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Supervisor’s Foreword

The tunneling effect lies at the very heart of quantum mechanics. Quantum par-
ticles can penetrate through potential barriers even if they lack the energy to
overcome them. Classical particles can only pass over the potential barrier and not
through it. There is hence no classical equivalent of the tunneling effect. The
amount of scientific work on tunneling of a single particle through a barrier is
enormous. There is, however, very little knowledge on how a system made of
several and certainly of many particles tunnels through a barrier to open space. The
quantum mechanical process of tunneling in open many-body systems is of fun-
damental interest for many different branches of science. This is simply because
almost all systems of interest in, for instance chemistry and physics, are open
many-body systems. In chemistry, tunneling occurs in photoassociation and pho-
todissociation processes, in nuclear physics tunneling is important for alpha decay
and nuclear fission and fusion.

In the tunneling to open space process, a particle that has tunneled through the
barrier will not return to the potential well out of which it has succeeded to escape.
If several particles have tunneled, the situation becomes more intricate as these
particles feel a drastically different situation outside the barrier than in the well.
That the particles outside the well are no longer confined and, moreover, inter-
acting with each other makes the mathematical and numerical treatment of tun-
neling to open space an extremely challenging task. Imagine that one particle has
tunneled and the second one follows only some time later. In the meantime, the
first one might already have travelled a long distance. This consideration makes it
clear that one has to be able to treat a large if not enormous portion of free space
correctly and precisely in order to describe the tunneling of a system made of a few
and even more so of many particles to open space. The present thesis reports
numerically exact descriptions of up to N ¼ 1001 bosons in a spatial domain of
more than 7 mm long (!). This, for a quantum many-body system, is truly
tremendous.

The field of Bose–Einstein condensates has enjoyed enormous activity since
their first production with ultracold gases in 1995. This unique state of matter of
dilute atomic ultracold gases, is highly attractive for both experimental and
theoretical scientists since the strength of the interaction between the bosons, their
dimensionality, as well as the shape of the trap potential holding them can be
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varied and controlled essentially at will. It is due to these unique possibilities to
control ultracold atoms that they are now used as so-called quantum simulators for
a wide variety of other systems in solid state, particle, and even in astrophysics. In
this spirit, the present theoretical thesis relies on ultracold bosons to study and
analyze the effect of quantum many-body tunneling to open space theoretically. In
the field, much attention has been paid to the investigation of the static and
dynamic properties of Bose–Einstein condensates in traps and optical lattices.
Here, there are two popular standard theories that dominate the literature: The
famous Gross–Pitaevskii mean-field theory and the Bose–Hubbard lattice model of
condensed-matter physics. It is not overestimating to note that there are more than
a thousand manuscripts in the APS Journals dealing with the physics and prop-
erties of Bose–Einstein condensates as ‘‘seen’’ by these two theories. It has to be
stressed that these theories rely on model considerations, whereas the current
thesis presents numerically exact results of the full time-dependent Schrödinger
equation. In that, the present thesis investigates in great detail and beyond the
standard models the physics of tunneling to open space and finds and describes
fascinating collective many-body phenomena, such as the mechanism of the loss
of coherence in the process. It is furthermore found in a performed comparison that
these fascinating many-body effects are not properly accounted for or even not
contained in the standard Bose–Hubbard and Gross–Pitaevskii theories.

This thesis is among the first reports of numerically exact computations for the
nonequilibrium quantum dynamics of interacting bosons in one and two spatial
dimensions. The scheme pursued for the investigation of the tunneling process is
as follows: A Bose–Einstein condensate is initially trapped in a potential well and
then allowed to tunnel through a potential barrier to open space. Two generic
scenarios are addressed. In the first, the barrier is ending at the same energy as the
bottom of the well and thus all bosons can decay by tunneling out from the well
(tunneling without a threshold). In the second scenario, the barrier is ending at an
energy higher than the bottom of the well such that one or more particles of the
condensate will not be able to tunnel and will have to stay in the well (tunneling
with a threshold). The particles of the condensate are interacting with each other
and the tunneling, of course, depends on this interaction. Both the spatial and
momentum evolution of the full wave function of the condensate are investigated
in great detail and the results are visualized by inspecting the one-particle and two-
particle densities and correlation functions of the system as a function of time, both
in real and momentum space. The results show extremely interesting physics not
anticipated before and contradicting the above popular models. In particular, the
tunneling mechanism found without a threshold can be viewed as if the bosons –
although condensed in the well – tunnel one-by-one and lose their coherence in the
process of escaping, i.e., the system fragments in open space! The study of tun-
neling with a threshold reveals, using the above mechanism, a strategy which
allows a control of the momentum distribution and even the coherence properties
(!) of the escaping particles.
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The numerically exact calculations were carried out with an implementation of
the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method –
the MCTDHB Package, see http://MCTDHB.org. The MCTDHB method is an
efficient many-boson wave-packet propagation technique for the nonequilibrium
dynamics of interacting bosons and is emerging as a leading many-body method
for the quantum dynamics of Bose–Einstein condensates. With such complicated
problems as the time-dependent many-boson Schrödinger equation, it is of great
importance to validate and benchmark the quality of new methods. This is done in
this thesis by identifying a model system of interacting bosons which can be solved
exactly and subsequently using the MCTDHB Package, and comparing the pre-
dictions of the latter against these exact solutions of the many-boson Schrödinger
equation. With this strategy, the present thesis first establishes the numerical
exactness of MCTDHB for many-boson ground states in one and two dimensions.
Subsequently and, most importantly, it is verified that MCTDHB can also
numerically exactly calculate the real-time propagation of many-boson systems
with a generalized Hamiltonian with both time-dependent one-body and two-body
terms. The excellent agreement with the exact results is very valuable and
establishes the MCTDHB method as a new standard for the physics of
time-dependent many-boson systems.

Heidelberg, Germany, April 2014 Prof. Lorenz S. Cederbaum
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Supplementary Material

For the research presented in this thesis, the MCTDHB method to solve the
time-dependent many-body problems for interacting bosons was a crucial
ingredient. The MCTDHB software (see http://MCTDHB.uni-hd.de) needed to
be improved and optimized in order to perform the demanding calculations for the
tunneling to open space process. The gained numerical and programming
know-how helped the development of the Open-Source MCTDHB package (see
http://OpenMCTDHB.uni-hd.de), which is available for anyone who wants to try
out the method. Eventually, the expertise gained in the research presented in this
thesis lead to the development of the user-friendly, well-documented, efficient, and
well-maintained recursive implementation of the MCTDHB method, R-MCTDHB
(see http://ultracold.org).

The main research results in this thesis are results on the dynamics of quantum
many-boson systems and a natural way to visualize such dynamics are videos of
the respective quantities’ time-evolutions. The figures for which a complementary
video is available online have a caption marked by an asterisk, *.
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Chapter 1
Introduction

“Begin at the beginning,” the King said, gravely, “and go on till
you come to an end; then stop.”

Lewis Carroll, Alice in Wonderland

Though the physics of ultracold bosons is a rich field, still the physics of many
interacting bosons tunneling to open space has not been described yet by means of
exact methods. The present thesis connects both fields of ultracold atoms and many-
body physics of tunneling. This introduction provides some basic knowledge of both
scientific contexts, embeds them, and motivates the present connection.

1.1 Bose–Einstein Condensation

Bose–Einstein condensation is a phenomenon which has drawn the attention of the
scientific community ever since its prediction in 1924 [1–3]. Until the actual pro-
duction of a Bose–Einstein condensate (BEC), it took a very long time. Because
sophisticated laser-cooling techniques, like for instance Doppler or Sisyphos cool-
ing, are needed (see Refs. [4–7] for an overview). Finally, in 1995 three groups,
independently, succeeded in cooling a trapped sample of ultracold bosons below the
critical temperature for the formation of BECs. The first group, led by Ketterle, used
repulsive sodium [8], the second, led by Cornell and Wieman, used repulsive rubid-
ium [9], and the third one, led by Hulet, used attractive lithium [10]. Bose–Einstein
condensation opened a door to the in-depth study of quantum many-body physics,
because the amount of control that can be exerted on BECs in the lab is outstanding:
their dimensionality [11–13], their confinement [14], and their interparticle inter-
actions [15] can be controlled almost at will. Hence, BECs are used as so-called
quantum simulators to emulate the physics encountered in other physical systems as,
for instance, solid state systems (see e.g. [16]) or even analogs of black holes from
astrophysics [17]. More recently, dipolar BECs have been realized in chromium [18]
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and dysprosium [19]. The presence of contact and dipolar interparticle interactions
in these samples allows for an even bigger class of physical systems that can be
studied in a well controlled experimental environment. Further applications of BECs
include, for instance, precision measurements (see e.g. Ref. [20]), dynamics of BECs
in optical lattices [21], quantum computation [22] and the study of vorticity and vor-
tex dynamics [23]. A good overview of the present theoretical and experimental
techniques and possibilities in the field is available in Refs. [21, 24–26].

It is appropriate to introduce here the definition for condensation put forward
by Penrose and Onsager in the 1950s: the reduced one-body density matrix of a
condensed quantum many-body system has only a single macroscopic eigenvalue
[27]. This eigenvalue corresponds to the quantum mechanical single-particle state
which is occupied by all the bosons. In several recent and more complex experi-
ments, especially for the case of dynamical scenarios, it turned out that the reduced
density matrix has several—in contrast to only a single—macroscopic eigenvalues.
This interesting physical situation is referred to as the fragmentation of BECs, see
Refs. [28–36].

With the wealth of accessible and controlled physical situations, it is of great
interest to tackle further fundamental many-body problems. One of these is the
many-boson tunneling process to open space. Beyond the well-known (effective)
single-particle description of the process [37, 38], nearly nothing is known about
its mechanism. This thesis explores and assesses the physics of tunneling from a
many-body point of view and proposes and validates an intuitive model, as well as
a scheme to manage and control the tunneling dynamics.

1.2 The Many-Body Physics of Tunneling

Ever since the beginning of quantum theory, the tunneling phenomenon was of great
interest [37, 38]. This is mainly due to the lack of a classical analog. The tunneling
process occurs in all potentials that have regions to which a classical particle could
go, the so-called energetically allowed regions, as well as regions to which a classi-
cal particle could not go, the so-called energetically forbidden regions. Usually, an
energetically allowed region is separated from an energetically forbidden one by a
barrier. A quantum particle in such a potential can overcome the potential barrier
without having the necessary average energy, because its position is described by a
probability distribution which is bigger than 0 in the classically forbidden regions
of the potential (cf. Fig. 1.1). With this very general condition for its occurrence,
quantum tunneling is characteristic for many processes and omnipresent in nature
and its physical systems. It occurs in the field of nuclear physics in fusion [39] and
fission [40], in the field of chemistry in photodissociation [41] as well as photoas-
sociation [42], to name just a few. It is important to stress here that almost all of the
systems in which the tunneling phenomenon occurs are many-body systems which
are, in principle, open. Yet, the tunneling process is conventionally studied from
an effective single-particle perspective—neglecting the dynamics of correlations
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Fig. 1.1 Sketch of Single- and Many-Particle Tunneling

between the constituent particles of the system. For an illustration, compare the left
and right panels of Fig. 1.1. A theoretical or experimental study with BECs beyond
the simplified effective single particle picture is a complicated task, which neces-
sitates sophisticated methods and new ways of analysis. The realization of BECs
[8–10] and the aforementioned developments provided new possibilities to study
many-body tunneling in a very well-controlled environment. For ultracold bosonic
atoms, the Hamiltonian of the many-body system is known explicitly. The Hamil-
tonian uniquely defines the dynamics via the time-dependent Schrödinger equation
(TDSE). Hence, the time-evolution and quantum dynamics are also known, in prin-
ciple. With the multiconfigurational time-dependent Hartree for bosons (MCTDHB)
method numerically exact solutions of the TDSE for many bosons for general time-
dependent problems were recently made available [28, 43] for the first time.

