ασ = ±1 with G = E/2 and σ∗ by
(3.1.18). The prefactor in (3.1.20) is A = 1 for v-hyp and A = H(σ∗

i ε̇i) for
v-elp with H by (3.1.16) and Einstein’s abbreviation σ∗

i ε̇i for
∑

σ∗
i ε̇i. (3.1.20)

implies a simple flow rule, viz. the same direction of ε̇a
i and σ∗

i . Response
polars exhibit the differences due to factor A, Fig. 3.1.6, labels for αε̇ and D
refer to Fig. 3.1.5. Only with an isotropic initial state (A) the polars by v-elp
(a) and v-hyp (b) agree due to σ∗ = 0 (cf. Fig. 3.1.5d). For an argotropic state
limit the polars by v-elp are semicircles plus arcs which are flatter for lower
D. The polars by v-hyp are circles which are more eccentric with bigger D.
The polars touch the state limit circle with the same D, as shown for a low
(B) and a big D (C) the deviator σ∗ can thus only increase with a higher D.

Interpolations between the depicted cases are rather evident. The response
by (3.1.19), (3.1.20), and (3.1.21) is almost elastic for σ∗/cr < ca.0.01Iv and
markedly viscoplastic for σ∗/cr > 0.5Iv . There is an upper D- bound due to
mechanical heating by (3.1.8), its experimental value could be used to estimate
the factor m in (3.1.9). A lower D-bound can hardly be observed, it can be
introduced by a cut-off in (3.1.21), say fv = 0 for σ∗/cr < 10−3Iv . Thus
relaxation for D = 0 is implied and could also be represented by response
polars.

Approaches to state limits are shown in Fig. 3.1.7. Straight strain paths
are assumed with constant rates in different directions (a). The initial stress
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state is arbitrary within the range by Fig. 3.1.6. The stress paths tend to
state limits as outlined with Fig. 3.1.5 with differences of v-elp (b) and v-hyp
(c) in the transition. They are streamlined by the argotropic response polars,
these show that the argotropic state limits are attractors for monotonous
stretching.

Creep and relaxation are almost the same by v-elp and v-hyp as A=1 holds
for both. Figure 3.1.8 shows associated paths of strain (a) and stress (b) with
labels for the dimensionless time tDr. With constant stress (A) the strain
path direction tends to the stress direction and D tends to the state limit
value by (3.1.18). The initial strain rate is forgotten in the transition, only
therein v-elp and v-hyp are slightly different. With fixed strain (B) the stress
path points to the centre. Plots of strain and stress vs. tDr would look like
Fig. 3.1.3b, c for the uniaxial case, but are incomplete.

Typical responses to strain cycles are shown in Fig. 3.1.9. Elliptic strain
paths (a) may be imposed repeatedly with constant D and small (A) or big
amplitude (B). The stress path by v-elp (b) remains near the onset (A) or
tends to a symmetric cycle with the same alignment as the strain path (B),
thus the amplitude is defined as big. The stress path by v-hyp (c) tends
to a symmetric aligned cycle both for A and B. With a small amplitude
the transition by v-hyp needs more reversals if the onset is farther off the
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asymptotic state cycles. With a big amplitude the asymptote is reached before
the first reversal. Argotropic response polars as in Fig. 3.1.6 or simulations
with (3.1.19), (3.1.20), and (3.1.21) reveal how the attractors are attained. An
interruption of stretching causes relaxation, continuation with the previous D
leads back to the related path (dotted). Stressing along state cycles with the
same stress rates would lead to strain cycles after creep, the latter would
increase by waiting with constant stress.

Typical responses to ratcheting are shown in Fig. 3.1.10. The strain paths
are composed of strain cycles and stretching with constant direction (a), e.g.
with small amplitude and low D (A) or big amplitude and higher D (B). The
stress path attains the D-dependent state limit and touches it repeatedly with
the same average deviatoric direction as the strain path. With v-elp (b) the
asymptotic state cycle resembles the strain path in the range of unloading
(Σσ∗

i ε̇i < 0), this similarity holds also for the transition. With v-hyp (c) the
attractor is smoother and the return stress paths are less similar to the related
strain path sections. This could be shown more in detail with response polars
or simulations. An interruption would cause a relaxation, after a continuation
the driven attractor is again attained. Asymmetric stress cycles with constant
mean rate would also lead to ratcheting, waiting intervals with constant stress
would cause creep in addition.

The common feature of evolutions by (3.1.19) is the directional agreement
of anelastic strain rate and stress by (3.1.20) and the viscosity factor fv by
(3.1.21) for the intensity of anelastic strain rates, and thus the intensity of
creep and relaxation. With Iv from ca. 0.02 to 0.1 fv < 0.01 is obtained for
σ∗/cr from ca. 0.5 to 0.3, then the response is almost elastic. Differences of v-
elp and v-hyp are thus only marked for cyclic straining with small amplitude.

For arbitrary deformations (3.1.19) can be substituted by

T̊∗ = G(D − Da) (3.1.22)

with the co-rotated deviatoric stress rate
◦

T∗ by (2.11.6) and the anelastic
stretching

ε1

a)

ε3ε2

σ1

b)

σ3σ2

A

B

c)

*

**

σ1

σ3σ2

AB

*

**

D/Dr = 10–3

A

B

D/Dr = 1

0 0

Fig. 3.1.10. Imposed ratcheting with constant D (a) leads to asymmetric stress
cycles by v-elp (b) and v-hyp (c)
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Da = Afv

√
5
4

Dr

cr
T∗ . (3.1.23)

The viscosity factor fv is determined by (3.1.21) with the invariant σ∗ =√
trT∗2, the prefactor A = H [tr(T∗D)] (H by (3.1.15)) for v-elp and A = 1

for v-hyp. State limits and stationary creep mean D = Da with the same
direction as T∗. fv determines the intensity of creep and relaxation as out-
lined further above, viscous effects get negligible for σ∗/cr <ca. 0.3–0.5. Equa-
tion (3.1.22) is frame-indifferent, thus the material parameters are already de-
termined by cuboidal deformations. Shearing as in Fig. 2.1.10 could be treated
with (3.1.22), except for argotropy the response to shear cycles and ratcheting
would be similar for constant D =

√
trD2. Stress-strain-time plots are evi-

dently insufficient, notions like strength and ductility can at best make sense
for monotonous stretching with D=const.

The range of validity may only be touched as this section is to prepare for
simple peloids. Neglection of volume changes and pressure influence is justified
for high enough pressures and very low void fractions. This is sufficient for
the principle of effective stress (Sect. 3.2). The argotropy due to thermally
activated dislocations is physically well established. The proposed argotropic
state limits require ductility, this cannot hold for D above a threshold that
depends on pressure and temperature. The neglection of the invariant cos 3α
by (2.11.5) is minor for our purpose.

The most restrictive assumption is that states of solid RSEs are fully char-
acterized by stresses and change with strain history via a constitutive relation
of stress rate with stretching and stress. For being consistent this relation
should be continuous and should imply argotropic state limits as attractors.
As without viscosity internal state variables will be needed for evolutions with
many reversals and small amplitudes (Sect. 5.1). Shear localizations require
polar quantities in addition and spoil the uniformity of RSEs (Sect. 8.1). The
spatial distribution of different crystallites causes an inherent anisotropy. All
that is left aside as it will not be needed in the sequel.

To sum up, the behaviour of pore-free solids with thermal activation can be
captured with visco-elastoplastic or -hypoplastic relations. Therein a viscosity
index and a reference stretching rate characterize rate-dependence, creep and
relaxation, both parameters are proportional to T . Both relations agree for
monotonous evolutions and differ with reversals. They will be used in the
sequel to explain viscous effects of clay-like soils with much softer particles
than quartz grains.

3.2 An introduction of simple peloids

A homogeneous skeleton of mineral particles may be called a simple peloid
(i.e. clay-like, πηλóς=clay) RSE if it has the following properties:
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P1: the solid particles are surrounded by water with ions and are so small
that electro-capillary effects are relevant;

P2: the voids are completely filled with water which may contain solubles
below saturation;

P3: the state is sufficiently characterized by the effective stress components
and the void ratio;

P4: the solid particles are soft and their collective properties are permanent.

Without going into details these simplifying assumptions can be justified as
follows.

Given P2 as outlined further below, P1 means that the pore water is
less mobile in narrow voids than in the bulk (Sect. 6.3). This is due to the
adsorption of water and ions at the particle surfaces and contacts. As was
discovered by Terzaghi (1920) and investigated at length by Derjaguin (1971),
the absorbed pore water with higher ion concentration has a higher density
and a far bigger viscosity than ordinary water. Following Derjaguin this bound
pore water may be called polywater as it resembles polymers. With absorption
films of a few nm thickness the polywater influences the mechanical behaviour
if the solid particles are smaller than about 10−6m. Then the kind of mineral,
the shape of the particles and the ion concentration of the free pore water
play a role.

P2 excludes gas bubbles, pockets or channels and also condensation bridges
among the particles. Gas bubbles appear if the pore water is saturated with
dissolved gas, and gas channels arise by capillary entry (Sect. 6.3). Liquid
condensation bridges appear with low degrees of water saturation, solid con-
densation bridges play a role with high concentrations of dissolved minerals
(Sects. 7.2 and 7.3). In these cases the solid partial stress is no more given
by Terzaghi’s (1936) equation (2.2.6), and adaptions for partial saturation or
condensation bridges do not suffice in general (Sects. 6.3 and 7.2).

Given P1 and P2, net particle forces and internal variables are excluded
by P3. The effective stress by (2.2.5) or (2.2.6) for cylindrical symmetry, or by
(2.11.2) in general, agrees with the solid partial or skeleton stress if the van
der Waals attraction is compensated by the osmotic repulsion of the particles
(Sect. 6.3). This is not the case in general. An excess of attraction causes
higher void ratios, an excess of repulsion enhances swelling (Sect. 7.1). Apart
from the neglection of such interparticle forces the influence of the spatial
fluctuation of contact forces (Sect. 5.2) is neglected by P3.

P4 means that thermal activation plays a role for changes of particle shape
during evolutions of state and shape of a peloid RSE. As outlined for solids
without pores in Sect. 3.1 the particles are neutral with respect to the pore wa-
ter pressure pw, therefore the skeleton stress by (2.2.5) or (2.11.2) is effective.
Other than assumed for simple psammoids, however, the skeleton is argotropic
as are its particles, therefore these may be called soft. With softer particles
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barotropy and pyknotropy of peloids are more marked than for psammoids.
We thus leave aside saturated soils with fine hard grains, these can better be
modelled as psammoids. With soft particles the assumed permanence of the
skeleton is apparently a contradiction in terms, even more than for psammoids.
However, very small particles can be reconstituted by thermal activation if the
particle encounter times are not too short (Sect. 7.3).

Shear localization with polar quantities (Sect. 8.3) is left aside by P3, as
with simple psammoids the RSE is assumed to be and remain uniform so
that spatially averaged void ratios and non-polar stresses and strains suffice.
Experimental results may therefore be used up to peaks, beyond them at best
with data for narrow shear zones. As therein interparticle forces are partly
bigger and relative particle motions are faster than in the average of the RSE
the permanence by P4 is more restricted.

In the sequel we will consider evolutions of RSEs with cylindrical symmetry
by using the stress and strain quantities as in Sect. 3.2. Constitutive relations
may again be abbreviated by (2.2.13), and selection criteria are taken over
from Sect. 2.2. The general properties described by (2.2.14), however, have to
be modified due to the argotropy. For the function fi in (2.2.13) we postulate
now, with i = 1 and 2,

a) fi(λσsi) = λmfi(σsi) with λ > 0 and 0 < m ≤ 1 for D = const

b) fi(λε̇i) = λmfi(ε̇i) with λ > 0 and m > 1 for D = const

c) fi(−ε̇i) �= −fi(ε̇i) in general .
(3.2.1)

The amount of stretching rate, D by (2.2.19) for cylindrical symmetry, is
assumed to be constant for (a) and (b). Then the barotropy is reflected by (a),
this means that skeletons of soft particles are stiffer with bigger pressure ps due
to wider contact flats. Rate-independence is no more given with (b), it may
at best be assumed with constant D in a certain range of D as m ranges from
about 0.5 to 1 (m is not necessarily constant). Non-linearity by (c) does not
exclude hypoelastic behaviour as a special case. (b) Enables creep with ε̇i �= 0
for σ̇si = 0 and relaxation with σ̇si �= 0 for ε̇i = 0, both is excluded by (2.2.14b)
for psammoids. Equation (3.2.1) restricts representations of the constitutive
functions fi, but further restrictions are needed to model essentials of peloid
behaviour.

Argotropic state limits are defined for constant strain rates similarly as
in Sect. 2.2 without argotropy, but now the amount of stretching D has to
be allowed for, Fig. 3.2.1. The relation of stress and strain rate directions ψs

and ψε̇ (a) looks like the one for psammoids and does not depend on D. In
particular (2.2.15) holds for critical states, i.e. isochoric state limits, with a
D-independent critical friction angle ϕc. This can be lower than for psam-
moids if flat clay particles slide past each other, and bigger if diatomaceous
relics produce a felt-like soil. ψs = ψε̇ = 0 is evident for isotropic compres-
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Fig. 3.2.1. State limits of cylindrical peloid RSEs: strain rate direction (a) and
relative void ratio vs. direction of stress (c), void ratio vs. pressure ps for different
strain rates (b) and with ps referred to an argotropic solid hardness (d)

sion, proportional compression holds for lower than critical | ψs |. Extremely
dilatant state limits at the bounds by (2.2.4) and (2.2.16) are less fictitious
than for psammoids as clay-like soils can more easily be cracked. Peak states
come close to dilatant state limits, and a continued deformation beyond them
leads to a marked shear localization (Sect. 8.3).

Limit void ratios decrease with bigger mean skeleton pressure ps and big-
ger stress obliquity |ψs| by (2.2.3) similarly as for psammoids, Fig. 3.2.1b.
The range is wider as squat angular particles cause bigger voids for low ps

and are more squashed for high ps than hard grains. As the particles are
harder for bigger amounts of strain rate D due to their argotropy (Sect. 3.1)
the limit void ratios are bigger for bigger D. This can be represented by iso-
tachs (ταχύς=fast) for different D, some of them are drawn in Fig. 3.2.1b
(Suklje 1969). If D varies by several decades these isotachs cannot convey
a clear picture as the ones for different stress obliquities overlap each other.
One can plot instead e vs. log(ps/hs) with an argotropic solid hardness as by
(3.1.1), viz.

hs = hsr [1 + Iv ln(D/Dr)]

≈ hs(D/Dr)Iv .
(3.2.2)

As for solids Iv is named viscosity index (Leinenkugel 1976), and Dr is a
reference strain rate so that hs equals the reference value hsr for D = Dr.
Extremely small or big D have to be excluded as for solids. Dr can be chosen
conveniently (e.g. 10−6 s−1), the Iv for matching test results depends on this
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choice. Iv and Dr are thus not the same as for a solid, the transfer to it requires
assumptions on spatial distributions of forces and displacements (Sect. 3.5).
As with solids by (3.1.1) and (3.1.6) both Iv and Dr are proportional to the
absolute temperature T due to thermal activation. There is an upper D-bound
by mechanical heating, and a lower one below which the viscosity gets linear.
The power law in (3.2.2b) agrees with the logarithmic one (3.2.2a) in a range
which depends on Iv. Iv ranges from ca. 0.02 to 0.05 for clay-like soils.

As shown in Fig. 3.2.1d the isotachs are assumed to coincide by means
of (3.2.2) for any ψs. This is justified as the argotropy of the solid particles
does not depend on skeleton stress and void ratio. Thus the upper and lower
bounds and the critical void ratios are barotropic as for psammoids, but they
are also argotropic. A relative void ratio re can again be defined by (3.2.18),
but now the reference values ec and ed depend on D via (3.2.2). The argotropy
does not appear in the dependence of re on ψs, Fig. 3.2.1c. Together with the
dependence of ψε̇ on ψs this means that for a state limit with a given ψε̇ both
ψs and re are functions of ψε̇, the argotropy influences only the mean pressure
via (3.2.2).

The mechanical behaviour can be represented by argotropic response po-
lars, Fig. 3.2.2. The kind of stretching can be captured by substitute rates
si = (|ε̇i|/Dr)Iv sgnε̇i with constant amounts D and different directions ψε̇

(a). Differences of D by orders of magnitude can be captured by scaling with
(ε̇i/Dr)Iv , the argotropy by (3.2.2) is only significant if D varies substan-
tially. The stress rate response in the associated polar diagram (b) depends
on the state variables σs1, σs2 and e (or any substitute, e.g. ps, ψs and re

as for psammoids), but also on D. Convexity and continuity are needed, ex-
ceptionally the polar can be centric. As for psammoids a second polar in the
plane ė vs. ṗs/ps (c) can be of use. ė(−ψε̇) = −ė(ψε̇) follows from (2.2.10)
with (2.2.12), but ṗs(−ψε̇) �= −ṗs(ψε̇) holds by (3.2.1c). Argotropy is repre-
sented by D-dependent size, shape and/or eccentricity, this will be specified in
Sects. 3.3 and 3.4. Creep with σ̇s1 = σ̇s2 = 0 requires polars which go through
the origin for certain ψε̇ and D. Relaxation with ε̇1 = ε̇2 = 0 can be depicted
by a point for a lower bound of D (cf. Sect. 3.1) as then there is no influence
of ψε̇.
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Analogously with (3.1.19) the function fi by (2.2.13) and (3.2.1) may be
represented by

fi = Mij(ε̇j − ε̇a
j ) (3.2.3)

with an elastic stiffness matrix Mij and summation on j, and an anelastic
stretching rate

ε̇a
j = AfefvPjDr . (3.2.4)

Therein A is 0 or 1 in v-elp (Sect. 3.3) and 1 in v-hyp (Sect. 3.4), fe is an
e-dependent factor and Pj denotes different ψs-dependent directions in both
approaches. The viscosity factor fv depends on the consolidation ratio pe/ps

via

fv ≈
(

ps

pe

)1/Iv

≈ exp
(

ps/pe − 1
Iv

)
(3.2.5)

with an equivalent pressure pe. The latter is defined as the ps at a state limit
for the actual e and | tan ψs| with D = Dr, as indicated in Fig. 3.2.1b for a
critical stress obliquity. pe was introduced for shearing by Hvorslev (1937), he
mentions already the viscosity and the dependence on stress obliquity (more
in Sect. 3.8). pe/ps should not be confused with the overconsolidation ratio
OCR which ignores the influence of ψs and D (Sects. 2.3, 3.3 and 3.8). The
factor fe is determined by the coincidence of limit void ratios with those for
an isotropic compression with D = Dr by (3.2.3).

The stiffness matrix Mij in (3.2.3) should be proportional to (ps/hs)m for
a given D in order to model the barotropy by (3.2.1a), and depends also on the
stress direction ψs in general. Some features of (3.2.3), (3.2.4), and (3.2.5) are
shown in Fig. 3.2.3 by argotropic response polars. Strain rates with different
directions and D/Dr = 10−3, 1 and 103 are represented by circles with radius
(D/Dr)Iv and labels for ψε̇ (a). For D ≈ Dr and pe ≈ ps the polars exhibit
barotropy and depend on the stress obliquity nearly as for psammoids (b, cf.
Fig. 2.2.5). For D  Dr and/or pe/ps > ca. 2 the polars are nearly centric
ellipses which are bigger for higher ps (c), this indicates an almost hypoelastic
behaviour. For D � Dr and pe ≈ ps the polars are nearly straight lines which
are longer for higher ps and have a bigger −ṗs/ps and a lower ψ̇s/ψs for a
lower | tan ψs| (d). This behaviour comes close to relaxation with ε̇1 = ε̇2 = 0.

As for solids Dr has to be chosen conveniently because a reference fre-
quency of the particles cannot be strictly identified (Sect. 3.1). This apparent
lack of unit-invariance (Sect. 1.2) can be overcome by adapting the reference
hardness hsr to a chosen Dr in the observed validity range of (3.2.2). Thus pe

denotes ps for a state limit with given e and ψs and suitably chosen Dr in the
D-range where state limits can occur (cf. Sect. 3.1). The response outlined
with Fig. 3.2.3 is psammoid-like near state limits with the same D (b), and
rather hypoelastic for a drastic increase of D and/or a consolidation ratio
pe/ps >ca. 2 (c). The normalized rate of relaxation ṗs/psDr is substantial
only if it starts near state limits with D near Dr (d). Other than with rate-
independent psammoids the response of simple peloids is thus determined by
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the strain rate ratio D/Dr and the consolidation ratio pe/ps, whereas pressure
ps and stress obliquity tanψs have the same qualitative influence. The relative
void ratio re, which depends on the actual e and the argotropic state limit
values ec and ed by (2.2.18) and Fig. 3.2.1, is less useful than pe/ps as long
as one is far off extremely dilatant state limits with e near the lower bound.

Approaches to state limits are shown in Fig. 3.2.4. A straight contractant
(A), isochoric (B) or dilatant (C) strain path may be imposed with section-
wise constant rate D (a, labels for log(D/Dr)). The deformation time may
exceed by far the time needed for the diffusion of pore water so that the RSE
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limit void ratios for D = Dr
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can remain sufficiently uniform (Sects. 6.2 and 11.1). The stress paths tend to
ψε̇-dependent obliquities by Fig. 3.2.1a with kinks after D-jumps and ṗs > 0
(A), ṗs = 0 (B) and ṗs < 0 (C) in the continuation (b). The stress path kink
depends on the previous strain rate, this could be indicated by dotted lines.
The paths in the plot of e vs. log(ps/hsr) tend to ψs- and D-dependent limit
void ratios by Fig. 3.2.1b (c). Thus the consolidation ratio pe/ps tends to 1
for D = Dr, but to a constant > 1 for D < Dr and < 1 for D > Dr.

These transitions are steered by argotropic response polars as shown in
Fig. 3.2.3. Thus the argotropic state limits are attractors for deformations
with constant rate ε̇1 and ε̇2. Similarly as with psammoids (Sect. 2.2) state
limits cannot be attained with a too high initial void ratio eo because of
skeleton decay, and can be prevented by particle crushing with a too low eo.
Isobaric peak states come close to dilatant state limits, but their continuation
leads to shear localization (Sect. 8.3). Cracking could be linked with extremely
dilatant state limits (Sect. 8.4).

The isobaric creep of cylindrical peloid RSEs is shown in Fig. 3.2.5 with
labels for dimensionless time tDr. Paths of strain (a), stress (b) and e vs.
log(ps/hsr) (c) represent typical evolutions. Previous strain rates and stress
paths are indicated by dotted lines, they are forgotten in the sequel. Plots
of e vs. log(tDr) (d) and of strain deviator ε∗ vs. tDr (e) convey a partial
information. With a subcritical stress obliquity, i.e. | tan ψs| < | tan ψsc| by
(2.2.3) and (2.2.15), the creep is contractant and D gets smaller (A). It tends
to a succession of contractant state limits, the transition takes more time for
a higher initial consolidation ratio pe/ps (1) than for a lower one (2). Near
the asymptote the direction of strain rate ψε̇ is determined by ψs as for state
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limits by Fig. 3.1.1a, and the gradual densification can be approximated by

e ≈ eo − λIv ln(1 + tDr). (3.2.6)

Therein eo denotes e for t = 0, and λ the slope of e vs. ln(ps/hsr) in the given
range. As shown in Fig. 3.2.5d the initial evolution is not described by (3.2.6),
this asymptote is not attained with an initial pe/ps > ca. 2 within relevant
times. Only after a very long time the densification by creep comes to an end.

With a critical stress obliquity the creep gets stationary (B) after a longer
transition for a higher initial pe/ps (1) than for a lower one (2). The asymptotic
strain rate is isochoric with an amount D which is determined by (3.2.2) via
Fig. 3.2.1d and (3.2.4). For the transition this means an acceleration if D and
pe/ps are initially low (1) and a deceleration in the opposite case (2). With
an overcritical stress obliquity (C) the creep is dilatant and more accelerated
with high (1) than with low initial pe/ps (2). In case C the uniformity of the
RSE gets lost by shear localization or cracking (Sects. 8.3 and 8.4). As with a
lower stress obliquity the creep is negligible within relevant times if the initial
pe/ps exceeds ca. 2, and cannot occur with constant σs1 and σs2 if the pore
water diffusion time is not far shorter than the deformation time.

Some evolutions of cylindrical peloid RSEs with isochoric creep and con-
stant stress deviator σ∗ = 1(σs1 −σs2)/3 are shown in Fig. 3.2.6. Stress paths
just before this kind of creep are indicated by dotted lines. Thereafter the
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strain paths (a) are isochoric, the skeleton stress paths (b) and the plot of
e vs. log(ps/hsr) (c) exhibit a gradual reduction of ps. This is related with
different increases of deviatoric strain with time (d). Stationary creep can
be attained with a low initial pe/ps (A), whereas the creep rate can remain
minute with a higher initial pe/ps (B). If both pe/ps and ps/hsr are initially
low isochoric creep can lead to ps → 0, i.e. skeleton decay and transition to a
suspension (C). Except for such a decay RSEs with constant stress deviator
tend to an isochoric state limit with D by (3.2.2) for e = ec.

Some evolutions with relaxation are shown in Fig. 3.2.7. The strain paths
(a) are halted (dotted for t < 0). The stress paths (b) tend towards the
isotropic line and the origin. As shown in the plot of e vs. log(ps/hsr) (c) the
initial void ratio is assumed as overcritical (A), critical (B) or subcritical (C)
for D = Dr. The mean pressure ps gets more markedly smaller with time (d)
for A and B than for C. The stress obliquity | tan ψs| is little reduced with
time for A and C, and markedly for B (e). The relaxation gets so slow anyway
that asymptotic states of rest cannot be explored. One may call such states
endogeneous attractors as they are attained solely by thermal activation.

Some common features of creep and relaxation, which may appear rather
complex in Figs. 3.2.5, 3.2.6, and 3.2.7, can be explained by means of (3.2.3),
3.2.4, and (3.2.5) and Fig. 3.2.3. Isobaric creep means ε̇j = ε̇a

j by σ̇si = 0.
Its direction ψε̇ is determined by the stress direction ψs. Its intensity D is
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given by the viscosity factor fv, which is negligible if the consolidation ratio
pe/ps exceeds ca. 1.5–2. The equivalent pressure pe is given by e and ψs for
the chosen reference rate Dr. With a subcritical stress obliquity (| tan ψs| <
| tan ψsc|) the creep is contractant and decelerated as pe increases. With a
critical stress obliquity the creep is isochoric and gets stationary after an
adaption of the stretching rate D. With an overcritical stress obliquity the
creep is dilatant and accelerated, and depending on the initial pe its amount
D/Dr can be extremely variable.

The rate of relaxation, i.e. σ̇si = fi = Mij ε̇
a
j by (3.2.3) with ε̇j = 0, can be

expressed by the dimensionless pressure rate ṗs/psDr and the rate of stress
obliquity tanψs. With the barotropy by (3.2.1) the pressure rate is

ṗs/psDr ≈ −bfv(hsr/ps)1−m. (3.2.7)

Therein the exponent 1 − m ranges from about 0 to 0.5 and b ≈ 1 can be
estimated from (2.4.5). The dominant factor in (3.2.7) is the viscosity factor
fv, as with creep the rate of relaxation is thus negligible for pe/ps > ca. 1.5 to
2. The stress path directions in Fig. 3.2.3d indicate that the amount of stress
obliquity | tan ψs| is the more slowly reduced the smaller it is. This can also
be explained with fv by (3.2.5): pe increases with a reduction of | tan ψs| while
ps decreases by (3.2.7), thus fv dwindles strongly.

Isochoric creep implies a relaxation of ps by (3.2.7) so that fv dominates
both ṗs and D. The stretching intensity D dwindles with a constant devia-
tor σ∗ as pe decreases due to the increase of | tan ψs|, whereas ps dwindles.
The viscosity factor fv by (3.2.5) is always dominant for the rate of creep
and/or relaxation. What counts is thus the consolidation ratio pe/ps, i.e. a
combination of void ratio, mean pressure and stress obliquity, and the change
of pe/ps with time. We will see in following sections how this works with
visco-elastoplastic and -hypoplastic relations, and that our statements are
not confined to cylindrical RSEs.

Evolutions with reversals may only be touched here as little is known
from experiments or can be concluded with physical arguments. We restrict
ourselves to isochoric evolutions as deformation times with reversals are usu-
ally much shorter than pore water diffusion times, and presume that the gas
content is so small that density changes without diffusion of pore water are
negligible. As with psammoids (Sect. 2.2) amplitudes are called small if the
amount of stress obliquity remains subcritical, and big otherwise. Because
of the viscosity the stretching rate D and its reference value Dr play a role
if they change by orders of magnitude. We consider mainly evolutions with
D/Dr = 1, and briefly also with D/Dr � 1 or  1. Apart from the latter we
will focus on asymptotic responses, i.e. state cycles as driven attractors.

Responses to isochoric deformation cycles are indicated in Fig. 3.2.8. Strain
paths with big (A) or small amplitude (B) are depicted as flat lenses for
visibility (a). The stress path with D/Dr for A tends to a butterfly which
touches the critical lines, whereas for B with D = Dr its shift towards an
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argotropic attractor is hardly detectable (b). As shown in a plot of e vs.
log(ps/hsr) this shift is due to a low pe/ps for A (repeatedly pe/ps → 1), and
to a higher pe/ps for B (c). As outlined further above with (3.2.3), (3.2.4),
and (3.2.5) the response is thus rather hypoplastic for pe ≈ ps and rather
hypoelastic for pe/ps > ca. 2. In the transition the average pressure p̄s is
rapidly reduced for pe ≈ ps, and hardly for pe/ps > ca. 2. The asymptotic
average p̄s is markedly lower for a constant D/Dr � 1 and higher for D/Dr 
1 (dotted), but visibly only in case A. Waiting intervals would lead to a marked
relaxation for A, continuations with constant D lead again to the previous
attractor.

Responses to isochoric ratcheting are indicated in Fig. 3.2.9. Strain paths
with big (A) and small amplitude (B) are depicted by saw-tooths for visibility
(a). The stress paths (b) for D = Dr tend to lenticular cycles which touch one
critical line and are wider for A than for B. In the plot of e vs. log(ps/hsr)
the asymptotic state cycle is farther off the c-line for B than for A (c). In the
transition to an argotropic attractor the average pressure p̄s is more rapidly
reduced for A than for B, and also for a lower initial pe/ps. With a constant
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D � Dr the asymptotic pressure p̄s gets smaller as the solid hardness is lower
by (3.2.2), and with D  Dr the p̄s gets bigger. A halt leads to relaxation,
thereafter the argotropic attractor is reached again.

By definition hidden variables are not needed to characterize the state
of the RSE-skeleton of a simple peloid. In other words, stress rates are as-
sumed to be functions of stress, strain rate and void ratio only, these are
specified by (3.2.1), (3.2.2), and (3.2.5). As with psammoids hidden variables
are needed for reversals with small amplitudes in between. This will be dis-
cussed in Sect. 5.2, but not as thoroughly as for psammoids in Sect. 4.2 for two
reasons: simple peloids can be nearly hypoelastic for pe/ps > ca. 1.5 and/or
D/Dr > ca. 102, and the experimental data do not suffice to separate these
effects from those of reversals with small amplitudes. Polar stresses can arise
as another kind of hidden variable in narrow shear bands (Sect. 8.3), but are
left aside for simple peloids. As they are often met, but can hardly be ana-
lyzed in detail, they may be captured by means of spatial averages, but this
approach can be misleading (Sect. 9.1).

Clay-like soils can hardly be characterized by stiffness and strength of
cylindrical samples in an objective way, Fig. 3.2.10. In a usual compression
test with lateral confinement (ε2 = 0) the sample is axially loaded, un- and
reloaded in steps of axial stress Δσ1 with pauses for the diffusion of pore water
(a). Assuming Δσ1 = Δσ′

1 and u = ua by (2.2.6) after diffusion in each step
one can calculate a stiffness modulus Es = Δσ′

1/Δε1 with the strain increment
Δε1 of each step. Evidently this stiffness depends on e and σ′

1 and is different
for first, un- und reloading. The skeleton stress path (b) exhibits a variable
component ratio σs2/σs1 which influences Es. At the onset (0) σs1 ≈ σs2

may act by suction, with loading σs2/σs1 tends to a constant, it rises with
unloading and tends again to the previous constant value.

As σs2 and a solid hardness hsr are rarely determined e is usually plotted
vs. log(σ′

1/pa) (c) instead of log(ps/hsr). Following Terzaghi (1925) a pre-
consolidation pressure σc is often estimated from a bend in this plot, and
substituted by an overconsolidation ratio OCR = σc/σ′

1. Hvorslev (1937)
proposed instead OCR = σe/σ′

1 with an e-equivalent pressure σe for first
compression, and argued that it does not matter how the soil has attained
a given e. He mentions already the influence of σs2/σs1 and of creep on σe.
Bjerrum (1973) points out that with geological resting times e can be reduced
as by preloading. We will see in Sect. 3.6 that this behaviour can be captured
by v-elp or v-hyp, whereas stiffness moduli Es are inadequate and can be
misleading.

The response to undrained axial shortening or stretching with constant
D is often plotted as (σ1 − σ2)/2 vs. (ε1 − ε2)/2, Fig. 3.2.10d. Bulging or
necking of too slender samples leads to a peak (A) even if this would not occur
with uniform deformations (Sect. 14.1). Without such diffuse bifurcations the
maximum of |σ1 − σ2|/2, often called undrained cohesion cu, is different for
shortening and stretching with a given e (cf. Fig. 3.2.4 for isochoric state
limits). After a drastic change of D max|σ1 − σ2| tends to another value
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Fig. 3.2.10. Cylindrical peloid samples in usual tests: (a) compression and swelling
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related stress paths (h) and e vs. log ps-paths (i)

(B), and this part of the stress path (b) can also be attributed to argotropy
as in Fig. 3.2.4. If the peloid has hard grains, a rather low ps and e > ec,
|σ1−σ2| goes through a peak without diffuse bifurcation before a critical state
is reached (C). Such a soil may be called collapsible, like a loose psammoid its
skeleton can decay by monotonous deformation (liquefaction, cf. Sect. 2.2).

The notion strength is of limited use for isochoric deformations and can be
misleading, nevertheless one may speak of a more or less ductile behaviour. A
peloid may be called ductile if the amount of its stress deviator is not reduced
by a monotonously continued deformation with constant D. After a reduction
of D its |σ1 − σ2| is first reduced due to argotropy and then gets stationary.
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If an argotropic critical state is reached via a peak of |σ1 − σ2| the peloid is
less ductile, and it may be called collapsible (or extremely sensitive) if the
skeleton decays by monotonous isochoric deformations.

The ductility can be judged from a plot of e vs. log(ps/hsr), Fig. 3.2.10f,
without any notion of strength. An undrained peloid may be called ductile
if it attains a critical state by a monotonous deformation with constant D
with a growth of stress obliquity | tan ψs| up to the critical value | tan ψsc| by
(2.2.15). The related asymptotic mean pressure ps is determined by e = ec

with the given e and D. This definition can be extended to arbitrary deforma-
tions and is thus objective (Sect. 3.9). Opposed to this an undrained stiffness
modulus Eu = Δ(σ1 − σ2)/Δ(ε1 − ε2) is rather subjective and possibly mis-
leading. It depends on the state variables (at least σs1, σs2 and e), the sign of
(σ1− σ2)(ε̇1− ε̇2) and the stretching rates ε̇1 and ε̇2. As shown with Fig. 3.2.3
the differential stiffness of simple peloids cannot be represented by a modulus.

The response to isobaric deformations (i.e. constant ps or σs2) may also
be represented by a plot of (σ1 − σ2)/2 vs. (ε1 − ε2)/2, Fig. 3.2.10g. The
peak deviator max|σ1 − σ2| is often called drained strength, and related with
shear parameters c′ and ϕ′ from a plot of skeleton stress components (h).
Even without bulging or necking the peak is exaggerated by shear localization
(Sect. 14.1), beyond it the assumption of uniform cylindrical RSEs is no more
justified. A plot of e vs. log(ps/hsr) (i) is thus only legitimate up to peak.
Serious triaxial tests are carried out so slowly that the diffusion of pore water
can hardly impair the required uniformity, and the argotropy of the skeleton
should not be ignored.

If the sample tends to contract for the given ps(or σs2) and initial e it could
approach a uniform critical state (A). One can evaluate for ϕc by (2.2.15) and
for ec by Fig. 3.2.1. Apart from differences of ϕc for axial shortening and
lengthening, which can be attributed to diffuse bifurcation (Sects. 3.5 and
14.1), the ϕc from good experiments is e- and ps-independent. The argotropy
of ec could be observed with different low enough rates |ε̇1|, this is far more
expensive than undrained tests with differences of ps for different |ε̇1| at crit-
ical states. With stress control and critical obliquity a contractant sample
creeps until a critical state with constant strain rate is reached. As shown
with Fig. 3.2.5 (B) the stationary creep rate and the related e = ec depend
on the initial creep rate and void ratio. As such creep tests should be slow to
avoid a loss of uniformity by diffusion they are not economic to determine the
argotropy of ec.

If the sample tends to dilate the peak for a given ps (or σs2) and ε̇1 is
higher for a big initial consolidation ratio pe/ps (B) than for a lower one (C).
This can be explained with Fig. 3.2.4 (C) as dilatant state limits are close to
peak states. Two of them suffice formally to determine so-called effective shear
strength parameters c′ and ϕ′ as indicated by a dashed line in Fig. 3.2.10h,
but this is physically dubious. As proposed by Hvorslev (1937) for shearing
(Sect. 3.8) c′ may be assumed to be proportional to an e-equivalent pressure
pe, but this should be taken at peak. This pe is not the same for two peaks
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in general and should also depend on the stress obliquity as outlined with
Fig. 3.2.5. A peak friction angle ϕp could be determined with c′ = 0 by
(2.2.17) as for psammoids, it depends on the void ratio (or re or pe instead)
at peak. This evaluation is more adequate than the one for c′ with an arbitrary
ϕ′ as clay-like soils without net attraction or cementation (i.e. simple peloids)
have no skeleton tensile strength, i.e. no effective cohesion (Schofield 2005).

The characterization of overconsolidated peloids by shear strength param-
eters c′ and ϕ′ is thus not physically tenable. It is anything but objective,
there is no unique c′ and ϕ′ for arbitrary deformations, let alone the actual
argotropy. In spite of the inadequacy of c′ and ϕ′ the ductility of peloids can
be defined objectively for isobaric deformations. If these are monotonous and
isotachic (i.e. D=const) the peloid may be called ductile if the stress obliquity
| tan ψs| does not decrease. Contractant peloids are ductile as they tend to an
argotropic critical state. Dilatant peloids are not ductile as their | tan ψs| goes
through a maximum, and then tends to | tan ψsc| with shear localization. The
ductility limit can be judged by means of an initial consolidation ratio pe/ps

and the direction of deviatoric deformation, i.e. by sgnε̇1 for cylindrical sym-
metry. This definition can be extended to arbitrary deformations, but works at
best as precisely as pe/ps and the direction of stretching are given (Sect. 3.9).

To sum up, simple peloids are viscoplastic if their consolidation ratio pe/ps

is low for a given reference rate Dr and/or if their amount of strain rate D does
not exceed Dr by far, otherwise they are rather hypoelastic. State limits with
constant D are psammoid-like, but the limit void ratios are argotropic via the
solid hardness hs. The viscosity index Iv therein is determined by the solid and
thus not baro- and pyknotropic. Dr can be chosen conveniently without loss
of unit-invariance. Creep and relaxation are marked for the chosen Dr if pe/ps

is lower than ca. 1.5–2. The response to big strain cycles and ratcheting with
constant e and D is psammoid-like, whereas small strain cycles can lead to
a rather hypoelastic response. Hidden variables are needed for reversals with
small amplitudes and also to capture shear localizations. Usual parameters
for stiffness and strength are rather subjective, whereas the ductility can be
defined in an objective way.

3.3 Cam clay plus viscosity with cylindrical symmetry

In the framework of Critical State Soil Mechanics (CSSM, Schofield and Wroth
1968) elastoplastic relations for clay are named Cam clay models. They exist
in several variants and belong to peloids as far as the properties given in
Sect. 3.2 are implied. Most of them presume rate-independence, which is only
justified if the amount of strain rate D does not vary substantially. As such
constitutive models were already introduced in Sect. 2.3 the following outline
of Cam clay is kept short. There are quantitative differences to psammoids
because of softer particles. Plots of q(= σ1 − σ3 = σs1 − σs3) vs. p′(= ps)
are used together with σs1 vs.

√
2σs2 as the former are often employed for
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experimental reports, whereas the latter are better apt for generalizations.
Extremely dilatant state limits (subscript d) are not captured by Cam clay
models.

State limits of Cam clay are represented in Fig. 3.3.1. Limit void ratios (a)
depend on the mean pressure ps by (2.3.1), this excludes ps → 0 and ps → ∞.
As usual in CSSM ps is referred to the atmospheric pressure pa although
this is not objective. For substantially bigger or smaller D than the reference
value Dr the limit void ratios are markedly higher or lower, this is indicated
by dashed and dotted lines as in Fig. 3.2.1b. Effective stress components are
normalized by the equivalent pressure pei from (2.3.3) for D = Dr and ei, and
represented in the planes q vs. p′ (b) or σs1 vs.

√
2σs2 (c). Dashed and dotted

lines indicate a wider or narrower elastic range for much bigger or smaller D.
The relation between stress and strain rate directions (d) is rate-independent,
cf. Fig. 3.2.1a. Extremely dilatant limits are not comprised, and the stress
boundary can approach the no-tension lines σs1=0 or σs2=0. An associated
lower bound void ratio ed is plotted in Fig. 3.3.1a as proposed by Schofield
(2005) although it does not occur explicitly in Cam clay models.

In early versions of Cam clay state limits for a constant e (i.e. pei =const)
are approximated by an ellipse in the q vs. p′-plot. Later two half-ellipses were
proposed so that (2.2.15) holds with a single ϕc for critical states. As shown in
Fig. 3.3.1b the part of the boundary line with tension has to be cut off. This
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is avoided by bullet-shaped boundaries as shown in Fig. 3.3.1c. Near a tension
cut-off the dependence of strain rate and stress directions is not consistent,
therefore it is not shown up to ±d. A plot of relative void ratio re vs. stress
direction ψs as by Fig. 2.3.1 is not suitable for Cam clay as these models
work without a lower bound void ratio ed. Instead, an overconsolidation ratio
OCR = pei/ps as by (2.3.2) and (2.3.3) can be plotted vs. ψs for state limits,
Fig. 3.3.1e. Therein OCR is not shown up to ±d because of the inconsistency
near tension cut-offs. As pei is determined by e for isotropic state limits with
D = Dr (Fig. 3.3.1a), and as ps increases with D by argotropy for a given e,
OCR is smaller for higher Dr, this is indicated in Fig. 3.3.1e.

As outlined for psammoids with Fig. 2.3.2 state limits with constant e (i.e.
pei=const) are taken in CSSM as boundaries of elastic ranges. Inside of them
the isotropic hypoelastic relation (2.3.5) may be assumed with much bigger
compression index λ and swelling index κ, and a bigger ratio κ/λ than for
psammoids. In early versions of Cam clay the deviatoric relation (2.3.5b) is
replaced by σ∗ = Gε∗ with a constant modulus G, but this is not justified for
a wide ps-range. In more recent versions (2.3.5) is replaced by a power law,
viz.

ṗs = Kr(ps/pr)mε̇v

σ̇∗
s = Kr(ν/(1 − ν))(ps/pr)mε̇∗

(3.3.1)

with an exponent 0 < m < 1 instead of 1 as by (2.3.5). Therein pr denotes
a reference pressure, Kr a compression modulus for ps = pr and ν a Poisson
ratio. As for a sponge this hypoelastic relation can be extended by another
stress-dependence, but this should imply an elastic potential for being consis-
tent (Niemunis and Cudny 1998).

As by (2.3.6) strain rates can be decomposed into elastic and anelastic
ones, viz.

ε̇i = ε̇e
i + ε̇a

i (3.3.2)

with i = 1 and 2 = 3 for cylindrical RSEs. The elastic part ε̇e
i is related with

the stress rates σ̇si by (2.3.5) or (3.3.1). The anelastic part ε̇a
i arises only for

loading at the boundary of the elastic range, and its direction ε̇a
2/ε̇a

1 or ψa
ε̇

is determined by the stress direction σs2/σs1 or ψs. As shown for psammoids
with Fig. 2.3.2 the directional dependence can be specified by an associated
flow rule (normality), for overcritical stress obliquities (| tan ψs| > | tan ψsc|)
it can instead be expressed by the stress-dilatancy relation (2.2.20). Writing
Pi for the normalized ε̇a

j -direction (i.e. P 2
1 + 2P 2

2 = 1) one can write

ε̇a
i = feH1H2PiD (3.3.3)

with the amount of strain rate D by (2.2.19) and a factor fe > 0, and two
switch functions H1 and H2 as by (3.1.16). H1 = 0 holds inside the elastic
range, and H1 = 1 along its boundary. H2 = 1 holds for stress rates which
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point out of the elastic range (plastification for loading), otherwise H2 = 0
means ε̇a

i = 0 for unloading or neutral loading. The factor fe is determined
from the ė for plastification by (2.2.10) (consistency condition).

Apart from renaming (3.3.1), (3.3.2), and (3.3.3) and (2.2.10) constitute
elastoplastic relations with volumetric hardening and rate-independence as in
Sect. 2.3. As outlined in Sect. 3.1 plastic deformations of solids are actually
viscoplastic due to thermally activated dislocations. Peloids are visco-plastic
as are their solid particles, so their viscosity can be captured with a reference
rate Dr and a viscosity index Iv which do not depend on e and ps (Sect. 3.2).
Rate-independent elastoplastic relations can nevertheless be of use for solids
(Sect. 2.1), a viscoplastic response comes close a plastic one if D/Dr ranges
within few decades so that (D/Dr)Iv deviates only little from 1, but the
relaxation is thus missed (Sect. 3.1). So how far may elastoplastic relations
like Cam clay be used for peloids although these are non-linearly viscous?

Writing (3.3.1) for elastic strain rates and combining with (3.3.2) and
(3.3.3) leads to

(a) ṗs = κr(ps/pr)m [ε̇v − feH1H2PvD]

(b) σ̇∗
s = κr(ps/pr)m [ε̇∗ − feH1H2P

∗D]
(3.3.4)

with the volumetric and deviatoric parts Pv and P ∗ of the strain rate direction,
the switch functions H1 and H2 and the factor fe as explained after (3.3.3).
Equation (3.3.4) satisfies the general requirements (3.2.1), but (3.2.1b) is thus
only fulfilled with rate-independence. Equation (3.3.4) resembles (3.2.3) with
(3.2.4) and A = H1H2, but therein Dr stands instead of D. A formal agree-
ment can be achieved by means of the argotropic reference pressure

pr = prr(D/Dr)Iv (3.3.5)

with pr = prr for D = Dr. Thus pr can replace the solid hardness hs by
(3.2.2b). With an e-equivalent pressure pei instead of pe and with pr instead
of ps the viscosity factor by (3.2.5) is thus fv = (psr/pei)Iv = D/Dr, so
insertion into (3.2.4) and then into (3.2.3) with σ̇si = fi leads to

σ̇si = Mij

[

ε̇ij −
(

prr

pei

)Iv

APjD

]

. (3.3.6)

This agrees with (3.3.4) wherein Mij and A are more specified. The prefactor
Mij is thus barotropic as stated by (3.2.1a), and argotropic via pr by (3.3.5).
A = H1H2 means two switch functions instead of one for A in (3.2.4), the
factor (psr/pei)Iv replaces fe.

The argotropy by (3.2.3), (3.2.4), and (3.2.5) is formally eliminated in
(3.3.6), but this is rather a sleight of hand. The prefactor Mij is argotropic
via pr by (3.3.5), but not strongly as (D/Dr)Iv ranges from ca. 0.9 to 1.2 if
D/Dr ranges from ca. 10−2 to 102 with Iv from 0.02 to 0.05. More debatable
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is the oversimplification of fv by taking pr/pei in (3.2.5) instead of ps/pe. It
was shown in Sect. 3.2 that only in the vicinity of state limits ps ≈ pe may
be assumed for D = Dr, whereas fv ≈ 0 is obtained for pe/ps from ca. 1.5
to 2 and hypoelastic behaviour results also for D  Dr, but relaxation for
D � Dr. One can conclude that the formally rate-independent Cam clay
relation (3.3.4) is at best legitimate if monotonous plastic deformations are
nearly isotachic and un- or reloading occur much faster. Equation (3.3.4) fails
for substantial changes of D (e.g. sudden decrease), creep (where D can change
by several orders of magnitude) and relaxation (D = 0).

A visco-elastoplastic relation (v-elp) on the base of Cam clay was proposed
by Adachi and Oka (1982). With our renaming it can be written for cylindrical
RSEs as

(a) ṗs =
ps/κ

1 + e

[

ε̇v −
(

ps

pe

)1/Iv

feH1H2PvDr

]

(b) σ̇∗
s = (ps/κ(1 + e))(ν/(1 − ν)) · [ε̇∗ − (ps/pe)1/IvfeH1H2P

∗Dr]
(3.3.7)

with a swelling index κ and a Poisson ratio ν as in (2.3.5), and with switch
functions H1 and H2 as in (3.3.4). The plastic strain rate direction (Pv and P ∗)
is normal to the boundary of the elastic range, this is an ellipse for e=const as
in Fig. 3.3.1b. The equivalent pressure pe is determined by e and by the stress
obliquity as indicated in Fig. 3.3.1a, thus it depends also on the choice of Dr.
The factor fe is given by (2.2.10), i.e. by the conservation of solid particle
volume, for on-going plastic deformations.

Equation (3.3.7) with specified factors is no simple algebraic representa-
tion, and the mathematical outline of Adachi and Oka (1982) is more com-
plex. (3.3.7) is a special case of (3.2.3) with Mij by (2.3.5), anelastic strain
rate by (3.2.4) and viscosity factor by (3.2.5b). More insight could be gained
by numerical RSE-tests, particularly with the aid of attractors, if software for
simulations would be freely available, but some features can already be read
from (3.3.7). The following examples follow the outline in Sect. 3.2.

Approaches to argotropic state limits resemble Fig. 3.2.4. The strain paths
(a) with section-wise different D are contractant (A), isochoric (B) or dilatant
(C). The critical friction angle ϕc is bigger for axial extension than for short-
ening, and the tension cut-off prevents extreme obliquities. The ps-decrease
is weaker with the linear e-logps-relation by (2.3.1), and there is a tension
cut-off instead of a lower e-bound ed.

Some features can be read from the shortcut (3.3.7). After the elastic
boundary is reached H1H2 = 1 holds for monotonous continuations. For state
limits ps/pe = (D/Dr)Iv holds, thus the viscosity factor by (3.2.5b) gets
D/Dr so that (3.3.7) gets formally rate-independent as (3.3.6). Then ps in-
creases by proportional compression with constant D via (2.3.1) with pr by
(3.3.5), thus fe is determined. The attained proportional stress path has a
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constant ratio of rates σ̇∗
s/ṗs, its direction ψs determines the anelastic strain

rate direction P ∗/Pv, thus (3.3.7) determines the strain rate ratio ε̇∗/ε̇v as
shown by Fig. 3.3.1d.

Isochoric state limits are stationary for constant D, they have Pv = 0 and
P ∗ = 1. Thus (3.3.7a) is satisfied with ṗs = 0 and ε̇v = 0, and (3.3.7b) with
σ̇∗

s = 0 yields

ε̇∗ =
(

ps

pe

)1/Iv

feDr (3.3.8)

with a constant fe as outlined further above, and an e-dependent pe from
(2.3.3) with ecr and prr by (3.3.5). With ε̇∗ = ε̇1/3, and p = ps

qc = (σ1 − σ3)c = ps
6 sin ϕc

3 − sin ϕc
(3.3.9)

holds for the critical stress deviator qc by (2.2.15) in case of axial shortening.
With ps by (2.3.1) and with (3.3.5) one can substitute (3.3.9) by

qc = prr
6 sin ϕc

3 − sinϕc
exp

(
ecr − e

λ

)
f−Iv

e

(
ε̇1

3Dr

)Iv

. (3.3.10)

Apart from renaming this kind of argotropic strength was proposed by
Leinenkugel (1976), only without the factor f−Iv

e . Renaming constants and
calling qc = 2cu one can write

cu ≈ pecfc(D/Dr)Iv (3.3.11)

instead of (3.3.10) for the undrained cohesion with pec = ps for D = Dr and
a factor fc that depends on ϕc and Iv.

For dilatant state limits with constant pressure D the pressure ps decreases
by an almost proportional decompression. As shown further above for contrac-
tant state limits one can conclude from (3.3.7) that the directions of strain
rate and stress are directly related. This corresponds to Fig. 3.3.1d with a
confined range by tension cut-off.

Isobaric creep by v-elp resembles Fig. 3.2.5, the stress obliquity is sub-
critical (A), critical (B) or overcritical (C), but for each case only one initial
state and strain rate is assumed. Instead of a lower e-bound the stresses for
expansive creep are bounded by a tension cut-off. Such evolutions tend to
argotropic state limits. With a critical stress obliquity, i.e. tanψs = tanψsc

by (2.2.15), the attained strain rate is isochoric with amount D by (3.3.8).
Therein ps is given, but pe for tanψs = tanψsc can change during the tran-
sition if this implies a change of e. The latter occurs if the initial strain rate
is not isochoric, thus the attained amount D is not fully determined by the
initial e. The change of e is reduced if the deformation time does not suffice
for the diffusion of pore water, but then an RSE is no more uniform.
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With a subcritical stress obliquity, i.e. |tanψs| > |tanψsc|, an isobaric creep
by v-elp tends to a succession of contractant state limits. The strain rate ratio
ε̇2/ε̇1 or direction ψε̇ is determined by the stress ratio σs2/σs1 or direction
ψs as was outlined further above. Inserting (2.2.10) and pe by (2.3.3) with
ps = pr by (3.3.5) into (3.3.7a) yields a decreasing void ratio by

ė = − b

1 + e
Drexp

(
e − er

λIv

)
(3.3.12)

with a constant b > 0 and a reference void ratio er for the given tanψs. For
small changes of e the factor 1/(1 + e) is nearly constant, then (3.3.12) is
satisfied by (3.2.6) which is thus confirmed. Both relations are no more justi-
fied if e is lower than the limit void ratio for the given σs1 and σs2 and the
decreasing Dr. This slower densification with time can no more be estimated
algebraically. Equation (3.3.12) and (3.2.6) cannot work for substantial re-
ductions of e and extremely long times. Then a lower bound void ratio ed is
needed, but this does not occur in Adachi and Oka’s (1982) theory.

With an overcritical stress obliquity, |tanψs| > |tanψsc|, isobaric creep
by v-elp tends to dilatant state limits. In their continuation (3.3.12) would
formally hold with b < 0, and (3.2.6) would hold with −t instead of t, but
actually the RSE gets non-uniform by shear localization and by diffusion of
pore water (Sects. 3.5 and 14.1). If e is lower than the limit void ratio for
the given σs1 and σs2 the strain rate can be extremely low at the beginning,
but sooner or later the dilation leads to a substantial acceleration. One can at
best estimate an initial D via state limits as v-elp gets invalid for much lower
than critical void ratios. The time up to a delayed substantial acceleration
can hardly be determined with a uniform RSE.

Evolutions by v-elp with isochoric creep resemble Fig. 3.2.6. Critical states
are attained with argotropic limit void ratios according to the asymptotic
amounts of strain rate. The plot of deviatoric strain vs. time tends to straight
lines with different slopes. The latter could be calculated with (3.3.8), whereas
the initial strain rate depends on the rate of previous deviatoric loading. Other
than in Fig. 3.2.6c, and in reality with hard particles and overcritical void
ratios, the skeleton cannot decay by Adachi and Oka’s (1982) v-hyp.

Relaxations by v-elp resemble Fig. 3.2.7. For lack of lower e- and D- bounds
Adachi and Oka’s (1982) v-elp cannot produce realistic asymptotes for t → ∞.
The initial amount of pressure reduction could be estimated by (3.2.7) with
fv by (3.2.5b). It changes strongly with slight changes of pe/ps, therefore
the initial reduction of pressure and stress obliquity cannot be quantified
by (3.3.7). Evolutions with strain cycles resemble Fig. 3.2.8. With constant
amount of strain rate D = Dr the stress path tends to a flat lense which
touches the two critical state lines, or a flat lense inside the critical lines. Both
stress cycles are attained after the first reversal as the theoretical response is
repeatedly or always hypoelastic. The plot of e vs. log(ps/prr) exhibits a
constant ps after the first reversal.
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The response by v-elp to ratcheting resembles Fig. 3.2.9. Waiting intervals
lead to relaxation, thereafter the same stress cycles are attained again by
strain cycles with constant rate. These attractors are argotropic and touch
one critical line, but v-elp does not produce a cumulative reduction of ps in
the transition to state cycles by imposed ratcheting.

The v-hyp relation by Adachi and Oka (1982) could be modified and ex-
tended. One could change the boundary of an elastic range so that the same
ϕc by (2.2.15) holds for axial shortening and extension, and could install a
vertex at ps = 0 so that a tension cut-off is not needed. One could replace
(2.3.1) for limit void ratios by Butterfield’s (1979) relation

ln
(

1 + er

1 + e

)
= λln(ps/pr) (3.3.13)

with another compression index λ and a reference void ratio er for ps = pr

which depends on tanψs as indicated in Fig. 3.3.1a. Equation (3.3.13) works
for a wider ps-range than (2.3.1), but fails likewise for ps → 0 and ps → ∞.
A lower bound void ratio ed could be introduced and related with σs2 → 0
or σs1 → 0. The reference pressure pr could be replaced by an objective solid
hardness hs, this could be argotropic by (3.2.2)a or b. The plastic flow rule in
the dilatant regime need not be associated, a stress-dilatancy relation could
be employed. The hypoelastic relation (3.3.1) with power law can be taken
instead of (2.3.5). Extensions beyond cylindrical symmetry will be treated in
following sections.

To sum up, visco-elastoplastic relations can capture features of simple
peloids as proposed in Sect. 3.2, and rate-independent Cam clay models may
serve to the purpose if the amount of strain rate D does not change by many
decades. The hypoelastic response by Cam clay for un- and reloading is jus-
tified for D/Dr > 102 if the elastic range is referred to D = Dr. Argotropy,
creep and relaxation as proposed in Sect. 3.2 are produced by Adachi and
Oka’s (1982) v-elp. This does not yield a gradual ps-reduction and asymp-
totic state cycles as proposed in Sect. 3.2 for strain cycles and ratcheting.

3.4 Visco-hypoplasticity with cylindrical symmetry

Various attempts were made to extend hypoplastic relations for the viscosity
of the solid particle skeleton. Kolymbas (1978) proposed a rate-type relation
with the acceleration of strains which can be written

σsi = fs

[
Lij ε̇j − NiD − c1ε̈i√

c2 + D2

]
(3.4.1)

with i, j = 1 and 2 = 3. c1 and c2 are constants, the factors fs, Lij and Ni

depend on σs1 and σs2 similarly as in (2.4.3). He could thus reproduce the
response to isochoric jumps of strain rate as observed by Leinenkugel (1976),
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and the contractant creep as approximated by (3.2.6). Except for contractant
creep (Klobe 1992) this model was not further employed as the additional
parameters for the term with ε̈i could not easily be identified, and as the
second derivative ε̈i causes numerical problems and requires further initial
conditions which are hardly available.

After substantial improvements of the scalar factors fs and fd and the
tensorial factors Lij and Ni in (2.4.3) (outlined in Sect. 2.4) further attempts
were made in the nineties to incorporate viscosity into hypoplastic relations.
Wu et al. (1993) proposed

σ̇si/fi = Lij ε̇ij + Ni[D/ log(1 + a/D/Dr)b + c exp(−dl)e] (3.4.2)

with material parameters a, b, c, d, e and strain path length l. Other than in
(3.4.1) this relation works without the rate of strain rate ε̈i, nevertheless it
reproduces argotropy, creep and relaxation. Equation (3.4.2) was given up
as barotropy and pyknotropy could not be properly built in. After the latter
was achieved without argotropy by Wu and Bauer (1993) and Gudehus (1996)
proposed an argotropic solid hardness hs by (3.2.2) in the hypoplastic relations
(2.4.3). Argotropy and creep can thus be captured, but no relaxation as (2.4.3)
yields σ̇si = 0 for ε̇i = 0 with any fs.

Niemunis (1992, 2003) achieved a breakthrough by proposing an equation
of the type (3.2.3). His visco-hypoplastic relation (v-hyp) can be written

σ̇si =
ps(1 + e)

κ
Lij

[

ε̇j −
(

ps

pe

)1/Iv

L−1
ij NjDr

]

(3.4.3)

with i, j = 1 and 2 = 3 for cylindrical symmetry and summation in j. The
dimensionless factors Lij and Nj are the same as for psammoids in (2.4.3)
without argotropy, they depend only on the stress direction ψs and the crit-
ical friction angle ϕc. Other than in hyp the barotropy factor ps(1 + e)/κ is
proportional to ps as by (3.3.7), this was taken over from Cam clay. Without
the viscoplastic or anelastic strain rate

ε̇a
i =

(
pe

ps

)−1/Iv

L−1
ij NjDr (3.4.4)

Equation (3.4.3) would be hypoelastic and should have an elastic potential as
outlined by Niemunis and Cudny (1998).

Equation (3.4.4) agrees with (3.2.4) for A = 1 and the viscosity factor fv

by (3.2.5a) if the direction Pi of the anelastic strain rate is taken as

Pi = L−1
ij Nj/fe . (3.4.5)

It may suffice to state that the factors therein have the order of magnitude 1
so that Pi is almost a unit vector (P 2

1 + 2P 2
2 ≈ 1). Thus (3.4.5) means that

the direction of the anelastic strain rate is determined by the one of stress,
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which could be expressed by a relation of ψε̇a with ψs. The intensity Da of
the anelastic strain rate is determined by the viscosity factor fv via

Da = fvDr =
(

pe

ps

)1/Iv

Dr . (3.4.6)

As shown with Fig. 3.4.1a Niemunis (1996, 2003) combines Butterfield’s (1979)
relation (3.3.13) for limit void ratios with the influence of stress obliquity from
a version of Cam clay to determine an equivalent pressure pe. He writes

fv = OCR−1/Iv =
(

pei

ps
+

)1/Iv

(3.4.7)

with an overconsolidation ratio OCR = pei/p+
s and a modified pressure p+

s =
psfc. The factor fc depends on the stress direction ψs in such a manner that
ps is smaller with increasing obliquity | tan ψs| as for isochoric deformations
after isotropic first consolidation by Cam clay. This reduction is calculated
by means of an elliptic state boundary line (Fig. 3.4.1b) and quantified by a
material constant β.

In this book the symbol OCR in Niemunis’ v-hyp is replaced by pe/ps for
getting fv, thus pe/ps is written instead of pei/p+

s . The notion overconsoli-
dation ratio is often used for special stress obliquities, in particular isotropic
(ε1 = ε2) or oedometric (ε2 = 0), and the argotropy is usually ignored. Our
consolidation ratio pe/ps compares an obliquity-dependent equivalent pressure
pe with the actual mean pressure ps. As proposed with Fig. 3.2.1 pe depends
on the actual e and ψs for D = Dr. This definition of pe/ps implies the ones
by Adachi and Oka (1982) and by Niemunis (1996, 2003), it can be taken
over to other viscoplastic relations and extended to arbitrary deformations.
It is of use for judging the viscoplastic behaviour of arbitrary RSEs and is of
importance for boundary value problems.

Niemunis’ v-hyp can be represented by argotropic response polars as shown
in Fig. 3.2.3. Stretching rates with different directions ψε̇ are normalized by

σ1–σ2

ps

i

c

log(ps/pr)

log(1+e)

b)a)

D=Dr

fc pei

c

pei

Fig. 3.4.1. Modified Cam clay elements used in Niemunis’ (1996, 2003) visco-
hypoplastic relation: (a) limit void ratios by Butterfield (1979), (b) state boundary
line and equivalent pressures
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log(D/Dr) to capture several decades of amount D (a). The polars by (3.4.3)
are ellipses which are determined by the state variables σs1, σs2 and e (or
substitutes of them, e.g. ps, ψs and pe) and by D. Labels for ψε̇ can show
the influence of strain rate direction. For ps/pe = (D/Dr)−Iv , and thus fv =
D/Dr by (3.2.5b), (3.4.3) goes over into the hypoplastic relation (2.4.3) with
n = 0 and fd = 1. The polars are increasingly eccentric with bigger stress
obliquity |tanψs|, and their size is proportional to the mean pressure ps (b).
Other than with hyp by (2.4.3) there is no lower bound void ratio ed and no
extreme obliquity |tanψs| with v-hyp by (3.4.3). The latter gets invalid for too
high consolidation ratios, roughly pe/ps > 3, as it would then lead to tensile
skeleton stresses.

Very low or high mean pressures are also not captured by (3.4.3) as then
the employed relation (3.3.13) by Butterfield (1979) fails. The hypoelastic re-
sponse for negligible anelastic strain rates, i.e. Da � D, is represented by
centred ellipses, Fig. 3.2.3c. Again their shape depends on ψs, and their size
is proportional to ps. They cannot occur with extreme stress obliquities as ex-
plained further above. As was outlined more generally with Fig. 3.2.3c, (3.4.3)
yields a hypoelastic response for D � Dr and/or fvD/Dr. If the anelastic
fraction of strain rate dominates, i.e. for Da  Dr, the response polars are
so slender and eccentric ellipses that they can be replaced by straight line
sections, Fig. 3.2.3d. Such degenerated polars characterize the onset of relax-
ation. They indicate a reduction of ps and |tanψs|, their amount gets negligible
if pe/pr exceeds about 2.

The response polars in Fig. 3.2.3 are meant for a conveniently chosen
reference rate Dr. As far as the power laws (3.2.2b) and (3.2.5a) are empirically
validated one may change the arbitrary time scale D−1

r , this causes a change
of the viscosity index Iv. The unit-invariance needed for objectivity (Sect. 1.2)
can be achieved by a relation of Dr with Iv (Leinenkugel 1976). It was shown
in Sect. 3.1 for solids how this could be done with an objective oscillation
frequency of thermally activated nano-sized dislocation units. It suffices for
applications to choose Dr conveniently and to determine the related Iv by
experiments, oscillation frequencies are at best needed to estimate activation
energies (Sect. 3.5) and to modify v-hyp for seismic activations (Sect. 4.6).

Argotropic state limits for v-hyp by (3.4.3) are represented in Fig. 3.4.2
(cf. Figs. 3.2.1 and 3.3.1). The relation of strain rate and stress directions
(a) is rate-independent, extreme obliquities are excluded as explained further
above. As shown in Sect. 3.3 for v-elp this rate-independence is achieved by
the dependence of Lij and Ni on ψs with ps/pe = (D/Dr)Iv for state limits.
The limit void ratios by (3.3.13) are argotropic and coincide for different D
by straight lines (b) in a plot of log(1 + e) vs. log(ps/pr) with an argotropic
reference pressure pr by (3.2.2b). Their dependence on the stress direction
ψs (or obliquity) can be represented by a plot of reference void ratios er in
(3.3.13) vs. ψs (c). er holds for D = Dr and is not given for extreme ψs as
there is no lower bound ed in (3.4.3). The argotropic state limits by (3.4.3)
can be expressed aswell with other Dr and Iv in an empirically allowed range.
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Fig. 3.4.2. State limits by v-hyp: (a) directions of strain rate and stress, (b) void
ratios vs. normalized pressure, (c) reference void ratios vs. stress direction

Approaches to state limits by (3.4.3) can be represented like in Fig. 3.2.4.
Extreme pressures and obliquities have to be avoided. With constant intensity
D and direction ψε̇ of strain rate ps/pe tends to (D/Dr)Iv , thus fv tends to
D/Dr and (3.4.3) gets apparently rate-independent. The stress paths are then
steered towards radial increase, standstill or radial decrease by the response
polars with contractant, isochoric or dilatant deformations, respectively. If D
is suddenly changed to a much higher or lower value and then maintained
there is first a hypoelastic response or a relaxation, respectively, then the
state limit for the new D is attained. Argotropic state limits are thus driven
attractors as postulated for simple peloids in Sect. 3.2.

Isobaric creep is produced by (3.4.3) as shown in Fig. 3.2.5. The range is
not only confined by shear localization and diffusion of pore water, but also as
low void ratios and high stress obliquities are not covered by (3.4.3). As shown
for v-elp in Sect. 3.3 creep leads to a succession of state limits with decreasing
or increasing D for sub- and overcritical stress obliquities, respectively. The
approximate asymptote (3.2.6) can again be derived via (3.3.12), it can for-
mally also be applied for dilatant creep with −λ and −t instead of λ and t.
Isochoric creep leads to critical states with stationary D after a reduction of
ps. This occurs with any initial state and constant stress deviator, but other
than shown as case C in Fig. 3.2.6 a peloid by (3.4.3) cannot collapse.

Relaxations by v-hyp proceed as shown by Fig. 3.2.7. The reduction of
ps and |tanψs| can be derived from (3.4.3) with ε̇i = 0. As described by
(3.2.7) the rate of pressure reduction ṗs/psDr is proportional to fv, and thus
negligible for pe/ps > ca. 2. The range of possible ψs is not known for lack of
a lower e-bound. As shown for v-elp contractant creep and relaxation would
not come to an end by (3.4.3). A peloid RSE should tend to a thermodynamic
equilibrium, but the transition times are usually extremely long so that this
lack of (3.4.3) will hardly matter.

Bigger differences by v-hyp and v-elp arise with strain cycles, this is shown
qualitatively in Fig. 3.4.3. Like in Fig. 3.2.8 a small volumetric fraction is
assumed for the strain paths (a), and the amplitude is big (A) or small (B)
so that state limits are touched repeatedly or not. The stress paths exhibit a
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Fig. 3.4.3. Response to strain cycles (a) by v-hyp: asymptotic cycles of stress
(b) and void ratio vs. normalized pressure (c)

gradual reduction of the average pressure p̄s in the transition and an asym-
ptotic butterfly for A, and an almost hypoelastic response for B (b). The log–
log plot of void ratio vs. pressure (c) shows that the consolidation ratio pe/ps

approaches repeatedly the state limit value (D/Dr)−Iv for A, but remains
above ca. 1.5 for B. As proposed in Fig. 3.2.8 the asymptotic state cycle for
A is rather hypoplastic, whereas it is rather hypoelastic for B. Other than
with v-elp, however, the minute anelastic fractions by (3.4.3) lead to a slow
gradual reduction of average pressure and stress obliquity for case B. After
a great many cycles with moderate amplitude a butterfly attractor can thus
be attained which touches twice the critical lines. As in Fig. 3.2.8 waiting
intervals would cause relaxation and lead to the same asymptotic state cycles
thereafter, whereas faster or slower strain cycles with the same average e would
lead to similar state cycles with higher or lower average ps.

Differences of v-elp and v-hyp arise also for ratcheting. This is shown qual-
itatively in Fig. 3.4.4 with big (A) and moderate amplitude (B) of the cyclic
strain fraction and a small volumetric average-free fraction (a). After a grad-
ual reduction of the average pressure p̄s the stress paths tend to lenticular
asymptotic cycles with higher ps where these touch one critical line (b). Wait-
ing intervals would cause relaxation, but no change of the attractor thereafter.
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Fig. 3.4.4. Response to ratcheting (a) by v-hyp: asymptotic cycles of stress (b)
and void ratio vs. normalized pressure (c)
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The repeated approach of an argotropic state limit is also visible in the plot
of void ratio vs. pressure (c). With a higher or lower constant D the average
pressure p̄s of the attractor is higher or lower by factor (D/Dr)Iv .

Software for numerical element tests with Niemunis’ (1992, 2003) v-hyp
is freely available (www Andrzej Niemunis). One can explore with it the ap-
proach to attractors more in detail. Conventional tests can thus be simulated,
the results resemble Fig. 3.2.10. Nearly the same as by v-elp is obtained for
compression, de- and recompression with ε2 = ε3 = 0. Axial shortening and
lengthening leads to curves as in Fig. 3.2.10d, but |σ1 − σ2| gets bigger for
ε1 > 0 than for ε1 < 0 with a given e as Lij and Ni in (3.4.3) imply a sin-
gle ϕc by (2.2.15). There is no peak prior to critical states as for case C in
Fig. 3.2.10d, thus peloids by (3.4.3) are ductile for e =const. With drainage
and ps =const or σs2 =const dilation leads to peaks as in Fig. 3.2.10g. The
range of consolidation ratios pe/ps is restricted as outlined further above, and
again the description of peak states by c′ and ϕ′ is dubious.

A modified visco-hypoplastic relation (mv-hyp) was proposed by Gudehus
(2004b). It can be written

σ̇si = fs(Lij ε̇j − fdfvNiDr) (3.4.8)

with i, j = 1 and 2 = 3 for cylindrical RSEs. Lij and Ni are the same as for
hyp by (2.4.3), they depend on the stress direction ψs and the critical friction
angle ϕc. The stiffness factor fs is given by (2.4.5) as for hyp, but now with
the argotropic hardness hs by (3.2.2a). This holds for the range

exp
(

αr − 1
Iv

)
≤ D/Dr < exp

(
1 − αr

Iv

)
(3.4.9)

with a relaxation factor αr in the range 0 < αr ≤ 1/2. For D/Dr below this
range hs is taken as for the lower bound, for D/Dr beyond the upper bound
heating would reduce hs as by (3.1.8) for solids. The limit void ratios are
approximated by Bauer’s (1996) formula (2.4.1) with hs by (3.2.2a). With
them the relative void ratio re is given by (2.2.18) for the instantaneous D,
and the density factor fd by (2.4.4). The viscosity factor in (3.4.8) is

fv = exp ((ps/pe)/Iv)) for ps/pe ≥ αr

fs = 0 for ps/pe < αr

(3.4.10)

with a ψs-dependent e-equivalent pressure pe for D = Dr as indicated in
Fig. 3.2.1b. The dependence of pe on tanψs is expressed by an interpolation
formula so that a lower bound ed with extreme tan ψs is implied.

Whereas (3.4.3) contains elements of Cam clay (3.4.8) is purely hypoplas-
tic. The ps-range is not restricted as for (2.3.1) and (3.3.13), but extremely
low ps have to be exempted because of net pressures (Sect. 7.1), and with
big ps clay particles are no more permanent. The turning point by (2.4.1) is
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in the usual ps-range with low hs, therefore (2.3.1) or (3.3.13) may be used
in its vicinity with an objective pr = hsr/3. Limit void ratios can exceed the
asymptote eo by (2.4.1) for a given ψs, thus isochoric deformations can lead
to skeleton decay.

The exponential relation (3.2.2a) for hs works for a wider range of D/Dr

than the power law (3.2.2b), it corresponds to (3.1.7) for solids. Bounds as by
(3.4.9) correspond to (3.1.8). Within them the viscosity index Iv depends on
the chosen reference rate Dr, but as before this lack of objectivity does not
matter if Iv is properly determined. The viscosity factor fv by (3.4.10) yields
fv = D/Dr for ps/pe = hs/hr by (3.2.2a), as for (3.2.3b) and (3.4.3) this is
needed to get argotropic state limits. The lower bound fv = 0 for very low
D/Dr produces asymptotes of contractant creep and relaxation for t → ∞.
Extremely dilatant state limits with the lower bound void ratio e = ed can
be closer approached than by (3.4.3), but not attained. Due to the factor fe

lower void ratios than ed cannot be attained with a given pressure ps (by
contractant creep) or average pressure p̄s (by deviatoric cycles). As with hyp,
however, a strong decompression could lead to e < ed, then (3.4.8) fails or has
to be modified (Niemunis 2003).

In the range ca. 10−2 ≤ D/Dr < ca. 102 and |tanψs| < ca. 1.2|tanψc| the
differences of v-hyp and the modified version mv-hyp are unimportant. mv-
hyp comes into play for a wider range, particularly for contractant creep or
relaxation over long times and with extreme stress obliquities. As this wider
range was not yet explored by RSE-experiments and boundary value problems
applications of mv-hyp are not given in this book. mv-hyp could be of interest
for very slow deformations in the earth crust, and for very fast ones which
can lead to cracking by cavitation of pore water (Sect. 6.3).

To sum up, visco-hypoplastic relations can capture simple peloids as intro-
duced in Sect. 3.2 for a range of states and amounts of strain rates D which
can be widened. The relation by Niemunis (1992, 2003) contains elements of
v-elp, but shapes of response polars and directional relations of strain rate
and stress are rather hypoplastic. Argotropic state limits, creep and relax-
ation resemble those by v-elp, but asymptotic state cycles due to strain cycles
and ratcheting come closer to those proposed in Sect. 3.2. The modified re-
lation by Gudehus (2004b) works for a wider range of strain rates, pressures
and stress obliquities, and it implies a lower bound of void ratios. With it
consolidation ratios are less restricted. The viscosity index Iv holds only for a
chosen reference strain rate Dr.

3.5 Validation near and at state limits with cylindrical
symmetry

As for psammoids the range of validity can be explored with oedometric,
triaxial and cuboidal tests, but the prerequisites listed in Sect. 2.5 have to be
modified with respect to the properties of simple peloids outlined in Sect. 3.2.
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Water-saturated homogeneous samples with fine mineral particles and without
net attraction, repulsion or condensation bridges should be deformed without
loss of homogeneity. This excludes macropores (Sect. 7.1) and gas pockets
(Sect. 6.3). With the low permeability uniform pore pressures pw can best
be achieved without drainage, or with so slow volume changes that gradients
of pw are negligible. The argotropy has to be allowed for, it can only be
suppressed by choosing hard particles and/or by keeping the strain rate D
within a few decades. The desired permanence of collective particle properties,
which cannot strictly be given, can principally be checked by repeating tests
with the same samples.

Void ratio and skeleton stress components should suffice to characterize
the state of RSE skeletons, at least after sufficient monotonous deformations.
As the state limits are argotropic the rate-dependence of limit void ratios
has to be allowed for. Critical states will first be treated as there are no
drainage problems with them. Compressions will then be considered in the
range of negligible pw-gradients. Peak states which lead to shear localization
with sudden local changes of D and pw are treated with due caution. As with
psammoids uniform peak states can at best be nearly achieved with suitable
boundary conditions.

Only few test reports are therefore apt for validation, and some famous
ones cannot yield more than a qualitative support. Rendulic (1937) observed
creep and shear band patterns, and discovered changes of pore water density
with kaolin samples in triaxial tests (Sect. 14.1). Plotting void ratios as con-
tours in a plane σs1 vs.

√
2σs2, he found that e was rather path-independent

and neutral with respect to pw. These findings were confirmed by Henkel
(1960). They do not strictly prove the principle of effective stress, however, as
e is determined by σs1 and σs2 only for state limits with a given D. Roscoe
et al. (1958) likewise left aside the argotropy in their Cam clay concept. They
worked with p′, the deviator q = σ′

1 − σ′
2 and the specific volume v = 1 + e

instead of σ′
1, σ′

2 and e.
The majority of test reports is written with p′, q′ and v, amounts of stress

and strain rates are rarely indicated. The rather subjective notion failure is
often employed instead of critical or peak state limits, losses of homogeneity
were rarely documented. The inevitability of diffuse bifurcation in triaxial
tests (Sect. 14.1) and of shear localization even in cuboidal tests (Sect. 8.3) is
often ignored. Several reports confirm the concept of argotropic state limits
proposed in Sect. 3.2, and some also the thermal activation as outlined in
Sect. 2.1. A more quantitative validation can be obtained with numerical
simulations; these are presented only with v-hyp as software for v-elp is not
freely available.

Henkel (1959) carried out triaxial tests with moderately plastic clays. For
contractant, isochoric and dilatant deformations he proposed and demon-
strated path-independent relations of the instantaneous state variables σ′

1,
σ′

2 and e. His plot of limit water contents (e = wγs/γw) vs. p′, Fig. 3.5.1, sup-
ports (2.3.1) and shows ei > ec. Very low or high p′ were not investigated, so
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Fig. 3.5.1. Water contents vs. log pressure for isotropic first compression (upper
line) and subsequent critical states (lower line), from triaxial tests with a clay by
Henkel (1959)

the failure of (2.3.1) for p′ → 0 and p′ → ∞ did not appear. Amounts of strain
rates D were not reported, they were certainly decreasing during compression
and far bigger during undrained shortening. An allowance for argotropy as by
Fig. 3.2.1b would change Fig. 3.5.1.

Henkel (1959) found that the critical friction angle ϕc does not depend on
ps and is the same without and with drainage. His results suggest a lower ϕc

for axial extension than for shortening, whereas Schofield and Wroth (1968)
propose the opposite. Shear localization does not occur without decompression
after consolidation as then the sample tends to contract, this was called ‘wet
side’ by Roscoe et al. (1958). Bulging and necking cannot be avoided even with
short samples and hard smooth end plates and soft membranes (Sect. 14.1).
Uniform critical states can at best be produced in cuboidal devices as by
Fig. 2.7.7b. With the first apparatus of this kind Pearce (1972) observed the
same ϕc for axial extension and shortening with kaolin (more in Sect. 3.7).

The argotropy of state limits was first observed by Bjerrum (1973), and
more in detail by Leinenkugel (1976). It is revealed with monotonous isochoric
deformations after first compression (normal consolidation) with step-wise
different rates D, as shown e.g. in Fig. 3.5.2. With every increase or decrease
of D there is an increase or decrease of stress deviator (a) and mean skeleton
pressure (b). After a transition critical stress ratios by (2.2.15) are again
reached. The stress deviator increases linearly with log D. With a lower e,
i.e. a higher e-equivalent pressure pe, the ps in a critical state increases in
proportion to pe. This was expressed by Leinenkugel (1976) as
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Fig. 3.5.2. Deviatoric stress-strain curve (a) and effective stress path (b) from an
undrained triaxial test with normally consolidated clay and different strain rates
(Oka et al. 2003)
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qc = pe tan ϕc [1 + Iv ln(ε̇/ε̇r)]

≈ pe tan ϕc(ε̇/ε̇r)Iv

(3.5.1)

for the stress deviator qc at stationary shearing, with viscosity index Iv and
reference strain rate ε̇r. Such argotropic critical states were introduced in
Sect. 3.2 and are reproduced by visco-elastoplastic and -hypoplastic relations,
Sects. 3.3 and 3.4. Plots like Fig. 3.5.2 were reproduced with v-hyp by Niemu-
nis (2003), this could similarly be achieved with v-elp. The differences of v-elp
and v-hyp for extremely low or high ps and D cannot be judged by means of
usual tests.

Undrained creep up to a critical state cannot easily be attained in triaxial
tests as the deviatoric stress σ1 − σ2 should be kept constant with on-going
deformations. Otherwise and with a conventional interpretation test results
can be misleading. Campanella and Vaid (1974) determined creep curves with
undrained cylindrical clay samples after consolidation with a manual step-wise
increase of the axial force. Samples cut in situ got first ductile by compression,
the axial force was then increased in a short time without drainage and kept
constant for a while. Thus σ1 − σ2 decreased as the sample radius increased,
so the creep slowed down (coventionally called primary creep). Then the axial
force was increased to regain a desired σ1−σ2, and the creep rate ε̇ got nearly
constant (‘secondary’). After a stronger increase of the axial force ε̇1 grew
substantially (‘tertiary’) up to a loss of control. This occurred after a longer
time and a smaller deformation if the average σ1 − σ2 was smaller.

Tests of this kind could be simulated with v-hyp. An initial state is pro-
duced by isotropic consolidation, then σ1−σ2 is increased by a rapid isochoric
deformation. As long as the axial force is fixed, i.e. for (σ1−σ2)(1−ε22)=const,
ε̇1 decreases with increasing ε1. Thereafter σ1−σ2 is further increased so that
ε̇1 increases up to an apparent divergence. This occurs earlier with more defor-
mation after the same previous consolidation if σ1−σ2 attains higher amounts
without drainage. This shows that Campanella and Vaid’s (1974) results are
subjective: their (often employed) creep phases depend on a rather arbitrary
axial force control. With a given σ1 − σ2 = const> 0 the creep rate would
tend to

ε̇1 − ε̇2 = a[(σ1 − σ2)/pei]
1/Iv (3.5.2)

with the e-equivalent pressure pei after isotropic consolidation, and a ϕc-
dependent constant a by (3.3.8) and (3.3.9) or (3.4.3). Such an argotropic
state limit could be achieved by a servo-control with lubricated endplates and
so squat samples that bulging is prevented (Sect. 14.1).

The thermal activation of undrained creep was investigated by Mitchell
et al. (1968) with a saturated soft clay in a triaxial setup, Fig. 3.5.3. Creep
was observed for different temperatures T with a constant stress deviator (a).
After a transition a higher stationary creep rate ε̇ was obtained for a higher
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Fig. 3.5.3. Results of undrained creep tests by Mitchell et al. (1968) with a soft
clay and different temperatures T : (a) shortening vs. time, (b) log ε̇/T vs. log(1/T )
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T . A plot of log(ε̇/T ) vs. 1/T yields a straight line (b). The strain rate by
thermal activation can be written as

ε̇ = mfc
kBT

Ea
exp

(
csσ

∗
s − Ea

kBT

)
(3.5.3)

on the base of (3.1.5) or (3.1.9). The drift energy ΔF in (3.1.5) is proportional
to the deviator σ∗

s > 0 with a suitable constant cs. This is justified as both
ΔF and σ∗

s are proportional to the work dissipated for stationary creep by a
fictitious amount ε∗ = 1. As in (3.1.9) the skeleton strain rate ε̇ is proportional
to the average dislocation frequency of the solid particles with a suitable
constant m. This assumption is reasonable as the deformed skeleton acts like
a kinematic chain. Equation (3.5.3) can be substituted by

∂ ln(ε̇/T )
∂(1/T )

=
csσ

∗
s − Ea

kB
, (3.5.4)

this is confirmed by Fig. 3.5.3b. Mitchell et al. (1968) worked with energies
per mole, then the Boltzmann constant kB has to be replaced by the universal
gas constant R. They could not specify a mole of ‘flow units’, but supplied an
argument for thermal activation. The obtained activation energies, in calories
per mole, are typical of ceramic substances, so creep is seated in the skeleton
of solid particles. The bound pore water has far lower activation energies than
the solid (Sect. 6.3), and its thermal expansion does not matter in undrained
tests with soft samples.

Using the stress condition (2.2.15) for critical states, Mitchell et al. (1968)
argue that the numer of ‘flow units’ is proportional to the mean skeleton
pressure ps, and try to estimate this number. A similar argument was proposed
by Terzaghi (1925) to justify Coulomb’s law of friction: the solid contact
surface is As = N ′/c with cohesion c (Sect. 2.1) and normal force minus water
pressure N ′, the shear force is proportional to As and thus to N ′. Prandtl
(1928) proposed the same argument and pointed out that the rate-dependence
of c by (3.1.1) does not influence the friction coefficient. For solid contact
friction this idea is usually attributed to Bowden and Tabor (1954). In his book
on sliding friction Persson (1998) shows why Coulomb’s law holds although
there is rapid stick-slip with thermal oscillation. The rate-independence of ϕc

was often observed, e.g. Fig. 3.5.2b.
Combining (3.5.3) with (3.1.9) the activation energy per dislocation unit

can be estimated (Gudehus 2004b) as

Ea ≈ (kBT/Iv)(1 + 12Iv) (3.5.5)

for the range 0.02 ≤ Iv < 0.07. Equation (3.5.5) is based on Persson’s relation
(3.1.7) and implies an estimate of m in (3.5.3). With kBT ≈ 0.025 eV (electron
Volt) for T = 298 K dislocation energies from about 1 to 3 eV are obtained
with (3.5.5). This seems to be realistic for broken mineral particles (steel has
ca. 5 eV).
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Proportional compressions up to argotropic state limits were more often
investigated with ε2 = 0 (oedometric) than with ε1 = ε2 (isotropic). Isotropic
first compressions were carried out with remoulded clay under stress con-
trol in triaxial devices, but strain rates were rarely reported. As explained
with Figs. 3.5.1 and 3.2.10 the e vs. log ps lines with equal D (isotachs as by
Fig. 3.2.1b) have another shape than those with equal stress rate. Big devia-
tions arise with overconsolidation as then the creep can be so slow that state
limits are not reached. Strain rate control would be better, but it should be
slow enough to get drainage with negligible gradients of ps.

A wealth of oedometer test reports is available with stress control, few
were made with strain rate control and very few with temperature control. A
first compression was defined by Terzaghi (1925) as the range where (2.3.1)
holds, he ignored argotropy as later Roscoe et al. (1958) did with Cam clay.
Buisman (1941) discovered a simpler precursor of (3.2.6). With Cα instead of
λIv (3.2.6) is widely used for oedometric creep, which is often called secondary
consolidation. Mesri (1973) discovered that Cα/λ is a constant, Leinenkugel
(1976) derived Cα = λIv with Iv from isochoric deformations with D-jumps.
Suklje (1969) introduced oedometric isotachs and derived (3.2.6). He pointed
out that e vs. log ps lines for compressive creep of equal duration (isochrones)
are equivalent to isotachs. This can be seen with

ė = −λIvDr/(1 + tDr) (3.5.6)

from (3.2.6), thus the same t means the same ė.
Figure 3.5.4a shows isotachs of e vs. log σs1 determinated from stress-

controlled oedometer test results with a remoulded organic clay by Den Haan
and Kamao (2003). Strain rates are indicated by exponents of D/Dr. Using
further parameters from this report Grandas-Tavera (2010) made a simula-
tion with v-hyp (b). The argotropy is visibly reproduced, this confirms the
normalization in Fig. 3.2.1d with hs by (3.2.2). In the σs1-range from ca. 30
to 900 kPa the σs-dependence is likewise modelled by the relations (2.3.1),
(3.3.13), or (2.4.1) with D-dependent pr or hs, respectively.

Similar isotachs or isochrones of e vs. log σs1 have often been observed with
natural clays. Such reports cannot be used for validation, however, as the state
of natural samples is not sufficiently characterized by e and σsi in general. The
vicinity of ps = 0 cannot properly be explored as an exact compensation of
attractive and repulsive interparticle forces cannot be achieved (Sect. 6.3).
Sedimentation experiments by Been and Sills (1981) indicate a power law for
low ps as by (2.4.2).

Compression tests with different temperatures exhibit lower void ratios
for higher T (e.g. Yashima et al. 1998). Oedometer tests with temperature
jumps imposed to a diatomaceous mud by Krieg (2000) indicate a marked
T -dependence, Fig. 3.5.5a. This would be far weaker with (3.1.6) for Iv and
Dr by (3.3.7) or (3.4.3). Compressive creep (b) shows a substantial drop of
e after a T -increase. Other than with undrained tests (Fig. 3.5.3) the creep
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Fig. 3.5.4. Isotachs of shortening vs. pressure for compression with ε2 = ε3 = 0:
(a) observed with organic clay by Den Haan and Kamao (2003), (b) simulated with
v-hyp by Grandas-Tavera (2010)

rate some time after a T -increase is nearly the same, which confirms (3.3.8)
with (3.1.4). Following Towhata et al. (1993) one can conclude that the solid
particles are less T -dependent than the pore water. The latter is denser and
less mobile in diffuse interfaces (Sect. 6.1), it dilates and gets less viscous by
heating. Its osmotic repulsion and mobility grow by a T -increase.

Fig. 3.5.5. Densification of a mud observed in triaxial tests with different temper-
atures by Krieg (2000): (a) void ratio vs. pressure, (b) axial shortening vs. time
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Reports on peak states of clays with determination of strength parameters
are abundant, but they are rarely apt for validations. Even with smooth,
hard and guided endplates cylindrical samples get non-uniform at peak due
to diffuse and localized bifurcation (Sect. 14.1). The required dilation is often
impeded by the low permeability, localized pw-changes cannot be observed
at the sample boundary. The argotropy of peaks was rarely investigated, let
alone the influence of temperature and bound pore water.

Shimizu (1982) investigated differently overconsolidated remoulded silty
clay samples in drained triaxial tests. The behaviour for isotropic compression
and decompression was like in Fig. 3.5.1, the decompression was faster, the
argotropy can only be guessed for lack of D-data. With open drainage and
constant mean pressure ps the deviator σs1–σs2 was increased rapidly and
kept constant afterwards. This led to a more or less delayed creep rupture if
the stress ratio

η = (σs1 − σs2)/ps (3.5.7)

exceeded about 1.4. v-elp and v-hyp predict contractant and thus stabilizing
creep if η is below the critical value

ηc = 6sinϕc/(3 − sinϕc) (3.5.8)

as by (2.2.15) for axial shortening, and dilatant accelerated creep for η > ηc.
With the reported ϕc ≈ 26◦ and ηc ≈ 1.4 this is confirmed by Shimizu’s tests.
The strain rate ratios were found to depend on the stress ratios by Rowe’s
(1962) stress-dilatancy relation (2.2.20). This suits to the relation of ψε̇ with
ψs by Fig. 3.2.1a, which is thus confirmed. The samples were mainly dilated
in a dominating shear band. This localization does not change the strain rate
ratio ε̇2/ε̇1 when calculating it from boundary displacements.

Water contents determined in the shear zone after the test are plotted in
Fig. 3.5.6a, they scatter spatially. These values suit to the dependence of limit
void ratios on ps and stress ratio by Fig. 3.2.1d. They were used by Shimizu
(1982) to calculate an equivalent pressure pe as for Cam clay (Sect. 3.3).
State paths in the plane (σs1 − σs2)/pe vs. ps/pe can be seen in Fig. 3.5.6b.
Except for OCR = pe/ps = 1 at the onset, where an immediate contraction
increases pe, the paths start vertically. With the given ps = const this means
an isochoric initial response. Later there is dilation, visible from a decrease of
pe, for OCR > 2 initially. A critical stress ratio is reached for OCR ≤ 2, and
also a critical void ratio as shown in Fig. 3.5.5a. For OCR > 2 the plotted
paths tend towards critical states. Strain rates or creep times are missing in
Fig. 3.5.6 and cannot be reconstructed from Shimizu’s paper.

Simulations of these tests with v-hyp by Grandas-Tavera (2010) are shown
in Fig. 3.5.7. Waiting times were partly guessed for lack of data, partly calcu-
lated step by step for creep. Compression, decompression and dilation yield
a similar e vs. log ps plot (a) as in Fig. 3.5.6a. The calculated paths in a
(σs1−σs2)/pe vs. ps/pe plane (b), with pe = ps for state limits with σs1 = σs2

and D = Dr, resemble those in Fig. 3.5.6b. In the simulated plot pe is thus
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Fig. 3.5.6. Evolution of silty clay samples in drained triaxial tests with constant
stress after different consolidation (Shimizu 1982): (a) changing water contents vs.
ratio of actual and consolidation pressures, (b) stress paths normalized by an equiv-
alent pressure
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Fig. 3.5.7. Simulation of Shimizu’s (1982) tests (Fig. 3.5.6) by v-hyp (Grandas-
Tavera 2010): void ratios vs. pressure (a), normalized stress paths (b)

the equivalent pressure by Hvorslev (1937) as used by Shimizu (1982). As in
the experiments the simulated creep could no more be controlled when it got
fast near a critical state. Such a fair agreement could not be obtained with ex-
tremely different loading times. The smaller reported than simulated strains
in the overcritical regime with acceleration can be attributed to the actual
shear localization.

To sum up, visco-hypoplastic relations are validated near state limits of
cylindrical remoulded clay samples. The argotropy may be neglected if the
temperature is constant and the amount of strain rate D does not change
substantially for loading and is much higher for unloading. The relations pro-
posed for argotropic state limits by Fig. 3.2.1 are confirmed. The experimental
support is better in the contractant than in the dilatant regime. The usual
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evaluation of stress-controlled tests is insufficient: during compression and
decompression D varies by several orders of magnitude so that isotachs or
isochrones are often missed. The delayed rupture for isochoric or isobaric
creep with constant stress deviator can be reproduced with v-hyp. Experi-
ments speak for thermally activated dislocations of the solid particles.

3.6 Validation off state limits with cylindrical symmetry

The requirements for peloid RSE tests outlined in Sect. 3.5 hold also off state
limits. We consider results of experiments satisfying these conditions in order
to reveal the range of validity of constitutive relations introduced in Sects. 3.3
and 3.4. Transitions to state limits will be considered again, equivalent pres-
sures will be further discussed. While the relations for state limits differ only
for very low or high pressures ps and high stress obliquities tanψs bigger dif-
ferences appear for reversals. Acceptable reports with the latter are scarce,
strain rates and waiting times are rarely given, so the conclusions will be less
consistent than with psammoids (Sect. 2.6). This holds also true for the few
available relaxation tests. Observations with natural samples are at best of
qualitative use as their composition and state is often more complex than
presumed for simple peloid RSEs (Chap. 9).

We begin with isotropic compression and decompression. It is usually car-
ried out with control of total pressure p and drainage, sometimes the pore
pressure pw is measured. The skeleton pressure ps = p − pw cannot be uni-
form as the drainage requires gradients of pw, the uniformity of the sample
is at best regained after equalization of pw (often called primary consolida-
tion). The subsequent volumetric creep under nearly constant ps (secondary
consolidation) was rarely recorded, the strain rate D at the end of primary
consolidation can at best be estimated from reported data. A uniform decom-
pression can likewise only be approached after a sufficient waiting time. This
is shorter as swelling is smaller than compression for the same ps-range, so D
can be bigger after equalization of pw than for compression.

Roscoe and Burland (1968) report on such tests with kaolin. The samples
were placed between smooth plates with central porous stones for drainage.
Waiting times of 12 h for each p-increment secured 95% equalization of pw.
For a back-analysis ps could be imposed as function of time t in 12 h-steps.
The change of ps with t in each step could be adapted to the one by the
theory of primary consolidation (pore water diffusion, Sects. 6.3 and 11.1).
The observed initial straight part of e vs. log ps confirms (2.3.1). With the
empirical relation (3.2.6) for compressive creep this section is an isochrone,
and also an isotach via

D =
√

3ε̇i = ε̇v/
√

3 = − ė/
√

3
1 + e

=
λIvDr

(1 + e)(1 + tDr)
. (3.6.1)
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Thus (2.3.1) would also work with an argotropic reference pressure by (3.3.5),
this confirms (3.3.13). For un- and reloading, however, (3.2.6) does not hold
and D can no more be estimated in this way.

There are many experimental reports on oedometric tests (ε2 = 0) which
include de- and recompression. Usually the evolution of axial stress with time
σ1(t) is controlled and ε1(t) is observed, but pw and σ2 = σ3 are rarely mea-
sured. ε2 = 0 is achieved by a stiff ring or by servo-control in a triaxial
device. Axial drainage can be achieved by guided filter plates, radial drainage
is prevented. Large strains ε1 cause no problem, they can be properly allowed
for via (2.2.9) and (2.2.10) if the initial void ratio is known. Only fresh re-
moulded samples are apt for validation tests as initial states with cementation
and fabric cannot be captured as simple peloids (Sects. 7.3 and 9.1). The net
interparticle attraction or repulsion should be negligible as against the effec-
tive pressure (Sect. 6.3). One can at best guess from reports whether the net
attraction or repulsion may be neglected (Sect. 7.1).

Oedometer test results by Hvorslev (1937, 1960) are acceptable in the sense
of the requirements given above and in Sects. 3.4, Fig. 3.6.1. Wiener Tegel (a)
is less porous, compressible and expansive than Kleinbelt clay (b) as its solid
particles are bigger and harder. The material was mixed with fresh water,
consolidated samples decayed slowly in fresh water, so cementation and net
attraction were negligible. Osmotic repulsion could play a role for Kleinbelt
clay, but presumably not much as the ionic strength was kept low and constant

1.4
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Fig. 3.6.1. Oedometer test results by Hvorslev (1937, replotted) with a moderately
(a) and a highly plastic clay (b)
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(Sect. 6.3). σ1 was gradually doubled or halved and kept constant for 24 h in
each step, thus the samples did not come to a complete rest.

Results of back-analyses with v-hyp (Grandas-Tavera 2010) are shown
in Fig. 3.6.2. Compression parameters were adapted to fit the experimental
curves, further parameters were estimated by empirical correlations. The pore
water diffusion leads to a slight non-uniformity of state after each change of σ1

which is equalized within the subsequent interval. The initial void ratios are
the ones given by Hvorslev, the initial isotropic skeleton stress was assumed
as for an isotropic first consolidation with ps = pe. The load steps were chosen
as indicated by Hvorslev.

The isotachs for the ends of the intervals compare fairly well with Hvorslev’s
curves. Deviations at the onset are minor, realistic variations of the assumed
small initial skeleton stress had no influence on the subsequent evolution. The
obtained oedometric first compression is an argotropic attractor of v-hyp.
For Wiener Tegel Terzaghi’s (1925) relation (2.3.1) yields a good fit in the
σs1-range from ca. 5 kPa to 1 MPa, but also Butterfield’s (1979) and Bauer’s
(1996) relations (3.3.13) and (2.4.1) could be adapted. For Kleinbelt clay a
deviation from a linear e vs. log σs1 relation is visible for σs1 >ca. 100 kPa,
then (3.3.13) works for σs1 <ca. 500 kPa and (2.4.1) up to ca. 1 MPa.

Bigger differences of theoretical and experimental e vs. log σs1 curves ap-
pear for un- and reloading. The re-entry into a contractant state limit suits to
the experiment. For lower σs1 the theoretical response is nearly hypoelastic,
though not with a straight line of e vs. log σs1 as by (2.3.5). The hysteresis
at the onset of reloading is not reproduced. For Kleinbelt clay the argotropy
of state limits produces a better fit near the maximal previous σs1 as the
argotropy is more pronounced.

The observed hysteresis is not well reproduced, deviations are bigger for
the Kleinbelt clay with finer particles. It appears that there is almost no
volume change just after a reversal. For the onset of unloading this could be
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Fig. 3.6.2. Visco-hypoplastic simulation of Hvorslev’s findings (Fig. 3.6.1) by
Grandas-Tavera (2010) for a moderately (a) and a highly plastic clay (b)
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explained by relaxation if the top plate was fixed for a while. For reloading the
relaxation is negligible and would also mean a decrease of σ1 (cf. Fig. 3.2.7).
For Kleinbelt clay swelling goes on with constant σs1(= σ′

1) after the third
unloading (Fig. 3.6.1b). This is not obtained with v-hyp and could presumably
not be produced by a skeleton with constant σs1 and ε2 = 0. This indicates a
net interparticle repulsion (Sect. 7.1) which plays a bigger role for a stronger
decompression. The bound pore water then causes a very low and non-linear
permeability (Sect. 6.3). Thus almost no pore water is squeezed out at the
onset of reloading, the pore pressure increases without immediate filtration.
The influence of the bound pore water is also revealed by oedometric defor-
mations with changing temperature (Fig. 3.5.5). We will see in Sect. 6.1 how
the bound pore water can be explained by electro-capillarity.

The oedometric lateral stress σs2 is treated in some reports, but these
are hardly apt for validation. Brooker and Ireland (1965) compressed and
decompressed remoulded saturated clay samples with different particles and
apparently negligible net attraction. The axial pressure σ1 was imposed in
steps and kept constant to enable primary consolidation, strain rates are not
reported. The lateral pressure σ2 was determined by keeping ε2 = 0 via a
metal membrane and a pressure chamber. The observed evolution of stresses
is shown in Fig. 3.6.3 for a fat clay with rather soft and small particles. In
each interval with constant axial stress the radial stress decreased for load-
ing and increased for unloading (a). The stress path (b) exhibits a constant
σ2/σ1 for loading towards the end of an interval and an increase of σ2/σ1 for
unloading.

Brooker and Ireland’s (1965) findings could be simulated with v-hyp. With
step-wise constant σ1 the calculated σ2 decreases during 24 h intervals for
loading and increases for unloading. Calculated stress paths are garland-like
due to skeleton viscosity, only a smooth interpolation of 24 h-points would
resemble Fig. 3.6.3b. Calculated stress ratios σ2/σ1 would depend on ϕc and
OCR. With longer waiting times the ratio of effective horizontal and vertical
stress would tend to the one without preloading because of relaxation. Results
like Fig. 3.6.3b for short lab times should not be transferred therefore to field
situations with far longer resting times.

The overconsolidation ratio was introduced by Hvorslev (1937) as OCR =
pe/ps with the equivalent pressure pe = ps for first consolidation. He noted
that pe works for arbitrary origins of e and should depend also on the stress
ratio σs2/σs1, but he left aside the influence of strain rate. A consolidation
pressure pc instead of pe is often estimated from the transition into a straight
e vs. log σs1 line in oedometer tests, and sometimes from such a transition for
an isotropic compression. Hvorslev (1937) realized that e can be lower than
by first consolidation up to a certain σs1 not only after a decompression, but
also after desiccation or cyclic shearing. Bjerrum (1973) pointed out that long
resting times lead also to a kind of overconsolidation. In the visco-elastoplastic
and -hypoplastic relations of Sects. 3.3 and 3.4 pe depends on e and ψs (i.e.
σs2/σs1), and the consolidation ratio pe/ps plays a key role. One should not
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Fig. 3.6.3. Confining pressures of clay samples with ε2 = 0, observed by Brooker
and Ireland (1965): (a) axial and radial stress vs. time, (b) stress path

write OCR for pe/ps as this symbol could be misleading and insufficient, and
as it is dispensable in general. The symbol OCR is only used with due caution
in this book as far as it appears in experimental reports which are acceptable
for validations.

Creep with constant σs1 and σs2, or with constant σs1–σs2 and e, was
already treated in Sect. 3.5. The unique dependence of strain rate ratio on
stress ratio, i.e. of ψε̇ on ψs, which is implied by v-elp and v-hyp as outlined in
Sect. 3.3. and 3.4, is supported by Krieg’s (2000) test results with a calcareous
mud, Fig. 3.6.4. For constant σs1 and σs2 the strain paths tend to straight
lines (a). This leads to a dependence of ψε̇ on ψs which compares pretty well
with the one by Fig. 3.2.1a for state limits. Plots of axial strain vs. log t tend
to straight lines (b) as by (3.2.6). The onset of this stabilizing creep with
lower than critical obliquity |ψs| and the transition to argotropic state lines
cannot as well be reproduced. A main reason is that the viscosity factor fv

varies extremely with ps/pe before a state limit is reached.
Uniaxial consolidations by constant pressure as in oedometer tests are first

delayed by the diffusion of pore water and later by the viscous resistance to
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Fig. 3.6.4. Drained creep test results by Krieg (2000) with a calcareous mud and
different confining pressures: strain paths (a), axial strains vs. time (b)

compression. Sturm (2009) simulated two such tests by Barden (1969) with the
same clay and two different sample heights, Fig. 3.6.5. Observed and calculated
plots are nearly the same, and converge after the excess pore pressure has
faded away by diffusion. The further compressive creep dominates earlier for
the shorter sample, and comes close to a succession of uniform contractant
state limits as proposed in Sect. 3.2.

Creep with acceleration due to pore pressure increase or dilation is less pre-
dictable. Shear localization cannot be avoided near a peak (Sects. 8.3 and 14.1),
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Fig. 3.6.5. Compression of a high (above) and a low clay sample with constant
pressure, observed by Barden (1969) and simulated with v-hyp by Sturm (2009)

and arises before even with minor imperfections in the sample and along its
boundaries. Thus the waiting time up to a delayed collapse can hardly be
predicted and cannot be used for validations.

Relaxation was rarely observed, it is not easy to keep samples fixed and
to observe stress changes with time. The initial state is rarely uniform, net
interparticle forces and condensation can also play a role. Oda and Mitachi
(1988) observed the relaxation of saturated kaolin samples in triaxial tests,
Fig. 3.6.6. Different initial stress deviators q = σ1 − σ2 were produced before
by isochoric axial shortening with different strain rates after an isotropic con-
solidation (p′ = ps). For constant ε1 and ε2 the stress deviator got smaller
almost linearly vs. log t (a). The stress paths for constant ε1 and ε2 (b) ex-
hibit a simultaneous reduction of p′ only for low initial stress ratios q/p′. The
observed relaxation could be roughly reproduced with v-hyp. Deviations for
long times may be attributed to bound pore water and cementation (Sect. 6.1
and 7.3), these effects are not covered by the concept of simple peloids as
introduced in Sect. 3.2.

Only few experimental reports on the response of saturated clays to several
reversals are acceptable for validation. Observed and simulated evolutions
with isotropic de- and recompression indicate that cumulative anelastic effects
are missed by v-elp and overestimated by v-hyp (more in Sect. 5.2).

To sum up, the concept of simple peloids can cover the observed behaviour
of saturated clays in case of cylindrical symmetry to a certain excent also off
state limits. The observed nearly elastic behaviour for un- and reloading well
off state limits is reproduced. Creep is well reproduced if the onset is near a
state limit, then v-hyp yields a succession of state limits. The few relaxation
test reports could also be matched fairly well if the onset is near a state
limit. The anelastic response to cycles beyond the nearly elastic range and
off state limits is missed by v-elp and caught by v-hyp with an exaggerated
degradation.
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Fig. 3.6.6. Relaxation test results with kaolin (Oda and Mitachi 1988): decrease of
stress deviator with log time (a), stress paths (b)

3.7 Cuboidal deformations

Visco-elastoplastic and -hypoplastic relations work also for cuboidal deforma-
tions, now with i = 1, 2, 3 for three principal components. Cuboidal tests,
and biaxial ones in particular, were carried out with devices as indicated by
Figs. 2.7.7 and 2.7.8 with remoulded saturated clay, but less often than with
sand. Experimental reports are rarely apt for validations as stress and strain
rates were usually not recorded. One may use observed state limits in the
vicinity of critical states as for them strain rates have always the same order
of magnitude. For other evolutions only biaxial test data by Topolnicki (1987)
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are of use as he recorded times continuously. Other reports will be mentioned
as they could possibly be used for evaluation with estimated times. Again
only simulations with v-hyp are presented as software for v-elp is not freely
available.

Argotropic state limits can be represented by combining Figs. 2.7.2 and
3.2.1. The invariants tan ψs, cos 3αs, tan ψε̇ and cos 3αε̇ play the same role as
for psammoids. The argotropy can be taken into account by a D-dependent
reference pressure pr by (3.3.5) in the plot of e vs. log ps. For lack of a lower
bound ed a plot of reference void ratios er vs. ψs (Fig. 3.4.2c) may be used
instead of re vs. ψs (Fig. 2.7.2d). The relations of tanψs and cos 3αε̇ with
cos 3αs are apparently the same as for psammoids. Cuts of response polars
with the planes σs1 = σs2 and ps = const could reveal the approach to at-
tractors for deformations with constant rates, this could be demonstrated for
v-elp and v-hyp as in Figs. 2.7.5 and 2.7.6.

Shibata and Karube (1965) tested a normally consolidated clay in a
cuboidal device as by Fig. 2.7.7a. Central projections of achieved stress limits
onto a deviator plane, Fig. 3.7.1a, resemble Fig. 2.7.2a. Nearly the same was
observed by Pearce (1972), Fig. 3.7.1b, with a device as by Fig. 2.7.7b. Kirk-
gard and Lade (1993) observed similar state limits in a device as by Fig. 2.7.7c,
and plotted also strain rate directions, Fig. 3.7.1c. The visible lack of invari-
ance against 120◦-rotations could reflect a similar lack of symmetry of the
apparatus, or may be due to a sandwich-like fabric (Sect. 9.1). The argotropy
does not appear in these representations of stress-controlled tests.

Nakai and Matsuoka (1983) employed a device as by Fig. 2.7.7a both
with saturated sand and normally consolidated clay. They observed a linear

Fig. 3.7.1. Peak states of saturated clays in cuboidal tests, observed by Shibata
and Karube (1965) (a), Pearce (1972) (b) and Kirkgard and Lade (1993) (c)
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Fig. 3.7.2. Dependence of invariant stress ratios on strain rate ratios at state limits,
observed with clay in cuboidal tests by Nakai and Matsuoka (1983)

dependence of invariant stress and strain rate ratios with clay (Fig. 3.7.2) as
with sand, this confirms Fig. 2.7.2c for both materials. They found the same
limit stress ratios for σs2 = σs3 as in triaxial tests with short samples and
smooth hard end plates. Their limit stress condition

J1J2

J3
= const (3.7.1)

with
J1 = σs1 + σs2 + σs3 = 3ps

J2 = σs1σs2 + σs2σs3 + σs3σs1

J3 = σs1σs2σs3

(3.7.2)

is embedded in the hypoplastic and visco-hypoplastic relations by von Wolf-
fersdorff (1996) and by Niemunis (1996, 2003). It implies (2.2.15) for cylindri-
cal symmetry and is confirmed by the test results shown in Fig. 3.7.1.

Peak states of overconsolidated clay samples, observed with ps = const in a
device as by Fig. 2.7.7a, were presented in a plane ps = const by Prashant and
Penumadu (2005). Therein the initial overconsolidation ratio is OCR = pei/ps

with the isotropic consolidation pressure pei prior to decompression. This is
not the OCR at peak as the void ratio changes with deviatoric loading and
drainage. The reported peak states cannot be used for evaluation as related
simultaneous void ratios are not given.

Wood (1975) worked with kaolin and a cuboidal device as by Fig. 2.7.7b
in order to judge constitutive relations, Hambly (1972) did the same with a
biaxial device as by Fig. 2.7.8b. As they do not report strain and stress rates
their results cannot be used for evaluations with the ever-present argotropy.
This lack could possibly be removed by means of estimated times, but this
could not be achieved for the present book.
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Topolnicki et al. (1990) published results of strain-controlled biaxial tests
with a similar apparatus as by Hambly (1972), further details are given by
Topolnicki (1987). Sturm (2009) back-analyzed them with v-hyp. A first at-
tempt with the documented strain rates led to disappointing deviations just
after reversals, in a second one waiting times at reversals were taken into
account. Thus observed evolutions could far better be reproduced, two exam-
ples are given in Fig. 3.7.3. Both plots show paths of stress and strain in the
upper right and lower left quadrants, respectively, and stress-strain curves in
the other two quadrants. Kaolin samples were first consolidated from mud by
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Fig. 3.7.3. Simulation of biaxial tests with a clay (dotted, Topolnicki 1987) by v-
hyp (Sturm 2009); (a) uni-directional shortening and stretching, (b) bi-directional
stretching; left below imposed strain path, right above stress path response
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proportional compression and then deformed with another direction, always
so slowly that the observed pore pressure remained nearly hydrostatic. Dots
with labels for the elapsed time are dropped for simplicity, but could be added
for completeness.

The initial proportional compression led to a proportional stress path,
this succession of argotropic state limits is well reproduced by v-hyp. In one
case (Fig. 3.7.3b) the subsequent deformation had the same amount D as
before, but reversed signs of the rate components and a slight dilation. The
stress path indicates first a strong reduction of obliquity and turns then to a
straight line towards the origin. Except just after the reversal with unknown
precise waiting time and relaxation this transition to a state limit is fairly well
modelled. Stress-strain curves for this case are also reproduced, but are not
so instructive as the path directions change substantially. In another case (a)
two strain reversals were imposed with 1800 changes, the latter would appear
in the lower left quadrant with labels. Observed and calculated stress paths
remain almost on the straight line as for the previous compression. The two
stress-strain curves have nearly the same hysteresis loops in the experiment as
by v-hyp with reasonably assumed waiting times after reversals. They indicate
an almost hypoelastic behaviour for the higher consolidation ratios shortly
after reversals. The same good agreement (Sturm 2009) for other biaxial tests
by Topolnicki (1987) validates v-hyp and shows that viscous effects during
waiting times should not be ignored.

Relaxation after first uniaxial compression was also observed by Topolnicki
et al. (1990) with a saturated kaolin clay in a biaxial device. The major part
occurs in the first 20 min where a certain fraction of the initial σ′

i disappears,
σ′

2 ≈ σ′
3 reflects the symmetry due to previous deformation. In-plane stress

paths with t-labels would indicate that the mean stress p′(= ps) decays faster
than the stress obliquity. Simulations with v-hyp could at best produce a
crude confirmation. It appears that friction in the apparatus enhanced the
sharp bend in the σ′

i vs. t-lines and prevented a significant further stress
reduction.

To sum up, the constitutive relations outlined in Sects. 3.3 and 3.4 are not
refuted by true triaxial and biaxial test results with remoulded saturated clay.
The concept of argotropic state limits is only confirmed for the vicinity of crit-
ical states with roughly constant strain rates. Only one report on biaxial tests
gives complete evolution times, including waiting times with relaxation and
reversals thereafter the results are reproduced with v-hyp. Further simulations
could be worth the effort if evolution times could be estimated in hindsight.

3.8 Simple shearing

Stress and deformation components for simple shearing can be taken over from
Fig. 2.9.1. As always in this book the subscript s denotes solid partial stress
components, neglecting net attraction or repulsion and cementation they are
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identical with effective stress components. Full saturation is taken for given.
Thus only remoulded clays with suitable ionic strength are apt for validation
tests, but the influence of bound pore water has to be kept in mind (Sect. 6.3).
The shearing devices described in Sect. 2.9 are also principally apt for clays.
The uniformity required for RSEs is questionable as with granular samples,
and also because of pore water diffusion with low permeability. Changes of
strain rate and waiting times are relevant as without rotation of principal
axes, this was often not sufficiently noticed. For all these reasons only few
reports are acceptable.

Argotropic state limits can be defined again with invariants by means of
Figs. 2.7.2 and 3.2.1, this implies coaxiality of stress and strain rate, i.e.

Ts12

Ts11 − Ts22
=

D12

D11 − D22
. (3.8.1)

For peak states τ/σs = Ts12/Ts11 is maximal, this leads to shear localization
(Sect. 8.3). The limit void ratios depend on the mean skeleton pressure ps as
shown in Fig. 3.2.1, their argotropy is again allowed for by means of a rate-
dependent reference pressure. Other representations of peak state limits will
be taken over from publications. A more comprehensive representation with
invariants will be given in the following Sect. 3.9.

An extension of the visco-elastoplastic relations (v-elp) by (3.3.7) for simple
shearing requires four equations for stress rate components, and one equation
for the direction of anelastic strain rates. Invariants of stress and strain rates
can be employed as for cuboidal deformations. Argotropic state limits of v-elp
correspond to the ones by Figs. 2.7.2 and 3.2.1 for the range from isotropic
compression to peaks, and for ps from ca. 50 to 500 kPa. A tension cut-off is
needed for |τ/σs| well above the critical amount tan ψc. Very low or high ps

have to be excluded as then (2.3.1) fails. State limits serve as boundaries of
an elastic range and as plastic potential. The void ratio is the only hardening
parameter, it can be substituted by the equivalent pressure pei for isotropic
states as shown in Fig. 3.3.1a for D = Dr with D by (2.9.9). The viscosity
factor fv for the anelastic strain rate by extensions of (3.2.4) is given by
(3.2.5). fv = D/Dr holds again for argotropic state limits with given strain
rate directions. The direction νa

s of anelastic strain rate depends on the stress
obliquity τ/σs as for psammoids (Fig. 2.9.2a). The factor fe for the anelastic
strain rate is given by the extension of (3.3.7) for a continued state limit
with (2.2.10) for conservation of solid mass. The switch functions for the
viscoplastic strain rate in the extension of (3.3.7) give zero in the elastic range
and for unloading from state limits.

The visco-hypoplastic relations by Niemunis (2003) (v-hyp) can be written
for simple shearing as

Ts11 = fs [L1111(D11 − Da
11) + D1112(D12 − Da

12)]

Da
11 = fvDrL

−1
11ijNij/ ‖LijklNkl‖

(3.8.2)
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and similar expressions for the other three components. The summation con-
vention holds for repeated subscripts ij and kl. The factors Lijkl and Nij

depend on the stress direction components T̂sij = Tsij/ps and the critical
friction angle ϕc as by hypoplasticity in (2.9.8). The viscosity factor is given
by (3.2.5b) with ps/pe = (D/Dr)Iv for state limits. fs is determined by com-
parison of (3.8.2) with (3.3.13) for isotropic first compression with D = Dr.
The visco-hypoplastic relations by Gudehus (2004) can be written as

Ts11 = fs(L1111D11 + L1112D12 + fdfvN11Dr) (3.8.3)

and three further components for simple shearing, cf. (2.9.8). Lijkl and Nij are
the same functions of T̂sij and ϕc as for hyp. fd and fs are given by (2.4.4) with
(2.2.18) and by (2.4.1) with (3.8.3) for isotropic first compression, respectively,
both for D = Dr. fv and pe therein have the same meaning as for cuboidal
deformations.

Hvorslev (1937, 1960) carried out direct shear tests in a device nearly as
by Fig. 2.9.6 with two kinds of remoulded saturated clays (cf. Sect. 3.6).
The samples were first compressed and decompressed in oedometer tests as
shown with Fig. 3.6.1. Hvorslev introduced the equivalent pressure pe and the
overconsolidation ratio OCR = pe/p′ for this case. He noted already that pe

should also depend on the ratio of stress components. Under constant average
vertical pressure σ̄ the average shear stress τ̄ was gradually increased via a load
frame. In each step τ̄ was kept constant so that pore pressure differences could
disappear by diffusion, the required time was estimated as for compression and
decompression.

Shear creep was observed by Hvorslev (1937) after the end of pore water
diffusion. The creep rate increased more than linearly with increasing τ̄ , at
a ‘failure load’ τ̄f the shear creep got stationary or accelerated. The verti-
cal displacement of the upper plate indicated that the sample contracted for
OCR <ca. 2 initially. Then a kind of stationary creep was attained with

τ̄ = τf = σ̄′ tan ϕcs (3.8.4)

and constant sample height. The critical friction angle was σ′-independent for
the silty Wiener Tegel, ϕcs = 26◦. The more plastic Kleinbelt clay had a far
lower ϕcs which decreased noticeably with higher σ̄′. For OCR >ca. 2 initially
the samples dilated and exhibited acceleration at τ̄ = τf . Some samples had
vertical markers and were cut after the test, Fig. 3.8.1. With OCR <ca. 2
the shear deformation was uniform in the middle part (a). With OCR >ca. 2
shearing was localized near the middle plane (b).

Hvorslev (1937, 1960) carried out also ring shear tests with the same clays.
Using different confining rings, shearing was revealed by vertical markers and
cuts after the test, Fig. 3.8.2. Up to peak states the behaviour was nearly the
same as with the shear box tests. Beyond peaks shearing was localized near
the middle plane with free rings, and near the top with fixed rings. A reduced
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Fig. 3.8.1. Cut clay samples after shearing with an initial OCR < ca. 2 (a), and
with OCR >ca. 2 (b), Hvorslev (1937)

Fig. 3.8.2. Distribution of shearing in clay samples cut after ring shear tests
(Hvorslev 1937) with free (left) and fixed lateral rings (right)



178 3 Simple peloids

shearing resistance was observed beyond the peak. Without previous decom-
pression the peak of Wiener Tegel was reached with ca. 10% shear strain.
Beyond it τ had to be reduced to avoid acceleration. With slower τ -loading
the sample was softer, but it got stiffer by a τ -cycle. After decompression the
peak shear strain was smaller than without, and bigger with slower loading.
With Kleinbelt clay the peak strain was smaller or bigger without or with de-
compression, respectively, and the τ -reduction to avoid acceleration beyond
the peak was bigger than with Wiener Tegel.

Void ratios were determined by means of cuts after each test. Other than
Casagrande (Fig. 2.9.5) Hvorslev believed that beyond the peak a critical state
is not reached independently of the state at the onset of shearing. Roscoe
et al. (1958) concluded instead that critical states are reached in narrow
shear bands, which were not investigated in detail by Hvorslev and ignored
by Casagrande. Hvorslev’s peaks without decompression and his different τ -
asymptotes after peaks without or with it are not covered by CSSM, these
findings cannot be explained without shear localization (Sect. 8.3).

Hvorslev’s complicated diagrams for peak states are simplified in Fig. 3.8.3.
Limit shear stresses τp (a) and related void ratios (b) are plotted vs. vertical
effective stress σ′. After first compression (0–1) shearing with unchanged σ′

(1-1P) leads to a void ratio decrease Δe and a strength by (3.8.4). After
decompression by reduction of σ′ by ca. 50% (1–2) shearing up to peak (2–
2P) leaves e almost unchanged, whereas τp is bigger than τf by (3.8.4). After
a stronger decompression (1–3) shearing up to the peak (3–3P) is dilatant,
and τp/τf is bigger than after less decompression. The difference of void ratios
at peak and after first compression with the same σ′ is nearly independent of
OCR. Hvorslev’s approach for shear strength can be written as

a) τp = σ′ tan ϕ′
s + κcσe(= σ′ tan ϕ′

s + c′),
b) τp = σ′(tan ϕcs + tan ϕ′

s − tan ϕcs + κeσ
′σe/σ′),

c) τp = σ′(tan ϕcs + tan νs),
d) tan νs = tan ϕ′ − tan ϕcs + κeσe/σ′.

(3.8.5)

1
a)

σ′

τp

3P

2P 1P

ϕcs

b)
σ′

e
3P

2
1P3

0

Δe

1

0
23

Fig. 3.8.3. Simplified representation of Hvorslev’s (1937) shear strength concept:
(a) shear strength vs. normal stress, (b) void ratios vs. normal stress
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In the Coulomb-Mohr expression (a) employed by Hvorslev a friction an-
gle ϕ′

s < ϕcs is determined from the inclination of shear bands in uniaxial
shortening tests. The effective cohesion c′ is proportional to the equivalent
pressure σe, c′ = κepe, with a constant factor κe = tan ϕcs − tan ϕ′

s. This
can be rewritten (b), and renamed (c) with a dilatancy angle νs (d) so that
Taylor’s (1948) expression (2.9.7) is obtained. Hvorslev’s σe is given by the
e at peak via Terzaghi’s (1925) compression law (2.3.1) with a suitable er.
Thus his c′ is variable so that τp = τf is obtained with OCR = 1 initially, and
τp > τf for OCR > 1.

Following Terzaghi (1931), Hvorslev (1937) justified the effective cohesion
c′ by an overlap of bound pore water near contacts of solid particles. Actually
this overlap causes a repulsion (Sect. 6.1) which is more or less compensated by
van der Waals attraction (Sect. 7.1). Schofield (2005) defends (3.8.5c) without
c′ by means of CSSM, arguing that τp exceeds τf only due to dilation and not
because of an effective cohesion. Within our concept of state limits (3.8.3c)
holds in the vicinity of critical states, cf. Figs. 2.9.2a and 3.2.1a. The dilatancy
angle νs of simple peloids increases with bigger strain rate D due to the
viscosity of the solid particles (Sect. 3.1). For a given σ′ and e harder particles
cause more dilation. With argotropic state limits the relative void ratio re by
(2.2.18) is lower with a higher D for given e and σ′ as then ec and ed are
bigger, cf. Fig. 3.2.1b. Thus τs and τ/σs are bigger, as shown by Fig. 2.9.2a
and c, if re is lower with a higher D.

For the initial compression and decompression Hvorslev’s void ratios are
nearly as good as from oedometer tests. Shearing without decompression be-
fore was rather uniform in the middle third of the samples, cf. Fig. 3.8.1a. After
decompression shearing with constant σ′ was first contractant and then dila-
tant, and localized beyond the peak. As the sample got non-uniform Hvorslev’s
e-values can no more be representative. A back-analysis of his tests with al-
lowance for localization and sharp edges is not yet feasible (Sect. 8.3).

Hvorslev’s ring shear test results suggest a residual strength τr below the
critical one by (3.8.5) for continued shearing. This was confirmed by Skempton
(1985) and will be discussed in Sect. 8.3. Thin layer shear tests (Balthasar
et al. 2006) as by Fig. 2.9.8 do not exhibit this kind of softening, Fig. 3.8.4. A
highly plastic clay was compressed between filter plates with a mean vertical
pressure up to σ̄′ =15 MPa, and then sheared with constant σ̄′ and different
velocities vs (a). With a layer thickness of ca. 1.5 mm and free vertical mobility
excess pore pressures can be avoided, and the major part of the sample with
up to ca. 25 cm length and 15 cm breadth is not influenced by the free rim.
The shearing resistance beyond a flat peak increases or decreases just after an
increase or decrease of vs, respectively (b). With further shearing it returns
to a vs-independent stationary value which depends on σ̄′ by (3.8.4), with
ϕcs ≈ 10◦ in this case.

Libreros-Bertini (2006) carried out a back-analysis with v-hyp, Fig. 3.8.5.
The thin layer is divided into finite elements with allowance for diffusion of
pore water, contact at the filter plates and capillary pressure along the rim (a).
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Fig. 3.8.4. Thin layer shearing of a highly plastic clay with constant pressure
(Balthasar et al. 2006): simplified system (a), shear force vs. displacement with
different velocities (b)

Fig. 3.8.5. Simulation of thin layer shearing with v-hyp (Libreros-Bertini 2006):
mesh (a), stress distribution (b), shear force vs. displacement (c)

After compression and shearing the calculated σ′ and τ are uniform over the
major part of the thin layer (b), and excess pore pressures are negligible. The
calculated shearing resistance for different vs (c) comes close to the observed
one (cf. Fig. 3.8.4b). This confirms the state limit concept with a pressure-
and rate-independent ϕcs by (3.8.4) up to high ps. Argotropy matters after
each change of shearing velocity vs, which causes dilation or contraction until
the new ec for the higher or lower D as by Fig. 3.2.1b is attained. Even with
the high σ′ and the soft particles the material is permanent, at least as far as
parameters for argotropic state limits are concerned.

Apparently lower residual friction angles were observed with the same
clay and almost the same range of σ′ by Goldscheider and Bösinger (1989).
This reduction of shearing resistance can be explained by means of excess
pore pressures in narrow shear bands which cannot be detected at the sample
boundaries (Sect. 8.3). Softening beyond a peak may also be attributed to
the dilation of bound pore water (Sect. 6.3) which is more pronounced with
more plastic and less porous clays, it occurs even without decompression be-
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fore shearing. The lower than critical residual shearing resistance observed by
Hvorslev (1937), Skempton (1985) and others is thus not a property of the
skeleton of solid particles only.

Similarly as with sands (Sect. 2.9) attempts were made to produce uniform
shearing in the sense of an RSE, but less often. Airey and Wood (1987) sheared
initially cylindrical kaolin samples after consolidation in a confined cylindrical
device with wire rings as by Fig. 2.10.3. The vertical stress measured by five
pressure sensors (load cells) in the top plate was not uniform and indicated
that only an inner third of the sample may be considerated as RSE. The
friction condition (3.8.4) was confirmed, but tanϕcs was about 10% higher
than in a device with two frames sheared against each other. In spite of friction
at the confirming rings void ratios after consolidation were markedly lower
than in an oedometer. The radial stresses determined via elastic strains of
the rings were realistic for consolidation, but so imprecise for shearing that
inclinations of principal stress could not be determined.

Hong and Lade (1989) report on torsion tests with thick-walled cylindri-
cal remoulded kaolin samples without or with drainage in a device as by
Fig. 2.9.10. After compression with negligible horizontal strains the deviatoric
stress components τzθ and σz −σθ for σz = 98 kPa were changed, whereas the
other components were kept constant. The attained state limits (Fig. 3.8.6)
can be captured by Lade’s (1977) limit stress condition

(I3
σ/IIIσ − 27)(Iσ/pa)m = η1 (3.8.6)

with the invariants Iσ = 3p′ and

IIIσ = σ′
1σ

′
2σ

′
3 = σ′

2σ
′
3σ

′
θ − σ′

rτ
2
zθ . (3.8.7)

With the atmospheric pressure pa = 98 kPa the constants in (3.8.6) are
m = 0.42 and η1 = 27.1 for the given clay. In a 3-dimensional stress space

Fig. 3.8.6. Torsional resistance of thick-walled clay cylinders (Hong and Lade 1989):
stresses and strain rate directions at peak
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(3.8.6) is represented by a cone, its projection appears in the plane τzθ vs.
σ′

z − σ′
θ. Strain rate directions are shown in the same plot.

Using data from triaxial tests by Hong and Lade (1989) with the same
clay, Fig. 3.8.6 could be reproduced with v-hyp. For critical states stresses
are on a cone with a near-elliptical cross section. The observed coaxiality of
principal stress and strain rate means

(a) tan(2χσ) = tan(2χε̇), i.e.

(b) 2τzθ/(σz − σθ) = 2γ̇zθ/ε̇z

(3.8.8)

with the direction angles χσ and χε̇ of principal stress and strain rate, and
ε̇θ = 0. With lower or higher than critical void ratios the cone is inside or

Fig. 3.8.7. Response of thick-walled clay cylinders to torsion with reversals (Hicher
and Lade 1987): stress path (a) and stress-strain plot (b) with alternating torque
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outside the critical one, but (3.8.8) holds again. This is confirmed by the
torsion tests, minor deviations are probably due to bifurcation and argotropy
which was not allowed for by Hong and Lade (1989). Lade’s condition (3.8.6)
does not explicitly allow for the void ratio, but this influences his m and
η1. Coaxiality by (3.8.8) is obtained for state limits by frame-indifference
(Sects. 2.11 and 3.9). A more detailed validation with respect to void ratios is
not possible with the test results, these are apparently close to critical states.

There are very few publications on shear tests with reversals which are
apt for validation as it is difficult to satisfy the criteria at the beginning
of Sect. 2.5. Hicher and Lade (1987) imposed cyclic torsion to hollow cylin-
drical samples of the same clay and with the same apparatus as Hong and
Lade (1989). After uniaxial consolidation the drainage was closed, vertical
and radial stresses were kept constant, the shearing rate was nearly constant
between the reversals. In all tests the mean skeleton pressure was reduced and
got almost stationary after 10–15 load cycles. With an alternating torque the
effective stress path tends to a double loop (butterfly, Fig. 3.8.7a), while the

Fig. 3.8.8. Response of thick-walled clay cylinders to torsion with reversals (Hicher
and Lade 1987): stress path (a) and stress-strain plot (b) with pulsating torque
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Fig. 3.8.9. Simulation of undrained torsional shear tests as shown in Figs. 3.8.7
and 3.8.8 with v-hyp by Grandas-Tavera (2010): stress paths for alternating (a) and
pulsating torque (b), related stress-strain curves (c, d)

plot of shear stress vs. strain exhibits increasing hysteresis (b). With a pul-
sating torque the stress path tends to a lenticular cycle (Fig. 3.8.8a), and the
stress-strain plot indicates ratcheting (b). Both attractors are psammoid-like
for the given nearly constant amount of stretching. The stress paths would be
different by relaxation with waiting intervals at reversals, cf. Fig. 3.7.3.

Simulations with v-hyp by Grandas-Tavera (2010) are shown in Fig. 3.8.9.
An acceptable agreement with the plots by Hicher and Lade (1987) is only
obtained up to the second reversal, this can hardly be improved by taking into
account the relaxation at the first reversal. The furher cyclic deviatoric loading
does not lead to the observed butterfly or lenticular attractor, respectively, but
to arc-like asymptotic stress cycles. The simulated hysteresis and ratcheting
curves have other shapes than the observed ones. These deviations remain
with relaxation by pauses at reversals, so there is no convincing validation of
v-hyp with several reversals. It is questionable whether an improvement could
be achieved with the modified v-hyp by Gudehus (2004b). The deviations are
even stronger with v-elp as this would produce an elastic response after the
first reversal. A hybrid of v-elp and v-hyp would not do better, it appears
that the concept with a viscosity factor (Sect. 3.2) gets insufficient for several



3.9 General and outlook 185

reversals. A better agreement can only be expected with reversals if state
limits are repeatedly approached so that the consolidation ratio pe/ps does
not exceed ca. 1.5.

Experimental reports on shear creep and relaxation after simple shearing
are not available with saturated clay. The ductility for undrained shearing can
be impaired by localized dilation or by the transition to a skeleton collapse.
Both is not captured by v-elp and v-hyp, nor can these models cover the
localized dilation for drained shearing (cf. Sect. 8.3).

To sum up, the concept of argotropic state limits and state cycles is con-
firmed by the few acceptable reports on shear tests. In particular, the critical
friction angle is pressure- and rate-independent, and limit principal stresses
are coaxial with stretching rates. Only tests with hollow cylindrical samples
can produce sufficient uniformity up to a peak. Void ratios at state limits were
rarely reported, so their influence is not well confirmed. As outlined already in
Sects. 3.3, 3.4, 3.5, the conventional concept of shear strength with ϕ′, c′ and
OCR is not physically justified and can be misleading. With repeated shear
reversals anelastic effects are missed by v-elp and v-hyp if the consolidation
ratio pe/ps exceeds ca. 1.5.

3.9 General and outlook

The general outline of peloid behaviour may be kept rather short as a lot can
be taken over from psammoids (Sect. 2.11). We will see how the peculiarities of
peloids due to skeleton viscosity and pore water diffusion can be characterized
for arbitrary deformations in an objective way. It is not known how far the
response with reversals can be captured without hidden state variables. Simple
peloid models are also restricted by localizations in the range of overcritical
stress obliquities, and near upper and lower bound void ratios.

A tetrahedron as in Fig. 2.11.1 may be taken as a general RSE of a simple
peloid. The principle of effective stress can be formulated with (2.11.1) and
(2.11.2). The state can again be represented (cf. Fig. 2.11.2) in plots of void ra-
tio e and of stress obliquity tanψs vs. Lode parameter cos 3αs. The argotropy
of state limits is captured by referring ps to a D-dependent solid hardness hs

by (3.2.2) with D =
√

D2. The viscosity index Iv holds for a suitable reference
rate Dr within D-bounds as for solids. Less objectively hs can be substituted
by an argotropic reference pressure pr by (3.3.5). Too low and too high ps have
to be excluded because of net pressures (Sect. 6.3) and degradation (Sect. 7.3),
respectively. Shear localization with overcritical tanψs (Sect. 8.3) is left aside
with simple peloids, and also cracking with extremely high tanψs (Sects. 8.3
and 8.4).

The constitutive relation of the co-rotated skeleton stress rate
◦
Ts with the

stretching tensor D may again be expressed by (2.11.7), but the properties of
the function Fs of Ts, e and D are different. The barotropy by (2.11.8a) holds
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only for constant D, and the exponent m for the influence of ps is higher than
for psammoids. The barotropy exponent m = 1 was often assumed for v-elp
and v-hyp, this may suffice for an empirical range of ps. Generalizing (3.2.1b)
and (2.11.8b) can be replaced by

Fs(Ts, λD, e) = λnFs(Ts,D, e), λ > 0 (3.9.1)

with n > 1 for argotropy. The argotropy exponent n is not constant, n ≈
1 + Iv may serve as approximation. Fs is generally non-linear in D as by
(2.11.8c), but can be nearly linear (hypoelastic) after over-consolidation or
for fast stretching.

Fs can be represented rather generally by

Fs = L(D − Da) (3.9.2)

with a fourth-order elastic stiffness tensor L and an anelastic stretching

Da = HfefvPDr . (3.9.3)

Its direction P with ||P|| = 1 depends only on the direction T̂s of the skeleton
stress tensor. L depends on Ts, e and D, thus the hypoelastic response for
Da = 0 is baro-, pykno- and argotropic. Due to the barotropy outlined above
L is proportional to (ps/hs)m with 0 < m ≤ 1.

The viscosity factor fv in (3.9.3) depends on the consolidation ratio pe/ps

by (3.2.5). Therein the equivalent pressure pe is determined by e and tan ψs

for D = Dr as indicated in Fig. 3.2.1. cos 3αs enters via tanψs for state limits
so that it is not needed explicitly for pe. The factor fe depends on e and ps so
that for an isotropic compression with D = Dr (3.9.2) and (3.9.3) yield the
limit void ratio ei(ps). More in detail there are differences of visco-elastoplastic
and -hypoplastic relations (v-elp and v-hyp).

For v-elp by Adachi and Oka (1982) limit void ratios depend on ps by
Terzaghi’s (1925) (2.3.1) with pr by (3.3.5) and er(tan ψs) as indicated by
Fig. 3.3.1a. Therein the influence of cos 3αs on tan ψs is neglected for state
limits so that the deviatoric boundary by Fig. 2.7.2a is a circle. Thus ϕc by
(2.2.15) is bigger for cos 3αs = −1 than for cos 3αs = 1. State limits with
e =const are expressed by a quadratic form of ps and tanψs and are taken
as elastic range. This is assumed as potential for P (normality condition) and
determines the switch function H in (3.9.3): H = 0 holds in the elastic range
and for unloading, H = 1 for continued plastification. tanψs is bounded by a
tension cut-off, and there is no lower bound void ratio ed.

Limit void ratios for Niemunis’ (1992, 2003) v-hyp depend on ps by But-
terfield’s (1979) compression law (3.1.13). Therein pr depends on D by (3.3.5),
and er on tanψs as indicated by Fig. 3.3.1a. cos 3αs is implied by Nakai and
Matsuoka’s (1983) limit stress condition (3.7.1). Thus pe is determined from e
and tanψs for D = Dr, and pe/pr determines fv by (3.2.5). L and P = L−1N
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depend on T̂s as in (2.11.8) for hyp. The factor H = 1 can be dropped in
(3.9.3), nevertheless hypoelastic behaviour is obtained for pe/ps > ca. 2 and
thus fv � D/Dr. There is no lower e-bound, and too high tanψs should be
avoided as they would lead to tensile stress.

These viscoplastic relations could be represented by 3-dimensional re-
sponse diagrams (cf. Fig. 2.11.3). Normalized stretching with D=const and
different directions D̂ appears as spheres, but with log(D/Dr)-labels as in
Fig. 3.2.3a plus principal directions referred to the ones of stress. Stress rate
components appear as polars for three components plus direction angles rela-
tive to those of principal stress, now with log(D/Dr)-labels for argotropy. Such
diagrams can help to understand the approach to attractors, i.e. asymptotic
solutions of (3.9.2) with (3.9.3) for different conditions of stretching, stress
and void ratio. Suitable attractors with rather arbitrary deformations exhibit
the behaviour of simple peloids in an objective way.

State limits by v-elp and v-hyp are attained with D=const and can be
contractant (trD < 0), isochoric (trD = 0) or dilatant (trD > 0). In the
approach to them ps/pe tends to (D/Dr)Iv , thus fv tends to D/Dr. The
skeleton stress gets stationary (critical) for trD = 0, and the direction of
stress rate and stress tend to coincide with ps > 0 for trD < 0, and with
ṗs < 0 for trD > 0. At state limits Ts is determined by D and e, thus Ts and
D are coaxial due to frame-indifference. The dependence can be expressed by
relations of tanψs with trD/D, of cos 3αs with cos 3αD (by (2.11.15) with
trD/D instead of T∗

s), and of e with ps with tan ψs. Too high dilatancy ratios
trD/D have to be left aside as they would lead to tensile stress.

Creep is attained with
◦
Ts = 0, then (3.9.2) means Da = D. With (3.9.2)

the direction of stretching D̂ is thus determined by the one of stress T̂s via
P(T̂s). As the factor fe has the order of magnitude 1 the intensity of creep is

D = Da ≈ fvDr =
(

ps

pe

)1/Iv

Dr . (3.9.4)

As Iv ranges from ca. 0.02 to 0.05 D changes drastically with changes of pe. D
dwindles for subcritical stress obliquities (tanψs < tan ψsc), gets stationary
for critical tanψs and diverges for overcritical ones. Depending on the evolu-
tion prior to a constant Ts the initial creep rate goes over into the one by
◦
Ts = 0.

With the low permeability of peloids a rapid creep is nearly isochoric,
particularly in case of a constant deviator T∗

s by (2.11.3). Its amount D is
again given by (3.9.4), but ps is reduced via

ṗs/ps ≈ −
(

ps

pe

)1/Iv

Dr . (3.9.5)

With constant T∗
s and e the equivalent pressure pe is more reduced than ps

as tan ψs increases, thus the intensity of creep increases via (3.9.4). In case
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of relaxation with D = 0 the pressure ps is also reduced by (3.9.5), and the
stress obliquity tanψs gets smaller simultaneously.

More generally and less precisely speaking, the intensities of creep and
relaxation depend on the consolidation ratio pe/ps by (3.9.4) and (3.9.5).
Creep tends to a succession of state limits so that the directional invariants
trD/D, cos 3αD, tan ψs and cos 3αs are related. Relaxation means a reduction
of ṗs by (3.9.5), and a more rapid reduction of tanψs the bigger tanψs still
is. Contractant creep and relaxation get extremely slow by v-elp and v-hyp,
but cannot attain an equilibrium. Estimates of rates by (3.9.4) and (3.9.5) are
crude as pe depends sensitively on the instantaneous e and tanψs as ps can
be rather indeterminate and as pe/ps enters with the power −1/Iv.

Response to sudden changes of stretching D can be judged by its intensity
D and direction D̂ = D/D, and depend on the instantaneous state Ts and e
as for any D. If an RSE is first near a state limit, with ps/ps ≈ (D/Dr)Iv and
thus fv ≈ D/Dr by definition, a drastic rise of D causes a nearly hypoelastic
response as then D exceeds Dr by far. In monotonous continuations with the
new D the response gets viscoplastic as fv tends to the new D/Dr. With
the same previous state a drastic reduction of D causes first a relaxation, in
a continuation with the lower D the response gets viscoplastic. With high
enough consolidation ratios, say pe/ps > 2, fv is so small that the response by
(3.9.2) is nearly hypoelastic as long as D is not reduced by several decades.
Differences of v-elp and v-hyp arise with directional changes of D in the
vicinity of argotropic state limits. Then the response is hypoelastic by v-elp
within an assumed elastic range and if the stress tends towards this range,
and rather hypoplastic by v-hyp.

Cam clay models are elastoplastic without rate-dependence as by (2.11.8)
in general. They can be justified by the viscoplastic relations (3.9.2) and (3.9.3)
if D/Dr does not change drastically for continued anelastic deformations, and
if D/Dr is much higher for un- and reloading. As outlined further above fv

is close to D/Dr for a continuation of state limits, and Da � D holds after
a drastic increase of D. Argotropy, creep and relaxation are not captured by
Cam clay models, they are often ignored in the evaluation of experiments with
such models.

Differences and limitations of v-elp and v-hyp are revealed by state cycles
and transitions to these attractors by repeated reversals. We restrict ourselves
to isochoric evolutions with constant D as then the diffusion of pore water
may be neglected, and as changes of D are not given in the few test reports
with many reversals.

Isochoric strain cycles of our general RSE can be referred to the initial or
co-rotated principal directions of Ts for objectivity as proposed in Sect. 2.11.
v-elp yields a shakedown to hypoelastic behaviour with small amplitudes and
to a succession of state limits and hypoelastic response with bigger amplitudes.
The mean pressure ps does not change after the transition before the first
reversal. More realistically v-hyp leads to a gradual reduction of ps and tanψs,
though with minute rate for low ps/pe, and to state cycles with two ps-cycles
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for one strain cycle. The gradual reduction of ps and tanψs is exaggerated by
v-hyp, but not as much as by hyp in case of moderate amplitudes.

Isochoric ratcheting means cyclic plus monotonous isochoric deformation
with constant rate D. An updating of reference configurations is needed in
general as for psammoids. Ratcheting leads to stress cycles in convected RSEs
asymptotically both by v-elp and v-hyp. An argotropic state limit is attained
by the forward steps. With v-elp the asymptotic cycles have constant ps,
whereas with v-hyp ps makes a cycle alongside with two stretching reversals
which seems to be more realistic. In the transition to a state cycle ps changes
by v-elp only up to the first reversal, and gradually with further reversals by
v-hyp. The latter is more realistic, but observations with clays do not suffice
for a more precise validation.

By definition the state of a simple peloid RSE is sufficiently characterized
for its mechanical response by stress Ts and void ratio e. Even without net
attraction and cementation this cannot generally suffice, in particular with re-
peated reversals and with shear localization or cracking. As with psammoids
one may imagine states of swept-out memory (SOM) which are attained by
monotonous deformations (Gudehus et al. 1977), now with constant rate D
because of argotropy, so that hidden variables are determined by Ts and e
and are thus not needed explicitly. Argotropic SOM-states are not state lim-
its in general as for these e is determined by Ts and D, but state limits are
special SOM-states. As indicated further above viscoplastic effects with many
reversals are missed by v-elp and exaggerated by v-hyp. The few experimental
reports do not suffice to quantify how far SOM-states are justified for such
evolutions. It will be shown in Chap. 6 that SOM-states cannot suffice in gen-
eral, but are of use as attractors for hidden variables. These do not suffice with
overcritical stress obliquities, then polar stresses are needed for localizations
(Sect. 8.3).

Modifications of v-elp and v-hyp are available or at least feasible for arbi-
trary deformations. The reference pressure pr can be replaced by an objective
hardness hr, its argotropy can be captured by (3.2.2a) which works for a wider
range of D/Dr than (3.2.2b). The pressure dependence of limit void ratios can
be expressed by Bauer’s (1996) formula (2.4.1) with an argotropic hs. This
works for a wider ps-range than (2.3.1) and (3.3.13), and yields skeleton decay
with overcritical void ratios for low ps and isochoric stretching. A lower bound
void ratio ed could be related with extreme state limits for which one or two
skeleton stress components vanish. This could be achieved approximately by
relating the prefactor eo in (2.4.1) with the stress obliquity tanψs (Gudehus
2004). Therein the triangle in the deviator plane for vanishing stress with
ps = const > 0 (Fig. 2.7.1b) could be replaced by Nakai and Matsuoka’s
(1983) relation (3.7.1) with a suitable constant.

Other than introduced in Sects. 3.3 and 3.4 the argotropic stiffness tensor
L can depend on ps, e and D and on the stress direction T̂s = Ts/ps. The
exponent m for barotropy with constant D as by (2.11.8a) can be smaller
than 1, as was assumed by Adachi and Oka (1982) for v-elp and by Niemunis
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(1992, 2003) for v-hyp. This barotropy should agree with the one of limit
void ratios for a sufficiently wide ps-range, which can be achieved by (2.4.1).
As L yields a hypoelastic response for isotachic deformations with negligible
anelastic part, i.e. D = const  Da, it should be derived from a Ts-dependent
elastic energy (Niemunis and Cudny, 1998). Otherwise stretching cycles with
D = const  Da could produce inconsistent gradual changes of Ts. The
direction P of the anelastic stretching Da by (3.9.3) could depend on the
stress direction T̂s in an other way than proposed by v-elp and v-hyp.

Modifications will be more important in the vicinity of argotropic state
limits. Then the viscosity factor fv by (3.2.5) plays the dominant role, there-
fore the equivalent pressure pe has to be defined carefully. The elastic range
of v-elp for fv = D/Dr and constant e and D is shaped by L and P. Instead
of the Cam clay shape employed by Adachi and Oka (1982) the boundary
may be bullet-like near ps = 0 in the space of principal stress components
(Fig. 2.7.5), so that a tension cut-off is not needed. Cuts of this boundary
with ps = const can exhibit a dependence of tanψs on cos 3αs so that ϕc

by (2.2.15) agrees for cos 3αs = −1 and +1, e.g. by (3.7.1). The switch func-
tion H for v-elp may be dropped as the observed response with reversals and
D = const is not hypoelastic near argotropic state limits. The general vis-
coplastic relation (3.9.2) produces hypoelastic behaviour already with fv �
D/Dr by pe/ps > ca. 1.5–2, and also with a drastic increase of D.

The range of applicability could be widened and properly bounded by mod-
ifications of v-elp and v-hyp. This was indicated already further above for the
ps-dependence of limit void ratios, whereas the exclusion of net attraction and
of collective particle degradation belongs to simple peloids by definition. The
argotropic solid hardness hs by (3.2.2) may be used within the bounds by
(3.4.9), these could be specified more precisely. The dependence of the viscos-
ity index Iv on the choice of the reference rate Dr could be captured as for
solids by (3.1.9). Such an objective relation requires an oscillation frequency
and nano-micro factors for stress and stretching which cannot easily be quan-
tified. The relation of overcritical stress obliquities tanψs with reference void
ratios by (2.3.1), (2.4.1), or (3.1.13) could be improved if more data on peak
states were available, although shear localizations cannot be captured with
v-elp or v-hyp (Sect. 8.3). Extreme state limits with e = ed could be related
with splitting or cracking, this implies the cavitation of pore water (Sect. 6.3).

Objective and economic procedures are needed to determine the para-
meters of simple peloids. Thin layer shear tests with drainage via filter plates
(Balthasar et al. 2006) can supply the critical friction angle ϕcs, this can be
transformed into ϕc by (2.9.12). Undrained triaxial tests with axial shortening
D11 = −Dr and low initial pe/ps can provide ec for different ps, short samples
between smooth plates can remain uniform (Sect. 14.1). Jumps of D with the
same device and sample exhibit the argotropy, Iv can be determined from
changes of the stress deviator via (3.3.11). Parameters for the barotropy of
limit void ratios are best determined by compression of mud with D22 = 0 in
an oedometer, the argotropy and the diffusion of pore water have to be taken
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into account. Parameters for dilatant state limits can be estimated from peak
states in triaxial tests which prevent marked shear localizations (Sect. 14.1).
Isotropic compression tests to find ei are expensive and extreme state limits
with ed cannot be attained, but ei/ec and ed/ec may be guessed empirically
as for psammoids. The parameter κ for unloading by v-elp, or its counterpart
by v-hyp, can be determined from decompression tests, but argotropy and
diffusion should be taken into account.

Conventional limit water contents w can help to estimate limit void ratios,
Fig. 3.9.1. With full saturation e depends on w via e = wγs/γw. The pore
water should have the same ionic strength as in the intended application
which should imply a negligible net attraction (Sects. 6.3 and 7.1). Amounts of
stretching D should be estimated so that the argotropy can be allowed for. The
shrinkage limit ws arises by capillary entry after an isotropic compression with
constant D (Sect. 11.1). The related ps can be estimated from the undrained
cohesion cu via (3.3.10). The liquid limit wL belongs to an isochoric state
limit with cu ≈ 2 kPa, wL can also be determined with a shear vane and
may be used to estimate ps (Sect. 14.6). The plasticity limit wP implies a
capillary entry by splitting with e ≈ ed (Sect. 6.3), the related ps can again
be estimated via cu with the same D. More plastic clays have a higher wP .

More than with psammoids conventional notions of stiffness and strength
are hardly apt to characterize simple peloids in general. The stiffness modulus
Es = Ṫs1/D1 for uniaxial deformations (D1 �= 0, D2 = D3 = 0) varies
with Ts, e and D1 so that a single Es is not relevant. A Poisson ratio ν
as by (3.3.1) is rather arbitrary, it cannot be determined via the velocities
of shear and compression waves as the latter are confined by the pore water.
The undrained cohesion cu depends on e and D by (3.3.10) for monotonous
isochoric deformation, but also on the stretching invariant cos 3αD. It may at
best be used for the evaluation of shearing or penetration resistances in situ
(Sects. 14.3 and 14.6), and for design estimates. If stationarity is related with
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Fig. 3.9.1. Conventional limit water contents and argotropic limit values; the latter
for D = Dr, the former for higher stretching rates and pressures ps
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cu this may be called ductility, this is not always given as was outlined in
Sect. 3.5.

Except for skeleton decay the shearing resistance tends to ps tan ϕcs as for
psammoids (Sect. 2.9), but ps = p− pw can hardly be estimated via total and
pore water pressures p and pw as both are unknown in general. The assump-
tion of free drainage with given pw may at best be justified along pervious
boundaries of peloid bodies. Even then the often assumed shearing resistance
τf = c′+σ′ tan ϕ′ cannot be defended as the shear strength parameters c′ and
ϕ′ are subjective (Sects. 3.5 and 3.8), and as σ′ can hardly be estimated. The
frequently proposed degradation of strength by cyclic loading via increasing
pw is also dubious: the solid particles do not feel changes of pw so that only
the gradual reduction of ps counts, this is not the same for cyclic deformations
and ratcheting, and the latter has little in common with monotonous shear-
ing up to a maximal resistance. In other words, the so-called cyclic mobility
cannot be specified in an objective way by a reduction of strength.

As with psammoids viscoplastic relations like v-elp and v-hyp cannot be
validated by RSE-tests in general, but only by special element tests and via
suitable boundary value problems. Element tests as outlined in Sects. 3.5
to 3.8 are necessary for confirmation or refutation, but more general defor-
mations cannot be produced with the uniformity required for RSEs. Initial
and boundary conditions can be realized in certain model tests so that their
back-analysis reveals the range of validity. This will be shown with v-elp by
examples in Chaps. 11, 12, 13 and 14. Hydraulic conditions have also to be
considered.

To sum up, viscoplastic models can capture the behaviour of clayey soils in
an objective way for a wide range which can be explored and extended. Visco-
elastoplastic and hypoplastic relations (v-elp and v-hyp) can be formulated
with frame-indifferent tensors so that they work for arbitrary deformations.
Argotropic state limits can be represented by means of invariants and serve to
determine the main constitutive parameters. Rate-dependence, creep and re-
laxation are dominated by the consolidation ratio pe/ps, therein the equivalent
pressure pe cannot easily be determined. Hypoelastic behaviour is obtained
with pe/ps > ca. 2 and just after a dramatic rise of stretching. The assumption
of elastic ranges and switch functions for v-elp and Cam clay models is thus
supported in a rather subjective manner. Anelastic effects with cyclic stretch-
ing and ratcheting are underestimated by v-elp and overestimated by v-hyp.
The range of application of v-elp and v-hyp can be widened by modifications.
Extreme stress obliquities and lower bound void ratios could be incorporated,
but without shear localization and cracking. Conventional notions of stiffness
and strength are rather subjective.



4

PSAMMOIDS WITH REVERSALS

It was shown at length in Chap. 2 that the behaviour of psammoids with
reversals cannot generally be captured without internal state variables. But
how to introduce and justify hidden quantities? Babuška and Oden (2006)
show that the uniaxial anelastic response of metals with some hundred cy-
cles is not satisfactorily captured by widely used elastoplastic relations with
internal variables. It is not my intention to overcome this misery for solids
in Sect. 4.1, but to prepare more geometrico a way out for soils. The hid-
den state can be related with the spatial fluctuation of internal forces, this
is called force-roughness. This oriented quantity is particularly indicated by
the asymptotic response to strain cycles and ratcheting (cf. Sect. 2.1). The
proposed additional attractors of force-roughness are inevitably heuristic, but
may help to secure objectivity.

Because of the partly hidden state the introduction of psammoids with re-
versals cannot be as straightforward as in Sect. 2.2. An ample discussion of ex-
perimental results shows how the invisible can be traced indirectly (Sect. 2.2).
State variables for the force-roughness are then proposed by means of attrac-
tors (Sect. 2.3). This approach is rather heuristic, but photoelastic experi-
ments and numerical simulations provide at least a qualitative support. The
force-roughness can be related with erratic and variable force chains.

With this background elastoplastic relations with back stress (elp-α) are
introduced in Sect. 2.4. Algebraic representations will not be outlined in detail
as they are intricate and preliminary. Instead it is shown with diagrams how
attractors with reversals are approached in numerical simulations, and how far
experimental results can be matched. The same is shown for hypoplastic rela-
tions with intergranular strain (hyp-δ) in Sect. 2.5, they are likewise intricate
and preliminary. The stress- or strain-like internal variables are interpreted as
representations of force-roughness.

A closer inspection reveals seismically activated viscous effects during
strong changes of stretching, particularly near reversals (Sect. 2.6). The often
assumed rate-independence can at best be defended for hypoelastic and hy-
poplastic limits of granular solids, and for quasi-static evolutions with many
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reversals. This can be explained by means of a granular temperature which
arises during rearrangements. Heuristic models for cumulative anelastic effects
should thus be substituted by a unified physical concept wherein attractors
play a key role (Sect. 4.7).

4.1 A third prelude on solids

For preparing the subsequent sections we consider first evolutions of pore-free
solid RSEs which are and remain uniform (in a statistical sense) by definition.
As in Sect. 2.1 barotropy, argotropy, brittleness and fatigue are neglected, but
it is no more assumed that the state is sufficiently defined by stress components
only. Observations with path reversals indicate that additional internal state
variables are needed. It is shown in the sequel how this can be achieved, first for
uniaxial and then for cuboidal deformations, and both with elastoplasticity
(elp) and hypoplasticity (hyp). Use is made of suitable attractors, and the
outline is more graphical than algebraic.

For uniaxial cases some σ-ε-curves with reversals were shown already in
Fig. 2.1.1. Observed lenticular hysteresis loops are not reproduced by elp
and exaggerated by hyp. Ratcheting, i.e. cumulative anelastic deformation, is
obtained with asymmetric stress cycles by elp only if the stress limit is attained
repeatedly, and is exaggerated by hyp. These lacks cannot be overcome by
combining elp and hyp (Fig. 4.1.1a). First loading in an elastic range (OA)
can similarly be modelled by elp and hyp, but the diffuse observed elastic
limits prohibit improvements. The transition to a state limit (AB) can better
be captured by hyp than by elp. The response to a reversal (BC) can be
captured by elp or hyp with a switch function of σε̇, the difference of the
differential stiffness σ̇/ε̇ by factor 2 (Sect. 2.1) could be removed by modifying
hyp. A reloading (CD) eludes such an approach, however, as then σ̇/ε̇ is not
only determined by σ and sgn(σε̇). An additional state variable has to be
employed, but how?
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Fig. 4.1.1. Stress-strain curves with un- and reloading (a), with a composite model
(b), and for alternating stress (c)
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Masing (1926) proposed a bundle of elastoplastic rods with equal
deformation to explain this behaviour. In the simplest version two compo-
nents have the same cross section and modulus E, but different plastic limits
(Fig. 4.1.1b, insert). Thus an eigenstress σA − σB can occur with zero total
or external stress σ = σA + σB if one component was plastified, so that σ̇/ε̇
is different with a certain σ and sgn(σε̇) for different σA − σB . This model
can be formulated with a bundle of several rods to get rather smooth σ − ε
curves between reversals (Fig. 4.1.1c). Masing concluded that the branch of
the σ − ε curve after a second reversal (BC) equals the inverted branch af-
ter the first reversal (AB) as long as the composite does not attain a state
limit with σ̇/ε̇ = 0. In experiments with ductile brass he observed, however,
bigger σ̇/ε̇ than by this rule after a second reversal, and concluded that the
eigenstress is not a suitable hardening quantity.

A similar composite model was proposed by Iwan (1966), this is simplified
in Fig. 4.1.2. Working with different distributions of component stresses σi

and of plastic limits ci with the same averages (a) one obtains always the
same state limits with σ̇/ε̇ = 0 for monotonous stretching (b). The transi-
tions depend on ci and the initial distribution of σi (the sketch is qualitative).
This indeterminacy is overcome with the asymptotic response to cyclic de-
formations (c). Then the distribution σi gets independent of the initial one
and tends to a periodic change. This depends only on the strain amplitude
and the assumed distribution of ci. The latter can be chosen so that observed
hysteresis loops are reproduced.
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Fig. 4.1.2. Response with parallel elastoplastic rods: (a) distributions of inter-
nal stress and strength, (b) stresses for monotonous stretching and shortening, (c)
asymptotic stress cycles for cyclic straining, (d) stress-strain plot for imposed ratch-
eting

Although not considered by Iwan (1966) one can also capture ratcheting
with his model, Fig. 4.1.2d. Imposing monotonous plus cyclic strains asym-
metric stress cycles are attained after a transition. These depend only on the
amplitude and the step-wise increase of strain. The distribution of eigenstress
σ − σi gets also periodic and is asymmetric independently of the onset. The
distribution of ci can be adapted to match ratcheting test results.
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We can thus identify three kinds of attractors for which an initial state
is erased: state limits for monotonous stretching, symmetric stress cycles for
cyclic straining and asymmetric ones for ratcheting. They characterize the
mechanical behaviour in an objective manner (in uniaxial cases) and serve
to confine internal variables and their parameters, e.g. σi and ci in case of
Fig. 4.1.2. Composites with distributions like ci may be chosen so that the
observed asymptotic response is reproduced, but this approach is cumbersome
and could hardly be extended to multi-axial cases in an objective way.

Instead of inevitably arbitrary composites one can introduce a heuristic
internal state variable, discuss it with physical arguments and adapt it to
experimental findings. For uniaxial cases the spatial deviations from an even
stress distribution may be captured by a quantity h. This force-roughness has
an intensity |h|, say a standard deviation, and a sign so that plastifications
are differently enhanced with a given |h|. We postulate that h gets maximal
at state limits and is then determined by σ. With strain cycles h may tend to
a symmetric cycle alongside with a symmetric σ-cycle, both should be smaller
for smaller ε-amplitudes. With ratcheting h is assumed to tend to asymmetric
cycles alongside with asymmetric σ-cycles. Such attractors of force-roughness
h could be justified indirectly by matching test results. As h is a hidden vari-
able it cannot be determined directly, simulations with composites can at best
provide qualitative hints. We will see below how one-dimensional constitutive
models with hidden variables could work and be judged by means of h.
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Fig. 4.1.3. Ratcheting with two different intensities in different orders: cumulative
strain (a) and upper stress (b) vs. number of cycles

Symmetric stress cycles in an allowable range would lead to strain cycles
after a shift of strain, and to symmetric cycles of the hidden state variable
h. Asymmetric stress cycles would lead to an accumulation of anelastic strain
and to asymmetric cycles of h. Such evolutions can be partly represented by
a plot of cumulative strain εc vs. number of stress cycles N . This is shown in
Fig. 4.1.3a for two sequences (AB and BA) of different stress cycles. When
state cycles are attained ε accumulates by the same amount with each cycle.
If the order of different stress cycles is interchanged the cumulative ε agrees
for a suitable N . This empirical Miner’s rule (1945) cannot work for quite dif-
ferent numbers of different stress cycles. Imposed ratcheting with exchanged
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sequences of different intensity (AB and BA) can similarly lead to the same
stress bound σb for a certain N (Fig. 4.1.3b), but not otherwise. Such equiv-
alence rules are not apt to catch arbitrary transitions, whereas attractors can
be objective.
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Fig. 4.1.4. Uniaxial elastoplastic response with back stress α: (a) σ − ε curve with
initial α, stress response to strain cycles (b) and to ratcheting (c), evolutions of back
stress for monotonous (d) and cyclic deformation (e) and for ratcheting (f)

An elastoplastic model with a so-called back stress α (elp-α) is represented
in Fig. 4.1.4 (simplified after Mróz 1967). The centre α of an elastic range with
size b < c is variable between ±(c − b/2). The behaviour is elastic (ε̇ = ε̇e =
σ̇/E) as long as σ is in this range. If the stress is at its boundary ε̇ = σ̇/E
holds only for σ̇ towards its interior. Otherwise a plastic strain rate ε̇p occurs
with the sign of σ̇, and the elastic range is shifted via α̇ = σ̇. This kinematic
hardening is bounded at state limits with α̇ = σ̇ = 0 and σε̇ > 0 as then
±(σ − α) = b/2 holds. Monotonous stretching leads to one of these values of
stress (a) and back stress (d) as both are independent of the initial values σ
and α, these states are thus attractors.