In the present thesis, the full many-body results are compared to the single par-
ticle case in order to explore the collective many-body phenomena and correlation
dynamics in the tunneling process. The analysis of the many-boson physics explains
how the overall tunneling to open space process can be modeled as an interference of
simultaneous single-particle tunneling processes emerging from a coherent source.
With this understanding, a scheme for the control of the dynamics in the many-body
system is formulated and verified.

1.3 Theoretical Description of Quantum Many-Body Systems

The challenge that arises when one tries to solve the TDSE of a many-body system
lies in the high dimensionality of its solution. The solution of theTDSE forN particles
in D-dimensional space is the time-dependent probability distribution that depends
on each of the N particles’ positions, hence, it has dimensionality D · N . In almost
all cases such a solution has no closed analytical expression. Furthermore, clever
representations are needed for such a high-dimensional solution. A common way
to approach the problem of solving the many-body TDSE is variational methods.
Basically, one makes an hopefully clever ansatz for the wave function that contains
parameters. For these parameters, equations of motion can be obtained from the
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time-dependent variational principle [44]. These equations of motion depend on
the parameters in the ansatz and determine their time-evolution. Depending on the
physics of themany-body system and the quality of the ansatzmade, such an effective
description may be accurate or inaccurate.

The present thesis contains a plethora of results rooting in a recently achieved
breakthrough with variational methods used to solve the many-boson TDSE: the
derivation and implementation of the multiconfigurational time-dependent Hartree
for bosons (MCTDHB) method in 2007, see Ref. [45]. In the history of variational
methods, MCTDHB is the first to provide numerically exact solutions of the TDSE
for a wide variety of many-boson problems. Chronologically, the complexity of the
time-adaptive ansatzes used for the derivation of variationalmethods grew. Gross and
Pitaevskii were using a so-called product state as the ansatz for the many-particle
wave function in 1961. The assumption implies that all bosons are occupying one
(time-dependent) single-particle state. The equation of motion for this state is termed
the the time-dependent Gross–Pitaevskii equation (TDGP) (cf. Refs. [46, 47]). It is
well-suited to describe fully condensed systems and is an effective single-particle
or mean-field method since it uses only one single-particle state. In many physical
situations correlations start to play a role and particles tend to occupy several sin-
gle particle states. Such, so-called fragmented states of many-body systems cannot
be described by the product ansatz that leads to the TDGP equation. In order to
describe also fragmented states, a more complex ansatz is needed. The straightfor-
ward generalization that allows the particles to occupy several instead of only one
single-particle statewas derived and implemented in 2003 and2007and is termedbest
mean-field (BMF) [48, 49]. BMF is capable of describing fragmented many-body
states and thus allows one to systematically go beyond the effective single-particle
or mean-field description. The TDGP equation is contained in the BMF equations
as the special case in which all bosons occupy a single state only. Basically, BMF
constructs a single, variationally optimized fully symmetrized many-body configu-
ration made of several single-particle states. In modern experiments with ultracold
atoms, often quite drastic changes of the environment are performed. Quenches,
where a parameter in the system is changed abruptly, are, for instance, widely spread
experimental setups. In such experiments, the many-body nature of the quantum
state of the system can change. For example, an initially condensed system could
lose its coherence and become fragmented with time because the external potential
was changed from a harmonic confinement to an optical lattice in the experiment
(see e.g. Ref. [50]). To describe such different quantum phases, at least two types of
many-body states are required: a product, i.e., coherent mean-field-like state and a
fragmented, i.e., incoherent BMF-like state. Hence, to tackle quantum many-body
dynamics where the many-body properties are allowed to change with time in a
general manner, several configurations, i.e., BMF-like states are necessary in the
description. This can be achieved by taking as the ansatz for a variational calcu-
lation a time-dependently weighted sum of all possible configurations that can be
formed with a certain number of time-dependent single-particle states. Then, the
resulting equations of motion can describe the details of the transitions from coher-
ence to fragmentation. This is precisely what the aforementioned MCTDHB ansatz
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does. MCTDHB is a self-consistent generalization of the BMF and TDGP methods,
both of which it contains as a special case. MCTDHB can be considered as an exact
diagonalizationwith a time-adaptive orbital basis set. Latticemodels like for instance
the Bose–Hubbard model can be arrived at from MCTDHB by dropping the time-
dependence of the orbitals and neglecting contributions of off-diagonal interaction
matrix elements. It is worthwhile to stress here that MCTDHB is in principle exact
when the number of single-particle states taken into account can be taken large
enough. The only limitation is the computational effort. The numerical exactness is
assessed in the present thesis by showing the convergence of the MCTDHB method
to the exact solution of the full time-dependent many-body Schrödinger equation of
a solvable problem of bosons with both time-dependent external and time-dependent
interparticle interaction potential.

1.4 Structure of this Thesis

Chapter2 provides an introduction to the quantum-physical methods in the field
and focuses on the ones that are used throughout this thesis. The quality and the
numerical implementation of the aforementioned MCTDHB theory is assessed.
This is done by, first, a benchmark and, second, a comparative study with lattice
models. For the benchmark the analytically solvable harmonic interaction model
(HIM) and a time-dependent generalization of it (TDHIM) (see also Ref. [43]) is
used in Chap.3. The comparison is done with the help of a Bose–Hubbard simu-
lation and a mapping of discrete and continuous space in Chap.4. In Chap.5 sev-
eral analytical considerations on the many-body physics in the tunneling process
to open space are presented. For instance, the aforementioned model assembling
the many-body dynamics from simultaneous single-particle processes is derived and
discussed. Chap. 6 presents numerically exact results for the many-boson tunneling
to open space process and discusses the significance of correlation and coherence
dynamics in this many-body process. Furthermore, the models formulated in Chap.5
are verified. In Chap.7 the dynamics in the tunneling process of many bosons to
open space are subjected to a threshold, i.e., a non-zero value of the potential in
the asymptotic region. To model the dynamics properly, the introduced model with
simultaneous single-particle-tunneling processes ismodified accordingly. It is shown
how the counting statistics and correlation dynamics in the process can be controlled
by manipulating the threshold and interparticle interactions. A summary of the find-
ings and an outlook complete the present thesis in Chap.8. The Appendices collect
longer analytical calculations as well as other derived many-body analysis quantities
which have not been applied numerically so far.
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50. I. Březinová, A.U.J. Lode, A.I. Streltsov, O.E. Alon, L.S. Cedrbaum, J. Burgdörfer, Wave

chaos as signature for depletion of a Bose–Einstein condensate. Phys. Rev. A 86, 013630
(2012)



Chapter 2
Theoretical Concepts and Numerical Methods

Being ignorant is not so much a shame, as being unwilling to
learn.

Benjamin Franklin

The scope of this chapter is to give an overview of the various methods available to
tackle the problem of solving the TDSE for a system ofmany bosons. In the rich vari-
ety of literature on this problem,References [1, 2] provide a good starting point. Here,
special attention is devoted to the motivation and illustration of the mean-field meth-
ods and their multiconfigurational generalizations, because these are the methods
within which most of the numerical results in the present study have been obtained.
To give a self-contained picture, it is a good approach to review the basics of the
second quantized formulation of the quantum mechanics of bosons, as well as some
of the theoretical concepts used in the field. The approximations considered here
fall into two different categories: the first set relies on making assumptions solely
on the ansatzes and intends to solve the full many-body Hamiltonian (the Gross–
Pitaevskii theory, best mean-field theory, and, MCTDHB). The second set relies on
making assumptions on the physical situation and constructing model Hamiltonians
and possibly also ansatzes for the wave functions (such as the Bose–Hubbard Hamil-
tonian (BHH), and the discrete non-linear Schrödinger equation (DNLS)). All these
approximations allow for an analytical description only in very rare and special cases
or under additional assumptions—it is therefore inevitable to construct methods to
solve them numerically in order to avoid the necessity of further idealizations. The
above points are discussed in this chapter.

2.1 The Schrödinger Equation from a Many-Body Perspective

The many-body Schrödinger equation reads:

Ĥ(�r1, ..., �rN , t)υ(�r1, ..., �rN , t) = i∂tυ(�r1, ..., �rN , t). (2.1)

A. U. J. Lode, Tunneling Dynamics in Open Ultracold Bosonic Systems, 9
Springer Theses, DOI: 10.1007/978-3-319-07085-8_2,
© Springer International Publishing Switzerland 2015
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Here, both, Ĥ and the wave function υ depend on the positions of the N particles.
In many cases, the Hamiltonian Ĥ is an Hermitian operator in the N -particle Hilbert
space. For N identical bosons, both Ĥ andυ are symmetric when interchanging any
two of the coordinates in Eq. (2.1). Hereafter, a Hamiltonian with a single particle
potential for each particle and two-body interactions for every pair of particles is
considered,

Ĥ =
N∑

i=1

ĥ(�ri ) +
j=N∑

i< j

Ŵ (�r j , �ri , t),

ĥ(�r) = T̂ (�r) + V (�r , t),

T̂ (�r) = −1

2
∂2�r , (2.2)

unless otherwise specified. Here Ŵ is the two-body interaction, V is the one-body
potential, and T̂ is the usual kinetic energy in dimensionless units with � = m = 1.
Both, Ŵ and V , can be time-dependent but for most of the problems they will be
considered as time-independent. For ultracold bosons it is usually assumed that the
two-body physics are well-described by s-wave scattering. Ultracold temperatures
imply very low kinetic energies. Hence, only the s-wave is contributing to the partial
wave expansion of the scattering processes. In this case:

Ŵ (�ri , �r j ) = λ0δ(�ri − �r j ), (2.3)

where λ0 relates to the s-wave scattering length [3, 4]. Already from Eqs. (2.1), and
(2.2) it is obvious that this problem becomes high-dimensional for several particles
N > 1. It is hence difficult to solve and approximations are a must in the many
particle case. A very efficient formalism for treating systems of N identical particles
is called second quantization. It is explained below.

2.1.1 Second Quantization

The space ofmany-bosonwave functions is the N -particle Hilbert space [5]. Conven-
tionally, a complete and orthonormal set of single-particle states,1 {|ai 〉, i = 1, ..., N }
is chosen to describe this N -particle Hilbert space. In this basis, a state of N distin-
guishable particles is the product

|a1〉 · · · |aN 〉 = |a1, ..., aN 〉,

where the subscript identifies the particle. Straightforwardly, symmetrized products,
the so-called permanents, can be formed by summing all possible permutations of this

1 For didactical reasons, the time-dependencies are omitted in various places in this section.
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expression. This summation is denoted as the action of the so-called symmetrization
operator Ŝ+. Hence, the permanent has the following properties:

Ŝ+ [|a1, ..., aN 〉] = 1

N !
∑

{�a}
|�a〉. (2.4)

Here {�a} = {|aα, ..., aω〉} denotes all possible permutations of the indices α, ..., ω,
and Ŝ+ is the symmetrization operator for bosons. Permanents are fully symmetric,
N -dimensional, orthogonal functions. If one assumes, that one of the single particle
states |ai 〉 is occupied by ni bosons, the symmetrization with Ŝ+ will make it occur
ni ! times in the right hand side of Eq. (2.4). To obtain a proper normalization, one
has to divide by the square root of ni ! for all i . Hence, it follows for the permanent
|n1, n2, ...〉:

|n1, n2, ...〉 = 1√
n1!n2! · · ·

Ŝ+ [|a1, ..., aN 〉] (2.5)

∀n1, n2, ...|n≤
1, n≤

2, ...〉 = δn1,n≤
1
δn2,n≤

2
· · · (2.6)

∑

n1,n2,...

|n1, n2, ...〉∀n1, n2, ...| = 1. (2.7)

Here, a constant particle number, i.e.
∑∞

i=1 ni = N was assumed. By introducing
the conventional creation and annihilation operators, respectively:

â†
i |..., ni , ...〉 = √

ni + 1|..., ni + 1, ...〉
âi |..., ni , ...〉 = √

ni |..., ni − 1, ...〉,

it is possible to write a general single-permanent many-boson state as:

|n1, n2, ...〉 = 1

n1!n2! · · ·
(

â†
1

)n1 (
â†
2

)n2 · · · |vac〉, (2.8)

where |vac〉 ≡ |0, 0, ..., 0〉 denotes the vacuum state in which there is no particle
present. The commutation relations of the operators â j are of bosonic nature:

⎧
âi , â j

⎪ = 0;
⎨
â†

i , â†
j

⎩
= 0;

⎨
âi , â†

j

⎩
= δi j . (2.9)

With this, the description of a general basis set of a many-boson systemwith constant
particle number is complete. Section 2.1.1.1 covers how to transform the set of single-
particle states building up the permanent given in Eq. (2.8).
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2.1.1.1 Unitary Tranformations of Permanents

Usually, unitary transformations are specified on the boson creation and annihilation
operators. This paragraph closely follows the considerations made in Refs. [6, 7].
An M-mode Fock state is considered,

|�n〉 = |n1, n2, ..., nM 〉 = 1√
n1!n2! · · · nM !

(
â†
1

)n1 (
â†
2

)n2 · · ·
(

â†
M

)nM |vac〉.
(2.10)

If the following (unitary) transformation to the {â†
k ; k = 1, ..., M} is applied:

â†
i → ˜̂a†

i =
M∑

k=1

Uki â
†
k . (2.11)

In general, the matrix elements of Uki are given by the overlap integrals of the new
basis with the old single-particle basis functions {φk, k = 1, ..., M} and {φ̃i , i =
1, ..., M}. The action of U on a single permanent Fock state is then

U|�n〉 = |̃�n〉 (2.12)

=
M∏

i=1

⎡

⎣(ni !)− 1
2

⎛

⎝
M∑

ki =1

Uki i â
†
ki

⎞

⎠
ni
⎤

⎦ |vac〉. (2.13)

To process this result further, it lies at hand to use themultinomial expansion theorem

for the multinomials
(∑M

ki =1 Uki i â
†
ki

)ni
. The resulting expression reads:

|̃�n〉 =
∑

{ni j }∑M
j=1 ni j =ni

(⎬M
i=1 ni !

) 1
2

⎬M
i, j=1 ni j !

M∏

κ=1

⎡

⎣
M∏

jκ=1

(
U jκκ â†

jκ

)nκ jκ

⎤

⎦ |vac〉. (2.14)

For convenience, an integer M-by-M matrix ni j was introduced, whose elements
fulfill the constraints that the sum of all its columns are equal to the occupations in
the original Fock state |�n〉, i.e.,∑M

j=1 ni j = ni . Labeling the row sums of ni j by m j ,

i.e.,
∑M

i=1 ni j = m j , one can rewrite the Fock vector on the right-hand side of the
above expression as follows:

|̃�n〉 =
∑

{ni j }∑M
j=1 ni j =ni

(⎬M
i=1 ni !

) 1
2

⎬M
i, j=1 ni j !

⎭
M∏

l=1

ml !
) 1

2
⎛

⎝
M∏

k,l=1

Ulk

⎞

⎠
nkl

|m1, ..., mM 〉. (2.15)
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Now, the sum over all the products of the powers U nkl
lk , for all possible matrices ni j ,

canbewritten as a permanent of a specific N -by-N matrixU [n1, ..., nM |m1, ..., mM ].
Its entries are taken from the transformation matrix Uqs as follows: the row
index of Uqs appears nq times and the column index appears ms times. Further-
more, it is convenient to use the vector notation for the mi , i = 1, ..., M , too,
i.e., | �m〉 = |m1, ..., mM 〉. Consequently, U [n1, ..., nM |m1, ..., mM ] = U

⎧�n| �m⎪
.

Finally, denoting with Per(·) the permanent of a matrix, one arrives at a compact
expression,

U|�n〉 = |̃�n〉 =
∑

{ �m}

M∏

i=1

√
mi !ni ! Per

(
U
⎧�n| �m⎪) | �m〉, (2.16)

where, the sum runs on all possible distributions of N particles in M orbitals, { �m}. It
is noteworthy tomention that the unitary transform of a single configurationwill have
contributions to all possible configurations in the new basis set. It is, therefore, inti-
mately related to the multiconfigurational expansion which will be used frequently
later on. Moreover, Eq. (2.16) makes evident the connection between unitary trans-
formations of many-body states of bosons and the computation of permanents and
shows, thus, the big complexity of such a transformation [6, 7].

For the sake of completeness and its possible later use, the unitary transformation
for multiconfigurational states, i.e., |υ〉 = ∑

{�n} C�n|�n〉 is specified here:

U|υ〉 = U
∑

{�n}
C�n|�n〉 =

∑

{�n}
C�nU|�n〉. (2.17)

The unitary transformation is applied to each configuration, respectively. Now, U|�n〉
can be replaced by Eq. (2.16):

U
∑

{�n}
C�n|�n〉 =

∑

{�n}
C�n

∑

{ �m}

M∏

i=1

√
mi !ni ! Per

(
U
⎧�n| �m⎪) | �m〉. (2.18)

A few remarks should be made here. The general unitary transform of a single per-
manent, as specified in Eq. (2.16), contributes to all other possible configurations,
and it is hence already a quite complicated object. Note that the time-evolution oper-

ator e−i Ĥ t of a given Hamiltonian is a unitary transformation. By writing down the
unitary transform in Eq. (2.16) one, thus, arrives at the conclusion that the only way
to properly account for the time-evolution of a system is by using a multiconfigura-
tional wave function. To continue, it is indicated to define some useful operators and
their expectation values.
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2.1.1.2 One-Body Operators

In general, a sum of one-body operators t̂ in second quantization takes the form

T =
∑

i

t̂i =
∑

i, j

ti j â
†
i â j ; (2.19)

where ti j = ∀i |t̂ | j〉.

Often occurring examples of one-body operators are the occupation number operator,

n̂i = a†
i ai ; n̂i |..., ni , ...〉 = ni |..., ni , ...〉,

the particle number operator, N̂ = ∑
i n̂i , the kinetic energy T̂ , or the potential V̂ .

2.1.1.3 Two-Body Operators

In second quantization the sum of two-body operators Ŵ = 1
2

∑
a ⊗=b w(�ra, �rb) takes

the form

Ŵ = 1

2

∑

i, j,k,l

â†
i â†

j âk âlwi jkl; (2.20)

where wi jkl = ∀i, j |ŵ|k, l〉 =
∫

d�ra

∫
d�rbφ

∗
i (�ra)φ∗

j (�rb)w(�ra, �rb)φk(�ra)φl(�rb).

An example of this is the two-body interaction occurring in Eq. (2.1) and its simplest
form ŵ(�ri , �r j ) = λ0δ(�ri − �r j ).

2.1.1.4 Field Operators

It is often useful to have operators υ̂(�r , t) [υ̂†(�r , t)] which create [annihilate] a
particle at position �r , i.e., in the state |�r〉. These are called field operators and read:

υ̂†(�r) =
∑

i

φ∗
i (�r)â†

i ; υ̂(�r) =
∑

i

φi (�r)âi . (2.21)

To simplify the reading, the time-dependency of the field operators will be omitted
where appropriate. They obey the usual bosonic commutation relations, just like the
operators âi , â†

j , and can be used to rewrite, among others, the operator for particle

density n̂(�r) = ∑N
i=1 δ(�r − �ri ) as n̂(�r) = υ̂†(�r)υ̂(�r). The Hamiltonian in Eq. (2.2)

expressed with field operators results in
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Ĥ =
∫

d�r
(

�
2

2
∇υ̂†(�r)∇υ̂(�r) + V (�r , t)υ̂†(�r)υ̂(�r)

)

+ 1

2

∫
d�r

∫
d�r ≤Ŵ (�r , �r ≤, t)υ̂†(�r)υ̂†(�r ≤)υ̂(�r)υ̂(�r ≤). (2.22)

For more details, the reader is referred to Ref. [2] and References therein. With this
subsection all the necessary second quantization notations and concepts have been
introduced. To continue, it is now appropriate to introduce the quantum many-body
measures and analysis techniques which are important throughout this work.

2.1.2 Quantities of Interest

The scope of this subsection is to equip the reader with the analysis methods and
viewpoint applied throughout this thesis and also place their development in a broader
context. Since the prediction ofBEC in1924 (Refs. [8, 9]) someattentionwas devoted
to the quantum mechanical condensation of bosonic particles in the lowest possible
single-particle level. In 1956 Penrose and Onsager (Ref. [10]) were concerned with
the presence of BEC in superfluid Helium and found a rigorous definition for con-
densation in quantum systems: a quantum system is condensed, when its reduced
one-body density matrix (1-RDM) has a single macroscopic eigenvalue. In recent
developments and experiments on BEC it turned out that fragmentation (see e.g.
Refs. [11–19]) may occur. Fragmentation is defined as the situation where several
eigenfunctions of the 1-RDMaremacroscopically populated. The occurrence of frag-
mentation is ubiquitous especially in dynamical scenarios.The quantum mechanical
description of condensation and fragmentation with the eigenvalues of the 1-RDM
is intimately related to Glauber’s quantum theory of optical coherence, starting in
the 1960s (see Refs. [20–22]). It has been shown, that it is fully equivalent to have
complete condensation and full coherence: when the single eigenvalue of the 1-RDM
is N then all the normalized correlation functions are constant for all space and time
[11, 22]. The systems considered in this thesis are initially confined and coherent
systems that are decaying by tunneling through a barrier. Hence, it is instructive
to introduce here also some measures which are especially adapted to quantify and
assess the dynamics in these processes. The survival or nonescape probability of a
decaying many-body quantum system can be defined as an integral either on the
one-body density or on the full wave function.