Cyclic straining with amplitudes between b/E and (c−b)/E leads to sym-
metric cycles of stress (b) and back stress (e) in the periodic asymptote. For
a smaller amplitude than b/E the elastic range would not be left, for a bigger
one than (c − b)/E the hysteresis loops would have sections with constant
σ and α. Ratcheting with not too big strain sections leads to asymmetric
asymptotic cycles of stress (c) and back stress (f) with sections having σ̇ = 0
and α̇ = 0. The parameter c can be determined from the asymptotic resis-
tance to monotonous stretching, the additional one b can be adapted so that
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observed asymptotic σ-cycles are matched. As the back stress α produces the
cannot be interpreted as an eigenstress.

A hypoplastic model with a so-called internal strain δ (hyp-δ) is represented
in Fig. 4.1.5 (simplified after Niemunis and Herle, 1997). δ evolves with ε by
δ̇ = ε̇ for δε̇ ≤ 0 and by δ̇ = (1 − |δ| /R) ε̇ for δε̇ > 0 (a). This means that
δ attains one of the bounds ±R for monotonous deformations, with δ̇ = 0
for a continuation with δε̇ > 0, and that δ changes like ε after a reversal
with δε̇ ≤ 0. σ evolves elastically with ε by σ̇ = Eε̇ for δε̇ ≤ 0 in case of
δ = 0, and follows the hypoplastic relation (2.1.2) for δε̇ > 0 with |δ| = R.
An interpolation is employed between these cases for |δ| < R. The approach
to state limits by monotonous stretching is shown in the same plots, they are
attractors as the initial values of σ and δ are erased.

Strain cycles lead to symmetric asymptotic cycles of internal strain (c) and
of stress (d). Other than by elp-α the asymptotic amounts of σ/c and δ/R get
arbitrarily small for smaller ε-amplitudes, but the transition to the attractor
requires more cycles than by hyp. Ratcheting leads to asymmetric cycles of
internal strain (e) and stress (f) up to σ̇ = 0 and δ̇ = 0 in forward sections.
This attractor reaches state limits of σ and δ repeatedly, and remains close to
them in case of small amplitudes. The parameters E and c can be determined
by small cycles and big stretching, respectively. The parameter R and the
interpolation functions for δ̇ and σ̇ have to be adapted to match observed
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asymptotic cycles. The internal strain δ leads to the same asymptotic effects
as the proposed force-roughness h, this can thus be represented by δ. δ is
formally treated like a strain, but cannot be physically interpreted as such.

For going beyond uniaxial evolutions biaxial RSEs with zero out-of plane
stress and force-roughness are sketched in Fig. 4.1.6. The drawn normal stress
distributions at the flanks may have average wavelengths as the sizes of crys-
tallites. The average amplitudes of spatial stress fluctuations are different in
general for orthogonal flanks and change with deformations. Their magni-
tudes h1 and h2 are oriented, e.g. an interchange of h1 and h2 changes the
orientation by 90◦ (a, b). As the crystallites feel only differences σ1 − σ2 we
assume that only differences h1 − h2 matter. Thus two RSEs with different
h1 and h2 and the same h1 − h2 have the same hidden state (e.g. c and d).
This assumption may be justified by considering ensembles of cuts, but is not
necessary and could at best be supported by simulations with composites of
crystallites.
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and same mean values. Components of force-roughness interchanged (a, b), and an
equivalent with same difference (c, d)
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One can imagine similar stress fluctuations for cuboidal RSEs. They have
three components of force-roughness hi (i = 1, 2, 3), but only the deviators
h∗

i = hi − Σhi/3 matter. The crystallites may be so small that mean values
and standard deviations of their stress components make sense. Their sizes
are not further specified, considerations with fractals are left aside as these
could as yet not be quantified.
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Fig. 4.1.7. Associated deviatoric paths of strain (a), stress (b) and hidden force-
roughness (c), with response polars at a reversal

Cuboidal evolutions of shape and state can be represented by associated
paths in deviator planes, Fig. 4.1.7 (cf. Fig. 2.1.2). A strain path (a) is re-
lated with a stress path (b) and a hidden path of the deviatoric components
of force-roughness h∗

i (c). The latter has an intensity h =
√

Σh∗2
i and an

orientation αh. Evolution equations relating σ̇i and h∗
i with ε̇i, σ∗

i and h∗
i can

be represented by response polars for unit strain rates (Σε̇2
i = 1), now also

for the hidden state. These polars are of use to represent the approach to
attractors and other features of constitutive relations.
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Fig. 4.1.8. Approach to a state limit by an elastoplastic relation with back stress
(elp-α): (a) strain path, paths and boundaries of stress (b) and back stress (c)

Elastoplastic relations with back stress (elp-α) are represented in Fig. 4.1.8
(simplified after Mróz, 1967). In the deviatoric stress plane (b) an elastic range
is a circle with diameter b and centre αi inside the bounding circle for state
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limits. Plastic strain rates ε̇p
i occur when σi is at the elastic boundary and

σ̇i tends to leave it. ε̇p
i is normal to the elastic boundary, this is shifted in

the same direction. This kinematic hardening is bounded as the elastic range
cannot cross the bounding circle. An approach to a state limit by a straight
strain path (Fig. 4.1.8a) is shown by means of associated stress (b) and back
stress paths (c).

Response polars reveal how the state paths tend to points with the same
orientation (αε̇ = ασ = αα) and limit radius independently of the beginning,
i.e. to an attractor. The evolution in Fig. 4.1.8 starts (0) in an elastic range
so that the response polar for σ̇∗

i is a circle and the one for α̇i is a point.
At the onset of plastification (1) the stress response gets weaker and agrees
with the one of back stress. At a state limit (2) the stress response exhibits a
cut-off (cf. Fig. 2.1.4) and the back stress changes only with sidewards paths.
A monotonous interpolation is assumed for kinematic hardening (1–2).
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Fig. 4.1.9. Deviatoric response to strain cycles (a) by elp-α: paths and boundaries
of stress (b) and back stress (c)

Strain cycles of moderate amplitude (A in Fig. 4.1.9a) lead to symmetric
asymptotic cycles of stress (b) and back stress (c) with the same shape. With
amplitudes below b/G the elastic range shifts slightly inwards and remains
eccentric as the further response is elastic (B). With a big amplitude the state
cycles are cut off by the conditions for state limits and thus distorted. Elliptic
strain cycles (e.g. C) lead to symmetric state cycles with the same alignment,
i.e. the same average Lode angles ᾱσ, ᾱh and ᾱε.

Ratcheting (Fig. 4.1.10a) leads to asymmetric asymptotic cycles of stress
(b) and back stress (c). The average obliquities get the same, i.e. ᾱσ = ᾱα =
ᾱε̇, and the state limit amounts of σ∗

i and αi are attained in the forward
sections. This holds for small (A) and big amplitudes (B). The back stress αi

has the properties proposed with Figs. 4.1.6 and 4.1.7 for the components h∗
i

of force-roughness, which is thus represented. αi is formally an internal stress,
but not physically.

Mróz (1967) points out that the elastic range can have another shape than
circular, and that its size can be variable by means of an isotropic hardening
parameter. Its translation with plastic strain (kinematic hardening) can be
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Fig. 4.1.10. Deviatoric response to imposed ratcheting (a) by elp-α: paths and
boundaries of stress (b) and back stress (c)

approximated differently in detail, but so that it cannot cross the bounding
line of state limits. The elastic stiffness can depend on the back stress so
that a variable anisotropy is allowed for. Uniaxial deformations are implied
as special cases with the constant Lode angles αε̇ = ασ = αα = 0 ± 60◦.
Reversals appear as extremely slender ellipses representing the cyclic parts of
strain paths and the limit cycles of σ∗

i and αi. Uniaxial cases do not suffice
for validation and identification.
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Fig. 4.1.11. Deviatoric response to a strain path (a) by a hypoplastic relation with
internal strain (hyp-δ): paths and boundaries of stress (b) and internal strain (c)

Hypoplastic relations with internal strain (simplified after Niemunis and
Herle 1997) are represented in Fig. 4.1.11. In deviator planes paths of strain
εi (a) are related with those of stress σ∗

i (b) and internal strain δi (c). δi

changes with εi by δ̇i = ε̇i for
∑

δiεi < 0 and by δ̇i = ε̇i − δiδ/R otherwise,
with δ =

√∑
δ2
i so that δ cannot exceed R. σ∗

i changes with εi by the elastic
relation σ̇∗

i = Gε̇i for δiε̇i < 0, otherwise by the hypoplastic relation (2.1.12)
for δ = R and by an interpolation function for δ < R. These differential
relations can be represented by response polars. They steer the paths of σ∗

i

and δi towards a state limit if the strain path is straight. For these attractors
the Lode angles are equal, ασ = αδ = αε̇, σ∗ =

√∑
σ∗2

i and δ are at the
upper bounds c and R. Only for an onset with σi = 0 and δi = 0 the polars
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are circles (0). Otherwise (1) they consist of two circular arcs, at state limits
(2) one of them gets a straight cut-off.
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Fig. 4.1.12. Response to strain cycles (a) by hyp-δ: paths and boundaries of devi-
atoric stress (b) and internal strain (c)

Strain cycles, Fig. 4.1.12a, lead to symmetric limit cycles of stress (b) and
internal strain (c). Other than for elp-α these attractors are attained with
arbitrarily small amplitudes (e.g. A), depending on the initial state the number
of cycles required for the transition is again bigger for a lower amplitude. As
with elp-α the asymptotic cycles are cut off by limit conditions in case of big
amplitudes (e.g. B). Again elliptic strain cycles lead to symmetric state cycles
with aligned average Lode angles, i.e. ᾱσ = ᾱδ = ᾱε.
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Fig. 4.1.13. Response to forced ratcheting (a) by hyp-δ: paths and boundaries of
deviatoric stress (b) and internal strain (c)

Ratcheting (Fig. 4.1.13a) leads to asymmetric cycles of stress (b) and in-
ternal strain (c). This holds true for small (A) and big amplitudes (B) of
the circular parts of strain paths. The asymptotic average Lode angles agree,
ᾱσ = ᾱδ = ᾱε, and the state limit amounts of σ∗

i and δi are repeatedly at-
tained in the forward sections. Except for small amplitudes this is the same
as with elp-α, cf. Fig. 4.1.10.

Following Niemunis and Herle (1997) one could modify the evolution
equations by means of other limit state conditions and other interpolation
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functions. The only must is that attractors are obtained as indicated by
Figs. 4.1.11, 4.1.12, and 4.1.13, i.e. state limits by proportional deformations,
symmetric state cycles by strain cycles and asymmetric ones by ratcheting.
Like with elp-α uniaxial cases are implied as extremely slender elliptic or
lenticular paths, the apexes of which represent reversals. Such cases do not
suffice for validation and identification.

The outline with deviator planes would evidently not be influenced by an
interchange of the order of subscripts i. In other words, the statements are
invariant with respect to adding any integer multiple of 120◦ to the Lode
angles. With arbitrary deformations frame-indifference requires coaxiality of
stress and hidden state tensors with the stretching tensor for state limits.
Coaxiality should also hold for the average state and stretching tensors in
case of aligned state cycles by stretching cycles and ratcheting. Thus both
for elp-α and hyp-δ biaxial experiments with fixed principal axes suffice for
validation and identification.

Biaxial tests have been carried out and simulated for improving constitu-
tive theories, Fig. 4.1.14. A rectangular sheet of metal is pulled in orthogonal
directions (a) with stress or strain control in various successions. The out-of-
plane stress is zero, without volume changes the out-of-plane strain is given
by the in-plane strain components. Buckling prohibits compressive stresses,
necking and shear banding cannot be avoided with big strains. Thus uniform
state limits can scarcely be attained, but only be estimated by extrapolation.

Simulations can be obtained with composites of perfectly elastoplas-
tic polygonal domains (crystallites), Fig. 4.1.14b. As with uniaxial cases
(Figs. 4.1.1b and 4.1.2) it is usually assumed that all domains experience
the same strain path. So the stress distribution is uneven with jumps at the
domain boundaries, only spatial average stress vectors are further consid-
ered. This implies a kind of force-roughness as proposed further above which
characterizes the hidden internal state. The idealized crystallites should be
convex and far smaller than the RSE. The submicroscopic force-roughness
related with dislocations is more complicated and can as yet scarcely be
captured.

Results of such simulations by Kuroda and Tvergaard (2001) are shown
in Fig. 4.1.14c. 160 domains were assumed with such a distribution of plastic
resistance that realistic stress-strain curves are reproduced (cf. Fig. 4.1.2). The
lines are stress paths due to biaxial stretching, first isotropically (ε1 = ε2) and
then uniaxially in the 1 or 2 direction. Yield curves from calculated plastic
strains are indicated as rows of equal points. The also indicated directions of
plastic stretching rate are not normal to the yield curves and lie in the fan
of a vertex at the sharp bend of stretching paths. This indicates that elp-α
models as introduced with Fig. 4.1.8 are oversimplified.

Approaches with some hundred domains could deepen the understanding,
but could scarcely be used in applications. So there is no way around heuristic
constitutive relations with internal state variables. The latter are simplified
substitutes of the actual force-roughness and the variable fabric. Attractors
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Fig. 4.1.14. Biaxial deformations: pulling device (a), composite model (b), simu-
lation results (c) by Kuroda and Tvergaard (2001)

are necessary to get rid of always partially unknown initial states, otherwise
constitutive models and related experiments would not be objective. It is
evident for biaxial deformations that a hidden state variable should have at
least two components, say h1 and h2. Their ratio h2/h1 represents an internal
orientation, their intensity h =

√
h2

1 + h2
2 should be bounded from below and

above. This is nota bene at best a crude substitute of force-roughness and
fabric, a direct validation is out of reach.

Back stress α and internal strain δ in elp-α and hyp-δ, respectively, are
special cases of tensorial hidden state variables h. Both are deviatoric second
order tensors, so three principal axes and two invariants (amount and Lode
angle) suffice to quantify them. Coaxiality of stress and stretching follows
from frame-indifference for state limits, also with average stress and stretching
for aligned stretching cycles and ratcheting. A physical interpretation of the
tensors α and δ beyond these general requirements is hardly possible. Mind
that α or δ is a kind of stress or strain merely in a formal, not in a physical
sense. One can only speculate that both represent oriented spatial fluctuations.

Validation and identification of such models as elp-α and hyp-δ are in-
evitably heuristic. Attractors are necessary to get rid of unknown initial states,
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but they cannot easily be attained in experiments. Most revealing is the re-
sponse to a reversal from a state limit or in a state cycle as then initial states
are erased. Still the improvement of constitutive relations with hidden state
variables is a cumbersome sequence of trial and error. Only on the base of
validations the determination of parameters (identification) makes sense. The
neglection of barotropy, pyknotropy, argotropy, brittleness and fatigue is cer-
tainly not always justified.

To sum up, the behaviour of pore-free solids with reversals may be captured
with elastoplastic or hypoplastic relations with hidden variables, these are
stress- or strain-like and could represent the internal force-roughness. Stress
cycles as asymptotic response to cyclic deformations and ratcheting are at-
tractors which enable an objective validation and calibration. Interpolations
between such attractors and state limits are only indicated more geometrico
as this section is to prepare for sand-like soils with reversals.

4.2 Observed response of sand with reversals

As can be seen in Fig. 2.6.2a, b, Verdugo and Ishihara (1996) observed that
the response to deviatoric unloading without volume change depends solely
on e if a critical state was attained before. The same can be expected for the
response to reversals with a given direction of stress path from other critical
states, and also from contractant or dilatant state limits. This behaviour was
rarely checked and reported, but is often tacitly assumed to get repeatable
test results. Initial states are often produced by imposing a proportional stress
path to dense cylindrical samples. Subsequent axial shortening or lenghtening
with constant skeleton pressure σs2 or ps (conventionally σ′

2 or p′) produces
evolutions of σs1 and e which get more repeatable with the approach of peak
states.

As long as the internal state is determined by skeleton stress components
and void ratio, i.e. for states of swept-out memory (SOM), it cannot be re-
vealed by the response to an isobaric or isochoric reversal. The response to
repeated reversals off SOM-states is more revealing as then the state is not
sufficiently determined by skeleton stress components and void ratio, but ir-
reproducible relics of preparation should be erased by repetitions. Test results
of this kind are outlined in the sequel, first with rather symmetric and then
with asymmetric deviatoric stress cycles of different kinds. Only tests with
reconstituted samples and clean hard quartz grains are taken into account
as only then abrasion and fragmentation, cementation and rate-dependence
can be of minor importance. Published test reports refer preferably to cyclic
deviatoric loading with constant skeleton pressure (σ′, σ′

2 or p′) or constant
void ratio e. The following selection and discussion is focused on that part of
the behaviour which does not depend on the initial state except for density.

Small symmetric shear cycles with isotropic average stress are produced
with cylindrical samples in resonant column tests, Fig. 4.2.1. After preparation
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Fig. 4.2.1. Dismantled setup for resonant column tests with a sand (a), shear
moduli and damping ratios vs. amplitude (b, courtesy G. Huber)

with an initial e and pressurizing with σs1 = σs2 = ps torsional vibrations
are imposed by a crosshead with electromagnetic control of the torque (a),
and a resonance frequency so that the amplitude is bigger than with other
frequencies for the same torque. Assuming a linear response with a shear
modulus Gs and a hysteretic damping ratio Ds for the evaluation, Gs and Ds

are obtained for different shear strain amplitudes γa as shown in Fig. 4.2.1b.
If γa is lower than a threshold γe that ranges from ca. 10−7 for big angular to
ca. 10−5 for small round grains Gs and Ds depend hardly on the amplitude.
For this range the dependence of Gs on e and ps can be described by the
empirical formula (Hardin and Drnevich 1972)
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Gs = Ks
(er − e)2

1 + e

(
ps

pr

)m

(4.2.1)

with an exponent m ranging from ca. 0.4 to 0.6, a reference pressure pr =
1kPa, a reference void ratio er and a factor Ks ranging from ca. 3 to 7 MPa
for quartz sands. Equation (4.2.1) could be made unit-invariant by taking
pr and Ks proportional to a strength or stiffness of the grain mineral. It
suggests hypoelastic behaviour, but Ds indicates hysteresis even for minutest
amplitudes. The Hertz-Mindlin theory of elastic spheres in contact with sliding
friction would yield m = 2/3 in (4.2.1) and also hysteresis, a more realistic
m ≈ 0.5 is obtained with contacts of angular and round grains (Iwasaki et al.
1978).

The decrease of Gs and increase of Ds with bigger amplitudes visible in
Fig. 4.2.1b appears reasonable, but more in detail it is contestable. With an
increasing hysteresis for bigger amplitudes the evaluation with a linear theory
is no more consistent, it can at best yield an average secant modulus Ḡs and
an average damping ratio D̄s. Richart et al. (1970) point to a minute gradual
decrease of e with drainage and of ps without it, both are ignored in the routine
evaluation of resonant column tests. These cumulative effects tend apparently
towards a periodic response if the average e or ps and the amplitude are
not too big. This was confirmed by Huber (2010) with sophisticated resonant
column tests. These show more precisely than Fig. 4.2.1b that only with very
small amplitude and high density the response gets almost elastic. It appears
therefore that sand has at best an infinitesimal elastic range near stable states
of rest.

Small shear cycles with anisotropic average stress reveal anisotropic Gs,
Fig. 4.2.2. Roesler (1979) observed the propagation of shear waves through a
cubical dry sand sample under an axisymmetric anisotropic stress state (a).
With dense samples the empirical relation (4.2.1) was confirmed, but Gs was
increasingly anisotropic with increasing stress ratio σ1/σ2. Kuwano and Jar-
dine (2002) imposed shear waves of small amplitude to cylindrical samples
with σs1 > σs2 by means of so-called bender elements (Fig. 4.2.2b). They
confirmed (4.2.1) and observed again an increasing anisotropy of Gs, calcu-
lated from wave travel times, with increasing skeleton stress ratio σs1/σs2.
These findings suggest a hypoelastic approach as if the skeleton was a kind
of solid after an adaption by stationary mean stress components and shear
cycles. There is at least as much hysteresis as indicated by Fig. 4.2.1b for
σs1 = σs2, however, and although cumulative anelastic effects have not been
recorded with the devices of Fig. 4.2.2 they must occur.

Moderate symmetric shear cycles with constant effective pressure σ′ normal
to shearing were investigated in different devices, this was outlined already in
Sects. 2.9 and 2.10. Without describing tests Casagrande (1936) proposed a
lower bound void ratio ed attained by shear cycles that decreases with bigger
σ′ as ec for critical states (Fig. 2.9.5e). Youd (1972) confirmed this finding
more in detail (Fig. 2.10.4): e tends to asymptotic butterfly loops, these are
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Fig. 4.2.2. Arrays to observe the propagation of shear waves in sand samples: (a)
by Roesler (1979), (b) by Kuwano and Jardine (2002)

reached with a lower number of cycles if the amplitude is bigger, ed does
not depend on frequency and water content and is lower for bigger σ′. The
observed periodic asymptotic response indicates that the grain properties are
rather permanent in the tested range. The simulations shown in Fig. 2.10.5
reveal that the cumulative effects observed by Youd (1972) are overestimated
with a simple hypoplastic model.

Youd (1972) used a device as sketched in Fig. 2.9.7 which inevitably pro-
duces non-uniform stress distributions. So his results can at best support
constitutive relations with an internal variable, but are not apt to quantify
the latter. Isochoric cyclic shear tests (e.g. Franke et al. 1979) with saturated
undrained samples in devices as sketched in Fig. 2.10.3 have the same short-
coming. They produce a gradual decrease of σs and thus of shear stiffness,
which is often related with the so-called cyclic mobility (Castro 1975). This
anelastic effect is not obtained with simple elastoplasticity and exaggerated
by simple hypoplasticity (Sect. 2.10). With the inevitable lack of uniformity
such test results cannot suffice to quantify an internal state variable, let alone
how this is related with spatial fluctuations of intergranular forces.

Results of cyclic torsional shear tests with saturated drained hollow cylin-
drical samples by Pradhan et al. (1989) provide more insight as stress and
deformation are more uniformly distributed. The authors show that nearly
the same dependence of τ/σs on ε̇p/γ̇p is obtained with loose and dense sam-
ples. This suggests that a kind of stress-dilatancy relation holds as a plastic
flow rule. This was already proposed by Rowe (1962) and by Roscoe (1970).
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The former showed that (2.2.20) works also for monotonous deformations prior
to state limits. This may be taken over to (2.9.7) for monotonous shearing.
The sections with the same signs of τ and γ̇ can be fairly well matched by
(2.9.7) with ε̇p/γ̇p instead of tan νs = ε̇/γ̇. In particular, for critical stress
ratios τ/σs = ± tan ϕsc zero dilation is obtained, i.e. ε̇p/γ̇p = 0.

This seems to support Rowe’s (1962) idea of a sliding mechanism in the
grain skeleton which is dominated by the stress ratio σs1/σs2 and the direction
of the principal stress σs1 independently of the void ratio. In the sections with
different signs of τ and γ̇, however, the experiments reveal two branches for
shearing before and after a reversal. At each reversal ε̇p/γ̇p jumps to a bigger
amount just after it. In other words, two values of ε̇p/γ̇p hold for one value of
τ/σs if τ and γ̇ have a different sign.

Thus the concept of a unique flow rule fails just after a reversal, but can
get valid again when τ and γ̇ obtain the same sign by monotonously continued
shearing. This behaviour after a reversal suggests a gradual adaption of the
internal state by a monotonous deformation until it is determined by the
external state, i.e. by skeleton stress components and void ratio. This adaption
was called swept-out of memory (SOM) by Gudehus et al. (1977) and was
discussed in Sect. 2.5. Thus the influence of the internal state is only revealed
during small deformations just after a reversal. This argument is not refuted
by the incertainty of elastic strain rates, ε̇e and γ̇e in case of simple shearing.
Pradhan et al. (1989) determined ε̇e and γ̇e from test sections with isotropic
or isobaric unloading, but their stress-dilatancy relation is not substantially
influenced by the inaccuracy of elastic strain rates.

The findings of Pradhan et al. (1989) refute the idea of a single plastic flow
rule, i.e. a unique relation of the directions of stress and strain rate, but they do
not suffice to establish an internal state concept. A more quantitative evidence,
though again indirectly as a unique definition and determination of internal
state variables is apparently out of reach, can be obtained by cumulative effects
with repeated reversals. One can see from Fig. 2.10.1 that there was no drift
of the average shear stress and strain, i.e. the cycles investigated by Pradhan
et al. (1989) were rather symmetric. So the only cumulating quantity in this
case is volumetric strain or void ratio e. As in Youd’s (1972) tests (Fig. 2.10.4)
e decreases gradually if |τ/σs| never gets so big that dilation dominates and
peak states would lead to shear localization. The gradual decrease is stronger
if the relative void ratio re is higher, and e can also increase with bigger
amplitudes.

At first sight the isobaric hollow cylinder shear test results in Fig. 2.10.1
reveal a stronger cumulative densification than the ones by Pradhan al. (1989)
with negligible radial and circumferential strain. Up to the first three reversals
the samples with an isotropic initial stress state are stiffer than the ones with
an anisotropic initial stress state. After an adaption in the first few cycles
there is no significant influence of the previous stressing on the differential
and cumulative response. Thus the initial state except for e and ps can be
swept out with a few reversals. The external and internal state can tend to
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periodic changes by imposing repeated cycles independently of the onset. This
asymptotic behaviour was attained in the tests by Youd (1972), Fig. 2.10.4,
but not in the ones by Pradhan et al. (1989).

Cyclic triaxial tests with saturated quartz sand have been carried out in
many variants, none of them led to a periodic response. Pradhan et al. (1989)
report on drained isobaric tests with the same sand as for their shear tests,
again with gradually increasing amplitudes, Fig. 4.2.3. A loose sample reveals
a gradual increase of differential stiffness τ̇ /γ̇ for each τ/σs (a) due to the
densification (b). A dense sample has a bigger τ̇ /γ̇ for each τ/σs (d) than
a loose one, and this stiffness exhibits less gradual increase as dilation and
contraction are nearly equal (e). The plots of q/ps vs. −ε̇pγ̇p, calculated with
elastic strain rates from unloading, are almost the same for loose (c) and dense
sand (f).

A vanishing dilation is obtained for critical stress ratios before reversals,
i.e. for σs2/σs1 by (2.2.15) with (σ1−σ2)(ε̇1− ε̇2) > 0, this is also obtained by
the stress-dilatancy relation (2.2.20). As for shearing one can conclude that a

Fig. 4.2.3. Isobaric behaviour of saturated sand samples with pulsating and grad-
ually increasing amplitudes in triaxial tests (Pradhan et al. 1989). Loose sample:
stress ratio (a) and volumetric strain vs. shear strain (b), stress ratio vs. plastic
strain rate ratio (c); same with a dense sample (d, e and f)
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unique stress-dilatancy relation works as a plastic flow rule only if (σ̇1 − σ̇2)
and (ε̇1 − ε̇2) have the same sign. The plots are not as symmetric as for
shearing or for biaxial deformations, but there is again no drift of the average
deviators (σ̄1 − σ̄2) and (ε̄1 − ε̄2).

There are only few consistent reports on cumulative deformations observed
with cylindrical samples of saturated sand. Luong (1982) observed cumulative
volume changes due to 20 cycles of (σ1 − σ2) with constant average (σ1, σ2)
and open drainage. Independently of pressure and initial density there was
always contraction when the average stress obliquity (σ1 − σ2)/p′ was below
the critical threshold by (2.2.15), and always dilation in the opposite case.
Luong found critical stress obliquities separating contractant and dilatant
regimes both for positive and negative average stress deviators. He proposed
that without drainage cycles of (σ1 − σ2) should lead to the same critical
obliquity (σ1 − σ2)/p′, and to an increase or decrease of p′ in the transition
depending on the given e and the initial p′.

Chang and Whitman (1988) extended this concept by evaluating results
of cyclic triaxial tests with free drainage, Fig. 4.2.4. In the plane of (σ1 − σ2)
vs. p′ (a) the average (σ1 −σ2)/p′ and the amplitude Δ(σ1 −σ2)/p′ were kept
constant with different σ′

2. The directions of the cumulative strain increments
for up to 103 stress cycles (b) are determined by the average (σ1−σ2)/p′. The
plastic potential associated with this kind of flow rule (dashed lines) agrees
with the one for state limits by CSSM (Sect. 2.3). Chang and Whitman (1988)
do not communicate void ratios and their evolution. It appears that as for
isobaric cyclic shearing the average e is lower than critical for critical average
obliquities (σ1−σ2)/p′, and that the gradual densification saturates at a lower
bound of e for lower than critical average stress ratios (σ1 − σ2)/p′.

Wichtmann et al. (2006) continued this investigation with different kinds
of saturated sand samples, also with negative average stress deviators and
gradual axial extension, Fig. 4.2.5. Keeping the average stress components
σ̄′

1 and σ̄′
2 constant, up to 105 cycles of σ̄′

1 and σ̄′
2 were imposed with an

Fig. 4.2.4. Response of saturated sand samples in drained triaxial tests (Chang
and Whitman 1988): cycles of stress deviator vs. mean pressure (a), directions of
cumulative strain increments in the same stress plane (b)
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Fig. 4.2.5. Response of saturated sand to stress cycles in drained triaxial tests
(Wichtmann et al. 2006): stress components and directions of cumulative strain
rates (a), flow rule for cumulative strain rates (b), cumulative strains (c), influence
of the amplitude on the intensity of accumulation (d)
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elliptic stress path of constant shape in each test. similarly as in Fig. 4.2.4a
the amplitude Δ(σ1 − σ2)/(σ̄1 − σ̄2) was kept rather small. The direction of
the average cumulative strain rate is essentially determined by the average
stress obliquity (a). This kind of flow rule can be approximated by the one for
state limits according to CSSM or hypoplasticity (b). This is a more precise
substitute of what Luong (1982) and Chang and Whitman (1988) discovered.

The cumulative strains follow nearly the same kind of flow rule (Fig. 4.2.5c).
They do not depend systematically on the frequency in the tested range from
0.05 to 2 s−1. The accumulation increases or decreases with an increase or
decrease of the amplitude, respectively (d). A detailed analysis revealed that
the rate of accumulation depends only on the instantaneous stress cycle and
the average state σ̄′

1, σ̄′
2 and ē. It is maximal with circular cyclic stress paths

and minimal with a constant ratio Δσ′
2/Δσ′

2 of the cyclic stress fractions.
This indicates that the grain skeleton can be adapted to a nearly hypoelastic
response if stress cycles are polarized, but not otherwise.

Wichtmann et al. (2006) observed a linear increase of cumulative strains
with the logarithm of the number of cycles up to N ≈ 104. The observed
stronger increase for N > ca. 104 indicates a gradual abrasion. Without it the
densification should attain an asymptote as for cyclic shearing (Fig. 2.10.4).
The void ratios were always lower than critical. In the dilatant regime with
an overcritical average stress obliquity the tests had to be stopped after
an amplitude-dependent low number of cycles because of shear localization
and bulging or necking. As Luong (1982) and Chang and Whitman (1988)
Wichtmann et al. (2006) do not report on the evolution of e more in detail.

More recently Wichtmann et al. (2009) presented the gradual relaxation
of a rather dense undrained sand sample by cyclic deformation with small
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amplitude, Fig. 4.2.6. The effective stress disappeared similarly with different
initial stress states, and after less cycles for higher void ratios. This may be
considered as the counterpart of the gradual densification by small deviatoric
strain cycles with constant skeleton pressure. A complete relaxation cannot
be expected, however, with very dense samples, then small isochoric strain
cycles should lead to a butterfly attractor.

Ibsen (1994) tested undrained saturated sand samples of different densities
with cyclic stress deviator σ1 − σ2 and constant average σ̄1 − σ̄2, Fig. 4.2.7.
He demonstrated that consistent results can be obtained in a triaxial setup
with short samples (h ≈ d) and hard lubricated endplates (Sect. 14.1). With a
medium density the stress path tends to a cyclic asymptote (a), and the pore
pressure tends to stationary cycles after an increase (b). Hysteresis loops of

Fig. 4.2.7. Response of saturated sand to a pulsating deviatoric stress in an
undrained triaxial test (Ibsen 1994): effective stress path (a), stress deviator vs.
axial strain (b), pore pressure (c) and axial strain vs. number of cycles (d)
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Fig. 4.2.8. Asymptotic stress cycles for tests of Fig. 4.2.7 with moderately (a) and
very dense (b) samples (Ibsen 1994)

decreasing width appear in the plot of σ1 − σ2 vs. ε1 (c), the cumulative ε1

tends to a linear increase with the number of cycles (d). As shown in Fig. 4.2.8
the asymptotic stress paths are lenticular with a lower than critical average
ratio (σ̄1 − σ̄2)/p′ this is somewhat lower for higher p′. The average pressure
p̄′ decreases (a) or increases, respectively, to an asymptote (b) if the sample
has a high or a lower density. The variable membrane penetration, which was
introduced with Fig. 2.6.7, makes the lenses flatter and wider and enhances
their shift.

These findings confirm Luong’s (1982) opinion, they are a counterpart of
the results by Chang and Whitman (1988) and by Wichtmann et al. (2006),
but there are differences. Ibsen (1994) attained stationary ratcheting and
stress cycles, so his sand was not abrasive in the tested range. The stationary
average pressure p̄′ is determined by e, its dependence on the amplitude was
not recorded. The stationary average stress ratio is lower than critical and
lower with bigger p̄′, its dependence on the amplitude can be guessed from
Fig. 4.2.8. The flow rule by Wichtmann et al. (2006), on the other hand, im-
plies a critical average stress ratio with ϕc for ratcheting, cf. Fig. 4.2.5a, b.
This could work at best with small amplitudes. Ibsen (1994) did not report
on void ratios in detail. One may presume that his p′ attained an asymptotic
average p̄′ so that e was closer to the lower bound ed than to the the critical
value ec for this p̄′.

Similarly as Ibsen (1994), Hyodo et al. (1989) investigated saturated
undrained cylindrical sand samples under cycles of σ1 − σ2 (Fig. 2.6.7). With
low density and non-zero average deviator they obtained a gradual decrease
of p′ and increase of ε1 − ε2. A periodic asymptote with stationary ratch-
eting was not attained as the samples had h ≈ 2d and rough endplates so
that they got inhomogeneous. An increasing lack of homogeneity blurs many
test results so that they are hardly apt for objective conclusions. For exam-
ple, Ishihara and Towhata (1983) could not avoid the collapse of samples by
a diffuse bifurcation in triaxial and torsional tests with saturated undrained
sand. Even so some of their findings are of use. With shear strains above ca.
2 · 10−2 they observed coaxiality of stress and strain rate and a subsequent
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response to reversals that did not depend on previous smaller shear cycles.
This shows that SOM-states were repeatedly attained. Just before a decay of
the grain skeleton butterfly-shaped stress paths were attained both in triaxial
and torsional tests without ratcheting.

Katzenbach and Festag (2004) obtained an isobaric ratcheting of dry
quartz sand samples with more than 106 cycles, Fig. 4.2.9. The sand was
dense, with σ2 = 150kPa cycles of σ1 from 200 to 350kPa were imposed once
per second, a critical stress ratio was never attained. The average ε1 − ε2

grows in proportion to the number of cycles N (a), occasional kinks indicate
abrasion. Slender hysteresis loops (b) exhibit a gradual shift with increasing
N . Other than in the tests by Wichtmann et al. (2006) the deviatoric stress
amplitude was rather big compared to the average deviator. As with Ibsen’s

Fig. 4.2.9. Response of dense dry sand samples to axial stress cycles with constant
σ2 in triaxial tests (Katzenbach and Festag 2004): axial strain vs. number of cycles
(a), axial stress vs. strain after different numbers of cycles (b)
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(1994) tests stationary ratcheting can thus be achieved with a lower than
critical average stress obliquity.

Summing up, the response of sand samples to reversals is almost hypoelas-
tic for small amplitudes in the subcritical range, but anelastic effects play a
role for bigger amplitudes, with many reversals and in the overcritical range.
Anelastic strain rates just before and after reversals indicate two different flow
rules. The cumulative strain for small stress cycles obeys a flow rule as by elp
or hyp, its intensity cannot as easily be captured. A flow rule does not work
with bigger amplitudes, but then asymptotic state cycles can serve for an ob-
jective characterization. Isochoric strain cycles cause a cumulative relaxation
up to a decay except for high densities. The desired uniformity of RSEs gets
lost in the overcritical range so that the behaviour with reversals can hardly
be judged.

4.3 Attractors with force-roughness

It was outlined in Chap. 2 that the state of psammoid RSEs is not sufficiently
captured by void ratio and stress components in case of repeated reversals.
The cumulative effects shown in Sect. 4.2 would be grossly underestimated
with elp and overestimated with hyp. Better constitutive models require ad-
ditional state variables which are hidden, i.e. not observable from outside
as stress and void ratio. They can be related rather heuristically with the
force-roughness of grain skeletons. Their initial indeterminacy can be swept
out by suitable strain paths which lead to attractors (cf. Sect. 2.1 for objec-
tivity). This will be outlined more geometrico in the sequel for proportional
and cyclic deformations and for ratcheting. Asymptotically attained stress
paths can serve as benchmarks for constitutive relations although the force-
roughness remains hidden. As with simple psammoids granular permanence
and rate-independence are presumed, the latter will be discussed in Sect. 4.6.

Dantu (1957) observed strong spatial fluctuations of contact forces in
an assembly of photoelastic rods which was deformed in a shearing device,
Fig. 4.3.1. The major part of the average stress is transferred by force chains,
neighboured rods with far lower forces prevent their buckling. Force chains
come and go with continued deformation, they can be more or less marked
and can have different orientations. They are related with the skeleton stress
components which represent average contact forces, but are not determined
by them in general. A skeleton of rods is more prone to rearrange with sliding,
opening and closing of contacts if the force chains are more erratic, and more
prone to an elastic response in the opposite case. Thus the hidden state may
be related with the force-roughness of the skeleton. As with solids (Sect. 4.1)
it appears that the fabric, i.e. the spatial arrangement of particles, could thus
also be captured (Sect. 9.1).

Cundall et al. (1982) calculated force chains for an assembly of discs with
a simplified interaction allowing for elastic deformation and sliding friction,
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Fig. 4.3.1. Force chains in a sheared assembly of photoelastic rods (Dantu 1957)

Fig. 4.3.2 (also Radjai et al. 1976). A stress path (σ1, σ2) with fixed principal
axes was imposed from the boundary. Force chains (a) are marked for a peak
state (above) and remain partly after unloading to σ1 = σ2 (below). This is
also visible with polar histograms of grain contact normals which represent
the fabric, i.e. the relative positions of discs (b). The inner histograms belong
to force chains, the outer ones to nearly force-free supporting discs. After the
initial isotropic loading the force chains have no preferred orientation (above).
At the peak state the force chains are less regular and more marked in the
σ1 direction (middle). After deviatoric unloading the force chains retain this
orientation, though less marked (below). The locked-in forces make the sample
stiffer for deviatoric reloading than for first deviatoric first loading.

Simulations with RSE skeletons composed of spheres with different sizes
produce also force chains which change alongside with the boundary condi-
tions. Calvetti et al. (2003) calculated histograms of spatially fluctuating grain
contact forces and show that the differential stiffness, represented by response
polars, varies substantially for a given average force density (i.e. stress) and
void ratio. The findings are biased as mutual rotations of grains were sup-
pressed. The differential stress response to strain rates is weaker with more
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Fig. 4.3.2. Force chains (a) and distribution of contact normals (b) after loading
and unloading of a simulated assembly of discs (Cundall et al. 1982)

marked force chains as these are more prone to buckle. The stiffest nearly hy-
poelastic response is obtained with the smallest possible force chains, i.e. with
a minimal force-roughness. The softest rather hypoplastic response can be ex-
pected after a sufficient monotonous deformation which produces the biggest
possible force-roughness with given average forces and void ratio. Force chains
are strongest in certain directions (Fig. 4.3.1), the force-roughness has thus a
variable intensity and orientation.

Physicists speak of differently jammed grains which remain unchanged
in a resting skeleton. Howell et al. (1999) observed strong temporal stress
fluctuations with a transducer at the base of a sheared annular sample of
glass beads. The power spectrum was rather fractal and rate-independent, i.e.
the progression of stress kinks was proportional to the rate of shearing. This
suggests that force chains are produced and destroyed with the same rate
as kinematic chains. The kinetic energy released by buckling chains is dissi-
pated with an average rate which is proportional to the rate of shearing. The
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force-roughness is enhanced by the resistance to mutually rotating grains,
the consequences for mean values could be modelled with polar quantities
(Sect. 8.2). Kondic and Behringer (2004) simulated such evolutions and cal-
culated the additional elastic energy of force chains, it is far bigger than the
average kinetic energy and enhances the buckling of chains in case of slow
shearing. Taking over thermodynamic relations they interprete this additional
energy as a kind of temperature.

Consider now a cylindrical psammoid RSE with variable void ratio, stress
components and force-roughness. The latter may be represented by two pos-
itive components h1 and h2 = h3, which can be replaced by an intensity
h =

√
h2

1 + 2h2
2 and an obliquity tanψh as by (2.2.3). This substitute of force

chains may serve as hidden state variable for the response to strain rates. With
given void ratio and stress components h1 and h2 can have different values in
an allowed range; they cannot be observed and are indeterminate if the past
is unknown. A proportional deformation, Fig. 4.3.4a, leads to paths of stress
(b), void ratio vs. pressure (c) and force-roughness (d). The initial hidden
state is swept out by the imposed rearrangement so that the subsequent re-
sponse is determined by stress and void ratio. For such so-called SOM-states
(Swept Out Memory, Gudehus et al. 1977) the stress path gets radial, and
the hidden state is not needed explicitly (Sect. 2.2). A continued proportional
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deformation leads towards a state limit for which the void ratio is determined
by the stress components and thus no more needed explicitly.

SOM-states by proportional deformations are thus attractors for the hid-
den force-roughness. This is indirectly revealed by the differential stress re-
sponse if it gets determined by stress and void ratio, or by stress only at state
limits. For instance, Fig. 2.6.4 shows that near an isochoric state limit (criti-
cal state) the response to continued or reversed deformation is determined by
the void ratio and thus by the stress components. Figure 2.7.9 indicates the
same for isobaric deformations. Less precisely Fig. 2.6.3 shows that near a di-
latant state limit the isobaric response to continued or reversed deformations
is determined by stress and void ratio.

The concept of simple psammoids without hidden state may be used for
monotonous deformations which suffice to sweep out an indeterminate ini-
tial force-roughness. As indicated in Fig. 4.3.4 one may assume for simplicity
that its intensity gets maximal in transitions to SOM-states. It is also rea-
sonable, though not necessary, to assume that the obliquities of stress and
force-roughness agree for SOM-states. This kind of alignment may likewise be
assumed for non-cylindrical monotonous deformations with sufficient amount.
The objective of Fig. 4.3.4 is to show that the invisible force-roughness may
be ignored if it has attained a SOM-attractor by a sufficient monotonous de-
formation.
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If our cylindrical RSE is cyclically deformed, Fig. 4.3.4a, the paths of stress
(b), void ratio vs. pressure (c) and force-roughness (d) tend to cycles. The
initial indeterminacy is swept out when these attractors are attained. The
mean pressure tends to a lower value or the skeleton decays, and the mean
stress obliquity tends to zero. As this gradual relaxation is assumed to be
rate-independent it comes to an end after a sufficient number N of cycles,
this assumption means that frequency and waiting intervals do not matter. As
shown qualitatively with the plots the asymptotic state cycles exhibit double
cycles for each strain cycle. Except for special cyclic changes of void ratio
the attained double cycles of stress components and of void ratio vs. pressure
resemble a butterfly. One can only guess that a butterfly is also obtained for
the hidden state.

Asymptotic state cycles due to cyclic deformations should be quantified.
We leave aside so big deformations that state limits are attained repeatedly
as then our cylindrical RSE loses the desired uniformity and the grains are
more easily crushed. As without hidden variables (Sects. 2.2 and 2.6) big am-
plitudes may be defined by asymptotic stress cycles which approach critical
obliquities repeatedly. Small amplitudes may be defined by asymptotic hidden
state cycles which never attain their bound, i.e. so that SOM-states are not
reached. Small deviatoric strain cycles with constant pressure lead to a max-
imal densification and to double cycles of void ratio vs. strain (Fig. 2.10.4).
Small isochoric strain cycles lead to a minute double stress cycle in case of
high density, otherwise the skeleton is relaxed up to a decay (Fig. 4.2.6).

Some further properties can be concluded from the few available reports.
Almost all triaxial tests were stress-controlled, in case of closed drainage with
controlled stress deviator. Asymptotic state cycles were rarely attained. This
is a pity as the findings are less objective and more intricate, and as the reports
are often biased by constitutive relations which were not properly validated
and calibrated. Nearly hypoelastic responses with small amplitudes have been
observed in triaxial setups with bender elements (Fig. 4.2.2b). With deviatoric
stress cycles the skeleton stress path tends to a butterfly-like double cycle, and
the skeleton can decay repeatedly (Fig. 2.6.6). The gradual reduction of the
mean pressure is smaller just after some previous deviatoric stress cycles, but
their trace is swept out when the stress obliquity gets almost critical.

Cyclic attractors were approached, but not reached in isobaric triaxial
tests (Fig. 4.2.3). The plots of stress ratio vs. strain deviator are nearly the
same for an initially loose sand without and with a precompression (Pradhan
et al. 1989). This indicates that the trace of a precompression is swept out by
a monotonous deformation of sufficient amount. The last two hysteresis loops
were nearly the same without and with precompression, and a state cycle
was not quite reached as the cumulative densification was not completed.
Continuations of such tests up to periodic responses would be rewarding as
the attractors would only depend on the chosen amplitude and mean pressure.

Ratcheting of a cylindrical psammoid RSE is represented in Fig. 4.3.4. The
strain path (a) is composed of cyclic and monotonous isochoric straining. The
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stress path (b) tends to a lenticular loop which touches a critical obliquity.
The path of void ratio vs. pressure (c) tends to a lenticular loop well below the
critical line. The path of force-roughness (d) should also tend to a lenticular
loop which touches the bound and has the same average obliquity as the
stress. One may call a stationary ratcheting strong if the stress obliquity varies
strongly, and mild otherwise. It could be further quantified by the ratios of
stepwise strain decrease and increase for deviatoric and volumetric parts. One
may call such a cumulative deformation intermittent creep, and a transitory
reduction of average stress intermittent relaxation.

Transitions to state cycles by cyclic deformation or ratcheting can also
be expected for cuboidal deformations, but were scarcely observed. Represen-
tations with deviator planes as for solids in Figs. 4.1.9 and 4.1.10 may be
qualitatively adequate, but cannot suffice. With a constant average void ratio
the pressure ps will first decrease or increase according to the void ratio e, and
then pulsate with twice the frequency of deformation pulses. With constant
ps the void ratio will first decrease or increase according to the onset, and
then pulsate with double frequency. Figure 2.8.3 indicates the transition to
an attractor with so big deformations that a succession of SOM-states may
be assumed, thus a hidden force-roughness is possibly not needed.

The database is better for shearing with reversals although this can hardly
be uniform. It may suffice to plot the two easily visible stress components
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(Sect. 2.9) although the additional stress ratios are no more determined by
them as for monotonous shearing. It is reasonable to assume also four compo-
nents for the hidden force-roughness, plotting only two of them does not mean
that the other two are determined in general. Cyclic shearing (Fig. 4.3.6a) will
lead to a symmetric stress cycle (b) and a cycle of void ratio vs. pressure with
a relative void ratio near the lower bound (c). The hidden state should also
tend to a symmetric cycle (d), and should touch its bound repeatedly if the
amplitude suffices to attain SOM-states temporarily. Big amplitudes can be
defined by temporarily critical stress obliquities. The ratio of volumetric and
deviatoric strains could be further specified for cases in between isochoric and
isobaric evolutions. Transitions to attractors exhibit intermittent relaxation.

Test reports with pressure control provide a further support. The iso-
baric tests shown in Figs. 2.10.1 and 2.2.3 imply temporary SOM-states due
to sufficient amplitudes, and a gradual densification except for big ampli-
tudes with a low relative void ratio. Attractors could not be attained with the
employed increasing amplitudes, but the path in Fig. 4.2.3e tends to a but-
terfly. Figure 2.10.3 indicates approaches to an attractor with moderate am-
plitudes and shows an asymptotic butterfly of void ratio vs. shearing. The
transition may be called contractant intermittent creep, its dependence on
amplitude and pressure may serve for quantification of constitutive models.
Resonant column tests (Fig. 4.2.1) imply small amplitudes and a periodic
response after a transition. The small hysteretic damping for small ampli-
tudes suggests a rate-independent nearly hypoelastic behavior. Huber (2010)
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observed a gradual densification with constant pressure up to an amplitude-
dependent saturation, and double cycles of void ratio even with small ampli-
tudes. Richter (2006) observed pulsating skeleton pressures after a reduction
with saturated undrained corundum powder in resonant column tests with
small amplitudes. This confirms the postulated intermittent relaxation up to
an attractor with low pressure and force-roughness.

Shear ratcheting (Fig. 4.3.7a) can lead to lenticular stress cycles (b), cy-
cles of void ratio vs. pressure below critical states (c) and asymmetric cycles
of force-roughness (d). Critical stress obliquity and maximal force-roughness
are repeatedly attained, the transversal components change sign in case of
big amplitudes. The attractor may be named stationary intermittent creep,
this is an objective substitute of Castro’s (1975) ‘cyclic mobility’. Depending
on initial stress and void ratio transitions exhibit an intermittent relaxation
or a built-up of mean skeleton stress. Figure 2.10.7 serves for validation: an
almost stationary isochoric ratcheting is attained after a gradual relaxation
up to a lenticular stress cycle with low relative void ratio. A bigger uniform
shearing could be obtained with a thin layer (Fig. 2.9.8) or an annular sample
(Fig. 2.9.9). It is reasonable to assume then coaxiality of average stretching,
stress and force-roughness. Huber (2010) notes that sand samples in resonant
column tests with axial traction would be gradually extended. This kind of
ratcheting is composed of cyclic shearing and isochoric stretching with con-
stant anisotropic mean pressure.
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Summing up, the skeleton response to many quasi-static reversals can be
captured with rate-independent asymptotic state cycles including the hidden
force-roughness, transitions to them may be interpreted as intermittent creep
or relaxation. An unknown initial force-roughness is swept out by suitable
deformations up to attractors, thus the force-roughness gets determined al-
though it cannot be observed. Cyclic deformations cause a gradual loss of the
mean stress deviator, whereas the mean skeleton pressure can tend to a decay
or to a lower stationary value. Ratcheting leads to a lower than critical mean
stress obliquity, whereas the mean pressure can increase or decrease accord-
ing to the void ratio. Asymptotic state cycles exhibit pulsations of pressure
or void ratio with twice the frequency of reversals, this could also hold true
for the hidden force-roughness.

4.4 Elastoplasticity with back stress

We consider first psammoid RSEs with cylindrical symmetry. According to
Manzari and Dafalias (1997) they may have the following elastoplastic prop-
erties, Fig. 4.4.1. A narrow conical elastic range is assumed with its apex at
the origin in the plot of σ′

1 vs.
√

2σ′
2 (a). Its mean direction ψα is the only

internal state variable, it may be called back stress direction. The cone width
is assumed to be a material constant, which is rather arbitrary as sand has at
best an infinitesimal elastic range.

Within the elastic range the hypoelastic relations

(a) ε̇1 − ε̇2 = ε̇e
1 − ε̇e

2 = Gr(p′/pr)m(σ̇s1 − σ̇s2)

(b) ε̇1 + 2ε̇2 = ε̇v = ε̇e
v = Kr(p′/pr)m(σ̇s1 + 2σ̇s2)

(4.4.1)
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are assumed, then strain rates are elastic (ε̇i = ε̇e
i ). The exponent is taken as

m = 1/2, the reference moduli are related with a Poisson ratio ν < 1/2 via

Kr/Gr = (1 + ν)/(1 + 2ν) . (4.4.2)

The reference pressure in (4.4.1) is chosen at will, e.g. pr = 100kPa. Equa-
tion (4.4.1a) suits to (4.2.1), thus the dependence of Gr on e could be allowed
for, but the anisotropy explained with Fig. 4.2.2 is neglected. Equation (4.4.2)
was also used by Pradhan et al. (1989) for the evaluation of triaxial test results
which are shown in Sect. 4.2. As outlined with Fig. 4.2.3 the parameters in
(4.4.1) cannot be determined precisely: an elastic range does not really exist,
its choice is inevitably arbitrary.

Plastic strain rates ε̇p
i = ε̇i − ε̇e

i occur when the stress point leaves the
elastic range. Two flow rules are assumed for the ratio ε̇p

2/ε̇
p
1, or the direction

ψp
ε̇ instead (Fig. 4.4.1a). Rowe’s (1962) stress-dilatancy rule (2.2.20) is taken

for deviatoric loading, i.e. for increasing |ψs|. A contractancy of bigger amount
than the dilatancy for loading is assumed for deviatoric unloading, i.e. a bigger
|ψp

ε̇ | for decreasing |ψs|. In both cases ψp
ε̇ depends on ψs, but not on e. This

double flow rule corresponds to what Pradhan et al. (1998) found by triaxial
tests with reversals, cf. Fig. 4.2.3.

Two hardening rules are needed for volumetric and deviatoric parts. As-
suming isochoric grains the void ratio changes with the skeleton volume by
(2.2.10) as for simple psammoids. The back stress angle ψα changes alongside
with the one of stress in case of plastic deformations by a relation of ψ̇α with
ψα , ψs and the state parameter ψe shown in Fig. 4.4.1b which replaces e.
An increase of |ψα| is limited by the CSSM bounding cone for the actual e,
it gets wider by contraction. Plastic strain rates for stress paths with con-
stant direction ψs inside the CSSM bounding cone are neglected in Manzari
and Dafalias’ (1997) model. This is completed by an interpolation with the
requirement of continuous elastoplastic transitions (consistency condition).

Gajo and Muir Wood (1999) proposed an extension of this model. Using
the CSSM-frame for state boundaries, they work also with Been and Jefferies’
(1985) state parameter and the hypoelastic relations (4.4.1). The elastic range
consists of a cone as in Fig. 4.4.1a and a cap like the one by CSSM. Two dif-
ferent flow rules are again employed for the cone flanks, the related hardening
rules are kinematic and volumetric. Additional flow and hardening rules are
proposed for the assumed cap, they depend on e and p′. The back stress has
thus one more component than the model introduced with Fig. 4.4.1. In both
models the back stress characterizes an elastic range inside the one by CSSM,
thus they resemble Mróz’ (1967) model for solids (Fig. 4.1.8). Interpreting
the back stress as a representation of force-roughness, the one shown with
Fig. 4.4.1 neglects the barotropy for the hidden state as for a solid (Sect. 4.1),
whereas this barotropy is captured by Gajo and Muir Wood (1999).

Pestana and Whittle (1999) propose similar relations. In a stress plane the
elastic ranges are bounded by a bullet-like curve as in Fig. 2.3.2b. Skew lem-
niscates are employed so that tensile stresses are excluded, and so that critical
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stress obliquities correspond to the same friction angle for axial shortening and
lengthening. The direction of plastic strain rates (flow rule) is associated (nor-
mality rule) for increasing pressures, and non-associated by different stress-
dilatancy relations for increasing and decreasing stress obliquities. Changes
of the back stress values, which characterize the variable elastic range, are
related with plastic strain rates by kinematic and volumetric hardening rules.
Hypoelastic relations like (4.4.1) are assumed for the elastic range. As always
with elastoplastic relations the amount of plastic strain rate is determined by
the continuity of response for elastoplastic transitions (consistency).

Algebraic representations of such elastoplastic relations with back stress
(elp-α) are intricate already in case of cylindrical symmetry. Publications are
rarely so tractable that one could write a computer code, and it is difficult to
discover subtle defects. Variants were proposed with improvements, but it is
hard to understand them in all detail. Given a complete and consistent set of
equations or even a computer code, one is still left alone with the calibration
of material parameters. Given a computer code and a realistic range of param-
eters, however, one could judge such constitutive relations more geometrico
by means of attractors. The following plots were produced by Niemunis and
Prada (2010) with a more recent elp-α by Taiebat and Dafalias (2007), called
Sanisand, which works with a second tensorial hidden variable and had to
be corrected in some details for getting feasible. Authors of similar theories
should provide software with instructions in their homepage so that potential
users can judge the range of validity without getting confused by intricate
algebra and numerics. If simulated attractors are realistic they may be used
for the calibration of parameters.

Evolutions by elp-α with proportional deformations look like Fig. 4.3.6.
The asymptotic state limits are the same as without back stress (Sect. 2.3).
A plot of void ratio vs. log pressure shows the evolution of two key state
parameters, but not the one of back stress. A plot of back stress obliquity vs.
stress obliquity would reveal a gradual adaption well before state limits are
attained. This means that the rather arbitrary initial back stress is swept out
by a sufficient deformation, thereafter the response gets determinate as is the
hidden state.

Turning to reversals, we consider first evolutions of saturated cyclindrical
RSEs with free drainage. Figure 4.4.2 shows a simulation of Jefferies’ (1997)
experiment which was plotted in Fig. 2.6.4. The stress-strain curve (a) and
the plot of volumetric vs. axial strain (b) are partly realistic. The deviatoric
deformation by un- and reloading is fairly well captured except for the ap-
proach to the previous deviator. A peak state with maximal dilation is not
obtained as in the experiment. The calculated elastic dilation just after the
onset of deviatoric unloading is less realistic than the subsequent contraction
with further unloading. The further contraction and the following dilation by
reloading is well captured. The elastic dilation just after unloading could be
avoided with another hypoelastic relation.
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Fig. 4.4.2. Simulation of Jefferies’ (1997) drained triaxial tests with reversals
(Fig. 2.6.4) with Sanisand (Niemunis and Prada 2010); stress ratio (a) and volu-
metric strain (b) vs. deviatoric strain

The observed evolutions near the end of reloading are not apt for such
evaluations as Jefferies’ (1997) triaxial tests imply a loss of uniformity at
least near state limits. Slender samples with rough endplates get less deformed
near the plates (conical dead zones) and more than the average in the middle
(bulges and shear bands, Sect. 14.1). The reported sharp bends at the end of
reloading suggest the verge of an elastic range, but the observed simultaneous
volume changes are markedly anelastic. It appears that the reloaded sample is
stiffer by a kind of eigenstress from the rough plates, and that the sharp bend
is due to a spontaneous shear localization. The peak is exaggerated therefore
in standard tests. Sanisand cannot reproduce these effects if uniformity is
assumed, but simulations without it will be cumbersome or hardly feasible
with localization.

Even with short samples and lubricated endplates a loss of uniformity
cannot be avoided near state limits (Sect. 14.1). Wu (1992) obtained simi-
lar results as Jefferies (1997) with short samples and lubrication. He did not
observe shear bands, but a diffuse bifurcation near the plates (Sect. 14.1).
Patterns of shear bands need not appear at the confining membrane, but they
arise inevitably with overcritical stress obliquities (Sect. 8.2). Unloading from
a state with shear bands means that these are contracted by reverse shear-
ing, this could explain the overall contraction with high stiffness in Wu’s and
Jefferies’ tests. Reloading can lead to a sudden reactivation of dilating shear
bands, this could explain the high stiffness before and its sudden drop after
the end of reloading observed by both authors. Evaluations without localiza-
tions are evidently misleading if they really happen. The polarization needed
to determine the thickness of shear bands means a higher force-roughness
(Sect. 8.2), this cannot be covered by a hidden variable like back stress in
elp-α.

We consider now simulated evolutions of undrained saturated cylindrical
RSEs. Figure 4.4.3 shows that the findings with one reversal by Verdugo and
Ishihara (1996), which were plotted in Fig. 2.6.2, can be well reproduced. The



4.4 Elastoplasticity with back stress 231

0

1000

2000

3000

4000

0 500 1000 1500 2000 2500 3000 3500

p′ [kPa]

0

1000

2000

3000

4000

0 0.1 0.2 0.3

p = 0.1 MPa

p = 1 MPa

p = 2 MPa

p = 3 MPa

ε1

q 
[k

P
a]

q 
[k

P
a]

a) b)

Fig. 4.4.3. Simulation of undrained triaxial tests (Verdugo and Ishihara 1996)
with one reversal (Fig. 2.6.2) by means of Sanisand (Niemunis and Prada (2010);
deviatoric stress vs. axial shortening (a) and vs. effective mean pressure (b)

onset was isotropic with different pressures for the same void ratio e, the initial
back stress was estimated by simulating previous evolutions with drainage.
With a suitable e the stress-strain curves (a) depend on the initial pressure as
observed, lead to the same critical state and have a single unloading branch.
The stress paths (b) start without change of mean pressure p′, exhibit then a
reduction of p′ and tend to a common point on the critical line as observed.
The calculated paths for unloading do not reproduce the immediate pressure
reduction, this lack could be removed with a better hypoelastic relation. As
outlined with Fig. 2.6.2 the subsequent reduction of p′ is reduced by the
decreasing membrane penetration, its reproduction by Sanisand is even more
realistic than suggested by the plots. Shear bands may be neglected as the
evolution remained in the subcritical range.

A simulation of Wichtmann’s (2005) undrained triaxial tests with an alter-
nating deviator of stress is plotted in Fig. 4.4.4. The skeleton is rather dense
and isotropic at the onset, the initial back stress is guessed. The stress path
(a) tends to a stationary double cycle with temporary critical obliquities as in
Fig. 2.6.6a. As outlined with the same figure this attractor is flatter than the
observed one as the latter is distorted by the variable penetration of grains
into the membrane. After a deviatoric preloading the transition to this at-
tractor requires more reversals as observed. The deviatoric stress-strain curve
exhibits an increasing hysteresis up to a loop with changing sign of curva-
ture between reversals. This was similarly observed by Hyodo et al. (1989),
the sample decayed likewise repeatedly in these experiments. The calculated
cumulative deviatoric strain appears to be negligible, observed ones were not
reported.

The above simulations suggest that ‘Sanisand’ as representant of elp-α is
well validated. It is unable, however, to reproduce the intermittent relaxation
by small isochoric strain cycles shown in Fig. 4.2.6. Niemunis and Prada (2010)
obtain thus first a gradual reduction of stress components, but the mean value
p′ does not converge to zero for any initial void ratio e. This shortcoming is
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Fig. 4.4.4. Simulation of Wichtmann’s (2005) undrained triaxial tests with sym-
metric deviatoric stress cycles (Fig. 2.6.6a) with Sanisand (Niemunis and Prada
2010)

due to the assumed p′-dependence of limit void ratios by CSSM (Sect. 2.3)
without a lower bound. It could be avoided by using Bauer’s (1996) formula
(2.4.1) including the lower bound ed.

An evolution up to a rather realistic ratcheting is obtained by Sanisand
with an undrained RSE under a pulsating stress deviator, Fig. 4.4.5. The
skeleton cannot decay temporarily with the employed limit void ratios by
CSSM, the initial stress may be isotropic, an initial back stress is chosen at
will in the allowed range. The stress path (b) tends to a lense which touches the
line of critical obliquity, the deviatoric stress-strain curve tends to a stationary
ratcheting (a). Both plots resemble Fig. 2.6.7a, b from triaxial tests by Hyodo
et al. (1989), but the anelastic response is exaggerated by Sanisand. It appears
that the deviations cannot be avoided with the same data set which produces
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Fig. 4.4.5. Simulation of Hyodo’s et al. (1989) undrained triaxial tests with one-
sided deviatoric stress cycles (Fig. 2.6.7) with Sanisand (Niemunis and Prada 2010);
(a) stress-strain curve, (b) stress path
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a reasonable fit in the first two simulations shown above. The influence of the
variable membrane penetration on the attainable agreement is not yet known.

The extension of elastoplastic relations with back stress to cuboidal defor-
mations is straightforward in principle, but intricate in detail. Niemunis and
Prada (2010) detected that Sanisand can produce a discontinuous response
to changing directions in the deviator plane. This may be attributed to an
artificial loss of stability with the intricate equations. Therefore it was not
possible to reproduce cuboidal test results with reversals as the ones given in
Sect. 2.8. The models by Gajo and Muir Wood (1999) and by Pestana et al.
(2002b) cannot be judged in that respect as the papers are not fully tractable
and as software for simulations is not freely available.

As simple shearing requires four stress components (Sect. 2.9) three back-
stress components arise in Sanisand (and a fourth one with a cap). The as-
sumed elastic range is a narrow hyper-cone with constant width and variable
axial direction which is bounded by state boundary surfaces. The evolution of
the hidden back stress with plastic deformations is modelled by a rather intri-
cate combination of kinematic and volumetric hardening, this could hardly be
represented graphically by projections. Two different flow rules are again as-
sumed for increasing and decreasing stress obliquity, with the additional direc-
tional freedom this requires arbitrary specifications and caution for changing
path directions. As with less degrees of freedom the assumed elastic response
depends only on ps and e, and the intensity of plastic deformations is deter-
mined by the requirement of continuity.

Simulations of the alternating torsion tests with saturated sand by Prad-
han et al. (1989), which were given in Fig. 2.10.1, are shown in Fig. 4.4.6.
With loose sand the nested hysteresis loops (a) are fairly well reproduced, but
the strain path (b) exhibits an unrealistic sudden change of drift. With dense
sand the nested loops are not as well captured (c) and the calculated strain
path (d) shows an exaggerated dilation. The latter is due to shear localization
for overcritical stress obliquities (Sect. 8.2). The observed interchange of di-
lation and contraction before and after reversals, respectively, is qualitatively
reproduced. This unrealistic change of drift may be attributed to the unstable
response mentioned above, it cannot be deduced from or easily removed in
the Sanisand equations.

The response of sand to isobaric shear cycles as observed by Youd (1972)
and shown in Fig. 2.10.3 cannot be reproduced with Sanisand (Niemunis and
Prada 2010). This lack could be overcome with a lower bound void ratio ed.
Youd’s tests with big amplitudes may be left aside as with them the stress
obliquity got repeatedly overcritical so that shear bands arose. His tests with
undercritical obliquities, however, may serve as a benchmark attractor as the
inevitable non-uniformity is repeatedly reduced by reversals which break force
chains.

Niemunis and Prada (2010) simulated also the isochoric cyclic shear test
with a thick-walled cylinder by Ishihara and Towhata (1983) which was
depicted in Fig. 2.10.6. The given alternating deviator without drainage leads
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Fig. 4.4.6. Simulation of Pradhan’s et al. (1989) drained hollow cylinder tests
with increasing alternating torque (Fig. 2.10.1) with Sanisand (Niemunis and Prada
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to a butterfly with Sanisand, Fig. 4.4.7a, with an apparently realistic stress
path. However, as outlined with Fig. 2.6.5 the observed attractor is widened
and shifted by the penetration of grains into the membrane. The simulated
hysteresis curves (b) are apparently close to the observed ones, but distorted
by membrane penetration and temporary decay. Sanisand parameters were
apparently adapted to such tests.
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(a) skeleton stress path, (b) deviatoric stress-strain curve
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Berre 1999, Fig. 2.10.8) with Sanisand (Niemunis and Prada 2010); (a) stress-strain
curve, (b) stress path

It appears that only Andersen and Berre (1999) observed shear ratcheting
(Fig. 2.10.8), though not uniformly with a device as by Fig. 2.10.2a. This
is qualitatively reproduced with Sanisand, Fig. 4.4.8. The calculated plot of
shear stress vs. shearing (a) and the simulated stress path (b) could be im-
proved by matching parameters, but such a calibration is debatable with the
inevitable non-uniformity. As far as a stationary ratcheting is attainable in
such tests the model may be considered as validated. The experiment cannot
reveal elastic ranges as the device produces a force-roughness which enhances
anelastic effects.

To sum up, the range of validity of elastoplastic relations with back stress
(elp-α), here represented by a recent version of Sanisand, is rather restricted
and could not easily be extended. Drained and undrained triaxial tests with
few reversals can be fairly well reproduced, some deviations could be avoided
with a better hypoelastic relation. The double flow rule before and after re-
versals observed by Pradhan et al. (1989) is a part of Sanisand, but there is a
strange deviation from these tests which may be attributed to an unintended
discontinuity. The simulated approach to butterfly- and lense-like stress cycles
by symmetric and asymmetric deviatoric stress cycles, respectively, is appar-
ently realistic, but such observed attractors are distorted by the penetration
of grains into the membrane. The intermittent relaxation and densification
by isochoric and isobaric deformation cycles, respectively, is not reproduced
with elp-α. These attractors could be obtained with limit void ratios as in
hyp. The calibration for Sanisand could be improved with attractors. Shear
localizations with polarisation (Sect. 8.2) cannot be captured with elp-α.

4.5 Hypoplasticity with intergranular strain

Niemunis and Herle (1997) proposed a hypoplastic model with a hidden vari-
able (abbreviated hyp-δ) for sand-like soils. This is outlined and discussed
here first for cylindrical RSEs. The components h1 and h2 = h3 of the hidden
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state tensor as introduced in Sect. 4.3 are written δ1 and δ2 = δ3 and named
intergranular strain. Although this name is contestable we will use it in the
sequel as in reports on applications. We will see how δi can be interpreted as
a kind of force-roughness. Apart from δi or hi the idealizing assumptions for
psammoids are taken over from Sect. 2.2.

The amount δ =
√

δ2
1 + 2δ2

2 is assumed to have an upper bound, δ ≤
R, with a material constant R ranging from ca. 10−5 to 10−3 for fine to
coarse grains and depending on the grain roughness. The relative amount is
abbreviated as 
 = δ/R. The direction of intergranular strain is expressed by

δ̂1 = δ1/δ , δ̂2 = δ2/δ (4.5.1)

or by an angle ψδ as ψs for stress by (2.2.3). Evolutions of the hidden state
can be represented by paths in a plane δ1 vs.

√
2δ2, Fig. 4.5.1a. They are

related with the strain path as indicated with Fig. 4.5.1b. It is assumed that
a proportional strain path (e.g. A) leads to an intergranular strain of maximal
amount R and the same orientation, ψδ = ψε̇, independently of the initial δ1

and δ2. It is further assumed that strain cycles of smaller amplitude than R
always lead to cycles of δi (e.g. B). These asymptotic properties are achieved
by the evolution equations

δ̇i = ε̇i − 
βδi for δ1ε̇1 + 2δ2ε̇2 > 0 , (4.5.2)

and
δ̇i = ε̇i for δ1ε̇1 + 2δ2ε̇2 ≤ 0 , (4.5.3)
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i.e. with a switch function of Σδiε̇i, i = 1 and 2 or 3 and an exponent 0 <
β ≤ 1.

Cudmani (2010) showed with comparative calculations that β should range
from ca. 0.05 to 0.2. The paths in Fig. 4.5.1 reflect these equations, and they
have the attractors proposed in Sect. 4.3. This is visible with response polars
for δ̇i (Fig. 4.5.1c) due to unit strain rates (d) as indicated in the δi-plot
(a). Bounding curves for maximally and minimally elastic responses are also
indicated. With a straight strain path (A) the polars steer the δi-path towards
a SOM-state (swept-out memory, cf. Sect. 4.3) with ψδ = ψε̇ and δ = R. With
a circular strain path (B) the δi-path is steered towards a state cycle.

The evolution equations by Niemunis and Herle (1997) for the stress com-
ponents read

σ̇si/fs = {[
χmT + (1 − 
χ)mR] Lij + 
χ(1 − mT )Likδkδj + 
χfdNiδj} ε̇j

for δ1ε̇1 + 2δ2ε̇2 > 0
(4.5.4)

and

σ̇si/fs = {[
χmT + (1 − 
χ)mR] Lij + 
χ(mR − mT )LikδKδj} ε̇j

for δ1ε̇1 + 2δ2ε̇2 ≤ 0
(4.5.5)

for i = 1 and 2 or 3. The factors fs and fd, the matrix Lij and the vector Ni

are the same as in (2.4.3) for simple psammoids. fs is given by (2.4.3) and
fd by (2.4.4), Lij and Ni depend only on the stress direction ψs. The relative
amount 
 =

√
δ2
1 + 2δ2

2/R and the switch function are the same as in the
evolution equations (4.5.2) and (4.5.3) for the intergranular strain components
δi. Niemunis and Herle (1997) propose a range from ca.1 to 10 for the exponent
χ, but Cudmani (2009) found that the narrower range from 0.8 to 1.5 suffices.

In some cases the intricate equations (4.5.4) and (4.5.5) get simpler. For
δi = 0 and δ1ε̇1 + 2δ2ε̇2 ≤ 0 they shrink to the hypoelastic relation

σ̇si = fsmRLij ε̇j . (4.5.6)

As δi arises again by (4.5.2) with any deformation this means that hyp-δ
implies an infinitesimal elastic range. Cudmani (2009) shows that the factor
mR in (4.5.4) ranges from about 2 to 7. If δi has attained a SOM-state with

 = 1 and ψδ = ψε̇ the stress response by (4.5.4) to a strain rate ψε̇ reduces
to

σ̇si = fs(Lij ε̇j − fdNiD) (4.5.7)

with D =
√

ε̇2
1 + 2ε̇2

2, i.e. (4.5.4) goes over into the hypoplastic relation (2.4.3).
Thus the evolution equations for stress components (4.5.4) and (4.5.5) with
intergranular strain constitute a kind of interpolation between hypoelastic and
hypoplastic relations. For transverse deformations with

∑
δiε̇i = 0 (4.5.5)

shrinks to



238 4 Psammoids with reversals

σ̇si = fs [
χmT + (1 − 
χ)mR] Lij ε̇j , (4.5.8)

which is not hypoelastic except for 
 = 0 as it holds only for the two strain
rate obliquities ψε̇ with

∑
δiε̇i = 0. Cudmani (2010) showed that the factor

mT ranges from ca. 2 to 7.
For validation we consider first simulations of triaxial tests with saturated

sand as in Sect. 4.4. The hypoplastic parameters are the same as in Sect. 2.6,
the parameters for the intergranular strain were chosen in the range given
above. Figure 4.5.2 shows a back-analysis of Jefferies’ (1997) test with free
drainage which was shown with Fig. 2.6.3. The plots of stress ratio (a) and
volumetric strain vs. deviatoric strain (b) are partly realistic, but in another
way than with elp-α. The deviatoric stiffness for unloading is overestimated,
the reported simultaneous contraction is not reproduced. For reloading the
deviatoric stiffness is increasingly underestimated, whereas subsequent volume
changes are qualitatively captured. As outlined with Fig. 4.4.2 Jefferies’ tests,
and also the similar ones by Wu (1992) with smooth endplates, imply a loss
of uniformity near state limits so that deviations near the end of reloading
cannot be judged by assuming element tests.

Other deviations cannot be avoided by changing the model parameters in
the empirically allowed range. One may conclude that a hypoplastic relation
with intergranular strain (hyp-δ) can capture the response just after reversals
from SOM-states, but is less realistic otherwise, in particular for low stress
obliquities. In the latter case the real behavior is apparently not hypoelastic
as by hyp-δ with small relative intergranular strain ρ (and as by elp-α with
well-adapted back stress), in particular for deviatoric reloading. It appears
that the force-roughness, which might be represented by the intergranular
strain, is not as strongly reduced by deviatoric unloading in the experiment
as by hyp-δ.

Turning to evolutions of undrained saturated cylindrical sand samples,
Fig. 4.5.3 shows a hyp-δ-simulation of the experiments by Verdugo and Ishi-
hara (1996) with one reversal which were plotted in Fig. 2.6.2a, b. The stress-
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Fig. 4.5.2. Simulation of Jefferies’ (1997) test (Fig. 2.6.3) with hyp-δ (Niemunis
and Prada (2010); stress ratio (a) and volumetric strain (b) vs. deviatoric strain
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Fig. 4.5.3. Simulation of Verdugo and Ishihara’s (1996) undrained triaxial tests
(Fig. 2.6.2) with hyp-δ (Niemunis and Prada 2010); (a) deviatoric stress-strain
curves, (b) skeleton stress paths

strain curves after different precompressions up to the same void ratio (a) are
rather realistic. The single curve just before and after the reversal means that
the trace of the isotropic preloading was swept out like in the experiments.
The simulated stress paths (b) exhibit first a too weak pressure reduction, but
are then realistic up to and after the reversal. As without intergranular strain
the pressure reduction just after the reversal is underestimated, this cannot
be attributed to the variable membrane penetration. A comparison with Fig.
2.6.2c, d shows that the intergranular strain can improve the hypoplastic sim-
ulation, but is not needed close to a critical state.

A simulated evolution of an undrained cylindrical RSE with an alternating
deviator is shown in Fig. 4.5.4. At the beginning the skeleton is rather dense
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Fig. 4.5.4. Simulation of Wichtmann’s (2005) undrained triaxial test with alter-
nating stress deviator (Fig. 2.6.6a) with hyp-δ (Niemunis and Prada 2010)
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with an isotrophic stress, the intergranular strain is chosen as for a SOM-
state. The stress path tends to a double cycle (butterfly) with a reduced mean
pressure and temporary critical obliquities. The asymptotic butterfly appears
skewer and flatter than in Fig. 2.6.5a from tests by Wichtmann (2005). The
transition to a state cycle needs less reversals than observed, this means that
cumulative anelastic effects are still underestimated with hyp-δ. The deviatoric
stress-strain curve exhibits an increasing hysteresis up to a stationary loop,
other than observed this is nowhere concave. The asymptotic loops reported
by Hyodo et al. (1989) and by Wichtmann (2005) should not be used for
validation and calibration, however, as they are distorted by temporary decay
and by the variable penetration of grains into the membrane. The latter should
be taken into account for validation and calibration, a decay should be avoided
by low enough void ratios.

The intermittent relaxation by small isochoric deformation cycles shown
in Fig. 4.2.6 is reproduced with hyp-δ (Niemunis and Prada 2010), whereas
it is missed with elp-α. It leads to a skeleton decay if the void ratio exceeds
the lower bound ed0 for vanishing pressure by (2.4.1), otherwise it leads to a
butterfly. The simulated intensity of stress reduction is still exaggerated, but
not as much as without intergranular strain. It appears that this deviation
cannot be avoided by adapting parameters (Prada 2010).

A simulated ratcheting of an undrained cylindrical RSE is shown in
Fig. 4.5.5. The stress path tends to a thinner and steeper than observed lense,
cf. Fig. 2.6.7 by Hyodo et al. (1989) and Fig. 4.2.7 by Ibsen (1994). The devi-
ation can be partly attributed to the variable membrane penetration outlined
further above. With a low enough initial relative void ratio the simulated
mean skeleton pressure would increase in the transition to the attractor as in
Fig. 4.2.8b by Ibsen (1994). The calculated cumulative increase of deviatoric
strain with the number of cycles (b) gets linear as observed by Ibsen (1994).
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Fig. 4.5.5. Simulation of Hyodo’s et al. (1989) ratcheting (Fig. 2.6.7) with hyp-δ
(Niemunis and Prada 2010); (a) skeleton stress path, (b) deviatoric stress-strain
plot
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It is significantly bigger than observed (cf. Fig. 4.2.7d), so cumulative effects
are overpredicted by hyp-δ. These deviations cannot be avoided with a better
calibration.

The extension of hyp-δ to cuboidal deformations is straightforward. Ap-
proaches to attractors by deformations without or with reversals look like the
ones for cylindrical symmetry if the direction in the deviator plane is rather
constant. That was the case e.g. in the experiment shown in Fig. 2.8.2, but
this is not apt for a quantitative validation as the manual compensation of
grain penetration into the membrane produced an erratic zig-zag. Other than
with hyp (Fig. 2.8.5) the isobaric experiment with a deviatoric stress cycle
(Fig. 2.8.4) could not be simulated with hyp-δ (Rebstock 2010). This indicates
an unintended discontinuous response, but on the other hand the intergran-
ular strain is not needed as a sequence of SOM-states occurred evidently in
this case.

The hyp-δ equations get more intricate for simple shearing, and then com-
plete graphical representations would be expensive. Proportional deformations
lead again to SOM-states for which the intergranular strain is maximal and
aligned, and then to state limits as without intergranular strain. Cyclic shear-
ing leads to symmetric cycles of stress and intergranular strain, whereas ratch-
eting leads to asymmetric state cycles. Such attractors were rarely approached
in experimental reports.

Niemunis and Prada (2010) made a back-analysis of Pradhan’s et al. (1989)
tests with thick-walled cylinders and alternating torque shown in Fig. 2.10.1.
For loose sand the nested loops of shear stress vs. strain (Fig. 4.5.6a) and the
gradual densification (b) are pretty realistic. For dense sand the nested loops
(c) are less realistic, and the gradual dilation (d) is exaggerated. The latter
is due to shear localization for overcritical stress obliquities (Sect. 8.2). The
observed interchange of dilation before and contraction just after reversals is
reproduced. SOM-states with maximal and aligned intergranular strain are
repeatedly attained, that’s why simulations without intergranular strain are
quite similar (Fig. 2.10.2).

Niemunis and Prada (2010) simulated also Youd’s (1972) isobaric cyclic
shear tests which were shown in Fig. 2.10.4. Other than with elp-α the gradual
densification leads close to a lower bound void ratio ed and to an asymptotic
butterfly of e vs. shearing, Fig. 4.5.7a. As observed this occurs almost inde-
pendently of the shearing amplitude, but with exaggerated progression in the
simulations (b). Youd’s tests with big amplitudes should be left aside because
of repeated shear localization and grain crushing. The better simulation oth-
erwise than without intergranular strain (Sect. 2.10) can hardly be improved
with modified parameters.

A further simulation with hyp-δ by Niemunis and Prada (2010) refers to
the isochoric cyclic shear test by Ishihara and Towhata (1983) which was
shown in Fig. 2.10.6. The effective stress path due to an alternating stress
deviator (Fig. 4.5.8a) leads to a flatter than observed butterfly after an inter-
mittent relaxation. The simulated hysteresis loops (b) remain convex whereas
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the observed ones get temporarily concave. The deviations can be partly at-
tributed to the variable penetration of grains into the membrane, and possibly
also to a temporary skeleton decay. A better validation and calibration could
be obtained by taking into account the membrane penetration, and by means
of a so low void ratio that the skeleton cannot decay.
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Fig. 4.5.8. Simulation of Ishihara and Towhata’s (1983) undrained cyclic shear
tests (Fig. 2.10.6) with hyp-δ (Niemunis and Prada 2010): (a) skeleton stress path,
(b) deviatoric stress-strain curve

To sum up, hypoplastic relations with intergranular strain (hyp-δ) are apt
to reproduce at least qualitatively key experiments with sand under reversals.
As far as asymptotic state cycles can be deduced from test reports it appears
that double loops can be fairly well reproduced for isobaric and isochoric cy-
cles of deviatoric deformations, and also lenticular stress loops for isochoric
ratcheting. Lower bounds of relative void ratios can be approached with hyp-
δ as in isobaric and isochoric experiments, which is impossible with present
elp-α. The calibration of parameters is feasible, but with it an exaggerated
progress of intermittent creep and relaxation cannot be avoided. The impossi-
bility to simulate the cuboidal test with deviatoric cycles shown in Fig. 2.8.4
indicates an artificial instability. The equations are less intricate than the ones
of elp-α, but can likewise only be judged by numerical simulations. The spon-
taneous localization and polarization (Sect. 8.2) in the overcritical range is
not captured.

4.6 Seismically activated viscous effects

Consider a block upon a plate with a lower inclination β than the friction
angle ϕw, Fig. 4.6.1a. If the plate is kicked erratically from its sides with
frequency fc the block moves downwards in irregular steps (b) with average-
free sidewards fluctuations. This kind of seismic creep or erratic ratcheting
can be observed easily, and could be simulated by solving the equations of
motion with dry friction and random excitation. Vielsack (1991) showed that
for a slight periodic shaking the motion can be captured with a linear pseudo-
viscosity which is proportional to the frequency fc of shaking. Evidently the
motion stops without shaking as the block stands due to β < ϕw.

The average kinetic energy Ek transmitted per cycle to the block may
be interpreted as a kind of seismic temperature. In case of erratic shaking
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Fig. 4.6.1. Erratic displacements (b) of a block upon a shaken incline (a)

a heuristic analogon of (3.1.5) for thermally activated dislocations may be
written as

v = afc
Ek

Ea
sinh

(
ΔF − Ea

bEk

)
. (4.6.1)

Therein v denotes the average sliding velocity, and fc the frequency of
shaking. The activation energy Ea for the onset of sliding is proportional to
W tan ϕw with the weight W of the block. The shift energy ΔF according to
the loss of height is proportional to W tan β, a and b are empirical constants.
For small amplitudes with ΔF/bEk <ca. 0.5 the v by (4.6.1) gets proportional
to ΔF , this corresponds to the linear viscosity by Vielsack (1991). For bigger
amplitudes (4.6.1) can be replaced by

v =
1
2
afc

Ek

Ea
exp

(
ΔF − Ea

bEk

)
. (4.6.2)

This corresponds to (3.1.7) for thermally activated creep, but now the fre-
quency fc is exogeneous from shaking and not endogeneous from elastic os-
cillations. If the shaking is totally erratic the configurational entropy gets
maximal so that the exponential probability distribution by (3.1.3) is justi-
fied.

The transition to granular materials is anything but straightforward.
Barkan (1962) proposed a vibro-viscosity by means of experiments. A metal
sphere sunk into dry sand in a box when this was shaken with an acceleration
a > g . Shearing with constant pressure was enhanced by shaking the base,
its acceleration reduced the resistance of the grain skeleton. Barkan could not
quantify his findings by constitutive relations. His first experiment can be ex-
plained by means of a granular gas (e.g. Pöschel and Luding 2001). Therein
grains collide incessantly so that their number per unit of volume, i.e. the gross
density, is lower than for a loose skeleton. The average kinetic energy per unit
of mass is called granular temperature Tg. Analogously with a molecular gas
an equation of state

pgvg = agTg (4.6.3)
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is postulated with pressure pg and specific volume vg of the granular gas. The
factor ag, which replaces the universal gas constant R, is adapted to pressure
and shaking of walls which serve as a kind of granular thermostat. Other than
a molecular gas a granular gas comes to rest in a closed box when this is
fixed. There is no adiabatic equilibrium as the encounters of grains are not
conservative, therefore seismic energy cannot be stored like heat. A linear
viscosity was proposed for a sheared granular gas by taking over Einstein’s
relation for a molecular fluid. As experiments are hardly possible numerical
simulations were made to get more insight. The statistical mechanics of a
granular gas is not the same as for a molecular one, relations like (4.6.3) are
rather heuristic and should be checked by experiments.

Various attempts were made with a granular temperature Tg for denser
granular materials. Haff (1983) proposed relations for granular fluids with
linear viscosity and Tg. Jaeger and Nagel (1996) speak of granular solids in
case of grain skeletons. Herrmann (1993) defined Tg as the chaotic part of the
kinetic energy for granular solids and employed the formalism of equilibrium
thermodynamics. In another approach Edwards and Oakeshott (1989) worked
with entropy and changes of density, but did not completely specify equations
of state. Kondic and Behringer (2004) proposed a Tg in proportion to the
elastic energy of spatial stress fluctuations in a skeleton. This kind of Tg,
which is justified by numerical simulations and observed fluctuations of stress
in a ring shearing device (Behringer and Miller 1997), can be frozen in a resting
skeleton and changes only during deformations, so it is rate-independent. It
corresponds to the force-roughness which was introduced in Sect. 4.3, so this
may be understood as latent seismicity.

Gudehus (2006) proposed seismo-hypoplastic relations (s-hyp) for shak-
ing with small amplitudes. The average kinetic energy represented by Tg is
assumed to play the same role as T in visco-hypoplasticity (Sect. 3.3), i.e.
reference rate Dr and viscosity index Iv are taken as proportional to Tg. For
monotonous evolutions an endogeneous Tg is assumed to be a fraction of the
dissipated energy per unit of deformation, and thus proportional to the mean
skeleton pressure ps. Results of biaxial tests by Matsushita et al. (1999) can be
matched by v-hyp with suitable Dr and Iv. The observed response to jumps
of strain rate (argotropy), constant mean stress (creep) and fixing the shape
(relaxation) was apparently seismically activated. The activation energy esti-
mated from the required Iv = 0.02 by (3.5.5) is lower than the one known for
quartz, so there is not only thermal activation. Baro- and pyknotropy could
be reproduced by means of argotropic limit void ratios as in v-hyp. The criti-
cal friction angle ϕc is not argotropic, this is confirmed by shear tests for two
decades of shearing rates by Hungr and Morgenstern (1984).

The granular temperature Tg is revealed by an acoustic emission, this
was observed in triaxial tests with a dry corundum granulate by Huber and
Wienbroer (2005), Fig. 4.6.2a. Keeping σ2 constant by vacuum, every increase
of σ1 causes a noise which may be attributed to the buckling of force chains
(Figs. 4.3.1 and 4.3.2). Figure 4.6.2b exhibits a fluctuation of σ1 with constant
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Fig. 4.6.2. Results of triaxial tests with a corundum granulate (Huber and Wien-
broer 2005): acoustic emission vs. time (a) for a low (above) and a nearly critical
stress deviator (below), axial strain with axial stress cycles for average axial short-
ening (b) and stretching (c)

σ2 which is reduced by densification. The seismic activity gets more marked
when σ1/σ2 approaches the critical amount by (2.2.15) whereas the void ra-
tio is lower than critical. A stationary flow could not be attained uniformly
as the sample bulged with increasing seismicity, a constant σ1 could not be
maintained any more and shear bands arose.

Figure 4.6.2b shows the response to axial stress cycles with a small am-
plitude as compared with the average σ̄1. They cause a kind of ratcheting or
intermittent seismic creep. According to the flow rule by Wichtmann et al.
(2006) for cumulative deformations due to small stress cycles the creep is
contractant for lower than critical average ratios σ̄1/σ̄2 (cf. Sect. 4.2), thus
the creep rate is reduced by densification. As Matsushita et al. (1999) and
Huber and Wienbroer (2005) found it impossible to keep σ1 precisely at a de-
sired value, and to impose precisely small σ1-cycles. This may be attributed
to the random buckling of force chains in the skeleton which elude an exact
control. Figure 4.6.2b exhibits a smooth transition between endogeneous and
exogeneous fluctuations, the average creep is apparently the same without
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and with imposed cycles. As without stress cycles the skeleton comes to rest
after a short while under stresses with a lower than critical average stress
ratio.

Figure 4.6.2c shows the response with a pulsating σ1 < σ2, i.e. with an av-
erage axial extension. Again acoustic emission and seismically activated creep
increase when the average stress obliquity approaches the critical amount by
(2.2.15), come to rest by densification and are enhanced by σ1-cycles. The lat-
ter can iron out a bulge from previous axial shortening: the sample got almost
cylindrical again and shear bands were apparently swept out (cf. Sects. 8.2 and
14.1). Overcritical stress ratios as by (2.2.17) were not attained so that necking
and new shear banding up to a loss of control were avoided (Sect. 14.1).

An exogeneous granular temperature Tg is proposed for imposed cycles in
the seismo-hypoplastic relations (s-hyp) by Gudehus (2006). With a constant
frequency fc the time t can be replaced by the number of cycles N = tfc (cf.
Fig. 4.6.1b). Thus the cumulative deformation εc increases by

εc = bTgN exp
(

p′s/pe − 1
Iv

)
(4.6.4)

in case of a critical average stress ratio, with a constant prefactor b and a
viscosity index Iv which is proportional to Tg. Apart from renaming (4.6.4)
corresponds to (4.6.2). The equivalent pressure pe is lower for a higher ex-
ogeneous Tg, similarly limit void ratios of a peloid are higher for a higher
temperature T (Fig. 3.5.5).

In case of subcritical stress obliquities the seismically activated creep is
contractant, and thus reduced by densification if the average stress is constant.
Taking over (3.2.6) for contractant creep the gradual densification may be
captured with Iv ∼ Tg and N = tfc by

e = e0 − c1 ln(1 + c2TgN) . (4.6.5)

Therein e0 is the initial e, and the factors c1 and c2 depend on the average
stress ratio. The direction of seismic creep rates is given by the flow rule of
Wichtmann et al. (2006) shown in Fig. 4.2.5 which is part of s-hyp. For over-
critical stress obliquities the same argument leads to a seismic creep collapse
after a cumulative dilation (cf. Sect. 3.2). With a constant average shape of
the skeleton s-hyp predicts a reduction of ps with the number of cycles N by

ps ≈ p0(1 − cTg ln N), (4.6.6)

with p0 = ps at the onset and a constant c. This can be derived from (3.2.7)
with fv =const, Iv ∼ Tg and replacing the time t by N/fc.

These relations with N are qualitatively confirmed by observations, but
can hardly be quantified. An average stationary ratcheting as by (4.6.4) could
be achieved in a ring shear device or by shearing a thin layer (Figs. 2.9.8 and
2.9.9). The gradual densification by (4.6.5) appears reasonable, but would not
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come to a saturation. A weaker accumulation occurs for a lower ps/pe, i.e. a
lower e/ec, but tests as shown in Fig. 2.10.3 do not suffice to quantify it. The
seismic relaxation by (4.6.6) corresponds to the observed ps- reduction of cycli-
cally deformed saturated sand without drainage (Fig. 4.2.6), but again only
qualitatively and without an asymptote as observed. The rate-independence
implied by the relations with N is often observed and taken for granted, but
refuted e.g. by Duttine et al. (2008).

A more serious shortcoming of s-hyp is the difficulty to determine Tg and
the quantities Dr, Iv and pe depending on it. The seismically dissipated en-
ergy, including exogeneous fractions, could be estimated from experiments,
and cumulative changes of e could be measured more precisely than until
now. This could also be achieved with controlled random fluctuations of σ1

and σ2 in a sophisticated triaxial setup. One could thus check whether the
same accumulation occurs with different erratic cycles which provide the same
average seismic energy. The control gets difficult or even impossible with small
amplitudes, and also in the vicinity of critical stress ratios as then the sam-
ple tends to deterministic chaos. A further problem is the specification of the
reference strain rate Dr. It should be endogeneous without and exogeneous
with imposed cycles, but actually there is a mixture of both. The choice of
an external frequency fc is often arbitrary, real seismic events have a rather
fractal spectrum as the acoustic emission during monotonous deformations
(Tillemans and Herrmann 1995).

Viscous effects as reported by Matsushita et al. (1999) are overestimated
for two reasons. First, the grease between the membrane around a sand sam-
ple and at translating or confining plates is viscous. Second, a servo-control of
stresses or displacements produces fluctuations which enhance seismic creep
and relaxation. Working without grease and servo-control, Wienbroer (2010)
observed rate-independent stress changes for isochoric stretching with con-
stant amount D, and a far more rapid and less intensive relaxation than with
grease thereafter. It appears that the endogeneous granular temperature Tg is
proportional to D, as is the number of buckling force chains per unit of time.
The matching of Matsushita’s et al. (1999) results with suitable Iv and Dr is
no more than a qualitative support of s-hyp, so this model will only be used
in later chapters for a qualitative judgment.

In case of repeated reversals with resting intervals the granular temper-
ature Tg arises temporarily and vanishes in between. This requires a stable
psammoid body, otherwise it would generate seismicity by releasing free en-
ergy, and long enough pauses so that propagating seismic waves cannot over-
lap. Then the response is rate-independent except for the short times where
changes are propagated, so the number of reversals may be taken instead
of time with frequency. The gradual relaxation towards state cycles by an
intermittent seismicity is more ore less compensated by an elastic regain of
stress (Sect. 4.3). Tg is endogeneuos as it is produced by rearrangements with
reversals. The seismic energy represented by Tg arises and dwindles in pack-
ages during the deformation and vanishes in pauses. This does not exclude
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rate-dependence near reversals with strong changes of D, but the latter does
not matter apparently for cumulative changes.

Seismo-hypoplastic relations (s-hyp) are heuristic as averages and frequen-
cies of an intermittent granular temperature Tg are not equivalent to a contin-
uous Tg. An intermittent Tg is called exogeneous in s-hyp if the excitation is
heat-like, i.e. erratic with a leading frequency. This may be assumed not only
for earthquakes and storms, but also for the vicinity of vehicles or machines.
An erratic shaking could be represented by average Tg-values along bound-
aries of psammoid bodies, which may be called seismostats, and by means of
the field equation

Tg = sΔTg, (4.6.7)

with a spreading factor s which depends on the stress obliquity tanψs. With
the Laplace operator Δ =divgrad and with seismostats this equation pro-
duces a stationary Tg-field which may be of use for estimates with s-hyp.
Equation (4.6.7) may be interpreted as the local balance of seismic energy: its
transition into heat is compensated by a kind of diffusion along the gradient of
Tg. Imagine a shaking plate at a psammoid body with uniform average stress:
the spreading factor s will be maximal for tanψs = 0, and will vanish if tanψs

is critical as then seismic waves can no more be propagated. With empirical
adaptions this approach could produce estimates.

A quantification for quasi-static reversals is achieved with the high-cycle
accumulation model (h-cyc) by Niemunis et al. (2005). The flow rule for visco-
hypoplastic creep (Sect. 3.4) is applied to cumulative deformations of sand
due to rather small stress cycles as observed in triaxial tests (Fig. 4.2.8). The
intensity of such kind of seismic creep is captured by factors which depend
on pressure, void ratio, amplitude and shape of stress cycles. For applications
stress cycles are repeatedly calculated by explicit calculations with hyp-δ and
a few reversals. This approach led to realistic results in some cases (Wicht-
mann 2005, Niemunis et al. 2009), but the determination of the intensity
factors is expensive. It is advantageous for big numbers of reversals where ap-
plications of hyp-δ get too expensive and can produce cumulative numerical
errors.

h-cyc is more sophisticated than s-hyp, but also debatable for physical
reasons. The flow rule in both models cannot hold for substantial temporal
fluctuations of stress due to repeated reversals: stationary ratcheting can occur
with subcritical average stress obliquities for moderate amplitudes (Figs. 4.2.7
and 4.2.9). For small enough amplitudes seismically activated state limits can
be attained with s-hyp, but not with h-cyc. Quantifications in that respect
would require RSE-experiments with repeated reversals up to state cycles.
Erratic slow temporal stress fluctuations cannot be captured with h-cyc and
could hardly be quantified for s-hyp. RSE-experiments with slow proportional
average plus erratic stretching would be rewarding, they could lead to state
limits which are influenced by an intermittent Tg.
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In the papers mentioned further above the granular temperature Tg was
assumed to be proportional to the microseismic kinetic energy of trembling
grains. This works for granular gases and is also acceptable for granular fluids,
but is debatable for granular solids near states of rest. The thermodynamic
temperature T is similarly only proportional to the kinetic energy of molecules
for an ideal gas, but less for a liquid and definitely not for a solid. A granular
solid is close to Tg = 0 by definition, then Tg need not be proportional to the
microseismic energy. The seismodynamics of psammoids will therefore be as
intricate as the thermodynamics near T=0, even more so as both have to be
combined. Seismometers can only feel parts of Tg, so they are not as represen-
tative as thermometers. Different kinds of granular entropy Sg were proposed
as a measure of disorder (e.g. Edwards and Oakeshott 1989, Herrmann 1993),
but not in combination with the thermal entropy S.

A ceaseless seismicity can be generated by sufficiently rapid and intensive
shaking. This is more easily achieved with dry sand than with pore water as
this absorbs a substantial part of seismic energy, more so with finer grains (one
can hear crackling gravel under water, but not sand). Sufficiently shaken sand
in a vessel tends to an isotropic pressure according to gravity without average
flow. The pressure in such seismodynamic equilibria is purely entropic: the
trembling grains repel each other and have almost no average elastic energy,
so there is no grain skeleton. With a sufficiently intensive shaking the sand
boils up, this transition to a granular fluid may be called granular melting
with Tg = Tm. Barkan (1962) observed a reduction of shearing resistance τ
with sand by shaking vertically from below, this can be captured by

τ = (p − pd) tan ϕ, (4.6.8)

with the total pressure p, a seismic pressure pd and a friction angle ϕ. pd

may be understood as an entropic pressure due to Tg, and p − pd as reduced
skeleton pressure instead of σ in (2.9.6) for quasi-static shearing. Other than
in a seismodynamic equilibrium the grains are not fully relaxed, but jammed
again and again in skeletons which are continuously rearranged. Rao (1966)
proposed (4.6.8) with an unquantified ‘dynamic pressure’ pd on the base of
shear tests with dry sand shaken vertically from above. Mogami and Kubo
(1953) observed a similar reduction of the shearing resistance of dry sand by
horizontal shaking. I played with a thin layer of fine dry sand between an
inclined rough shaking base and a rough heavy plate; steady sliding occurred
independently of size and weight with higher velocity for more intensive shak-
ing or more inclination. These observations could be captured with

pd = p(Tg/Tm)m, (4.6.9)

with total pressure p and a granular melting temperature Tm so that τ = 0
holds by (4.6.9) for Tg = Tm. The exponent m > 0 would be 1 if Tg were
proportional to the microseismic energy, which as said above is debatable,
and could be determined with thin layer tests. The seismostat in experiments
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should be so strong that it is not impaired by the sand, only then it can pro-
duce a desired Tg independently of the shaken masses. The seismic activation
of shearing should not be called liquefaction for Tg < Tm as there is still a
kind of skeleton with jammed grains, i.e. a state between granular solid and
granular fluid. The proposed experiments cannot produce uniform RSEs as
Tg has a gradient by (4.6.7), but may suffice for approximations.

Experiments with thin layers on a horizontal shaken base could also
be made under water with constant pressure pw and total pressure p. The
resistance to stationary shearing could be measured with different rates, the
thus revealed viscosity should be related with (not easily observable) void
ratios. As the grains are neutral with respect to pw one has to replace p in
(4.6.8) and (4.6.9) by p − pw; mind that this is not an effective or skeleton
pressure as without shaking. The same intensity of shaking as without water
causes (apart from the reduction of the granular surface energy) the same
reduction of τ by (4.6.8) with (4.6.9), but requires more power as the sheared
water between the grains absorbs kinetic energy. The seepage of pore water is
determined by the gradient of the hydraulic height (Sect. 6.2), the permeabil-
ity kf is not changed by Tg. Changes of skeleton density imply seepage which
absorb substantial parts of seismic energy. A decay of the grain skeleton is
not only produced by a loss of p−pw, but can also occur by an increase of Tg.

Returning to evolutions of saturated psammoids with intermittent seismic-
ity, we face a couple of open questions. Transitions to asymptotic state cycles
(Sect. 4.3) may be interpreted with average stress obliquities tanψ̄s including
an entropic pressure as by (4.6.9). Strain cycles mean thus relaxation by T̄g

up to an isotropic pressure p− pw − pd, whereas ratcheting leads to a critical
obliquity tanψ̄sc with p − pw − pd instead of p − pw. One could employ s-hyp
with a suitable average granular temperature T̄g and with a number of cycles
N = tfc instead of time t and frequency fc. The high-cyclic model (h-cyc)
could be modified by means of a seismic pressure and attractors with T̄g, thus
both models would no more be restricted to small amplitudes. One could es-
timate Tg-fields with (4.6.7) by an empirical matching of the spreading factor
s and of boundary conditions for Tg (seismostats).

Such heuristic approaches may be of use for estimates, but are physically
debatable. As outlined further above Tg arises temporarily during quasistatic
evolutions with reversals, and may get proportional to the amount of stretch-
ing D when SOM-states are reached. This causes an intermittent relaxation
and a regain of elastic stress which resembles the one with continuous Tg, but
is not the same. A novel theory is needed which embraces rate-independent
approaches and enables to calculate adequate averages of Tg and pd on a bet-
ter physical base than s-hyp and h-cyc. This should also enable to judge and
calculate spreading factors and seismostats for estimating average granular
temperatures.

The matter gets more intricate with wave propagations. Even quasistatic
evolutions have dynamic interplays as changes of the skeleton state are trans-
mitted by seismic waves, in particular near reversals. Tg arises alongside with
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any propagation as this is never only elastic, the microseismic energy is heat-
like and is transformed into heat. The balance of this energy is not properly
captured by (4.6.8) as it is not conducted like heat. In case of repeated quasi-
static reversals an average heat-like seismicity is generated by seismic waves
and consumed by dissipation. More often propagations occur in rather erratic
swarms during which the skeleton does not rest. Simulations with hyp-δ have
been validated for vertically propagated plane waves (Sect. 11.2) and may be
used to estimate gain and loss of Tg, but extensions to two or three dimensions
would be too expensive. Simplified approaches as with (4.6.8) are at best qual-
itatively reasonable, but may suffice if psammoid bodies and seismic boundary
conditions are rather indeterminate.

Such approaches are limited by phase transitions. Shear localizations in
psammoids mean that polar quantities arise, these can disappear again with
reversals (Sect. 8.2). Active shear bands can prevent the propagation of shear
waves, the stability of psammoid bodies may thus be judged, but this is at
best feasible for one-dimensional evolutions (Osinov and Wu 2005). Skeletons
decay with a loss of p− pw − pd, the resulting suspension is an intricate fluid.
The pore water can evaporate into bubbles or cracks, the behavior of skeletons
and suspensions is changed by such cavitations. The mechanical roughness can
get so strong that continuum models are no more justified. Nevertheless novel
hydrodynamic theories will be welcome, they should combine thermo- and
seismodynamics and could indicate the fractality of deterministic chaos. This
will clearly go beyond our concept of psammoids with reversals.

Summing up, the seismically activated viscosity of psammoids can at best
be estimated with present mechanical models. A continuous heat-like seismic-
ity may be captured with a granular temperature Tg and a related entropic
pressure pd. Granular solids can have an intermittent seismicity with low tem-
porary Tg, then the seismodynamics is more intricate. The rate-independence
of elp-α and hyp-δ seems to be justified, and may be taken over for the seis-
mically activated creep and relaxation in seismo-hypoplastic and high-cycle
accumulation models. Such approaches may be quantified for estimates by
matching with experiments and simulations by hyp-δ, therein averages of Tg

and pd may be of use. They are debatable with seismic waves in the over-
critical range with granular phase transitions, such cases are at the verge of
predictability.

4.7 General and outlook

Applications to field problems require tensorial relations for frame-indifference
(Sect. 1.2). The mechanical roughness with grains and water can impair con-
tinuum approaches, in particular with reversals, but other models are hardly
feasible (Sect. 2.1). Following Jaeger et al. (1996) one may employ notions like
granular solids, liquids and gases, but with caution as granular interactions
are not conservative and as water plays a role. We will argue with attractors
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for the validation and calibration of models although general RSEs are ficti-
tious. Present models are intricate and preliminary, they should be delimited
and substituted with physical arguments.

Resting aggregates of hard grains are delicate solids, nearly resting ones
may be called granular solids. Stable grain skeletons, i.e. aggregates with lower
than critical stress obliquity and relative void ratio, can be nearly hypoelas-
tic, i.e. capable of non-dissipative oscillations and propagations with minute
amplitudes. The required low force-roughness may be achieved by previous
shaking, even then the elastic range is infinitesimal. Resonant column tests
(Fig. 4.2.1) reveal the dependence on stress and void ratio and a slight hys-
teretic damping, they suggest rate-independence. It is reasonable to neglect
the force-roughness for the hypoelastic limit with infinitesimal amplitudes.
This corresponds to a vanishing intergranular strain in hypoelastic models
(hyp-δ), the back stress in elastoplastic models (elp-α) is also minimal in such
cases.

Consider first a general RSE as by Fig. 4.1.11 with small deformation
cycles. Small means that the stress obliquity tanψs remains subcritical, and
that the force-roughness remains small as SOM-states are not reached. This
requires so low relative void ratios that the grain skeleton cannot decay. After a
transition (which will be treated further below) the response gets periodic (as
long as the degradation of grains is negligible). Assuming rate-independence
this attractor may be represented by a cyclic path in a hyperspace of state
components and void ratio. Such attractors can serve to define objective prop-
erties, other than in Sect. 2.11 they include the hidden force-roughness. It is
postulated that the mean stress deviator vanishes in the asymptote, and that
the asymptotic relative void ratio is near the lower bound and exhibits double
cycles. This is at variance with the hypoelastic behaviour often assumed for
small cycles (Figs. 4.2.1 and 4.2.2), but Huber (2010) observed double cycles
even with minute amplitudes.

The observed hysteresis cannot be quantified without hidden state vari-
ables. It appears that the amount of force-roughness pulsates at a low level,
this can be modelled with back stress or intergranular strain. Further specifi-
cations require thought experiments as general RSE-tests with small deforma-
tion cycles are not feasible. Imagine a cyclic shearing, without or with cyclic
changes of void ratio, with another alignment than for a previously attained
state cycle. After a transition a state cycle is again attained with the new
alignment. The variability of such attractors suggests a symmetric second-
order tensor for the force-roughness as for stress and strain, so it has three
principal directions and three invariants. It is rather obvious that principal
directions and Lode parameters of strain and force-roughness agree in the
asymptote.

With moderate deformation cycles our RSE will tend to state cycles with
temporary SOM-states, and tanψs can get repeatedly critical. A skeleton de-
cay can be avoided with low enough void ratios, overcritical tanψs may be
excluded to avoid shear localizations. The asymptotic stress cycles imply a
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stronger hysteretic dissipation than with small amplitudes, their average de-
viator will not vanish exactly, and they get but approximately aligned. The
asymptotic relative void ratio attains a higher average and pulsates more
markedly with twice the deformation frequency than for small amplitudes.
The hysteresis ratio by (2.11.17) is lower than by hyp, i.e. for assumed suc-
cessions of SOM-states. These statements suggest a tensorial force-roughness
with temporarily maximal amount, and show that the energetics should be
taken into account.

Turning now to moderate ratcheting, one should update the reference con-
figuration for big average deformations as in Sect. 2.11. With small amplitudes
of the cyclic deformation part the asymptotic stress cycles have a nearly crit-
ical obliquity tanψs, but the average relative void ratio re is lower than crit-
ical. While tanψs pulsates alongside with the deformation re pulsates with
the two-fold frequency. A tensorial force-roughness gets obviously aligned by
the average stress and deformation, but its amount need not temporarily at-
tain the upper bound as SOM-states are not reached with small deformations
between reversals. An attractor of this kind could be attained in resonant
column tests with an axial dead load (Huber 2010).

Strong ratcheting of our RSE produces temporary SOM-states, but state
limits (for which the desired uniformity gets lost) should be avoided. The
stress obliquity tanψs gets about critical near reversals relative to the average
stretching, and can get almost critical near opposite reversals. The relative
void ratio pulsates with twice the frequency of the cyclic deformation part, its
asymptotic average is lower than critical and higher than for moderate ratch-
eting. Beyond cylindrical symmetry and simple shearing such states could be
approached with cyclically twisted and simultaneously extended thick-walled
cyclindical samples. Such experiments could be of use to further validate and
calibrate elp-α and hyp-δ although the force-roughness remains hidden.

To a certain extent the indicated generalized attractors may be assumed
as rate-independent. This is justified near the hypoelastic limit of granular
solids, even with rapidly shaken skeletons. The hysteretic damping in reso-
nant column tests has a phase shift which can be attributed to elastic grains
with dry friction (Richart et al. 1970). Rate-independence is also empirically
legitimate for successions of SOM-states. The stress-strain curves observed by
Matsushita et al. (1999) for constant D exhibit a minute rate-dependence, but
this could be caused by the grease in the device. A marked rate-dependence
was observed at jumps of stretching intensity D in isobaric shear tests without
grease (Duttine et al. 2008). Reversals require also drastic changes of D, so
the response in their vicinity can exhibit rate-dependence. This could influ-
ence asymptotic state cycles near reversals with big amplitudes, but cannot
be controlled in detail, therefore rate-independent relations should be taken
with a pinch of salt.

Within these limitations transitions of general RSEs exhibit intermittent
relaxation and creep wherein the time may be replaced by the number of re-
versals. For small stress amplitudes the direction of the cumulative anelastic
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deformation depends on the direction of average stress as for thermally ac-
tivated creep (Sects. 3.2 and 3.9). The intensity of cumulative deformations
may be captured by a high-cycle model (h-cyc) or by a seismo-hypoplastic
relation (s-hyp). Applications to boundary value problems (Wichtmann 2005,
Niemunis et al. 2009) show that h-cyc models work for general deformations,
whereas s-hyp requires a more arbitrary matching. Seismically activated at-
tractors for general deformations are not obtained with h-cyc and could not
be quantified with s-hyp. The seismic creep as in Fig. 4.6.2 is enhanced by a
servo-control which works as a seismostat. For bigger stress amplitudes both
models could be extended by an average entropic pressure p̄d so that p− ps is
replaced by p− ps − p̄d, otherwise transitions to strong ratcheting could only
be captured by going through all reversals with hidden variables (Sect. 4.6).
Erratic slow rearrangements with a smooth average trend may be judged with
an intermittent granular temperature, but quantifications have not yet been
achieved.

These considerations call for a unified concept for quasi-static evolutions
of granular solids. This cannot be a hybrid of elp-α and hyp-δ as a kind
of seismically activated viscosity arises during rapid changes of stretching.
Rate-independence may be justified in hypoelastic and hypoplastic limits,
and also for cumulative effects if resting intervals occur between reversals.
State limits may at best be captured approximately as for them the desired
uniformity of RSEs gets lost. In a subcritical regime, which has to be defined
by combined bounds of stress obliquity and relative void ratio, cumulative
effects with many reversals could be captured with an intermittent granular
temperature Tg. Employing also entropic pressures for bigger amplitudes, this
could substitute rather heuristic concepts like s-hyp and h-cyc by means of a
consistent average Tg. Unified concepts should also enable to derive average
Tg-fields from average stress and void ratio fields for quasi-static boundary
conditions with reversals. Needless to explain that this cannot work with
seismic waves and in the overcritical regime.

The remarks in the previous section on seismodynamics hold rather in gen-
eral so that little need to be added. Rearranged granular solids, i.e. psammoids
with a kind of skeleton, exhibit an intricate mechanical roughness, in particular
in case of many reversals with big deformations in between. Quasi-static rear-
rangements are jerky with rate-independent seismic kinks: force chains arise
and buckle alongside with deformations. The force-roughness gets frozen in
pauses, then it means latent seismicity. As long as shear localization and decay
are avoided smooth averages are legitimate for velocities and their gradients
(Sect. 2.2), although a continuous force-roughness seems to be paradoxical.
This is no more than a heuristic approach, however, which may help to un-
derstand and to delimit models like elp-α and hyp-δ. A closer look shows that
asymptotic state cycles proposed for validation and calibration are not really
rate-independent and cannot be precisely obtained. The need of physically vi-
able theories is more evident with many irregular reversals which occur often
in situ.
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To be more specific, the mechanical roughness may be neglected for stable
grain skeletons, i.e. in case of subcritical stress obliquities tanψs and rela-
tive void ratios re. Then repeated reversals can even smooth the response as
tanψs and re can be reduced by stress redistribution and densification. This
kind of seismic relaxation and stabilizing creep occurs also with erratic rever-
sals in the subcritical regime, and evolutions with time can be more erratic
due to boundary conditions. Low intermittent granular temperatures may
then be substituted by temporal averages without explicit force-roughness,
but such heuristic approaches deserve a better physical base. The rough-
ness tends to increase in the overcritical regime, then shear localization or
decay imply a spontaneous growth of seismicity. Such critical phenomena
(Sect. 16.3) are beyond the reach of continuum models, these may at best
help to catch the onset of deterministic chaos. The force-roughness rises dra-
matically by shear localizations, this can be captured with polar quantities
(Sect. 8.2).

The pore water can play a passive or active role. The granular temperature
Tg in the hypoplastic SOM-regime, i.e. for slow monotonous deformations, is
enhanced by a lower surface energy and reduced by viscous damping with
water. Both effects seem to compensate each other as hypoplastic parameters
are rather water-independent. The grains do not feel the pore water pressure
pw, but the skeleton feels ps = p − pw and the pore water cavitates if pw

vanishes (Sect. 6.2). A skeleton decay with ps → 0 is enhanced by a rise of pw

and hindered by its reduction except for cavitation when the continuity gets
lost. A subsequent suspension flow is beyond the reach of present theories.
Pressure waves in water can produce a significant Tg in case of big amplitudes
or if the granular body is beyond the verge of stability (i.e. for overcritical
tanψs and/or re). A turbulent seepage in gravel or rockfill generates Tg and
can thus mobilize the skeleton.

Strong seismicity by intensive shaking or impacts means so high granular
temperatures that the entropic pressure pd plays a role (Sect. 4.6). This can
lead to a granular liquid or gas without water, and with it to a kind of suspen-
sion which has little in common with ordinary fluids. Such cases are enigmatic
in the light of present soil mechanics and hydromechanics, they require novel
physical approaches. There is no way around continuum models and conserva-
tion laws, but there is no need to catch mixtures of mineral grains and water
by ‘simple materials’ in the sense of Truesdell and Noll (1965). The clue could
lie in the fractal energetics.

To sum up, psammoids with reversals may be captured by elastoplastic
or hypoplastic models with hidden variables (elp-α or hyp-δ), and also with
seismo-hypoplastic (s-hyp) or high-cycle accumulation models (h-cyc), but
there are limitations. Rate-independence is justified for vibrations and propa-
gations near stable states of rest, and also for slow monotonous deformations.
Asymptotic stress cycles due to cyclic deformations or ratcheting are apt to
judge elp-α and hyp-δ. The hidden state for them may be related with spa-
tial fluctuations of inner forces, this force-roughness can be represented by a
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symmetric tensor. Cumulative changes of shape and state with many reversals
and pauses in between may be understood as a kind of creep and relaxation in
heuristic rate-independent models like s-hyp or h-cyc. Grain skeletons exhibit
a kind of viscosity with an intermittent granular temperature. This works in
the subcritical regime, so far pore water plays the usual role. In the overcrit-
ical regime and with stronger seismicity the named constitutive models for
psammoids and pore water get meaningless, novel energy-based approaches
will be needed.



5

PELOIDS WITH REVERSALS

This fourth chapter on constitutive relations is more comprehensive and
should therefore be longer than the preceding ones, but it is not and is still
possibly too long. Peloids with reversals exhibit viscosity and require hidden
variables as skeleton stress and void ratio do not suffice in general to charac-
terize their state.

For preparation I begin again with pore-free solids (Sect. 5.1). The viscos-
ity is captured as in Sect. 3.1, and the force-roughness as in Sect. 4.1, but the
combination of both is not straightforward. Back stress and internal strain,
which may represent the force-roughness, should dwindle after fixing skele-
tons, but visco-elastoplastic and -hypoplastic relations (v-elp-α and v-hyp-δ)
do not capture this kind of relaxation. It is shown without algebra how one
can produce argotropic state limits and asymptotic state cycles. These could
be adapted to experimental results so that an assumed hidden state variable
is indirectly captured. Viscoplastic relations without hidden variable can al-
ready produce a nearly elastic response without a switch function (Sect. 3.1).
Relations with a hidden variable need at least one switch function for rever-
sals, but this is rather arbitrary. It appears that this incertainty cannot be
removed by experiments only.

The outline of experimental results with clays under reversals (Sect. 5.2) is
kept shorter than for psammoids as there are less reports and as these are less
revealing. Viscous effects were ignored almost throughout, in one publication
they were even suppressed by choosing rock flour with hard particles. The
observed response to un- and reloading without drainage could be explained
without a hidden variable, the response to many small strain cycles is also not
conclusive in that respect. The observed response of undrained clay to several
deviatoric stress cycles appears to be sand-like, but asymptotic state cycles
were rarely achieved. Some cuboidal and biaxial tests were carried out with
drainage and few slow reversals, but waiting times with creep or relaxation
after reversals were not recorded. One recent report indicates a sand-like re-
sponse to cyclic shearing with drainage. Altogether this is not a good base for
validations.

G. Gudehus, Physical Soil Mechanics, Advances in Geophysical and Environmental
Mechanics and Mathematics, DOI 10.1007/978-3-540-36354-5 5,
c© Springer-Verlag Berlin Heidelberg 2011
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There are several elastoplastic relations with back stress for clay which
ignore viscous effects. I take the freedom to introduce them in Sect. 5.3 as
visco-elastoplastic as the assumed rate-independence may be justified for slow
loading and rather fast un- and reloading. The thus achieved matching of test
results does not suffice to select back stress approaches. Numerical simulations
up to asymptotic state cycles could at least demonstrate limitations of such
approaches. Properly visco-elastoplastic relations are only mentioned as they
are intricate, and as software for numerical RSE-tests with them is not freely
available. The latter is the case with visco-hypoplastic relations, but these
are not less intricate. So they are introduced in Sect. 5.4 only by means of
associated paths including an intergranular strain. Simulated asymptotic state
cycles are not convincing, whereas experimental results with only one reversal
can be fairly well matched. Comparison and discussion with v-elp-α and v-
hyp-δ are as yet rather interpretations than validations.

General aspects are considered only briefly therefore in Sect. 5.5, explicit
models for cumulative effects and critical phenomena are also discussed in
this final section. The force-roughness could get visible for longer wavelengths
of spatial stress fluctuations, thus attempts with boundary value problems
could be more rewarding. Seismo-viscous effects may be assumed for explicit
models as with psammoids, but quantifications will be more difficult because
of the simultaneous thermal activation. Shear localization, cracking and decay
delimit the range of applications.

5.1 A fourth prelude on solids

Maintaining the prerequisites of Sect. 4.1 except rate-independence, we now
allow for viscous effects, i.e. argotropy, creep and relaxation. As explained in
Sect. 4.1 and other than in Sect. 3.1, hidden state variables are needed. This
will be shown with graphical representations of visco-elastoplastic approaches
with back stress, and of visco-hypoplastic ones with internal strain. The at-
tractors for proportional and non-monotonous deformations are argotropic, in
addition there are endogeneous attractors for creep and relaxation. Algebraic
representations are left aside in this preparatory section, physical interpreta-
tion and validation will be discussed briefly at the end.

As without viscosity (Sect. 4.1) the hidden state can be related with the
force-roughness, i.e. with oriented spatial fluctuations of stress. This enables
an interpretation of the generally tensorial back stress and internal strain.
The force-roughness should attain state limits and state cycles alongside with
those for stress, can increase by creep and should be more strongly reduced
than the stress by relaxation. This should be reflected by evolution equations
for back stress or internal strain, but will only be indicated graphically in
the sequel as the corresponding viscoplastic relations for soils in the following
sections are preliminary. Nearly elastic behaviour is already obtained without
hidden variables for low ratios of actual and limit stress deviators, and with
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a sudden rise of strain rates (Sect. 3.1). The force-roughness comes into play
only for evolutions with many reversals and repeated approaches to argotropic
SOM-states.

Monotonous uniaxial evolutions are shown in Fig. 5.1.1. Stretching with
constant |ε̇|, which may be referred to a material parameter ε̇r, leads to state
limits of stress σ (a), back stress α (b) and internal strain δ (c). The limit σ is
argotropic as described in Sect. 3.1 by Fig. 3.1.1 and (3.1.1). The hidden limit
of α should have the same argotropy by the factor in (3.1.1) as otherwise the
hardening concept shown with Figs. 4.1.5 and 4.1.6 would not work. The limit
of δ need not be argotropic, so |δ| ≤ R may be taken over from Fig. 4.1.5b.
Transitions from one strain rate ε̇ to another one are indicated by dotted lines,
they do not appear in δ.

With constant σ uniaxial creep (d) tends to a state limit with constant ε̇
by (3.1.2). The back stress α tends likewise to a state limit in the course of
time (e). Depending on σ/cr and the initial α the transition requires different
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times. The internal strain δ tends likewise to a state limit within variable
times (f). With constant shape relaxation should be exhibited by σ (g), α
(h) and δ (i). The proposed asymptotic low amounts cannot be attained in
realistic times, the initial rates σ̇, α̇ and δ̇ depend on the initial σ and α or δ.
These are endogeneous attractors due to thermal activation. Creep tends to
a steady state with a stationary energy input σε̇, whereas relaxation tends to
a thermodynamic equilibrium.

Uniaxial strain cycles and ratcheting may lead to asymptotic responses as
shown in Fig. 5.1.2. A moderate amplitude is chosen so that neither elastic
cycles nor state limits are attained. The argotropy is shown by bigger ampli-
tudes of σ and α, dotted for different amounts of strain rate |ε̇|, whereas δ (c)
may be rate-independent. The argotropic asymptotic cycles of σ (a), α (b)
and δ (c) for strain cycles should be symmetric. For ratcheting with moderate
amplitude and two different |ε̇| the state cycles should be asymmetric and
argotropic for stress (d) and back stress (e), but may be rate-independent for
internal strain (f). State limit values are repeatedly approached, with small
amplitudes the stress remains close to them.

Algebraic representations according to Figs. 5.1.1 and 5.1.2 could be for-
mulated as follows. In visco-elastoplastic relations with back stress (v-elp-α)
the width and the bounds of the elastic range (cf. Sect. 4.1) are likewise ar-
gotropic by (3.1.1). A viscoplastic strain rate ε̇v reduces the stress rate σ̇ from
Eε̇ to E(ε̇− ε̇v) if thus the elastic range is left. This can be shifted up to an ar-
gotropic bound, thus the evolution of α is determined (kinematic hardening).
Apart from switch functions as in Sect. 4.1 ε̇v can be modelled similarly as by
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ratcheting (d) with related back stress (e) and internal strain (f)
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(3.1.13) with a reference rate ε̇r and a viscosity factor fv by (3.1.14). Thus the
state limits of σ and α get likewise argotropic, and endogeneous attractors for
creep and relaxation are also obtained. The hardening rule has to be formu-
lated so that realistic symmetric and asymmetric state cycles are produced
as attractors for strain cycles and ratcheting. In visco-hypoplastic relations
with internal strain (v-hyp-δ) σ̇ = E(ε̇ − ε̇v) holds without switch function,
and δ may evolve with ε as proposed in Sect. 3.1. Argotropic state limits,
creep and relaxation are obtained as with v-elp-α. State cycles could similarly
be attained with both models for ratcheting, whereas state cycles with zero
average could only be reached by v-hyp-δ and not by v-elp-α.

Evolutions with monotonous cuboidal deformations are shown in Fig. 5.1.3
by means of deviator planes. Strain paths (a) may be straight lines with labels
for the amount of strain rate D, which is referred to an objective reference rate
Dr. In the stress plane (b) argotropic state limits are attained as introduced
with Fig. 3.1.7. With v-elp-α (A) the elastic range has a likewise argotropic
size. Its position, described by back stress, is shifted to an argotropic state
limit value with the same Lode angle as the strain rate (c). The response
polars, which steer the approach to the attractors, are cycles within the elastic
range. At its rim they consist of an elastic semi-cycle and an argotropic arc
which gets straight at a state limit with constant D.
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Fig. 5.1.3. Evolutions of solid cuboids in deviator planes towards argotropic state
limits: paths of strain (a), stress (b), back stress (c) and internal strain (d). Dotted
circle for D = 103Dr
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With v-hyp-δ (B) the response polar is a centered circle only if both stress
and internal strain are zero. Otherwise it consists of an elastic semi-cycle for
δiε̇i < 0, and an argotropic arc depending on σi and δi which gets straight at
a state limit. For the internal strain (d) the response polars consist likewise of
centered semi-circles and argotropic arcs, these state limits may be assumed
as rate-independent. The alignment at a state limit should agree with the
one of the strain rate. Transitions from a state limit to another one with
another D imply an increase or reduction of σ and α for an increase or re-
duction of D, whereas δi may remain unchanged. Transitions require an inter-
polation.

Cuboidal creep and relaxation are proposed in Fig. 5.1.4 by means of de-
viatoric paths of strain (a), stress (b), back stress (c) and internal strain (d).
With constant stress (A) the strain path gets straight with constant D if σi is
not in an elastic range in case of v-elp-α. The transition to state limits of αi or
δi takes different times depending on σi and the initial αi or δi. With constant
shape (B) stress σi and back stress αi remain unchanged for v-elp-α if σi is
in an elastic range, otherwise σi and αi tend to zero. For v-hyp-δ the state
variables σi and δi should then tend to zero. The approach to an autogeneous
attractor by relaxation is fast for an onset near a state limit, and is slowed
down otherwise to non-observable rates. Relaxation of δi may be neglected
for simplicity.

The proposed asymptotic response to cuboidal strain cycles is represented
in Fig. 5.1.5. In the strain plane (a) the amplitude may be small (A) or
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Fig. 5.1.4. Creep and relaxation of cuboids: paths in planes as Fig. 5.1.3
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Fig. 5.1.5. Asymptotic response of cuboids to strain cycles: paths in planes as by
Fig. 5.1.3

moderate (B), the amount D of strain rate may be constant. For v-elp-α
the deviatoric paths of stress (b) and back stress (c) should be symmetric
in the asymptote, except for so small amplitudes that the elastic range is
not left. For v-hyp-δ the asymptotic cycles of stress (b) and internal strain
(d) should always be symmetric. If the strain path is elliptic, as for case B
e.g., the asymptotic state paths should have the same alignment. Evolutions
with reversals can be represented by lenticular paths (e.g. B) which are flat
for uniaxial deformations. The asymptotic cycles should be wider for bigger
D, and these attractors should be argotropic (except for v-elp-α with small
amplitude). Some response polars indicate that the asymptotic state paths
are not left.

Cuboidal ratcheting is proposed in Fig. 5.1.6. In the strain plane (a) the
amplitude of the periodic fraction may be small (A) or moderate (B), D may
be constant. The stress path (b) should tend to asymmetric cycles which
are always (A) or periodically close to an argotropic state limit (B). The
asymptotic cycles of back stress (c) and internal strain (d) should have the
same property, with v-elp-α the elastic range would be left repeatedly. These
attractors are argotropic as the former ones, some response polars indicate
how the driven attraction works. Elliptic or lenticular periodic strain path
fractions should lead to state cycles of similar shape (e.g. B), thus uniaxial
deformations can also be captured.

Algebraic representations could be formulated so that evolutions as shown
in Figs. 5.1.3, 5.1.4, 5.1.5 and Fig. 5.1.6 are reproduced. As indicated by
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Fig. 5.1.6. Asymptotic response of cuboids to ratcheting: paths in planes as
Fig. 5.1.3

response polars they should be differentially non-linear (e.g. via switch func-
tions) and argotropic. The latter can be achieved by the viscosity factor fv as
in Sect. 4.1, now also for the evolution of the hidden state variable αi or δi.
State limits can easily be achieved, but only few representations can lead to
acceptable asymptotic cycles. As without argotropy elastic ranges need not
be circular, and their size can be variable by means of a further state variable.
The range of variation is wider with creep and relaxation, but then changes
of the hidden variable can hardly be judged. The extension to other than
cuboidal deformations with tensors is a minor formal problem, cf. Sects. 2.1,
3.1 and 4.1.

Some arguments may be given for a physical interpretation. As outlined in
Sect. 3.1 anelastic effects seem always to be thermally activated. Hidden state
variables representing the force-roughness can also exhibit thermally activated
viscosity. With v-elp-α argotropy and relaxation of αi are implied alongside
with those of σi due to the formalism of kinematic hardening. With v-hyp-δ
the evolution of δi can be formulated without viscosity, then the amount δ
can have a rate-independent upper bound. However, relaxation should also
reduce δi as the force-roughness is reduced by thermal activation if the shape
is fixed. A similar kind of annealing at room temperature can be achieved by
many small strain cycles. Approaches with αi or δi are heuristic anyway, thus
dislocations and crystallite fabric cannot fully be captured.

A few remarks on validation may be added for preparing the next sections,
they may serve also as a summary. Apart from the uniformity needed for all
element tests, the argotropy requires a control of strain rates, any waiting
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time changes state and subsequent behaviour. Strain rates should be small
enough so that pores are not generated spontaneously, and so that mechanical
heating is avoided. The argotropy is marked near state limits, but then shear
localization can scarcely be avoided. The indeterminacy of the initial hidden
state can be overcome by means of many strain cycles or ratcheting. Moderate
amplitudes with low enough stretching rates for self-healing are advisable
as then state cycles can be attained after a reasonable number of reversals
without cracking and heating. Extremely slow tests are not worth the long
duration if they do not start from an attractor so that the initial hidden state
is determined. These qualitative hints may suffice for introduction.

5.2 Observed response of peloids with reversals

Simple peloids have been introduced in Sect. 3.2. We now drop one simplify-
ing assumption, namely that the state of an RSE is sufficiently captured by
skeleton stress components and void ratio. This is necessary with more than
one path reversal, as was shown in Sects. 3.6, 3.7 and 3.8 by back-analyses
with visco-elastoplastic and -hypoplastic relations. In the sequel the argotropy
is first left aside as it is often ignored and may sometimes be neglected, there-
after it is allowed for. Some arguments for hidden state variables of psammoids
can be taken over to peloids, but the experimental base is narrower. Thus the
outline is shorter although peloids have a wider range of attractors due to
argotropy.

A neglection of argotropy is justified if the amount of stretching D remains
in a suitable range. For a given void ratio and direction of stretching without
drainage the mean skeleton pressure ps (= p′) varies with D by (3.3.5) as with
a solid by (3.1.1) due to thermal activation. The viscosity index Iv of clays
ranges from ca. 0.02 to 0.05, so ps changes by less than 15% when D ranges
between ca. 10−2 and 102 times the reference value Dr. In the majority of
tests with control of strain rate or stress after consolidation D varies in this
range, then its influence is moderate and may often be ignored.

With cylindrical symmetry the typical response to a second reversal was
discussed already in Sect. 3.6. In a test by Roscoe and Burland (1968) the
sample was normally consolidated, they concluded that its response to un- and
reloading was rather elastic, but that a distinct bound of an elastic range can
hardly be identified. Tests by Sangrey et al. (1969) with several reversals reveal
a more complicated reality, Fig. 5.2.1. Undisturbed samples of a saturated,
uncemented, moderately plastic clay were reconsolidated isotropically, then
loaded and unloaded deviatorically without drainage. With the rather low and
constant |D| ≈ 10−6 s−1 the pore water pressure pw changed rather uniformly
so that it could be observed at the plates. Some samples were axially shortened
without drainage up to a state limit with a plateau of σ1 − σ2 and pw.

Cycles of σ1 − σ2 between zero and ca. 80% of the state limit value lead
to a kind of ratcheting: the axial strain ε1 increases gradually (Fig. 5.2.1a),
pw increases mainly in the first cycles (b), the stress path tends to a loop
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Fig. 5.2.1. Response of clay to some deviatoric stress reversals in undrained triaxial
tests (Sangrey et al. 1969): axial stress (a) and pore water pressure (b) versus axial
shortening and effective stress path (c) with stress deviators up to 80% of their limit
value; same with 50% (d–f)

that approaches a state limit condition repeatedly (c). It appears that with
ε1 beyond ca. 5% the sample lost its uniformity due to bulging and friction
at the plates, so this part cannot be used as element test. Cycles of σ1 − σ2

between zero and ca. 50% of the state limit value lead to a kind of stabilization:
hysteresis cycles are reached in the plots of σ1 − σ2 vs. ε1 (d) and of pw vs.
ε1 (e), the stress path (f) reaches a cycle which remains well off a state limit.
With ε1 below 1% the sample remains rather uniform.
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As outlined in Sect. 4.2 for psammoids one can conclude that the differ-
ential stiffness d(σ1 − σ2)/dε1 is not sufficiently determined by the external
state variables σ′

1, σ′
2 and e. An internal or hidden state variable is needed in

addition, with two components h1 and h2 in case of cylindrical symmetry. h1

and h2 are indeterminate at the onset, but get determined with the approach
to SOM-states or by reversals of sufficient number. It appears that in the
tests by Sangrey et al. (1969) two kinds of attractors were nearly reached, viz.
state limits and asymmetric state cycles. Bulging and plate friction prevented
uniform big deformations (Sect. 14.1), parameters for state limits could only
be estimated with the few data on e and consolidation.

Similarly as in Ibsen’s (1994) tests with sand (Fig. 4.2.7) stationary ratch-
eting was nearly reached with the bigger σ1 − σ2, so Fig. 5.2.1c exhibits a
similar asymmetric state cycle as observed with sand. With the lower σ1 −σ2

of Fig. 5.2.1d the accumulation of pw (e) gets so small that it is not visible
with some cycles. The one-sided asymptotic stress cycle of Fig. 5.2.1f should
lead to stationary ratcheting after a sufficient number of cycles with a bigger
pw, so that the limit stress condition for axial shortening would be approached
repeatedly. Sangrey et al. (1969) did not attain this ratcheting with ca. 20 cy-
cles. Brown et al. (1975) tested remoulded, undrained clay cylinders with up
to 106 asymmetric deviatoric stress cycles. In the subcritical range stationary
ratcheting was apparently reached, but the report does not suffice to identify
asymptotic state cycles.

Hyodo et al. (1999) imposed symmetric deviatoric cycles to undrained
cylindrical clay samples up to a periodic response, Fig. 5.2.2. Undisturbed
samples had been reconsolidated before to estimated in situ stresses. With a
lowly plastic clay the stress path (a) tends to a butterfly, and the stress-strain
curve (b) tends to a hysteresis loop as observed with sand (cf. Fig. 2.6.6a).
In the periodic asymptote the skeleton attains repeatedly critical stress obliq-
uities for axial stretching and shortening, in between the skeleton pressure
approaches zero. With a more plastic clay the stress path (c) tends to a but-
terfly without these two features. The attained hysteresis loop (d) has no
almost horizontal sections. Asymptotic state cycles were not attained with a
more plastic clay after about 200 reversals.

Hyodo et al. (1999) interprete their observations in terms of cyclic strength,
stiffness and mobility without mentioning viscous effects. As outlined in
Sects. 2.2 and 3.2 this conventional approach is not objective, empirical cor-
relations proposed by Hyodo et al. are therefore left aside. The only objective
feature is the attractor visible in Fig. 5.2.2. This is determined by void ratio,
amplitude and strain rate D. As the samples were slender (h/d = 2) and the
deformations got big the samples lost the desired uniformity (Sect. 14.1). The
rather qualitative findings show that the asymptotic response of undrained
peloids with reversals gets psammoid-like if state limits are approached re-
peatedly. The argotropy did not appear as D was roughly constant.

Nearly symmetric state cycles were also attained in triaxial tests by Matsui
et al. (1980). They imposed alternating σ1−σ2 without drainage to saturated
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Fig. 5.2.2. Response of undrained saturated cylindrical clay samples to deviatoric
stress cyches (Hyodo et al. 1999): stress path (a) and stress-strain curve (b) with
low plasticity; same with a more plastic clay (c, d)

samples of a remoulded rather plastic clay after isotropic compression, and
also after decompression. With (σ1 − σ2)-amplitudes below ca. 50% of the
attainable maximum a periodic response was reached after more than 103

cycles. This is shown in Fig. 5.2.3 for tests without decompression with differ-
ent frequencies fc. The average pore pressure p̄w increases up to a saturation
value which is higher for a lower fc (a). The strain amplitude increases along-
side with the increase of pw (b). The argotropy is significant for a frequency
increase by factor 20, and stronger than what (3.1.1) and (3.2.2) yield with
Iv = 0.05. This may be attributed to the wider almost elastic range for more
rapid deformations as outlined in Sect. 3.2.

Test results with constant frequency are shown in Fig. 5.2.4. Whithout
precompression the average pore pressure p̄w increases up to a saturation
value that grows with the stress deviator (a). With precompression the
asymptotic pw decreases first and has lower asymptotes (b). Results with
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Fig. 5.2.3. Response of a moderately plastic clay after first compression to many
deviatoric stress cycles in undrained triaxial tests (Matsui et al. 1980); growth of
pore water pressure (a) and strain amplitude (b) with log number of cycles for
different frequencies

(σ1 − σ2)-amplitudes referred to the attainable deviator are left aside as then
the sample gets non-uniform. There is no p̄w-increase (c) after stronger pre-
compression and lower than 50% deviatoric stress amplitude. The asymptotic
p̄w increases linearly with the logarithm of the asymptotic strain amplitude
and is lower with more precompression (d).

Asymptotic state cycles according to Figs. 5.2.1 and 5.2.4 are proposed
in Fig. 5.2.5. Stress components are normalized by the isotropic equivalent

Fig. 5.2.4. Further results of Matsui et al. (1980): change of pore pressure with
number of cycles without (a) and with previous decompression (b), evolution of
pore pressure after stronger decompression and with lower stress amplitudes (c),
averages of asymptotic pore pressure versus log strain (d)



272 5 Peloids with reversals

b)

γ

σ1−σ2

a)

c)

p/pr

e

103102 ′

1

d)

0,5

i

c

pe

γ

A

B

A

B

σs1/pe

√2

c

i

–c
A

B

σs2/pe

ps /pe

d A B

Fig. 5.2.5. Proposed asymptotic state cycles for the tests shown in Fig. 5.2.2: nor-
malized stress deviator versus deviatoric strain (a); normalized stress paths (b),
normalized pressure versus deviatoric strain (c), void ratio versus pressure (d). Dot-
ted for higher strain rate

pressure pei in plots of stress deviator (a) and mean pressure (b) vs. axial
strain and in the plane σs1 vs. σs2 (c), but not in the plot of e vs. log ps

(d). With D = Dr and small amplitude (A) the hysteresis (a) is smaller
than with big amplitude (B). Butterfly loops indicate two cycles of ps with
one cycle of ε1 and σs − σ2. They are wider with a bigger amplitude and
get closer then to state limit values. Transitions after compression with pc,
and also after decompression to ps = pc/OCR, indicated in Fig. 5.2.4d by
arrows, correspond to the asymptotic p̄w in Fig. 5.2.3. Dotted loops indicate
the asymptotic response for D > Dr, this argotropy corresponds to Fig. 5.2.2
qualitatively. Hypothetic asymptotic cycles of the hidden state are similar as
in Fig. 4.3.4d. Their amount is lower for lower amplitude and for bigger D,
this indicates a more elastic response. The transitions need more cycles with
lower amplitude, their onset is as indeterminate as the initial hidden state.

Matsui et al. (1980) opened the drainage of samples with excess pore pres-
sure after many deviatoric cycles, and observed a consolidation. A drainage
during the cycles would require extremely low strain rates, therefore isobaric
poly-cyclic triaxial tests with saturated clay are hardly feasible. Hyde and
Ward (1985) report on undrained triaxial tests with up to 104 cycles of σ1−σ2

between zero and up to ca. 80% of the attainable maximum. Remoulded
saturated samples of a lowly plastic clay had been consolidated, and were
decompressed by different amounts. The observed pore pressure increase with



5.2 Observed response of peloids with reversals 273

cycles is similar as the one of highly plastic clays under constant σ1−σ2. Hyde
and Ward (1985) do not report on the evolution of strains nor on the asymp-
totic response, thus their results do not imply ratcheting with asymmetric
state cycles.

Matsui et al. (1980) and Hyde and Ward (1985) used elastoplastic models
for planning and evaluation of their tests, as almost all other authors. Thus
stress paths were imposed without drainage, empirical relations were proposed
for the excess pore pressure as softening parameter, failure (i.e. a drastic
loss of uniformity) was described with strength parameters depending on an
overconsolidation ratio, and viscous effects were often ignored. Lewin and
Burland (1970) chose a powder with harder particles than kaolin in order to
get less creep, and tried in vain to find elastic ranges. Atkinson et al. (1990)
evaluated triaxial test results with a moderately plastic clay and conclude that
its behaviour is ‘largely inelastic and highly non-linear’. Tavenas et al. (1979)
determined lines of equal strain energy around points in a stress component
plane which depend also on stress rate or strain rate, Fig. 5.2.6. Thus elastic
ranges cannot be identified, and flow rules can only be guessed. The test
results with low σ1 − σ2 by Matsui et al. (1980) and by Hyde and Ward
(1985) demonstrate also that elastic ranges of clays can hardly be identified.

Only few cuboidal tests including path reversals have been made with
saturated clays. With volume changes the strain rates should be small enough
for drainage, so the attainable number of reversals is low. Thus Wood (1975)

Fig. 5.2.6. Lines of equal strain energy in a stress component plane, determined
from triaxial tests with clay by Tavenas et al. (1979)
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and Topolnicki et al. (1990) worked with at most two reversals in true triaxial
and biaxial tests, respectively, with saturated kaolin. Their results, which were
discussed in Sect. 3.7, are apt for validation although the deformations be-
tween reversals are big enough to sweep out the internal state, and as amounts
of strain rates are given at least by order of magnitude. No observations are
available up to argotropic state cycles for cuboidal deformations.

The response of clays to cyclic shearing was likewise not as often inves-
tigated as with sand. For small amplitudes resonant column tests indicate a
dependence of the shear modules Gs on ps and e as by (4.2.1). Kagawa (1992)
obtained a fairly good fit with an exponent m ≈ 0.9, whereas Hardin and
Black (1968) succeeded with m = 0.5 as for sand. Accumulations of pw or e
without or with drainage were not observed, so they are presumably low in
the usual range of resonant column tests. Callisto and Rampello (2002) ob-
served anisotropic Gs-values via propagation of shear waves similarly as with
sand (cf. Fig. 4.2.1). This finding is merely qualitative as the samples had
been cut in situ, and as their initial fabric and force-roughness is unknown
(Sect. 9.1).

Bigger shear cycles have been imposed to saturated clay samples in devices
as by Fig. 2.9.7a. The findings can only indicate qualitative trends as the edges
prohibit uniformity of stress and strain. Thiers and Seed (1968) observed a
reduction of stiffness and strength with strain amplitudes beyond a threshold
of ca. 1%, this is at best a crude estimate. Hsu and Vucetic (2002) sheared
samples of a lowly plastic clay in a device as by Fig. 2.10.3, with rather free
drainage due to low sample height and frequency, Fig. 5.2.7. With ca. 1.5%
strain amplitude the hysteresis is significant (a), and there is a slight gradual
densification (b, initial sample height 18 mm). With ca. 15% strain ampli-
tude hysteresis (c) and densification (d) are bigger and approach a periodic

Fig. 5.2.7. Response of a clay to isobaric cyclic shearing (Hsu and Vucetic 2002):
shear stress versus shear strain (a) and densification (b) with moderate amplitude;
same with big amplitude (c, d)
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response. These findings resemble those by Youd (1972) with sand for lower
shearing amplitudes, cf. Fig. 2.10.3, and they are likewise impaired by shear
localization.

Torsional cyclic shear tests with thick-walled hollow cylindrical samples
of saturated clay are rare. Hicher and Lade (1987) worked with a remoulded
moderately plastic clay and different kinds of consolidation. The observed
response to moderate shear stress cycles without drainage was shown already
in Fig. 3.8.7. The evolution of pore pressures and shear strain is more uniform
than in simple shear tests. The results are also better apt for validation as
it appears that the hidden state gets independent of the onset after a few
moderate cycles (cf. end of Sect. 4.2 for sand).

As for solids (Sect. 5.1) it is proposed that the required hidden state vari-
able represents the force-roughness. This can be expressed by a symmetric
tensor h, other than for pore-free solids (Sect. 4.1) its isotropic part trh is
not negligible due to barotropy. Monotonous deformations with constant D
lead to states of swept-out memory (SOM) for which h is determined by the
skeleton stress, and is thus not needed explicitly. Argotropic state limits are
SOM-states for which e is determined by ps, tan ψs and D. Strain cycles and
ratcheting lead to state cycles including force-roughness, but the latter is no
more always determined by stress and therefore needed. Apart from argotropy
this behaviour agrees qualitatively with the one of psammoids, but the skele-
ton viscosity of peloids influences also their force-roughness. This may get
negligible for creep if this tends to a succession of SOM-states (Sect. 3.2), but
transitions before can hardly be predicted. As the force-roughness represents
spatial fluctuations of stress it gets smaller by relaxation if the shape is fixed.
This transition to an equilibrium may be called cold annealing.

To sum up, remoulded saturated clays reveal a similar response to re-
versals as sand. Without drainage strain cycles cause an accumulation of
pore pressure, except for strong overconsolidation plus small amplitude, with
drainage the gradual densification is significant for the same exception. Sym-
metric asymptotic state cycles due to strain cycles can be deduced from some
test results, an asymmetric state cycle for ratcheting can only be deduced
from a single report. Except for lowly plastic clays the argotropy is sig-
nificant if D changes by orders of magnitude. Some triaxial, cuboidal and
shear test results with few reversals are apt for validation as D is known
or can be estimated. The relaxation at reversals can matter, but waiting
times needed for simulations were rarely recorded. As with sand the cumu-
lative response with many reversals is apparently quasi-viscous and nearly
rate-independent.

5.3 Visco-elastoplasticity with back stress

This section is focused on elastoplastic relations, mainly with cylindrical sym-
metry. As in Sect. 4.5 it is assumed that the internal state can be represented
by two back stress components, say α1 and α2 = α3. Constitutive relations
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are presented more geometrico instead of algebraic representations which are
intricate and rather preliminary. The argotropy is neglected in most of them,
this may be justified if the strain rate D remains in suitable ranges. Exten-
sions with viscosity are treated rather briefly, again more geometric as other-
wise they are hardly tractable. Back-analyses of some triaxial test results are
added for validation.

Based on Mróz’ (1967) concept of kinematic hardening which was indicated
with Fig. 4.1.8, so-called bubble models were proposed for clays with barotropy
and pyknotropy, but without argotropy. A plot from Mróz et al. (1979) may
indicate what can thus be done, Fig. 5.3.1. In a p − q plane (p instead of p′)
the elastic range is a smaller ellipse within an elliptic state boundary of the
same aspect ratio. Two back stress components defining the position of the
elastic range are changed by associated plastic strains, thus the elastic range
(bubble) can be shifted (kinematic hardening) up to the boundary. The latter
depends on e as by Cam clay (Sect. 3.3), thus q and p can be normalized by
an e-equivalent pressure pei (isotropic hardening or softening by contraction
or dilation). Critical states with isochoric deformation are implied, and also
consolidation with lower than critical obliquity |q| /p. Tensile stresses could
occur in the dilatant range, therefore a cut-off is needed (cf. Sect. 2.3).

Rather realistic evolutions are obtained for monotonous deformations. The
dilatant peak states after strong overconsolidation are debatable as peloids in
the sense of Sect. 3.2 cannot have tensile skeleton stress. q-cycles without

Fig. 5.3.1. Bubble model by Mróz et al. (1967): plane of stress deviators versus
mean pressure
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drainage lead to a reduction of p without overconsolidation and to an increase
with it. This is qualitatively realistic, cf. Fig. 5.2.4. With drainage q-cycles lead
to gradual densification and ratcheting. In extensions with rotated boundaries
the elastic range is co-rotated so that it can only touch, but not cross the
boundary. Shift and inclination of the boundary require two further internal
state variables. Mróz et al. (1979) indicate how these can be chosen so that
data from uniaxial consolidation tests can be matched.

Attractors for such bubble models cannot be given as software for nu-
merical element tests is not available and could not be worked out from the
publications. The bubble model by Rouainia and Muir Wood (2000) allows
also for cementation (Sect. 7.3). Stallebrass and Taylor (1997) proposed an
extension with two bubbles, Fig. 5.3.2. In addition to the boundary and a
small elastic range there is a ‘history surface’ which depends on the most re-
cent reversal. The plastic flow rule is the same for the three ellipses (black
arrows), the inner surfaces are shifted by plastic deformation (white arrows).
The outline by Stallebrass and Taylor (1997) is not easily tractable, but Mas̆in
et al. (2008) worked out software for numerical tests by asking the authors for
additional information. Their simulations are not convincingly close to test
results.

Whittle and Kavvadas (1994) proposed another kind of elastoplastic model
with two nested yield surfaces, Fig. 5.3.3. A bounding surface appears as an
ellipse in a q − p′ plane (left), and as a bubble inside a circle for critical
states in a deviator plane (right). Its size and orientation are internal state
variables which may be called back stress, two components are needed in case
of cylindrical symmetry. They change with plastic strains via a flow rule and
a hardening rule with a volumetric (isotropic) and a deviatoric (kinematic)
part. An inner yield surface is assumed with the same orientation and flow

Fig. 5.3.2. Two bubble model by Stallebrass and Taylor (1997) in a plane of stress
deviator versus mean pressure
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Fig. 5.3.3. Elastoplastic model with nested yield surfaces by Whittle and Kavvadas
(1994), stress deviator versus mean stress (left), deviatoric stress plane (right)

rule, its size depends on the stress at the last reversal. Combined with an
isotropic hypoelastic relation as by (4.4.1), this leads to a response to stress
cycles with increasing hysteresis for increasing amplitude. This is achieved by
different elasticity parameters for loading and unloading, which are defined
by σ̇′

1ε̇1 + 2σ̇′
1ε̇2 ≥ 0 and < 0 respectively.

Whittle and Kavvadas (1994) propose procedures for determining the nu-
merous material parameters. The ones for the bounding surface are obtained
by matching triaxial test results with proportional compression, critical and
peak states. The initial orientation of back stress is adapted so that stress
ratios for compression with ε2 = 0 are reproduced (cf. Fig. 3.6.5). The pa-
rameters for the hypoelastic-hysteretic response are fitted by means of cyclic
triaxial test results. As software is not freely available for this model an in-
depth investigation by means of attractors cannot be presented here.

This model was improved by Pestana et al. (2002b), Fig. 5.3.4. In a q − p′

plane (a) the bounding and yield surfaces are approximated by lemniscates so
that tensile stresses are avoided. In a deviator plane (b) the bounding surface
and the cone for critical states are rounded hexagons by Nakai and Matsuoka’s
(1983) condition (3.7.1). Thus the critical stress condition (2.2.15) holds with
the same ϕc for axial extension and shortening. Width and orientation of
the elastic range change with plastic strains as for sand (cf. Fig. 4.4.1). The
yield surface has the same orientation as the bounding surface, the flow rule
is the same for the same stress obliquity. As with the precursor model by
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Fig. 5.3.4. Improvement of the model by Fig. 5.3.3 (Pestana et al. 2002)

Whittle and Kavvadas (1994) the size of the inner yield surface depends on
the last stress reversal, thus an amplitude-dependent hysteresis is obtained
with different elasticity parameters before and after a reversal.

Pestana et al. (2002a) propose a procedure to determine the material
parameters. They achieve a good matching for monotonous cylindrical de-
formations of remoulded saturated clays, Fig. 5.3.5. In the plane of σ′

1 − σ′
2

Fig. 5.3.5. Back-analysis of monotonous triaxial tests (Pestana et al. 2002a): nor-
malized stress paths and stress-strain curves without drainage (a); stress deviator
and volumetric strain versus axial strain with drainage (b)
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vs. σ′
1 +σ′

2, normalized by the consolidation press σ′
p, realistic stress paths are

obtained both for axial shortening and extension without drainage (a). Curves
of stress deviator vs. log |ε1| reveal a good fit for small and large strains. With
drainage the evolution of stress deviator (b) and volumetric strain with axial
shortening and constant σ′

2 is also well reproduced. The samples were con-
solidated with ε2 = 0, and decompressed by an overconsolidation ratio with
different amounts as expressed by OCR. In the investigated range peaks ap-
pear only with minute amounts for calculations with higher OCR. Pestana
et al. (2002a) do not outline how they could match stronger peaks, as reported
e.g. by Henkel (1956). They argue that the observed hysteretic response to
small stress cycles can be reproduced, but do not consider cumulative effects.

The viscosity due to thermally activated dislocations in the soft particles
could be taken into account with different degrees of precision. If the amount
of strain rate D remains within about two decades for loading it may suffice
to determine the parameters with D in the range of the intended application,
or to correct the reference pressure by (3.3.5) with the viscosity index Iv and
the reference rate Dr from tests with different D. This comes up to argotropic
bounding surfaces and elastic ranges, whereas flow rules and stress obliquities
are not argotropic as for simple peloids (Sect. 3.2).

Thus creep can at best be captured crudely as then D often varies by
several orders of magnitude, whereas relaxation with D = 0 is missed. As
with visco-elastoplastic relations (Sect. 3.3) this lack could be removed by
means of a viscosity factor fv. This depends on the mean stress ps and an
e-equivalent pressure pe due to combined barotropy and pyknotropy. pe de-
pends also on the stress obliquity tanψs as otherwise consistent argotropic
state limits cannot be obtained. With fv plastic strain rate components ε̇p

1

and ε̇p
2 = ε̇p

3 are substituted by viscoplastic ones, ε̇v
1 and ε̇v

2 = ε̇v
3. Tak-

ing over the hypoelastic relations (4.4.2) for psammoids, the stress rates are
given by

σ̇′
1 − σ̇′

2 = Gr(p′/pr)m [(ε̇1 − ε̇2) − (ε̇v
1 − ε̇v

2)] ,

σ̇′
1 + 2σ̇′

2 = Kr(p′/pr)m [(ε̇1 + 2ε̇2) − (ε̇v
1 + 2ε̇v

2)] .
(5.3.1)

The ratio Kr/Gr may be given by (4.4.2) with a rate-independent Poisson
ratio ν (which has nothing to do with dilatancy). The exponent m may be rate-
independent, whereas the reference pressure pr could be argotropic by (3.3.5).
The flow rule which determines the direction ε̇v

2/ε̇
v
1 is rate-independent, it may

be given by the normal of the elastic boundary. Kinematic hardening can be
formulated similarly with argotropic bounding surfaces and elastic ranges (cf.
Fig. 5.1.3). Isotropic hardening and softening by densification or dilation gets
argotropic via an argotropic reference pressure by (3.3.5). Visco-elastoplastic-
relations with back stress can thus be formulated in variants according to
elastoplastic ones. This was done e.g. by Oka (1985), Matsui et al. (1980)
and Kaliakin and Dafalias (1990). These models are not outlined here as they
are hardly tractable and as software for numerical element tests is not freely
available.
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Some authors tried to capture isochoric evolutions with many reversals by
means of explicit accumulation models for the pore pressure pw. The latter
is treated therein like an isotropic back stress in elastoplastic relations. Ob-
served pw-accumulations were approximated empirically by Van Eekelen and
Potts (1978) on the base of cyclic triaxial tests by Andersen (1976). Thus sim-
ple methods of elastoplasticity can be used with pw as empirical hardening
or softening parameter. Similar approaches were proposed e.g. by Fujiwara
et al. (1985) and Hyodo et al. (1992). Qualitatively a saturated clay behaves
like a more overconsolidated one after a pw-increase due to many isochoric
cycles. It is not possible, however, to obtain thus a realistic ratcheting with
the same empirically accumulated pw, let alone other than cylindrical defor-
mations. Heuristic approaches for cumulative anelastic effects with a kind of
seismically activated viscosity (cf. Sect. 4.6 for psammoids) appear to be em-
pirically justified, this was noticed already by Hyde and Ward (1985). The
pore pressure pw should not be taken as a kind of temperature, however,
as its accumulation has little in common with a seismic relaxation (more in
Sect. 5.5).

Not quite as for psammoids in Sects. 4.4 and 4.5, the back stress variants
outlined in the present section may be interpreted as representations of force-
roughness, cf. the end of Sect. 5.2. Apart from argotropy peloids may be
assumed to be similar as psammoids in that respect if the amount of strain
rate D does not vary extremely. In other words, the argotropy of back stress
may be neglected for almost isotachic evolutions. Creep and relaxation cannot
be captured by extended Cam clay models with nested yield surfaces and back
stress. As the force-roughness can increase by creep and decrease by relaxation
the neglection of both can impair back-analyses with Cam clay models which
are extended with bubbles in a stress space.

To sum up, some elastoplastic relations with back stress produce partly
realistic state limits and asymptotic state cycles of remoulded saturated clays.
Such relations can work at best for strain rates within few decades as then
viscous effects are neglected. They fail for a too high initial overconsolidation
as they have no lower e-bound, and also as some of them need a tension
cut-off. Argotropy, creep and relaxation could principally be modelled with
a viscosity factor as in Sect. 3.4 without back stress. As these models are
hardly tractable and as software for numerical tests is not freely available
further investigations with argotropic and autogeneous attractors are not yet
feasible. Approaches with an empirical accumulation of pore water pressure
are physically debatable.

5.4 Visco-hypoplasticity with intergranular strain

Combining the concepts outlined in Sects. 3.4 and 4.6, Niemunis (2003) pro-
posed a visco-hypoplastic relation with intergranular strain (v-hyp-δ), this is
introduced here for cylindrical RSEs. The outline is more geometrical than
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algebraic, some back-analyses with the freely available software are discussed
with physical arguments for validation.

It is assumed for cylindrical symmetry that two intergranular strain com-
ponents δ1 and δ2 = δ3 evolve with ε1 and ε2 = ε3 as explained in Sect. 4.5.
This is contestable as a relaxation with ε̇1 = ε̇2 = 0 can also reduce the δi

which represent the force-roughness (Sects. 5.1 and 5.2), but is justified on
the other hand by a couple of applications. The evolution equations for the
skeleton stress components can be written

σ̇si = fbMij(ε̇j − ε̇v
j ) (5.4.1)

with 1 and 2=3 both for i and j, the summation convention, a barotropy
factor fb, a stiffness matrix Mij and a viscous strain rate ε̇v

j . The latter is
assumed as

ε̇v
j = BjfvDr (5.4.2)

with the direction
Bj = L−1

ij Ni/
∥
∥L−1

ij Ni

∥
∥ (5.4.3)

determined by the non-linear term of the visco-hypoplastic relation (3.4.3),
the viscosity factor fv by (3.2.5a) and a reference stretching rate Dr. ε̇v

j is thus
the same as without the internal variable δi (cf. Sect. 3.4), this is justified by
Persson’s (2000a) argument that thermally activated creep and relaxation in
solids do not depend on the spatial stress fluctuation due to dislocations. The
matrix Mij is related with Lij as without argotropy in Sect. 4.5. This is an
interpolation between hypoelastic and visco-hypoplastic relations by means of
the switch function depending in δiε̇i as in (4.5.4) and (4.5.5). The prefactor
fb is determined by Butterfield’s (1979) formula (3.3.13) for first compression.
So it is proportional to ps/pr, therein the reference pressure pr depends on D
by (3.3.5).

Approaches to state limits by v-hyp-δ are rather hypoplastic for constant
stretching rates D. The stress paths tend to obliquities tan ψs with the same
dependence on the strain rate obliquity as by simple hypoplasticity (Sect. 2.4).
The argotropy appears in plots of e vs. log ps, but not with the paths of
intergranular strain. The trend towards the attractors can be visualized by
argotropic response polars which consist of two elliptic arcs.

Creep and relaxation by v-hyp-δ are nearly the same as without intergran-
ular strain. With constant skeleton stress components σsi the strain path is
straight and contractant with deceleration, isochoric with constant D or dila-
tant with acceleration, with the same directional dependence of ψε̇ on ψs as
for state limits. D depends strongly on the void ratio and its evolution. This
creep behaviour can be read from (5.4.1) to (5.4.2) with (5.4.3) for σ̇si = 0,
it is essentially the same as shown in Sect. 3.4 without intergranular strain.
The latter tends to state limit values without dependence on the rate D. With
constant shape the stress path exhibits relaxation which is stronger for a low
initial ratio pe/ps than for a higher one. This appears also in a plot of e vs.
log ps. A relaxation of δi is not allowed for by Niemunis (2003).
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The intergranular strain comes into play in the response to strain cycles.
Stress paths tend to asymptotic cycles which are small and centered, butterfly-
like or lenticular. Elliptic cycles for small amplitudes would indicate a nearly
hypoelastic response due to a very small viscosity factor fv. The hysteresis for
bigger amplitudes is smaller than without intergranular strain. The argotropy
is visible in an e vs. log ps plot for bigger amplitudes, but does not appear in
an intergranular strain plot. Asymptotic cycles are changed significantly by
relaxation in pau‘ses for consolidation ratios pe/ps > ca. 1.5. The response
to ratcheting with constant D resembles the one by hyp-δ. As for v-hyp the
argotropy enters via the solid hardness by (3.2.2). The skeleton stress path
tends to lenticular cycles which are close to the limit condition.

A back-analysis with v-hyp-δ by Grandas-Tavera (2010) of the undrained
cyclic tests by Sangrey et al. (1969), which were presented in Fig. 5.2.1, is
shown in Fig. 5.4.1. Parameters for the lowly plastic clay were estimated by
means of data in this report and from tests with similar clays. With a big
deviatoric stress amplitude the stress-strain curve (a), the evolution of pore
pressure (b) and the stress path (c) are fairly well reproduced. With a smaller
amplitude the diagrams of the same kind (d, e, f) deviate more from the
experimental ones, the gradual increase of deformation and pore pressure is
underpredicted. Grandas-Tavera (2010) shows that visco-hypoplastic simula-
tions without intergranular strain are nearly as good. The relaxation during
reversals plays a role for big amplitudes, but can hardly be taken into account
as waiting times were not reported. A back-analysis of the undrained cyclic
tests by Matsui et al. (1980) could lead to a further validation, but this report
is hardly apt for a quantification.