The introduction and definition of thementioned quantities are done in the follow-
ing paragraphs. Further quantities, like the so-called particle loss and the principle
of local fragmentation are deferred to the Appendices A and B (this is due to their
complexity and because these quantities have yet to be implemented in the MCT-
DHB package [23]). Local fragmentation and the expectation values of particle loss
operators can in principle be used to improve the detail of the investigation on the
many-body mechanism of the tunneling process also locally.
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2.1.2.1 Reduced Density Matrices

The p-particle reduced density matrix of a system (p-RDM), ρ(p), is defined by
tracing N − p coordinates from the N -particle density , |υ〉∀υ|:

ρ(p)(�r1, ..., �rp|�r ≤
1, ..., �r ≤

p; t) = T r�rp+1···�rN [|υ〉∀υ|] (2.23)

= N !
(N − p)!

∫
d�rp+1 · · · d�rN υ(�r1, ..., �rN , t)

υ∗(�r ≤
1, ..., �r ≤

p, �rp+1, ..., �rN , t).

The second line illustrates the action of the trace operation T r [·]. The 1-RDM plays
a special role for the definition of condensation and fragmentation, as well as for the
analysis of bosonic systems:

ρ(1)(�r1|�r ≤
1; t) = N !

(N − 1)!
∫

d�r2 · · · d�rN υ(�r1, ..., �rN , t)υ∗(�r ≤
1, �r2, ..., �rN , t).

(2.24)
Similar to the above Eq. (2.24), the RDMs can also be obtained in momentum rep-
resentation. When the starting point is a many-boson wave function specified in
momentum space, the RDMs are simply obtained by replacing �rs with �ks in the
above Equations (2.23) and (2.24). This holds also for the quantities computed from
the RDMs, which are discussed in the next three paragraphs, i.e., the one-body den-
sity, natural occupations/orbitals, and normalized correlation functions.

2.1.2.2 The One-Body Density

Probably the most analyzed and the most intuitive quantity to look at in a quan-
tum system is the one-body density. This is simply the diagonal of the 1-RDM of
Eq. (2.24):

ρ(�r , t) ≡ ρ(�r1 = �r |�r ≤
1 = �r; t) (2.25)

= N !
(N − 1)!

∫
d�r2 · · · d�rN υ(�r , ..., �rN , t)υ∗(�r , �r2, ..., �rN , t).

From a probabilistic point of view, it can be interpreted as the probability to find one
particle at position �r , while the remaining are somewhere in space.

2.1.2.3 Natural Occupation Numbers and Natural Orbitals

One of the key measures to assess the degree of condensation and coherence or,
complementarily, fragmentation and incoherence, is the diagonal representation of
the 1-RDM in Eq. (2.24):
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ρ(1)(�r1|�r ≤
1; t) =

M∑

k,q=1

ρkq(t)φ∗
k (�r ≤

1, t)φq(�r1, t)

=
M∑

i=1

ρ
(N O)
i (t)φ∗(N O)

i (�r ≤
1, t)φ(N O)

i (�r1, t). (2.26)

In first equality the 1-RDMor any arbitrary function is expanded in a suitable basis set
{φi , i = 1, ..., M}. The ρkq(t) are termed one-body matrix elements. In the second
equality, one simply diagonalizes the ρkq(t) matrix to achieve the simplest possible

representation of the 1-RDM. The corresponding basis set, {φ(N O)
i , i = 1, ..., M}, is

termed natural orbitals and their weights, ρ(N O)
i (t) are termed natural occupations.

The {ρ(N O)
i (t), i = 1, ..., M} and {φ(N O)

i , i = 1, ..., M} are the eigenvalues and
eigenfunctions of the 1-RDM, respectively.

2.1.2.4 Normalized Correlation Functions

The normalized p−particle correlation function, g(p), is defined by the relation of the
p-RDM, see Eq. (2.23), to the diagonals of the 1-RDM at the p different coordinates
(see Refs. [20–22, 24]):

g(p)(�r ≤
1, ..., �r ≤

p, �r1, ..., �rp; t) = ρ(p)(�r1, ..., �rp|�r ≤
1, ..., �r ≤

p; t)
√⎬p

i=1 ρ1(�ri |�ri ; t)ρ1(�r ≤
i |�r ≤

i ; t)
. (2.27)

Coherence of p-th order is achieved, if g(p) = 1 holds. It is straightforward to
see that this holds only if the p-RDM is a product of 1-RDMs [20]. This is the
case if the 1-RDM can be represented by a single complex-valued function, which,
in turn, means that the 1-RDM has a single eigenvalue. Therefore, this 1-RDM
corresponds to a fully condensed system. From a probabilistic point of view g(p)

measures the degree of statistical dependence of the simultaneous measurement of a
set of p coordinates �r1, ..., �rp . If g(p) = 1 then the measurement of the p coordinates
is statistically independent and, consequently, the positions of the particles are not
correlated. In this case it is said that the system is p-th order coherent. Full coherence
can only be reached for p = 1. In the case of big particle numbers and p  N ,
the maximally achievable p-th order coherence is 1+O(N−1) [20, 24]. In the case
of g(p) > 1 the measurement of the p positions is correlated and in the case of
g(p) < 1 it is anticorrelated. In this respect, coherence comes with condensation
and correlation/anticorrelation comes with fragmentation. Of course, the equivalent
p-th order normalized correlation functions can be obtained also inmomentum space
from the p-RDMs in momentum space.



18 2 Theoretical Concepts and Numerical Methods

2.1.2.5 The Nonescape Probability

Tunneling processes occur in potentials that have regions separated by a barrier
which is higher than the energy of the considered system. Usually, the initial state is
localized on one side of this barrier with a probability almost equal to one. During its
time evolution the system is eventually no longer localized on one side of the barrier.
There are two ways to measure the survival or nonescape probability of the state in
question. One can integrate either the one-body density or the full wave function in
the part of space ν where the state is initially localized. This integration defines the
density-related and the wave function-related nonescape probabilities, Pnot,ρ(t) and
Pnot,υ(t), respectively:

Pnot,ρ(t) =
∫

ν

ρ(�r , t)d�r , (2.28)

Pnot,υ(t) =
∫

ν

υ∗(�r1, ..., �rN )υ(�r1, ..., �rN )d�r1 · · · d�rN . (2.29)

Pnot,ρ(t)measures the nonescape probability on the level of single particles, whereas
Pnot,υ(t) measures the nonescape probability on the N -particle level. For non-
interacting particles, the relation Pnot,ρ(t) ∝ N

√
Pnot,υ(t) is obvious. Additionally, it

is reasonable to expect that Pnot,υ(t) is proportional to the autocorrelation function
c(t) = ∀υ(t = 0)|υ(t)〉. This at least holds in the case of open systems, where
Pnot,υ(t) and c(t) are monotonously decreasing functions. One can formulate the
nonescape probabilities discussed in this paragraph also in relation to the so-called
particle loss operators (see Appendix A).

2.2 Theoretical Methods Employing the Full Many-Boson
Hamiltonian

2.2.1 The Time-Dependent Variational Principle

The derivation of the TDGP, BMF, and of the MCTDHB is done by tackling the
full many-boson Schrödinger equation with the time-dependent variational principle
(TDVP) using different ansatzes. To motivate and place the following introduction
to these methods on a solid ground, it is instructive to review briefly the TDVP as
given in Ref. [25]. The basic idea is that the action functional S is minimized by the
actual time-evolution taken by the system. Hence,

δS != 0. (2.30)

The actionS is the time-integral of theLagrangian of the considered systemdescribed
by a set of so-called generalized coordinates. For a quantum mechanical (many-
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body) system, having a constant particle number and and a Hermitian operator i∂t ,
the Lagrangian takes the form:

L(υ(t),υ∗(t)) = ∀υ(t)|i∂t − Ĥ |υ(t)〉. (2.31)

Consequently, requiring the action to be stationary results in demanding the following
expression to vanish:

δS ⎧
υ(t),υ∗(t)

⎪ = δ

∫ t2

t1
L(υ(t),υ∗(t))dt (2.32)

= δ

∫ t2

t1
∀υ(t)|i∂t − Ĥ |υ〉 != 0. (2.33)

It is possible with this machinery to derive the equations of motion for any wisely
or unwisely chosen generalized coordinates υ and υ∗. Kramer and Saraceno aptly
described this issue in Ref. [25], on p. 6:

“As is well-known, a variational principle is a blind and dumb procedure that always provides
an answer, but it’s accuracy depends crucially on the choice of the trial function.”

In what follows, the quest for a more and more accurate variational description in
terms of improvement of the ansatz for the trial function (wave function) υ for
many-boson systems is presented and discussed.

2.2.2 The Time-Dependent Gross–Pitaevskii Equation

The main working tool for the description of the physics of ultracold bosons and
BEC is the famous and successful time-dependent Gross–Pitaevskii equation (see
Refs. [1, 26] and the References therein). Phenomenologically, it was the natural
first step taken to understand the quantum physics of the TDSE, Eq. (2.1), with the
many-boson Hamiltonian, Eq. (2.2), using the TDVP. The starting point to obtain
the TDGP is to use a contact interparticle potential, Ŵ (�r , �r ≤) = λ0δ(�r − �r ≤). In order
to cover the phenomenology of BEC, one assumes that all bosons occupy only one
quantum mechanical single-particle state. This implies the truncation of the field
operator, Eq. (2.21), to a single time-dependent mode function θ(�r , t):

υ̂(�r , t) ≡ θ(�r , t)b̂(t). (2.34)

From this, the (single) boson creation operator,

b̂(t) =
∫

θ∗(�r , t)υ̂(�r , t)d�r , (2.35)

is defined. As a result, the GP many-boson wave function is a product state,
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|υ(t)〉 = 1√
N !

(
b̂†(t)

)N |vac〉 = |N , 0, ...; t〉 = 1√
N !

N∏

i=1

θ(�ri , t). (2.36)

The expectation value of i∂t − Ĥ then reads

∀υ|i∂t − Ĥ |υ〉 = −N
∫

d�r{θ∗(�r , t)ĥθ(�r , t)+ (N − 1)

2
λ0|θ(�r , t)|4}+∀υ|i∂t |υ〉

(2.37)

Plugging this ansatz, Eq. (2.37), in the action functional, Eq. (2.33), and requiring
the latter to be stationary, results in the following Equation:

δS ⎧
θ(�r , t)

⎪

δθ∗(�r , t)
= 0 → i∂tθ(�r , t) =

⎨
ĥ + λ0(N − 1)|θ(�r , t)|2

⎩
θ(�r , t).

(2.38)

Equation (2.38) describes the dynamics of interacting bosons which are completely
condensed into a single particle state and is referred to as the time-dependent Gross–
Pitaevskii equation.

2.2.3 Best Mean-Field

The straightforward generalization of the GP ansatz for the many-boson wave func-
tion is simply to allow the bosons to occupy M , instead of one, single particle states.
This permits the description of single-configurational condensed or fragmented
quantum states, given that one uses an appropriate number M of single-particle
states. Here, single-configurational means that a single permanent, cf. Eq. (2.8), is
used in the description. This section will sketch the derivation of the equations of
motion of the time-dependent multi-orbital mean-field or, in short, best mean-field
(BMF) as given in [27]. Note that there is also a time-independent version of the best
mean-field for condensates, which for brevity is not presented here (see Ref. [28]).
The ansatz for the time-dependent best mean-field with M orbitals reads:

θ(�r1, �r2, ..., �rN , t) = Ŝ
[

(φ1(�r1, t)φ1(�r2, t) · · · )︸ ︷︷ ︸
n1 times

(φ2(�rn1+1, t)φ2(�rn1+2, t) · · · )︸ ︷︷ ︸
n2 times

· · ·

(φM (�rN−nM +1, t)φM (�rN−nM+2, t) · · · )︸ ︷︷ ︸
nM times

]
, (2.39)

where Ŝ is a symmetrization operator. In the second quantization formalism, the
above Eq. (2.39) reads:

|θ〉 = |n1, n2, ..., nM ; t〉.
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As in the previous derivation of the TDGP, the TDVP is used to obtain equations of
motion (EOMs) for the variational parameters φ1(�r , t), ..., φM (�r , t). Obviously, the
TDGP is recovered in the case of M = 1 in Eq. (2.39). The functional action is given
as

S =
∫

dt

⎡

⎣∀θ|Ĥ − i∂t |θ〉 −
M∑

k=1, j=1

μk j (t)
⎧∀φk |φ j 〉 − δk j

⎪
⎤

⎦ , (2.40)

whereμk j areLagrangemultipliers to ensure the orthonormality of the time-evolution
of the orbitals φk and φ j . For convenience, the time-dependencies will be omitted in
the following where they are not explicitly needed. It is convenient to define:

hkj =
∫

φ∗
k (�r)ĥ(�r)φ j (�r)d�r ,

(i∂t )k j =
∫

φ∗
k (�r) (i∂t ) φ j (�r)d�r

=
∫

φ∗
k (�r)φ̇ j (�r)d�r ,

Wkjql =
∫ ∫

φ∗
k (�r)φ∗

j (�r ≤)W (�r − �r ≤)φq(�r)φl(�r ≤)d�rd�r ≤,

Wkj[ql] = Wkjql + Wkjlq ,

Ĵl(�r) =
∫

φ∗
l (�r)W (�r − �r ≤)φl(�r ≤)d�r ≤,

K̂l(�r) =
∫

φ∗
l (�r)W (�r − �r ≤)P�r�r ≤φl(�r ≤)d�r ≤,

PPP = 111 −
M∑

i=1

|φi 〉∀φi |. (2.41)

Here, P�r�r ≤ swaps �r with �r ≤ in the expression on its right side. By demanding the

action to be stationary when varying the parameters in the ansatz, { δS
δφ∗

j (�r ,t)
!= 0, j =

1, ..., M} one gets (after the elimination of the Lagrange multipliers) the following
EOMs for the BMF:

PPPi |φ̇k〉 = PPP

⎡

⎣ĥ + λ0(nk − 1) Ĵk +
M∑

l ⊗=k

λ0nl( Ĵl + K̂l)

⎤

⎦ |φk〉. (2.42)

These EOMs are a coupled set of non-linear integro-differential equations. The
details of their derivation, as well as illustrative numerical examples can be found
in Refs. [14, 15, 27–29]. In physical situations that are fully described by a single
configuration, i.e., one permanent, the BMF theory is a good approach. Note that any
initial set of occupations, n1, ..., nM , will remain unchanged by the time-evolution
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under Eq. (2.42). This means that the BMF theory lacks the capability of describing
processes in which the many-boson system under consideration undergoes
fragmentation or condensation, because the occupation numbers, n1, n2, ..., nM , can-
not change. The MCTDHB circumvents this flaw of the BMF and will be the topic
of Sect. 2.2.4

2.2.4 The Multiconfigurational Time-Dependent Hartree Method
for Bosons

The natural generalization of the BMF towards a better description of the full Hilbert
space of the many-boson system is to consider not only a single configuration (see
Eqs. (2.39), (2.8)) but, instead, many configurations, i.e., all possible configurations
that can be formed from a set of M single-particle states. The method thus becomes
multiconfigurational and, as the time-dependent configurations and derivation come
from theHartreemethod, its name is themulticonfigurational time-dependentHartree
method for bosons (MCTDHB). There is a wealth of multiconfigurational Hartree
theories for mixtures of different species of bosons and fermions, see Refs. [30, 31],
with particle conversion andup to three-body interactions.The following introduction
considers and sketches only the single-species version as given in Ref. [32, 33]
because this version will be amply used, benchmarked with analytical results, and
comparedwith othermethods in the field throughout the presentwork. It is instructive
to start from the field operator expanded in the basis of a set of M orthonormal, time-
dependent functions (orbitals), {φk(�r , t), k = 1, ..., M}:

b̂k(t) =
∫

φ∗
k (�r , t)υ̂(�r)d�r; k = 1, ..., M,

υ̂(�r) =
M∑

k

b̂k(t)φ
∗
k (�r , t). (2.43)

This is the bosonic field operator. The only approximation introduced here, is the
assumption that the set of M orbitals is sufficient to describe the Hilbert space
occupied by the many-boson wave function. Using the b̂k(t), their commutation
relations, b̂k(t)b̂

†
j (t) − b̂†j (t)b̂k = δk j , and the abbreviation �n = (n1, n2, ..., nM ),

one arrives at the ansatz for the variational derivation of the MCTDHB EOMs:

|υ(t)〉 =
∑

{�n}
C�n(t)|�n; t〉 (2.44)

=
∑

{(n1,...,nM )}

C(n1,...,nM )(t)√
n1! · · · nM !

(
b̂†1(t)

)n1 · · ·
(

b̂†M (t)
)nM |vac〉.
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Here, |vac〉, stands for the vacuum state with no boson present and the sum runs
over all Ncon f = (N+M−1

N

)
possible configurations, {(n1, ..., nM )}, of N = ∑M

i=1 ni

particles occupying the M orbitals. Note that both, the coefficients {C�n} and the
orbitals {φk}, are time-dependent and both will be used as variational parameters
for the following derivation of the equations of motion. Introducing Lagrange mul-
tipliers, μk j (t), ensuring the orthonormality of the orbitals (as in the BMF case, cf.
Eq. (2.40)), the action functional takes the form:

S
⎧{C�n(t)}, {φk(�r , t)}⎪ =

∫
dt

⎡

⎣∀υ|Ĥ − i∂t |υ〉 −
M∑

k, j=1

μk j (t)
⎧∀φk |φ j 〉 − δk j

⎪
⎤

⎦ .

(2.45)

Now, one demands this action to be stationarywhenvaryingall the Ncon f coefficients,

i.e., δS
δC∗

�n (t)
!= 0 and when varying the M orbitals, i.e., δS

δφ∗
k (�r ,t)

!= 0. The details of

the derivation and how the elimination of the Lagrange multipliers results in the
emergence of projectors, P̂PP , are given in Ref. [33]. The EOMs for the coefficients
reads:

HHH(t)CCC(t) = i∂tCCC(t); HHH(t) = {H�n �n≤(t)} = {∀�n; t |Ĥ | �n≤; t〉}. (2.46)

HereCCC(t) collects the coefficients {C�n(t)} in a vector. On the other hand, the EOMs
for the orbitals read:

i∂t |φ j 〉 = P̂PP

⎡

⎣ĥ|φ j 〉 +
M∑

k,s,q,l=1

{ρρρ(t)}−1
jk ρksql Ŵsl |φq〉

⎤

⎦ ,

Ŵsl(�r , t) =
∫

φ∗
s (�r ≤, t)Ŵ (�r − �r ≤, t)φl(�r ≤, t)d�r ≤,

P̂PP = 1 −
M∑

i=1

|φi 〉∀φi |. (2.47)

Here {ρρρ}(−1) is the inverse of the reduced one-body matrix elements, the ρksql are
the matrix elements of the reduced two-body density and the Ŵsl(�r , t) are referred
to as local time-dependent potentials. The Eqs. (2.46), (2.47) are the core of the
MCTDHBand their numerical solution is implemented in aFortranprogrampackage,
see Ref. [23], which will be described in Sect. 2.4. It is appropriate to note that the
Hilbert space covered by the ansatz of the MCTDHB, Eq. (2.45), is Ncon f times
bigger than the one covered by the TDGP. Yet, one obtains back the TDGP from
the MCTDHB for M = 1 in the above equations of motion. This could also be
deduced already from the field operator, see Eq. (2.43). Extending beyond TDGP,
fragmented states (up to M-fold) are described self-consistently by the MCTDHB.
The dynamics of fragmentation and condensation processes, which go beyond the
realm of the BMF, can be described by MCTDHB because the coefficients of the
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permanents which assemble the many-boson wave function are time-dependent. A
benchmarkof the quality and convergenceproperties of theMCTDHBapproximation
is the topic of Chap. 3.

2.3 Theoretical Methods Employing Model Hamiltonians

2.3.1 Bose–Hubbard and Time-Evolved Block Decimation

One of the most frequently used models in the field of ultracold bosons is the
so-called Bose–Hubbard (BH) model. To arrive at the BH model Hamiltonian (fol-
lowingRef. [34]) one assumes aperiodic potential, such asV0(�x) = ∑3

j=1 Vj0 sin kx j ,
a so-called optical lattice. Furthermore, one uses the zero-range pseudopotential of
Eq. (2.3). Now, a deep potential (large coefficients Vj0) is assumed and the field
operator υ̂(�x) is expanded in a Wannier basis. The Wannier functions wk(�x − �xi )

are linear combinations of Bloch waves which are localized at certain lattice sites
�xi . The final assumption is, that the lattice is deep and the higher Wannier functions
k ≥ 2 do not contribute. The resulting field operator reads

υ̂(�x) =
∑

i

b̂iw(�x − �xi ). (2.48)

The resulting so-called BHH reads:

Ĥ = −J
∑

{i, j}
b̂†i b̂ j +

∑

i

εi n̂i + U

2

∑

i

n̂i (n̂i − 1). (2.49)

Here, the following abbreviations are used:

J =
∫

d �xw∗(�x − �xi )ĥ(�x)w(�x − �xi ); (2.50)

U = λ0

∫
d �x |w(�x)|4; (2.51)

εi =
∫

d �xVT (�xi )|w(�x − �xi )|2. (2.52)

Here, VT is some additional external, slowly varying, potential leading to an energy
shift, see Ref. [34]. To compute the time-evolution of the BHH an algorithm called
time-evolving block decimation (TEBD) is frequently employed. TEBD works for
quasi-one-dimensional systems only. Hence, the following discussion of the BHH
and TEBD is restricted to one spatial dimension. TEBD relies on the idea, that one
achieves a good approximation to a given pure quantum state |υ〉 by rewriting it

http://dx.doi.org/10.1007/978-3-319-07085-8_3
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as |υ〉 = ∑D
α=1 λ

[l]
α |θ[1···l]

α 〉|θ[(l+1)···N ]
α 〉 and restricting D to some Dε [35]. Here,

|θ[1···l]
α 〉 and λ

[l]
α are obtained from a Schmidt decomposition of |υ〉 onto subspaces

containing less than the total number of particles, l < N and l−N < N . For any l, the
entries of λ

[l]· are the decreasingly ordered Schmidt coefficients. The approximated
state reads:

|υ〉 =
⎭ Dε∑

α=1

|λ[l]
α |2

)− 1
2 Dε∑

α=1

λ[l]
α |θ[1···l]

α 〉|θ[(l+1)···N ]
α 〉. (2.53)

For further details see Refs. [35, 36] and References therein. For the BHH it is
intuitively a good idea to make such an approximation, because there is only a
direct nearest-neighbor interaction and it is a reasonable approximation to consider
subsystems as uncorrelated, hence, Dε  D. Thismeans, that the computation of the
time-evolution of a state under the BHH to a quite good accuracy is cheap, depending
on the Dε chosen. The great achievements of these intuitive approximations, see
Ref. [37] and References therein, have to be contrasted with the examples where
they fail [11, 24, 38, 39]. This failure is mostly due to the incapability of the BH
model to properly cover the physics of the considered system which involves higher
bands or delocalized states. Such a comparison must rely on a many-body method,
such as the MCTDHB, which is able to capture the rich physics beyond the BH
model.