The neglection of argotropy for the intergranular strain in v-hyp-δ may be
accepted for evolutions with roughly constant stretching intensity D as then
spatial stress fluctuations of peloids could be similar as those of psammoids.
States of swept-out memory (SOM), for which the hidden state is determined
by the skeleton stress and thus not needed explicitly (Gudehus et al. 1977),
can be attained by monotonous deformations with constant D. SOM-states
could be recognized by the response just after reversals with the same D.
An almost hypoelastic response is obtained with a sudden increase of D and
with consolidation ratios above ca. 1.5 (Sect. 3.2). Contractant decelerating
creep can also be captured without hidden state parameters, but observed
transitions can hardly reveal the force-roughness. Dilatant accelerated creep
leads to shear localization, this requires another kind of internal state variable
(Sect. 8.3).

Grandas-Tavera (2010) tried to simulate the isochoric cyclic triaxial tests
by Hyodo et al. (1999) shown in Fig. 5.2.2. The observed asymptotic butterfly
stress paths and concave parts of hysteresis loops could not be reproduced.
The underestimation of anelastic effects can be attributed to the nearly hy-
poelastic response by v-hyp and v-hyp-δ for the attained consolidation ratios
(Niemunis and Grandas-Tavera 2010), and as the relaxation near reversals
could only be estimated with guessed waiting times (cf. Sect. 3.7). The obser-
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Fig. 5.4.1. Back-analysis of Sangrey’s (1969) tests (Fig. 5.2.1) with v-hyp-δ
(Grandas-Tavera 2010); stress-strain curve (a), evolution of pore pressure (b) and
stress path (c) for big deviatoric stress cycles; same with small deviatoric stress
cycles (d–f)

vations by Hyodo et al. are not apt for a detailed validation as the samples
could not remain uniform with the attained big amplitudes, and as strain rates
and waiting times are not reported. One cannot judge with them whether the
progressive reduction of the skeleton pressure can be better captured with an
intergranular strain, let alone the lack of relaxation of the force-roughness by
v-hyp-δ.

Niemunis’ (2003) model works also for cuboidal deformations, then the
subscripts i and j are 1, 2 and 3. Deviator planes with centrally projected
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paths of stress and intergranular strain have to be added, whereas the
projections onto planes through the space diagonals may be omitted here
as they resemble the ones for cylindrical symmetry. The latter holds also for
plots of e vs. log ps, but these must not be dropped. Labels of (D/Dr)Iv may
again be used to indicate the argotropy, and labels for (tDr)Iv for creep and
relaxation. Approaches to state limits resemble the ones by hyp-δ. The de-
pendence of the asymptotic directions of stress and intergranular strain on
the strain rate direction is the same as without argotropy (Sect. 4.6). The
argotropy enters via the solid hardness hs by (3.2.2).

Creep and relaxation resemble the ones by v-hyp. With constant stress
the deviatoric strain path has the same Lode angle αε̇ and dilation ratio as
for state limits, so it is contractant and decelerating, isochoric and stationary
or dilatant and accelerating for a subcritical, critical or overcritical stress
obliquity tanψs, respectively. The amount of strain rate is determined by
the ratio of the ψs-dependent equivalent pressure pe and ps via (5.4.2) and
(3.2.5). With a constant shape of the skeleton the deviatoric stress path is
nearly radial, and the rate of relaxation is far bigger for lower consolidation
ratios pe/ps. The intergranular strain cannot relax by v-hyp-δ although the
force-roughness represented by δ can relax considerably. The response to strain
cycles or ratcheting with constant amount of stretching D resembles again the
one by hyp-δ.

The tests by Hicher and Lade (1987) with undrained cyclic isochoric shear-
ing of hollow cylindrical samples of saturated remoulded clay (Figs. 3.8.7
and 3.8.8) are apt for a more detailed investigation. Stress paths and stress
rates were taken from the publication. Simulations by Grandas-Tavera (2010)
exhibit nearly the same deviations as the ones without intergranular strain
(Sect. 3.8). The agreement is hardly better with relaxation in reasonably as-
sumed waiting times. The simultaneous relaxation of the force-roughness can-
not be captured with v-hyp-δ, so the benefit of an intergranular strain is
debatable for peloids.

An apparent validation was achieved for a kind of ratcheting with a thin
layer shear test by Balthasar et al. (2006). The device, the clay and the
previous consolidation were described in Sect. 3.8. Anti-plane shear cycles
were imposed in addition to section-wise constant shear forces in the direc-
tion of average shearing, the normal force was constant. The ca. 1.5 mm
thin clay layer was accelerated and dilated slightly after each increase of
the shear force. During the anti-plane shear cycles with 1 s−1 frequency a
drainage was scarcely possible, thereafter the shear rate was reduced strongly
by densification. Nearly the same evolution was obtained with a finite ele-
ment calculation, this allowed for the free rim of the thin layer with capillary
skeleton pressure and for filtration.

This agreement holds for the evolution of shear force and shear displace-
ment. The findings suggest that the major inner part of the thin layer remained
rather uniform (cf. Fig. 3.8.5b), so this was almost an element test. However,
this is not a validation of v-hyp-δ as the same agreement is obtained with
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v-hyp (Libreros-Bertini 2006). v-hyp can capture several reversals if the con-
solidation ratio pe/ps does not exceed ca. 1.5 and if the relaxation in waiting
intervals is taken into account (Sect. 3.8). An improvement by means of the
intergranular strain δ for several reversals with pe/ps < ca. 1.5 is questionable,
also as there is no relaxation of δ in v-hyp-δ.

Thin layer shear tests with ratcheting were also carried out with higher
than critical constant shear forces. A dramatic acceleration occurred shortly
after anti-plane shaking with ratcheting. The threshould for this kind of col-
lapse is Fc ≈ N tan ϕcs with the critical friction angle ϕcs. With the very low
permeability the dilation necessary for the acceleration must have occurred
in the pore fluid. The observations by Balthasar et al. (2006) do not suffice
to decide whether this dilation stems from cavitation and crack extension or
from shear thinning of bound pore water (Sect. 6.3). Thus the starting time
of a dilatant and accelerated skeleton response cannot be predicted, one can
only state that it occurs for |F | > Ns tan ϕcs with a delay which is shortened
by disturbance.

Grandas-Tavera (2010) tried also to simulate the isobaric cyclic shear tests
by Hsu and Vucetic (2002) shown in Fig. 5.2.7, but rather in vain. The ob-
tained asymptotic hysteresis and mean void ratio were artificial as Niemunis’
(2003) v-hyp has no lower bound void ratio ed, and as anelastic effects are un-
derestimated for consolidation ratios pe/ps above ca. 1.5. These shortcomings
could be reduced with the modified visco-hypoplastic relation by Gudehus
(2004b). The biggest amplitudes employed by Hsu and Vucetic should be left
aside, however, as with them shear bands were certainly produced.

To sum up, the visco-hypoplastic relation with intergranular strain (v-hyp-
δ) by Niemunis (2003) is not convincingly more realistic for evolutions with
reversals than v-hyp without intergranular strain. Like with v-hyp observed
state cycles are missed for consolidation ratios pe/ps > ca. 1.5, and without
relaxation near reversals for pe/ps < ca. 1.5. Isobaric cyclic shear tests cannot
be reproduced as v-hyp and v-hyp-δ have no lower bound void ratio. A certain
improvement could be achieved with the modified visco-hypoplastic relation
by Gudehus (2004b). The advantage of an intergranular strain representing
the force-roughness is questionable as its relaxation is excluded by v-hyp-
δ. Some available test reports are debatable as the samples lost the desired
uniformity with the attained big amplitudes.

5.5 General and outlook

The viscoplastic relations with hidden state variable which were introduced in
this chapter can be formulated with tensors, and can thus be applied in bound-
ary value problems with arbitrary deformations. This will be discussed in the
sequel only briefly as the available relations are preliminary, and as successful
applications are rare. It is indicated and discussed also how so-called explicit
relations could be formulated for evolutions with many reversals. There are
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limitations, however, for relations connecting evolutions of shape and state of
peloid RSEs with reversals.

A general peloid RSE may be imagined as in Fig. 2.11.1, and can be
enriched by an internal state tensor h for the force-roughness as outlined
in Sect. 4.7. The ‘external’ state is objectively characterized by void ratio,
mean pressure and deviatoric stress invariants as shown for psammoids with
Fig. 2.11.2. The hidden state can be characterized by three invariants of h,
further mixed invariants of h and Ts are needed in general if h is not aligned
by the skeleton stress Ts. Monotonous deformations can lead to SOM-states
for which h is determined by Ts, and are then not needed explicitly. Otherwise
the force-roughness is smaller and less aligned by Ts, further specifications of
the hidden state remain arbitrary and can at best be justified indirectly.

The general response of RSEs with internal state can as yet hardly be
quantified beyond the one of simple peloids (Sect. 3.9). This is due to the
almost hypoelastic response just afer a rapid rise of stretching D, and with
consolidation ratios pe/ps above ca. 1.5 to 2. Only for constant D and low
pe/ps the response with reversals can be markedly different from the one with
SOM-states. This can be recognized objectively from asymptotic cycles of
stress and void ratio by stretching cyles and ratcheting with constant D. It
appears that these argotropic attractors, as also state limits for monotonous
stretching, resemble those of psammoids (Sect. 4.7). In particular, isochoric
repeatedly reversed stretching with moderate amplitudes leads to stress cy-
cles with negligible average deviators, and the mean pressure ps pulsates with
double frequency around an average p̄s which is mainly determined by the
void ratio e. Isochoric ratcheting with small amplitude leads to stress cy-
cles which attain repeatedly the critical obliquity, whereas p̄s is lower than
for critical states with the given e and D. The attained hysteresis, which
may be defined by (2.11.16) also for ratcheting with the cyclic fraction of
stretching, is smaller than for sequences of SOM-states as assumed for sim-
ple peloids. The latter could not yet be quantified for lack of experimental
results.

Asymptotic state cycles with changing e can hardly be attained in RSE-
experiments with many reversals as the diffusion of pore water prevents the
desired uniformity with realistic frequencies and sample sizes. The few pub-
lished experiments with slow reversals and drainage did not lead to state
cycles which clearly reveal deviations from SOM-states. One can as yet only
conjecture that periodic attractors with D=const are psammoid-like. Because
of long diffusion times in situ isochoric evolutions with reversals are more
often relevant for applications than isobaric ones. Waiting times can suffice
for drainage, then gradients of pore pressure pw generated by isochoric re-
versals dwindle alongside with changes of e. This consolidation or swelling
(Sect. 11.1) is influenced by the viscoplastic skeleton behaviour. Temporal
changes and spatial redistributions of the skeleton stress field contribute to a
stabilization if the average stress obliquities are subcritical. Then the force-
roughness is reduced over several length scales alongside with a densification.
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The response to subsequent disturbances without drainage is thus less anelas-
tic initially, but with moderate amplitudes the force-roughness grows again
and gets aligned. With overcritical average stress obliquities disturbances lead
to subsequent dilation and acceleration up to a creep collapse, then the force-
roughness rises and is accompanied by shear localization. It appears that
the cumulative response to repeated moderate disturbances can be estimated
without an explicit force-roughness.

Visco-elastoplastic and -hypoplastic relations with hidden state variables
can lead to similar argotropic state limits and creep, then the internal state is
determined by the skeleton stress and thus not needed explicitly (Sect. 3.9).
Differences of v-elp-α and v-hyp-δ arise with repeated reversals with so small
amplitudes that SOM-states do not prevail, and with relaxation during states
of rest. The assumed tensors α of back stress or δ of intergranular strain
are at best reasonable substitutes of the invisible force-roughness. Most of
the present elastoplastic models ignore the skeleton viscosity, this may be
justified for loading with rather constant D and for un- and reloading with
far higher D (Sect. 3.9). The relaxation is thus missed, and the judgment of
repeated reversals is rather arbitrary. The algebraic representations of more
sophisticated versions of v-elp-α and v-hyp-δ are intricate and preliminary
due to rather arbitrary switch functions and interpolations.

Numerical simulations as presented in Sects. 5.3 and 5.4 may help to clar-
ify the issue, but can only lead to validations if attractors are attained with
them and with adequate RSE-experiments. Some of the presented observa-
tions indicate an approach to SOM-states or to state cycles, but cannot be
considered as ample evidence of experimental attractors including the hidden
state. An apparently acceptable agreement may be achieved by an ad-hoc
adaption of parameters. Pitfalls can be avoided by focusing on argotropic
attractors which reveal also the influence of force-roughness. This requires
explorations in a wide range of stretching and amplitudes, and could lead to
improved constitutive relations by trial and error.

Similarly as for psammoids (Sects. 4.6 and 4.7), cumulative anelastic ef-
fects of peloids may be captured by so-called explicit constitutive relations.
Therein cyclic fractions of evolutions are bundled by measures of intensity
and duration, thus only averages over many reversals are needed in simplified
relations. Attempts of this kind were as yet focussed on the evolution of excess
pore pressures (Matsui et al. 1980), this was used as internal variable in elasto-
plastic relations (van Eekelen and Potts, 1978). Andersen (1976) observed a
kind of reduced strength in undrained triaxial and shear tests with clay, and
proposed to use it for plastic limit states. Hyde and Ward (1985) noticed that
cyclically loaded clay samples exhibit a kind of creep. Let us discuss how far
such approaches could be defended and extended.

As the skeleton feels only differences p−pw = ps of total and pore pressures,
p and pw, a decrease of the skeleton pressure ps by isochoric shaking may
be interpreted as a kind of osmotic (i.e. entropy-increasing) net repulsion
(Sect. 6.3). This can be attributed to an average seismic temperature Ts; the
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subscript s is chosen instead of g for a granular temperature Tg as peloid
particles are not only grains. The repulsion pressure pr due to Ts (not to be
confused with a reference pressure) resembles the seismic pressure pd proposed
in Sect. 4.6. As can be seen from Matsui’s et al. (1980) results (Fig. 5.2.3) pr

evolves gradually up to an asymptotic value and is thus cumulative, whereas pd

is thought to result from the instantaneous shaking. Focussing on asymptotic
values for stationary shaking this difference is only quantitative, however, the
slower growth of pr than of pd may be understood as slower seismic ‘heating’.

A qualitative difference of pr and pd seems to arise with substantially lower
than critical void ratios. Matsui et al. (1980) observed no increase of pw after
sufficient overconsolidation (Fig. 5.2.3), whereas the stationary stretching of
dense sand (Fig. 4.2.9) reported by Katzenbach and Festag (2004) can be
interpreted with pd > 0 (Sect. 4.6). On the other hand, however, pw decreases
to an asymptotic average for dense undrained sand samples (Fig. 4.2.8) in
triaxial tests with deviatoric stress cycles (Ibsen 1994). This indicates a kind
of net attraction (Sect. 6.3) by isochoric shaking, whereas a net repulsion can
arise by isobaric seismic heating alongside with dilation. Both is also possible
with thermodynamic equilibria of colloids (Sect. 6.1), thus the analogy of T
and Tg or Ts is viable. The remaining difference is the skeleton viscosity, which
is both thermally and seismically activated for peloids and only seismically
activated for psammoids. We need thus two temperatures T and Ts for shaken
peloids, but how to combine them?

Consider first the average directions of average stress and cumulative defor-
mation rates for shaken peloid RSEs. They are apparently related with each
other as for simple peloids and psammoids, but now ps has to be replaced
by p̄s − pr with the average skeleton pressure p̄s and a repulsion pressure pr

by shaking. Thus peloids can exhibit argotropic resistance, creep and relax-
ation due to combined thermal and seismic activation. They may be judged
by means of a generalized stress obliquity, viz.

tan ψ̄s =
√

trT̄∗2
s /(p̄s − pr) , (5.5.1)

which depends on the average Lode parameter cos 3ᾱs as outlined in Sect. 2.11,
and by a generalized consolidation ratio p̄e/(p̄s − pr) wherein p̄e depends not
only on e and tanψs for D = Dr, but also on Ts. As without shaking sta-
tionary flow (average stretching D̄=const) requires a critical tan ψ̄s, but now
also a stationary repulsion pressure pr. As with psammoids (Sect. 4.7) the
generalized critical void ratio ēc is lower due to the seismic temperature Ts

which represents shaking (except for big amplitudes as considered further be-
low). ēc is similarly reduced by Te as ec by a higher T , the particles approach
each other more easily for a given p̄s, heating without drainage would also
reduce ps and soften peloids. The dependence of pr and p̄e on Ts may be for-
mulated quasi-thermodynamically, but such a heuristic approach could only
be quantified by means of experiments.
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With lower than critical stress obliquities by (5.5.1) shaking would cause a
gradual increase of the generalized consolidation ratio pe/(p̄s − pr). Without
drainage, i.e. for constant e with full saturation, the average skeleton pressure
p̄s would decrease, while the generalized p̄e is less increased by stationary
shaking. This reflects the experience that undrained clay gets more overcon-
solidated by shaking (Andersen 1976). With drainage and constant p̄s the
average void ratio ē decreases gradually by shaking, this raises p̄e via e more
than it reduces p̄s via Ts. With overcritical generalized stress obliquities shak-
ing would cause a reduction of p̄s without drainage, and a dilation alongside
with it. This leads to shear localization, cracking and/or skeleton decay. The
thermally activated argotropy causes higher p̄s for bigger stretching rates D,
and enhances the seismic creep if the average stress T̄s or its deviator T̄s is
constant. T̄s is more relaxed than with T only by shaking with constant aver-
age shape. This is visible from undrained experiments with deviatoric stress
cycles with zero average (Figs. 5.2.2 and 5.2.3).

The indicated directional relations require quantifications of repulsion pr

and generalized equivalent pressure p̄e for different stress obliquities tan ψ̄s.
Experiments are needed with different kinds of shaking, only thus a seismic
temperature Ts could be quantified. As with psammoids (Sects. 4.6 and 4.7)
the intensity of seismically activated evolutions is lower if the shaking is not
random, but rather ordered and polarized. Keeping in mind also the thermally
activated viscosity and the diffusion of pore water the required variety of
experiments could scarcely be explored. Simulations with v-elp-α or v-hyp-δ
would be of little use as these relations with hidden variables are far from
being properly validated.

As with psammoids (Sect. 4.6) investigations with a seismic temperature
Ts should be focussed on attractors. In one group of them samples should
tend to a state with constant average shape and imposed fluctuations. If the
latter were periodic the skeletons would tend to state cycles with zero average
deviators. Erratic fluctuations of shape with constant stationary intensity lead
to an isotropic average state. Ts can be defined via the dissipated energy, like
Tg it can be referred to p̄s and to an average number of reversals. In another
group of experiments samples should attain a stationary average stretching
rate which is necessarily isochoric. With periodic changes of shape around the
average deformations, the skeleton would tend to state cycles with non-zero
average deviators. With erratic fluctuations this kind of ratcheting leads to
a critical stress obliquity by (5.5.1), it exhibits thus a repulsion pressure pr

by Ts. As for psammoids Ts could be defined via the dissipated energy of the
fluctuating fraction of deformations.

There are some open questions. By referring Ts to an average number of
reversals it would be rate-independent, but the response is argotropic due to
thermal activation. As Ts is a kind of temperature its definition should not
depend on the kind of soil and excitation. The first group of experiments
proposed above corresponds to thermodynamic equilibria, but the dissipa-
tion requires a stationary average input of seismic energy and excludes a
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seismic heat capacity. The second group corresponds to flow equilibria with
stationary drift and thermal activation as outlind e.g. for solids in Sect. 3.1.
The combined baro-, pykno- and argotropy should resemble the one of sim-
ple peloids (Sect. 3.2). The dependence on Ts could resemble the one on T
(Sect. 3.5). Time-averages of Ts could be used for different erratic excitations
with the same mean dissipation of energy. For unit-invariance the average
excitation frequency f̄c should be referred to the reference rate Dr for vis-
cosity (Sect. 3.2). All that could better work for random shaking, then the
force-roughness is maximal and aligned by the average skeleton stress. Regu-
lar shaking implies a lower and less stress-aligned force-roughness, cumulative
effects can then be captured by asymptotic state cycles. As flow rules for
viscoplastic strains are essentially the same as for simple peloids (Sect. 3.9)
one may conjecture that such cases can be captured by seismo-hypoplastic
approaches.

Explicit relations can thus at best provide crude estimates of cumulative
anelastic effects for shaken peloids. For a rather qualitative judgment later in
this book we will only assume that viscosity index Iv and reference stretch-
ing rate Dr rise, whereas the equivalent pressure pe decreases with higher Ts

(i.e. stronger shaking) similarly as with higher T . Reversals with big am-
plitudes impair the uniformity of skeletons, so these can even decay. Shear
localizations may be principally captured with polar quantities, but can as
yet not be quantified (Sect. 8.3). Cracking means cavitation and loss of satu-
ration (Sect. 6.3), it can at best be approached qualitatively (Sect. 8.4). Both
lead to changes of fabric which influence the subsequent behaviour (Sect. 9.1).
The skeleton can thus decay and go over into mud, which can again become a
peloid. Such critical phenomena can only be touched in this book (Sect. 16.3).
With them the otherwise presumed continuity goes over into a kind of multi-
fractality so that continuum models with RSEs fail.

To sum up, evolutions of peloid RSEs can be captured to a certain ex-
tent by viscoplastic relations with a hidden variable, and cumulative effects
may be estimated by explicit models, but with big amplitudes both kinds of
approaches fail due to critical phenomena. Visco-elastoplastic relations with
back pressure are as yet hardly available, extended Cam clay models without
viscosity are at best justified for slow loading and rapid un- and reloading.
Visco-hypoplastic relations with intergranular strain capture viscous effects,
but the relaxation of intergranular strain is ignored. Both kinds of models may
serve for matching certain experimental findings, but exhibit shortcomings in
the asymptotic behaviour.

The latter can as yet only partly be judged by rather few experimental
reports with repeated reversals. The invisible internal state may be understood
as force-roughness, this is determined by skeleton stress and void ratio for
SOM-states and is indirectly indicated by asymptotic state cycles. Explicit
models may be formulated with a seismically activated viscosity via a seismic
temperature. With erratic shaking the force-roughness could be maximal and
aligned with the average skeleton stress. Such heuristic models may at best
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serve to estimate cumulative anelastic effects. The issue gets more intricate
than with psammoids due to skeleton viscosity and pore water diffusion.With
big amplitudes, i.e. repeatedly overcritical stress obliquities, peloids experience
localizations and tend to deterministic chaos for which continuum models fail
altogether.



6

PORE FLUID

For saturated soils the interaction of skeleton and pore water can be
captured by the effective stress principle and by means of Darcy’s law. In case
of partial saturation it is convenient to work again with a kind of pore fluid,
and with partial stresses and a permeability relation. A moist soil is glued by
capillary water which can scarcely flow. Terzaghi (1920) observed that water
in narrow slits between glass plates is less mobile. He called it bound pore
water and proposed later that this glues particles in saturated clay (Terzaghi
1931). Derjaguin and Churaev (1973) postulated a denser and more viscous
‘polywater’ in narrow gaps. The DLVO-theory by Derjaguin, Landau, Verwey
and Overbeck explains equilibria with interparticle attraction and repulsion
in colloids. The interactions of soil particles are more complicated and beyond
the present reach of thermodynamics, molecular dynamics and microscopy. So
there is no way around heuristic approaches with pore fluid, partial stresses
and transport relations, but caution is required.

Liquid and gas in soil pores are not a proper fluid mix, but a compound
that is kept by the fabric of solid particles. There are interfaces between liq-
uid and gas and/or solid and in slits with liquid between solids (Sect. 6.1).
Thermodynamics works for smooth plane or curved interfaces, but gets al-
ready intricate with solutes and electric charges. Soil particles are far from
smooth, uniformly charged and inert, and they can be changed by encoun-
ters so that their interaction forces are not determined by potentials. Even
with simplifying assumptions partial stresses and transport relations for un-
saturated psammoids (Sect. 6.2) are problematic as the pore gas tends to
non-uniform distributions.

Peloids (Sect. 6.3) are more difficult already with full saturation due to
electro-capillary effects. Rather heuristic partial stresses are proposed which
depend on the ionic strength. A kind of polywater seems to be justified by
observations, but not as imagined by Terzaghi. A net attraction, i.e. an ef-
fective tensile strength of the skeleton can occur, surprisingly it raises the
limit void ratios. The influence of changing ionic strength is far from being
well understood. For peloids with low degrees of saturation the notion of an
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average pore fluid gets meaningless. This chapter is kept short as little could
be done with more details in the sequel.

6.1 Interfaces of water with gas and solids

The interface of water and gas is a skin of roughly dw ≈ 10−9 m thickness.
Therein H2O-molecules are polarized and more densely arranged than in bulk
water, there is a surface energy γwg ≈ 7 · 10−5 kNm−1 which is changed by
ions. At thermodynamic equilibrium the balance of linear momentum requires

pg − pw = γwg (1/r1 + 1/r2) (6.1.1)

with the pressures pg and pw of gas and water. r1 and r2 denote the principal
radii of curvature, ri is positive for a concave water surface. Equation (6.1.1)
was proposed by Laplace for a capillary, it works likewise for slits, necks,
bubbles or drops. It holds as long as the skin is thinner than its radius of
curvature, i.e. for

pg − pw ≤ ca.γwg/dw ≈ 7 · 10−5/10−9 ≈ 105 kPa . (6.1.2)

The gas constituents are H2O, O2, N2 etc., their partial pressures add up by

pg = pv + pg2 + ... (6.1.3)

with the vapor pressure pv. The liquid consists of H2O, dissolved gas and other
solutes which are partly dissociated into ions. The liquid partial pressures add
up to the water pressure

pw = pl1 + pl2 + ... (6.1.4)

with the partial pressure pl1 of H2O. The partial pressures are proportional
to the mass or mol fractions via equilibrium relations. For low fractions of
dissolved gas its concentration or partial pressure is proportional to the partial
gas pressure of the same species (Henry’s law). This cannot hold at saturation
as then an increase of pg2 cannot lead to more intake of gas.

Zero net exchange of H2O through the skin is expressed by Kelvin’s law

pg − pw = −RT

Vw
ln ψw (6.1.5)

with the relative humidity ψw, the specific volume of water Vw and the univer-
sal gas constant R. RT/Vw ≈ 1.3 · 105 kPa holds with the usual temperature
T ≈ 280 K. As ions are shielded by the skin they exert an osmotic pressure

poi = −RT

Vi
Ci (6.1.6)
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for a ionic fraction with specific volume Vi and concentration Ci. Similarly as
Henry’s law this cannot hold near saturation. The equilibrium of coexistent
different ions (H+ and OH−, Na+ and Cl− etc.) is captured by additional
relations expressing the average balance of charge. The skin of an electrolyte
can have an electric charge at equilibrium, thus e.g. an air bubble in sea water
is charged. The equilibria of chemical reactions are also other at the skin than
in the bulk. With curved skins there is an even wider variety of capillary
equilibria.

Surfaces of hydrophilic solids are not smooth in general, and even then
they are more complex than skins between liquid and gas. An amorphous
glass can have a smooth surface and a boundary layer of aligned molecules,
so there is a surface energy and a surface charge. A perfect crystal can have a
plane surface with uniformly distributed energy and charge. As both depend
on the crystal order an edge separates surfaces with different energy and
charge. Real mineral surfaces have steps, dislocations and cracks. Mineral
particles in water or air have also adsorbates which are not removed under
usual geotechnical conditions. This complexity of shape and composition can
principally be captured by thermodynamic relations (Gelb et al. 1999), but
these can at best convey qualitative hints.

Diffuse layers of water with ions can be imagined along charged smooth
solid surfaces, Fig. 6.1.1. There is an excess of counterions so that the gross
charge is zero. Along a plane (a) the equilibrium distribution of the voltage
potential ψ is given by the electron charge, the ion valence, the dielectric
constants of water and vacuum, the number density of ions at the wall and the
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Fig. 6.1.1. Ion concentrations in water near solid surfaces which are plane (a),
convex (b) or concave (c), in a slit between planes (d) and between convex
solids (e)
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distance from the wall (Israelachvili 1995). H2O molecules are more polarized
and more densely arranged near the solid. The thickness of the diffuse layer
ranges from ca. 10−9 to 5 · 10−9 m for far-field NaCl-concentrations from zero
to 0.5 M≈ 3% by mass. The electrolyte in a diffuse layer has a lower average
free energy and a higher average density than in the bulk.

Along a convex solid surface (Fig. 6.1.1b) a lower counterion concentration
suffices for the compensation of charge, so the distance to half the maximum
excess concentration is bigger than at a plane. The opposite holds for a concave
solid surface (c), so there is a kind of electro-capillary suction for counterions.
In a slit between two planes (d) two diffuse layers interfere and cause an
osmotic repulsion which is stronger for a narrower slit. A similar interference
with osmotic repulsion acts between cylinders or spheres (e).

The situation at contacts of mineral soil particles in water is more intricate
as the solid surfaces are not smooth nor uniformly charged, and as there are
always adsorbates and often also condensation bridges. Therefore the DLVO
theory for colloids is not outlined here, it could at best provide qualitative
hints for soils. Triple interfaces of solid, liquid and gas in soils are almost
beyond the reach of thermodynamics. It may suffice to state that soil minerals
are hydrophilic and nowhere on earth free of H2O at usual temperatures.

The kinetics of interfaces is thermally activated (Gelb et al. 1999), cf.
Fig. 3.1.2. With a drift energy ΔF which causes dislocations of molecules
and/or ions past each other the average rate of dislocations by (3.1.5) can be
written as

rt = 2fcNo
ΔF

Ea
exp

(
− Ea

kBT

)
. (6.1.7)

Therein rt denotes the molar transport per unit of time, fc the average fre-
quency of thermal motion, No the Avogadro number, Ea the activation energy
per molecule and kB the Boltzmann constant. One can also refer Ea to one
mol and replace kB by the gas constant R, then ΔF and Ea mean spatial
averages per mol in an interface.

For the bulk liquid or gas (6.1.7) determines the rates of shearing and
diffusion (and also of heat conduction and chemical reactions which are left
aside). Due to lower Ea all rates are far bigger for a gas. For shearing (6.1.7)
can be replaced by Newton’s relation D = τ/η with shear rate D, shear stress
τ and viscosity η. The latter is thus

η =
Ea

a3
mfcNo

exp
(

Ea

kBT

)
(6.1.8)

with the average molecular distance am, and the drift energy ΔF = τa3
m is

dissipated by a unit shear displacement. Coefficients of diffusion can similarly
be derived with a drift ΔF due to the gradient of concentration, and an
activation energy Ea for the dislocation of a solute molecule past the liquid.
This Ea is evidently related with the one for viscosity.
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There is a bigger manifold of kinetics with interfaces. They have bigger
activation energies than the bulk liquid as their density is higher, they are
anisotropic as their molecules are polarised, and surface energy is needed or
released to reduce or increase their number, respectively. Thus there are vari-
ous kinds of capillary condensation (Evans 1990) towards one of the equilibria
outlined further above. For instance, vapor is attracted by a water neck, ions
migrate towards a solid surface with ions of lower valence, and two bubbles
without charge unite to a bigger one with lower free energy.

Shearing and diffusion along interfaces of liquid and solid are slowed down
by higher activation energies due to bigger densities (Israelachvili 1995). Shear
thinning (Xue and Grest 1990) occurs if the shear stress suffices to dilate and
disorder denser molecular arrays in interfaces. Then the viscosity by (6.1.8) is
strongly reduced as Ea gets lower. This approach to polywater cannot produce
more than a crude estimate as the energy needed for shear thinning exceeds
kBT so that the linear relation D = τ/ν is no more justified.

Summing up, only simple interfaces and fluid dislocations, in narrow pores
can as yet be captured with thermodynamic relations. Capillary and electro-
capillary equilibria can be quantified only with smooth interfaces, not with
rough mineral soil particles. The kinetics of water and ion transport is under-
stood except for interfaces with nano-sized curvature.

6.2 Pore fluid of psammoids

Imagine a grain skeleton as RSE which is fixed by rigid filters, Fig. 6.2.1a.
The filters take over the skeleton stress components σs1 and σs2 = σs3 in case
of a cylinder, these are constant if the relaxation of the skeleton is negligible.
The pore fluid is controlled via the filters and can be at equilibrium or flow.
The skeleton can have different degrees of saturation

pw

p2

p1
a)

vw

vw

pw + Δpw

pw
b)

Fig. 6.2.1. Psammoid RSEs fixed by filters, with resting (a) and flowing pore
water (b)
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Sr =
wγw

eγs
(6.2.1)

with the water content w per weight of skeleton, void ratio e and specific
weights γw and γs of water and solid. The concentration of solutes may be
so low that its influence on γw is negligible. Van der Waals attraction and
osmotic repulsion at the grain contacts can be neglected for typical grain sizes
of psammoids, say dg ≥ 10−4 m, if very low skeleton pressures are excluded.

For a saturated psammoid the pore water pressure pw is related with the
total and skeleton pressure components pi and psi by

pi = pw + psi . (6.2.2)

This was introduced in Sect. 2.2 as principle of effective stress. In (6.2.2) psi

and pw are referred to vacuum so that the atmospheric pressure is a part of
them. The skeleton pressure psi is called effective pressure σ′

i in soil mechanics.
Terzaghi (1936) argued that stiffness and strength are controlled by σ′

i as
the solid particles are neutral with respect to pw. Equation (6.2.2) resembles
(6.1.4) for a liquid with partial pressures, so psi may be called solid or skeleton
partial pressure, but other than with a liquid it can be anisotropic and is not
proportional to the solid mass fraction. Osmotic repulsion, van der Waals
attraction and partial pressures of solutes are neglected by (6.2.2), this is no
more generally legitimate for peloids (Sects. 3.5 and 7.1).

The rate of seepage per unit skeleton volume and time is proportional to
the hydraulic gradient, this is Darcy’s law

vw = kf i = kfΔpw/Δs . (6.2.3)

The seepage velocity vw has to be replaced by vw − vs with the velocity vs of
the skeleton if this moves. The quantities in (6.2.3) hold for the direction of
seepage. In an objective formulation vw, vs and the gradient ∇hw of hydraulic
height hw (instead of Δpw/Δs) are vectors (Sect. 1.2). Δpw is the difference
of pw between water entry and outlet minus the one by gravity, Δs is the
length of the RSE (Fig. 6.2.1b). This is no more homogeneous with respect
to pw, but may still be called RSE. The skeleton pressure by (6.2.2) has also
a gradient due to the specific seepage force γwΔh/Δs (in general γw∇hw).

The permeability kf , which is empirically isotropic for psammoids, is re-
lated with the void ratio e and a representative grain size dg by

kf ≈ fsd
2
g

n3

(1 − n)2
g

ν
(6.2.4)

with the pore volume fraction n = e/(1− n), g = 9.81 ms−2 and the viscosity
ν ≈ 10−6 m2s. The empirical factor fs ≈ 5 · 10−3 depends on the shape
of the grains and the grain size distribution. Equation (6.2.3) was derived by
Carman (1956) by considering laminar flow in channels, their estimated width
is a certain fraction of dg. The pore water flows along open zig-zag paths which
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cannot precisely be modelled. The viscosity ν = η/ρw = ηg/γw depends on
activation energy and temperature by (6.1.8).

Thus (6.2.3) and (6.2.4) are based on thermal activation, the proportion-
ality of vw and Δpw indicates that the drift ΔF in (6.1.7) is proportional
to Δpw (cf. Fig. 3.1.2, where ΔF is due to gravity). Permeability tests are
still needed, but with (6.2.4) the influence of changing void ratio can be es-
timated, and via (6.1.7) also the one of changing temperature. As outlined
further above with equilibria the influence of solute transport on kf can be
neglected for skeletons of saturated psammoids.

Consider now a psammoid RSE with gas bubbles between the grains. Their
diameter db ranges from ca. 0.1dg to 0.4dg for grains with uniform size dg.
The difference of gas and water pressures by (6.1.1) with db ≥ ca.0.1dg and
γwg = 7 · 10−5 kNm−1 is bounded by

pg − pw ≈ γwg/db ≈ 10γwg/dg ≤ 10 · 10−5/10−4 = 1kPa (6.2.5)

with dg ≥ 10−4 m for psammoids. This is negligible against pw ≥ pa ≈ 100
kPa. The elastic compressibility of a bubble is sufficiently given by the ideal
gas equation pV = const. With the volume fraction 1 − Sr of bubbles in the
pore fluid its average compressibility is thus approximately

Kf ≈ pw/(1 − Sr) (Sr < 1) (6.2.6)

for pg−pw � pw. As long as the concentration of dissolved gas is well below its
saturation the gas fraction 1 − Sr is proportional to pw = pg by Henry’s law,
but even then (6.2.6) is a crude estimate. One can determine Sr via (6.2.6) by
compression tests without seepage, and can attain Sr ≈ 0 by a high enough
pw to dissolve all the gas if its initial fraction is low enough.

The permeability kf is reduced by gas bubbles as they work like additional
smaller grains, so kf should be measured with realistic pw and Sr. The influ-
ence of dissolved salt on the compressibility of a pore fluid with gas bubbles
may be neglected for psammoids. The salt content can play a role, however,
in case of a skeleton decay as then bubbles are no more caught by the grains
and unite more easily without a surface charge due to salt.

Consider now psammoid RSEs with gas channels. If these are intercon-
nected (Fig. 6.2.2a) the gas and vapor pressures pg and pv in them are uni-
form as long as gas and vapor transport may be neglected. If pore water
and vapor are at equilibrium this means pw by (6.1.5), and a constant cur-
vature 1/r1 + 1/r2 of the water-gas interface by (6.1.1). For a given degree
of saturation Sr thus pg − pw should be proportional to 1/dg if all lengths
are proportional to the grain size dg. With lower Sr the curvature of cap-
illary water bridges must be bigger, whereas with Sr → 1 gas channels get
impossible.

It is convenient to plot pa − pw in a log scale versus Sr, Fig. 6.2.2b. The
suction pa − pw should objectively be scaled by γwg/dg, but usually it is
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Fig. 6.2.2. Psammoid RSEs with gas channels (a), suction versus degree of satu-
ration (b)

scaled by 1 kPa or 100 kPa. The pa − pw for such so-called pF-curves can be
determined via filters with known capillary entry pressure or via the relative
humidity ψw in (6.1.5), salt effects may be neglected for psammoids. pg − pw

increases from zero for Sr = 1 to incredibly high values for Sr → 0, an upper
bound is given by (6.1.2) and by asperities as indicated in Sect. 6.1. For each
Sr a bigger pa − pw is obtained by removing water than by adding it, this is
due to capillary hysteresis (Evans 1990).

Wetting and drying up to a certain Sr lead to different spatial equilib-
rium distributions and to different average suctions. More unique pF-curves
can be obtained if H2O is spread as vapor. Otherwise metastable less uni-
form distributions with higher free energies are obtained with so high energy
barriers that they can be practically permanent. Close to full saturation pF-
curves are no more justified as then the gas fraction sits in bubbles and not in
channels.

The permeability of unsaturated psammoids can formally be described by
an Sr-dependent reduction factor to kf in (6.2.4) as long as the pore water
is inter-connected. The gradient of suction pa − pw works like the one of
pw, but the average cross section with water is reduced by lower Sr. The
permeability is lower for adding water than for removing it, this hysteresis is
due to metastable less uniform distributions. Seepage gets impossible if liquid
water sits only in islands at grain contacts and as adsorbate on the grains.
Therefore the permeability of psammoids with gas channels is low and can at
best be crudely estimated.

A capillary entry can be produced by increasing the outward gradient of
pg−pw at an initially saturated RSE. We leave aside suction with pw < pa = pg

as then vapor bubbles arise in the pore space. A first gas channel percolates
according to the Laplace condition (6.1.1) with the biggest opening between
grains at the RSE surface. The capillary entry pressure can thus be estimated
by (6.2.5), it is often negligible for psammoids. With a further increase of
Δ(pg − pw)/Δs more gas channels break through, a new equilibrium can be
achieved (and used for porosimetry). The spatial distribution of pore water
gets less uniform as outlined further above. Thus a drying front gets more
and more non-uniform, this is called fingering. The entry of water into an ini-
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tially dry skeleton can be more uniform if the skeleton is rather homogeneous.
Otherwise the water intrudes faster along wider pore channels and includes
pore gas in pockets.

Consider now skeleton pressures of unsaturated psammoids, Fig. 6.2.3. A
cross section through grain contacts close to a plane (a) cuts water and gas in
general. It can go around gas bubbles so that (6.2.2) holds again. With inter-
connected gas channels having pressure pg a fraction χ of the cross section
projected to the plane cuts water with pressure pw < pg. Following Jennings
and Burland (1962) one may then replace (6.2.2) by

pi = psi + pf = psi + [χpw + (1 − χ)pg] (6.2.7)

with i = 1 and 2 = 3 for a cylindrical RSE. A kind of mean pore fluid
pressure pf is thus proposed as weighted average of water and gas pressures.
The weighting factor χ depends on the degree of saturation Sr. In a random
aggregate average surface fractions agree with volume fractions (e.g. Guyon et
Troadec 1994), this would mean χ = Sr. If the gas channels are in equilibrium
with the atmosphere, i.e. for pg = pa, χ = Sr leads to

σsi = σi + Sr(pa − pw) (6.2.8)

instead of (6.2.7), therein σi = pi − pa denotes total minus atmospheric pres-
sure. The suction pa − pw depends on Sr and a representative grain size dg

by the pF-curve.
Equations (6.2.7) and (6.2.8) are no more than estimates. Wavy cross

sections cut interfaces of water and gas with surface tension, this raises −pw

and thus σsi. χ = Sr holds only for plane cross sections, not for wavy ones

b)a)

Fig. 6.2.3. Wavy cut through a psammoid RSE with gas channels (a), normal-
ized capillary tensile strength of granular samples versus degree of saturation (b)
observed by Mikulitsch and Gudehus (1995)



302 6 Pore fluid

avoiding grains. As explained with Fig. 6.2.2b the pF-curve is not unique, the
water fraction given by Sr can be arranged differently. Equation (6.2.8) gets
invalid for Sr near 1 as then the pore gas is in bubbles and not in channels.
Altogether the composite of water and gas in the pore space is not really a
fluid, so (6.2.7) is rather heuristic.

Skeleton stress components for different Sr could be measured via filter
plates with control of vapor pressure to get rather uniform distributions. An
indirect determination via compressibility and shear strength, as employed
e.g. by Jennings and Burland (1962), is contestable as further constitutive
assumptions are needed which should be validated separately. In particular,
limit void ratios are higher with gas channels (Sect. 7.2).

Mikulitsch and Gudehus (1995) report on biaxial tests and uniaxial ten-
sion tests with fine sand and silt and Sr-control via vapor. Observed tensile
strengths pcs for different Sr and e are normalized by γwg/dg, Fig. 6.2.3b. This
strength is called capillary skeleton pressure pcs, it acts in the cross section
where the sample is pulled apart. The curves for sand and silt with the same
e agree, this confirms that for a given Sr the curvature of water-gas interfaces
is proportional to 1/dg. pcs is maximal for Sr ≈ 1/2 and tends to zero for
Sr → 0 and Sr → 1 as then there is no water or no suction. For a given Sr

the pcs is bigger for a lower e and smaller for a higher e as then the curvature
is higher or lower. pcs is a kind of negative mean pore fluid pressure pf , so

σsi = σi + pcs (6.2.9)

is a better substitute of (6.2.2) or (6.2.7) with the aid of a pF-curve.
Figure 6.2.3b may be used for estimates with due caution as the relevant
dg is well below the mean grain size if the grain size distribution is far from
uniform.

A capillary entry into a free surface of a saturated psammoid determines
the partial pressures, Fig. 6.2.4. pi = pa normal to the free surface means (a)

psi = pce (6.2.10)

with the capillary entry pressure pce = max(pa − pw). As a channel can get
through like a bubble pce ≈ 10γwg/dg can be estimated with (6.1.1). Without

b)a)

pa
dg

pw

Fig. 6.2.4. Capillary entry at a free psammoid surface by evaporation (a) and
traction (b)
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net attraction and cementation pce is identical with the tensile strength as
opening of a tensile crack means capillary entry and creation of two free
surfaces (b). This tensile strength is bigger than the one by Fig. 6.2.3b as
with Sr ≈ 0.5 and gas channels the curvature of the water-gas interface is
roughly the same as at the previously treated free psammoid surface, but the
water cross section is smaller. With a continued capillary entry a dewatered
psammoid gets less uniform, so its capillary skeleton pressure can only be
estimated.

The coupling of skeleton deformations and seepage depends on many fac-
tors, for some of them crude estimates are obtained with a saturated RSE
under simple shearing. The total pressure p may be constant, the RSE-base
may be impervious and pw = pe is kept at the top. Shearing with a higher ve-
locity vs leads to a change of skeleton pressure Δps nearly as without volume
change. As shown in Sect. 2.9 this Δps can be negative or positive depend-
ing on the relative void ratio re, and its amount can reach or even surpass
the initial pressure pso, so we have roughly |Δps| ≈ pso. The vertical seepage
velocity at the top is roughly vw ≈ kfΔpw/γwd by (6.2.3) with RSE-height
d. It has the same magnitude as the vertical skeleton velocity, vsv = −vw, if
water and grains are isochoric. It should be well below the velocity of shear-
ing if this is almost isochoric, say vsv ≤ vs/100. Δpw = −Δps holds by
(6.2.2) with the assumed constant p. Combining the assumptions leads to the
condition

vs > ca.102kf
pso

γwd
. (6.2.11)

This may be used to estimate the order of magnitude of vs for cases with
roughly given total pressure, and a mean initial skeleton pressure if seepage
may be neglected (no drainage). A further estimate is obtained for shearing
with nearly constant ps = pso. The ratio of dilatancy tan ν = vsv/vs can be
negative or positive, its amount can scarcely exceed about 10−1 (Sect. 2.9).
For keeping |Δpw| below 10−2pso, i.e. negligibly small, the shearing velocity
has to satisfy the condition

vs < ca.10−1kf
pso

γwd
(6.2.12)

if excess pore pressures may be neglected (free drainage).
For skeleton velocities between these bounds the coupling of skeleton and

pore water has to be considered more in detail. If there are gas bubbles
(6.2.11) holds with a lower factor than 102 as the skeleton can change its
volume without seepage, whereas (6.2.12) may be used again. With gas chan-
nels skeleton volume changes are not impeded by the pore water as long as
Sr is low enough. Near a critical degree of saturation Src, however, gas chan-
nels can be closed by contraction or new ones can be opened by dilation
of the skeleton. There is a fuzzy range around Src for this loss or gain of
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skeleton pressure ps = pa −pw > 0 as pore water and gas tend to be unevenly
distributed.

Cavitation occurs in a dilating saturated skeleton if pw attains zero (Mc-
Manus and Davis 1997), i.e. bubbles of vapor and formerly dissolved gas arise.
Negative absolute pore pressures cannot occur in saturated psammoids as the
rather coarse grains enhance the cavitation.

Summing up, the role of the pore water in psammoids is well understood
only for certain degrees of saturation S. For Sr > ca. 0.9 gas bubbles between
grains do not impair the principle of effective stress and reduce the perme-
ability only little. Remnants of water for Sr < ca. 0.1 are rather immobile and
do not matter for skeleton pressures in the geotechnical range. Skeletons with
Sr around ca. 0.5 have an additional capillary pressure which can matter and
may be estimated. However, gas channels and pockets need not be uniformly
distributed so that RSEs get contestable.

6.3 Pore fluid of peloids

Consider first saturated peloids with hard grains. As proposed in Sect. 3.2 their
grain size dg is so small that intergranular forces are not always sufficiently
captured with the skeleton stress psi = pi − pw, which is also called effective
stress σ′

i = σsi. The straightforward extension of (6.2.2) reads

pi = pw + psi + pni (6.3.1)

with a net repulsion pressure pni. Imagine a cross section through grain con-
tacts as in Fig. 6.2.1, and add up repulsive and attractive contact forces sim-
ilarly as for (6.2.7). The interference of diffuse zones with counterions causes
a repulsion which changes with the ionic strength. The interaction of dipoles
in solid particles leads to a van der Waals attraction which does not depend
on the ionic strength (Israelachvili 1995).

For a colloid of spherical particles without solid contact the net repulsion
may be calculated with the DLVO-theory. Israelachvili (1995) shows that the
interaction of mineral particles in electrolytes is more complicated. It appears
that as yet the net repulsion pressure pn of peloids cannot be calculated, so
there is no way around experiments. As outlined already in Sect. 3.2, pn = 0
is indicated by a submerged saturated sample if it decays without swelling.
Fig. 6.3.1 shows sedimented aggregates of corundum powder (grain size dg ≈
5 · 10−7 m) in water with different pH, i.e. logarithm of concentration of H−-
ions. With pH=4 the sediment has e ≈ 0.6 and no cohesion, the water above
is cloudy, this indicates pn > 0. With pH=9 the sediment has e ≈ 1.6 and a
cohesion of ca. 1 kPa, the water above is clear which indicates pn < 0. With
dissolved NaCl a decay indicating pn ≈ 0 is obtained for another pH (more in
Sect. 7.1).

Such tests can at best indicate the sign and the order of magnitude of
pn and its dependence on the ionic strength. Rather sophisticated resonant
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Fig. 6.3.1. Mixtures of corundum powder and water with different pH after
sedimentation (Richter 2006)

(a) (b)

Fig. 6.3.2. Scanning electron micrographs (Richter and Huber 2006) of corundum
aggregates with net attraction (a) and repulsion (b)

column tests lead to pn ≈ 12 kPa and pn ≈ −6 kPa for corundum aggregates
as in Fig. 6.3.1 with pH=4 and 9, respectively, after consolidation with p−pw

from ca 50 to 300 kPa (Richter and Huber 2004). A net attraction pn < 0
could also be determined as tensile strength under water if the pore water
pressure pw is kept constant. An access of air has to be avoided, the gradient
Δpw/Δs must be low by slow deformation. A net attraction pn < 0 is a
genuine cohesion of the skeleton. It increases the skeleton pressure via (6.3.1),
and also the void ratio as shown with Fig. 6.3.1. This apparent paradox (Horn
1990) can be explained by the stability of pores, Fig. 6.3.2. With net repulsion
(b) the skeleton pressure is transferred by grain chains in a simple skeleton.
With net attraction (a) macropores bigger than one grain can stand between
grain chains. It will be shown in Sect. 7.1 that limit void ratios are bigger
with net attraction.
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Filter plates fixing a saturated peloid RSE would indicate changes of pn

due to changes of the ionic strength via diffusion with constant pw. The filter
plates take over σsi = psi + pni, the skeleton pressure psi is constant as with
resting hard grains their relaxation is negligible. Condensation bridges may be
excluded. For instance, the corundum aggregate of Fig. 6.3.1 with pH=9 could
be consolidated to e = 1 and fixed; after transition to pH=4 the filter plates
would indicate ps = 0 due to skeleton decay. An aggregate with pH=7 and
0.5 M NaCl could be densified and brought to ps = 0 by a minute expansion;
an increase of ps after transition to nearly no NaCl would indicate pn > 0.
Such experiments have not yet been carried out, but only thus the influence
of changing ionic strength could be determined precisely.

Without changing the ionic strength of the pore fluid a net attraction
pn < 0 could be estimated via tension tests. A net repulsion pn > 0 could
be observed at filter plates after a minute expansion which leads to psi = 0.
Strictly speaking, this requires comparative tests with pn = 0 and the same
e to get the expansion needed to attain ps = 0. Compression and shear tests
could at best lead to crude estimates of pn as the evaluation would require
a validated constitutive relation including pn. We are far from this state of
knowledge, at best limit void ratios for different pn are in the reach (Sect. 7.1).

The permeability of saturated hard-grained peloids can be determined as
with psammoids. This is justified as long as flow channels in the pore space
are scarcely influenced by the lower mobility of H2O in diffuse zones at the
grains. Seepage tests should be carried out with the same ionic strength of
the pore water, otherwise the skeleton could change with changing pn. The
influence of grain size and void ratio on kf may be estimated with (6.2.3).
The diffusion is similar as with psammoids, but is accompanied by adsorption
or desorption as the specific surface is bigger.

Turning now to saturated peloids with soft particles, one has to face
stronger electrocapillary effects. A relevant fraction of the solid particles con-
sists of layer silicates, i.e. platelets of a few nanometer thickness with neg-
ative face and positive edge charges. Depending on the void ratio and the
ionic strength platelets can form various aggregates and can be differently
combined with grains which can constitute a skeleton or not. The bound pore
water near the solid is denser and less mobile, it can be dilated and thinned by
shearing. The DLVO theory is even qualitatively insufficient as the particles
are far from spherical and uniformly charged. Even in geometrically simple
situations the interparticle forces are intricate (Israelachvili 1995). Molecular
dynamics simulations are difficult already with dilute aggregates of uniform
laponite discs of ca. 2 nm thickness and ca. 25 nm size (Dijkstra et al. 1997).

So for a long while there will be no way around heuristic approaches with
idealized RSEs kept by filters similarly as with hard fine grains. With a suf-
ficiently low void ratio e one may assume a skeleton of solid particles, their
spatially averaged solid contact forces are captured by skeleton stress compo-
nents σsi(= psi). For simple peloids as introduced in Sect. 3.2 the partial stress
σsi = σi − pw is postulated to be effective for the skeleton. This was proposed
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by Terzaghi (1936) by means of the neutrality of the skeleton with respect to
the water pressure pw, and was often confirmed by tests with saturated clay.

A wavy cross section through particle contacts of a skeleton (Fig. 6.3.3a)
leads to (6.3.1) with a net repulsion pressure pn, or pni for direction i, as with
hard grains. This was proposed by Sridharan and Venkatappa Rao (1971),
whereas Fam and Santamarina (1996) argue that the constituents could also
work in series and not in parallel as assumed with (6.3.1). The second assump-
tion would refute the concept of a solid particle skeleton for peloids. Only such
skeletons, however, can have argotropic state limits with solid friction as out-
lined in Sect. 3.2. The activation energies of roughly 1 eV given in Sect. 3.5
point also to solid contacts, the ones of the bound pore water are far lower as
will be shown further below. Assuming a skeleton as the seat of stiffness and
strength via psi, and neutrality with respect to the pressure pw of the pore
water, (6.3.1) is justified by a cut as in Fig. 6.3.3a. The net repulsion pressure
pn > 0 or attraction pn < 0 is thus defined by (6.3.1). So how could pn be
determined and used, and how far is it justified?

One may take over the arguments pointed out further above with hard
grains, but there are additional limitations. A consolidated clay sample has
a negligible pn if it is close to decay without filters in water with the same
ionic strength as the free pore water (Fig. 6.3.3b). With pn > 0 it expands
to a suspension, with a pn < 0 far below the consolidation pressure it breaks
under its weight. One has to wait so that pw gets uniform by seepage, at the
onset the sample stands by suction. Changes of the ionic strength in the range
of technical interest indicate an increase of net repulsion or attraction with
more swelling or higher uniaxial strength.

The resistance to a slow expansion after densification could lead to a more
quantitative pn (Fig. 6.3.3c). Again the surrounding water should have the
same ionic strength as the free pore water, and pw-gradients should be kept
low. In case of a net attraction the pressure p1 − pw registered by the filter
plate drops from the one after consolidation to a negative peak that indicates
pn < 0, then it disappears with opening of a crack. In case of net repulsion

b)
ε1

p1-pw

a)

0

pn  >0

pn<0c)

Fig. 6.3.3. Peloids with net pressures: wavy cross section (a), swelling or cracking
under water (b), response to extension under water (c)
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p− pw drops sharply down to pn > 0 by decay of the skeleton, then slowly by
decreasing osmotic repulsion.

This method could suffice to detect the influence of pn on state limits
(Sect. 7.1). It appears that for them the ratio of net repulsion components
pn1/pn2 is roughly the same as the skeleton stress ratio ps1/ps2, and that the
critical friction angle ϕc is not influenced by the ionic strength. It appears
also that the ratio pn/ps does not exceed ca. 10% for state limits, thus crude
estimates of pn may suffice. As shown for hard grains in Fig. 6.3.1, however,
a net attraction pn < 0 can substantially raise limit void ratios because of
macropores.

The proposed determination of pn and of its influence on state limits could
be carried out with different ionic strengths, but an evaluation would overex-
tend the present reach. The clay particles and their spatial arrangement, de-
pending on granular constituents and the sample preparation, are strongly
influenced by the ionic strength. A pragmatic way out will briefly be treated
in Sect. 9.1 where differences of undisturbed and reconstituted samples are
discussed. pn may be considered as additional state variable, but as yet its
dependence on the ionic strength is scarcely known. So one should care for
the same ionic strength in experiments as in situ.

Gradients of the electric potential in the free pore water cause its elec-
trophoresis past the skeleton. This can imply faster seepage and diffusion of
pore water in highly plastic clays than attained with purely hydraulic bound-
ary conditions. With the ever-present ions in the pore water a flux of electric
charge is also induced by seepage, the coupling of water and ion transport in
the pore space is symmetric (Sect. 16.1).

The permeability may be estimated again with (6.2.4), but with another
prefactor fs than for psammoids. The choice of a representative grain size
dg is rather arbitrary as clay particles cannot all be identified as grains. The
particle size distribution determined via sedimentation depends strongly on

b)a)

Fig. 6.3.4. Dependence of seepage velocity on hydraulic gradient for a silt (a) and
a clay (b), modelled by Zou (1996)
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the ionic strength as net attraction leads to flocs that sink faster. The influence
of changing void ratios on kf may be captured by (6.2.4), but what about the
less mobile pore water near the particles? Permeability tests show that Darcy’s
law does not always hold for low gradients, Fig. 6.3.4. While for a silt (a)
(6.2.3) and (6.2.4) are confirmed, a clay (b) exhibits a non-linear dependence.
Below a kind of stagnation gradient io the seepage velocity is well below kf i
with a kf as for bigger gradients i. io increases with lower e and with smaller
particles.

These observations show the influence of the bound pore water. Zou (1996)
explains the non-linear permeability by assuming a kind of shear thinning near
the solid particle surfaces. Thus the higher viscosity of the bound pore water is
reduced with an increasing seepage force so that the permeability as by (6.2.3)
increases. Using (6.1.8) for the influence of Ea on viscosity, and comparing
with experimental permeability relations, Zhou estimates activation energies
of the bound pore water of up to Ea ≈ 8kBT =0.2 eV for T ≈ 300 K, whereas
for shearing of free water Ea is lower than kBT . For low gradients Δpw/Δs
the bound pore water is not thinned, this causes the stagnation visible in
Fig. 6.3.4.

Results of oedometer tests with saturated clay, as shown e.g. in Fig. 3.6.3b,
indicate the same kind of stagnation just after loading reversals. A certain pore
pressure difference Δpw with respect to the water outside the filter plates can
occur with negligible seepage according to Fig. 6.3.4, so far a volume change
of the skeleton is prevented. For bigger amounts of Δpw the permeability is
reduced by shear thinning of bound pore water, skeleton deformations are no
more prevented.

Following Derjaguin et al. (1986) shear thinning can lead to a dilation of
the bound pore water by up to ca. 2%. This would mean a minute dilation
of saturated clay by undrained shearing, and a minute excess of pore water
by contractant drained shearing. As only a small fraction of the pore water
is bound in the usual geotechnical range of peloids their dilation can scarcely
be measured in RSE tests. Rendulic (1937) observed an excess of pore water
beyond the densification of the skeleton in drained triaxial tests with kaolin.
Topolnicki (1987) indicates a minute dilation or contraction of the pore water
in biaxial test with saturated kaolin. However, Külzer (2010) could not confirm
these findings with more sophisticated biaxial tests.

Some observations in triaxial and shear tests with saturated clay point
to dilation and thinning of bound pore water although this was not mea-
sured directly. A back-analysis of triaxial test results by Henkel (1956) with a
visco-hypoplastic relation (Gudehus 2004b) leads to an exaggerated peak with
drainage and an initial OCR ≈ 20. This could be explained by assuming local-
ized shearing without seepage so that the dilation of the skeleton is controlled
by the one of the pore water. It will be outlined in Sect. 8.3 that changes
of void ratio observed in shear bands could be explained with the same as-
sumption. Thin layer shear tests (Balthasar et al. 2006) with a highly plastic
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clay, consolidated and kept under σ = 15 MPa, exhibited a substantial accel-
eration under a constant slightly overcritical τ after nearly stationary shear
creep. The volume fraction of bound pore water was certainly bigger than for
the usual geotechnical range, and seepage was scarcely possible during the
acceleration, so the skeleton was apparently dilated by the pore water.

These few observations do not suffice to justify and quantify constitutive
relations for and with the bound pore water. Derjaguin’s polywater occurs
only in narrow zones near solid particles, it depends on surface charges and
ion concentrations in an as yet unpredictable manner. It is not a bulk phase,
so working with shear-dependent average viscosity and density is contestable.
For the present, however, only such approaches are feasible.

The bounds (6.2.11) and (6.2.12) may be taken over to saturated or al-
most saturated peloids. The order of magnitude of skeleton velocity vs for
assuming no or free drainage is shifted with the one of kf . As kf can vary
substantially the influence of bound pore water may be neglected in that
respect. This is not the case with cavitation, however. Temperley and Cham-
bers (1946) observed with water in a thermally expanded glass ball that the
suction pa − pw can attain ca. 4 MPa before a cavitation. It appears that
−pw can attain almost 100 MPa in narrow gaps, this would mean a radius
of curvature of about 10−9 m by (6.1.1), i.e. ca. five diameters of a water
molecule. Rübel (2010) compressed a bentonite sample up to 150 MPa and
observed that it remained saturated after decompression (Fig. 14.1.7). Its
strength suggests a suction of pa − pw ≈ 50 MPa, this suits to ψ ≈ 50%
humidity by (6.1.5) and to r ≈ 10−9 m by (6.1.1). Peloids with coarser
particles cannot develop such a high suction, thus 50 MPa is an upper
bound.

Models with a volume-averaged pore fluid are more disputable for unsatu-
rated peloids. Gas bubbles between the solid particles may be allowed for by a
reduced permeability and an increased compressibility in comparison with full
saturation. Parameters should be determined by experiments with the same
solutes as in situ, thermodynamics does not suffice for predictions (Sect. 6.1).
Peloids with gas bubbles bigger than the solid particles can occur in mud
which thus gets softer (Sect. 7.2).

Interconnected gas channels can arise in a skeleton of hard grains. Other
than with psammoids such states are reached if the water content w is be-
low the shrinkage limit ws. Shrinkage with full saturation means isotropic
compression with a constant seepage rate vw − vs normal to the free surface,
Fig. 6.3.5a (Külzer 2010). vw is given by the rate of evaporation, it can be
measured via the weight loss of the sample and is determined by the humidity
of the neighboured air via (6.1.5) and (6.1.7). With isochoric solid particles
and water vs = −vw holds due to the mass balance. The consolidation for
w > ws can be calculated with this boundary condition (Sects. 10.1 and
11.7). The capillary entry at w = ws is indicated by a change of brightness
and a reduction of shrinkage rate (Fig. 6.3.5b) as the further evaporation is
reduced by an increase of suction pa − pw. At the shrinkage limit
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Fig. 6.3.5. Shrinkage of peloids: hemispherical sample (a), actual water content
versus the one for full saturation (b), void ratio versus pressure (c)

pa − pw = ps = pce (6.3.2)

holds with the pressures of air, pore water skeleton and capillary entry. pce can
be determined via the tensile strength at w = ws as outlined with Fig. 6.2.4.
Thus a limit void ratio ei = wsγs/γw is given for ps = pce and a strain rate
via vs = −vw (cf. Fig. 3.9.1). A net attraction or repulsion as by (6.3.1)
is neglected in this approach, this could be justified via decay in water as
outlined further above.

For w < ws a unique relationship between e and ps can hardly be ob-
tained, Fig. 6.3.5c. There are no macropores without net attraction prior to
the capillary entry, then the skeleton follows the state limit line for isotropic
compression (A). The ps may be determined from e by means of an isotropic
first compression test with Sr = 1 and ps > pce. With an average pore fluid
pressure as by (6.2.7) this would lead to the net suction

pa − pw = ps/χ (6.3.3)

with the area fraction χ with water in a cross section as in Fig. 6.3.3. One
could determine pa − pw from the relative humidity by (6.1.5) and then χ
by (6.2.7). This is incorrect, however, as the ion concentration increases with
the evaporation so that (6.1.5) is no more valid. Equation (6.2.7) is also con-
testable as the surface tension is neglected in the cut.

The net attraction can get bigger due to an increasing salt concentration.
For low Sr and longer waiting times a cementation can also get relevant. Com-
pression of dry powder leads to higher void ratios as then the net attraction
causes macropores, curve B in Fig. 6.3.5c. The contributions of suction pa−pw

and of net attraction pn < 0 to ps may be negligible, this could be checked by
comparing the tensile strength with the ps deduced from e as outlined further
above. Only for pressures above the usual geotechnical range curves B and
A come together, then capillary gas-water effects could be neglected. With
this lack of uniqueness constitutive relations for peloids with gas channels can
scarcely produce more than crude estimates (Sect. 7.2).

Without a sufficient fraction of hard grains the desiccation of peloids leads
to shrinkage cracks, Fig. 6.3.6. A shrinkage limit ws cannot be identified, the
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b)a) c)

Fig. 6.3.6. Succession of cracks by shrinkage of a highly plastic clay

evolution of cracks depends on the sample size and the vapor transport. The
onset of a crack indicates a capillary entry (a), cracks get deeper and wider
due to shrinkage between them (b), secondary cracks start from the primary
ones (c) and so on. The evolution of such fractal patterns is determined by
the coupled transport of water by seepage from the shrinking skeleton and of
vapor by diffusion and convection. It is beyond the reach of present prediction
models and can get unpredictable (deterministic chaos, Sect. 16.3).

Surface water fills the cracks rapidly, the soil gets softer by the loss of
suction and by swelling, the cracks close under gravity as far as the saturated
skeleton has not enough net attraction. Thus swelling is enhanced by neutral
rain water, and air can be enclosed by wetting in narrower cracks. Depending
on the overburden and the remaining permeability a soil with cracks can
thus get quite soft after flooding. Evolution and consequences of such cracks
were already described by Terzaghi (1925). Soils with many cracks may be
modelled as composites (Sect. 9.1), but not without tests on undisturbed
samples. Continuum approaches with an average pore fluid and an average
skeleton may be used for numerical predictions, but the physical limits should
not be ignored.

To sum up, the pore fluid of saturated peloids is better understood with
hard grains than with soft particles, whereas there are open questions with
pore gas. Net repulsion or attraction can be captured with hard-grained sat-
urated peloids. Saturated peloids with soft particles are influenced by bound
pore water; therefore skeletons of layer silicates cannot always be identified.
Shrinkage and capillary entry are better understood with hard grains than
with layer silicates. Desiccated peloids cannot be captured with a pore fluid
and skeleton pressure.
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BRIDGING GAPS

The title of this chapter was chosen for two reasons. Solid particles can stick
together by net attraction (Sect. 7.1), and similarly by capillary (Sect. 7.2)
or solid bridges (Sect. 7.3), this attraction enables macropores. In spite of
higher skeleton pressures the limit void ratios can be higher by net attraction.
The influence and evolution of particle bridges can be captured by extended
constitutive models, these will but briefly be indicated as there are only few
validations.

The intention of this chapter is also to bridge gaps to other disciplines.
Ceramic masses are of interest in various branches of engineering, and soils are
the object of pedology and sedimentology. Soil particles are not permanent
as their interactions are not conservative, this is apparently at variance with
state limits and state cycles. These attractors will be defended in Sect. 7.3, and
further ones could be of use to catch particle bridges. Bridging attempts are
limited by strange attractors, however, which can as yet hardly be captured.

7.1 Saturated peloids with net pressures

As outlined in Sect. 6.3 peloids can have a net pressure from the difference
of interparticle van der Waals attraction and osmotic repulsion. With the aid
of cuts through ensembles of contacts (‘wavy planes’) one can define a net
pressure tensor Pn with mean values pn = 1

3 trPn and direction quantities as
for the skeleton pressure tensor Ps(= −Ts, Sect. 2.11) with mean value ps.
With the total pressure tensor P = (−T), the pore water pressure pw and the
unit tensor 1 (6.3.1) can be written as

P = pw1 + Ps + Pn (7.1.1)

which includes
p = pw + ps + pn . (7.1.2)

G. Gudehus, Physical Soil Mechanics, Advances in Geophysical and Environmental
Mechanics and Mathematics, DOI 10.1007/978-3-540-36354-5 7,
c© Springer-Verlag Berlin Heidelberg 2011
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This decomposition into partial pressures is neither cogent nor generally suf-
ficient, but sophistications are hardly feasible.

With a net repulsion of particles a suspension remains turbid above the
sediment, which is a rather dense skeleton due to gravity and Brownian motion
(Fig. 6.3.1 left). Then pn is positive and reduces ps by (7.1.2) for given p and
pw. An increase of pn means osmotic swelling and can enhance a decay of the
skeleton. It can occur by a change of the ionic strength of the pore water,
i.e. of acidity or alcalinity (pH) and/or of salinity, i.e. concentration of NaCl
and other salts. Pn, or at least pn, can principally be determined with an
RSE the skeleton of which is fixed by filter plates via the pressure changes
at the latter. In such a thought experiment the osmotic repulsion is changed
by changing the ionic strength via seepage and solute diffusion, whereas the
partial pressure of the fixed skeleton and the van der Waals attraction are not
necessarily changed.

With a net attraction a suspension gets clear as flocs sink in spite of Brown-
ian motion, and the sediment gets macropores and is thus less dense (Fig. 6.3.1
right). Then pn is negative and increases ps for given p and pw. An increase
of −pn should compress the skeleton, so why is it more porous than for pn > 0
and the same ps? This apparent paradox (Horn 1990) can be explained with
the solid bridges of attractive particles around macropores. These bridges
are not totally destroyed by an increase of the so-called effective pressure
p′ = p − pw, and can be regained during skeleton rearrangements due to the
interparticle attraction. A peloid with pn < 0 does not decay by gravity at
an inclined free surface under water with p = pw. A net attraction tensor
Pn with pn < 0 can principally be determined by the experiment described
above, but only as long as the skeleton does not decay when the macropores
implode due to the loss of interparticle attraction.

State limits of peloid RSEs with net pressure may be defined as follows. The
net pressure tensor may be proportional to the skeleton pressure tensor, i.e.

Pn = κnPs (7.1.3)

including
pn = κnps (7.1.4)

is assumed with a factor κn. κn depends on the ionic strength and ranges from
ca. −0.15 to +0.15 by Richter and Huber (2004). Equation (7.1.3) means that
the principal directions of Pn and Ps agree, P̂n = P̂s, i.e. that the net pressure
is aligned by the one of the skeleton. The directional invariants of Pn and Ps

may therefore agree, i.e tan ψn = tan ψs and cos 3αn = cos 3αs (Sect. 2.11)
may be assumed. Thus cos 3αn ranges from −1 to +1 for axial stretching
or shortening of cylindrical RSEs, respectively. tan ψn ranges from zero for
isotropic states to the upper bound by (2.2.4) for states with one or two zero
components, i.e. axial splitting or discing of cylindrical RSEs.

One may imagine solid contact islands with additional net forces from
van der Waals attraction and osmotic repulsion to understand (7.1.4). This
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hypothesis is debatable as is the assumed alignment of Pn and Ps, also in
combination with the assumed decomposition of the total pressure into partial
pressures by (7.1.2). The latter would yield ps = −pn at a free surface under
water with p = pw, and thus κn = −1 by (7.1.4) independently of the ionic
strength. Actually a skeleton could not exist with net repulsion pn > 0 near
a free surface. A peloid can stand with gravity and any inclination due to net
attraction pn < 0 up to sizes

hn ≈ −pn/(γ − γw) (7.1.5)

with specific gravity minus uplift γ − γw (cf. Sects. 11.2 and 11.3). This does
not imply a state limit, however, as the latter can hardly be achieved at a free
surface. The uniformity assumed for RSEs requires skeleton pressure levels
well above the net pressure, say |pn| /ps < ca. 0.1. Otherwise the uniformity
would get lost in element tests by decay or cracking.

Limit void ratios may be assumed to depend on skeleton pressure ps and
stress obliquity tanψs similarly as without net pressure pn, but in addition on
the latter, Fig. 7.1.1. For isotropic state limits e is assumed to be higher with
net attraction pn < 0, but to be independent of a net repulsion pn > 0 (a).
The regime of muds with low skeleton pressures (say ps < 5 kPa) is left aside
for the reasons indicated above. The regime of mudstones with high pressures
(say ps > 50 MPa) is also left aside as then skeletons with solid friction are
hardly justified. The e vs. log ps plots may be similar for different pn < 0,
thus the same ratio of macro- and micropores may be assumed for different
ps and a given ionic strength. The influence of the latter on pn and e cannot
yet be quantified by physical arguments (cf. Sect. 6.3). One may only state
that the e vs. log ps plot is hardly stretched or shortened horizontally with
|pn| < 0.1ps, but can be stretched vertically by substantial amounts due to
the net attraction.

Similar e vs. log ps plots may be assumed for different stress obliquities
tan ψs and a given ratio of net and skeleton pressures pn/ps, Fig. 7.1.1b.
As without pn isotropic state limits (i) constitute an upper bound, a lower
e-bound (d) may hold for extreme obliquities, and critical void ratios for sta-
tionary deformations (c) should be in between. The influence of the Lode
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Fig. 7.1.1. Limit void ratios versus skeleton pressures of peloids with net pressure:
isotropic compression (a), different stress obliquities (b)
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invariant cos 3αs on limit void ratios may be neglected as without net pres-
sures. The assumed similarity implies the same volume fraction of macropores
for different orientations of the skeleton for given ps and pn. As with (7.1.3)
and (7.1.4) this assumption is not cogent, but may suffice for the time being.

The argotropy of state limits due to thermally activated dislocations at
solid particle contacts may be assumed as without net pressure pn (Sect. 3.2).
This means that e vs. log ps plots for different stretching D are confounded if
ps is normalized by a reference pressure pr which depends on D via (3.2.2).
Therein a reference Dr and the related prr for D = Dr should be material
properties in order to secure unit-invariance. The net pressure is not argotropic
for the D-range which can thus be captured: the van der Waals attraction is
given by the relative position of particles, and likewise the osmotic repulsion
for a given ionic strength of the free pore water. The latter requires that the
diffusion of solubles near particle contacts takes far less time than the rear-
rangement of skeletons. This is justified for peloids as the activation energies
of bound pore water (Sect. 6.3) are well below the ones of dislocations at the
contact (Sect. 3.5), and as the diffusion lengths are minute.

The barotropy including pn may be approximated similarly as without pn,
Fig. 7.1.2. In the framework of CSSM (Sect. 2.3) one can write (a)

e = er − λ ln [(p′ + pn)/pr] (7.1.6)

with p′ = p−pw and a reference void ratio er which depends on pn and pr. As
without pn one can express the influence of the stress obliquity by a Δe which
depends on ψs. The influence of pn could be expressed by a pn-equivalent
pressure pne which appears as horizontal shift of the e vs. log ps line. As
without pn (7.1.6) fails for very low or high skeleton pressures ps = p′ − pn.
Other than by CSSM the reference pressure pr can be argotropic and objective
as indicated in Sect. 3.5, and a lower bound ed can be added.

Bauer’s formula (2.4.1) may be used instead of (7.1.6) with a prefactor eo

which is bigger for pn < 0 than without pn, and not changed by repulsion
pn > 0. The same exponent n and hardness hs may be assumed as without
pn because both represent skeleton properties which do not depend on the
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ionic strength. Thus a relative void ratio re can be introduced by (2.2.18),
now with critical and lower bound values ec and ed which depend on ps and
pn. The objective hs can depend on D by (3.2.2) so that re is argotropic for
a given e. This representation could work for a wider range than (7.1.6) and
reflects the assumed similarity of state limits.

The relative void ratio re may now be assumed to depend on the obliquity
invariants tanψs and cos 3αs as without net pressure (Sect. 2.11), particularly
for cylindrical symmetry (Sect. 2.2). Plots of e vs. log ps as by Fig. 7.1.2b can
thus be confounded by means of a prefactor eo which depends on tanψs and
pn/ps. Less consistently a pn-dependent relative void ratio difference Δe/ec

may be referred to ψs in the framework of CSSM. Both representations work
only as far as the influence of cos 3αs on limit void ratios may be neglected.

State limits with net pressure pn may be related with a dilatancy ratio
tan ψD, and with further quantities characterizing the stretching direction
(Sect. 2.11). It is proposed that tan ψD depends on tan ψs and cos 3αs as
without pn (Fig. 2.7.2). This is rather evident with net repulsion pn > 0
as this cannot influence the dilatancy for a given skeleton stress. With net
attraction pn < 0 this assumption means that macropores for a given skeleton
stress do not influence the dilatancy ratios of state limits. More specifically
it means that macropores do not prevent isotropic state limits, that their
volume fraction is stationary for continued critical states of given orientation,
and that at bounding state limits with extreme obliquities macropores take
part with a characteristic volume fraction.

As without net pressure pn state limits are assumed to be attractors of
RSEs for proportional isotachic deformation paths, i.e. for uniform deforma-
tions with constant stretching D in the range by (2.2.16). Now not only the
skeleton stress is determined by the actual D and e, but also the net pres-
sure pn for a given ionic strength of the free pore water. With the assumed

a) b)

Fig. 7.1.3. Void ratios versus consolidation pressure by first compression of kaolinite
(a) and bentonite (b) with water (x) and with less polarized liquids (Sridharan and
Venkatappa Rao 1971)
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directional agreement, P̂n = P̂s, only pn is needed as additional state vari-
able, nota bene for state limits. Transitions to such distinguished states are
left aside, and also localizations which can arise from them alongside with
additional state quantities (Sect. 8.3).

Compression tests with different pore fluids by Sridharan and Venkatappa
Rao (1971) show how far the proposed concept could be valid, Fig. 7.1.3.
Void ratios with kaolinite are higher for less polarized liquids than water (a),
this can be attributed to a lower repulsion with organic liquids. The pressure
dependence could be described as outlined with Figs. 7.1.1 and 7.1.2 by means
of a net attraction pn < 0 from tension tests (Sect. 6.3). Void ratios with
bentonite, however, are lower with less polarized liquids than water (b). This
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Fig. 7.1.4. Void ratios versus consolidation pressure of saturated quartz powder
(a) and kaolin (b) with 5 · 10−3 M (1) and ca. 10−1 M (2) salt content (Zou 1998)
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cannot be explained with a skeleton of solid particles with net attraction, both
notions are no more justified. Particles and force-transmitting contacts of them
can hardly be identified for highly compressible and expansive aggregates of
ultra-fine layer silicates and water. Such materials cannot be captured with
partial pressures as by (7.1.1), it appears that the constituents work in series
and not in parallel (Fam and Santamarina 1996). The neutrality with respect
to pw can still justify the use of effective pressure p′ = p − pw, but skeleton
and net pressures can no more be defended. Such rather exotic cases are left
aside in the sequel.

Zou (1998) reports on oedometric compression tests with saturated kaolin
and different ionic strengths of the free pore water, Fig. 7.1.4. Both with NaCl
(a) and with CaCl2 (b) e is higher for a given σ′ with a higher ionic strength.
This is known for marine sediments with such minerals, their particles coag-
ulate and sink in river suspensions when these reach the sea with about M1
NaCl-concentration. As also shown in Fig. 7.1.4 Zou (1998) changed the ionic
strength by seepage and diffusion, and continued the compression afterwards.
With each reduction of ionic strength e gets lower under constant σ′, but with
a rising and afterwards constant σ′ a rise of e is not noticeable. Continued
compression leads to the e vs. log σ′ plot as for the new ionic strength from
the very beginning. This shows that a contractant state limit is attained as
outlined further above, whereas states during and just after a change of ionic
strength are not state limits.

Külzer (2010) attained state limits with mixtures of Al2O3 powder (dg

from ca. 5 ·10−7 to 5 ·10−6 m) with water of different ionic strength, Fig. 7.1.5.
Depending on pH and NaCl content fresh mixtures were sols or gels due
to net repulsion or attraction (a). Such phase diagrams can be explained
qualitatively by the DLV-theory, but not the related void ratios. Oedometric
compression tests without NaCl exhibit higher void ratios for lower pH and
pressures σ′ = σ − pw up to ca. 1 MPa (b). Slightly higher void ratios are
obtained with the same pH-dependence by the rather isotropic shrinkage of
hemispherical samples up to a capillary entry (c). The results with repulsion
for pH4 can be well approximated by (2.4.1), the ones for pH9 less well with the
same n and hs, but higher prefactors. This confirms Fig. 7.1.2b, but shows also
that saturated peloids with a high fraction of macropores cannot be captured
precisely.

Shear tests with thin layers of the same material between filter plates led
to stationary states with a shearing resistance τc proportional to σ′ = σ − pw

(c). As this is valid for different pH and salinities in the range of σ′ from ca.
50 to 500 kPa it supports the postulated concept for critical states: τc, σ′ and
pn are proportional to each other. Related critical void ratios could not be
measured, but it was at least observed that ec is lower for a given σ′ than
e after compression. A densification up to a lower e-bound was obtained by
shear cycles with constant σ′ . τ -peaks for subsequent shearing with constant
σ′ alongside with dilation exhibit the postulated dilatant state limits, but the
ionic strength was not varied in these tests.
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Tests with various peloids and ionic strengths will be needed for further
quantification. Net pressures pn cannot be determined directly for state limits.
Fixing an RSE by filter plates and changing the ionic strength as proposed
further above can lead off state limits, cf. Fig. 7.1.4. The resistance to a
slow extension under water as proposed in Sect. 6.3 can only yield the order
of magnitude of pn < 0 as cracking means loss of uniformity. Triaxial tests
with short samples, smooth plates and closed drainage can at best approach
uniform critical states (Sect. 12.1). This can lead to ec and related p − pw,
but not directly to pn. Extrapolations from resonant column tests with Al2O3

peloids by Richter and Huber (2004) lead to pn ≈ 12 kPa for pH4 and pn ≈
−7 kPa for pH9. With a consolidation pressure of p − pw = 100 kPa this
suggests that pn/ps ranges from ca. −0.1 to 0.1, but this is only a crude
estimate as state limits were thus not attained. It appears that even for state
limits the net pressure cannot be determined precisely.

Constitutive relations could be formulated with pn so that state limits are
attractors for proportional deformation paths (cf. Sects. 2.2 and 3.2). The net
pressure tensor Pn, which may be considered as an internal state variable,
requires an additional evolution equation. This should produce aligned at-
tractors so that Pn is proportional to Ps(= −Ts) for state limits. This could
be achieved by the same stress and stretching rate dependence of net pres-
sure rates as the one of the skeleton pressure rate. With suitable net pressure
parameters Pn is thus not always proportional to Ps. The argotropy could
be modelled by a viscosity factor depending on a consolidation ratio as with-
out pn. Evolutions with reversals could principally be captured with hidden
state variables so that state cycles are obtained as further attractors. Spatial
fluctuations of net pressures could be imagined for an additional interpolation.

Such constitutive relations are not outlined here in any detail as they
could not yet be applied for lack of experimental data. Some physical argu-
ments may help to illustrate what could and should be done. So-called element
tests, i.e. experiments with uniformly composed and deformed samples, should
be focussed on attractors as only then the results are objective and apt for
validations. A wider spectrum of peloids than indicated by Figs. 7.1.1, 7.1.2,
7.1.3, 7.1.4 and 7.1.5 should be tested, but pH and salinity should only be
varied in the intended range of application. The latter can be done also dur-
ing tests, Fig. 7.1.4 shows that attractors can again arise. Having in mind
the complexity of pore fluids (Sect. 6.1) one may hope that this will be bet-
ter understood with the aid of associated attractors of skeleton and pore
fluid.

One may ignore pn in applications except for free boundaries as long as pH
and salinity are constant. With the low presumed ratios pn/ps and the inde-
terminacy of material parameters the neglection of pn is hardly detectable for
skeleton pressures from about 10 kPa to 10 MPa. Conditions for free bound-
aries, and for filters with wide gaps, may be specified with pn estimated from
the uniaxial strength under water. The issue is different with changes of ionic
strength, however. To begin with, state limit parameters determined with
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Fig. 7.1.5. State limits of saturated corundum powder with different ionic strengths
(Külzer 2009): phase diagram (a), oedometric (b) and isotropic compression (c),
stationary shearing resistance with free drainage (d)

fresh water can be misleading if the pore water in situ is different. For in-
stance, a quick clay decays into a suspension by shearing and gets ductile by
adding salt (Bjerrum 1955).

Salt concentrations and pH may be uniform in samples, but in general
they change with position and time so that pn is not constant. Even with a
single species the solute transport by convection and diffusion is influenced
by adsorption and desorption, let alone reactions. The coupled transport of
several species can as yet only be modelled for fixed skeletons. The equations
get non-linear by coupling with changes of void ratio, i.e. with diffusion of
pore water. Thus predictions of pH- and salinity-dependent net pressures pn

can at best be crude and are impeded by critical phenomena (Sect. 16.1). It
will be a long way therefore up to validations.

To sum up, the influence of net pressures pn on the mechanical behaviour
of saturated peloids can principally be captured by means of attractors, but
quantifications and validations will need a lot more work. State limits have
been observed in some element tests, the influence of pn can be represented
graphically and algebraically. This may be neglected in applications with con-
stant ionic strength except for free surfaces and filters. Changes of pn with
position and time due to solute transport can as yet hardly be modelled, but
can be important for the stability of skeletons in situ.
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7.2 Unsaturated soils

Pore gas can occur in skeletons of psammoids and peloids as bubbles and
channels, often with little spatial order (Sects. 6.2 and 6.3). Even with sim-
plified spatial distributions, so that RSEs make sense, the influence of pore
gas can at best be captured for state limits and asymptotic cycles. Without
considering constitutive relations it will be indicated in the sequel what could
and should be done, and what is hardly feasible because of critical phenomena.

Consider first psammoid RSEs with a rather uniform distribution of pore
gas so that relations with spatial averages suffice to catch the mechanical be-
haviour. As without gas net pressures may be negligible. The skeleton state is
captured by void ratio e and stress tensor Ts(= −Ps), particularly by mean
pressure ps and obliquity tanψs (Sects. 2.2 and 2.11). Due to the pore gas
and its interfaces with pore water and solid particles (Sect. 6.1) the skeleton
can have macropores. These can be bigger than grains in skeletons with gas
channels, e.g. Fig. 7.2.1a from a model test. Then the pore water with suction
according to the vapor pressure forms intergranular capillary bridges. Gas
bubbles can also support macropores (b, X-ray tomography after freezing in
situ). Their excess gas pressure pg − pw depends on curvature and surface en-
ergy (Sect. 6.1). Macropores are evidently reduced by increasing total pressure
p, but need not disappear in the geotechnical pressure range.

Skeletons with macropores are complex even in case of rather uniform
distributions and nearly equal grain size dg. The pore water can flow more
easily around gas bubbles than via capillary bridges, in both cases its spatial
distribution can be and remain far from uniform. Gas bubbles can be kept
between grains with so small diameters, say db < ca. dg/4, that the skeleton
does not feel them directly. One may then assume a simple skeleton (Sect. 2.2)
with reduced permeability and increased compressibility of the pore fluid for
lower degrees of saturation Sr than 1 (Sect. 6.2). With a lower Sr bubbles are
distorted by grains and could support macropores. According to (6.1.2) the
excess gas pressure pg−pw can hardly exceed 1 kPa for grain sizes dg ≥ 10−4 m.
This could suffice to support a dense surrounding skeleton, whereas a loose
one would collapse (Wheeler 1988).

More insight can be gained by considering attractors of psammoid RSEs
with gas bubbles. Isochoric stretching with constant D, e.g. cylindrical short-
ening or simple shearing, should lead to a stationary state limit. With
not too small grains and a low fraction of small bubbles among them, say
0.9 < Sr < 1, dg > 10−4 m and bubble size db ≤ 0.1dg, skeleton rearrange-
ments are hardly impeded by bubbles so that these increase only the com-
pressibility of the pore fluid. Contractant deformations with D = const would
slightly squeeze small bubbles if these are not reduced by increasing pw. Di-
latant ones would not be impeded by bubbles, and these would increase be
decreasing pw (Sect. 6.2). Leaving aside localizations (Sects. 8.2 and 8.4) and
skeleton decay, small bubbles can thus be captured by an Sr-dependent com-
pressibility of the pore fluid.
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Fig. 7.2.1. Gas bubbles trapped in sand: model test (a), X-ray tomography (b)
of a frozen sample (Pralle 2002)
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With bigger bubbles and small grains around them, say dg < 10−4 m and
db > 0.1dg, state limits can be markedly changed by macropores. pw is con-
stant along a wavy cross section around grains and bubbles (cf. Fig. 6.2.3),
but the gas-water interfaces produce a kind of hydraulic net attraction pres-
sure pn < 0, or tensor Pn in general. One can decompose the total pressure
into partial ones by (7.1.1) and (7.1.2), but now pn or Pn does not depend on
ps or Ps and Sr in the same way as without big bubbles. pn can be crudely
estimated by (6.1.2), viz.

−pn ≤ ca.10γwg/dg , (7.2.1)

as bridging gas-water interfaces are curved with 1/r1+1/r2 ≈ dg/10. This is an
upper bound as the volume fraction of macropores cannot be big (Fig. 7.2.1),
and as pn is small compared with skeleton pressures ps in the usual geotech-
nical range. So why could this pn and its influence on limit void ratios not be
neglected?

Other than with peloids grains of psammoids and bubbles between them
are so big that they are not rearranged by Brownian motion. The simplest
state limits can be achieved by isochoric monotonous stretching. In a station-
ary overall deformation gas-filled macropores would disappear and arise by
rearrangements of the skeleton with the same average. One can imagine that
the critical void ratio ec for a given ps, which is somewhat bigger by pn < 0,
is increased by the distortion of bubbles with narrow gas-water interfaces.
However, relatively big bubbles can thus be split into smaller ones which can
no more support macropores so that these can hardly survive. Contractant
and dilatant state limits could be approached with less rearrangement so that
gas-filled macropores need not be excluded for them.

Rearrangements with reversals (Sect. 4.2) would destroy gas-filled macro-
pores if the amplitudes in between are big and/or in case of ratcheting. So why
not neglect such macropores anyway? In a humid loose granular fill macro-
pores can arise up to such a high degree of saturation Sr that the pore gas
is trapped. As then the suction pa − pw disappears and pw can get higher
than hydrostatic, however, macropores could at best survive a monotonous
compaction, but hardly a more effective one with reversals. If a humid gran-
ular fill is flooded part of the pore gas is caught with less uniform spatial
distribution, rather dry islands of erratic shape and size can more easily
arise than gas-filled macropores. A monotonous intrusion of pore gas into
initially saturated skeletons can cause fingering (Sect. 6.2) and channelling
(Sect. 8.4) with erosion (Sect. 16.3). Loose skeletons are more collapsible with
gas inclusions (Wheeler 1988) and can lose their uniformity by skeleton decay
(cf. Fig. 16.3.1).

The contradiction between the imagined uniformity of gas inclusions in
RSEs and the actual non-uniformity in situ can be overcome in pragmatic
approaches. The influence of a capillary pressure difference pg − pw on ps

for given p and pw may be neglected. Critical void ratios ec can be higher
with fine grains due to gas bubbles, this could be quantified by element tests
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with mixtures having ps, pw and Sr in the range of the intended application.
One is on the safe side by neglecting this rise of ec if the void ratios are
lower than critical in situ, i.e. e < ec(ps). Otherwise spatial averages of e over
sizes of earthworks, structures and/or layers (Chaps. 12 and 13) may suffice
without elevated ec for gas inclusions. This assumption is on the safe side
up to the onset of a collapse with a continuous mud flow as shear zones are
spread by diffusion (Sect. 8.2). The subsequent progressive localization by an
accumulation of gas into a cushion after a skeleton decay is beyond the present
reach (Sect. 16.3). An enhanced decay by reversals with gas inclusions can as
yet also hardly be captured.

Randomly uniform psammoid RSEs with gas channels have a kind of net
attraction which was introduced as capillary skeleton pressure pcs in Sects. 2.2
and 6.2. This can be determined by pressure changes at fixing filters with
wetting or drying via vapor, or estimated from the tensile strength (Mikulitsch
and Gudehus 1995). It can be anisotropic so that a capillary skeleton pressure
tensor Pcs with first invariant pcs = trPcs/3 may be assumed. Analogously
with (7.1.1) and (7.1.2) one can decompose the total pressure tensor P via

P = pg1 + Ps − Pcs , (7.2.2)

including
p = pg + ps − pcs (7.2.3)

with a pore gas pressure pg which need not agree with the atmospheric
pressure pa. A change of pg with constant Ps and Pcs, i.e. fixed skele-
ton and adherent pore water, would change pw(< pg) by the same amount
(Sects. 6.1 and 6.2). As with full saturation there is no area correction factor
(χ in Sect. 6.2) due to the neutrality of water and solid particles with respect
to pw. One may thus treat the capillary skeleton pressure similarly as a net
attraction of peloids in Sect. 7.1.

At state limits the skeleton is aligned by its pressure Ps, and capillary
bridges are also wider at contacts along force chains (Figs. 4.3.1 and 4.3.2).
It is reasonable therefore to postulate

Pcs = κcsPs (7.2.4)

including
pcs = κcspcs (7.2.5)

with a factor κcs analogously to (7.1.3) and (7.1.4). This is evident for isotropic
states, and also for states with one or two zero stress components (Sect. 2.2)
as capillary bridges break in a splitting skeleton. Critical states with constant
Sr could be achieved by shearing of thin layers, but data of this kind have
not yet been produced. Heaps of flowing humid granular material, and thus
with critical states near the surface (Sect. 14.2), exhibit slope angles which do
not depend on humidity and slope height. This is implied by (7.2.4) which is



326 7 Bridging gaps

thus further justified as interpolations to isotropic and splitting state limits
are monotonous.

Capillary bridges may be aligned with the skeleton, but their resultant
forces cannot be proportional to the solid contact force as with its increase
the liquid bridges change their shape. Other than κn in (7.1.3) the factor
κcs in (7.2.4) cannot be constant therefore, but it changes with Sr and ps.
Fig. 6.2.3 with pcs from the tensile strength indicates that κcs is maximal
for Sr ≈ 1/2, and vanishes for Sr → 0 (no water) and Sr → ca. 0.9 (no gas
channels). Imagine a fixed skeleton and thus fixed ps with a change of Sr from
an initial Sr = 1/2 to understand that pcs/ps can change substantially with
given ps, i.e. given solid contact flats.

Limit void ratios are higher with capillary attraction as with a net attrac-
tion of saturated peloids, Fig. 7.2.2 (cf. Fig. 7.1.1). Isotropic compressions
of humid loose skeletons start with ps = pcs, i.e. p = pg by (7.2.3), the de-
grees of saturation Sr can be different at the onset and increase if no H2O is
extracted. As in Fig. 6.2.3 the instantaneous pcs may be referred to γwg/dg

and used as objective state variable for presentation, although pcs cannot be
determined precisely. The e vs. log ps-curves (a) are higher and start with a
higher ps for bigger pcsdg/γwg, and converge with increasing ps. A set of sim-
ilar plots may be assumed for different stress obliquities tan ψs and constant
pcsdg/γwg (b). For each tanψs the curve is blown up by bigger pcsdg/γwg as for
ψs = 0.

Relations for limit void ratios can be differently quantified, but available
data can only provide a partial validation. Extensions of CSSM with special
cases of (7.2.2) have been proposed and investigated (Fredlund and Rahardjo
1993). The suction pg −pw is usually determined via (6.1.5) by measuring the
relative humidity ψw of the pore gas. Ridley et al. (2003) measured pg − pw

also with other methods and found deviations. Experiments with different
gas pressures pg confirmed the neutrality with respect to pw which is im-
plied by (7.2.2). A unique relation of suction with the degree of saturation
Sr, i.e.

pg − pw = fgw(Sr) (7.2.6)
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Fig. 7.2.2. Limit void ratios versus skeleton pressures of psammoids with gas chan-
nels for isotropic compression (a) and different stress obliquities (b)
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with a monotonous function fgw of Sr, is often tacitly assumed. This would
be correct for a skeleton fixed by filters through which the relative humid-
ity ψw is controlled up to equilibrium (Sect. 6.2). Even with fixed skeletons,
however, so-called pF-curves of log(pg −pw) versus Sr, exhibit differences due
to capillary hysteresis (Fig. 6.2.2). Depending on the kind of adding or re-
moving liquid H2O there are different metastable equilibrium distributions
of pore water for the same overall Sr. In other words, there are pockets with
higher or lower Sr so that the assumption of a uniform RSE with gas channels
is no more justified. Even a uniform fixed RSE exhibits different excess gas
pressures pg − pa for different void ratios e and given Sr or vice versa, this
is evident by considering skeletons with different capillary bridges. For these
reasons experimental reports and evaluations via (7.2.6) and pF-curves are
often debatable.

Capillary skeleton pressures, i.e. Pcs and pcs in the sense of (7.2.2) and
(7.2.3), are not uniquely related with pg − pw or Sr even for a given e, and
have rarely been determined in experiments. The ones obtained with fine sand
and silt (Fig. 6.2.3b) by Mikulitsch and Gudehus (1995) do not refer to state
limits. The latter are at best approached by uniaxial tensions, but not in
biaxial tests with slow changes of Sr. The extension of hypoplastic relations
with an isotropic Pcs by Gudehus (1995) cannot suffice as the rise of e by
suction is neglected.

Without knowing pcs observed void ratios are usually plotted versus log
(p − pg). Maatouk et al. (1995) report on triaxial tests with reconstituted
silt samples of different Sr, Fig. 7.2.3. For isotropic compression e is markedly
higher with more suction ua−uw (b). For a given suction the e vs. log(p − pg)
plots converge with increasing pressure (a), but state limits are hardly at-
tained. Anisotropic compression tests exhibit a similar influence of suction,
but state limits are not attained so that the influence of stress obliquity as

a) b)

Fig. 7.2.3. Void ratios of silt with gas channels, observed in triaxial tests by Maa-
touk et al. (1995) with different initial void ratios (a) and different suctions (b)
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by Fig. 7.2.2b cannot be judged. Maatouk et al. (1995) discuss also critical
states, but do not communicate critical void ratios ec. It appears that they
did not attain uniform stationary state limits (cf. Sect. 14.1).

With this provisional experimental background it may suffice to mention
constitutive relations just briefly. Alonso et al. (1990) proposed elastoplastic
relations with suction (abbreviated by c-elp in the sequel) on the base of
CSSM. State limits i and c are thus captured for a certain range of p−pg, also
transitions with at most one reversal, overcritical states are implied without a
lower e-bound and splitting (cf. Sect. 2.3). A hypoplastic counterpart (c-hyp)
could be formulated with a suction-dependent prefactor eo in Bauer’s formula
(2.4.1). Relative void ratio re and dilatancy ratios could depend on the stress
obliquity as without suction, Pcs may be proportional to Ps as by (7.2.4).
Evolution equations with rates of Ps and Pcs could be formulated so that
the proposed state limits are attractors for proportional stretching paths. To
catch evolutions with several reversals one could also introduce hidden state
variables and judge this approach by means of asymptotic cycles.

Applications are difficult not only due to the identification with suction,
but also due to the complexity of spatial evolutions with time. The migration
of water in fixed unsaturated grain skeletons can be captured by Richard’s
(1931) equation. This expresses the mass balance of water for an RSE with a
suction-dependent permeability and degree of saturation (cf. Sect. 6.2). The
transition from gas channels to bubbles is inevitably fuzzy and can get chaotic,
thus wetting or drying fronts can hardly be predicted (cf. Sect. 16.1). This is
a pity as wetting of a loose skeleton with gas channels can lead to a collapse,
whereas drying can stabilize it more by suction than by densification.

The approaches employed for unsaturated psammoids in subsequent chap-
ters are tentative therefore. An isotropic pcs is proposed for free surfaces with
given Sr, also for cracks which can thus open and stand. Sufficiently far from
free surfaces ps is often so big that pcs may be neglected as partial pressure
by (7.2.2), but hardly in model tests. Limit void ratios should be determined
with the suction as in situ, thus deformations with this suction can be reason-
ably predicted without taking into account changes of pcs. The loss of suction
by densification and/or water access cannot yet properly be predicted, but is
clearly indicated by pw-transducers in situ. The inclusion of gas cushions is
indicated for arbitrary shapes by a rise of pw. Thus one can judge a loss of
stability by a decay of the skeleton. The loss of suction by evaporation via
random gas channels may be captured by continuum approaches, and also its
gain via access of vapor. The opening of new gas channels in zones without
previous suction is too chaotic for predictions (cf. Sects. 6.2 and 16.3), but
pw-monitoring could serve as a partial substitute.

Unsaturated peloids are more complex as capillary effects are stronger with
the smaller particles, and as net pressures (pn, Sect. 7.1) can play a role. We
assume first pn = 0 and will discuss the influence of pn further below. As
without pore gas the viscosity of softer particles leads to argotropy, creep
and relaxation (Sect. 3.2), this property is not changed by pore gas. In spite
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of the low permeability the diffusion of pore water and of pore gas therein
should not be neglected, even for fast deformations in the sense of (6.2.11),
as gas inclusions are narrow. Thus their close vicinity can take up or release
water and/or solubles in short times. More than with psammoids cracks and
voids between lumps are preferred sites of pore gas. Only few kinds of spatial
distribution will be treated in the sequel.

Gas bubbles can arise in peloids from mixing, compaction of moist fills,
cavitation due to decompression and/or decay of organic constituents. They
support macropores with far bigger sizes than the smallest neighboured par-
ticles, and are so small and wrinkled that their excess gas pressure pg − pw

is not negligible against the mean pressure of the neighboured skeleton. The
latter may be saturated and ductile without filtration due to the softness of
the particles (Sect. 3.2). With a solid volume fraction αs = 1/(1+e) ≈ 1/2 an
average bubble distance of 10 bubble diameters would yield Sr ≈ 0.98. Then
the bubbles can hardly interfere each other, this may be assumed from five
bubble diameters distance onwards, i.e. for Sr > ca. 0.9 which is often met.

State limits of such peloid RSEs can be imagined as follows. For station-
ary stretching, e.g. cylindrical shortening or simple shearing, the bubbles are
deformed and displaced past each other, whereas their average volume and
distance are constant. The bubble shape is adapted to the average skeleton
stress. The near-fields of bubbles have higher ps than the average because of
more rapid deformations and viscosity. Given ductility, viscosity by the power
law (3.2.2b) and stationarity the average argotropy is the same as without
bubbles (Winter 1979). The pressure decomposition p = ps + pw is justified
with spatial averages (only these can be observed by means of cuts around
the bubbles). One may thus work with critical states as for Sr = 1, but with
higher critical void ratios ec for lower Sr. The Sr-dependence of ec has to be
observed in experiments with ps − pw in the range of application so that Sr

is not changed.
Contractant state limits could be achieved by oedometric or isotropic com-

pression tests with drainage. The volume fraction of gas bubbles should be
kept constant, this can be controlled via volume change and mass of squeezed
out water. Shrinkage tests up to a capillary entry can serve to the purpose
if the reduction of weight and volume is measured. Dilatant state limits can-
not be controlled similarly because of shear localization and cracking. Both
are enhanced by bubbles, their volume fraction can at best be determined
via compressibility up to a capillary entry which leads to gas channels. Sr-
and ps-dependent limit void ratios can thus be well captured in the contrac-
tant range, less precisely observed for critical states and only estimated in the
dilatant range.

The argotropy and the dependence of relative void ratios and dilatancy
ratios may be assumed for state limits as without gas bubbles (Sect. 3.2).
Constitutive relations by v-elp or v-hyp with a compressible pore fluid may
suffice as a substitute therefore. The compressibility may be estimated by
(6.2.6) as pw and Sr cannot be determined precisely. The permeability kf
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may be taken as for Sr = 1, the influence of bubbles on the diffusion of pore
water (but not of soluble gas) is captured by the compressibility. The range of
application is limited by capillary entry, this can be estimated via shrinkage
and plasticity limits (Sect. 6.3).

Peloids with gas channels are fissured due to shrinkage, or they consist of
lumps with contact flats after compaction. A sufficiently uniform RSE should
be wider than about ten fissure distances, but this cannot be easily judged
(Sects. 6.3 and 9.1). Imagining boundary filters to support the skeleton and
to control pore water and gas, one may again assume the decomposition into
partial pressures by (7.2.2) and (7.2.3). The solid partial pressures need not
fluctuate more than in grain skeletons with force chains, so spatial averages
may be justified. The pore gas pressure pg is constant in the connected chan-
nels, so the pore water pressure at equilibrium with vapor by (6.1.5) is also
constant. pw can be different in narrow slits (Sect. 6.1), but this could hardly
be observed and seems to be negligible for the RSE-behaviour. The neutrality
of solid and liquid constituents with respect to pw may again be assumed, it
was confirmed by tests with different pg and constant pg − pw via humidity
(Fredlund and Rahardjo 1993).

Leaving aside net pressures (pn, Sect. 7.1) state limits of peloid RSEs with
gas channels could be principally treated as for psammoids. The capillary
skeleton pressure pcs may be determined via the tensile strength, it should
be replaced by a tensor Pcs in general. The proportionality of Pcs and Ps

by (7.2.4) and (7.2.5) may be assumed again. This is evident for isotropic
states, could principally be checked for critical states and is rather evident for
extreme state limits with cracking. Other than for psammoids the factor κcs

could depend mainly on the suction pg − pw, this could be checked via tensile
strength after isotropic compression. The argotropy of limit void ratios could
be captured as proposed in Sect. 7.1 without pore gas.

Extending the definition of simple peloids in Sect. 3.2, state limits may
be sufficiently determined by the (spatially averaged) skeleton stress tensor
and the suction pg − pw, or the factor κcs by (7.2.4) instead. Critical states
are likewise approached by monotonous isochoric deformations with cracks
or lumps at the onset. Because of the net attraction the critical void ratios
ec are higher for the same ps than without pcs (or suction instead). Limit
void ratios are higher for compressions with the same stretching rate D up to
the same ps. Such contractant state limits could be achieved in shorter times
because of a more rapid drainage via gas channels as long as these are not
closed. The latter could be seen from a rise of pw, which could thus no more be
kept nearly constant. Dilatant state limits could hardly be approached with
the desirable uniformity, suction control and uniqueness. The smaller required
deformations do not suffice to sweep out differences of samples with cracks or
lumps (Sect. 9.1).

Experiments of this kind are feasible and desirable, whereas published re-
sults do not exhibit clearly enough unique asymptotic responses, and capillary
skeleton pressures pcs cannot be derived from them. Therefore the issue of con-
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stitutive relations may only be touched, also as spatial evolutions of suction
can yet hardly be predicted. The elastoplastic relations with suction (c-elp)
proposed by Alonso et al. (1990) imply state limits according to CSSM, they
could be modified for pcs and extended for argotropy. A hypoplastic coun-
terpart (c-hyp) could be formulated with a suction-dependent prefactor in
(2.4.1). An additional evolution equation for Pcs is needed in both variants
(cf. Sect. 7.1). Evolutions with reversals could principally be captured by
asymptotic cycles, these could favour the desired uniformity.

Mas̆in and Khalili (2008) proposed a hypoplastic model with variable suc-
tion (c-hyp). Therein the void ratio by isotropic first compression decreases
less with higher effective stress for higher suction, Fig. 7.2.4 (cf. Figs. 7.2.2 and
7.2.3). Test results (a) with a clay by Sun et al. (2007) are well matched (b)
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Fig. 7.2.4. Void ratios versus isotropic effective pressure of an unsaturated clay
with variable suction: (a) experiments by Sun et al. (2007), (b) simulation by Mas̆in
and Khalili (2008)
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both with constant suction (monotonous curves) and with decreasing suction
by wetting (vertical lines with kink). The curves show also that with further
compression after wetting the same void ratios are attained as with a new
suction from the very beginning. These are thus limit void ratios including
suction which work as attractors. The model by Mas̆in and Khalili (2008),
which is organized as indicated above with Fig. 7.2.1, works also satisfactorily
for monotonous evolutions off state limits. Alonso et al. (1990) obtain similarly
good agreements with their c-elp, state limits can thus likewise be captured
as with c-hyp. The range of validity for unsaturated clays with reversals has
not yet been explored.

Last but not least net pressures pn of saturated peloid regions should be
taken into account. In case of gas bubbles it may suffice to determine pa-
rameters with the same ionic strength as in situ (Sect. 7.1). With gas chan-
nels changes of salinity can matter in narrow slits between solid particles
(Sect. 6.1). With a desiccation the NaCl-concentration increases, particularly
near growing cracks, so that the net attraction pn < 0 grows. Wetting via va-
por or rain water would soften the peloid more than with salt water. Suction
can no more suffice as state variable, whereas the capillary skeleton pressure
pcs with control of the ionic strength could serve to the purpose.

To sum up, unsaturated soils can principally be captured by means of par-
tial pressures and attractors, but more experiments will be needed for quan-
tification and limitation. Gas bubbles may be captured by a higher average
void ratio and compressibility of the pore fluid. Soils with randomly uniform
gas channels have higher limit void ratios because of capillary attraction (cf.
Sect. 7.1), but only simple substitutes could as yet been quantified. The spa-
tial evolution of wetting and drying can at best be estimated or observed, but
critical phenomena are not yet properly understood.

7.3 Cemented and transient particles

Skeletons of mineral particles can have higher void ratios with solid condensate
bridges. Such bridges break and often cannot arise again during geotechnically
typical deformations. This can be captured by an irreversible net attraction,
and a recondensation can principally be taken into account. The concept of
state limits and state cycles gets debatable if bridges of particles cannot arise
again. This objection will also be discussed for the particles themselves as
their encounters are not conservative, nevertheless the attractors proposed in
this book are consistent.

Cementations may be first considered for psammoids. Imagine cross sec-
tions through idealized grain skeletons, Fig. 7.3.1. With full saturation solubles
can be condensed around the contact flats so that solid bridges arise (a). This
happens even with pure water and corundum grains, and matters if these
are fine (Richter 2006). Solubles are produced by the pressure at the con-
tact flats and are condensed around them. The thermodynamic equilibrium
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a) b)

Fig. 7.3.1. Contact flats of grain skeletons with solid condensate (a) and smaller
particles (b)

is determined by surface energies and curvatures of narrow necks (Sect. 6.1),
the condensate in the bridges has a kind of capillary suction. The time needed
for the formation of such bridges is controlled by diffusion towards the necks.
The growth time tg depends on concentrations of solubles and the sizes of
contact necks, tg can vary in a wide range therefore.

Much smaller solid particles than the grains tend to accumulate at grain
contacts (Fig. 7.3.1b). Minute particles can stem from abrasion of the grains
or are intruded by seepage. They precipitate preferably at necks and can
condense into an amorphous solid with the aid of crystallizing solubles. This
occurs particularly if cement particles were suspended in the pore water, but
the notion cementation is also used for other solid condensation bridges. Their
growth times are longer with the confined Brownian motion of fine particles
in narrow necks. At equilibrium such bridges exhibit again a kind of capillary
suction, but their surface is less regular. Minute particles are also adsorbed
off the contacts on the grain surfaces, and these are rarely smooth.

Such bridges break by skeleton rearrangements. They open by cavitation,
parts of them fall aside and others stick so that the grains get rougher and
more fragile. The encounter time te of grains, i.e. the lifetime of their con-
tacts, is determined by the stretching tensor D of the skeleton. With isochoric
stretching nearly equal grains find new neighbours after shearing by tan γ = 1
(Fig. 2.9.1), the encounter time is thus te < 1/D (D = ‖D‖). te is longer for
contractant and shorter for dilatant stretching, and can at best be crudely
estimated anyway. The cementation is brittle if the encounter time does not
suffice for recondensation, i.e. for te < tg.

State limits of saturated psammoid RSEs with cementation bridges can-
not generally be defended. Continued stationary (i.e. critical) states could
only occur with te = tg, i.e. with so slow deformations that bridges arise in
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the average with the same rate with which they disappear. Then the skeleton
pressure ps and the related critical void ratio ec would be and remain higher
due to the net attraction. Otherwise solubles and fines would be convected
with the pore water and could influence critical states only via the pore wa-
ter pressure pw. Contractant state limits can more often occur with so low
stretching that the fraction of bridges is not reduced. In this case the related
limit void ratios are higher than without bridges. Dilatant state limits may
also be imagined with net attraction, i.e. effective tensile strength, and higher
limit void ratios than without bridges. The desired uniformity of an RSE gets
lost by cracking, then the argument with tg and te should be adapted to the
opening and healing of cracks.

State cycles may also be discussed by comparing encounter and conden-
sation times. Cyclic deformations with small enough deformations do not de-
stroy solid bridges, then the skeleton is a solid in its elastic range. With
moderate amplitudes and usual frequencies cyclic deformations can weaken
bridges without their total loss. Cyclic deformations with bigger amplitudes
destroy all bridges so that they should be neglected after this kind of fatigue.
Solid bridges can survive ratcheting if the amplitudes are small and the cu-
mulative stretching is slow enough for repeated recondensation. The latter is
prevented by a more intensive ratcheting. Thus asymptotic cycles as proposed
in Sect. 4.2 are no more justified for skeletons with solid condensation bridges.

Constitutive relations with attractors including solid bridges are more de-
batable therefore than the ones indicated in Sects. 7.1 and 7.2. Except for
extremely small or slow deformations the brittleness of bridges prevents the
kind of permanence which is implied by state limits and state cycles. It is
difficult to judge the range of validity by experimental reports as the grains
themselves often break alongside with their bridges. For instance, Lagioia and
Nova (1995) carried out triaxial tests with samples of a saturated calcareous
sand cut in situ, Fig. 7.3.2. For isotropic compression the e vs. p′ plot (a)
exhibits a collapse at a threshold pressure where the bridges break. For axial
shortening with constant σ′

2 the e vs. p′ plot reveals a collapse at a lower
threshold pressure (b).

Axial shortening with different constant σ′
2 leads to a less brittle response

for higher σ′
2. The q = σ′

1 − σ′
3 vs. ε1 plot (c) exhibits jumps for a low σ′

2

and a monotonous increase for higher σ′
2. The volume reduction vs. ε1 (d) is

small for a low σ′
2, strong for an intermediate σ′

2 and not as marked for the
highest σ′

2. With the attainable shortening the ratio q/p′ gets constant as for
critical states, but e is further reduced due to grain crushing. The response is
less brittle with higher σ′

2 as then the bridges were already destroyed by the
previous isotropic compression.

The response exhibited by Fig. 7.3.2 is typical for a soft porous rock or a
cured mortar. Lagioia and Nova (1995) could partly capture it by elastoplastic
relations with two components pn1 and pn2 of a net attraction as internal vari-
able. In addition to volumetric hardening as by CSSM (Sect. 2.3) they assume
that the net attraction decays exponentially with increasing deformations. In
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Fig. 7.3.2. Triaxial test results with a calcarenite (Lagoia and Nova 1995) : (a) void
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extended hypoplastic relations for cylindrical RSEs Gudehus and Mikulitsch
(1996) work similarly with pn1 and pn2. The decay with deformation is de-
scribed by a differential evolution equation with a threshold elastic energy of
the bridges. Without using strains as state variables, as proposed by Lagioia
and Nova (1995), the observed response without and with reversals can thus
be fairly well matched.

Both approaches could be extended objectively for arbitrary deformations
by means of tensors, but are not further outlined here as they do not suit
into the scope of this book. State limits and state cycles do not appear so
that the identification depends on insufficiently known initial states. As in
Sect. 7.1 the net attraction should lead to higher limit void ratios, this is
indicated by Fig. 7.3.2a, but not explicitly taken into account in the named
approaches. These capture the loss of bridges, but not their possible recovery
by condensation. The more erratic response exhibited by Fig. 7.3.2c for low
confining pressures indicates a loss of the uniformity which is needed for RSEs.
Simply speaking, cemented skeletons are not as plastic as typical granular
soils.

The issue of cementation is not easier with unsaturated psammoids. Gas
channels enhance the evaporation so that the higher concentration of sol-
ubles in intergranular capillary bridges eases the growth of solid bridges. The
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capillary water can easily follow skeleton rearrangements by diffusion in the
pores, whereas broken solid bridges can hardly be regained. Attractors as
without cementation (Sect. 7.2) are no more justified therefore. One could
again match test results by heuristic approaches as the ones indicated above,
but the range of validity could scarcely be judged in an objective manner.
It may suffice therefore in geotechnical applications to neglect cementation
bridges as long as the tensile strength is well below the mean pressure. At free
surfaces an isotropic net attraction may be assumed to avoid a skeleton decay
in calculations, but a loss of attraction by the rupture of solid bridges is not
captured by such simplified models.

Cemented peloids can be plastic in a certain range of pressures and stretch-
ing, otherwise the notion peloid would be a contradiction in terms. With full
saturation a cementation causes a kind of net attraction pressure, say pnc < 0
or Pnc more generally, which increases the skeleton pressure by (7.1.1) and
(7.1.2) for a given ‘effective’ pressure p′ = p− pw or P′ = P− pw1 in general.
As the net attraction pn < 0 in Sect. 7.1 this pnc causes an effective tensile
strength and should increase limit void ratios. As outlined further above for
psammoids, however, this net attraction disappears by other than extremely
slow deformations so that state limits and state cycles are no more justified.

Similarly as in Sect. 7.1 and further above for psammoids, one could formu-
late various heuristic constitutive relations with pnc. Mašin (2007) proposed
an irreversible excess equivalent pressure within the framework of CSSM,
Fig. 7.3.3a. For isotropic compressions of a loose skeleton the p′ related with
an instantaneous e is higher by a factor fc > 1 due to cementation (a). This
is equivalent to (7.1.6) with a higher reference void ratio er due to pn < 0.
As brittle bridges disappear during a compression the factor fc tends to 1
(e.g. path 0-1). Higher void ratios with bridges can also be captured by this
factor fc which fades away by isochoric shearing (b, e.g. path 0-1). With evo-
lution equations for fc Mašin (2007) can better match triaxial test results
than without this extension.

In spite of successful matching and practical need the range of validity
of such constitutive relations can hardly be judged with physical arguments.
Saturated peloids with hard grains can be collapsible with an excess of van der
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Waals attraction (Sect. 7.1), and this kind of cohesion can hardly be separated
from the one by cementation (Richter and Huber 2004). With layer silicate
platelets and different solubles even thermodynamic equilibria in narrow slits
are beyond the present reach (Sect. 5.1). Condensation bridges can scarcely
be identified so that a decomposition into partial pressures as by (7.1.1) is
debatable. State limits and state cycles of RSEs could only be attained with
so low stretching rates that condensation bridges decay and grow with the
same average rate. The less plastic behavior with more rapid stretching is
accompanied by cracking so that the desired uniformity of RSEs gets lost.
Triaxial test results indicate that cracks can be healed again at such critical
points (e.g. Fig. 14.1.7), but the role of cementation is not yet understood.

For the time being there is no way around ad hoc-approaches. Saturated
clay samples may be considered as cemented if they have an effective tensile
strength which gets lost by isochoric deformations. Strictly speaking this re-
quires a zero net attraction in the sense of Sect. 7.1, and so slow deformations
that the pore pressure pw is hydrostatic. Even with artificial samples this sep-
aration is difficult as the diffusion of pore water is coupled with the one of
solubles, and as a net attraction cannot be measured directly. Samples should
have the same composition and state as in situ, but then they are at best
little disturbed. Only effective pressures, i.e. p′ = p − pw and P′ = P − pw1
in general, can be observed as long as the samples are and remain so uniform
that RSEs may be assumed. Critical void ratios and stress ratios would in-
dicate a net attraction (Sect. 7.1), but except for very slow deformations the
assumption of critical states with cementation is a contradiction in terms.

Mašin (2006) achieved a good matching with an internal attraction which
gets lost by deformations. This could also work with variants of elp and hyp
for different clays. The internal variable representing a net attraction is hid-
den anyway, it has to be matched so that it raises the limit void ratios and
dwindles by deformations. An irreversible part of a net attraction cannot
be captured by state limits and state cycles, therefore the identification of
material parameters by matching remains partly subjective as the partial in-
determinacy of initial states cannot be ruled out. The smoothness of elp- and
hyp-type approaches with a density-dependent hardening or softening seems
to be justified for contractant or isochoric deformations. This can already lead
to localizations, however, which cannot yet be captured. Localized shear di-
lation could principally be taken into account (Sect. 8.3), but cracking with
cementation is out of reach (Sect. 8.4).

Applications within the fuzzy possible range of validity are impeded by pro-
gressive spatial changes of concentrations of solubles. As without cementation
(Sect. 7.1) the redistribution by coupled convection, diffusion and sorption
can at best be predicted for fixed skeletons. The coupling with skeleton re-
arrangements is beyond the present reach, so there is no way around drastic
simplifications. As without cementation the main issue is softening up to the
collapse of undrained skeletons with overcritical void ratios. To be on the safe
side it may suffice to work with limit void ratios within elp or hyp, determined
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by RSE-tests with given or anticipated ionic strength. A hardly separable ce-
mentation which gets lost by rearrangements is thus neglected, deformations
would thus be overestimated.

The issue is so complex for unsaturated peloids that a brief demarcation
may suffice. Gas bubbles can be bigger with a cementation of the skeleton, thus
a peloid can get collapsible. As without cementation it may suffice to work
with higher average void ratios and a more compressible pore fluid (Sect. 7.1),
but deformations can thus be overestimated. With gas channels, which have a
wider variety of shapes than for psammoids, higher concentrations of solubles
due to evaporation can ease a cementation. This could only be assessed by
means of a remaining effective tensile strength after saturation with a ionic
strength, so that a net attraction in the sense of Sect. 7.1 would get negligible.
Such a separation is less feasible, however, with pore gas as its spatial distri-
bution can hardly be controlled. Wetting of a peloid sample with gas channels
leads to rather chaotic gas inclusions and to a complex coupled diffusion of
pore water and solubles.

Combinations of pore gas and cementation cannot yet be taken into ac-
count therefore in applications. For the time being it may suffice to capture
peloid crusts with gas channels by capillary skeleton pressures and average
void ratios in the same way as humid psammoids. Material parameters should
be determined with samples which are big enough with respect to fissures and
lumps (Sect. 9.1). Wetting with suitable ionic strength can be investigated
by similar tests, these may be evaluated with spatial averages of skeleton and
pore fluid. This approach is no more legitimate for rock-like and concrete-like
materials, but these are left aside in this book.

Turning now to the often assumed permanence of solid particles, let us
first consider psammoids. As indicated already in the Prologue interactions
of grains are not conservative, i.e. they are changed by dislocations and cavi-
tation. Therefore no two grains are equal, the grains are worn by encounters
with solid contact and the interaction forces cannot be derived from a poten-
tial (which would be called Hamiltonian in statistical mechanics). That’s why
equations of state cannot be identified as for thermodynamic systems, and
why phase transitions of grain skeletons have little in common with thermo-
dynamic phase transitions. Equations of state may at best be postulated for
state limits of skeletons, but a kind of granular permanence is thus implied
(Sect. 2.2). Asymptotic state cycles of grain skeletons with reversals require
the same permanence.

This is apparently a contradiction in terms: the desired objectivity of the
attractors proposed in this book for psammoids is at variance with the ac-
tual degradation of grains. But there is a way out of this dilemma as one
can take into account, at least principally, granular changes via evolution
equations for the constitutive parameters which are defined for state lim-
its and state cycles. To begin with, the critical friction angle ϕc may be
permanent, whereas the ps-dependent critical void ratio ec gets lower by
degradation during monotonous isobaric or monotonous deformations. Us-
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ing Bauer’s formula (2.4.1) this means that the prefactor eco, i.e. ec for
ps → 0, the granulate hardness hs and the exponent n change with on-going
deformations.

Some possible evolutions are indicated in Fig. 7.3.4 for monotonous thin
layer shearing with constant pressure ps of different levels in each test (a, cf.
Fig. 2.9.8). As assumed further above the stress ratio may get stationary (b),
i.e. τ/ps → tan ϕsc with a ps-independent ϕsc. This seems to be realistic as
long as the degradation leads again to grains with the same surface properties
which are relevant for sliding friction (Persson 1998). ps may be at a low (A),
moderate (B) or high level (C). This means such a ratio ps/hs of pressure and
granulate hardness that the void ratio e is hardly changed with shearing (c) by
abrasion (A), markedly reduced by chipping of grain parts (B) or drastically
diminished by fragmentation (C).
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The plots of e vs. s/ho tend apparently to asymptotes, i.e. the further
degradation could get negligible in the considered range. This appears also
in the plots of mass fraction m vs. grain size log dg (d). These tend to log-
normal distributions if the comminution is a multiplicative random process
(Kolmogorov 1941). In our case a sand may be initially uniform with rounded
grains as at a beach (A). Shearing with moderate pressure produces smaller
and more angular grains in a wider range (B), therefore e gets smaller. With
high pressure the grains get smaller and harder as otherwise they would not
survive, and the dispersion of their sizes increases further (C). Thus the grain
size distribution dominates skeleton properties for a given mineral and pore
fluid, but grain shapes play also a role.

Plots of critical void ratios e versus log ps get rather hypothetic in the
light of the comminution (e). Plot A may represent ec as if the grains were
permanent, by they are so only for a low ps. Plot B refers to the product of
comminution by a moderate ps, and C to the one for a high ps. A sequence of
void ratios after comminution with different ps (e.g. 1–2–3) cannot yield an ec

vs. log ps plot, and cannot produce related parameters therefore. For matching
with (2.4.1) evolutions of eco and hs with shearing have to be assumed. The
prefactor eco decreases with the increasing dispersion of grain sizes (f). The
granulate hardness hs increases (g) as smaller grains have less imperfections
and more contacts with neighbours due to the bigger dispersion. The adaption
of ec-parameters gets partly subjective therefore, this is also the case with
(2.3.1) in the framework of CSSM.

The role of comminution with reversals may only be touched as the spec-
trum for different amplitudes without or with ratcheting is very wide. With
a low pressure ps the abrasion can already reduce the lower bound void ratio
ed, whereas the produced dust would hardly influence the skeleton and could
be eroded easily. With higher ps an increasing dispersion of grain sizes will
reduce ed much more, the granulate hardness hs can rise substantially, and
more fines reduce the permeability kf . The determination of parameters for
state cycles with assumed granular permanence gets the more subjective the
more rapidly the grains are damaged. Thought and real experiments may help
to quantify the loss of granular permanence, but the major part of this work
is still ahead of us.

Evolution equations for the change of granular properties could be for-
mulated as follows, at least in principle. Skeleton parameters as hs, eco, etc.
change irreversibly with deformations according to the skeleton state. This
change can be represented for rate-independent psammoids by

ḣs = tr(LhD) + NhD (7.3.1)

and similar relations for eco etc. with the stretching tensor D and D = ‖D‖.
The factors Lh and Nh depend on ps/hs, tan ψs and re in such a manner
that nearly asymptotic changes with big deformations and/or many reversals
are captured. It suffices for the scope of this book that such relations could
be formulated and adapted. Schünemann (2006) has proposed an example
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with Lh = 0 for simplicity. Constitutive relations for skeleton state variables
would thus get further terms which could be derived by means of relations like
(7.3.1) from the ones with granular permanence. The latter assumption could
be principally delimited, and even left aside so that the postulated attractors
do not lead into a dead-end.

The permanence of peloid particles appears to be more debatable because
of the far lower solid hardness hs (Sect. 3.4), but this is not the case. Thin
layer shear tests by Balthasar et al. (2006) exhibit stationarity for pressures
ps up to almost 15 MPa (Fig. 3.8.4). The argotropy is the same as for lower ps,
so it is an invariable property of the solid constituent (Sect. 3.1). The critical
friction angle ϕcs is ca. 2◦ smaller than in the usual geotechnical range of
ps from ca. 0.1 to 1 MPa. ps-dependent critical void ratios ec could not be
measured precisely, but they were doubtlessly smaller for higher ps, and the
layer height did not change with further shearing. Anti-plane shaking with
the same device led to a nearly stationary ratcheting, this indicates that the
tested clay is capable of state cycles for ps up to ca. 10 MPa. The material was
brittle for overcritical stress ratios, i.e. |τ | /ps > tan ϕsc, but after remoulding
with added water and reconsolidation repeated shear tests produced the same
results.

It appears thus that there are rather permanent primary clay particles,
and secondary ones or aggregates of primary particles which come and go
with deformations in the considered range of ps and e. Both kinds of particles
cannot and need not be more specified in this working hypothesis. Its range
of validity can as yet only be determined by experiments, these can at best
exhibit argotropic state limits and state cycles for a certain range of pressures
and stretching rates. The ionic strength of the pore water should stay in a
given range, otherwise physico-chemical changes would impair the desired per-
manence. As long as not even thermodynamic equilibria of clay-like materials
are properly understood (Sect. 6.1) microscopic theories are not available to
justify the proposed attractors for evolutions far off equilibrium.

More conventionally speaking, constitutive concepts with state limits
and state cycles may work for reconstituted clays as far as the postulated
asymptotic properties are observed in RSE-tests. The softness of aggre-
gates – whatever shapes they may have – enhances their reconstitution with
deformation-induced rearrangements. The much harder grains of psammoids
are less permanent as they are not recombined by deformations. The observ-
able brittleness of reconstituted clays is not ruled out by the postulated perma-
nence which is implied by state limits and state cycles. Dilatant deformations
with cavitation were observed by Balthasar et al. (2006) for overcritical stress
ratios. Such dilatant state limits can be attained repeatedly, i.e. cavitation
cracks can be closed again. The evolution of cracks is hardly predictable, at
best critical points for the onset can be specified (Sects. 8.4 and 16.3).

To sum up, the brittleness of solid particles and cementation bridges ex-
cludes state limits and state cycles if deformation-induced encounter times do
not suffice for recondensation. This can principally be captured for psammoids
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by heuristic relations for the decay of bridges and the degradation of grains
with deformations, so that the proposed attractors are still consistent. The
softer and smaller aggregates of peloids are more easily recombined by ther-
mal activation, but cementation and other kinds of net attraction can hardly
be separated via experiments. The observed behaviour of natural clay samples
can be better captured with a net attraction which gets lost by deformations.
The thermally activated recovery should be taken into account in order to
bridge the gap between natural and reconstituted clays. The cracking of clays
by cavitation of pore fluid need not impair the permanence of primary clay
particles.



8

LOCALIZATION

Localized shearing, cracking and decay were mentioned in previous chapters
as limitations of constitutive models. How far could they be captured by
extended continuum models, and on which physical base? As throughout this
book attractors will be presented more geometrico for this purpose, we will
see that some critical phenomena can thus be indicated or even predicted.

A fifth prelude on solids (Sect. 8.1) begins with a sheared solid strip, this
is the simplest way to introduce polar quantities without a lot of algebra. Lo-
calized phase transitions off thermodynamic equilibrium are also indicated for
biaxial tests in which patterns of shear bands can arise. Such cases may be
captured with spatial mean values of RSEs so that polar quantities are aver-
aged out, but this is not always justified. Cracking of solids is only mentioned
in Sect. 8.1, it can at best partly be predicted with continuum models.

Shear bands in soils were first described by Coulomb (1773), they are usu-
ally related with ‘failure’ in soil mechanics. It is thus left aside why and how
they arise. We will see in Sect. 8.2 how polar quantities can evolve in a sheared
granular strip. Extended hypoplastic relations with polar terms (p-hyp) are
apt to predict forced and spontaneous localizations in bands of some grain
diameters thickness. This theory produces strikingly similar patterns of shear
bands as observed in biaxial tests. This is but a partial validation, the en-
hanced force-roughness remains hidden and is at best indirectly indicated.
We will see in Sects. 12.6, 13.1 and 13.3 that some model test results can be
reproduced with p-hyp, but that problems with bigger lengths (referred to
the grain size) and/or less symmetry are still out of reach. Fortunately polar
terms may be neglected in many cases, this can be justified and delimited
with p-hyp.

Shear localizations in peloids are more intricate due to skeleton viscosity
and pore water diffusion (Sect. 8.3). Evolutions with polar quantities are again
introduced by means of an endless sheared strip, but now the time enters via
argotropy and seepage. Thin layer shear tests indicate a localized polariza-
tion and could be simulated by means of extended visco-hypoplastic relations
(pv-hyp). More than with psammoids this could lead at best to a partial
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validation as hidden polar quantities cannot strictly be separated by observa-
tions. Biaxial tests exhibit similar shear band patterns as with psammoids, but
simulations with pv-hyp are not yet feasible. With subcritical stress obliqui-
ties viscous and polar effects can compensate each other, and the localization
is impeded by spreading due to pore water diffusion. Then polar effects may
be neglected, but with overcritical stress obliquities this is no more justified
and predictions can altogether get impossible.

Cracking and hydraulic localization are briefly addressed in Sect. 8.4.
Cracking may be considered as an extreme kind of shear localization, which is
often accompanied by the cavitation of pore water. More than for solids con-
tinuum approaches are hardly feasible for such phase transitions. They can
at best indicate the onset of cracking, but not its further evolution. Models
with spatial averages may be justified up to critical stress obliquities (more
in Sect. 9.1), but fail beyond. Hydraulic localizations will only be mentioned,
they can particularly occur after a skeleton decay and can hardly be captured
by continuum models.

This chapter is an excursion into so-called critical phenomena with pattern
formation and deterministic chaos. Strange attractors are only touched, this
notion is used throughout my book in a rather vague sense. It appears that
often only the onset of localizations can be predicted, but not their further
evolution. This issue will be further discussed in the final Chap. 15.

8.1 A fifth prelude on solids

Similarly as in Sects. 2.1, 3.1, 4.1 and 5.1 idealized solids are considered in this
section in order to introduce some concepts. The use of polar quantities for
shear localizations is justified by means of diagrams. This qualitative presen-
tation implies extended state limits, whereas other attractors are not treated
in detail. The evolution of cavities and cracks in solids is only touched as little
can be taken over in that respect to soils.

Consider an infinite solid strip which is fixed at base and top and sheared
via a rigid top plate, Fig. 8.1.1. Without pores the height h is constant. With
increasing top displacement u2h the shearing resistance T12 may increase up
to a peak and get slightly smaller thereafter (a). Up to the peak the shearing
profile u2 vs. x1 may appear nearly linear, but beyond it the further shearing is
localized to a narrow band somewhere in the middle (b). With a constitutive
relation between the rates of shearing γ̇ = ∂u̇2/∂x1 and of resistance τ̇ =
dT12/dt the differential stiffness τ̇ /γ̇ would be negative beyond the peak. In
a numerical simulation with a minute initial fluctuation the shearing would
concentrate in the finite element row where the peak is reached first. This
result is as subjective as the choice of elements and gets absurd with extremely
thin elements.

A closer look reveals why this approach is physically wrong, and how
merely numerical attempts (regularizations) could be substituted by a
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physically sound concept. A rate-independent relation of τ̇ with γ̇ such as
elp or hyp in Sect. 2.1 could not produce shear softening, i.e. τ̇ /γ̇ < 0. An in-
ternal state variable would be needed, but how should it be defined? Consider
a close-up near the top plate with markers for displacement u2 and rotation
ω, Fig. 8.1.1c. ∂u2/∂x1 and ω vanish at the fixing wall, there an orthogonal
shearing resistance T21 cannot arise. Thus the stress tensor is no more sym-
metric, we have T12 �= T21 and the difference T12 − T21 is a candidate for an
internal variable. Off the wall the rotation need not agree with the slope of
shearing, i.e. ω �= ∂u2/∂x1 can hold in a boundary zone. The stronger curva-
ture ∂ω/∂x1 near the wall wakes a resisting couple stress M , thus the width
db of the boundary zone cannot get arbitrarily small.

A close-up of the inner shear band is more complex, Fig. 8.1.1d. The ro-
tation ω is stronger than outside of the band and need not agree with the
gradient ∂u2/∂x1. The curvature ∂ω/∂x1 has opposite signs above and be-
low the middle of the band, and wakes a couple stress M so that the band
cannot get arbitrarily thin. Associated shear stress components are not equal
throughout the band, T12 − T21 varies with x1 while T12 is constant. The
middle of the band works like a rough wall, but with lower resistance as it is
sheared.

Polar quantities as indicated in Fig. 2.1.1c and d were proposed in an
extended continuum theory by Cosserat and Cosserat (1909). Therein the
tensors of stress and stretching are no more symmetric, and skew-symmetric
tensors are added for couple stress and rotation. With this framework and ex-
tended linear elastic relations Günther (1958) could deepen the understanding
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of boundary conditions and of dislocations. Mühlhaus (1987) proposed a po-
lar continuum with elastoplastic relations and could thus capture shear lo-
calizations. These approaches demonstrate also how frame-indifference can
be achieved with rate-type relations. The ones by Mühlhaus (1989) and Var-
doulakis et al. (1992) are debatable, however, as plastic strain is used as a
state variable.
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Fig. 8.1.2. Component spaces of transversal and couple stress (a) and strains (b)

Returning to our sheared strip a constitutive concept may now be repre-
sented by means of related paths, Fig. 8.1.2. While such paths are restricted
to two planes for simple shearing (Sect. 2.1) two further statical and two
kinematical polar quantities require three-dimensional component spaces, but
only few projections can be shown. In a stress space (a) T12 and T21 are not
equal in general, and the couple stress M is divided by a material length dc to
be commensurate. Extended state limits may be represented by a symmetric
ellipsoid so that two component ratios suffice as additional polar parameters.
The ellipsoid represents a positively definite quadratic form of the three stress
components. Similarly three stress components. Similarly as with non-polar
components (Sect. 2.1) an extended deviatoric stress energy attains thus a
critical value for state limits. This energy threshold is related with on-going
dislocations in composites of crystallites, but microscopic In the related space
of deformations (b) a curvature κ and a Cosserat rotation ωc appear in addi-
tion to shearing γ. ωc is the difference of the total rotation and the one given
by the gradient of displacement γ = ∂u2/∂x1. The curvature κ = ∂ωc/∂x1

is made dimensionless by the material length dc. In our sheared strip the po-
lar quantities κ and ωc arise only along the boundaries and in the middle
shear band. The sketched related paths for some material points in Fig. 8.1.1
are schematic as the real paths are not independent and can at best be
guessed.

Outside the shear bands a continued simple shearing would lead to a non-
polar state limit (A). Minor polar stress components (remnants from previous
evolutions as outlined further below) are swept out by such a non-polar de-
formation. In the middle of the free shear band (B) T21 gets smaller than T12,
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and M does not arise due to symmetry (Fig. 8.1.1d). A straight generalized
deformation path leads to a state limit with a lower shearing resistance T12

than in case A. This state limit is attained with different initial states. The
shear softening of Fig. 8.1.1a arises thus through a localized bifurcation with
polar quantities. Close to the middle of the shear band (C) the ‘external’ shear
stress T12 attains the same amount and differs less from T21 while M arises.
T12 tends to a state limit value alongside with the couple stress M . At the
boundary (D) a purely polar deformation without shearing leads to a state
limit with T21 = 0 and a bigger M than for C, whereas T12 is the same as in
the middle due to static equilibrium.

Elastoplastic or hypoplastic relations with polar terms (p-elp or p-hyp)
could be formulated as shown in Sect. 2.1 without polar components so that
the proposed state limits are asymptotes (attractors) which are determined by
the directions of generalized stretching, viz. by ω̇c/γ̇ and κ̇/ω̇c or by equiva-
lent direction angles. Together with generalized equilibrium and compatibility
conditions and boundary conditions evolutions of a sheared strip could thus
be simulated numerically. The spatial uniformity of simple shearing without
polar terms gets lost at the boundaries from the very beginning, this may be
called forced polarization. A peak and a subsequent shear localization in the
middle can be obtained by means of minute initial fluctuations, this may be
called spontaneous polarization. The thickness of the boundary zones and the
inner shear band come close to dc, this internal length should therefore be
smaller than the strip height h.

Tentative variants of p-elp and p-hyp should first reproduce the qualitative
features of Figs. 8.1.1 and 8.1.2. After a trial and error procedure thin layer
shear tests could serve for quantification. The axis ratios of the proposed state
limit ellipsoid determine the ratio of peak and residual shearing resistance, but
not vice versa. The material length dc could be adapted by a repeated back-
analysis so that an observed shear zone thickness is matched. dc is presumably
determined by the size of crystallites, not by the far smaller size of dislocations.
Even if the sample is initially uniform and if the free lateral ends do not
matter this identification cannot be unique: the thin layer loses its uniformity
and internal shear bands are not necessarily plane. This lack of precision with
shear localization is principally inevitable.

The thermally activated viscosity of our sheared strip could rather eas-
ily be taken into account, Fig. 8.1.3. Plots of T12 vs. u2h for constant top
velocities u̇2h exhibit the same argotropy as without polar effects up to the
peak (a). Beyond it the residual resistance is less reduced than without ar-
gotropy as the rate of deformation increases with the localization. Argotropic
extended state limits could be formulated as shown with Fig. 8.1.2, now with
argotropic generalized deviators as by (3.1.19) and the same component ratios
as without argotropy. Rate-tape relations as (3.1.19) could be extended by po-
lar terms, and the viscosity factor fv by (3.1.21) could also be generalized.
This is legitimate as thermally activated dislocations exhibit always the same
argo- and thermotropy (Persson 2000a). The generalized stress energy works
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as a drift (Sect. 3.1) for any ratio of components (i.e. mechanism of sliding
and rotation).

An identification could again be obtained by means of thin layer shear
tests, now with velocity control. It is more realistic than without argotropy as
there is no plasticity and ductility without viscosity: dislocations are always
thermally activated (Sect. 3.1). Creep (Fig. 8.1.3b) is achieved with constant
T12, it leads also to localization and tends to a stationary extended state limit.
Constitutive relations with polar terms and fv (abbreviated vp-elp and vp-hyp)
can only work in the range of generalized stretching rates D by (3.1.8). For
lower D the viscosity tends to be linear, for too high D the dissipated heat in-
creases the temperature T . Relaxation is obtained after fixing the boundaries
(Fig. 8.1.3c). The polar stresses are more rapidly reduced than the external
shear stress, thus the drift energy is diminished and fv gets very small. This
cold annealing tends to a thermodynamic equilibrium, but such an endoge-
neous attractor is only attained after extremely long times if T is well below
the melting point.

Other evolutions can occur in our sheared strip with reversals, Fig. 8.1.4.
Plots of T12 vs. u2h/h tend to cycles (a) nearly as without hysteresis for
small amplitudes (A), with marked hysteresis for moderate amplitudes (B)
and with alternating peaks beyond (C), provided that there is no fatigue.
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Fig. 8.1.4. Asymptotic response of a solid to cyclic shearing: hysteresis loops (a)
and polar stress cycles (b)
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State cycles are attained at certain material points, e.g. for T12 vs. couple
stress M at the boundary (b). Small amplitudes lead to flat double loops af-
ter a reduction of M (A), this works also for other polar stresses and may be
called mechanical annealing. With moderate amplitudes the asymptotic cy-
cles may be wider double loops (B), but with big ones their shape is changed
(C) as state limits are attained repeatedly. Such evolutions could be princi-
pally captured by extended hidden state variables, i.e. by kinds of p-elp-α or
p-hyp-δ (cf. Sect. 4.1). The viscosity could also be taken into account, but such
attempts are hardly worth the effort as an identification by means of thin
layer shear tests would scarcely be feasible. Shear localizations should first
be captured without reversals, with them drastic simplifications are needed
anyway.

A wider manifold of shear localizations can occur with initially uniform
solid samples under biaxial boundary conditions, Fig. 8.1.5. A single shear
band arises in a slender rectangle with lateral pressure control by shortening
via two smooth plates (except for a central fixing) which can translate past
each other (a). After the spontaneous polarization at a random height the
deformation goes on only in the band wherein a state limit with polar stresses
is attained. As in thin layer tests the uniformity gets gradually lost with large
displacements which start from the free boundaries. Such evolutions could be
simulated with p-elp or p-hyp, also including viscosity, therein more compo-
nents are needed than for an endless sheared strip so that frame-indifference is
secured. The localized bifurcation is enhanced by a minute initial fluctuation,
the identification remains again imprecise.

If a squatter rectangle is flattened via two smooth plates two shear bands
can arise which meet at one of the smooth plates, Fig. 8.1.5b. In a reflec-
tion zone at the wall (insert) polar terms of the two bands compensate each
other. With further convergence of the plates further bands arise from bound-
ary zones which are weakened by polar effects (indicated by dotted lines). A
zig-zag line of shear bands arises in a flat rectangle (c) with arbitrary onset,

a) b) c)

Fig. 8.1.5. Shear localization in a solid rectangle: single band (a), two bands (b)
and pattern (c)
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reflection, compensation and sucessive bands. Such evolutions could princi-
pally be simulated with p-elp or p-hyp and initial fluctuations, the identifica-
tion by means of biaxial tests would again remain imprecise.

Patterns of shear bands can differ from the ones shown in Fig. 8.1.5c and
could not be captured in general by simulations as indicated above. They
can arise from random initial fluctuations with suitable boundary conditions,
and their order can get lost with continued stretching via the boundary. As
indicated further above for endless sheared strips the polar stresses in patterns
are reduced by relaxation or by reversals with suitable amplitudes.

One may consider a rectangle with polarized bands as a kind of RSE
with spatial fluctuation of stresses including polar quantities. This kind of
force-roughness resembles the one discussed in Sects. 4.1 and 5.1 which can
likewise be reduced by relaxation or reversals. There is a difference in the
boundary conditions: an RSE can be split into two or more RSEs by shear
localization, whereas the force-roughness of Sects. 4.1 and 5.1 can just grow or
fade and change its orientation. In both approaches internal variables cannot
be determined directly, but this incertainty can at least partly be ruled out
by means of state cycles.

Two kinds of attractors, viz. state cycles for reversals and thermodynamic
equilibria for relaxation, can thus enhance the spatial uniformity which is
desired for RSEs. State limits as another kind of attractor (isochoric for a
pore-free solid) impair this uniformity by shear localizations. Polar quanti-
ties arise in various hardly predictable patterns which depend on assumed
boundary conditions. In other words, the apparently simplest attractor for
monotonous deformations (Sects. 2.1 and 3.1) goes over into a strange attrac-
tor which can as yet hardly be captured. Even for idealized solids constitutive
models without polar terms (like elp, hyp, v-elp or v-hyp) therefore have a
limited range of validity which cannot be judged easily. Extended models with
polar terms can principally provide more insight, but the identification by test
results will never be complete and the required amount of calculation work is
too big for applications.

Cylindrical samples can lose the desired uniformity of RSEs with a wider
manifold than biaxial ones. Test results with initially uniform paraffin cylin-
ders may serve for a qualitative illustration, Fig. 8.1.6. The material resembles
an amorphous solid like glass or ice, but typical losses of uniformity can be
produced more easily. If a paraffin cylinder of equal height as its diameter is
shortened via smooth plates with low velocities it is deformed into a barrel
without change of opaqueness (a). The plot of axial stress versus shortening
exhibits argotropy and slight peaks (b). The barrelling can be interpreted
as a diffuse bifurcation: the radial shearing due to barrelling in addition to
isochoric axial shortening weakens the axial resistance, this reduction is not
compensated by an increasing viscous resistance as the amount of stretching
D is hardly changed. This behavior could be captured with arbitrary com-
ponents and frame-indifference by means of a critical stress energy for state
limits (Sects. 2.1 and 3.1). It can also occur with a sheared endless strip if
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the resistance to in-plane shearing gets smaller by an additional anti-plane
shearing (Fig. 2.1.10).

If a paraffin disc is flattened much faster via smooth plates than shown
by Fig. 8.1.6a and b zig-zag shear bands arise at the perimeter, and the
sample gets more opaque (c). The horizontal surface exhibits radial shear
bands in an outer ring (d). This pattern resembles the one in a flattened
biaxial strip (Fig. 8.1.5c) although the symmetry is different. The plot of axial
pressure versus shortening has a peak. It appears that the shear softening due
to localized shearing with polar effects is not compensated by the viscous
increase due to the faster stretching in shear bands. This indicates that the
constitutive model proposed further above for sheared strips does not suffice.
It appears that the paraffin develops micropores in bands and that it gets
softer therefore and more opaque.

A higher paraffin sample with the same diameter and rate of shortening
would simultaneously bulge and develop a pattern of shear bands. Needless
to explain that a back-analysis with polar terms and viscosity is beyond the
present reach. Therefore the outline here is at best qualitative, and caution
is required with so-called triaxial tests (Sect. 14.1). This is also the case with
the axial splitting of a paraffin disc by rapid shortening via smooth plates,
Fig. 8.1.6e. This kind of local dilation may be interpreted as a driven growth
of pores into cracks, i.e. a continued cavitation. The uniformity desired for
RSEs gets evidently lost, and a crack pattern can hardly be identified. Simply
speaking, the material response is no more plastic and viscous without or with
shear localization, but brittle.

Constitutive relations of the kind indicated further above are no more ap-
plicable. The aim here is only to demarcate the range of validity with respect
to cracking. Solids with crystallites, or amorphous ones, have often a small
volume fraction of micropores, say αp < 1/200, with widths below 10−6 m.
They are therefore barotropic and pyknotropic, but of minor extent if the
mean pressure p remains within one order of magnitude. Plastic deformations
are enhanced by micropores as around them deviator stresses are higher than
in the spatial average. If the stress response to isochoric or isobaric stretching
with constant ratios of overall components tends to get stationary state limits
may be conceived as without micropores (Sect. 2.1). The argotropy could sim-
ilarly be taken into account (Sect. 3.1), but what will happen with micropores
in such cases?

With constant gross density ρ and/or pressure p a continued stretching
does not change the volume fraction αp of pores, nor their average shape if
all RSE-averages are stationary. A single micropore gets flatter or rounder
by deformations, however, and can disappear or arise. The pore surface and
the related surface energy can be stationary in the spatial average, but can
rise and sink by the evolution of each pore. Thus energy is taken up from or
released into the near-field of a micropore where the stress deviators decrease
or increase. If one pore would be totally flattened the near-field stress deviators
would vanish, and closing surfaces could release energy which could trigger
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the widening of a neighboured pore. All the time energy is consumed by
deformations which could at best be crudely estimated. Such evolutions are
argotropic due to thermal activation (Sect. 3.1), but now surface energies come
into play (Sect. 6.1).

Stationarity means that micropores grow and dwindle with the same av-
erage rate. For a given pore fraction αp or pressure p and temperature T
this requires a suitable stretching Ds so that the times for growth tg and
reduction tr of micropores agree in the average. With given p and T the αp

would decrease for D < Ds and increase for D > Ds. Due to the exponen-
tial dependence of rates on energies by (3.1.5) the order of magnitude of the
threshold Ds may suffice for this discrimination. Ds can be represented in
a plot of αp versus p for a given T and mode of stretching (e.g. cylindri-
cal extension or simple shearing), Fig. 8.1.7. This plot may suffice here for
discussion, experiments would be needed for quantification. Theories of ther-
mally activated dislocations and cavitations (Sects. 3.1 and 6.1) can at best
support the dependence of Ds on T , but activation energies can hardly be
separated.

With a sufficiently high p and low D micropores dwindle by stretching. As
their volume fraction αp is minute anyway one may neglect volume changes
and pressure effects, as was assumed in Sect. 3.1 and further above in this
section. In this regime solid particles may be considered as neutral with respect
to changes of pore water pressure pw so that Terzaghi’s principle of effective
stress (Sects. 2.2 and 3.2) is justified. For faster stretching than the threshold,
i.e. D > Ds, αp increases by isobaric stretching with various kinds of arising
pores, then barotropy and pyknotropy play a role for solids. This merely
qualitative demarcation may suffice for this prelude as the brittleness of soils
is not well understood.

For the sheared strip of Fig. 8.1.1 dislocations are faster in bands with polar
quantities. If the overall stretching rate is below the threshold Ds for a given
p and T it can exceed it in polarized bands. Micropores can arise and grow
there, and their volume fraction αp can attain a p- and T -dependent threshold
if the response of the strip gets stationary after a shear localization. With
this kind of dilation the constitutive model indicated with Fig. 8.1.2 would
get insufficient as barotropy and pyknotropy should no more be neglected.

p

αp

10 
–3

10 
–3

1
D/Ds=10 

3

Fig. 8.1.7. Volume fraction of micro-pores versus pressure for different strain rates
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Extended state limits should imply αp and T via D as before. p- and αp-
effects could principally be observed in experiments, one could also investigate
whether micropores remain closed. Figure 8.1.6e may illustrate what is meant
although paraffin is not really a solid.

As indicated by Fig. 8.1.6e growing micropores turn into cracks if the
overall stretching exceeds the threshold by orders of magnitude, say D/Ds >
103. A growing flat pore is metastable in the sense of Griffith (1921) and Irwin
(1957) for a given overall stress as more elastic energy is released by the growth
than the increase of surface energy. This concept is oversimplified as visco-
plastic effects and crystallites are neglected. Both can pin a growing crack,
this can at best be qualitatively explained by means of continuum models so
that experiments are indispensable. The adsorption at a growing free surface
exposed to a fluid reduces the surface energy so that a crack can grow more
easily. The rate of growth can be so high that inertia plays a role, continuum
models have been proposed for such dynamic crack propagations.

Persson (1998) points out that continuum models do not suffice for crack
tips, and that simplified atomistic models can produce qualitatively different
crack propagations. Quantitative atomistic simulations are beyond the present
reach as too many atoms and degrees of freedom would be needed. Persson
and Brener (2005) considered the crack propagation in viscoelastic solids from
a continuum approach down to the molecules. In spite of the complexity the
derived relations of the crack-tip radius with surface energy and velocity of
propagation agree with experimental findings.

The thermally activated healing of cracks can principally be captured by
combining atomistic and continuum approaches (Persson 1998). There is a
long way to the quantification of such models, let alone the evolution of crack
patterns. It may suffice here to state that sophisticated models exist for the
propagation of a single crack in solids, but not (at least not yet) for the
appearance and disappearance of crack patterns.

To sum up, evolutions of solid RSEs with shear localization can princi-
pally be captured by means of polar quantities, and micropores may also be
taken into account, but the evolution of cracks leads outside the reach of con-
tinuum approaches. Polar quantities arising in narrow bands can impair the
desired uniformity of RSEs, but this can be regained by relaxation or rever-
sals. Micropores impair the often assumed pressure-independence, they arise
preferably in shear bands. The restricted ductility with shear localization gets
lost by a more rapid overall stretching if pressure or temperature are lower
than critical. The brittle response with the propagation of cracks can no more
be captured by constitutive relations of spatial averages for RSEs.

8.2 Shear localization in psammoids

Other than pore-free solids grain skeletons are pyknotropic and barotropic,
therefore they can exhibit shear softening with constant void ratio e or mean
skeleton pressure ps, and the pore water pressure pw = p − ps is involved.
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An extended hypoplastic model with polar terms (p-hyp) is introduced in
the sequel by diagrams for a sheared strip, then biaxial RSEs are treated
similarly as in Sect. 8.1. The discussion includes the influence of pore water
and relative void ratio re, other than with solids the shear localization can
thus be enhanced or impeded.

Tejchman and Gudehus (2001) simulated evolutions of a dry sheared strip
with polar quantities and spatial variation only along the normal (here x2).
Quantities of a polar continuum are indicated with RSEs in Fig. 8.2.1, apart
from renaming they appear already partly in Fig. 8.1.1. In addition to two
displacement components u1 and u2 there is an excess rotation ωc (a) with
respect to the one by u1 and u2 ((∂u1/∂x2 + ∂u2/∂x1)/2 for small displace-
ments). As there are no changes along x1 changes of the void ratio e are
related with ∂u2/∂x2 by (2.11.1) for isochoric grains. ωc is not the same
throughout the RSE, thus the curvature ∂ωc/∂x2 describes twisting. In addi-
tion to shearing (0.5∂u1/∂x2) and dilation (∂u2/∂x2) there are thus two polar
deformation quantities, ωc and ∂ωc/∂x1. For large displacements velocities v1,
v2 and ∂ωc/∂t and their gradiants ∂v1/∂x2. ∂v2/∂x2 and ∂2ωc/∂x∂t are more
appropriate.

There are four in-plane stress components (Fig. 8.2.1b, traction positive).
The out-of plane normal stress σ33 has to be kept in mind, and all compo-
nents refer to the skeleton. The couple stress m1 vanishes for the considered
strip without changes along x1. The non-vanishing couple stress m2 may be
imagined as the moment of an eccentric pressure in the x2-direction, thus the
stress is no more uniform along x1 in our RSE. m2 is statically compensated
by the asymmetric shear stress, i.e.

∂m2

∂x2
+ σ21 − σ12 = 0 (8.2.1)

holds without a field of external torque and without acceleration.
The constitutive relations proposed by Tejchman and Gudehus (2001) are

hypoplastic with polar terms (p-hyp). Similarly as in Fig. 8.1.2 they may

a) b)

Fig. 8.2.1. RSEs with polar kinematic (a) and static quantities (b), Tejchman and
Gudehus (2001)
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Fig. 8.2.2. Evolutions of a granular RSE with polar quantities towards extended
state limits: paths of stress (a), deformation (b) and void ratio versus pressure (c)

be represented by means of related paths, but now with barotropy and py-
knotropy, Fig. 8.2.2. In a stress component space (a) one skeleton pressure
−σ22 appears, and only the ‘external’ shear stress component σ12 and the
couple stress m2 can also be shown. Further stress components do not ap-
pear with three-dimensional paths as projections from a higher-dimensional
component space, so the representation is incomplete and merely qualita-
tive. Generalized deformation paths appear in a space of shearing, dilation
and rotation (b), thus the curvature cannot be shown. A plot of e versus
log p (c) is needed for pyknotropy, labels for stress obliquity are omitted for
simplicity.

The initial state (O) may have small polar components and a lower than
critical relative void ratio, re < 1. Pure shearing without rotation (A) leads to
a critical state with −σ12/σ22 = tan ϕcs and re = 1, the polar stress is swept
out. Pure shearing plus rotation leads to a critical state with polar stress (B).
The stress component ratios of such extended state limits are related by

(σ12/p tan ϕcs)2 + (m2/pdgac)2 = 1 (8.2.2)

with a representative grain size dg and a dimensionless parameter ac. Without
the couple stress m2 (8.2.2) is reduced to (2.9.6) for non-polar shearing. The
quadratic form (8.2.2) can be extended for further stress components, with
a further one it can be represented by an ellipsoid. As shown by Fig. 8.1.2a
for a pore-free solid this means that the deviatoric stress energy is a certain
fraction of the isotropic one for state limits. The relation of generalized stress
and stretching component ratios for state limits is not given by (8.2.2), it
could be expressed by a kind of flow rule.

As shown in Fig. 8.2.2c it is assumed that the critical void ratio ec depends
on p like without polar quantities, this simplification may suffice for the time
being. A rotation with dilation leads to an extended dilatant state limit (C)
and a decay thereafter. A path with monotonous contraction leads to a con-
tractant state limit with p-increase and constant stress component ratios (D).
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The extended state limits are thus assumed to be attractors for straight gen-
eralized deformation paths. The latter cannot generally be realized in element
tests as extended RSEs (Fig. 8.2.1) cannot be controlled arbitrarily. The pro-
posed asymptotic response is needed for consistency and cannot be validated
directly nor completely.

The p-hyp relations by Tejchman and Gudehus (2001) are formulated so
that such generalized state limits are obtained as asymptotes. The algebraic
representation is similar as without polar terms for plane-parallel evolutions
(Sects. 2.4 and 2.11). Only two further material constants are needed, viz.
an average grain size dg and the factor ac introduced by (8.2.2). ac can be
determined by matching the observed thickness of shear bands as will be
shown further below.

Figure 8.2.3 shows calculated snapshots of state and shape after large
shearing (u2h = h) with medium initial density and constant pressure. The
height is h = 100d50 (d50 for dg) so that the shear band with dilation con-
stitutes a significant fraction (a). The Cosserat rotation ωc arises only in the
shear band which can thus be identified (b). The void ratio rises mainly in
the shear band (c). The couple stress has an anti-symmetric distribution with
peaks in the shear band and forced values near the walls (e). The normal stress
components are almost the same everywhere, the shear stress is asymmetric
(σ12 �= σ21) in the shear band and at the plates (d). The inner zone with polar
stresses is a little bit wider than the one with ωc and dilation.

Similar plots are obtained with a lower initial relative void ratio re. After a
displacement u2 = h the shear band is narrower and exhibits more rotation ωc,
the stronger dilation leads to the same critical void ratio e = ec in the middle,
the polar stresses are bigger as mutual rotations of grains are more impeded.
With a high initial re (loose skeleton) the shearing gets uniform except for
boundary zones, so there is no more a spontaneous shear localization. There
is a small Cosserat rotation ωc, but polar stresses arise only near the rough
boundaries (cf. Fig. 8.1.1), and except for these zones e = ec is attained
throughout the strip.

A simulated evolution of some state variables in a sheared strip with
re ≈ 1/2 (medium dense) initially is plotted in Fig. 8.2.4. One normal stress
component is constant, the two further ones tend to nearly the same value
in the middle, the shear stress there gets and remains asymmetric (a). The
couple stress arising at the rough plates gets stationary beyond a slight peak
(b). The stress obliquity ϕw = tan(σ12/σ22) rises to a peak and attains a
slightly lower asymptote than the critical value without polar terms (ϕcs by
Sect. 2.9) thereafter (c). The void ratio at mid-height decreases slightly first,
and attains e = ec thereafter (d). The state is stationary for shearing beyond
ca. 50%, this extended state limit is represented in Fig. 8.2.2.

Without polar quantities the sheared granular strip would remain uniform
as required for an RSE (Sect. 2.9) and would tend to a uniform critical state.
The uniformity gets lost by polarization at the boundaries and in the middle.
With a higher initial density and the same external pressure −σ22 the peaks



358 8 Localization

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

u
1
/h

x 2
/d

50

x 2
/d

50
x 2

/d
50

x 2
/d

50

x 2
/d

50

0

20

40

60

80

100

0 1 2 3 4 5
0

20

40

60

80

100

c

0

20

40

60

80

100

0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

e

0

20

40

60

80

100

0 0.001 0.002 0.003 0.004 0.005
0

20

40

60

80

100

21
12

33

1122

ij
/hs

0

20

40

60

80

100

–0.10 –0.05 0 0.05 0.10
0

20

40

60

80

100

m2/(hsd50)

a) b)

c) d)

e)

Fig. 8.2.3. State and shape of a sheared granular strip, simulated by Tejchman
and Gudehus (2001) with a polar hypoplastic relation (p-hyp) : profiles of shearing
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stress (e)

of stress obliquity ϕw and of couple stress are more marked. The stationary
extended state limit beyond the peak exhibits the same ϕw = ϕcs and e = ec

at mid-height, but stronger polar stresses in a narrow shear band.
The calculated shear band thickness ts depends on the initial relative void

ratio re, Fig. 8.2.5, and on the mean grain size (d50 for dg). For a low initial
re (dense skeleton) it amounts about 20 grain diameters, for re → 1 (loose)
it reaches the height of the strip as there is no localization. As can be seen
from the spatial distribution of polar quantities in Fig. 8.2.3 the band width
is somewhat fuzzy. Thin layer shear test results (Fig. 2.9.8) could be used for
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Fig. 8.2.5. Shear band thickness in a sheared strip, calculated with p-hyp by Tejch-
man and Gudehus (2001)

matching, but at best with moderate precision. Shear bands could be observed
by means of markers for different initial re and h/dg, whereas observable peak
stress obliquities and local void ratios are principally imprecise and hardly
repeatable. The polar rotation can at best be observed in an assembly of rods
instead of grains (Bogdanova-Bontcheva and Lippmann 1975), but thus polar
stresses could hardly be measured.

Huang and Bauer (2003) simulated evolutions of a sheared granular strip
with a modified p-hyp relation. Therein a generalization of (8.2.2) holds for
extended state limits, and associated generalized stretching component ratios



360 8 Localization

are derived (a kind of flow rule). Thus the numerical robustness is improved,
and the adaptability is wider than with the version by Tejchman and Gudehus
(2001). With a low initial relative void ratio (re ≈ 0.2) shearing with constant
pressure leads again to peaks of stress obliquity and couple stress, and to an
extended state limit beyond. The state quantities evolve as in Fig. 8.2.4 and
are similarly distributed as in Fig. 8.2.3, but with one exception: the profiles
of void ratio and shear stress skewness σ12−σ21 exhibit two peaks in the shear
band, not one.

The shear band thickness ts by Huang and Bauer (2003) increases with
higher initial re as in Fig. 8.2.5. For a given re it grows nearly in propor-
tion to the grain size dg, only for strip heights h < ca.50dg the ratio ts/dg

gets higher as then the boundary layers interfere with the inner band. For a
given re our ts/dg decreases if the polar constant (ac in (8.2.2) or an equiv-
alent) increases. This relationship helps for matching test results and could
lead to a physical interpretation of the polar material constant ac, presum-
ably via the angularity of grains. Thin layer shear test results could serve for
clarification, but single or double peaks in shear bands as mentioned above
could scarcely be discriminated. Strict validations can hardly be obtained and
the estimation of parameters remains partly subjective, let alone the speci-
fication of initial states with polar quantities which will be treated further
below.

A snapshot of an idealized granular strip may serve for a microscopic inter-
pretation of polar quantities, Fig. 8.2.6. For simplicity grains are substituted
by rods so that parallel cross sections are equal, but the following argument
could be extended to three dimensions. The contact flats where forces are
transferred are much smaller than the grain diameters so that contact couples
(moments) may be neglected. Otherwise the grains would be soft or crushable
for the considered average skeleton pressure p, this is excluded for psammoids
by definition (Sect. 2.2). RSEs in the sense of Fig. 8.2.1 should be almost
as small as one grain, boundary zones and shear bands are only a few grain
diameters thick (Fig. 8.2.5). Forces at RSE-boundaries, which can be derived
from contact forces, scatter strongly therefore so that stress components (i.e.
force densities) should be understood as averages along strips.

Grains at a rough boundary (wall) are fixed, but their neighbours can
rotate and slide past them. The resultant forces at the wall-side RSE-boundary

x2

x1

Fig. 8.2.6. Grains with contact forces at the rough boundary of a sheared strip
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are eccentric and skew. Their average values per unit of strip length have the
components σ22, σ12 and m2 by the rotations of Fig. 8.2.1a. The resultant
forces at the RSE-boundaries normal to the wall are not eccentric and less
skew in the average, this is represented by m1 = 0 and σ21 � σ12. The
forces at the wall-parallel RSE-boundaries are more eccentric and skew in the
average, but less than at the wall. In a state of rest with negligible weight the
forces at each RSE are at equilibrium for their spatial average, this means
∂σ22/∂x2 = 0, ∂σ12/∂x2 = 0 and (8.2.1). Fluctuations in the x1-direction
are averaged out, this necessitates also m1 = 0, otherwise the independence
of stress components on x1 could not be assumed. The void ratio along the
wall is also a spatial average for an ensemble of RSEs in our thin strip. It can
hardly change as the grains are fixed by the rough wall.

An RSE in a thin strip near the middle of a shear band exhibits a higher
void ratio as all grains rotate and slide past each other. The mean normal and
shear forces per unit of length (σ22 and σ12) at wall-parallel RSE-boundaries
do not depend on x2 by equilibrium, i.e. erratic deviations of these forces are
averaged out. The eccentricity of the normal force at the wall-parallel RSE-
boundary is lower in the average than at the wall as the mutual rotation is less
impeded. Likewise the average force obliquity at wall-normal RSE-boundaries
is less reduced than at the wall. With wider RSEs the polar stresses m2 and
σ12 − σ21 would get smaller by averageing. If an RSE comprises the complete
shear band or even the whole granular strip m2 and σ12−σ21 would disappear,
this can be seen from Fig. 8.2.3.

Polar stresses can thus represent the resistance of grains against mutual
rotations in boundary zones and internal shear bands with a thickness of a few
grain diameters. RSEs which are nearly as small as grains represent spatial
fluctuations along normals to bands with polar effects. There is no need of
grain contact couples, but an averageing of contact forces over wider strips
would rule out polar stresses. These arguments are outlined with statistics
and tensors by Vardoulakis and Georgopoulos (2005). They show that polar
stresses may be considered as internal state variables in strongly sheared zones
so that these cannot be thinner than a few grains. The grain contact forces
in such zones of sufficient length can be represented by average force densi-
ties which include polar stress components. The spatial fluctuation of contact
forces is higher in polar zones than outside, this force-roughness can enhance
the crushing of grains (Buchholtz and Pöschel 1997).

The response of a granular strip to reversals may only be touched as simu-
lations with them have not yet been made, let alone thin layer shear tests. The
initial state may be non-uniform with state quantities as shown in Fig. 8.2.3.
With a first reversal under constant pressure all shear and polar stress compo-
nents are reduced and the dilated shear band gets denser. Continued isobaric
shearing in the new direction would lead to shear and polar stress compo-
nents of opposite sign and nearly the same amount as at the onset (except
for a minor difference of void ratio). Isobaric cyclic shearing with moderate
amplitude, so that overcritical stress obliquities (ϕw > ϕcs provided) are not
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reached, would lead to a further densification and to alternating shear and
polar stress components along the rough plates. A shear localization would no
more occur in the middle. With small isobaric shear cycles the skeleton would
attain the lower bound void ratio ed (Sect. 2.2), whereas the deviatoric and
the polar stress components would almost disappear. This is shown in detail
by Niemunis et al. (2007).

The indicated asymptotic response to shear reversals could principally be
captured by extended state cycles. If the pressure or strip height is constant,
respectively, the height or pressure oscillates with twice the frequency of shear-
ing (cf. Sects. 2.10 and 4.3). The polar stress components alternate similarly
as the shear stress components, and their averages over one shear cycle are
nearly constant if the pressure is constant. Big amplitudes lead to an alter-
nating shear localization which could be simulated by p-hyp. With smaller
amplitudes, so that overcritical stress obliquities are never reached, the shear-
ing is no more localized and polar stresses are swept out except for a slight
oscillation along rough boundaries.

Ratcheting can be similarly judged. A shear band with polar stresses arises
repeatedly if overcritical stress ratios are attained. Otherwise polar stresses are
swept out except for one-sided cycles along rough boundaries. Thus there is no
need for hypoplastic relations with polar terms plus hidden state variables in
the sense of Sect. 4.3. The uneven spatial distribution of internal forces can be
captured either by p-hyp or by hyp-δ as polar quantities are either dominant
or negligible. There is apparently no need of a combination (p-hyp-δ) in appli-
cations. It will be a long way until critical phenomena are better understood
so that the origin of force-roughness can be explained (Sect. 16.3). Boundary
conditions of psammoid bodies have to be simplified anyway (Sects. 10.2 and
10.3).

Consider now an endless granular strip with pore water, again so thin
that its weight may be neglected. Apart from the somewhat lower hardness
of wet grains a constant pore pressure pw raises only the total pressure via
p = ps+pw. Deviatoric and polar stress components occur only in the skeleton,
thus the relations outlined above can be written with generalized skeleton
stress components (subscript s). For rapid shearing pw could deviate from the
average if the velocity of shearing exceeds the bound by (6.2.11). The ratio
pso/γwd therein should be replaced by ps/γwds ≈ 0.1ps/γwdg with the shear
band thickness ds ≈ 10dg. With ps ≥ 10 kPa and dg ≤ 10−3 m this leads to
the bound vs < ca.10kf .

Gradients of pore pressure ∂pw/∂x2 can thus at most influence the shear
localization of fine-grained skeletons as their permeability kf can be lower
than 10−4 ms−1. Their dilation is impeded as ps rises, thus deviatoric and
polar stress components increase until an extended state limit without further
dilation is attained. Grains are more easily crushed in a shear band with higher
contact forces due to polar effects (imagine how easily a grain is damaged by
rotating it past a hard surface). pw can attain zero so that the pore water
cavitates (Sect. 6.2), after that the dilation is no more impeded.
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Fig. 8.2.7. Evolution in a biaxial test simulated with p-hyp (Gudehus and Nübel
2004): shape (a), void ratios (b), dilation (c) and couple stress (d) by small (A),
moderate (B) and big shortening (C)

Shear localizations in biaxial tests can arise in many variants which depend
on the boundary conditions. p-hyp simulations (Gudehus and Nübel 2004) for
a slender sample with lateral pressure and shortening via smooth plates are
shown in Fig. 8.2.7. The weight is neglected. At the onset the skeleton has an
isotropic pressure and a low relative void ratio re with a minute spatial fluc-
tuation. After a small shortening (A) a pattern arises in the plot of volumetric
strain (c). With further shortening (B) the dilation dominates in some bands
(c), and the plot of couple stress indicates the same pattern (d). Continued
shortening (C) leads to a shear band (a) with dominant dilation (b, c) and
two bands of couple stress (d).

The evolution of some state variables with shortening ε2 for the same case
is plotted in Fig. 8.2.8. The overall deviatoric stress σ1 − σ2 (a) goes through
a peak (A, B) and tends to an asymptote (C). The void ratio e (b) starts to
grow near the peak and tends to the critical value ec in the shear band (b).
The rotation ω (c) arises after the peak and increases mainly in the shear
band. The spatial variance se of e (d) grows mainly in the shear band. The
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Fig. 8.2.8. Evolutions with shortening by Fig. 8.2.7: stress deviator (a), void ratios
(b), rotations (c), fluctuations of void ratio (d) and stress (e), couple stresses (f)

spatial variance sσ (a measure of force-roughness) of stress (e) remains low
for the normal components and rises for the shear components.The amount
M of couple stress (f) grows up to the (σ1−σ2)-peak and gets smaller beyond
it, more so inside the shear band.

Single shear bands as in Fig. 8.2.7C have often been observed in biaxial
tests since Vardoulakis et al. (1978). In this paper their inclination is esti-
mated as a mode of bifurcation from biaxial shortening into dilated shearing.
The grain-size dependent band width was first estimated with elastoplastic
relations including polar terms (p-elp) by Mühlhaus and Vardoulakis (1987).
The more precise estimate by Gudehus and Nübel (2004) is still inevitably
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Fig. 8.2.9. Observed shear localization in a biaxial test with sand (Mokni and
Desrues 1989)

fuzzy, but in fair agreement with observations (cf. Fig. 8.2.5). A single shear
band gets visible near the peak of σ1−σ2. Mokni and Desrues (1998) observed
an evolution of patterns nearly as in Fig. 8.2.7 by means of X-ray tomography,
Fig. 8.2.9. Radiographs by Oda and Kazama (1998) exhibit a dilation up to
the critical void ratio with substantial fluctuations in shear bands.

Gudehus and Nübel (2004) report also on biaxial tests with smooth nested
plates, Fig. 8.2.10 (cf. Fig. 2.7.8b). A rectangular skeleton of corundum grains
was deformed with constant pressure and observed via a top glass plate. Vol-
ume changes obtained by particle image velocimetry (PIV) exhibit a pattern
of shear bands (a), this is fairly well reproduced by a simulation with p-hyp
(b). After further stretching three dominating shear bands are revealed by
PIV, similar but thinner ones are reproduced with p-hyp. The reflection of
shear bands with compensation of polar effects at smooth boundaries (cf.
Fig. 8.1.5b) was not perfect in the experiment as the plates were not quite
smooth.

The experience that biaxial test results can be fairly well matched by p-hyp
is not a complete validation as with a sheared granular strip polar quantities
can hardly be observed and the width of shear bands remains fuzzy. The
following interpretation is referred to biaxial RSEs without and with polar
quantities. It appears that for isobaric stretching of dense skeletons arising
shear band patterns are rather uniform prior to the peak (Figs. 8.2.7 and
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Fig. 8.2.10. Volume changes observed in a biaxial setup (a) and simulated with
p-hyp (b), Gudehus and Nübel (2004)

8.2.9). Beyond it shear bands with polar effects lead to a stronger loss of
uniformity which is partly chaotic and depends on the kind of boundaries.

There are always spatial fluctuations of the void ratio, more with higher
relative void ratio re (Shahinpoor 1981), and of intergranular forces which are
scarcely visible along the RSE-boundaries. It appears that polar quantities
grow spontaneously when the stress obliquity gets overcritical. The shear-
ing is thus favoured in two directions and enhanced while the obliquity rises
with dilation and polarization. This positive feedback is first as irregular as
the spatial fluctuation, then few shear bands win in the competition. This
leads to an offset at boundaries with pressure control and to a reflection at
smooth boundaries with displacement control. With a deformable boundary
an extended critical state is reached in shear bands nearly as in an infinite
strip except for the offsets. With nested rigid plates a succession of overlap-
ping shear bands can lead to an overall critical state without average polar
stresses, but with fractal spatial fluctuations.

Two kinds of RSE may thus be justified for predicting evolutions of grain
skeletons. For lower than critical stress obliquities (invariants in Sect. 2.11)
shear localization and polar quantities may be neglected. Remnants of them
are captured by spatial averages, element tests with stress and/or displace-
ment control suffice as along as the uniformity is not impaired by diffuse
bifurcations (e.g. bulging) or boundary defects (e.g. wrinkles or gaps). The
spatial fluctuation of internal forces, which is particularly exhibited by the re-
sponse to reversals, can be captured by a hidden force-roughness (Sect. 4.3).
The same fluctuation cannot be achieved along sample boundaries, but this
defect of element tests can be kept minor. The spectrum of fluctuation
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wavelengths seems to be rather self-similar (fractal), thus a material length is
not needed.

For higher than critical stress obliquities the desired uniformity of RSEs
gets lost by shear localizations with polar quantities which can no more be
averaged out beyond a peak. This spontaneous loss of uniformity can lead
to a deterministic chaos. The interactions of grains in a psammoid RSE are
not conservative, shear localizations require continued energy input due to
dissipation. Beyond a peak state with constant mean pressure ps the rate
of dissipation per unit rate of stretching gets smaller by definition, but does
not vanish as in a thermodynamic system. Therefore our strange attractor
is driven, and a polarized non-uniform skeleton can be frozen by fixing the
boundaries. A collapse would occur with dead loads, but critical phenomena
could then at best be observed at the onset. The generic term ‘strange at-
tractor’ is used to denote representations of such critical phenomena, mainly
more geometrico and without claim for mathematical rigour.

The spontaneous growth of polar stresses at critical points may be called
a granular phase transition. This is necessarily localized and grain-size depen-
dent so that a previous uniformity without polar quantities gets lost. It can be
captured by extended RSEs with polar terms and sizes of about two grains.
This is at best feasible for the back-analysis of model tests with lengths of a
few hundred grain diameters (Sects. 13.1 and 13.3). Even then the numerics
get hard, and boundary conditions with polar terms can as yet hardly be spec-
ified in general. With smaller grains and/or bigger body lengths polar effects
have to be substituted by interfaces (Sects. 10.2 and 10.3) or to be neglected
altogether.

For sake of completeness pore water and non-biaxial RSEs may at least be
mentioned. As outlined above for a sheared strip pw is taken into account by
p = ps + pw. Finno et al. (1997) observed similar patterns as in Fig. 8.2.7 in
undrained biaxial tests with rather loose saturated sand. At the onset e was
almost critical for the initial ps, say re ≈ 0.9, but with isochoric stretching
ps decreased (cf. Sect. 2.5) so that re got smaller. This suffices for a localized
dilation with contraction nearby so that the total volume is constant. Shear
bands in triaxial (Sect. 14.1), cuboidal (e.g. Chu et al. 1996) and torsional tests
(Sect. 14.6) impair the uniformity, simulations with p-hyp would be expensive,
but RSEs may be judged as outlined above.

To sum up, deformed psammoid RSEs get non-uniform by shear local-
ization if overcritical stress obliquities are attained, this can principally be
captured by means of polar quantities. A grain size and a further constant
are needed in extended hypoplastic relations (p-hyp). Simulations of lab ex-
periments with p-hyp are realistic, but the physical interpretation is difficult.
Polar stresses are swept out by reversals in the subcritical regime so that
the force-roughness may be captured by a hidden state variable without po-
lar terms. If an RSE is subdivided by shear localizations extended RSEs are
needed for simulations. This is not feasible with too many of such RSEs, then
substitute interface elements or remeshing will be needed.
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8.3 Shear localization in peloids

Observed shear localizations in peloids can be similar as in psammoids, but
closer inspections reveal differences. Pore pressure gradients are rarely negli-
gible, argotropy plays a role and phase transitions can also occur in the pore
water. Because of this complexity the following outline is rather qualitative,
validated models are not yet at hand.

Consider first a thin endless strip which is sheared so slowly via filter plates
that the pore pressure pw is constant. Balthasar et al. (2006) approached such
conditions with highly plastic clay layers of ca. 3 mm thickness after consolida-
tion under up to 14 MPa (cf. Sect. 3.8). The normal skeleton pressure −Ts22

(−σ22 in Fig. 8.2.1, more precisely speaking its spatial average −T̄s22) was
kept constant, and the top shearing velocity vsh was kept below the thresh-
old by (6.2.12) so that changes of pw were negligible. The shearing resistance
Ts12 for constant vsh (properly T̄s12) got stationary beyond a slight peak and
attained the same value after changing vsh (Fig. 8.3.1a). The stationary re-
sistance was proportional to the solid partial pressure and independent of vsh

(b), this rate-independence is part of Coulomb’s friction law (Persson 2000b).

Fig. 8.3.1. Shearing resistance of a thin clay layer (Balthasar et al. 2006) versus
shearing (a), stationary resistance versus pressure (b), placement of a thin layer (c),
broken sample after a test (d)



8.3 Shear localization in peloids 369

The sheet-like samples were visibly uniform after consolidation, during
the installation they were kept together by suction without capillary entry
(Fig. 8.3.1c). After shearing and breaking off a part they exhibited a band of
aligned clay particles (d). This kind of slip surface is known as slickenside,
as observed in situ it is a wavy band of ca. 10−5 m thickness. Its exposition
indicates a lower suction pa − pw than in the broken parts above and below.
Grooves and weals due to convected grains appear in the direction of shearing,
aligned layer silicates are indicated by optical reflection. The fabric may be
changed by the exposition, but such snapshots prove that shearing can be
localized to thin bands with oriented particles.

The argotropy visible in Fig. 8.3.1a is reproduced by v-hyp and is not at
variance with the non-argotropic friction of Fig. 8.3.1b (Sect. 3.8). The parti-
cles get harder or softer by an increase or decrease, respectively, of stretching
D like a pore-free viscoplastic solid (Sect. 3.1). For a given skeleton pres-
sure ps, and with Ts11 = Ts22 = Ts33 = −ps in case of stationary shearing
(Sect. 3.8), the critical void ratio ec is higher with a bigger D as then the
solid hardness hs is higher (Sect. 3.2). After a jump of D to a higher or lower
value the skeleton dilates or contracts, respectively, until the new higher or
lower ec is reached. Apart from the first one the peaks in Fig. 8.3.1a are thus
of argotropic origin.

Following the argument in Sects. 8.1 and 8.2 any reduction of resistance
with further shearing, i.e. a peak in a τ vs. γ plot, leads to a shear localiza-
tion which is confined by polar effects. Alongside with this bifurcation from
uniform into localized shearing with rotation and curvature the amount of
stretching D (including polar terms) increases even if the driving velocity vsh

is constant. The reduction of shearing resistance after such a bifurcation can
thus be compensated more or less by a gain of viscous resistance. Therefore
peaks as in Fig. 8.3.1a are not sufficient for a shear localization. The repeat-
edly attained stationary response may thus be related with extended argotropic
critical states. According to (8.2.2) the shearing resistance |σs12/ps| should be
smaller than without polar stresses, but with given ps this reduction is appar-
ently compensated by the resistance to the mutual twisting of particles. As
with psammoids (Sect. 8.2) the critical friction angle ϕcs is thus not changed
by a localized polarization.

One could extend visco-hypoplastic relations by polar terms (vp-hyp),
but attempts with validation and identification lead to a dilemma. Following
Sect. 3.4 vp-hyp relations could be written with a pe/ps-dependent viscosity
factor fv so that extended argotropic state limits are obtained, and also creep
and relaxation with polar terms. A back-analysis of isobaric thin layer shear
tests with vp-hyp, however, cannot be conclusive. Without polar terms (as
in Sect. 3.8) one would obtain a critical friction angle ϕcs and a critical void
ratio ec for the given ps, but the assumed uniformity gets lost by shearing. As
outlined above the onset of polarization need not be indicated by a peak, and
as in Sect. 8.2 a polar parameter ac for extended critical states can at best be
estimated by matching.
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Moreover, a particle size and a shear band width cannot be identified as
distinctly as for psammoids. Aggregates of clay particles are rather fuzzy,
thus an objective size dg can hardly be defined. For the same reason a band
width ts cannot easily be determined after a test (Fig. 8.3.1d). One can at
best recognize a band with a higher void ratio from a lower capillary en-
try pressure (Sect. 6.3), but could hardly determine ec therein. The visibly
preferred orientation of flat clay particles in a shear band is a clear sign of
polarization. Similarly as with Fig. 8.2.6 polar stresses could be interpreted as
spatial averages of contact forces over narrow strips. These may be imagined
in the direction of shearing, but the stochastic lateral waviness of shear bands
(Fig. 8.3.1d) would require three-dimensional averages. One has to concede
therefore that even an observed stationary isobaric shearing could as yet only
principally be captured by argotropic state limits with polar terms.

Consider now dilatant state limits of a sheared peloid strip with constant
pore pressure pw (although they can hardly be attained in thin layer test as
will be discussed further below). For them the stress obliquity and the ratios of
polar stress and ps are overcritical. Taking over (8.2.2), this may be expressed
by

(σ12/ps tan ϕcs)2 + (m2/psdgcc)2 = K (8.3.1)

with a parameter K > 1, or by an extended formula with further polar and
non-polar skeleton stress components. K depends on the extended stretching
direction which implies a dilation ratio. ps depends on the instantaneous void
ratio and the amount D of stretching, it is thus argotropic as the solid par-
ticles. Such extended state limits could be produced as attractors of vp-hyp
relations, formally as without polar terms (Sect. 3.4). A continuation with the
same stretching would lead to a decay of the skeleton.

Isobaric shearing (i.e. Ts22 = const or ps ≈ const) with constant boundary
velocity vsh would lead to dilatant state limits if the initial void ratio is lower
than the critical one for the given pressure, i.e. for eo < ec(ps). Without polar
terms this can be judged by means of a threshold of the initial consolidation
ratio pe/ps (Sect. 3.4), say peo/ps ≥ κo with κo around ca. 5. The argotropy is
thus not captured, with it ec grows with bigger D as without polar quantities
(Sect. 3.2). As with psammoids a peak due to dilation, which comes close to
a dilatant state limit, leads to a shear localization as the softening is thus
enhanced. This localization is confined by the polar resistance to increasing
rotation and curvature, but also by the increasing viscous resistance as D
grows by a localization with unchanged vsh.

Simulations with vp-hyp, eo < ec, vsh = const and ps ≈ const could pro-
duce similar plots as in Figs. 8.2.3 and 8.2.4 for psammoids, but now these
would be vsh-dependent due to argotropy. The void ratio would increase in the
shear band and would hardly change outside (where a rather uniform dilation
is nearly compensated by an initial contraction). Similarly as in Fig. 8.2.5
the calculated ratio ts/dg of shear band width ts and particle size dg would
increase with the relative void ratio re. This can at best be a crude estimate
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as the limit void ratios ec and ed needed for re are not precisely known, and
as a representative particle size dg has to be chosen at will. The dilemma
with validation and identification is less evitable therefore than with psam-
moids as outlined further above. And there is more frustration due to the pore
water!

Depending on the initial e/ec (or pe/ps or re instead) pore pressure gra-
dients ∂pw/∂x2 can impede or enhance a shear localization, Fig. 8.3.2. For
getting substantial ∂pw/∂x2 the rough boundaries of our saturated peloid
strip can be closed hydraulically (undrained), or sheared so rapidly past each
other that a driven diffusion can hardly occur in the pore water (Sects. 6.2
and 11.1). If the skeleton would contract by isobaric shearing, i.e. for e > ec

initially, pw rises in a sheared zone so that it has outwards gradients (a). If
the boundary shearing is continued and/or slowed down the driven diffusion
produces a spreading of pore water by densification with a reduction of pw

and |∂pw/∂x2|. A shear localization, which may start with unchanged e as
explained further above, can thus be compensated by spreading.

Except for boundary zones with polar constraint there is thus no need
to consider localized polarizations if the void ratio is higher than critical for
the initial skeleton pressure (e > ec(pso)). If the shearing produces spreading
by pore water diffusion contractant state limits can be attained for which
polar terms are swept out. Otherwise polar quantities can arise in narrow
bands with unchanged void ratio and overall shearing resistance, but such
localizations are not felt along the boundaries so that polar terms may again be
neglected.

If the skeleton would dilate by isobaric shearing, i.e. for a low enough e < ec

initially, the localization is enhanced by gradients of pw towards the band,
Fig. 8.3.2b. The diffusion gets faster if the band gets narrower (Sect. 11.1),
but with the increasing local stretching D the skeleton pressure ps can grow
substantially by the viscous resistance to shearing. Without drainage, cavita-
tion and change of pore water density the strip height is constant, but the pore
water can get redistributed by localized dilation and contraction nearby. Then
the localization is confined by polar and viscous effects. This coupling of skele-
ton and pore water could principally be taken into account, but it impedes
simulations with vp-hyp which could as yet hardly be validated anyway.

x2

u2 pw u2

1 2 1 2 1 2

pw

1 2

a) b)

x2
x2 x2

Fig. 8.3.2. Localized shearing with diffusion of pore water: profiles of shearing and
pore pressure (a) with contracting skeleton; same with dilating skeleton (b)
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Phase transitions of pore water may at least be touched although they
cannot yet be quantified. With a given total pressure p the suction pa − pw =
pa − p + ps by shearing can lead to cavitation (Sects. 6.3 and 8.4). Thereafter
a dilatant shearing can proceed without seepage, but additional polar effects
and particle degradation occur with cracks (Sect. 7.3). The denser resting pore
water in narrow slits (Sect. 6.1) is dilated and thinned by shearing (Sect. 3.8).
A skeleton with e < ec for the initial pressure can thus be dilated by shearing
without seepage until the pore water attains its ordinary density. Simulations
with vp-hyp and coupling of skeleton and pore water would thus get more
intricate, let alone validation and identification.

Creep can also play a role for a saturated endless peloid strip. With
draining boundaries and given boundary stresses Ts22 and Ts12 the stabil-
ity of creep depends on the obliquity |Ts12/Ts22| as without polar terms
(Sect. 3.8). The creep rate depends on the initial consolidation ratio peo/ps

and on the diffusion of pore water (Sect. 11.1). With subcritical obliquities,
i.e. |Ts12/Ts22| < tan ϕcs, polar stresses are swept out by stabilizing creep and
get negligible therefore. In critical cases with |Ts12/Ts22| = tan ϕcs the shear-
ing gets stationary and localized, i.e. extended argotropic state limits arise.
The asymptotic creep velocity vsh is determined by the skeleton pressure after
diffusion, i.e. ps = Ts22, and the void ratio or its equivalent pe in the shear
band, so vsh depends on the initial pe/ps and the parameters that control the
diffusion of pore water.

With overcritical obliquities, i.e. |Ts12/Ts22| > tan ϕcs, the creep for con-
stant Ts12 and Ts22 with boundary drainage leads to a delayed collapse with
localization. The dilation is enhanced by cavitation and by stripping of bound
pore water, whereas the diffusion cannot keep pace in case of rapid shearing.
Thus the attained high creep velocity is determined by the void ratio in the
shear band at collapse without further diffusion. The delay time increases with
a higher initial pe/ps and is reduced by cavitation and thinning of bound pore
water, so it is hardly predictable. Without boundary drainage and with con-
stant Ts12(= T12) the creep tends to stationary localized shearing as long as
the pore water does not cavitate. The asymptotic creep velocity is principally
determined by Ts12 and the initial e or p, but can as yet hardly be quantified
with localized polarisation.

Relaxation occurs in a fixed peloid strip similarly as in a solid (Sect. 8.1),
but now pyknotropy, barotropy and pore water play a role. Deviatoric and
polar stresses dwindle qualitatively as in Fig. 8.1.3c, the rates are roughly
proportional to (ps/pe)1/Iv as without polar quantities. With 1/Iv >ca. 20
even minor changes of ps/pe matter a lot. As outlined in Sect. 3.4 ps is re-
duced by relaxation, and pe increases for constant e by the reduction of stress
obliquity. Therefore the relaxation including polar stresses is slowed down far
more than in a pore-free solid. Pore pressure gradients fade away by diffusion,
so e and ps get more uniform with fixed boundaries. A minor part of the pore
water, particularly in shear bands, returns to a denser state in narrow slits
(Sect. 6.1). This does not influence the average ps of the fixed skeleton, the
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average pw would only increase without boundary drainage, but the diffusion
of pore water is enhanced by this kind of adsorption.

Waiting intervals matter more with longer duration because of relaxation
and creep. This is also the case with reversals which may now be addressed
for a saturated peloid strip. As with psammoids (Sect. 8.2) polar stresses are
swept out (except for boundary zones) by alternating deformations with small
to moderate amplitudes so that critical stress obliquities are not attained.
Then polar effects may be neglected, and many reversals produce a kind of
relaxation or annealing. With big amplitudes, so that stress obliquities get
repeatedly overcritical, reversals produce repeated polarizations and can lead
to a deterministic chaos. The response to strong cyclic shearing via the top
plate can lead asymptotically to average state cycles, but the strip cannot
get uniform. Waiting intervals at reversals with fixed boundaries change the
response by relaxation. With constant time averages of boundary stresses Ts12

and Ts22 the creep is enhanced by reversals which can be in-plane or anti-plane.
With subcritical |Ts12/Ts22| and moderate amplitudes polar effects are or get
negligible, otherwise a delayed collapse is enhanced (Balthasar et al. 2006).

Leaving aside gas inclusions for brevity, possible validations of models
for sheared peloid strips may now be discussed. Shear box tests with rigid
walls attached to mutually sheared rough plates cannot produce the required
uniformity in the direction of shearing. Hvorslev (1937) showed with initially
vertical markers that a forced lateral offset is not continued in the interior
(Fig. 3.8.1). Morgenstern and Tchalenko (1967) observed successions of shear
band patterns in such devices, with little symmetry and without asymptotic
response. Clays have rarely been tested in a so-called simple shear apparatus
with tilting lateral walls (Fig. 2.9.7a), but the non-uniformity known with sand
(Sect. 2.9) refutes the assumption of uniformity in the direction of shearing.

Samples in ring shear devices (e.g. Fig. 2.9.9a) are endless strips, but the
radial uniformity is debatable. Hvorslev (1937) found with markers (Fig. 3.8.2)
that tangential displacements were differently non-uniform with differently
movable lateral rings although these were smooth. It appears that a succession
of shear bands arose in his tests, and that his shearing was too fast for getting
uniform pore pressures with free boundary drainage. Based on improved slow
drained ring shear tests and comparable field experience, Skempton (1985)
proposed that overconsolidated clays are first locally dilated by shearing up to
a critical state, and then further softened up to a residual resistance due to the
alignment of flat particles. This idea is supported by observed slickensides and
may suffice for an interface model (Sects. 11.2 and 10.3), but is at variance with
the concept of localized polarization and diffusion proposed further above.

Goldscheider and Bösinger (1989) sheared inclined thin layers, which were
already inside or cut into cylindrical clay samples, in triaxial tests. Equally
consolidated samples were then sheared along the cuts (Fig. 8.3.3a) with dif-
ferent confining pressures and a so low velocity (vs = 3 · 10−7 ms−1) that
excess pore pressures were presumably negligible. The shearing resistance
got stationary and depended on the normal pressure σ on the cut so that
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Fig. 8.3.3. Sample with a pre-existing shear band after a triaxial test (a), shearing
resistance of a cut (b) and a natural shear band (c); Goldscheider and Bösinger
(1989)

a cohesion c and a friction angle ϕ could be identified (b). Similar values were
obtained with natural slickensides of the same orientation (c), these were con-
firmed by the back-analysis of slips in situ. The shearing resistance calculated
with the friction angle 11◦, determined for the same clay in thin layer tests
(Balthasar et al. 2006), is lower for low σ and higher otherwise in the tested
range (dashed). This shows that an under- or overpressure of pore water oc-
curred in the shear band which could not be observed at the top and bottom
plates (and certainly not in situ).

Thin layer shear tests can provide further insight. The free lateral bound-
aries with skeleton pressure by suction have little influence on the major inte-
rior part as length and breadth exceed the height by far (a/b/h ≈ 250/130/2).
Thus averages over the ground area are legitimate, and only changes of
them along the normal and with time have to be considered. The results
in Fig. 8.3.1a and b show that stationary states can be achieved by isobaric
shearing with rate-independent component ratios, and Fig. 8.3.1d proves a
shear localization in the middle of the thin layer. The polarized fabric in a
narrow band (slickenside) is evident, a higher void ratio than nearby can be
concluded from cracks due to the lower capillary entry pressure. The argotropy
is exhibited by the transitory response after changes of shearing velocity vsh,
it is the same as without localization. This suggests higher stationary void
ratios for faster shearing, but these could not yet be observed.

In the middle of a representative average shear band the skeleton stress
tensor is asymmetric (T12 �= T21) and the couple stress vanishes (m2 = 0), cf.
Figs. 8.1.1 and 8.2.3. At a state limit the skeleton state is determined by the
stress state, the ratios of stress and stretching rate components are uniquely
related, with argotropy the limit void ratio is determined by skeleton stress
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and an argotropic solid hardness (Sect. 3.2). This holds in particular for sta-
tionary states (called critical) and makes sense also with polar effects. The
skew-symmetric stress tensor in the middle of the shear band represents its
orientation and void ratio, it is related with isochoric shearing plus Cosserat
rotation with the same orientation. Off the mid-plane couple stress and cur-
vature occur in the band (Figs. 8.1.1 and 8.2.2) and determine its width, this
requires a material length. The width increases with a higher relative void
ratio in the vicinity (Fig. 8.2.4), and is argotropic as the implied limit void
ratio.

More thin layer tests and their simulations with vp-hyp will be needed for
a quantification with the following main points. Ts11 = Ts22 = Ts33 = −ps

may be assumed for extended critical states as shown by Bauer (2000) without
polar terms, for convenience and because Ts11 and Ts22 cannot be measured.
It appears that a localization can occur without a peak of Ts12 as the re-
duction of Ts12 by polarization is compensated by the viscous increase from
localization with constant vsh. This assumption could be built into an ex-
tended limit stress condition with tentative ratios Ts12/Ts21 and band widths
ts, and could be checked by tests with constant ps and vsh but slightly differ-
ent initial void ratios (e.g. through waiting times). The couple stress m2 (M
in Fig. 8.1.1) cannot be observed, but the ratio m2/Ts12dg could be chosen so
that observed band widths are reproduced. According to (8.3.1) with K = 1
this would enable a matching of the product dgcc of two polar parameters. As
a particle size dg cannot be identified microscopically it could be matched by
adapting observed ts (Fig. 8.3.1d) for different initial e with calculated ones
as in Fig. 8.2.4.

As mentioned already further above such a quantification cannot lead to
a complete and unique validation. The unchanged alignment with continued
shearing in the band is compatible with an increasing Cosserat rotation ωc.
Thickness and void ratio of a shear band cannot be determined precisely af-
ter a test because of spatial fluctuations and changes by preparation. Mean
values of Ts12 and Ts22 over the whole sample area are lower than interior
values, but ratio and argotropic changes of both are hardly influenced by the
free rim. Within the assumptions proposed above the simplest representa-
tions of vp-hyp should be chosen so that two parameters dg and cc suffice for
matching observed ts. The crucial hypothesis that ec is determined by ps and
by the amount of stretching D, likewise without or with polar effects, could
be checked by monitoring e during tests, but this is still out of reach. The
proposed matching of ts with different initial e will not enable a precise dis-
crimination. Nevertheless such efforts will deepen the physical understanding
and can help to justify and delimit non-polar approaches for common use.

Thin layer tests with insufficient drainage will also be instructive, but less
quantitative as pore pressures pw cannot be monitored in shear bands. Back-
analyses with vp-hyp and seepage as proposed further above could at best help
to delimit the cases with free or negligible drainage, and to understand the
diffusion of pore water in and near shear bands. This could again delimit
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non-polar approaches and would clarify the role of localizations with pw-
gradients in usual tests. For instance, the softening in Hvorslev’s (1937)
ring shear tests could thus be quantified by means of a gradually reduced
suction.

For the time being thin layer tests in the overcritical regime can produce
merely qualitative validations. A stronger dilation in case of higher initial
consolidation ratios can hardly be observed during tests, and after them void
ratios in bands are impaired by swelling and cracking. Localized suction and
cavitation cannot be observed during a test. Skempton’s (1985) opinion that
first critical states are reached in shear bands with dilation, and that there-
after the shearing resistance decreases further by alignement, is at variance
with the concept proposed here. One could open and cut the thin layer just
after a peak and could observe a localized alignment which could hardly be
explained without polarization. The subsequent drop of shearing resistance
can be explained through a drop of suction by the diffusion of pore water.
Unfortunately this can hardly be observed during thin layer tests, and their
back-analysis with changes of permeability (and even of water density) is in-
evitably imprecise.

Biaxial tests with clay samples can produce similar shear bands as with
sand (Sect. 8.2), but such evolutions are more complex because of skeleton
viscosity and pore water diffusion. Kolymbas (1978) shortened Kaolin prisms
with vertical dye markers, which were confined by a pair of perspex plates and
by silicone oil pressure at two free surfaces, via two smooth plates. This led to
a dislocation along one band (Fig. 8.3.4, left) or to several intersecting bands
(right). This localization was not accompanied by a peak of deviator stress
versus shortening. The bands were about 10−5 m thick, the further shortening
of sample height occured mainly by dislocation along them.

Fig. 8.3.4. Shear bands in biaxial tests with clay (Kolymbas 1978)
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Such shear bands could principally be reproduced by vp-hyp with pore
water diffusion as outlined above with endless strips. Crossing and reflected
bands could be captured principally as for psammoids (Fig. 8.2.10), but be-
cause of their low width the available computer capacity would only suffice
with remeshing. The numerical problems increase by taking into account the
diffusion of pore water, particularly along narrow bands and with variable
permeability.

Kuntsche (1982) observed shear bands in Kaolin samples after biaxial tests
with nested smooth plates as in Fig. 2.7.8b. Isochoric deformations led to a
stationary stress deviator after ca. 25% shortening in the direction of the
previous uniaxial compression. After dismantling the sample was cut with a
wire, and shortly after exposure a rhomboidal pattern of grooves appeared
in side-light. The more rapid evaporation and shrinkage at shear bands may
be attributed to a higher pore pressure, void ratio and permeability than in
the vicinity. The pattern was less marked if the sample had been shortened
isochorically along the normal to the previous uniaxial compression.

Similar patterns are reported by Topolnicki (1987). He observed that the
bands nearly reached the smooth walls, could be reflected there and had dif-
ferent distances with the same inclinations, Fig. 8.3.5. Other than observed
by Kuntsche (1982) the direction of previous consolidation had no systematic
influence. Again and more precisely there was no peak of stress deviator ver-
sus shortening. It may be legitimate therefore to neglect the localization in
simulations, but one should care for argotropy and relaxation (Sect. 3.7). The

Fig. 8.3.5. Pattern of shear bands from a biaxial test with clay (Topolnicki 1987)
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latent polarization could principally be simulated by vp-hyp with pore water
diffusion, but not yet with available computer capacity. The lack of determi-
nacy and repeatability can be attributed to partly erratic imperfections and
waiting times.

Lizcano (2004) investigated remoulded moderately plastic clay samples in
a biaxial apparatus as by Fig. 2.7.8a, and in cuts of them afterwards. After
uniaxial consolidation the sample was shortened without drainage via guided
plates so that a shear band could develop freely. This happened after nor-
mal consolidation, i.e. without initial excess pore pressure or decompression,
whereas samples with initial excess pore pressure remained cuboidal. The
dislocation started near the peak of the stress deviator versus shortening,
whereas the pore pressure at the bottom plate did not change. The response
got almost stationary although the sliding motion was impeded by the rubber
membrane. The observed relative displacements indicate isochoric shearing
along the bands. Their inclination was nearly repeatable, θ ≈ 60◦ ± 5◦, their
position was random. A critical friction angle ϕcs ≈ 24◦ was derived by as-
suming a uniform pore pressures pw.

Dismantled samples exhibited shear zones of ca. 5 mm width. Scanning
micrographs of cuts reveal much thinner shear bands (Fig. 8.3.6a). Close-ups

a)

b)

Fig. 8.3.6. Scanning micrographs of a shear localization with clay in a biaxial test
(courtesy A. Lizcano), band (a) and close-up (b)
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exhibit a less regular alignment in bands of ca. 10−5 m width (b), but particles
can hardly be identified. Following the outline on sheared strips further above
a localized polarization may be stated, and a localized reduction of pw so
that the ϕcs calculated without it is too high. It appears that a peak which
necessitates a shear localization was caused by a diffusive loss of suction, but
that this did not lead to a uniform pw. As with other biaxial tests a back-
analysis with vp-hyp and diffusion is beyond the present reach.

Triaxial tests with clay samples can lead to shear band patterns which are
more complex than with biaxial tests (Sect. 14.1). This can also be said about
cuboidal and torsional tests (Sects. 3.7 and 3.8) although shear localizations
have hardly been studied with them. Transferring the experience with biaxial
tests one may presume that localizations do not occur or do not matter in
so-called RSE-tests if the initial consolidation ratio pe/ps is low enough. Oth-
erwise localizations with dilation and cavitation spoil the desired uniformity,
but quantifications with polar terms, diffusion and phase transitions of pore
water are not yet at hand.

To sum up, evolutions with shear localization observed in clay samples can
be principally captured by polar quantities, but quantifications are difficult
due to skeleton viscosity, changes of pore water state and limited computer
capacity. Observations with thin layer shear tests demonstrate a localized po-
larization and could be used to examine visco-hypoplastic relations with polar
terms (vp-hyp). This is debatable as pore pressures and void ratios can hardly
be observed in narrow bands, and as the bound pore water can get thinned
or cavitated. Evolutions with shear band patterns in other tests can as yet
only be interpreted qualitatively, back-analyses with vp-hyp and pore water
diffusion are not yet feasible. The usual evaluation with assumed uniformity
is legitimate up to critical stress obliquities, but gets dubious otherwise, all
the more as then pore pressure gradients enhance localizations.

8.4 Cracking and channelling

The uniformity of RSEs can get lost by cracking and/or by spontaneously aris-
ing channels in case of pore pressure gradients. Such localizations are briefly
described in the sequel in order to delimit approaches with spatial averages.
Continuum approaches as for shear localizations are not at hand and not al-
ways legitimate, but the issue arises repeatedly in this book and some common
features can be identified.

The skeleton of a very dense psammoid RSE can dilate almost like a dry
masonry. This was related in Sect. 2.2 with dilatant state limits with extreme
stress obliquities so that one or two skeleton pressure components vanish.
One may also speak of an anomalous shear localization with extreme dilation.
Chains of grains (cf. Fig. 4.3.1) along a cleft may be imagined to buckle with
polar effects. This rather chaotic localization (Sect. 16.3) is at variance with
the uniformity assumed for psammoid RSEs. The problem can arise after
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a reduction of skeleton pressure ps so that the void ratio e is lower than the
lower bound ed(ps) for simple skeletons. Niemunis (2003) modified hypoplastic
relations so that they still work with assumed uniformity, this could suffice for
many applications. The capability of continuum approaches with polar terms
for splitting was demonstrated by Mühlhaus (1989).

The splitting of dense grain skeletons can be enhanced by localizations
in the pore water. With full saturation and a hydraulic gradient the water
transport can be concentrated onto a crack, then the skeleton at its flanks
is supported by sidewards seepage forces. The critical hydraulic gradient for
a breakthrough is thus not only determined by e and ps, but also by the
vicinity to a dilatant state limit. Given a sufficient hydraulic gradient the
localized dilation enhances the transport of water, and a subsequent collapse
of grain chains can lead to an inner erosion. Mean-field approaches for seepage
(Sect. 6.2) and for stability of filters (Sect. 10.3) cannot suffice. One may
determine critical gradients in experiments with adequate skeleton state and
boundary conditions, but subsequent evolutions with such kind of channeling
are apparently beyond the present reach (Sect. 16.3).

A gas channel can stabilize a crack by suction and enhances the vapor
transport. It can arise spontaneously in a previously saturated dense skeleton
by splitting alongside with a capillary entry (Sect. 6.2). This can happen with
fine grains and low enough total pressures so that capillary entry and skele-
ton pressures have the same order of magnitude, provided the deformation
is too fast for the diffusion of pore water. Axial splitting or discing can then
be produced by shortening or lengthening, respectively, of cylindrical sam-
ples. Constitutive relations with spatial averages of RSEs can at best indicate
conditions for such a localization, but cannot catch its further course.

Without contact with the atmosphere skeletons can crack alongside with
a cavitation of the pore water. With saturated gravel and sand this occurs
by vanishing water pressure, pw → 0, with finer grains pw can get negative
by evaporation or by rapid deformation of dense skeletons. Relations with
mean values can again at best indicate the onset, but cannot catch further
evolutions. With bubbles of air or vapor between the grains and given total
pressure the water pressure pw is hardly reduced by further deformations of
the skeleton, this could only crack then if it is very dense.

Unsaturated psammoid samples with interconnected pore gas can crack
with suitable initial and boundary conditions. Uniaxial tension opens the cap-
illary bridges along a single crack, the capillary skeleton pressure pcs can thus
be determined (Sect. 6.2). Splitting or discing can be produced in cylindrical
samples by axial shortening or stretching, respectively, if the skeleton is denser
than critical. The buckling of grain chains along crack flanks is prevented by
pcs, but this is reduced by dilation so that further cracks arise. This kind of
localization can happen near free boundaries with total pressures p ≈ pcs, it
enhances the de- or increase of water content.

The decay of looser than critical and fully or nearly saturated psammoid
skeletons can lead to channelling in initially uniform RSEs. If the skeleton is
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deformed via filters without or with reversals (Sects. 2.2 and 4.2) its mean
pressure ps can vanish so that the grains can move freely. If the skeleton
velocity is too high for drainage and the total pressure p is nearly constant the
pore water pressure pw rises. The seepage force by the gradient of pw (Sect. 6.2)
widens preferred pore channels. The positive feedback by sidewards seepage
from channels enhances the localization of pore water outflow and leads to
erosion (more in Sect. 16.3). Evidently this cannot be captured by psammoid
approaches with mean field relations only.

If a gradient of pw is imposed to our RSE a similar localization can occur
even if a loose skeleton is kept by boundary filters. Other than with lower than
critical void ratios the skeleton can collapse along widening channels although
the average skeleton stress obliquity is low. Critical hydraulic gradients should
be determined with the same average e and ps as with intended applications.
This can help to judge a hydraulic breakthrough in skeletons which are kept
at boundaries, but hardly the further evolution. With more kinematic freedom
loose wet skeletons can slump into suspensions, therein released gas bubbles
can unite to gas cushions. The flow of avalanches is thus enhanced until gas
breaks out in channels (Gudehus 1998). Thus pw is suddenly reduced and
grains are recombined into skeletons which are denser than critical (more in
Sect. 16.3).

Cemented granular RSEs can be split with overcritical stress obliquities
if they are denser than critical. Otherwise macropores disappear rather uni-
formly alongside with the condensation bridges and the net attraction by them
(Sect. 7.3). If high skeleton velocities prevent drainage (roughly by (6.2.11))
the loss of cementation can lead to a decay if the skeleton is loose. The more
marked brittleness due to cracking without grain crushing implies a localized
dilation with buckling chains of grains. Similarly as with humid skeletons the
void ratio may be initially higher than the lower bound ed, but the acoustic
emission is stronger. Constitutive relations with spatial averages may capture
the onset of cracking, but not its further evolution (Sect. 7.3).

Peloid RSEs can exhibit a wider spectrum of cracking and channelling as
their particles are argotropic and can have net attraction, and as the diffusion
of pore water plays a dominant role. The evolution of cracks by the cavitation
of pore water can hardly be captured by presently available models (Sect. 6.3).
The tensile strength without net attraction may be identified as capillary entry
pressure if its change by localized dilation is neglected. As with psammoids
the splitting or discing of cylindrical RSEs by axial shortening or extension,
respectively, may be interpreted as an anomalous extreme shear localization.
As long as even the latter cannot be quantified (Sect. 8.3) this interpretation is
of little use. Conditions with spatial averages may at best serve to specify the
loss of uniformity, but further evolutions can hardly be captured by continuum
approaches.

The evolution of crack patterns cannot yet be quantified even in case of
shrinkage near free surfaces. As outlined with Fig. 6.3.6 the fractal succes-
sion is determined by diffusion in and near the cracks, and is coupled with
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anisotropic contractant skeleton deformations. The complexity grows if the
peloid RSE has anisotropic average stresses, net attraction and/or gas inclu-
sions. Shear bands can occur alongside with cracks, the latter can be closed
as long as the pore gas is not dissolved or squeezed out, through-going cracks
enhance the transport of pore water and solubles.

Such complex evolutions could be observed in thin layer (Sect. 8.3) or tri-
axial tests (Sect. 14.1), but they are beyond the present reach of continuum
models. RSE-tests with stiff fissured clays require samples with such patterns
of cracks, shear bands and gas inclusions that spatial averages are legitimate.
This necessitates rather big samples, a good reconstitution after cutting them
in situ, and boundary conditions in experiments so that the moderate unifor-
mity is not lost without control (Sect. 9.1).

Baro-, pykno- and argotropy are essentially the same as without fissures
as these do not change the solid particles. Similarly as shear bands fissures
cause an inherent anisotropy which changes with the evolution of crack pat-
terns. Other than with simple peloids the state of RSEs is not sufficiently
captured by spatially averaged skeleton stress components, pore pressure and
void ratio. The spatial fluctuations with cracks cannot be captured by hidden
state variables as proposed for reversals in Sect. 5.2. Crack patterns can get so
chaotic that their fluctuations cannot be captured by continuum quantities.
Therefore constitutive relations for peloids with crack patterns which include
their evolution are not in sight.

For the time being it may suffice to work with state limit parameters from
matching of test results with the precautions indicated further above. This
is an apparent contradiction in terms as states of stiff fissured clay samples
are not sufficiently determined by the average skeleton stress. In other words,
fabrics with fissures and shear bands cannot arbitrarily be reconstituted by
feasible RSE boundary conditions. State limits cannot uniquely be recognized
from the response, so the identification of parameters in the framework of
v-elp or v-hyp is not objective. This shortcoming will hardly matter in the
contractant regime as then cracks and shear bands are not activated, and may
be minor for isochoric evolutions as then cracks are smeared and shear bands
will hardly influence the average response (cf. Sect. 8.3). In the dilatant regime
validation and identification are debatable due to localizations anyway, but
the inherent anisotropy could then be of minor importance.

Spatial averages may suffice for the skeleton response, but localizations in
the pore fluid should not be neglected for stiff fissured clays. If there are no
inter-connected gas channels the overall permeability k̄f is higher with partly
open fissures, this k̄f can be determined by element tests with skeleton stresses
and gas inclusions as in situ. The average effective skeleton stress components
are related with the total ones and with the average pore pressure p̄w as
without fissures. Deviations of p̄w from the observable pw in fissures may be
neglected for amounts of overall stretching

D < 10−1kf p̄s/γwd2
f . (8.4.1)
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Therein kf denotes the permeability without fissures and df their average
distance. According to (6.2.11) the seepage may be neglected if D exceeds 103

times this amount, with the same kf as then fissures are smeared.
With inter-connected gas channels the situation is different due to suction.

A network of shrinkage cracks is not generally closed by overburden pressures
so that an adjacent saturated clay has pg − pw > 0 according to gas and
vapor pressures in the fissures. An anisotropic capillary skeleton pressure Pcs

and state limits with higher void ratios according to its isotropic part pcs were
proposed in Sect. 7.2. This is debatable for stiff fissured clays as they can have
zero tensile strength and inherent anisotropy. Triaxial tests with big samples
(Gudehus and Wichter 1977) exhibit a ductile response with cohesion c and
friction angle ϕ in conventional terms, but rock-like fabrics. Axial splitting
occurs with low confining pressures σ2, whereas the suction can get lost with
so high σ2 that the pore gas gets trapped. c and ϕ are anisotropic and de-
pend on the average pressure and suction, so they are by no means material
constants.

Formal extensions of elp or hyp with anisotropy and suction are of little
use because of the indeterminacy by random cracks. It is difficult and expen-
sive to cut samples with representative fissures, to reconstitute in situ states
and to impose RSE-like boundary conditions including suction. Sophisticated
constitutive relations including the evolution of inherent anisotropy could only
be validated by means of artificial samples with reproducible crack patterns
(e.g. Fig. 14.1.10). Such attempts are beyond the scope of this book, and
may turn out not feasible as relations with spatial averages can be principally
insufficient (Sect. 9.1).

More than without fissures (Sects. 11.3, 12.2 and 13.3) plastic limit states
with c and ϕ are at best necessary, but not sufficient for the stability of peloid
bodies with fissures. With further drying and overcritical average stress obliq-
uities, e.g. at steep cuts, main cracks run ahead and are followed by secondary
and tertiary cracks until the clay gets a debris of crumps. Wetting proceeds
first along wider cracks, these are closed by swelling under overall pressure,
part of the pore gas is enclosed in the further deforming mass, this can col-
lapse into a suspension. Calculations with v-elp or v-hyp and spatial averages
may provide crude estimates of deformations and stability. As the irregular
pore water transport is hardly predictable the suction should be monitored
in situ alongside with drainage and/or hydraulic insulation (e.g. Sect. 12.2).
Thus the indeterminacy with cracks cannot be ruled out, but an unexpected
delayed collapse can be avoided.

Zou (2000) investigated the hydraulic breakthrough in differently prepared
and kept clay samples. After consolidation some samples were flattened via
smooth plates so that they got a pattern of shear bands. Hydraulic gradients
were imposed via filter plates in oedemetric and triaxial setups. With a given
average void ratio e and axial skeleton pressure σ′

1 the critical gradient for
a breakthrough was lower with shear bands, lower stress ratios σ′

2/σ′
1 and

wider filter openings. Position and orientation of the breakthrough channels
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are random, erosion widens the channel which always start at the downstream
filter.

Zou (2000) proposes an estimation formula for the dependence of the criti-
cal gradient ic on conventional strength parameters (c′ and ϕ′). It may suffice
here to state that ic depends on initial and boundary conditions of the RSE
and that the hydraulic breakthrough starts at the downstream boundary. One
can conclude that this kind of hydraulic localization with skeleton decay is a
boundary effect. It could not start spontaneously in the interior like a shear
band or a crack, so it is not a localized bifurcation which can be attributed
solely to the state of skeleton and pore water.

Saturated peloids with net attraction (Sect. 7.1) are certainly capable of
cracking and channeling, but such cases have hardly been investigated. Uniax-
ial extension leads to a tensile crack, and splitting can occur in the direction
of maximal shortening. This was described for model tests by Pralle et al.
(2003) with a mixture of quartz powder, salt water and gas bubbles. Total
pressure pulses lead to a local skeleton decay and to mud volcanos. Such
critical phenomena are beyond the reach of this book (more in Sect. 16.3).

Peloids with cementation may merely be mentioned for sake of complete-
ness. As outlined in Sect. 7.3 bridges by condensation and by net attraction
cannot clearly be separated for cemented clays, otherwise these should be
called claystones. Tensile cracking and splitting can certainly occur, but could
hardly be captured as with solids or psammoids. Cracks can heal by thermally
activated rearrangement and recondensation, this can be observed in experi-
ments, but certainly cannot be captured by methods treated in this book. A
hydraulic breakthrough is impeded by cementation and may therefore be left
aside.

To sum up, cracking and channeling are localizations which influence the
mechanical behaviour of soils, but can hardly be captured by constitutive
relations. For contractant and isochoric deformations elp or hyp relations may
suffice as without crack patterns, particularly if these are smeared out. In this
regime a control of suction via open cracks can be of use. The argotropy is
not changed by cracks. The onset of crack growth in the dilatant regime may
at best be indicated by relations for spatial averages. The transport of pore
water and gas gets chaotic with cracks and can lead to skeleton decay and
inner erosion.
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FABRIC

The notion ‘fabric’, which is often used instead of ‘structure’ for geo-materials,
has two different meanings. If a skeleton is homogeneous with respect to the
kind of solid particles these can be differently arranged according to the state
of an RSE. The outline in Sect. 9.1 deals with the issue of remoulded, recon-
stituted and undisturbed samples. It may help to understand limitations of
constitutive relations and of microscopic approaches.

The spatial distribution of statistically different solid particles in RSEs
characterizes fabrics by composition. It will be indicated in Sect. 9.2 that the
mechanical response can strongly depend on the spatial distribution so that
spatial averages do not suffice. This requires careful identifications and/or
composite RSEs. The attractors proposed in this book get invalid by mixing
and segregation of solid particles so that evolutions of skeletons can no more
be followed up.

9.1 Fabrics by state

By definition the grains of a psammoid RSE constitute a skeleton with contact
forces which sum up to skeleton stress components. These force densities define
the state of simple psammoids together with the void ratio e (Sect. 2.2). In
a statistical sense the relative positions and the contact forces of the grains
should thus be sufficiently determined. Let us briefly discuss how far this
simplifying assumption could be justified. For simplicity the pore space may be
saturated and have a constant water pressure pw, as always pw may influence
the pore-free grains only via ps = p − pw.

The preparation of psammoid RSEs as samples for experiments can lead
to different fabrics even if average skeleton stress and void ratio are the same
at the onset of RSE tests. A layer-wise placement leads to spatial fluctuations
of e which are aligned by gravity, let alone inobservable skeleton stress fluctu-
ations (Sect. 4.3). Such fabrics can be ironed out by alternating deformations
with moderate amplitudes. Shear band patterns could be produced in dense
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skeletons so that these get a kind of fabric. Skeletons can be fixed in situ
by grouting or freezing, then cut and unfixed after imposing RSE boundary
stresses. Such expensive samples have at best nearly the spatial distribution
of e as before in situ, but not the same force-roughness. Their state includ-
ing fabric is not reproducable, their uniformity will rarely suffice for spatial
averages.

Only at state limits the skeleton state is fully determined by the skeleton
stress components, then the void ratio is determined by ps and the stress
obliquity (Sects. 2.2 and 2.11). This assumption implies that the fabric, i.e.
the configuration of grains with contact forces, is sufficiently given by the
skeleton stress tensor. In other words, density and orientation of the skeleton
are so strongly adapted to the skeleton stress components that these deter-
mine the relation of stress rates and stretching, and that the fabric need not
be considered explicitly. So-called element tests with uniform RSEs support
this assumption (Sects. 2.5, 2.7 and 2.9), but would it stand a microscopic
inspection?

Imagine a kind of microscope which yields the positions of all grains and
their contact forces and flats, or the same data set from a numerical sim-
ulation with granular interactions. Imagine further a stochastically uniform
skeleton which is deformed without loss of uniformity, i.e. an RSE. These are
thought experiments: no tomography and no preparation is perfect, simula-
tions are always over-simplified, and statistically uniform fluctuations cannot
be achieved. Anyway, a data set of grain positions and forces for a resting
skeleton could be summed up into void ratio, skeleton stress components and
a fabric tensor S. The latter could capture the distribution of grain contact
normals and/or of orientations of oblong grains (Lätzel et al. 2000). Reason-
ably S is a symmetric second-order tensor, thus the fabric has three principal
axes in general, three positive principal values and three invariants. These
are also the properties of the Cauchy skeleton stress tensor Ts, thus one may
analogously define a fabric vector s which is related with a direction nomal n
by the fabric tensor via s = Sn.

S is an internal or hidden state variable which can principally be fully
determined by microscopy or simulations. Fabric effects may at best be indi-
rectly exhibited by observed evolutions of skeleton stress, void ratio and shape
as far as samples are and remain uniform enough so that spatial averages are
justified and sufficient. Constitutive relations could be formulated with a fab-
ric tensor S so that objective rates of Ts and S are tensorial functions of e,
Ts, S and stretching D, viz.

◦
Ts= Fs(e,Ts,S,D) (9.1.1)

and
◦
S= Ff (e,Ts,S,D) . (9.1.2)

Frame-indifferent representations of the functions Fs and Ff should be ho-
mogeneous of first order and non-linear in D. They are necessarily more
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complicated than without S (Sect. 2.11), tentative approaches by trial and
error would be boundless. Even isochoric state limits get complex: for them
Fs = 0 and Ff = 0 may be expressed as

Ts = Gs(e,S, D̂) (9.1.3)

and
S = Gf (e,Ts, D̂) , (9.1.4)

but the inversions of the functions Gs and Gf have two tensorial arguments
instead of only the direction D̂ of D as for simple psammoids (Sect. 2.11). In
the latter case S is determined by Ts as both Ts and S are determined by D̂
(monotonous functions provided for uniqueness). Then S is no more needed,
i.e. the fabric is fully determined by the skeleton stress.

Goddard (2005) proposed relations like (9.1.3) and (9.1.4) as for a liquid
with an internal structure, but without evolution equations as (9.1.1) and
(9.1.2). Skeletons of ablong grains are certainly aligned at isochoric state lim-
its, but then their fabric is not necessarily determined by the stress tensor.
Frame-indifferent representations of (9.1.3) and (9.1.4) may be specified with
physical arguments, but could hardly be validated by element tests. As out-
lined in Sects. 2.5, 2.7 and 2.9 uniform critical states can hardly be produced in
triaxial or shear tests, an inherent anisotropy could not be detected therefore
with isochoric state limits attained after different preparations.

The feasability of approaches with a fabric tensor is more questionable
for non-isochoric state limits of psammoids. Contractant state limits with
hard grains require a capillary net attraction for stabilizing sufficiently loose
skeletons, and cannot properly be attained with increasing skeleton pressure
ps as then grains are crushed and as this effect can hardly be separated (Sect.
7.3). As far as such state limits can be identified it suffices therefore to assume
that the fabric is determined by the skeleton stress. Attempts with cuboidal
samples and differently oriented placement suggest an inherent anisotropy for
dilatant state limits (Sect. 2.7). This is not a sufficient evidence, however, as
the relative void ratio re is not uniformly distributed, as the spatial average r̄e

is not the same for the compared peak states, and also as r̄e cannot precisely
be deduced from the reports. A stress-independent fabric tensor could thus
not be specified even for state limits.

Evidently shear localizations produce a kind of fabric in psammoid RSEs,
but models for such fabrics are hardly feasible and justified. A single shear
band in an RSE would divide this into two RSEs and a narrow interface
with higher e and polar stresses. The interface could be substituted by a
band without polar quantities if only its evolution is to be captured. Such
simplifications may be justified if the data for initial state and boundary
conditions are incomplete and details of localization do not matter. If the size
of granular bodies prohibits a comprehensive meshing simulations without
polar terms may still capture evolutions of fabric in the large. It will be shown
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Fig. 9.1.1. Shear band patterns of psammoid RSEs without (a) and with overall
skewness (b)

in Sect. 12.6 that the so-called normal faulting in the earth crust can thus be
modelled, but scaling and validation are debatable.

RSEs with shear band patterns can be imagined which constitute a kind of
fabric with an inherent anisotropy, Fig. 9.1.1. For instance, two overlapping
swarms of bands from biaxial shortening in the 1-direction would exhibit a
not only stress-induced anisotropy by shortening in the 2-direction (a). This
could be captured by relations of RSE-averages without polar terms as these
can cancel each other (Sect. 8.2), but now with an evolving fabric tensor.
With a single swarm of shear bands the fabric is no more aligned with the
stress field (b). If polar quantities are not cancelled by crossing bands the
average stress tensor gets non-symmetric, and average couple stresses are
required so that our RSE is no more uniform with respect to its pressure
distributions.

Tejchman and Niemunis (2006) simulated evolutions of biaxial RSEs with
p-hyp and oriented fluctuation patterns of the initial void ratio. They could
reproduce the observed influence of bedding directions on peak stress ratios
and shear band inclinations, and the independence of residual stress ratios
on the kind of bedding. This can be helpful to interprete biaxial test results
and to understand the inevitable loss of uniformity with overcritical stress
obliquities (Sect. 8.2). Such simulations could elucidate how far fabric tensors
S as indicated above could serve to the purpose. Evolution equations for S
should produce attractors which reflect repeatable features, but this seems to
be a contradiction in terms as the evolution of multifractal patterns indicates
a deterministic chaos (Fig. 8.2.7).

Fabrics of shear band patterns can scarcely be taken into account in ap-
plications. The expense for finding initial shear bands in situ may at best be
justified if they could lead to a collapse or a hydraulic breakthrough which
could not be avoided by cheaper means. Otherwise spatial averages without
polar quantities and fabric tensors do suffice, a good specification of initial
and boundary data is difficult enough (Sects. 9.2 and 10.2). One should at
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least keep in mind the lower determinacy of evolutions in lab tests and in situ
due to localizations. A lot more research will be needed until evolving fabrics
by localization and polarization are better understood and can be technically
controlled.

Some further fabric effects with psammoid RSEs may at least be men-
tioned. As indicated further above fabrics can be ironed out by moderate
alternations of shape and may then be ignored. The capillary skeleton pres-
sure pcs due to gas channels enables fabrics with cracks (Sect. 7.3) or with
lumps of grains. As long as the mean pressure p exceeds pcs in subsequent
evolutions fabrics by pcs are swept out and may therefore be ignored. For
p < pcs near free boundaries capillary-induced fabrics can be stable, so pcs is
of use for boundary conditions (Sect. 10.1). Cementations enable also cracks
and lumps, but fabrics with them are rather chaotic (Sect. 7.3).

Turning to peloid RSEs we first leave aside net attraction and pore gas
(Sects. 7.1 and 7.2). State limits are again determined by the skeleton stress
components only, they are argotropic as the soild particles (Sect. 3.2) and
can only be uniform after the diffusion of pore water so that its pressure pw

is uniform. The latter requires a slow consolidation by (6.2.12), the observed
uniqueness of the argotropic response indicates that then further state vari-
ables are not needed (Sect. 3.5).

The neglection of fabric is more debatable for isochoric state limits of
peloids, i.e. for rate-dependent critical states. It is necessary for their uni-
formity to avoid diffuse and localized bifurcations (let alone initial non-
uniformity and boundary conditions which enforce a loss of uniformity). As
outlined in Sect. 8.3 even initial and boundary conditions which favour the
uniformity can lead to shear bands, but the response can be the same as
without this localization. One may therefore ignore such fabrics as long as the
average stress obliquity of RSEs is not overcritical.

A localized dilation cannot be avoided when trying to attain dilatant state
limits in saturated peloid RSEs. A localization is enhanced by the positive
feedback with suction in dilating bands (Sect. 8.3), and by inevitable fluc-
tuations of permeability which are thus increased. Patterns of shear bands
constitute a kind of evolving fabric. As outlined further above for psammoids
a symmetric fabric tensor S could be insufficient because of polar effects, and
evolution equations with S would hardly be feasible.

Pore gas enables a wider variety of peloid fabrics as capillary effects are
stronger with the smaller particles than for psammoids. Gas inclusions, left
back e.g. after the compaction of lump aggregates with anisotropic total stress,
can be flat and aligned. This may be interpreted as a kind of fabric with
anisotropy, but again evolution equations with a tensor S could hardly be
quantified. For the time being it may suffice therefore to work with v-elp or v-
hyp and a more compressible pore fluid according to the degree of saturation
Sr and to the pore water pressure pw. Validations presented later in this book
indicate that the partial indeterminacy of Sr and pw (Sects. 6.1 and 6.3) need
not spoil predictions.
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The opening or closing of gas channels is paramount due to the loss or
gain of suction in adjacent saturated peloid zones (Sects. 6.3 and 7.2). Crack
patterns constitute a kind of fabric which evolves with boundary conditions,
often alongside with shear band patterns (Sect. 8.4). In spite of poor statisti-
cal uniformity one may speak of a variable anisotropy, but this can hardly be
captured by constitutive relations. The same holds true for compacted com-
posites of lumps with suction. The overall permeability is evidently higher
with channels, but so variable and irregular that its quantification is hardly
feasible.

A net attraction in peloids enables fabrics with macropores (Sect. 7.1)
which are oriented in general. A cementation can have similar effects and
cannot clearly be separated from net attraction (Sects. 7.3 and 8.4). The
quantification of such fabrics is beyond the present reach, indirect approaches
via variable net attraction are more promising. As with psammoids peloid
fabrics can be ironed out by alternating deformations as long as the average
skeleton stress obliquity is not higher than critical. This holds also true with
pore gas and/or net attraction, but then hidden state variables as outlined
in Sect. 5.2 will not suffice and the coupled diffusion of pore water, gas and
soluble minerals in narrow slits between solid particles cannot yet be captured
(Sect. 6.1). The microscopic investigation of peloid fabrics is of little practical
use therefore.

The outline in this section shows that the widespread distinction of in-
duced and inherent anisotropy can hardly be defended. Fabrics can be gen-
erated to a certain extent via boundaries of RSEs, patterns of shear bands
and cracks may thus be included with due caution. Fabrics of statistically
uniform particles result from placement and subsequent evolution, they are
not more inherent than states of RSEs in general. An ordered non-uniformity
can principally be captured by composites of RSEs. Certainly fabric and state
of RSEs with statistically uniform particles cannot be reconstituted in gen-
eral, but both can never be fully determined. So-called undisturbed samples
may also exhibit ordered gas inclusions and condensates which cannot be cap-
tured by mean values only, but then no constitutive relation could serve to the
purpose.

To sum up, fabrics of RSEs with rather uniform solid particles can rep-
resent the state in addition to average mass fractions and partial pressures,
but constitutive models with fabric are as yet hardly quantifiable. The fabric
at state limits is determined by the skeleton stress and therefore not needed
explicitly. The inherent anisotropy due to layer-wise placement and evolv-
ing shear bands can be principally simulated, but cannot be captured by
fabric tensors. Fabrics with gas bubbles and channels, which can be over-
lain by shear band patterns, are beyond the present reach of models. There-
fore drastic simplifications are needed for applications. Fabrics can be ironed
out by alternating deformations if the average skeleton stress obliquity is
subcritical.
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9.2 Fabrics by composition

Consider first psammoids which are composed of two fractions with differ-
ent grain sizes. In a mixture these can constitute a composite grain skeleton
wherein the coarser grains float in the finer fraction (Fig. 9.2.1a), or form a
skeleton with fines inside (b). Such mixtures can be produced by stirring, their
grain contacts can have forces which sum up to stresses, and their composition
is not changed with suitable rearrangements. Then they may be modelled as
simple psammoids (Sect. 2.2), and for reversals a hidden state variable may
capture the spatial fluctuation of contact forces (Sect. 4.3). One could also
model localized polarizations as outlined in Sect. 8.2, but representative grain
sizes and rotations could not as clearly be identified as with more uniform
grain sizes.

a) b)

Fig. 9.2.1. Psammoids with floating (a) or skeleton-forming coarser grains (b)

State limits of such granular mixtures can be defined and handled as out-
lined in Sects. 2.2–2.11. For a given mean skeleton pressure ps limit void ratios
are evidently lower than those of the coarse and fine fractions, but the ratios
of bounding and critical values ei/ec and ed/ec are hardly changed. The gran-
ulate hardness hs exceeds the ones of the fractions: coarse grains have more
force-transferring contacts by the finer ones, and the skeleton of fines is rein-
forced by coarse grains. If both fractions have grains with the same average
hardness and roughness the critical friction angle ϕc would hardly depend on
the mass fraction of fines. The angles of peak friction and dilation for isobaric
stretching are smaller than those of the coarse and fine fractions (Sect. 2.2),
shear localizations are less marked therefore (Sect. 8.2). Such considerations
can help to estimate material parameters, but RSE-tests with mixtures are
indipensable.

The pore water can have other effects in such mixtures than in its con-
stituents. The pressure ps = p − pw is relevant for the skeleton again if the
grains are neutral with respect to the pore water pressure pw (Sect. 2.2). With
gas channels the capillary skeleton pressure pcs (Sect. 6.2) is dominated by
the fines. The permeability kf is also dominated by the fines as long as there
are no pore channels along coarser grains. The seepage force can move fines
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past a coarser skeleton so that the mass fraction of fines can de- or increase.
Such rearrangements by inner erosion cannot be captured with constitutive
relations for skeletons, but changes of their parameters by seepage forces may
be used for estimates. For instance, a skeleton of coarse grains gets loose and
collapsible if fines are flushed out. Filter rules as for interfaces can help to
judge the mobility of fines (Sect. 10.2).

A sandwich with coarse and fine grains cannot be sufficiently captured
by a single RSE, Fig. 9.2.2. It can arise by sedimentation from periodically
changing suspensions as coarser grains sink faster, or by segregation during a
granular flow (e.g. Koeppe et al. 1997). Thus it can be aligned horizontally (a)
or along a previous slope (b), but often this order is disturbed (c) as granular
rearrangements under water can get wavy or chaotic (Sect. 16.3). Similar
fabrics can arise by filling and compaction of humid granular materials, then
macropores due to pcs can play a role (Sect. 7.2). Aeolian sediments can also
exhibit kinds of sandwich, these are influenced by lumps due to pcs. The
spatial distribution of pore gas is evidently aligned in a sandwich.

The anisotropy of a granular sandwich can be captured by composites
of RSEs. The simplest substitute is a pair of finite elements with different
psammoid parameters and an orientation according to horizontal (Fig. 9.2.2d)
or inclined fine layers (e). According to the size of the granular body the
pairs can be wider than the sandwich bands, but should have the same mass
fraction of fines. The thus modelled inherent anisotropy is changed with large
deformations. The spatial scattering of sandwiches is left aside, evolutions with
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Fig. 9.2.2. Sandwich of psammoids by sedimentation (a) and by segregation with
granular flow (b) and by irregular sedimentation (c), representative composites for
horizontal (d) and inclined layers (e), and for less regular sediments (f)
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small sizes are smoothed (e.g. penetration, Sect. 11.7). A disturbed sandwich
can principally be represented by a coarser inhomogeneous mesh (e). In spite of
the lower determinacy overall responses of large bodies may thus be captured.

Even a rather disordered sandwich exhibits another overall behaviour than
a granular mixture with the same mass fractions. The anisotropy of a distorted
composite may be neglected, but its void ratios are higher and their isobaric
changes are stronger than with a mixture of the same grains. Gradients of
the hydraulic height hw have less predictable effects in sandwiches than in
mixtures as the permeability kf is proportional to the square of the grain
size dg (Sect. 6.2). The orthotropic permeability of a sandwich can be cap-
tured by pairs of elements, but the distinction of coarse- or fine-grained lenses
and bands in situ remains incomplete. Thus spatially averaged permeabilities
can be quite imprecise, and hydraulically influenced skeleton rearrangements
cannot be well predicted.

Turning now to peloids, let us first consider again mixtures. These can arise
in situ by the flow of mud and in building sites by placement and/or stirring.
With the wider variety of solid particles by size, shape and hardness, and with
a plethora of physico-chemical effects (Sects. 7.1 and 7.3), peloid mixtures
can exhibit quite different fabrics. It appears, however, that fabric tensors for
peloid mixtures can hardly be quantified and are not even necessary. Peloid
mixtures may be considered just as peloids, many validations were achieved
with such mixtures and parameters were determinated for them. Certainly
fabrics of peloid mixtures are not fully determined by skeleton stress and void
ratio (Sect. 3.2), and additional internal state variables for reversals (Sect.
5.2) can hardly be related with fabric. For the time being it appears that
investigations into the fabric of peloid mixtures are of little practical use.

This standpoint cannot as easily be defended for a sandwich of different
thin peloid layers. It can arise by sedimentation from seasonally changing
lacustrine or marine suspensions. An RSE with such a sandwich is anisotropic,
as shown in Fig. 9.2.2 it may be represented by a pair of finite elements due
to different peloid parameters. This simplification is somewhat arbitrary, but
may suffice to match the experimentally observed anisotropy of samples cut
in situ. As with psammoids a peloid sandwich is rarely regular, therefore finite
element meshs with partially random anisotropy can be more appropiate and
predictions get less determinate. One may replace such a sandwich by a peloid
without inherent anisotropy for design purposes with substitute parameters
chosen on the safe side.

Composites of psammoids and peloids occur in a wide range of spatial
distributions, some of them may be considered as soils with fabric. A sandwich
(deserving this name more than with only psammoids or peloids) can occur
with various sizes, Fig. 9.2.3. So-called warved clays contain several bands
of clay and fine sand in one sample (a). Sand grains sink more rapidly than
finer particles in a suspension with periodic variation from annual floods. The
anisotropy can be represented by pairs of peloid and psammoid elements (b).
With the volume fraction αp of psammoid the average permeability is thus
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Fig. 9.2.3. Sandwich of psammoids and peloids with different sizes (a), simplified
substitute composite (b)

kft ≈ αpkfs (9.2.1)

in the direction of bands with the permeability kfs of the psammoid. The
average permeability across the bands is

kfn ≈ (αp − 1)kfp (9.2.2)

with kfp for the peloid. Both (9.2.1) and (9.2.2) are obtained by placing
substitute pairs of elements with orientation and psammoid fraction as in
situ. This may be appropiate for average seepage velocities and forces, but
not for the diffusion of pore water in peloid bands. As diffusion times are
proportional to the square of the layer thickness (Sect. 11.1) the equivalent
permeability kfe for peloid elements of width de should be

kfe = kfp(de/di)2 (9.2.3)

with the peloid band width di in situ. Thus the transversal permeability is
overestimated by (9.2.2) with kfe instead of kfp, but hardly too much as the
average permeability is dominated by the one of psammoid bands.

Sandwich-like formations are more or less disordered over different scales,
Fig. 9.2.4. For instance, a sample of a lacustrine sediment exhibits different
fine clay bands in different cuts (a). A more regular sandwich can be pro-
duced in the lab (e.g. Fig. 11.3.2), but the sedimentation in situ is never that
regular and often disturbed by erosion. Thus bands get wavy and fuzzy so
that their lateral extension cannot easily be identified. In one site sand bands
with over 100 m length may work as horizontal drains in clay, but not in
another one with up to 10 m long sand lenses which exhibit the same pro-
files from boreholes. Substitute element pairs as proposed above should form
therefore a finite element mesh which is partially random. This requires ge-
ological and geotechnical judgment, the investigation and representation of
peloid-psammoid fabrics cannot be mastered by mathematical rules only.

At the scale of ca. 102–103 m depth and ca. 103–105 m width sandwich-
like formations occur in various compositions. For instance, marine deposits
off Osaka exhibit pleistocene clay lenses in sand and a holocene soft clay
layer on top (Fig. 9.2.4b). They were investigated for the construction of an
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Fig. 9.2.4. Disordered sandwich: cut samples of a lacustrine sediment (a, Jagau
1990), a cross section from the Osaka bay (b, courtesy T. Adachi)

airport island. Settlement and spreading during and after placement could be
calculated with a substitute composite mesh including granular columns in the
soft layer, the indeterminacy could be bounded by comparative simulations.
The delay of displacements by the diffusion of pore water is indeterminate
due to irregular psammoid channels, the subsequent creep is more predictable
if average peloid parameters are well known (Sect. 12.3).

The large-scale fabric of psammoid-peloid composites is different with
faults. For instance, a cross section West of Cologne exhibits dislocations of
psammoid and peloid layers along normal faults with some 103 m distance
(Fig. 13.4.7a). Single boreholes can suggest a rather regular sandwich which
may be simplified for the prediction of settlements due to lowering the ground-
water table. The calculated delay by diffusion can be incertain as horizontal
changes of a sand-clay sandwich are hardly known. Faults with dislocated clay
seams can work as slip planes after an excavation and should be taken into
account in simulations (Fig. 13.4.7).
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The issue is actually more complex as parallel cross sections will rarely ex-
hibit the same fabric in the large. Three-dimensional variations of composition
can principally be represented by element meshes without any symmetry, but
then the numerical expense would often be too big for applications. The same
argument holds true for other kinds of ground fabric with a wide spectrum
of lengths, e.g. from erosion by rivers or from weathering of rock with cracks.
This lack of homogeneity and isotropy is a commonplace, and it is then more
an art than a science to assume symmetries for predictions without ignoring
the physics.

To sum up, soil fabrics by composition may be captured by composites
of substitute elements, but their partial disorder causes an inevitable inde-
terminacy. Mixtures of different psammoids or peloids may be modelled as
simple psammoids or peloids with suitable parameters. Composites with dif-
ferent psammoid and peloid zones are not equivalent to mixtures with the
same mass fractions. A sandwich of psammoids and peloids may be repre-
sented by coarser elements than bands in situ. The disorder of bands due to
erosion or faulting cannot fully be captured, fabrics over many length scales
require geological judgment.
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BOUNDARY CONDITIONS

Given a system composed of psammoids and/or peloids with pore fluid and
of solids, the evolution of its shape and state can be considered as a bound-
ary value problem. For setting the scene imagine marked skeleton and solid
particles (Sect. 1.2) at nods of a finite element mesh which indicate displace-
ments and deformations, and transducers between neighboured markers which
indicate skeleton or solid stresses and pore pressures. An evolution can be rep-
resented as a succession of snapshots of positions and state fields which are
ordered by time t. t = 0 may be taken for an onset with an initial state field
including the void ratio eo. This onset is chosen at will and not physically
distinguished, i.e. the skeleton does not start at a state limit or at the verge
of a suspension in general. Changes of position and shape are thus referred to
arbitrary initial configurations.

For simulating evolutions the set of conservation equations (mass, linear
and angular momentum, energy) and constitutive relations (e.g. elp or hyp for
the skeleton and Darcy’s law for seepage) has to be supplemented by boundary
conditions. The conservation of solid mass determines the rate of void ratios ė
by (2.11.8) in case of isochoric particles. The conservation of pore water with
constant density is expressed by the so-called continuity equation with variable
e and degree of saturation Sr. The conservation of linear momentum may often
be reduced to the equation of static equilibrium, the one of angular momentum
is not needed in its differential form if the stress tensor is symmetric. The
conservation of energy is needed if changes of temperature and granular or
seismic temperature come into play. Along the boundary the displacement or
stress vector of the skeleton has to be given as function of t, and also velocity
or pressure of the pore fluid.

Such boundary conditions are known for continuum models of solids and
fluids, but they are more complex in general for soils. First, the conditions
depend on the state at the boundary and should take into account the coupling
of skeleton and pore fluid. Second, the soil can gain or lose pore fluid and solid
particles so that the composition is changed. Such changes along the boundary
have little in common with condensation and melting or evaporation of solids
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and liquids, respectively. Various kinds of boundary zones can occur along
soil boundaries. Their composition and state have to be specified in order to
define boundary conditions. The natural or technical gain or loss of skeleton
and pore fluid has to be represented by specifying a simultaneous change of
composition and boundary conditions. This requires empirical simplifications
as soil boundary zones with suspensions, cracks or polar quantities cannot be
well modelled and as their origin is rarely well known.

Free soil boundaries are treated in Sect. 10.1 with various simplifications
of boundary zones. Internal boundaries of skeletons can arise by shearing
and separation, or are assumed for symmetry and/or as substitute for far-
fields (Sect. 10.2). Interfaces of skeletons and solid bodies have to be specified
for the interaction of both (Sect. 10.3). Approaches for the gain or loss of
skeletons and solids are indicated in Sect. 10.4, therein attractors will appear
again which constitute the backbone of this book.

10.1 Soils at water and air

Soils at free surfaces are in contact with water or/and air which are at rest
or moving. This can be expressed by boundary conditions for skeleton and
pore fluid of psammoids and peloids. Limitations arise from decay and recom-
bination of skeletons and can be circumvented by technical measures and/or
simplifying assumptions. Suspensions and filter cakes are also treated in this
section, whereas gaps in and at soils are only touched. Their opening and
closing will be part of Sects. 10.2 and 10.3, whereas removal and adding of
soils and solids belong to Sect. 10.4.

We begin with saturated psammoids under resting water, Fig. 10.1.1. The
skeleton may be stress-free at its surface and therefore at the verge of decay
or recombination. Constitutive relations for evolutions of skeleton shape and
state are not possible without skeleton pressure ps (Sect. 2.2). At a horizon-
tal free surface the skeleton pressure increases in proportion with depth by

psb dm<< b

b

σs

dm<< h

τ

h

a) b)

Fig. 10.1.1. Free horizontal (a) and inclined surfaces (b) of psammoid bodies with
resting pore water
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gravity (more in Sect. 11.2). Numerical simulations require the assumption of
a fictitious boundary skeleton pressure psb to avoid ps = 0. One may imagine
a mat on top with thickness dm and specific weight minus uplift γm so that
psb = γmdm is obtained (a). γm = γr − γw may be assumed as for psammoids
(Sect. 11.2), dm should be much smaller than the psammoid body consid-
ered in simulations. This may suffice for the back-analysis of lab and field
experiments and should be checked by comparative calculations.

The skeleton at a horizontal free surface can have any void ratio e within
the bounds for state limits with ps → 0 (Sect. 2.2). This part of the initial
conditions depends on placement and further previous actions which cannot
fully be captured by constitutive models for skeletons, so for the time being
initial e-values have to be assumed suitably. For an inclined free psammoid
surface under water (Fig. 10.1.1b) the inclination β is bounded. The normal
skeleton pressure σsn = −Tsn increases again in proportion with depth, but
there is also a shear stress τs = τ by gravity (Sect. 11.2). The stress ratio
|τ | /σs cannot exceed the critical one tan ϕc (Sect. 2.9). Steeper slopes cannot
stand, with lower than critical void ratios they collapse with dilatant shearing
(Sect. 12.1).

A fictitious boundary skeleton pressure psb, which is needed for simu-
lations with elp or hyp, may again be justified by assuming a mat on top
with thickness dm and net specific weight γm. Statical equilibrium requires
σm = γmdm sin β and τ = γdm cos β, other stress components are bounded
by state limits (Sect. 11.2). If the mat can take over normal forces these can
change τ (more in Sect. 10.3). As long as resting water may be assumed arti-
ficial boundary pressures for avoiding ps = 0 can be justified by comparative
calculations.

Psammoid skeletons near flowing water have gradients of the hydraulic
height hw and can exhibit other features than with resting water, Fig. 10.1.2a.
If clear water flows into the skeleton this is kept by seepage forces so that the
free surface can be steep (more in Sects. 12.1 and 14.2). A substitute skin
may be assumed for calculations with a skeleton boundary pressure psb from
seepage force, gravity and uplift. An outwards seepage would drive grains from

a) b)

dbvw,fs

Fig. 10.1.2. Free surfaces of psammoid bodies with moving pore water: steep slope
with inwards seepage (a), fluidized bed (b)
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the surface into the free water, this decay of skeletons is left aside. The erosion
by transversal water flow will be touched further below.

A fluidizid bed can arise above a horizontal skeleton boundary, Fig. 10.1.2b.
Its void ratio exceeds the upper bound of a skeleton with ps → 0, i.e. e > eio

(Sect. 2.1). The grains are in chaotic motion, their average kinetic energy
(e.g. per unit of solid mass) means a granular temperature Tg. The water
in the fluidized bed is also in chaotic motion, its average kinetic energy is
proportional to an equivalent temperature Tw by turbulence (Tw = Tg for
dynamic equilibrium). The grains constitute a granular gas with an entropic
partial pressure pd, this can be related with Tg and e (or a substitute) by
a kind of gas equation (Sect. 4.6). Similarly the average water pressure pw

has a kinetic fraction which can be related with Tw. The balance of average
momemtum yields p = pd + pw with the total pressure p = γbdb from specific
weight γb and thickness db of the fluidizid bed.

The underlying skeleton has a boundary pressure psb = pd from the flu-
idized bed, and a downwards seepage force from the gradient of pw. The flu-
idizid bed is excited erratically from above or below, otherwise it would settle
and densify into a saturated skeleton. A turbulent motion of the free water
without average shift causes a ‘seismic heating’ near the boundary of a sat-
urated psammoid, so this is dilated to a fluidized bed. Stationary turbulence
can lead to a kind of equilibrium with stationary bed depth db and equipar-
tition of chaotic kinetic energy. Seismic waves propagating from the base of
the skeleton (Sect. 11.4) cause its decay near the free surface. Their repetition
with stationary average kinetic energy, i.e. stationary Tg (Sect. 4.6), leads
again to a fluidized bed with a kind of flow equilibrium. In this case chaotic
kinetic energy is continuously conducted upwards as thus Tg is higher below
then above.

The thickness db and the granular base pressure psb = pdb of a fluidized
bed are evidently bigger with a stronger erratic excitation. Theories for quan-
tification are hardly available and outside the scope of this book. Boundary
values for the adjacent skeleton, i.e. psb and pw = γbdb − psb, may at best be
estimated by matching observational data. This approach is inevitably impre-
cise and requires caution. db and psb cannot be measured precisely, both are
only indicated by higher e and pw in a mobile boundary zone. Fluidized beds
can get stationary in the lab or in a factory, but they are transient in situ so
that db and psb can hardly be predicted.

Various kind of granular flow can occur near free surfaces of saturated
psammoid bodies under water. A fluidized bed with initially horizontal sur-
face can be shifted aside by streaming water so that its surface gets uneven.
Such displacements are as yet not predictable, therefore position and state
of skeletons under moving fluidized beds can hardly be specified. The mobil-
ity is evidently enhanced by shaking. A zone of granular mud with inclined
surface flows like an avalanche. It can arise by turbulent water flow or by shak-
ing, and also by the collapse of skeletons with high void ratio or overcritical
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inclination (Sect. 12.4). Such transient mud zones cannot yet be quantified by
validated continuum models. Empirical specifications of their thickness and
base stress components can at best provide estimates, position and state of
skeleton boundaries are rather fuzzy.

a) b)

fs

Fig. 10.1.3. Psammoid bodies with a skin: slope with cover (a), trench with slurry
and filter cake (b)

Free psammoid surfaces under water can be kept in place by an inwards
gradient of water pressure pw via different kinds of skins. Figure 10.1.3. A
skeleton boundary pressure is produced by a hydraulic pressure difference,
psb = Δpw holds with a soft skin. A membrane (a) can be almost impervi-
ous, adjacent grains are punched in by psb and thus immobilized nearly as by
an adjacent skeleton. psb deviates from Δpw by longitudinal force and curva-
ture of the membrane (more below), this can impede the use of membranes
in so-called element tests. A membrane is evidently lifted by an outwards
hydraulic gradient, then psb disappears and the skeleton decays. Rather elas-
tic membranes can occur as base seals for the storage of fluids, except for
the rim psb along seals is well defined. Seals with asphalt are anelastic, they
can creep, melt or crack so that an adjacent psammoid boundary is less well
determined.

A filter cake (b) consists of finer particles which are fixed at a psammoid
skeleton by an inwards seepage force fs = Δpw/df . As long as Δpw acts the
thickness df grows with fines from an adjacent suspension. This accretion
is reduced by densification of the filter cake which gets a peloid zone with
low permeability kf . An intrusion of the cake into the adjacent skeleton can
be prevented by empirical filter rules (more in Sect. 10.2). Normal forces in
filter cakes are bounded by state limits, but their influence on the skeleton
boundary pressure psb via curvature is negligible. Filter cakes can seal water
reservoirs and stabilize excavations (Sects. 12.4 and 14.2).

Mats are more pervious and less deformable than skins, in many variants
they can keep in place psammoid surfaces under water, Fig. 10.1.4. A mattress
of stones in a grid (a) can prevent a fluidized bed by providing a boundary
skeleton pressure psb = γmdm (specific weight minus uplift γm, thickness dm).
psb is lower or higher if the mattress gets concave or convex, respectively,
but this anelastic response can hardly by quantified (Sect. 10.3). The rim of
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a) b)

dm

psb

rm

Tm

Tm

Fig. 10.1.4. Psammoid bodies with a mattress (a) or bulging membranes (b)

a mattress should slide along a solid surface without opening so that psb is
maintained. A free rim can break by scours in an adjacent fluidized bed.

Geotextile mats (b) are more flexible than mattresses, they need a tensile
force Tm and a curvature 1/rm to produce a boundary skeleton pressure psb

via
psb = 2Tm/rm (10.1.1)

in case of plane-parallelity. With double curvature and anisotropic resistance

psb = 2Tm1/rm1 + 2Tm2/rm2 (10.1.2)

holds instead of (10.1.1) with two principal values of Tm and rm. These are
only estimates as Tm changes with the interaction of psammoid body and mat
(Sect. 10.3). Curved mats have to be anchored in the ground and should be
stressed by placement.

Consider now free psammoid surfaces at the air. With full saturation the
suction pa − pw cannot exceed the capillary entry pressure pce (Sects. 6.2).
According to (6.1.2) pce is so small for psammoids that these are at best
briefly saturated when they are exposed to the air. The low suction at the free
surface, pa−pw = ps ≤ ca. 1 kPa, may suffice to keep the grains together for a
short while. An increase of pw − pw by evaporation, lowering of groundwater-
table or rapid shear dilation leads to capillary entry. The boundary condition
ps = pa − pw may thus at best be of use for well-controlled model tests.

Humid psammoids have a capillary skeleton pressure at a free surface,
psb = pcs, which is determined by fines. It depends on the relative void ratio re

and is maximal for a degree of saturation Sr ≈ 0.5 (Sect. 6.2). pcs enables steep
and even overhanging free surfaces, but such parts of psammoid bodies tend
to collapse by cracking. This may be controlled in model tests and can deepen
the understanding of cracks (Sects. 12.4 and 13.7). Overcritical inclinations
should be avoided in situ except for controlled excavations in small sections.
Changes of pcs by wetting or desiccation and by changes of density can hardly
be avoided. With subcritical inclinations (β < ϕcs) it may suffice to assume
a lower bound of ps = pcs for free surfaces as long as pcs has little influence
on results of interest.



10.1 Soils at water and air 403

The sensitivity of humid free psammoid surfaces requires a kind of pro-
tecting cover anyway. A light flexible skin could serve as a rather impervious
membrane with vacuum inside, but hardly in situ. Geotextile nets work with
curvature, anchoring and prestressing as indicated further above. pcs is needed
to bridge coarse meshes and can be better maintained by adding humus and
grass. A felt of living roots and psammoid with humus can maintain an op-
timal pore vapor pressure in dry and wet seasons. Only after having cared
for a good skin numerical simulations including substitute skeleton boundary
pressures can be worth the effort.

Pavements can work as skin or mat upon a humid psammoid body. They
may be represented by simplified boundary conditions including traffic loads
if their stiffness is negligible for the overall behaviour. For instance, a water-
tight pavement between a strutted retaining wall and a building (Fig. 10.1.5a)
may be substituted by a skeleton boundary pressure, viz.

psb = pcs + γmdm + pt . (10.1.3)

Therein the capillary skeleton pressure pcs may be neglected if the psammoid
has no fines. One should keep in mind that pcs is lost by desiccation or water
access. The pressure γmdm by the pavement weight suffices to keep the skele-
ton together. A uniform traffic pressure pt may be assumed for the design of
the retaining structure, but not of the pavement (Sect. 10.3).

A layer of stones with a filter mat upon a psammoid slope (Fig. 10.1.5b)
may be substituted by the normal and shear boundary stresses

σsb = γmdm sin β (10.1.4)

a) b)

pt

dm

β
dm

τ
σ

Fig. 10.1.5. Psammoid bodies with horizontal (a) and inclined pavement (b)
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and

τsb = γmdm cos β (10.1.5)

as proposed already further above. A traffic load is thus left asie, the pcs

of the psammoid and the normal force in the pavement are neglected. As
outlined further above pcs is not warranted with respect to erosion, filter rules
serve to avoid the penetration of stones (Sect. 10.3). Equation (10.1.4) and
(10.1.5) may suffice for calculating displacements of neighboured structures
by excavations and subsequent actions, but not for the pavement design. The
access of water into the ground has to be prevented, otherwise the slope could
collapse by a loss of suction.

Turning to surfaces of peloids we presume first full saturation. With soft
particles and low permeability kf changes of void ratio e by diffusion of
pore water cause transient changes of skeleton pressure psb and pore pressure
pwb under boundary zones of variable thickness db. Under water a horizontal
peloid surface without net attraction (pn ≥ 0, Sect. 6.3) is covered by mud
(Fig. 10.1.6a). With resting water this cover grows by sedimentation from
above or by swelling of the peloid below. The mud is easily shifted by mov-
ing water so that the surface gets uneven. With net attraction (pn < 0) a
free surface can be inclined at rest (b) although e is higher by sedimentation
than with pn = 0 (Sect. 7.1). Submerged peloids with pn < 0 tend to crack
at slopes, thereafter they go over into mud which flows down. Moving water
cannot as easily mobilize a peloid with pn < 0 as a mud. The ion transport
by convection and diffusion via a free surface can change the ionic strength
and can thus influence the peloid skeleton (Sects. 6.3 and 7.1).

Evolutions of mud covers cannot yet be predicted by validated calculation
models, so they have to be judged empirically. Evolutions of adjacent peloid
bodies may be simulated with v-elp or v-hyp and pore water diffusion by
means of substitute pressures for free boundaries, viz. an estimated low psb

for the skeleton and pw from the water depth. This may suffice to estimate

a) b)

ps = 0

ps > 0

ps>0

Fig. 10.1.6. Horizontal (a) and inclined (b) free boundary of peloid under water
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evolutions with excavation (Sects. 12.4 and 14.2) or with structures which
are hardly influenced by changes at free peloid surfaces (Sects. 12.4 and 14.2).
Judgment is vital as the formation and flow of mud can endanger the stability.
One had better cover submerged free peloid surfaces by pervious mats, thus a
sufficient boundary skeleton pressure psb can be attained and mud problems
can be avoided. Simulations with psb = γmdm (as outlined above for sub-
merged psammoid) will then be more legitimate as the ps-range of validated
constitutive relations is not left.

Saturated peloids at the air have more suction than psammoids and can
thus exhibit a substantial skeleton boundary pressure from the difference of
air pressure pa and negative pore water pressure pw, psb = pa − pw. The
neighboured relative humidity ψw and the net radius of curvature rw of the
pore water surface are related with pa − pw by thermodynamic equilibrium
conditions (Sects. 6.1 and 6.3). Often pa−pw is determined by evaporation via
ψw, which is enhanced by wind. Shrinkage with increasing psb grows into the
interior by diffusion of pore water, the thickness db of the shrunk boundary
zone increases with time t via. db ≈

√
tcv with a diffusion factor cv which

ranges from ca. 10−6 to 10−10 m2s−1 (Sect. 11.3). Peloids swell at a wetted
free surface and turn into mud if they have no net attraction. The thickness
db of the swollen zone grows again by db ≈

√
tcv, but with a lower cv (about

20 to 50% of the cv for shrinkage). Repeated evaporation and wetting with
period time tp can lead to a boundary zone with db ≈ √

tpcv and a nearly
stationary peloid boundary beneath.

These estimates for boundary zones may be of use for controlled experi-
ments. These may be considered as undrained in simulations, i.e. with con-
stant e of RSEs, if db remains well below depth and breadth of the engaged
soil body. The state limit value for the given e and isotropic compression with
rate D = Dr may be taken as initial ps. Imposing gravity and boundary con-
ditions including p = psb + pwb = pa at free surfaces leads to a changing field
of hydraulic height hw in simulations with v-elp or v-hyp. Depending on the
initial consolidation ratio pe/ps, the kind of isochoric deformation and the
humidity ψw, gradients of hw lead to seepage, particularly at free boundaries.
Simulations with seepage could be carried out with measured rates of evap-
oration at shrinking boundaries, or with pw = pa at swelling ones, in both
cases p = pa gives ps = pa − pw.

A capillary entry occurs at a free peloid surface if the suction attains the
entry pressure, i.e. for pa − pw = pce (Sect. 6.3). This happens by continued
evaporation and/or with rapid isochoric deformations with high consolidation
ratio pe/ps so that pw drops strongly (Sect. 3.2). As long as a boundary zone
is uniformly desiccated and its thickness db is well below the size of the whole
soil body one may assume db and a capillary boundary skeleton pressure
(psb = pcs) for simulations. Otherwise evolutions with desiccation get rather
chaotic by fingering of air fronts (Sect. 7.3) and/or by successions of cracks
(Sect. 6.3). Then simulations with v-elp or v-hyp would be of little use as
the soil bodies are not sufficiently defined. This lack of knowledge could be
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reduced by experiments, but critical phenomena can principally confine the
use of continuum models (Sect. 16.3).

Peloids near the air in situ are mostly unsaturated and fissured. A thin
crust (i.e. db � body size) may be substituted in simulations by a mat with
empirical thickness dm and suction pa − pw. Both values can hardly be pre-
dicted, and observations can be misleading. This inevitable indeterminacy
grows with deeper air channels as these tend to be chaotic. Only in exceptional
cases the evolution of cracks can be reasonably estimated (Sect. 10.2). Stiff
fissured clays with suction may be considered as peloids with experimentally
matched average parameters (Sects. 7.3 and 9.1). Boundary skeleton and pore
water pressures may be matched empirically, but the predictability is rather
poor.

Flooding of unsaturated peloid bodies leads to the inclusion of air and the
formation of mud, both can hardly be quantified. A collapse with mud flow
in situ can be prevented by a flexible and permeable skin. A felt of humus
with living roots can serve to the purpose, thus natural slopes can survive dry
and wet seasons. Synthetic mats with psammoid-peloid mixtures may also
be of use if the humidity (and thus the suction) at their base is controlled.
Simulations with empirical boundary pressures of skeleton and pore water
may be justified if the stability is secured by a skin. Skins with curvature and
anchoring may be judged as outlined further above for psammoids. Reinforced
shotcrete covers are no skins in this sense, but brittle solids that interact with
the ground (Sect. 10.3), so the suction behind them should be controlled.

To sum up, boundary conditions can be formulated for free surfaces of
psammoid and peloid skeletons with pore water and/or gas, also with skins or
mats, but decay or cracking of skeletons can cause indeterminacy and collapse.
Thin boundary zones may be represented by assumed pressures of the adjacent
soil. Fluidized boundary zones cannot yet be modelled and should be avoided
by skins or mats. The boundary suction above the water table should be
controlled to avoid cracking and fluidization. Model tests can help to better
formulate boundary conditions.

10.2 Boundaries in the ground

New free boundaries can arise in psammoid and peloid bodies by the opening
of gaps or cracks, as in Sect. 10.1 pore water and gas come into play. Shear
bands may be considered as internal boundaries with interface conditions.
Boundaries between psammoid and peloid zones can exhibit mutual pene-
tration and mixing. Fictitious boundaries in the ground can be of use with
symmetry or for separating near- and far-fields. Such cases are treated in the
sequel, whereas interfaces of soils and solids are postponed to Sect. 10.3.

With suitable conditions gaps can open in saturated ground so that bound-
ary conditions can be specified. For instance, a horizontal peloid layer upon
a psammoid base can be lifted by rising the hydraulic height hw in the base,
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Fig. 10.2.1. Fluids between a peloid layer and a psammoid base: artesian water
(a), injection of water (b), onset of hydraulic breakout (c), injection of a suspension
(d), water film by base shaking (e)

Fig. 10.2.1. With horizontal uniformity this would occur if the total pressure
at the peloid base is taken over by a water cushion (a). Without net attraction
this determines pw and means ps = 0 while the skeletons below and above such
a gap need not decay. The psammoid remains in place by gravity, the peloid
is kept together by the upwards seepage force. The peloid swells in a lower
boundary zone which widens by diffusion (Sect. 10.1) until a new equilibrium
is attained.

A rather axi-symmetric bulge is lifted by injection of water via a vertical
tube into a fine-grained base layer (b). The gap widens and pw exceeds the
overburden pressure as a shearing resistance τ is waked near the rim of the
bulge. τ = cu (undrained cohesion, Sect. 3.2) may be assumed along a thought
cylinder (dashed in Fig. 10.2.1b), but a statical equilibrium with it is only
necessary and not generally sufficient for stability. A rapid injection can lead
to an almost cylindrical crack which grows from the rim of the gap where the
peloid is more extended than elsewhere (c). Given an instantaneous gap with
water pressure and rate of extension one may estimate whether a crack could
arise (Sect. 6.3), but not what would happen thereafter (Sects. 8.4 and 16.3).

Prior to an outburst the indicated gaps would evidently close if the pore
water pressure is reduced in the psammoid base. A gap would similarly arise by
injecting a suspension from a tube that reaches the interface between peloid
layer and psammoid base (d). The suspension does not penetrate into the
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psammoid if its fines form a filter cake (cf. Fig. 10.1.3b). Similarly as an
injection of water the one with a suspension produces a bulge and can lead to
an outburst after cracking the peloid base. The outburst pressures are higher
with the same quantity of injected fluid than with water as the suspension
is more viscous, and as its spreading is impeded by the filter cake. If the
injection is halted the enclosed suspension releases water and gets a peloid.
Boundary conditions for skeleton and pore water along the gap with mud or
peloid inside cannot be formulated precisely (cf. Sect. 10.3).

A gap with a water film is also produced between a peloid layer and its
psammoid base by shaking, Fig. 10.2.1e. If the void ratio of the psammoid is
higher than its lower bound (i.e. e > ed) and the skeleton is shaken moderately
it is densified and releases pore water rapidly near its surface. Seismic shear
waves cannot propagate any more into the peloid layer, but can dilate the
psammoid near its new free surface (Sect. 11.4). The water film closes after
the end of shaking as the adjacent peloid can swell and consolidate thereafter.
Stronger shaking can transform an upper part of the psammoid into a fluidized
bed (cf. Fig. 10.1.2a). This kind of skeleton loss and regain cannot be captured
precisely by boundary conditions, the formation of water films by shaking has
to be judged empirically (Kokusho 1999). The impossibility of shear wave
propagation thereafter is evident, the reconsolidation after shaking could be
simulated.

Horizontal changes of such water films with spreading and closing are left
aside for simplicity. The gaps outlined with Fig. 10.2.1 have in common that
their shape is transient and not known in advance. They are thus chang-
ing internal boundaries, and boundary conditions for skeleton and pore fluid
along them are also transient. The indeterminacy increases by a temporary
loss or gain of skeletons along gaps. The issue gets more complex with large
monotonous shearing along gaps between saturated psammoid and peloid bod-
ies. This is indicated in Fig. 10.2.2 with an inclined peloid layer upon a psam-
moid base, for simplicity only with gravity and without lateral changes up to
the onset of sliding.

When a water film arises by injection or shaking the peloid slides with
acceleration even if the inclination is small. This leads to shear mixing in a
fluidized bed of increasing thickness. The peloid layer floats and warps until it

Fig. 10.2.2. Sliding of an inclined layer upon a fluidized zone
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breaks so that the water bursts out and loses its excess pressure. An injected
suspension can enhance sliding like a grease. It can be mixed with the ad-
jacent peloid and/or psammoid, more so as an initial lateral uniformity gets
lost. Sliding of a peloid layer along a looser than critical psammoid base can
also lead to a fluidized bed, this gets mixed with adjacent peloid and can
break out. Boundary conditions with such phase transitions and changes of
composition cannot be formulated precisely for skeleton and pore water. For
sake of completeness it may be mentioned that changing free surfaces of sat-
urated peloid bodies with net attraction (Sect. 10.1) get more easily cracked
and less easily mixed.

Turning now to gaps in unsaturated soils, we have to face more complex
and less well-defined boundary conditions, Fig. 10.2.3. A crack can open in
a psammoid body by extension, for instance in the shoulder of a steep slope
by excavation (a). The normal skeleton pressure along its flanks equals the
capillary skeleton pressure, σns = pcs, which depends on relative void ratio
re and degree of saturation Sr (Sects. 6.2). (The capillary entry with full
saturation will be considered below.) The tangential skeleton pressure σts is
bounded by state limits of the skeleton, which in turn imply changes of e and
thus of pcs even without change of water content w. With changing w, be it
by seepage or via vapour, pcs will change even more. Cracks in unsaturated
psammoids are thus rather indeterminate internal boundaries which can at
best be estimated (Sect. 12.4).

Flooding of unsaturated psammoids can lead to gas inclusions which may
be considered as internal boundaries. A macropore (Fig. 10.2.3b) can have an
excess gas pressure according to the capillary entry pressure, pg − pw = pce.
It can arise by the access of water into a crack which disappears thus. The
surrounding psammoid dilates easily if it is denser than critical with the low
ps = pce at the macropore. A psammoid body with many macropores can arise
from many cracks or a heap of lumps, it has a higher than critical overall void
ratio and is therefore collapsible. Macropores in it can unite into gas cushions
under a cover with finer particles and thus a much higher pce. Such cushions
can enhance avalanches without shearing resistance as long as they do not
break out (Gudehus 1998). Evolutions of gas cushions and of neighboured
fluidized beds can as yet hardly be predicted.

Fig. 10.2.3. Gas inclusions in psammoid bodies with cracks (a) or macropores (b)
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Fig. 10.2.4. As Fig. 10.2.3 with peloid

Various cracks can arise in peloid bodies which are exposed to the atmo-
sphere. Shrinkage leads to a fractal succession of cracks with capillary entry
and multiple diffusion (Sect. 6.3). A single crack can arise by extension, e.g.
in the shoulder of a steep slope (Fig. 10.2.4a), and may be considered as a
transient internal boundary. Without net attraction and other gas channels
than cracks the normal skeleton pressure at a crack equals the capillary entry
pressure, σsn = pce. It approaches the tensile strength and is determined by
particle sizes and void ratio (Sect. 6.3). Tangential skeleton pressures σns at
cracks are bounded by argotropic state limits (Sect. 3.2), this may help to
estimate such internal boundaries (Sect. 12.4). With gas channels in cracking
peloids their capillary skeleton pressure determines the normal skeleton pres-
sure, σsn = pcs, but not precisely as there are many erratic cracks. Tangential
skeleton pressures are again bounded by argotropic state limits, but limit void
ratios therein depend also on pcs (Sect. 7.2). Evolutions of cracks in peloid
bodies with evaporation or water access along them are beyond the reach of
present models.

Gas inclusions in otherwise saturated peloid bodies may also be consid-
ered as transient internal boundaries, Fig. 10.2.4b. They can arise by flooding
of peloids with gas channels, particularly via cracks or between lumps, or
by reactions which produce e.g. methane. Without net attraction (pn = 0,
Sect. 7.1) the skeleton normal pressure along them is determined by the capil-
lary entry pressure, σsn = pg −pw = pce. As pce varies with particles sizes and
void ratio, and as the other skeleton stress components can vary within wide
bounds with a given σsn, gas inclusions can have various shapes. Assuming
spheres may at best provide crude estimates of bubble sizes (Wheeler 1988).
As with psammoids gas-filled macropores can enhance the decay of peloids
into mud and can unite into gas cushions, particularly with hard particles
and overcritical void ratios. With soft particles and high initial consolidation
ratios gas inclusions enhance the swelling of neighboured peloid bodies so that
the whole body gets softer, but this can hardly be quantified.

Shear bands are often considered as internal boundaries in order to judge
the stability of equilibrium states. Their position and shape are assumed em-
pirically, and varied to find unfavourable configurations so that soil bodies can
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move like kinematic chains (sliding mechanismus). The shear stress τ along
them is often assumed to be determined by cohesion and friction with normal
stress σ via

τ = c + σ tan ϕ , (10.2.1)

or with pore pressure u = pa + pw by an ’effective cohesion’ and an ’effective
friction’ via

τ = c′ + (σ − u) tan ϕ′ . (10.2.2)

Let us briefly discuss how far these internal boundary conditions may be jus-
tified. For psammoid bodies under the groundwater table pw may be given
by hydraulic conditions and (10.2.2) is used with c′ = 0, above the ground-
water table (10.2.1) may be taken with c = pcs tan ϕ′. A peak friction angle
ϕp may be taken for ϕ′, but this depends on the instantaneous relative void
ratio re (Sect. 2.9) as does pcs. Actual shear bands are snapshots of evolu-
tions, the instantaneous re along them is not uniform and higher than before
the localization (Sect. 8.2). With certain plane-parallel evolutions assumed
shear bands with re may suffice for design estimates (Chaps. 12 and 13), but
otherwise such assumptions can be misleading.

For saturated peloid bodies (10.2.2) is often used with assumed shear
bands and c′ > 0, but this is rarely justified with the combined pyknotropy,
barotropy and argotropy (Sect. 3.8). Without diffusion of pore water τ would
be determined already by the void ratio e and the stretching rate D as long as
the peloid is ductile. With dilation, and thus with diffusion including a drift
(Sect. 11.1), σ′ = σ−u can hardly be predicted, ϕ′ has to be chosen rather at
will and the matched ‘effective cohesion’ c′ depends on the rate of dilation. As
with psammoids shear bands with their non-uniform states evolve by initial
and boundary conditions (Sect. 8.3), only in some plane-parallel cases they
may be reasonably assumed. Equation (10.2.1) may sometimes be justified
for peloid bodies with gas channels, but at best as far as the suction required
for c is warranted and if c and ϕ are determined with suitable samples and
test conditions. More than for psammoids (10.2.1) and (10.2.2) are otherwise
irrelevant for the stability of peloid bodies. This holds also true for composites
of psammoid, peloid and solid bodies.

The advice to abandon conventional assumptions for so-called limit equi-
libria with shear bands, except for design estimates in certain cases, may be
considered as a sacrilege, but may help to avoid a dead end. It will be shown
in Chaps. 11, 12, 13, 14 and 15 that practically relevant evolutions including
shear localizations can be predicted with validated models wherein (10.2.1)
and (10.2.2) do not occur. Evolving shear bands may therein be considered
as transient internal boundaries, also with polar terms (Sects. 8.2 and 8.3)
and re-meshing, but there is no need any more to assume them alongside with
rather arbitrary stress conditions.

Filter criteria can be formulated for interfaces of different psammoid
and/or peloid zones, Fig. 10.2.5. They are to assure that different skeletons
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Fig. 10.2.5. Filter effects at interfaces in the ground at different scales: gravel at
sand (a), peloid at granular peloid (b), peloid at psammoid (c)

do not mix with each other so that such internal boundaries would get fuzzy,
particularly by seapage forces fs. The boundary between two different psam-
moids (a) can remain sharp if finer grains cannot intrude into a coarser skele-
ton. This may be judged via grain size distributions and requires a skeleton
pressure ps. Two neighboured grain skeletons can still get mixed by mutual
shearing and by deformations with reversals. Rapid alternating deformations
can produce a kind of diffusion of different grain fractions by a granular
temperature (Sect. 4.6), then skeletons can no more be clearly identified.
With gas channels finer grains are better kept in place by capillary bridges
(Sect. 6.2).

Interfaces of different saturated peloids (b) cannot be judged only by
shapes and sizes of adjacent particles. The boundary gets fuzzy by thermally
activated diffusion of neighboured pore fluids (Sect. 6.1), and also of small
particles without net attraction. This diffusion is enhanced by rapid and/or
alternating deformations, then peloid skeletons can hardly be identified near
interfaces. Filter criteria for such cases may at best be established by exper-
iments with realistic initial and boundary conditions including the fractions
of solubles. Fortunately the mutual diffusion is so slow in many cases that it
may be neglected.

Interfaces of psammoids and peloids (Fig. 10.2.5c) may be judged by me-
chanical criteria for both sides, they can get fuzzy in different ways. Without
net attraction and pore gas the peloid can intrude gradually into the psam-
moid skeleton by swelling and creep. The intrusion can be slow as long as the
peloid has a high consolidation ratio pe/ps (Sect. 3.2), then the pore water
pressure pw in the peloid is lower than in the psammoid. The intrusion can be
halted by the accumulation of less fine peloid particles in denser bridges be-
tween psammoid grains. A filter cake can thus be produced from a suspension
by seepage towards the psammoid (Fig. 10.1.3b). Peloids without intermediate
fines can form bridges by means of net attraction pn < 0 (Sect. 7.1).

A cut through particle contacts along an interface (dashed in Fig. 10.2.5c)
would reveal a high force-roughness of the peloid and a lower one of the
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psammoid. Therefore the peloid gets easily mobilized if it has no intermediate
fines and/or no pn < 0. With high gradients of pw and coarse psammoids the
seepage force fs can transform stiff clays into mud (Sects. 8.4 and 16.3). Mixing
along the interface is enhanced by shearing, more so by alternations which
lead to diffusion by a kind of temperature (Sect. 5.5). Interfaces can evidently
remain sharp with suction in the peloid, this requires open gas channels in the
adjacent psammoid. With all these effects filter criteria for psammoid-peloid
interfaces can only be quantified by experiments. Therein boundary conditions
off the interface for the skeleton (stress and/or displacement components) and
the pore fluid (water with solubles and gas) should be adapted to the intended
application. In the majority of cases as considered in the following chapters
such interfaces may remain sharp, but this should not always be taken for
granted (Sect. 16.3).

a) b) c) d)

Fig. 10.2.6. Symmetries: soil column (a), radial symmetry (b), plane-parallelity
(c), vertical symmetry plane (d)

Fictitious boundaries may be assumed in soil bodies with symmetry,
Fig. 10.2.6. One-dimensional evolutions are considered in Chap. 11 with soil
columns which are confined by thought smooth rigid walls (a). These sub-
stitute the absence of lateral changes, particularly without lateral stretching.
Lateral seepage is excluded with this symmetry, so the fictitious walls are im-
pervious. Radial symmetry (Sect. 11.7) comes up to a smooth cylindrical or
spherical wall (b) which expands or shrinks by assumed amounts, while pore
pressure or seepage velocity are assumed with the same symmetry. For plane-
parallel evolutions (Chap. 12) soil discs may be imagined with two smooth
fixed confining walls (c), but not in case of anti-plane shaking (Sect. 12.5).
A vertical symmetry plane, which will repeatedly be assumed in Chaps. 12
and 16, may be considered as a smooth fixed wall (d).

Fictitious boundaries for symmetry must not be confused with real ones.
The assumed symmetry may be attained by favourable initial and boundary
conditions, but it can get lost by bifurcation with localization and/or collapse.
A desired symmetry may be approached in experiments with real bound-
aries which resemble fictitious ones, but full equivalence can thus hardly be
achieved.
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c) d)

a) b)

Fig. 10.2.7. Fictitious boundaries between near- and far-fields with a long (a) or
short dam (b), with a heap (c) and with axial symmetry (d)

Fictitious boundaries may also be introduced in order to separate near- and
far-fields, Fig. 10.2.7. By definition a far-field is not influenced by the near-
field, but the latter depends on the former. The boundary between both and
conditions for it have to be assumed, such assumptions can only be justified
by considering boundary value problems without such separations.

It may often suffice to bound the near-field by a fixed base and a smooth
or rough fixed wall. The wall appears twice for plane-parallel evolutions, in
general without a vertical symmetry axis (a). Base and walls may be assumed
so far away from the near-field range of action (and of major interest) that
along them changes of state variables are negligible. Plane-parallelity may
be justified if the near-field exhibits nearly the same cross sections over a
reasonable length, but the fictitious boundary is not really fixed (b). The
slenderer a near-field with equal cross sections, the more would the ground
move under its fictitious base, and the farther off should fictitious walls be
placed. With axial symmetry base and wall could be assumed closer to the
range of action (c).

Appropiate near-field boundaries should also depend on the composition of
the ground and on the kind of actions. Their choice and specification require
judgment, comparative calculations for justification without the desired sym-
metry are often too expensive. Hydraulic conditions along assumed near-field
boundaries should likewise be chosen with care. It may often suffice to assume
hydraulic heights at psammoids and no seepage normal to peloid sections (d),
natural compositions are partly indeterminate anyway (Sect. 9.2).

Absorbing boundaries may be assumed for near-fields in order to substi-
tute the radiation of waves into a far-field. Within the theory of elasticity
frequency-dependent dampers can serve to this purpose. This may suffice for
far-fields of soils with repeated propagations with small amplitudes as then
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the response can get nearly elastic (Sects. 4.2 and 5.2). The position of an
absorbing boundary should be chosen so that outside of it the amplitudes
are small enough. This choice requires judgment and monitoring for control,
comparative calculations for justification would be too expensive.

a) b)

Fig. 10.2.8. Near- and far-field boundary with slow displacements (a) and shaking
from below (b)

Active far-fields may be represented by choosing and specifying their
boundaries around affected near-fields, Fig. 10.2.8. A deep-seated removal of
solids or fluids may be substituted by imposing a depression of a base and a
changing distance of opposed walls (a). Seismic far-fields may be represented
by a shaking base and walls with propagating waves (b). Such substitutes may
be justified by field data, more comprehensive seismic boundary value prob-
lems are hardly feasible. Such simplifications are no more justified to capture
the influence of neighboured technical actions. If construction activities in or
at the adjacent ground could impair existing structures they should and can
be incorporated into a more comprehensive boundary value problem.

To sum up, positions of and conditions for boundaries in soils can rarely
be specified precisely, but the required assumptions can be supported by ob-
servations and/or more comprehensive models. Evolutions of gaps, cracks and
peloid-psammoid interfaces with coupled diffusion of constituents can at best
be estimated empirically. Shear bands with shearing resistances may be as-
sumed for design estimates, but such assumptions are debatable and not
needed with better models. Fictitious boundaries and conditions for them
may be of use to respresent symmetries or to separate near- and far-fields,
they can be justified by considering more comprehensive systems.

10.3 Soils at solids

Only few models for interfaces of psammoids and peloids with solids are ready
for use. They cannot catch all details of composition and state, and their
validity is restricted as skeletons can decay and arise again. Interface models
are needed for the soil-structure interaction (SSI), their choice depends also
on the deformations of solid bodies and on their displacements relative to the
ground.
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Fig. 10.3.1. Interfaces of psammoid and rough solid; grains fixed at a rough surface
(a), boundary zone with (b) and without dilation (c)

The grains of saturated psammoids in contact with rough surfaces cannot
be shifted and rotated past the solid, Fig. 10.3.1. Often the solid is far less
permeable than the psammoid, then the relative normal seepage velocity is
negligible, vnw = 0 (a). The void ratio near the surface can range within
the ps-dependent bounds of skeletons (Sect. 2.2), but is less variable as the
grains at the solid are fixed. The skeleton stress vector with normal and shear
components, σns and τ (for simplicity only in-plane), is transferred to the
solid with a less uniform spatial distribution, i.e. a higher force-roughness
(Sect. 4.3) than off the surface. Polar stresses can occur near the solid and
can be related with the force-roughness at the interface (Sect. 8.2).

Simplified models are often justified as details of psammoid boundary zones
are rarely known nor important for the overall behaviour (SSI). With lower
than critical stress obliquities, i.e. for |τ | /σns < tanϕsc (Sect. 2.9), simple
psammoid RSEs may be assumed along the interface which are displaced and
deformed together with the solid. With reversals the force-roughness may be
assumed to be the same as off solid surfaces although it is higher (Sect. 4.6).
Overcritical obliquities (|τ | /σns > tanϕsc) can occur in denser than critical
dilating shear bands at rough solids (Fig. 10.3.1b) alongside with polar stresses
(Sect. 8.3). Evolutions up to peak stress obliquities and dilation ratios may
be modelled by RSEs without polar terms. SSIs may thus be captured as long
as the grain size dg is well below the solid body size db, say dg/db ≤ 10−3

(Tejchman 1997). Otherwise simulated SSIs can depend on chosen element
sizes.

Sliding along rough solids implies critical states in boundary zones of some
grain diameters thickness, Fig. 10.3.1c. It may be captured by the stick-slip
condition

|τ | /σns = tan ϕsc for vts �= 0 ,
|τ | /σn < tan ϕsc for vts = 0 .

(10.3.1)

Therein vts denotes the tangential velocity of the skeleton at the shear band
relative to the solid. Equation (10.3.1) may suffice if the band is thin against
the body size and as details of the band do not matter, particularly for con-
tinued sliding. The onset of sliding or its reversal can thus at best be roughly
captured. This simplification is also justified if the initial skeleton state at the
solid is not well known.
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Rough pervious solids in contact with psammoids can work as filters. As
with Fig. 10.3.1a the solid pores should be small enough to keep adjacent
grains, particularly if the skeleton experiences reversals. Elastic membranes
are rough by the penetration of grains and rather impervious (Sect. 10.1). If
they are stretched with curvature the normal pressure of the adjacent skele-
ton is changed by the longitudinal membrane force via (10.1.2). Adjacent
psammoid RSEs may be assumed as off the interface although the skeleton is
changed by the membrane.

σns

ϕsi

τ vts

Fig. 10.3.2. Stationary sliding along a smooth surface

Psammoid grains can be rotated and shifted past a smooth solid surface,
Fig. 10.3.2. The void ratio is higher near the surface and the grains along it
are more ordered than in an RSE. A smooth solid cannot have open pores
so that its permeability is quite low and often negligible. For a given mean
skeleton pressure ps shear and polar stresses cannot get as big as at rough
solids (Tejchman 1997). A stick-slip condition can be formulated as

|τ | /σns = tan ϕsi for vts �= 0 ,
< tan ϕsi for vts = 0 ,

(10.3.2)

with a lower interface friction angle than the critical one in (10.3.1), ϕsi < ϕsc.
Outside a boundary zone of usually negligible thickness simple psammoid
RSEs may be assumed which are fixed or slide along the wall according to
(10.3.2). Evidently a solid is harder than the grains at a smooth surface, its
slight ps-independent waviness dominates ϕsi.

Fluidized zones can arise in saturated psammoid near a solid, Fig. 10.3.3. If
the solid body is shaken a part of the neighboured skeleton can be dilated into
a granular fluid with negligible shearing resistance (a). A strong earthquake
can produce a fluidized bed (cf. Fig. 10.1.2b) so that a solid body can tilt
and sink (b). The pressure in a fluidized zone is nearly isotropic, this results
from the pore water and the granular temperature (Sect. 4.6). For lack of
validated models the extent of fluidized zones has to be estimated empirically.
Because of the danger one should avoid fluidized zones, e.g. by a pervious
mattress.Their influence on displacements of solid bodies cannot be predicted
with models for grain skeletons as these get lost partly and temporarily.

Gaps along and edges at solid surfaces can lead to a dilation of saturated
psammoid skeletons, Fig. 10.3.4. An opening gap produces a free surface of
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a) b)

Fig. 10.3.3. Fluidized zones in saturated psammoid near solid bodies by shaking
from above (a) and below (b)

Fig. 10.3.4. Localizations at edges of a tilting solid in psammoid: gap (left), shear
band (right)

the skeleton (left insert). Depending on inclinations, void ratios and hydraulic
gradients the skeleton is deformed and can get dilated up to decay (Sect.
10.1). If an edge is shifted into a denser than critical skeleton this is dilated
along a shear band which evolves from the edge (right insert). The onset of
this evolution may be modelled (Sect. 8.2), but hardly its further course (Sect.
13.4). Repeated opening and closing of gaps or penetration and retreat of edges
enhance the dilation, particularly with so short periods that the average pore
pressure increases. Thus fluidized zones can arise temporarily which cannot
be captured with psammoid models. Empirically they may be kept within
harmless bounds, the re-densification with many small alternations (Sect. 4.7)
is of advantage.

σsn

a) b)

Fig. 10.3.5. Gap between psammoid and solid by tilting (a), or by bending with
traffic (b)



10.3 Soils at solids 419

Pore gas in psammoids has no effect on interfaces with solids if it sits
in bubbles between grains, only the pore fluid gets more compressible (Sect.
6.2). Gas-filled gaps along interfaces matter differently when they are open or
closed, Fig. 10.3.5. Gaps with gas channels up to the atmosphere can open
without dilation of the skeleton as far as this is kept by the capillary skele-
ton pressure pcs (a). Such evolutions may be modelled by contact elements
which open if the skeleton normal stress σns disappears and then switches to
σns = pcs (Sect. 15.4). Repeated opening and closing of such gaps can densify
skeletons and increase pcs as long as gas channels are not closed due to high
degrees of saturation (Sect. 6.2).

Enclosed gas cushions along solid surfaces can arise and lead to dilation
or even decay of psammoid skeletons. For instance, air can be enclosed un-
der a slightly convex plate upon psammoid if this is flooded from the sides,
Fig. 10.3.5b. Densification by traffic can lead to a gas cushion upon satu-
rated psammoid so that subsequent traffic punches the plate and dilates the
skeleton. Such cases should be avoided by design and maintenance.

Turning now to saturated peloids, we first consider stick-slip conditions.
Along a rough impervious solid surface

|τ | = cu for vst �= 0
|τ | < cu for vst = 0 (10.3.3)

may be assumed with the cohesion cu for undrained shearing without drainage
(Sect. 3.8) and the slip velocity vst. Fixed elements (vst = 0) can be modelled
with v-elp or v-hyp, thus cu is proportional to the e-equivalent pressure pe

and to (D/Dr)Iv by (3.3.11) with stretching rate D, reference rate Dr and
viscosity index Iv. A shear band arises with slip (vst �= 0), the reduction of τ
by polarization can be compensated by its increase from viscosity (Sect. 8.3).
Thin layer shear tests with appropiate e and different shearing velocities can
provide cu and Iv.

Equation (10.3.3) may also be used for peloids at a rough pervious solid
surface. This is justified by thin layer shear tests with hydraulically open
filter plates (Sect. 8.3). The pore water pressure pw or the normal seepage
velocity vwn has to be given, vwn or pw is determined by the coupling of
skeleton and pore water in the adjacent peloid. Rapid shearing would lead
to (10.3.3) as then the seepage cannot cope so that pw changes. Simulations
should incorporate the permeable solid body with its hydraulic conditions. In
the simplest case of slow shearing pw at the interface is determined by the
hydraulic conditions.

Filter criteria can be formulated for rough pervious solid surfaces in con-
tact with saturated peloids similarly as outlined with Fig. 10.3.1b. Peloid
particles are more easily mobilized by seepage forces if the solid is deformed,
particularly with reversals. For a saturated peloid at a smooth solid

|τ | = ca for vst �= 0
|τ | < ca for vst = 0 (10.3.4)
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may be assumed with an adhesion ca ≤ cu. Fixed elements (vst = 0) can again
be modelled by v-elp or v-hyp. The sliding resistance ca is a lower fraction
of cu if more flat particles are aligned at a hydrophilic solid. ca depends also
on the ionic strength and is lower at a hydrophobic solid, so it can only be
found by experiments. Evidently smooth solids are impervious, pw along them
is determined by the interaction of skeleton and pore water in the adjacent
peloid.

Elastic membranes are more often rough than smooth with respect to sat-
urated peloids as harder particles are penetrated and softer fine ones adhere.
The permeability of membranes is mostly lower than the one of peloids, but
seepage through them can matter with high hydraulic gradients. A difference
of normal pressures inside and outside of a membrane is given by its curvature
and longitudinal forces via (10.1.2).

Fluidized zones can arise in peloids near solids similarly as in psammoids
(cf. Fig. 10.3.3). Alternating deformations with higher amplitudes than for
psammoids are needed for the transformation into mud, alongside with it
pore pressures get more irregular due to cracks and breaking lumps. Gaps and
edges at saturated peloids can lead to dilation up to skeleton decay similarly
as indicated with Fig. 10.3.4. With viscosity and net attraction or repulsion
of particles prediction models are farther out of reach than for psammoids.
Experiments can provide some insight. Bühler (2006) found e.g. that fluidized
zones near piles moving into and from clay under water can hardly be avoided
near free surfaces (Sect. 15.4). Empirically their influence may be kept small,
but more research into fluidized zones will be needed to overcome their present
indeterminacy.

Pore gas can matter in peloid-solid interfaces as capillary entry pressures
pce are far higher than for psammoids. Small gas bubbles in a peloid can
hardly accumulate along a solid, therefore they should only be taken into
account for the compressibility of the bulk peloid. Gas-filled gaps along solids
can be longer and wider than with psammoids. They can open along a cracking
solid by capillary entry from a free surface or by cavitation at a base. The
required suction is lower at a smooth surface than at a rough one. As long
as the peloid is saturated the difference of gas and pore pressure equals the
capillary entry pressure, pg − pw = pce (Sect. 6.3).

The widening or closing of such gaps may be estimated by means of contact
elements as for psammoids. Desiccation or stretching can lead to cracks in the
peloid which are hardly predictable (Sect. 6.3). Irregular gas channels can
open and enhance the dewatering. Closing of gaps at such peloids can lead
to their densification as long as pore gas can evade. Otherwise, particularly
if such peloids are flooded, gas cushions can be enclosed along solids with
excess gas pressure pg = pw + pcs. The SSI can thus get rather indeterminate
and more detrimental than without gas cushions, particularly with repeated
widening and closing of gaps. These should therefore be avoided by empirical
design, monitoring and counter-measures.
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a) b) c)

Fig. 10.3.6. Fine-grained interfaces between psammoids and solids: remnant of
filter cake (a), grout injected for sliding (b), drainage cover (c)

Interface zones with various compositions can arise from placement of
solids and soils and from subsequent evolutions, Fig. 10.3.6. A filter cake along
a psammoid from a suspension (cf. Fig. 10.1.3b) is densified into a peloid zone
after placement and curing of fresh concrete (a). Depending on the surface
roughness the stick-slip behaviour may thus be captured by (10.3.1) with an
intermediate critical friction angle ϕcs, whereas pw can be determined via the
psammoid.

Injection of mud via openings in solids leads to wider and less uniform
peloid interface zones (b). Spreading of gaps and sliding with injected mud
may be judged by means of (10.3.3) without seepage. The latter can occur
along psammoids already during the injection, however, and the influence of
this densification can hardly be predicted. Injected mud can break through
towards a free surface (cf. Fig. 10.2.1c), such chaotic evolutions are hardly
predictable (Sect. 16.3).

A psammoid zone can be placed between a solid and a peloid for controlling
the pore water pressure pw (c). In addition to filter criteria for the psammoid-
peloid interface (cf. Fig. 10.2.5c) sufficient widths and outlets are needed for
the psammoid zone so that pw cannot rise too much in it. Mixing by placement
and by reversals afterwards can spoil such a drain, the psammoid is better
enclosed by a grid or substituted by a filtrating solid.

Shearing of solids past soils can lead to an accumulation of fines in an
interface zone. Softer and flatter peloid particles can more easily adhere to
a hydrophilic smooth solid than fine grains. Softer grains and aggregates of
peloid particles are more decomposed in a shear zone due to its stronger
force-roughness than the soil farther off the solid. Such evolutions are not
predictable yet with validated models, one has to assume therefore compo-
sition and state of resulting boundary zones. These may then be captured
by the stick-slip relations (10.3.2) or (10.3.3) with experimentally determined
parameters.

Topological changes require additional concepts for modelling interactions
of solids and soils, Fig. 10.3.7. It was outlined further above how transient gaps
can spoil the usually desired SSIs without loss of contact. Their numerical sim-
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a) b) c)

Fig. 10.3.7. Topological changes by opening (a), cutting (b) and penetration (c)

ulation requires changing finite element meshes (a) with transition conditions
for the loss or gain of contact. Such continuum models with a changing tip of
a gap are as debatable as those for cracks in solids (Sects. 8.1 and 15.4).

Cutting of soil by a sharp solid edge means separation and lateral soil
displacement (b). A shear band or a crack can run ahead and reach a free
surface if the solid body is guided like a shovel. The separation of the soil
skeleton by an edge may at best be modelled for saturated peloids without
seepage and cavitation as one may then assume a non-linearly viscous fluid
(Winter 1979). Otherwise a changing tip can hardly be captured by continuum
models, these may at best provide qualitative estimates. For instance, the
driving resistance of psammoid at the edge of a sheetpile or a tube is higher
with harder grains and denser skeletons, and lower with reversals or torsion
respectively, but this cannot be quantified without observations.

The penetration of a solid into soil does not require an edge or a tip,
but implies lateral displacements not only in one plane. Even with radial
symmetry (Fig. 10.3.7c) RSEs at the penetration front cannot be followed
up as their deformations are unlimited. One may at best capture saturated
peloids without seepage in a kind of stationary fluid flow. Peloids with seepage,
and psammoids without or with the same, may be captured by a substitute
smaller central cylinder and an hour-glass transition (dashed in the sketch,
more in Sect. 14.3). A proper simulation of topological changes of soils by
penetration is outside the reach of present models.

Solid gaps can open or close so that adjacent soil moves in or out. For
instance, if two adjacent edges spread a psammoid with not too big grains can
flow in between and could not be fully extruded if the edges approach again.
The grains would move more easily with seepage forces and reversal, then the
skeleton can decay. A peloid could flow more easily into or out of a gap as
long its equivalent pressure pe is low and does not increase by consolidation.
Needless to explain that such evolutions can hardly be captured by continuum
models. As with filters one should avoid such gaps by design, monitoring and
counter-actions.

To sum up, interfaces of solids and soils can be fairly well modelled for
successions of stick and slip, but not as well for variable openings or penetra-
tion and hardly if the skeleton decays temporarily. Roughness, permeability
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and deformations of solid bodies have to be taken into account. Numerical
simulations are hardly feasible for tips and edges where skeletons open.

10.4 Placement and removal

Placement and removal of soils and solids imply complex evolutions which
cannot be caught in all details by the methods outlined in this book. It is
necessary and legitimate, however, to capture average changes of composi-
tion, shape and state by means of simplified substitutes. This can be justified
to a certain extent by attractors in the large with the aid of observations
and simulations. The following overview with psammoids, peloids, pore fluids
and solids is rather condensed, more will be said in later chapters without
exhausting the issue.

Consider first psammoids under water with different degrees of homogene-
ity. A so-called element is produced by filling into a solid device and can
be brought to a homogeneous initial state (Fig. 10.4.1a, numbers for steps
of the evolution). A skeleton arises by placement and attains thus a non-
homogeneous field of void ratio and stress components (as far as these can
be defined by configuration and contact forces of grains). Subsequent changes
of skeleton and pore water are produced via solid sample boundaries. With
suitable boundary conditions the skeleton can approach uniform state limits
or state cycles. These attractors and transitions between them serve to iden-
tify psammoids (Chaps. 2 and 4). Even with uniform boundary conditions
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Fig. 10.4.1. Placement and removal of psammoids in the lab: sample in element
test (a), model test with placement (b) and with excavation plus placement (c).
Numbers denote the sequence
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grain skeletons can lose their uniformity by shear localization or decay. Some
localizations may be captured with polar quantities (Sect. 8.2), but strange
attractors for such critical phenomena are not well understood (Sect. 16.3).

In a model test a psammoid may be placed under water in a solid vessel
alongside with a solid body (Fig. 10.4.1b, again with numbers for steps of the
evolution). Composition and state of skeleton and solid should be produced
so that the subsequent response is the same in repeated tests with the same
boundary conditions. This can be achieved with different kinds and sequences
of placement steps, but not ad libitum. For instance, pumping in a granular
mud and driving in a solid body can lead to a loose skeleton with an embedded
solid at an equilibrium so that variations of this procedure do not change
the subsequent behaviour. A denser skeleton with an embedded solid can
be produced by different kinds of filling and shaking so that the subsequent
response is the same. Differences in the skeleton near field around the solid can
be swept out by suitable motions of the embedded solid. The independence
of the subsequent behaviour on details of placement steps indicates that the
thus produced state of the skeleton is an attractor in the large.

As far as such attractors are attained the placement of skeletons and solids
can be simulated by means of constitutive models. In the simplest variants
skeleton and solid are first assumed to be weightless with a uniform isotropic
pressure pso and a desired initial void ratio eo, then gravity is slowly imposed
so that a field of skeleton and solid stress and void ratio is generated by means
of elp or hyp and boundary conditions. Improvements could be achieved by
this procedure with simplified steps, and also by suitable boundary conditions
during and after these steps. For instance, one may subdivide the placement
into three steps and impose few small displacement cycles. Hydrostatic pore
water may be assumed for simplicity. Comparative simulations could show
how differences of assumed steps influence the subsequent behaviour, e.g. for
the resistance of the skeleton to shift the solid towards it. The average void
ratio in the near-field is more important than its spatial distribution (Sects.
13.1 and 14.4). Test results could be reproduced if the placement leads to the
same void ratio field, in particular near an embedded solid.

Such attractors in the large are heuristic and may be justified by physical
arguments without mathematical rigour. Actual placements may imply local-
izations and fluidized zones which can scarcely be modelled. What counts is
the resulting shape and state of the skeleton. The placement can lead to a
rather erratic spatial distribution of skeleton stresses. This force-roughness in
the large is rather indeterminate and can be swept out in subsequent evolu-
tions. Suitable initial void ratios and boundary conditions can then lead to
limit or cyclic state fields. Such attractors in the large do not agree with those
by placement in general, ranges of attraction can only be explored by compar-
ative experiments and simulations. Fields with uniformly high relative void
ratio (re ≥ 1) can hardly be produced because of collapse without seapage,
whereas those with low re(0 < re < ca. 0.3) and low force-roughness could be
reproduced by moderate shaking likewise in experiments and simulations.
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Removals may also be carried out with different steps in model tests with
psammoids and solids under water. For instance, psammoids may be exca-
vated along a retaining wall with a supported head (Fig. 10.4.1c, again with
numbers for steps). The wall foot and a neighboured less embedded solid
should not move too much by the full intended excavation. Intermediate slopes
should have a lower than critical inclination so that avalanches cannot oc-
cur. Even careful lab dredging can lead to temporary suction, however, or
to fluidized beds. An attractor in the large is achieved in experiments if dif-
ferent sequences of such excavations lead to the same displacements of wall
foot and neighboured solid within certain accuracy bounds. The psammoid
can be placed before or after the wall in model tests, but the said attractor
should work with different successions. This cannot be achieved ad libitum,
again the average re by placement is more important than its spatial distri-
bution, whereas an initial force-roughness is swept out with the excavation
(Sect. 13.6).

The indicated excavation could be simulated with elp or hyp by reducing
the weight of vanishing parts in slow steps so that skeleton accelerations and
non-hydrostatic pore pressures are avoided. The deformability of the wall and
the second solid could be taken into account, e.g. by elastic or elastoplastic re-
lations, and stick-slip relations could represent the wall roughness (Sect. 10.3).
Such simulations could also be carried out with several supports of the wall
and adequate excavation steps, and with removal and replacement of neigh-
boured solids. Then size and sequence of steps would matter, particularly if
the evolution is not plane-parallel or axi-symmetric. Limit and cyclic state
fields could be attained by removals and cyclic deformations imposed by the
wall, respectively, so that intial fluctuations of void ratio and stress do not
matter. As placement-induced fluctuations are partly due to critical phenom-
ena which cannot yet be modelled (Sect. 16.3) their indeterminacy could thus
be ruled out.

Various kinds of placement and removal can occur in situ with psammoids
under water, Fig. 10.4.2. A natural ground consisting of different psammoid
zones is changed by moving water (a). Granular masses are placed and dis-
placed by sedimentation, erosion and avalanches. Their relative void ratio can
get high (re ≥ 1 by granular flow) or low (re <ca. 0.3 by shaking). Such evo-
lutions can hardly be modelled, so composition and relative void ratios have
to be estimated by field investigations. Skeleton stress fields may be generated
by imposing gravity as outlined further above.

Hydraulic heights hw are rarely constant (i.e. hydrostatic), particularly
during natural displacements of psammoids (Fig. 10.4.2b). A natural ground-
water flow may be modelled by assuming hw along a fictitious boundary (cf.
Fig. 10.2.7d). Seepage forces from waves in the free water can densify the
skeleton near its surface or produce a fluidized bed (Fig. 10.3.3) which can
flow easily. Avalanches settle at their tail with a reduction of hw by release
of water. Dense skeletons can collapse at steep slopes by erosion, then hw

is temporarily lower by dilation. Such hydraulic effects can hardly be taken
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Fig. 10.4.2. Placement and removal of psammoids in situ: natural formation (a),
influence of free water (b), dredging (c), penetration or boring (d). Numbers denote
the sequence

into account in simulations of placement and removal, steps therein should
therefore be chosen with caution.

Seismic waves can enhance changes of free skeleton surfaces and of their
vicinity. A fluidized bed can arise and avalanches can be triggered at slopes.
Below their surface and off slopes skeletons can be densified by repeated earth-
quakes, but not in zones of the ground where the skeleton decays by shaking
(Sect. 11.4). Temporarily fluidized zones in the ground can produce mud vol-
canos (Sect. 16.3). All that can hardly be taken into account in simulations
of seismic psammoid displacements. One may at best estimate how seismic
shaking could mobilize a psammoid body (Sect. 12.5).

Psammoid fills under water are first loose from granular flow, therefore
they are densified by vibrations or impacts (Fig. 10.4.2b). Such evolutions
can hardly be simulated as they imply complex interactions of accelerated
solids and skeletons with fluidized zones (Sects. 10.3 and 14.3). Skeleton states
after placement and densification may again be generated by imposing gravity
with given new psammoid zones and void ratios. Technogeneous waves in the
surrounding ground can as yet only be controlled by monitoring and counter-
measures. Fictitious boundaries of near- and far-fields are of little use, and
simulations for far-fields beyond elastic waves would be too expensive. One
can as yet only judge empirically whether vibrations and impacts leave back
skeleton changes outside tolerated ranges of action.

Excavations of submerged psammoids can likewise not be modelled in de-
tail (Fig. 10.4.2c). Dredging by suction or cutting causes dilation or cracking
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with temporary reduction of hw in the near-field of tools. If slopes are cut
steeper than critical skeletons nearby collapse into avalanches (Sect. 12.4). As
fluidized zones cannot be totally avoided a superficial part of the remaining
skeleton gets looser (and should be densified before or during the placement
of structures). The influence of excavations on the surroundings may be sim-
ulated by a slow reduction of gravity in the removed part. Far-field hydraulic
changes by excavation can thus not be captured, they should be avoided any-
way.

The placement of solids upon and in saturate psammoid ground causes
various changes of skeleton shape and state (Fig. 10.4.2d, numbers for steps
of the evolution). It is usually accompanied by excavation, fill and densifica-
tion. Solid bodies can be placed in excavated holes with displacements of the
skeleton, or cast in situ by pumping in and curing of cementitious mud. Such
evolutions may be simulated in simplified steps as far as structures are grad-
ually placed upon the ground, combined and back-filled. Skeleton state fields
after placement of solids may be generated by imposing gravity to a ‘wished-
in-place’ structure upon and in the ground. Near-field changes by penetration
may at best be captured with axial symmetry (Sect. 14.3). Near-field changes
by other penetrations of solids, e.g. caissons or shields, may partly be esti-
mated and should be controlled by monitoring and counter-actions. Far-field
changes of position and state may be simulated with psammoid models, but
boundary conditions at penetrating solids and excavation fronts are partly
arbitrary and debatable (Sect. 10.3).

The removal of solids from submerged psammoid ground can likewise not
be captured in detail. Structures upon the ground can be lifted in parts or
blasted, stones are usually left in the ground and pits are filled. If parts of
structures are pulled out and leave back dilated near-fields, if parts remain in
the ground their stress field differs from the far-field. Simulations with simpli-
fied steps may help to estimate changes of the surroundings. Skeleton stress
fields left back by removals may be generated by reducing weight and stiffness
of structural parts in a single step, composition and void ratios shuld be given
from ground investigations for such initial states of subsequent evolutions.
The inherited force-roughness is thus not captured, but is often swept out in
the sequel so that only the onset of the subsequent evolution is indeterminate.

Evolutions with combinations of placement and removal are evidently more
complex and less determinate. Heuristic attractors in the large are needed to
control them and are often tacitly assumed. Acceptable technologies depend
on sufficiently confined near-fields. Far-field changes by seepage, seismic waves
or even collapse should be avoided anyway. Size and order of operation steps
should be of minor importance for the surroundings, particularly for the skele-
ton state after the operation. This is not the case in general, skeletons and
structures at them feel size and order of steps as such systems are not elastic.
This can be shown with hyp (Sects. 12.4, 13.5 and 13.6) and is evident with
exaggerated steps. The generic term ‘attractor in the large’ is to indicate that
fine resolutions of operations with placement and removal into many steps are
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not needed. As long as skeletons do not get lost this could be demonstrated
by comparative calculations with elp or hyp, state limits and state cycles of
RSEs therein are necessary. Apart from the numerical expenditure strange
attractors delimit such approaches, in particular with localization or collapse.

Placement and removal with psammoids are influenced by capillary ef-
fects if the ground contains gas and/or is exposed to the air. Gas bubbles
between grains increase the compressibility of the pore fluid (Sect. 6.2), this
weakens pressure waves and has little influence otherwise. Gas pockets mat-
ter also little, whereas gas-filled macropores make the skeleton collapsible so
that operations with inclined ground surface and embedded structures can get
impossible. Then minor disturbances can trigger a collapse so that size and
order of operation steps are no more an issue.

With open gas channels in a psammoid the capillary skeleton pressure pcs

enables bigger steps with steeper than critical free surfaces (Sects. 10.1, 13.4
and 14.2). Loose humid skeletons should be densified as they could collapse if
pore gas gets trapped so that the suction pa − pw gets lost. The skeleton can
be densified by an increase of total pressure and with so moderate reversals,
vibrations or impacts that pw does not exceed pa. The placement of humid
skeletons could be simulated by imposing gravity section-wise, re and pcs have
to be assumed empirically. Excavations may be simulated with pcs by reducing
gravity, cracks should be avoided. The placement of solids is eased by pcs, their
removal can leave back macropores. As far as pcs does not get lost by drying
or wetting simulations with it are easier as skeletons are kept together at free
surfaces. More than without pcs operations need not be subdivided into many
steps, but monitoring and counteractions are needed to avoid a collapse. The
skeleton stress field after operations may be generated as a new initial state by
imposing gravity in one step, as without pcs void ratios should then be given
by investigations in situ, their evaluation may be supported by simulations
(Sect. 14.3).

While the progress of placement and removal with dry or humid psam-
moids is dominated by the one of external actions, saturated peloids have also
thermally caused intrinsic times due to skeleton viscosity and diffusion of pore
water. Both can be controlled in the lab so that an indeterminacy is avoided
due to attractors, Fig. 10.4.3. Peloid elements (a) can be achieved in testing
devices with suitable boundary conditions. Samples can be pre-consolidated
elsewhere, cut and placed rapidly so that they can hardly swell or shrink.
Pore pressure and void ratio are more rapidly equalized without drainage
than with it. Creep and relaxation enhance the equalization of the skeleton
state so that an RSE may be assumed with a uniform initial state (0–1). The
uniformity gets lost temporarily during a subsequent drainage (1–2), and even
with perfect boundary conditions by localization.

The placement in model tests is easier with the objective of a constant
void ratio e than of a constant hydraulic height hw. A soft uniformly mixed
peloid can be placed under water in a vessel together with a solid so that its
void ratio e remains rather uniform (Fig. 10.4.3b). Free water is driven out,
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Fig. 10.4.3. State limit fields of undrained peloids in lab experiments: element test
(a), guided settling block (b), punching (c), creeping slope layer (d), extrusion (e)

with short waiting times only a negligible fraction of the peloid swells near free
surfaces (Sect. 10.1). With gravity and a guided solid the peloid approaches an
equilibrium if the system of peloid and solid tends to stabilize. This implies
a reduction of the consolidation ratio pe/ps so that the rates of creep and
relaxation dwindle as they are proportional to (ps/pe)1/Iv (Sect. 3.2). During
an isochoric rearrangement of the skeleton its equivalent pressure pe decreases
by relaxation of the placement-induced stress obliquity and force-roughness.
In case of a low initial pe/ps the skeleton pressure ps decreases by creep with
gravity, and the hydraulic height hw of the pore water rises to a constant value
(hydrostatic state).

Swelling near a free surface can be avoided by closing it with a membrane.
If pressure differences by its curvature are negligible hw could be changed uni-
formly by changing the external pressure, this would not change the skeleton
as its particles are neutral with respect to the pore water pressure pw. After
the stabilization of the skeleton its state does not depend on size and order
of placement steps, thus the subsequent behaviour is unique and tests are re-
peatable. This state is an endogeneous attractor in the large which is attained
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by thermal activation under gravity. The positions of the free skeleton surface
and the solid are slightly changed by the stabilization, this change may be
negligible in a good model test. Endogeneous attractors of peloid RSEs by
creep and relaxation are necessary for an attractor in the large. Whether they
are also sufficient could be shown by comparative calculations with v-elp or
v-hyp, a more rigorous proof will be difficult.

With less precision saturated peloids and solids can also be placed in model
tests without seepage so that isochoric state limit fields are approached spon-
taneously and independently of size and order of placement steps. For instance,
an almost stationary flow with axial symmetry can be achieved with a guided
solid and enough peloid under it, Fig. 10.4.3c. A perfect flow equilibrium could
be produced with far distant base and wall by removing peloid at the free sur-
face so that this moves like the solid. Stationary isochoric creep could also be
produced with an inclined long rough basin wherein peloid is added with the
same rate above as it flows out below so that the free surface does not change
(d). These are thought experiments as free peloid surfaces cannot simultane-
ously be closed for seepage and adapted by adding or removing peloid. As far
as geometrical effects and diffusion of pore water can be excluded the attained
fields of skeleton velocity vs and stress Ts do not depend on size and order of
placement steps, and the pore water attains a stationary hw. Such flow equi-
libria could likewise be achieved with excavation and other shapes of vessels
and guided solids, e.g. by extrusion (e).

State limit fields could also be generated by simulations with v-elp or v-hyp
as these imply isochoric state limits. Peloid and solid may be added and/or
removed in arbitrary steps and order until a free peloid surface is kept in a
stationary position. Boundaries and guided solids have to be suitably chosen
so that stationarity can be achieved. The attained attractor in the large is ar-
gotropic due to skeleton viscosity. The convected skeleton is close to a critical
state everywhere, thus its stress obliquity is determined by the field of stretch-
ing direction D̂ (Sect. 3.9). The mean skeleton pressure ps is determined by
void ratio e and amount of stretching D. ps is thus not uniform, and convected
RSEs experience changes of ps. Edges should be rounded as in Fig. 10.4.3c to
avoid singularities which could produce cavitation. Argotropic isochoric state
limits of RSEs are necessary for such attractors, rigorous sufficient conditions
cannot be formulated as easily (Winter 1979).

State cycle fields can be produced after the placement of peloids and solids
without seepage in model tests so that size and order of placement steps do
not matter. They could be achieved by cyclic deformations of the vessel and
of the solid with its guide. This would lead to deformation cycles of the peloid
for systems like in Fig. 10.4.3b which would tend to a thermodynamic equi-
librium without deformation cycles. RSEs would attain argotropic symmetric
skeleton stress cycles (Sect. 5.2). Displacement and deformation cycles of solid
boundaries lead to stationary ratcheting in systems like in Fig. 10.4.3c, which
would tend to a flow equilibrium without cycles. RSEs could attain asymmet-
ric skeleton stress cycles as far as they are not substantially convected in one
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cycle. Erratic cycles with at most moderate amplitudes work like a stronger
thermal activation, they could therefore be represented by a seismic temper-
ature (Sect. 5.5). Amplitudes should be kept so low that overcritical skeleton
stress obliquities are not reached, otherwise the evolution would get chaotic.

Such cyclic attractors in the large could also be generated by simulations
with v-elp-α or v-hyp-δ if these relations imply them for RSEs (Sect. 5.5). The
previous placement with steps of different size and order could be simulated
with the same constitutive relations, and without seepage. Boundaries should
be adapted by adding or removing peloid in case of ratcheting so that their
average position does not change. More reversals are needed for transitions if
the skeleton stress field produced by placement is farther off the average of
the attractor, particularly with small amplitudes transitions can therefore be
numerically expensive. Cyclic RSE-attractors are necessary for getting asymp-
totically periodic state fields, again rigorous sufficient conditions could not be
formulated as easily.

Turning now to saturated peloids with seepage, attractors in the large for
different steps could be obtained in model tests and simulations only in ex-
ceptional cases, Fig. 10.4.4. The diffusion of the pore water with changes of
void ratio e (Sect. 11.1) would only come to an end if the hydraulic bound-
ary conditions enable resting pore water or stationary seepage. This could
be approached alongside with an equilibrium of the skeleton with a constant
hydraulic height hw along base and walls of a vessel, a sealed free surface with
lower than critical inclination and with peloid with an embedded solid (a).
The free surface may be exposed instead to air with such a relative humidity
that the seepage there by evaporation does not lead to a capillary entry, but
this could not easily be achieved in model tests.
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Fig. 10.4.4. State limit fields of drained peloids in model tests: settling solid (a),
creeping inclined layer (b)

The placement is usually carried out in steps with such intervals that
during it e changes only near draining boundaries. The system should therefore
be able to attain an equilibrium with slow creep in each step without seepage
as outlined further above with Fig. 10.4.3b. Creep and relaxation are slowed
down by densification with release of pore water, i.e. by diffusion, as the
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e-equivalent pressure pe increases. The skeleton pressure ps decreases and
the rate of creep and relaxation is proportional to (ps/pe)1/Iv with 0.01 <
Iv < 0.05 (Sect. 3.2). The skeleton approaches a state of rest, and also the
pore water if hw is constant at draining boundaries, after a diffusion time
td ≈ dλ/kf with peloid size d, compression index λ and permeability kf

(Sect. 11.3). The subsequent contractant creep with almost constant hw is so
slow in feasible model tests that it may be neglected.

The same field of skeleton stress and void ratio can be reached after dif-
ferent sizes, orders and intervals of placement steps in the asymptote, this
is thus an attractor in the large. The latter could also be generated as a
contractant state limit field by simulations with v-elp or v-hyp and coupling
of skeleton and pore water by the principle of effective stress and seepage
(Sect. 11.1). Argotropic contractant state limits of RSEs are necessary to
attain them, but the range of attraction cannot be defined with mathemat-
ical rigour. With few big steps and intermediate waiting times up to td the
transition to the attractor can take much more time than with a steadier
placement, this is too long for any test. Contractant state limit fields may
therefore be postulated in a pragmatic sense and validated by model tests and
simulations.

Drained stationary creep could at best be approximately reached with an
inclined saturated peloid layer, Fig. 10.4.4b. The inclination must be critical,
i.e tan β by (11.5.4), and the hydraulic height hw should have the same gradi-
ent tan β at the rough pervious base. The latter has to be curved above and
below, and peloid should be added above and removed below with suitable
e so that the free surface remains plane. The surface may be exposed to the
air if its humidity prevents a capillary entry. As peloid has to be added after
placement with the same e above while it is removed below this is rather a
thought experiment. As in the case of Fig. 10.4.4a shapes and void ratios of
intermediate steps have to be chosen so that creep deformations almost with-
out seepage are not too big. The initial void ratios should be higher than the
critical ones which are attained in the long run, otherwise the transitory creep
would be extremely slow as its rate is proportional to (ps/pe)1/Iv .

If the indicated precautions are kept the same stationary creep could be
reached with different sizes, orders and intervals of placement steps. Corre-
sponding isobaric state limit fields could be generated by simulations with
v-elp or v-hyp and coupling of skeleton and pore water. This is not quite
correct as stationary shearing in the middle part of the slope without lateral
changes could occur with different combinations of velocity vs and void ratio
e versus depth (Sect. 11.6), whereas the curved upper and lower base need
not suffice to determine the asymptotic vs. Such attractors in the large may
therefore be postulated pragmatically, both in experiments and simulations,
so that the range of attraction for different kinds of placement can be defined
empirically.

State cycle fields could hardly be produced in drained model tests with
saturated peloids as the seepage could not cope with the required changes of



10.4 Placement and removal 433

void ratio e. The period duration should exceed the diffusion time to enable
substantial changes of void ratio. State cycle fields could be reached with
many imposed deformation cycles in reasonable times only without seep-
age, and could be judged as outlined further above. The subsequent diffu-
sion will be enhanced as the pore pressure is increased by isochoric cycles
(Sect. 5.7).

The attractors introduced with Figs. 10.4.3 and 10.4.4 can only be obtained
if critical phenomena are avoided. The capillary entry was already mentioned,
it would lead to a lack of saturation and to cracks (Sect. 6.3). Shear local-
izations with overcritical skeleton stress obliquities would divide the peloid
(Sect. 8.3) and could lead to cavitation, both could hardly be swept out by
subsequent deformation and seepage. Loose saturated skeletons with fine hard
grains could collapse before they release water. Free surfaces can bulge or get
wavy. Such evolutions tend to be chaotic and are hardly predictable (Sect.
16.3), the generic term strange attractor for them is more descriptive than
mathematically strict.

The placement in model tests with unsaturated peloids may only be men-
tioned as these can hardly be controlled so that simplified substitutes by
means of attractors could be established. Cracks after a capillary entry are
rarely regular by extension (Sect. 9.1) and often chaotic by desiccation (Sect.
6.3). Gas-filled macropores soften peloids in a hardly quantifiable manner.
Fissures in stiff clays are too irregular at the scale of model tests. Peloids
with more uniformly distributed gas channels have so high capillary skeleton
pressures and so big channel distances that they are not apt for model tests.

A wider manifold of placement and removal can occur with peloids in
situ. Substitutes with simplified steps are needed to simulate such evolutions,
heuristic attractors in the large are assumed more or less tacitly. Peloids are
often accompanied by psammoids which influence skeleton and pore water
via interfaces (Sect. 10.2). It may only be indicated in the sequel for some
situations what could be done in such cases.

Natural rearrangements can occur by gravity, seepage forces and tectonic
actions. The skeleton state of a thus produced composite may be generated
for subsequent evolutions by imposing gravity. Composition, void ratios e and
hydraulic heights hw should be assumed on the base of field investigations,
their evaluation could at best be supported by simulating previous rearrange-
ments. Without changes in horizontal directions the vertical skeleton pressure
could be calculated by static equilibrium with hw, and horizontal stresses may
be assumed with component ratios as for contractant state limits (Sect. 11.3).
The latter is justified by thermally and seismically activated creep and relax-
ation. With horizontal changes such a stress field may be assumed as point
of start with a fictitious horizontal surface. This field could then be corrected
by a simulation with adaption of the free surface and of hydraulic conditions.
As previous deformations are not of interest and as the force-roughness in
situ was or is often ironed out this simplified initial stress field may suffice,
together with the given field of e and hw, to simulate subsequent evolutions.
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Technical placements of peloids, often alongside with psammoids, may also
be simulated with simplified steps. As with psammoids void ratios and pore
pressures after densification have to be assumed empirically. Gravity should
be imposed in placement steps with realistic intervals, waiting times and hy-
draulic conditions so that densification or swelling can occur in simulations.
Vibrations for densification may be neglected outside densified zones, inside
they enhance relaxation so that the force-roughness from the passage of vibra-
tors may be neglected. Size and order of placement steps are less important
for peloids than the conditions for the diffusion of pore water. As outlined
further above for model tests, the equivalence of placement variants is justi-
fied by attractors in the large as long as critical phenoma (shear localization,
cracking, decay and bulging) do not matter.

Excavations of peloids, often alongside with psammoids, may also be simu-
lated in simplified steps. The gravity should be removed section-wise in realis-
tic intervals, hydraulic conditions have to be updated for new free surfaces. As
with model tests intervals and waiting times with diffusion of pore water are
more important than size and order of excavation steps, and hydraulic bound-
ary conditions play a dominant role. The equivalence of excavation variants
is justified by attractors in the large as long as critical phenomena do not
matter. As outlined further above for psammoids the near-field of appropri-
ate excavation tools does not matter for the remaining peloid, diffusion and
critical phenomena near new free surfaces can be more important without
protection (Sect. 10.1).

The placement of solids, often alongside with filling and excavation, de-
pends on the kind of operations similarly as with psammoids, but skeleton
viscosity and pore water diffusion come additionally into play with peloids.
For instance, the installation of a wall or a pile leads to swelling and relax-
ation or to densification and stressing in the near-filed by driving or casting,
respectively. This could at best be estimated by simulations, simplified steps
are justified for the far-field (Sect. 14.4). Size and order of operation steps
matter less than with psammoids, the diffusion of pore water is more im-
portant and requires empirically supported boundary conditions (Sect. 10.3).
Penetrations with vibration or shocks may at best be simulated with axial
symmetry (Sect. 14.3). Critical phenomena, e.g. radial cracking by penetra-
tion or fluidization by casting with excavation, should be avoided and could
hardly be modelled. Skeleton stress fields after placement may be generated
for simulating subsequent evolutions by imposing gravity with given composi-
tion, void ratios and pore pressures. This simplification is justified by skeleton
relaxation and pore water diffusion with sufficient waiting times.

The removal of solids from ground with peloids leads to changes of shape
and state in the surroundings which depend on the kind of operation, again
skeleton viscosity and pore water diffusion come into play. For instance, if parts
of a structure are lifted and others are extracted from the ground its state
changes more together with neighboured structures if new ground surfaces are
longer exposed to water or air. This could be simulated with skeleton models
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and pore water coupling, but one should better keep exposure times short
by filling or covering immediately. Then a single step of removal within real
time may suffice for simulating the consequences of removal, this is justified
by endogeneous attractors as outlined further above for model tests. Critical
phenomena should again be avoided.

Various combinations of placement and removal with psammoids and
peloids could also be captured by simulations with simplified steps which
should be justified and delimited by attractors. These are inevitably heuris-
tic, empirical judgment is needed anyway. Moving vehicles upon the ground
may be understood as repeatedly placed and removed solids, their effects can
also be captured by attractors (Sect. 15.5). The interaction of structures with
the ground (SSI) is influenced by placement and removal, simplified steps and
adequate intervals could again be defended by attractors in the large which
include skeleton viscosity and pore water diffusion.

Closing this rather condensed and long section a remark may be added on
symmetry (cf. Fig. 10.2.6). The strongest symmetry, namely homogeneity or
even isotropy, can be achieved in element tests up to state limits or state cy-
cles and can get lost by shear localization, cracking or decay. One-dimensional
evolutions of soil columns may be assumed with suitable boundary conditions
including placement and removal, but no more with shear localization, crack-
ing or bulging. Plane-parallel and axisymmetric evolutions can be favoured
by suitable placement and removal if state limit or cycle fields arise. Vertical
symmetry planes may, apart from pragmatic arguments, also be justified by
attractors in the large. Such symmetries can get lost spontaneously by critical
phenomena, then strange attractors come into play which cannot easily be
specified and impair the predictability (Sect. 16.3).

To sum up, simplified boundary conditions on the base of attractors in the
large may be employed to capture evolutions with placement and removal,
but not ad libitum. State limit and state cycle fields can enhance uniqueness
and symmetry, such evolutions are favoured by endogeneous attractors due
to skeleton viscosity and pore water diffusion. Simplifications of operation
steps, sequences and intervals could be justified by observations and simu-
lations. Critical phenomena can impair predictability and technical control,
they should be avoided as strange attractors are beyond the present reach.
This section is a shortcut of almost the whole book, details as outlined before
and after it are needed for better understanding.
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ONE-DIMENSIONAL EVOLUTIONS

Except for the desired uniformity of RSEs the highest symmetry is given
if all quantities depend only on one co-ordinate. This is the case with so-
called soil columns and with radially symmetric evolutions. For preparation
the coupling of skeleton and pore water is first considered with foam rubber
(Sect. 11.1), Terzaghi’s (1925) theory of consolidation is thus introduced. The
subsequent sections are focussed on attractors in the large. Fields of state
limits and state cycles serve to justify simplified calculations, whereas critical
phenomena delimit the range of applicability.