2.3.2 The Discrete Non-Linear Schrödinger Equation

In principle, the BHmodel is capable to describe a system of ultracold bosons which
are not condensed. Yet, one can imagine, that in the mean-field limit it is feasible to
describe the state of the system as a coherent product state. In this mean-field limit,
the following assumptions are introduced:

N → ∞; NU

J
= const.; U → 0.

One can derive the resulting discrete nonlinear Schrödinger equation by replacing
the creation and annihilation operators b̂i , b̂†j in the BHH, Eq. (2.49), by complex
numbers, bi , b∗

j . The time evolution of these numbers is then defined solely by their
canonical equations of motion, cf. Ref. [40]. The result is the so-called discrete
nonlinear Schrödinger equation (DNLS) which can be used to find the coherent
dynamics within the BH model. It reads:

i ḃi = −J (bi+1 + bi−1) + Un̄

2
|bi |2bi ; n̄ = N/L . (2.54)
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Here n̄ = N/L is the number of atoms per lattice site. The physical situation where
this approximation to the BH model is applicable is deep optical lattices with a
very weak interaction. Nevertheless, the authors of Ref. [41] benchmarked the BHH
and the DNLS with each other on a tunneling problem with long-range correlations
and delocalized states. It is instructive to perform a check on the validity of the
predictions of this benchmark, by a comparison to numerically exact solutions of the
same problem obtained with the MCTDHB method, see Chap.4.

2.4 Numerical Methods

This section provides an overview of the numerical methods applied throughout this
work. The focus is on introducing the concepts which are needed to achieve the
numerical results presented in later chapters, as well as to give an overview of the
current implementation and capabilities of the MCTDHB package [23].

2.4.1 The Multiconfigurational Time-Dependent Hartree for
Bosons Software Package

The MCTDHB package is a collection of Fortran programs and Bash-scripts. The
current organization of the code consists in two programs: the main program which
performs the computation, and the analysis program to extract quantities of interest
from the results of a computation.

2.4.1.1 Current Implementation

The current implementation of theMCTDHBpackage ismostly in FORTRAN90/95.
It has twomain parts: a hybridly parallel one for solving the TDSE and one to analyze
the many-body properties of the solutions. As discussed in Sect. 2.2.4, MCTDHB is
simply a reformulation of the TDSE of many-boson systems into two sets of coupled
partial differential equations. To solve the two sets, i.e., the coefficient EOMs and the
orbital EOMs, numerical solvers for partial differential equations have been imple-
mented. Namely, the coefficient EOMs are solved with a Krylov subspace method:
the short iterative Lanczos (SIL) integrator. Various numerical integrators for the
orbital EOMs are available: the 16th order Bullirsch–Stoer method, a Runge–Kutta
method of 5th/8th order and anAdams–Bashforth–Moulton predictor–corrector inte-
grator (ABM) of 7th order are the implicit methods available – they work well in
the case that the orbital EOMs are not stiff. For the case of dominating non-linearity,
i.e., stiff orbital EOMs, the so-called ZVODE integrator [42], an implementation of
a Gear- type second order backwards differentiation formula (BDF) was chosen.

http://dx.doi.org/10.1007/978-3-319-07085-8_4
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2.4.1.2 Integrators

The scope of this subsection is to introduce the integrators implemented in the cur-
rent version of the MCTDHB package and provide the peculiarities of it as well as
its specifications. The documentation of most of the integrators is available in the
Heidelberg multiconfigurational time-dependent Hartree (MCTDH) package docu-
mentation and References therein, see Ref. [43]. The focus here is on the integrators
either not provided in the MCTDH package, either the ones which rely on a different
implementation, namely, the SIL, the ABM and the BDF. For the details on the other
numerical integrators the reader is referred to Ref. [44] and the References therein.

2.4.1.3 The Short Iterative Lanczos

To build the Krylov basis which is needed for the SIL algorithm, one has to apply
powers of theHamiltonian Ĥ k depending on the order k+1 of themethod, to the state
vector of the coefficients. The action of the Hamiltonian is computationally the most
demanding part in the SIL algorithm and therefore the part which is parallelized.
This evaluation can be extremely efficiently done according to the scheme described
in Ref. [45]. As soon as the basis of the Krylov subspace is constructed, the problem
of the computation of the time-evolution of the coefficient vector is reduced to the
diagonalization of the SIL matrix, i.e., a (k +1)× (k +1)matrix, which is done with
a LAPACK routine [46]. The advantage of the SIL algorithm is that it is generally
very stable when the ground state or a propagation with high accuracy are desired.
Yet, in the case of degeneracies or the computation of excited states more advanced
numerical techniques are needed, such as the Arnoldi or Davidson methods, see
Ref. [43].

2.4.1.4 The Adams–Bashforth–Moulton Predictor–Corrector Integrator

The ABM implementation in the MCTDHB package is in principle identical to the
one in the MCTDH package [43], but it is parallelized using OpenMP. The ABM
algorithm is a multistep method, which relies on a polynomial extrapolation of the
solution of the partial differential equation tackled. The term “predictor-corrector”
stands for the error control mechanism on which it relies: if the prediction of the
next order is sufficiently close to the actual next order solution the integration step is
accepted; it is otherwise rejected and the step size is adjusted dynamically. It turns
out that the most time-consuming parts in the ABM algorithm are the evaluations of
the right-hand side of the orbital EOMs and the various products of orbital vectors
which have to be evaluated. The evaluation of the right-hand side of the orbital
EOMs is done by a hybridly parallel scheme outlined in the following subsection.
The evaluation of the products of orbital vectors is done in OpenMP parallelized
loops inside the ABM routine. For large grids the evaluation time is greatly reduced
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by this parallelization, while for small grids the execution time spent in the integrator
is negligible.

2.4.1.5 The Gear-type Second Order Backwards Differentiation Formula

In the case of strong interparticle interactions, the set of orbital EOM becomes a stiff
set of partial differential equations. For stiff equations the integration schemes men-
tioned and/or described above become inefficient or even unstable. It was proven that
in the case of stiff differential equations an implicit integrator of second order relying
on a backwards differentiation formula would globally minimize the introduced
error, see Ref. [44]. The essential advantage of this kind of integrator lies in its supe-
rior stability which allows for bigger step-sizes as compared to other methods in
the case of stiff differential equations. ZVODE from the ODEPACK package, see
e.g. [42], is an implementation of the Gear-type second order backwards differentia-
tion scheme and the needed changes for its use in theMCTDHB package wereminor.
Yet, for the cases of dynamics of strongly interacting bosons, see e.g. Ref. [47], it
has proven to be essential.

2.4.1.6 Parallelization

In order to providemost of the numerical results presented in this thesis, the algorithm
implemented in the MCTDHB package solving the coupled sets of EOM has to be
efficient enough to provide a time-evolution in a reasonable time. The only way
to achieve the desired efficiency is to parallelize the algorithm by distributing the
computational tasks among several computers in a network. During the development
ofMCTDHB, all the available platformsweremostly homogeneous clusters, inwhich
several identical computers with multi-core processors are connected by a network
of the InfiniBand or Cray Gemini II standard. Hence, the current parallelization is
adapted to such platforms. Further parallelization, like the usage of GPU-computing
might be of relevance for future developments, but is not part of the current package.
The algorithm basically deals with two different sets of equations: a linear one for
the coefficients and a non-linear one for the orbitals. Depending on the chosen setup,
the overall computational effort can be dominated by the former or the latter, or
it might be balanced. For each of the two sets, the solutions of the EOMs is done
by integrators which need possibly many evaluations of the complicated right-hand
side of the EOMs, Eqs. (2.46), (2.47). The major part of the execution time is hence
spent in the evaluation of these right-hand sides. Consequently, the strategy was to
parallelize this evaluation, as shown in Fig. 2.1.



2.4 Numerical Methods 29

Fig. 2.1 Scheme of the Par-
allelization of the MCTDHB
Main Program

2.4.1.7 The Parallelization of the Orbital EOMs

The parallelization scheme for the orbital EOMs was done by means of a hybrid
OpenMP-MPI parallel algorithm and is problem-size adaptive. In the case of rather
small problems, i.e., problems with a primitive grid size of less than 1024 functions,
the communication time overhead of an MPI-parallel calculation of the one-body
Hamiltonian terms was dominating. Hence, it was beneficial not to communicate
the needed data and use only OpenMP threads to evaluate the one-body Hamil-
tonian terms on the master node. The more time consuming evaluation of the two-
body Hamiltonian terms is done by distributing the Wkqsl terms equally among the
slave processes, communicate to them the needed orbital vectors and evaluate the
integrals – in principle sums of point wise products of vectors – using OpenMP
threads. In the case of larger problems, i.e., problems with a primitive grid size
of equal to or more than 1024 functions, the evaluation of the one-body and the
two-body Hamiltonian terms is distributed among all MPI-processes and done with
OpenMP threads. It is appropriate here to make a remark on the scaling behavior.
The number of one-body Hamiltonian terms scales with ∼M2 and the number of
two-body terms with ∼M4. Interestingly, so far, no case occurred where the com-
munication overhead actually dominated the benefits of the parallelization scheme
implemented. Hence, the more orbitals were taken, the closer to linear the speedup
was for both, large and small problem sets. In the current implementation, all the
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orbitals are communicated to all the MPI processes. In order to achieve the close-
to-linear speedup for problems with fewer orbitals as well as to have it for problems
with a very large number of orbitals, it would be beneficial to further optimize this
communication. This optimization is achievable by determining in the initialization
phase of the program which orbitals are needed for the computational tasks assigned
to a particular MPI process.

2.4.1.8 The Parallelization of the Coefficient EOMs

The coefficient EOMs are propagated using the SIL algorithm described above. This
renders the main part of the computation to be the application of the Hamiltonian Ĥ ,
and its powers, for the construction of the Krylov subspace basis. The many-body
basis employed in MCTDHB consists of the time-dependent Fock states with M
modes at maximum. If one represents the Hamiltonian in the basis of the correspond-
ing time-dependent creation and annihilation operators, it can be shown that each and
every one-body term corresponds to a re-addressing of one element of the vector of
coefficients. Similarly, each and every two-body term corresponds to a re-addressing
of, at most, two elements of the vector of coefficients. With the knowledge of this
re-addressing-scheme (for details, see Ref. [45]), it is no more necessary to build up
a Hamiltonian matrix – the action of the Hamiltonian is available by re-addressing
the elements according to the representation of the Hamiltonian in terms of the time-
dependent creation and annihilation operators. Most importantly, the re-addressings
needed for the N1b = M(M+1)

2 one- and N2b = N1b(N1b+1)
2 two-body operators

are independent of each other. Hence, the parallelization distributes the N1b + N2b

needed re-addressings among the number of available MPI processes, where they
are done with OpenMP threads. The current implementation of this scheme provides
all MPI processes with a full copy of the coefficients, which might be a huge array.
Therefore, the necessary communication limits the favorable scaling of this paral-
lelization scheme to a few tens of MPI processes. Of course, this depends on the
system architecture and the number of coefficients. A further improvement on this
scheme would be, in principle, available by finding a suitable partitioning for the
coefficients’ vector. Yet, the inter-dependencies of the coefficients encoded in the
re-addressing scheme are intricate and render a suitable partitioning complicated.

2.4.1.9 IMEST Algorithm

The interaction matrix evaluation by successive transforms is an efficient way to
evaluate the two-body matrix elements for two-particle interaction potentials Ŵ (yyy),
which depend only on the distance yyy = |�r −�r ≤| between the two interacting particles.
The IMEST was invented by Kaspar Sakmann and the derivation here follows the
one given in his Ph.D. thesis, see Ref. [48]. It is instructive to first consider the case
of time-independent Ŵ . For convenience, the matrix elements of the interaction and
the local time-dependent potentials are repeated:
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Wksql(t) =
∫ ∫

d�r ≤d�rφ∗
k (�r , t)φ∗

s (�r ≤, t)Ŵ (�r − �r ≤)φq(�r , t)φl(�r , t)

=
∫

d�rφ∗
k (�r , t)Ŵsl(�r , t)φq(�r , t),

Ŵsl(�r , t) =
∫

d�r ≤φ∗
s (�r ≤, t)Ŵ (�r − �r ≤)φl(�r ≤, t). (2.55)

Here, it is worthwhile to note that the evaluation of the Ŵsl , as well as the evaluation
of the Wksql , is only a single integration on �r ≤ and �r , respectively. Given that the
considered interaction Ŵ depends only on �r − �r ≤, one can write its Fourier and
inverse Fourier transforms in the following form:

Ŵ (�r − �r ≤) = 1√
2π

D

∫
d�k ˜̂W (�k)ei �k(�r−�r ≤) (2.56)

˜̂W (�k) = 1√
2π

D

∫
dyyyŴ (yyy)e−i �kyyy . (2.57)

It is now straightforward to insert Eq. (2.56) into the above expression for Ŵsl . This
results in the following expression:

Ŵsl(�r , t) =
∫

d�r ≤φ∗
s (�r ≤, t)

1√
2π

D

[∫
d�k ˜̂W (�k)ei �k(�r−�r ≤)

]
φl(�r ≤, t). (2.58)

Here, one can split up the exponential, ei �k(�r−�r ≤) = e−i �k�r ≤ · ei �k�r , in order to collect the
terms dependent solely on �r ≤ and �k:

Ŵsl(�r , t) =
∫

d�k 1√
2π

D

[∫
d�r ≤φ∗

s (�r ≤, t)φl(�r ≤, t)e−i �k�r ≤
] ˜̂W (�k)ei �k�r . (2.59)

The expression in square brackets is the Fourier transform f̃sl(�k) of the function
fsl(�r ≤, t) = φ∗

s (�r ≤, t)φl(�r ≤, t). Revisiting Equation (2.59), the integration on �k can be

canceled by a Fourier transform and a multiplication by
√
2π

D
, giving an appealing

form to the Fourier transform ˆ̃Wsl(�k, t) of Ŵsl(�r , t):

ˆ̃Wsl(�k, t) = 1√
2π

D

∫
d�r Ŵsl(�r , t)e−i �k�r

= √
2π

D
f̃sl(�k, t) ˆ̃W (�k). (2.60)

Consequently, the local time-dependent potentials, occurring in the right-hand side
of the orbital EOMs of the MCTDHB (cf. Eqs. (2.47), (2.46)) are available as the
inverse Fourier transform of the above Eq. (2.60):
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Ŵsl(�r , t) = 1√
2π

D

∫
d�k ˆ̃Wsl(�k, t)ei �k�r . (2.61)

Equations (2.60) and (2.61) are the working equations of the IMEST. The key advan-
tage here is that, for time-independent Ŵ (�r , �r ≤) = Ŵ (�r−�r ≤), it is sufficient to evaluate
once the Fourier transform of the interaction potential, ˆ̃W (�k) and at each time-step
the Fourier transform of fsl(�r , t), f̃sl(�k, t), and the inverse Fourier transform of the
ˆ̃Wsl(�k, t). This is much more efficient than directly evaluating the integrals needed
for the matrix elements Wksql(t), especially when it comes to perform computa-
tions with a large number of grid points. For details on the implementation and
an assessment of the numerical effort, see Ref. [48]. For time-dependent two-body
interactions, Ŵ (�r , �r ≤, t) = Ŵ (�r − �r ≤, t), like, e.g., the ones presented in Chap. 3,
the computational effort increases because the Fourier transform of the interaction

potential ˆ̃W is now also a function of time, i.e., ˆ̃W = ˆ̃W (�k, t). Therefore, it has to
be evaluated at each time-step. This implies that, at each time-step, three, instead of
two, additional Fourier transforms have to be evaluated. Still, the procedure is much
more efficient than the direct evaluation of the integrals. The IMEST algorithm, also
in its time-dependent form, were crucial for performing the calculations in Chap. 3
and for comparing the results of Chap. 6 with a zero-range potential to computations
with a short-range Gaussian potential.

References

1. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases. (Cambridge University
Press, 2008)

2. F. Schwabl, Quantenmechanik für Fortgeschrittene (Springer, Heidelberg, 2000)
3. M. Olshanii, Atomic Scattering in the Presence of an External Confinement and a Gas of

Impenetrable Bosons. Phys. Rev. Lett. 81, 938 (1998)
4. M. Olshanii, L. Pricoupenko, Rigorous Approach to the Problem of Ultraviolet Divergencies

in Dilute Bose Gases. Phys. Rev. Lett. 88, 010402 (2002)
5. P.A.M. Dirac, The Quantum Theory of the Emission and Absorption of Radiation. Proc. R.

Soc. Lond. A 114, 243–265 (1927)
6. S. Scheel, S.Y. Buhmann, Macroscopic quantum electrodynamics - concepts and applications.

Acta Physica Slovaca 58, 675–809 (2008)
7. S. Scheel, Permanents in linear optical networks. arXiv:quant-ph, 0406127v1 (2004)
8. A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitzungsber. Preuss. Akad. Wiss.

Bericht 22, 261 (1924)
9. A. Einstein, Quantentheorie des einatomigen idealen Gases. II. Sitzungsber. Preuss. Akad.

Wiss. Bericht 1, 3 (1925)
10. O. Penrose, L. Onsager, Bose–Einstein Condensation and Liquid Helium. Phys. Rev. 104,

576–584 (1956)
11. K. Sakmann,A.I. Streltsov,O.E.Alon,L.S.Cederbaum,ExactQuantumDynamics of aBosonic

Josephson Junction. Phys. Rev. Lett. 103, 220601 (2009)
12. L.S. Cederbaum, A.I. Streltsov, O.E. Alon, FragmentedMetastable States Exist in an Attractive

Bose–Einstein Condensate for Atom Numbers Well Above the Critical Number of the Gross–
Pitaevskii Theory. Phys. Rev. Lett. 100, 040402 (2008)

http://dx.doi.org/10.1007/978-3-319-07085-8_3
http://dx.doi.org/10.1007/978-3-319-07085-8_3
http://dx.doi.org/10.1007/978-3-319-07085-8_6


References 33

13. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Role of Excited States in the Splitting of a Trapped
Interacting Bose–Einstein Condensate by a Time-Dependent Barrier. Phys. Rev. Lett. 99,
030402 (2007)

14. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Zoo of Quantum Phases and Excitations of Cold
Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 95, 030405 (2005)

15. O.E. Alon, L.S. Cederbaum, Pathway fromCondensation via Fragmentation to Fermionization
of Cold Bosonic Systems. Phys. Rev. Lett. 95, 140402 (2005)

16. P. Bader, U.R. Fischer, Fragmented Many-Body Ground States for Scalar Bosons in a Single
Trap. Phys. Rev. Lett. 103, 060402 (2009)

17. R.W. Spekkens, J.E. Sipe, Spatial fragmentation of aBose–Einstein condensate in a double-well
potential. Phys. Rev. A 59, 3868–3877 (1999)

18. E.J. Mueller, T.-L. Ho,M. Ueda, G. Baym, Fragmentation of Bose–Einstein condensates. Phys.
Rev. A 74, 033612 (2006)

19. C. Weiss, Y. Castin, Creation and Detection of a Mesoscopic Gas in a Nonlocal Quantum
Superposition. Phys. Rev. Lett. 102, 010403 (2009)

20. U.M. Titulaer, R.J. Glauber, Correlation Functions for Coherent Fields. Phys. Rev. 140, B676
(1965)

21. R.J. Glauber, The Quantum Theory of Optical Coherence. Phys. Rev. 130, 2529 (1963)
22. M. Naraschewski, R.J. Glauber, Spatial coherence and density correlations of trapped Bose

gases. Phys. Rev. A 59, 4595 (1999)
23. A.I. Streltsov,K. Sakmann,A.U.J. Lode,O.E.Alon, L.S. Cederbaum, TheMulticonfigurational

time-dependentHartree forBosons package, version 2.3,Heidelberg, (2012), see http://mctdhb.
uni-hd.de

24. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Reduced density matrices and coher-
ence of trapped interacting bosons. Phys. Rev. A, 78, 023615 (2008)

25. P. Kramer, M. Saraceno, Geometry of the Time-Dependent Variational Principle (Springer,
Heidelberg, 1981)

26. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, 2003)
27. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Time-dependent multiorbital mean-field for frag-

mented Bose–Einstein condensates. Phys. Lett. A 362, 453–459 (2007)
28. L.S. Cederbaum, A.I. Streltsov, Best mean-field for condensates. Phys. Lett. A 318, 564–569

(2003)
29. L.S. Cederbaum, A.I. Streltsov, Y.B. Band, O.E. Alon, Interferences in the Density of Two

Bose–Einstein Condensates Consisting of Identical or Different Atoms. Phys. Rev. Lett. 98,
110405 (2007)

30. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Many-body theory for systems with particle con-
version: Extending the multiconfigurational time-dependent Hartree method. Phys. Rev. A. 79,
022503 (2009)

31. O.E. Alon, A.I. Streltsov, K. Sakmann, A.U.J. Lode, J. Grond, L.S. Cederbaum, Recursive
formulation of the multiconfigurational time-dependent Hartree method for fermions, bosons
and mixtures thereof in terms of one-body density operators. Chem. Phys. 401, 2–14 (2012)

32. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, General variational many-body theory with com-
plete self-consistency for trapped bosonic systems. Phys. Rev. A 73, 063626 (2006)

33. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Multiconfigurational time-dependent Hartree
method for bosons: Many-body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)

34. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold Bosonic Atoms in Optical
Lattices. Phys. Rev. Lett. 81, 3108 (1998)

35. G. Vidal, Efficient Simulation of One-Dimensional QuantumMany-Body Systems. Phys. Rev.
Lett. 93, 040502 (2004)

36. M. Zwolak, G. Vidal, Mixed-State Dynamics in One-Dimensional Quantum Lattice Systems:
A Time-Dependent Superoperator Renormalization Algorithm. Phys. Rev. Lett. 93, 207205
(2004)