Standing soil columns are usually assumed for representations of field data
and for simulations of free-field evolutions. Section 11.2 serves to introduce
concepts with psammoids and only one spatial co-ordinate. There is more
field evidence for the consolidation of peloid layers with draining psammoid
neighbours (Sect. 11.3). The propagation of seismic waves can be nearly one-
dimensional in sediment basins (Sect. 11.4). Hypoplastic simulations reveal
that the unknown initial horizontal stress and intergranular strain are deter-
mined by few propagations. Due to such asymptotic cycles an initial state can
be identified without hidden variables. Further attractors in the large arise
with moderate seismic amplitudes, calculated frequencies and layer separa-
tions are confirmed by field data.

Simplified approaches for uniform psammoid slopes are also discussed by
means of attractors (Sect. 11.5). We will see that Rankine’s (1856) stress
fields are at best necessary for stability and can hardly arise. Evolutions with
seepage, suction or shaking can also be judged by state limit and state cycle
fields. The column symmetry can get lost by surface warping and other crit-
ical phenomena. Creep and pore water diffusion occur together generally in
peloid slopes (Sect. 11.6). State limits in the large can be attained without
or with drainage. Visco-hypoplastic simulations show the dominance of initial
consolidation ratios and asymptotic stress obliquities. Shaking can as yet but
qualitatively be taken into account, and the predictability is again impaired
by critical phenomena.

G. Gudehus, Physical Soil Mechanics, Advances in Geophysical and Environmental
Mechanics and Mathematics, DOI 10.1007/978-3-540-36354-5 11,
c© Springer-Verlag Berlin Heidelberg 2011
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Radial symmetry can also be justified and delimited by means of attractors
in the large (Sect. 11.7). Hypoplastic simulations with this symmetry are
confirmed by experiments and serve to evaluate field probing data for getting
void ratios. The shrinkage of peloid spheres can likewise be captured, but
hardly their swelling. As always there are limitations by critical phenomena.

11.1 A prelude on the diffusion of pore water

Consider a poro-elastic layer (e.g. foam rubber) upon a pervious base with a
filter plate on top, Fig. 11.1.1a. Its thickness d may be so small that gravity
is negligible. It may be saturated with water under pressure pw. At top and
base the pore water may have atmospheric pressure, pw = pa, but inside pw

can differ from pa. The skeleton partial stress Ts1 may be given at top and
base as function of time t, Ts1 = −po(t). In the layer the two partial pressures
add up by

po = −Ts1 + pw , (11.1.1)
therein both po and pw include pa. (11.1.1) implies that the solid constituent
is neutral with respect to pw, i.e. it is assumed to be incompressible as the
pore water (cf. Sect. 2.2). The volume fractions αw of water and αs of solid
are complementary,

αw + αs = 1 , (11.1.2)
they change with position x and time t in general.

d

pw
γ0

v0

p0

3 2 1

1

x

pw /p0

321
x

vs)c)b)a

Fig. 11.1.1. Diffusion of pore water in a saturated poro-elastic layer after loading
(a), distribution of pore pressure (b) and solid velocity (c) for subsequent times

Leaving aside inertia, (11.1.1) expresses the conservation of linear mo-
mentum for a static equilibrium. Neglecting the solid velocity vs against the
average water velocity vw, Darcy’s law for the seepage may be written

vw = − kf

γw

∂pw

∂x
(11.1.3)
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with permeability kf , specific weight of water γw and factor -1 as the flow
is opposite to the pressure gradient. (One should properly write vw − vs in-
stead of vw , more further below.) The displacement us of the solid may be
small, |us| � d, so that vs = ∂us/∂t ≈ dus/dt may be assumed (geometrical
linearity). Thus the strain rate is

D1 =
∂vs

∂t
=

∂αs

∂t
≈ d

dt

(
∂us

∂x

)
. (11.1.4)

It may be related with the skeleton stress by

Ṫs1 = D1Es (11.1.5)

with a stiffness modulus Es. Es increases together with −Ts by compaction,
so the solid is hypoelastic. Equation (11.1.5) could be substituted by a de-
pendence of αs on Ts, which is unique if the skeleton is elastic. kf decreases
alongside with αw, for simplicity kfEs is assumed to be constant.

The conservation of pore water mass can be written

∂αw

∂t
= −αw

∂vw

∂x
(11.1.6)

as the densities of solid and liquid are constant. Combining (11.1.1) for a
constant po with (11.1.2), (11.1.4) and (11.1.5) the left side of (11.1.6) (storage
term) can be written

∂αw

∂t
= −∂αs

∂t
= − 1

Es

∂Ts1

∂t
=

1
Es

∂pw

∂t
. (11.1.7)

Inserting (11.1.3) for the right side of (11.1.6) (transport term) yields

∂vw

∂x
= − kf

γw

∂pw

∂x
, (11.1.8)

therein the variation of kf with x is neglected. With (11.1.6), (11.1.7) and the
abbreviation

cv = αw
kfEs

γw
(11.1.9)

Equation (11.1.6) can be replaced by

∂pw

∂t
= cv

∂2pw

∂x2
. (11.1.10)

The same differential equation describes the diffusion of heat with temper-
ature T instead of pw, or of a soluble with concentration C. With heat the
diffusion constant instead of cv is conductivity divided by capacity. The equa-
tion (11.1.10) for the diffusion of pore water was proposed by Terzaghi (1925).
He was attacked by Fillunger (1936) because of simplifying assumptions, but
these are legitimate up to a certain extent.
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The validity of (11.1.10) can be defended in parts. If displacements and
deformations are small geometrical corrections may be neglected. As long as
Es and kf are constant the responses of skeleton and pore water are linear.
Even if our layer is poro-elastic, however, Es and kf change alongside with
the solid volume fraction αs. One may assume that the product αwEskf is
constant, this yields a nearly constant cv by (11.1.8) and may hold true as
long as changes of αs are small. The dependence of kf on αs means that kf is
a function of x, however, this leads to a term (∂kf/∂x)(∂pw/∂x) by inserting
(11.1.3) into (11.1.5). The neglection of this term in (11.1.10) may be justified
if the gradient of kf remains small.

Frame-indifference (Sect. 1.2) requires to replace vw by vw −vs in (11.1.3).
The solid velocity is vs = −vw for a layer on an impervious base, this is
evident from the constant density of solid fraction and of pore water. The
same holds true with a pervious base if vw and vs are referred to the mid-
plane x = d/2. vw − vs = 2vw leads to a factor 1/2 for cv by (11.1.8). Apart
from this correction (11.1.10) is a legitimate approach for the diffusion of pore
water.

With the dimensionless variables

ξ =
x

d
, τ = t

cv

d2
, μ = 1 +

pa − pw

po
(11.1.11)

Equation (11.1.10) reads
∂μ

∂τ
=

∂2μ

∂ξ2
. (11.1.12)

The well-known solution with an initial μ = 0 for τ < 0, and the boundary
condition μ = 1 for τ > 0 and both ξ = 0 and ξ = 1, is plotted in Fig. 11.1.2, it

τv

μ

0.4
0.8

τ = 0.9

1
b)a)

Fig. 11.1.2. Solution of the dimensionless diffusion equation (11.1.12): spatial mean
value versus time (a), isochrones of normalized pore pressure (b)
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is obtained with a Fourier series. It represents the excess pore pressure pw−pa

in our layer after loading with po. The spatial average

μ̄ =
∫ 1

0

μdξ =
1
po

∫ d

0

(pa − pw)dx + 1 = 1 + pa/po − p̄w/po (11.1.13)

decreases via an S-curve versus log τ (a). It may be approximated by

μ̄ ≈
√

τ/π for τ < 1/2, i.e.

(p̄w − pa)/po ≈ (4
√

π)
√

t/td for t < td/2
(11.1.14)

and
μ̄ ≈ 1 for τ > 1, i.e.

p̄w ≈ pa for t > td
(11.1.15)

with the diffusion time
td = d2/cv . (11.1.16)

The distribution of the excess pore water pressure pw − pa, substituted by μ
via (11.1.11), is roughly parabolic (Fig. 11.1.2b). pw-isochrones, i.e. lines for
constant time t, show the gradual decrease of pw in the course of the diffusion.
This solution holds also with an impervious base; then d is replaced by 2d in
(11.1.11) and one half of the distribution μ(ξ) is relevant.

This theory is of use for the consolidation of peloid layers. The approx-
imate solutions provide estimates of the delay due to the diffusion of pore
water. With the non-linear skeleton behaviour and with large deformations
more complicated substitutes of (11.1.10) can only be solved numerically, but
td by (11.1.16) may still be used for scaling t (Sect. 11.3). The motions of
skeleton and pore water are coupled in general, this is expressed by the prin-
ciple of effective stress (11.1.1) and by vw−vs instead of vw in (11.1.3). In case
of a constant total pressure after loading one may still speak of the diffusion
of pore water (but not of pore pressure dissipation as in the jargon of soil me-
chanics, this is as incorrect as would be dissipation of temperature instead of
heat).

Within the assumed linearity one can also apply (11.1.10) if the load po

is increased step by step with time. Then solutions are obtained by super-
imposing the ones for different starting times. Going over to an integration
Gussmann (1979) thus worked out a solution for consolidation with controlled
displacement, Fig. 11.1.3. The base of the layer is impervious, the top is low-
ered with a constant velocity vo (a). With increasing time the top pressure
psd tends to a linear increase, whereas the pore pressure pwo at the base
tends to a stationary asymptote (b). For a layer between two filter plates d
in td by (11.1.15) has to be replaced by d/2, and pwo holds in the midplane.
This solution can be used to estimate the delayed evolution of skeleton and
pore pressures in compression tests with displacement control. It works also
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Fig. 11.1.4. Poro-elastic layer with shearing (a) or a shaking base (b)

for a saturated layer with evaporation (Sect. 11.3), this corresponds to heat
conduction with a constant heat flux at the surface.

Our poro-elastic layer may now be sheared under constant pressure po,
Fig. 11.1.4a. The shear-induced reduction of voids may be approximated by

α̇wd = νṪ12/Gs . (11.1.17)

Therein α̇wd denotes the reduction rate of the water volume fraction αw by
shearing, Ṫ12 is the rate of shear stress, Gs denotes a shear modulus and ν a
kind of Poisson ratio of the skeleton. This term has to be added to the mass
balance (11.1.6), thus (11.1.10) has to be replaced by

∂pw

∂t
= cv

∂2pw

∂x2
+ Dw (11.1.18)

with the drift term Dw = νṪ12Es/Gs. The same equation holds with T instead
of pw for heat flow with an additional heat source, e.g. by microwaves.
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Solutions of (11.1.18) for diffusion with drift are available with constant
Dw. They are scarcely relevant for soils as a constant drift term can hardly
occur with them. If the skeleton tends to dilate or contract by shearing with
constant pressure the latter will increase or decrease by isochoric shearing
(Sects. 2.10 and 3.8). A kind of pore pressure production may at best be
estimated for isochoric shearing (Sects. 4.7 and 5.5), this may be used for
the flow of inclined layers (Sects. 11.5 and 11.6). For dilatant or contractant
shearing such rather simple relations get invalid as then a constant drift term
is not justified. The non-linear coupling of skeleton and water could only be
followed up numerically. Nevertheless it can be of use to scale t by means of
a diffusion time td (Sect. 11.6).

Consider now our poro-elastic layer upon a shaking base, Fig. 11.1.4b.
Without pore water elastic longitudinal (P-) and transversal (S-) waves
could propagate, they would be reflected at the top, repeated waves would
lead to a vibration of the layer. With water saturation and a low perme-
ability, i.e. kf/d far below the frequency fc, volume changes are negligible
during propagations. S-waves get through and induce pulsations of pw if
the skeleton tends to change its volume by shearing. With an elastic pore
fluid P-waves are induced by S-waves, the latter are slower than the former
(Biot 1965). After such propagations pw is the same as before. With a lin-
ear viscous damping the S-amplitude is reduced and pw is changed after a
propagation.

The anelastic coupling of skeleton and pore water in saturated soils cannot
be captured by linear approaches. In psammoid layers (Sect. 11.4) S-waves
induce pw-pulsations of twice the S-wave frequency, and repeated S-waves can
cause an accumulation of pw. The latter can hardly be captured by a drift
term as in (11.1.18). The response of peloids to shaking is similarly non-linear,
but also argotropic (Sect. 6.3). Layers upon slopes experience an additional
drift by gravity as indicated further above. The combined effect of gravity
and shaking could at best be modelled numerically (Sects. 11.5 and 11.6).
The diffusion of pore water during and after shaking could also be taken into
account.

Evolutions of our poro-elastic layer get more intricate if it is partly satu-
rated. With the effects outlined in Sect. 6.2 permeability and compressibility
get non-linear. Two different elastic P-waves arise in the solid and the pore
fluid (Biot 1965). Due to capillary hysteresis wave propagations can enhance
the seepage and can cause a cumulative pw-increase. Ad- and desorption and
reaction play a bigger role than without gas. All that may occur in soils, but
is left aside for simplicity.

To sum up, the linear theory of pore water diffusion can be of use to esti-
mate certain evolutions of soils. This holds true for monotonous consolidation
or swelling although the skeleton behaviour is not linear. The production of
excess pore pressures by monotonous or cyclic shearing can hardly be cap-
tured by adding a drift term to the diffusion equation. Further non-linear
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effects occur by coupling of pore water with gas and skeleton even if the latter
is elastic.

11.2 Standing psammoid columns

Psammoid layers with negligible horizontal changes can be represented by
a standing column, Fig. 11.2.1a. They can be partly identified by a set of
material parameters, e.g. hypoplastic ones as introduced in Sect. 2.4. These
may be taken as constant in depth sections, thus layers are defined. The
material coordinate xs and the skeleton displacement us are referred to the
base. The strain rate equals the velocity gradient, D1 = ∂vs/∂t with vs =
dus/dt. The principal skeleton stress components, Ts1 vertically and Ts2 = Ts3

horizontally, are negative.
Readers familiar with conventional soil mechanics may write ε̇1, σ′

1 and σ′
2

instead of −D1, −Ts1 and −Ts2. The void ratio e can be substituted by the
relative void ratio re via (2.2.18). Two further variables are needed in general
for the internal state, say the components δ1 and δ2 = δ3 of the intergranular
strain by Sect. 4.5, they require further material parameters for identification.
This section is rather preparatory as the assumed symmetry is rarely given
in applications and as the considered settlement or heave of sand-like layers
is rarely important.

The pore water may be assumed to be H2O, solutes are thus neglected
(Sect. 6.2). The water content w can be substituted by the degree of satu-
ration Sr via (6.2.1). The absolute pore water pressure pw is conventionally
substituted by u = pw − pa with the atmospheric pressure pa. Suction, i.e.
pw < pa, can be taken into account for zones with a network of gas channels
by means of a capillary skeleton pressure pcs (Sect. 6.2). The water velocity
vw with respect to the base is the volumetric transport rate per cross section
of the skeleton. In case of seepage through the layer the filtration velocity
vf = vw − vs exceeds vs normally so much that vf = vw may be assumed.
With the hydraulic height hw = x + (pw − pa)/γw, which is the potential or
free energy, Darcy’s law can be written as

vw ≈ vf = −kf∂hw/∂x . (11.2.1)

The permeability kf depends on the porosity n = e/(1−n) by (6.2.4), but may
be considered as constant for simplicity. With gas bubbles between the grains
(11.2.1) may also be used, and (6.2.6) may be assumed for the compressibil-
ity of the pore fluid. Seepage in zones with gas channels could similarly be
captured, but is far slower (Sect. 6.2).

Three conservation laws can be formulated as follows (cf. Sect. 1.2). With
isochoric grains the condition (2.2.10) for the conservation of solid mass can
be written

de/dt = ė = (1 + e)D1 = (1 + e)∂vs/∂x . (11.2.2)
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An updating of the material coordinate via xs = x + us is not needed as long
as the displacement us is minute. With full saturation the condition for the
conservation of water mass reads

∂vw/∂x = −ė/(1 + e) (11.2.3)

by means of (11.1.2) and (11.2.2) as the densities of water and grains are con-
stant. The more complicated substitute for Sr < 1 (Richards 1931) is omitted
for simplicity. Without inertia the condition for the conservation of linear
momentum reduces to the one of static equilibrium in the vertical direction,

∂T1/∂x − γ = 0 , (11.2.4)

with the specific weight γ. In case of full saturation, and also if gas bubbles are
enclosed by the grains, the defining equations (2.2.5) for the skeleton stress
components can be written as

Ts1 = T1 − pw , Ts2 = T2 − pw . (11.2.5)

Inserting (11.2.5) into (11.2.4) the equilibrium condition for the skeleton can
be written

∂Ts1/∂x − (γ − γw) − γw∂hw/∂x = 0 . (11.2.6)

Therein γ−γw is the specific weight minus uplift, and γw∂hw/∂x is the specific
seepage force acting onto the skeleton.

For numerical simulations the column is subdivided into finite soil ele-
ments (FSEs) as indicated in Fig. 11.2.1b. Other than with the representative
soil elements (RSEs) employed in Chaps. 2, 3, 4 and 5 velocities and state
variables have gradients within an FSE. These are represented by means of
interpolation functions, usually so that the skeleton velocities are continuous
but state variables are not, and vice versa for the pore water. Kinematic con-
straints and state quantities for the top and bottom FSEs are part of the
boundary conditions. The equations for the conservation of mass and momen-
tum are satisfied in spatial averages, usually via the principle of virtual work.
The equations for the increments of position and state of the skeleton are non-
linear due to the constitutive relations, so an iterative solution is needed with
proper increments. The calculated evolutions can be represented by depth
profiles (Fig. 11.2.1c) and by state paths (d) of RSEs. The vertical displace-
ment us is related with changes of e by (11.2.3). With a stationary hydraulic
height hw and the assumed rate-independence of psammoids integers suffice
as labels to denote the sequence. The evolution of the pore water is assumed
in this section to be coupled only via its pressure pw in (11.2.5).

An initial state, labelled by 0 in Fig. 11.2.1c, d, can be generated in dif-
ferent ways. Without seepage pw is hydrostatic, also above the groundwater
table which is defined by pw = pa. T1 can be estimated by (11.2.4) with a
constant average specific weight γ̄, (11.2.5) yields Ts1. The initial skeleton
stress ratio can be estimated by
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Ts2/Ts1 = Ko (11.2.7)

with the so-called earth pressure coefficient at rest Ko. The formula

Ko = 1 − sin ϕc (11.2.8)

by Jaky (1948) is empirically confirmed for psammoids. Niemunis (2003) de-
rived

Ko = a/(3 + a) , (11.2.9)

with the constant a depending on ϕc by (2.4.6), from the hypoplastic relation
(2.4.3) for a contractant state limit with ε2 = 0. The initial state is not at such
a limit in general, but (11.2.9) is still legitimate: the same Ts2/Ts1 is reached
by a proportional compression with other than limit void ratios (SOM-states,
Sect. 2.2), and also by shaking (Sect. 4.6).

The resistance to penetration sounding leads to re (Sect. 14.3), e can then
be calculated with (2.2.18) and (2.4.1). Specific weights can be calculated with
the solid specific weight γs, e and w or Sr. The capillary skeleton pressure pcs
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above the groundwater table can be obtained as tensile strength (Sect. 6.2).
The initial intergranular strain may be guessed, e.g. δ = 0 or δ = R and
δ2/δ1 = Ko (Sects. 4.5 and 11.4).

More insight could be gained by considering possible previous evolutions
(Sect. 10.4), but only observable traces of the past are relevant. Sedimentol-
ogy helps to specify properties and spatial distribution of the grains, thus
material parameters and homogeneous zones can be estimated. Hydrologi-
cal considerations can help to specify Sr (without getting lost by hysteresis
and fingering, Sect. 6.2). Pluviation of fine grains can lead to re > 1 due to
capillarity (Sects. 6.2 and 7.2). Granular flow leaves back re ≈ 1, tectonic
stretching of the base can also produce zones with re ≈ 1 (Sect. 12.6). Seismic
or sea bottom waves can lead to re and δ close to zero (Sect. 11.4). Ts2/Ts1

can deviate from Ko by (11.2.8) or (11.2.9), but such deviations can scarcely
be specified and are rarely relevant.

Changing boundary conditions lead to changes of position and state as
plotted in Fig. 11.2.1. A surcharge means an increase of −Ts1 at the surface
beyond pcs if this was free. It is numerically advisable and physically justified
to assume at least a small pcs. It was indicated in Sects. 10.1, 10.2 and 10.3
how −Ts1 can thus increase. The vertical pressure −T1 increases evidently by
the same amount in any depth, this results from (11.2.4). As long as changes
of pw due to the surcharge are negligible −Ts1 increases independently of
depth. Changes of further state variables can be obtained by calculations
with a constitutive model. Simple hypoplasticity (Sect. 2.4) leads to state
paths as plotted in Fig. 11.2.1d, with a nearly constant Ts2/Ts1 if this started
with Ko and a stronger reduction of e for lower ps and hs and higher re.
A smaller compression is obtained with low amounts of intergranular strain
(δ < R), the evolution of the latter could be plotted by additional state paths
(cf. Sect. 4.7). The indeterminacy of δ1, δ2 and Ts2/Ts1 (which is a kind
of internal variable in this case) can be erased by a sufficient compression
(cf. Sects. 2.4 and 4.7), but the historical element (Darwin 1883, Prologue)
due to e can scarcely be ruled out by surcharges in the typical geotechnical
range.

Unloading means a reduction of T1 near the surface. This requires a previ-
ous surcharge or an excavation (Sects. 10.1 and 10.4). As with a surcharge T1

changes by the same amount in any depth, and also Ts1 as long as the change
of pw is negligible. Further changes of state are obtained with a validated
constitutive relation (Sect. 2.6): Ts2/Ts1 grows and can exceed the critical
amount by (2.2.17), e increases by a lower amount than it would decrease by
the same |ΔTs1| due to surcharge. Near a totally unloaded surface the skeleton
approaches a dilatant state limit (cf. Sects. 2.2 and 2.5). The influence of the
intergranular strain components δ1 and δ2 is smaller than for a surcharge, the
amount δ =

√
δ2
1 + 2δ2

2 tends to be reduced.
Hydraulic changes can be imposed from the upper or lower boundary. An

upwards seepage is produced by an artesian water pressure pw. The new pw(x)-
distribution can be calculated by (11.2.1) and (11.2.3) with the new hydraulic
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boundary conditions. The increase or reduction of Ts1 can be calculated by
(11.2.5a) or (11.2.6). Other than with a discharge at the surface the skeleton
stress increment ΔTs1 changes with depth. In the simplest case of constant γ
and kf and a free surface the ratio ΔTs1/Ts1 is depth-independent. A hydraulic
uplift with −Ts → 0 is obtained if pw attains T1, then a decay of the skeleton
can lead to erosion (Sect. 10.4). Otherwise the increases of Ts2/Ts1 and of e are
similar as by unloading. Flooding with constant bottom pw causes the opposite
evolution: downward seepage, increase of −Ts1 and −Ts2 and decrease of e as
by a surcharge. The transition times depend on kf , e and Sr, with capillary
effects they can at best be estimated (Sect. 6.2).

A vertical psammoid column with plane-parallel lateral deformations may
now be considered, this can occur approximately in the lab and in situ
(Fig. 11.2.2a). Assume rigid smooth lateral walls with varying distance and a
uniformly stretched or shortened base so that the horizontal stretching rate
D2 is uniform in the column. The vertical skeleton pressure −Ts1 may be
nearly constant with time, say with Sr = 1 and hydrostatic pw. Which are
the attractors with an arbitrary initial distribution of stress and relative void
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ratio? Evolutions can be represented by depth profiles of state (Fig. 11.2.2b, c),
and by paths of skeleton stress and void ratio vs. pressure (d, e) for different
RSEs (e.g. I and II).

With slow monotonous horizontal stretching (A) or shortening (B) the
RSEs in the psammoid column tend to state limits (Sect. 2.2) with a lower or
upper bound, respectively, of the horizontal skeleton pressure −Ts2. A loose
skeleton (i.e. re ≥ 1) tends to a critical state with Ts2/Ts1 by (2.7.4) and
e = ec by (2.4.1). This is an attractor in the large which can be represented
by a set of state paths for a set of RSEs. It is spoiled by warping of the free
surface, more so with shortening than with stretching. A denser skeleton with
re < 1 tends to a dilatant state limit with Ts2/Ts1 by (2.7.5) and an increased
re due to dilatancy. Even with a uniform initial re the peak friction angle ϕpb

is not uniform. Shear bands evolve in addition to surface waves so that the
assumed uniformity gets lost (Sects. 8.2 and 12.6). This pattern formation in-
dicates a strange attractor with loss of column symmetry which can hardly be
represented (Sect. 16.2). This means that Rankine’s (1856) stress fields (more
in Sect. 11.5) could at best be attained with loose sand, and that G. Dar-
win (1883) was right stating that the historical element eludes mathematical
treatment. Or nearly so, the case is not hopeless as we will see now.

The chance for catching an attractor in the large is better with slow hori-
zontal stretching cycles. The initial re may be arbitrary. With a small ampli-
tude (C in Fig. 11.2.2) the granular column is densified to an re just above
zero, and the average stress ratio T̄s2/Ts1 tends to a constant near K0. More
precisely speaking, a state cycle field is attained which is almost symmetric
in the stress plane and in the intergranular strain plane, and just above the
lower bound in the e vs. log ps plot. The evolution tends to similar state cycles
with moderate amplitudes, then the average re and the oscillation of Ts2/Ts1

are somewhat bigger (cf. Sect. 4.3). With a big amplitude state limits are
repeatedly attained, this leads to shear banding and surface warping so that
a strange attractor would be needed (Sect. 12.6).

A saturated granular column could also be laterally and slowly deformed
without drainage. In addition to smooth walls and a stretchable base mem-
brane this requires an impermeable membrane at the surface, and a sufficient
pressure p0 above so that the membrane cannot be lifted by pw > pa. The to-
tal volume is constant, but the soil elements can undergo volume changes. Due
to the high permeability the hydraulic height hw remains depth-independent,
but it changes with deformations. The equilibrium condition (11.2.6) yields a
constant Ts1I − Ts1II = (γ − γw)(xI − xII). Lateral stretching or shortening
leads to contractant state limits of the looser low RSEs, and to dilatant state
limits of the initially denser RSEs. The stress ratios Ts2/Ts1 tend to the values
for the dilatancy ratios of these state limits, re is reduced or increased (cf.
Sects. 2.2 and 2.7).

Our saturated psammoid column could be exposed to stretching cycles
without drainage. The initial relative void ratio re should be small enough
so that the skeleton will not decay (cf. Sect. 4.2). There is no total volume
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change, a cumulative contraction below is compensated by a dilation above.
As in the previous case the hydraulic height hw is depth-independent, and
spatial differences of Ts1 do not change with time. The initial Ts1 and pw are
given by weight and surcharge, the initial Ts2/Ts1 can deviate from (11.2.7).
The stress paths tend to skew butterfly attractors (cf. Sect. 4.4). Paths in an
e vs. log ps plot would reveal gradual relaxation of ps and equalization of e.

To sum up, uni-axially deformed psammoid columns with pore water and
gravity can attain various driven attractors. State limits with contraction are
only approached with high initial relative void ratio re and/or high pressure
ps. Critical states could be uniformly approached with re ≥ 1 initially, without
water or with full saturation and free drainage, only then Rankine’s (1856)
theory is justified. The column symmetry gets lost by shear localization, this
can lead to deterministic chaos (cf. Sects. 8.2, 12.5, 14.7 and 16.3). The sym-
metry can be regained by suitable monotonous or cyclic deformations.

11.3 Standing peloid and composite columns

A horizontal peloid layer may be represented by a column if transversal
changes are negligible. Its limit void ratios are higher with net attraction
pn < 0 (Sects. 6.3 and 7.1), although this is usually far smaller than the skele-
ton pressure ps. A compression is delayed by the diffusion of pore water, and
also by creep if the solid particles are soft. Thus the consolidation ratio pe/ps

can increase with time and by shrinkage. Swelling is similarly delayed, and
is enhanced by shrinkage cracks. A package of peloid and psammoid layers
can be represented by a composite column. Its initial state can be estimated
more reliably than its composition as psammoid inclusions cannot easily be
identified as bands or lenses (Sect. 9.2). Peloid columns with lateral stretching
will also be considered in this section.

The consolidation of a saturated peloid layer is shown in Fig. 11.3.1. The
column may have a pervious base and a filter cap (a). Both may have the same
hydraulic height hw. The skeleton pressure at the cap may be increased from
its initial value by a surcharge po within a time tp and then kept constant.
Profiles of void ratio, vertical and horizontal skeleton stress (b, c, d) show the
evolution with time t after loading. t is referred to the diffusion time

td = d2 λγw

k̄f σ̄s
(11.3.1)

with layer thickness d, compression index λ by (2.3.1), specific weight of water
γw, average permeability k̄f and average skeleton pressure σ̄s. (11.3.1) is taken
over from (11.1.6) with (11.1.9) for the linear theory, σs/λ is a kind of stiffness
modulus Es = dσs1/dε1 (Sect. 2.5). The bars for kf and σs denote averages
over space and time, their product is roughly constant for a given peloid. d
has to be replaced by 2d in (11.3.1) if the base or the top is impervious.
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Changes of state of representative soil elements (RSEs) are shown as
paths in planes of skeleton stress (e) and of e vs. log ps (f), again with la-
bels for t/td. The consolidation ratio pe/ps can be derived from ps and the
equivalent pressure pe. pe is defined as the mean pressure ps for a state
limit with the given e, Ts2/Ts1 = Ko and D = ε̇1 = Dr (Sect. 3.2). The
evolution is also represented by plots of state variables versus t/td (g) and
log(t/td) (h). The ratios Ts2/Ts1 and pe/ps are shown as they will be used
further below. A further label can be added for td/Dr, the reference strain
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rate Dr means a further time scale due to thermally activated dislocations
(Sect. 3.1).

Such evolutions can be simulated numerically. The skeleton may be iden-
tified as v-elp or v-hyp by Sects. 3.3 or 3.4 with constant material parameters.
Darcy’s law (Sect. 6.2) can be written as

vw − vs = −kf∂hw/∂x1 (11.3.2)

with the seepage velocity vw − vs relative to the skeleton. Changes of kf

with densification can be taken into account, also with the hydraulic gradient
∂hw/∂x if shear thinning of bound pore water plays a role (Sect. 6.3). The
conservation laws are the same as with psammoids: (11.1.6) for the mass of
water in case of full saturation, and (11.2.4) or (11.2.5) for linear momentum.

The column is subdivided into finite soil elements (FSEs), interpolation
functions are assumed for skeleton and water as for psammoids (Fig. 11.2.1b).
The differential constitutive relation is written with finite differences ΔTs1

etc. for time steps Δt, the non-linearity requires caution. Constitutive rela-
tions and conservation laws are written for the actual configuration, positions
should be updated for large compressions. Time-dependent boundary condi-
tions restrict the freedom of base and top FSEs. Initial state variables are
needed for t = 0, these are reasonably assumed for Fig. 11.3.1 and will be
discussed further below. Evolutions of state can be calculated for a succession
of time steps Δt which can get bigger for slower evolutions. Changes of skele-
ton position, i.e. settlement or heave, are related with changes of void ratio
by Fig. 11.2.2. They are needed for updating the configuration and can be
plotted versus t/td or log(t/td).

The loading time tp for the increase of the top skeleton pressure may be
shorter than td by (11.3.1). Then the delay of skeleton compression is mainly
determined by the diffusion of pore water. The linear theory yields the average
strain rate

Dd ≈ 1/
√

πtd (11.3.3)

for t/td = 1/2 by means of (11.1.14). The state paths (Fig. 11.3.1e, f) tend to
contractant argotropic state limits (Sect. 3.2). For t < td the skeleton pressure
pw increases as the hydraulic height hw is reduced by diffusion. The stress
ratio Ts2/Ts1 approaches Ko by (11.2.9) more rapidly, and pe/ps increases
significantly with t (Fig. 11.3.1g). During this so-called primary consolidation
the argotropy of the skeleton is veiled by the diffusion of pore water, but
nevertheless effective.

For t > td the skeleton stress is almost stationary as then the seepage force
is negligible. The so-called secondary consolidation can be seen from a further
reduction of e and an increase of pe/ps with log t (Fig. 11.3.1f, h). The latter
can be approximated by

pe/ps ≈
(

1√
π

tDr

)Iv

for t > td . (11.3.4)
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This is obtained from the decrease of e with t of an RSE with constant ps

by means of (3.2.6) with an initial D by (11.3.3). This estimate gets better
for longer times as then the influence of the initial e and D is more and
more swept out. Ts2/Ts1 = Ko and pe/ps by (11.3.4) characterize thus an
endogenous attractor in the large, provided that the initial pe/ps is not too
big (say < 1.5).

The assumed surcharge po can be produced by filling up a granular layer.
If this happens in a longer time than required for the diffusion of pore water,
as is typical for a natural sedimentation, the initial evolution differs slightly
from the one shown by Fig. 11.3.1. The consolidation is then less delayed by
diffusion than by creep, but the attractor is the same. Temporal changes of
hw at bottom and top can also be taken into account, thus the enhancement
by drainage can be simulated (cf. Sect.10.1 for filter cakes).

The shrinkage by evaporation is a consolidation with a given seepage rate
at the top. The column base may be impervious, above vw − vs = ve holds
with the rate of evaporation ve. ve is determined by the relative humidity in
the gas channels of the filter cap (Sect. 6.2). This case may be approximated
by the linear theory for the case of Fig. 11.1.3, vs = −vw holds due to the mass
balance. The rather constant pore pressure at the base and a further increase
of the top skeleton pressure for t > td may be taken over. Thus the consol-
idation starts at the top and reaches the base later with a smaller amount.
Simulations do not work beyond a capillary entry at the top (Sect. 6.3). The
densification cannot go on then without lateral deformation as cracks open
and grow.

Swelling could likewise be simulated. The top pressure po of the column
may be reduced and then kept constant, the hydraulic height at top and
bottom may be constant. The diffusion time td is shorter as λ has to be
replaced by the swelling index κ < λ in (11.3.1). Ts1/Ts2 and pe/ps decrease
alongside with unloading and diffusion. In the long run pe/ps increases again
and Ts2/Ts1 decreases as then compressive creep erases the state at the onset.

Evolutions with swelling vary with initial and boundary conditions. With
a low or vanishing pressure po at the top the skeleton there can approach a
dilatant state limit and can decay thereafter. With a high initial pe/ps a rapid
unloading can lead to shear bands near the surface, and even to cavitation
cracks under water. Wetting a free surface after shrinkage, say without cracks
for simplicity, causes swelling up to decay if the skeleton has no net attraction
(cf. Sect. 6.3). Thus the validity of simulations with columns is restricted by
a loss of symmetry or a phase transition into a suspension.

Cycles of decompression and compression can occur in situ by repeated
erosion and sedimentation, and more often by repeated wetting and evapora-
tion. Their simulation with columns is debatable as cracks and shear bands
play a major role, this can hardly be captured by means of spatial average
values (cf. Sect. 8.3). Slow tectonic effects will be treated further below and in
Sect. 12.5. Shear cycles due to seismic waves will be considered in Sect. 11.4,
they matter less than in psammoid layers.
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A stack of peloid and psammoid layers can be represented by a composite
column. Jovanovic (2002) produced a sandwich of fine sand and clay by sedi-
mentation in a box (Fig. 11.3.2). The sand bands (a) extended up to filtrating
walls, thus they enhanced the diffusion of pore water. After 3 weeks the re-
sistance cu to vane shearing was proportional to depth (b). This evolution
could be simulated by means of an increasing stack of FSEs with impeded
lateral drainage (c). Thus the sandwich is simplified with due caution for per-
meability (cf. Sect. 9.2). The reaction of the vane to torsion can be simulated
by means of simple shearing (Sect. 14.6). For longer resting times than the
diffusion time this shearing resistance is proportional to depth and pe/ps, cf.
Fig. 11.3.1.
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Fig. 11.3.2. Sandwich of peloid and psammoid: vane shearing resistance (b) and
bands in a model test (a, Jovanovic 2002), simplified composite for calculations (c)

Natural evolutions are more complex, even without decompression. At the
lake of Constance a sandwich of fine sand and silty clay was sedimented upon
gravel some thousand years ago. The hydraulic height hw in the middle of
this sandwich was by ca. 1 m higher than hydrostatic due to the low kf

(Scherzinger 1991). The ground of Shanghai consists of sand and clay layers.
In some parts hw is ca. 4 m higher than hydrostatic, and with the thus reduced
ps the pe/ps attains ca. 1.3. Up to ca. 400 m thick deposits of silty clay in
the Orinoco delta have higher hw as their diffusion time td exceeds their
resting time tg. Tertiary clay layers with resting time tg  td have no excess
hw, without decompression their shearing resistance cu without drainage is
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proportional to depth and corresponds to pe/ps ≈ 2 by (11.3.4) after some
million years.

The need to simplify composition and initial state for such cases leads to an
inevitable indeterminacy of predictions. Deposits in the Lower Renish Basin
(Pierschke et al. 1996) may serve as an example. Layers of sand and gravel in-
terchange with seams of clay and lignite, these can be identified as psammoids
and peloids. The total pressure was constant while hw was lowered within two
decades. Initial void ratios were determined by borehole logging. They cor-
respond to a relative void ratio re ≈ 1/3 for psammoid and pe/ps ≈ 2.5 for
peloid zones. The low re may be attributed to earthquakes (cf. Sect. 11.4), the
pe/ps is also obtained by (11.3.4) with an age tg ≈ 2 · 107 years. Ts2/Ts1 by
(11.2.9) was assumed as outlined with Fig. 11.3.1h. Observed settlements were
smaller than calculated. For a better matching thinner sand bands between
clay and lignite had to be assumed as hydraulically closed. This indeterminacy
(Sect. 9.2) matters more than the representation of lignite as a peloid.

These findings may be generalized as follows. The initial hw should be
measured in situ for cases with tg < td. Ts2/Ts1 by (11.2.9) is justified with-
out decompression, this was outlined with Fig. 11.3.1 for peloids and will be
defended for psammoids in Sect. 11.4. pe/ps may be estimated by (11.3.4), but
should also be assessed by vane shearing, penetration sounding or borehole
logging. Lab tests with samples from boreholes are needed to get parame-
ters for skeleton and pore fluid. Representative composite columns have to be
simplified for numerical simulations. The assumed invariance in horizontal di-
rections causes a further indeterminacy, in particular as psammoid inclusions
can more or less work as horizontal drains (Sect. 10.4).
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Composites with decompression reveal a wider manifold of compositions
and initial states. For instance, a clay in Chicago (Wu and Berman 1953) is
differently overconsolidated, Fig. 11.3.3. The pe/ps estimated from undrained
strength exceeds ca. 4 at the base, this can be attributed to a glacial over-
burden. A consolidation ratio pe/ps ≈ 4 near the top is due to shrinkage
as the surface was temporarily exposed. pe/ps ≈ 1.5 in between may be ex-
plained by consolidation under a young sand fill, assuming that the diffusion
of pore water was enhanced by cracks. Initial hydraulic height hw and stress
ratio Ts2/Ts1 could not be measured, so both have to be guessed. hw may be
hydrostatic in this case due to cracks, Ts2/Ts1 by (11.2.9) could have been
attained by compression and relaxation.

Field situations are often less determinated as extended horizontal lay-
ers are rather an exception than the rule for composites with decompression.
Erosion is never uniform, a re-sedimentation is often accompanied by granu-
lar and mud flow. Slow tectonics can lead to faults and to depressions which
are later filled (Sect. 12.5). Psammoid inclusions can have lower or higher hw

than due to the groundwater table, hw can rarely be measured in all details.
It is as yet impossible to measure Ts2/Ts1 reliably, so (11.2.8) may suffice
as an estimate. Horizontally variable compositions may be estimated from
boreholes with the aid of sedimentological and tectonic considerations. Simu-
lations with hypoplasticity could be of use, also if the ground had temporarily
slopes. Then plane-parallel symmetry may be assumed, initial states can be
generated by simulating a simplified past (Sects. 12.1 and 12.2). Conventional
stress and strength ratios can scarcely be defended, let alone Terzaghi’s (1925)
presonsolidation pressure (cf. Sect. 3.5).

Evolutions with horizontal stretching in situ are more complex. Sedimen-
tation and erosion can occur alongside with tectonic deformations, horizontal
uniformity is rarely given. Fractal patterns of shear bands and cracks arise
and change with time, hydrostatic pore water pressures are rather an excep-
tion (more in Sect. 12.5). Simulations with plane-parallel symmetry could be
more realistic (Sects. 12.2 and 12.3).

To sum up, evolutions of standing peloid and composite columns can
be simulated with different boundary conditions of skeleton and pore wa-
ter. This can help to understand or even predict consolidation and swelling,
and also consequences of horizontal stretching or shortening. The diffusion
of pore water dominates the delay of settlement or heave as long as it im-
plies substantial excess pore pressures, thereafter the skeleton viscosity can
get dominant. The initial stress and consolidation ratios can be estimated
by assuming preceding attractors in the large. The column symmetry can
get lost by warping, shear localization or cracking. Substituting packages of
peloids and psammoids by composite columns is debatable as the assumed
horizontal invariance can rarely be defended. Simplifications of composition,
initial state and time-dependent boundary conditions cause an indeterminacy
which could hardly be overcome by considering two- or three-dimensional
evolutions.
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11.4 Standing soil columns with wave propagation

Consider now a package of horizontal layers upon a shaking base from which
plane waves are propagated upwards. Neglecting the horizontal variability one
may work again with columns, but now also with horizontal displacements.
Leaving aside algebraical and numerical aspects we focus on physically re-
vealing cases. This means that the simplifying assumptions are justified, the
identification of composition and initial state is tractable, the boundary con-
ditions are realistic, the numerical procedure is verified and that observational
data are available for validation.

Lab experiments with soil columns are left aside as they can scarcely be
carried out without horizontal gradients. Resonant column tests with torsion
imply radial differences of state (Sect. 14.7), the latter occur also with longi-
tudinal waves near the end plates. A propagation of plane longitudinal waves
through a column in a confining cylinder can hardly be achieved without wall
friction. Tests with laminar shake boxes can at best produce plane-parallel
evolutions (Sect. 14.5).

E

Fig. 11.4.1. Sediment basin with incident seismic wave (left) and increasing stiffness
versus depth (right)

Seismic propagations in situ can get almost one-dimensional in sediment
basins, Fig. 11.4.1. Soil layers and ground water conditions may be horizon-
tally uniform over distances which exceed by far the package depth. Cemented
layers below may behave elastically with a modulus E that increases about lin-
early with depth. Then seismic longitudinal (P-) and transversal (S-) waves
arriving from the rock base tend to vertically propagated plane waves. In
the linear range this holds for any monotonous increase of E with depth
(Brekhovskikh 1960).

The rims of the basin should be distant enough, and the soil layers should
be sufficiently anelastic so that seismic surface waves from the sides cannot
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reach the middle of the basin. If all these conditions are satisfied the basin
works as an attractor in the large that transforms incident seismic waves
from the deeper earth crust into plane ones which are propagated vertically
upwards in soil columns. The identification of composition and initial state
follows the outline in Sect. 11.3. Deviations from the proposed initial stress
ratio Ts2/Ts1, and also ratios of initial components of the hidden state, fade
away with the propagation of a few waves. This was shown numerically for
psammoid columns by Osinov and Loukachev (2000) with hyp-δ: after the
passage of one or two waves with typical seismic amplitudes skeleton stress
and intergranular strain attain asymptotic cycles in each RSE of the column.

Cudmani (2010) points out that an arbitrary initial skeleton stress field,
including horizontal gradients, tends to Ts2/Ts1 = Ko by seismic waves. As the
latter are rather erratic this can also be understood as a seismically activated
creep-relaxation (cf. Sect. 4.7) which is similar to the thermally activated
one in peloid layers. The layers should be horizontal as otherwise they would
drift sidewards, such kind of seismically activated creep will be treated in
Sects. 11.5 and 11.6. Formerly or presently active tectonic faults are left aside
(Sect. 12.5).

The boundary conditions for the pore water and for the skeleton at the
surface can be the same as in Sect. 11.3. The base shaking of the skeleton
should be taken from seismograms of boreholes, but only few good data sets
are available from arrays. In other cases the seismic history may be substituted
by bunches of periodic base shaking. Only S-waves at the base are taken into
account as the database for P-waves is insufficient for validations. Constitutive
relations may be chosen as explained in Chaps. 4 and 5, but only examples
with hyp-δ and v-hyp-δ are given in the sequel as the publications with elp-α
are less tractable. Papers with ad hoc relations for cyclic shearing are left
aside as these are not frame-indifferent and cannot produce attractors.
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General mechanical and numerical features are indicated with a psammoid
column, Fig. 11.4.2a. The vertical and horizontal components vs1 and vs2 of
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the skeleton velocity are continuous functions of depth via interpolation func-
tions (b). The skeleton stress components Ts11, Ts12 and Ts3 (out of plane) can
have jumps between the finite soil elements (c), as also the stretching compo-
nents D11 and D12 (cf. Sect. 2.9). The vertical seepage velocity vw − vs1 (d)
is constant with free drainage (F) and negligible without drainage (U). The
pore pressure pw (e) is stationary in case F and pulsates with propagations
in case U. The conservation of linear momentum holds with terms for two
components, it is satisfied in the adequate spatial average as the conserva-
tion of water mass. The skeleton may be not quite saturated, thus the pore
fluid is compressible (Sect. 6.2). The increments of position and state can
be calculated via implicit time integration and iterations as the differential
constitutive relations of the skeleton are non-linear.

b)a)

Fig. 11.4.3. Simulated evolution of a freely drained psammoid column with har-
monic base shaking (Gudehus et al. 2001): profiles of horizontal (a) and vertical
skeleton velocities (b)

Simulation results by means of hyp-δ with a psammoid and hydrostatic
pore water are shown in Fig. 11.4.3. The vertical skeleton pressure is given by
(11.2.6) and stationary. The base of the column is shaken horizontally with
amplitude va =0.03 m/s and frequency f = 10 s−1, this may represent a rather
strong earthquake. 0.05 s after the onset a sinusoidal S-wave can be seen from
the profile of the horizontal velocity (a). A less regular and smaller P-wave
appears in the profile of the vertical velocity (b). The P-wave propagates with
about twice the frequency and speed of the S-wave. With further shaking
(not plotted) the waves reach the free surface, there they are magnified but
almost not reflected as a major part of the energy is absorbed by friction.
With repeated propagations the skeleton is densified up to an asymptotic e
just above the lower bound ed, but not near the free surface where bigger
amplitudes cause dilation.

The evolution of an RSE in the middle resembles the one shown in
Fig. 4.3.4, case B. A state cycle is attained which depends only on the shear-
ing amplitude γa. For it two volumetric cycles are induced by one shear cycle,
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and the average ē exceeds ed more for a bigger γa. The transition needs more
reversals in case of a higher initial e and a smaller γa. Shear waves propagate
with a speed cs which is roughly proportional to (ps/po)1/4 by (4.2.1) with
m ≈ 1/2 and cs ≈

√
G/ρ. They generate P-waves of lower amplitude with

about double speed and frequency, this corresponds to Fig. 11.4.3. The kinetic
energy is dissipated by hysteretic damping and via the induced P-waves. With
a sufficient number of waves the psammoid layer attains an attractor in the
large which can be represented by a set of state cycles for a stack of RSEs.
The intergranular strain is part of it, i.e. the initial values are swept out.
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Fig. 11.4.4. Frequency spectra of two earthquakes in Romania (Lungu 2003,
Loukachev 2002): one peak of P-waves for the rock base (below, full lines), two
peaks for a sand layer (above); no such difference occurs for S-waves (dashed)

Frequency spectra from Romania confirm the double frequency of P-waves,
Fig. 11.4.4 (Lungu 2003). At the rock base S- and P-waves had nearly the same
spectrum for two moderate earthquakes, with lower P- than S-amplitude, this
indicates elastic behavior. Near the surface of the granular sediment the S-
spectrum has its peak nearly at the same frequency as the rock base, whereas
the P-spectrum has a maximum near the double frequency. With the mod-
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Fig. 11.4.5. Calculated evolution of an undrained psammoid layer with harmonic
base shaking (Osinov 2000): skeleton pressures versus depth with moderate (a) and
big amplitude (b)

erate magnitude the amplitudes are bigger than at the base. Relative void
ratios re around 0.3 were determined in the Lower Rhenish Basin (Pierschke
et al. 1996) with sand and gravel which experienced many moderate and some
strong earthquakes in the past about 107 years, though less offen than in Ro-
mania.

Simulations with an undrained psammoid layer are shown in Fig. 11.4.5
(Osinov 2000). With the assumed shaking frequency f = ω/2π = 5 s−1 seep-
age was proven to be negligible for permeabilities kf ≤ 10−4 m/s, i.e. for fine
sand or silt. Sinusoidal shaking with an initial re ≈0.5 and amplitude va = 0.04
m/s leads to zero skeleton pressure in a succession of depths (a). Shear waves
are no more propagated through a decayed skeleton, after ca. 8 s the whole
layer is screened from the base. With the same initial re and va = 0.1 m/s,
corresponding to a stronger earthquake, the skeleton decays near the surface
and then at the bottom so that the layer is screened after 3 s (b). Only a
minute densification is achieved at the end of shaking so that nearly the same
would happen in a repetition.

The evolution of the skeleton in an RSE resembles the one shown in
Fig. 4.3.6 (case A). With 98% saturation and without drainage e is almost
constant. The asymptotic cycle depends only on the shear amplitude γa, then
the average ps is lower for a smaller γa. In the transition ps is more reduced
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in case of a higher initial re, and more reversals are needed with a lower γa.
One shear cycle induces two ps-cycles, so P-waves in the skeleton have the
double leading frequency. As always they travel faster than S-waves and there
is a second P-wave in the pore fluid, this is not considered here for lack of
field data in that respect. For e > edo the skeleton tends to a decay. Near the
surface with the biggest amplitude this occurs immediately. Moderate shaking
causes the biggest shearing amplitude γa somewhat deeper so that there the
skeleton decays next, then γa gets maximal again deeper and so forth.

This comes up to another attractor in the large. State cycles with low
average ps and temporary decay are attained by a few S-waves, then these
are no more propagated upwards. As the subsequent densification is minute
this can happen repeatedly, provided that kf is lower than ca. 10−4 m/s
and re exceeds ca. 0.5 (Osinov 2000). There are many formations of rather
loose fine sand in earthquake regions which exhibited a skeleton decay by
mud volcanos and spreading. The predicted screening is also validated by
observations during the Kobe 1995 earthquake (Iwasaki and Tai 1996). The
buildings on the two Port Islands were not damaged except for quay wall
structures along the rims. They stand upon a ca. 12 m deep layer of densified
sand, the nearly saturated loose sand underneath decayed with the first shear
wave so that the following ones could not get through. Although the islands
settled by ca. 0.4 m this screening could happen again as only part of the
loose sand was thus densified.

Some field data sets are apt for a back-analysis with composite columns,
Fig. 11.4.6 (Cudmani et al. 2003b). A soil profile from one of the Kobe Port
Islands was substituted by a package of psammoids and peloids (a). Using the
base shaking measured 1995 the course of horizontal velocities was calculated
with hyp-δ and v-hyp-δ for three depths, the overall agreement with observed
data is good (b). The calculated reduction of skeleton pressure (c) explains
the introcluced near-screening ca. 10 s after the onset which was outlined with
Fig. 11.4.5. A similar validation was presented by Cudmani et al. (2003b) with
data from an earthquake in California 1989.

A temporary water film can arise by shaking a saturated psammoid layer
which is covered by a peloid layer. If the psammoid is rather permeable and
loose its top is rapidly densified and releases water which is caught by the
cover. This cannot easily be calculated as the grain skeleton decays near the
top and develops erosion channels (cf. Sects. 10.2 and 12.3). It was observed
by Kokusho (1999) in a plexiglass cylinder, the kind of shaking does not play
a big role. In a coastal plane with a sandwich of sand and clay plates of soil
can thus slide seawards just after an earthquake, this happened e.g. at the
Corinthian Gulf (Papatheodorou and Ferentinos 1997). Not sliding parts were
screened by the water film so that light buildings on top were not damaged.
As this can happen repeatedly one can speak of another attractor in the large.

To sum up, under certain conditions the response of sediment basins to
earthquakes can be captured by means of columns composed of psammoids
and peloids. Incident seismic waves from the lithosphere turn into vertically
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Fig. 11.4.6. Back-analysis of seismic evolutions in Kobe 1995 with hyp-δ and v-hyp-
δ (Cudmani et al. 2003b): substitute composite (a), pore pressure (b) before and
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rising plane waves as the stiffness increases with depth. Sufficiently drained
psammoid layers tend to a low relative void ratio re and remain there with
further earthquakes. S-waves produce P-waves of about double frequency and
speed. Rather loose, saturated fine-grained psammoids can decay temporarily
in different depths so that layers on top are screened against further S-waves.
Peloid layers respond more elastically, only with low initial overconsolidation
and strong earthquakes the pore pressure can increase and a densification
follows. Saturated psammoids with not too low re and a peloid cover develop
a temporary water film without sliding resistance.

11.5 Psammoid columns in slopes

An inclined psammoid layer with a slope angle β may be so uniform that
changes uphill and parallel to the cross section are negligible, Fig. 11.5.1. Then
a column (a) with spatial changes along one co-ordinate x1 may suffice to rep-
resent evolutions of shape and state. Pore water can be taken into account
without or with seepage. Initial composition and state should be physically
attainable. Gravity causes skeleton stress components which increase almost
linearly with depth as the specific weight γ is nearly constant (b). Changes of



464 11 One-dimensional evolutions

v1

v2

a) b)

vi

c)

x2

x1

d

β

T12

T22

T11 11
22

12

x1

Tsij

x1

1 2

Fig. 11.5.1. Inclined psammoid layer (a), profiles of stress components (b) and
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state due to changing boundary conditions can be related with downhill and
normal components of skeleton velocity (c). The assumed symmetry can get
lost, therefore proper validations are rare, so this section is rather a prepara-
tion for subsequent ones.

If a resting psammoid layer is dry and has a constant specific weight γ two
stress components are given by equilibrium, viz. for 0 ≤ x1 ≤ d

T11 = γ(x1 − d) cos β ,
T12 = γ(x1 − d) sin β

(11.5.1)

with layer thickness d, therein the atmospheric pressure is omitted. In his trea-
tise ‘On the stability of loose earth’ Rankine (1856) calculated the in-plane
stress component T22 by means of a limit stress condition. This is shown in
Fig. 11.5.2 with stress circles (cf. Fig. 2.9.1). Assuming a limit stress ratio
as by (2.7.4) with a constant friction angle ϕ, there are two stress circles
with the given T11 and T12. Usually the case with the lower pressure −T22

is called active (A), and the other one passive (P). In-plane stress compo-
nents can be determined via the poles PA or PB . The cases A and B coincide
for β = ϕ.

Can such states arise, and are they relevant for stability? Darwin (1883)
refuted Rankine’s theory by his experiments and stated that the historical
element eludes mathematical treatment. His tilted wall prevented the assumed
column symmetry, the kind of placement played a role, but the linearity as by
(11.5.1) was confirmed (more in Sect. 13.1). A loose layer could be tilted with
its rough base until it flows. Except for the vicinity of upper and lower walls
a rather uniform and stationary flow can be achieved. With this stationary
shearing the psammoid would be in a critical state (Sect. 2.9). A Rankine
state would hold with β = ϕ = ϕsc. This would be a necessary condition for
stationary quasi-static granular flow.
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Fig. 11.5.2. Stress cycles of an inclined dry psammoid layer for Rankine states

Equilibrium by (11.5.1) means that inertia is negligible, stationary shear-
ing means T12 = T11 tan ϕcs as by (2.9.6). The onset of granular flow implies
an acceleration and is not stationary. An initial Rankine state with β = ϕcs

is at best sufficient for stability (i.e. the ability to stand), but not necessary
for its loss (i.e. a collapse). A dense granular layer starts to slide when its
rough base is tilted up to an inclination β > ϕcs. Then a pattern of shear
bands appears at the surface (Sect. 12.6) which thus is no more plane. Keep-
ing β > ϕcs the layer accelerates and dilates. A Rankine stress state may
be calculated with a friction angle ϕ > ϕcs due to dilation (Sect. 2.9). The
instantaneous relative void re should be known and uniform for such a dila-
tant state limit, but both is not the case. A Rankine state with an assumed
ϕ > ϕcs would at best be necessary for stability, but it is not sufficient. A
collapse means a loss of symmetry by shear banding and surface warping. The
skeleton stress obliquity at the base is restricted by

Ts12/Ts11 ≤ tan ϕsi (11.5.2)

with the friction angle ϕsi of the interface (Sect. 10.3). The psammoid sticks
with < and slips with = in (11.5.2).

One could also approach Rankine states in a layer on a rough base with
β < ϕcs which is uniformly stretched or contracted. As with β = 0 (cf.
Sects. 11.2 and 12.6) shear band patterns arise in initially dense layers, and
the surface buckles by contraction of the base. With this loss of symmetry
Rankine states are at best estimates by means of a spatially averaged friction
angle ϕ̄, but this could hardly be determined. The column symmetry gets lost
and minute disturbances would cause rearrangements.

Grains could rain upon a rough incline until they form a layer. This gets
denser with a diluter pluviation so that the layer can stand for a short while
with a higher than critical inclination, i.e. β > ϕcs. Then psammoid chips of
different size slide after any minute disturbance as can be seen at the leeward
side of dunes. Rankine states may be assumed, but they are at best necessary
for a loss of stability. An inclined layer could also be mobilized by shaking
its rough base. With β < ϕcs it flows almost like a viscous fluid (Sect. 4.6).
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Such seismic effects will be considered further below. A Rankine state could
be justified for β = ϕcs with minute shaking.

Finally granular material may flow over a curved base. The relative void
ratio is nearly critical, re ≈ 1, due to continuous isobaric shearing. The granu-
late layer is stretched by passing convex parts of the base and shortened over
concave parts, its thickness d varies with position and time. Savage and Hut-
ter (1989) analysed such avalanches by combining active and passive Rankine
states in assumed columns for convex and concave parts of an incline with
the condition (11.5.2) for sliding along a solid (cf. Sect. 10.3). Evolutions of
d with position and time were calculated with equations for the conservation
of mass and momentum. This theory was validated by lab experiments.

With the assumed symmetry (11.5.1) expresses static equilibrium, and
with a peak friction angle ϕ for the instantaneous relative void ratio re

Fig. 11.5.2 conveys upper and lower bounds of the in-slope pressure −T22.
Thus the possibility of a Rankine state is at best a necessary condition for
stability. If, on the other hand, a psammoid layer resting upon an incline can
release kinetic energy after a minute disturbance it will collapse. With an ar-
bitrary velocity field as disturbance this would be a sufficient condition for
instability. The loss of static equilibrium can imply a loss of symmetry, i.e. a
kind of bifurcation.

Osinov and Wu (2005) discuss criteria for the instability of rate-independent
anelastic bodies. The spontaneous loss of static equilibrium cannot be judged
by means of eigenvalues and -vectors as the differential constitutive relations
are not linear. Therefore the mathematical well-posedness cannot be recog-
nized algebraically, one cannot decide analytically whether or not a small
disturbance results in a weak response (stability in the sense of Lyapunov).
The energy condition mentioned above cannot lead to more explicit criteria by
working with arbitrary disturbances. Test shear waves cannot pass an emerg-
ing shear band with the same normal, this leads to necessary conditions for
localization. The impossibility of propagating arbitrary test waves is a neces-
sary condition for instability. All that cannot provide sufficient conditions for
static stability, nor can it produce general predictions of further evolutions
with localization, bulging and/or collapse.

Simulations with a shaking base could be carried out as long as the sym-
metry of columns is justified. The propagation of each plane wave leaves back
an additional downwards displacement, and a depth-dependent change of void
ratio Δe(x1) in general. As long as the slope angle is lower than critical, i.e.
for β < ϕcs, a stationary ratcheting can be expected in the asymptote. The
average asymptotic void ratio ē(x1) and downwards displacement Δu2(x1)
after each propagation are determined by the acceleration amplitude at the
base. The ensemble of asymptotic state cycles is an attractor in the large.

Consider now psammoid columns in slopes with pore water. If the column
or a part of it is humid with gas channels the skeleton has a capillary pressure
pcs (Sect. 6.2). Asymptotic stress circles as by Fig. 11.5.2 are shifted to the
right by pcs. This leads to a tensile in-slope stress in case of lateral extension,
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i.e. to T22 > 0 up to a depth which is proportional to pcs/γ. This is often
interpreted as the depth of tension cracks, but this kind of cavitation breaks
the assumed symmetry so that such an analysis with it is inconsistent. The
restriction by cavitation holds also for more elaborate simulations.

If an inclined psammoid layer is submerged in resting water calculations
as without water suffice except for the specific weight γ. This is replaced
by γ − γw, i.e. by substracting the hydrostatic uplift with γw ≈ 9.8 kN/m3

for water. With a groundwater table at the inclined surface (Fig. 11.5.3a) the
skeleton gets also the specific seepage force fs = γw sin β in the same direction.
Thus (11.5.1) is replaced by

Ts11 = (γ − γw)(x1 − d) cos β,
Ts12 = γ(x1 − d) sin β

(11.5.3)

Tsij

Tsji

a)

ϕs

b)

fs
γ-γw

Fig. 11.5.3. Inclined psammoid layer with seepage (a), limit stress circle (b)

for the saturated skeleton. This changes active and passive limit stress circles,
and a single one (Fig. 11.5.3b) is obtained for Ts12/Ts11 = tanϕs, i.e. for

tan βs = tan ϕs(1 − γw/γ) (11.5.4)

with a friction angle ϕs that depends on the relative void ratio re (cf. Sect. 2.9).
This statically possible inclination is lower than without downhill seepage.
As without or with resting pore water (11.5.4) is necessary for stability, but
sufficient only with the critical friction angle ϕcs and re ≤ 1.

More often the groundwater in situ flows through a lower part of the layer,
and the upper part is humid. One could again construct limit stress circles and
calculate a statical limit inclination. Evolutions of columns could be simulated
with pcs above and pw below the groundwater table. This would work also
for the propagation of plane waves which could be simulated with elp-α or
hyp-δ. Apart from cavitation cracks critical phenomena with loss of column
symmetry can arise by shaking if tanβ exceeds the critical value calculated
by interpolation of (11.5.1), (11.5.2) and (11.5.4) with ϕcs.
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The coupling of skeleton and pore water is strongest without seepage, in
particular for degrees of saturation Sr near 1. This requires shearing times ts
well below diffusion times, say ts ≤ 10−2td with td by (11.3.1). A saturated
psammoid layer under water with a high relative void ratio re can collapse.
This can happen with sediments along a coastal shelf or with flooded mining
deposits, with high re due to a minute net attraction (Sects. 6.2 and 7.1).
With hydrostatic pw two initial skeleton stress components (a) are given by
gravity,

Ts11 = (γ − γw)(x1 − d) cos β ,
Ts12 = (γ − γw)(x1 − d) sin β ,

(11.5.5)

if the specific weight minus uplift γ − γw is constant versus depth. This is
obtained from (11.5.1) with a constant hydraulic height. The in-slope com-
ponents Ts22 and Ts33 are statically indeterminate, they may be generated
with elp or hyp by imposing Ts11 and Ts12 to an RSE with simple shearing
from a low initial ps and a suitable re. Rankine states are not justified for the
onset, and internal variables may be left aside in case of large monotonous
deformations.

An isochoric shearing is related with changes of skeleton stress compo-
nents which depend mainly on the initial re. Very loose psammoid columns
collapse with a change of width and height. When the layer slumps it under-
goes changes in the downhill direction, thus the assumed column symmetry
gets lost. If such a collapse would release more kinetic energy it could arise
spontaneously. One can judge such a loss of stability by calculating the excess
of kinetic energy with assumed collapse modes (Gudehus 1998). Instead of
assuming collapse modes one could generate them numerically by means of
a spatial fluctuation of re. The suspension flow after a decay of the skeleton
and the re-combination of a psammoid will be treated in Sect. 16.3.

A similar collapse can occur with a loose, nearly saturated fine-grained
psammoid at the air. This can happen with natural and technical deposits
after they are soaked by rain. With 100% humidity and atmospheric pressure
pa the initial pore water pressure is pw = pa + γw(d − x1)/ cos β. Two initial
skeleton stress components are given by (11.5.1), the further two could be
generated by simulation with the given e. They could reveal whether -Ts12

would decrease by isochoric shearing, this could suffice for a spontaneous
collapse. A collapse could occur more easily if more kinetic energy would be
released by an isochoric bulging. For e > eco the slope would collapse into a
suspension with any inclination β > 0 and initial pw.

Gas bubbles can play a role for a collapse without seepage. They can be
caught in a flooded or soaked slope (Sect. 6.2) and can render possible high
void ratios (Sect. 7.2). Collapse modes are slightly contractant with them, this
is controlled by the ideal gas equation. After a decay of the skeleton the gas
bubbles rise so that the suspension gets denser. Rising bubbles can unite to a
gas cushion under a less permeable cover, this reduces the sliding resistance
until the cushion breaks out (Gudehus 1998).

Evolutions of saturated psammoid columns with seepage can be induced by
changing boundary conditions. If a top layer is imposed and maintained within
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times which exceed the diffusion time td the slope is densified and sheared.
This may be calculated by elp-α or hyp-δ as outlined at the beginning of
Sect. 11.3, now also with lateral displacements. Changes of hydraulic condi-
tions could likewise be taken into account, e.g. evaporation above or drainage
below. If a collapse can be excluded, which has to be checked without further
seepage as outlined above, the assumed one-dimensionality need not get lost.
As without shearing the RSEs in stable columns can approach a contractant
state limit, this would be an attractor in the large.

A loss of symmetry can occur with localized dilation. Suction can lead to
nearly vertical cracks near the free surface. This implies a capillary entry in
case of full saturation and an extension otherwise (cf. Sect. 6.2). Shear bands
can arise not only along the base, but also up to the surface. The localized
dilation can cause cavitation of the pore water, near the free surface shear
bands can go over into cracks. All that requires a lower than critical initial re.
Water can rapidly enter via cracks which collapse and can leave back such a
high pw and overall re that the slope collapses.

A saturated psammoid layer upon an inclined shaking base flows like a
liquid. If the void ratio and the slope angle are lower than critical the column
symmetry need not get lost by a collapse. Cavitation and shear localization do
not occur if the accelerations are not too big. During the propagation of waves
through the layer the seepage may be neglected (Osinov 1998) except for the
vicinity of a surface and/or base with free drainage. Repeated propagations
within a much shorter time than needed for diffusion lead to a higher than
initial pw (a) and ratcheting. This corresponds to Ibsen’s (1994) triaxial test
results (Fig. 4.2.8) and is captured by v-hyp-δ for RSEs in the slope. Detailed
simulations could be carried out as proposed by Osinov (2003).

In waiting times without shaking the field of pw returns to the one given by
the hydraulic boundary conditions, and the layer comes to rest with a minute
densification. The rapid and strong drainage and densification observed in
shakebox tests (Sect. 12.3) due to the breakthrough of channels can be left
aside as it requires a suspension which is excluded by lower than critical re

and β. The intermittent flow (seismic creep) may be estimated by means
of seismo-hypoplasticity (Sect. 4.6). This requires model tests to determine
scaling factors, and the seismic energy per unit of time and base area is needed
for estimating the granular temperature. The influence of re and pw could thus
be captured semi-empirically.

Summing up, inclined psammoid layers can be captured by columns as
long as inclination β and relative void ratio re do not exceed critical values.
Without water and with resting water the critical inclination agress with the
critical friction angle, βc = ϕcs. With an inclined groundwater table the stati-
cally possible β is reduced by the seepage force. Rankine’s (1856) stress states
are not sufficient for stability, but may be used for granular flow upon an
incline. A saturated psammoid layer with higher than critical β and re col-
lapses without seepage, then the assumed symmetry of columns can get lost.
The stability can be judged by the release of kinetic energy with a simplified
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collapse mode. With a high enough re a saturated psammoid turns into a sus-
pension, then gas bubbles can enhance collapse and flow. The assumed column
symmetry can get lost by warping, shear localization and/or cavitation.

11.6 Peloid columns in slopes

Peloid columns in slopes can be defined by the same symmetry as with psam-
moids. We assume full saturation for simplicity, but gas bubbles between the
particles could be taken into account (Sects. 6.3 and 7.3). Coupling of skele-
ton and pore water can occur in many variants. This section is again rather
introductory as the assumed symmetry is at best approximately given in situ.

Consider first peloids with hard grains so that the skeleton viscosity may
be neglected. Their permeability is low, and they can have a net attraction
pn < 0 of the skeleton (Sect. 6.3). The contribution of pn to the skeleton
pressure via ps = p − pw − pn may be negligible, i.e. −pn � ps is assumed,
but even then the limit void ratios can be substantially higher due to pn < 0
(Sect. 7.1). As pn depends on pH and the salt concentration changes of both
can have a dramatic influence on the stability, Fig. 11.6.1. The slope (a) may
initially be stable with a free surface at the air due to pn although the void
ratio is high. This is possible e.g. with sea water during the sedimentation.

When the salt is leached out by rain and seepage the net attraction pn < 0
can disappear so that the limit void ratio is reduced (b, A → B). Thus the
void ratio can get higher than critical, whereas the skeleton stress components
required for static equilibrium (c) remain the same. Before the loss of pn an
isochoric shearing would meet an increasing resistance (path A), but now it
would decrease (B). Then any disturbance would lead to a collapse into an
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Fig. 11.6.1. Undrained inclined peloid layer with hard grains (a), paths of void
ratios versus pressure (b) and stress (c)
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avalanche. Such a soil is called quick clay (Bjerrum 1955) although its content
of clay minerals is low. A similar collapse can occur with mining deposits
which are soaked by rain.

The stability can be judged as outlined in Sect. 11.5 for psammoids without
seepage. As the dependence of pn on pH and salt and the one of ec on pn

cannot be calculated (Sect. 6.3) experiments are needed with the range of
expected ionic strength (Sect. 7.1). The further run of an avalanche may be
calculated by means of a non-linearly viscous relation, but this cannot capture
gas cushions and drainage channels. A stabilization by an increase of −pn

could principally be modelled by means of a decrease of ec and further limit
void ratios with time t. The combined diffusion of pore water and solubles
(Sect. 6.3) can as yet hardly be captured, however, therefore a series of ec-
tests with different pn would be needed.

Turning now to peloids with soft particles, the skeleton viscosity has to be
taken into account. A collapse as indicated with Fig. 11.6.1 may be left aside
as with constant ionic strength and soft particles there is almost no reduction
of shearing resistance (loss of ductility) without drainage in the geotechnical
range of ps (except for extremely low or high ps). Stationary creep may be
assumed without drainage or for times which are well below the diffusion time
td, Fig. 11.6.2. This can occur after placement without seepage, by placing
a top layer or by removing water above the slope. The void ratio e may be
spatially constant for simplicity, together with the inclination β and the water
on top it is decisive for the creep rate.

The in-plane total normal and shear stress components increase linearly
with depth (Fig. 11.6.2a) by (11.5.1) due to static equilibrium. After a tran-
sition the creep velocity v2 has a gradient that increases non-linearly with
depth. This is due to skeleton viscosity: stationary shearing in RSEs with dif-
ferent T12 and the same e requires different pressure ps (b), whereas the stress
ratio Ts12/Ts11 is constant (Sect. 3.8). This can be approximated by

−D12 =
1
2

∂v2

∂x1
= Dr

(
−T12

τr

)1/Iv

(11.6.1)
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with a reference shear stress τr which can be determined by an undrained
shear test with D = Dr. Combination with T12 by (11.5.1b) and integration
with v2 = 0 for the base x1 = 0 yields

v2 = 2Dr
Iv

1 + Iv

τr

γ tan β

(
γd sin β

τr

)1/Iv+1

−
(

γ(d − x1) sin β

τr

)1/Iv+1

.

(11.6.2)

This holds for 0 ≤ x1 ≤ d and may be simplified by 1/Iv + 1 ≈ 1/Iv as
the viscosity index Iv ranges from ca. 0.02 for 0.05. The creep velocity v2 is
nearly constant for x1/d < ca. 0.2 with Iv ≤0.05. Therefore (11.6.2) could be
validated in a model test with a layer of soft clay upon a rough plate, the
slope of which is changed in a much shorter time than the diffusion time td.
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Fig. 11.6.3. Creeping peloid layer with a lid (a), creep test under water (b)

The same approach works also with a top layer, Fig. 11.6.3. With its
thickness d1 and specific weight γ1 the total normal and shear stresses are
bigger by γ1do cos β and γ1d1 sin β (a). The creep velocity, which is related
again with T12 by (11.6.1), has a more uniform gradient due to −T12 > 0 at
the peloid top x1 = d. Integration with v2 = 0 for x1 = 0 leads to

v2 ≈ 2DrIv
τr

γ tan β

[(
τo + γd sin β

τr

)1/Iv

−
(

τo + γ(d − x1) sin β

τr

)1/Iv
]

(11.6.3)

with Iv � 1. For do  d the v2-profile gets linear as for simple shearing. The
latter case can be validated with a thin submerged layer of clay between two
rough impervious plates (b). When increasing the inclination β the velocity
of the top plate increases the more suddenly the smaller Iv is. Ignoring the
viscosity one would calculate a shear strength cu from the top weight, the area
covered with clay and the inclination βc required for sliding. A closer look
reveals that for each β near βc there is another stationary v2. The covered
area could be controlled by choosing a transparent top plate which is smaller
than the base and a thin layer which is not squeezed out.
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If a drainage is prevented by means of an impervious base and cap the
creep motion remains stationary. This is a state limit in the large which can
be represented by a set of critical states with different stretching rates for
different RSEs in a peloid column. The stationary pore water pressure is
determined by the total pressure −T11 via (11.2.5). The initial skeleton stress
states diverge from critical ones, but they get critical by the transition to an
argotropic attractor. The transition time ts is principally determined by the
initial state and stretching rate. It cannot be calculated, however, if the initial
quantities are not known except for T12 and e. The initial stress field caused
by the placement need not be uniform in the x2 and x3 directions, but even
then it tends to the symmetry assumed for columns. This attractor in the
large works as long as the layer does not collapse with bulging, and as long
as the diffusion of pore water is negligible in case of draining boundaries, i.e.
for ts � td.

The same stationary velocity profile and total stress components are ob-
tained with (3.1.2) and (3.1.23) for an idealized solid. Rübel (2010) simulated
transitions with a column of finite elements. T22/T11=T32/T11=K was as-
sumed for the statically indeterminate initial stress components with a factor
K from 0.8 to 1.2. Assuming an initial state of rest, the calculated velocities
tend to a constant velocity profile which agrees with the one by (11.6.2). The
statically indeterminate stress components tend to T22 = T11 = T11 in the
more deformed lower part. The assumed initial T23 and T33 remain almost in
the nearly undeformed upper part. With a lower viscosity index Iv the tran-
sition takes much more time, but about the same rather small deformation.
These findings point to an attractor in the large: an argotropic state limit field
of shearing (as with a stack of inclined layers) is achieved independently of
the initial velocity and stress field. As outlined with Fig. 10.4.3d validations
could be achieved with model tests.

Consider now fully drained creep which requires shearing times well above
the time for pore water diffusion, ts  td. This could be achieved in the lab
with thin layers between filter plates (Balthasar et al. 2006), and can occur
in a slope with a thin clay layer upon a pervious base and under a pervious
cap. Other than without diffusion the skeleton velocity has two components,
vs2 tangential and vs1 normal. The skeleton stress components Ts11 and Ts12

are determined by specific weights, layer thicknesses and hydraulic boundary
conditions as for psammoid layers without pore water diffusion (Sect. 11.5).
The stress obliquity Ts12/Ts11 may be lower than (A), equal to (B) or bigger
than critical (C). The void ratio in an RSE decreases, remains or increases in
case A, B or C. It can be substituted by an equivalent pressure pe, i.e. the ps

for a state limit with the given Ts12/Ts11 and e for the stretching rate D = Dr

(Sect. 3.8). ps = −Ts11 may be assumed as for isochoric state limits in the
calculation of pe/ps.

The consolidation ratio pe/ps is decisive for the amount of stretching, this
changes with stress ratio and time. According to v-elp and v-hyp (Sect. 3.8)
the stretching components can be written as
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D12 = − 1
2 (∂vs2)(∂x1) = mDr(ps/pe)1/Iv

D11 = (∂vs1/∂x1) = tan νD12 .
(11.6.4)

Therein the factor m and the dilatancy ratio tan ν are determined by the
stress ratio Ts12/Ts11. m is close to 1, whereas tan ν has a smaller amount
and indicates contractant (A), isochoric (B) or dilatant (C) shearing. The
changes of ps and pe in the x1-direction may be so small that the profiles
vs2(x1) and vs1(x1) are nearly linear, this is the case with the assumed thin
layer which thus undergoes a nearly uniform simple shearing.

With a subcritical stress ratio the creep motion slows down as pe gets
smaller by densification. With a critical stress ratio the creep motion is sta-
tionary as there is no change of density. With an overcritical stress ratio the
creep motion speeds up as pe is reduced by dilation. In the third case the
drainage gets impeded by the accelerated shearing and by a pw-decrease. The
shearing gets localized (Sect. 8.3) until the slope collapses without further vol-
ume change, and cavitation can occur due to suction (Sect. 6.3). The stress
ratio is thus decisive for the long-term stability, this can also be expressed
by means of argotropic attractors in the large. Contractant or isochoric state
limits are attained with subcritical or critical stress ratio. The creep rates
are determined by the initial consolidation ratio pe/ps. Critical phenomena –
viz. localization, cracking and warping – occur with a pe/ps-dependent delay.
They imply a loss of symmetry, indicate a strange attractor and can hardly
be predicted (Sect. 16.3).

Coupled creep and diffusion can only be modelled numerically, at best
the stability can be judged analytically. An inclined peloid layer, its base
and its cap are identified by dimensions and material parameters. An ini-
tial state is specified by profiles of skeleton stress components, pore wa-
ter pressure and consolidation ratio. The peloid behaviour can be modelled
by v-elp or v-hyp (Sect. 3.8), internal state variables are not needed with
rather large monotonous deformations (Sect. 5.6). Missing initial skeleton
stress components can be generated by imposing gravity up to the given
components. The initial consolidation ratio pe/ps plays the main role. The
permeability kf is also needed, and its dependence on e can be taken into
account (Sect. 6.3). The balance equations for linear momentum and masses
and their approximation with finite elements are the same as for psammoids
(Sect. 11.2).

Boundary conditions for skeleton and pore water may be specified as im-
posed evolutions versus time t. The diffusion time td estimated by (11.3.1)
can be used as reference time. For instance, imposing a top layer can be rep-
resented by a simultaneous increase of Ts11 and Ts12 at top and base within a
loading time. The access of water can be specified by an increase of pw within
a certain time. Drainage below and desiccation above can be specified by a
reduction of pw over a given time. The stress ratio Ts12/Ts11 at the upper and
the lower boundary may be stationary and critical, overcritical or subcritical
after the proposed changes of boundary pressures.
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Fig. 11.6.4. Stabilizing creep of an inclined peloid layer with draining boundaries,
simulated with v-hyp (Libreros-Bertini 2006): profiles of shear displacement (a);
shear displacements (b), pore pressures (c) and void ratios versus time (d) for rim
(R) and mid-height (M)

Libreros-Bertini (2006) worked out such simulations for a peloid layer be-
tween filter plates. The visco-hypoplastic parameters represent a highly plastic
clay, initially the layer thickness is d = 6 m, the boundary normal stress is
σs = −Ts11 = 1 MPa, and the pore pressure on top is pw = 100 kPa. With
a very low kf = 10−12 m/s, kept constant for simplicity, the diffusion time
by (11.3.1) is td ≈ 1 year. The shear stress is increased from zero to a value
τd within the time 0.1td and then kept constant, pw at the boundaries is not
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changed. This could represent a clay layer near an excavation (Sect. 12.2),
but also a slope with surcharge as details of the increase of σs and τd are
unimportant for the subsequent evolution.

Figure 11.6.4 shows calculated evolutions after normal consolidation with
subcritical shear stress, namely pe/ps = 1 initially and τd= 0.55 σs tan ϕcs from
t=0.1td onwards. The profiles of shear displacement (a) are almost linear. The
increase near the upper rim (R) and in the middle (M) of the layer slows down
with time (b). The pore water pressure increases by loading and returns to the
initial value by diffusion with shear drift (c). The void ratio is more reduced
within the diffusion time than thereafter (d). A similar stabilization would
occur with any τ < σs tan ϕcs, but slower with a bigger td and a bigger initial
pe/ps.

Figure 11.6.5 shows evolutions calculated after overconsolidation with an
overcritical shear stress, namely with pe/ps = 2.5 initially and τd/σs tan ϕcs

=1.4 from t = 0.1td onwards. The profiles of shearing are again nearly linear
(a). They are accelerated and diverge at t ≈ 2.7td (b). The pore pressure
is reduced slightly in the beginning and more near the dramatic end (c).
The void ratio increases slightly with hardly visible acceleration (d). This
destabilization would lead to shear localization and cavitation which cannot
be captured by the employed model (Sect. 8.4). It is more delayed with a
bigger pre-consolidation and a longer diffusion time.

Seismic waves enhance such evolutions. With a low initial pe/ps and a sub-
critical shear stress propagations produce pore pressure increase and ratch-
eting, thereafter shearing is slowed down with contraction and diffusion, in
the long run the stabilization is stronger than without shaking. With a higher
initial pe/ps and an overcritical shear stress wave propagations produce ratch-
eting and minor pore pressure changes, thereafter the time up to a collapse is
shorter than without shaking. Such evolutions could be simulated by adding
what was said in Sect. 11.4. Big amplitudes have to be excluded as they would
lead to cavitation and bulging.

The extension to composites of inclined layers is straightforward. Simula-
tions with a fluctuating initial void ratio would lead to more uniformity in case
of subcritical stress ratios. Otherwise the fluctuations would enhance critical
phenomena as shear localization, cracking and warping so that the assumed
column symmetry gets lost. Shaking would enhance diffusion of pore water
and creep of the skeleton. This could be captured by asymptotic state cycles
with ratcheting in case of periodic shaking. Erratic shaking could be cap-
tured by a kind of seismic viscosity, but as yet only in qualitative estimations
(Sect. 5.5).

Summing up, peloids with hard grains can be captured nearly as psam-
moids, but the relative void ratio re can be bigger due to a net attraction. If
this is reduced by leaching out a peloid slope can collapse into an avalanche.
This loss of stability will occur if kinetic energy would be released by any
velocity field, then the column symmetry tends to get lost by shear banding
and bulging. Water above the slope can stabilize it initially. Undrained peloid
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slopes with soft particles tend to stationary creep. The attained stationary
state is an attractor in the large as long as the column symmetry does not get
lost.

With drainage the combination of pore water diffusion and shear creep
leads to a stabilization if the statically required ratio of shear and skeleton
normal stress is subcritical. An attractor in the large is attained more rapidly
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with ratcheting by seismic waves. In case of a critical statically required stress
ratio the slope tends to stationary shearing with a velocity which is determined
by the initial consolidation ratio pe/ps. With an overcritical stress ratio the
slope collapses sooner or later. The time for stabilization or up to a collapse
increases if the initial pe/ps and/or the diffusion time td of the pore water
is bigger, and decreases by seismic waves. Shaking enhances such evolutions,
but calculations with it are expensive or rather qualitative.

11.7 Radial symmetry

Radial symmetry, i.e. spatial variation only with radius r, can be spherical
or cylindrical. The latter may be assumed e.g. for the expansion of a vertical
borehole in a psammoid layer, Fig. 11.7.1. The borehole radius ro is increased
from an initial value roo over a length of ca. 10roo by inflating a hose (a). The
radial skeleton pressure ps = po − pw increases with the expansion up to an
asymptote psa (b). The pore water pressure pw does not change because of
the high permeability. Vertical displacements and strains may be neglected
for the horizontal cross section through the middle of the expander. Similar
expansions can be observed in a calibration chamber with controlled place-
ment and pressure under the lid (c). Experiments can also be made with two
hard smooth parallel plates (d).

Neglecting the disturbance by installation the initial state for a back analy-
sis with hyp, Cudmani and Osinov (2001) assumed spatially uniform skeleton
pressure components and relative void ratio. In situ Ts11 is determined by

p0 – pω

r0r

psa

r0

sym

r00

p0

p0

p1
sym

a)

b) c)

p0

sym

d)

Fig. 11.7.1. Cylindrically symmetric expansion in psammoid bodies: expander in a
borehole (a), expansion pressure versus increased radius (b), pressure chamber with
controlled top pressure (c) or smooth plates (d)
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gravity and Ts22 may be estimated by (11.2.7), but re can at best be guessed
by simulating the past (Sects. 11.2 and 11.4). The radial skeleton velocity vs

is given by the expansion, and decreases with the distance so that it may be
neglected at a fictitious outer wall with r1 = 20roo. vr can be normalized by
the rate of radial expansion ṙo ≡ dro/dt as the psammoid is rate-independent.
The configuration changes with ro, and the deformations are big near the ex-
pander. r is referred to the initial inner radius ro. There are two stretching
components, viz.

Drr =
∂vr

∂r
, DΘ =

vr

r
. (11.7.1)

The expansion causes an increase of the radial, circumferential and vertical
skeleton pressure components −Tsr, −TsΘ and −Tsz which is smaller for bigger
r (b). The evolution is determined by the equation for static equilibrium, viz.

∂Tr

∂r
+

Tr − TΘ

r
= 0 , (11.7.2)

and by the boundary conditions at the expander (given displacement) and at
the fictitious outer wall (no displacement).

The inner pressure increases by the expansion with a steeper gradient and
up to a higher asymptote if the initial re is smaller. The asymptotic pressure
psa is determined by the far-field mean skeleton pressure psf and relative void
ratio ref , this dependence is influenced by the hypoplastic parameters. This
means an attractor in the large: the state of the skeleton near the expander
tends to a radial distribution which is only determined by the far-field state.
A critical state is attained near the expander with an increase of ps and a
reduction of re, whereas RSEs further outside tend to contractant state limits.

Fig. 11.7.2. Simulated versus observed asymptotic expansion pressures (Cudmani
and Osinov 2001)
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This calculation model was validated by observations in a calibration
chamber, Fig. 11.7.2. Measured asymptotic skeleton expansion pressures are
plotted versus those calculated by Cudmani and Osinov (2001). Parameters
for the granular material and its initial state were taken over from published
reports. The agreement is good for lab tests and acceptable for field tests
which reveal more scattering. This is the base for solving the inverse prob-
lem, viz. to determine re from the asymptotic expansion pressure and the
far-field pressure. Samples from the borehole are needed to identify the soil
and to determine its hypoplastic parameters. This approach was extended to
the penetration of probes (Sect. 14.3).

Evolutions of peloids by the expansion of boreholes may be considered as
radially symmetric if the degree of saturation Sr is slightly below 1. Thus a
radial skeleton velocity vs(r) can occur in horizontal planes without drainage
by compression of gas bubbles (cf. Sect. 6.3). The stretching components by
(11.7.1) can be related with changes of the skeleton stress components by
v-hyp (Sect. 3.7). The initial state is specified by uniform stress components
and a consolidation ratio pe/ps (cf. Sect. 11.3). Changes of pore pressure pw

are determined by changes of void ratio via the ideal gas equation (Sect. 6.3),
so the equilibrium of the skeleton by (11.7.2) is influenced by a radial seepage
force fs = −∂pw/∂r. The radial displacement may be neglected at a suffi-
ciently distant outer cylinder and is prescribed at the inner boundary. The
normalized expansion velocity ṙo/roDr plays a role because of the skeleton
viscosity.

The expansion or contraction of spherical cavities in psammoids or peloids
can be simulated formally as with cylinders. With radial symmetry (11.7.1)
remains valid, whereas the second term in (11.7.2) gets a factor 2. The far-
field stress should be uniform and isotropic, this excludes in situ applications.
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Pressure chambers should be small enough for neglecting gravity and could
have an external membrane, and a chamber wall for control of pressure or
displacement, but the inner cavity could scarcely be controlled without dis-
turbance of radial symmetry. A spontaneous loss of symmetry can also occur
as will be outlined further below.

Meier (2009) worked out simulations with spherical symmetry and realis-
tic in situ input data, Fig. 11.7.3. Sr ≈ 0.97 was assumed, the initial pe/ps ≈
OCR ranges from 1 to 5, the radial velocity is ṙo/rooDr = 1. The calculated
asymptotic expansion pressures are proportional to the far-field mean skele-
ton pressure pso and bigger with a higher far-field consolidation ratio pe/ps.
With another rate of expansion ṙo than rooDr the asymptotic expansion pres-
sure changes by factor (ṙo/rooDr)Iv due to skeleton viscosity (Sect. 3.8). The
asymptotic state field near the expander is thus an argotropic attractor in the
large which is determined by the far-field state and the rate of expansion. It
requires gas bubbles between the particles as the compression is assumed to
occur without seepage.

Sr ≈ 0.97 is a realistic estimate of the gas fraction, deviations from this Sr

cause a minor indeterminacy (Meier 2009). A direct validation could not be
achieved as sufficiently precise results of expansion tests with clay in a pressure
chamber or in situ are not available. Figure 11.7.3 is indirectly confirmed,
however, by other field probing results. The resistances to vane shearing and
to penetration are also proportional to the far-field ps and increase likewise
with the far-field pe/ps (Sects. 14.4 and 14.7). The argotropy and the ratio of
both resistances are observed as calculated by Meier (2009) (cf. Sect. 11.3).
This is a base to determine pe/ps and thus e from the probing resistance
(Sect. 14.3).

The outlined evolutions by expansion can get radially symmetric even if
they are not at the beginning. Such near-field attractors could be demon-
strated by simulations without the assumed symmetry. The proposed meth-
ods are limited, however, by a spontaneous loss of radial symmetry. This
can occur if the circumferential skeleton stress σsΘ tends to zero by the ex-
pansion. A dense psammoid can crack radially with cavitation of the pore
water if this develops suction due to insufficient drainage or with gas channels
(Sect. 6.2). A loose saturated psammoid can decay by deformation without
drainage (Sects. 2.5 and 2.7), then radial cracks can even develop without
cavitation of pore water. With pressure control the borehole can also bulge if
this bifurcation releases more rapidly free energy than a radially symmetric
continuation, in particular with a high re or low pe/ps and without drainage
(cf. Sect. 11.5).

Formally similar calculations could be carried out for convergent cylindrical
cavities. With radial symmetry they would lead to dilatant state limits with
decreasing ps. Numerical problems arise with low ps, and validation experi-
ments with a shrinking cylinder and radial pressure measurement are hardly
possible. With a controlled inner fluid pressure – with or without membrane
or filter cake – the radial symmetry gets lost more easily. Spiral-shaped shear
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bands develop from the boundary in case of low initial re or high pe/ps. The
bands can go over into circumferential cracks, then chips fall into the cavity.
Without drainage and with high re or low pe/ps the borehole gets elliptic and
closed. Simulations with spatial fluctuation of re or pe/ps and without radial
symmetry could provide insight into such critical phenomena with strange
attractors.

Cylindrical bodies of psammoid or peloid could likewise be analysed. As for
columns the diffusion of pore water could be taken into account, of course also
for the expansion or contraction of cavities. Validation tests could be carried
out in a triaxial apparatus with fixed smooth end plates. The circumferential
skin could consist of a filter and a rubber membrane, but thus a uniform
pw could scarcely be achieved. Peloid cylinders can have a psammoid core
for pw-control (Rendulic 1937). All that could be done also with spherical
bodies, but then the radial symmetry is disturbed by an access to the interior.
Expansion tests with cylindrical or spherical samples have rarely been made
as they appear not rewarding, but a spontaneous loss of symmetry would at
least not be so prohibitive as with the convergence of cavities. Experiments
with hollow cylinders and spheres could also help to understand patterns of
shear bands and cracks.

Shrinkage and swelling of peloid cylinders or spheres can be investigated
with free surfaces. The boundary condition for shrinkage is the velocity of
evaporation ve, for swelling it is the pore water pressure pw (cf. Sect. 10.1).
Full saturation may be assumed for simplicity, and the suction pa − pw at the
boundary should not exceed the capillary entry pressure pce (Sect. 6.3). For
neglecting gravity the samples have to be small enough, i.e. γd � p̄s with
diameter d and average skeleton pressure p̄s. In general skeleton and pore
water are coupled so that the ratio of diffusion time td and waiting time with
constant ve or pw is important. Thus numerical simulations are required in
general (cf. Sect. 11.3).

The shrinkage of samples may be considered by means of single RSEs,
Fig. 11.7.4. As for a thin layer (cf. Fig. 11.6.3) the stretching components
may be assumed as spatially constant. This means D11 = D22 and D33 = 0
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Fig. 11.7.4. Shrinkage of a peloid sphere (a), void ratios versus pressure (b), suction
versus radius (c)
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for a cylinder (A), D11 = D22 = D33 for a sphere (B) and a linear increase
of −vs with r for both (a). With isochoric solid particles and pore fluid the
seepage velocity vw − vs = −2vs is also proportional to r. Evaporation with
constant ve means a nearly stationary stretching, thus ps increases (b). The
suction pa − pw = −Tsr increases with r because of radial seepage (c). The
equilibrium condition pa = −Tsr + pw can only be satisfied in the spatial
average. Beyond a capillary entry with pa − pw = pce this kind of analysis is
no more justified.

The evaluation of shrinkage tests can thus yield material parameters for
contractant state limits (Külzer 2010, cf. Sect. 2.9). The volume change can
be determined via the reduction of weight. The average skeleton pressure
p̄s can be determined by measuring the attainable deviator σs1 − σs2 under
cylindrical shortening: just after the visible capillary entry the sample should
be deformed into a cylinder which is shortened between smooth plates, v-hyp
provides the initial ps by a back analysis. Test and evaluation are robust as the
evolution tends to an attractor in the large, namely an argotropic contractant
state limit. The simplicity gets lost after a capillary entry, cracking suggests
a strange attractor (Sect. 16.3).

Swelling of samples cannot be captured as easily. After submerging a sat-
urated sample with suction it gets softer from the skin to the core like a piece
of soap. This indicates a pore water diffusion with inwards seepage, therefore
the stretching must not be assumed as spatially uniform nor temporally con-
stant. Without a net attraction pn < 0 the sample decays into a suspension
(Sect. 6.3). With a pn estimated from the tensile strength such tests can at
best crudely indicate the swelling potential.

To sum up, radial symmetry can be achieved by the expansion of cavities
in psammoid or peloid. This is due to contractant state limits as attractors
in the large, whereas rapid expansions can lead to radial cracks. The radial
symmetry can also get lost by bulging, in particular with high relative void
ratio re or low consolidation ratio pe/ps, and more easily by cavity contraction
with shear localization and chipping. Coupling of density changes and seepage
can principally be taken into account, but it appears that this is hardly worth
the effort. Borehole expansions can be used to determine re or pe/ps in situ.
Shrinkage tests with small peloid samples can yield parameters for contractant
state limits, swelling tests with a free surface are less promising.
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PLANE-PARALLEL EVOLUTIONS
WITHOUT SSI

Evolutions which are equal in parallel planes are called plane-parallel, this is
not always the same as plane strain. Soil-structure interactions (SSIs) are left
aside in this chapter, solids occur only as rigid base. Initial and boundary con-
ditions are more complex than in Chap. 11 and more specific than in Chap. 10.
Attractors in the large help to justify approaches by calculations and model
tests, or at least to delimit their range of validity. Other than with RSEs such
asymptotes are non-uniform fields of state variables, but they are again driven
(exogeneneous) and/or thermally activated (endogeneous). According to the
involved RSEs they belong to monotonous deformations (SOM-states and
state limits) or cyclic ones and ratcheting (asymptotic state cycles). As state
fields are at best compounds of such states our attractors in the large cannot
be treated with mathematical rigour. The generic term ‘strange attractor’ will
sometimes be used for the spontaneous loss of symmetry by localization or
diffuse bifurcation.

Psammoid heaps on a solid base serve for introduction (Sect. 12.1). Even
without water they cannot fully be captured by models with grain skeletons
as these can arise and decay. With peloids in heaps skeleton viscosity and pore
water diffusion play a dominant role (Sect. 12.2). We will see why conventional
limit equilibria can at best yield design estimates. As always evolutions are
dominated by skeleton stress obliquities and relative void ratios or consolida-
tion ratios, these state quantities change with space and time.

The ground yields usually more when placing fills if it consists partly of
peloid (Sect. 12.3). We will meet the same dominant factors also with exca-
vations (Sect. 12.4). Simplified design models will again be discussed. Some
field observations support more sophisticated numerical models although the
assumed plane-parallelity is rarely given.

We will see in Sect. 12.5 how the same symmetry can be employed for seis-
mically activated evolutions. Hypoplastic simulations are confirmed by shake
box tests and field observations, but also delimited by critical phenomena.
It is discussed what could be done with seismically activated viscosity and
entropic pressures. Slow tectonics are considered in Sect. 12.6, therein initial
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and boundary conditions are inevitably artificial as only resulting fault pat-
terns are partly known. Simulations with soil models can thus help to widen
their range of application, but there are limitations by critical phenomena in
the lithosphere.

12.1 Psammoid heaps upon a solid base

The granular heaps considered in this section may consist of simple grain
skeletons in the sense of Sect. 2.2, and may be surrounded by and contain
more or less water. Their base may be rigid and fixed if not stated otherwise,
and rough or smooth with respect to the grain size (Sect. 10.3). Heaps get
shape, density and stress by placement, and can spread or collapse so that
shape and state are changed. Such evolutions depend also on the water in
the pores and around the heap. Grain skeletons can arise by sedimentation
or placement and can get lost by decay or removal (Sect. 12.4), and they can
take up or lose pore water. Only evolutions between rise and fall of skeletons
can be captured with methods of soil mechanics. For simplicity we assume
that heaps can be represented by one cross section and have displacements
only in this plane (plane strain).

Dry heaps can be similarly placed in the lab as their counterparts in situ,
Fig. 12.1.1. A box may have two transparent smooth hard walls for confine-
ment to plane strain and for observation, and a hard floor which is rough or
smooth and horizontal or inclined. Filling via a sieve produces a higher density

sym

β

sym

β

a) d)

b) e)

c) f)

Fig. 12.1.1. Dry psammoid heaps by pluviation without (a) and with wind (b), or
from granular flow (c); spreading (d), partial collapse (e) and sliding (f)
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with a diluter granular rain as long as the fill does not spread and slide (a).
Mining deposits can be similar, but have often softer particles. A fine sand
rain with steady wind produces a kind of dam with a dense flat windward
and a steep loose leeward slope (b). A barkhan dune has such a cross section
and wanders likewise slowly leewards. Granular flow upon an incline leads to
a loose heap (c), this may also be coarse debris at a rock slope.

Such heaps undergo evolutions of shape and state, particularly during and
just after their formation. A dense pluviated dam spreads with dilation when
the slope angle β attains a critical value (d). Parts of a dune near the steep
slope collapse every now and then with dilation so that loose sand with low
density and slope lies at the foot (e). A heap at an incline can slip past a
smooth and shear past a rough base (f). Shear localization occurs in these
cases (indicated by a dotted diagonal) if the skeleton was not fully dilated
before. Let us see how far such evolutions can be explained or even predicted
with the tools of soil mechanics.

Given an initial shape and state of the skeleton, one could principally sim-
ulate changes of both due to changing boundary conditions. Our heaps change
by and just after placing granular material, the skeleton arises with density
and stress and can get lost temporarily by collapse and rapid flow. Mechanical
models with skeletons, constitutive relations for them and boundary condi-
tions can only represent parts of such evolutions as initial states have to be
assumed, and as the placement can at best be approximated by continuum
models (Sect. 10.4).

Similarity rules help to judge calculation models, but such rules will rarely
suffice to transfer model test results to cases in situ. The base pressure is pro-
portional to γh with specific weight γ and height h. All stress components
are proportional to it if all dimensionless quantities are equal in model and
prototype. This implies geometrical and kinematic similarity, i.e. same shape
and same ratios of velocities at homologous points. Dimensionless material
parameters should be the same in model and prototype, those with the di-
mension of stress should be proportional to γh. With hypoplasticity (hyp,
Sects. 2.4 and 2.11) this means same ϕc, limit void ratios for ps = 0, ex-
ponents n, α and β, and granulate hardness hs ∝ γh. This can be achieved
with grains of same shape, size distribution and friction ratio as in the proto-
type, but of softer solid in model tests. With elastoplasticity (elp, Sects. 2.3
and 2.11) pressures ps → 0 are not captured, and the reference pressure is
subjective.

The relative void ratio re (Sect. 2.2) should be the same in model and
prototype. This is evident with hyp and less precisely defined with elp. The
initial re due to placement is paramount for any analysis, but cannot be
produced with it. Initial stress fields may be generated by means of simulations
with elp or hyp as their inevitable arbitrariness does not matter, this will be
shown further below. The grain size dg should be proportional to h if it counts
for shear localization (Sect. 8.2). If this leads to a model powder this should not
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be cohesive or repulsive and should not develop pore gas pressures deviating
from pa (Sect. 6.2).

Leaving aside mechanisms of placement and rapid granular flow evolutions
of granular heaps can thus at best be estimated. We will therefore restrict to
stability, i.e. the ability of the skeleton to stand during and after placement.
Only the following hypoplastic material constants are important,

• critical friction angle ϕc, or ϕcs for plane strain,
• exponents n and α for state limits,
• normalized granulate hardness hs/γh for barootropy.

The ratios ei/ec and ed/ec are nearly the same for different psammoids, the
exponent β is of minor importance near state limits (Sect. 2.4). The mean
grain size dg plays a role for base friction and shear localization. The relative
void ratio re should be followed up with care as it is the most important state
variable. We consider now how fields of skeleton stress and re can be related
with velocity fields in order to judge the stability.
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Tij

Tii

δ
B Aβ
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Fig. 12.1.2. Limit stress field of a dry granular fill: stress circles (a) at a thought
line (b)

Limit stress fields can be constructed for a dam as indicated in Fig. 12.1.2.
A straight line from the shoulder can have such an inclination δ that active
Rankine fields right and left of it (Sect. 11.5) are statically compatible. This
implies a jump of pressure along the straight line and a stress ratio at the
base so that there the friction condition (10.3.1) or (10.3.2) is not violated.
The friction angle ϕ should depend on the instantaneous re (Sects. 3.4 and
2.9), but this is not feasible as kinematics and dilation are ignored. One can
also construct statically possible stress fields with variable assumed principal
stress ratios or directions. Their possibility is only necessary, but not sufficient
for stability, so their construction is hardly worth the effort.

Sliding wedges may be assumed as shown in Fig. 12.1.3. A rigid triangle
may slide past the base, a second one slides past it and past the other part
of the heap which may be fixed (a). A limit equilibrium can be achieved with
suitable friction angles ϕi at the base and in the interior (b). The equilibrium
of arbitrary wedges with average stress obliquities which are possible for the
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Fig. 12.1.3. Limit equilibrium of a granular fill: wedges (a) and force polygon (b)

material is necessary for stability, but again not sufficient. Stress obliquities
at state limits are determined by the spatial averages of re along shear zones
(Sects. 2.9, 8.2 and 10.3). Equilibria of sliding wedges may suffice for design
estimates, but collapse scenarios can thus scarcely be captured.

More insight can be gained with macro-elements, Fig. 12.1.4. They can be
as high as the heap and may experience a uniform stretching. A single triangle
at the shoulder may be assumed with dilatant shearing (a). The statically re-
quired average stress obliquity tanϕe is given by the assumed inclination ϑ. If
tan ϕe exceeds the state limit obliquity for simple shearing according to re (by
Fig. 2.9.2) an equilibrium is impossible, i.e. the shoulder will collapse. This
holds for the actual average re which is higher than the initial one due to dila-
tion. The latter occurs with any overcritical stress obliquity and is enhanced
by any minute disturbance (Sects. 4.3 and 4.6). Thus a slope with β > ϕcs
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Fig. 12.1.4. Macro-elements for a dry granular fill: deformed wedge (a), two de-
formed wedges (b), force polygon (c), wedge upon a shear band (d), wedges with
shear bands (e)
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and re < 1 may stand for a short while, but collapses with dilated shearing
due to minute disturbances. This happens with shear localization which could
be captured by an additional macro-element (Sect. 8.2). The shoulder will not
collapse with β < ϕcs, then its spreading by repeated disturbances causes a
stabilization. The latter can scarcely be quantified by macro-elements.

Two macro-elements may be assumed in case of a smooth base, Fig. 12.1.4b.
They are sheared simultaneously with dilation, this requires an extension at
the base. The obliquity there is the tanϕw of sliding friction (Sect. 10.3). An
equilibrium force polygon can be constructed with weights and two further
obliquities (c). The statics is the same as with wedges in Fig. 12.1.3b, but
now the obliquities can be related with dilatant shearing that depends on re

as for the simpler case of Fig. 12.1.4a. It is again necessary for stability that
the statically required obliquities are lower than the ones for state limits with
the actual average re. This can be achieved with different combinations of
obliquities. If ϕsc is assumed for one of them, and if then the other statically
required one exceeds ϕsc a collapse will occur with progressive dilation. No
collapse can occur with the assumed macro-elements if both statically required
obliquities do not exceed ϕcs. If this holds also with variation of the assumed
angles ϑ1 and ϑ2 this would be a sufficient stability condition for this kind
of kinematics. A gradual spreading cannot be estimated with macro-elements
(Sect. 12.5).

Shear localizations may also be captured with macro-elements. A single
plane shear band may be assumed at the shoulder so that a wedge slides
down, Fig. 12.1.4d. The band may be thin, ds ≈ 10dg � h, uniform shearing
is assumed therein (Sect. 8.2). Required and possible average obliquities along
the band are determined as outlined with Fig. 12.1.4a. This means again that
a delicate equilibrium could be obtained with β > ϕcs for re < 1, but then
a collapse would occur with progressive dilation. A heap with β < ϕcs would
spread with stabilization by small disturbances.

In case of a smooth base two plane shear bands may be assumed together
with two rigid wedges, Fig. 12.1.4e. The kinematics is determined by sliding
along the base and by two dilatancy angles. The latter are related with the av-
erage re and the obliquities shown in Fig. 2.9.2. Statically required obliquities
may be obtained as with Fig. 12.1.4c, the stability may be judged as before.
One could combine shear bands with triangles as in Fig. 12.1.4b, but now the
latter cannot attain state limits as the shear bands. Therefore this additional
kinematic freedom would scarcely improve the judgment of stability.

More detailed calculations can be made with finite elements, Fig. 12.1.5.
The cross section of the heap is subdivided into triangles or rectangles with
velocities vi of nodes and stress components Tij at integration points (a). The
balance of linear momentum is expressed for each node by means of inter-
polation functions and virtual work, thus it is satisfied in a spatial average.
The rates of stress and the stretching can be related by elp or hyp, this leads
to non-linear equations for temporal increments which are solved iteratively.
Elements along the boundaries satisfy statical and kinematical conditions (b).
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Fig. 12.1.5. Finite elements for a dry granular fill; mesh and element with variables
(a), elements at free and rigid boundaries (b)

Along the base the normal and tangential components of velocity and stress
are constrained by vn = 0 and vt by (10.3.1). This excludes opening and
implies stick or slip. Along a free surface the stress may be assumed to be
isotropic by a capillary skeleton pressure, ps = pce (Sects. 10.1).

Coupled evolutions of shape and state can only be simulated with fictitious
initial states instead of the real placement (Sect. 10.4). One may assume a
weightless heap at the onset with a uniform low isotropic stress ps � γh, and
an initial e given empirically by the kind of placement. There would be no
skeleton without ps, an initial ps would hardly change with van der Waals
attraction (Sect. 3.2). The arising skeleton gets a void ratio as indicated by
Fig. 12.1.1, this has to be assumed. Gravity can then be imposed gradually
to the heap as a whole or layer by layer. The simulation produces changes of
shape (deformations) and state (stress and void ratio). A loss of equilibrium
would be indicated by accelerations without changes of external actions (here
only gravity).

The range of validity of such simulations could be explored by model tests
as indicated with Fig. 12.1.1. Evolutions of shape and void ratio could be
observed from the formation of the skeleton up to its collapse, zones of pro-
nounced shearing and dilation could be seen. The evolution of stress fields can
at best be observed at the bottom and at confining walls if these are paved with
stress cells. The kind of placement has a dominant influence upon the void
ratio and its further evolution. With a given shape and void ratio the stress
field cannot strongly depend on the order of placement, and such differences
could scarcely be observed. It appears that the historical element (Darwin
1883) is captured by void ratios in cases like in Fig. 12.1.1. Inertial effects by
filling and shaking could principally be taken into account (Sect. 12.5).

Back-analyses with finite elements should focus on spreading and collapse
with changes of void ratio as these can be clearly observed. Their simulations
will mainly depend on the chosen initial void ratio, whereas the order of im-
posing gravity is of minor influence. This can be attributed to state limit fields
which work as attractors in the large (Sect. 10.4) depending mainly on shape
and void ratios. Simulations may be used to judge simplifying assumptions,
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e.g. the ones of Figs. 12.1.2, 12.1.3 and 12.1.4. One can at least see how results
are changed by variation of assumed distributions. Comparison with model
tests could produce a kind of validation. This will remain debatable, however,
as real evolutions cannot be observed precisely and as their simulations require
assumptions. In particular, shear localization and inertial effects can hardly
be captured. Heaps of dry grains are not as simple as they may appear!

(pw– pa ) /γw

hw

hw

a) b)

vw

Fig. 12.1.6. Granular fill under water without (a) and with inwards seepage (b)

Turning now to saturated psammoid heaps, the pressure pw or hydraulic
height hw and the velocity components vw1 and vw2 of the pore water relative
to the ones of the skeleton vs1 and vs2 must be taken into account. Darcy’s
law can be written

vw1 − vs1 = −kf∂hw/∂x1

vw2 − vs1 = −kf∂hw/∂x2
(12.1.1)

with the permeability kf (Sect. 6.2). Total and skeleton stress components are
related with pw via

Ts11 = T11 − pw, Ts12 = T12,
Ts22 = T22 − pw, Ts33 = T33 − pw.

(12.1.2)

The principle of effective stress (Sects. 2.2 and 2.11) states that the skeleton
feels only Tsij as the grains are neutral with respect to changes of pw. The
gradient of pw, with components ∂pw/∂x1 and ∂pw/∂x2, causes a force at the
skeleton in addition to gravity and inertia. A skeleton in resting water would
only get uplift, otherwise it experiences also a seepage force with components
γw∂hw/∂x1 and γw∂hw/∂x2. One could easily allow for both if the hw-field
were independent of skeleton displacements, Fig. 12.1.6. With resting water
(a) it would suffice to reduce the specific weight for uplift. With a seepage
force towards the base the heap can stand with a steeper slope (b).

Observations reveal that this kind of uncoupling is rarely justified. Only
with coarse grains placement and subsequent evolution can be rather inde-
pendent of the surrounding water. Heaps can in fact be placed steeper with
seepage towards the middle of the base. This works only with not too coarse
grains, however, otherwise the seepage forces can change substantially with
turbulent seepage.
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Fig. 12.1.7. Coupling of pore water and granular fills under water: dense macro-
element (a), related evolution of hydraulic height and relative void ratio (b), loose
macro-element prior to (c) and at the beginning of a collapse (d)

Consider a macro-element at the shoulder of a model psammoid dam under
water, Fig. 12.1.7. A stable equilibrium with weight minus uplift Ws and
resultant skeleton reaction Qs could be obtained with a steeper slope by means
of an inwards seepage force Fs (a). This Fs could be maintained by a bottom
drainage as long as the skeleton tends to dilate by shearing. The skeleton
would take up water and reduce pw, thus it could stabilize itself temporarily.
Rapid shearing would be almost isochoric so that ps would increase in case of
a low initial re.

A steep slope could thus stand for a short while without bottom drainage
or after removing a lateral support. The skeleton would immediately decay at
the surface, however, as the dilation there is scarcely impeded by the induced
inwards seepage. Shear-induced transitions of hw and re are indicated for a
point I near the surface and a second one II further inwards (b). The skeleton
is stuck by impeded dilation as long as hw is not equalized by seepage if e is
lower than critical. The delayed collapse ends when a slope with β ≤ ϕcs is
reached so that the remaining skeleton will no more be dilated.

With an outwards seepage from the bottom an equilibrium could only be
achieved with β < ϕcs. A sufficient outwards seepage force would disintegrate
the heap into a suspension (Sect. 10.1). If the skeleton tends to contract
by shearing its pressure and shear stress are reduced by isochoric shearing
(Sect. 2.9). A macro-element would slump as its shearing causes an increase
of hw and thus an outwards seepage force, Fig. 12.1.7c, d. If the initial void
ratio is lower than critical the heap can be stable with a steeper slope as
suction arises in a deforming macro-element (d), and as hw is less reduced by
seepage with densification in deeper parts of the sliding region. If the initial
e is higher than critical the skeleton decays into a suspension that forms very
flat slopes after flowing down.
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Submerged granular heaps in situ reveal a similar behaviour. With coarse
grains, and a high kf therefore, only a fast outwards seepage could flatten
slopes. Steep slopes can be dredged in dense sand, but they collapse after a
short time until β < ϕcs is reached. Loose deposits collapse after a minute
disturbance, and very loose ones turn into a suspension temporarily. The sta-
bility cannot be judged by means of macro-elements as shear-induced seepage
forces can scarcely be estimated.

More insight could be obtained with finite elements and coupling of skele-
ton and pore water. As for one-dimensional cases (Fig. 11.2.1) each node has
a pw or hw, and each integration point has vw1 and vw2 in addition to the
skeleton variables. Equation (12.1.1) and the balance equations are written
with spatial averages. Taking into account hydraulic boundary conditions one
could simulate evolutions of shape and state principally as without water.
This would be hardly more than an exercise, however, as a suspension flow
prior to the birth of a skeleton and after its decay is thus not captured.

The wide variety of unsaturated psammoid heaps may only be touched.
Gas bubbles in a skeleton make the pore fluid compressible (Sect. 6.2), thus
changes of skeleton pressure by shearing without seepage are less pronounced.
Bigger gas inclusions can occur in a metastable equilibrium with a surrounding
saturated skeleton. They enhance a collapse by shearing and also by an overall
compression. Gas channels connected with the atmosphere provide suction
pa − pw > 0 (Sect. 6.2). Then the skeleton can stand with steep slopes and
with higher than critical void ratios. This can be captured with a capillary
skeleton pressure pcs that depends on dg, Sr and re (Fig. 6.2.3).

A totally submerged heap with gas inclusions is less stable than without
them. With subcritical void ratios (re < 1) it can dilate without seepage, so
it stands for a short while with β > ϕcs. With re > 1 it can contract without
seepage, therefore pw increases and ps = p − pw decreases with an almost
constant total pressure p. Then gas bubbles are released by the collapsing
skeleton and rise. A heap with suction throughout is more stable than without
as long as gas channels are not closed by contractant shearing.

After being partly submerged by rising water a loose granular heap can get
collapsible, Fig. 12.1.8a. Any disturbance without seepage causes an increase
of pw with compression of gas bubbles. Thereafter the shearing resistance
below can decrease more than it increases above the water table. Thus the
heap can slump and turn into an avalanche which runs faster on a gas cushion
(Gudehus 1998). A dyke can fail some time after being exposed to high water
(b). The suction gets lost in a gradually increasing part by seepage, this leaves
back gas inclusions. A loose skeleton can collapse as in the previous case, the
air-side foot of a denser dam can be shifted by the seepage force as outlined
further above.

Limit equilibria with simplifying statical and kinematical assumptions are
at best necessary, but not always sufficient for the stability in such cases.
To be on the safe side the relative void ratio re and the statically required
friction angle should be lower than critical. To get there without collapse the
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Fig. 12.1.8. Partly flooded psammoid bodies: slumping shoulder of a loose fill (a),
gradual wetting of a dam (b). Numbers for the sequence

skeleton should be densified with low water table and injection of air. The
disturbance required to trigger critical phenomena of a loose, more or less
flooded granular heap cannot yet be estimated, let alone the run of avalanches
(Sect. 16.3). Simulations with finite elements and coupling are more debatable
with partial saturation as the pore fluid tends to deterministic chaos even if
the skeleton is rather fixed (Sect. 6.2).

To sum up, some evolutions of psammoid heaps on a solid base can be
captured with plane strain and mechanical models for skeleton and pore fluid.
The field of the initial void ratio due to the formation has to be assumed. The
heap is stable if the relative void ratio re and statically required friction angles
are lower than critical. It collapses if the slope is steeper than critical which
requires a low initial re. Roughness, inclination and hydraulic height of the
base have to be taken into account. Flooded heaps collapse in case of re > 1
or with steeper than critical slopes, this is enhanced by gas inclusions. Humid
heaps can stand steeper and can be densified without collapse as long as the
pore gas is connected with the atmosphere. Limit stress fields are of little
use, but statically required friction angles can be reasonably estimated with
simplified kinematics. Stable evolutions of shape and state may be simulated
with finite elements, whereas collapses with critical phenomena are beyond
the present reach, in particular with gas inclusions.

12.2 Peloid and composite heaps on a solid base

Consider first fully saturated peloid heaps, Fig. 12.2.1. They may be deposited
with a uniform initial void ratio e within a far shorter time than needed
for the diffusion of pore water. This may happen layer by layer or at once,
without or with temporary support under water (a) or at the open air (b).
The heap sticks at a rough base which can be water-permeable or not. It can
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Fig. 12.2.1. Peloid heap after placement under water (a) and at the air (b)

slip along a smooth base which cannot be permeable as the skeleton would
stick at drainage openings.

The heap begins to spread without volume change, and its hydraulic height
hw changes as indicated in Fig. 12.2.1. The initial suction pa − pw, without
which lumps could not be piled up, is reduced by surrounding water and
also by shear deformation (Sect. 3.8). In a submerged heap (a) hw is lower
in the peloid than the free water level and has an inwards gradient so that
the skeleton swells, first near the free surface and last near the middle of an
impervious base. At the open air (b) hw is lower than its position and has an
outwards gradient so that the heap shrinks from the free surface towards the
middle. At each point hw increases (a) or decreases (b) in the course of time,
respectively, by the diffusion of pore water.

The initial isochoric spreading can be estimated by means of macro-
elements, Fig. 12.2.2. Velocity fields are assumed with constant stretching
in triangular zones so that a single velocity vo at a suitable point indicates
the magnitude. With a single triangle at the shoulder (a) its vo determines the
other velocities vi and the element-wise uniform isochoric stretching Dij . Two
triangles may be assumed for a heap on a rough base and a smooth incline
(b). The lower one sticks to the base, the upper one sticks to the lower one and
slips along its base so that its volume does not change. Spreading may also
be assumed for a fixed middle triangle in contact with two lateral ones which
slip along the base (c). With such assumptions any velocity is proportional
to a single one, vi = μivo with an assumed vector field μi, and the stretching
has amounts Di = κivo/h with height h and factors κi ranging from ca. 2 to
3 for each element.

h

v0

vi
*

v0
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v0

a) b) c)

Fig. 12.2.2. Macro-elements for peloid heaps: single triangle (a), two triangles with
partly inclined (b) or smooth plane base (c)
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The skeleton of a macro-element tends to an argotropic state limit by
isochoric shearing (cf. Sect. 3.8), i.e. the amount of shear stress τ tends to the
cohesion cu without drainage,

cu = cur(D/Dr)Iv = pec tan ϕcs(D/Dr)Iv . (12.2.1)

cu is thus argotropic via reference rate Dr and viscosity index Iv, and py-
knotropic via the e-equivalent pressure pec and the friction angle ϕcs for crit-
ical states (Sect. 2.3). τ does not change with further shearing after this at-
tractor has been attained, the soil is thus assumed to be ductile. The shear
stress at a smooth base is lower, τ = ca = mcu may be assumed with an
empirical factor 0 < m < 1 (Sect. 10.3).

With the assumed velocity field the balance of linear momentum can be
written without inertia as (cf. Sect. 1.2)

∫

(V )

γμidV +
∫

(A)

pnμidA =
1
h

[∫

(V )

τκidV +
∫

(A)

mτμidA

]

(12.2.2)

with the factors μi, κi and m as introduced above. Multiplied by vo the
first integral is the power of the weight for the assumed velocity field, and
the second one is due to the pressure pA at the free surface. The resisting
right hand terms result from shearing of macro-elements and along the base.
Equation (12.2.2) may be considered as the principle of virtual work for a
static equilibrium, it says that no kinetic energy is produced with the assumed
field. The combination of (12.2.1) with (12.2.2) and τ = mcu for the base can
be written

v0 = c0Drh

(
c1γh

pec tan ϕcs

)1/Iv

(12.2.3)

with dimensionless factors c0 and c1 that depend on the assumed velocity
field expressed by μi and κi. For macro-elements as in Fig. 12.2.2 the factor
c0 ranges from ca. 1.5 to 3, and c1 from ca. 1 to 5. As Iv ranges from ca. 0.02
to 0.05 for lowly to highly plastic clays c1 matters much more than c0.

c1 depends also on the surface pressure pA from water or air. For an
undrained heap at the open air the atmospheric pressure pa may be dropped
in (12.2.2) as terms with it are cancelled. For a submerged undrained heap the
water pressure pw causes an uplift which is captured by taking γ−γw instead
of γ. For a partly submerged heap the partial uplift comes up to a weighted
average of γ and γ − γw. With a higher water level on one side a bigger c2 is
obtained with (12.2.2) as in the second term the surface pressures from both
sides do not compensate each other.

The creep velocity of a characteristic point can also be estimated with
(12.2.3) if the cohesion is not uniform in the heap. If this was piled up with
different void ratios cur in (12.2.1) has to be substituted by a spatial average
c̄ur which is weighted via (12.2.2) with an assumed velocity field. An average
c̄ur may also be used if cur = pec tan ϕcs decreases by swelling or increases
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by shrinkage. The depth ds of the swollen or shrunk zone increases with the
waiting time t roughly via

ds ≈ 1
2
√

tcv ≈ 1
2

√
tk̄f p̄s/κγw (12.2.4)

with an average permeability k̄f and skeleton pressure p̄s. For shrinkage the
swelling index κ has to be replaced by the compression index λ (Sect. 3.3).
Equation (12.2.4) follows from (12.3.1) with factor 1/2 for one-sided drainage
as by Sect. 11.2, and is at best a crude estimate. As long as only a negligible
part of the heap has changed by pore water diffusion, i.e. for ds � h, volume
changes may be neglected as assumed for (12.2.3).

This approach can be used to judge the stability of a saturated peloid
heap. If this is submerged the surface water pressure can lead to a low or even
negligible initial spreading velocity v0 by (12.2.3). Swelling causes a gradual
reduction of shearing resistance via pec in (12.2.1). When thus the average
shearing resistance c̄ur is reduced, e.g. by 20%, v0 increases much more with
1/Iv  1 by (12.2.3), e.g. by a factor ca. 1.21/0.03 ≈ 400. Swelling can thus
lead to a collapse with a delay which can be estimated by means of (12.2.1),
(12.2.2), (12.2.3) and (12.2.4). The velocity field gets isochoric as the rapid
creep prevents a further expansion.

Without adjacent water the initial spreading is much faster if the heap
has the same dimensions and initial e. With γ/(γ − γw) ≈ 2 and Iv = 0.03
(say) v0 by (12.2.3) is bigger by factor 21/0.03 ≈ 1010. Thus a lateral sup-
port can be necessary until the average shearing resistance has grown by
shrinkage. This gradual stabilization can again be estimated by means of
(12.2.1), (12.2.2), (12.2.3) and (12.2.4) although the shear deformation is
contractant.

The proposed estimates resemble the bound theorems for ideal elastoplastic
bodies (Koiter 1958). The lower bound theorem says that a collapse cannot
occur if an equilibrium stress field exists that nowhere violates the limit stress
condition (lower bound). The upper bound theorem says that a collapse will
occur if an excess of kinetic energy is obtained with a kinematically admissible
velocity field. A proof can no more be given with v-elp or v-hyp, so the bound
theorems are at best of heuristic value for peloids.

sym

a) b) c)

Fig. 12.2.3. Plastic limit states for peloid heaps: stress characteristics (a), single
wedge (b), two wedges (c)
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A limit stress field for an extruding lower part of a heap is indicated in
Fig. 12.2.3a. Its construction is scarcely worth the effort, however, as the
argotropy of cu by (12.2.1) can thus not be allowed for. Upper bounds can be
obtained with assumed blocks separated by slip lines (b and c). Application
of (11.2.2) can indicate whether a heap would collapse with an assumed rate-
independent cu. Estimates with Fig. 12.2.2 and (12.2.1), (12.2.2) and (12.2.3)
may also be considered as upper bounds although they are not based on perfect
plasticity. Among different velocity fields with assumed macro-elements the
one with the biggest amount v0 will preferably occur.

Estimates with macro-elements are no more justified with more com-
plex hydraulic conditions, e.g. partial, one-sided or temporary flooding and
drainage or sealing along the boundaries. Then simulations with finite el-
ements can better serve to the purpose. As with psammoids each node of
the mesh has a skeleton velocity vsi and a pore pressure pw, skeleton stress
components Tsij and pore water velocities vwi are needed at representative
integration points. Gradients and rates of these quantities, approximated by
means of interpolation functions, are related by Darcy’s law (Sect. 6.3) for the
pore water and by v-elp or v-hyp for the skeleton. The interaction of both is
capturated by (12.1.1) and (12.1.2) as for psammoids, the pw-gradient acting
at the skeleton can again be split into hydrostatic uplift and seepage force.

Two quantities or combinations of them have to be given along a boundary.
At a free surface under water the skeleton pressure can be estimated from
weight and net attraction, and the water pressure is given by the depth. At
the open air the suction ps = pa−pw and the rate of evaporation ve = vw −vs

are determined by the relative humidity (Sect. 6.3). vsi = 0 holds at a fixed
rough base, pw is given for a permeable base and the normal seepage velocity
vwn disappears at an impervious base. The latter holds together with vsn = 0
(no separation) and

vst = 0 for |Tst/Tsn| < tan ϕsw,
vst �= 0 for |Tst/Tsn| = tan ϕsw

(12.2.5)

with normal (n) and tangential (t) components and a friction angle ϕsw < ϕcs

(Sect. 10.3). In case of slip (12.2.5b) can be substituted by |Tsn| = mcu

as outlined further above if the deformation is isochoric. These boundary
conditions are expressed with quantities for nodes and integration points by
means of interpolation functions.

As always with finite elements the conservation equations for mass and
momentum are written for spatial averages around nods. The constitutive
equations relating velocities and rates of state variables are non-linear, so
they are solved increment-wise for suitable time steps. One may start with a
gravity-free initial state by assuming a given e and a homogeneous isotropic
skeleton stress field. Gravity is imposed step by step to groups of elements,
thus an artificial heap is piled up gradually. This is justified as far as state lim-
its are thus approached so that only void ratio, shape and boundary conditions
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matter for the new initial state with gravity. The inevitable partial arbitrari-
ness of the initial state and the artificial piling up is swept out by an attractor
in the large (Sect. 10.4). This reveals already whether the heap can stand near
the onset. Finite elements substitute macro-elements and can help to justify
them.

Further evolutions of shape and state can be simulated with rather arbi-
trary boundary conditions for skeleton and pore water. They reveal whether
and how the heap tends to a state of rest or to a collapse. The range of validity
can be delimited by physical arguments and observations. Swelling can thus
only be modelled without decay of the skeleton, and shrinkage without capil-
lary entry (Sect. 6.3). Cavitation under water or at the air and also at the base
means another limitation of the model. Validation experiments are easier in
the lab than in situ as they require controlled initial and boundary conditions
and not too long diffusion times. One can also observe with model dams of
sufficient length or between two smooth hard walls whether the evolutions are
or get plane-parallel.

Such studies can deepen the understanding and may help to improve the
models introduced as yet in this section. One should make sure that the ma-
terial is captured by v-elp or v-hyp and that it is saturated. Peloids with hard
particles will be treated in the sequel, peloids with pore gas thereafter. A
net particle attraction pn < 0 can be allowed for via higher limit void ratios
(Sect. 7.1). It may be neglected against the effective pressure, p− pw  −pn,
except for a free boundary under water where pn < 0 is needed to keep a
skeleton.

Saturated peloid heaps with hard particles and higher than critical void
ratio are less viscous and less ductile without seepage than those with soft
particles. They can collapse similarly as loose saturated psammoid heaps, in
particular when a net attraction pressure pn < 0 first leads to a high e and
then gets lost by a change of the ionic strength (Sects. 6.3 and 7.1). For
instance, a heap of Al2O3-powder with e ≈ 2 in water with pH9 collapses by
adding HCl up to pH4. A pile of clay-like mining waste can collapse when an
initial pn < 0 gets lost by rain or neutral ground water. A marine sediment
with pn < 0 due to NaCl gets a quick clay after tectonic heave and leaching
out of NaCl.

Such peloids transform into a suspension with any disturbance if e exceeds
eco, i.e. the critical void ratio for ps → 0 (Sects. 3.2 and 7.1). One could
simulate the change of the ionic strength by diffusion towards pn ≈ 0, but the
latter and related limit void ratios can only be determined by experiments
(Sect. 7.1). Evolutions without skeleton decay could be simulated with finite
elements and elp or hyp by taking into account changes of pn and of limit
void ratios (Sects. 6.3 and 7.1). The coupled evolution of the skeleton with
diffusion both of pore water and solutes, however, is beyond the reach of
present models.

Partly saturated peloids on solid ground are indicated in Fig. 12.2.4. Clay-
like sediments in coastal shelves with pn < 0 due to NaCl can contain methane
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a) b)

c) d)

Fig. 12.2.4. Peloids with gas inclusions: submarine slope (a), heap (b), shrinkage
cracks (c), slump after rain fall (d)

from organic decay (a). The skeleton is more deformed near CH4-bubbles than
without them. This could be captured by a kind of composite (Sect. 9.1),
but skeleton decay and formation of gas cushions delimit such an approach
(Sect. 16.3). Open-air deposits of dust at and with slopes can collapse after
the access of rain water so that suction and net attraction get lost (b). Again
gas inclusions enhance avalanches which can hardly be captured. Plastic clay
at a slope shrinks and cracks in dry seasons (c), and collapses after the access
of water (d) due to swelling with loss of suction and net attraction and due
to enclosed air. Such cases were already described by Terzaghi (1925) and are
still beyond the reach of calculation models.

Composite heaps with more or less saturated psammoid and peloid zones
occur in many variants. Natural deposits upon an incline can have inclusions
of psammoid in peloid or vice versa. As a result of sedimentation, erosion
and flow their void ratios can be nearly critical. The peloid zones can contain
methane bubbles from reactions. These enhance a collapse as with Fig. 12.1.8a,
but draining psammoid zones would impede it. A dam can consist of a clay core
and coarse-grained shoulders with a pervious cover. The core is not saturated
if it was compacted from humid crumps. It has suction in dense enough peloids
and should not crack (cf. Fig. 12.2.1b). After flooding one side of it gets softer
by a gradual loss of suction (cf. Figs. 12.1.8b and 12.2.1a), thus gas bubbles are
included. Coarse grains could penetrate into the core, this could be sheared
sidewards or even eroded. As such evolutions can yet scarcely be predicted
one should avoid them by technical means. As with simpler peloid heaps the
stability cannot be sufficiently captured by means of a conventional limit state
analysis.
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To sum up, evolutions of peloid heaps on a solid base can be captured with
v-elp or v-hyp and plane-parallelity within certain limitations. The gradual
spreading is determined by initial shape and void ratio, base roughness and
hydraulic conditions. The spreading velocity can be estimated with macro-
elements, it increases gradually by swelling and decreases by shrinkage. This
substitutes the bound theorems of ideal elastoplasticity. More detailed and
complex evolutions can be simulated with finite elements, such approaches
could be validated by model tests. Skeleton decay, capillary entry and cracking
cannot thus be captured. Peloid heaps with hard particles may be modelled as
psammoids with net attraction or repulsion, they are collapsible with higher
than critical void ratios. Gas inclusions and gas channels can play a role,
but their influence is beyond the reach of present calculation models. Heaps
composed of psammoid and peloids may be treated by combining methods of
Sects. 12.1 and 12.2. Predictions get less determinate if the composition and
the behaviour of interfaces are not well known (Sect. 10.2).

12.3 Heaps upon yielding ground

Instead of a solid the base may now consist of psammoid and/or peloid ground.
The heap may be placed and exposed to air and/or water so that it would
stand on a rough solid base of the same shape. The ground under the fill yields
during and after its placement, as always there is an interplay of skeleton and
pore water. Such evolutions of shape and state may be assumed to be plane-
parallel if ground and heap have a uniform cross section over lengths of the
heap which exceed by far its height.

The simplest case is given by a psammoid ground with constant hydraulic
height hw, Fig. 12.3.1. Zero skeleton displacements may be assumed along
a sufficiently deep base, and only vertical displacements along two smooth
fictitious lateral walls. If there is a symmetry line this works like a smooth
wall. Initial composition and state can be determined as outlined in Sect. 11.2.
Ground water table and relative void ratio re are paramount, initial stress ratio
and further hidden variables can at best be estimated from the recent history.
In a finite element calculation the placement of a heap may be simulated by

sym

hw

h

Fig. 12.3.1. Fill upon partly submerged psammoid ground
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gradually increasing its gravity. This leads to settlement and spreading of the
dam and the neighboured ground alongside with changes of skeleton stress
and re.

Comparative calculations reveal that the order of placement has little
influence on the final shape and state (Karcher 2003). This works also in
three-dimensional cases so that the assumed plane-parallelity can be justified
(Sect. 15.1). Variations of the fictitious fixed boundary can show how far away
this should be. Other than with an elastic solid changes of shape and state
are confined to a zone of about three times the reflected dam (nota bene for
a homogeneous psammoid ground with constant hw). Changes of shape and
state after placement can be produced by changing ground water table and
by shaking (Sect. 12.4). If the dam would be stable upon a solid base it is also
stable in the present case.

Fig. 12.3.2. Fill upon loose ground with crumps without (a) and with near-surface
compaction (b), Nübel (2002)
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Such calculations are more than an exercise if the ground consists of a
soft psammoid, i.e. if hs/γh is rather low and/or the initial re is higher than
critical. A trial dam was placed upon humid lignite mining debris, evolutions
were simulated with hyp, Fig. 12.3.2 (Nübel 2002). The low hs and the high
limit void ratios were determined by compression tests (cf. Sect. 9.2), fur-
ther material constants were estimated empirically. The high initial re was
determined via penetration sounding (Sect. 14.3), a spatial fluctuation was
assumed (cf. Sect. 8.2). Without previous densification the settlement trough
was asymmetric and could not be reproduced (a). With densification of the
upper 7 m the trough was more regular and could be well reproduced (b). As
the agreement was obtained without adaption of parameters to get observed
settlements this shows how far such evolutions are predictable.

A loose submerged psammoid ground can be collapsible if it is fine-grained,
Fig. 12.3.3. This is also the case for a peloid ground with so hard grains that
the viscosity of the skeleton is negligible. As then the time td for the diffusion
of pore water can be longer than the time tf for filling the ground gets scarcely
denser during and just after it. td may be estimated by (11.3.1) with d = h and
σ̄s = γh to get the order of magnitude. A part of the heap can slump during
or just after placement by pushing aside and upwards part of the ground.
This collapse is accompanied by a pore pressure increase and enhanced by gas
bubbles and traffic as then ps decreases by densification without seepage. As
with heaps of such material (Sects. 12.1 and 12.2) simplified limit equilibria
do not suffice for stability, and realistic finite element simulations are not yet
feasible. Machines for filling and densification should only drive therefore on
already improved ground.
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Fig. 12.3.3. Fill upon collapsible ground: (a) slump with slip circle, (b) evolution
of displacements and pore pressures

A v-hyp-simulated evolution before and after placing a fill upon a soft
peloid layer is indicated in Fig. 12.3.4. After an assumed resting time of 5000
years the soft layer is consolidated under the weight of itself and a sand cover
(a). pw is almost hydrostatic after the diffusion time td ≈ 400 years by (11.3.1)
with cv ≈ 10−8m2/s, the consolidation ratio has attained pe/ps ≈ 1.2 with the
chosen visco-hypoplastic parameters. The vertical skeleton stress Ts1 is given
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Fig. 12.3.4. Evolution with fill upon soft ground: (a) void ratio and pore pressure
versus time, (b) deformation just after placement (exaggerated, courtesy H. Sturm)

by overburden and water table, the stress ratio Ts2/Ts1 has attained K0 ≈ 0.65
by (11.2.9). This state before placing the dam would not be changed by other
kinds of sedimentation about 5000 years ago, so it is a first attractor in the
large (Sect. 11.3). It would be different with a much longer resting time with
a temporary pre-load or pre-shaking, and with a crust if pore water could
evaporate temporarily.

Placing the dam in tf = 15 days and waiting for 30 days leads to almost
isochoric deformations with a higher than hydrostatic pw. This is a second
attractor in the large as the new state and velocity field would not be changed
by the sequence of filling in a time tf � td. It may be imagined as an ensemble
of RSEs at argotropic isochoric state limits, connected by a velocity field
and static equilibrium. It could not be attained without ductility as will be
explained further below.

Isochoric shearing with constant rate leads to an increasing resistance up to
an argotropic state limit by v-hyp (Sect. 3.8) which was used in our example.
Intermediate psammoid heaps with stable slopes cause far less creep than the
complete dam. The travelling load by earth-moving machines is negligible as
long as it is well below the weight of intermediate heaps. These assumptions for
our heuristic second attractor could be verified by comparative calculations,
they are often tacitly assumed in order to simplify the boundary conditions
(Sect. 10.4).

The diffusion of pore water sets on along the upper and lower rim of the
peloid layer. After 15 days (Fig. 12.3.4b) it reaches only a zone of ds ≈ 0.1 m
thickness by (12.2.4), this explains the minute settlement at the dam axis and
is negligible for the lateral creep. After about 200 years pw is again almost
hydrostatic, but the contractant creep with spreading goes on. The skele-
ton stress state and the ratios of skeleton velocities at different points remain
nearly constant, whereas the void ratios and the amounts of creep velocity de-
crease. This third attractor in the large is an ensemble of RSEs near argotropic
contractant state limits (cf. Sects. 3.8 and 3.9). It would also be attained with
another permeability and symmetry as before, and with other sequences of
placement and waiting intervals. This could be verified by comparative calcu-
lations and is of use for the prediction of long-term deformations.
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Fig. 12.3.5. Simplified mechanism for fills upon peloid ground: slip circle (a),
macro-elements (b)

Design estimates can be obtained with simplifying kinematical and statical
assumptions, Fig. 12.3.5. Instead of a slip circle a uniform isochoric shearing
may be assumed between two arc sections (a). Substituting the dam by stati-
cally equivalent stresses at its base, an initial velocity vo can be estimated by
(12.2.3) with c0 and c1 from (12.2.2) as substitute of the equilibrium condi-
tion. In other words, the statically required average cohesion c̄u is related with
the shear rate in an assumed shear zone by (12.2.1). Variation of the shear
zone until the maximum of c̄u is found leads to the one with max v0 which
could preferably occur. This reminds of an upper bound by ideal plasticity
and may help to judge the stability (cf. Sect. 12.2).

Three macro-elements may be assumed for the long-term creep with con-
stant pw (Fig. 12.3.5b). Their common point may settle and spread with an
assumed direction v2A/v1A, this determines the ratios of stretching compo-
nents in the three triangles. Thus the ratios of skeleton stress components are
determined by v-elp or v-hyp for contractant creep (Sects. 3.8 and 3.9). The
latter may be calculated for one RSE in each triangle. With a statical esti-
mate of ps(= p′) for each RSE the amount of stretching D may be calculated
with v-elp or v-hyp, or read from an e vs. log p′ plot (Sects. 3.2 and 3.8). The
reduction of e in the same plot corresponds to the amount of settlement.

Such estimates can at best roughly indicate whether the dam would stand
after a rapid placement, and how much it would settle in the long run. The
employed kinematical and statical assumptions remain rather arbitrary, and
so are the conclusions. Better design estimates could be obtained with a coarse
finite element mesh. With a moderate amount of computing such simulations
could reveal already crucial points so that further investigations could be ade-
quately chosen. Less uniform ground conditions and different filling procedures
could be taken into account. Due to the three attractors in the large proposed
further above simplifications of the state before placement and the sequence
of it would be justified.

The range of validity of this approach is limited for two main reasons. First,
composition and state of the ground are never uniform and cannot be detected
in all detail. In particular, the peloid layer can have psammoid inclusions and
cracks so that its permeability is but vaguely known. Thus the course of pore
water diffusion can at best be crudely captured, whereas the creep at the
onset and its reduction can be better predicted. Second, the peloid need not
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Fig. 12.3.6. Peloid RSE under a fill (a); stress paths (b), void ratio versus pressure
(c) and stress-strain curves (d) with different ductility

be ductile as assumed until now. This can lead to a delayed collapse as will
now be outlined with Fig. 12.3.6.

The velocity field just after placement is nearly isochoric so that an RSE
under the dam shoulder is sheared for a while with constant e and rate γ̇ (a).
The skeleton stress path (b) may have reached a maximum of τ , whereas σ′(=
−Ts12) is reduced by filling the dam. In a plot of e vs. log ps (c) the reduction of
ps with constant e indicates the transition to a critical state. In a plot of τ vs.
shear strain γ (d, cf. Fig. 2.9.1) a plateau would be reached in case of ductility,
and a peak otherwise. As outlined in Sec. 2.8 and indicated in Fig. 12.3.6, v-
elp and v-hyp by Niemunis (2003) predict a ductile response, whereas hyp and
v-hyp by Gudehus (2004b) can produce a peak. With a statically required τ a
peak would lead to a collapse, i.e. a spontaneous acceleration as the resisting
τ is reduced with further shearing.

The crucial extent of ductility depends on the ps-dependence of limit void
ratios. With (2.3.1) or (3.3.6) isochoric shearing after consolidation up to
pe/ps >ca. 1.5 leads to a critical state with about half the initial ps as a linear
decrease of ec with log ps is assumed for any ps. With (2.4.1) and constant
hs, i.e. constant D by (3.2.2) or (3.4.1), the ps for critical states can be lower
than by CSSM for high enough e. This can lead to a peak, and even to a
decay beyond it in case of hard particles. A less marked peak in case of soft
particles can also lead to an acceleration if τ is statically given. As with any
τ -peak the further shearing gets localized, but this is spread by seepage so
that the shear zone cannot get very thin (Sect. 8.3).

A more quantitative analysis could be made with finite elements and v-
hyp by Gudehus (2004a) (leaving aside hard grains as with Fig. 12.3.3). A
kind of validation could be achieved my means of observations in situ. Hunter
and Fell (2003) collected and commented a number of field reports. Observed
settlements of dams, lateral displacements of the neighboured ground and pore
pressures resemble the simulated ones in Fig. 12.3.4. In some cases the dam
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slumped with acceleration after resting times from about one day for lowly to
one month for highly plastic clay. For some of the reported cases detailed data
on composition, state and mechanical properties would suffice for numerical
simulations.

A back analysis of a recent case in Germany is represented in Fig. 12.3.7
(Libreros-Bertini 2006). The ground consisted of a highly plastic tertiary clay
and a cover of silt with groundwater. The clay had an age of ca. 1 million
years, a nearly linear increase of the average penetration resistance with depth
indicates that there was no temporary overburden (Sect. 14.3). An initial
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consolidation ratio pe/ps ≈ 1.7 was estimated from the penetration resistance
(Sect. 14.3). A simulation for the resting time could not reproduce this pe/ps as
the influence of cracks is not sufficiently known. A part of the dam collapsed
about 1 year after its placement and came to rest after a kind of circular
sliding. Material parameters for the dam and the silt layer were estimated
empirically. Parameters for the clay were determined from triaxial tests and
experience with similar clays.

Creep displacements simulated with v-hyp are shown in Fig. 12.3.7a. The
actual placement within 5 months was substituted by imposing gravity in
four steps. With a diffusion time td > 200 years the deformation is nearly
isochoric within 5 years. An almost circular shear zone is obtained similarly
as observed. Creep displacements in the first year were not registered in situ.
The spontaneous acceleration after 1 year could not be calculated with v-hyp
and the ductility outlined further above. A delay time from 0.5 to 2 years
can be estimated with the calculated shear rate and a peak shear strain from
triaxial tests (b).

Turning to shoulders of fills, we consider first soft peloid layers below which
are embedded in rather loose psammoid, Fig. 12.3.8. ‘Soft’ means marked vis-
cosity and high compressibility. Prior to filling (a) hw may be hydrostatic,
and a slow contractant creep may correspond to a pe/ps from ca. 1.2 to
1.5. The equivalent pressure for critical states pec can be determined from
the resistance cu to vane shearing (Sect. 14.6), whereas initial ps-values have
to be estimated. With given composition and water table an initial field of
skeleton velocity and stress can be generated by imposing gravity as for a

hp

v0

a)

b)

Fig. 12.3.8. Fill with leaning wall upon a partly soft composite ground: prior to
(a) and after increase of fill height (b)
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heap (Sect. 12.2), or by removing gravity as for an excavation (Sect. 12.4).
Therein one may assume a constant hw, pe/ps = 1 and a uniform isotropic
pressure ps ≈ (γ − γw)h/2 at the onset. The obtained attractor in the large is
an ensemble of contractant state limits, order and size of filling or excavation
steps for its generation do not matter. The attained pe/ps, which depends also
on stress component ratios (Sect. 3.9), can be checked against a typical creep
velocity v0 known in situ by

v0 ≈ hpDr(pe/ps)−1/Iv (12.3.1)

with the layer thickness hp (Sect. 3.4). Apart from composition and ground-
water table the initial consolidation ratio pe/ps for the peloid layer, and the
initial relative void ratio re for the psammoid layer below and above, are
paramount for the identification.

As with Fig. 12.3.1 a rigid boundary may be assumed far enough from
the slope. A constant hw and no slip should be assigned to the base, whereas
the fictitious wall may be smooth and impervious. A rubble layer upon the
slope may be represented by statically equivalent stresses so that its stiffness
is neglected and zero skeleton pressures are avoided (Sect. 10.1). Psammoid
above the ground water has a capillary skeleton pressure pce so that its free
surface has −Tsn = pce (cf. Fig. 12.1.5b). The additional placement can be
simulated by imposing gravity to this part of the finite element mesh within
the filling time tf .

The saturated peloid layer deforms nearly without volume change as long
as the time does not suffice for the diffusion of pore water. A second attractor
in the large can be attained for times well below the diffusion time, i.e. t � td,
as in the cases outlined before it is an ensemble of argotropic isochoric state
limits. The amount of shearing, which can be calculated with hyp for the
psammoid and v-hyp for the peloid, is biggest along a nearly circular arc,
Fig. 12.3.8b. The rate of shearing, visible from a velocity v0 at the shoulder,
is gradually reduced after the end of filling by densification of the peloid
layer towards its interior. For times t > td the pore water pressure is again
nearly hydrostatic, and the peloid experiences contractant creep. Apart from
additional fill and changed shape this third attractor in the large equals the
first one.

The influence of shear localization can only be indicated as it was not
yet analyzed with finite elements for such cases. If the peloid is not ductile
(cf. Fig. 12.3.6) an isochoric shearing gets localized beyond a peak, but the
shear band cannot get very thin as it gets denser by diffusion (Sect. 8.3). If
the psammoid on top is denser than critical the shearing therein is localized
and dilatant (Sect. 8.2), and can go over into cracking near the free surface
(Sect. 8.4). The thickness of the psammoid shear zone may be of minor im-
portance for its resistance as the pressure is nearly constant (cf. Sect. 13.4).
A delayed acceleration will occur if the statically required moment for any
arc exceeds the resistance of the skeleton for a constant rate of shearing. This
delayed loss of equilibrium or creep collapse can at best be estimated as the
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numerical problem tends to be mathematically ill-posed. The system tends to
a deterministic chaos with unpredictable further evolution (Sect. 16.3).

What about design estimates and validations for such cases? Fellenius
(1948) analyzed a collapse with a fill on soft ground at a slope. A row of
concrete boxes sunk about one day after filling it, divers detected a heave of
the neighboured sea bottom. Assuming a slip circle a limit equilibrium was
constructed with horizontal forces between thought vertical slices and a suit-
able average obliquity tanψ along their sliding base. The statically required
ψ ≈ 9◦ is lower than the critical friction angle of the peloid skeleton, but the
shearing resistance was reduced by higher than hydrostatic pore pressures.
Fellenius proposed a limit equilibrium with a pressure-independent shearing
resistance c in the peloid zone. He varied slip circles to find the one with the
maximal statically required cohesion c, and considered the system as stable if
the available c of the soil was bigger than required including a factor of safety.

As with peloid heaps on hard ground (Sect. 12.2) one may estimate a
velocity v0 of undrained creep by comparing such a statically required c with
the argotropic shearing resistance cu by (12.2.1). A velocity field has to be
assumed up to a factor v0 so that D ≈ c0v0/hp with c0 from about 2 to 3 as
a typical stretching rate. This comes up to (12.2.3) for v0, which is a crude
estimate as spatial distributions have to be assumed so that the factor c1 is at
best roughly known. A low enough v0 for unfavourably assumed velocity fields
and realistic equivalent pressures pec would be necessary for stability, and also
sufficient if the response to undrained shearing is ductile. As explained further
above the latter is not given in general. Even with ductility the assumptions
needed to estimate v0 could only be justified by observations and numerical
back-analyses.

If the soil body is stable with a field of excess pore pressures it is even
more so with a hydrostatic hydraulic height hw. Then deformations could
at best be estimated by means of representative elements, cf. Fig. 12.3.4.
The creep velocity v0 by (12.2.3) is reduced by the increase of the capillary
skeleton pressure pce with the diffusion of pore water, but thus v0 gets almost
unpredictable. The diffusion time td by (11.3.1) is quite imprecise not only
from the parameters therein, but also as it is influenced by shearing. The
long-term contractant creep with constant hw can likewise only be guessed
(cf. Fig. 12.3.4). Even well off the slope the stress ratio Ts2/Ts1 is lower than
Ko by (11.2.8) and statically indeterminate. As without a slope the slowing-
down settlement and spreading could only be predicted numerically, this works
due to the contractant attractor in the large.

The evolution of a stiff inclined peloid ground by and after placing a dam
is more intricate so that only some aspects may be addressed, Fig. 12.3.9.
We leave first aside cracks and gas inclusions. The ground creeps near the
slope with seasonal changes by evaporation and wetting. Apart from the com-
position one can get hw at the base and cu-values from probing in situ and
undrained shear tests. An initial state field can be generated by imposing or
removing gravity above the horizontal ground surface (a). For this simulation
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Fig. 12.3.9. Fill upon stiff peloid ground with uneven surface: hydraulic heights
before (a) and after placement (b), sliding wedges with force polygons (c)

a gravity-free onset with an isotropic homogenous pressure ps ≈ γh and a
field of void ratios adapted to observed cu-values may be assumed. This sim-
ulation produces initial creep velocities which should be small by (12.3.1) as
the consolidation ratio pe/ps is higher than in the cases of Fig. 12.3.8. This
first attractor in the large is a simplified substitute of the seasonally pulsating
past evolution which can as yet hardly be captured.

The evolution during and after placing a dam can be simulated as with a
softer peloid (Fig. 12.3.9b). The initial deformations are nearly isochoric for a
while as the diffusion time is far longer than the filling time. The pore pressure
pw in the markedly sheared peloid region near the dam is less increased or
even reduced due to the higher initial pe/ps, this prevents a delayed collapse.
With drainage from below and evaporation or water access from above the
subsequent creep slows down in the average. Seasonal pulsations could also be
taken into account. A long-term stabilization is obtained if the dam is stable,
i.e. if at most the critical friction angle is statically needed for the peloid at
its base.

Simplified limit equilibria may be considered for design, Fig. 12.3.9c. The
force between two wedges representing the dam cannot have a lower obliquity
than tanϕcs. The peloid resistance is bounded by cu at the onset and by the
obliquity tanϕcs in the long run. Thus the capillary skeleton pressure in the
dam is neglected, and the suction implied by cu is neglected for the peloid
to be on the safe side. The undrained creep by and just after placement may
at best be estimated with (12.2.3). The long-term diffusion and creep could
only be guessed without finite element calculations. These cannot substitute
monitoring in situ, but can help to plan it and to support technical decisions.
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With partially saturated peloids the predictability is further reduced. Gas
bubbles in peloid skeletons can be captured by assuming a more compress-
ible pore fluid, but thus the changing solubility is neglected (Sect. 6.3). Gas
channels of compacted peloid may be captured by suction and higher limit
void ratios, but the effect of the ionic strength after wetting can as yet hardly
be quantified (Sect. 7.2). Fills of crumps may be captured by composites
(Sect. 9.1), but the evolution of cracks is beyond the present reach (Sects. 8.4
and 12.2). Gas inclusions after flooding or from reactions can make the peloid
collapsible (Sect. 12.2).

To sum up, plane-parallel evolutions of yielding ground by and after place-
ment of heaps can be captured as long as the soil response is ductile, otherwise
a possible collapse is beyond the present reach as often is the influence of cracks
and gas inclusions. The yielding of not too loose psammoid ground can be pre-
dicted, but uneven settlement or collapse in case of higher than critical void
ratios are hardly predictable. Fields of stabilizing creep and skeleton stress
before and long time after placement may be captured as a contractant state
limit in the large. The almost isochoric creep just after placement may also be
captured by an attractor in the large, then limit equilibria with slip surfaces
can provide design estimates. A delayed creep collapse could be simulated
with v-hyp, but the shear localization poses numerical problems. Without
saturation only gas bubbles or channels in grain skeletons can as yet be taken
into account. The inherent deterministic chaos impedes the consideration of
bigger bubbles and cracks.

12.4 Excavations

Evolutions due to the excavation of a psammoid body with constant hydraulic
height hw can be captured as indicated with Fig. 12.4.1. Below a station-
ary water table pw may be hydrostatic, suction above can be represented
by a capillary skeleton pressure pcs. The initial relative void ratio field re

has to be given, the initial skeleton stress field can be determined with spe-
cific weight and stress ratio Ko as outlined in Sect. 11.2. The excavation
can be simulated by a gradual removal of the weight of finite elements. The
skeleton along the new boundary cannot decay above the ground water due
to pcs, and can be preserved below by assuming a small ps (Sect. 10.1).
Given stability as outlined in Sects. 12.1 and 12.3, changes of shape and
state are negligible beyond a certain distance from the pit. Thus a rigid base
may be assumed at a suitable depth, and smooth rigid walls in a suitable
distance.

The rigid boundaries should engulf about twice the breadth b and depth
h of the pit for b/d < ca. 3, given a symmetry line this means an additional
smooth rigid wall. The order and size of excavation steps is of minor im-
portance, the state thereafter may thus be considered as an attractor in the
large (Sect. 10.4). These simplifying assumptions are justified by comparative
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Fig. 12.4.1. Cut in psammoid with hydrostatic pore water

calculations (Karcher 2003), and also by the pragmatic argument that more
precise predictions are neither feasible nor necessary in such cases.

Instationary hydraulic heights pose no problem if the influence of skeleton
changes on hw is negligible. This may be assumed in cases with lower than
critical re, small excavator impacts and not too steep slopes. Loose flooded
psammoid bodies can hardly be excavated as they would collapse (Sect. 12.1).
Strong impacts would increase hw and prevent a controlled excavation. Slopes
under water with more than critical inclination (β > ϕcs) collapse after a
temporary hw-decrease (Sect. 12.1).

Slopes above the ground water table with β > ϕcs can crack and col-
lapse after a while, Fig. 12.4.2. Details are beyond the reach of present
calculation models, so some hints may suffice. The soil near the steep sur-
face falls down if pcs vanishes by drying or wetting (Sect. 6.2). Keeping
pcs constant at the surface by a membrane, a crack could start somewhere
at the shoulder by horizontal extension, but this localized bifurcation is
hardly predictable (Sect. 8.4). The crack could reach the statically possible
depth

hc =
pcs

γ

2 sin ϕ

1 − sin ϕ
(12.4.1)

β

W hs

ϕ

l
W

Q

C = pcetanϕcl

Q

Fig. 12.4.2. Sliding with a crack in a steep humid psammoid slope
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with an re-dependent friction angle ϕ. A soil block could just be at equilibrium
upon a slip plane from the crack to the pit if the obliquity of the resultant Q
in the slip plane does not exceed tanϕ.

These conventional conditions are at best necessary, but not sufficient for
stability. Even if the vapor pressure in the crack is the same as in the skeleton
this can dilate gradually so that ϕ and pcs are reduced. The additional evapo-
ration in an open crack causes a reduction of pcs so that the soil block in front
of the crack would collapse, and the shoulder behind it collapses afterwards
(cementation excluded).

A collapse by drying would end when the slope has reached β = ϕcs (Sect.
12.1). With an access of water from the surface into a crack this would close
due to the loss of pcs. This softening would lead to a collapse of the shoulder,
and with further wetting the slope would get flatter than β = ϕcs due to the
seepage force (Sect. 12.1). Such evolutions cannot yet be properly simulated
(cf. Sects. 6.2, 7.3, 8.4 and 16.3).

Cutting part of a saturated peloid layer with soft particles leads to pore
water diffusion and creep. This is shown in Fig. 12.4.3 with a low initial con-
solidation, say pe/ps ≤ ca. 1.5, a dense psammoid below and a constant hw

prior to the excavation. The top layer above the ground water table, consist-
ing of cracked peloid or loose psammoid, may be substituted by a statical
equivalent on top of the saturated peloid (cf. Sect. 10.2). The diffusion of
pore water in the saturated peloid during a rapid excavation may be ne-
glected. As for filling (Sects. 12.2 and 12.3) the order and size of excavation
steps is of minor importance for state and velocity fields just after excava-
tion, i.e. an isochoric attractor in the large may be assumed. Like with peloid
heaps (Sect. 12.2) the height of the free water table is decisive for the evo-
lution, and as with heaps upon peloid the degree of ductility plays a role
(cf. Fig. 12.3.6).

Without lowering the hydraulic height hw outside the peloid layer its
hw is reduced by the excavation with such gradients that it takes up water

v0
v0

τ

a) b)

Fig. 12.4.3. Steep cut in peloid under water (a) and at the air (b)
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(Fig. 12.4.3a). As with a peloid heap placed under water (Fig. 12.2.1a) a mi-
nor part by (12.2.4) is softened during and just after the excavation, whereas
the free water pressure at the slope reduces the velocity v0 of nearly isochoric
creep. The initial v0 can be estimated by (12.2.3) with a macro-element as
by Fig. 12.2.2a. The swollen part near the slope slides down, and part of the
shoulder can also collapse until the slope is flattened to β ≈ ϕsc and hw is
again hydrostatic. The approach to this attractor in the large could be simu-
lated with finite elements and v-elp or v-hyp in order to estimate the lifetime
of a cut.

If hw is lowered outside the peloid layer alongside with the excavation it is
more reduced inside, and the peloid loses water by evaporation (Fig. 12.4.3b).
As with a peloid heap at the air (Fig. 12.2.1b) the initial creep velocity v0

by (12.2.3) is far higher than with free water. The suction at the shoulder
can lead to a crack after a capillary entry with vanishing horizontal skeleton
pressure (Sects. 6.3 and 8.4). With the growth of this crack the average shear
stres τ̄ below towards the foot of the slope grows so that v0 increases before
it is reduced by shrinkage. This can lead to a collapse, the more if the peloid
is not ductile for isochoric shearing (cf. Fig. 12.3.6). Otherwise the peloid
near the shoulder can come to rest when the suction has attained an equi-
librium with the adjacent vapor in the cover and along the slope (Sect. 6.3).
The destabilization by water access and the importance of a ‘skin’ of the
peloid need not be explained. Such evolutions are beyond the reach of present
simulation models as these cannot capture cracks. Kinematical and statical
assumptions as by Fig. 12.4.2 can at best yield a crude necessary condition of
stability.

With a higher previous consolidation, say pe/ps ≥ 2, peloid layers undergo
other evolutions during and after an excavation as they are already fissured,
Fig. 12.4.4. The overconsolidation due to shrinkage and/or a temporary natu-
ral overburden leaves back a network of cracks (Sect. 8.4). This increases the
permeability and reduces the potential suction of the peloid, which is thus
a kind of composite (Sect. 9.1). Prior to the excavation such a peloid layer
may be saturated with constant hw, its base may consist of dense saturated

a) b)

Fig. 12.4.4. Degradation of steep cuts in fissured peloid under water (a) and at
the air (b)
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psammoid and its cover of loose moist psammoid. The initial vertical stress
Ts1 is given by the overburden and hw via (11.2.6), in the cover it is higher
by pcs. The ratio Ts2/Ts1 of horizontal and vertical skeleton stresses may be
taken by (11.2.7) with (11.2.9), except for the cover where −Ts1 and −Ts2

are higher by pcs. Ts2/Ts1 can actually be higher near the base if this was
not shaken, and in the peloid layer with a temporary geological overburden
if the resting time did not suffice for relaxation. This excess of Ts2/Ts1 can
hardly be determined, but it does not matter for the response to an excava-
tion (cf. Sects. 3.6 and 15.3). The initial re of the psammoid layers can be
determined by penetration sounding. The initial pe/ps of the peloid layer can
be estimated via penetration, vane shearing or lab tests. With a less uniform
ground an initial state could be generated by imposing gravity with suitable
re or pe/ps, but this is no attractor in the large in general so that field data
are needed.

Near a steep cut under water the peloid parts stand at first by suction, but
collapse rapidly as the swelling is enhanced by opening cracks, Fig. 12.4.4a.
Latent cracks prevent such a strong suction as in the peloid between them, a
rapid cavitation enhances the release of vapor and dissolved gas (Sect. 6.3).
The opening cracks accelerate the diffusion of pore water, cf. (12.2.4), and are
closed after swelling of the adjacent peloid. Thus the steeper part near the
shoulder slides down and leaves back a slope with β ≤ ϕcs and hydrostatic
hw inside. Transitions to this attractor in the large could hardly be simulated
as evolution and influence of cracks cannot yet be captured.

A steep cut at the air can have a longer lifetime, Fig. 12.4.4b. A skin at the
slope or a humid cover prevent an immediate cavitation if the suction pa −pw

due to isochoric shearing is not too big. pa − pw is determined by the initial
pe/ps and by the size and shape of the cut. A latent crack opens at the shoulder
where pa−pw ≈ 0 is attained and prohibits a stronger suction. The first crack
deepens and more cracks develop as pa − pw increases in the not yet opened
peloid. Similarly as with a humid psammoid (Fig. 12.4.2) shearing is localized
along a band towards the foot of a slope. A decomposed peloid mass slides
down and comes to rest with a flatter slope. The new steep slope stands until
new cracks lead to a retrograde sliding. In the long run a kind of psammoid
with soft peloid grains would stand with β ≈ ϕcs. An access of surface water
would enhance the collapse and lead to an avalanche. Such evolutions were
first reported by Collin (1846) who realized the role of water. Statical and
kinematical assumptions can at best yield a crude necessary condition for
temporary stability. Simulations with v-elp or v-hyp and realistic hydraulic
conditions could capture the first crack and the subsequent shearing.

A case study by Schulze and Köhler (2003) may help to understand the
matter, it reveals also the influence of pore gas and drainage, Fig. 12.4.5. A
20 m deep cut was excavated for a canal about 1925. The ground consisted of
a highly plastic, stiff fissured silty clay with an estimated degree of saturation
Sr ≈ 0.95 under the far-field groundwater table in ca. 5 m depth. It was
overconsolidated by a temporary ice cover, age and shrinkage, its far-field
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Fig. 12.4.5. Creeping slope with stiff fissured clay (Schulze and Köhler 2003): cross
section and ground plan with boreholes for drainage

consolidation ratio pe/ps ranged from ca. 2 to 2.5. With the latent cracks
its permeability kf ranged from ca. 10−10 to 10−9 m/s, without cracks kf

would be at least two orders of magnitude smaller. Sliding started during the
excavation so that the slope was flattened. In the course of decades slips led
to the profile shown in Fig. 12.4.5. The indicated shear zone was found with
an inclinometer in boreholes, it had a thickness of at most 1 m.

The piezometric level with pw = pa was measured since 1998 by pore
pressure sensors. The dotted upwards continuation of the shear zone led to an
offset and a crack which were observed at the surface. Before placing drains
the creep velocity v0 of the shoulder was about 5 mm per month. It was
temporarily reduced by a lower air pressure pa. An observed rise of v0 by 50%
with a reduction of pa by 3% can be explained: the average e increases by
Δe ≈ 0.0005 from Sr and the gas equation, thus pe decreases by exp(−Δe/λ)
and v0 grows by factor exp(Δe/λIv) ≈ 1/2 with a typical compression index λ
and viscosity index Iv for this soil. The immediate change of the creep velocity
v0 after changes of air pressure is thus an indicator of the skeleton viscosity
as proposed in Sect. 3.2.

The magnitude of v0 and its seasonal fluctuation could not as easily be
captured in a back-analysis. An observed lower resistance to the expansion
of a flat dilatometer revealed a shear zone of ca. 1 m thickness. The peloid
therein could have approached a critical state, but the diffusion time td ≈
1m2/10−9 m2s−1 ≈ 30 years with an empirical cv ≈ 10−9 m2/s of not fissured
fat clay indicates an instationary hw-field. hw is underestimated by the sensors
as they impede a uniform shearing. Higher than observed hw can also be
concluded from a simplified analysis as by Fig. 12.3.9 plus seepage force (cf.
Sect. 11.3). An estimate of v0 by (12.2.3) confirms that the peloid in the shear
zone is near a critical state with a somewhat higher than observed hw.
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The strong seasonal fluctuation of v0 can be attributed to alternating
wetting and drying near the ground surface. Water can reach or leave the soil
above the shear zone rapidly via fissures. As these are smeared in the shear
zone the diffusion of pore water therein takes a longer time as was estimated
further above. v0 by (12.2.3) is strongly changed by minor changes of hw via
c1 and pec, i.e. a minor swelling or shrinkage in the shear zone matters a lot
for the creep velocity.

A fan of drains was placed in boreholes as shown in Fig. 12.4.5. This
lowered the observed hydraulic height hw by ca. 4 m and reduced the creep
velocity v0 to about 1/10 within 1 year. It appears that the diffusion time was
reduced to ca. 1/10 as the fan of drains increased the overall permeability.
The reduction of v0 can be explained by (12.2.3) with an estimated reduction
of the average c2/pce by 30% and with Iv ≈ 0.05. A more quantitative calcu-
lation would be feasible with v-elp or v-hyp, but delay times could at best be
captured by their order of magnitude.

More precise calculations are feasible for psammoid ground with peloid
shear zones, Fig. 12.4.6. This occurs in the Lower Rhenish lignite mining
district with excavation depths up to 300 m and uncommonly detailed in-
vestigations (Gudehus and Pierschke 2004). In a simplified cross section (a)
a clay layer from the bottom of the pit can reach a fault with a clay smear
and an outcrop near the shoulder. The hydraulic height hw is lowered around
the pit, but not outside the fault. The difference of water pressure causes a
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Fig. 12.4.6. Cut in ground with clay bands: sliding wedges (a) and force polygons
(b), deformed finite element mesh (exaggerated) 500 days after a rapid excavation
(c, Libreros-Bertini 2006)
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seepage force Fw in the clay smear which is taken up by the adjacent psam-
moid (erosion stability provided, Sect. 8.4).

A simplified stability analysis can be achieved by means of two sliding
wedges. Clay layers and smears are natural shear zones, a further shear zone
is assumed along a bisectrix (dashed in Fig. 12.4.6a). The resultant force Q12

therein cannot have a higher obliquity than tanϕcs. Force polygons with Q12,
Fw and weights W1 and W2 show which forces in the clay zones could prevent
accelerations (b). Without diffusion just after excavation a statically required
average cohesion c̄u is obtained (left). After the end of diffusion, when hw in
the peloid is determined by the ones in the adjacent psammoid, a force polygon
(right) yields statically required obliquities of resultant skeleton forces Q1 and
Q2 in the clay bands.

It is necessary for stability that the clay bands have at least the statically
required resistance. This is biggest for a certain inclination ϑ of the assumed
intermediate shear band, this can be found by variation of ϑ and with a lower
obliquity of Q12, its upper bound is tanϕcs. The shearing resistance c̄u is given
by (12.2.1) with an assumed distribution of void ratio e and shearing rate D.
The latter can be replaced by shear band thicknesses and creep velocity v0.
This is justified if the peloid is ductile for isochoric shearing as explained with
Fig. 12.3.6. Provided that the obtained v0 is not too big with the required cu

the force polygon is then also sufficient for stability. In the long run a force
polygon suffices for stability if the obliquities of Q1 and Qs do not reach the
tan ϕcs of the clay. After the adaption of hw to the hydraulic conditions the
creep is further slowed down by contraction as the stress obliquity is lower
than critical (Sects. 3.2 and 3.8).

Kuntsche (1989) reports a case of this kind. Stationary creep was observed
in the first 2 years after excavation, this was far below the diffusion time of the
clay layer by (11.3.1). A force polygon was obtained with lab cu-values and
ϕcs = 12◦ for the thin clay smear in the fault (Sect. 12.6). A minute further
cut at the foot caused an increase of creep velocity v0 by factor 7, with filling
at the foot v0 was reduced again. These changes of v0 can be explained with
(12.2.3) by the minute changes of the statically required cu.

A finite element simulation with hyp and v-hyp conveys more insight
(Fig. 12.4.6c, Libreros-Bertini 2006). The excavation was substituted by re-
moving gravity in a time t � td, the order and size of steps has no influ-
ence in the sequel. The deformed mesh indicates rather uniform shearing
in the peloid bands and a more diffuse shear zone in the psammoid near
the bisectrix. The calculated displacements accelerate during the excavation
and slow down afterwards. A more realistic simulation could be obtained
with a more detailed mesh, but times for pore water diffusion can only be
estimated as shape and permeability of clay layers cannot be determined
precisely.

Karcher (2003) has shown that deformations of a composite ground due
to excavations can be captured by hyp and v-hyp, Fig. 12.4.7. The finite
element mesh (a) comprises several layers and faults and is still simplified. A
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Fig. 12.4.7. Evolution due to a 240m deep excavation (Karcher 2003): finite element
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field of initial state variables was generated by imposing gravity, and so that
void ratios known from boreholes were reproduced. Comparative calculations
reveal that size and order of excavation steps had almost no influence on the
displacements at the end of and after the excavation (b). The displacement
paths of slope points are straighter in case of a fictitious simultaneous removal.
Hook-shaped paths due to an excavation layer by layer were in fact observed
via boreholes.

Karcher (2003) could also show by comparative calculations that plane
strain may be assumed for unsupported trenches which are longer than twice
their width. Observed horizontal displacements at the slope due to layer-wise
excavation are shown in Fig. 12.4.7c. The good agreement with calculated
values (d) is a validation as no parameters were adapted to get a fit. The
calculated displacements exceed the actual ones as the observations started
somewhat later than the excavation and were not continued after its end.

To sum up, excavation-induced evolutions of shape and state can be cap-
tured for a variety of ground and water conditions, but critical phenomena
delimit the range of predictability. For psammoid ground with subcritical rel-
ative void ratio (re < 1) and slope inclination (β < ϕcs in case of hydrostatic
hw) the displacement at the end of excavation is rather independent of its
sequence and time. Cutting fine-grained saturated ground with re > 1 leads
to a collapse. A steep slope (β > ϕcs) with gas channels can stand up to a
height that can be estimated with the capillary skeleton pressure pcs, but it
collapses after drying or wetting. A cut exposing peloid to the air can collapse
after a while if it is too steep and high. The gradual opening of cracks and
disintegration into crumbs cannot yet be captured. The degradation of slopes
cut into stiff fissured clay indicates that the combined diffusion of pore water
and creep of skeleton can as yet only be estimated. Better predictions can
be obtained with composite ground wherein narrow clay bands work as shear
zones.

12.5 In-plane and anti-plane shaking

Boundary conditions for in-plane shaking are shown in Fig. 12.5.1. Nearly
plane waves propagate through a package of horizontal layers in situ from a
shaking base if fictitious lateral walls are suitably specified (a). The propa-
gation would be one-dimensional (Sect. 11.4) if the time-dependent displace-
ments for this case would be imposed to the walls. These displacements are
not known in advance, they should be equal for opposite points of the two fic-
titious walls. This condition works also with inclined layers, then two thought
walls are shifted downwards by repeated propagations (b). Velocity vw and
pressure pw of the pore water are also the same at opposite wall points for
this reduction to a one-dimensional problem. In particular, skeleton and pore
water can undergo the same motion (no drainage), or the hydraulic height hw

can be independent of the skeleton motions (free drainage).
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Fig. 12.5.1. Boundary conditions for in-plane shaking: free field with horizontal
(a) and inclined layers (b), dam (c) and excavation (d) with layered ground, and
different far-field levels (e)

If the ground has a more complex composition and/or an uneven surface
conditions for fictitious boundaries cannot be justified as easily. With a sym-
metric dam (c) or trench (d) and parallel layers otherwise opposite points
of walls undergo again the same displacements and have the same pressures.
Beyond a sufficient distance from the symmetry line the far-field evolution is
no more influenced by the dam or trench. A uniform shaking may be assumed
at a sufficiently deep fictitious rigid base (cf. the beginning of Sect. 11.4). The
symmetry of opposite walls gets lost with different ground levels on two sides
of a slope (e). Evolutions around the slope may be captured by assuming a
sufficiently deep rigid shaking base, and two walls with displacements and
pore water conditions as for one-dimensional cases with the same ground pro-
file. Comparative numerical calculations could show which distances suffice,
analytical estimates are not in sight.

Different shake boxes have been used to investigate the range of validity.
With rigid walls fixed to the base one-dimensional far-field propagations can-
not be approached. This does not matter if the in-plane walls are well-defined
and the plane-parallel walls are smooth. Thus the evolutions are plane-parallel
and tractable enough for comparing observed and calculated evolutions, al-
though they have no counterpart in situ. A set of laminar stiff frames can con-
fine model soil upon a shaking base. Even if the frames are connected by stiff
rods their mutual dislocations cause discontinuous boundary displacements of
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Fig. 12.5.2. Shake box with opposite laminate chains (a, b deformed), and with a
jointed stack of frames (c); plots by Bühler (2006)
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the soil. These may be smoothed by a membrane, but they lead to localizations
which cannot be followed up in the analysis.

Prohibitive dislocations are avoided with hinged laminar lateral walls. In
the first Karlsruhe shake box (Gudehus et al. 2004) the distance of oppo-
site wall strips is fixed by wires, and the plane-parallel walls are smooth
(Fig. 12.5.2a, b). The base is first clamped against springs and then released
by cutting a wire. In the second one (Wienbroer et al. 2007) laminar frames
with smooth flanks serve to the purpose (c). The base is shaken by a hy-
draulic drive with prescribed displacement vs. time, periodically or according
to a seismic record. Vertical displacements along the in-plane walls are slightly
confined by their friction. A membrane is needed between walls and saturated
soil. An electro-phoretic water film can be employed instead for a peloid by
means of direct current. These boundary conditions are sufficiently defined
for back-analyses and resemble cases in situ.

Dry sand with a horizontal surface was investigated with the first Karls-
ruhe box, Fig. 12.5.3. It was loose at the onset and shaken by releasing the
base. The free surface shifted sidewards (a) and settled (b) rather uniformly.
A back-analysis with hyp-δ (Libreros-Bertini 2006) reproduces this evolution
in the essentials. As in the one-dimensional case (Fig. 12.4.2) the transversal
waves have the same period as the base, whereas the longitudinal waves exhibit
frequency doubling (later in the test and vealed by a shaking mode of the box).

Saturated sand was also tested in the first Karlsruhe box, Fig. 12.5.4. It
was loose at the onset, its pore pressure pw was measured near the base.
Shortly after releasing the base the free surface was shifted (a) and settled
(b), pw rose abruptly and returned thereafter (c). The back-analysis with
hyp-δ and no drainage in the first seconds reproduced the shift and the pw-
rise, but not the settlement afterwards and the pw-reduction (Libreros-Bertini
2006). Pore water came out rapidly through spontaneously formed erosion
channels (Sect. 8.4), this could be seen from minute volcanos (Sect. 16.3).
Seepage is almost excluded in the short propagation time (Osinov 2000), the
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Fig. 12.5.3. Horizontal (a) and vertical (b) displacements of initially loose dry sand
in the shake box of Fig. 12.5.2a and simulated with hyp-δ (Gudehus et al. 2004)
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a) b)

c)

Fig. 12.5.4. Horizontal (a) and vertical displacements (b) and pore pressures (c),
observed in the shake box of Fig. 12.5.2a with saturated loose sand and simulated
with hyp-δ (Gudehus et al. 2004)

rapid dewatering via channels could not be captured by such a calculation
(Kolymbas 1998).

The sand was densified to e ≈ ed by repeated shaking and not shifted
anymore. The same was achieved with periodic shaking in the second Karls-
ruhe box (Wienbroer et al. 2007). This attractor in the large could also be
generated by hyp-δ with diffusion of pore water, except for hydrostatic uplift it
depends on the amplitude as for a dry psammoid. With big enough amplitudes
loose saturated sand expands to a suspension and exhibits gravity waves by
strong shaking. The measured pw reaches the total overburden pressure. This
phenomenon and the subsequent formation of dewatering channels are outside
the present reach (Sect. 16.3).

A layer of saturated clay upon a sand base was also investigated with the
first Karlsruhe box. A moderately plastic clay was mixed and placed with
a constant initial e so that a consolidation ratio pe/ps ≈ 1.5 was attained
near the sand base (Bühler 2006). Repeated shaking was imposed by stress-
ing the box against springs with 1, 2, 4 and 8 mm stretching before release.
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The observed response was almost the same in five repititions, i.e. cumula-
tive changes of state of the clay layer were rather negligible. The horizontal
displacements along the wall increased slightly by doubling once and twice
the base amplitude, but no more after a further doubling. This screening is
confirmed by pore pressures pw near the sand base. pw rises slightly for a
small amplitude, for a bigger one it reaches the total pressure and is reduced
afterwards in some seconds.

These observations can be explained by means of v-hyp-δ. With moderate
amplitudes the propagation of an S-wave in a peloid with pe/ps < 1.5 ini-
tially causes a slight reduction of ps, after this increase of pe/ps the response
gets nearly hypoelastic. With bigger amplitudes the underlying sand and the
adjacent clay get temporarily close to a skeleton decay so that a further prop-
agation is screened. A thin part of the clay layer is densified thereafter with
pore water diffusion, this takes only a short time by (11.3.1). Further traces
of propagations fade away by relaxation, thus the clay layer is the same as
before except for a slight densification near the interface to the sand base.
This near-attractor in the large would not occur with big amplitudes as then
the clay would dilate in shear bands or crack, and could be transformed into
a mud by strong shaking (Sect. 5.5).

Screening of shear waves is achieved by an about 1000 years old Japanese
method named hanshiku. A mattress of fat clay with loose saturated sand
inclusions was placed under important buildings. A strong earthquake causes
a decay of the grain skeleton and only a minor subsequent densification, so the
mattress which was kept wet served to the purpose repeatedly. Pralle (2002)
observed a similar screening with a cushion of a saturated grain skeleton
and a membrane (Fig. 12.5.5). The observed reduction of the top amplitude
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(b) corresponds to the pw-increase up to skeleton decay (a). Libreros-Bertini
(2006) obtained nearly the same response by means of hyp-δ (c, d), this is a
further validation.

Figure 12.5.6a shows a psammoid body including a dam under harmonic
in-plane or anti-plane shaking (Gudehus et al. 2004, Libreros-Bertini 2006).
In the latter case the out-of-plane displacements are equal in parallel cross
sections, and the two fictitious walls are fixed and smooth. These boundaries
are far enough from the dam, opposite wall points have the same displacements
in case of in-plane shaking. Spreading (b) and settlement (c) of the dam
calculated with hyp-δ, assuming re = 0.5 initially and no water, increase
almost equally with time for both modes of shaking with amplitude ao = 0.2g
and frequency f = 3 s−1. After a transition the displacement increases about

anti-plane

u3

u1

in-plane

v

v

0

25

50

75

100

1,0 2,0 3,0

u
1 

[m
m

]

Zeit [s]

in-plane
anti-plane

–250

–200

–150

–100

–50

0

1,0 2,0 3,0

u
3
 [m

m
]

Zeit [s]

in-plane
anti-plane

a)

c)

0,0 0,0

b)

2,01,0 3,00

u 1
 [m

m
]

Zeit [s]

in-plane
anti-plane

80

60

40

20

0
2,01,0 3,0

–150

–100

–50

0

0

u 3
 [m

m
]

Zeit [s]

in-plane
anti-plane

d) e)

Fig. 12.5.6. Simulated seismic response of psammoid bodies with a dam (Gude-
hus et al. 2004, Libreros-Bertini 2006): boundary conditions (a), spreading (b) and
settlement versus time without pore water (c), same with pore water (d, e)
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linearly with the number of cycles, and the ratio of both components is rather
constant. The latter is nearly independent of the frequency f , but the rate
of growth per cycle is almost 20 times as big for f = 2 s−1 as for 15 s−1.
This magnification has little in common with the resonance of linearly elastic
bodies.

The response of such a psammoid body was also calculated with water sat-
uration and without drainage (Gudehus et al. 2004). The latter assumption is
justified for some cycles with the assumed data (Osinov 2003), spontaneous
channeling can be excluded with an initial re = 0.5 (rather dense). The cumu-
lative displacements of the dam shoulder are smaller than with dry psammoid
(or constant hw), Fig. 12.5.6d, e. The pore water prevents dilation so that
ps increases, this matters more for in-plane than for anti-plane shaking. The
constraint is weaker in the latter case as grain skeletons are softer for out-of-
plane path reversals (Sect. 4.7). In the long run the hydraulic constraint is
reduced by the diffusion of pore water.

A case with anti-plane shaking of a thin peloid layer was already outlined
in Sect. 5.5. The enhanced creep or ratcheting could be captured by v-hyp-δ
for lower then critical stress obliquities. A delayed collapse with shear melt-
ing and cavitation occurred with an overcritical obliquity. Apart from such
critical phenomena the role of seepage can apparently be taken into account
realistically for in- and anti-plane shaking of peloids.

A composite of psammoid and peloid zones was assumed for a case study,
Fig. 12.5.7 (Gudehus et al. 2004, Libreros-Bertini 2006). A breakwater near
Kobe was built upon rockfill which partly replaced soft clay, this was rep-
resented with finite elements (a). Soil parameters were chosen according to
a report by Iai et al. (1998). A seismogram from the Hyogoken-Nanbu 1995
earthquake was taken as base shaking. The calculated pore pressure in the fill
(b), mean skeleton pressure at the same place (c), lateral displacement at a
surface point (d) and settlement of the breakwater (e) are nearly the same for
in-plane and anti-plane shaking. A drainage was almost excluded during the
earthquake, subsequent pore water diffusion and creep cause further displace-
ments. The estimated asymptotic settlement of 1.5–2 m engulfs the observed
one of 1.8 m.

Cases as presented above could be further investigated with the seismo-
dynamics proposed in Sects. 4.6, 4.7 and 5.5. Seismodynamic equilibria were
attained with submerged sand in the shakebox of Fig. 12.5.2c (Wienbroer
2010). With continued harmonic shaking the grains get unjammed so that
their partial pressure gets isotropic, the void ratio gets close to the lower
bound ed and the mean pore pressure gets hydrostatic. This attractor is de-
termined by the stationary shaking and implies a field of granular temperature
Tg, observations could serve to check and quantify the balance of seismic en-
ergy by (4.6.7). The densification and the granular relaxation in the transition
can at best be estimated with hyp-δ, s-hyp or h-cyc (Sect. 4.5), observations
will help to validate and calibrate better theories.
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Another attractor with Tg could principally be obtained by shaking the
base of a granular layer with a subcritical inclination, but experiments and
calculations will be difficult. In case of stationary ratcheting the grains are
not unjammed, and with low Tg entropic and viscous stress fractions may
be negligible. The one-dimensionality gets lost at layer rims and by critical
phenomena, calculations with the models outlined in Sect. 4.5 can fail by
ill-posedness. Earthquakes could produce attractors in the large with sand
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which resemble thermally activated ones with peloids (Sect. 12.3), this is in-
dicated by Fig. 12.5.6, but theories beyond hyp-δ, s-hyp and h-cyc will not
easily be validated and calibrated. This holds also true for peloids with ther-
mally and seismically activated viscous effects (Sect. 5.5), so Fig. 12.5.7 is no
more than a promising hint.

To sum up, plane-parallel evolutions without structures due to base shak-
ing can be captured by hypoplastic relations as long as critical phenomena
do not dominate. Results of shake-box tests with sand are well reproduced by
hyp-δ except for the formation of erosion channels after skeleton decay. Some
field observations after earthquakes are fairly well reproduced with compos-
ites of psammoids and peloids. In these cases a stabilizing creep with pore
water diffusion is seismically enhanced. Earth bodies at the verge of stability
develop an autogeneous seismicity which indicates the onset of critical phe-
nomena. Even without the latter the seismic mobility cannot be captured by
simply assuming a temporarily heated solid.

12.6 Normal faulting

The mechanics of tectonic faulting is based on model tests with soil and on
the theory of plasticity (Mandl 1988). Several kinds of fault patterns observed
in situ could thus be explained, so it appears that the lithosphere is soil-
like in that respect. Normal faults resemble shear bands in a biaxial test with
horizontal stretching (Sect. 8.2). Following an article by Gudehus and Karcher
(2007) it is shown in this section how evolutions of normal fault patterns can
be simulated by means of hypoplasticity. As in previous sections of Chaps. 11
and 13 initial and boundary conditions have to be properly specified, now in
order to get certain fault patterns. Plane-parallelity is assumed, but will be
left aside at the end.

Wolf et al. (2003) obtained normal fault patterns in a model test with dry
sand, Fig. 12.6.1. A dense layer was stretched by extending its laminate base
via jointed parallelograms. Two out-of-plane walls were rather smooth so that
nearly plane-parallel deformations were obtained. Except for the vicinity of
the in-plane walls a zig-zag pattern of dilated shear bands arose by stretching
(a). The free surface got wavy with steepest slopes at the outcrops of shear
bands (b). The inclination of the bands against the horizontal was

ϑn ≈ 45◦ + ϕp/2 (12.6.1)

with a peak friction angle ϕp. The shear band pattern resembles swarms of
normal faults (Mandl 1988). It does not arise with initially loose sand.

Nübel (2002) simulated such evolutions by means of hypoplasticity with
polar quantities (cf. Sect. 8.2), Fig. 12.6.2. The rough base is extended uni-
formly, the in-plane walls with increasing distance are smooth and rigid. The
initial relative void ratio re = 0.2 corresponds to a high density. A zig-zag



532 12 Plane-parallel evolutions without SSI

Fig. 12.6.1. Pattern of shear bands (a) and surface warping (b) in an extended
model sand layer (Wolf et al. 2003)

Fig. 12.6.2. Simulated shear band patterns in a sand layer with polar effects by
10% (a) and 20% stretching (b), Gudehus and Nübel (2004)

pattern of dilated shear bands is clearly visible after 10% stretching, and the
free surface gets uneven (a). This resembles Fig. 12.6.1a, (12.6.1) is also con-
firmed. With 20% stretching a secondary pattern of shear bands gets better
visible inside the first one, and the slopes at the outcrops reach the critical
friction angle (b). The average density is sensibly reduced. An extension be-
yond ca. 20% could not be simulated as the equations got ill-posed. Similarly
as with a biaxial sample between smooth plates (Fig. 8.2.10) the layer tends
to an overall critical state with a fractal spatial fluctuation of void ratio and
pressure. In the asymptote shear bands can no more be identified, and polar
quantities disappear in the average.

Such simulations with polar terms are no more feasible for layers in situ
as the number of required finite elements gets too big. Results of simulated
stretching without polar quantities are mesh-dependent, Fig. 12.6.3. Shear
bands are again produced (a), their initial inclination can be approximated
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Fig. 12.6.3. Simulated shear band pattern in a sand layer without polar effects
after a moderate (a) and a bigger (b) extension (Gudehus and Karcher 2007)

by (12.6.1), their thickness is given by the mesh size and not by the grain di-
ameter. With further base stretching the shear bands get flatter (b). A fractal
succession of zig-zag patterns is no more obtained, it is not known whether
this lack could be overcome with more finite elements. The free surface gets
wavy, and psammoid elements in shear bands tend to critical states. It appears
that the layer would attain an overall critical state by continued stretching al-
though this cannot be simulated because of ill-posedness, and that then shear
bands could no more be identified.

Uniformly stretched homogeneous granular layers do not occur in situ, and
even in sophisticated model tests the desired uniformity is spoiled by imperfect
walls and bases. Patterns of shear bands or normal faults get different with
minor changes of initial fluctuations and boundary conditions. This vicinity
of pattern formation and deterministic chaos is typical for critical phenomena
(Sect. 16.3). A strange attractor could be represented by a sequence of hatched
RSEs. For each size dominating shear bands and offsets at the RSE-boundary
can be imagined. Alongside with this fractality (Mandelbrot 1982) there are
self-similar spatial fluctuations of skeleton stress. Apart from the cut-off by
grain size and layer size there is no preferred RSE-size.

The situation can get conceptually simpler with boundary conditions
which produce preferred shear bands, then hypoplastic simulations can yield
realistic features of normal faults. Karcher (2003) simulated synsedimentary
tectonic deformations for a cross section West of Cologne, Fig. 12.6.4. Ge-
ological investigations by Knufinke and Kothen (1995) reveal a depression
with normal faults near its rim (a, b). The depression was filled with sedi-
ments during its formation in the past ca. 2 · 107 years, and stretched with



534 12 Plane-parallel evolutions without SSI

1 0Id [m]

35
0

10
00

6075 3925

u 1
–u 2u  = 01

u  = –10502

u  = 6551
u  = 02

c)

d)

e)

Kölner ScholleErft – ScholleRur–Scholle

Kölner ScholleErft –  ScholleRur–Scholle

SW NO

–1500

–1000

–500

N.N.

+250
m

Querschnitt (SW – NO)
          durch die 
Niederrheinische Bucht

–1500

–1000

–500

N.N.

+250
m

V5

KohleTon

FelsSand Kies

a)

b)

Maßstab

10 fach überh öht

nicht überhöht

0 2500 5000 m

Maßstab

0
25

00
50

00
 m

0 2500 5000 m

Fig. 12.6.4. Fault pattern in a formation with lignite (Karcher 2003, Gudehus
and Karcher 2006): (a) cross section in situ with exaggerated heights, (b) undis-
torted cross section; onset with an overburden (c) of a depression with simultaneous
stretching (d), and shear bands (e) by hypoplastic simulation for a section



12.6 Normal faulting 535

simultaneous bending of its shoulders. Only major normal faults with more
than about 10m dislocation are depicted, but there are also smaller nested
patterns. Major faults appear likewise in the rock base which was deformed
by the magma underneath.

Karcher (2003) simulated this evolution with necessarily simplified initial
and boundary conditions. He assumed an increasing symmetric depression
at the base of an initially uniform psammoid layer, and a simultaneously
increasing psammoid fill to compensate for the depression, Fig. 12.6.4c and d.
A swarm of shear bands inclined towards the depression is obtained in the
region of biggest curvature, and a less marked swarm with the opposite in-
clination (e). The striking similarity with observed normal faults (a, b) was
only obtained with the assumed initial and boundary conditions.

Excavations for lignite mining reveal details which are not captured by this
simulation. Off the main faults minor faults and shear bands can be recognized
from offsets of layers and brighter dilated zones. Only the main inclination
is rather regular, the distances and thicknesses of bands are random. This
indicates a strange attractor, so details are not predictable. Along main faults
dislocated clay layers are deformed into clay smears (Lehner and Pilaar 1995).
The faults are wider with bigger dislocations, and swarms of shear bands
appear in their vicinity. The band width of clay smears tends to roughly
20% of the source layer thickness with increasing dislocation. This leads to
preferred shear zones as assumed e.g. in Fig. 12.4.6.

A simulated evolution of a normal fault with a clay smear is shown in
Fig. 12.6.5. A package of two psammoid layers and a thinner peloid layer is
dislocated from the base and the fictitious walls with a direction by (12.6.1).
With increasing dislocation the shear zone gets wider, whereas the width of
the clay smear tends to an asymptote of roughly 20% of the source layer
thickness (left). The succession of principal stresses (right) indicates a re-
duction of mean pressure and an adaption to simple shearing towards the
clay smear. This was obtained with constant hydraulic height hw, i.e. for
sufficiently slow deformations. A bigger distance of the fictitious walls and
minor modifications of the initial package did not change the results. A closer
view reveals the formation of shear bands near the increasing main fault.
The bands are mesh-dependent as the ones in Fig. 12.6.3 and can at best
indicate the inherent fractality, only their inclinations may be considered as
realistic.

A documented clay smear from a hydrocarbon-bearing formation (Weber
et al. 1978) has a lot in common with our simulated one. The band thickness
in the central part attains ca. 15% of the source layer thickness, this suffices
for working as hydrocarbon seal. The adjacent formation reveals shear bands
outside of and offsets in the source layer. Lehner and Pilaar (1995) propose a
viscous feeding of an increasing clay smear by an assumed pressure gradient
towards the fault. We obtain the main features with hypoplastic relations and
suitable initial and boundary conditions without assuming anything else in
advance for the near-field of faults.



536 12 Plane-parallel evolutions without SSI

1 0Id

Fig. 12.6.5. Simulated faulting with an arising clay smear (Gudehus and Karcher
2006): composite with dislocation (left), principal stresses (right)
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The assumed initial configurations and boundary conditions suffice to re-
produce some key features of observed normal faults. Comparative calcula-
tions have shown that minor modifications of these assumptions do not change
the major findings. Hypoplastic simulations may therefore be considered as a
legitimate tool of structural geology instead of or in addition to model tests.
This approach could be extended to other cases than normal faulting, but
there are principal limitations.

Such attempts are impeded by mathematical ill-posedness and mesh-
dependence. Remeshing alone is no way out, and regularizations need a phys-
ical background to avoid numerical artefacts. This could help to understand
some critical phenomena in the lithosphere. Patterns of normal faults are
never really plane-parallel or axi-symmetric. Model tests reveal swarms of
spatially curved narrow shear zones en-echelon along a main nearly vertical
fault (Mandl 1988). Ring structures with axi-symmetric initial and bound-
ary conditions (Fig. 14.2.9) could exhibit en-enchelon patterns as observed in
triaxial tests (Sects. 8.2 and 14.1).

The matter gets more complex with non-hydrostatic pore water, in par-
ticular with clay smears and comminuted material in faults. In case of over-
consolidation pw can decrease by strong shaking (Sect. 4.2), thus the stress
obliquity can get overcritical so that the formation of faults is enhanced. After
a weaker consolidation a skeleton decay can occur due to an increasing granu-
lar or seismic temperature. A clay smear can get overcritical so that it dilates
and cracks with autogeneous seismicity. Thereafter a hydraulic gradient can
lead to a breakthrough, the subsequent erosion is enhanced by methane and
leads to mud volcanos (more in Sect. 16.3).

To sum up, to a certain extent the formation of normal faults can be
captured with hypoplasticity. With suitably chosen initial and boundary con-
ditions observed features of synsedimentary faulting and of clay smears are
reasonably reproduced. This new tool could also be applied to tectonic de-
formations with axial symmetry, and even to three-dimensional cases. The
formation of fractal patterns and deterministic chaos in the lithosphere can-
not thus be captured as the equations get ill-posed.



13

PLANE-PARALLEL EVOLUTIONS
WITH SSI

Soil structure interactions (SSIs) are rarely plane-parallel, but often assumed
so for calculations. This chapter leads beyond conventional models, and is
more an outline of what could be done than a report on successful applications.
Plane-strain model tests with structures are spoiled by parasitary wall forces,
structures and ground in situ have rarely the same cross section over lengths
which suffice for plane-parallelity. Attractors in the large are employed with
the assumed symmetry, but how they can be attained or get lost cannot be
judged within this frame (cf. the introduction of Chaps. 12 and 15).

Interactions of rigid walls with psammoids (Sect. 13.1) were first treated
by Coulomb (1773). It will be shown how far classical earth pressure theories
can be defended, and what can be done beyond including the pore water. The
issue gets more intricate with peloids (Sect. 13.2) due to skeleton viscosity and
pore water diffusion. We will see that the stability of statical equilibria, i.e. the
ability to stand, can hardly be captured by comparing estimated driving and
resisting forces. Even shear localizations can be numerically well modelled,
polar effects matter only for solids which are not much wider than one grain.

Nearly the same conclusions are drawn for guided strips upon the ground
(Sect. 13.3). Design models for shallow foundations can thus be delimited and
improved. This is also achieved for nearly rigid structures upon soft ground
(Sect. 13.4). Section 13.5 begins with subgrade reaction models although these
do not depend on plane-parallelity. The presumed uniform cross sections are
more often given with retaining structures (Sect. 13.6) than with skeleton
buildings. Validations were achieved with a number of field tests and moni-
toring data, they are the base of design scenarios.

Cavities and underground structures (Sect. 13.6) are also treated with
plane-parallelity, although this symmetry can at best be achieved in model
tests and after the end of geotechnical operations in situ. The proposed design
scenarios are therefore rather preparatory. Tunnelling with less symmetry will
be treated in Sects. 15.2 and 15.4. Plane-parallel evolutions with several re-
versals are introduced in Sect. 13.7. It is shown how attractors in the large
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could be achieved by model tests and calculations. This is rather an outlook,
the issue will appear again in the next chapter and deserves further research.

13.1 Psammoids at rigid guided walls

Coulomb (1773) proposed to calculate earth pressures with the following as-
sumptions, Fig. 13.1.1:

A1: behind a horizontally yielding wall an active wedge slides down along
a slip plane, the obliquity of the slip plane resultant equals the friction
angle ϕ and the one of the earth pressure E equals the wall friction angle
ϕw;

A2: the inclination ϑ of the slip plane has a value ϑa so that E is a maximum
Ea;

A3: behind a wall pushed in a passive wedge slides up along a slip plane with
force inclinations as by A1, but opposite sign;

A4: in the second case ϑ has a value ϑp so that E is a minimum Ep.

In the simplest case of a smooth wall (ϕw = 0) without deviation α from
the vertical and with a horizontal soil surface (β = 0) the results can be
summarized by

Ea =
1
2
γh2 tan2(45◦ − ϕ/2); ϑa = 45◦ + ϕ/2 (13.1.1)
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Fig. 13.1.1. Sliding wedges (a) and force polygons (b) assumed for getting
Coulomb’s active earth pressure; same for the passive case (c, d)
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Ep =
1
2
γh2 tan2(45◦ + ϕ/2); ϑp = 45◦ − ϕ/2 (13.1.2)

with height h and specific weight γ. In general the Coulomb earth pressures
can be written as

Ea =
1
2
γh2Ka; Ep =

1
2
γh2Kp , (13.1.3)

wherein the factors Ka, Kp and the related inclinations ϑa and ϑp are functions
of α, β, ϕw and ϕ.

Rankine (1856) calculated stresses in a laterally extended or shortened
layer, this was shown with Fig. 11.5.2. The stress components increase linearly
with depth, their obliquity is maximal and equals tanϕ for two normal stress
directions. The resultant horizontal force on a fictitious vertical wall at a
horizontal layer is Ea or Ep by (13.1.1) or (13.1.2), respectively. With an
inclined layer the force upon a fictitious wall with inclination α is the same
as by (13.1.3) if ϕw = β − α is assumed.

When and how can Coulomb’s and Rankine’s theories be justified? G. Dar-
win (1883) carried out model tests to find an answer. He filled fine dry sand
behind a wall with a hinge below, and controlled a weight which pulled a wire
at the wall so that the system attained the verge of equilibrium. He concluded
that the active earth pressure Ea is proportional to h2 as by Coulomb and
Rankine, but obtained other amounts than these authors when taking the
maximal inclination of a slope for ϕ. He observed different Ea for different
sequences of filling and concluded that this historical element eludes mathe-
matical treatment (cf. Prologue). His empirical formula for Ea was forgotten,
and the historical element is largely ignored until now.

Fig. 13.1.2. Shear bands behind a smooth pulled-back wall (Nübel 2002, Gudehus
and Nübel 2004): simulated with polar hypoplasticity (a, b), observed with particle
image velocimetry (c, d)
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It was shown in Sect. 11.5 that Rankine stress fields can hardly arise
and that a density-dependent ϕ is rather indeterminate. So let us focus on
Coulomb’s assumptions in the light of modern theories and experiments.
Nübel (2002) investigated a smooth model wall that was pulled back from
an originally dense dry horizontal sand layer, Fig. 13.1.2 (also in Gudehus
and Nübel 2004). Applying a hypoplastic relation with polar terms (p-hyp,
Sect. 8.2) a nearly plane shear band was calculated that widened with increas-
ing offset (a, b). The displacements and distortions observed with particle
image velocimetry (PIV) are nearly the same (c, d).

Walls rotating around their foot were also investigated, Fig. 13.1.3. The
calculation with p-hyp produced three parallel shear bands with marked di-
lation and offsets at their outcrops after a substantial rotation (a). Similar
shear bands with dilation and offsets were observed by means of X-rays (b).
For a smaller rotation the calculation yielded an emerging pattern of shear
bands (c). This pattern is similarly fractal as for a biaxial test (Fig. 8.2.7)
or an extended strip (Fig. 12.6.2). It resembles the lines of maximal stress
obliquity by Rankine (1856), but does not reach the wall foot. For the bigger
wall rotation two conjugate shear bands appear only just behind the wall (a).

 h
  =

 9
cm

 

w

earth pressure sx

low highDV
a) b)

c)

Fig. 13.1.3. Shear bands behind a rotated wall: simulated with p-hyp (a and c,
Gudehus and Nübel 2004), observed with X-rays (b, Milligan 1974)
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Fig. 13.1.4. Sliding wedge with stress obliquities (a) and distribution (b)

Coulomb’s assumptions A1 and A2 for the active case may now be dis-
cussed, Fig. 13.1.4. A slip plane from the wall foot is apparently justified if the
wall is sufficiently shifted or rotated outwards. The inclination of its resultant
force against the normal is not a constant ϕ, but given by an average peak
friction angle that tends to the critical friction angle ϕcs by dilation (a, cf.
Sect. 2.9). The inclination of the resultant earth pressure is bounded by the
wall friction angle ϕw (Sect. 10.3), but need not agree with it. With an ob-
served inclination ϑ and assumed inclination of Q an earth pressure E can be
determined by the equilibrium of the triangular zone between shear band and
wall (b). As its weight W is proportional to γh2 (13.1.1a) seems to work with
a suitable Ka. But does E really attain a maximum Ea with respect to ϑ as
assumed by Coulomb without discussion?

In other words A2 means that given A1, ϑ takes a value ϑa so that E attains
the highest statically possible value Ea with the assumed force obliquities.
This cannot be concluded from equations for the boundary value problem, so
it is an ad-hoc hypothesis with at best empirical validity. The consequences
(13.1.1), (13.1.2) and (13.1.3) may be used for design estimates with due
caution. We will see further below what this means for the assessment of
stability, and how deformations and changing densities could be taken into
account.

Gudehus and Nübel (2004) present also investigations of a passive case
which may serve to judge Coulomb’s assumptions A3 and A4, Fig. 13.1.5.
In a model test a wall was pushed downwards into partly coloured sand (a).
Calculations with polar quantities and hypoplasticity (p-hyp) produced a sim-
ilarly distorted finite element mesh (b). One can see a curved shear band and
distortions on top of it. Dilations reveal the detailed evolution of shear bands,
Fig. 13.1.6, both observed with X-rays (a) and calculated with p-hyp (b). At
the beginning a shear band grows horizontally from the wall foot (A). This
gets stuck and a curved shear band grows up to the surface (B). The band
is widened and the skeleton is further dilated with increasing wall shift, and
two further shear bands arise from the wall top (C). These findings refute A3
and do not offer a substitute of A4.
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a)

b)

Fig. 13.1.5. Observed (a, courtesy E. Schwing) and calculated (b) deformation
behind a pushed-in wall (Gudehus and Nübel 2004)

Two sliding wedges may be considered for design estimates in such cases,
Fig. 13.1.7. They are specified by three inclination angles ϑ1, ϑ2 and ϑ12 which
may first be assumed (a) according to Fig. 13.1.6. Their force obliquities are
tan ϕcs for the outer bands as these are dilated up to critical states. The
inclination of the band from the wall top is bigger by an unknown amount
due to dilation, but for caution it should also be taken as ϕcs. The inclination
of the resultant earth pressure E is lower than the wall friction angle ϕw if
the first wedge does not slide along the wall, it may be assumed as zero to be
on the safe side. A force polygon for the two wedges yields a limit equilibrium
value of E (b). A lower bound of E can be obtained by variation of ϑ1, ϑ2 and
ϑ12. Results of such variations (Gudehus 2002) can be captured by (13.1.3b)
with Kp-values well below the ones by Coulomb.

This approach gets inconsistent if the wall can also rotate. Coulomb (1773)
indicated a slightly curved slip surface for the active case and substituted it by
a plane, this suffices apparently even if the wall rotates although then a rigid
sliding wedge is impossible (cf. Figs. 13.1.2 and 13.1.3). Various approaches
have been proposed for the passive case, Fig. 13.1.8. A single curved slip
surface can be approximated by a circular arc, then a rigid body on top of
it can move together with the wall (a). Assuming a constant stress obliquity
tan ϕ the resultant force Q in the slip surface should have at least the moment
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Fig. 13.1.6. Observed (a, courtesy E. Schwing) and calculated dilations (b, Gude-
hus and Nübel 2004) for the experiment of Fig. 13.1.5
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Fig. 13.1.7. Sliding wedges (a) and force polygon (b) Gudehus (1981)
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Fig. 13.1.8. Assumptions for passive earth pressures at a rotating wall with a slip
circle (a), coefficients of earth pressure (b), three slip circles (c) and radial stress
field (d)

Qrsinϕ relative to the centre of the arc. Given the direction and position of
the resulting earth pressure E, this is determined by the equilibrium with Q
and the weight W of the sliding body: E, Q and W go through one point
and make a closed polygon. Variation of the arc leads to a lower bound Ep of
E. This was calculated and can be expressed by (13.1.3b) with a suitable Kp

(Gudehus 2002).
Such Kp-values are plotted in Fig. 13.1.8b. They are lower than the ones

for translation, which in turn are lower than the ones by Coulomb. The less
constrained the kinematic freedom is by assumed slip surfaces, the lower ev-
idently is the resistance of the psammoid body against the wall. A slightly
lower Ep would be obtained with two sliding bodies separated by curved
slip lines, Fig. 13.1.8c. Neglecting dilatancy and assuming circular arcs their
centres should be on a straight line if the sliding bodies are rigid. With the
same assumption for resultant slip line forces as for a single arc a lower bound
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Ep can be calculated by variation. This is not needed for design estimates as
these are crude anyway.

Purely statical methods may only be mentioned for historical interest.
Assuming a radially linear increase from the wall top and a maximal obliq-
uity tan ϕ of the in-plane stress components, Fig. 13.1.8d, Caquot and Kérisel
(1956) calculated Kp values for Ep by (13.1.3b). Sokolovski (1960) dropped
the linear increase and obtained slightly lower Kp-values. As with Rankine’s
(1856) theory (cf. Sect. 11.5) the assumption of a uniform maximal stress
obliquity is not justified by observations and sophisticated calculations. Fig-
ure 13.1.6 suggests two radial shear bands from the wall top, but a non-
uniform obliquity can be concluded from the different degrees of dilation. A
radially linear stress increase, as assumed by Caquot and nearly obtained by
Sokolovski, is thus not supported by more realistic models.

The historical element is ignored in the usual statical and kinematical
methods for determining Ea and Ep. Slip lines and stress or force obliquities
are assumed without saying how they could arise. Stress distributions have
also to be assumed ad hoc, and the highest lower or lowest upper bound for
E is only reasonable to get Ea or Ep, respectively, but not necessary. One
has to follow up the evolution of shape and state in order to overcome these
serious shortcomings. This may first be outlined according to Darwin’s (1883)
experiments, Fig. 13.1.9. The psammoid can be identified by hypoplastic pa-
rameters. The rigid, initially fixed wall imposes a restriction by (9.2) with a
friction angle ϕw ≤ ϕcs. The skeleton is fixed below the wall hinge, along the
opposite wall and at the base.

An initial state can be generated by imposing gravity in different orders
with suitable relative void ratios re (Sect. 10.4). One could simulate different
orders of filling as chosen by Darwin, e.g. horizontal layers or inclined ones
from or towards the later rotating wall (a). This leads to non-uniformities
of stress ratios Ts2/Ts1 and relative void ratios re along the wall and the
temporary slopes. Tapping or shaking can hardly be simulated, it suffices for
the sequel to assume a stress field instead as for a uniform layer (cf. Sect. 11.2)
with Ts2/Ts1 = K0 ≈ 1 − sinϕc. The initial density has to be specified by a
suitably assumed re-field which is the most important state variable.

Shape and state of the psammoid body are now changed by rotating the
wall with negligible accelerations (b). Before the system loses its equilibrium
one can as well specify steps of the rotation angle ω or the reduction of weight
W at a string connected with the wall. Independently of initial fluctuations
the stress components along the wall tend to an almost linear increase with
depth and according to the slip condition. As in Fig. 13.1.3 shear bands evolve
behind the wall. Their thickness and number depends on the chosen mesh
(cf. Sect. 12.6), but realistic earth pressures for rotations could be obtained
nevertheless. The lack of objectivity could be removed with polar quantities,
but such calculations are very expensive and neither feasible nor necessary
if the wall is more than ca. 103 times as high as the grain size (Tejchman
1997). The average dilation, which is decisive for the evolution of E, could
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Fig. 13.1.9. How Darwin’s (1883) experiments could be simulated: placement (a),
limit equilibrium (b), earth pressure versus rotation (c), macro-element (d)

be captured by a suitable mesh without polar terms. This is legitimate as
the mean pressure ps is hardly influenced by size and rotations of grains
in the given case. In a triangular zone above a shear band the forces are
given by weight and obliquity (cf. Fig. 13.1.4), the latter is determined in
the band by its instantaneous average relative void ratio r̄e, this is rather
mesh-independent.

The state attained by a sufficient wall rotation may be considered as an
attractor in the large. The stress components along the wall increase about
linearly with depth and satisfy the slip condition (10.3.2). Their obliquity is
determined by the r̄e along a plane shear band from the wall foot. This r̄e

in turn is determined by its initial average r̄eo, it gets higher due to dila-
tion during the transition. The wall rotation required to attain the attractor
increases with bigger initial non-uniformities of stress ratio and re. As long
as the initial re-fluctuations do not imply higher values along the emerging
lowest shear band than the overall average r̄eo the latter determines the earth
pressure at the wall. Although the dependence on initial re-fluctuations could
be investigated by comparative calculations Darwin (1883) was right stating
that the determination of earth pressures ‘eludes mathematical treatment’.

Consider now the stability of our system. If the wall is further rotated with
a slow constant velocity the resultant earth pressure E increases somewhat
with rotation ω before it is reduced by the decreasing psammoid height at
the wall (Fig. 13.1.9c). Only if the layer is very loose at the onset, i.e. for
r̄eo ≈ 1, such an increase cannot occur. If the wall is kept by a string with a
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weight W the system collapses after the minimum of E has been attained, i.e.
the equilibrium gets lost with spontaneous acceleration. There is an excess
of kinetic energy as the net loss of gravitational energy of the psammoid
and the suspended weight exceeds the energy dissipated during an additional
wall rotation Δω. This can be estimated by assuming a uniform dilatant
shearing in a triangular zone (d). The dilatancy angle ν of this macro-element
(cf. Fig. 12.1.4a) is determined by its instantaneous r̄e via the relations for
state limits (Sect. 2.9). The latter determine also the reduction of the stress
obliquity by further shearing.

This estimate could be substituted by calculations with finite elements and
hyp or p-hyp, but these are cumbersome as even with inertia the equations
tend to get ill-posed. This indicates a spontaneous seismicity which was al-
ready observed by Darwin (1883). As with heaps and excavations (Sects. 12.1
and 12.4) one should avoid such a collapse by assuming a limit equilibrium ac-
cording to Fig. 13.1.4 with ϕcs. In Darwin’s experiments the system attained
a new equilibrium with more rotation and a lower psammoid height, but real
retaining walls can collapse.

The procedure explained with Fig. 13.1.9 can be transferred to a psammoid
fill with a rigid retaining wall which can slide along a plane solid base with
friction angle ϕb, Fig. 13.1.10. The wall may be backfilled (a) until it slides.
The evolution could be simulated by means of finite elements with different
successions and relative void ratios re. As before the average r̄e is decisive for
the onset of sliding. This can be captured with a psammoid wedge (b) and
a force polygon with limit obliquities (c). A statically possible filling height
hs can thus be determined with an average inclination ϕ̄ of the resultant
force in the assumed shear band with inclination ϑ. The earth pressure is
the intermediate force between wall and soil, E = Qwp, with given obliquity
tan ϕw. Following Coulomb a value ϑa may be chosen for ϑ so that E is bigger
than for other ϑ. ϕ̄ may be taken for an assumed attained average r̄e in the
shear band by means of Fig. 2.9.2 for state limits of simple shearing. It is
necessary for stability to avoid this limit equilibrium, but is it also sufficient?

With further sliding ϕb and ϕw do not change, whereas ϕ̄ is reduced from
a peak value by dilation. The force polygon can no more be closed without
inertial forces (dotted in Fig. 13.1.10c). These act in the directions of sliding
and are proportional to the sliding masses. They are small at the onset of
sliding, substantial accelerations are only reached if the required ϕ̄ exceeds
ϕcs markedly. The system stabilizes itself by reduction of filling height as
the psammoid surface gets inclined near the wall. The temporary collapse is
triggered by the minutest disturbance, with further sliding the system gen-
erates kinetic energy which is dissipated by friction. If the filling height does
not exceed hs determined with ϕ = ϕcs the system cannot collapse. This
is apparently a necessary and sufficient condition for stability, but are the
assumptions legitimate and could a collapse be quantified?

Consider finite elements near the corner at the wall foot, Fig. 13.1.10d. Po-
lar quantities are neglected for simplicity. Two triangular elements are needed
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Fig. 13.1.10. Evolution with a sliding retaining wall: placement (a), forces (b) and
polygon (c), finite elements (d) and stress circles (e) for the vicinity of the wall foot

at the corner as a single one would lead to statically inconsistent stress states
(e). The lower one (A) is more deformed and thus reaches earlier a state limit
than the upper one (B), both attain the slip condition. The lateral neighbour
(C) is more deformed than the upper one (D), so it is the next one that reaches
a state limit. With further wall slip a kind of shear band grows towards the
free surface while this rises. This localization depends on the mesh, so this
has to be properly shaped to get a realistic inclination. The corner elements
should not be deformed too much as otherwise the equations get ill-posed.

When a critical filling height is reached the numerical placement of the
next layer gets impossible without acceleration. Thus a collapse is indicated,
but not properly captured. The state just before may be an attractor in the
large which is mainly determined by the assumed field of the initial relative
void ratio re after the soil has been placed. As in the case of Fig. 13.1.9 it is
hardly possible to quantify the dependence of the average re and ϕ along the
shear band on the initial re. The mesh-dependence can principally be removed
with polar terms, but this is not feasible if the layer height exceeds ca. 103

times the grain size. The granular flow during a collapse could at best be
simulated in a crude approximation. It appears that there is no way around
simplified design models as the one of Fig. 13.1.10b.

Passive cases with a translated and rotated wall are indicated with
Fig. 13.1.11. A rigid wall with negligible weight may be pulled by a string
via a roll towards a psammoid layer so that the contact of wall and base is
just not lost (a). A shear band arises from the wall foot and rises with cur-
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Fig. 13.1.11. Passive cases with rotating wall: slip circle and forces (a), polygon
(b), finite elements indicating a shear band (c), wall force versus displacement (d)

vature as in Fig. 13.1.5. Following Fig. 13.1.8a one may assume a circular arc
and a resultant force Q in this shear band that touches the circle with radius
r sinϕ. In an equilibrium the string force E, the weight W of the sliding body
and Q go through one point and form a closed polygon (b). A collapse would
occur with a weight at the string if ϕ exceeds ϕcs. For design it should suffice
to keep a given E below Ep by (13.1.3b) with Kp by Fig. 13.1.8b, or not?

Position and inclination of E are given and not assumed a priori as for the
calculation of Kp. The moment of Q can exceed Qr sin ϕ, and the required
weighted average ϕ̄ is as unknown in advance as re and the pressure distri-
bution along the shear band. The position of the arc may be determined by
minimizing E (Gudehus 2002), but this heuristic approach is debatable as
discussed with Fig. 13.1.8. No real wall is weightless, and the force Qw at its
base including friction is not negligible. So how could the mechanical model
be improved, in particular with respect to stability?

A finite element mesh could be chosen so that the shear band from the
foot is reasonably reproduced even without polar terms, Fig. 13.1.11c. An
initial state with a fixed wall can be generated or chosen as outlined with
Fig. 13.1.9a. The quasi-static evolution prior to a loss of equilibrium can
likewise be driven by pulling with low speed or increasing the weight at the
string. The lowest elements near the wall foot slide past the base, sliding
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past the wall can be expected near the free surface. The corner elements are
strongly deformed, the equations can thus get ill-posed. If the height exceeds
about 103 grain diameters the relation of string force E and displacement sE

may be reasonably predicted (Tejchman 1997). If the string is pulled by a
weight up to a peak of the E vs. sE curve accelerations arise, but the further
course of such a collapse can hardly be calculated. Comparative calculations
could at best serve to support assumptions in an updated design model, but
thus the more general problem of stability remains unsolved. Following Darwin
(1883) one has to state again that this apparently elementary problem with
passive earth pressure eludes mathematical treatment.

How could pore water be taken into account? With full saturation and
constant hydraulic height hw solid partial forces and stresses are obtained by
taking the specific weight γr−γw instead of γ. This allowance for uplift suffices
for submerged psammoids which are so slowly deformed that seepage forces
are negligible. As with heaps and excavations (Sects. 12.1 and 12.4) this is no
more legitimate with fine grains and for a collapse. As long as the skeleton
tends to dilate due to a sufficiently low re < 1 one may neglect the temporary
reduction of hw for the design of retaining walls on the safe side.

Otherwise temporary changes of hw can play a role which cannot easily
be quantified, Fig. 13.1.12. Pulling back a wall rapidly from a dense, fine-
grained psammoid can produce a gap (a). Seepage may be neglected for wall
velocities vs < 102kf by (6.2.11) as the initial skeleton pressure pso roughly
equals γwd for any depth d. Temporary suction supports the steep skeleton
surface and drags water into the gap. After fixing the wall the gap is closed
as hw gets again hydrostatic (cf. Fig. 12.1.7). When a wall is pushed into the
same soil the resistance in the growing shear band is increased as the dilation
is impeded hydraulically (b). The pore water cavitates if its pressure attains
pw = 0 (Sect. 6.2), then the psammoid cracks as long as the wall is not fixed
again. A loose, fine-grained saturated psammoid gets a suspension near a wall
moved relative to it (c). If the wall is fixed thereafter hw gets hydrostatic and
the re-combined skeleton is slightly densified. These statements are confirmed
by the experience with dredging under water. It will be hard work to quantify

a) c)b)

Fig. 13.1.12. Interactions of wall and sand under water: active (a) and passive case
(b), embedded wall (c)
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Fig. 13.1.13. Cracking of partly submerged sand behind a wall, active (a) and
passive case (b)

them with finite elements, constitutive relations and coupling of skeleton and
pore water.

A capillary entry can occur by shifting a wall from or into a dense saturated
psammoid layer if its surface is initially horizontal and agrees with the ground-
water table, Fig. 13.1.13. The shifting velocity vs may exceed 102kf so that
seepage may be neglected by (6.2.11). With this hydraulic constraint of the
dense skeleton its pressure ps increases by deformation so that pw decreases.
When the suction near the free surface attains the capillary entry pressure, i.e.
for pa − pw = pce, gas channels arise and the surface gets brighter (Sect. 6.2).
The skeleton cracks with cavitation of pore water when the increasing grain
distance can no more be bridged by (6.1.1) with the attained suction. In the
active case (a) the first crack opens behind the wall, in the passive one (b) a
sufficient extension at a surface bulge is required for cracking. After fixing the
wall water fills extended pores and closes cracks, subsequently the psammoid
is softer and cannot develop suction again. Such evolutions could be captured
with finite elements, elp or hyp and coupling with pore water, but cracks cause
additional difficulties.
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Fig. 13.1.14. Unsaturated psammoid near passive (a) and active wall (b), sliding
with crack (c)
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With partial saturation similar approaches as for heaps and excavations
(Sects. 12.1 and 12.4) may be applied, Fig. 13.1.14. Except for bubbles which
are far smaller than the grains gas inclusions make the psammoid softer so
that it can get a temporary suspension near a wall moved past it (a). With gas
channels a gap opens behind a pulled-back wall due to the capillary skeleton
pressure pcs (b). The gap closes by evaporation or water access so that an
earth pressure arises again. Estimates can be obtained with a second gap and
a block that slides on a shear band with friction and cohesion by pcs (c). More
sophisticated calculations with coupling are debatable as seepage and suction
in psammoids with gas channels can as yet hardly be captured (Sect. 6.2).

To sum up, classical methods to determine active and passive earth pres-
sures are partly supported by modern concepts, but even these can hardly
capture real evolutions including cracks and collapse. Shear bands evolve so
that instantaneous stress distributions and obliquities cannot be estimated
and can hardly be calculated. A loss of equilibrium with dead loads and sub-
critical relative void ratios can at best be estimated. Except for uplift and
capillary skeleton pressure the influence of pore water and gas inclusions is
only qualitatively understood and could as yet hardly be quantified.

13.2 Peloids and composites at rigid guided walls

Coulomb (1773) introduced a cohesion, but did not apply it to earth pressures.
He noted that the friction of clay is reduced by water, but did not take into
account its pressure. For 150 years a cohesion was formally allowed for in
earth pressure theories almost without physical background. The latter was
substantially improved by Terzaghi’s (1925, 1936) principle of effective stress,
but his effective cohesion c′ due to the bound pore water can no more be
defended (Sects. 3.5 and 6.3). Until now earth pressures are widely calculated
with assumed ϕ′, c′ and pw, or with cu for cases without drainage. Changes of
these quantities in the course of time are often ignored, let alone the viscosity
of the skeleton. The sequel is more an outline of what could be done better
than of what has been improved already.

A rigid wall may be shifted into a homogeneous saturated peloid layer
with horizontal surface, Fig. 13.2.1. With a shift velocity vo by (6.2.11) the
deformation is nearly isochoric, this occurs preferably in model tests and in
building sites due to the low permeability of peloids. A shear zone arises from
the wall foot and grows to the surface (a). Its thickness ds depends on the
initial consolidation ratio pe/ps, and it has another shape if the wall rotates.
Assuming a sliding wedge (b) with an average shearing resistance c̄u along a
slip plane a limit equilibrium (c) yields the passive earth pressure

Ep =
1
2
γh2 + 2c̄uh (13.2.1)
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Fig. 13.2.1. Evolutions of an undrained peloid body by a pushing wall: model test
(a), sliding wedge (b), force polygon (c), argotropic resistance (d), creep (e) and
relaxation (f)

with the minimizing inclination ϑ = ϑp = 45◦. Nearly the same Ep is obtained
with a curved slip surface, other than with friction the mobility of the wall
has apparently little influence. This approach can be extended to more general
cases, but is it realistic?

As outlined in Sect. 12.2 the lower bound theorem ignores viscosity and
seepage-dependent density changes of peloids. cu depends on the equivalent
pressure pce and the shearing rate D by (12.2.1). D ≈ vo/ds may be assumed,
but how to get the shear band width ds? It is bounded from below by localized
densification for an initial pe/ps <ca. 4, and by viscosity and polar quantities
for localized dilation otherwise (Sect. 8.3). Without an intricate analysis of
localization one could take an empirical ds to capture the argotropy of Ep

(Fig. 13.2.1d). A stationary state limit of this kind could nearly be attained
with suitable deformations. With a bigger wall shift the assumed geometry
and kinematics get invalid. In addition the peloid need not be ductile in the
sense of Fig. 12.3.6, this is left aside here for brevity.

The wall may now be loaded via a string and an increasing weight Wl,
again in such a short time that the density cannot change. It creeps towards
the peloid when Wl is kept constant (e). The creep velocity increases dras-
tically with a higher Wp and tends to an almost stationary value. This can
be explained with a statically required cu by (13.2.1) and by inversion of
(12.2.1) with vo ≈ Dds. Apart from geometrical effects the stationary creep
is an endogeneous attractor in the large (nota bene as long as seepage may be
neglected).
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The wall may now be fixed after having deformed the peloid up to a state
limit. Its resultant force drops in the course of time with a decreasing rate,
Fig. 13.2.1f. This relaxation is more marked when it starts with a higher Ep

due to a higher previous vo. Its initial rate Ė may be estimated according to
Sect. 3.2 by

Ė/Eo ≈ Dr(cuo/cur)1/Iv . (13.2.2)

Therein cuo denotes the argotropic cohesion for the initial E, and cur the
one for D = Dr. With a minute fraction of gas bubbles the pore pressure
can get hydrostatic by elastic volume changes (Sects. 6.2 and 6.3) without
seepage. Thus the vertical skeleton pressure −Ts1 returns to the one given by
overburden and uplift (Sect. 11.1). In the long run the stress ratio Ts2/Ts1

returns to Ko by (11.2.9) due to relaxation. Apart from displacements of wall
and free surface the changes of skeleton stress and pore pressure are forgotten,
so this is another endogeneous attractor in the large.

With slow enough wall velocities vo by (6.2.12) the peloid is deformed
with nearly hydrostatic pw. With this free drainage it tends first to contract
by shearing for an initial consolidation ratio pe/ps below ca. 4, and to dilate
otherwise (Sect. 3.8). With a constant E = Wl via string and weight (dead
load) the creep motion is slowed down by densification if Wl is lower than the
critical passive earth pressure,

Wl < Epc =
1
2
(γ − γw)h2Kpc (13.2.3)

with Kpc as by Sect. 13.1 for ϕ = ϕcs. This is an approximate sufficient
condition for stability. If (13.2.2) is not satisfied the system tends to accelerate
by shear dilation, but the latter is no more possible in a final creep collapse.

When and how could the statements made with Fig. 13.2.1 be quantified
beyond design estimates? In a finite element mesh triangles near the wall
foot may be chosen as in Fig. 13.1.10d, polar terms have to be dropped as
the required number of elements with about three particles size would be far
too big. Base and walls may be rough or smooth, along them the skeleton
is constrained by (12.2.5). Both are pervious or not and smooth boundaries
are impervious, thus either pw or vwn = 0 is given along them. At the free
surface the skeleton pressure is ps = 0, or ps = pn with net attraction pn < 0
(Sect. 6.3), and pw is constant according to the free water table. The left
wall can be translated with a velocity vo, without rotation the position of
its resultant horizontal force Eh does not matter. The normal and tangential
forces between the moving wall and the base have the ratio tanϕwo with
ϕwo �= ϕw in general. A slit at the wall foot is hydraulically closed near an
impervious boundary.

The peloid skeleton may be characterized by visco-hypoplastic (v-hyp)
parameters, internal variables are not needed for the monotonous evolutions
considered there. Ductility may be assumed for simplicity. With a degree of
saturation Sr just below 1 for minute gas bubbles the pore fluid is somewhat
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compressible (Sects. 6.2 and 6.3). An initial state of the peloid may be assumed
with hydrostatic pw, vertical skeleton stress Ts1 by the overburden and pw, and
the stress ratio Ts2/Ts1 = Ko with Ko by (11.2.8) or (11.2.9). The initial void
ratio eo may be constant or indirectly given by a constant consolidation ratio
pe/ps. Less uniform initial states could be generated by simulating previous
evolutions with filling and waiting, but they are not of interest for validations
with model tests.

For simulations without seepage the displacements of skeleton and pore
water are equal, vsi = vwi (i=1 and 2). This may be assumed for sufficiently
high wall velocities vo by (6.2.11). With a constant vo the peloid is mainly
deformed along a shear band growing from the wall foot. pw increases with
a minute densification of the skeleton. The obtained v0-dependence of wall
force E or wall displacement can be used to better quantify Fig. 13.2.1d and
cu with ds for D = vo/ds in (13.2.1).

Undrained creep is obtained by keeping the wall force Eh constant. The
mesh is further deformed mainly along a shear band, the obtained vo increases
about exponentially with increasing Eh. With large wall displacements the
length of the shear band increases as the free surface bulges, therefore vo

slows down. Rates of undrained creep, depending on Eh referred to the average
initial pe, may thus be quantified. A relaxation with a fixed wall after this was
shifted could also be simulated. The bulge at the free surface is negligible as
long as it is low. The assumed exclusion of seepage means that the surface is
covered by an impervious membrane. Only with this assumption the initial
rate of reduction of Eh and its asymptote could be simulated rather easily.

For simulations with seepage displacements of skeleton and pore water can
be different, i.e. vsi �= vwi holds in general. As shown with Fig. 11.2.1 Darcy’s
law is written with the pw at the nodes, and the conservation law of pore
water is written with vwi − vsi at the integration points. With a rather low
initial consolidation ratio, say pe/ps <ca. 4, the emerging shear band remains
wide by densification as pw grows more than nearby (Sect. 8.3). With high
initial pc/ps the skeleton dilates in the shear zone and takes up water so that
pw is lower than nearby. The shear zone thickness ds is bounded from below
by skeleton viscosity and polar stresses. Simulations without polar terms get
mesh-dependent, but presumably not too much. Along permeable boundaries,
in particular at the free surface, the deformed peloid starts to release or take up
water. The latter occurs near the wall foot and afterwards around the outcrop
of the simulated shear band for initial pe/ps >ca. 5. The time-dependent size
of such zones with diffusion may be estimated with (12.2.4).

Such simulations could be carried out with any specified vo(t) or Eh(t) at
the wall. One could substitute the estimates (6.2.11) and (6.2.12) for no and
free drainage by more precise conditions. Design estimates for an argotropic
Eh and for creep without drainage could thus be improved. The condition
(13.2.2) for long-term stability, which is evidently of importance for design,
could be validated. For cases with constant Eh without long-term stability
delay times up to a creep collapse could be calculated. Their dependence on
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the initial consolidation ratio and on the overall diffusion time could thus be
quantified. The influence of changing permeabilities on cu due to changes of
density by (12.2.1) could also be taken into account.

Model tests should be carried out for validation. The parameters of the
model clay have to be well-defined for the ps-range of the experiments. The
free surface should remain under water to avoid shrinkage. The two out-of-
plane walls should be smooth, friction of the driven wall along them should be
avoided. In simple tests the peloid is placed with a constant initial void ratio
and a degree of saturation Sr near 1, and deformed so rapidly that seepage
is practically excluded. The influence of gravity could be taken into account
without a centrifuge by keeping the initial cu low enough in the sense of
(13.2.1). Argotropy of Eh for different vo and creep for given Eh can be easily
observed. A forced shear localization is visible with markers and a transparent
out-of-plane wall. If the driven wall and the base are smooth such model tests
resemble biaxial tests except for the influence of gravity.

Model tests with substantial seepage and dominant gravity would take far
more time as the kf of peloids is small, cf. (6.2.4) and (6.2.12). The spatial
average initial cohesion c̄u should be small enough by (13.2.1), a centrifuge
is not needed if the net attraction (Sect. 6.3) is negligible against γwh. Tests
with pure clay are not feasible due to excessive diffusion times, but a step-wise
sedimentation of silty clay leads to a composite with a far shorter diffusion
time if the in-plane walls serve for drainage (Fig. 11.3.2a). The vertical per-
meability can be enhanced by wick drains (Bühler 2006). For both cases an
orthotropic composite permeability (Sect. 9.2) should be used in calculations.
A constant initial consolidation ratio pe/ps up to ca. 1.3 can thus be obtained
with acceptable waiting times. A higher nearly constant initial pe/ps could
be achieved with a shake box (Fig. 12.5.3). The desired constant initial pe/ps

could be checked with a shear vane (Fig. 11.3.2). The drainage along the
boundaries should be controlled.

The response with a constant wall velocity vo or a constant horizontal
force Eh may be observed for some days or even weeks, but asymptotes for
t → ∞ can hardly be concluded. Given acceptable overall diffusion times it is
more important to observe when and where the soil contracts or dilates in the
course of time. Measurements of pw are also desirable, but pw-receivers can
influence the evolution by a hardly controllable amount. It is of paramount
interest when and how critical states are attained in shear bands. The condi-
tion (13.2.3) for long-term stability deserves a careful validation. Creep tests
in case that (13.2.3) is not satisfied could serve to check whether calculated
delay times up to a collapse after dilation have a realistic order of magnitude.

In active cases with a yielding wall the evolutions can get more complex
for two reasons, Fig. 13.2.2. Except for low vo and low initial pe/ps a crack
opens behind the wall and can reach its foot (a). The suction at the wall near
the free surface can attain the tensile strength of the peloid (Sect. 6.3) if the
wall is hydrophilic. As with a steep heap or cut (Sects. 12.3 and 12.4) the
gap closes again by swelling and creep after the wall has been fixed. With
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Fig. 13.2.2. Active cases with undrained peloid: model test (a), sliding body (b)
and force polygon (c)

a constant low enough Eh at the wall this can accelerate without seepage
in the peloid up to a collapse. Then a vertical crack opens off the wall (b),
and a shear band from its root to the wall foot gets shorter so that a limit
equilibrium (c) gets impossible. If the wall moves slowly enough for an overall
diffusion of pore water a localized dilated shearing evolves from the wall foot,
and a crack can occur further above. A long-term collapse cannot occur if the
supporting Eh is higher than critical,

Eh > Eac =
1
2
(γ − γw)h2Kac, (13.2.4)

with Ka as by Sect. 13.1 for ϕ = ϕcs.
The influence of a gap at the wall can be fairly well quantified in finite

element simulations and controlled in model tests for validation (Bühler 2006).
The possible position is known, the depth can be observed and calculated by
means of tensile strength tests. A crack off the wall can be observed, in the
simulation it may be assumed to start at a surface point where a sufficient
extension is attained by creep. Given a crack the evolution of shear bands
from its root could be simulated up to a collapse.

Extensions of the outline with Figs. 13.2.1 and 13.2.2 with modified bound-
ary conditions are straightforward. Several shear bands can evolve from a wall
if it rotates around its foot (cf. Fig. 13.1.2). If the wall is rotated and trans-
lated the shear band is curved from its origin (cf. Fig. 13.1.8). The free surface
can be inclined, then the peloid creeps from the very beginning (cf. Sect. 11.6).
The stability can be judged by means of two sliding bodies, Fig. 13.2.3. With-
out seepage a limit equilibrium is obtained by means of cu (a, b). With free
drainage uplift and seepage forces have to be allowed for, and the obliquity
of forces in shear bands should be lower than critical (c, d). Thus the passive
earth pressure of a fixed wall at a creeping slope can also be estimated (e, f).
Evolutions could be investigated in detail with finite elements and v-hyp, and
also with model tests for validation.

Evolutions are often more complex due to various capillary effects. A cav-
itation with evaporation of pore water can occur in a passive case with high
equivalent pressure pe and high wall velocity (cf. Sect. 8.4). Extension cracks
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Fig. 13.2.3. Sliding bodies (a) and force polygon (b) for undrained peloid behind
a pushed wall; same with seepage (c, d) and a fixed wall at a creeping slope (e, f)

under water may be treated as outlined with Fig. 13.2.2. If the psammoid
is exposed to the air it is consolidated by evaporation with increasing suc-
tion (Sect. 11.3). With this shrinkage the average cohesion c̄u can get so high
in model tests that these are futeless in the sense of (13.2.1) as the influ-
ence of gravity gets too small. Air intrudes by capillary entry and via cracks
(Sect. 6.3). Clay layers are often fissured and overconsolidated by shrink-
age near the transient free surface. They can also reveal patterns of shear
bands when they had been distorted by changing overburden and tectonics
(Sect. 12.6).

Clays with fissures and shear bands can be captured as substitute psam-
moids (Sect. 9.1). With their typical spacing the required size of RSEs is about
1m, thus model tests are impossible. The overall permeability is increased by
fissures even if they are closed by overburden pressure. The capillary entry
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pressure is so much reduced that the tensile strength without drainage can get
negligible. In zones with previous shearing the fissures are smeared, and the
clay is more dilated (cf. Fig. 13.6.5). The overall skeleton behaviour is deter-
mined by spatial averages of stress and void ratio, therefore samples of RSE
tests should not be too small. The fissures can contain air, then the transition
into or from overall suction is decisive.

Interactions of rigid guided walls with fissured and previously sheared clay
can principally be judged with composite RSEs. Although there are no vali-
dation tests this may help to understand more complex retaining structures.
In passive cases a shear band evolves almost as without fissures, but these
enhance volume changes. In active cases a gap opens behind the wall, further
cracks can arise in the peloid and blocks separated by fissures can topple (cf.
Fig. 12.4.4b). A simplified limit equilibrium can be constructed with cu along
a slip plane, thus short-term and long-term creep may be judged. As with ex-
cavations drainage and water access play a role, both can hardly be quantified
without field monitoring. If the wall is fixed after its displacement the earth
pressure tends to an asymptote which can rarely be quantified. A fixed wall
at a creeping slope gets passive earth pressure as shown by Fig. 13.2.3e, f in
a shorter time because of fissures.

Interactions of rigid guided walls with a composite ground consisting of
psammoid and peloid zones can be rather complex. In some cases simplified
design estimates are justified, also to prepare investigations with finite ele-
ments and experiments. Peloid bands at suitable places in psammoid bodies
can work as shear zones, Fig. 13.2.4. A plane cut with a clay smear from
a peloid layer can serve as sliding base for a granular backfill at a wall (a).
The active earth pressure Ea determined via limit equilibrium (b) can be
bigger than with other slip planes from the wall foot. Depending on the ve-
locity by (6.2.11) or (6.2.12) the skeleton normal force in the clay smear can
be reduced by a resulting excess pore pressure force Fw. With a thin clay
layer at the wall foot and a clay smear nearby two sliding bodies can arise by
means of an intermediate shear band (c). An active earth pressure can thus
be determined (d).
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With two layers a simplified sliding mechanism may also be assumed,
Fig. 13.2.5. In a passive case with psammoid on top of peloid, e.g., two sliding
bodies (a) serve to determine Ep via a limit equilibrium (b). In an active case
with peloid above, e.g., a crack there and a slip plane in the psammoid (c)
lead to Ea by equilibrium (d). All this can be done with different hydraulic
conditions, in particular without drainage or with free drainage. Several layers
may be substituted by one or two with weighted averages. Such composite
macro-elements require caution as they cannot replace thin shear or drainage
bands.

State limits as by Figs. 13.2.3, 13.2.4 and 13.2.5 may be considered as
attractors in the large, but thus the historical element is not ruled out. With-
out drainage the assumed cu in peloid shear bands depends on the attained
void ratio which is the result of placement and boundary conditions. With
assumed free drainage and critical obliquity the pressures depend on the hy-
draulic conditions, these in turn depend on fissures which are not all smeared
out by shearing. Given short term and long term stability, the system tends
to a state of rest which works as a contractant state limit in the large. Crit-
ical phenomena, viz. spontaneous shear banding, cracking and seismicity, in-
dicate the end of numerical predictability and experimental controllability.
Both could be regained with many reversals if asymptotic cycles in the large
are attained (Sect. 13.8).

Peloid lumps may be mentioned as they can occur in backfills. These may
be treated as psammoids with particles of varying softness according to their
density and suction (Sect. 9.2). Such a fill can attain a low Ea and a high Ep

when it is dry, but can get a suspension after flooding (which is geotechnically
inacceptable).

To sum up, the interaction of rigid guided walls with peloids and compos-
ites can be predicted and controlled as long as the system is stable in the short
and long term. The latter can be judged by means of limit equilibria with sim-
plified sliding mechanisms. Given stability, evolutions could be simulated with
finite elements wherein skeleton viscosity and hydraulic conditions are taken
into account. Shear bands and cracks could be allowed for with simplifying
assumptions concerning their position. Asymptotes of stabilizing evolutions
could be estimated, but their progress is less predictable as the permeability
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is extremely variable. Spontaneous shear banding, cracking and acceleration
can hardly be predicted and controlled.

13.3 Guided rigid strips upon yielding ground

The stability of strip foundations is usually assessed by comparing an assumed
or given load with a calculated resisting force of the ground. The latter is only
well-defined, however, if the strip follows a certain displacement path. This
can be achieved by a guide so that the strip has only one degree of freedom.
The resisting force attains a maximum a dead load of the same amount would
lead to a collapse. If a rigid body at or in the ground is not guided and if
the force at its base is not a dead load, then the stability cannot be judged
in the usual way (Sect. 13.4). The issue gets more complex with deformable
solids upon the ground (Sect. 13.5). Guided rigid strips are considered for
introduction and preparation in this section. The assumed plane-parallelity is
justified for long enough strips with uniform cross section, and can be achieved
in model tests with fixed smooth out-of-plane walls.

Shear bands arise in dense dry psammoid when a strip is punched in verti-
cally, Fig. 13.3.1. This was observed in a model test by Tatsuoka et al. (1990)
with marked sand layers (a). Nübel (2002) obtained nearly the same pattern
with hypoplasticity including polar terms (p-hyp), stronger shearing is visible
by darker strips (b, also in Gudehus and Nübel 2004). A wedge under a strip
pushes aside lateral wedges with slightly curved flanks. The initial symme-
try gets lost with a minor rotation of the strip in the experiment, and also
in the simulation without strip rotation. Shear bands evolve in the course of
punching, first along the central wedge and the two adjacent ones. There the
skeleton is dilated to a critical state, whereas deeper and more lateral bands
are less dilated. Swarms of minor shear bands arise from the strip edges in
the simulation, only few of them appear in the experiment.

These findings seem to support conventional limit state approaches, but a
closer look reveals deviations. A bearing capacity Fb can be calculated with
a central wedge and passive earth pressures Ep at its flanks, Fig. 13.3.1c.
Assuming Ep by (13.1.3) it can be expressed by

Fb =
1
2
γb2Nγ (13.3.1)

with a factor Nγ that depends on an angle of friction ϕ (Terzaghi 1940). This
ϕ is not uniform, however, as it varies alongside with the ps-dependent relative
void ratio re (Sect. 2.9) in the shear bands. Thus Nγ should be determined
(Gudehus 1981, d) by a weighted average ϕ̄ which is not known. In Sokolovski’s
(1960) purely statical method a uniform stress obliquity ϕ is assumed for two
directions as in Rankine’s (1856) theory. Calculated lines of maximal obliquity
start from the edges (e), and the resulting force can again be expressed by
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(13.3.1). These lines resemble the ones in Fig. 13.3.1b, but the instantaneous
stress obliquity is not constant along shear bands.

The historical element is ignored in such conventional approaches, and
deformations including volume changes do not appear. ϕ cannot be lower than
the critical value ϕcs for shearing, this provides a lower bound for Nγ . Higher
Nγ were derived from tests with denser than critical sand (De Beer 1963), and
also from centrifuge tests with different pressures and the same initial density
(Ovesen 1979). Pyknotropy and barotropy are captured by the dependence of
ϕ on re (Sect. 2.9). But how could they be quantified for given initial states,
and when may the influence of the mean grain size dg be neglected?

Tatsuoka et al. (1990) determined force vs. displacement curves with dif-
ferent strip widths b and the same initial e, Fig. 13.3.2a. These can be matched
with p-hyp (b, Gudehus and Nübel 2004) and a suitable friction at the strip.
Herle and Tejchman (1997) obtained a similar agreement with a rough strip
and a variant of p-hyp. The curves reveal a stronger scattering for bigger b/dg,
this is typical for polar effects (Sect. 8.2) and indicates an enhanced granular
temperature (Sect. 4.6). The peak resistance Fp and the related displacement
up increase with lower b/dg. Nγ-values by (13.3.1) can be calculated from Fp

with an increased b due to up (c). They decrease with increasing b/dg and
tend to an asymptote for b/dg > 102. It appears that beyond this bound
polar effects are negligible (Tejchman 1997). For b/dg < 10 they are strong,
that’s why railway sleepers are kept by ballast. For b/dg-values in between
the resistance is less enhanced by polar effects, in particular in growing and
crossing shear bands below the strip (cf. Sects. 8.2, 12.6 and 13.1).

When the strip is shifted further downwards the force F at the base attains
a minimum after the peak and grows beyond it with displacements exceeding
the breadth, Fig. 13.3.3a. The attained resistance against a monotonous pen-
etration depends on the original and far-field re, and less on b/dg because of
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Fig. 13.3.2. Normalized resistance versus punching for different widths: (a) ob-
served (Tatsuoka et al. 1990), (b) calculated with p-hyp (Gudehus and Nübel 2004)
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high pressures. If a strip upon initially dense sand is loaded by an increasing
weight Wl the displacement u is the same as for shifting with W = F up to
the peak Fp, but then it accelerates with Wl = Fp (b). After this collapse the
strip comes to rest with a sufficient penetration. One can identify two attrac-
tors: a strange one when fluctuations grow to critical phenomena (Sect. 16.3),
and a succession of state limits for a subsequent penetration (Sect. 14.3).

A collapse of a guided strip foundation is avoided by keeping Wl below Fb

by (13.3.1) with ϕ = ϕcs. Displacements due to monotonous loading could
then be calculated with finite elements, Fig. 13.3.4. The edges should be
rounded to avoid localizations from the very beginning, near them the mesh
should be finer than farther away (a). An initial state may be assumed as for a
free layer (Sect. 11.2), spatial fluctuations of stress and density from the place-
ment of the strip can hardly be captured. Fictitious smooth fixed walls may
be assumed at a distance of ca. 3b, and a rough base at a depth of ca. 5b; these
assumptions could be improved by comparative calculations. The skeleton is

b)a)
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F b/2
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F/γb 
2

Fig. 13.3.4. Finite element mesh (a) for punching into psammoid, force versus
punching (b)
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also confined along the vertically shifted strip via (10.3.2). An upper bound
of the force F versus displacement u curve (b) could be obtained with hyp-δ
by assuming δ = 0 at the onset, i.e. by neglecting the initial force-roughness
(Sect. 4.3). A lower bound is obtained with hyp or hyp-δ and δ = R at the
onset, and with a spatial fluctuation of re according to the initial average r̄e

(Sect. 8.2). Initial fluctuations are swept out by shifting the strip, but the F
vs. u curves do not get parallel to each other. This attractor is determined by
the initial average re which remains in the far-field. The onset of the F vs. u
curve could hardly be predicted more in detail.

A wider range of evolutions is possible with skew translations, assuming
that rotations of the strip are prevented by a guide. Figure 13.3.5a shows
deformations of dense sand after a strip foundation was pushed in by skew
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Fig. 13.3.5. Skew punching into psammoid: after a field test (a, DEGEBO Berlin),
sliding wedge (b), force polygon (c)
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hydraulic jacks. Vertical markers indicate a curved slip surface, but the base
of the strip remained horizontal. The skew resisting force Fp can be estimated
with a skew wedge that slides upon a shear band together with the strip (b).
The inclination χ of Fp should not attain the interface friction angle ϕw as
otherwise the strip would slide horizontally. A passive earth pressure Ep, by
(13.1.2) with δ = ϕ and Kp for translation, resists at the steep flank. Fp is
obtained with a force polygon (c) by variation of the slip plane inclination ϑ
up to a minimal resistance. The result may be described again with (13.3.1),
now Nγ is smaller with increasing χ. F < Fp is necessary for stability, but
when is it also sufficient, and what about deformations?

As for vertical punching the stress obliquity is not constant along shear
bands, thus ϕ is a weighted average that exceeds the critical friction angle ϕcs

by an unknown amount. A safe estimate of the peak resistance Fp is obtained
with ϕ = ϕcs, the F -minimizing shear band inclination and the minimal Kp,
this can be incorporated in Nγ . Finite element simulations could be carried
out with elp or hyp, polar effects may be neglected if the mean grain size
dg does not exceed about b/100 (Tejchman 1997). They can substitute more
expensive tests, this is shown for a dam in Sect. 12.3 and for a block foundation
in Sect. 15.1. Between the strip and sufficiently distant fictitious external
boundaries the mesh should be chosen so that shear bands can at least roughly
be captured. An initial state may be specified as outlined further above, again
the field of relative void ratio re is decisive and spatial fluctuations cause a
hardly avoidable indeterminacy. The strip can be driven without rotation by
specifying two of the four quantities Fv, Fh, uv and uh, i.e. components of
resultant force and displacement (b). Calculated evolutions can be represented
by associated paths of forces (c) and displacements (d), by deformed meshes
and by iso-lines of mean pressures (e) and relative void ratios (f) for different
stages.

As with RSEs (Sects. 2.2 and 4.2) the response is path-dependent from the
very beginning. This means that the differential response cannot be linearized
so that substitute elastic springs are misleading. It means in particular that the
force resisting an imposed displacement would lead to another displacement
if it would be substituted by a dead load. Attractors in the large can be
attained if the strip is shifted with constant velocity: initial fluctuations are
partly swept out, the peak resistance is determined by the initial re and related
with forced shear zones, the asymptotic penetration resistance is determined
by the initial re and increases with the attained depth. In case of a collapse
with dead loads the direction of translation can deviate from the previous
one, and spontaneous shear bands arise which differ from the ones in case of
a forced translation. The equations can get ill-conditioned, a load test could
no more be controlled, a spontaneous seismicity would arise.

Other evolutions occur with guided rotations, Fig. 13.3.6. If the strip fol-
lows a given circle two sliding bodies may be imagined with circular shear
bands (a). Assuming Ep with Kp for rotation at the steep flank, the resisting
force F at the strip can be estimated (b) with a force Q in the lower arc that
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Fig. 13.3.6. Guided punching into psammoid with rotation (a), force polygon (b),
sliding bodies (c), toppling (d)

has a moment Qr sin ϕ as in Fig. 13.1.8a. Inclination and eccentric position of
F have to be assumed, the result can be expressed by (13.3.1). After variation
up to its minimum the obtained Nγ is lower than for translation with the
same directions at the onset of rotation. The strip rotates together with part
of the ground if it is driven eccentrically via hinges (c). The resisting force may
be estimated by assuming a centrically driven smaller substitute strip which
rotates when being pushed in. More precise results could be obtained with
model tests or finite elements, thus the assumptions required for estimates
could be improved.

With a wider kinematic variety the resisting force and its position are
again path-dependent. Other than without rotations the changing moments
of resulting forces play a role, in particular for a collapse with dead loads. For
instance, a strip under a slender weight which is increased disc by disc tilts
spontaneously, Fig. 13.3.6d. After this bifurcation the resistance is lower than
without it as the eccentricity increases. A collapse occurs at a critical tilt under
a dead load which is lower for a higher centre of gravity, and lower anyway than
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without rotation. Estimates with kinematical and statical assumptions can at
best provide necessary conditions for stability. The loss of equilibrium cannot
be captured by a linear analysis of bifurcation as the system is differentially
non-linear and history-dependent. The usual comparison of an ‘action’ and
a ‘resistance’ has little to do with stability, a way out of this misery will be
shown in Sects. 13.4 and 13.8.

Saturated psammoids can be treated almost as dry ones as long as the
hydraulic height hw is constant. The specific weight γr for Sr = 1 is sub-
stituted by γr − γw for uplift. Changes of hw due to skeleton deformations
may be neglected if the punching velocity vo does not exceed the lower bound
by (6.2.12). Then a nearly stationary non-uniform hw-field due to hydraulic
boundary conditions could be allowed for by means of seepage forces in the
skeleton. The initial pressure ps and the punching resistance can be increased
by a downwards seepage, this is a substitute of centrifuge tests to investigate
the barotropy.

The hw-field is strongly changed if seepage is prevented by rapid punching,
i.e. with vo above the upper bound by (6.2.11), Fig. 13.3.7. A loose skeleton
collapses so that the resistance drops to the uplift pressure of a suspension
(a). Suction arises in a dense skeleton so that the resistance is bigger than for
a much lower vo (b). Cavitation occurs if pw = 0 is attained (Sect. 6.2). If the
water table agrees with the free surface a dense skeleton there loses its satu-
ration by capillary entry. One can see that at the beach, when treading dense
sand this gets brighter near the foot. This shows that the seepage should not
be neglected in simulations with finite elements. Estimates with kinematical
and statical simplifications are rather futeless as then changes of hw due to
skeleton deformations have to be guessed. Upper and lower hw-bounds due
to decay and cavitation or capillary entry, respectively, do not suffice for a
quantitative analysis.

Unsaturated psammoids can at best be captured in simple cases (cf.
Sects. 11.2, 12.1 and 13.1). Gas bubbles between the grains do not matter
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Fig. 13.3.7. Guided punching into loose undrained psammoid (a), force versus
penetration (b), same with dense psammoid (c, d)
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for low vo by (6.2.11), they reduce changes of hw without seepage. Bigger gas
inclusions with a sufficient volume fraction can make the ground collapsible
(Sect. 7.2). Suction due to gas channels can be taken into account by a cap-
illary skeleton pressure pcs (Sect. 6.2). Estimates with sliding bodies produce
a higher resistance with pcs. This gets lost when gas channels are closed by
contractant skeleton deformations, and by water access.

Saturated peloids may often be considered as undrained according to
(6.2.11) as their permeability kf is low. Assuming ductility their resistance
to punching may be estimated with a cohesion cu if this is spatially uniform,
Fig. 13.3.8. With a central wedge and two lateral ones (a) the vertical force
under a strip attains

Fb = cuNcb . (13.3.2)

The lowest factor Nc ≈ 5.7 is obtained if the flanks are inclined by 45◦. Prandtl
(1920) calculated the pressure difference p = (2+π)cu ≈ 5.1cu along a punched
edge by assuming two directions with τ = cu (b). The lower bound Nc =
5.1 may be related with a freely deformable strip under constant pressure.
Somewhat higher Nc are obtained for embedded strips, and lower ones for
skew punching.

If cu is not uniformly distributed (13.3.2) may be used with a spatial
average c̄u. This is not legitimate for cu = 0 at the free surface as by normal
consolidation (Sect. 11.3). Even with a uniform void ratio e or e-equivalent
pressure pe the shearing resistance cu is not uniform as it is argotropic. cu

depends on the stretching rate D approximately by the power law (12.2.1),
D in turn is given by the gradient of the velocity field in the peloid. Winter
(1979) has proven that with this power law the ratios of velocities at different
points do not depend on the one of the punched strip, and that the resistance
is

Fba = curNc(vo/bDr)Iv (13.3.3)

with the reference cohesion cur for vo/b = Dr. Therein Nc is close to 5 as
without argotropy although the argotropic cu is not distributed uniformly as
there are zones of pronounced shearing. Winter’s proof holds for arbitrary
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Fig. 13.3.8. Punching into undrained peloid: sliding wedges (a) and stress charac-
teristics (b)
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Fig. 13.3.9. Creep (a) and relaxation (b) of undrained peloid after loading or
punching of a rigid strip

shapes of strips, bedding depths and directions of penetration, then only Nc

has other shape-dependent values. It may also be applied with a non-uniform
pe as long as the viscosity index Iv is constant. Apart from geometrical effects
(gained depth and bulged surface) Winter’s solution may be considered as an
argotropic attractor in the large (cf. Sect. 10.4).

An undrained ductile peloid under a rigid guided strip exhibits further
viscous effects nearly as RSEs, Fig. 13.3.9. With a constant dead load Wl it
tends to stationary creep (a) with vo by inversion of (13.3.3) and Wl instead
of Fba. This holds true as long as vo exceeds the bound (6.2.11) and as long
as geometrical effects are negligible. A relaxation occurs under the strip when
this is fixed after it had been punched (b). According to v-hyp (Sects. 3.2 and
3.9) the initial rate of force reduction is

Ḟ /Fo ≈ mDr(cuo/cur)Iv (13.3.4)

with initial force Fo and related cuo by (13.3.3), and a factor m with the order
of magnitude 1. The subsequent relaxation tends to F = 0 without seepage if
the pore water can also relax due a small fraction of minute gas bubbles. In
both cases the evolution tends to an endogeneous attractor in the large.

If vo is low enough for a free drainage, roughly by (6.2.12), a saturated
peloid changes its density according to its consolidation ratio pe/ps (Sect. 3.2),
Fig. 13.3.10. Penetration with constant vo leads to critical states in zones of
pronounced shearing (a), roughly along the bands assumed in Fig. 13.3.1c
in the simplest case. The attained resistance can be estimated by (13.3.1)
with Nγ = Nγc for the critical friction angle ϕcs. This works also for an
embedded strip and for skew punching. If a lower than critical dead load, i.e.
Wl < Fc = 0.5(γ−γw)bNγc, has been imposed slowly enough for consolidation
and is then kept constant a contractant creep occurs with decreasing vo and
increasing pe/ps (b). With a higher than critical dead load dilatant creep
tends to a collapse (c) without further seepage as vo gets big. This is only
possible with a high enough initial pe/ps. A higher initial pe/ps leads to a
higher peak resistance for constant vo, and to a lower initial creep rate with
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Fig. 13.3.10. Punching of peloid with drainage (a), consolidation ratio and pene-
tration versus time with stabilization (b), same with destabilization (c)

dead loads (dotted lines), but in the long run its influence is swept out. Apart
from geometrical effects one can thus identify three further attractors in the
large: a driven one for slow enough constant vo, an autogeneous one for slowly
imposed under critical dead loads, and a strange one for overcritical dead
loads.

The path-dependence (i.e. the historical element) can no more be repre-
sented as for psammoids, the variety is too wide with skeleton viscosity and
changing hydraulic heights. The stability can at best be judged as far as no
or free drainage may be assumed. The onset of a bifurcation collapse may
then be estimated similarly as with Fig. 13.3.6. More insight could be gained
with finite elements, v-elp or v-hyp for the skeleton and coupling with the
pore water (cf. Sects. 11.3, 12.2 and 13.2). Thus displacements required to
approach attractors could be calculated, their dependence on the initial state
including fluctuations could be judged, and geometrical effects could be taken
into account. The approach to a collapse could also be judged, but its further
course can hardly be captured as the equations get ill-conditioned.

Model tests can reveal the range of validity, cf. Sect. 13.2. They are rather
easy with a constant void ratio and without drainage. Thus the successive
attractors for constant vo, constant dead load and fixed strip can be deter-
mined, and also transitions if the initial states are well defined. A constant
initial consolidation ratio pe/ps can be achieved with a sandwich produced by
sedimentation (Fig. 11.3.2), then experiments with drainage can be carried
out in acceptable times. Jovanovic (2002) imposed dead loads to a strip on
such a sandwich. After rapid loading the strip sunk with rotation under a
sufficient load, and two sliding bodies appeared in the sandwich, Fig. 13.3.11.
The collapse load can be estimated by (12.2.2) with a constant cu in the
shear bands, i.e. via the balance of imposed and dissipated work. After slower
loading the strip settled without rotation under the same dead load, and the
system came to rest by consolidation.

A back-analysis could be carried out with finite elements. Taking v-hyp
for the skeleton and an orthotropic composite permeability (Sect. 9.2), the
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Fig. 13.3.11. Collapse of a strip with dead load upon peloid in a model test (Jo-
vanovic 2002)

contractant creep with diffusion of pore water under a not too big and not
too rapidly imposed dead load could be simulated (cf. the example presented
with Fig. 13.2.1). This could help to quantify the contractant state limit field
and the transition to it. However, the shear localization of Fig. 13.3.11 could
thus not be achieved even with more rapid loading. Isochoric shearing leads to
a ductile response with Niemunis’ (2003) v-hyp, and isobaric shearing likewise
if the initial pe/ps is lower than about 4 (Sect. 2.8). The clay used by Jovanovic
(2002) exhibits a slight lack of ductility in triaxial tests without drainage. This
could be captured by Gudehus’ (2004b) v-hyp with a sufficiently low initial
pe/ps, and also with hyp and a sufficiently high initial relative void ratio re

(Sect. 2.9). These assumptions would lead to localization in a sheared strip
(Sects. 8.2 and 8.3).

Without polar terms calculations with finite elements could at best lead
to a mesh-dependent localization. When using hyp without viscosity the band
width cannot get small as the excess pore pressure leads to a densification with
seepage towards the vicinity. With Gudehus’ (2004b) v-hyp the band would
not get too narrow as the shearing resistance increases due to skeleton viscosity
(Sect. 8.3). Comparative calculations with different meshes are cumbersome
as the equations can get ill-conditioned. Calculations with polar terms are not
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feasible with pore water diffusion and the required mesh size of few particle
diameters. Adaptive re-meshing could be of use, but the validation is impeded
by smearing of sandwich into shear zones (cf. Fig. 12.6.5).

For the time being the range of predictability is rather restricted with
the actually prevailing composites in situ. A collapse with rapid loading and
localized pore pressure increase can be avoided by a sufficient densification.
Permanent loads should be lower than critical with free drainage in order to
avoid a delayed collapse after dilatant shearing. Then states attained with
contractant creep could be captured, but the related deformations are less
predictable as initial spatial fluctuations are rarely known. The delay due to
the diffusion of pore water can be captured only crudely if the permeability
is not uniform. This is often the case with a sandwich ground which is rarely
as regular as in Fig. 11.3.2, and also with stiff fissured clays (cf. Sect. 13.2).

The interaction of guided strips with unsaturated peloid ground may only
be touched as it has hardly been investigated. A small fraction of minute gas
bubbles may be neglected in design estimates, and could be allowed for by
assuming a compressible pore fluid (Sect. 6.3). Cavitation of pore water can
occur with high initial consolidation and punching velocity, say pe/ps >ca.
10 and vo well above the bound (6.2.11). With these conditions a capillary
entry occurs at a surface exposed to the air, particularly with evaporation.
Cracking at preferred sites may be predicted (cf. Sect. 13.1), but the evolution
of crack patterns is hardly predictable (Sect. 6.3). Peloids with gas channels
may be captured with suction and suction-dependent limit void ratios, but
this approach is debatable (Sect. 7.2). A compacted fill cannot be saturated,
but its initial suction can get lost by pressure increase. Its interaction with a
strip could be captured with v-elp or v-hyp, a compressible pore fluid and a
suitable overall permeability. This approach could work also with stiff fissured
clay, but the composite parameters cannot easily be determined as big undis-
turbed samples are needed (Sect. 9.1). Validation tests are expensive with
the required size, and debatable as the hydraulic conditions can hardly be
controlled.

Layered ground may be captured with simplifying assumptions, Fig. 13.3.12.
Sliding bodies imagined in a peloid layer upon denser than critical psammoid
are confined by the latter (a). The pore pressure at the peloid base is given

T
N N

T

a) b)

Fig. 13.3.12. Punching with layered ground: sliding bodies (a), punched macro-
element (b)
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by the one in the psammoid, the pore water diffusion in the peloid is thus
enhanced. A psammoid layer is punched into a softer peloid below by a strip
if this is wider than the upper layer, vertical shear bands can arise therein
(b). The resultant force in the bands is statically indeterminate, its obliquity
can only be guessed (as with a trap door, Sect. 12.6). Thus the resistance
to punching without seepage exceeds the one from cu and overburden by a
hardly known amount. A better quantification could be obtained with finite
elements, polar effects with grain size dg may be neglected for b/dg > 102.
Both cases could not be captured with weighted averages, these make sense
in case of several layers and are needed for sandwich ground.

To sum up, the interaction of rigid guided strips with psammoid or/and
peloid ground is predictable as far as contractant or isochoric state limits in
the large are approached, otherwise one can at best predict whether critical
phenomena could occur. Safe estimates of dead loads for free drainage can
be obtained with sliding bodies and critical friction angles. Argotropic re-
sistance and stationary creep are predictable for undrained ductile peloids,
and relaxation can be estimated. Stabilizing evolutions of peloid are also pre-
dictable, but times for diffusion of pore water can only be estimated. Shear
localizations can principally be simulated with finite elements. The onset of
cavitation, capillary entry and cracking can only be estimated. Conventional
comparisons of statically estimated ‘loads’ and ‘resistances’ calculated with
shear parameters have little to do with stability. Simplifying kinematical and
statical assumptions may be justified as substitutes for attractors in the large,
but the historical element should not be ignored.

13.4 Rigid structures at the ground

Structures in contact with the ground may be idealized as rigid bodies if their
deformations are far smaller than the ones of the neighboured ground. They
can be placed alongside with excavation and filling, parts of the ground are
thus added or removed, the hydraulic conditions can also change. Even in
simplified scenarios order, size and duration of stages are important for the
evolutions of shape and state. The structure fails if its displacements get too
big or accelerate up to collapse, then the requirements are no more satisfied.
The historical element should not be ignored in failure scenarios. Some failure
mechanisms can be related with attractors in the large and may be simplified
for design estimates. Statical and kinematical assumptions could be supported
or substituted by numerical simulations with finite elements. This is shown
by a number of examples, postponing deformable structures and reversals to
following sections.

R. Biso (in Libreros-Bertini 2006) worked with two-dimensional substitutes
of the Pisa tower history. Layers of saturated sand and clay were modelled
by hyp and v-hyp, the parameters and the initial state were adapted to lab
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Fig. 13.4.1. Observed (a) and calculated inclination versus time (b) of the Pisa
tower (Libreros-Bertini 2006)

and field data. Lower (A) and upper bounds (B) were assumed for the per-
meabilities as the kf -data scatter substantially (cf. Sect. 11.3). The weight
of the nearly rigid structure was imposed within 200 years according to the
construction stages in Pisa, and then kept constant. Seven hundred years af-
ter the onset the structure is substantially tilted and the mesh in its vicinity
is markedly deformed. The pore water diffusion times estimated by (11.3.1)
range from about 102 to 103 years for the thickest clay layer. The increase of
the calculated tilt with time (Fig. 13.4.1a) agrees fairly well with the observed
one (b) for the lower permeability. There is still an excess pore pressure, in
particular under the penetrated edge.

Simplified failure scenarios can be obtained by assuming a more uniform
ground, Fig. 13.4.2a. A saturated peloid may initially have hydrostatic pore
pressure pw and a constant stress ratio by (11.2.9). The initial equivalent
pressure pe may be constant near the surface and increase linearly with big-
ger depths due to resting time and temporary evaporation. The permeabil-
ity may be assumed isotropic and realistically low, or horizontally higher
for a composite with sand bands (Sect. 9.2). The weight of the structure
is increased disc by disc in desired time steps. With a random fluctuation
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Fig. 13.4.2. Simplified model for a tilting tower upon peloid ground (a), weight
and displacements versus time (b)



578 13 Plane-parallel evolutions with SSI

of pe a spontaneous tilt sets on immediately, therefore symmetry need not
be assumed. A reference diffusion time td can be calculated by assuming a
vertically guided structure, and crudely estimated by (11.3.1). For loading
within times well above td contractant creep with nearly constant hw leads
towards a state of rest if the structure is not very slender (b, case I). Other-
wise creep with minor diffusion can lead to a toppling collapse when a crit-
ical tilt is attained (II). Such simulations could be validated by model tests
(cf. Fig. 13.3.11).

Simplifying assumptions could be justified with attractors in the large by
means of model tests and finite elements. The critical tilt could be estimated
with an eccentric punching via (13.3.3) if the average cohesion c̄u were known,
cf. Fig. 13.3.7. If a previous diffusion of pore water could be neglected the
initial cu by (12.2.1) with D = vo/b and an acceptable penetration velocity
vo would be a safe estimate. Even then one could not predict the increasing
tilt by means of (13.3.3) as the creep is not stationary. The positive feedback
up to a loss of stability cannot be captured by assuming essentials of the
evolution if these are not known from simulations and/or observations. This
is valid even more for the assessment of stabilizing evolutions. The required
creep with densification and diffusion could be captured with finite elements,
validated constitutive relations and coupling of skeleton with pore water. Even
with almost free drainage a slender structure can collapse if it approaches a
critical tilt by contractant deformations.

An evolution with a floating solid upon soft ground is indicated with
Fig. 13.4.3. The initial equivalent pressure pe may be spatially constant due to
temporary evaporation and delayed consolidation, thus the initial pore pres-
sure pw is lower than hydrostatic near the surface and higher in the depth (a).
The average base pressure p̄o of the structure may be half the bearing capacity
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Fig. 13.4.3. Floating structure upon soft peloid ground (a); base pressure (b),
displacements (c) and pore pressures versus time (d)
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by (13.3.3) without bedding depth, i.e. p̄o ≈ 2.5cu with cu by (12.2.1) for an
acceptable D ≈ vo/b. The structure may be embedded so that p̄o equals the
former overburden pressure γd. The ground may be excavated with slopes,
then the building is placed and back-filled. The vertical pressure pv in the
centre at the depth d may thus be reduced in a shorter interval than the
diffusion time by (11.3.1) with the same d (c).

With a low slenderness there is no danger of tilting, and the creep veloc-
ity vo would be extremely low by inversion of (13.3.3) even without further
consolidation. With the conventional neglection of lateral deformations under
the structure this would not settle except for a minor re-compression after
swelling due to excavation. A construction planned with this idea in Mexico
City (Cuevas 1936) had to be given up when the bottom of the pit rose by
1.4 m. Instead of ignoring the historical element the evolution of shape and
state could be simulated with finite elements, v-elp or v-hyp and coupling of
skeleton and pore water. This is indicated by displacements and pore pressures
in Fig. 13.4.3c, d. Temporary evaporation and water access may be neglected
for simplicity. During the excavation the bottom (A) rises, whereas the shoul-
ders (B) cave in due to isochoric creep. pw may be slightly reduced in the
middle, but increases in the flanks. The displacements are not reversed by
imposing the previous pressure pv at the base as with a viscous liquid. In the
long run skeleton and pore pressures return to the initial ones if the backfill
does not enhance the drainage. This creep-relaxation towards an attractor in
the large is accompanied by diffusion of pore water.

11 2 3

Fig. 13.4.4. Stage construction for the case of Fig. 13.4.3

The isochoric deformation by placing a floating structure can be reduced by
working with small sections in short times, Fig. 13.4.4. The first narrow ditch
(1) requires a lower average cohesion c̄u and causes thus a lower vo by (13.3.3),
and with typical rates of digging the creep time is shorter. The creep is almost
stopped by placing a part of the structure, then the next section (2) of it can be
placed, and so forth. The construction should be completed without delay as
otherwise a relaxation of the ground could cause too big forces in a concrete
structure after its section-wise curing. Krieg et al. (2004) demonstrate the
advantage of this method. They worked with conservative design estimates
and monitoring, improvements could be achieved with finite elements and v-
hyp. Approaches to argotropic isochoric state limits (i.e. pe/ps → (D/Dr)Iv ,
Sect. 3.9) should be avoided in order to keep the rates of creep and relaxation
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Fig. 13.4.5. Neighboured blocks upon normally consolidated peloid (a), weights
and settlements versus time (b); blocks upon overconsolidated peloid (c), forces and
displacements versus time (d)

low, both are proportional to (ps/pe)1/Iv . A variant with stiff retaining walls
will be shown with Fig. 13.6.11.

The evolutions are different in case of the placement of adjacent blocks,
Fig. 13.4.5. The dominant part of the ground may be a stiff clay with an
originally constant equivalent pressure pe that exceeds p̄o/Nc tan ϕcs with the
higher one of both average base pressures p̄o. p̄o exceeds γd with bedding
depth d for both blocks. Even with fissures the overall permeability is low
(Sects. 12.2 and 13.2). The isochoric creep due to excavation can be kept
small by a supported retaining wall (Sects. 13.6 and 13.7). The first block
may stand so long that skeleton creep and pore water diffusion under it have
almost attained a state of rest. If the higher new block is placed without a
stiff connection to the first one both blocks (a) settle and tilt differently in the
course of time (b). The inwards tilt of the first block is due to the pressure
increase from the new block, whereas this tilts outwards as there the ground
is not further consolidated by the first block. If the second block is firmly
connected with the first one (c) both tilt and settle less together, but internal
forces increase during this unification and relax partly afterwards (d). Base
and pore pressures are gradually redistributed until a new state of rest is
attained. In both cases the structures can fail, this could be quantified with
validated numerical models.

Evolutions as outlined with Figs. 13.4.1, 13.4.2, 13.4.3, 13.4.4 and 13.4.5
can hardly occur with psammoids as their skeleton viscosity is small and
their permeability is high. A slender block can nevertheless topple during its
construction, its critical height is smaller for a lower density. With over critical
void ratios and full saturation, i.e. re > 1 and Sr = 1, blocks could scarcely
be placed as they topple in a temporary suspension (cf. Sect. 13.3). Two
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neighboured blocks move past each other, or get internal forces when they
are united during the construction. Lowering of the ground water table can
hardly cause rearrangements of the grain skeleton as only its mean pressure ps

increases. Flooding with reduction of ps can matter, in particular if re attains
or even exceeds 1. Except for collapse such evolutions could be simulated
with hyp (cf. Sect. 15.1), but they are of minor practical interest as far as
the structures may be assumed to be rigid. Substantial changes of shape and
state can occur with few big or many small reversals (Sect. 13.8).

Nearly rigid retaining walls interact with psammoid ground mainly during
the construction. Figure 13.4.6 shows how a collapse can be attained in model
tests by increasing backfill or excavation. Dry sand was wetted after each
test so that it could be cut due to capillary cohesion. A slender wall of dry
masonry upon dense sand toppled by a dense backfill (a). An almost plane
shear band rises from the foot, whereas the deformation under it is rather
diffuse. A more massive wall upon sand toppled by a backfill with a slope and
a minor excavation at its foot (b). Two curved shear bands appear behind
the wall, whereas no shear localization is visible under the foot. An L-shaped
structure tilted similarly with two curved shear bands behind it and without
visible localization below (c).

The stability of such systems can be judged with kinematical and statical
simplifications, Fig. 13.4.7. The wall can slide and rotate with a part of the
ground, this sliding body is driven by an upper curved wedge and supported by
a lower one (a). A limit equilibrium can be obtained with assumed obliquities
and moments of the resulting forces in the slip lines (b, cf. Figs. 13.1.2 and
Fig. 13.3.7). Variation of slip lines leads to configurations with the lowest
possible fill and/or excavation. The findings of Fig. 13.4.6 were thus confirmed
with suitable friction angles ϕ. Such limit equilibria are necessary for stability,
and also approximately sufficient if they are possible with the critical friction
angle ϕcs. The system may be further simplified for design by means of an
active earth pressure Ea and a base resistance S (c). Ea by (13.1.3) acts at the
lower third point of the back side with inclination ϕw, or on a fictitious rough
wall rising from the slab of an L-structure. The resultant S of Ea and the
weight W of the central sliding body is determined by equilibrium. S attains
Fb by (13.3.1) with the eccentricity and inclination of S. ϕ = ϕcs should be
chosen to be on the safe side.

The gradual shear localization could principally be simulated with polar
quantities (cf. Figs. 13.1.2 and 13.3.2), but this is neither feasible nor necessary
if the wall breadth b exceeds about 100 average grain diameters dg (Tejchman
1997). Uplift and seepage forces of pore water can easily be taken into account
as long as the hydraulic height hw is stationary (Sects. 13.1 and 13.3). Design
estimates are hardly possible with instationary hw due to coupling of skeleton
and pore water, one should better rule out such effects by technical measures.
Unsaturated psammoids with gas channels can be captured with a capillary
skeleton pressure pcs (Sect. 6.2), but this varies with density, evaporation and
water access in a hardly predictable way. pcs can be needed for steep interme-
diate slopes and may then be used with due caution (Sects. 12.1 and 13.1).
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a)

b)

c)

Fig. 13.4.6. Displaced model retaining walls with sand (courtesy E. Schwing): (a)
dry masonry, (b) gravity structure, (c) L-structure

Uncompacted non-saturated fills have to be avoided as they slump after water
access.

Evolutions of shape and state could be simulated with finite elements and
elp or hyp including pore water. The historical element is taken into account
via the order, intensity and size of construction stages. For instance, a terrace
in a slope (Fig. 13.4.8) may be constructed by excavation with steep slopes
(1), placing upper and lower walls (2) with drainage (3), backfilling (4) and
covering against evaporation and erosion (5). The soil may consist of different
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Fig. 13.4.8. Terrace with retaining walls in psammoid ground with seepage. Num-
bers for the sequence

psammoids, its permeability can vary substantially. Its initial state (0) may
be generated as shown in Sect. 11.1, relative void ratios re and hydraulic
heights hw are the most important state variables. pcs is needed when finite
elements are removed for stage 1 (cf. Sect. 12.3). Gravity is gradually imposed
to elements of walls and backfill to simulate stages 2–5. Order and size of
simulated construction steps can be chosen differently, but do not matter
much for the final shape and state (cf. Sects. 12.1 and 12.3). Failure scenarios
up to inacceptable displacements and collapse can thus be generated with
realistic imperfections and hydraulic conditions, whereas the geotechnical risk
can hardly be quantified with conventional design models.

A submerged L-structure in fine sand may serve as further example,
Fig. 13.4.9. The initial skeleton state (0) is hardly changed by lowering the
ground water table with rows of wells (1). The ground can be excavated with
steep slopes (2) due to the capillary skeleton pressure pcs. Suction can also
be generated in fine sand without air entry by rows of vacuum wells (1A) if
the slopes are properly covered (2A). The base slab is placed (3), the wall
is mounted (4) and backfilled (5). After further excavation at the air side
(6) the ground and free water tables rise to the previous level (7). Scenarios
could be generated up to inacceptable deformations and collapse. Forces in
the structure are more important for design than in the previous case, rigidity
need not be assumed for their calculation (Sect. 13.5). Hydraulic conditions
deserve attention: suction can get lost near the slopes (Sect. 12.3), a pulsating
water table causes cumulative effects (Sect. 15.1), the bottom could be soft-
ened and eroded by passing free water (Sect. 16.3).
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Fig. 13.4.9. L-shaped structure in psammoid ground with excavation, fill and seep-
age. Numbers for the sequence
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Fig. 13.4.10. Symmetric trough in psammoid ground with fill and seepage. Num-
bers for the sequence

A massive trough in granular, partly flooded ground could similarly be
captured, Fig. 13.4.10. After lowering the groundwater (1) and excavation
(2) the base slab may be placed (3), then the walls are mounted (4) and
backfilled (5), finally the water table rises again (6). Uplift scenarios could be
generated with realistic imperfections of structure and ground. The implied
earth pressures are neither active nor passive, the obtained heave could be
predicted. If the structure is no more assumed as rigid forces in it could be
taken into account up to failure (Sect. 13.5). Other evolutions can occur with
reversals (Sect. 13.8).

Embedded rigid walls are now considered before dealing with deformable
and supported walls in Sects. 13.5 and 13.6. A wall may be driven into sub-
merged gravel and backfilled with densified sand, Fig. 13.4.11a. Conventionally
Rankine-like earth pressures are assumed above an assumed centre of rotation,
and a horizontal force there instead of the pressures below (b). The bedding
depth is somewhat increased for this force, displacements are estimated em-
pirically. A vertical reaction force is assumed at the wall force for equilibrium
with wall weight and assumed vertical earth pressure components. The evolu-
tion could be captured with finite elements and elp or hyp (c). The wall foot
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a) b) c)

Fig. 13.4.11. Rigid retaining wall in psammoid ground with resting water (a),
simplified forces for design (b), displaced wall with stresses (c)

is rounded as otherwise the equations get ill-conditioned (cf. Fig. 13.3.4). The
relative void ratio re may be assumed in the gravel near the wall due to its
placement (Sect. 14.3). Imposing gravity to the sand with given re leads to
changes of shape and state due to simulated backfilling and excavation. Con-
tact stresses along the wall are part of the results, inner forces of the structure
can thus be calculated.

Scenarios could be generated up to failure, i.e. inacceptable displacements
or collapse, with realistic initial re fields and water levels. The influence of
vibratory densification is missed, it may at best be estimated (Sect. 13.8).
Other shapes and states are obtained if the ground is excavated. The wall
may be placed in a slurry trench, then the sand is excavated at one side.
A conventional design of the wall could be the same as before, in addition
the stability of the trench would be assessed. Simulations of the placement
could be made with elp or hyp, but are not realistic with plane-parallelity
(Sect. 15.3). As long as re is not changed by the wall placement deviations
from an initial state as without it play a dwindling role with increasing wall
displacements. In other words, the skeleton state tends to an attractor in the
large which is mainly determined by the initial re-field. Initial deviations of the
stress field from the one by (11.2.7) enhance the deformations needed to attain
this attractor. They play thus a similar role as spatial stress fluctuations for
an RSE (Sect. 2.2), one may therefore speak of force-roughness in the large.

The manifold of evolutions is wider for rigid walls in saturated peloids,
only few cases may be indicated with Fig. 13.4.12. Excess pore pressures and
deviations of skeleton pressures from the ones by (11.2.7) due to driving in a
wall dwindle by diffusion and relaxation, but a densification can remain near
the wall. The lower disturbance from placing the wall in a slurry trench may
be negligible, only the interface of concrete and clay is changed by remains of
slurry. A simplified state before excavation may be assumed with constant void
ratio e, hydraulic height hw and skeleton stress ratio Ts2/Ts1. The cohesion
may not suffice to keep the unsupported cut (cf. Sect. 12.3) with vo ≈ kf ,
therefore cuo = κcuf with
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Fig. 13.4.12. Rigid retaining wall in peloid ground with thought piezometric tubes
(a), rotating bodies with slip surfaces (b)

cuf =
1
2
γh(hDr/kf )Iv (13.4.1)

and κ < 1 should be avoided.
During and shortly after excavation isochoric deformations tend to a sta-

tionary velocity field with non-uniform hw (a). Ductility may be assumed, and
a crack behind the wall may be excluded by adhesion. A statically sufficient
average adhesion ca (Sect. 10.3) can be estimated with a sliding mechanism
(b) and the balance of power (12.2.2). It can be expressed by ca = mγh with
a factor m < 1/2 that decreases with increasing bedding depth ratio d/h. The
creep velocity by (12.2.1) has the order of magnitude

vo ≈ Drh

(
ca

cuo

)1/Iv

= kf

(
2m

κ

)1/Iv

. (13.4.2)

This is a crude estimate as m/κ cannot be determined precisely and as 1/Iv

exceeds about 20 (Sect. 3.2). The creep slows down by densification if pore
water evaporates from the free surfaces, and accelerates by shear-enhanced
swelling if the free surfaces are covered with water (Sect. 12.3).

If the initial hydraulic height hw and the initial consolidation ratio pe/ps

are constant (cf. Sect. 11.3) the wall could only be placed with external sup-
port, and as any machine would stick. The disturbance by placement dwindles
to negligible traces if the peloid is ductile. The cohesion without seepage in-
creases with depth x1 via

cu ≈ (γ − γw)x1 tan ϕcs
pe

ps
(D/Dr)

Iv , (13.4.3)

this was shown in Sect. 11.3. Excavation leads again to isochoric deformations
and undrained creep afterwards as long as the diffusion of pore water does not
matter. A statically required average adhesion c̄a = mγh can be estimated
with sliding bodies and a linear increase of cu with x1. The creep velocity has
the order of magnitude
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vo ≈ Drh

(
c̄a

c̄uo

)1/Iv

≈ Drh

[
m/ tan ϕcs

1 − γw/γ

(
pso

peo

)]1/Iv

(13.4.4)

with the initial consolidation ratio peo/pso. This is at best a crude estimate.
As with a constant initial cu, or any other initial distribution, creep is slowed
down by evaporation and accelerated by shear-enhanced swelling.

Pressure distributions along the wall after excavation can merely be
guessed for design. With a constant initial equivalent pressure pe suction and
cracks arise near the top (A). With a constant initial pe/ps the pressure on
the active side may increase in proportion with depth (B). At the passive side
the pressure could be more uniformly distributed, and would be lower for case
A if the creep velocity vo has the same order of magnitude as for case B.
The pressures below the assumed centre of rotation may be substituted by a
horizontal force as in Fig. 13.4.11b. The implied average earth pressures can
at best be crudely estimated with an assumed vo (Sect. 13.2).

More insight and quantification could be achieved with finite elements by
means of v-elp or v-hyp and coupling with pore water. The state prior to
excavation may be generated as for a free-field with pore pressures pw and e-
equivalent pressures pe from field investigation (Sect. 11.3). Along sufficiently
distant fictitious boundaries the skeleton is fixed, and it may move together
with the wall. The permeability may be isotropic, or orthotropic for a sandwich
(Sect. 9.2), and uniform or variable. Drainage may be assumed or excluded at
the solid boundaries. Rates of evaporation or pore pressures pw are specified
along the free boundaries, thus the skeleton pressure ps is given by suction
or net attraction (Sect. 6.3). The excavation can be simulated by removing
elements in specified times. The calculated evolution of shape and state with
time depends mainly on the ratios p̄eo/γh, d/h, t/Dr plus kf/Drh and on the
material parameters ϕc, Iv and hsr/γh, but also on initial spatial distributions.
Parametric studies could support understanding and design. Validations could
be achieved with model tests (cf. Sects. 12.2 and 12.3), and principally also
with field observations (cf. Sect. 13.6).
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Fig. 13.4.13. L-shaped retaining structure with fill upon composite ground (a),
simplified substitute with forces (b). Numbers for the sequence
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Examples with backfill, slopes and composite ground are briefly consid-
ered in the sequel. A fill and a confining L-structure may be placed upon a
sand layer with groundwater above a slightly consolidated clay layer upon a
solid draining base, Fig. 13.4.13a. A part of the dense humid sand fill is first
placed with a slope (1), a slab is placed in an excavation (2), then the wall
is mounted (3) and back-filled (4). Design estimates can be obtained for the
partial fill as outlined in Sect. 12.3, and for the structure with assumed cu

and earth pressures (b). Settlements far off the structure may be estimated
without spreading (Sect. 11.3). The long-term settlement and spreading near
the structure attains the same order of magnitude, but cannot be estimated
more in detail. The additional yielding of the ground before the clay is fur-
ther consolidated can scarcely be estimated. The velocity of isochoric creep
can attain the order of magnitude

vo ≈ Drd(cus/cur)1/Iv (13.4.5)

with clay layer thickness d, statically required cohesion cus and reference co-
hesion cur for D = Dr. Neither the transition by filling nor the duration of
this creep can be calculated as easily.

Sufficiently distant rigid walls have to be assumed for finite element sim-
ulations. They are smooth and nevertheless permeable for the transition to
far-fields. The initial state is specified as in Sect. 11.3, the hydraulic height
hw is stationary along the peloid layer. The first fill is treated as in Sect. 12.1,
thus the state of the ground is also changed outside the slope. The placing of
structure and backfill is simulated by imposing gravity in specified times. The
obtained evolutions may serve to clarify and improve estimates. Wick drains
could be taken into account by means of an orthotropic composite permeabil-
ity (Sect. 9.2). Obtained contact stresses along the structure determine its
internal forces, these could not be calculated realistically with conventional
earth pressures. Stiffness and strength of the structure could be allowed for
(Sect. 13.5). The influence of vibrations for compaction need not be taken into
account, whereas earthquakes can matter a lot (Sect. 13.8).

Fig. 13.4.14. Terrace with retaining walls at an inclined peloid layer
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A terrace in a slowly creeping slope (Fig. 13.4.14) may be similarly con-
structed as with granular soils only (Fig. 13.4.8), but now skeleton creep
and pore water diffusion play a role. The retaining walls may be designed
as explained with Fig. 13.4.7. An initial state and velocity field for a finite
element simulation may be generated as for an infinite slope (Sect. 11.6), this
shows the dominance of hydraulic conditions and supports the identification
with field data. Fictitious vertical boundaries far enough from the terrace
should have the far-field velocities and pressures which can imply seasonal
changes. Construction stages can be simulated as with psammoids only, but
now the duration has to be specified and the hydraulic conditions are more
important.

As long as the diffusion of pore water with the new conditions does not
matter the construction causes isochoric deformations of the peloid and iso-
choric creep afterwards. This occurs mainly in soil regions behind the walls
which do not influence each other. Then the backfills with drainage lead to
a densification with diffusion so that the creep motion gets slower than in
the far-field. The peloid zone under the terrace is thus not fixed to its base,
however, as it is ‘pushed’ and ‘pulled’ by the uphill and downhill zones, respec-
tively. This could scarcely be judged with a mechanism as in Fig. 13.4.13b,
and creep deformations could thus not be estimated. Simulated scenarios could
support a safe economic design and the execution with monitoring. One could
also take into account drainage borings (cf. Fig. 12.4.5), deformable structures
(Sect. 13.5) and earthquakes (Sect. 13.8).

Our last case deals with a fixed structure in a creeping slope, Fig. 13.4.15.
After excavation with steep slopes in a dense peloid with suction (1) a block
may be placed in the rock base (2) so that it cannot move. Then it is backfilled
with a small wall uphill (3) and a terrace downhill (4), both sides are drained
at the base (5). Farther away at fictitious walls (6) the creep motion of the
free slope goes on according to the hydraulic conditions with seasonal changes
(Sect. 11.5). The pore water diffusion time of the slope may be a few years.
The downhill side can be judged with sliding wedges and Ea at the structure,
but without knowing pore pressures forces in the peloid can only be guessed.
Two wedges uphill lead similarly to an Ep at the fixed part of the backfill (cf.
Fig. 13.2.3). Evidently the backfill should be water-insensitive, and the clay
smear at the cuts should not swell, but shrink. Finite element simulations
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Fig. 13.4.15. Block with backfill in a peloid layer. Numbers for the sequence
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could produce scenarios for a safe and economic design. Deformations near
both sides of the structure and pressures along its walls could be calculated for
differently shaped cuts and backfills, and with different hydraulic conditions.

To sum up, simulations with rigid structures upon and at the ground can
provide design scenarios where conventional methods do not suffice. With
psammoids evolutions of shape and state, which could lead to failure by in-
acceptable deformations and accelerations, depend mainly on sequence, size
and intensity of construction steps. With peloids the viscosity of the skele-
ton and the diffusion of pore water should also be taken into account. A
safe and economic design can be achieved by assuming rigid structures and
plane-parallelity, attractors in the large support simplifying assumptions.

13.5 Deformable structures at the ground

Winkler (1867) proposed proportionality of vertical displacement s and base
pressure σ,

σ = kss, (13.5.1)

for an elastic beam in order to calculate its internal forces and deformations
under loads, Fig. 13.5.1a, c. The coefficient of subgrade reaction ks is chosen
empirically, it ranges from ca. 102 kN/m3 for soft clay to 107 kN/m3 for hard
ballast. Equation (13.5.1) leads to maximal bending moments Mo = 
Pa/8
and displacements so = ωP/ksab for a load P with factors 
 and ω (b and e).
These depend on the ratio of beam length a and an elastic length,

le = 4
√

EI/ksb, (13.5.2)

with bending stiffness EI and breadth b. For a rigid beam on soft ground, i.e.
low l/le, 
 = 1 and ω = 1 are approached as for a floating beam. For a flexible
beam on hard ground, i.e. high l/le, Mo and vo get small as for a ski on ice.

Winkler’s hypothesis (13.5.1) is widely used until now, but when and how
can it be justified and quantified, and what could be done otherwise? It means
linearity and lateral uncoupling of the ground response. Equation (13.5.2)
implies also linear structural behaviour. Assuming an elastic half-space with
modulus E in proportion to depth z, i.e.

E = Erz/zr (13.5.3)

with a reference Er for z = zr, Gibson (1974) obtained (13.5.1) with ks =
Er/zr, and the same stress fields from surface pressures as for constant E.
Lateral uncoupling is also given if the structure rests upon an elastic layer
with thickness d far smaller than length a. Then (13.5.1) is evidently valid
with ks = E/d. Bending moments and displacements can also be estimated by
(13.5.1) for a uniform elastic ground with ks = E/d. The lateral uncoupling
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Fig. 13.5.1. Beam upon Winkler subgrade with central load (a), factors for maximal
bending moment and settlement (b); same with end loads (c, d)

may thus be ignored, but the assumed linear elasticity and linear distribution
of E are hardly realistic. Limitations and substitutes are outlined in the sequel
by a number of examples.

Consider a loaded strip on psammoid ground. A continuous bedding may
substitute the subgrade of a track. Neglecting the strip weight and lateral
displacements the differential stiffness Es by hyp and hyp-δ would increase
with depth z by the power law

Es =
dσ

dε
= mhs(γz/hs)1−n (13.5.4)

with a factor m depending on re and intergranular strain δ (Sects. 2.4 and
4.5). Equation (13.5.4) would agree with (13.5.3) for n = 0 and would mean
ks = mγ, thus (13.5.1) seems to be justified with a suitable m. Granular
soils have n ≈ 0.5, however, n = 0 works at best with soft particles except
for σs → 0 (Sect. 3.5). Schlegel (1985) showed that bending moments of an
elastic beam upon sand can be estimated with a power law

σ = σr(u/ur)m (13.5.5)



592 13 Plane-parallel evolutions with SSI

instead of (13.5.1) and suitable reference values σr and ur. The lateral uncou-
pling is justified by model tests in this case, but not the linearity of (13.5.1).
Lateral displacements occur under the beam, thus (13.5.4) gets invalid and
the parameters in (13.5.5) can scarcely be predicted. Augustin (2002) has
shown that the response of ballast depends strongly on its pressure in un-
loaded states, thus (13.5.4) and (13.5.5) are refuted for reversals. He ob-
served a nearly elastic response after some load cycles, and cumulative ef-
fects which are missed by (13.5.1), (13.5.2), (13.5.3), (13.5.4) and (13.5.5), cf.
Sect. 13.8.
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s
a)

d)c)

Fig. 13.5.2. Bridge with uncoupled fundaments (a), foundation force versus settle-
ment (b), deformation with plastic hinges (c), deformation with cracks (d)

Sufficiently distant foundations under a kind of bridge may be assumed
as not coupled via psammoid ground, Fig. 13.5.2a. Neglecting lateral dis-
placement and tilt, the response of each foundation may be represented by a
plot of vertical force vs. displacement (b). It can principally be predicted (cf.
Fig. 13.3.4), and the assumed independence of neighbours could be judged
with finite elements. Bridge sections may be placed and coupled thereafter so
that bending moments M and transversal forces T by weight arise between
the supports. A traffic load P may deform the beam elastically, but the sup-
ports react anelastically (c). With sufficient bending stiffness the neighboured
foundations are slightly lifted and unloaded. T and N due to P may as well
be estimated with rigid supports, a linear subgrade could not produce more
realistic results. Cumulative and uneven settlements due to traffic imply path
reversals and can at best be estimated (Sect. 13.8).

Collapse scenarios require an anelastic structural behaviour. Bending mo-
ments can attain limit values in a ductile structure so that plastic hinges arise,
Fig. 13.5.2c. This can occur with hardly predictable differential settlements,
these would get indeterminate or accelerate if the ground resistance attains a
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plateau or a peak, respectively (cf. Sect. 13.3). A brittle bridge would collapse
if bending moments attain critical values due to P and differential settlements
(d). As at best their order of magnitude could be estimated this failure should
be avoided by a sufficiently flexible and ductile structure.

Frames upon psammoid ground may represent buildings with shallow
foundations and negligible horizontal displacement, Fig. 13.5.3. A single stiff
structure (a) would hardly be stressed by differential settlements during the
construction as its stiffness arises alongside with its weight. Deformations by
placement are path-dependent as shown in Sects. 13.3 and 13.4, curing of con-
crete or coupling of structural elements could be taken into account. Further
vertical dead loads, as e.g. with a tank or silo, lead to differential settlements
and structural forces. Both could be captured with finite elements and elp or
hyp, and elp-α or hyp-δ in case of repeated loading (Sect. 13.8), the sequence
of filling and emptying should be allowed for. Such evolutions are missed with
(13.5.1), bending moments can thus have a wrong sign and order of magni-
tude, assumed statically possible distributions of base pressures can be more
realistic.

a) b) c)

Fig. 13.5.3. Frame structures with shallow foundation on a plate (a) and on strips
(b); neighboured structures with shallow foundation (c)

In case of hard-grained dense psammoid ground strip foundations can suf-
fice to keep the deformations small, Fig. 13.5.3b. The interaction of strips
via the ground may be neglected although their distance is smaller than for
a bridge, this could be justified by comparative calculations with realistic
initial fluctuations. Small displacements could be estimated as outlined with
Fig. 13.3.4, internal forces may be calculated for design by assuming rigid
supports. Bending moments in a base plate needed for water-tightness can be
reduced by a soft inlay (dashed). Twin frame structures of different height
and stiffness can get bigger deformations (c). As always order and size of con-
struction steps play a role, now curing and coupling of structural parts are
also relevant. If one structure stands already it is more affected by the new
one than for a simultaneous construction, this is missed by (13.5.1).

A spreading frame upon psammoid ground may serve to show further limi-
tations and possible substitutes of usual approaches, Fig. 13.5.4a, this is again
idealized with plane-parallelity. It may be constructed upon eccentric strips
and used for storage. Conventionally internal forces are calculated with an
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Fig. 13.5.4. Frame upon psammoid ground (a, numbers for sequence), substitute
with elastic subgrade (b), frame with plastic hinges (c)

elastic system (b) for ‘ultimate’ and ‘service’ loads, thus cross sections and
foundations can be dimensioned. This may suffice for the stability of a ductile
system which can get indifferent with plastic hinges and a yielding founda-
tion (c). Excluding brittle systems, service-relevant deformations remain thus
indeterminate. Scenarios could be generated with finite elements. The sys-
tem should be simulated with its step-wise evolution (indicated by numbers
in Fig. 13.5.4a). Considerations with single foundations would not suffice as
the path-dependence is ignored with unavoidable kinematical and statical as-
sumptions (cf. Sect. 13.3).

Attractors can be of use to justify simplifying assumptions for realistic
design scenarios. Initial states including foundations are mainly determined
by the zone-wise averages of relative void ratio r̄e. Spatial fluctuations of re

and mean skeleton pressure ps are smaller and play a minor role for low r̄e,
in particular in the near-field (Sects. 8.2 and 10.3). The known advantages of
densification could be quantified by comparative calculations. Order, size and
intensity of construction steps may be simplified as long as the overall path is
monotonous (cf. Sects. 12.4, 13.6 and 13.7). Non-monotonous construction se-
quences, in particular operations in the ground near a ready structure, would
impede the approach to an attractor. The subsequent ground response would
thus be softer and less determinate (cf. Sect. 13.3). Scenarios with extreme
loads and imperfections of ground and structure imply state limits in the
large. These attractors are mainly determined by the initial re-field and can
substitute plastic limit states (cf. Sects. 11.5, 12.4, 13.1, 13.2 and 13.3). A fur-
ther attractor is needed for alternating loads in order to estimate cumulative
effects (Sect. 13.8).

In addition to the ever-present historical element a ground with peloid
influences the interaction of deformable structures and ground via skeleton
viscosity and pore water diffusion. Structures floating in soft ground tend to
attractors, Fig. 13.5.5. A not tilting box placed upon mud attains depth and
pressure distribution as with a liquid (a). Almost the same happens with a
constant initial consolidation ratio pe/ps and hydraulic height hw (b). Inde-
pendently of permeability the amounts of pe, ps and hw along the box return
to the far-field values. The resulting base pressure would be formally obtained



13.5 Deformable structures at the ground 595

e w

p

sym
ew

p

symz z
ew

p

sym z
1

3

a) b) c)

Fig. 13.5.5. Floating box upon mud (a), normally (b) and overconsolidated peloid
ground (c). Equivalent (e) and pore water pressures (w) in the free-field versus depth

with (13.5.1), but Winkler’s assumption is neither needed nor justified. If a
box is placed in excavated stiffer ground as outlined with Fig. 13.4.3 a uni-
form base pressure is approached by relaxation of the peloid (c). The structure
breaks if it attains a plastic or fracture limit. In case of a section-wise construc-
tion as by Fig. 13.4.4 a uniform base pressure is more slowly approached. The
lower rate of relaxation is due to a higher consolidation ratio (Sect. 3.4), cf.
(13.3.4) with (13.3.3). Evolutions of forces in the structure could be quantified
with v-elp or v-hyp, such scenarios could support design and execution.

Dams with flexible inlays upon soft ground could similarly be captured,
Fig. 13.5.6. Spreading of a light fill is reduced by placing a textile in the
excavation (a). A state of rest is attained without diffusion of pore water if
the weights of fill and excavation are equal and the earth pressure in the fill
is compensated by the inlay. Traffic is harmless as long as the consolidation
ratio pe/ps near the dam is not reduced below ca. 2 (cf. Sect. 13.8). A dam
with more weight than the excavation can be placed more rapidly by means
of one or two inlays (b). This kind of mattress is hardly spread, and less bent
if the textile encloses the flanks. The dam sinks with decreasing rate due to
diffusion of pore water and contractant creep (cf. Sect. 14.3). Scenarios could
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b) z
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Fig. 13.5.6. Fill on soft ground with a textile mat (a) and textile bags (b). Pressures
as in Fig. 13.5.5
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be generated with hyp, v-hyp and constitutive relations for inlays and their
interfaces with soil (Sect. 10.3).
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Fig. 13.5.7. Skeleton structures upon ground with a peloid layer (a) and a peloid
lense (c); related base pressures and settlements versus time (b, d)

The influence of peloid layers in psammoid ground upon deformable struc-
tures above is manifold, Fig. 13.5.7. Deformations may be harmless during a
uniform bottom-up construction, but can lead to failure afterwards (a). The
peloid gets more pressure in the middle and yields more there with contractant
creep and diffusion. Thus the structure is gradually deformed and stressed,
and can get useless or break after years. This is not obtained with (13.5.1)
and also missed with other usual design methods. With peloid under one side
the structure is gradually bent with opposite sign (b). Twin buildings bend
towards or from each other when they are constructed together or with a long
waiting interval, respectively (c). This cannot be quantified by usual meth-
ods, whereas scenarios generated with hyp, v-hyp and constitutive relations
for structures can lead to a safe and economical design.

Unsupported deformable walls can be treated similarly as rigid ones,
Fig. 13.5.8. A row of sheet piles may be driven in sand under water, one
side is back-filled and the other one is excavated (a). With a sufficient wall
depth a plastic hinge and Rankine earth pressures may be assumed for a
pre-design (a). Finite element simulations with elp or hyp and constitutive
relations for the wall could supersede such assumptions. A slurry trench wall
may be placed in ground with peloid, then one side is excavated (c). Usual de-
sign earth pressures (d) are rather arbitrary with partly unknown hw-changes
and vanishing displacements near the foot. Simulations with elp and v-elp or
hyp and v-hyp, pore water coupling and wall relations could yield evolutions of
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Fig. 13.5.8. Stiff retaining wall in psammoid ground (a), earth pressures (b), same
with layered ground (c) and related earth pressures (d). Numbers for stages

shape and state during and after excavation. Except for reversals (Sect. 13.8)
scenarios could thus be generated for any ground profile, wall, fill, excavation
and hydraulic influence.

a) b) c)

Fig. 13.5.9. Retaining structures with stones (a), rock-filled bags (b) and earth-
filled crates (c)

Retaining structures with dry masonry are deformable, their anelastic
behaviour cannot easily be captured, Fig. 13.5.9. Rigidity as assumed in
Sect. 13.4 is no more legitimate if structural deformations can enhance a
failure of the system. Blocks in a wall (a) may be represented by rigid bodies
with anelastic interaction. Structures with bags of flexible solid and rockfill
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(b) could be modelled as composites with elp or hyp (Sect. 9.2). A stack
of chests with earth fill (c) requires special finite elements for calculations
as such structural parts can destroy each other. Ground, fill and pore water
could be modelled as before in design scenarios. Validation tests are needed
for constitutive relations representing such structures.
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Fig. 13.5.10. Retaining wall with flexible tendons (a), sliding block (b), force
polygon (c), wall with tendons upon partly soft ground (d), base pressure and
settlement of fill versus time (e)

Structures with flexible inlays could be captured similarly, Fig. 13.5.10.
They can be built on stiff ground with steep flanks and almost any height
with suitable strips, wall and fill (a). Sliding bodies may be assumed for de-
sign with a main slip plane crossing lower strips (b). Their resulting pull-out
resistance ΣRi and a safely estimated resistance S at the wall foot enter the
limit equilibrium (c). No such assumptions are needed in stage-wise simula-
tions with elp or hyp and relations for wall and inlays with their interfaces
(Sect. 10.3). With softer ground due to a peloid layer this confines the at-
tainable height (d). If the composite structure would be safe according to
Fig. 13.5.10b, c it can fail as the peloid in depth yields more in the course
of time (e) (cf. Fig. 13.4.13). Longer strips would reduce the spreading of
the structure, but not in the ground (cf. Fig. 13.5.6). Usual design estimates
could be superseded by scenarios generated with elp and v-elp or hyp and
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v-hyp, pore water coupling and relations for structural parts with interfaces.
Vibrations and earthquakes could also be taken into account (Sect. 13.8).

2

6

4

5
3

1 1 1

Fig. 13.5.11. Abutment with bridge and fill upon ground with an improved peloid
layer. Numbers for the sequence

A two-dimensional substitute of a back-filled bridge abutment may finally
be considered, Fig. 13.5.11. An extended fill (2) is placed on the rather soft
ground after installing wick drains (1) in order to consolidate peloid zones.
Part of the fill is removed (3), the abutment is placed (4) and back-filled
(5), then a beam is placed (6). The filling could be judged and simulated as
shown with Figs. 12.3.4 and 12.3.5, the ground state attained after its re-
moval can also be obtained with elp and v-elp or hyp and v-hyp. Similarly as
with Fig. 13.4.3 conventional estimates can at best suffice for pre-designing
the abutment. More realistic scenarios are obtained with pore water coupling,
stages of construction and use can be simulated within specified times. Fail-
ure due to spreading, tilting and differential settlements could thus be safely
avoided. Traffic loads, vibrations and earthquakes could also be allowed for
(Sect. 13.8).

Attractors in the large are advantageous in cases as illustrated with
Figs. 13.5.5–13.5.11, with peloids they are argotropic and/or endogeneous due
to skeleton viscosity and pore water diffusion (Sect. 10.4). Except for perfect
elasticity and plasticity the asymptotic deformability of structures cannot yet
be captured by similar rules. As with rigid structures, however, design esti-
mates and simplifying assumptions for initial and boundary conditions could
be justified by means of comparative calculations.

To sum up, simulated evolutions of shape and state could supersede con-
ventional design estimates in cases with deformable structures upon and at the
ground. The potential of elp and v-elp or hyp and v-hyp with pore water cou-
pling is the same as with rigid structures. The deformability of structures can
enhance the approach to inacceptable deformations and collapse. Repeated
reversals could principally be allowed for (Sect. 13.8), strutted and back-tied
retaining structures will be treated in Sect. 13.6. The general statements of
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this section do not depend on plane-parallelity. The latter can be justified
or superseded by three-dimensional calculations (Chap. 15), attractors play a
key role in capturing the historical element.

13.6 Strutted and back-tied retaining structures

Retaining walls can be supported horizontally by struts against an opposite
wall, or by back-ties into the ground. They are usually considered as vertical
beams with ‘actions’ by earth and water pressure, and ‘resistances’ by pas-
sive earth pressure and strength of struts or back-ties. Winkler’s assumption
(13.5.1) is often used with horizontal stress σ and displacement u instead of
settlement s, and with bounds by Rankine-type earth pressures. This is de-
batable as actual earth pressures are neither active nor passive in general.
Back-ties and soil constitute a composite, vertical components play a role,
uncoupling as by (13.5.1) cannot be defended. Thus deformations are missed
and the stability is hardly captured. Design estimates of this kind are at best
empirically justified, but their range of validity beyond executed cases is un-
known.

As shown with other structures in previous sections one can simulate evo-
lutions of shape and state with finite elements, constitutive relations and
initial and boundary conditions. This was done in a number of case stud-
ies with field data and justified plane-parallelity. As outlined in the sequel
hypoplastic models were validated for various retaining structures with gran-
ular soils. Less was done until now with clays, but observations indicate that
skeleton viscosity and pore water diffusion could also properly be taken into
account.

A strutted sheet-pile wall in granular ground was investigated in detail
by von Wolffersdorff (1997). The ground consisted of humid fine sand above
and gravel below the water table, both rather dense. Two parallel slits with
bentonite smear were installed to keep displacements in one plane. Two oppo-
site walls were driven in by vibrations, one was equipped with earth pressure
transducers and strain gages for bending moments. A basin was placed near
one wall and filled with water. A row of struts was installed between the walls
after partial excavation, this was continued down to the water table. Then the
struts were shortened so that their resulting force attained a minimum and
the wall yielded. A gap opened behind this wall, and inclinometers indicated
a shear localization deeper in the ground. Predictions submitted for this field
test missed observed deformations, pressures and structural forces.

After this moment of truth various attempts were made to improve pre-
diction models and to understand their inevitable limitations. Fairly realistic
displacements were obtained with elp and hyp (Wolffersdorff 1997) including
the initially ignored capillary skeleton pressure pcs (Sect. 6.2). It was realized
that the ground had been partly densified by vibrations, that earth pressures
can hardly be observed nor predicted and that bending moments and strut
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a) b)

c)

Fig. 13.6.1. Back-analysis of von Wolffersdorff’s (1997) field test by Slominski
(2007): localization with coarse (a) and finer mesh (b), strut force versus shortening
(c)

forces cannot be captured with the same precision as displacements. This
enhanced the development of hypoplasticity, but until recently the observed
minimal strut force and shear localization in the ground could not be captured.

Slominski (2007) could remove the last shortcomings with sophisticated
calculations, Fig. 13.6.1. A suitable mesh leads to a plane shear band in
agreement with the observed dislocation (a, b). The calculated reduction of
the strut force with shortening of the struts is realistic with a not too fine or
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coarse mesh (c). Polar effects may be neglected as the wall height exceeds by
far 100 grain diameters (Sects. 13.1 and 13.3), but a mesh-independence is
thus visibly not obtained. As with other case studies discussed in the sequel
and in Chaps. 14 and 16 one may nevertheless argue that useful simulations
can be obtained with suitable meshes by means of field data.

a)

b) c)

Fig. 13.6.2. Excavation with strutted wall (a), wall displacement and strut forces
after half (b) and full excavation (c), Mayer (2000)
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A strutted sheet pile wall placed in a slurry trench in mainly granular
ground was monitored with unkommon precision and back-analysed with hyp-
δ, Fig. 13.6.2a (Mayer 2000). The installation of the wall is a three-dimensional
evolution (Sect. 15.2), but the ratio of wall length and height suffices for
plane-parallelity of the subsequent evolution. The state of the ground before
excavation was assumed as without the wall (Sect. 12.2), comparative cal-
culations showed that pressure deviations due to the wall installation had
little influence. Excavation, lowering of water table and installation of struts
were simulated in steps according to the protocol. The agreement of observed
and calculated values is good for horizontal displacements near the wall and
acceptable for strut forces both for partial (b) and full excavation (c).

The validations shown by Figs. 13.6.1 and 13.6.2 can be attributed to
attractors in the large. A first one for the free field (cf. Sect. 11.3) reveals how
far former operations in the ground may be neglected. A second one means
that with a vibratory installation a further densification can matter, but that
irregular skeleton stress distributions are negligible (cf. Sect. 13.8). A third
one means that installation-induced deviations of skeleton stresses from far-
field values are swept out by subsequent deformations. The historical element
is thus not ruled out, it delimits the predictability as evolutions can never be
followed up in all detail.

Design scenarios for strutted walls in psammoid ground can thus be gen-
erated as shown with Fig. 13.6.3. With a water table below the excavation
(a) sheet pile walls (2) may be installed near buildings (1), an upper row
of struts is placed after partial excavation (3), a lower one thereafter (4).
Earth pressures as indicated with Fig. 13.5.8 may suffice for a pre-design,
but thus deformations and stability cannot be captured sufficiently. Upper
bounds of displacements can be obtained with hyp-δ, big initial intergran-
ular strain δ for stress fluctuations, somewhat higher than observed initial
re with spatial fluctuation, and realistic imperfections of the structure and
its installation. Deformation-induced damages of the retaining structure and
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Fig. 13.6.3. Retaining structures in psammoid ground with deep (a) and high water
table (b). Numbers for the sequence
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neighboured buildings can thus better be avoided, monitoring and auxiliary
operations can be supported more rationally.

In a second scenario with a high water-table (Fig. 13.6.3b) two slurry
trench walls (2) near buildings (1) may be connected by a jet-grouted inverse
arc (3). The water table is lowered inside (4), a concrete slab is placed after
partial excavation (5), a second one (6) forms a tunnel which is then covered
(7). Usual design estimates of structural forces are debatable with such a
bottom arc, whereas the evolution of shape and state can again be captured
in due order with hyp-δ and relations for structural parts with curing. As for
the previous case collapse scenarios require rupture of structural parts (cf.
Sect. 13.5). Only then strut forces can change dramatically and shear bands
can occur as shown in Fig. 13.6.1.

a)

b)

Fig. 13.6.4. Model test with a back-tied wall (a, Gäßler 1987) and its simulation
with p-hyp (b, Nübel 2002)
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A back-tied wall was studied by Gäßler (1987) in a model test with sand,
Fig. 13.6.4a. A rough plate was placed behind the fall, then the wall was
further back-filled. After releasing the wall a block with the wall and part of
the plate slid on a plane shear band, an upper wedge slid with two steeper
bands. Nearly the same evolution was obtained by a simulation (b) with polar
quantities (Nübel 2002, cf. Sect. 8.2). A limit equilibrium can be generated
instead with a mean friction angle (cf. Fig. 13.5.10).

Polar terms are not needed for walls in situ (cf. Sect. 13.5). These are back-
tied by rows of anchors or nails and not by an embedded plate. Model tests
with dry sand, which was afterwards wetted and cut vertically, reveal similar
sliding mechanisms, Fig. 13.6.5. With three rows of anchors, prestressed to the
wall by strings, an excavation near the foot leads to a sliding block which is
back-tied by the tendons and driven by an upper wedge (b). With several rows
of so-called nails, without strings and pre-stress, digging at the foot leads to
the same mechanism (a). Neglecting the bending stiffness of anchors or nails
the limit equilibrium would be almost the same as in Fig. 13.5.10b, c, with a
different resistance S at the wall foot and again a resulting pull-out resistance
ΣRi. This might suffice for design if ϕ, S and ΣRi are reasonably assumed,
but thus deformations are ignored and the stability is not assessed in case of
insufficient ductility.

An anchored sheet-pile wall in a cemented slurry trench in sandy ground,
which was first investigated by Mayer (2000), was again back-analyzed with
hyp-δ by Slominski (2007), Fig. 13.6.6. The water table inside was lowered
above a sealing lignite layer, anchor forces and horizontal displacements in in-
clinometer boreholes were observed. With a refined mesh around the anchors

a) b)

Fig. 13.6.5. Model tests (courtesy E. Schwing) with a nailed (a) and an anchored
wall (b)
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Fig. 13.6.6. Back-analysis (Slominski 2007) of an anchored sheet pile wall in sandy
ground (Mayer 2000): cross section with finite elements (a), Pull-out resistance (b),
evolution of anchor forces (c)

(a) the observed pull-out resistance was reproduced (b), a substitute anchor
plate is thus justified. The evolution of anchor forces with fixing, further stress-
ing by excavation and partial unstressing after installation of the next row is
well captured (c). The agreement of observed and calculated horizontal dis-
placements is good for four stages, Fig. 13.6.7a–d. Bigger actual displacements
thereafter can be attributed to vibrations in the pit (Sect. 13.8).



13.6 Strutted and back-tied retaining structures 607

a) b)

c) d)

Fig. 13.6.7. Observed and calculated horizontal displacements after little (a), half
(b), further (c) and full (d) excavation (Slominski 2007)

A field test with a nailed wall was carried out up to a limit equilibrium by
Gäßler (1987). Within two vertical clay smears for plane-parallelity the sand
behind the wall was loaded via a traverse. Loading and unloading did not lead
to a peak in three cycles, but after removing the lowest nails and further exca-
vation it was reached. The observations indicate a limit equilibrium with two
sliding bodies, this could be statically explained as with Fig. 13.5.10. Strain
gages in nails of the lowest remaining row indicate an increasing tensile force
which is almost constant within the sliding block. The system was remarkably
ductile, i.e. the resistance at the traverse was only slightly reduced beyond the
peak. Strong load cycles caused a substantial ratcheting, but no fatigue.
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Fig. 13.6.8. Back-analysis of Gäßler’s (1987) field test (Slominski 2007): Observed
(a) and calculated (b) forces in lowest nails with increasing traverse load, observed
(c) and calculated (d) shear localization after removing a deeper row of nails

In a back-analysis Slominski (2007) could reproduce these findings with
hyp. The mesh was finer around the nails and adapted to the step-wise ex-
cavation and installation (cf. Fig. 13.6.6). After identification of hypoplastic
parameters and initial state a realistic peak of the traverse force was obtained,
but an exaggerated ratcheting. The calculated force in the lowest row of nails
(b) evolves nearly as observed (Fig. 13.6.8a). Shear zones grew with reload-
ing after removal of the lowest nails and further excavation (c). Two sliding
bodies arise similarly in the simulation (d). The calculated shear bands are
too thick, but this does not matter for the limit equilibrium as the dilation
is hardly impeded. With progressive shearing the sand is dilated to a critical
state in the upper steep bands, but not quite in the lower band. The skeleton
is no more sheared along the nails. That’s why the system is so ductile, so it
would be stable with a dead load below the one determined with the critical
friction angle ϕcs (cf. Sect. 12.4).

Design scenarios for back-tied structures in psammoid ground can now be
conceived as shown with Fig. 13.6.9. Humid fine sand in a gentle slope (1)
with buildings (2) may be cut and nailed (3, 4 ...) with a shotcrete skin (a).
Limit equilibria have to be assessed for all stages with ϕcs, cautious pcs, dead
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Fig. 13.6.9. Design scenarios for back-tied structures in psammoid ground: nailed
wall (a), anchored wall with grouted slab (b), walls with anchored slab (c). Numbers
for the sequence

loads and pull-out resistances as in Fig. 13.5.10. Displacements of the building
could be predicted with elp or hyp, pcs and a mesh so that the observed pull-
out resistance is reproduced. The sand should be protected against drying
and flooding. Prestressed anchors would not do better than nails of the same
size as the reinforced soil block ‘forgets’ this prestress in the course of further
excavation.

Displacements can be reduced by pre-stressing if anchors reach deeper than
the excavation, Fig. 13.6.9b. If the water table (1) must not be lowered under
a neighboured building (2) a seal can be injected (3) between tight walls (4)
before excavation. The latter is carried out in stages alongside with inside
pumping and installation of anchors (5, 6). The structure may be designed
with well-defined water pressures and conventional earth pressures. This may
suffice for stability, but hardly for deformations. In a simulation with elp-
α or hyp-δ the state after placing the wall could be simplified as for a free
field (Sect. 11.3) plus a dead load for the building (Sect. 13.4). The injection
may reduce kf , the cementation in this depth is negligible. The unsupported
wall yields slightly during the first excavation, then it is pulled downwards
by pre-stressing the first anchors. This yielding goes on with further stages
and can affect the building. The pull-out resistance should be well below the
strength of brittle tendons so that these cannot break one after another up to
a collapse.

Instead of an injection or a natural seal a bottom slab can be back-tied,
Fig. 13.6.9c. After placing walls (1) and struts (2A) or anchors (2B) above
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soil is excavated under water (3), a plate is cast (4) and fixed by vertical
anchors (5), then water is pumped out (6) and the construction is continued.
Hydrostatic uplifting (cf. Fig. 13.4.10) is prevented by long anchors and suf-
ficient density of the skeleton in between so that this is lifted together with
the plate. Plate and walls may be designed with conventional assumptions as
long as the structure is ductile and earth pressures are calculated with ϕcs.
Deformation tolerances for water-tightness may thus be kept, but empirically
unknown variants can hardly be captured. One should better simulate evo-
lutions of shape and state with elp-α or hyp-δ, substitute anchor plates and
non-linear relations for the structure. This works also with reversals due to
changing water tables (Sect. 13.8), whereas cumulative effects are missed by
a conventional design.

a) b)

Fig. 13.6.10. Back-analysis (Meier 2009) of a sheet-pile wall (Wu and Berman
1953): cross section (a), strut forces versus time (b)

With peloids evolution times are not only determined by construction and
subsequent actions, but by skeleton viscosity and pore water diffusion. Leaving
aside sandwich soils and artificial drains the diffusion does not matter during
the construction (cf. Sects. 13.2, 13.3, 13.4 and 13.5). This was the case for
a strutted wall in Chicago (Wu and Berman 1953), Fig. 13.6.10a. Sheet piles
were driven into stiff clay with a sand fill above the water table. Struts were
inserted in six levels alongside with the excavation. Axial forces observed at
them grew during the excavation and slightly also thereafter (b). Horizontal
displacements of the wall did not exceed a few cm during the excavation
and did not increase thereafter. The structure had been designed for earth
pressures estimated with cu (Sect. 13.2), and the number of struts was adapted
to the observed behaviour (Peck 1969).
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Meier (2009) carried out a back-analysis with hyp and v-hyp. Composi-
tion and initial state were identified as shown with Fig. 11.3.3. Changes due
to sheet pile driving were neglected, with a small gas content the minute com-
pression does not matter off the wall. Installation of struts and excavation
were simulated with given times, but simplified by plane-parallelity. The cal-
culated evolution of strut forces (also in Fig. 13.6.10b) is close to the observed
one, the calculated wall displacements are likewise realistic. Other than with
conventional estimates one can therefore predict the evolution of shape and
state for such cases. Structural forces and deformations can be kept small
enough during and shortly after construction.
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Fig. 13.6.11. Strutted walls in soft ground with open excavation base (a) and
grouted slab (b)

For strutted walls in soft ground the skeleton viscosity can play a bigger
role, Fig. 13.6.11. With an open bottom (a) the soil flows around the wall
from a certain excavation depth h onwards. Bjerrum (1973) observed that the
excavation depth h could not exceed the critical value

hc = cuNc/γ (13.6.1)

with Nc ≈ 5 and a lower cu than from tab tests. This corresponds to the
punching resistance by (13.3.2) with the velocity vo of isochoric creep by
inversion of (13.3.3). For a narrow trench, say b/h < ca. 1/2, Nc is higher
and vo is lower with a given h. Structural forces may be estimated with earth
pressures from cu (Sect. 13.2) although the deformations are not suitable.
Creep motions and structural forces could be captured with v-elp or v-hyp if
the soil is ductile. Otherwise the creep can go over into a collapse, this could
be modelled with v-hyp by Gudehus (2004b) (cf. Sect. 3.9).

Deformations are reduced by closing the bottom, but then the structure
is more stressed, Fig. 13.6.11b. If a slab is placed after the excavation the
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creep after its curing is stopped. This may suffice if the statically required
cu is reduced by means of narrow sections with auxiliary walls, and with
rapid construction and curing (cf. Fig. 13.4.4). If a slab is jet-grouted prior
to excavation the deformations are small, but structural forces increase more
rapidly. This kind of relaxation of the ground enhanced a disaster in Singapore
with an under-designed structure (Whittle 2006). For a conservative design
pressures at walls and bottom slab may be assumed like in the far-field. As long
as the structure is lighter than the excavated ground it rises by creep, thus its
bottom pressure is lower than in the far-field. All this could be quantified with
v-elp or v-hyp and constitutive relations for the structure, design scenarios
should also depend on operation and waiting times.

The diffusion of pore water is not so important for cases as by Figs. 13.6.10
and 13.6.11. With a small gas fraction pore pressures can return to far-field
values without seepage, a minor consolidation near structural parts slows down
with long-term creep. This neglection is no more legitimate with soft layers
above the bottom of excavations. In a field test (Kort 2002) sheet piles were
hammered through a soft sandwich ground into sand, after excavation and
strutting the wall was plastified by surcharging the ground. Pore pressures
rose during the operation and returned to far-field values with densification
in a short time. Another test in similar ground was carried out with a slurry
trench wall (De Wit and Lengkeek 2002, more in Sect. 15.1). The smaller de-
formations and excess pore pressures reveal again a rapid diffusion. Both tests
could be simulated with hyp, v-hyp and an orthotropic composite (Sect. 9.2),
this would support design scenarios.

Back-tied walls at ground with rather soft peloid zones are of geotechnical
interest in several variants, Fig. 13.6.12. Anchors or nails can be placed at a cut
in stiff fissured clay (a). The composite system deforms almost without pore
water diffusion during the construction and by undrained creep for a while
thereafter. Later the creep stabilizes by contraction if less than ϕc is needed for
any limit equilibrium with the hydraulic conditions, and destabilizes up to a
collapse in the opposite case. This could be modelled as outlined in Sect. 12.4,
now plus structural elements as shown with Fig. 13.5.10.

If a wall supports a creeping slope and is back-tied in non-viscous ground
(Fig. 13.6.12b) the structure gets more stress due to decreasing creep and
relaxation of the ground (cf. Fig. 13.2.3e, f). With soft horizontal upper layers
(c) the pressures at the wall are reduced as long this yields, and return to the
far-field values after fixing the wall. Lower long-term structural forces could
be achieved with yielding anchors, but then the system goes on to creep.
It stabilizes again if no limit equilibrium needs more than ϕc. Otherwise it
collapses sooner or later, all the more if structural parts are not ductile. Design
scenarios for such cases could be generated with hyp or hyp-δ, v-hyp or v-hyp-δ
and relations for structural elements and their interfaces with soil (Sect. 10.3).

As with other structures (Sects. 13.4 and 13.5) design scenarios for strutted
or back-tied retaining walls should imply attractors in the large. Only thus
partially unknown fluctuations and imperfections can be mastered without
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a) b)

c)

Fig. 13.6.12. Design scenarios with anchored walls in partly viscous ground: fis-
sured clay (a), creeping slope (b), layered ground (c)

ignoring the historical element. With contractant attractors brittle and duc-
tile structures would hardly impede numerical simulations. Contractant state
limits in the large are required for stability, otherwise critical phenomena of
structure and ground would occur (Sect. 16.3). Attractors for cumulative ef-
fects with several reversals will be treated in Sect. 13.8.

To sum up, simulations with hyp and v-hyp can supersede usual design
estimates for strutted and back-tied retaining structures. This is validated
for granular soils by a number of field tests and monitoring protocols. Less
validations exist as yet with peloids, but more evidence could be achieved by
back-analysing good reports. Fortunately such systems may often be consid-
ered as plane-parallel although at least their initial evolution cannot have this
symmetry. Overall stability is achieved with contractant attractors, then de-
formations can also be sufficiently bounded. Creep, relaxation and pore water
diffusion can and should be taken into account. Critical phenomena, as e.g.
progressive rupture of tendons or struts, can and should be avoided.

13.7 Cavities and underground structures

Cavities in the ground can be supported or expanded by fluids or struc-
tures. Alongside with their evolution changes of shape and state in the sur-
roundings can lead to intolerable deformations and collapse. More essentials
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than with radial symmetry (Sect. 11.7) can be captured with one cross sec-
tion, several extensions with less symmetry are straightforward (Sect. 15.2).
Plane-parallelity can be achieved in model tests, but hardly in situ, there-
fore the range of validity of calculation models is not as wide as for retaining
walls.
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Fig. 13.7.1. Simplest models for active (a) and passive trap door problems (b)
with psammoid

Psammoid layers above cavities have often been considered by means of
trap doors, Fig. 13.7.1. A strip representing a cavity with breadth b underneath
can be shifted down (a, active) or up (b, passive) relative to a fixed base.
Vertical shear bands may occur above the rims, therein the ratio K = σh/σv

of horizontal and vertical stresses may be constant. Assuming in addition a
uniform distribution of σh in every depth z and a constant ratio of shear
and normal stress τ/σh = tan ϕ the condition for vertical equilibrium can be
written

dσ

dz
= γ ∓ 2

b
σvK tan ϕ (13.7.1)

with + for the active and − for the passive case. This was proposed by Janssen
(1895) to calculate pressures in silos.

Integration of (13.7.1) with σv = po for z = 0 leads to the cavity pressure
pi for z = d, viz.

pi = γ/M + (po − γ/λ)exp(−Mz) (13.7.2)

with M = ±2K tan ϕ/b, therein + for the active and − for the passive case.
Investigations by Vardoulakis et al. (1981) show that the reality is more

complicated, Fig. 13.7.2. In an active case two curved shear bands start from
the edges and converge (a), then two nearly vertical bands arise (b). In a pas-
sive case two diverging curved bands (c) are followed by two steeper diverging
ones (d). These evolutions cannot be captured with constant stress ratios K
and tanϕ and uniform horizontal stress distributions as with (13.7.1). ϕ may
be close to the critical friction angle ϕcs, but K varies within so wide bounds
that such statical assumptions cannot be defended. The vertical shear bands
assumed with Fig. 13.7.1 may at best substitute a second stage which is not
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a) b)

c) d)

Fig. 13.7.2. Trap door experiments with sand (Vardoulakis et al. 1981): active after
small (a) and large displacement (b); same passive (c, d)

influenced by previous converging or diverging bands. This historical element
is ignored with (13.7.1).

The assumptions outlined with Fig. 13.7.1 are misleading for deeper trap
doors, say d > 3b, whereas model test results were captured by hyp with polar
terms (p-hyp, Sect. 8.2), Fig. 13.7.3. In an active case a dilated arc observed by
X-rays (a, Graf 1984) is reproduced alongside with hardly observable further
dilating bands (b, Nübel 2002). In a passive case (same authors) two diverging
bands were reproduced (d) including a loss of symmetry.

Tejchman (1997) studied active cases with fixed vertical walls above a trap
door by means of model tests and p-hyp, Fig. 13.7.4. With rough walls and
loose sand an almost rigid block slides between shear bands (a), whereas a
dense skeleton is deformed with sliding (b). For loose sand observed and cal-
culated bottom pressures do not change substantially with bottom displace-
ments. For dense sand the average pressure at the trap door is reduced with
its displacement and rises afterwards. The agreement of observed (c) and cal-
culated (d) average bottom pressures is good and shows how inadequate the
assumptions presented with Fig. 13.7.1 are. Tejchman (1997) demonstrates
that polar terms may be neglected for widths b > 102 dg with grain size dg

even if shear bands (c) thicker than ca. 10 dg are obtained.
Mélix (1987) carried out model tests with tunnels in humid sand,

Fig. 13.7.5a, c. Sand was placed in a box with almost critical void ratio and a
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a) b)

dense       Id       loose

c) d)

30cm

40cm

Fig. 13.7.3. Deep trap doors under sand: observed (a, Graf 1984) and simulated
shear bands in an active case (b, Nübel 2002), same for a passive case (c, d)

capillary skeleton pressure (Sect. 6.2) pcs ≈ 1 kPa. After excavation from the
side and inserting a rubber hose with a smaller tube inside the tunnel roof
collapsed by decreasing the air pressure in the hose, or by increasing the pres-
sure in a cushion on the surface. The falling sand was retained by the tube,
got a higher pcs by wetting and was cut vertically. Dark markers indicate a
succession of shear localizations as in Fig. 13.7.3a and b up to a collapse if
the overburden does not exceed twice the tunnel diameter (a). With sliding
bodies (b) Mélix (1987) obtained the statical estimate

pi = po + γh − 2cch/d (13.7.3)
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a) b)

c) d)

Fig. 13.7.4. Trap door experiments with rough walls (Tejchman 1997): displaced
markers in loose (a) and dense sand (b), observed (c) and simulated (d) bottom
pressure versus displacement (wall smooth 1, rough 2, very rough 3)

for a collapse, therein cc denotes the capillary cohesion, cc = pce tan ϕ. Other
than by Fig. 13.7.1 stress ratios do not enter, and this approach has little in
common with block a sliding as by Fig. 12.1.4.

With more overburden than h = 2d only a minor part of the soil collapses
into the tunnel, whereas the ground surface settles smoothly, Fig. 13.7.5c.
This cannot be captured by sliding bodies, but statical assumptions (d) by
Kolymbas (1982) lead again to the supporting pressure by (13.7.3). This es-
timate may be used for design, but it is neither necessary nor sufficient for
stability or collapse, respectively. The bound theorems of perfect plasticity
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b)a)

c) d)

Fig. 13.7.5. Model tests (a, c) and sliding mechanism (b) for tunnels in cohesive
sand (Mélix 1987), statical approach (d) by Kolymbas (1982)

(Koiter 1958) are invalid with dry friction. The validation by model tests is
debatable as only one sand with a certain void ratio and capillary cohesion
was used. Other stabilizations and sequences of excavation than in the model
tests are employed for tunnels in granular ground, let alone three-dimensional
effects.

Design scenarios could be generated with finite elements, elp or hyp and
pore water, Fig. 13.7.6. A flexible shell (a) may be placed (2) on stiff ground
(1) and filled laterally (3) and above (4) so that a dead load can be placed
anywhere above (5). Leaving aside the initial support for the shell, the state
after filling is obtained by imposing gravity with specified relative void ratio
re and capillary skeleton pressure pcs (cf. Sects. 12.1 and 13.4). Asymmetric
filling has to be excluded as then the shell could not stand, pcs can be secured
by hydraulic insulation. Placing an eccentric design load and assuming realistic
imperfections leads to deformations of shell and free surface which should not
exceed tolerance limits. Except for repeated loads (Sect. 13.8) a collapse could
thus be excluded, this is not possible with assumed earth pressures and a linear
subgrade.

A partly submerged polygonal tube (Fig. 13.7.6b) may be constructed by
placing slurry trench walls (1), a jet-grouted inverse arc (2), partial excavation
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Fig. 13.7.6. Design scenarios for tunnels in psammoid ground: shell with overburden
(a), walls with roof and invert (b), section-wise mining (c), mining with grouted or
frozen roof (d). Numbers denote the succession

(3) between removable upper walls (4) with struts (b), placing a concrete roof
with a ridge (6), excavating below (7) and filling above (8). Starting from
the free-field as in Sect. 13.6, this evolution of matter, shape and state could
be followed up with realistic imperfections, water tables and surface loads up
to acceptable deformations. Whereas the risk can hardly be quantified and
controlled with assumed earth pressures and linear subgrade reaction.

Without excavation on top (Fig. 13.7.6c) a tunnel may be constructed
near a building (1) in humid and thus cohesive granular ground by mining
one quarter (2), placing shotcrete (3) and a row of nails (4), mining (5) and
shotcreting (6) the next quarter and likewise the lower half (7). Then the inner
concrete ribs are removed, and a further shell is placed if decay of shotcrete
and/or access of water cannot be excluded. Variants of this sequence could be
simulated up to tolerance limits, now including the neighboured building and
a substitute anchor plate as in Sect. 13.6.

Tunnels can be constructed in groundwater near buildings by means of a
roof (Fig. 13.7.6d). After its placement (1) by freezing or grouting the water
table near the roof may be lowered (2) by air pressure, one half is excavated
(3) and concreted (4), then the other half (4, 5). Now the water table inside
can rise by lowering the air pressure, the frozen soil may thaw or the grout
may decay. All stages could be simulated with times for freezing or grouting,
curing and creep and thawing or decay. Combinations of the four examples in
Fig. 13.7.6 could also be captured, and other supports and sequences can be
taken into account.

Simulation results with expanders in psammoid ground are shown in
Fig. 13.7.7 (Schauppel 2004). Flexible hoses are placed in boreholes and ex-
panded by grouting with suitable intensity and sequence. In simulations with
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Fig. 13.7.7. Simulated response of initially dense sand to expansion of textile hoses
by grouting (Schauppel 2004): simultaneous expansion with big (a) and smaller
distance (b); successive expansion of first (c), second (d) and third hose (e). Brighter
means more dilated

hyp the expander is an elastic membrane with circular initial shape which
gets non-circular by increasing grout pressure. Simultaneous expansion of a
row with distance a = 4d leads to separate dilated shear bands and uplift
(a). This resembles Fig. 13.7.3c, but the shear bands are thicker due to the
element size. With a smaller distance crossing shear bands with dilation arise
between simultaneously grouted expanders (b), and the surface is lifted more
uniformly.

The ground is less uniformly deformed and more dilated if every third
hose is first expanded (Fig. 13.7.7c), then its over next neighbour (d) and
finally the one in between (e). These simulations are confirmed by model
tests with a centrifuge (Wichmann and Allersma 2004). Dense granular lay-
ers could thus be lifted optimally by simultaneous grouting into a row of
expanders with not too big distance. Otherwise the layer would be more di-
lated and less uniformly lifted. With higher initial relative void ratios re,
alongside with spatial fluctuation of re, the skeleton could be densified by al-
ternated grouting of expanders, but then this method would probably not be
economical.

Compensation grouting in granular ground can be carried out without ex-
panders by means of pastes, Fig. 13.7.8. The expansion of a cavity by increas-
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a)

b) c)

Fig. 13.7.8. Compensation grouting: (a) heave of a layer, (b) heave above tunnel,
(c) near a supported open ditch

ing fluid pressure (a) may substitute grouting via a flexible tube with packers.
A sufficiently thick paste pushes aside the skeleton (cf. Sect. 10.2) and does
not break out. The latter could also be modelled with hyp for the skeleton
and v-hyp for the paste, but suitable pastes can only be found by trial exper-
iments. A less permeable layer can be lifted by grouting underneath (a). The
grout can break out from the rims of a widened cavity (cf. Fig. 10.2.1). Other
than with a passive trap door the bottom pressure can lead to a collapse.

Excluding break-outs, far-field evolutions due to grouting could be cap-
tured with hyp or hyp-δ. For instance, scenarios for the compensation of set-
tlements due to tunneling could thus be generated (Fig. 13.7.8b). In a first
stage the skeleton near the tunnel can be re-densified by alternating injec-
tions, the further expansion can lead to a controlled heave. Settlement and
tilt of a building due to a neighboured excavation with a retaining structure
can also be compensated (c). The skeleton should first be densified by alter-
nating injections as otherwise the tilt would increase. Monitoring is needed
in such cases, but a sufficient control can hardly be achieved without realistic
scenarios.

As with structures upon and at granular ground simulations with hyp and
hyp-δ can be objective due to driven attractors in the large. State limits in
the large, including forced shear localization near cavities, should substitute
estimates with hardly defendable statical and kinematical assumptions. The
historical element is captured by averages of relative void ratio re and simpli-
fied construction stages. Due to unknown initial spatial fluctuations displace-
ments and structural forces get better determined with bigger deformations.
Pore water effects can be controlled if re > 1 with pw > pa and a loss of pcs by
pw > pa (Sect. 6.2) are avoided. Critical phenomena, as e.g. roof collapse or
break-out, can be avoided with small enough deformations. Asymptotic cycles
for repeated reversals will be treated in Sect. 13.8.
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Fig. 13.7.9. Active (a) and passive trap door under peloid (b), tunnel with sup-
porting pressure (c), back-tilting by under-excavation (d)

Turning to saturated peloids, the diffusion of pore water around cavities or
underground structures may first be left aside, Fig. 13.7.9. One may imagine
vertical shear bands above a trap door in the active (a) or passive case (b).
Using the cohesion cu without drainage a limit equilibrium would require the
pressure difference

pi − po = γd ∓ 2cud/b (13.7.4)

with − for the active and + for the passive case. Assuming a shear zone thick-
ness ds one can allow for the skeleton viscosity with the viscoplastic relation
(12.2.1) and the shearing rate D = vo/ds. With a low enough initial consol-
idation ratio, say pe/ps < ca. 4, the forced shear zones cannot get very thin
(Sect. 8.3), then ds ≈ 0.1b may suffice. With ductility and cu via a specified vo

(13.7.4) approximates an argotropic isochoric state limit, otherwise a collapse
could occur. Equation (13.7.4) may serve as a design estimate for shallow
cavities, i.e. d <ca. 2b.

Simple approaches as by (13.7.4) get insufficient for deeper cavities. In an
active case (Fig. 13.7.9c) a cylindrical excavation may first be supported by
gas pressure pi, then by a shell. Isochoric deformations during the excavation,
creep with constant pi and subsequent increase of forces in the shell by relax-
ation of the ground could be simulated with v-elp or v-hyp. This works also for
a row of boreholes which are excavated without support in order to re-erect a
tilted building (d). In these cases the ground can return to its previous state,
but not in case of a cavity with a lighter structure than the excavated soil.

The order of construction stages plays a smaller role than with psammoid
ground as its traces dwindle by creep and relaxation. The diffusion of pore
water renders possible a wider spectrum of evolutions, all the more with pore
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gas. A stiff fissured clay around a tunnel deforms without seepage during
and just after construction. Lumps can fall from an unsupported cavity roof
after a capillary entry, a hydrophilic supporting fluid can cause swelling and
collapse (cf. Sect. 12.4). The pore pressure around an impervious shell returns
to far-field values, the system stabilizes by contractant creep of the ground if
its relaxation does not destroy the shell. A tunnel with a pervious shell drains
the ground and enhances its contractant creep, with low initial consolidation
ratio pe/ps structures can thus be damaged gradually.

a) b)
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4

Fig. 13.7.10. Compensation grouting with soft peloid ground (a), tunnelling with
anchors (b, numbers for sequence)

Design scenarios could be generated for such cases by v-elp or v-hyp with
composite permeability (Sect. 9.2), a fraction of enclosed gas, capillary entry
pressure (cf. Sect. 6.3) and relations for the structure and its interfaces.This
works also with compensation grouting of partly soft ground, Fig. 13.7.10a.
Zones with gas bubbles are immediately densified, all the more by alternating
injections, in a sandwich ground a rapid diffusion of pore water enhances a
subsequent contractant creep. Anchors or nails placed during the construction
(b) could be captured as with retaining walls (Fig. 13.6.12). Auxiliary walls
or plates installed in the ground near a tunnel via slurry trenches, mixing
with cement-lime or jet grouting could also be taken into account, including
the curing and the visco-plastic behaviour of such structures. Monitoring and
stage-wise adaption are needed in such cases (Peck 1969), but conventional or
merely empirical prediction models will not suffice for uncommon situations.

Simulations with v-elp or v-hyp could again be objective due to attrac-
tors in the large. These are driven for construction stages as with psammoids,
but argotropic and nearly isochoric. For rest intervals during and after con-
struction endogeneous attractors occur due to thermal activation in skeleton
and pore water, and also in ductile structures. This should lead to a gradual
stabilization with tolerable dedormations, spatial fluctuations are less impor-
tant than for psammoids. Critical phenomena like roof collapse or break-out
could occur with delay and can be avoided by keeping deformations tolerable.
Asymptotic state cycles for reversals will be treated in Sect. 13.8.
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Fig. 13.7.11. Cavities in composite ground: roof (a) and inverted roof (b) against
groundwater, tunnel with roof grouting (c), compensation grouting under a dam
(d). Numbers for the succession

Extensions to composite ground are rather straightforward and may there-
fore only be indicated by a few examples, Fig. 13.7.11. The lower half of a
tunnel may lie in stiff peloid, the upper one in partly submerged dense psam-
moid with a building on top (a). A roof (1) is first installed by grouting or
freezing, the water table under it is lowered (2), the upper half is excavated
(3) and gets a provisional shell (4), the lower excavation follows (5), a final
shell is installed and the water can rise again. With peloid at the upper part
of a tunnel (b) an inverted roof and air pressure can shield the psammoid
part. Design scenarios for different construction sequences could be simulated
with elp and v-elp or hyp and v-hyp, and judged by means of deformation
tolerances.

A shield tunnel may be driven into submerged ground with soft layers and
neighboured buildings (Fig. 13.7.11c). In a plane-parallel simulation an elastic
ring is placed (1), its interior is excavated (2), simultaneously a slit above
(3) closes and is widened again by grouting. Excess pore pressures from this
operation disappear by diffusion, simultaneously the tunnel rises and is further
stressed while the surroundings settle, the rates decrease by densification. Such
scenarios can be on the safe side for rapid operations without seepage, and
get more realistic with plane-parallelity for long-term evolutions.

A bulge under a dam due to a soft layer may be compensated by filling
expanders with cement grout (Fig. 13.7.11d). Similarly as in Fig. 13.7.7 a
controlled heave can be achieved by simultaneous expansion with suitable
distances and grout masses. The soft layer is deformed without seepage during
this operation. Thereafter the dam settles with pore water diffusion due to
the added weight. This can be avoided by expanding boreholes with granular
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material and by removing pore water simultaneously (Maisch 2000). Simulated
variants, also with buildings on top and reacting grouted powders, could help
to develop technologies and to support their adaption with monitoring.

a) b)

Fig. 13.7.12. Tunnels in composite ground with slope: roof against groundwater
(a), creeping peloid (b)

The proposed method could similarly be applied to bigger parts of the
earth crust. Design scenarios could thus also be generated for tunnels in slopes,
Fig. 13.7.12. In case of psammoid with groundwater upon hard peloid (a)
one can proceed as outlined with Fig. 13.7.11a. The evolution of shape and
state has a downhill trend similarly as in the case of Fig. 13.6.12b. Again
back-ties could be incorporated, and usual estimates are inferior. In case of
stiff peloid upon dense psammoid on rock with groundwater (b) one could
proceed similarly as shown with Fig. 13.7.11b, c. Back-ties can be employed,
evolutions are skew as with Fig. 13.6.12. Again the diffusion of pore water may
be neglected during and just after construction. In the long run the desirable
stabilizing creep with increasing uphill thrust depends on whether the tunnel
drains the ground or not.

a) b)

c)

Fig. 13.7.13. Large-scale trap-door problems: (a) grouting, (b) diapir, (c) subsi-
dence
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A land subsidence due to the depletion of methane or petrol could be
compensated by grouting under a cap layer (Fig. 13.7.13a). A mud-like grout
is spread from boreholes, should not break out through shear zones at the rim
and hardens by filtration and reactions. Carbon dioxide could be sequestred
under a cap seal from a diapir (b). The lifted region is wider above as with a
lifted trap door (Fig. 13.7.2c), the fluid should not break through the dilated
shear zones. A graben arises above a sinking magma base and is filled by
sediments (c). Shear bands as above a lowered trap door (Fig. 13.7.2a) are
steeper than normal faults (Fig. 12.6.4). Along them methane could break out
and produce mud volcanos (cf. Sect. 16.3). Hypoplastic parameters should be
determined for the given range of pressures, stretching rates and temperatures.
Cavitation, seismicity and other critical phenomena delimit the predictability
(Sect. 16.3).

To sum up, evolutions with cavities and underground structures could be
captured with elp and v-elp or hyp and v-hyp, pore water coupling and rela-
tions for matter placed in the ground should be allowed for. Design scenarios
can be generated with attractors in the large, thus simplifications can be justi-
fied and delimited. State limits in the large can imply forced shear localizations
near the cavity or structure. With peloids stabilizations by densification and
pore water diffusion may be interpreted as endogeneous attractors. Collapse
and break-out can be avoided by keeping deformations small enough. Such
approaches could substitute usual design estimates and can be extended to
cases without plane-parallelity.

13.8 SSI with reversals

Plane-parallel evolutions of ground and structures at or in it can be markedly
changed by reversals. As with representative soil elements (RSEs, Chaps. 4
and 5) symmetric or non-symmetric asymptotic cycles with small or big am-
plitudes reveal main features. Such periodic attractors in the large are more
complex with uneven spatial distributions, structures, pore water and inertia.
Some of them are introduced in the sequel, and consequences for examples
of previous sections are indicated. The possible use of attractors is indicated
with hypoplastic relations, but is not restricted to them (Sects. 4.7 and 5.5).

Consider first dry psammoids with cyclic displacements, Fig. 13.8.1. A
rigid body upon (a) or deeper in (b) granular ground with constant far-field
relative void ratio re may run through quasi-static displacement cycles. After
a transition the ground response gets periodic. This state cycle field depends
on the shape (mode) and the size (amplitude) of the displacement cycles. It
does not depend on the far-field re for a shallow embedment (a), whereas for a
deep one (b) the average asymptotic skeleton pressure p̄s is bigger for a lower
far-field re.

Such attractors could be generated with finite elements by means of elp-α
or hyp-δ (Sect. 4.7), and can be represented by ensembles of RSE state cycles
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Fig. 13.8.1. Cyclically displaced strip embedded in psammoid (a), asymptotic hor-
izontal driving force versus displacement (b). Buried cyclically displaced strip (c),
asymptotic near-field relative void ratio versus driving force (d)

alongside with mode and amplitude. In less comprehensive representations
one can plot one component of the resultant force among rigid body and
psammoid versus one displacement component (c), or a spatial average of
re in the near-field (d). These plots are symmetric and reveal an increasing
hysteresis for bigger amplitudes (c), and double loops of average state paths
(d) as with RSEs (Sect. 4.5). Labels are needed for the far-field re in case
of a deep embedment. Plots with spatial averages could be obtained with
experiments and used for validation.

Plane-parallelity is obtained with in-plane and/or anti-plane displacement
and force components (cf. Sect. 12.5). There are four or five different RSE
stress components, respectively. Deformable structures with shallow or deep
embedment can likewise be displaced cyclically past psammoid ground. As
with rigid bodies one can specify displacement mode and amplitude of two
material points, but now the displacements of other points depend on the de-
formability of ground and structure. The latter can be elastic and/or plastic,
thus stiffness and strength are needed as additional parameters in representa-
tions. Fatigue and cracking of solids have to be excluded for getting asymptotic
cycles.

The response of dry psammoid ground to erratic sequences of displacement
cycles of embedded bodies can principally be captured by means of seismo-
hypoplasticity with a granular temperature Tg (s-hyp, Sect. 4.6). Presuming
maximal disorder, mode and amplitude are substituted by the input of ’seismic
heat’. In case of quasi-static pulsations their average frequency fc is so low
that the system returns to states of rest between the pulses. The attractor for
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an erratic energy input implies a zero time-averaged resultant force between
solid body and granular ground, this is due to seismic relaxation. The temporal
average near-field relative void ratio ren, which is attained by seismic creep up
to the asymptote, is lower in case of a lower input of seismic heat-like energy
per unit of solid surface and average contact pressure p̄s. In other words, the
pressure-normalized asymptotic skeleton density in the vicinity of the solid
body attains an average value which is lower for a higher energy input per
cycle.

Model tests could serve to quantify this heuristic approach. A rigid strip
with two horizontal degrees of freedom would suffice for the beginning. In-
plane and anti-plane shaking should imply the same average energy input per
unit of length normal to the cross section plane. This equipartition is necessary
for a temperature. It should first be attained by trial and error, then further
degrees of freedom could be taken into account. An increasing seismic input
could be recognized from an increasing asymptic ren in the near-field, which
could be determined by an averaging geophysical method. A smaller seismic
input would lead to a lower asymptotic ren.

Suitable Tg-fields and Tg-dependent parameters could first be adapted by
trial and error. This could be done with different skeletons of sufficiently
permanent grains (Sect. 7.4), shapes of rigid bodies and degrees of freedom.
Thus a seismo-hypoplastic approach could be strengthened beyond RSE-tests
before dealing with more complex cases. The Tg-field is principally deter-
mined from the balance of seismic energy. The seismodynamics without cu-
mulative displacements resembles the thermodynamics of equilibria, but there
are fundamental differences due to the non-conservative granular interactions
(Sect. 3.6).
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Fig. 13.8.2. Ratcheting of a strip embedded in psammoid (a), horizontal force
versus displacement (b). Ratcheting of a buried strip (c), mean relative void ratio
of convected near-field versus horizontal force (d)
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Ratcheting could also be considered with dry psammoid and horizontal far-
field values of surface, Fig. 13.8.2. A rigid strip may be shifted horizontally
past (a) or through the ground (b) with super-imposed cyclic displacements.
After a transition the response gets periodic and independent of the far-field
re for a shallow embedment (a), but otherwise (b). This could be calculated
with elp-α or hyp-δ and represented by an ensemble of convected RSE state
cycles plus displacement cycles. Typical ratcheting would appear in a plot of
resulting horizontal force Fh versus horizontal displacement (c), but further
components should be kept in mind. The attractor can also be represented
in an asymmetric state plot of Fh vs. ren in the instantaneous vicinity (d).
Such plots could be obtained by model tests and used for validation. As with
cyclic displacements different degrees of freedom (in- and anti-plane), shapes
and deformabilities of structures and granulates should be investigated.

Stationary seismic creep could similarly be achieved by a horizontal av-
erage displacement past or through psammoid ground with a horizontal far-
field surface. As without average shift the erratic part of displacement should
produce an equipartition of the seismic energy input by quasi-static pulsa-
tions. Experiments with different input intensities, far-field values of re and
p̄s, shapes and deformabilities of solids, degrees of freedom and granular ma-
terials could serve to improve the heuristic approach with s-hyp. Fh and the
average re of the convected vicinity are the main quantities to be captured.
Trial and error could again lead to a quantification of the granular tempera-
ture Tg and the Tg-dependence of s-hyp parameters. The stationary Tg-field
is again determined by the balance of seismic energy.

Similar attractors can be related with a quasi-static intermittent penetra-
tion, Fig. 13.8.3. In case of a vertical average shift of a rigid wall (a) the
vertical resultant force tends to an average F̄v which increases with depth z
independently of the initial embedment (b). The depth-dependent F̄v(z) is
determined by mode and amplitude of superimposed cycles. For a given far-
field re and z this force is smaller than without reversals as with them the
skeleton is more relaxed (cf. Sect. 14.3). Fv is bigger for a lower far-field re

and for bigger amplitudes. With a sufficient penetration depth and not too big
amplitudes the oscillating fraction of the Fv vs. z plot increases so little with

a) b)

z

Fν

z

0 Fν

Fig. 13.8.3. Wall penetrating with reversals into psammoid (a), vertical force versus
penetration depth (b)
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depth that one can identify quasi-attractors which depend on depth, mode,
amplitude and far-field re.

This approach could be extended to deformable solids, e.g. an elastic
rod, and to skew penetrations. Anti-plane components could be incorporated
as outlined with Fig. 13.8.1. Simulations could be validated and calibrated
by model tests with non-abrasive granulates (cf. Sect. 14.4). Erratic non-
monotonous displacement fractions could be captured with s-hyp. Model tests
and back-analyses of the same kind are recommended before treating the more
complex cases indicated in the sequel.

If forces are imposed to solid bodies at or in psammoid ground with con-
stant re in the far-field attractors could only be attained if the bodies are
suitably guided, Fig. 13.8.4. For instance, a rigid wall sinks under a dead load
by imposing in-plane and anti-plane horizontal cyclic displacements (a). With
constant mode and amplitude the number of cycles per unit of attained depth
dN/dz increases with depth z (b). An embedded plate is shifted sidewards by
a horizontal dead load and lateral cycles (c). If average vertical and anti-plane
deviations are prevented a stationary ratcheting can be attained. This implies
an asymptotic state cycle in the large for the convected near-field, whereas the
penetration implies quasi-attractors as with Fig. 13.8.3. A skew penetration
could be captured by a kind of interpolation.

b)
z

0 N

z

F0

a) c)

Fig. 13.8.4. Penetration of a cyclically displaced wall into psammoid (a), number
of cycles versus depth (b). Ratcheting of a pulled strip in psammoid (c)

A controlled average displacement of solid bodies past granular ground
can hardly be achieved without guide. For instance, an embedded strip with
horizontal and vertical dead loads rises or sinks gradually when it is shifted
by dead loads and load cycles. A slender embedded solid body tilts gradually
if it is not suitably shaped and pulled. Erratic cycles could again be captured
with s-hyp. The gradual displacement or seismic creep can be stationary (cf.
Fig. 13.8.2c), stabilizing (cf. Fig. 13.8.3) or instable if there is no guide.

Wave effects could be taken into account explicitly. In case of quasi-static
pulsations changes of shape and state are propagated by waves, but there are
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pauses so that the number of cycles counts, not their frequency. If embed-
ded solid bodies are shaken with higher frequencies fc the neighboured skele-
ton cannot rest. In the case of Fig. 13.8.4c a stationary excitation leads to
stationary ratcheting with state cycles of the instantaneous vicinity. Calcula-
tions with hyp-δ would be more expensive than with plane waves (Sect. 11.4),
and cumbersome as the equations tend to get ill-conditioned. Numerical prob-
lems should first be overcome for attractors as these represent essentials of sys-
tem behaviour and could be validated by experiments. Shaking without pauses
could also be taken into account (cf. Sect. 14.3). Quasi-attractors are attained
which change by increasing depth of penetration. Transitions to quasi-static
cases could be investigated by means of excitations with pulses and pauses.

Gradual displacements as in Fig. 13.8.4 can also be achieved with a shaking
base. A guided wall with a dead load sinks with decreasing rate if the far-field
is shaken as without the foreign body (cf. Sect. 12.4). A strip with a horizontal
dead load and the same far-field conditions tends to a kind of ratcheting. As
with directly excited bodies stable trajectories are only achieved with suitable
shapes, guides and tractions.

a) c)

b) d)

Fig. 13.8.5. Cyclically deformed elastic structures in psammoid: wall (a), embedded
strip (b) and buried strip with row of springs (c), strip with two rows of springs (d)

Various asymptotic cycles can be achieved with embedded elastic bodies,
Fig. 13.8.5. A flexible vertical wall fixed at a solid base may be shaken peri-
odically at its top, or at its base and the lateral far-field boundaries (a). In
the asymptote the wall is vertical and the grain skeleton’s re decreases with
depth in the average, details depend on the amplitude. A rigid strip with a
horizontal elastic string fixed outside moves laterally by shaking strip or base
until the string is relaxed (b). A rigid strip with a vertical string fixed at the
base sinks by shaking strip or base until the string is relaxed (c). A flat strip
on top of a granular layer, which is fixed to its solid base by two strings, tends
to stationary rocking by excitation of strip or base (d). Such attractors could
be generated numerically with hyp-δ and by model tests for validation.
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Evolutions as indicated by Figs. 13.8.4 and 13.8.5, but with erratic shaking,
could be captured with s-hyp. Instead of state cycle fields attractors in the
large are attained which may be called seismic state limits. The excitation is
represented by a field of granular temperature Tg, this determines state limits
including an entropic pressure pd (Sect. 4.6). The seismic creep stabilizes by
penetration and densification (Fig. 13.8.4b) or gets stationary (c). Seismic
creep and relaxation of the skeleton enhance a relaxation of externally fixed
elastic structures (Fig. 13.8.5). As with the cases of Figs. 13.8.1, 13.8.2, 13.8.3
and 13.8.4 a heuristic approach with s-hyp could be improved by model tests
and trial and error calculations.

Pore water could be taken into account as follows. The hydraulic height
hw of saturated skeletons is not affected by pulses and shaking if the skeleton
velocity vs does not exceed ca. 0.1kf by (6.2.12). Pauses between quasi-static
pulses suffice for a re-adaption of hw to the hydraulic boundary conditions.
Uplift and seepage forces are hardly influenced by pulses and shaking. During
the propagation of waves in the skeleton hw changes in general as vs can
exceed 0.1 kf . The pore water diffusion may be neglected for propagations
with

vs ≈ γacs > 102kf . (13.8.1)

Therein γa denotes shear amplitude and cs shear wave velocity. This estimate
follows from (6.2.11) with pcs ≈ γwd and vs ≈ γccs as with elastic waves for
simplification. It is confirmed by Osinov’s (2000) calculations (cf. Sect. 11.4).

For repeated wave propagations with vs >ca. kf attractors can be influ-
enced by excess pore pressures due to changes of void ratio. In case of re > 1
the skeleton decays at once so that propagations are only possible in the pore
water, the collapse of embedded solid bodies may be related with a strange
attractor. For lower void ratios symmetric state cycles as for the cases of
Figs. 13.8.1, 13.8.3, 13.8.4 and 13.8.5 are influenced by the ratio fcd/kf with
characteristic frequency fc and body size d. Pulsations of hw, or equivalently
of pore pressure pw, could thus be taken into account in simulations with hyp-δ
and in experiments for validation. The average hw is not influenced by pul-
sations of void ratio e as without cumulative changes of e there is no average
diffusion of pore water. This is also valid for erratic pulses and shaking.

Penetration and ratcheting can involve deviations from the average hw

in the vicinity of gradually shifted solid bodies (cf. Figs. 13.8.2, 13.8.3 and
13.8.4). The convected vicinity is contracted or dilated in the average, this
requires an average seepage into or from the far-field and reduces or lifts
the average skeleton pressure ps in the near-field. This hydraulic effect is
determined by the ratio v̄s/kf (average skeleton velocity v̄s) and the far-field
relative void ratio re in addition to fcd/kf . Quantifications could be achieved
again with hyp-δ, s-hyp and model tests.

Unsaturated skeletons could also be captured, though with less precision
as the pore gas tends to erratic spatial distributions (Sect. 6.2). Gas bubbles
between the grains reduce kf and enable changes of pw without diffusion,



13.8 SSI with reversals 633

otherwise one could proceed as with full saturation. With gas channels ps

increases by the capillary skeleton pressure pcs, otherwise one could work as
without pore water. The range in between is rather fuzzy, one should at least
catch the phase transition from gas channels to gas inclusions, i.e. from suction
to pw > pa. The suction depends on water content and asymptotic re, and can
pulsate in case of big amplitudes. Ratcheting and penetration are enhanced
by gas inclusions as pw increases with their pulsation.

Transient interactions of granular ground with structures at or in it may at
least be touched by means of some examples from previous sections. Inclined
free surfaces can thus be incorporated. Earth pressures and related wall dis-
placements with reversals diverge from those outlined in Sect. 13.1. If a rigid
wall is shifted past the ground (cf. Figs. 13.1.1–13.1.8) with quasi-static pulsa-
tions the shear localization is less marked than without them (Sect. 8.2), and
the average earth pressure is closer to the one at a resting wall. The latter is
attained in the average if the wall is shifted cyclically, then the neighboured
ground tends to a lower re with smaller amplitudes. Pore water effects come
into play as outlined above, capillary entry and cracking are less marked with
reversals than explained with Figs. 13.1.12, 13.1.12 and 13.1.13.

A wall with a given average force and a slowly pulsating force moves grad-
ually off or into the ground. This kind of seismic creep is more marked if
the average force is closer to the active or passive earth pressure Ea or Ep,
respectively. The gradual displacement increases with bigger amplitudes and
goes over into a collapse if the average force approaches Ea or Ep. Simulations
could be carried out with hyp-δ, with a big number of reversals estimates by
s-hyp could be more rewarding.

Inertial effects cannot be captured with sliding wedges as these are dis-
integrated by propagating waves. A few strong impacts could be taken into
account by means of hyp-δ, more simplified approaches are not defendable nor
needed. Seismic creep and relaxation could be better captured by means of
s-hyp in case of many small and rather erratic impacts. This would also work
with pore water.

The extension to shallow rigid strips (cf. Sect. 13.3) is straightforward.
Sliding wedges as in Figs. 13.3.1a, 13.3.2 and 13.3.6a get less realistic by
reversals with increasing amplitude. Transitions to the attractors outlined
with Figs. 13.8.2 and 13.8.3 are less indeterminate with reversals as with
them unknown initial spatial fluctuations are swept out more easily than by
monotonous punching. A toppling collapse as sketched in Fig. 13.3.6d is en-
hanced by reversals. Hydraulic and inertial effects could be taken into account
as outlined above for walls.

Rigid structures at psammoid ground (cf. Sect. 13.4) can float gradually
due to repeated reversals. Retaining walls as in Figs. 13.4.7, 13.4.8, 13.4.9
and 13.4.11 are shifted and tilted by repeated changes of groundwater table
or uphill surcharge. A trough as in Fig. 13.4.10 rises by repeated changes of
water table, its pressures at the ground get independent of hardly known initial
fluctuations. Few reversals including hydraulic effects could be captured with
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hyp-δ. s-hyp could be more rewarding for a big number, seismic activation
of creep and relaxation works similarly as thermal activation in the cases
indicated with Figs. 13.4.2, 13.4.3 and 13.4.5.

Reversals can lead to a plethora of mechanisms with deformable structures
at and in granular ground from the simple case of Fig. 13.8.5 to the examples
in Sects. 13.5, 13.6 and 13.7. Structures on top as in Figs. 13.3.3 and 13.3.4
experience a kind of creep and relaxation by repeated actions. This can be
better captured by hyp-δ or s-hyp than by merely empirical estimates. This
is also valid for retaining structures as in Figs. 13.5.8, 13.5.9, 13.5.10, and
13.6.10. Upper and lower pressures along underground structures are lower
and higher, respectively, than for monotonous evolutions as outlined with
Figs. 13.7.1, 13.7.2, 13.7.3 and 13.7.4. Cavities with pressure support can col-
lapse easier after reversals than outlined with Figs. 13.7.5 and 13.7.6, and
break out earlier than shown with Figs. 13.7.7 and 13.7.12. Cavities with sup-
porting structures which are lighter than the excavated ground rise gradually.
The complexity of such problems should not be underestimated, so much the
more attractors in the large can be of use.

Interactions of structures and peloid ground with reversals are additionally
influenced by thermally activated skeleton viscosity and pore water diffusion.
Due to the low permeability this diffusion can only occur in long enough
pauses. Without these the ground under or around a rigid structure as in
Fig. 13.8.1 tends to an argotropic symmetric state cycle in the large if the
structure is cyclically displaced. This could be simulated by v-hyp or v-hyp-δ
and observed in model tests. Erratic displacements without shift could prin-
cipally be captured by means of a seismic temperature Ts (Sect. 5.5). Asym-
metric argotropic state cycles could be obtained for ratcheting as shown with
Fig. 13.8.2. Similarly as in Fig. 13.8.4c seismically and thermally activated sta-
tionary creep could be captured by means of Ts. A gradual penetration leads to
argotropic quasi-attractors. Elastic structures embedded in undrained peloid
as in Fig. 13.8.5 get relaxed together with its vicinity by repeated reversals
or impacts. Model tests should be carried out for validation (cf. Sects. 14.3
and 15.5).

Reversals with diffusion of pore water would require vs <ca. 0.1 kf by
(6.2.12), this can often be excluded with the low permeability kf of peloids.
Excess pore pressures due to reversals disappear by diffusion in resting times
t ≥ td by (11.3.1). A small fraction of minute gas bubbles may be taken into
account by increasing the compressibility of the pore fluid. Capillary effects in
peloids (Sect. 6.3) are left aside as even with full saturation models for peloids
with several reversals are still in the make. It would be premature therefore
to discuss examples of previous sections with composite ground.

To sum up, interactions of structures and ground with several reversals
can principally be captured by attractors in the large. Metastable systems
can gradually attain a collapse with slumping, toppling, break-in or break-
out. Otherwise displacement cycles or ratcheting of embedded bodies lead to
symmetric or skew-symmetric state cycles, respectively, of the ground. These
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are argotropic and preferably isochoric for peloids. They could be simulated
with hyp-δ or v-hyp-δ and observed in model tests for validation. Inertial
effects with wave propagations could also be taken into account. Erratic pulses
or shaking could be captured by s-hyp, this requires model tests for matching.
Seismically activated creep and relaxation can principally be captured by
a kind of seismic temperature. Attractors could also be used to check and
quantify other than hypoplastic models.



14

AXI-SYMMETRIC EVOLUTIONS

Axi-symmetric evolutions can occur in the lab and in situ, they are important
for validation, design and technologies. Using again attractors in the large, this
chapter is less a report on successful applications than an outline of what could
further be done. Axial symmetry can arise with suitable initial and boundary
conditions and can get lost with bifurcations towards critical phenomena. Axi-
symmetric solutions will also serve as a support of interpolations for evolutions
with two symmetry planes (Sects. 15.1 and 15.2).

Samples in triaxial tests need not remain uniform, but can exhibit axial
symmetry (Sect. 14.1). A loss of uniformity can only be avoided with certain
initial and boundary conditions. The symmetry can get lost spontaneously by
diffuse and localized bifurcations. Simulations are recommended for improved
control and evaluation. Fill and excavation are instructive in the lab and
practically important in situ (Sect. 14.2). Ring structures from subsidence
and diapirs are also treated in Sect. 14.2.

Penetrations (Sect. 14.3) were successfully modelled with hypoplastic re-
lations. Such approaches are proposed for the evaluation of probing and the
control of driving in situ. Axi-symmetric evolutions can also occur if piles are
pushed down or pulled up (Sect. 14.4). Although the state after installation
is never fully known the proposed attractors could help to improve loading
tests and design models.

Silos are often axi-symmetric, and evolutions of their fill can be so. The out-
line in Sect. 14.5 starts with Janssen’s (1895) theory and ends with silo music
and quake. Such critical phenomena with inertial effects are still at best qual-
itatively understood, the proposed models are grossly simplified. Evolutions
with torsion are geotechnically more important, but except for one successful
model test Sect. 14.6 is rather an outlook. It may help to extend the range of
application, to get further validations and to improve technologies.

G. Gudehus, Physical Soil Mechanics, Advances in Geophysical and Environmental
Mechanics and Mathematics, DOI 10.1007/978-3-540-36354-5 14,
c© Springer-Verlag Berlin Heidelberg 2011
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14.1 Triaxial tests

Axial symmetry can be achieved in so-called triaxial tests if the sample and
its boundary conditions have this property. Without gravity the desired ho-
mogeneity of state can get lost by forced or spontaneous bulging or necking
and by drainage. Shear localization can also lead to a loss of axial symme-
try, whereas reversals can improve the uniformity. Simulations could help to
conceive and evaluate triaxial tests, and may also serve as exercises before
dealing with more complex problems.

Dry psammoid samples can initially have a fairly uniform void ratio e and
an isotropic pressure ps by pluviation and vacuum if they are confined by a
membrane and two plates. If these are rough (Fig. 14.1.1) the sample gets
bulged by axial shortening (a) and necked by stretching (b). This gradual
loss of uniformity cannot be reduced in the middle third by increasing the
slenderness h/d as thus a loss of uniformity by spontaneous bulging or necking
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Fig. 14.1.1. Evolution of dry psammoid samples with rough plates and membrane:
axial shortening (a) and lengthening (b), mean stress deviator versus axial shorten-
ing (c) and lengthening (d), same for mean void ratio (e, f)
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(diffuse bifurcation) is enhanced. With constant mean pressure ps the average
deviator σ̄1−σ̄2 attains a peak by shortening (c) in case of a low initial relative
void ratio re (A), but not otherwise (B). Stretching leads to a peak in both
cases (d). The average void ratio ē indicates less initial contraction and more
subsequent dilation by shortening (e) and stretching (f) for a low (A) than
for a higher initial re (B).

Even averages for the middle third should not be evaluated with mean
values because the sample cannot remain uniform as required for RSEs
(Sect. 2.2). In finite element simulations with elp or hyp the skeleton has
a pressure pg −pa at the elastic membrane, is fixed at one plate and deformed
via the opposite one. This leads to evolutions as shown in Fig. 14.1.1 and can
reveal more details than experiments. One could also work with spatial fluctu-
ations of stress (force-roughness, Sects. 4.3 and 8.2) and of re. Back-analyses
of this kind could clarify the range of validity if the experiments are good
enough. Shear localization and diffuse loss of axial symmetry cannot thus be
captured, however, both will be discussed further below.

A squat sample remains more uniform with smooth plates and central
fixing points. With membrane and grease at both plates the adjacent skeleton
can have nearly the same re as farther off, but it is looser along a smooth hard
plate. Even with perfect smoothness the sample gets bulged at the endplates
by shortening (e.g. Wu 1992) and necked by stretching. Other than at rough
plates the sample diameter is nowhere fixed. A loss of uniformity can occur
by a diffuse bifurcation, and can evolve gradually if the sample has spatial
fluctuations. Simulations with them and elp, elp-α, hyp or hyp-δ could lead
to similar evolutions of average stress and void ratio as shown in Fig. 14.1.1.
Results depend on the slenderness h/d, deviate from the ones with rough
plates and can serve for validation.

A loss of axial symmetry can occur without localization if slender samples
are shortened. A kind of buckling could also be obtained by simulations with
elp or hyp and initial fluctuations of e if axial symmetry is no more assumed.
Desrues et al. (1996) worked with dry sand and vacuum, samples with a
uniform grain size dg ≈ 0.3 mm had an initial relative void ratio re ≈ 0.2 or
0.8 and d = h = 0.1 m. Taking plates with membranes and lubrication, the
samples with reo ≈ 0.8 (loose) remained uniform after shortening, σ1 − σ3

and e attained a plateau which indicates a critical state. The density field was
monitored with X-rays. Samples with re ≈ 0.2 (dense) and rough plates were
bulged by shortening and exhibited dilation patterns. A horizontal section
near one plate (Fig. 14.1.2a) shows radial shear bands in an outer ring and a
dilated core. At mid-height (b) the radial bands are longer, and a wider core
is dilated more uniformly. The void ratios in the bands attain critical values,
the lower average ē evolves as in Fig. 14.1.1e(A).

Alshibli et al. (2000) made similar observations with X-ray computed to-
mography including vertical sections. Conical bands arose near the plates
(Fig. 14.1.2c), off the plates the dilation was small (d). Deman (1975) detected
similar cones with rough endplates by means of X-rays and lead shot markers,
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a) b)

c) d)

e) f)

Fig. 14.1.2. Shear band patterns of dry sand samples in triaxial tests : X-ray
cross sections (Desrues et al. 1996) near an endplate (a) and near the middle (b),
multiple sections (Alshibli et al. 2000) near the middle (c, d); deformed membranes
with marked bands (Deman 1975), sample slender (e) and squatter (f)
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and noticed shear bands at the membrane. With re ≈ 0.5 and h/d = 0.2/0.15
m initially (Fig. 14.1.2e) the pattern at the bulge was similar as with re ≈ 0.2
and h/d = 0.4/0.15 (f). How does this suit to the tomographic pictures?

It appears that two families of helical shear bands arise outside of less
deformed conical zones. In the course of shortening the axial symmetry goes
over into a 2π/n-symmetry with n ≈ 12 and 24. This successive pattern
formation could principally be captured with polar quantities (Sect. 8.2), thus
a strange attractor could be established. A loss of axial symmetry by the
dominance of a single shear band could likewise be investigated, and also a
collapse with an axial dead load. Bulging and necking with smooth endplates
were first described by Roscoe (1970), he concluded that an evaluation of
triaxial test results by assuming uniformity can be misleading.

a b

Fig. 14.1.3. Sample of dry corundum granulate with vacuum (courtesy H. Wien-
broer) beyond a peak (a), and after stretching with reversals (b)

Reversals can reduce and even compensate the loss of uniformity. Huber
and Wienbroer (2005) worked with a corundum granulate to avoid abrasion
and with h = d = 0.1 m, and teflon membranes at the plates to reduce bulging
and necking, Fig. 14.1.3. The radial pressure was kept constant at 50 kPa by
vacuum. After an increase of the axial force the sample bulged suddenly and
stabilized afterwards (a). A reduction of the axial force with small added
reversals removed the bulge almost completely (b). The associated plot of
σ1−σ2 vs. ε1 was used in Sect. 4.6 to introduce seismically activated creep. It
appears that this can sweep out emerging shear bands (Gudehus and Nübel
2004) and can re-shape bulged samples. Back-analyses with variants of elp-α
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and hyp-δ could clarify their range of validity, and could help to understand
asymptotic cycles in the large.

Water-saturated psammoid samples can exhibit a similar behavior as dry
ones if they are freely drained. The pore water pressure pw should be high
enough to avoid gas bubbles and cavitation (Sect. 6.2). Higher skeleton pres-
sures ps = p − pw than with vacuum are achieved with higher cell pressures
p. Gradients of pw get negligible by keeping the stretching rate vo/d below
the bound (6.2.12). Therein d is the sample size, this presumes drainage along
the sample surface. If the sample is drained by central filters in the plates
the threshold of vo is lower, and the simple estimate (6.2.12) can no more be
applied.

Without drainage the total volume of a saturated sample is constant, but
this does not exclude local seepage. Very loose samples (i.e. re > 1) can hardly
be controlled as they collapse with bulging or necking by skeleton decay. Loose
samples with h ≤ d and smooth plates can uniformly attain a lower than
critical stress obliquity (tan ψs < tan ϕc, Sect. 2.6). After this peak of tan ψs

the evolution goes on with bulging or necking. Such bifurcations could be
simulated with elp or hyp and e = const by means of density fluctuations in
order to reveal the range of validity.

Shear localization without overall drainage was not observed in triaxial
tests with sand as in biaxial ones (Sect. 8.2), but can likewise occur. With
contractant skeletons, say re ≥ ca. 0.8, shear bands are widened by pore
water diffusion and not marked therefore. Skeletons with lower re dilate in
bands which get narrower by taking up water from the vicinity. Patterns can
arise as shown in Fig. 14.1.2, and could principally be observed and simu-
lated by means of p-hyp (Sect. 8.2) with seepage. Evolutions with partial
drainage could likewise be simulated, but the experimental observation of
non-uniform pore pressures pw as desirable for validation is difficult. Rever-
sals would sweep out localizations, but they enhance diffuse bifurcations as
pw increases. Triaxial test results with saturation should not be evaluated by
simply assuming uniformity as for RSEs, this has to be justified in exceptional
cases.

Triaxial tests with psammoid samples get more complex by gas inclusions
(Sect. 6.2). Gas bubbles between the grains make the pore fluid compressible
so that the void ratio can change without seepage. Cavitation occurs if pw = 0
is attained. Humid skeletons with gas channels can be looser than critical, and
dense ones can get cracks. Gas pockets are irregular and exclude suction, i.e.
they have pg ≈ pw > pa. Evolutions with gas inclusions could principally be
observed in experiments and simulated with elp or hyp and relations for the
pore fluid, this could deepen the understanding.

Inevitable non-uniformities of peloid samples in triaxial tests were not
as often reported. Rendulic (1937) worked with saturated remoulded kaolin
samples with h/d = 8/5 cm initially, an axial sand drain of 0.8 cm diameter
and rough plates, Fig. 14.1.4. Keeping the radial pressure σ2 constant, he
changed the average axial stress σ̄2 slowly and waited in each step until the
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a) b)

Fig. 14.1.4. Clay samples after experiments (Rendulic 1937) with axial shortening
(a) and extension (b)

sample nearly attained a state of rest. With axial shortening the sample bulged
(a) so that σ̄1 could no more be increased. With axial stretching the sample
got a neck (b), σ̄1 − σ̄2 could no more be decreased and two families of shear
bands appeared at the membrane.

Hvorslev (1937) shortened cylindrical clay samples without a membrane
so that the skeleton was only kept by suction. Afterwards the sample was
dried and cut, Fig. 14.1.5. It had a bulge and exhibited one marked and
one less marked shear band. Slightly different bulges and shear bands were
observed with samples which had likewise been consolidated without lateral
strain, but with other orientations relative to the sample axis. Rendulic could
have produced similar shear bands with his tests, but they are not visible in
Fig. 14.1.4a.

Hicher and Wahyudi (1994) shortened samples of kaolin and bentonite
without or with drainage after isotropic normal consolidation (OCR=1) or
overconsolidation (OCR=10). Lubricated plates had the same diameter as
the sample so that this bulged with any h/d, but the shearing localized only
for h/d >ca. 0.6. Axial cuts after tests with drainage and h/d = 2 initially
exhibited shear bands with non-uniform water contents. With OCR=1 at
the onset the clay was denser in a shear band than outside, with OCR=10
it dilated in two bands. Bulging and localization were enhanced by squeez-
ing around the plates. X-ray tomographs were made after the test without
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Fig. 14.1.5. Moderately plastic clay samples with suction after unconfined short-
ening (Hvorslev 1937); previous uniaxial consolidation in the same direction (I),
differing by 45◦ (II) and by 90◦ (III)

subsequent seepage and cutting. With OCR=1 and closed drainage a local-
ized contraction could hardly be seen. This means nearly isochoric shearing
with increasing band thickness due to excess pore pressure and seepage into
the vicinity (Sect. 8.3). With OCR=10 and open drainage the dilation in
two bands was more marked. This is due to suction in the bands and seep-
age towards them so that they got narrower. They got wider with further
axial shortening, this can be attributed to punching by the plates. Optical
microscopy of cuts revealed narrower bands for OCR=10 than for OCR=1.

Rübel (2010) carried out experiments with axial shortening of paraf-
fin samples between smooth plates with different rates D (Fig. 8.1.6). For
D < 10 s−1 the sample remained uniform, its response was viscoplastic and
ductile as introduced with Fig. 3.1.1a. For D ≈ 10 s−1 two families of shear
bands arose, the resistance was bigger and slightly brittle. For D ≈ 10 s−1

the sample was split axially and more brittle. Paraffin is a kind of peloid with
polymer particles and oil as pore fluid so that the viscosity is more pronounced
and the seepage is slower than with clays. For low enough constant D an ar-
gotropic critical state could be attained with the same rate of aggregation
and disaggregation. For higher D the then harder particles cause a dilation of
the skeleton, but this is confined by the low permeability (Sect. 8.3). For very
high D the elevated suction leads to cavitation (Sect. 8.4).

Rübel (2010) worked also with clay minerals and water. Bentonite with
water was consolidated uni-axially under 12MPa, cut to d = h =8 cm, decom-
pressed to 8 MPa and axially shortened via smooth plates without drainage
with σ2 =8 MPa and D = s−1 (Fig. 14.1.6). The sample remained apparently
cylindrical up to a slight peak of σ1 −σ2 vs. ε1. The dismantled sample could
be decomposed by hand and revealed a pattern of shear bands (a). One half
of a radial pattern appeared at the exposed top (b). Such patterns are typ-
ical for stiff fissured clays, these can thus be reconstituted. Capillary entry
and cracks occurred after decompression as shear bands and swelling reduced
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a) b)

Fig. 14.1.6. Dismantled bentonite sample (Rübel 2010) with shear bands after
a triaxial test (a), same from above (b)

the capillary entry pressure (Sect. 6.3). Thus the sample was no more kept
together by suction as after the decompression.

In further tests Rübel (2010) consolidated bentonite samples by compress-
ing a slightly humid powder with 150 MPa. Full saturation was attained, this
can be concluded from the final stiffness which would be lower with enclosed
gas. The decompressed sample (Fig. 14.1.7a) had a suction −pw ≈ 50 MPa,
this is at equilibrium with vapor by (6.1.5) for a relative humidity ψw ≈ 0.5.
A capillary entry would not occur by (6.1.1) with a gap size d ≈ 2 nm, this is

a) b)

Fig. 14.1.7. Extremely precompressed bentonite sample (Rübel 2010) after decom-
pression (a) and split by axial shortening (b)
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about the thickness of layer silicates. To my knowledge a higher suction was
nowhere reported. Uniaxial shortening afterwards with D ≈ 10−5 s−1 led to a
marked peak of σ1 vs. ε1 and to axial splitting (b). This cavitation occurred
as the extreme suction got impossible in widening pores.

Before turning to back-analyses a physical interpretation of the findings
presented with Figs. 14.1.4, 14.1.5, 14.1.6 and 14.1.7 may be added. Composi-
tion and state of saturated peloid samples may be uniform at the onset. With-
out seepage the uniformity gets evidently lost by axial shortening or stretching
if the plates are not smooth or not big enough. Otherwise bulging or necking
occurs with big enough slenderness h/d and relative deviator |σ1 − σ2| /peo

(initial equivalent pressure peo). During such diffuse bifurcations spatial fluc-
tuations of state grow spontaneously if h/d and |σ1 − σ2| /peo are critical,
Fig. 14.1.8. A uniformly continued evolution gets metastable, i.e. bulging (a)
or necking (b) releases more rapidly kinetic energy than a uniform continu-
ation. This implies a peak in the plot of σ1 − σ2 vs. h − ho (c) wherein ho

denotes the initial height, σ2 the confining pressure and σ̄1 = 4F1/πd2
o the

nominal axial pressure.
Still with closed drainage, smooth plates and central fixing points, the ra-

dial symmetry can get lost if such continuations with constant shortening or
stretching rate ḣ/h release more rapidly kinetic energy, Fig. 14.1.9. A slen-

h0–ha) b)d0

F1

h

d0

F1

h0

c)

σ1−σ2

Fig. 14.1.8. Diffuse bifurcation of peloid samples with extension (a) and shortening
(b), apparent stress-strain curves (c)

a) b) c) d)

Fig. 14.1.9. Bifurcation of peloid samples with buckling (a), skew necking (b) and
shear bands (c, d)
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der sample can buckle by shortening (a), stretching can lead to asymmetric
necking at any height (b, cf. Fig. 14.1.4b). Shortening with h ≈ d can lead
to two crossing plane shear bands (c). A single band occurs if the sample is
squeezed over the rim of a too small plate. Stretching with h ≈ 2d could lead
to two pairs of crossing shear bands (d). Such shear localizations require a
low enough consolidation ratio pe/ps so that the skeleton pressure is reduced
by isochoric shearing (Sect. 8.3). Bands can arise alongside with bulging or
necking and are enhanced by rough or small plates.

The spectrum of bifurcations is wider with seepage. Without drainage pore
water can be redistributed in the sample, in particular during a shear local-
ization (Sect. 8.3), so that the time for pore water diffusion plays a role in
addition to the argotropy of the skeleton. With a low initial consolidation
ratio, say pe/ps <ca. 4, the pore water pressure pw increases in a shear zone
so that this releases water and gets wider. Otherwise, say for pe > ps >ca. 6,
pw decreases in a shear band so that this takes up water and gets narrower.
The threshold pe/ps ≈ 5 is not precise, therefore it may also hold with the
overconsolidation ratio OCR although this is not the same as pe/ps (Sect.
3.2). Shear bands cannot get arbitrarily thin due to polar effects, and tend
to fractal patterns in case of suitable boundary conditions. This is visible in
Fig. 14.1.4b where ps was reduced by stretching, and in Fig. 14.1.6b as pe/ps

was big enough after decompression.
Evolutions as shown by Figs. 14.1.4–14.1.9 can principally be simulated,

but there are numerical and physical limitations. Higo (2003) investigated
prismatic samples of saturated clay for axial shortening via rough plates. He
obtained similar bulging and shear banding in experiments and simulations,
e.g. Fig. 14.1.10. A visco-elastoplastic relation was used for the skeleton and

Fig. 14.1.10. Shear localizations in cuboidal peloid samples with σ2 = σ3 (Higo
2003): test results (left) and simulation (right)
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extended by gradient terms for shear localization. Seepage in the skeleton and
drainage at the boundary were taken into account. This could also be done
with initially cylindrical samples and with smooth plates which are wider than
the initial sample.

Such simulations could as well be carried out with v-hyp as it implies
similar state limits as v-elp (Sect. 3.9). Feasible mesh sizes suffice to capture
bulging, squeezing, necking and shear banding as long as the initial consoli-
dation ratio pe/ps is low enough to enhance a spreading of pore water. Other-
wise polar terms are principally more suitable than gradient terms to capture
narrow shear bands (Sect. 8.3). This would require re-meshing in a fractal
succession. As cavitation and capillary entry can also play a role one is far
from reproducing patterns as in Figs. 14.1.4b or 14.1.6a.

Reversals have rarely been investigated with clay samples in triaxial tests,
let alone a forced or spontaneous loss of uniformity. They could suppress dif-
fuse and localized bifurcations as with psammoids. Kuntsche (1982) reports
on triaxial tests with normally consolidated samples which were shortened
and stretched via smooth plates. Isochoric strain reversals reduced the pore
pressure (cf. Sect. 5.2) which was measured with a needle placed at the axis
up to the centre. The maximal deviator |σ1 − σ2| attained by subsequent
monotonous shortening or stretching is somewhat smaller than without rever-
sals. This could not be captured with a single ϕc and pe as for cuboidal tests
(Sect. 2.5), it may be attributed to non-uniformities near the needle which
could be taken into account as for penetration (Sect. 14.3).

Triaxial tests with gas inclusions in clay samples have hardly been con-
sidered with respect to non-uniformities. Minute gas bubbles between solid
particles may be captured by an elevated compressibility of the pore fluid
(Sect. 6.3) as long as they are not dissolved by a sufficient pw. Gas chan-
nels may principally be taken into account by means of composites with suc-
tion, but this could as yet not even be quantified with assumed uniformity
(Sects. 7.3 and 9.1). Gas pockets and gas-filled cracks are beyond the present
reach. Net attraction (Sect. 6.3) and cementation (Sect. 7.3) are not considered
here.

To sum up, the forced or spontaneous loss of uniformity and axial symme-
try observed in triaxial tests could principally be simulated with numerical
models in order to check them. Rough plates restrict deformations in con-
ical zones and enhance bulging or necking. Smooth plates with fixing cen-
tral points, and sufficient size to avoid punching, cannot prevent spontaneous
bulging, necking, buckling and shear localization. Such bifurcations are en-
hanced and could be simulated by means of spatial fluctuations. Helical pat-
terns of narrow shear bands in denser than critical sand samples could be
captured by constitutive relations with polar or gradient terms. Such patterns
arise also in clay samples with a sufficient consolidation ratio, but observation
and simulation are more difficult as the bands are thin. Without localizations
skeleton viscosity and seepage may be captured numerically. Reversals can
reduce a spontaneous loss of homogeneity.
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14.2 Fills, excavations and ring structures

Axially symmetric evolutions with fills and excavations differ from plane-
parallel ones (Sects. 12.1, 12.2, 12.3 and 12.4) by hoop effects: outward dis-
placements are enhanced and inward ones are confined by circumferential
pressures. Interactions with structures are different therefore from the ones
outlined in Chap. 13. Ring structures and diapirs in the lithosphere can be
nearly axi-symmetric. Axial symmetry occurs at best approximately in the
lab and in situ and can get lost spontaneously. Therefore the following out-
line is kept short, all the more as only a few cases have been investigated in
detail.

Dry psammoids favour the formation of conical heaps or holes, Fig. 14.2.1.
A sandpile can be placed upon a rough rigid base (a) with low or high relative
void ratio re by slow or fast precipitation. Filling by slow granular flow from a
central tube leads to critical states with re = 1 and a critical stress obliquity
along the free surface. As there the hoop effect is negligible against gravity,
i.e. |TΘ|/r � γ, the principal stresses TI and TII in the cross section and their
directions are given by the slope angle β = ϕc (b, cf. Fig. 11.5.2). TΘ = TII

may be assumed as for cylindrical shortening (Sect. 2.2), this was proposed
by Haar and von Kárman (1909). Thus ϕc can be determined (Sect. 2.11).

Assuming limit stress obliquities and TΘ = TIII everywhere stress fields
can be calculated (Cox et al. 1961). These are as arbitrary as Rankine fields
(Sect. 11.3), in particular critical obliquities cannot arise uniformly. Near the
axis the relative deviator tanψs (Sect. 2.11) is lower than critical and can even
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b) c)

Fig. 14.2.1. Psammoid heap (a), stress circle near its surface (b), conical hole in
psammoid (c)
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disappear. Near the surface tanψs could be overcritical for a short while with
re < 1, then the heap is collapsible and avalanches occur in a rather chaotic
fashion. This was observed by adding grains to a pile upon a scales (Bak
et al. 1987) and triggered a euphoria with ‘self-organized criticality’. Avoiding
such critical phenomena (Sect. 16.3) by means of subcritical slopes, axially
symmetric evolutions of heaps could be simulated with elp or hyp (cf. Sect.
12.1). Model experiments with focus on re could be carried out for validation,
low pressures ps have to be taken into account in back-analyses.

Starting with a horizontal free surface, an excavation can lead to a conical
heap or hole. In the second case (Fig. 14.2.1c) radial symmetry can be achieved
with a suction tube. The hoop effect is again negligible near the free conical
surface. Assuming TΘ = TI for inwards displacements as Haar and v. Kárman
(1909) one can calculate limit stress fields (Cox et al. 1961), these are less
realistic farther off the cone because of lower stress obliquities. The critical
friction angle equals the attainable slope of a loose skeleton, ϕc = β for re = 1.
This corresponds to cylindrical stretching, and the same observed slopes as
with heaps confirm that ϕc is the same as for shortening (Sect. 2.2). Critical
phenomena occur again with β > ϕc, otherwise evolutions could be simulated
with elp or hyp and observed in validation experiments.

With pore water the preference for conical heaps and holes gets lost in
general, Fig. 14.2.2. Only with full saturation and resting water, i.e. constant

z
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z
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r

vs h
z

r
-Tθ
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c) d) e)

vw

vw

Fig. 14.2.2. Psammoid heap (a) and hole (b) with inward seepage, hole in dense
submerged psammoid (c), column of (d) and hole in humid psammoid (e)



14.2 Fills, excavations and ring structures 651

hydraulic height hw, evolutions are the same as without water except for the
reduction of the body force by hydrostatic uplift. A steeper axi-symmetric
heap can be achieved by an inwards seepage (a). It grows from a uniform
precipitation the intensity of which determines re by means of a lower hw

at a bottom filter. An opposite seepage would flatten the heap and lead to
erosion. A hole can be excavated steeper and deeper with downwards and
inwards seepage towards a bottom filter (b). Such evolutions could be simu-
lated with elp or hyp. The skeleton would collapse and decay with an opposite
seepage.

Without or with an initial hydraulic gradient hw gets instationary if the
grain skeleton is deformed in shorter times than needed for the diffusion of
pore water (cf. Sect. 11.1). Seepage may be neglected for skeleton velocities
vs beyond the bound (6.2.11). Heaps and holes with loose skeletons slump
and can hardly be controlled. Resting dense skeletons are stabilized by their
tendency to dilate, this favours model tests and their back-analysis for valida-
tion. Thus a steep hole can stand just after its rapid excavation (Fig. 14.2.2c),
but it collapses gradually when hw returns to a constant value. Such cases
may be simulated with elp or hyp and coupling with seepage. This is no
more justified if the axial symmetry gets lost by bulging, shear localization or
decay.

Gas inclusions can be taken into account by assuming a compressible pore
fluid if the skeleton contains bubbles between the grains (Sect. 6.2). With
bigger bubbles or gas pockets axial symmetry can hardly be attained. With
gas channels connected to the atmosphere slopes can be steeper due to the
capillary skeleton pressure pcs. A cylinder (Fig. 14.2.2d) can thus stand up to
a height of roughly (cf. Sect. 12.4)

hc ≈ pcs

γ

2 sin ϕc

1 − sin ϕc
. (14.2.1)

This necessary condition is obtained from the critical stress condition (2.2.15)
for σ1 > σ2 = σ3 with ps = (σs1 + 2σs2)/3 = pcs. It does not suffice for looser
than critical skeletons and for so slender cylinders that these can buckle. Sand
castles can thus stand as long as pcs does not get lost by wetting, drying or
cracking.

A cylindrical hole can stand in humid psammoid deeper than by (14.2.1)
due to the hoop stress, Fig. 14.2.2e. Limit stress fields (Cox et al. 1961) have
little relevance for stability as skeleton stress obliquities off the hole can hardly
be guessed. Simulations with elp or hyp could be more rewarding with pcs if
this can be controlled in situ and in validation model tests. The most im-
portant parameters are re, ϕc and a grain size dg that characterizes capillary
bridges (Fig. 6.2.2). Such calculations get invalid by cracking of the skeleton
or by closing of gas channels, such critical phenomena lead to a loss of axial
symmetry.

The spectrum of shapes and states of psammoids is wider with supporting
shells. (Storage bins will be treated in Sect. 14.5, holes with casing are shown
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Fig. 14.2.3. Supported holes in psammoid ground: casing without (a) and with
seepage (b), concrete mud before (c) and during removal of casing (d), concrete
tube with clay smear (e), cylindrical concrete wall after excavation (f), cylindrical
trench wall (g), shotcrete and nails around conical hole (h). Numbers for sequence

in Fig. 14.2.3.). A steel tube may first be lowered by dead load and axial
shocks, vibrations (Sect. 14.3) and cyclic torsion (Sect. 14.6). The skeleton
under and around the tube is densified by its placement, but the far-field
stress is hardly changed. The skeleton inside the tube after partial excavation
(a) is less densified near its free surface and is stressed (this may be considered
as inverted silo problem, Sect. 14.5). After a deeper excavation than the casing
the skeleton remains nearly in place with an outwards seepage due to a higher
hw inside than outside (b). Otherwise the skeleton would be dilated during
the excavation and could be eroded by inward seepage.

After reaching a desired depth the hole can be filled with granular material
or fresh concrete (c). Both can be densified and supplemented while the tube
is pulled out with axial or torsional vibrations or shocks (d). This leads to a
granular column in compacted ground or to a pile after curing. The tube can
consist of sections, the lowest one can have a conical edge and an offset for
grouting a smear (e, more on suspensions further below). Humid psammoid
ground can be supported by a shell which is placed after the gradual excava-
tion of a shaft (f, numbers for sequence). A wider shaft can be stabilized by a
slurry trench wall (g) or by shortcrete and nails (g).

Such cases could be captured by simulations with elp or hyp and re-
lations for supporting structures. Design estimates could thus be obtained,
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these would be more realistic than usual statical assumptions. As with plane-
parallelity (Chap. 13) attractors in the large play a key role for defining initial
states and simplifying conditions at changing boundaries, and for quantify-
ing failure scenarios. The assumed axial symmetry could be justified by state
limits in the large, this requires three-dimensional simulations (Sects. 10.4
and 15.5) and observations. A collapse can cause a spontaneous loss of axial
symmetry, e.g. ovalization of casing or uneven bottom heave.

a) b) c) d)

vw

vS

Fig. 14.2.4. State cycle fields can arise in psammoid by axial cycling (a) and
pulsating diameters of a wall (b), or by pulsating water table with (c) and without
casing (d)

Reversals in psammoid ground could principally be simulated with elp-α,
hyp-δ or s-hyp (cf. Sects. 12.5 and 13.8). Asymptotically cyclic state fields
are advantageous for validation model tests, but only few of them could be
realized with axial symmetry, Fig. 14.2.4. A supporting tube could be shifted
axially in cycles (a) until the ground response gets periodic. This could also
be attained with a ‘breathing’ cylindrical wall (b) and would be enhanced
by means of shaking (Sects. 4.7 and 13.8). More variants could be achieved
with torsion (Sect. 14.6). Cycling hydraulic heights at boundaries could lead to
asymptotic state cycles if the system can stabilize itself. This could be achieved
with an excavation and a supporting shell (c), but hardly without it (d). In
the latter case the skeleton flows gradually and can accelerate by dilation, let
alone erosion. Penetration with reversals implies near-attractors (Sect. 14.3).
Erratic shaking of the base flattens a heap or a hole. Such experiments could
help to quantify the seismically activated creep (Sect. 4.6).

Unsupported heaps and holes with peloids evolve spontaneously due to
thermally activated skeleton rearrangements and seepage, Fig. 14.2.5. A col-
umn with an initial cohesion cur (Sect. 3.2) can be placed upon a smooth hard
base (a) with a height up to

hc = 2
cur

γ

(
D

Dr

)Iv

(14.2.2)

if it is not so slender that it buckles. This implies spreading near the base
by isochoric creep with a stationary stretching rate D as long as seepage
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Fig. 14.2.5. Creep of a standing peloid cylinder (a) and around a vertical hole in
peloid (b)

is negligible. Assuming uniform stretching near the base for simplicity the
inversion of (14.2.2) leads to the downward creep velocity

vo ≈ doDr

(
γh

2cur

)1/Iv

(14.2.3)

of the cylinder with initial diameter do. As outlined in Sect. 12.2 this vo

decreases by shrinkage at the air and increases by swelling under water, and
γ has to be replaced by γ − γw for uplift. Further quantifications could be
obtained with v-elp or v-hyp and coupling with seepage, also with other than
cylindrical shapes. State limits in the large are argotropic via skeleton and
pore water, they can be validated by model tests. Cracking after capillary
entry or buckling after swelling mean a spontaneous loss of symmetry.

A borehole gets narrower by creep after its excavation, Fig. 14.2.5b. As
long as the diffusion of pore water may be neglected the isochoric creep is
almost stationary, but nowhere plane-parallel. Rübel (2010) obtained radial
velocities vo by simulations with v-hyp which can be represented by

vo = roDr

(
pf − pi

cur

)1/Iv

κ. (14.2.4)

Therein pf = γh denotes the far-field pressure at the depth h, pi a hydro-
static supporting pressure at depth h and κ a factor depending on ro/h.
Equation (14.2.4) is a variant of (13.3.3) with the power law as by (14.2.3)
and as for an RSE, this similarity was proven by Winter (1979). The sta-
tionary field is an argotropic attractor in the large, this works as long as the
geometrical stabilization due to the closing hole is negligible.

Without seepage the axial symmetry can get lost spontaneously by oval-
ization of the hole, and also by shear localization if the material is not ductile
for isochoric shearing (Sect. 8.3). This is also the case for other axi-symmetric
holes which converge by (14.2.4). With seepage the convergence is slowed
down by shrinkage and accelerated by swelling. This could be simulated with
v-elp or v-hyp and coupling with seepage. The axial symmetry gets lost by
cracking or ovalization, respectively.
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Fig. 14.2.6. Supported holes in peloid with casing (a), fresh concrete (b), wall and
invert (c) or a wall placed after excavation (d). Numbers for sequence

Supported excavations in peloid ground are shown in Fig. 14.2.6. A tube
(casing) can be placed in advance as outlined in Sects. 14.4 and 14.6. After
the excavation (a) and prior to the diffusion of pore water the bottom rises
by isochoric creep. This gets nearly stationary for a while if the soil is ductile,
and could be simulated by v-elp or v-hyp. The velocity vo of heave could be
expressed by (14.2.4) with a numerically determinable factor κ, except for the
vicinity of the bottom the external pressure on the tube tends to the far-field
value. Creep and relaxation are slowed down by shrinkage and accelerated by
swelling.

A fill of granular material or fresh concrete after partial removal of the tube
can push aside the peloid (b), in particular if the internal pressure is elevated
and the peloid has a low initial consolidation ratio pe/ps. A rapid expansion
can produce vertical radial cracks in the peloid so that it can release pore water
in a short time. Otherwise consolidation and relaxation of the peloid occur
after removal of the tube. Fresh concrete releases water into the peloid with
high initial pe/ps and fissures, and also upwards after skeleton decay with gas
bubbles. Such and similar evolutions could be captured by simulations with
axial symmetry, but at best crudely as this can get lost. Therefore monitoring
is needed for control, and probing in situ for specifying composition and state
afterwards (Sect. 14.4).

Peloid ground at wider excavations can be supported by a cylindrical wall
and an inverted lid. In case of low initial pe/ps both should be placed prior
to the excavation in order to reduce deformations during and just after it
(c, numbers for sequence). Wall and lid are stressed by relaxation of the
ground. This could be simulated with v-elp or v-hyp, coupling with pore water
and relations for the structure. Radial symmetry is better apt for stabilization
than plane-parallelity (Sect. 13.4). With a high initial pe/ps wall and lid can
be placed alongside with the excavation (d). Creep and relaxation are harmless
if opening of latent cracks and shear dilation are avoided. This could be quan-
tified by simulations including crack-enhanced capillary entry and seepage.
This could also be done with further supporting structures, e.g. ring beams
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or anchors (ring discs for rows). Axial symmetry should be favoured by the
operation, a spontaneous loss of it should be avoided.

Reversals with peloids could principally be treated as outlined for psam-
moids with Fig. 14.2.4. Simulations with v-elp-α or v-hyp-δ and validation
model tests would be rewarding with argotropic attractors for cyclic changes
of structure height (a) or diameter (b), similar attractors will be treated in
Sects. 14.3 and 14.6. Cyclic hydraulic boundary conditions with (c) or without
structure (d) can also lead to attractors, then the product of frequency and
diffusion time determines the influence of shrinkage and swelling. As in triax-
ial tests (Sect. 14.1) reversals enhance axial symmetry, but cannot exclude its
spontaneous loss.

Cases with composite ground as shown e.g. with Figs. 13.4.13, 13.5.10
and 13.5.11 or 13.6.12 can also be captured with axial symmetry. Other
than with plane-parallelity simplifying kinematical or statical assumptions
could hardly be defended without validation simulations by which they get
obsolete. Psammoids with filter cakes are important composites in cases with
axial symmetry. A shown in Sect. 10.1 a peloid is fixed to a psammoid filter
cake by inward seepage, this requires suitable hydraulic conditions which in
turn can depend on the filter cake. The psammoid at the cake has a skeleton
pressure that equals the water pressure difference at the cake.

A psammoid hemisphere under a suspension can thus be kept in place by
seepage towards a central drain (Fig. 14.2.7a). This works also with other
shapes, such experiments and their back-analyses could help to quantify filter
cakes. A lab experiment with a hole in psammoid under a suspension and
a filter base with a lower hydraulic height hw (b) would also be worth the
effort. A borehole in partly flooded psammoid ground can stand by means
of a suspension with a higher level in a tube (c). This suspension support
works also with a psammoid layer between peloid layers (d), but not with a
psammoid lense in peloid (e) as then there is no radial seepage. Simulations
for cases c and d could substitute hardly defendable design estimates and
support the control.

Axi-symmetric cavities and underground structures can be treated simi-
larly as plane-parallel ones (cf. Sect. 13.7). With psammoids the punching of
trap doors may be simplified as in Fig. 13.7.1, but model test results resem-
ble more those in Figs. 13.7.2, 13.7.3 and 13.7.4. A cylindrical shaft can be
built as shown in Fig. 13.7.6b except for a ring beam instead of struts. Ax-
isymmetric cavities can be built as in Fig. 13.7.6 by means of access shafts or
tunnels. Injection of grout from a vertical borehole with casing would lead to
an increasing bubble as in Fig. 13.7.7a, this can lose its symmetry and break
out along the casing. Grouting under an injected layer as in Fig. 13.7.8a leads
to spreading and heave, but a break-out will not be axi-symmetric.

With peloid ground trap doors may be considered as with Fig. 13.7.9a
and b. Grouting under an axially guided body (cf. Fig. 13.7.10a) can lift
it, but this sinks if it was already close to an indifferent state (Kudella
1994). A cavity with a cross section as in Fig. 13.7.10b can be built from
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a) b)

c) d) e)

Fig. 14.2.7. Psammoid with supporting filter cake: (a) hemisphere, (b) hole, (c)
hole with casing, (d) psammoid band, (e) psammoid lense after collapse

an access shaft or tunnel. Axi-symmetric cavities with cross sections as in
Fig. 13.7.11a, b may also occur. Heaving injections can have cross sections as in
Fig. 13.7.13a.

Stazhevskii (2005 and 2006) investigated ring structures which are gener-
ated by axi-symmetric lowering of the base of horizontal layers. He observed
first a conical and then a cylindrical shear localization in cross sections of
active trap door tests with dry sand, Fig. 14.2.8a, b. In some tests the free
surface exhibited axi-symmetric offsets (d, e). Similar axi-symmetric evolu-
tions could be generated with elp or hyp, except for hoop terms cross sections
and finite element calculations could be the same as in plane-parallel cases
(Sect. 13.7). Polar effects may be neglected for the overall behaviour if the
layer size exceeds ca. 100 grain diameters (Tejchman 1997). Details of shear
localization could principally be captured by re-meshing with polar terms.
In other model tests the axial symmetry got lost spontaneously (e, f), this
indicates a succession of helical shear bands (cf. Fig. 14.1.2).

Stazhevskii (2005, 2006) demonstrates that similar ring structures occur
in the earth crust and on the Moon with diameters from ca. 10 to 103 km. The
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a) b)

c) d)

e) f)

Fig. 14.2.8. Ring structures in model tests (Stazhevskii 2006): cross sections of two
stages (a, b), axi-symmetric sinkholes (c, d), helical sinkholes (e, f)

shear zones are dilated and more permeable so that pore fluid can rise along
them. The seismic activity is shown to be concentrated along the conical shear
zones. It resembles quakes observed in silos which are related with successive
shear localizations, stress jumps and stick-slip (Sect. 14.5).

Similar phenomena occur in the earth crust with diapirs, Fig. 14.2.9.
Swarms of normal faults arise in regions of radial extension (a). The dislo-
cation of layer packages leads to clay smears (cf. Fig. 12.2.4) which can work
as hydrocarbon seals. Such evolutions could similarly be observed in model
tests (b). Other than in passive trap door tests the inner part of the bottom
can be lifted by a viscous paste. Mechanical similarity can be achieved with
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Fig. 14.2.9. Ring structure above a diapir (a, Mandl 1988), model test with diapir
and injection (b, Rübel 2010, courtesy K. Balthasar)
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realistic proportions of lengths, solid hardnessess (cf. Sects. 2.2 and 3.2) re-
duced as lengths, and the same relative void ratios and consolidation ratios
as in situ for psammoids and peloids, respectively. The argotropy of skeletons
is achieved with the same viscosity index as in prototypes. Times for pore
water diffusion are scaled as the square of length by (11.1.16) and far shorter
therefore.

To sum up, axi-symmetric fills and excavations without or with support
can be captured in a number of geotechnically important cases. Simulations
with elp or hyp for psammoids, without or with ground water, can be vali-
dated by model tests and can substitute hardly defendable conventional es-
timates. The same holds true for peloids with skeleton viscosity and pore
water diffusion, and for composite ground. State limits and state cycles are of
use as attractors in the large. The axial symmetry can get lost by ovalization,
shear localization or cracking, such critical phenomena are beyond the present
reach.

Ring structures in the lithosphere may be explained as axi-symmetric ac-
tive or passive trap door problems. This was shown with model tests and
could be supported by simulations with elp or hyp. Shear localizations can be
helical or even less symmetric, however, so that simulations of faulting by a
nearly circular subsidence or diapir are beyond the present reach.

14.3 Penetration

A ground with horizontal psammoid and peloid layers can experience axi-
symmetric evolutions of shape and state through the vertical penetration of
solid cylinders without or with reversals. For a number of cases hypoplastic
simulations have been carried out and validated by experiments. For some of
them inertial effects were taken into account, and drainage was either excluded
or assumed to be free. The penetrating cylinders are often assumed as rigid
for simplicity. Such evolutions can be captured with attractors, these work
also for extensions and help to understand limitations.

Cudmani (2001) proposed a finite element mesh with a smooth neck under
the cylinder and a fictitious thin tube under it, Fig. 14.3.1. He avoided thus
a singularity at the tip and showed that neither the slope at the neck nor the
thin tube diameter influences the main results. The grid is pushed aside and
deformed by the penetration, and the thin tube is consumed. A fictitious rigid
base and a likewise fictitious cylindrical wall are chosen sufficiently far off the
solid cylinder. Calculations with such substitutes were first carried out with
hyp and hyp-δ for dry psammoids. For validation initial and boundary condi-
tions were chosen as in calibration chamber tests, and hypoplastic parameters
were adapted to oedometer and triaxial test results for the employed sands.
Sliding or sticking was assumed for the interface of skeleton and solid with a
friction angle ϕw < ϕc (Sect. 10.3).
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Fig. 14.3.1. Finite element mesh for penetrations (Cudmani 2001)

Monotonous slow penetrations are represented in Fig. 14.3.2. Indepen-
dently of the position the cone resistance Fc increases with the depth z of
penetration (a). Fc is hardly influenced by slope and smoothness of the as-
sumed neck. It gets bigger with rough hard grains of uniform size in a dense
skeleton, i.e. with high ϕc, hs and α (Sect. 2.4) and low relative void ratio re.
Calculated cone resistances qc = Fc/(πd2/4) agree fairly well with observed
ones for dense quartz sands (b, Cudmani and Sturm 2006). qc-values for low
far-field pressures pcf are underestimated as hs-values adapted for higher ps

are too low, for high pcf the resistance qc is overestimated as grain crushing is
not taken into account. qc depends on re and the far-field pressure psf at the
same depth as for radially symmetric expansions (Sect. 11.7). Cudmani (1996)
proposed a correction factor for the transition from radial to axial symmetry
so that data from probing in situ can be evaluated for the far-field relative
void ratio ref .

Figure 14.3.3 shows a calculated state field near the tip during a monoto-
nous penetration into initially dense sand. The mean pressure ps rises by more



662 14 Axi-symmetric evolutions

z

Fc

z

Fc

a)

0

5

 10

 15

 20

 25

 30

0 5  10  15  20  25  30

q c
,c

al
cu

la
te

d  
 [M

P
a]

qc,measured   [MPa]

Karlsruhe
Ticino

b)

Fig. 14.3.2. Resistance of psammoid ground to penetration: (a) qualitative depth-
dependence, (b) calculated versus observed tip resistance (Cudmani and Sturm
2006)

a) b)

Fig. 14.3.3. Calculated fields of mean pressure (a) and relative void ratio (b) for
penetration in dense sand. Darker means lower pressure or higher density, respec-
tively (courtesy H. Sturm)

than two decades at the tip, i.e. this is strongly jammed together with the
neighboured sand. The relative void ratio (b) rises up to re = 1 near the
tip, there a critical state is approached with e near ec for the high near-tip
pressure. The monotonous deformation leads to SOM-states (swept-out of
memory, Sect. 2.5) in the near-field, and almost to an isochoric state limit at
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the tip by a kind of granular flow. Grain crushing would reduce the pressure
increase by more contractant shearing.

Such convected state limit fields are attractors in the large. For a given
depth they are determined by the initial and far-field relative void ratio ref .
Initial position and stress field do not matter, they are swept out by a pene-
tration of about 4 to 2 rod diameters for high or low initial re, respectively.
The dominant hypoplastic parameters are granulate hardness hs, critical fric-
tion angle ϕc and exponent α (which reflects the capacity for dilation, Sect.
2.4). The penetration depth enters via the far-field pressure psf , so the ra-
tio psf/hs counts for unit-invariance (Sect. 2.2). Cudmani (2001) found that
the penetration resistance increases with psf/hs as for a spherical expansion
which can more easily be calculated. Thus the original relative void ratio,
which is the most important state variable, can be determined from the pen-
etration resistance if the far-field pressure and a few hypoplastic parameters
are known. This works also with uniform layers if these are thicker than about
4 rod diameters, thinner layers produce more scattering.

Mahutka et al. (2006) investigated also the field above the tip due to a
monotonous penetration, Fig. 14.3.4. Other than at the cone the resistance

a) b)
e[–]

x[m]

y[
m

]

x[m]c) d)

y[
m

]

Fig. 14.3.4. Hypoplastic simulation results for penetration into psammoid ground
(Mahutka et al. 2006): (a) resistance versus depth, (b) vertical surface displacements,
void ratio field with initially loose (c) and dense ground (d). Darker means denser
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at the shaft increases with its roughness, and almost linearly with depth (a).
The free surface rises by dilation near the rod if the ground is initially dense,
and settles otherwise (b). With further penetration the overall settlement goes
on. The void ratio is reduced near the shaft if the skeleton was loose before
(c), and gets higher by dilation in the opposite case (d). In the transition
to the far-field the skeleton is slightly densified by shearing. These findings
could be represented by fields of ps and re as in Fig. 14.3.3. The state fields
near the shaft and wall above the tip do not change with further penetration.
They are determined by the rod and the initial relative void ratio (if this is
uniform) and are thus attractors in the large. Apart from the minor continued
settlement they are not convected as the field near the penetration tip. State
limits are attained and maintained near the shaft.

Cudmani (2001) and Cudmani and Sturm (2006) investigated alternating
penetrations in dry sand, i.e. a kind of quasi-static ratcheting, Fig. 14.3.5.
Simulations (a) reveal that the cone resistance qc gets zero temporarily if the
upwards displacement exceeds about half the downwards one in a cycle. For
this cavitative mode, i.e. if the skeleton at the cone gets temporarily stress-
free, the qc vs. displacement curve has loops, otherwise it has saw-teeth. Nearly
the same was observed in a pressure chamber (b), this validates the employed
model.

Experiments and simulations indicate that the loops or saw-teeth are de-
termined by the far-field pressure psf and relative void ratio ref for a given
depth if re was uniform before the penetration. The alternating penetration
can start at any depth with any near-field of stress, this influences only the
transition. The attained state cycle fields depend on the amplitude of down-
wards and upwards steps. The average near-field relative void ratio r̄e is lower
than for a monotonous penetration. The skeleton is densified more easily and
ps rises less than without reversals.
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Fig. 14.3.5. Tip resistance versus penetration with reversals in psammoid ground
(Cudmani and Sturm 2006): simulation (a) and observation (b)
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The near-field just above the tip could be represented by a succession of
state cycle fields. As for monotonous penetrations the influence of depth can
be subsumed by plotting the normalized shaft force Fs/(2πγdz) versus an
average near-field r̄e. The distribution of shear stress versus depth is nearly
linear (cf. Sect. 14.4). r̄e is lower and Fs is smaller than for a monotonous
penetration as the skeleton is densified and the more relaxed by reversals the
smaller the amplitudes are (cf. Sects. 4.2 and 4.6). Therefore the free surface
settles more and is nowhere lifted. As with monotonous penetrations the state
cycle field for alternating penetrations is convected near the tip and stationary
further above.

By definition inertial effects play a role for dynamic penetrations. They are
substantial for the penetrating cylinder, but smaller for the ground. Only a
minor part of the latter experiences relevant accelerations under the penetrat-
ing cone as waves in this zone are strongly damped. Along the shaft kinetic
energy is dissipated in phases with sliding, and radiated off with hysterestic
damping otherwise. Apart from ejection of surface grains and heating near
cone and shaft this could be simulated with elp-α or hyp-δ. State limit and
SOM-fields of the skeleton are modified by inertia as this widens the near-
field, this means a higher rise of ps and a lower reduction of re than farther
away.

Cudmani and Sturm (2006) simulated penetrations with rapid reversals in
dry sand, Fig. 14.3.6. An almost rigid cylinder was driven in by a vibrator
and a dead load on top. The plot of tip force versus displacement exhibits a
cavitative mode (a, cf. Fig. 14.3.5) for a low dead load, but not for a higher one
(b). Cavitative modes are obtained at a lower depth with different dead loads
both in the experiment (c) and its simulation (d). The associated plots of cone
velocity versus displacement show quite similar observed (e) and simulated
(e) loops. Further validations were presented by Cudmani et al. (2002). A
satisfactory agreement was obtained with different far-field relative void ratios
and diameters so that such penetrations can be predicted.

These plots indicate that a few reversals with a small shift (compared
with the diameter) suffice to attain convected state cycle fields. These differ
little from the ones for quasi-static alternating penetrations as average inertial
forces in the near-field are smaller than the skeleton weight. Therefore attained
pressures and densities are similar as without inertial effects in the ground,
thus vibratory probing works and can yield void ratios for bigger depths than
with other kinds of penetration.

Cudmani (2001) observed also shear forces along the shaft in vibratory
driving tests, Fig. 14.3.7. With diameter d = 0.15 m, depth z = 6 m and
frequency fc ≈ 10 s−1 the height-averaged shear stress τ̄ attains the same
maximal amount for downwards and upwards sliding (a). This means shear
ratcheting with big amplitude along the shaft and a minor radiation of shear
waves in intervals with sticking. With d = 30 m, z = 10 m and fc = 30 s−1

the ratcheting is slower and the τ̄ vs. z plot is less symmetric because the
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Fig. 14.3.6. Rapid alternating penetration in psammoid ground (Cudmani and
Sturm 2006): simulated tip force versus vertical displacement with (a) and without
temporary loss of tip contact (b), observed (c) and calculated tip force versus shift
(d); observed (e) and simulated tip velocity versus shift (f)

fraction of slip intervals is smaller (b). On this base Cudmani (2001) proposed
a simplified model for dynamic penetrations. Therein parameters for tip and
shaft resistance are taken from in situ probing data for quasi-static or dynamic
penetrations.

Pile driving by repeated blows was simulated by Mahutka et al. (2006) with
hyp-δ and the same soil data as for Fig. 14.3.4 with monotonous penetration.
With diameter d = 2 m and penetration depth z = 6 m the radial pressure at



14.3 Penetration 667

–80

–40

0

40

80

0 0,005 0,010 0,015 0,020
u [m]

τ [k
N

/m
2 ]

–0 ,008 0 0 ,008
u [m] 

–50

–25

0

25

50

τ 
[k

N
/m

2 ]

a) b)

Fig. 14.3.7. Shaft force versus penetration in psammoid ground with (a) and with-
out temporary state limit (b), observed by Cudmani (2001)

the shaft is higher near the tip and lower further above than before driving,
Fig. 14.3.8a. A higher initial pressure due to a previous surcharge is swept
out, and the skeleton further below is also relaxed near the shaft by almost
cyclic shearing (cf. Sect. 4.6). Closer to the tip the skeleton gets jammed by
the penetration, more so with a lower void ratio, but not as much as for a
monotonous penetration.

Calculated void ratios are more reduced after driving if the skeleton was
medium dense (b) than if it was dense initially (c). Similarly as in Fig. 14.3.4c
the free surface settles near the pile except for a bulge with radius r ≈ 2d
in case of a high initial density (d). The more marked dilation by shearing
near the pile for an initially denser skeleton can be seen from the e-contour
plot (c). The radial skeleton pressures after driving are markedly higher than
before below and near the tip, less with an initially medium dense skeleton
(e) than if it was dense (f). The skeleton near the tip is less jammed than
by monotonous penetration (cf. Fig. 14.3.2). Along the shaft the skeleton is
relaxed further above (cf. a), and farther off it is not changed (cf. c, d).

These findings can be interpreted, generalized and simplified by means of
attractors in the large. The near-field around the tip resembles the one for
a non-cavitative alternating penetration (cf. Fig. 14.3.3), i.e. the skeleton is
the more jammed and dilated the denser it is initially, but less than for a
monotonous penetration. Further above around the shaft the skeleton goes
through state cycles with the smaller amplitudes the smoother the shaft is
and the smaller its amplitudes are. The propagation of pressure waves from
the tip and of shear waves from the shaft influences the asymptotic response
(cf. Sect. 11.4). Simplified models as those proposed by Cudmani (2001) are
justified by these attractors.

Under certain conditions the vibratory driving can get chaotic. Vielsack
and Hartung (1999) observed period-doubling and a chaotic end of penetration
in model tests with dry sand and a vibrator upon a rod for certain dead loads
and initial densities. Simplifying to a model with one degree of freedom and
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a) b)

c) d)

e) f)

Fig. 14.3.8. Simulated dynamic pile driving in psammoid ground (Mahutka et al.
2006): radial shaft stress versus depth (a), void ratio field after penetration in ini-
tially medium dense (b) and dense ground (c), vertical surface displacements (d),
radial stress field after penetration with medium (e) and high initial density (f)
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a hysteretic interaction of rod and sand they could catch this behaviour by
means of a strange attractor (Sect. 16.3).

It may at least briefly be indicated how penetrations in dry psammoid
can be changed by the deformability of solid cylinders, Fig. 14.3.9. A slow
monotonous penetration ends (a) when a further vertical displacement Δu
with fixed tip (b) wakes a further shearing resistance Δτ (c) which adds up
to the additional internal normal force ΔN , i.e. for

ΔN =
πd2

4
Es

Δu0

z0
= πd

∫ z0

0

Δτdz (14.3.1)
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Fig. 14.3.9. Penetration of an elastic rod in psammoid ground (a): displacement
(b) and shaft resistance versus depth (c) and versus each other (d) for a monotonous
penetration; ratcheting (e) and bounds of displacement (f) and shaft resistance (g)
for a slowly pulsating head force; rod with expanders (h); driving by blows at head
(i) or tip (j) or by a head vibrator (k)
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with solid modulus Es, top displacement Δu0 and end depth z0. As plotted
Δτ can only arise near the tip, but not exactly there if this does not move,
nor farther above as stationary sliding goes on there. This dead end could be
calculated with elp-α or hyp-δ, z0 may also be estimated with (14.3.1) and
relations of Δτ with Δu (d) as proposed by Cudmani (2001). The penetration
ends with zp < z0 if the top normal force reaches the plastic limit of the
solid.

A quasi-static ratcheting at the top (e) does not reach the tip with down-
ward (d) and upward (e) displacement increments (f) if the incremental top
force ΔN is absorbed by the incremental shear stresses (g) as by (14.3.1).
This can lead to a shallower dead end than without reversals. The bound by
plastification of the cylinder is less relevant with smaller amplitudes as then
the axial forces are smaller. A ‘peristaltic’ penetration could get deeper by
means of axial expanders above and near the tip (h). This can drive the tip
with reversed shaft friction as reaction, can draw thereafter the upper shaft
with reversed friction near the tip, and so on. More expanders can ease the
penetration, earth-worms do a similar job.

The depth of dynamic penetrations is also reduced by the deformability of
solid cylinders. The longitudinal wave due to an impact (i) can be damped by
friction and radiation of shear waves along the shaft so that the tip remains
at its place. The returning wave may be used to judge the integrity of the
cylinder. The penetration before may be simulated with elp-α or hyp-δ and
elastic or elastoplastic relations for the cylinder. This can also be achieved
with simplified ground reactions (Dierssen 1994), but solutions of the inverse
problem in order to identify the ground reaction are debatable. Blows from a
drive near the tip (j) render possible a deeper penetration as with a ‘peristaltic’
motion the shaft friction alternates above and below the drive. With vibrator
and dead load on top (k) longitudinal waves in the cylinder are again damped
by shaft friction and radiation. This can lead to a dead end with periodic
propagation and to state cycles in the ground. Simulations with elp-α or
hyp-δ would be expensive, whereas those with simplified ground reactions are
debatable. It is not yet known how much a vibrator near the tip could ease
the penetration.

The degradation of grains can play a role for the cone resistance as high
pressures can occur. One could principally take it into account by updating
constitutive parameters (cf. Sect. 7.3). Degradation bounds and simple sub-
stitutes are needed for applications with elp-α, hyp-δ or simpler soil reaction
models. Cudmani (2001) found hemispherical cemented bodies under a rod
pushed into dry sand. They arose from crushing of grains and baking of fresh
powder. Such hemispheres are wider than the cylinder and break with further
penetration. The cone resistance gets thus temporarily bigger and scatters
more with a monotonous penetration.

Pore water in psammoids can easily be taken into account as long as its
hydraulic height hw does not change by the penetration. This may be assumed



14.3 Penetration 671

for quasi-static cases as far as the grains are not very fine and the skeleton
is not collapsible. Then it suffices to reduce the weight of soil and rod by
hydrostatic uplift, and to work with a slightly lower granulate hardness due
to the diminished surface energy with water (Sects. 6.1 and 7.3). Changes of
hw due to the diffusion of pore water in fine-grained psammoids can influence
penetrations considerably. The ratio of tip velocity v0, or its average v̄0 over
several reversals, and the permeability kf get relevant (Sect. 6.2).

For rapid penetrations in the sense of (6.2.11) the seepage may be neglected
so that skeleton deformations are isochoric in case of full saturation. The
resistance to monotonous penetration is thus enhanced in dense and reduced
in loose skeletons. Low or high relative void ratios re have a similar effect on
penetrations with reversals and big amplitudes. With small amplitudes the
average skeleton pressure p̄s is reduced, therefore higher frequencies can be
of use. Such cases could be simulated with elp-α or hyp-δ, attractors in the
large would support validations and simplifications as without water or with
constant hw.

With seepage and considerable seepage forces, i.e. for v0 or v̄0 between
the bounds by (6.2.11) and (6.2.12), the ground reaction depends on the de-
layed diffusion of pore water. Simulations with elp-α or hyp-δ and coupling
with seepage would get expensive. Validations should be focused therefore on
attractors in the large, simplified approaches could thus be justified. The hw-
field near the tip can be estimated by assuming an access of water through
the tip with vw = v0 or v̄0, Fig. 14.3.10. hw rises approximately by

Δhw ≈ 1
8
dv0/kf (14.3.2)

at the tip, and nearly in proportion to (d/2r)2 further away. Densification of
the skeleton causes a slightly bigger Δhw. ps is reduced by ca. γwΔhw through
seepage.

v0

d

Δhw

r

Fig. 14.3.10. Increased hydraulic heights by penetration into psammoid ground
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Gas inclusions can be taken into account by a compressible pore fluid in
case of bubbles between the grains (Sect. 6.2). A capillary skeleton pressure
pcs can be used if gas channels are connected with the atmosphere. With the
closure of gas channels by densification of the skeleton hw and pw rise suddenly,
also if gas pockets are left back. The related decrease of ps by Δpw = γwΔhw

enhances the penetration more than by hydrostatic uplift, at least if Δhw by
(14.3.2) is considerable.

Injection of fluids through the tip eases the penetration as thus ps is re-
duced in the near-field. This may be estimated by (14.3.2) with a lower kf

and the average infiltration velocity v̄f at the tip instead of v0. In more pre-
cise and expensive calculations the upward seepage along the shaft could
be taken into account. Penetrations with blows or a vibrator can be en-
hanced by injection, but the influence of coupled pressure waves in skele-
ton and pore water can as yet hardly be quantified. Injections of suspen-
sion can further reduce the shaft friction if a filter cake can arise. Injection
of air reduces ps and enhances the penetration if the psammoid has open
gas channels. The reduction Δps = γwΔhw can be estimated by (14.3.2)
with average velocity v̄g and permeability kg for gas. Injected air reduces the
shaft friction at saturated fine-grained psammoids. Calculations for injections
are only of qualitative value as the axial symmetry gets lost by a break-out
(Sect. 16.3).

Penetrations into peloid ground are usually so fast by (6.2.11) that the
seepage may be neglected. Meier (2009) simulated monotonous ones with v-
hyp, different velocities v0, different spatially constant initial consolidation
ratios pe/ps and degrees of saturation Sr around 0.95, Fig. 14.3.11. The cho-
sen Sr in the range observed in situ prevents bulging of the free surface, and

(q
c-

p 0
')/

p 0
'

a) b)

Fig. 14.3.11. Slow penetration into peloid ground, simulated with v-hyp by Meier
(2009): (a) tip pressure versus far-field pressure, (b) pressure ratio versus initial
overconsolidation ratio
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its variation in a realistic range has little influence on the penetration resis-
tance qc = Fc/(πd2/4). In the asymptote qc is proportional to the far-field
pressure psf and increases with the initial pe/ps (a). The same dependence
on the far-field values of ps and pe is obtained for the expansion of a spher-
ical cavity (cf. Sect. 11.7). The ratio of both asymptotic pressures increases
with the far-field consolidation ratio pe/ps ≈ OCR (c), this can be approxi-
mated by

qc/pi = a(pe/ps)b (14.3.3)

with a ≈ 10 and b ≈ −0.1. The argotropy enters via the one of the asymptotic
spherical expansion pressure pi, this is proportional to (v0/d0Dr)Iv (Sect.
11.7).

qc is proportional to the cohesion cu without drainage (cf. Sect. 3.2) which
can be determined in situ by torsion of a vane (Sect. 14.6). This is valid as
both qc and cu are proportional to the far-field ps. Combining Fig. 14.3.11
with cu for the same data leads to qc/cu from ca. 15 to 20 for far-field con-
solidation ratios pe/ps from 1 to 3. This qc/cu is known empirically for clayey
layers which are consolidated by their weight only, i.e. which have pe/ps=const
(e.g. Senneset et al. 1982). Based on this validation one can transform probing
data from a penetrometer into those with a vane, and can determine pe from
one of the two data sets (Meier 2009). This works also if pe/ps varies with
depth as long as ps can be estimated via hw (Sect. 11.3). For example, Cud-
mani and Sedlacek (2006) evaluated penetration data from Oslo, Fig. 14.3.12.
Adaption of calculated and observed penetration pressures qc (a) leads to a
consolidation ratio which is higher above and constant below (b). This profile
can be attributed to evaporation above and creep below the ground water
table (Sect. 11.3).

The near-field by penetration with constant velocity v0 is an argotropic
attractor in the large. It is determined by the far-field values of ps and pe,
the penetration velocity v0, the diameter d and the smoothness (Sect. 10.3)
of the cylinder. After stopping a monotonous penetration the peloid relaxes
and hw gets hydrostatic if it was so before. The e-equivalent pressure pe gets
and ps remains higher than in the far-field. An alternating penetration leads
to a succession of argotropic state cycles. These can imply cavitation at the
tip and may help to simplify approaches for the ground resistance. After such
penetrations skeleton and pore water relax again, but towards a higher pe and
a lower ps than after monotonous penetrations.

Vibratory driving with dead load and repeated impacts in peloid ground
can also lead to successions of state cycles. They are distorted with respect to
slow alternating penetrations by the propagation of waves, and by argotropy
as the stretching rate varies over many decades. Caution is needed therefore
with simplified approaches and with data transfer for different modes of pen-
etration. Particle bridges and gas inclusions could principally be taken into
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Fig. 14.3.12. Observed (zig-zag lines for two sites) and calculated (triangles) pen-
etration resistance in peloid ground (a), estimated overconsolidation ratio versus
depth (b) (Cudmani and Sedlacek 2006)

account (Sects. 7.1 and 7.2). Vibratory driving can get chaotic and the axial
symmetry can get lost by radial cracks.

Penetrations in composite ground could be calculated by combining the
methods outlined for psammoid and peloids, but transitions between layers
require attention. A tip in a psammoid region feels a peloid layer ahead and
vice versa, and the previous layer influences the entry into a new one. Such
cases could be captured by combined attractors, these may help to establish
simplified approaches. In a sandwich of many thin layers the penetration resis-
tance is dominated by such transitions and cannot be predicted as precisely as
with a more uniform ground. A simpler substitute composite (Sect. 9.2) may
at best suffice to capture average penetration resistances, but hardly without
adaption by field monitoring.

To sum up, various kinds of penetration can be captured by axi-symmetric
simulations and attractors. The latter help to validate and simplify mechani-
cal models for predictions and back-analyses. Such approaches were validated
for monotonous, slow alternating and dynamic penetrations. Extensions are
possible for deformable cylinders and for psammoids with excess pore pres-
sures and degradation of grains. Monotonous penetrations in peloids can be
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captured by argotropic attractors, extensions to alternating and dynamic pen-
etrations are feasible.

14.4 Piles

Vertical piles can be placed in horizontal ground layers by filling (Sect. 14.2)
and/or driving (Sect. 14.3), they can be pushed down and/or pulled up via
structures at the pile head. For a plethora of cases their interaction with
the ground can be captured by axially symmetric models, and attractors are
of use to judge the range of validity and simplifications. For simplicity the
pile may be cylindrical with flat or conical foot, and elastic or elastoplastic.
The interface of pile and ground is defined by roughness and permeability
(Sect. 10.3). A narrow zone near the pile can have another composition due
to placement than the neighboured ground, which has another state due to
the installation of the pile than farther away in the same depth.

Substitute boundary conditions are needed for numerical simulations and
could be justified by comparative studies, Fig. 14.4.1. For capturing the field
around the shaft a smooth rigid wall may be assumed, plus a rigid base and
a smooth tube from the pile foot down to the bottom (a). A wall diameter
a ≥ ca.10d may suffice for a single pile, uniform pile groups with smaller
distance a can be represented by cells moving together (b). A bottom depth
db > ca.5d suffices instead of deeper ground, nota bene as far as the ground
reaction along the shaft is concerned. A nearer and rougher wall and a shal-
lower bottom can be chosen for validation tests, then the lowest part of
the pile should be smooth. For geotechnically relevant axial displacements
|u| < ca. d/5 an assumed smooth shaft section of the same height has almost
no effect on the total shaft force (positive downwards into the ground)

Fm = πd

h∫

0

τdz, (14.4.1)

with vertical shaft shear stress τ and embedded pile depth h. The total foot
force

Ff = 2π

d∫

0

σfrdr, (14.4.2)

with vertical pressure σf at the foot level z = h, may be calculated with a
smooth shaft and a kind of hourglass instead of the tip for a driven pile (c).
As for penetration (Fig. 14.3.1) singularities at apex and cone edge are thus
avoided. Details of this substitute have little influence on Ff , this suffices for
cones of driven piles which may aswell consist of soil compacted by driving.
A convex foot without edge and a smooth shaft can represent bored piles
with respect to Ff (d). Thus a singularity at the tip is avoided, and near-field
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Fig. 14.4.1. Substitute boundary conditions for a pile shaft (a), a vertical pile
group (b), and for the foot of a driven (c) or bored pile (d)

deformations can be followed up for allowable displacements. Ff = 0 suffices
if the pile is pulled up.

For quasi-static evolutions head force Fh plus pile weight Wp equal the
resistance of shaft and foot,

Fh + Wp = Fm + Ff . (14.4.3)

For pulling up this holds with Ff = 0 and Fm < 0. Both Fm and Ff are slightly
underestimated for pushing down with the simplifications by Fig. 14.4.1. For
pulling up |Fm| is thus also a little bit too small, and smaller than Fm for push-
ing down. The installation can lead to Ff > Wp and Fm < 0 before imposing
Fh, e.g. by grouting or inflating a cushion at the foot. During alternating pile
displacements Fm can change its sign, and Ff can alternate between zero and
an upper bound. Piles are rarely so deformable that the head can be displaced
if the foot is fixed as shown in Fig. 14.3.9. With impacts or vibrations Fm and
Ff are changed by inertial effects so that (14.4.3) is no more valid, such cases
will only be touched in the sequel.
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The response of dry psammoid ground to slow monotonous axial pile dis-
placements u is mainly determined by the near-field relative void ratio ren.
This is lower than the initial and far-field value ref for a driven pile except for
very low ref , Fig. 14.4.2a (cf. Fig. 14.3.8). The pressures at the pile (b) and
the shear stresses along its shaft (c) can differ from original and far-field values
after the installation (subscript i) and are then confined by Fm+Ff = 0. They
change alongside with ren by pushing down (label A) or pulling up (B). This
can also be represented by plotting head force Fh versus head displacement
uh (d, with labels f for foot and m for shaft). The spatial average of re for
r ≤ d may be taken as a representative ren.

The initial state due to the installation of a pile cannot be determined in
detail, but it can be estimated by means of attractors depending on the kind
of operation (Sect. 14.3). Near the pile the skeleton tends to a state limit field
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Fig. 14.4.2. Pile with monotonous loading in psammoid ground (a), distributions
of shaft and foot pressure (b), profiles of shaft shear stress (c), shaft and foot forces
versus displacement (d)
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by a monotonous axial pile displacement, this field is determined by the far-
field pressure psf and by the near-field average relative void ratio ref . In other
words, this attractor means that the ground response is determined by shaft
geometry and ground density close to it, whereas details of skeleton stresses
due to the installation are swept out with the pile displacement. Rebstock
(2006) showed that by means of comparative calculations with hyp-δ and
found that only the average ren of the initial re in the range r ≤ d counts. As
this can hardly be determined in situ ren has to be adapted by back-analysis
of pile loading tests, the results of which can then be transferred to other
loading conditions.

Figure 14.4.2 shows evolutions for an originally medium dense skeleton
which was densified near the pile by its installation. For pushing down (A) Fm

can almost attain a plateau, whereas a peak of Ff vs. uh can at best be reached
with a hardly tolerable displacement and a low ren. The skeleton near the shaft
is radially stressed as its dilatant shearing is impeded by the surrounding
ground. Near the foot the skeleton is mainly densified and only dilated with
excessive displacements. For pulling up (B) the negative Fm attains a flat peak
with max |Fm| well below the positive Fm. The dilated shearing near the shaft
is less impeded by the surrounding ground when the nearest part of it is lifted,
thus shear softening by dilation occurs after a smaller pile displacement than
for pushing down.

For a bored pile with the same geometry and far-field the ground resistance
is lower as the skeleton is more dilated near the pile during its placement. This
means a lower initial re and radial pressure and a negligible initial shaft shear
stress. Ff and |Fm| are smaller than for a driven pile for pushing down, and
for pulling up with a smaller difference of |Fm|. Due to the higher ren the
skeleton near the pile is less jammed by confined dilation near the shaft and
more compressed at the foot than with a driven pile.

Rebstock (2004) back-analyzed tension pile lab tests with dry sand by
means of finite elements and hyp, Fig. 14.4.3. Wernick (1978) had pulled up
a rough rod in a cylinder filled with dense sand (a). The finite element mesh
is finer near the pile, and a small surface pressure was added to avoid ps = 0
(b). The elements along the shaft are as thick as the observed shear zone. Cal-
culated and observed force-displacement curves agree in the asymptotes, but
observed peaks are not reproduced (c). The deviation cannot be attributed
to polar effects at the shaft (Sect. 8.2) as the ratio of pile and grain size
d/dg ≈ 75/0.25 = 300 exceeds the bound of influence by Tejchman (1997), cf.
Sect. 14.1. This indicates a seismically activated relaxation (Sect. 4.6, Reb-
stock 2010).

Rebstock (2004) simulated also a pull-out test in situ, Fig. 14.4.4. The
piles had been placed by boring in medium dense sand under water (a). Their
diameters had been increased from 0.15 to ca. 0.20 m by grouting. The mesh
has fictitious rough outer boundaries and thinner elements along the shaft (b).
Observed and calculated pull-out curves agree with a realistic re near the shaft
(c). Hydrostatic uplift and pile deformability were taken into account. Com-
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Fig. 14.4.3. Back-analysis of Wernick’s (1978) tension pile tests with sand by Reb-
stock (2004) : setup (a), mesh (b), forces versus displacement (c)

parative calculations reveal that the expansion pressure after grouting may
be neglected as it is swept out by shearing. The shaft resistance is determined
by the far-field ps and the near-field re, and increases with the hypoplastic
parameters ϕc (friction), hs (hardness) and α (dilatancy). The piles were so
rough that slip along them can be excluded.

Interactions of piles with dry psammoid ground for slow displacements
with reversals can be judged by means of asymptotic state cycles, Fig. 14.4.5.
Consider representative soil elements (RSEs) near the shaft (A) and the foot
(B) which are sheared (a). With axial pile displacement cycles the state paths
in plots of two stress components (b) and of e vs. log ps (c) tend to butterflies
(cf. Fig. 14.3.6). The average re is determined by the amplitude, the average
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Fig. 14.4.4. Simulation of pull-out tests with sand in situ (Rebstock 2004): situation
(a), mesh (b), force versus displacement (c)

ps is close to the far-field value. For ratcheting the asymptotic cycles are loops
with higher average re, again with average ps nearly as in the far-field. Such
attractors in the large could be generated with hyp-δ and observed in model
tests. They mean that the near-field state due to placement can be swept out
in periodic asymptotes.

Some observations confirm this concept. Mazurkiewicz (1968) reports that
model piles in dense sand can be more easily pulled out with reversals, and
concludes that anchor piles for repeatedly emptied dry docks require a more
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Fig. 14.4.5. Pile with reversals in psammoid ground (a), asymptotic cycles of stress
(b) and void ratio versus pressure (c) of RSEs near the pile for cyclic displacements
(C) and ratcheting (R)

conservative design than for monotonous loading. Rebstock (2010) found that
these model tests cannot be simulated with hyp-δ due to polar and seismic
effects. His simulations are more realistic for pile tests with ratcheting by
Schwarz (2002), and for the anchored and repeatedly emptied mud vessel of
a sewage plant. This kind of seismically activated relaxation and creep may
be qualitatively explained with s-hyp or h-cyc (Sect. 4.6), but quantifications
require an energy-based approach.

Inertial effects can principally be taken into account as for penetration
(Sect. 14.3), but simulations and validation studies are not at hand. An axial
impact could be imposed to the pile head or at the bottom of a cylindrical test
bin. It could be repeated until a periodic response indicates an attractor. Axial
vibrations could likewise be imposed up to a periodic response. Stochastic
impacts from above or below with axi-symmetric averages could be captured
with s-hyp and model tests (cf. Sect. 13.8).

The pore water of psammoid ground at piles may often be assumed to
have a stationary hydraulic height hw. With full saturation, and also with gas
bubbles between the grains, this means hydrostatic uplift for resting ground-
water, and well-determined seepage forces in case of stationary flow. With gas
channels connected to the atmosphere the skeleton pressure ps is higher by
the capillary skeleton pressure pcs (Sect. 6.2). pcs is often negligible for the
resultant forces at shaft and foot Fm and Ff in situ, but not in model tests
with fine grains, and is of use near the free surface to avoid ps = 0 and dust.
Changes of hw due to pile displacements can play a role alongside with inertial
effects (cf. Sect. 13.8), but have not yet been investigated.

Interactions of piles with peloid ground are argotropic due to skeleton vis-
cosity and pore water diffusion. Thus the state at the onset of loading does
not only depend on the kind of installation, but also on the waiting time
thereafter. The rate of skeleton relaxation ṗs/ps after installation is propor-
tional to (ps/pe)1/Iv by (3.2.7), and thus high for the reduced consolidation
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ratio pe/ps which arises near the pile by its installation. The rate of pore pres-
sure adaption ṗw/pw by diffusion is proportional to kf/d2

w by (11.1.4), with
permeability kf and drainage length dw. Thus shear stresses due to the in-
stallation may be neglected for initial states after installation, but not excess
pore pressures in general. Only if the diffusion of pore water is avoided during
the installation it can hardly play a role in waiting times, but the pore water
can then relax due to the ever-present gas fraction. Otherwise, in particular if
changes of void ratio during the installation are enhanced by cracks, diffusion
times can be shorter than acceptable waiting times.
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Fig. 14.4.6. Monotonously loaded pile in peloid ground (a), forces versus displace-
ments (b)

Leaving aside relaxation and diffusion, interactions without seepage, re-
versals and inertia may be considered first, Fig. 14.4.6. A pile may stand in
peloid ground and may be loaded at its head with control of axial force or
displacement (a). The far-field may have a constant hydraulic height hw, skele-
ton stress ratio Ts2/Ts2 and consolidation ratio pe/ps due to its resting time
(Sect. 11.3). Near the surface hw could be lower (suction), and pe/ps could
be higher (after shrinkage or geological unloading) than further below. After
an installation without swelling or shrinking the near-field may have returned
to the original state field. The weight difference of pile and displaced ground
may be neglected, or imposed as permanent head load. The pile surface may
be rough and remain in contact with the ground, the pile may be rigid. As
outlined with Fig. 14.4.1 the forces Fm and Ff at shaft and foot can be calcu-
lated by assuming a smooth cylinder under or above the foot, respectively. Fm

and Ff result from total stresses including pore pressures which are changed
by loading.

With a given head velocity vh the resistance is argotropic, Fig. 14.4.6b.
This can be expressed by

Fm/Fmr = Ff/Ffr = (|vh| /Drd)Iv (14.4.4)
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with reference values Fmr and Ffr for shaft and foot in case of |vh| = Drd.
This results from the non-linear skeleton viscosity (Sect. 3.2) and agrees with
Winter’s (1979) relation (13.3.3) for a stationary asymptotic response. The
latter has the same amount for pushing down (A) as for pulling up (B) as the
asymptotic response to shearing near the pile is determined by the void ratio
and the shearing rate (Sect. 3.2).

The foot resistance Ff can at best attain a plateau after an acceptable
displacement uh with a driven pile as then the ground close to the foot can
reach an isochoric state limit before (cf. Sect. 14.3). The displacement needed
to attain a stationary shaft resistance Fm is often acceptable with driven and
bored piles. The reference value Fm in (14.4.4) can then be approximated by

Fmr ≈ sgn(vh)πdshc̄ur (14.4.5)

with the cohesion c̄ur averaged over the shaft for undrained shearing with
rate D = Dr. This implies a shear zone of thickness ds along the shaft. The
stationary reference foot resistance for (14.4.4) can be approximated by

Ffr ≈ mfπ
d2

s

4
c̄uf (14.4.6)

with the average cohesion c̄uf near the foot for D = Dr. The factor mf

depends on the far-field consolidation ratio pef/psf at depth h used in
Fig. 14.3.11 for penetration.

The near-field of piles which are monotonously shifted past peloid ground
tends thus to an argotropic state limit in the large. This could be simulated
with v-elp or v-hyp for an axi-symmetric initial state field which depends on
far-field and pile placement. Similarly as with psammoid ground the resis-
tance is dominated by the near-field void ratios. As shown in Fig. 14.4.6b the
displacement required to reach this attractor is hardly argotropic. It cannot
as easily be estimated as the limit resistance, and is at best as determinate as
the near-field void ratios after placement.

With a constant head force Fh the pile tends to stationary creep as long as
pore water diffusion may be neglected. The asymptotic creep velocity of the
pile head can be estimated by inversion of (14.4.4) with (14.4.5) and (14.4.6).
The transition to this thermally activated attractor is at best as determinate
as the initial near-field, simulations with v-elp or v-hyp could demonstrate
this indeterminacy. Relaxation towards the initial near-field would occur after
complete unloading or stopping the pile. This second endogeneous attractor
could also be obtained by simulations, but the transition can at best be esti-
mated.

Interactions of rigid piles with peloid ground, again first without seepage
and/or inertia, are different with reversals of axial displacements u, Fig. 14.4.7.
With axial pile displacement cycles and constant amount of velocity |vh| the
ground tends to argotropic state cycles, and so do the resultant forces Fm and
Ff at shaft and foot (a). The plot of Fm vs. u is symmetric in the asymptote,
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(b) of a pile as in Fig. 14.4.6a

the one of Ff is asymmetric. The amounts attain the ones for monotonous
displacements with big amplitudes (A), otherwise they are smaller (B). The
average near-field skeleton pressure p̄s gets closer to the far-field value psf for
smaller amplitudes. This is understandable with cyclically sheared RSEs near
the pile (cf. Sect. 3.8).

Ratcheting of a rigid pile with constant |vh| leads to other argotropic state
cycles of the ground. These can be partly represented by plots of Fm and Ff

vs. uh (Fig. 14.4.7b). The ones of Fm are asymmetric, those of Ff are one-sided
nearly as before. The amounts attain the ones for monotonous displacements
in case of big amplitudes with dominant downwards fraction (A). Otherwise
the amounts are smaller (B), and the averages over one cycle are closer to
the far-field values. This response can be justified by means of RSEs near the
pile (cf. Sect. 3.8). The argotropy of Fm and Ff could be approximated by
(14.4.4), this is evident for so big amplitudes that state limits are attained as
without reversals.

Step-wise creep occurs with dead loads in intervals where Fm attains
amounts related with significant head velocities by (14.4.4), and where Ff

attains values by (14.4.6) for penetration, Fig. 14.4.8 (A). Otherwise (B) the
cumulative displacement is often negligible. With periodic loading at the pile
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Fig. 14.4.8. Creep of a pile as in Fig. 14.4.6a with pulsating loads: head forces (a)
and displacements versus time (b)
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head the near-field attains again state cycles, but now the related stretching
rates D vary by orders of magnitude within one cycle. A relaxation occurs in
the ground near the shaft, and also near the foot if it is fixed. Then the skele-
ton state returns to the one in the far-field, this occurs faster if the near-field
consolidation ratio is low, say pe/ps <ca. 1.5.

The deformability of piles could be taken into account by elastic or elasto-
plastic relations for the solid. As with penetration (Fig. 13.3.9) it reduces the
ground resistance under and near the foot as this is less displaced than the
head. Inertial effects influence evolutions with impacts or vibrations imposed
from the pile head or the deeper ground. As with penetrations the diffusion
of pore water is first negligible, and for rapid monotonous pile displacements
the soil inertia may often be neglected. The radiation of shear waves from the
shaft and of pressure waves from the foot plays a role for repeated impacts or
vibrations, both can lead to asymptotic state cycle fields. The propagation of
longitudinal waves in elastic piles is damped by soil hysteresis and radiation
of waves.

The diffusion of pore water matters for durations of pile loading that reach
or exceed the diffusion time td. This is shorter if the ground is drained via
the pile. The diffusion may be neglected for the vicinity of the shaft as far as
the pore water can get relaxed due to a small gas content. The foot resistance
Ff increases by consolidation for times reaching or exceeding td. With dead
loads over times t > td creep velocities can thus be reduced considerably. With
long-term negative dead loads and initial consolidation ratios pe/ps > ca. 4 a
suction with respect to the far-field, pwf − pwn > 0, is reduced by dilation.
This shear-enhanced swelling can lead to a pull-out collapse after loading times
t > td. Reversals with small amplitudes in between enhance the consolidation
for durations t > td, with big amplitudes they enhance the average dilation
up to a collapse.

Gas inclusions can play another role than during the placement by pen-
etration (Sect. 14.3) due to the solubility (Sects. 6.1 and 6.3). Minute gas
bubbles between solid particles can be taken into account by assuming a com-
pressible pore fluid with allowance for the pw-dependent solubility. Cavitation
may be assumed at the pile foot for pw = 0 as imperfections prevent more
suction there, this yields a lower bound for Ff if the foot is pulled up. Gas
channels can arise by opening of latent fissures and along shafts pulled up,
this reduces suction and enhances swelling with diffusion. The influence of
partly dry crack systems or other gas channels above the groundwater table
cannot yet be quantified.

Except for gas channels evolutions with piles in peloid ground could be
simulated with v-elp or v-hyp for monotonous pile displacements, and with v-
elp-α or v-hyp-δ if there are reversals. Given axial symmetry, such simulations
would be the more realistic the better initial composition and state after
placement are known. Validations could be obtained with good data sets,
these could more easily be attained with lab model tests than with load tests
in situ.
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Fig. 14.4.9. Pile in composite ground with soft peloid (a), forces versus time (b),
same with sand layer in stiff clay (c, d)

Axi-symmetric interactions of piles with composite ground cannot be cap-
tured as precisely as when the ground consists of psammoid or peloid only.
Two cases with three layers may illustrate what can happen, Fig. 14.4.9.
A pile may stand in dense psammoid under unconsolidated peloid with a
young psammoid cover in groundwater, and may carry a permanent positive
dead load (a). After placement and loading the on-going consolidation of the
peloid layer by pore water diffusion and skeleton creep (Sect. 11.3) causes a
negative shaft friction in the peloid and the psammoid on top, Fmc < 0 and
Fm2 < 0. The pile sinks further therefore into the competent base layer, but
how much in the course of time?

The downward displacement of ground relative to the pile after its loading
is zero at the peloid base and biggest at the top layer. Therefore the drag
shaft forces Fm1 and Fm2 increase up to nearly stationary values (b), while
the resistance Fm3 +Ff3 of the competent layer increases (otherwise Fm1 and
Fm2 would not get negative). The pull-out resistance Fm1 can be determined
as explained with Fig. 14.4.2. The initial one of the peloid can be determined
without seepage as explained with Fig. 14.4.6. With the initial shear rever-
sal near the shaft of a driven pile the required relative displacement up to
stationary Fm1 and Fm2 is bigger than without it as for a bored pile. Excess
pore pressures after loading the pile may be excluded by drainage and waiting
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time. The negative Fm cannot further increase thereafter although the shear-
ing resistance would increase due to densification with constant shearing rate
D as it would decrease with constant e by decreasing D due to stabilizing
creep. Thus the pile tends to a state of rest if it is not plastified near the
foot.

An opposite layering, which may include a peloid crust, leads to other
evolutions, Fig. 14.4.9c and d. With a positive permanent dead load (A) creep
goes on in the base layer, and is slowed down by consolidation under the foot.
This enhances the upper shaft resistances Fm1 and Fm2 as the far-field base
of these layers does not subside, but both cannot exceed their stationary
asymptotes. With a negative permanent dead load (B) the upwards creep of
the pile is impeded by negative friction Fm1 < 0 and Fm2 < 0 as long as their
amounts increase, the far-field base of these layers is not lifted.

Such cases could be simulated by combining elp and v-elp or hyp and
v-hyp for monotonous evolutions, coupling with pore water requires further
boundary conditions (Sect. 10.3). With reversals elp-α and v-elp-α or hyp-
δ and v-hyp-δ could similarly be employed. Shaft and foot forces may be
determined separately as indicated with Fig. 14.4.1, but similar simplifications
for interfaces of layers are not advisable as their consequences can hardly be
judged. Packages of several layers may be substituted by composites (Sect.
9.2), in particular for sandwich ground. As thus a layered ground cannot be
captured as well as homogeneous ones caution and judgment are required in
evaluations of load tests and predictions for design.

To sum up, interactions of vertical piles with horizontal layers for axial
loads can be captured with axial symmetry, and attractors are of use for sim-
plifications and validations. Shaft and foot resistances Fm and Fs of psammoid
ground are enhanced by low relative void ratios re and hard grains. Fm and
Ff have lower amounts with reversals, the more if the amplitudes are small.
Fm and Ff are smaller with peloid ground as its particles are softer, and
argotropic so that creep and relaxation can occur. Monotonous pile displace-
ments can lead to state limits in the near-field, with reversals state cycles can
be attained. The approach to these attractors is less determinate with layers.
Axi-symmetric near-fields can be attained by axial loading and can hardly get
lost by shear localization or cracking.

14.5 Silos

Storage and flow of soil-like materials in axi-symmetric vessels or silos can be
axi-symmetric, but this symmetry can get lost spontaneously. Attractors are
of use for such cases to strengthen mechanical models, to validate them by
experiments, to understand limitations and to improve them.

Beginning with dry psammoids, slow motions in rigid cylinders may first
be considered, Fig. 14.5.1. In a setup (a) a rigid bottom may be attached to
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Fig. 14.5.1. Cylinder with granular fill (a), wall pressures with lifted cylinder (b),
near-wall shearing with lifted and lowered cylinder (c), jamming (d)

a force transducer, the wall may be movable and smooth or rough (cf. Sect.
10.3), and granular material may be placed with a horizontal free surface
and a desired density (cf. Sect. 12.1). During and after filling the skeleton
is partly suspended by wall friction so that its stress state is independent of
depth z except for the vicinity of base and free surface (b). As outlined with
Fig. 13.7.1 the horizontally averaged vertical pressure σv can be approximated
by Janssen’s (1895) formula

σv =
γ

M
[1 − exp(−Mz)] (14.5.1)

with the constant factor M = 4K tan ϕw/d. Therein the wall friction angle
ϕw may be given by wall roughness and critical friction angle ϕc (Sect. 10.3),
whereas relative void ratio re and stress ratios are determined by shearing at
best along the wall (Sect. 8.2). The ratio K = σh/σ̄v of normal wall pressure
σh and average vertical pressure σ̄v is not likewise determined as it depends
on the filling procedure. This historical element could principally be captured
by means of the initial void ratio eo at the rising free surface (cf. Sect. 12.1).
Settling leads to shearing of a narrow zone along the wall and determines
e there, whereas it is reduced from eo by the increase of the mean pressure
p with depth which may be estimated by (14.5.1). But how to get K, and
when and where will sliding occur with the average amount of shear stress
|τ̄ | = σh tan ϕw?

A slow granular flow can be produced by lifting the wall relative to the
fixed bottom, Fig. 14.5.1c. The resultant bottom force Fvh = σvhπd2/4 can
be measured for different filling heights h. Back-analyses with (14.5.1) can
thus lead to K and can confirm the uniformity of state over the major part of
depth (Tejchman 1997). A stationary granular flow could as well be produced
by opening a bottom sieve and adding grains through a top sieve with the same
mass flow. With such a generation and decay of the grain skeleton its state
will differ near top and bottom from the one produced without sieves, but
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hardly over the major part of depth. This kind of attractor could be observed
by measuring resultant forces at bottom and/or cylinder with different filling
heights h and initial relative void ratios reo. Higher reo are obtained by bigger
intensities of pluviation, e.g. via wider sieves (cf. Sect. 12.1).

The grain skeleton can be jammed into the cylinder by pulling this down
relative to the bottom, Fig. 14.5.1d. As with a passive trap door (Fig. 13.7.1b)
wall shear stress τw and specific weight γ act in the same direction. Janssen’s
(1895) assumption and the equilibrium of discs as by (13.7.1) would lead to
an exponential increase of the horizontally averaged vertical pressure σ̄ from
the free surface downwards, i.e. (14.5.1) would hold with + instead of −.
This can at best be valid up to a certain depth as the mean bottom pressure
σ̄vh is bounded by the capacity of the device to pull the cylinder. Janssen’s
approach gets invalid for the major part of the fill as this does not slide past the
cylinder.

Slow axial displacement cycles of the bottom relative to the cylinder lead
to state cycles in the skeleton, Fig. 14.5.2a. The latter may be represented as
in Sect. 4.4 for cyclic shearing of a boundary zone of thickness ds (insert). This
substitutes a zone with polar quantities (Sect. 8.2), so ds and attainable stress
ratio |τw| /σw increase with grain size dg, wall roughness dw and neighboured
relative void ratio re. With a big amplitude (A) and a rough wall (dw ≈ dg)
the stress path near the wall (b) approaches an asymptotic cycle temporarily.
Downward shearing of the skeleton past the wall jams a not too loose skeleton
more than upwards shearing, in both cases the dilation is impeded. Upward
shearing can lead to monotonous granular flow, downward shearing causes a
stronger stressing up to states as explained with Fig. 14.4.1d.

With a small amplitude (B) state limits with overcritical stress ratio |τ | /σ
and impeded dilation are never reached. If the skeleton is not very dense after
filling it gets denser in the transition to such asymptotic cycles. The average
asymptotic stress ratio |τ̄ |/σw over a cycle is lower than tan ϕw. This means
that the average vertical pressure σ̄v increases almost linearly with depth, and
that the skeleton is compressed by its weight (cf. Sect. 11.1). In other words,
small cycles relax the skeleton and reduce thus the average wall friction. This
resembles the response of a saturated RSE to cyclic shearing without drainage
(Sect. 4.2). There skeleton deformations are constrained by the pore water,
here by the cylinder.

A stationary ratcheting of the cylinder upwards past the base (14.5.1c),
with a low frequency fc so that inertial effects may be neglected, leads also
to asymptotic state cycles. With a big amplitude (A) stress cycles near the
wall (d) can attain dilatant state limits in upwards sections if the fill is not
loose and the wall is rough. Thus the skeleton is repeatedly stressed as its
dilation is impeded by its hardly deformed interior part. In upwards intervals
a state limit can be attained near the wall as for monotonous granular flow, in
downwards intervals the skeleton gets jammed as explained with Fig. 14.5.1d.
This means that a stationary ratcheting of the cylinder downwards past the
bottom is not possible.
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Fig. 14.5.2. Cylinder with granular fill and cyclic displacement (a), attained stress
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With a small amplitude (B) the asymptotic stress cycles are still asym-
metric, but dilatant state limits are never attained. Thus the skeleton is not
stressed by the gradually increased shearing along the wall, and its average
stress ratio |τ̄w| /σw over one cycle is well below the wall friction ratio tan ϕw.
Even with a rough wall the average vertical pressure σ̄v increases therefore
almost linearly with depth as without wall friction. A similar ‘cyclic mobility’
occurs with a saturated undrained RSE (cf. Fig. 4.3.7) where skeleton rear-
rangements are confined by the pore water, here average radial strains are
prevented by the wall.

Other slow evolutions would occur with deformable walls. These can be
punctuated and scratched by hard grains so that ϕw increases, but ϕw can also
decrease by creep if the wall material is viscous (cf. Sect. 3.1). The cylinder
is expanded by an increasing wall pressure σw, thus the dilation by shearing
along the wall is less impeded. With reversals of the fill the cylinder could swell
and shrink, this would modify the asymptotic cycles. With big amplitudes
jamming would occur after a bigger displacement than with a rigid wall due
to bulging.

Slow evolutions as indicated with Fig. 14.5.1 can be observed in model
tests, and could be simulated with elp or hyp without and elp-α or hyp-δ with
reversals. Polar effects should be taken into account if the cylinder diameter
does not exceed about 100 grain diameters, i.e. for d < ca. 100dg (Tejchman
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1997). Then the wall roughness enters the boundary condition (Sect. 8.2),
otherwise |τ | /σ cannot exceed tan ϕw at the wall (Sect. 10.3). The granulate
hardness hs should be lower in model tests by the same scaling factor as
lengths in order to get the same strains as in prototype silos. The density
after filling can be controlled by a top sieve. Axial forces and displacements
could be used for validation if the attractors outlined with Figs. 14.5.1 and
14.5.2 are attained both in experiments and simulations. Local pressures can
hardly be measured without disturbance, but asymptotic void ratios could be
observed via X-ray tomography.

Inertial effects could also be investigated with dry psammoid in a rigid
cylinder, Fig. 14.5.3. Axially symmetric motions with relevant accelerations
of the skeleton can be imposed via cylinder or bottom, and can also arise
spontaneously. Extending Janssen’s (1895) idea we consider wall stresses, av-
erage axial stresses T̄z and displacements ūz of a representative disc (a). The
balance of axial momentum requires

dT̄z

dz
− γ

g

d2ūz

dt2
+ γ − 4

Tzrw

d
= 0. (14.5.2)

Therein the wall shear stress Tzrw may be proportional to the axial one via
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Tzrw = −sgn
(

dūz

dt

)
KT̄zK tan ϕw (14.5.3)

in case of monotonous shearing past the wall. The axial deformability is suf-
ficiently determined by T̄z and e only if the skeleton was initially at a state
limit. Other than in a free-field (Sect. 11.4) the longitudinal wave propaga-
tion is damped by wall friction, the energy input required for a certain reach
of propagation could thus be estimated. Numerical simulations with (14.5.2),
(14.5.3) and adapted elp or hyp parameters are at most worth the effect if a
single propagation can be achieved with wall slip in an experiment for valida-
tion.

Equation (14.5.3) gets invalid for other than monotonous evolutions, with
or without wall slip, as the stress ratios Tr/T̄z and Tzrw/Trw switch during a
propagation. In a less simplified approach one may assume representative discs
with sheared rings which are uniform with respect to states and deformations,
Fig. 14.5.3b. Less specified and without inertia this was similarly assumed in
the explanations above with Figs. 14.5.1 and 14.5.2. With d > 100 dg to avoid
polar effects, and with a shear zone thickness ds/dg ≈ 2 to 10 (Sect. 8.2)
according to wall roughness and void ratio, weight and inertia of the shear
zone may be attributed to the disc or neglected (cf. Sect. 14.3). The following
outline is rather qualitative and refers to the simpler disc-ring model. Quan-
tifications could principally be achieved by simulations with hyp-δ and p-hyp,
but these could only be justified by more general axi-symmetric simulations
and validation experiments.

Lifting the cylinder relative to the bottom with a constant velocity vo can
lead to stick-slip, and thus to repeated longitudinal waves in the psammoid
column, Fig. 14.5.3c. With suitable combinations of diameter d, height h,
grain size dg, wall roughness dw, initial relative void ratio reo and upwards
wall velocity vo this can lead to a rather periodic silo music (Tejchman 1997).
Outside this range chaotic silo quakes can occur, or a stationary flow without
such autogeneous shocks. This response has characteristic power spectra in

a)

b)

Fig. 14.5.4. Stick-slip models with (a) and without (b) changing transversal
pressure
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a double-log plot, Fig. 14.5.3d. The leading frequency of the music (M) is
inversely proportional to the column height, fc ∼ 1/h, the spectra of higher
frequencies are weaker and tend to a white noise. The power spectrum of
silo quakes (Q), i.e. of autogeneous chaotic motions, has P ∼ 1/fc as known
for earthquakes. The acoustic emission of a stationary motion (A) has also
P ∼ 1/fc, but with a far higher upper bound of fc which increases with 1/dg.

Similar spectra can also be generated with simpler models, Fig. 14.5.4.
A chain of elastic elements (a) with Coulomb wall friction (Tejchman 1997)
works like a cork shifted past the neck of a bottle. A narrow zone between
an elastic column and the wall (b) can melt by shearing and freeze by stick-
ing (Persson 2000b), like colophonium at the string of a violin. Such sub-
stitutes could lead to qualitatively realistic spectra although barotropy and
pyknotropy of psammoids are ignored.

Simulations with hyp-δ and disc-ring elements (Fig. 14.5.3b) could be more
realistic, but are numerically intricate as the equations can get ill-posed. They
should yield three kinds of attractors as in experiments: state limits, state
cycles and strange attractors. The latter are as hard to capture numerically as
the transition from dynamic pattern formation (music) to deterministic chaos
(quakes) in experiments. A qualitative agreement could at best be achieved
with suitable ratios of disc and ring sizes, but at least the influence of dominant
parameters could thus be identified.

Rapid cycles of axial cylinder displacements relative to the bottom can lead
to a periodic response. With a small amplitude or/and a smooth wall the wall
stress obliquity |τw| /σw is always subcritical. As outlined with Fig. 14.5.2a
for quasi-static motions the skeleton remains in the contractant regime, so it
is densified and relaxed in the transition. The asymptotic cycles resemble the
ones without inertia, but are distorted due to the repeated wave propagation
(cf. Sect. 11.4). With a bigger amplitude and a rough wall the skeleton can
approach dilatant state limits as part of state cycles (cf. Fig. 14.5.2b). With
too big amplitudes and rough walls the response gets chaotic due to repeated
jamming.

Rapid ratcheting can be obtained with suitable amplitudes and frequencies.
As for quasi-static cases (cf. Fig. 14.5.2c), i.e. with low frequencies or wait-
ing intervals, a cumulative downward motion of a rough wall relative to the
bottom is prevented by jamming. Otherwise asymptotic cycles of representa-
tive discs and rings are similar as without inertia (Fig. 14.5.2d), but distorted
by wave propagations. With low frequencies, big amplitudes and rough walls,
so that dilatant state limits are approached repeatedly, the response can get
chaotic with repeated jamming. Autogeneous frequencies arise in addition to
imposed ones. As with penetration (Sect. 14.3) period-doubling can indicate
a deterministic chaos (cf. Vielsack and Hartung 1999).

Evolutions with displacement cycles or ratcheting can principally be simu-
lated with disc-ring elements and hyp-δ. Jamming and autogeneous stick-slip
are numerically as intriguing as experimentally. Quasi-static evolutions are
comprehended, for them reversals are transmitted by propagations of waves
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and separated by waiting intervals. Simulations with disc-ring elements are
debatable as the assumed shear zone thickness is actually part of the solu-
tion. More adequate models with polar quantities are hardly feasible with the
big required number of finite elements. Tejchman’s (1997) finding that polar
effects are negligible for d/dg > ca. 102 may also be questioned. Investigations
with cylindrical silos may help to understand the dynamics of shear bands
along walls beyond what is proposed in Sects. 8.2 and 10.3.

The response to irregular reversals could be qualitatively explained by
means of seismo-hypoplasticity (Sect. 4.6). The cylinder may be shaken chaot-
ically without (A) or with cumulative axial displacement (B) relative to the
bottom. Irregular torsion with zero average may be included so that shearing
along the wall is as erratic as upon an incline (cf. Fig. 4.6.1). Weak shaking
without average displacement implies substantial average shearing amplitudes
at the wall. This means a high granular temperature Tg and a substantial
entropic pressure pd (Sect. 4.6). Similarly as with pore water the skeleton
pressure ps enabling friction is reduced to ps − pd, with this kind of wall lu-
brication the average vertical pressure can get almost hydrostatic. This was
observed by Tejchman (1997) with a hanging cylinder and a bottom plate on
a scales: after some kicks at the cylinder the bottom took over the weight of
the granular column.

If the cylinder slides monotonously upwards past the granular column and
the bottom the acoustic emission from the ring shear zone represents a basic
or reference granular temperature Tg. It may be estimated with (14.5.1) and a
factor K adapted to experiments. The required shear zone thickness ds, which
increases with the wall roughness dw and the relative void ratio reo off the
wall, can be estimated as outlined above with Fig. 14.5.1. If the cylinder is
shaken with high energy and without average displacement Tg pulsates with
the imposed frequency fc. An entropic pressure pd arises with the same rhythm
and reduces the wall friction via ps = p−pd. Back-analyses of such experiments
with s-hyp may be of use to quantify relations for Tg (cf. Sect. 4.6).

An axi-symmetric convergent flow of dry psammoids can be achieved with
suitable silos, Fig. 14.5.5. In a kind of hourglass the wall is smooth and rounded
along the neck (a). The lower cylinder can have any height hl as its extension
would not change the state of convected granular discs. Without a bottom the
discharge velocity vo is determined by the diameter dl via

vo = κ
√

gdl (14.5.4)

with g = 9.81m/s2 and an empirical factor κ (Wieghardt 1952). The skeleton
leaves the neck with the ps-dependent critical void ratio e = ec as it is strongly
deformed. It would be dilated with shear localization if it enters the neck with
e < ec. A succession of helical shear bands (as in a triaxial test, cf. Fig. 14.1.2)
would lead to a loss of axial symmetry. The repeated come and go of shear
bands leads to pressure jumps at the confining neck. Stationary flow can be
achieved therefore only if the psammoid is filled with e ≈ eco for ps = 0. The



14.5 Silos 695

dl/ 2

V0

hu

hl

du/ 2

V0

hl

a) b) c)

d) e) f)

Fig. 14.5.5. Convergent granular flow: hourglass (a), funnel (b), radial stress field
(c), hopper (d), pressures by flow (e), ring hopper (f)

pressure level above the neck is given by the upper diameter du and does not
depend on the upper height hu, this is expressed by (14.5.1).

A steady discharge can also be obtained with a funnel, Fig. 14.5.5b. The
wall should be smooth and rounded at the transition to the cylinder below.
The rate of discharge is given by (14.5.4), the lower height hl does not matter.
As with an hourglass a uniform convergent flow is only obtained with loose
filling, i.e. e ≈ ec at the onset (Revushenko 2006). Otherwise a helical flow
appears at the surface (Fig. 14.2.8), and shear bands can be traced by means
of markers. A radial limit stress field may be assumed for e ≈ ec with p = 0
at the fictitious apex (c). With two equal major principal stress ratios (cf.
Sect. 14.2) one can thus estimate wall pressures and allowable combinations
of cone angle β and wall friction angle ϕw (Jenike 1964). This is no more
justified with e < ec as then the axial symmetry gets lost and the wall pres-
sures jump, and as overcritical stress ratios change with space and time (cf.
Fig. 13.3.2a).

A usual hopper consists of a cylinder, a cone and a discharge unit,
Fig. 14.5.5f. The latter serves to extract granular material with a controlled
rate and is also called dosimeter. It is rarely axi-symmetric, but above it the
granular flow can be so if the void ratio in the cylinder is about critical.
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Then an almost radial limit stress field can arise in the cone and remain dur-
ing a continued discharge. Near the transition to the cylinder, however, the
skeleton pressure p can be bigger and irregular (e) even with e ≈ ec. This so-
called switch can be reduced by a smooth constriction of the wall (Tejchman
1997). With e < ec near the neck the granular flow cannot get stationary, and
pressure jumps can damage the vessel. Silo music or quakes can arise in the
cylinder. A more regular granular flow may be achieved by vibrations, shocks
or injection of air, but such attempts can fail.

A ring hopper renders possible a better control, Fig. 14.5.5h. Conveyers
and a free conical slope near the conical wall can produce an almost axi-
symmetric uniform discharge. The walls should be smooth, the transition to
the cone should be rounded. The filling device should again produce e ≈ ec

as otherwise flow and pressures get irregular.
Evolutions of dry grain skeletons as indicated with Fig. 14.5.5f may be sim-

ulated with elastoplastic or hypoplastic relations, but axial symmetry cannot
be taken for granted. The walls should have ϕw < ϕc so that stick or slip
is captured by (10.3.2), polar effects should be avoided with small enough
grains. Strong curvatures of walls should be avoided as otherwise singularities
would cause insurmountable numerical problems. An initial state can be gen-
erated by imposing gravity to a loose skeleton (cf. Sect. 12.1). A stationary
granular flow may be achieved by maintaining a very low skeleton pressure
at stationary free surfaces above and below. With this substitute of filling
and emptying, i.e. rise and loss of skeleton, a kind of state limit field could
be achieved with suitable shapes of silos. Such attractors could be delimited
and validated by model tests, they could reveal whether elp or hyp is more
competitive (Tejchman 1997) and when radial limit stress fields or pressures
by (14.5.1) are justified.

The equations can get ill-conditioned so that numerical simulations are
impossible. Inertial terms may improve (‘regularize’) them, but this is no
more legitimate for a rapid granular flow as then the skeleton goes over into
a granular fluid or gas. Jamming due to unsuitable walls may be obtained
realistically, but subsequent quakes can hardly be captured as they imply
strong fluctuations of pressure and density. With lower than critical void ratios
shear localizations cause also mesh-dependence and ill-posedness. Alongside
with a regularization by polar terms the axial symmetry has to be abandoned,
strange attractors are outside the present reach.

The pore fluid of psammoids in silos is more often a gas than a liquid.
(6.2.11) and (6.2.12) may be used to estimate the influence of pore gas dif-
fusion, which evidently plays a bigger role with finer grains and more rapid
flow. Other than with saturation by a liquid a granular flow without seepage
of gas is not isochoric, and changes of void ratio and pore pressure are related
by the gas equation. The elastic pore gas can enhance silo music or quakes
during a discharge (Tejchman 1997).

Pressurized pore gas can suddenly evade via channels with erosion if the
skeleton is loose, such localizations (cf. Sect. 8.4) mean a spontaneous loss
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of symmetry. With a small fraction of a suitable pore liquid the capillary
skeleton pressure pcs (Sect. 6.2) renders possible cavities after partial discharge
(cf. Sect. 14.2). Lumps can fall repeatedly and damage lower parts of the
vessel. Such a deterministic chaos can hardly be captured (Tejchman 1997)
and should better be avoided by technical means.

Peloids in silos are more often dry than wet. Without pore liquid and
net interparticle forces (cf. Sect. 6.3) a dry fine powder with soft grains is
pyknotropic, barotropic and argotropic like clays (cf. Sect. 3.2), but more
compressible than saturated clay without seepage. After filling and a sufficient
resting time the powder is consolidated, after opening the dosimeter it can
flow without further seepage. If it was not consolidated too much the outflow
is enhanced by the decrease of skeleton pressure ps = p − pg as the skeleton
tends to contract (cf. Sect. 3.2). The elasticity of the pore gas enhances silo
music and quakes during the outflow. This can reduce ps along the walls up
to a skeleton decay and the formation of a granular gas so that the pressure
in the lower part rises and gets nearly isotropic.

Such evolutions could at best partly be simulated with v-elp or v-hyp with-
out and v-elp-α or v-hyp-δ with reversals in the skeleton. Coupling with the
elastic pore gas could be taken into account with diffusion for waiting times
and without it for flow. Model tests can serve for validation, the solid hard-
ness hs (cf. Sect. 3.4) should be reduced as lengths for getting deformations
as in prototype silos. A mechanically similar compressibility of the pore gas is
obtained by reducing its average pressure by the same factor as lengths. Dif-
fusion times are proportional to the square of length by (11.1.16) and shorter
therefore in small-scale tests.

The convective acceleration in a convergent flow is approximately

a ≈ v2
o/hn (14.5.5)

with outlet velocity vo and neck height hn, Fig. 14.5.6. A desired ratio of
inertial force and weight a/g can thus be achieved via vo, which in turn is

V0

hn

v

v0t /hn

Vu

V

10

a) b)

Fig. 14.5.6. Convergent peloid flow (a), flow velocity versus time (b)
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controlled mainly by the input void ratio and the outlet width. Limit state
fields with negligible or moderate inertial effects may thus be captured.

Asymptotic cyclic state fields can principally be attained by displacement
cycles or ratcheting of a cylinder relative to a bottom. In case of sinusoidal
motions accelerations may be estimated from amplitude and frequency. The
propagation velocity of longitudinal waves can be estimated by means of gas
pressure and void ratio as it is dominated by the elasticity of the pore gas.
One may thus delimit quasi-static evolutions for which waves come to rest in
intervals between reversals. Simulations with disc and ring (Fig. 14.5.3a) may
be of use for identifying state cycles. Silo music or quakes could thus also be
captured without a spontaneous loss of axial symmetry.

Powders with net repulsion (pn > 0, Sect. 6.3) due to equal electrical
charge of particles can lead to interesting extreme cases in silos. Free surfaces
get horizontal as the repulsive force of each particle exceeds its weight. For all
that the material is not a liquid as anisotropic pressure states of rest can exist
in a skeleton with purely normal contact forces. Thermal oscillations cannot
mobilize particles of more than ca. 10−6 m size. The granular temperature Tg

can play a similar role as the ordinary one if the total pressure is transmitted
by repulsion so that there is no dissipation at solid contacts. Then the skeleton
has a seismic heat capacity, seismic heat is conducted as ordinary heat in a
liquid, and mechanical energy is dissipated as in a viscous liquid. Avoiding
free surfaces by top and bottom plates, silo model tests with such materials
may thus be worth the effort.

The discharge of powders with substantial net attraction (pn < 0) from
silos can hardly be controlled. Void ratios are higher by consolidation after
filling than without pn, which can result from an excess of van der Waals
forces or from capillary bridges due to a low liquid content (cf. Sects. 6.2, 7.1
and 7.3). If −pn attains about γdl/4 with specific weight γ and outlet size
dl cavities can just stand or collapse (cf. Sect. 14.2). The discharge can be
enhanced by vibrations, shocks or injection of air, but successfully at best by
trial and error. This is not further outlined here as strange attractors with
the required loss of axial symmetry are out of reach.

A stationary flow of pastes can be achieved in silos if the e-equivalent
pressure pe does not exceed about γdl/4, Fig. 14.5.7. The weight of the
upper cylinder with diameter d and height h is compensated by the wall
adhesion

τa = γd/4. (14.5.6)
τa attains the cohesion cu without drainage at a rough wall and is lower
otherwise (Sect. 10.3). cu is proportional to pe tan ϕc and to (D/Dr)Iv by
(13.2.1), the rate of shearing may be estimated as D ≈ vo/10 d with flow
velocity vo. The extrusion by weight has a velocity

vo ≈ κdlDr(γdl/pe tan ϕc)1/Iv (14.5.7)

with a prefactor κ depending on dimensionless geometrical and material pa-
rameters. This corresponds to (13.3.3) and means that a minor change of e
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V0

h d/2 τa

Fig. 14.5.7. Convergent peloid flow

causes a drastic change of discharge velocity. The rate of discharge can be
controlled by a dosimeter, then an argotropic state limit can be attained both
in experiments and simulations. This works also with a low gas content and
related changes of pressure and density without seepage (cf. Sect. 12.2). Sen-
sitive peloids (cf. Sect. 3.2) and higher gas contents are left aside as with them
the axial symmetry gets lost easily.

To sum up, storage and flow in silos could be captured with elastoplastic
or hypoplastic relations and axial symmetry in a number of cases, this may be
judged my means of attractors. Stationary flow can be achieved with suitable
silo shapes and not too low void ratios by filling, only then stress fields in
cylindrical and convergent parts may be statically estimated. Dry powders
can be captured as peloids with an elastic pore fluid. Asymptotic state cycles
can be achieved by moving cylinders past a bottom with reversals, the average
wall friction is more reduced with small amplitudes. If the fill tends to dilate
by shearing a slow convergent flow leads to helical shear bands and strong
pressure fluctuations. Stick-slip during a discharge can lead to silo music or
quakes. Such critical phenomena imply a spontaneous loss of axial symmetry
and impede likewise technical operations and numerical simulations.

14.6 Torsion

Axi-symmetric evolutions can be produced by torsion of solid bodies past
psammoid or peloid. The following outline begins with plane-parallel evo-
lutions, i.e. with spatial variations only along the radius r. Other than with
radial symmetry as treated in Sect. 11.7 there are circumferential velocities vΘ

and hoop shear stresses TrΘ. Plane-parallel state limits and asymptotic cycles
could be worth the effort. The axial symmetry can get lost spontaneously.

A ring-shaped dry psammoid body can be twisted in a kind of Couette
device, Fig. 14.6.1. The grain skeleton is fixed at an outer cylinder (r = rb),
sheared by a rough inner one (r = ra) and axially confined by a smooth rigid
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base and a smooth top ring (a, b). The latter is kept with a transducer for
the resulting axial skeleton force

Fz = −π

b∫

a

Tzzrdr (14.6.1)

so that the height h (I) or the axial force Fz (II) is constant. The initial state
may be uniform with the stress components Trr = Tzz = KoTzz as in an
oedometer (Sect. 2.5), and a relative void ratio reo. The skeleton weight may
be negligible, i.e. −Tzz  γh holds throughout.

The angular position Θ of the inner cylinder may be slowly changed with-
out reversal (A), with cycles (B) or by ratcheting (C). The torque

h
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Fig. 14.6.1. Torsion of an annular psammoid sample (a, b); evolution of torque
(c) and axial force (d) or height with torsion (e); asymptotes of axial force (f) and
height (g) versus torque
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T = 2πhraTrΘa = 2πhrbTrΘb (14.6.2)

at the inner or outer cylinder changes with Θ (c). For monotonous torsion it
attains a plateau (I) or a peak (II), with Θ-cycles T vs. Θ tends to a periodic
hysteresis, with ratcheting the plot tends to saw-teeth. These asymptotic re-
sponses indicate attractors, i.e. the skeleton state field tends to state limits
or state cycles. With constant height (I) the related axial force Fz (d) gets
stationary (A), Fz vs. Θ tends to a butterfly (B) or to a garland (C). With
constant Fz and |Θ̇| the height (e) gets stationary (IA), h vs. Θ tends to a
butterfly (B) or to a garland (C).

The attractors can also be represented by limit state points (A) or asymp-
totic cycles (B, C) in plots of Fz vs. T (f) and h vs. T (g) with labels for the
mode. With h=const and a dense hard-grained skeleton, i.e. with low reo and
high hs (Sect. 2.2), the mean pressure p can grow so much by monotonous
torsion that grains break. With h =const and high hs, but bigger reo the
skeleton would decay by reversals with small amplitude (cf. Sect. 4.2), this
is excluded here. With Fz =const the height h, which substitutes the av-
erage void ratio ē via re and eo (Sect. 2.2), attains a critical value hc by
monotonous torsion. With reversals the average h̄ over one cycle tends to an
asymptotic value which is lower without ratcheting, h̄B < h̄C , and for lower
amplitudes. The stress components of convected and co-rotated RSEs are
stationary.

State limit fields could be calculated straightforward or via evolutions. The
stress components of convected and co-rotated RSEs are stationary. The radial
distribution of all stress components is determined by the pressure pa at the
inner cylinder, this implies (14.6.2). The r-dependence of the circumferential
velocity vΘ is confined by boundary values. Transitions to such attractors
start at the inner cylinder with the onset of its rotation. They imply radial
displacements off the walls, and axial ones in case of a constant axial force
Fz except for the base. This means a radial redistribution of the void ratio e,
with constant average ē for h=const and with an adaption of ē for Fz=const.
Starting with any initial e (r) and Tij (r), numerical simulations should lead
to stationary state limit fields.

Calculations of asymptotic cycle fields would be more expensive. Cyclic
stress paths of RSEs should be similar for different r due to equilibrium.
They resemble symmetric butterflies for cyclic torsion and skew lenses for
ratcheting. The asymptotic cycles are determined by zero accumulation for
each one of them. Combined with the conservation laws and boundary condi-
tions this leads to a set of implicit equations for r-dependent asymptotic cycle
fields with reversals. They depend on the amplitudes and on the initial average
void ratio ē for h =const or the given Fz as outlined with Fig. 14.6.1c, d.

Calculating transitions to such asymptotic cycle field gets the more ex-
pensive the more the initial average pressure p̄ (I) or void ratio ē (II) deviates
from the asymptotic values. With small amplitudes the required number of
reversals to attain the periodic asymptote can get big. Caution is needed to
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avoid the numerical accumulation of rounding errors, steps between reversals
should be small because of the material non-linearity (cf. Sect. 4.6).

Numerical studies of this kind could be of use before turning to attractors
without plane-parallelity. Validation experiments require sensitive gaps be-
tween the annular disc and the walls as shown in the insert of Fig. 14.6.1a. A
control of the axial force Fz could safeguard that the skeleton does not decay
and the grains are not crushed. The main objective should be to get asymp-
totic responses. The annular disc has to be fixed against torsion as a minor
friction along it (and likewise along the base) cannot be avoided. The resul-
tant frictional torque at the disc should be measured and taken into account
as a circumferential mass force in back-analyses.

Pore water could be added in such tests and allowed for in simulations. The
rough walls can be open or closed for seepage, the smooth discs are impervious.
With full saturation the pore water pressure pw could be kept constant, then
only the granulate hardness hs (Sect. 2.2) is reduced by wetting (Sect. 6.2).
Without wall drainage pw is r-independent as long as skeleton velocities are
far smaller than the permeability, i.e. for |vΘ| � kf . Then pw changes by
torsion, can be measured at the outer cylinder and influences the skeleton
pressure via ps = p − pw, while the sample height h is constant. With gas
inclusions h can change without drainage, their spatial distribution can be
non-uniform (Sect. 6.2).
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Fig. 14.6.2. Torsion of an annular peloid sample (a, b), stress ratios (c) and pore
pressures (d) versus torsion
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Plane-parallel torsion tests with saturated peloids can be simpler than with
psammoids as long as drainage can be excluded, Fig. 14.6.2. The top ring could
even be omitted, the rough walls are impervious, pw can be measured at one
of them (a). At the beginning the ring-shaped sample should have a uniform e
and ps ≈ −pw  γh by suction, evaporation can be avoided by short exposure
times. Torsion by changing the angular position Θ of the inner wall (b) may
again be imposed monotonously (A), cyclically (B) or with ratcheting (C).
The argotropy is revealed by different responses to slow (I) and fast twisting
(II). This can be expressed for the attractors by

T = Tr

(∣
∣
∣Θ̇

∣
∣
∣ /Dr

)Iv

(14.6.3)

for the torsional resistance T , with T = Tr for
∣
∣
∣Θ̇

∣
∣
∣ = Dr.

In the plot of T vs. Θ (c) monotonous torsion leads to an asymptote (A)
with T = Tc depending on Θ̇ by (14.6.3). Ductility is thus assumed. The
skeleton pressure would be (cf. Sect. 3.8)

ps = pe

(∣
∣
∣
∣
∂vΘ

∂r

∣
∣
∣
∣ /2Dr

)Iv

(14.6.4)

with the shearing rate D = 1
2∂vΘ/∂r and only tangential velocity vΘ, i.e.

vr = vz = 0. With the conservation laws the limit state field and the related
velocity field are thus determined. The asymptote of pw at r = rb (d) is
determined by the initial e-equivalent pressure peo, the initial suction pw < pa

(Sect. 6.3) is swept out during the transition.
Cyclic torsion (B) leads to a symmetric hysteresis loop in the T vs. Θ

plot (c), and to a symmetric butterfly in the pw vs. Θ plot (d). Both plots
reveal argotropy via (14.6.3), the amplitudes are proportional to peo. The
hysteresis is reduced with smaller amplitudes and is big if state limits are
repeatedly attained. Ratcheting (C) leads to garlands of T and pw vs. Θ,
both are argotropic with amplitude-dependent shape.

Implicit equations for asymptotic fields could also be obtained, now with
skeleton partial stress, conservation and boundary conditions. Transitions to
such state limit or state cycle fields start from the inner cylinder and finally
attain the outer one. Their numerical simulation is the more expensive the
more the initial average field deviates from the asymptotic one. Validation
experiments should be focussed in the attractors as the initial states are not
known in detail, only the initial average void ratio can be easily controlled.

Other torsion tests with initially uniform annular samples and negligible
gravity cannot produce plane-parallel evolutions, therefore their investigation
is more difficult, Fig. 14.6.3. In a ring shear device with smooth cylinders and
a rough annular disc twisted past a rough base (a) the shearing is concen-
trated near the top. This localization can be attributed to the inevitable wall
friction, it can be shifted to the middle height by means of horizontally split
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Fig. 14.6.3. Torsion of annular (a), cylindrical (b) and tube-shaped (c) granular
samples

cylinders (Hvorslev 1937). Asymptotic responses as shown in Figs. 14.6.1 and
14.6.2 could be obtained with psammoids and peloids. Simulations are diffi-
cult as pressures and velocities change with r and z, in particular with forced
localizations including seepage (Sect. 8.3).

A cylindrical sample can be twisted via rough plates and supported via a
circumferential membrane (b). Shearing increases roughly in proportion to r
in the middle, but less near the plates and more near their rims. Monotonous
torsion could lead to a state limit field, principally also in expensive simula-
tions. The axial symmetry can get lost spontaneously, however, due to shear
localization and uneven bulging (cf. Sect. 14.1). Cyclic torsion can lead to
axi-symmetric asymptotic cycles, these are generated with propagating waves
in resonant column devices (cf. Sect. 4.2). Torsional ratcheting could be im-
posed as long as the membrane is not wrinkled. Except for big amplitudes
shear localizations are suppressed by reversals (cf. Sects. 8.2 and 14.1). r- and
z-dependent asymptotic cycle fields can principally be simulated, this could
be of use for validations.

Hollow cylindrical samples can be twisted via rough base and top rings,
and are usually supported via inner and outer membranes, Fig. 14.6.3c. With
small ratio (rb − ra)/ra, suitable external pressure ratio pb/pa and small am-
plitudes uniform deformations may be assumed as in RSE-tests (cf. Sects. 2.8
and 3.8). The axial symmetry can get lost by shear localization and uneven
bulging, but less with moderate reversals. Leaving aside such strange attrac-
tors, investigations of r- and z-dependent asymptotic cycle fields could be
worth the effort.

Helical motions of cylindrical psammoid bodies could be generated in de-
vices as shown in Fig. 14.6.3, but hardly up to attractors. Ring shearing with
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axial shortening or lengthening would lead to jamming or decay, respectively.
Massive cylindrical samples would get a bulge or neck with axial shortening or
lengthening, respectively, by torsion without or with reversals. As in triaxial
tests (Sect. 14.1) the axial symmetry can get lost with helical shear bands, and
also with wrinkles of the membrane. State limit and state cycle fields could
hardly be attained by twisting hollow cylindrical samples beyond critical stress
obliquities, so simulations of such evolutions would be less promising.

Torsion of a solid cylinder in homogeneous ground was investigated with
dry psammoid by Cudmani (2001), Fig. 14.6.4. A rough steel tube was rotated
past the base, the ring space up to a fixed outer cylinder was filled with sand
of initially low density (a). Torsion cycles led to densification and settlement
which were stronger near the inner tube than farther away (b), and the growth
of settlements slowed down with the number of cycles (c, d). Simulations with
hyp-δ led to similar settlements after some cycles (e), and to state cycles of
near-field RSEs (f).

Further attractors could be obtained with similar devices, and calculated
with hypoplastic relations for validation. Monotonous torsion leads to limit
state near-fields with forced shear localization at the rotated cylinder, po-
lar effects may be neglected for d < 100 dg. Less rough walls and/or lower
initial density would lead to a narrower near-field. Bigger torsional cycles
would likewise enhance shear localization, smaller rapid ones would widen
the near-field by wave propagations. Torsional ratcheting would lead to more
or less narrow one-sided asymptotic near-field cycles. All that could also be
done with pore water and in situ, but the increasing complexity could impede
validations.

Such investigations are also possible by twisting non-cylindrical solid bod-
ies which are axially fixed in psammoid ground, Fig. 14.6.5. A cone (a) could
first be penetrated into the ground, and then rotated without or with rever-
sals until the response gets stationary or periodic, respectively. This could
also be done with a cylinder and a conical tip (b), then the attractors would
mainly depend on the initial near-field produced by the previous penetration
(Sect. 14.3). Club-like bodies with a driving rod (c) could thus more eas-
ily be embedded than pushed down for installation. The attractors depend
again on the near-field due to placement of the solid body, therefore back-
analyses for validation are more difficult. Pore water could also be taken into
account.

Evolutions as indicated by Figs. 14.6.4 and 14.6.5 could also be investigated
with peloids. Other than in Couette devices the fields around rotated cylinders
are no more plane-parallel because of gravity. Below a depth z ≈ 5d this
further symmetry may be assumed as long as seepage during torsion and
disturbance by placement are negligible. For the evaluations of vane shear tests
the torsion of an enclosing rough cylinder may be assumed, and a shearing
resistance τ at upper and lower horizontal planes that increases in proportion
to r, Fig. 14.6.6. The torque in a ductile peloid tends to
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Fig. 14.6.4. Torsion of a tube past surrounding sand (Cudmani 2001): setup (a),
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lated settlement versus radius after 16 cycles (e), calculated wall shear stress versus
cyclic torsion (f)

T ≈ 3.5cud3 (14.6.5)

with the usual aspect ratio h/d = 2. The argotropy of cu by (11.2.1) can be
taken into account with the shearing rate D ≈ Θ̇, this implies a shear zone of
thickness d/2 and may suffice for applications.
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Fig. 14.6.5. Penetration with torsion: cone (a), cylinder with tip (b), club (c)
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Fig. 14.6.6. Shear vane in peloid

As always with peloids attractors for torsion are argotropic. They may be
approximated by (14.6.3). Creep and relaxation play a role with resting inter-
vals after placement and during reversals, this should be taken into account
in simulations and validation experiments. Even asymptotically stationary or
periodic evolutions get more complex with the diffusion of pore water, let
alone cavitation with loss of axial symmetry.

Helical motions of axi-symmetric solid bodies in psammoid or peloid
ground can lead to attractors with suitable initial and boundary conditions.
Monotonous (A) or alternating torsion (B) can be combined with penetration
(I), whereas axial lifting (II) could lead to a skeleton decay. A cylinder can be
screwed up or down through a hole in a solid bottom (Fig. 14.6.7a) so that
the state in the surrounding ground gets stationary or changes periodically.
Evolutions of the skeleton can be represented by associated paths of twist Θ
vs. shift u (b) and torque T vs. axial force F (c). The attractor is a point (A)
or a skew lense (B) in the plot of a skeleton force vs. torque. As with penetra-
tion (Sect. 14.3) a plot of average near-field void ratio vs. pressure serves as
a further representation. Such attractors could be generated with hyp-δ and
observed in validation tests, the feasibility was shown by Cudmani (2001).
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Fig. 14.6.8. Torsion and penetration of a cone (a), torsion versus displacement (b),
torque versus axial force (c)

A cone can more easily be pushed into the ground with monotonous or
alternating torsion, Fig. 14.6.8a. Associated paths of twist vs. shift (b) and
torque vs. force (c) can again exhibit attractors. The shape of them depends
on the ratio of average rates of penetration and rotation and on the ampli-
tude of alternations. The similarity of near-fields for increasing penetration
depth d can be used by referring torque and axial force to γd4 and γd3, re-
spectively. The initial relative void ratio plays a major role. Gravity enters
via. γ, and polar effects matter at the onset as then d does not exceed 100 dg.
For a homogeneous peloid without seepage torque and force can be referred
to peod

3 and peod
2 with initial equivalent pressure peo, respectively, and are

argotropic by (14.6.3). The singularity at the tip can be avoided in simulations
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by a fictitious thin tube as in Fig. 14.3.1. Validation tests are simpler than
calculations, resting intervals matter for peloids.

A cylinder with cone penetrates more easily with monotonous or alter-
nating torsion, Fig. 14.6.9a. As shown in Fig. 14.3.1 without torsion one can
separate torsional and axial resistances at shaft and cone. The shaft resistance
increases with depth h and can be captured as shown with Fig. 14.6.7. The
resisting torque Tc and axial force Fc at the cone are no more self-similar
for different penetration depths as in Fig. 14.6.8. Associated paths of twist
vs. shift (b) and of Tc vs. Fc (c) can exhibit attractors, however, if Tc is re-
ferred to γd2h2 or peodh and Fc to pdh or pedh, respectively, for psammoids or
peloids. The shapes depend on the ratio of average penetration and rotation
rates, and on the amplitude for alternations. The tip singularity can again
be avoided in simulations by a thin tube below, but calculations are still
expensive. They will pay after validation tests by improved applications in
situ.

It is known that a tube penetrates more easily with torsion, Fig. 14.6.10a.
A cyclic torque is imposed above quasi-statically or with blows, then the solid
weight can suffice as axial drive. The soil in the tube is partly excavated, the
remaining part is twisted past its base. The outer shaft resistance could be
captured as shown with Fig. 14.6.7. Associated paths of twist vs. shift (b)
and of edge torque Te vs. force Fe (c) can exhibit attractors if Te is referred
to γhd2t or peod

2t and Fe to γhdt or peodt, respectively, for psammoids or
peloids, with wall thickness t and instantaneous depth h. The resistance of
the soil in the tube can be captured as shown further below with Fig. 14.6.11.
Asymptotic cycles of normalized edge resistances (d) reveal the influence of
progress per cycle and amplitude. Pore pressure and argotropy can be taken
into account, and principally also inertial effects. Simulations of such helical
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Fig. 14.6.11. Torsion of a cylinder past its base (a), torsion versus axial displace-
ment (b), torque versus axial base force (c)

evolutions would be expensive, but could be rewarding with validations for
improved technologies.

The fill in a cylindrical silo can be twisted by rotating the wall past the
base, Fig. 14.6.11a. The cylinder is simultaneously shifted axially past the
base. For psammoids associated paths of twist vs. shift (b) and of torque
T/γd3h versus base force F/γd2h (c) can reveal attractors. The initial relative
void ratio reo and the wall friction angle ϕw are important parameters (cf.
Sect. 14.5). For monotonous helical upward (I) or downward (II) motions
(A) the axial resistance is reduced so much by twisting that jamming can
be overcome. In case of helical ratcheting (B) the lenticular state cycle for
upward shifting (I) is nearly the skew-symmetric counterpart of the one for
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d/2
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Fig. 14.6.12. Vessel for twisting of a granular fill by torsion of a cone past a cylinder

upward shifting (II). Simply speaking the axial resistance by wall friction is
partly consumed by torsion, but changes of radial pressures enter as without
torsion (cf. Sect. 14.5). As for the counterpart with psammoid outside the wall
(Fig. 14.6.7) investigations of such helical evolutions are recommended before
treating more complex cases.

A silo with cylinder and cone can be better controlled by means of torsion,
Fig. 14.6.12. One can twist the lower part cyclically past the upper one via
an elastic ring. This can lead to a pulsating discharge with helical ratcheting,
and to a nearly radial average stress field without switch and quakes (cf. Sect.
14.5). Associated paths of twist vs. shift and torque vs. axial force at the tran-
sition from cylinder to cone exhibit amplitude-dependent asymptotic cycles.
Numerical simulations and verification tests with such helical attractors could
help to improve technologies of granular storage and flow. Similar investiga-
tions could be made with peloids, e.g. for a torsion-enhanced extrusion.

To sum up, axi-symmetric evolutions of psammoid and peloid bodies due
to torsion of adjacent solid bodies can be captured by attractors in a plethora
of cases. In Couette devices state limit and state cycle fields depend spatially
only on the radius r, this additional symmetry eases simulations and vali-
dation tests. Otherwise such attractors depend also on the axial coordinate
z, therefore spatial averages are preferable for graphical representations. The
argotropy due to soft particles can easily be taken into account, capturing
the one due to the diffusion of pore water is more expensive. Shear localiza-
tion, cavitation and skeleton decay can lead to a spontaneous loss of axial
symmetry.



15

LESS SYMMETRIC EVOLUTIONS

The search for symmetry means scientific economy in the sense of Mach (1912),
without it the nature (ϕύσηs) of soils could hardly be captured. Geotechnical
engineers will feel at home with several examples treated in this chapter, they
are used to assume symmetry for design. Some examples may appear rather
academic, but they are helpful for understanding. We will see how symmetry
can arise with the approach to state limits, SOM-states or state cycles in the
large, and how it can get lost by critical phenomena. This is again more an
outline of promising approaches than a report on successful applications.

Vertical symmetry planes may be assumed for a number of natural and
technical evolutions. With two of them interpolations between plane-parallel
and axial symmetry can be of use, this is shown without (Sect. 15.1) and
with interactions of soil and structures (SSI, Sect. 15.2). More often a single
symmetry plane may be justified, therein SSIs can be simple (Sect. 15.3) or
complex (Sect. 15.4). Some validations can be presented for such cases, further
simulations will be rewarding.

Tumbling and driving can lead to periodic SSIs (Sect. 15.5). Such an orbital
symmetry can arise by repeated motions of solids past soil bodies along a circle
or an endless straight line. Then neighboured RSEs can go through state
cycles during each passage. Tumbling and driving can also lead to spatial and
temporal patterns, or to deterministic chaos without any symmetry.

15.1 Two symmetry planes without SSI

Several cases of geotechnical interest may be simplified by assuming two sym-
metry planes which are vertical and orthogonal to each other. This will be out-
lined first without soil-structure interaction (SSI), also by means of attractors.
In two case studies in-situ data and simulations with hypoplasticity led to a
validation. A kind of interpolation between plane-parallel and axi-symmetric
evolutions may sometimes be assumed. Other cases can be captured similarly
as long as a spontaneous loss of symmetry can be excluded.

G. Gudehus, Physical Soil Mechanics, Advances in Geophysical and Environmental
Mechanics and Mathematics, DOI 10.1007/978-3-540-36354-5 15,
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 15.1.1. Dam with free ends (a), filling steps (b), slender heap (c), interpolation
between axi-symmetric and plane-parallel results (d)

A fill can be shaped like a dam with free ends, Fig. 15.1.1. Two symmetric
cross sections (a) may exhibit the same ground profile and two generally
different widths. The slopes may have the same inclination everywhere. The
ends of the dam may be substituted by parts of cones so that conical heaps
(Sect. 14.2) are implied as special cases. Plane-parallelity may be assumed
for middle cross sections if the ground plan of the dam is sufficiently slender.
With this assumption settlement and spreading are overestimated for ratios
of length and breadth a/b > ca. 4. This could be justified and quantified
by simulations with two symmetry planes. The spreading of the dam ends is
enhanced by hoop stresses, but as for heaps with slope edges this effect is
minor.

Initial and boundary conditions can be specified for psammoids and peloids
as outlined in Sects. 12.1 12.2 12.3 and 14.2. The sizes and intervals of fill-
ing steps (b) could be varied in comparative calculations, but as with plane-
parallel or axial symmetry the sizes are of minor importance. One may as
well assume a uniform growth of gravity within the time of filling which mat-
ters with respect to times needed for the diffusion of pore water. A further
adaption to actual sizes, intervals and orders of filling steps would exclude
the assumed symmetry, but would not be worth the effort as long as the pore
water diffusion takes far less or more time than the filling time.

An interpolation between plane-parallel and axi-symmetric evolutions can
be rewarding for dams with a squat ground plan, say a < ca. 3b. It requires
one plane-parallel plus one axi-symmetric simulation, which together are less
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expensive than one simulation with two symmetry planes. The interpolation
is evidently monotonous. It works also for a single free end (c). Further off
the end than ca. 2b plane-parallelity may be assumed for cross sections. The
reduced settlement u1 and the enhanced spreading u2 at one end may thus
be captured. This provides an asymptote for the interpolation of u1 and u2

versus a/b (d). Polyhedral ends may be substituted by conical ones with the
same volume.
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Fig. 15.1.2. Excavation in layered ground (a), interpolation between axial and
plane-parallel symmetry (b)

Similar approaches can be employed for excavations, Fig. 15.1.2. Two cross
sections suffice with horizontally layered ground (a). The groundwater table
may be partly lowered with the same symmetry. The slopes may have a uni-
form inclination, polyhedral ends may be substituted by parts of cones. The
displacements at the bottom (heave −u1B and caving −u2B) and the shoul-
der (subsidence u1S and caving −u2S) are reduced by hoop stresses. Initial
and boundary conditions can be specified as outlined for plane-parallel and
axi-symmetric evolutions in Sects. 12.4 and 14.2. One could quantify by com-
parative calculations how the sizes of excavation steps influence more the
paths of bottom and rim displacements than their final values (cf. Sect. 12.3).
This is also valid for peloid ground with thermally activated redistributions
of skeleton and pore pressures as long as these occur mainly after the end of
excavation.

Plane-parallelity may be assumed for aspect ratios a/b > 2. Karcher (2003)
demonstrated by a case study (cf. Fig. 12.4.7) that this is justified already with
a/b ≈ 2 in the light of ever-present horizontal variations of ground profiles.
End effects can be captured by interpolating results of plane-parallel and axi-
symmetric evolutions (Fig. 15.1.2b), this works also for one end of a long ditch.
Symmetric corners will be treated in Sect. 15.3, and prograding excavation
windows in Sect. 15.4. Simulations without such symmetries are only needed
if exceptional risks would otherwise be missed.
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porting suspension (b), interpolation as before (c). Numbers for stages

Hydraulic boundary conditions can be taken into account for double-
symmetric fills and excavations as explained in Sects. 12.1, 12.2, 12.3, 12.4
and 14.2. A slurry trench with rectangular horizontal cross sections can thus
be captured, Fig. 15.1.3. The ground can have horizontal layers and variable
hydraulic far-field heights, auxiliary retaining walls can be taken into account
(a). A cured concrete wall at one side impairs the two-fold symmetry, it may
be neglected (on the safe side) for simplicity. Exchanging soil blocks section-
wise by slurry substitutes the excavation, during which the slurry surface can
rise above the ground (b). As outlined in Sects. 10.2, 12.4 and 12.2 a filter
cake at a psammoid wall requires an outward gradient of hydraulic height
hw. Swelling of peloids can be sufficiently avoided by rapid working and by
hydrophobic additives (Sect. 6.3), so that the diffusion of pore water is negli-
gible during the operation. The subsequent filling with fresh concrete and its
curing can also change the neighboured ground.

As far as long trenches with the same cross section are stable subsidence
u1M and caving −u2M in the middle of the long rim of the excavation may be
captured by interpolation between a circular shaft and a long narrow trench
with axial or plane-parallel symmetry, respectively (Fig. 15.1.3c). The dis-
placements are bigger for a deeper trench, the relative depth h/b enters there-
fore as parameter. The rim displacements of the short walls may be assumed
as the ones for a = b. As with more symmetry (Sects. 12.4 and 12.2) the
two-fold symmetry can get lost if the saturated soil is not ductile without
seepage (Sects. 2.2 and 3.2). Apart from such a collapse the stability could
better be judged by the evolution of displacements with two symmetry planes
than with arbitrary statical and kinematical assumptions.

Schäfer and Triantafyllidis (2004) investigated a field test by Di Biaggio
and Myrvall (1972) in peloid ground by means of v-hyp, Fig. 15.1.4. The
ground profiles exhibit a uniform post-glacial clay with high groundwater
table and low consolidation ratios pe/ps due to ca. 103 years resting time (cf.
Sect. 11.3). The finite element mesh (a) has two symmetry planes for one
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a)

b)

c)

Fig. 15.1.4. Back-analysis of a field test by Di Biaggio and Myrvall (1972) with
a slurry trench in soft clay (Schäfer and Triantafyllidis 2004): mesh (a), horizontal
displacements at mid-height (b) and rim of the long wall (c)
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a)

b)

c)

Fig. 15.1.5. Pressures along the vertical axis of the slurry trench of Fig. 15.1.4 (a),
long-wall pressures after excavation (b) and with fresh concrete (c)

panel (not for the progression of panels, Sect. 15.3). Specific weights, level
and gradual placement of slurry and concrete during and after excavation
were adapted to the test protocol. Seepage with swelling or consolidation was
neglected as in the operation time the diffusion of pore water could not exceed
0.5

√
tcv ≈ 0.5

√
24 · 3600 s · 10−8 m2s−1 = 15 mm by (12.2.4), i.e. far less than

the panel width. Isochoric deformations and stress redistribution occurred
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mainly during the change of boundary conditions, the subsequent creep and
relaxation was minor in the observation time.

Horizontal displacements along the middle height of the long wall (b) are
well reproduced both with water and slurry in the hole. The same good agree-
ment was obtained for horizontal displacements along the long rim (c). Cal-
culated pressures along the vertical axis exhibit a decrease by excavation with
slurry at the panel (Fig. 15.1.5a). Calculated pressures along a horizontal axis
decrease by excavation (b) and increase by filling with fresh concrete (c). The
neighboured ground experiences other pressure changes, this kind of arching
is not the same at other depths.

De Wit and Lengkeek (2002) report on a field test in soft composite ground,
Fig. 15.1.6. In the upper 13.5 m the ground consists of loose psammoid and
soft peloid layers under groundwater. Horizontal displacements slightly off the
middle of a trench (a) were small with about zero average just after excavation
with slurry support. The fresh concrete mud pushed aside soft layers between
the crust and a harder base. Simultaneously the ground surface subsided along

mm

m mm

m

a) b)

c)

Fig. 15.1.6. Field test with a slurry trench in soft layered ground (De Wit and Leng-
keek 2002): horizontal displacements versus depth (a), vertical surface displacements
versus distance (b), pressures in the trench (c)
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the shorter cross section (b), this indicates a densification in the near-field.
Piezometers along the middle long wall exhibit an increase from a hydrostatic
slurry pressure to the pressure of heavier fresh concrete (c), which is first
hydrostatic and then reduced by curing.

De Wit and Lengkeek (2002) report also on simulations with two-fold sym-
metry, an elastoplastic relation and seepage. Observed lateral displacements
could be reproduced with an adaption of soil stiffness, but a heave of the
ground surface was obtained instead of the observed subsidence. The diffu-
sion of pore water may be neglected for the operation time in the peloid layers.
In the psammoid layers with free drainage, however, the pore water is already
mainly diffused during the input of fresh concrete. The loose grain skeleton
is contracted so much by sidewards shearing (Sect. 2.9) that it is shortened
vertically so that the surface subsides. This could be reproduced with hyp and
v-hyp for psammoid and peloid layers, respectively, and with coupling of skele-
ton and water. In view of the actual deviations from two-fold symmetry an
interpolation between axial symmetry as by Fig. 15.1.3c and plane-parallelity
could suffice.

Evolutions in the ground during and after the curing of concrete could
also be simulated with two symmetry planes, but have not sufficiently been
observed in situ. The double symmetry is less relevant as prograding panels
have at best one symmetry plane (Sect. 15.3). Shape and state of psammoid
ground would hardly be changed by curing as the concrete remains almost
undeformed. Skeleton stresses do change by the progression of panels, but
this does not matter for subsequent evolutions with excavation and support
(Sect. 13.6). The near-field of peloid layers tends to far-field values by relax-
ation of the skeleton and diffusion of the pore water. The latter should be
minor after careful trenching, the former matters only if the ground has a
low consolidation ratio pef/ps in the far-field (cf. Sect. 15.2). Otherwise the
near-field progrades with the panels, but this does not matter afterwards in
case of careful trenching. The assumed symmetry would get lost by a collapse
if the soil is not ductile (Sects. 2.2 and 3.2), but then trenching with slurry
would be too dangerous anyway.

The prograding excavation of a tunnel can exhibit two symmetry planes,
Fig. 15.1.7. As supporting structures (Sect. 15.2) are left aside for introduc-
tion the ground should have a sufficient cohesion, whereas an excess air pres-
sure pg > pa may be applied for support. Psammoid with open gas channels
has a capillary skeleton pressure pcs which can keep the free wall and roof
(Sect. 6.2). pcs is not reduced by pg > pa and the skeleton pressure ps is
increased by outwards seepage forces. Saturated peloid, which may include
minute gas bubbles, develops suction (pg − pw > 0, Sect. 6.3) at new free sur-
faces if the initial consolidation ratio pe/ps exceeds ca. 2 so that ps increases
by isochoric deformations (Sect. 3.2). The excavation may prograde with the
full cross section and a dome at the front (a). It could proceed in smaller steps
if pcs or pe/ps and pg > pa would not suffice, then supporting structures are
indispensable.



15.1 Two symmetry planes without SSI 721

A ground with layers and ground water is specified by profiles of com-
position and state (Sect. 11.3). The moving tunnel boundary is specified by
replacing the initial pressure along it (Sect. 10.1) in realistic steps and in-
tervals (Sect. 12.3). Pneumatic and hydraulic conditions should be specified
off the tunnel, they could include drains installed before. As always fictitious
walls and a fictitious rigid base are assumed sufficiently far off. Evolutions of
shape and state could be simulated with elastoplastic or hypoplastic relations
plus coupling with pore gas or water. The time scale for psammoids is deter-
mined by the rate of excavation, and also by the flow of pore gas for pg > pa.
The skeleton viscosity of peloids means a further time scale via Dr (Sect. 3.2),
whereas the diffusion of pore water may be neglected during usual opening
times.

Simulations could again be reduced to axi-symmetric and plane-parallel
ones by means of an interpolation. This is shown in Fig. 15.1.7b for vertical
displacements at the front roof (A), at the surface above it (B), at the roof
far off the front (C) and above it (D). This interpolation works also for other
points and displacement components, and for different rates of excavation.
Plane-parallelity may be assumed for a/b > ca. 2. The interpolation is no
more legitimate with non-symmetric loads or buildings at the ground surface.
The symmetry would also get lost by a collapse if the soil is not ductile, but
then such an excavation should be avoided anyway.
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Fig. 15.1.7. Excavation of a tunnel without support (a), interpolation as
Fig. 15.1.1b (b)

Tectonic ring structures can be similar as for axial symmetry with an
elliptic shape in the ground plan and two symmetry planes (cf. Figs. 14.2.8
and 14.2.9), Fig. 15.1.8. Above a diapir (a) funnel-like faults may be imagined
with layer dislocations, the free surface remains horizontal by erosion and
sedimentation. Above a depression (b) an elliptic dome may be imagined with
a succession of near-conical faults. A superimposed horizontal stretching of
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a) b)

Fig. 15.1.8. Ring structures above a diapir (a) and a depression (b)

the subsiding base, which may be orthotropic with the same symmetry, would
lead to flatter fault cones, the free surface could again remain horizontal. The
indicated conical faults may consist of several rather normal and less marked
antithetic faults with clay smears (cf. Sect. 12.6).

As with axial symmetry (Sect. 14.2) such evolutions could be simulated
with hyp and v-hyp, mechanically scaled model tests with elliptical vessels
could serve for visualization and validation. Shear localizations cannot be
captured down to bands of some grain diameters thickness, they would also
mean a loss of symmetry. Instead of a two-fold symmetry interpolations be-
tween plane-parallel and axi-symmetric evolutions could reduce the amount
of calculations. A few simulations with two symmetry planes could suffice to
quantify the transition to plane-parallelity. Such simplifications could be of
use before reducing the assumed symmetry as tectonic and sedimentary initial
and boundary conditions have to be guessed anyway.

Psammoid and peloid bodies as shown in Figs. 15.1.1 to 15.1.7 can experi-
ence reversals. Cyclic filling and excavation with two symmetry planes would
be of merely academic interest, but cyclic hydraulic conditions or pulsations
from the base can be practically important. Wetting and drying cycles can
lead to stabilization or collapse, Fig. 15.1.9. If a fill is exposed to periodic
rain and drought (a) a zone near the free surface can attain diffusion cycles
of pore fluid (cf. Sects. 6.2, 6.3 and 10.1). The skeleton of mineral particles
in this zone will gradually slide down the slope. This kind of ratcheting can
get minute if the skeleton is densified by an excess of evaporation versus im-
bibition, and by small amplitudes. Otherwise a near-surface zone can dilate
by shearing and swelling until an avalanche arises.

If a free water table in an excavation changes periodically (Fig. 15.1.9b) a
near-surface zone can experience diffusion cycles, ratcheting or collapse. The
pore water of psammoids is temporarily and partly depleted, its seepage force
shifts the skeleton downslope. A rapid dewatering at a fine-grained psammoid
ground can cause it to slump without seepage (cf. Sect. 12.1), the more if
the skeleton had been dilated before. Peloid ground can remain saturated
except for minute gas bubbles as long as shrinkage does not lead to cracks (cf.
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Fig. 15.1.9. Slopes with pulsating humidity (a) and water table (b)

Sects. 6.3 and 12.2). A densified crust can then arise with release of pore water
if wet intervals do not last too long, otherwise swelling can lead to slump and
avalanches.

Such coupled evolutions of skeleton and pore fluid are beyond the reach
of present prediction models, particularly as capillary effects with reversals
are not yet properly understood (Sects. 6.2 and 6.3). Model tests with axial
symmetry would be of use, but models with less symmetry will be needed for
applications. In experiments with psammoids repeated flooding and deple-
tion could reveal conditions for a nearly asymptotic response with so minute
ratcheting that changes of shape are negligible.

Slow tectonic actions can also exhibit reversals, but hardly so often that
the response gets periodic. Model tests with cyclic orthotropic extension and
contraction of the base together with pairs of confining walls could nevertheless
be rewarding. The focus should again be on conditions for a nearly periodic
response as long as overall geometrical changes are minor. Such experiments
could also be made with fills and excavations, one should start with plane-
parallel and axi-symmetric evolutions.

Sections of the earth crust including fills or excavations with seismic ac-
tions can exhibit two symmetry planes, Fig. 15.1.10. Repeated shaking in one
of the principal directions leads to gradual spreading of a fill (a) and caving of
a hole with free slopes (b). Leaving aside a collapse due to overcritical slope
inclinations or void ratios without seepage (cf. Sect. 12.3), the ground state
can get nearly periodic by repeated base shocks as long as the slopes are not
flattened by shaking.

Random shaking with stationary average spectrum can lead to spreading
or caving up to a slump (cf. Sects. 4.7,). The directions of such seismically
activated motions are more determined by the shape of the hill or the hole
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a) b)

Fig. 15.1.10. Spreading of a hill (a) and caving of a hole (b) by earthquakes

than by preferred directions of random shaking. The intensity of a cumulative
flow increases with the average kinetic energy, this works thus like a higher
temperature. A repeated propagation of waves from the far-field can lead to
an amplification or attenuation near the free surface, according to shape and
amplitude. The response to repeated shocks with rest intervals can be nearly
rate-independent, suitable leading frequencies can cause a kind of resonance.
Tectonic ring structures can be ironed out by earthquakes, i.e. higher stress
obliquities and void ratios due to confined dilation are reduced. Stazhevskii
(2005) showed that ring structures are seismogeneous, an autogeneous seis-
micity would also be obtained with hills or holes if the slopes are steeper than
critical.

Models for such evolutions are not yet at hand, but not out of reach and
certainly worth the effort. Scaled model tests with dry psammoids and iso-
choric peloids will help to identify and quantify the main factors of geometry,
material parameters, initial state variables and shaking. Axi-symmetric shak-
ing could be generated by periodic or stationary random torsion. Such evolu-
tions could be simulated with the same expenditure as for plane-parallelity,
with hyp-δ or v-hyp-δ for periodic and s-hyp for random shaking. Even axi-
symmetric bodies retain at best two symmetry planes in case of uni-directional
base shaking. Simulations with the latter symmetry should be focussed on
cases with asymptotically periodic response, which can be identified by model
tests and could thus enable validations.

Attractors determine how far evolutions as outlined in this section could
be captured. State limit fields can arise in and under fills, around excava-
tions, without or with fluid inside and with elliptic ring structures. A two-fold
symmetry could be attained with suitable geometrical and boundary condi-
tions even in case of initial spatial irregularities of state. If the latter have
much shorter wavelengths than hills, holes or ring structures such fluctua-
tions could be swept out by changing or maintained boundary conditions.
Only then monotonous model tests can be repeated, and simulations can be
numerically robust so that validations could be attained.

Asymptotic state cycle fields can arise with repeated reversals as outlined
with Figs. 15.1.9 and 15.1.10. Such attractors in the large can arise as long as
geometrical changes are small (cf. Sect. 14.3), they render possible repeatable
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model tests and robust simulations. Again non-symmetric initial spatial fluc-
tuations with small wavelengths are ironed out. The numerical generation of
asymptotic cycle fields would be expensive (cf. Sect. 15.5), but this should be
mastered before turning to less symmetric evolutions.

A spontaneous loss of two-fold symmetry can occur at critical points
(Sect. 16.3). Collapsing heaps and holes with saturated skeletons of high
relative void ratios or low consolidation ratios can get skew with one-sided
avalanches. Helix-like shear bands can arise at spreading or caving corners in
a rather fractal succession. Cracks, which can preferably arise at spreading
corners of heaps or caving longer walls of holes, would also break an initial
two-fold symmetry. Ring structures may at best exhibit two symmetry planes
in a coarse-grained view. This symmetry gets lost with further faulting and
seismic emission, collapsing heaps or holes can release quakes (cf. Sect. 14.5).
Hydraulic localizations due to different hydraulic heights along the boundary
(cf. Sect. 8.4) could not exhibit two symmetry planes, particularly if mud
volcanos rise in ring structures.

To sum up, evolutions related with hills, holes or ring structures can
be captured with two symmetry planes and judged by means of attractors.
Monotonous displacements could be estimated by interpolation of results from
plane-parallel and axi-symmetric simulations. Periodically changing hydraulic
boundary conditions or base shaking can lead to asymptotic cycle fields if the
system is stable. The symmetry gets lost by slumping, shear banding, cracking
and autogeneous seismicity.

15.2 Two symmetry planes with SSI

Two-fold symmetry may more often be assumed in geotechnical engineer-
ing with structures than without them. Their interaction with the ground
(SSI) occurs via interfaces with contact stresses and relative displacements
(Sect. 10.3). The structures may be modelled as rigid, elastic or elastoplas-
tic. As without SSI (Sect. 15.1) an interpolation between plane-parallel and
axi-symmetric simulations may often suffice. Only few case studies and model
test reports are apt for validation. As without SSI the symmetry can get lost,
now also due to structural failure.

The subsidence of a rigid block upon horizontally layered ground may be
simulated with two symmetry planes as far as imposed displacements or forces
have the same symmetry, Fig. 15.2.1. The structure could have other shapes
with two vertical symmetry planes. Composition and initial state have to be
specified (cf. Sects. 13.3, 13.4, 14.2 and 14.4) for one quarter (a). A fictitious
rough rigid base and fictitious smooth rigid walls may be assumed closer to
the block than with plane-parallelity, sufficient distances could be found by
comparative calculations. Along the interface of block and ground both may
have the same displacements, thus slips and gaps are left aside. The soil near
the base may be improved, this can be captured by the composition. A softer
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Fig. 15.2.1. Block upon layered ground (a), evolution of settlement and force (b),
relation of both (c), interpolation as Fig. 15.1.1b (d)

elastic material may be assumed near the edge as otherwise the equations
get ill-posed, the finite element mesh can be coarser farther off the edges (cf.
Fig. 13.3.4).

A monotonous increase of the subsidence s with time t can be imposed,
or produced by an increase of the resultant vertical force F (t) with time
(b). The block weight W after construction means F (t = 0) = W . With a
psammoid ground and constant hydraulic height hw the relation of F and s
(c) will be rate-independent (A). It is non-linear and can attain a peak with
dF/du = 0, a collapse beyond it is left aside (cf. Sect. 13.3). With peloid
layers without seepage (B) the relation of F with u is argotropic due to the
skeleton viscosity (cf. Sect. 13.4). Relaxation occurs after fixing the block (I,
b below), and creep under a constant force (II, b above). With seepage a
diffusion of pore water in peloid layers (hardly in psammoid) occurs alongside
with a densification or dilation of the skeleton. The time-dependence is then
influenced by the hydraulic boundary conditions at the free surface and the
fictitious far-field boundaries. Relaxation or creep for constant block position
or load, respectively, are now determined by skeleton viscosity plus pore water
diffusion. The time t may as well be referred to a diffusion time td by (11.3.1),
then the reference stretching ratio Dr (Sect. 3.2) enters via tdDr.

Simulations with double symmetry require numerically adequate incre-
ments of u and F for psammoids, and also of t with peloid layers. Initial spa-
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tial fluctuations of density and stress with wavelengths well below the block
size may be neglected as they are ironed out during a monotonous subsidence.
This approach of a state limit field strengthens predictions, but an initial in-
certainty cannot be avoided (cf. Sects. 13.3 and 14.4). As without a block
one can interpolate displacements for given forces and times between those
for plane-parallel and axi-symmetric evolutions with the same cross section,
Fig. 15.2.1d. The required same average block base pressure is achieved by the
same F/γabd and by taking 4F/πγd2b instead, respectively, for the two limit
cases with only two co-ordinates. Plane-parallelity may be assumed for a/b >
ca. 2.5, this restriction of interpolation curves could be further quantified by
comparative calculations with two symmetry planes.

Such calculations may suffice for applications if the ground is horizontally
uniform, the structure is very stiff and horizontal and eccentric loads are
negligible (otherwise Sect. 15.4). Validations could preferably be obtained by
model tests as natural ground is rarely that well-defined, and as installation
and vertically guided loading of nearly rigid blocks in situ are expensive. A
pressure level as in prototypes could be obtained with a centrifuge, but with
them inevitable vibrations cause additional seismic creep. Tests with 1g are
less expensive and can still be representative if stiffness and strength are scaled
down as the lengths.

For psammoids this means that only the granulate hardness hs should be
reduced for 1g model tests, whereas the dimensionless hypoplastic parameters
(ϕc, n, α and β, Sect. 2.4) should be the same as in the prototype. This could
be achieved with softer grains of nearly the same shape and size distribution.
Minor deviations do not matter as the actual dimensionless parameters can
be used in the back-analysis. Laudahn (2005) reduced hs by adding a minute
fraction of synthetic grains to quartz sand, Fig. 15.2.2e and f. Thus the buck-
ling of force chains is enhanced (Fig. 4.3.2) so that the skeleton yields easier.
With a medium relative void ratio (re ≈ 1/2) the obtained increase of set-
tlement s with average base pressure p = F/b2 of a block (b) is roughly the
same as in a large scale experiment (a).

The prototype block was quadratic and not embedded (d = 0), quartz sand
had been densified with a vibrator, the block was guided and loaded by a jack
(Leussink et al. 1966). Laudahn’s (2005) model block had b = 0.1 m and d = 0,
sand was placed by pluviation, hs was reduced to about 1/10 by adding ca.
0.2% polystyrene. Settlements s and base pressures p were scaled up by factor
10 for comparison with the prototype. Having in mind the indeterminacy
of states after placement the agreement is good enough for validations and
predictions. With a low initial re the upscaled p versus s is overestimated by
about 40%, a peak was only obtained in one model test (Fig. 15.2.2b). The
deviation can be attributed to a reduction of hs by grain crushing in the large
scale test. Model tests with moderate (c) and low (d) density show how this
matters. The influence of shear localization near the edges is small as the ratio
of b and grain size dg exceeds 1,000 (Tejchman 1997). The advantage of such
model tests is evident.
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Fig. 15.2.2. Tests with blocks upon dry sand: (a) base pressure versus settlement
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Model experiments with peloids are more elaborate because of skeleton vis-
cosity and pore water diffusion. As shown with plane-parallelity (Fig. 13.3.11)
the similarity laws could be satisfied for both effects without a centrifuge.
Complete similarity is not required with suitable model peloids and hydraulic
conditions, however, if the actual visco-hypoplastic parameters and state vari-
ables are taken for back-analysis. Further validations could be obtained by
means of model tests with composite ground as in Fig. 15.2.1, sandwich-like
soil may be simplified for calculations (Sects. 9.2 and 11.3).

Interactions of deformable structures with shallow foundation in layered
ground could similarly be captured with two symmetry planes, Fig. 15.2.3.
Initial composition and state of the ground can be identified as in a free field
(Sect. 11.3). The structure may be placed in an excavation, with slopes, base-
ment box and skeleton with ceiling and wall plates (a). Weight W and stiffness
S of the structure grow with time (b), the structure is backfilled. Structural
forces and deformations increase during the construction, and change there-
after by payloads and by creep and relaxation in structure and ground, also
by diffusion of pore water and heat. Internal forces and deformations should
not exceed tolerance limits.

a)

t/td

W

b) S

d) e)

1

1

3

3

1

C
A

B

a/2 b/2

0

1 2

3 4
5

1
2

3
4 5

1

c)

a/2 b/2

uC

uB

uA

κ

μ

I
II

III
μ

κ a/b=

t/td

4

5

3

2
1
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trough (c), tolerance bounds (d), interpolation as Fig. 15.1.1b (e). Numbers for
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Avoiding hardly defendable assumptions, simulations with validated mod-
els can secure for design that tolerance bounds are not trespassed. These can
be expressed by means of an average relative settlement

μ ≈ 2
3
(uB + uc − 2uA)/

√
ab (15.2.1)

and a relative curvature

κ ≈
√

uA − uB

a
+

uC − uA

b
(15.2.2)

with settlements uA, uB , uC along the axes and a parabolic distribution other-
wise, Fig. 15.2.3c. Both can be combined to a measure of ground and structural
deformation

εgs =
√

fW μ2 + (1 − fW )κ2 (15.2.3)

with a weighting factor fW . Thus tolerance bounds are ellipses in a plot of μ
vs. κ (d) which are wider for construction (I) and extreme actions (II) than
for regular use (III), cf. Boscardin and Cording (1989).

Simplifications are justified as only overall changes of shape count and
as tolerance limits are rarely precise. This could be quantified by compar-
ative calculations and could serve to specify investigations and monitoring.
The assumed double symmetry is needed for construction and use to keep the
building upright, and should not get lost anyway. An interpolation between
axi-symmetric and plane-parallel simulations for the evolution of relative set-
tlement and curvature μ and κ (e) with time t may suffice in simpler cases (cf.
Fig. 15.2.1d). The structure has to be substituted by rings or strips, respec-
tively, thus neglected stiffening corners are minor. One cross section would
suffice with plane-parallelity for a/b > 2 to 3, an interpolation could be quan-
tified by comparative calculations.

Structures upon vertical pile groups can be captured similarly, Fig. 15.2.4.
After an excavation the piles are driven or cast in boreholes (Sect. 14.2). Sub-
sequent construction, use and other actions may be the same as before (a).
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Fig. 15.2.4. Structure upon a vertical pile group in layered ground (a), evolution of
forces (weight above, piles together below) and settlement with time (b). Numbers
for stages
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In case of squat buildings the evolution of settlement u(t) and average pile
force Fp(t) alongside with the total weight W (t) during and after construction
(b) may suffice for design considerations. The near-field ground is specified by
spatially averaged pile and soil properties (Sect. 14.4). These could be more
simplified for u(t) than for Fp(t), therefore the structure should be so robust
that inevitable redistributions of pile forces do not matter. A further simplifi-
cation by interpolation between axi-symmetric and plane-parallel simulations
is hardly feasible as the substitution of pile rows by walls is not sufficiently
clarified. A loss of double symmetry by spontaneous tilting should hardly play
a role with a competent pile foundation.

Validations have been obtained with two high-rise buildings. Kudella
and Reul (2002) present a back-analysis with hyp-δ for psammoid ground,
Fig. 15.2.5. The finite element mesh (a) represents one quarter of the ground
with fictitious walls and base. The mesh was refined for the near-field with
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Fig. 15.2.5. Back-analysis for a building with piles in sand (Kudella and Reul
2002): mesh (a), structural mesh (b), settlement versus weight (c), corner pile force
versus building weight (d)
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piles and superstructure (b). The ground was identified by means of boreholes,
lab tests and penetration probing (cf. Sect. 11.2), the structure was assumed
as elastic. The ground state after placing piles and basement was generated
by imposing gravity with the given low re. Grouting around the bored piles
after their installation was also taken into account. The further construction
was simulated by increasing weight and stiffness of the superstructure. The
calculated increase of settlement with weight agrees with the observed one (c),
nota bene without further adaption of parameters. The increase of a corner
pile force with total weight was also captured satisfactorily (d).

Garcia et al. (2006) investigated a tower upon piles in peloid ground,
Fig. 15.2.6. Piles and raft were placed in an overconsolidated clay (a) which
was modelled by v-hyp with a consolidation ratio from 1.6 to 2.1. A deeper
limestone base was captured by elp. Various receivers had been installed for
monitoring (b). Because of four symmetry planes the mesh comprised only
1/8 of structure (c) and ground (d). Pile forces versus depth along the inner,
middle and outer ring of piles are well reproduced (Fig. 15.2.7a). The likewise
reproduced redistribution of forces after the end of construction is minor. Set-
tlements are also well captured (b), they increased by ca. 1/3 within 8 years
due to creep (c), temporary increases of pore pressure were negligible. As no
parameters were adapted afterwards this is a validation.

Supported excavations can also exhibit two symmetry planes, Fig. 15.2.8.
In a representative quarter (a) the ground may be composed of horizontal
psammoid layers (1) and carry neighboured buildings (2). After installing a
wall (3) and partial excavation (4) upper struts (5) may be placed. After
further excavation under water (6) vertical anchors may be installed (7) in
order to fix a bottom plate (8), then the water above is pumped out (9).
Structural forces and displacements at representative points evolve with these
steps (b) and should not exceed tolerance limits. Apart from construction
and curing times (let alone shaking) the evolution is rate-independent as long
as the soil grains are hard and the structure is elastic. Variants of supporting
structures and ground treatments may be considered similarly (cf. Sect. 13.6),
subsequent changes of boundary conditions and superstructures can also be
taken into account.

Simulations could be organised as outlined in Sect. 13.6 and with Fig.
15.2.5. Back-analyses of well-documented field cases could be used for valida-
tion. Transitions to plane-parallelity in a prograding supported trench could
likewise be captured, this is shown in Fig. 15.2.8c with lowered groundwater
and a top slab that first works like struts (cf. Fig. 13.6.3). For aspect ratios
a/b >ca. 2 to 3 of the prograding structure the consideration of cross sections
may suffice, but evidently only for a part of the evolution. An interpolation
between axi-symmetric and plane-parallel simulations can provide design es-
timates of representative forces and displacements. This is legitimate as long
as the interpolation can be shown to be monotonous and on the safe side.
Transitions from wider to narrower supported excavations and crossings with
ramps could be captured similarly.
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a)
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c) d)

Fig. 15.2.6. Building with piles in clay (Garcia et al. 2006): overview (a), receivers
(b), meshes of structure (c) and ground (d)
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Fig. 15.2.7. Back-analysis for the building of Fig. 15.2.6: axial pile force versus
depth (a), settlements just after construction (b) and 8 years later (c)
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Supported excavations in peloid and composite ground could be treated
with the same symmetry. For instance (Fig. 15.2.9a), a sheet pile wall may
first be driven in (1), after partial excavation (2) a first row of struts (3) is
installed, this is repeated down to the bottom (4 etc.). The evolution of strut
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forces and displacements with time (b) goes on after the last installation due
to skeleton viscosity, and in the long run also by diffusion of pore water. The
report by Wu and Berman ( 1953) could be used for validation beyond the one
for a middle cross section presented by Fig. 13.6.10. Comparative calculations
could yield a sufficient aspect ratio a/b for plane-parallelity. An interpolation
between axi-symmetric and plane-parallel evolutions is legitimate as these are
monotonous. Corners instead of thus assumed rounded ends could be modelled
in addition with one symmetry plane (Sect. 15.4). Transitions to narrower
excavations and crossings can be treated similarly.
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Fig. 15.2.10. Driving of a tunnel with support in psammoid ground (a), evolution
of displacements and structural forces (b). Numbers for stages

The driving of supported tunnels could also be captured with two symmetry
planes. For instance, in psammoid ground (Fig. 15.2.10a) the water table may
first be lowered (2) to get capillary cohesion, this may suffice for the front of
a smaller roof tunnel (3) with subsequent shotcrete shell (4) and anchors (5),
then the lower part is excavated (6) and supported by shotcrete (7), thereafter
a concrete tube is installed (8). Characteristic displacements and structural
forces (b) evolve with these construction steps and should not exceed tolerance
bounds. The time scale is determined by construction and curing times as
far as ground and hardened structural parts are rate-independent. Variants
can similarly be considered, e.g. with grouted shells, excess air pressure (cf.
Fig. 13.7.6) and/or a supporting shield with roof grouting and subsequent
tubings.

Simulations could be organized as with plane-parallelity (Sect. 13.7), but
now the evolution along the tunnel axis is included so that more geometri-
cal variants are possible. A transition to plane-parallelity may be assumed
for aspect ratios a/b > 2 to 3, this could be further quantified by compar-
ative calculations. This is a tractable substitute of hardly defendable usual
assumptions to catch the longitudinal arching for design. Interpolations be-
tween axi-symmetric and plane-parallel simulations are legitimate for displace-
ments at the ground surface as they change monotonously with a/b. Therein
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axi-symmetric walls replace the actual excavation front, and anchor rows are
represented by plates (cf. Figs. 13.6.4 and 13.7.6). Variants as indicated above
can likewise be simulated. A similar interpolation is less justified for internal
forces of supporting structures as these do not change monotonously with the
progression in general. The possible damage to neighboured buildings could be
judged by combined tolerances of stretching and tilt (Boscardin and Cording
1989), cf. Fig. 15.2.3d.

The range of validity can be better judged by model tests than by obser-
vations in situ as there the conditions are rarely regular enough. Mélix (1987)
bored a tube into humid sand in a box (Fig. 15.2.11a) and produced a roof

a)

b)

Fig. 15.2.11. Roof collapse in a model test with sand (a, Mélix 1987), mesh for
back-analysis with a tunnel (b, Bliem 2001)
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collapse at the front by increasing the pressure on the ground surface (cf.
Fig. 13.7.5). This could be modelled with a gradually emptied and completed
mesh (b) as proposed e.g. by Bliem (2001). His back-analysis of a tunnel con-
structed in humid sand did not produce realistic surface settlements. A fair
agreement was obtained with elp only by a fitted soil stiffness. Displacements
were overestimated with hyp, they would be smaller with hyp-δ as the evolu-
tion implied reversals and small deformations (Sect. 4.2). An impending roof
collapse could be captured except for shear localizations (Sect. 13.7).

The assumed double symmetry is certainly not always given, and can get
lost spontaneously. With a row of buildings on one side only, or with two
equal tunnels constructed one after another, e.g., displacements and struc-
tural forces would be underestimated by assuming a longitudinal symmetry
plane. Only a transversal one may be justified for a sufficient aspect ratio
a/b. Excavation and installation of structures without longitudinal symmetry
would be detrimental otherwise and may be excluded. Caving with shear lo-
calization and cracking would break an initial double symmetry, but this can
be avoided by keeping forces and displacements within tolerance bounds.

A double symmetry may also be assumed for supported tunnels in ground
with peloid layers. For instance (Fig. 15.2.12a) the ground may consist of
psammoid and soft peloid layers under groundwater (1), and buildings may
stand in rows near both sides of the tunnel axis (2). A shield (3) may be
driven with a supporting slurry (4) at the excavation front (5), the slit above
the shield is grouted (6) and the subsequent tube (7) is installed by placing
tubings. Displacements of representative points and internal structural forces
(b) evolve with time by the prograding construction, and afterwards due to
skeleton viscosity and pore water diffusion, both should not exceed tolerance
bounds. Variants of shield driving, tube placement and grouting (cf. Sect. 12.7)
could be represented similarly.

Simulations could be organized as with more symmetry (Sects. 13.7 and
14.2), with time steps according to viscosity and diffusion plus steps of excava-
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Fig. 15.2.12. Excavation of a tunnel with support in soft ground (a), evolution of
displacements and structural forces with time (b). Numbers for stages
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tion and placement of structural parts. Details of cutting at the front cannot
and need not be modelled for getting key displacements and forces. Com-
bined stretching and tilting tolerances (cf. Fig. 15.2.3d) of neighbour build-
ings (Boscardin and Cording 1989) justify a simplified composition of ground
and support. This is also valid for supporting structures which have to be
robust anyway, i.e. insensitive against inevitable redistributions. Axial sym-
metry may be assumed to judge the stability of the initial cavity (Sect. 14.2),
and plane-parallelity is justified for long-term displacements and structural
forces. Interpolations of displacements and forces for different times between
axi-symmetric and plane-parallel simulations could substitute hardly defend-
able assumptions.

Limits of validity arise due to a forced or spontaneous loss of double sym-
metry. A construction without longitudinal symmetry would magnify displace-
ments and structural forces and should be avoided if the tolerances are tight.
Otherwise a two-fold symmetry could be attained after construction by skele-
ton viscosity and pore water diffusion. The symmetry can get lost by a slump
during the construction, particularly if the soil is not ductile (Sects. 2.2 and
3.2), and by structural buckling or cracking, in particular with delay due to
viscosity and diffusion (cf. Sect. 13.7). Such failures can and should be avoided
by keeping tolerance limits. Validations are feasible as far as good data from
ground investigation and monitoring are available.

For stiff ground with dense psammoid and peloid layers less risky tun-
nel constructions by mining with weaker structural support may likewise be
quantified with double symmetry. For instance (Fig. 15.2.13a), with overcon-
solidated clay (1), previously drained sand (3) and buildings at the surface (2)
the front may be partially open (4), then shotcreted (5), widened (6) and fur-
ther shotcreted up to the base (invert 7), then the final tube is placed (8) and
the groundwater table rises again (9). Variants can be similarly represented,
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e.g. with grouting or freezing, excess air pressure (cf. Sect. 13.7) and drainage
by suction or electrophoresis (Sect. 6.3).

Displacements and internal forces (Fig. 15.2.13b) at representative points
evolve with time during the construction, and afterwards due to skeleton vis-
cosity and pore water diffusion. Combined tolerance limits of stretching and
tilts for neighbour buildings (Boscardin and Cording 1989) justify again sim-
plified substitutes of ground and structure and related space-time steps. A
similar approach may be applied for supporting structures as long as their
tolerance bounds are not trespassed during and after construction. Simula-
tions could be organized as before (cf. Sect. 13.7), interpolations between
axial symmetry and plane-parallel calculations could again substitute hardly
defendable assumptions. Validations are feasible on the base of case reports,
these may include well-documented collapses (e.g. Masin 2009) as far as a loss
of symmetry can be separated.

Evolutions with reversals can be principally captured as without struc-
tures, cf. Sect. 15.1. A periodic diffusion of pore water near free soil surfaces
may be left aside as it can be avoided by short exposure times and cov-
ering. Periodic changes of groundwater table or payloads after the end of
construction cause a further increase of displacements and a redistribution of
time-averaged structural forces. This can and should lead to a stabilization
by densification of near-by ground, and to a periodic response of ground and
structure afterwards.

Such asymptotic state cycle fields can principally be simulated as outlined
in Sects. 14.1 and 15.1, whereas transitions to them could at best be estimated
as initial states are never sufficiently known. This works also with tempera-
ture cycles imposed to structures or ground as long as heat-dependent phase
transitions in them can be excluded. Repeated wave propagations from above
or below can and should likewise lead to stabilization and asymptotic cycles,
and not to inacceptable deformations or structural fatigue. Simulations will
be expensive even for few propagations, cumulative deformations and redis-
tributions can at best be estimated (cf. Sect. 12.5). Random actions with
stationary average can be principally captured by s-hyp (Sect. 4.6), but this
approach could only be quantified by means of model tests and field data (cf.
Sects. 13.8 and 15.2).

Evolutions as outlined in this section can be judged by means of attractors.
Monotonous ones can lead to SOM-states and state limits in the near-field so
that initial spatial fluctuations are swept out. This is necessary for predictions
and delimits their precision, transitions to attractors are less determinate. De-
formable structures can bridge spatial fluctuations with smaller wavelengths,
and can help to smooth them in the course of construction and time, but in-
evitably with deformations. A two-fold symmetry can be gained in the course
of construction and use, even if it is not given initially and intermediately.

Asymptotic state cycles due to actions with repeated reversals were intro-
duced further above. These attractors require a stabilization by densification
and stress redistribution. Many reversals with small amplitudes in between
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work like thermally activated creep and relaxation, they can also enhance the
diffusion of pore water (Sects. 6.2 and 6.3) and the two-fold symmetry. This
could similarly be achieved with random actions, seismically activated creep
and relaxation (Sect. 4.6) can even restore it.

A spontaneous loss of symmetry by tilting, caving, buckling or cracking
would indicate deterministic chaos (Sect. 16.3). Such critical phenomena are
hardly predictable, one should avoid them by suitable design, execution and
monitoring. This can be achieved with sufficiently ductile ground and struc-
ture, and with protective construction and use, then the technical control is
supported by a better predictability.

To sum up, interactions of ground and structure with two symmetry planes
can be captured by means of elastoplastic and/or hypoplastic relations and
can be judged by means of attractors. The double symmetry can be achieved
during and after construction with monotonous or alternating actions, then
numerical predictions can be realistic and may be reduced to interpolations
between axi-symmetric and plane-parallel simulations. Thermally and seismi-
cally activated redistributions of shape and state should also be kept within
tolerance bounds. Thus critical points with a spontaneous loss of symmetry
can be avoided.

15.3 One symmetry plane and simple SSI

A vertical symmetry plane can occur in evolutions with filling, excavation and
other actions which are often called loading or unloading. Embedded struc-
tures may be assumed to be rigid or freely deformable so that their interaction
with the soil (SSI) is simple. The evolutions can be monotonous or alternating
with thermal and/or seismic activation. The need to keep deformation mea-
sures within specific bounds helps to simplify simulations. State limits and
state cycles can lead to an objective approach, validations are available or
feasible. As before limitations by critical phenomena will only be indicated.

The corner of a fill upon layered ground can have a diagonal vertical
symmetry plane, Fig. 15.3.1. A flexible structure on top with payload and the
same symmetry can be damaged by settlement and spreading near the corner.
Damage bounds of deformation can be defined by a combined measure εst of
stretching ε = (u2A − u2B)/b and tilt ψ = (u1A − u1B)/b, viz.

εst =
√

fwε2 + (1 − fw)ψ2 (15.3.1)

with a weighting factor 0 < fw < 1. Following Boscardin and Cording (1989)
one can represent damage bounds as ellipses in a plot of ε vs. ψ, cf. Fig. 15.2.3d.

Predictions of εst are needed to judge design variants, and also for exe-
cution and control. They can be achieved by means of elp-α and v-elp-α or
hyp-δ and v-hyp-δ for psammoid and peloid layers. The composition of the
ground may be simplified as εst is an integral measure (cf. Sect. 11.3), but
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Fig. 15.3.1. Corner of a fill with a building

permeabilities should be substituted with caution (Sect. 9.2) as they deter-
mine the duration of pore water diffusion (Sect. 11.1). As always the initial
relative void ratios and consolidation ratios should be well established as they
dominate the evolutions. Simpler design models with more symmetry and
statical or kinematical assumptions could thus be justified with physical and
economical arguments. Validations can be achieved with 1g model tests and
softer particles than in situ (cf. Sect. 15.2). Model tests are also needed for
quantification of rather heuristic seismo-hypoplastic approaches (cf. Sects. 4.6,
12.5, 13.5 and 14.2).
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Fig. 15.3.2. Curved dam in a valley. Numbers for stages
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The better performance of a curved dam than of a straight one can be
quantified with a vertical symmetry plane, Fig. 15.3.2. As for a typical valley
the ground may consist of a groove-shaped rock base (1), granular sediments
from the river (2) and clayey soil along the slopes (3). After removing part of
the latter the dam may be built with a tunnel (4), rockfill (5) and a flexible
impervious core (6). After sealing the sediment and too pervious rock by
grouting (7) the basin is filled with water (8), partly emptied via a separate
tunnel, re-filled and so on. Many small and few strong earthquakes may occur.
The dam should not trespass tolerance bounds of a deformation measure ε̄
which can be defined as by (15.3.1) with more than two components, viz.

ε̄ =
√

Σfiε2
i (15.3.2)

with deformation components εi and weighting factors fi (Σfi = 1).
For simulations with elastoplastic or hypoplastic relations the system has

first to be identified by means of a simplified composition and state within suf-
ficiently far off fictitious lower and lateral boundaries. Simplifications can be
justified by comparative calculations with tolerance bounds for ε̄ by (15.3.2)
for judging the accuracy. As always constitutive parameters have to be as-
sessed for the given soils. Rockfill may be modelled as a psammoid with a
moisture-dependent granulate hardness and sufficient permanence (Sect. 7.3).
Its placement can be simulated by a slow increase of its gravity with a realis-
tic initial void ratio (cf. Sect. 12.1). Attached structures may be modelled as
elastic or elastoplastic, their interfaces with rockfill and ground can be cap-
tured as shown in Sects. 10.3 and 12.1. The grouted zone may be modelled
as a cemented soil (Sect. 7.3). The obtained field of stress and density in
ground, dam and attached structures suffices as initial state for subsequent
simulations.

Leaving aside creep, relaxation and pore water diffusion as they should be
negligible for a good dam, relevant changes of shape and state can occur by
water storage and earthquakes. Hydraulic boundary conditions are imposed

β

α/2
sym

Fig. 15.3.3. Corner of an excavation near a line building
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along the basin within design times. Because of seepage the duration of quasi-
static hydraulic changes can matter. Strong earthquakes can be substituted by
in-plane and anti-plane shaking (Sect. 12.5), because of reversals an internal
skeleton variable is needed as with elp-α or hyp-δ. Many small earthquakes
could instead be captured by s-hyp (Sect. 4.6) with model tests for quantifi-
cation (cf. Sect. 12.5). Cracking and erosion can be avoided by keeping defor-
mations by (15.3.2) below tolerance bounds, and by filter rules (Sect. 10.2).

The near-field of excavation corners can be simulated with a diagonal
symmetry plane, Fig. 15.3.3. The slope angle β may be uniform, the angle α
made by the two slope edges may range from ca. 60◦ to 140◦. The ground
may be composed of horizontal psammoid and peloid layers (the assumed

Fig. 15.3.4. Large scale test with an excavation window (Lizcano 2004): (a) cross
section, (b) end of excavation and surface markers
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symmetry can hardly occur with faults or filled erosion channels). The ground-
water may be at rest or have a variable hydraulic height with the same sym-
metry. Structures in and upon the ground (e.g. wells and roads) may have a
negligible resistance against deformations relative to the one of the ground.
Deformations of them by (15.3.2) should not exceed tolerance bounds during
and after the excavation, waiting times should be taken into account for pore
water diffusion and creep (Sect. 12.4).

In addition to a sufficiently deep base fixed smooth walls should be as-
sumed so far off that plane-parallelity is obtained near them. Karcher (2003)
found that a base depth of three times the excavation depth and a wall dis-

a)

b)

Fig. 15.3.5. Simulated shear zones (a) and displacements (b) for the test of Fig.
15.3.4 (courtesy M. Bühler)
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tance from the corner of ca. 2.5 times the base depth suffice for open pit
lignite mining. As with plane-parallelity (Sect. 12.4) the displacements after
full excavation can be captured by assuming a uniform reduction of gravity for
the excavated part, but intermediate displacement paths are missed as they
depend on the sequence of excavation. Karcher (2003) calculated reduction
factors for displacements relative to plane-parallel ones. These factors depend
mainly on the corner angle α and the relative position of displaced points, but
hardly on the slope angle β and the relative void ratio.

A so-called excavation window with a vertical symmetry plane was investi-
gated by means of a field test, Fig. 15.3.4 (Lizcano 2004). A layer of saturated
clay was placed upon a slightly inclined base and covered by a dam of humid
sand (a). A window was then excavated in the slope (b) until the neighboured
sand slid so that arching cracks arose. Photogrammetric markers at the free
surface and thin columns of dyed sand indicated the range of caving and zones
of intensive shearing.

In a back-analysis with hyp and v-hyp Bühler (internal report) could re-
produce the essential findings, Fig. 15.3.5. With the given void ratios and
water contents he first produced an initial state of dam and clay base by re-
moving shoulders. Opening then the window led to realistic zones of intensive
shearing (a). The simulated displacements (b) have realistic directions, but
too small amounts. The deviation may be attributed to cracks which were not
allowed for in the calculation and make the ground softer.

This field test served also to validate a calculation model by Goldscheider
and Lizcano (2004), Fig. 15.3.6. An exploded view shows blocks and wedges
which act together in a sliding mechanism. Statical equilibrium conditions
with directions of friction forces from the relative sliding velocities lead to a
required cohesion cu. Its maximum was determined by variation of the mecha-
nism (cf. Sect. 12.4). This was confirmed by the field test although the assumed
shear bands occurred only in the symmetry plane. Comparative calculations
with this method revealed that for typical configurations of lignite mining a
local deeper cut (window) does not reduce the stability of a long slope (plane-

Fig. 15.3.6. Sliding bodies for an excavation window (Goldscheider and Lizcano
2004)
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parallel). This simplification is justified as long as the soil is ductile (Sects. 2.2
and 3.2).

The installation of a slurry trench wall in psammoid ground was investi-
gated by Mayer and Gudehus (2001) with a longitudinal vertical symmetry
plane, Fig. 15.3.7. The initial composition and state varied only with depth
(Sect. 11.2), groundwater table and penetration resistances were given. The
finite element mesh (a) was prepared for some panels in a row with sufficient
distance from fictitious base and walls. Excavation with supporting suspen-
sion, pouring in and curing of concrete were simulated according to the site
record. Sand layers were represented by hyp-δ, a marl band was captured
by elp, lab tests served to determine constitutive parameters. Calculated hor-
izontal displacements agree satisfactorily with those observed by inclinometers
(b). They approached tolerance limits of near-by facilities, this was the reason
for the investigation.

Comparative calculations were carried out with different sequences of pro-
duction. Characteristic displacements were smaller with a more regular order
than with the actual rather erratic jumping of machines. This shows once more
the path-dependence of grain skeletons (cf. Sects. 2.2 and 12.4): smooth oper-
ations pay off. Skeleton stresses at a trench section are similarly distributed
as shown in Fig. 15.1.5, but redistributed by the progression of excavation
and casting. This leads to more reversals for less steady operations, and thus
to bigger deformations. The near-field of the ready panels is not uniform and
rather indeterminate anyway. This force-roughness does not matter for the
subsequent excavation with support as long as the surrounding ground is not
dilated (the ground would be stiffer after vibrating in a wall, Sect. 13.6).

The progressive installation of a slurry trench wall in peloid ground was ob-
served by Di Biaggio and Myrvall (1972), and back-analyzed with v-hyp-δ by
Schäfer and Triantafyllidis (2004) with a vertical symmetry plane, Fig. 15.3.8.
The ground was identified as explained with Fig. 15.1.4a, sequence and inter-
vals of excavation and casting panels were taken from the record. The mesh (a)
was adapted to the given geometry, sufficiently distant fictitious walls and base
were chosen by means of comparative calculations. Without further adaption
of parameters calculated and observed displacements agree satisfactorily. The
near-field pressures change with the progression (b) in fair agreement with
available data, more precision in that respect is not achievable nor required.

Time enters via skeleton viscosity, whereas curing of concrete and diffusion
of pore water are negligible in the considered period. In the long run both lead
to a stabilization with minor deformations by densification and pressure redis-
tribution. Stability is given during the operation if the ground and embedded
structures are ductile. Structures are on the safe side as long as deforma-
tion bounds are not trespassed (cf.Fig. 15.2.3). Saturated undrained soil can
be sensitive, i.e. not ductile with high void ratio and rather hard particles
(Sects. 2.2 and 3.2). With skeleton viscosity and/or minute repeated distur-
bance the ground could then collapse some time after trenching. Cudmani
and Sedlacek (2006) report on such a case. The version v-hyp by Gudehus
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Fig. 15.3.7. Installation of a slurry trench wall in sand (Mayer and Gudehus 2001):
mesh (a), calculated and observed displacements (b)
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a)

b)

Fig. 15.3.8. Simulated progression of a slurry trench in peloid ground (Schäfer and
Triantafyllidis 2004): (a) mesh with panels, (b) evolution of pore pressure (upper
curve) and horizontal skeleton pressure (lower curve) with construction steps

(2004a) embraces a possible loss of ductility (Sect. 3.4), monitoring should
then include pore pressures and vibrations.

Wolffersdorff (1997) investigated a block upon sand with a skew load,
Fig. 15.3.9. The block was placed upon the same ground as for the field test
with a sheet pile wall introduced by Fig. 13.6.1, and loaded via a jack and
an anchored tripod (a). The mesh with a vertical symmetry plane implies
sufficiently distant fictitious walls and base (b). A simulation with hyp and
capillary skeleton pressure pcs (Sect. 6.2) produced realistic displacements
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(c). Deviations at the onset indicate rather indeterminate initial fluctuations
of skeleton stress due to placement. They could principally be reduced by
means of hyp-δ as far as the placement is well defined (cf. Sect. 13.3). The
loading could not be continued after one anchor failed. It would be difficult
to simulate up to a limit state because of shear localizations evolving from
the edge (cf. Sect. 13.3). A gap arose at the block with loading both in the
simulation and in situ (d).

Similar field tests with blocks upon peloid or composite ground have appar-
ently not been made. They could be back-analysed as with plane-parallelity or
two symmetry planes (Sects. 13.3 and 15.2). The main obstacle for validations
and predictions would be partly unknown sand bands and lenses so that the
time needed for pore water diffusion gets rather indeterminate. Hydraulic re-
versals can principally be treated as outlined in Sects. 12.4, 14.2 and 15.1,

a) b)

c) d)

3,
46
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Fig. 15.3.9. Field test with a loaded block upon sand (a), mesh for simulation (b),
observed and calculated horizontal and vertical displacements versus imposed forces
(c), tilted block (d); von Wolffersdorff (1997)
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but model tests and back-analyses should be postponed until at least axi-
symmetric cases are well understood.

Consider now blocks with reversals. To begin with, assume a rather dense
psammoid (re ≈ 0.5), resting pore water (hw =const), a vertical dead load
by weight (W =const) and symmetric horizontal load cycles with subcritical
amplitude and low frequency (H = Ha cos ωt,Ha < W tan ϕc, ω

2b � g),
Fig. 15.3.10. The block may have a square base (a = b), a shallow bedding
(d � b) and a rather low tetrapod (h/b < W/6Ha) for horizontal loads in one
symmetry plane (a). The displacement response (b) is neither symmetric nor
harmonic, but gets periodic after a transition (dashed lines). In the average
the top settles so that d increases (ratcheting, cf. Sect. 13.8), and the block is
slightly shifted and tilted.
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Fig. 15.3.10. Block upon psammoid ground with alternating loads (a), displace-
ments versus time (b), asymptotic cycles of stress (c) and of void ratio versus pres-
sure (d) for some RSEs

The skeleton state tends to state cycles which can be visualized by paths
of RSEs under the left (I) and right edge (II), and somewhat deeper under
the middle (III). In a plot of shear stress τ (only one component for sim-
plicity) versus mean pressure ps (c) the paths I and III resemble a pair of
lenses, whereas I is butterfly-like. In a plot of e vs. log ps (d) minute skew
butterflies indicate repeated dilation near the edges (I ≈ II with 1/2ω delay)
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and a lower average e under the middle. The related average growth of settle-
ment Δu1A per cycle is slightly reduced by the increase of bedding depth d.
This attractor in the large can be represented by an ensemble of RSE state
cycles which change slightly by the change of bedding depth and tilt. These
geometrical effects may be neglected as also the bulge of the near-by free
surface.

Simulations and validations should be focussed on the proposed attractor
as it exhibits an objective response. Initial partly indeterminate near-field
deviations by placement are swept out at the beginning. The transition needs
the more H-cycles the more the initial re near-field differs from the average
asymptotic one. Calculations with hyp-δ get more robust with a soft elastic
inlay along the edge, polar effects may be neglected. Model tests with 1g and
softer grains can more easily represent a prototype than with natural grains
and a centrifuge (cf. Fig. 15.2.2). Shear localizations near the edge can be
reduced by an elastic inlay as in calculations, polar effects are minor with a
grain size dg < 100b (cf. Sect. 13.4).

Extensions with symmetric loading can be treated similarly if limitations
are kept in mind. Blocks may have other shapes with two symmetry planes
including ground and loading. Many H-cycles in packages, each one with
another constant amplitude in one of the principal directions, can lead to a
succession of attractors. Overcritical amplitudes Ha/W and heights h/b would
lead to excessive sliding and tilt with shear localization near the edges so that
the assumed symmetry gets lost. The pore water is no more hydrostatic if
its diffusion time td exceeds one load cycle time tl, then its coupling with
the skeleton should be taken into account. In resting intervals the pore wa-
ter can get hydrostatic by diffusion. The assumed symmetry can get lost by
decay of loose skeletons or by cavitation in dense ones. Inertia matters with
high frequencies so that repeated propagations distort asymptotic cycles (cf.
Sect. 11.4).

The response of a system as in Fig. 15.3.10a to asymmetric horizontal
load cycles can be represented similarly within suitable limits, Fig. 15.3.11.
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Fig. 15.3.10a with asymmetric alternating loads: displacements versus time (a),
asymptotic cycles of stress (b) and void ratio versus pressure (c) of some RSEs
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Assume again re ≈ 0.5, initially hw =const, W =const, a = b, d � b and
h/b < W/6Ha, but H = 0.5Hg(1 + cos ωt) with Ha < W tan ϕc and ω2b � g.
Displacements (a) may indicate a slight stabilization, shift and tilt tend to
nearly stationary ratcheting as long as the tilt is not too big. Asymptotic
stress cycles of RSEs positioned as before (b) are no more symmetric pairs
for opposite edges, and are skew in the middle. Asymptotic cycles in the e vs.
log ps plot (c) are less regular and have a higher average than for symmetric
loading with the same Ha/W , h/b and initial re.

Simulations and model tests could be carried out similarly as with sym-
metric loading. Focussing again on attractors additional settlements, shift and
tilt per cycle belong to the main features. These could be used to estimate
cumulative displacements, and the tilt beyond which it would grow faster by
the moment of W (cf. Fig. 13.4.1). Extensions for other shapes, packages of
load cycles, changing hw and inertial effects can be achieved principally as
for symmetric loading. A tilted block can turn back with smaller and/or more
symmetric load cycles (Sturm 2009), but then it settles in the middle and can
only be shifted back by an opposite average H.
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Fig. 15.3.12. Block upon shaken psammoid ground (a), displacements versus
time (b)

The response of blocks upon psammoid ground to base shaking could also
be captured by asymptotic cycles, Fig. 15.3.12. Sufficiently distant base and
opposite movable walls undergo free-field shaking with one symmetry plane,
whereas two fictitious in-plane walls are smooth (a, cf. Sect. 12.5). Repeated
wave propagations can lead to oscillating and cumulative displacements of the
block up to a periodic asymptotic response (b). With a horizontal free surface
a nearly stationary vertical ratcheting is attained as long as the block is not
toppled. Stress paths and e vs. log ps paths of RSEs tend to similar state
cycles as with cyclic loading (cf. Fig. 15.3.10c, d), but now far-field RSEs get
more engaged.
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Simulations and validation tests could be carried out similarly as with
plane-parallel shaking (Sect. 12.5). They are more expensive with only one
symmetry plane, and cannot be simplified by interpolations (cf. Sects. 15.1
and 15.2) as an axial symmetry gets lost by regular shaking. Other block
shapes, packages of shaking and changing pore pressures could be taken into
account, cumulative displacements can at best be estimated because of partly
indeterminate onsets.

Responses to random shaking from below or above may be estimated by
s-hyp (Sect. 4.6, cf. Sects. 12.5, 13.3 and 14.3) with the aid of model tests.
Imagining the shaken ground like a temporarily heated viscous fluid may help
to understand and avoid gradual sinking, sliding and tilting, whereas a sub-
stitution of earthquakes by cyclic horizontal loads and a simplified subgrade
can hardly be defended. The asymptotic state cycles proposed above fail for
toppling and bulging, and also by dislocations and break-outs along faults
(Sect. 16.3).

Blocks upon peloid ground with reversals can also be judged by means of
asymptotic state cycle fields. These are argotropic due to skeleton viscosity,
and constrained as the time needed for the diffusion of pore water exceeds
usual loading times by orders of magnitude (Sects. 11.4 and 12.5). With small
amplitudes the response is more elastic than with psammoids, but big ones can
lead to skeleton decay or cavitation which enhance toppling. Simulations with
v-hyp-δ and model tests without seepage should be focussed on asymptotic
state cycles for cyclic displacements and ratcheting.

Evolutions with blocks upon composite ground and reversals are more com-
plex, but often met. Again an objective response is exhibited by state cycles
in the large, but this approach is still too complex for design. Simplifications
may be attained after validations with one symmetry plane, but hardly as far
as widely assumed at present (more in Sect. 15.4).

To sum up, evolutions with a vertical symmetry plane and almost rigid
or very flexible structures can be captured by means of attractors. Partly in-
determinate initial spatial fluctuations can be swept out by sufficiently big
monotonous deformations or by many repeated reversals. Some validations
have been obtained by in situ tests where asymptotic state fields were ap-
proached, and further ones could be attained by model tests with reversals up
to state cycles. Cumulative displacements can at best be estimated, particu-
larly if the diffusion of pore water comes into play. The proposed approach for
psammoid and peloid ground is limited by localizations and skeleton decay.

15.4 One symmetry plane and complex SSI

A vertical symmetry plane may often be assumed for piles and pile groups
with lateral loads. It works with various superstructures and also with granular
columns instead of piles. The interaction of soil and structure (SSI) is complex
as the structural forces can vary for constant loads. Subgrade models may work
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at best for monotonous evolutions, whereas alternating ones can be captured
by asymptotic cycles. Some validations are at hand and others are attainable,
limitations by critical phenomena should be kept in mind.
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Fig. 15.4.1. Psammoid ground and single pile with horizontal load (a, bending
exaggerated), lateral subgrade model (b), lateral ground resistance versus depth
(c), top load versus displacement (d)

Consider first a vertical pile in psammoid ground with monotonous top
loading, Fig. 15.4.1. It may be clamped in the base and free at the top (a),
but it could also have a yielding base support and could be constrained by
a top structure. The resulting lateral ground resistance q per unit of depth
is horizontal with a smooth shaft, and may be assumed thus for simplicity
if the shaft is rough. Replacing the ground by a horizontal subgrade means
that q is assumed to be a unique function of the horizontal pile displacement
u, viz. q = fq(u). This depends on depth z and may be linear, bi-linear or
monotonous with a horizontal asymptote (b). The increase of stiffness with z
may be captured by a factor for fq which increases with the far-field pressure
psf (Sect. 11.2), e.g. via

q = (psf/γd)mfqr(u/d) (15.4.1)

with pile diameter d, specific weight γ, an exponent m in the range 0 < m ≤ 1,
and a reference subgrade function fqr of u/d. γ is replaced by γ′ for uplift if
the ground is submerged.

The distribution of q vs. z (c) is thus a unique image of the pile bend-
ing line u(z). Both get wider with an increasing horizontal top force H.
With a subgrade reaction by (15.4.1) and an elastic bending stiffness the in-
crease of top displacement u0 with H (d) can be calculated numerically. Load
test data can be used to adapt parameters in (15.4.1), other conditions at
base and top can as well be captured. This works also with layered ground
and parameters which can be adapted by means of borehole expansion tests
(Sect. 11.7). The assumptions in (15.4.1) are often defended with the argument
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that pile bending moments and transversal forces do not vary substantially
with inevitable variations of parameters, but is that legitimate?

More insight could be gained by simulations with a vertical symmetry
plane, Fig. 15.4.2. The opened system (a) exhibits the pile (round and smooth
or rough and elastic) and a base (rigid), fictitious walls (rough or smooth
and sufficiently far off), a top force H (increasing from zero, slightly above
ground) and RSEs in front (I), sidewards (II) and behind (III). The far-field
depends only on depth x1 (Sect. 11.2), the initial near-field after placement
is axi-symmetric (Sects. 14.2 and 14.3). As with axial loading (Sect. 14.4) the
relative void ratio ren in the near-field is of major importance, the unknown
initial stress near-field is swept out by monotonous deformations whereas the
initial response is less determinate. This can be represented by paths of two
principal stress components (b, with assumed principal directions for simplic-
ity) and by plots of e vs. log ps (c) for RSEs. With low ren the RSE I is more
stressed and less dilated than II, whereas III is unstressed and more dilated
than II.
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versus pressure (c) for RSEs near the pile

Simulations with hyp (or with elp if it reproduces dilation, contraction,
stressing and unstressing for cuboidal deformations and shearing, Sects. 2.7,
2.8, 2.9 and 2.10) could yield ensembles of state paths for finite elements.
They would tend to SOM-state and state limit near fields which are attained
by sufficient monotonous deformations. Validations could be obtained by 1g
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model tests with reduced granulate hardness and the same dimensionless loads
so that realistic in situ deformations are obtained (cf. Sects. 14.4 and 15.2).
Comparative calculations could reveal the main factors of influence and the
inevitable inaccuracy, and would delimit simplified assumptions as (15.4.1).
Extensions for pore water could be achieved as outlined in Sects. 15.1 and
15.2, cavitation behind the pile could be taken into account as shown with
Fig. 15.3.9, skeleton decay and spontaneous localization delimit the range of
validity.

Vertical piles with horizontal reversals in psammoid ground can no more
be captured by subgrade models. Consider a pile as in Fig. 15.4.1a, but now
with slow cyclic head displacements in the symmetry plane, Fig. 15.4.3. After
a sufficient number of reversals the H vs. uo relation for the top gets periodic
with more hysteresis for bigger amplitudes (a). The pile is bent with lateral
ground reactions q, these have signs which do not always agree with the ones
of lateral displacement u (b). The sections of deviating signs are not the same
for other amplitudes, nor for transitions to a periodic H vs. uo response. The
relation of H with uo is path-dependent, and the one of q with u is no more
unique so that subgrade models get invalid.

The path-dependence of the top response arises due to the changing state
of pile and neighboured skeleton, which may be considered as hidden (cf.
Sect. 4.2) when focussing on the pile head. This indeterminacy can be over-
come by means of periodic state fields associated with a periodic relation of H
with uo. They can be represented by an ensemble of RSE state cycles which
can be obtained by finite element simulations with hyp-δ (or elp-α with vali-
dated state cycles, Sect. 4.4). Some cycles are indicated for RSEs by plots of
principal stress components (c, with assumed principal directions) and of e
vs. log ps (d).

With a moderate amplitude, so that state limits are never reached in
the RSEs of Fig. 15.4.2a, the skeleton in front (I) tends to the same stress
cycles as the opposite one (III) except for a phase shift. Average pressures
and void ratios are lower than for monotonous bending with a low initial ren,
whereas the sidewards RSE (II) is more relaxed and less dilated. The average
asymptotic near-field void ratios and pressures are determined by the top
amplitude (and of course by skeleton and pile properties), and do not depend
on the initial near-field or on the far-field.

Ratcheting of the pile head can lead close to asymptotic state cycles in
the ground. Apart from the bending resistance without ground the plot of H
vs. uo gets periodic (e) as long as strong bending and surface bulging do not
matter. Stress paths of RSEs as in Fig. 15.4.2a tend to cycles (f). The skeleton
in front (I) tends to a higher average pressure and void ratio than the opposite
one (III), but not as high and low, respectively, as for monotonous bending
with low initial re. A lateral RSE (II) tends to asymmetric stress cycles with
intermediate average pressure and void ratio. The asymptotic near-field void
ratios are lower for lower forward and backward amplitudes Δuf/b and Δub/b,
and are also independent of the onset.
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resistance versus depth (b), asymptotic RSE-paths of stress (c) and void ratio versus
pressure (d); head force versus displacement for ratcheting (e), related asymptotic
stress cycles of some RSEs (f)

Simulations with hyp-δ (or elp-α with realistic attractors, Sect. 4.4) could
produce such attractors and transitions to them. 1g model tests with soft
grains can serve for validation and help to quantify cumulative effects. Tran-
sitions could be further quantified by successions of cyclic displacements and
ratcheting with different amplitudes. One could change the loading direc-
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tion in the ground plan, then a new vertical symmetry plane is attained
after a transition. Piles with other cross sections and end conditions could
be treated likewise. Pore water could be taken into account, limitations by
critical phenomena should be kept in mind.

Inertial effects could also be captured by attractors and transitions to
them, but one should begin with simple cases in order to master the increasing
complexity. The psammoid should be dry, or saturated with so fine grains that
the diffusion of pore water is negligible. If the pile head with an attached mass
is shaken with big amplitudes the neighboured ground responds almost quasi-
statically, whereas with small amplitudes a bigger part of the kinetic energy
is radiated off. Asymptotic cycles deviate more from quasi-static ones in the
latter case. If the base and opposite walls are shaken state cycles of RSEs
are distorted by inertia. The response depends on the mass attached to the
pile head, as with shallow foundations (Fig. 15.3.12) it cannot be captured by
means of substitute top loads.

Model tests may also be used to quantify seismo-hypoplastic estimates (cf.
Sects. 4.6 and 15.2). The pile and the neighboured ground return to a relaxed
state with low re by erratic shaking of the head or the base in case of low
amplitudes. This seismo-viscous state limit field can be calculated with v-
hyp by means of viscosity parameters depending on the granular temperature
Tg. Crude estimates of Tg suffice if relaxation and densification are safely
attained, but Tg-differences for head and base shaking should not be ignored.
The response with bigger amplitudes could principally be captured with a
Tg-dependent entropic pressure.

A peloid ground with a single pile could be treated similarly as with psam-
moids. The response is argotropic due to skeleton viscosity, this could be
captured by v-hyp or v-elp without and by v-hyp-δ or v-elp-α with reversals.
As pore water diffusion times td are typically far longer than loading times
seepage may often be neglected. This does not exclude density changes due
to a small volume fraction of minute gas bubbles. The initial void ratio field,
which can be substituted by equivalent pressures pe or consolidation ratios
pe/ps, is of major importance as it is not swept out by nearly isochoric tran-
sitions. In waiting intervals without horizontal head loads ground and pile
are relaxed (faster with lower pe/ps), and both ps and pe tend to far-field
values by pore water diffusion. Permanent head loads lead to creep, for times
t � td this occurs without seepage and is later reduced by densification in
case of subcritical loads (cf. Sect. 13.2). Asymmetric oscillating loads lead
to creep and ratcheting, an erratic shaking enhances relaxation and diffusion
with density changes.

Model tests for validation can be carried out with constant e and almost
full saturation without a centrifuge if the material can be captured by the
chosen constitutive relation in the given range. For instance, Bühler (2003)
investigated a pile in clay with a constant load in one horizontal direction and
an oscillating transversal load, Fig. 15.4.4. The elastic pile was fixed at the
base, the clay was homogeneous and could not swell or shrink in the load-
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ing time. The loading device and its vicinity (a) were represented by finite
elements (b), farther off the mesh was coarser. The observed head displace-
ments (d) are reproduced (c) in all essentials. An almost stationary ratcheting
was attained already after the first cycle because of the rather big amplitude,
and maintained for the following cycles due to the low pile bending stiff-
ness. This is a validation as no parameters were adapted to fit the model test
results.
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Fig. 15.4.4. Model test with ratcheting of a pile head in clay (Bühler 2003): pile
head with vicinity (a) and substitute mesh (b), calculated (c) and observed head
displacements (d) versus time

Similar validations could be attained with other kinds of clays, piles and
loading. Argotropic and endogeneous attractors and transitions to them could
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be investigated with different initial states and waiting intervals. Thermally
and seismically activated creep and relaxation could be studied, also with
pore water diffusion via changes of density. Limitations by localizations and
liquefaction should be quantified. Such studies could help to establish sim-
plified design models which are more justified than those with a lateral
subgrade.

Evolutions with bending of a vertical pile in composite ground are more
complex, but often composition and loading may be simplified and a vertical
symmetry plane may be assumed. If a single pile carries also a permanent
axial load, e.g. from a mast or a windmill, it should stand in a competent
layer so that it does not sink too much. The soil near the surface should not
be nor get too soft so that it can take over temporary horizontal loads. This
can be achieved by a dense enough psammoid or peloid top layer if this is not
too much dilated or cracked and not liquefied. The pile should not break or
lose its foothold by strong actions (survival), and the near-field should return
to the previous state (healing). Survival can be assessed by means of state
cycles with not too big amplitudes, healing by thermal and seismic activation
should occur prior to the next strong impacts.

Bühler (2006) investigated single piles in model tests with the shake box
of Fig. 12.5.2c, Fig. 15.4.5. A pile with transducers stood in saturated sand
and/or clay (a) and was shaken from below (cf. Sect. 12.5). The system was
modelled with finite elements (b), an interface between pile and soil as by
Fig. 15.4.6b, a symmetry plane and hyp-δ or v-hyp-δ for sand and clay, re-
spectively. Displacements and internal forces were reproduced almost up to
liquefaction, i.e. near ground surface and pile the soil was gradually trans-
formed into a suspension. This occurred with a clay and shaking as the Loma
Prieta earthquake (c). After consolidation with wick drains liquefaction and
partial uncoupling of pile and ground was more delayed with the same base
shaking (d). The uncoupling occurred earlier with loose than with dense sand,
and earlier than with consolidated clay. This validation of hypoplastic models
with reversals and pore water coupling is limited by liquefaction.

For further validation Bühler (2006) back-analyzed an offshore pile test by
Cheang and Matlock (1981). Two piles were pushed and pulled past each other
via jacks in traverses. The horizontally layered ground with fine sand and clay
was identified as a composite of psammoid and peloid layers. The material
constants for hyp-δ and v-hyp-δ were determined from reported triaxial test
results. Initial skeleton stresses were estimated as outlined in Sect. 11.3, initial
void ratios were determined from penetration resistances (Sect. 14.3), the
influence of pile driving on the near-field was neglected. Permeabilities kf

were estimated by means of particle size distributions (cf. Sect. 6.2). The finite
element mesh (Fig. 15.4.6) enclosed one pile and a smooth symmetry plane
(a). Fictitious confining walls were chosen so far off by means of comparative
calculations that they did not influence the ground response of the piles.
Opening and closing gaps at a pile were captured with a contact model (b).
The diffusion of pore water was neglected for the peloid layers as it could
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scarcely occur in the loading time, which had to be estimated for the viscous
response.

In one test the pile head was clamped so that it moved horizontally without
rotation. Without further adaption of parameters the observed relation of
horizontal head force and displacement with some reversals was reproduced
in detail (Fig. 15.4.7a). Calculated bending moments for the load steps 1–7
(b) were rather close to observed ones (c). A fair agreement was also obtained
with free head rotations of the loaded piles. This is a validation for evolutions
without seepage, i.e. when the pore water diffusion time exceeds by far the
loading time. The latter is typical for offshore structures during strong actions,
so this validation strengthens the assessment of their survival.
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a)

b) c)

Fig. 15.4.7. Simulation results by Bühler (2006) of an offshore pile test by Cheang
and Matlock (1981): (a) head forces versus displacement, calculated (b) and ob-
served (c) bending moments versus depth

Various kinds of horizontally loaded pile groups in layered ground can be
captured with a vertical symmetry plane, Fig. 15.4.8. This can be identified
in a rectangular array (a), but an anti-plane symmetry as in an elastic system
cannot arise with the anelastic ground response. (A polygonal array is better
apt if horizontal loading or shaking can occur in arbitrary directions.) Infinite
rows of piles are often assumed for retaining structures (b), such systems are
composed of equal slices and can get in-plane or anti-plane loading or shaking
(cf. Sect. 12.5). This can be legitimate with a slope or a cut which is uniform
over a sufficient length. Opposite points of fictitious walls separating the slices
experience the same displacements. An infinite array of piles with equal ground
and loads may be assumed for the interior of pile groups. Rims and corners
of such arrays are no more symmetric as piles are more or less deformed than
interior ones under a flexible or stiff superstructure, respectively.
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b)a)

Fig. 15.4.8. Groups of vertical piles with horizontal ground surface (a) and near a
slope (b)

A symmetry as in Fig. 15.4.8 may also be assumed with granular columns
instead of piles. Their near-fields due to installation are nearly axi-symmetric
(Sect. 14.2). What counts for the overall behaviour is the average diameters
and spacing of the columns, and the average void ratios of columns and ground
between them. Cemented columns can be treated as soft piles. A ground with
many equal piles or columns can be modelled as a composite, this requires
calculations with suitable unit cells and deformations in the expected range
(Sect. 9.2).

Tetrapods of piles have often been investigated in model tests with sand,
but only few of them are apt for validation. Usually the grains were too
hard and big, initial states and boundary conditions were not well-defined
and/or the evolutions were not sufficiently monitored and documented. Bühler
(2006) worked with saturated clay which was shaken by a laminate box (cf.
Fig. 12.5.2c), Fig. 15.4.9. One of the four piles was equipped with strain
gauges, otherwise the setup (a) was the same as with one pile. The finite
element models had again a vertical symmetry plane (b). With loose sand
observed and calculated head displacements agree fairly well up to the sec-
ond base cycle (c). Clearer than with one pile a response fraction with twice
the excitation frequency indicates a double cycle in the ground as in RSEs
(cf. Fig. 15.4.3c). An even better agreement was obtained with consolidated
clay (d). As with one pile (cf. Fig. 15.4.5) the calculations end by lique-
faction.

Pile dowels in creeping slopes may be considered as endless rows. A sim-
plified model (Gudehus 1984) serves for the design, Fig. 15.4.10. The velocity
profile of the creeping layer (cf. Sect. 11.6) is substituted by a step function,
i.e. shearing is assumed to be localized at the base (a). The lateral thrust H
at each pile (b) is taken as a bi-linear function of the displacement of the soil
relative to the pile, with different amounts above and below the shear zone
(c). With the pile bending stiffness and the creep velocity before installation
of piles this subgrade model can be transferred to a creeping ground with
pile dowels (d). After their installation the creep velocity is reduced by the
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increasing transversal pile resistance (e). Deformation tolerances of piles can
be kept by predictions for the lifetime.

This concept was technically improved and applied, Fig. 15.4.11. In one
case (Schwarz 1987) sliding bodies could be identified in a middle cross section
(a). After installing two concrete pile rows the creep was slowed down as
shown in Fig. 15.4.10e. In another case (Lippomann 1988) a creeping slope

d)

e)

Fig. 15.4.10. Pile dowels in a creeping slope (Gudehus 1984): simplified velocity
profile (a), lateral force per unit of depth between pile and soil versus displacement
past the ground (b), lateral force versus displacement (c), sliding soil with pile
dowels, displacement (d) versus time after installation of piles (right) and versus
transversal pile forces (left)
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Fig. 15.4.11. Applications of model by Fig. 15.4.10: (a) sliding bodies above a
railway (Schwarz 1987), (b) pile dowels behind a house (Lippomann 1988)

had damaged part of a dwelling house (b). After placing three rows of piles
the creep was slowed down slightly more than predicted so that the house
could be used again.

Inclined piles occur in groups with a vertical symmetry plane, Fig. 15.4.12.
A foundation block for a rope can be anchored by a symmetric group of tension
piles with different inclinations (a, ground partly removed for visibility). The
total pull-out resistance can be estimated by assuming a sliding block with
earth pressures, but displacements and distributions of forces could as yet only
be captured with hyp (cf. Fig. 15.2.5) or with hyp-δ in case of alternating
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loads. A pile group for a mast or a bridge implies battered piles (b) if the
upper soil cannot take over horizontal loads, one symmetry plane may be
assumed. The piles have bending stiffness, therefore they get bending moments
by displacements relative to the ground. Subgrade reaction models may at best
serve for a pre-design, whereas the response to extreme and repeated actions
could be captured with hypoplastic relations.

Rows of tension piles or anchors behind retaining walls may be replaced
by plates (Sect. 13.6), but more details are revealed with a vertical symmetry
plane (Fig. 15.4.12c). As with rows of vertical piles (Fig. 15.4.8b) opposite
walls of fictitious slices experience the same in-plane and no out-of-plane dis-
placements. The state field after installation of tendons may be generated
by taking production-dependent near-field void ratios as with axial symme-
try (Sect. 14.3) plus unchanged far-field values, and to impose gravity (cf.
Sect. 13.6) plus expansion for grouting. Deviations from this serial symmetry
could hardly be detected and are swept out in the further evolution. This can
thus be simulated in order to improve installations and to justify substitute

a) b)

c) d)
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4

Fig. 15.4.12. Anchor block with battered piles (a), foundation block with differently
inclined piles (b), back-tied retaining wall (c), quay wall structure (d). Numbers for
sequence
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anchor plates. A similar approach can be applied for embedded flexible strips
(cf. Fig. 13.5.10).

Quay wall structures can have the same symmetry, e.g. Fig. 15.4.12d. After
driving a sheet pile wall (1) and inclined piles (2) to fix the head part of
the soft ground is replaced by sand (3) which is densified by deep vibration.
Then a second row of piles (4) is driven vertically, plates are placed on top
(5), the ground behind is filled up (6) and a part of the ground in front
is excavated (7). This evolution can be captured with plane-parallelity by
means of plates instead of piles (Sect. 13.5), but simulations with a row of
symmetric slices provide more insight. The interaction of piles with the ground
and substitute plates can thus be quantified, details of installation can be
simplified as indicated further above. This approach works also with further
pile rows and composite or wavy walls.

Mardtfeld (2005) achieved a validation, Fig. 15.4.13. The complete sys-
tem consisted of natural and filled sand (modelled by hyp), a soft clay layer
(elp), steel wall and piles (elp) and concrete plate and piles (elp). The mesh
for a slice was refined for the structure and the neighboured ground. An ini-
tial state was generated by imposing gravity with given void ratios and wa-
ter level. Simulations of further earth movements led to deformations of the
structure (a, exaggerated) and to changed earth pressures. Observed displace-
ments agreed with calculated ones, even defaults of earth pressure measure-
ments were revealed. Axial forces of the inclined anchor piles were reproduced
realistically (b). It could be shown that the composite system was ductile
with the attained deformations, which could not be judged with conventional
models.

Raju’s et al. (2002) report on earthquake damages of a quay wall structure
may be used to show what could and should be done. A platform had been
placed on vertical piles bored through a marine clayey silt into rather dense
gravel, Fig. 15.4.14. Sand was filled up landwards, warehouses in a row were
founded on vertical and inclined piles. The slope under the plate got steeper
by sedimentation of further silt. During the Bhuj earthquake 2001 anti-plane
shaking produced up to ca. 2 m/s2 platform accelerations over 90 s (Rao 2001).
The warehouses crumbled and several pile heads were damaged. Within the
next 3 months the ground settled up to ca. 0.4 m behind the platform, and
this was partly damaged.

This evolution could be simulated with hyp-δ and v-hyp-δ for the ground
and elp plus fracture bounds for the structure by means of a row of slices. The
fresh sediment after installation creeps past piles, and is thus retained so that
bending moments arise (cf. Fig. 15.4.10). Anti-plane shaking could be imposed
to the base and the fictitious walls of a slice (cf. Sect. 12.5) so that opposite
points have equal displacements. If forces at the pile heads attain fracture
bounds the warehouse can still be destroyed by inertial forces transmitted
by inclined piles. The pore pressure in the silt is increased by shaking (cf.
Sect. 12.5), this leads to creep and further structural deformations, and to
densification with dwindling excess pore pressures by diffusion in the long
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a)

b)

Fig. 15.4.13. Back-analysis of a quay wall structure (Mardtfeld 2005): (a) deformed
structure (exaggerated) after back-filling and excavation, (b) observed (upper curve)
and calculated (dotted line) axial force of anchor pile
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Fig. 15.4.14. M. Bühler’s representation of a quay wall structure which was dam-
aged by an earthquake (Raju et al. 2002)

run. Such a simulation could lead to a validation although the data are not
as comprehensive as in the case of Fig. 15.4.13.

Such damages could be avoided with only vertical piles, a more duc-
tile structure and a hidden dam of improved ground, this could be as-
sessed by simulations with slices. Houses upon vertical piles or granular
columns can survive earthquakes (cf. Fig. 15.4.7). Sidewards creep and set-
tlement can be sufficiently reduced by granular columns, after their in-
stallation the neighboured ground is also denser. A hidden dam of den-
sified sand and stone columns would prevent damages as in Kobe 1995
(cf. Sect. 12.5), and could be simulated by means of slices. The reduc-
tion of excess pore pressures by the columns and the desired rise in partly
loose sand could thus be captured, simplified design models could also be
established.

To sum up, complex interactions of structures with the ground can some-
times be captured with a vertical symmetry plane, this can be justified by
means of attractors. SOM-state, state limit and state cycle fields could be
generated for monotonous and alternating actions, respectively, and deforma-
tions can be fairly well predicted. The partial indeterminacy of initial states
can thus be mastered, validations by model tests and field observations get
feasible, and simpler design models can be delimited and improved. Limita-
tions due to shear localization or cracking and liquefaction with erosion should
be regarded by means of deformation bounds.
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15.5 Tumbling and driving

Tumbling and driving in uniform ground can exhibit spatial and temporal
symmetry and can principally be captured by asymptotic state cycle fields.
It is briefly outlined how such evolutions could be simulated and how valida-
tions could be achieved by model and field tests. Limitations due to critical
phenomena are indicated, these can lead to a loss of control.

Wichtmann (2005) reports on experiments with dry sand in a tumbling
cylinder, Fig. 15.5.1a. The fixed base was rough, a confining membrane was

aluminium rings

guidance rods

soil specimen

drainage

ball bearing
(hor. guidance)

ball bearing
(vert. guidance)

eccentric

electric motor

F
displ. transducer

displ. transducer

a)

b)
–2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5

4.23

4.22

4.21

4.20

4.19

4.18

4.17

S
et

tle
m

en
t s

 [m
m

]

Displacement u1 [mm]

ID0 = 0,85
N = 200

u1

u2

x1

x2
x3

s

Fig. 15.5.1. (a) Tumbling device by Wichtmann (2005), (b) observed evolution of
sample height with torsion for initially dense sand
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reinforced by parallel rods, these tumbled together with the rough top plate
which could not tilt and had a constant vertical force. The evolution of the
height with the torsion angle indicates a transition to a periodic response
after some revolutions (b). The number of revolutions needed to attain such
state cycles is bigger for smaller deviations from the cylindrical shape and for
higher initial relative void ratios reo.

Revushenko (2006) reports on similar tumbling experiments with sand
and a free surface, Fig. 15.5.2. A confining group of rods was kept above by a
fixed ring and twisted by a ring below (a). After one test the distortion was
visualized by means of a dyed zone and fixing glue (b). Revushenko does not
report more results of these promising experiments. Presumably patterns of
shear bands appear at the surface of a distorted dense sample, and disappear
after cyclic torsion with small amplitude. Changing sample heights indicate
again changing average void ratios.

Such evolutions could be simulated with elp-α or hyp-δ, other than out-
lined for torsion (Sect. 14.6) without axial symmetry, Fig. 15.5.3. The ini-
tial skeleton state may be uniform, gravity may be neglected. The skeleton
boundaries move together with the rough plate (with fixed eccentricity α and
increasing rotation angle β) and the distorted wall. The latter is deformed
in the ground plan and by penetrating grains, but confined by the rods. As
in experiments a constant height is less difficult than a constant axial force
for which an adaption of the upper rim is needed. Shear localizations can be
avoided by not too big amplitudes. Calculations should be focussed on asymp-

a) b)

Fig. 15.5.2. (a) Tumbling device presented by Revushenko (2006), (b) glued and
marked sample after a test
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Fig. 15.5.3. Simulated tumbling (qualitative): (a) distorted psammoid cylinder,
(b) asymptotic pulsation of normal force with constant height (A) and of height
with constant normal force (B)

totic cycles (cf. Fig. 14.5.1) as these can provide validations and a base for
more complex tumbling. They exhibit orbital symmetry, i.e. they are invariant
with respect to changes of β by 2π/n with integer n (b).

With a fixed height h (A) the normal force N pulsates twice with each
full revolution. With constant N (B) two cycles of h are smaller with respect
to the mean value. Simply speaking, each revolution means one shear cycle of
convected RSEs. The induced double cycle of pressure or density for constant
h or N , respectively, is characteristic of psammoids (Sects. 2.11 and 4.7).
There will be further cycles with higher frequency and smaller amplitude so
that the pulsations are not harmonic.

Bobriakow et al. (1990) made experiments with open sand columns in a
torsional device, Fig. 15.5.4a. The average height of the free surface tended to
periodic changes (b) with four times the tumbling frequency (cf. Fig. 15.5.3b,
case B). It represents the spatially averaged void ratio, the asymptote of which
is determined by the amplitude. The smaller this is the denser gets the skele-
ton. The torque at the discs with elliptic holes which impose the tumbling mo-
tion to the confining tube could be measured for quantification of asymptotic
cycles. Simulations with hyp or hyp-δ and gravity would be straightforward:
the rather smooth lateral boundary moves periodically, the skeleton is fixed
at the base and the stress-free surface. A loss of orbital symmetry by shear
localization (cf. Fig. 14.1.2) and surface warping (cf. Figs. 12.6.1 and 12.6.2)
could be avoided by small enough amplitudes, thus further validations could
be achieved.

Shemyakin (1993) observed a pattern formation in such a device at the
surface by means of partly dyed sand, Fig. 15.5.5. Starting with in one half
dark cylinders (a), several revolutions led to a Yin and Yang pattern (b).
This indicates slip at the wall and distortion by the revolving double bulge.
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a) b)

Fig. 15.5.4. Evolutions of a sand column with free surface by twisting its cylindrical
wall (Bobriakow et al. 1990): device (a), height decrease versus rotation with an
initially loose sand (b) with small (below) and bigger (above) eccentricity of the
elliptic tube

a) b)

c) d)

Fig. 15.5.5. Pattern formation (Shemyakin 1993) by distortion of sand in the device
of Fig. 15.5.4a: onset with bright and dark half cylinders (a), pattern after some (b),
further (c) and many revolutions (d)
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With further revolutions of the confining cylinder dislocations of the black-
white boundary (c) indicate shear localizations. The shear bands could be
helical (cf. Fig. 14.5.3), they cannot arise near the confining base. After many
revolutions the black-white boundary changes its topological order (d), mix-
ing occurs so that particles migrate outwards and inwards. As this was also
observed with clay-like materials one can conclude that the topology of psam-
moids and peloids as proposed in this book is no more legitimate for excessive
deformations. Investigations as indicated with Figs. 15.5.1 to 15.5.5 could also
be carried out with seepage and skeleton viscosity.

Tumbling with gravity can be obtained with an elastic rod, Fig. 15.5.6.
In a model test with psammoid (a) an elastic tube of diameter d and height
h with strain gauges inside can be clamped at the base and slowly rotated
at the top. Plots of normal (b) and tangential head force (c) and of average
near-field void ratio ē in a cone with radius d versus rotation angle (d) tend to
orbitally symmetric responses. These are determined by the top eccentricity a
(amplitude) and do not depend on the initial and far-field void ratios (except
for an average initial surface rise or sink near the tube which is of minor
influence). With small amplitudes (say a/d < 102, A) Ft and Fr exceed hardly
the elastic values without psammoid (Fte = 0 and Fne = 4aEI/h2), and ē
approaches the lower bound ed for ps = γh/2 (Sect. 2.2). With moderate
amplitudes (say 10−2 < a/d < 10−1, B) Ft and Fn get markedly bigger than
the bending resistance Fn, and the near-field average void ratio ēn exhibits
stronger orbitally symmetric, i.e. periodic pulsations. With big amplitudes
(say a/d < 10−1, C) Ft and Fn do not exceed the elastic resistance so much
and fluctuate less regularly than with smaller amplitudes. Then ē approaches
the critical value ec for ps = γh/2 with fluctuations, and a kind of granular
turbulence arises in a conical neighbourhood.

Simulations of such evolutions will be a straining and frustrating exercise,
but should be attempted before turning to more complex cases. They should
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be focussed on asymptotic cycles as only these are apt for validation and as
only then a kind of symmetry can be used. One should begin with low a/d
and re, and increase both values gradually in order to get along with low
numbers of transition head cycles. The same orbitally symmetric attractors
can easily be attained with arbitrary onsets in model tests, but at best after
many attempts in simulations. Polar effects could be enhanced by grain sizes
dg > ca. 10−2d, but should be left aside for the beginning. The limit of psam-
moid approaches is attained with big amplitudes when the grain skeleton loses
its topological order (cf. Fig. 15.5.5) and goes over into a turbulent granular
mass. This could be recognized by means of markers in experiments and will
be indicated by inavoidable numerical failures.

Extensions of tests as in Fig. 15.5.6 and related validations will be revealing
and are recommended before treating more complex cases. Water-saturated
psammoids can exhibit non-hydrostatic pore pressures which can produce
skeleton decay or cavitation. Humid skeletons with sufficient capillary pres-
sure pcs and high initial re can produce a hollow cone with a bulge running
around with the tube. Peloids with low initial consolidation ratio pe/ps can
remain in contact with the rod, but not for bigger amplitudes which can
also lead to liquefaction (cf. Figs. 15.4.5 and 15.4.9). Higher initial pe/ps and
lower degrees of saturation Sr can lead again to a hollow cone with a running
bulge.

Tumbling with inertia occurs in situ with deep vibrators. After driving
down the machine its upper cylindrical part is fixed by the ground, and its
lower part connected by a hinge is driven around by an eccentric motor.
With air flushing an initially loose humid psammoid ground is compacted
and pushed aside so that a cavity with a running bulge can arise. Sumberged
psammoid ground is transformed into a suspension near the tumbling part, but
densified farther off. The response gets periodic, and longitudinal waves with
twice the leading frequency of transversal waves due to the tumbling vibrator
can be observed. The compaction is accompanied by downwards granular flow,
thereafter the machine is lifted.

Fellin (2003) simulated the onset of such complex evolutions with hyp-
δ. With precautions to avoid numerical artefacts the computer capacity did
not enable quantitative calculations. Cudmani et al. (2003a) got farther with
simplifying assumptions, Fig. 15.5.7. Substituting the tumbling vibrator by a
plane-parallel system with cylindrical expansion and contraction, simulations
with hyp-δ led to radial (a), circumferential (b) and vertical stress cycles (c)
in the asymptote for a given depth and amplitude. Imposing such stress paths
to RSEs at different distances r produced r-dependent reductions of the void
ratio with time up to an asymptote (d). The penetration resistance was calcu-
lated with these asymptotic void ratios by means of Cudmani’s (2001) model
(cf. Sect. 14.3). This was done for different assumed distances of vibration
points; the best agreement with the observed resistance was obtained with
the actual distance 2r = 3 m (e). This approach was improved by Meier
(2009).
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Fig. 15.5.7. Simulated evolution by vibro-flotation (Cudmani et al. 2003a): radial
(a), circumferential (b) and vertical (c) skeleton stress of a near-field RSE versus
time; void ratio versus time for differently distant RSEs (d) and penetration resis-
tance versus depth (e), observed before and after compaction and simulated with
differently assumed distances of vibrator axes in an array

It is recommended to focus simulations of tumbling on state cycle fields
of skeleton stress and void ratio. These asymptotes with orbital symmetry
are not easily obtained with arbitrary onsets and without initial symmetry,
but advantageous for validation and control. The asymptotic response can
only get independent of the far-field and periodic if the system does not get
chaotic.

Driving of a roller over level ground may be considered with plane-
parallelity for simplicity’s sake. It serves to compact sand-clay mixtures with
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gas channels by repeated passages. Continued quasi-static rolling (Fig. 15.5.8)
causes a running bulge (a) with periodic changes of the ground. With repe-
titions RSEs tend to state cycles of skeleton stress components (b, only one
shear stress τ and mean pressure ps for simplicity) and of void ratio e vs. log ps

(c). A shallow RSE (A) is nearly isotropic by a capillary skeleton pressure pcs

(Sects. 5.2 and 5.3) and has a low relative void ratio re (Sects. 2.2 and 3.2)
before it feels the roller (stage O). In front of the roller (1) it is sheared and
dilated, below (2) it is compacted with less shearing, behind (3) it is decom-
pressed and again sheared with some dilation, after the passage (4) it does not
feel the roller. A deeper RSE (B) experiences smaller amplitudes and lower
maximal pressures. Below a depth of about twice the contact breadth b the
ground is hardly changed after passages.

Plane-parallel simulations with Sr- and e-dependent pcs and hyp-δ or v-
hyp-δ should be focussed on asymptotic state fields as these are most im-
portant for validation and control. Initial state fields (stage O) should be
adapted in iterations until they are obtained again after a passage (stage 4,
cf. Fig. 14.6.1). Width and stress distribution of the travelling contact strip
are part of the solution, likewise the shape of the two bulges and the depres-
sion between them, only forces and horizontal velocity of the roller are given.
Big deformations with repeated dilation occur with too low pcs with respect
to the roller weight (Sect. 13.3), then rolling would not pay as the process can
get chaotic. Increased pore pressures by enclosing pore gas (Sect. 7.3) should
be avoided as they would lead to excessive deformations.

If a roll is not pulled with constant low speed, but driven via a second
smaller roll in a kind of car the surface can more easily get wavy by repeated
passages, Fig. 15.5.9. The contact normal forces are given by the distribution
of weights, the tangential ones are opposite with equal amount which should
not attain the sliding resistance of the smaller roll. The wavelength is given by
the vehicle, neighboured RSEs tend to more complex state cycles than with
one roll. The surface waves need not disappear by repeated passages although
the ground resistance can be smaller in a crest than in a valley. This positive
feedback is more marked with softer ground and higher loads. Periodic waves



15.5 Tumbling and driving 781

Fig. 15.5.9. Idealized driving car

arise thus in originally uniform ground from small fluctuations, so there is a
pattern formation (more further below).

Plane-parallel simulations with pcs and hyp-δ or v-hyp-δ should be fo-
cussed on periodic state fields. These imply changing ripples of given length,
amplitude and shape have to be adapted in iterations alongside with the
ground free-field until they are no more changed by a passage. This should
first be done without seepage and with a small gas fraction and variable pore
pressures as then model tests for validation are easier. Thereafter the seepage
of pore gas may be taken into account, then tests require a control of vapor
pressure and should avoid cracking (Sects. 6.2 and 6.3). The attained peri-
odic asymptotes indicate an orbital symmetry as repeated passages work like
endless circulation.

Fig. 15.5.10. Idealized driving bulldozer

Plane-parallel simulations and model tests can also help to understand the
passage of a kind of bulldozer, Fig. 15.5.10. The ground may be horizontally
uniform, sufficiently dense and suitably saturated so that its skeleton does
not decay under the caterpillar. Its progression is like a succession of laterally
connected strip foundations with vertical forces from the weight and horizontal
ones from the resistance of shovel and front bulge. Repeated passages without
shovel lead to state cycles as explained with Fig. 15.5.8. With a grading shovel
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state cycles can also be obtained, they can imply waves as in Fig. 15.5.9. A
cutting shovel shifts and dilates the soil ahead like a guided wall (Sect. 13.1).
It can produce a convected state limit field (cf. Sect. 14.5) if the soil flowing
off the shovel is removed. Except for shear localization, cracking and mixing
at the shovel such evolutions could be simulated and validated as indicated
further above.

These are preparations for the more complex driving of cars with wheels.
To begin with, a single wheel with weight may be pulled horizontally over
initially uniform ground. If the axle is fixed laterally by convected strings this
can lead to a straight trace so that there is a vertical symmetry plane. With
shifted contact and bulge and without localizations this could be simulated
as outlined further above. An attractor with contact, bulge and state cycles
in the ground could be generated numerically and observed in tests. A steady
traction can lead to periodic changes of state and to a wavy trace. This kind
of pattern formation (Sect. 16.2) may principally be simulated as indicated
with Fig. 15.5.9. A steady traction can also lead to a deterministic chaos
(Sect. 16.3) and thus to a loss of control, however, one could at best predict
under which conditions this can happen.

Such evolutions were observed in tests by Augustin (2002), Fig. 15.5.11.
A circular track of an unsaturated silt was placed in a ring of 1m diameter. A

Fig. 15.5.11. Model test with a roller upon a circular track (Augustin 2002)
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roller was driven around by a radial guide with small accelerations. The track
got wavy after some rounds, the more the faster the roller was driven. The
ripples were not uniform over the track, and after some tracks they did not
grow any more. This kind of orbital symmetry could also be attained with
a straight track and a driven roller which enters and leaves it repeatedly. A
slowly driven roller could iron out ripples as their crests yield more than the
valleys by cohesion. Then a single mould would travel together with the roller
with about 3/2 roller diameter length (Fig. 15.5.8). With faster driving the
vertical acceleration releaves a crest and pushes down a valley. Starting with
minor imperfections, this positive feedback enhances moulds with a length
given by the roller. Osinov (2001) obtained a similar pattern formation with
an elastoplastic subgrade model. Surface ripples are slowly shifted sidewards
by the roller.

Pulling a cart with two wheels and a traverse over a horizontally uniform
ground can lead to two straight traces with a vertical symmetry plane. This
can be observed in tests and represented by a state cycle field for stationary
RSEs, and could be simulated with psammoid and peloid relations. A spon-
taneous loss of symmetry can lead to lateral and vertical oscillations or to
deterministic chaos. A bicycle driven over a ground with sufficient capillary
cohesion pcs can produce a straight trace so that a vertical symmetry plane
can be identified, then RSEs can tend to state cycles. With lower pcs the trace
is deeper, and can get wavy or chaotic so that driving gets impossible.

A repeatedly passing car with four wheels can likewise cause straight traces
upon a ground with sufficient pcs so that a symmetry plane and state cy-
cles can be identified. With lower pcs it can tumble and the passage can get
chaotic. A single driven wheel sinks and a pair of wheels tilts when both are
rotated sidewards. A navigation gets impossible, this can also happen with a
bulldozer. Simulations of car driving on ground should be focussed on state
cycles, models with a simple subgrade (Sect. 13.5) cannot serve to the purpose.

The evolution of tracks for increasing vehicle sizes and speeds was a never-
ending battle with pattern formation and deterministic chaos. Railways with
sleepers and some simplifications may serve for illustration. Augustin (2002)
worked with a model railway upon coarse sugar with a revolving loaded roll
(Fig. 15.5.12a). After several revolutions the initially level track got wavy with
wavelengths of about 20 sleeper distances (b). There is a positive feedback as
the subgrade yields more at initially free valleys than at always pressurized
crests (c), and a preferred wavelength arises according to the stiffness of rails
and ground. This pattern formation depends also on inertial effects and is
visibly close to a deterministic chaos.

Schünemann (2006) simulated the passage of trains with a simplified track,
Fig. 15.5.13a. Ballast upon elastic ground was modelled as a row of RSEs with
hyp-δ, the sleepers could temporarily lose contact (b), the idealized car (c) had
different velocities. The ends of a section with 40 sleepers experienced the same
displacement and internal forces, so the track was endless like a ring. Starting
with level sleepers and small fluctuations repeated passages led to a wavy track
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(d). With a higher initial void ratio the track settled more by passages, the
waves got higher and somewhat longer (e). More settlements were obtained
with initial fluctuations of void ratio or position, and the waves were somewhat
shorter. Other than with Fig. 15.5.12 and in situ the waves grew only little with
higher vehicle speeds. This shortcoming may be attributed to the neglection
of grain crushing.

The horizontal penetration through horizontally uniform ground can lead
to state cycles or strange attractors. If an elastic rod is pushed forward
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monotonously it deviates inevitably. With torsion and an eccentric tip the
axial resistance is smaller and deviations can be corrected. Flushing at the tip
can ease the penetration, but can also lead to a loss of control. With alterna-
tions the resistance to penetration is smaller (cf. Fig. 14.3.2), and deviations
can be reduced. Longer penetrations require a head drive, e.g. by a so-called
earth rocket: A pneumatic hammer blows an anvil behind the tip so that this
is pushed ahead, whereas the device is fixed by the ground when the ham-
mer returns. A kind of navigation can be achieved with an eccentric tip by
rotating the tube behind the rocket. Flushing with air, water or suspension
enhances the penetration, but can also lead to deterministic chaos (loss of
control, breakout). Simulations may at best be achieved with a vertical sym-
metry plane, but are beyond the present reach otherwise.

The horizontal boring with tube and excavation in horizontally uniform
ground can likewise get steady or chaotic. For diameters d < ca. 0.5 m a
continuous auger with a bit and a twisted tube can serve to the purpose. De-
viations cannot be avoided with bigger lengths. With ca. 1 m< d < ca. 4 m
tube sections can be pushed ahead from a shaft by jacks and a front cutting
edge. Groundwater can be kept off by excess air pressure, the shaft friction
can be reduced by a suspension grouted from the cutting edge. Longer tubes
require expander stations so that a shorter group of sections progrades at a
time. Even with adapted cutting edge, excavation and grouting the navigation
can get impossible. For d > ca. 4m shield machines can be pushed by jacks
against tubings which are placed behind the tail. The ground inside of the
cutting edge can be excavated by a wheel with bits, and supported by suspen-
sion and/or compressed air. Even with several control tools the navigation is
not always successful.

Simulations and model tests could improve the understanding, quantifi-
cations require monitoring in situ so that predictions remain semi-empirical.
Simulations with symmetry planes (Fig. 15.2.11) may suffice to estimate far-
field effects if boundary conditions at the front and the tube are properly
assumed. Forces at the tube and the drive may be estimated for design. A reg-
ular progression can be better understood by means of state cycle fields in the
ground. Spontaneous deviations from horizontal drive may be retrieved, but
this will be no more than a first step towards a reliable simulation-supported
navigation.

Inclined and curved borings can also principally be captured by model
tests and simulations, but both would over-extend the presently available
capacity. The penetration of a screw may be captured by attractors in some
cases. With a vertical progression soil is pushed aside and densified if pore
water can get out in time. This is enhanced by alternating deformations of
neighboured RSEs and by cracking. A steady response can be obtained with a
horizontal drive, but it can get chaotic by shear localization and cracking, let
alone deviations of the auger. If the latter is used for transporting soil ahead
or backwards the topological order of skeletons gets lost (cf. Fig. 15.5.2) so
that psammoids or peloids are no more justified. This happens also with a
plough which dilates and stirs part of the ground.
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To sum up, some cases of tumbling and driving may be captured by sim-
ulations and tests with the aid of attractors. State cycle fields can arise after
several rotations or passages. Driving can lead to spontaneous pulsations or
to deterministic chaos, but such critical phenomena are beyond the present
reach.
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CRITICAL PHENOMENA

As announced in the Prologue it was shown in several chapters how and when
monotonous and cyclic attractors (which were called SOM states, state lim-
its and state cycles) can serve to capture the nature of soils. A comparable
outline of methods for critical phenomena, i.e. pattern formation and deter-
ministic chaos, cannot be offered. This last chapter is to convey what is meant
without a unified concept, so my book has an open end and not a finale like
a symphony.

Critical phenomena were mainly investigated for thermodynamic equilib-
ria, less often for systems which are little or far off such states. Some snap-
shots in Sect. 16.1 may indicate what kinds of pattern formation and de-
terministic chaos can occur and what they have in common. Some in-depth
approaches are just mentioned as until now they could not be transferred to
soils.

The outline of pattern formations with soils in Sect. 16.2 is likewise rather
descriptive. Some observations and few simulations indicate that fractal pat-
terns of shear bands can be predicted for suitable initial and boundary con-
ditions. One is inclined to model such cases by mean-field theories, i.e. by
relations with spatial averages. This was repeatedly proposed in the present
book, but readers should be aware that patterns in soils cannot always be
captured by such approaches.

Critical phenomena with soils are practically more important if they im-
ply deterministic chaos. This is discussed in Sect. 16.3 by means of exam-
ples. It was outlined in previous chapters that and why prediction methods
cannot capture catastrophic evolutions. We have to accept that such cases
can hardly be controlled by means of conventional design models, and that
sophisticated numerical methods can at best indicate critical points. Subse-
quent catastrophic evolutions are beyond the scope of this book as skeletons
of solid particles can no more be identified.

G. Gudehus, Physical Soil Mechanics, Advances in Geophysical and Environmental
Mechanics and Mathematics, DOI 10.1007/978-3-540-36354-5 16,
c© Springer-Verlag Berlin Heidelberg 2011
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16.1 Critical phenomena off soil mechanics

If an ensemble of molecules in a thermodynamic equilibrium is at a critical
point phase transitions occur without transition energies (second order phase
transitions). For instance, liquid and vapor coexist at a critical pressure pc

and a critical temperature Tc. As the transition energy disappears bubbles
and drops arise spontaneously in pulsating configurations (Bruce and Wallace
1989). With a constant pressure p = pc the density 
 decreases from the
critical one 
c with increasing temperature T by a power law, viz.


c − 
 ∼ (T − Tc)n (T ≥ Tc) (16.1.1)

with an exponent 0 < n < 1. Such relations work also for other critical
phenomena near equilibria, e.g. with condensation and evaporation at solid
surfaces or with magnetization. The exponents n do not depend on the size
and shape of the system. This was proven with the so-called renormalization
group method for patterns which are similar for different blow-ups, it is typical
for fractals (Mandelbrot 1982). As for any thermodynamic equilibrium the
method requires conservative interactions of molecules.

Small deviations from equilibrium can be captured by linear relations of
thermally activated fluxes with gradients. The coefficients can have the same
T -dependence, thus the ones for viscosity and for diffusion of heat are propor-
tional to each other (Einstein’s relation). More generally fluxes and gradients
are coupled by linear relations (fluctuation-dissipation theorem). The matrix
of coefficients is symmetric (Onsager’s relation). If its eigenvalues are positive
the system returns to equilibrium after a slight disturbance, so it is stable.
Otherwise fluctuations evolve into periodic pulsations or increase chaotically.

For instance, convection cells can arise in a basin with two not mixable
liquids heated from below. If one constituent has a lower density than the
other one with the bottom temperature, but is heavier for the upper T , it
rises and returns repeatedly. Stochastically stationary patterns arise if the
sign of the density difference changes at the mid-height T . Otherwise the
heavier fluid assembles in a lower layer, and only heat flows due to the gradient
of T . The size of convection cells depends on the surface energy of interfaces
without which the constituents would get mixed. This is an example of pattern
formation.

We now turn to systems which are so far off equilibrium that linear rela-
tions get invalid. Except for phase transitions exponential relations of flows
and gradients can be established, e.g. for dislocations in solids due to thermal
activation (Sect. 2.1). Consider now a system with two non-linearly viscous
liquids. If a lower liquid layer gets lighter and less viscous than the upper im-
mixable one by heating from below it rises in diapirs. First the interface warps
in a rather fractal pattern, then the biggest warp grows into a kind of finger
that reaches the surface. The diameter of the finger depends on the surface
energy, its position is random and it grows faster with lower viscosities. This
is an example of deterministic chaos.
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A steady wind produces periodic running surface waves in initially resting
water. A slight wind warps only the skin with its surface energy so that this
determines the small wavelengths (capillary waves). The amplitude increases
as a crest gets more shift from the wind than a valley, but is bounded by
damping. With moderate wind the same feedback leads to longer gravity
waves which are no more pulled back by the surface energy. With strong wind
this pattern formation goes over into a deterministic chaos. Then the spectrum
of waves is rather fractal and solitons can arise.

Particles in a liquid sink straightway if there is an excess of weight ver-
sus uplift and if they are so far from each other that the laminar velocity
near-fields do not interfere. With moderate distance and negligible mutual
attraction or repulsion the particles dance laterally so that the suspension
density fluctuates. With a bigger solid mass fraction the particles assemble
in sinking clouds so that the upward flow in between is impeded. The higher
energy dissipation than for more uniformly arranged particles enhances such
convection cells. The size of the clouds depends on the overall viscosity which
is bigger than without particles.

Turbulent flow depends on inertia and viscosity and can produce various
critical phenomena. For instance, periodic eddies can arise behind an obstacle,
whereas with a higher entrance velocity the flow gets chaotic. The overall dy-
namics can be captured by a ‘turbulent’ viscosity. The overall diffusion of heat
or solubles can be modelled by a ‘turbulent’ diffusion coefficient. Experiments
reveal that both parameters are proportional to each other. This analogy to
Einstein’s relation suggests a turbulent temperature Tt which is proportional
to the chaotic part of the kinetic energy. This can be estimated by model
tests or computer simulations for different boundary conditions. The observed
linear overall viscosity and diffusion suggest that the fluctuation-dissipation
theorem holds, but there is no ‘turbulent heat capacity’.

Lightnings are an example of deterministic chaos so far off equilibrium
that molecules are broken temporarily. In a thunderstorm ions move down
from charged clouds along zig-zag paths in the air where the fluctuating con-
ductivity is higher. There the gas is ionized by the temperature increase as the
released heat cannot be dissipated in the short time. The positive feedback by
increasing conductivity produces an exponential growth of ion transport un-
til the electric gradient decreases by discharge of the cloud. One can at best
estimate conditions for the critical point when lightnings arise, but cannot
predict their position and course.

Many music instruments work by spatio-temporal pattern formation. If
they are blown the leading frequency is determined by the size of the chamber
where acoustic waves travel to and fro. The positive feedback is due to the
elasticity of a solid opening (e.g. mouth or flute). The intensity is given by the
air supply, a sound arises if this remains between suitable bounds. In a string
instrument the bow sticks to the string via colophonium as long as this does
not melt, and slips back until the re-hardened colophonium can again take
over a shear force. The positive feedback towards oscillations is due to a loss
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of sliding resistance and its regain in stick intervals. A too slow passage of the
bow produces periodic pulsations with silent intervals as the string released by
melting colophonium returns earlier than within half its own period. No tone
is produced with such a fast passage that the colophonium cannot harden in
time.

Stick-slip can be periodic or chaotic during the sliding friction of solid
blocks along plane solid surfaces (Persson 2003b). A block with mass m may
transfer a constant normal force N , and a spring with a constant c attached
to it may be driven with constant velocity v. The interface exhibits nano-sized
asperities which constitute contact islands. Their average area is proportional
to N , they oscillate with high frequencies and fluctuate with shear melting
and re-crystallization. With a low v the block sticks and slips with irregular
intervals, with a moderate v it oscillates periodically with frequency f ≈√

c/m, and with a high v it slides uniformly.
There are more examples and models for pattern formation and determin-

istic chaos, but little of them can as yet by transferred to critical phenom-
ena in the lithosphere. These are driven by convection cells in the magma
base and the hotter interior which are usually attributed to heat flow and
T -dependent variations of density and viscosity, combined with the daily ro-
tations of the earth. The convection is enhanced by periodically changing
gravity fields (Shemyakin 1993). Patterns can hardly be identified in shapes
and motions of continental plates. Tectonic processes along their interfaces
can exhibit a spontaneous order, but are more often chaotic.

Slow tectonics imply normal faulting (Sect. 12.6), ring structures
(Sect. 14.2) and other kinds of shear localization (Mandl 1988). Earthquakes
can be accompanied by a humming noise, but more often their spectra are
typical of deterministic chaos. They are usually attributed to stick-slip dislo-
cations along faults. In the light of real compositions of the litosphere simple
models, as proposed e.g. by Shkoller and Minster (1997), are debatable. Crack
patterns are far more intricate than in lab tests (Sect. 8.3), so their opening
and closing in situ can at best be crudely estimated. Diapirs in saline forma-
tions resemble the one of Fig. 14.2.9, volcanic outbursts are more intricate.

The surface of the lithosphere is also shaped by wind, water and ice, and
close to it soils come into play. The self-similarity of coast lines is a known
example of fractality (Mandelbrot 1982), but erosion models for its generation
are hardly available. A weathered little dam of humid sand can resemble
a mountain ridge, Fig. 16.1.1, this indicates common features of rock and
soil.

To sum up, a plethora of critical phenomena is known, and the better un-
derstood the more conservative the involved interactions are. Thermodynamic
equilibria can only exist with conservative interactions, these can produce or-
der or chaos at critical points. Linearly dissipative evolutions near equilibria
can similarly get critical. Models get more intricate with interfaces of solid,
liquid and gas, and more so for systems far off equilibrium. This is particularly
the case for the lithosphere with its complex composition.
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Fig. 16.1.1. Weathered sand dyke of ca. 0.3 m height (photo by R. Gudehus)

16.2 Pattern formation with soils

Cases with pattern formation which were outlined in previous chapters have
something in common with the ones indicated in Sect. 16.1. Patterns in soils
will only be indicated as models for them are preliminary due to the complex-
ity with non-conservative interactions.

As shown in Sect. 8.2 shear bands in psammoids can evolve in patterns
in rectangular RSEs with suitable boundary conditions. Observations in bi-
axial tests and simulations with polar quantities indicate a fractal sequence
of nested patterns. At the beginning the self-similarity (i.e. same angles in
triangles of characteristic pattern points) is clearly visible. An asymptotic
overall critical state cannot be identified in this manner as then the shear
band thickness gets indeterminate (Fig. 8.2.5). Patterns of void ratios and
pressures resemble the ones of thermodynamic equilibria in the bulk at a
critical point. Thus the name ‘critical state’ proposed by Casagrande (1936)
seems to be adequate.

Considering boundary conditions of RSEs, critical states imply apparently
a contradiction in terms. Spatial and temporal fluctuations cannot be sta-
tionary along sample boundaries in real experiments, and could at best be
approached iteratively in simulations. (Deceiving artefacts can also be ob-
tained with conservative molecular interactions, in particular with periodicity
from the boundary distances.) Psammoid patterns get frozen if the boundaries
are fixed, or patterns are swept out by continued deformations.
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Axi-symmetric psammoid samples can produce 2π/n-symmetric shear
band patterns in triaxial tests (Figs. 14.1.2 and 14.1.4). Even short samples
with smooth plates which remain fairly cylindrical are then no more uniform.
Cubical samples could do better, but shear band patterns in them cannot be
uniform (Fig. 8.2.10). Patterns could be reconciled with spatial uniformity
(’smeared’) if sites and directions of shear bands were randomly distributed.
RSEs with shear bands may be considered as composites (Sect. 9.1).

2 21

a) b)

Fig. 16.2.1. Splitting of a slender (a) and a squat (b) very dense psammoid

Crack patterns may be imagined in very dense biaxial psammoid samples,
Fig. 16.2.1. As with dry masonry shortening by smooth plates with confining
pressurized membranes could lead to a kind of axial splitting (a). This could
occur in a fractal succession in a flat sample (b) so that composite RSEs with
such cracks could be justified. As postulated for simple psammoids (Sect. 2.2)
this kind of cracking may be considered as an anomalous shear localization
with uniaxial stress for a lower bound void ratio ed. One may also speak of
a granular phase transition from a dry masonry to a grain skeleton, and of
a critical point as there is no transition energy. Such states can at best be
approached, but not be reached in experiments. Snap-throughs of granular
force chains (Fig. 4.3.1 and 4.3.2) suggests more chaos than order.

Psammoid RSEs with pore water can exhibit similar critical phenoma, but
thermally activated phase transitions come additionally into play. Loose satu-
rated skeletons are left aside as they tend to deterministic chaos (Sect. 16.3).
The reduction of pore pressure in dilating shear bands can produce gas bub-
bles and cavitation cracks (Sect. 6.2). Crack patterns as in Fig. 16.2.1 can also
occur in humid dense skeletons, these can thus get loose by openings where
capillary bridges are torn apart. With fine grains the succession of such crack
patterns can exhibit a fractal self-similarity (Mandelbrot 1982).

Peloid RSEs could be captured similarly, now the argotropy of the skeleton
due to thermally activated dislocations (Sects. 3.1 and 3.2) comes into play.
Thus a pattern of shear bands produced in a triaxial test can disappear after
a sufficient resting time. A similar kind of self-healing can be produced in
a sample by many small erratic deformations. A crack pattern generated in
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a shortened dense clay sample with confining pressure could be healed by
resting. The cavitation of pore water by suction is thus reversed with less
suction, and the surface energy of water-gas interfaces is regained.

Shear patterns in layers can be similar as in RSEs, but they are influenced
by gravity and layer size. This was shown with psammoids in Fig. 12.6.2 for
a kind of normal faulting by stretching of the base. Rectangular RSEs of ar-
bitrary size can no more be identified precisely as the skeleton experiences a
succession of shear dislocations. The vertical uniformity is disturbed at the
base and the surface. A hard base prevents dislocations, whereas these pro-
duce a wavy surface. A more uniform pattern of shear bands could hardly
be obtained as a softer base would get wavy and a stiff cap layer would sup-
press dislocations. Patterns in situ are never that uniform as composition and
boundary conditions are more complex.

Fig. 16.2.2. Cracking of a peloid layer upon a membrane (Revuzhenko 2006) by
uniaxial (a) and biaxial extension (b)

Crack patterns of various kinds can arise in peloid layers. Revuzhenko
(2006) expanded a thin layer of a paste via an elastic membrane upon a plane
base, Fig. 16.2.2. A succession of parallel cracks starts from the middle if the
membrane is pulled in one direction (a). Equal extension in two directions
leads to a pattern of polygons without orientation and with less order (b).
Such evolutions could be simulated with v-hyp and capillary entry pressure
pce (Sects. 6.2 and 6.3). Starting with realistic spatial fluctuations of void
ratio, the cracks due to pw = pce would have zig-zag shapes. With a uniaxial
extension the first crack arises in the middle, then two cracks arise in the
middle of each half and so on. Shrinkage cracks arise in soft saturated peloid
by evaporation. Cracks and shortening near the surface cause shingles so that
the surface gets uneven. This evolution is more complex than the diffusion-
controlled growth of dendrites which is often used to illustrate fractals.

Clay layers in situ have complex fabrics if they had repeatedly been ex-
posed to drought and rain. After many repetitions an upper part of them can
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go through state cycles as long as erosion and sedimentation do not come into
play. Changes of temperature or salinity play also a role, evidently if they
lead to freezing and thawing or to variable aggregation, respectively. There
is no way around substitute composites, the identification requires judgement
(Sect. 9.1). The assumed state should be consistent with gravity, hydraulic
conditions and age by means of v-hyp.

Surface waves of horizontally layered soils can occur under various condi-
tions. Wrinkles by shear band patterns can be produced in the lab (Figs. 12.6.1
and 12.6.2), but in situ they are swept out by erosion or covered by sedimen-
tation. Tracks with sufficient capillary skeleton pressure or a structure on top
can get wavy by traffic (Figs. 15.5.11, 15.5.12 and 15.5.13). The positive feed-
back for this pattern formation can result from another soil resistance of crests
than of valleys, also with accelerations. Horizontal forces lead to a slow shift
of the ripples, but without traffic these are frozen. The dominant wavelength
is mainly determined by the vehicle and/or the distance of sleepers and by
the stiffness of rails. High velocities would lead to deterministic chaos.

Erosion and sedimentation can lead to travelling ripples at the surface
of psammoid ground if this is exposed to a uniform current of water or air.
The near-field of air velocity produces erosion uphill and sedimentation with
granular flow downhill. This works only with medium sand and a certain range
of wind velocities, then the pattern is rather stable. With higher uniform far-
field velocities dunes travelling on a plane can evolve into groups of barkhans.
Schwämmle and Herrmann et al. (2003) have shown with validated simulations
how the asymptotic shape and size is determined by the wind velocity.

The transport of coarser grains along a solid surface by water is understood
in hydrodynamics, but critical phenomena of the adjacent sediment have not
been investigated. With finer grains and peloid particles colloidal interactions
come into play. A net attraction leads to flocs which sink faster in resting
water, it causes a higher void ratio of the sediment (Sect. 7.1) and impedes
the erosion near the surface. Without net attraction or with net repulsion,
which can be achieved by rain water when dissolved salt before provided a net
attraction, the erosion proceeds faster and with little order. A dense peloid
can temporarily stand with a steep slope due to suction (Sect. 12.3). This
can enhance the formation of maeanders with a positive feedback by higher
velocities along outer downstream curves.

Composite sediments of psammoids and peloids can get rather uniform by
annual floods due to the slower sinking of finer particles (e.g. Fig. 11.3.2a).
More often such formations are wavy or disturbed due to ripples, dunes and/or
erosion channels. Such arguments may be used to identify initial compositions
and states for geotechnical purposes. Composites (Sect. 9.2) can have a frac-
tal self-similarity, otherwise element sizes could not be chosen according to
geotechnical sizes. The indeterminacy of the composite permeability is in-
evitable if the genesis was partly chaotic.

The acoustic emission of soils is more often chaotic than ordered, and
is apparently negligible for peloids. The humming noise of dunes has a
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frequency of ca. 100 s−1 and can be heard some km away. Andreotti (2004)
observed granular discs sliding down slopes on an air cushion. The humming
frequency can be explained with the speed of shear waves and the size of discs,
but a positive feedback could not yet be found. Other than with a wind-
instrument the disc is not an elastic solid, but is disintegrated after a few
seconds. A hooping noise during the discharge of polymer grains from a silo is
described by Tejchman (1997). It disappeared after placing rough strips along
the wall.

To sum up, pattern formations with soils can arise similarly as with other
matter, but are not as well understood. Patterns of shear bands can evolve
in a rather fractal succession, the ground surface can get wavy, but seldom
periodically, the acoustic emission can exceptionally be periodic. The onset
of such evolutions was captured theoretically in some cases, but these are not
yet strange attractors in a strict mathematical sense.

16.3 Deterministic chaos with soils

Stability of earthworks and structures denotes their ability to stand, but not
necessarily at a thermodynamic equilibrium. A loss of stability with spon-
taneous acceleration means deterministic chaos. At best the onset may be
captured with elastoplastic or hypoplastic models and with coupling of skele-
ton and pore water. The stability of stationary and periodic evolutions implies
the one of state limit or state cycle fields, respectively. As without soils pat-
tern formation and deterministic chaos can be close to each other in space
and time, but without conservative interactions evolutions are more complex,
particularly at and near critical points.

Consider first evolutions with dry psammoids. Steady states with closed
boundaries can at best be achieved by torsion of annular bodies via axi-
symmetric solid bodies. Rotation of two rough cylinders with two smooth
plates in the device of Fig. 14.6.1 could lead to radial symmetry if gravity
does not matter with the given pressure and size. If both diameters are close
to each other and their difference exceeds by far the grain size the shearing
should get uniform and steady. Could a uniform critical state be achieved in
a torsional device with suitable materials and initial states?

Yes and no. Imagine non-abrasive grains placed with a uniform void ratio
e in a range so that the skeleton does not decay or attain such a high pres-
sure that grains are crushed. Imagine devices to measure the torque between
the cylinders and the normal force between the plates so that the solid de-
formations are negligible. Using stress component ratios as by elp or hyp one
could thus determine a mean pressure ps related with e = ec and a critical
friction angle ϕc from stationary values of torque and force. More detailed
measurements would reveal fluctuations of stress and void ratio, however, and
a multi-fractal acoustic emission. All that suggests that uniform critical states
can be attained at best in the average.
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More details could be achieved by following up individual grains. Sophisti-
cated experiments and granular-dynamic simulations could reveal systematic
deviations from the desired uniformity and topological order. Marker grains
would indicate migrations into and out of the interior. One should keep in
mind that critical states are latently chaotic and deserve this name. Simu-
lations could lead to fractals, but would also get more difficult with them.
Loose skeletons could decay with extreme fluctuations, and dense ones could
be ground without becoming a uniform mixture. Bigger ratios of boundary
diameters in torsional devices could lead to r-dependent critical states, or to
uncontrolled circumferential fluctuations. Such a loss of symmetry would more
easily occur with a control of the axial force.

Ring shear devices (Fig. 2.9.9) can at best produce axially symmetric evo-
lutions, but changes in the axial direction impede attempts towards a sta-
tionary response. With more kinematic freedom the skeleton can more easily
lose an initial uniformity when it approaches a critical state. Shear localiza-
tions with hardly known distribution prevent the determination of critical
void ratios. Torsional devices with membranes (Fig. 2.9.10) cannot produce
a monotonous stationary response because of shear localization, bulging and
wrinkling (Sect. 14.6).

Stationary evolutions of psammoid bodies with gravity can only be achie-
ved in exceptional cases as a spontaneous loss of symmetry can rarely be
avoided. A flow equilibrium can be produced in an hour-glass with a smooth
wall if the running out granular matter is continuously filled above with a
suitable low density. Other kinds of silos can hardly produce a stationary flow
(Sect. 14.5). Pulling out or twisting a pile past a bottom hole and surrounding
loose psammoid (Sects. 14.4 and 14.6) can also lead to stationary flow in the
vicinity. It is not yet known for such conditions whether and how the evolution
can get stationary.

Except for a constant hydraulic height hw evolutions of psammoids are
different with pore water. With full saturation (Sr = 1) and high relative void
ratio (re > 1) the skeleton decays, with low re suction can lead to cavitation,
and even with an initially critical re = 1 and inevitable fluctuations around
critical states a deterministic chaos can be enhanced by pore water. Transi-
tions from and into open gas channels are always disordered. Humid granular
materials can get homogeneous by mixing, but then the assumptions by which
psammoids are defined can no more be defended.

Stationary responses of peloid bodies can be obtained with a wider range
of initial states than with psammoids. Due to softer and smaller particles the
range of void ratios between decay and cavitation is wider. The argotropy
requires constant boundary velocities for stationarity. If these are as low as
the permeability seepage can play a role throughout the peloid body. With
higher consolidation ratios (pe/ps > ca. 5 initially) shearing is localized to so
thin bands that seepage towards them can occur (Sect. 8.3). As then suction
can also lead to cavitation evolutions with controlled total pressure tend to
more chaotic than stationary features.
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Critical phenomena can be investigated by thin layer shearing (Fig. 2.9.8).
The psammoid or peloid sample is sheared between two filter plates with such
a small distance that the free rim has little influence upon the major part
of the interior. So this may be assumed to be and remain uniform as long
as changes of pore pressure pw are negligible in the time of shearing. With a
constant normal force and monotonous shearing up to a stationary response
the skeleton pressure ps would then be given by the sheared area, a critical
void ratio ec and a critical friction angle ϕcs could thus be determined (cf.
Sects. 2.9 and 3.8).

Higher than critical obliquities (|T |/N > tan ϕsc) require lower than crit-
ical void ratios. If both ratios belong to a dilatant state limit (Sects. 2.9 and
3.8) continued shearing leads to localization with polar quantities so that the
initial uniformity gets lost (Sects. 8.2 and 8.3). For shearing with constant
velocity v of the top plate the shear force |T | goes through a peak alongside
with maximal dilation and acoustic emission. Seismic and thermal activation
lead to a dilatant state limit and can cause cavitation.

Other so-called element tests with overcritical stress obliquities can at least
in principle be treated similarly, but the often assumed uniformity of a single
RSE can rarely be defended. Cylindrical homogeneous RSEs were assumed
in Sects. 2.2 and 3.2 for the ease of introduction, but even short samples
with smooth plates experience a loss of symmetry at critical points in triaxial
tests (Sect. 14.1). Biaxial and cuboidal devices with nested smooth plates can
produce a better uniformity up to critical points, so they are of use to validate
assumed state limits (Sects. 2.7 and 3.7) and can indicate critical phenomena
(Sects. 8.2 and 8.3). Samples sheared up to overcritical stress obliquities get
less uniform already before a peak the more stress components are controlled
by the device (Sects. 2.9 and 3.8).

Without the defining uniformity of RSEs evolutions with overcritical stress
obliquities evolve through the psammoid and/or peloid body in the course
of time. Simulations should take into account shear localizations with polar
quantities and cracking with cavitation from the very beginning, and also
phase transitions from or into skeletons in general. As this would be too
expensive or not feasible one has to put up with a partial indeterminacy.

The guided driving of solid bodies past soil need not lead to critical phe-
nomena if edges and too high average stress ratios are avoided. It appears
that only thin layer shearing can produce a controllable evolution up to a
critical point. Otherwise deviations from a mesh of simple psammoid and
peloid elements may at best be kept small in an engineering sense. Rounding
of edges or insertion of elastic strips there could suppress critical phenomena
so that they are negligible for tolerable deformations. Further driving with
free or pressure-controlled soil surfaces, however, leads inevitably to critical
phenomena.

A loss of symmetry in the course of dilatant creep, in case of slender
structures also by a geometrical feedback, impedes simulations and again lo-
calizations cannot be captured properly. So how can the stability of statical
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equilibria be sufficiently assessed? And how can assumed symmetries be de-
fended if they can get lost with a collapse? How could simplifying assumptions
be defended and how could a sufficient ductility be warranted?

One way out of this misery could be achieved by simulations with dis-
turbances. These could be represented in design scenarios by increased void
ratios, and by increased viscosity exponents Iv which represent thermal and
seismic activation (Sects. 3.2, 4.7 and 5.5). If simulations with legitimate sym-
metries yield a stabilization by densification and redistribution of skeleton and
pore water pressures the system may be considered as ductile. Then calcu-
lated characteristic deformations may be used to judge the capability of in-
volved structures. A loss of stability means the release of kinetic energy with
a sudden growth of seismicity. If a destabilization is indicated by spontaneous
accelerations the design should be changed, and a monitoring system should
be employed so that an impending collapse could be recognized early enough.

There are no simple recipes for early warning systems as the features of
deterministic chaos can be complex. Observed deformations may be used to
judge elastic and brittle structures, but are hardly relevant for soils as for
them deformations are no state variables. Monitoring of void ratios and mean
skeleton pressures in significant regions would be desirable. Pore pressures can
more easily be measured, their spontaneous rise in significant regions would
indicate danger. A loss of stability could be recognized from pore pressure rises
and increasing acoustic emissions, but interpretations of such fingerprints are
still rather subjective. A decreasing propagation of shear waves could also
indicate an impending collapse.

A skeleton decay would be indicated by an isotropic total pressure. It can
occur in contractant saturated soils with low permeability, also with gas in-
clusions, and even without pore water. The subsequent flow of a suspension,
which can be enhanced by the segregation of water or gas into cushions (Gude-
hus 1998), is outside the scope of this book. In a kind of sudden freezing solid
particles can be recombined into skeletons, this happens typically alongside
with outbursts from water or gas cushions.

A skeleton decay can lead to an internal erosion. In a simulation with
hyp a loose psammoid layer was exposed to an upwards hydraulic gradient
(Fig. 16.3.1). With a fluctuating void ratio (cf. Sect. 8.2) the seepage is con-
centrated in randomly distributed wider pore channels. These are widened
by transversal seepage forces (cf. Sect. 14.2) so that the localized discharge
of pore water is enhanced. This positive feedback, which resembles the one
with a lightning (Sect. 16.1), leads to erosion and sand volcanos. A similar
breakthrough occurs with a peloid layer kept above by a coarse filter with a
critical gradient of hydraulic height hw, |i| = |∂hw/∂x| = ic (Sect. 8.4). The
ic of overconsolidated peloid can exceed 103 and is reduced by shear bands
(Zou 2000).

Model tests with a hard-grained loose peloid with gas bubbles led to mud
volcanos, Fig. 16.3.2. The peloid had first an inclined surface and slumped
after slow pulsations of air pressure above the water table. The peloid was
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Fig. 16.3.1. Simulated hydraulic break-through in loose psammoid (courtesy
K. Nübel and T. Wilhelm)

Fig. 16.3.2. Mud volcanos in a model test (Pralle et al. 2003)
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thus densified and brought to skeleton decay, then the gas bubbles were no
more kept and rose together with water and solid particles. As with diapirs
(Fig. 14.2.9) the position of the break-out cannot be predicted, at best state
conditions could be specified for such a critical point. In the case of Fig. 16.3.2
the skeleton was collapsible due to an overcritical void ratio, and also due to
a minute net attraction (Sect. 6.2) which got lost by disturbance.

More dramatic outbursts can occur at faults. A clay smear (cf. Fig. 12.6.5)
can sustain high hydraulic gradients with the aid of adjacent coarser gauge
material from tectonic shearing. With sufficiently rapid changes of boundary
conditions (e.g. depletion or earthquake) the critical gradient ic can decrease,
and the actual hydraulic gradient i can increase. With i = ic erosion channels
evolve and release mud into the fault above, therein this rises up to the surface
so that mud volcanos arise.

With reversals (cf. Sect. 4.7) evolutions can get more or less ordered than
without. A stabilization can be obtained with so low amplitudes that the
skeleton stress obliquities (tan ψs by Sects. 2.11 and 3.9) are always subcrit-
ical. With periodic boundary conditions the system can tend to state cycle
fields without or with ratcheting, respectively. In transitions the skeleton is
densified with seepage which is enhanced by reversals. With bigger ampli-
tudes, and thus with temporarily overcritical stress obliquities, the evolutions
get chaotic. With repeated shear localization, cracking and/or skeleton decay
such evolutions are outside the reach of psammoid and peloid models as the
topological order of skeletons can get lost by mixing and segregation.

To sum up, evolutions with overcritical stress ratios and/or skeleton decay
can lead to deterministic chaos which cannot be captured by the models out-
lined in this book. State limits and state cycles may at best be approached
with the aid of confining solid boundaries. Otherwise, and particularly if void
ratios are near the bounds for given mean pressures, shear localization, cav-
itation or skeleton decay can evolve with increasingly disordered spatial and
temporal distributions, and the topological order can get lost. One should
avoid such losses of stability by design, execution and monitoring.



EPILOGUE

This book is voluminous, but far from complete as that is impossible with
a living science. Applications require investigations in the lab and in situ,
estimates for design and numerical simulations, and monitoring for technical
operations and use. You can read a lot about all that elsewhere, and will
make more of it with a better physical understanding. I will be greatful for
criticism, more freely available software and further validation examples which
could improve a next edition.

Research is going on. In the article ‘Seismo- and thermodynamics of gran-
ular solids’ (Gudehus et al. 2010) a theory named Granular Solid Hydrody-
namics (GSH) is modified and strengthened with arguments from this book.
Jiang and Liu (2009) worked before with uncommon liquids and call sand
‘singularly intricate’. The energy plays the key role, with the seismic part of
it a granular temperature Tg and a specific granular entropy sg are conju-
gated like their thermodynamic counterparts T and s. Tg is proportional to
sg, thus the microseismic energy is proportional to T 2

g and to the density ρ.
At thermodynamic equilibria with Tg = 0 the total skeleton and elastic stress
tensors agree (σij = πij), but then the field of ρ and σij is not determined by
conservation laws, elastic relations and boundary conditions. Seismodynamic
equilibiria have no elastic stress, but only an entropic pressure pd, and exhibit
stationary gradients of Tg. For suitable boundary conditions both kinds of
equilibria are attractors with a minimum of the total free energy as far as
stability is secured.

The evolution equations by GSH for πij , σij , T and Tg imply the transition
of seismic energy into heat and enable the fastest approach to the named
equilibria. For uniform rather slow monotonous deformations they lead to
SOM-states and nearly hypoplastic relations, whereas just after a reversal
with a short rest the response by GSH is differentially elastic. This supports
hyp and hyp-δ more than elp and elp-α, and provides a substitute of s-hyp
and h-cyc. State limits can be approached with GSH, but not reached as then
the elastic energy is no more a convex function of elastic strain and density.
Realistic state cycles can be obtained asymptotically by GSH with slow cyclic
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deformations and ratcheting, this supports elp-α and hyp-δ as far as these
are confirmed by experiments. These validations indicate an energy-based
substitute of the rather arbitrary and intricate constitutive relations used in
this book. Observed attractors will be of use to calibrate and improve GSH.

Roscoe used to say ‘uniform critical states are an Eldorado, a golden coun-
try where you can never get’. The GSH-equations exclude uniform steady
states, a slow stationary granular flow requires gradients. Such ‘flow equilib-
ria’ cannot be critical as they imply dynamic stability. At the verge of static
stability by GSH the elastic energy is no more a convex function of elastic
strain and density. At such a critical point the imposed energy is fully trans-
formed into seismicity, increasing fluctuations lead to pattern formation or
chaos. Such critical phenomena are not yet captured by GSH, polar quanti-
ties are needed, but one can state already that critical points do not agree
with conventional critical states.

Boundary value problems with GSH can be judged by means of the total
free energy F of interacting granular and solid bodies. The gravitational part
in situ exceeds by far the elastic part, and this exceeds even more the seismic
part by Tg. Seismic activations matter nevertheless as they are focused on a
minute fraction of the grain molecules near the grain contacts. Stabilizations
with shaking boundaries (seismostats) mean a decelerating reduction of F
by rearrangement (seismic creep) and a stress redistribution (seismic relax-
ation). Accelerating reductions of F with stationary seismostats mean a loss
of stability (i.e. convexity of F as a functional of the field of elastic strain and
density) with spontaneous growth of Tg in granular chain reactions. It appears
that GSH can replace heuristic methods like s-hyp and h-cyc in Sects. 4.6 and
4.7, and that extensions of GSH will provide a more systematic approach to
critical phenomena than throughout this book.

In general GSH does not imply constitutive relations for so-called simple
materials in the sense of Truesdell and Noll (1965). Jiang and Liu (2009) re-
fer to a paper by Temmen et al. (2000) which supersedes the Cauchy stress
as independent variable and resolves the incertainty of ‘co-rotational stress
rates’. As indicated above an extension by polar terms is needed in general,
this requires further boundary conditions (cf. Chap. 8). Decay and recom-
bination of skeletons (i.e. granular solids) mean rather fractal transitions to
and from suspensions or dust. All that calls for a revision of continuum ap-
proaches beyond this book, the consequences will be substantial in particular
for evolutions beyond critical points.

This promising theory for dry hard-grained materials can be easily ex-
tended for pore water in case of full saturation. Its further quantification for
applications will take years, however, and granular phase transitions are not
strictly captured by the present GSH. In other words, this theory may first
help to delimit elastoplastic and hypoplastic models for psammoids, and ex-
tensions could later deepen the understanding of critical phenomena. Soft
particles with thermally activated viscosity could also be captured by an
extended GSH, therein argotropic state limits can again be defined by the
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verge of energetic convexity. The elastic stress can relax by T and Tg, this
could help to support and substitute v-elp-α and v-hyp-δ. The stability could
again be judged by means of the total free energy, now with simultaneous
thermal and seismic activation. Argotropic SOM-states and state cycles could
be used to check and calibrate such extensions. Shear localizations and other
phase transitions including hydraulic, capillary and electrocapillary effects will
pose harder problems.

The half-life of this book will hardly be shorter than anyway by GSH and
its extensions. Deservedly energies will play a key role and attractors will re-
main useful, thus soil mechanics can get closer to the mainstream of physics.
Numerical models should be Eulerian with gradient terms, and design assess-
ments should refer to the total free energy. However, even further extensions
of GSH will not answer all the open questions addressed in this book – and
others which arise. The unification of seismo- and thermodynamics from par-
ticulate dynamics up to critical phenomena including capillary effects is a
great task. Let us hope that mathematicians will provide suitable tools, in
particular for attractors and in order to capture the mechanical roughness be-
yond Mandelbrot’s fractal geometry. All that can enrich various branches of
engineering and geo-science, the heat-like seismic energy is certainly not only
relevant for soils. God knows when and how this will lead to a completely
revised edition of the present book.

Even Newton said that he was standing on the shoulders of giants, but
scientific work depends also on hands and hearts which deserve thanks.
Demetrios Kolymbas, Mario Liu and Theodoros Triantafyllidis acted as re-
viewers. Andrzej Niemunis and his group created tools for numerical element
tests and applied them in many examples for this book. David Masin and
Arcesio Lizcano provided good advice, Toshihisha Adachi, Yannis Dafalias
and David Muir Wood (to name only a few) were likewise open-minded part-
ners. Gerhard Huber, Mauro Poblete, Daniel Rebstock and Hendrik Sturm
helped me with the computer. My successor Th. Triantafyllidis granted tech-
nical support: Sigrid Rausch for typewriting, Maria Gödel for references, Swet-
lana Ayalowa for figures and layout. Springer gave professional advice. Friends
and family tolerated my absent-mindedness, in particular my wife Soula. God
helped with His blessings. Words cannot suffice to express my gratitude.



Symbols and Acronyms

Italic scalars

A intensity factor for anelastic stretching
a factor for hypoplasticity by (3.4.6)
b breadth
c cohesion
D amount of stretching rate and tensor
d diameter or thickness
E modulus of elasticity, energy or earth pressure
e void ratio
F force
f factor or function
H step function
h height, or force-roughness
Iv viscosity index
K ratio of horizontal and vertical stress components
k factor (Darcy kf , Boltzmann kB)
l length
m factor or exponent
N factor or normal force
n exponent
P power
p pressure
Q resultant force in slip surface
q deviatoric stress of cylindrical RSE
r radius
re relative void ratio
Sr degree of saturation
T temperature
u displacement or pore pressure
V vertical force
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v velocity or specific volume
W weight
w water content
x, y, z Cartesian coordinates

Greek scalars

α fraction, exponent, angle or back-stress
β exponent or angle
γ shearing, angle or specific weight
Δ difference
δ angle or intergranular strain
ε strain
θ angle
κ swelling index
λ exponent or compression index
ν Poisson ratio or dilatancy angle
σ normal stress
τ shear stress
ϕ friction angle
χ factor or angle
ψ angle of stress obliquity
ω frequency

Vectors, tensors and matrices

αij back stress
D stretching tensor
Dij components of stretching tensor
δij intergranular strain
hij force-roughness
Lij matrix in linear part of hypoplastic relation
Ni vector in nonlinear part of hypoplastic relation
σij components of stress tensor
T stress tensor
v velocity vector

Subscripts

a air, adhesive or active
b barotropy
c critical or capillary
d dense
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e equivalent or void ratio
ε strain
ε̇ strain rate
f flow or failure
g granular or gas
h force roughness
i isotropic
n net
p peak or passive
r reference, residual or radial
s skeleton, seismic, stress or shear
u undrained
v volumetric or viscous
w water
α back stress
σ stress

Superscripts

a anelastic
e elastic
p plastic
v viscous
’ effective
* deviator

Acronyms

CSSM Critical State Soil Mechanics
elp elastoplastic, v- visco-, -α with back stress
h-cyc high-cyclic
hyp hypoplastic, v- visco-, -δ with intergranular strain
OCR overconsolidation ratio
s-hyp seismo-hypoplastic
SOM swept-out memory
RSE representative soil element
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Géotechnique, 24:678–683, 1974.
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648, 1995.

Lam W.-K. and Tatsuoka F. Effects of initial anisotropic fabric and σ2 on
strength and deformation characteristics of sand. Soils Found., 28(1):89–
106, 3 1988.

Lanier J. and Zitouni Z. Development of a data base using the Grenoble true
triaxial apparatus. In A.S. Saada and G.F. Bianchini, editors, Constitutive



824 References

Equations for Granular Non-Cohesive Soils, pages 47–57. Balkema,
Rotterdam, 1988.

Lanier J., Di Prisco C., and Nova R. Étude expérimentale et analyse théorique
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consolidated clay. Géotechnique, 20(1):38–56, 1970.

Libreros-Bertini A.B. Hypo-und viskohypoplastische Modellierung von Kriech-
und Rutschbewegungen, besonders infolge Starkbeben. PhD thesis, Institute
of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 165,
2006.

Lippomann R. Ingenieurgeologische Kriechhangsicherung durch Dübel. PhD
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References 825

Mach E. Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt.
Brockhaus, Leipzig, 7 edition. 1912.

Mahutka K.-P., König F., and Grabe J. Numerical modelling of pile jack-
ing, driving and vibratory driving. In T. Triantafyllidis, editor, Numerical
Modelling of Construction Processer in Geotechnical Engineering for Urban
Environment, pages 235–246. Bochum, 2006.

Maisch K. Bodenstabilisierung durch Einpressen von Trockengranulaten. PhD
thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karl-
sruhe, Heft 149, 2000.

Mandelbrot B.B. The Fractual Geometry of Nature. W.H. Freeman, New
York, 1982.

Mandl G. Mechanics of Tectonic Faulting, Models and Basic Concepts. Else-
vier, Amsterdam, 1988.

Manzari M.T. and Dafalias Y.F. A critical state two-surface plasticity model
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Géotechnique, 8:22–53, 1958.

Rouainia M. and Muir Wood D. A kinematic hardening constitutive model
for natural clays with loss of structure. Géotechnique, 50(2):153–164, 2000.
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Cavitation, 304, 310
Cavitative mode, 664
Cementation, 332, 384
Channelling, 380

Clay smears, 535

Collapsible, 135

Compensation grouting, 620

Composite column, 454

Composition, 7

Composites of psammoids and peloids,
393

Compression index, 37

Compression test, 134

Conservation laws, 3, 444

Conservative, vi

Consolidation, 441, 450

Consolidation ratio, 127, 146

Contact elements, 419

Contractant state limit fields, 432

Convection cells, 790

Couple stress, 345

Crack, 410

Crack patterns, 381, 794

Creep, 113

Creep rupture, 160

Critical friction angle, 30

Critical phenomena, x

Critical points, x, 58

Critical state soil mechanics, 37

Critical states, vii

Critical void ratio, 31

Cuboidal, 64

Cutting, 422

Cyclic attractor in the large, 431

Cyclic mobility, 209

Cyclic torsional shear tests, 209

Cylindrical shear, 89
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Delayed collapse, 372, 507

Deviatoric flow rule, 68

Diapirs, 658

Diffusion of pore water, viii

Dilatancy angle, 82

Direct shear tests, 176

Dislocation units, 114

Drained stationary creep, 432

Drained strength, 136

Driven attractors, 36

Ductile, 35, 135

Ductility, 20, 137, 507

Earth pressure coefficient at rest, 446

Effective cohesion, 137

Effective shear strength, 136

Effective stress, 28

Eigenstress, 195

Elastoplastic, 18, 21

Elasto-plastic relation, 21

Electro-capillary, 296

Electrophoresis, 308

Element test, 799

Equivalent pressure, 127

Excavation window, 746

Explicit accumulation models, 281

Explicit constitutive relations, 288

Extended argotropic critical states, 369

Extended state cycles, 362

Extended state limits, 346, 356

Fabric tensor, 386

Failure, 6, 31

Failure conditions, 66

Faults, 395

Filter cake, 401

Filter criteria, 411, 419

Fingering, 300

Finite elements, 490, 499

Finite soil elements, 445

Flow equilibrium, 798

Fluidized bed, 400

Fluidized zones, 417, 420

Force chains, 218

Forced polarization, 347

Force-roughness, viii

Force-roughness in the large, 424

Gas bubbles, 428
Gas channels, 299
Gas cushions, 409, 420
Gas inclusions, 409
Gradual relaxation, 214
Granular entropy, 250
Granular flow, 400
Granular fluids, 245
Granular gas, 244
Granular phase transitions, 5, 367
Granular solids, 2, 245, 253
Granular temperature, 244
Granulate hardness, 44

Hanshiku, 527
High-cycle accumulation model, 249
Historical element, vi, 3, 464, 491
Hydraulic breakthrough, 383
Hydraulic height, 9, 444
Hypoelastic, viii, 39
Hypoplastic, 18
Hypoplastic relation, 23, 46
Hysteresis, 18
Hysteresis ratio, 108

Identification, 12
Induced and inherent anisotropy, 390
Inherent anisotropy, 77
Initial state, 3
Inner shear bond, 345
Interface zones, 421
Intergranular strain, 236
Intermittent creep, 224
Intermittent relaxation, 224
Internal erosion, 800
Internal strain, 198
Isobaric creep, 129
Isobaric state limit fields, 432
Isochoric creep, 130
Isochoric ratcheting, 99
Isochoric state limit fields, 430
Isotachs, 125

Limit stress fields, 488
Limit void ratio, 31, 125, 315
Limit water contents, 191
Liquefaction, 37
Localization in the pore fluid, 382
Localization, ix
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Localized bifurcation, 347
Lode parameter, 101

Macro-elements, 489, 493, 496
Macropores, 305, 322, 409
Mats, 399, 401
Mean skeleton pressure, 27
Mechanical annealing, 349
Mechanical roughness, 255
Membranes, 401, 417, 420
Miner’s rule, 196
Mixtures, 393
More geometrico, v
Mud volcanos, 800

Navigation, 784
Negative shaft friction, 686
Net attraction, 314, 384
Net repulsion, 288, 304, 314
Normal faults, 531

Orbital symmetry, 775
Osmotic repulsion, 296
Overconsolidation ratio, 38
Overcritical, 30

Path-dependence, 747
Path dependent, 568
Paths, 20
Pattern formation, 775
Pavements, 403
Peak states, 30, 54
Penetration, 422
Percolation, 45
Permanence of solid particle, 338
Permeability, 300, 306, 308
Phase transition of pore water, 372
Pisa tower, 576
Plastic clays, 191
Polar quantities, 343, 355
Polar stresses, 9
Polywater, 123, 293
Pore water pressure, 9
Primary consolidation, 163, 452
Principle of effective stress, viii, 28
Psammoids, vii, 10, 16
Pyknotropic, 6
Pyknotropy, 28

Quasi-attractor, 630
Quick clay, 471

Ratcheting, 22, 36, 121
Rate-independence, 10
Relative void ratio, 31
Relaxation, 113, 131
Representative elements, 7
Representative soil elements, 3
Residual strength, 179
Resonant column tests, 206
Response polars, 21, 46
Reversals, 35
Ring shear, 90, 176
Ring structures, 657, 721

Sandwich, 392
Secondary consolidation, 158, 163, 452
Seepage velocity, 8
Seismically activated, 245
Seismic creep, 243
Seismic pressure, 250
Seismic state limits, 632
Seismic temperature, 243, 288
Seismodynamic equilibria, 250
Seismodynamics, 250
Seismo-hypoplastic, 245
Seismostats, 249
Shake boxes, 523
Shear band patterns, 388
Shear band thickness, 358
Shear bands, 410, 416, 639
Shear localization, 490
Shear mixing, 408
Shear thinning, 297
Shrinkage, 453
Shrinkage cracks, 311
Shrinkage limit, 310
Silo music, 692
Silo quakes, 692
Similarly rules, 487
Simple peloids, 111
Simple psammoids, 26
Simple shear apparatus, 88, 93
Skeleton decay, 37
Skeleton partial pressure, 298
Skeleton stress tensor, 9
Skeleton, 7
Skin, 401
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Slickenside, 369
Sliding wedges, 488
Slurry trench, 716
Soil-structure interaction, 415
Solute transport, 321
Specific seepage force, 445
Spontaneous polarization, 347
Stability, 6
Standing column, 444
State boundary curve, 38
State boundary surface, 68
State cycle fields, 430, 432, 626
State cycles, v, 22
State limits, v, 30
State parameter, 38
Stationary creep, 471
Stationary seismic creep, 629
Stick-slip condition, 416
Strain rate obliquity, 29
Strange attractor, vi
Stress-dilatancy, 34, 66
Stress direction, 85
Stress obliquity, 101
Stretching tensor, 8
Subcritical, 30
Subgrade reaction, 590, 755
Suction, 299
Surface waves, 796
Swelling, 453
Swelling index, 39

Swept out memory, VII
Symmetry, 13, 435
Sysendimentary tectonic deformation,

533

Thermal activation, 155
Thermally activated dislocation, 113
Thick-walled cylinders, 93
Thick-walled cylindrical, 181
Thin layer shear, 179
Thin layer shear tests, 89
Torsional cyclic shear, 275
Torsion of thick-walled tubes, 92
Trap doors, 614
True triaxial tests, 70

Undrained cohesion, 134, 142
Undrained creep, 155

Validation, 2, 12
Verification, 2
Visco-elastoplastic, 116, 175
Visco-hypoplastic, 116, 145, 175
Viscosity factor, 116, 127
Viscosity index, 113, 125
Viscous effects, 260
Viscous strain rate, 282
Void ratio, 28
Volumetric strain, 29

Water film, 408
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