37. M. Hiller, Parametric Bose–Hubbard Hamiltonians: Quantum Dissipation, Irreversibility, and
Pumping. Ph.D. thesis, Georg-August-Universität zu Göttingen, 2007

http://mctdhb.uni-hd.de
http://mctdhb.uni-hd.de


34 2 Theoretical Concepts and Numerical Methods

38. K. Sakmann,A.I. Streltsov,O.E.Alon, L.S. Cederbaum,Quantumdynamics of attractive versus
repulsive bosonic josephson junctions: Bose–Hubbard and full-Hamiltonian results. Phys. Rev.
A 82, 013620 (2010)

39. K. Sakmann,A.I. Streltsov,O.E.Alon, L.S.Cederbaum,Optimal time-dependent latticemodels
for nonequilibrium dynamics. New J. Phys. 13, 043003 (2011)

40. A.R. Kolovsky, H.J. Korsch, E.-M. Graefe, Bloch oscillations of Bose–Einstein condensates:
Quantum counterpart of dynamical instability. Phys. Rev. A 80, 023617 (2009)

41. J.A. Glick, L.D. Carr, Macroscopic Quantum Tunneling of Solitons in Bose–Einstein Conden-
sates. ArXiv e-prints, May 2011. ArXiv:1105.5164 (2011)

42. A.C. Hindmarsh, A. Odepack, A Systematized Collection of ODE Solvers, in Scientific Com-
puting, vol. 1 of IMACS Transactions on Scientific Computation, ed. by R. S. Stepleman
(North-Holland, Amsterdam, 1983), pp. 55–64

43. G.A. Worth, M.H. Beck, A. Jäckle, H.D. Meyer, The MCTDH Package, Version 8.2, (2000).
H.D. Meyer, Version 8.3 (2002), Version 8.4 (2007), see http://mctdh.uni-hd.de/

44. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer New York, 1993)
45. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, General mapping for bosonic and fermionic oper-

ators in Fock space. Phys. Rev. A 81, 022124 (2010)
46. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra et al., LAPACK Users’

Guide, 3rd edn. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999).
ISBN 0-89871-447-8
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Chapter 3
Benchmarks with Analytically Solvable
Problems

Know thy self, know thy enemies. A thousand battles, a thousand
victories.

Sun Tzu

In order to assess the validity and check the convergence of theMCTDHBmethod, it
is appropriate to benchmark it against some analytically solvable interacting many-
body problems. There are only few such problems, like, e.g., the Lieb-Liniger Hamil-
tonian. The latter is only solvable for the one-dimensional case, see Refs. [1–4]. To
treat the dynamics of such systems is a tough problem by itself [5]. For this reason the
so-called harmonic interaction model [6] is a better choice for a benchmark: all the
eigenstates of the Hamiltonian are analytically known [7] for any dimensionality of
the system, but still theHamiltonian is a truemany-body onewhich contains repulsive
or attractive parabolic long-range two-body interactions. Interestingly, it was amply
studied, see Refs. [8, 9], even including temperature, see Ref. [10]. However, there
are so far neither studies of the time-evolution within the HIM nor considerations on
the time-evolution of coherence, i.e., considerations howwell the system is described
by a single quantummechanical one-particle state. As theMCTDHB allows to tackle
the dynamics of the HIM, it is of fundamental interest to understand for instance how
the system responds to an abrupt change of the interaction parameter, the so-called
interaction quench. This chapter reiterates, in principle, the considerations presented
in Ref. [11], adds considerations on the two-dimensional HIM and sheds light on the
effect of separability in the dynamics of HIM Hamiltonians.

Electronic Supplementary Material Supplementary material is available in the online version
of this chapter at http://dx.doi.org/10.1007/978-3-319-07085-8_3. Videos can also be
accessed at http://www.springerimages.com/videos/978-3-319-07084-1.
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3.1 The Harmonic Interaction Model

The Hamiltonian of the HIM is readily obtained by setting the boson-boson inter-
action potential Ŵ and the one-body potential V in the many-body Hamiltonian in
dimensionless units,

Ĥ =
N∑

i=1

(
T̂(�ri) + V(�ri)

)
+

N∑

i<j

Ŵ(�rj, �ri), (3.1)

to be harmonic:

Ŵ(�ri, �rj) = K
(�ri − �rj

)2 ; V(�r) = 1

2
υ2�r2. (3.2)

Here, K accounts for the strength of the two-body interaction and T̂(�r) = − 1
2∂

2
�r is

the kinetic energy operator. A positive value of K corresponds to attraction while a
negative valuemeans repulsion. In the case of a parabolic trapping potential, it is easy
to see that the system would become unbound when the value of K is negative and
big enough for the two-body repulsion to overcome the one-body harmonic trapping,
i.e., K < − υ2

2N . Following the line of Cohen and Lee in Ref. [6] the Hamiltonian,
Eq. (3.1), can be separated into N independent harmonic oscillators by the following
coordinate transformations:

�xj = 1√
j(j + 1)

j∑

i=1

(�rj+1 − �ri), j = 1, . . . , N − 1; �xN =
N∑

i=1

�ri. (3.3)

The resulting Hamiltonian Ĥ is a sum of the relative and the center of mass Hamil-
tonians, Ĥ = Ĥrel + ĤCM . Ĥrel and ĤCM read:

Ĥrel =
N−1∑

i=1

(−1

2
∂2�xi

+ 1

2
λ2N�x2i ) λN =

⎧
υ2 + 2NK . (3.4)

ĤCM = −1

2
∂2�xN

+ 1

2
υ2�x2N

To this end, the Hamiltonian in the new coordinates describes N − 1 harmonic
oscillators with the trapping frequency λN in a set of relative coordinates and 1
harmonic oscillator with the frequency υ in a center of mass coordinate.

The Hamiltonian in its separable form, Eq. (3.4), is easy to solve analytically.
There is even an analytical solution when a product, i.e., Hartree-type ansatz (δ =
1√
N !

N⎪
i=1

α(�ri)) is used, see e.g. Refs. [6, 7]. Because this is also the ansatz used

to derive the famous Gross–Pitaevskii (GP) equation, it is instructive to refer to the
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Fig. 3.1 Ground State Energies of the Harmonic Interaction Hamiltonian. The eigenvalues of the
harmonic interaction Hamiltonian are depicted as a function of the interparticle interaction K and
the particle number N for a trapping potential with υ = 1. Plot (a) shows the exact energy per
particle. Plot (b) shows the difference of the exact and the GP energies per particle. All quantities
shown are dimensionless. See text for discussion

corresponding energies asGP energies and label themEGP . One obtains the equations
for the exact and the GP energies (when a product wave function is assumed), Eexact

and EGP of the Hamiltonian in Eq. (3.1), see e.g. Refs. [6, 7]:

Eexact = D

2
((N − 1)λ(N, υ, K) + υ) (3.5)

EGP = ND

2
λ(N − 1, υ, K). (3.6)

Here,D is the dimensionality of the system.Aplot of the energy per particle,Eexact/N
and the difference (Eexact − EGP)/N is given in Fig. 3.1.

From the left panel of Fig. 3.1 one can see that the energy per particle is grow-
ing when the interaction or the particle number is increased. These features are
reproduced by the GP approximation. The difference between the exact and the GP
energies per particle increases as a function of interaction and decreases when the
particle number is increased [see Fig. 3.1(b)]. It is therefore obvious that the best
testing ground for a many-body method such as the MCTDHB is in the parameter
region where the difference of the mean-field to the exact energies is the largest: for
the benchmark of MCTDHB on the HIM, small N and large K are adequate.

3.2 Benchmark Studies with the Harmonic Interaction Model

Setup and Computational Details

TheMCTDHBmethod relies on a multiconfigurational ansatz for the wave function,
i.e., |δ(t)√ = ⎨

�n C�n(t)|�n; t√. It is noteworthy that both, the coefficients C�n(t) and
the permanents |�n; t√ are time-dependent, variationally optimized quantities. The
permanents are build up fromM time-dependent orbitals. The numerical efficiency of
MCTDHB comes from its time-dependent, adaptive orbitals. In total, the variational
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space is spanned by the Nconf coefficients and all Nconf possible products of M time-
dependent functions. The equations of motion of the MCTDHB are obtained by
tackling directly the many-boson TDSE with the above ansatz and the principle of
least action [12]. The EOMs are efficiently solved numerically with the MCTDHB
program package [13]. In order to obtain ground states, the EOMs are propagated
in imaginary time and in order to compute dynamical evolutions, the EOMs are
propagated in real time. The current study relies on the propagation of the orbitals’
EOM with a shared-memory parallelized implementation of the Adams–Bashforth–
Moulton predictor–corrector integrator and the coefficients’ EOM with a hybridly
OpenMP-MPI parallelized short iterative Lanczos algorithm. As a time-independent
representation of the time-dependent orbitals, the numerically efficient and wide-
spread fast Fourier transform collocationmethod was implemented also in a hybridly
OpenMP-MPI parallel way – this corresponds to plane waves as (primitive) basis
functions.

Of primary interest for the present considerations is the convergence when the
number of orbitals is increased. Of course, the time-dependent variational principle
guarantees that the solution will be exact for M ∀ ≤. For the studies of the con-
vergence with the number of orbitals one first has to choose an appropriate number
of plane wave functions for the used fast Fourier transform collocation. For this pur-
pose, series of calculations, doubling the number of basis functions at each step, were
performed until the difference in the obtained energy value was less than 10−12 and
the last step was taken. Consequently, the primitive basis size in one dimension was
28 = 256, and in two dimensions it was 214 = 27×27 = 16384 planewave functions
per time-dependent orbital. The spatial extension of the grid in dimensionless units
was chosen such that the ground state densities were less than 10−16 on the boundary.
This resulted in box extensions of [−8, 8] in one dimension, and [−6, 6] × [−6, 6]
in two dimensions. The largest number of coefficients, Nconf , for the presented cal-
culations was for the two-dimensional ground state of N = 10 bosons with M = 18
orbitals, namely, Nconf = 8436285.

In summary, the problemwhich theMCTDHB is applied to, is a very complex one:
a one-, two- or three-dimensional correlated, long-range interacting,many-boson sys-
tem described bymany time-dependent configurations. In the time-dependent bench-
marks which follow, even the one- and two-body potentials will be time-dependent.
In order to evaluate such a (potentially time-dependent) non-contact two-body inter-
action numerically efficiently, the interaction matrix evaluation by successive trans-
forms algorithm (IMEST)was used (for a description see Sect. 2.4.1.9 in Chap.2, and
Ref. [14]). It is in place to state here that it was necessary to generalize the IMEST for
time-dependent potentials. This was done simply by evaluating the Fourier transform
of the time-dependent interaction potential in every integration step. The original for-
mulation in Ref. [14] was for time-independent two-body interactions and requires
only a single Fourier transform of the interaction potential in the beginning of the
computation. The computational overhead caused by the additional Fourier transform
at each step was minimal. With setting up the computation, one is in the position to
start the investigation on the ground states of the HIM with the MCTDHB.

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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Table 3.1 Selected Ground State Energies of the One-Dimensional Harmonic Interaction Hamil-
tonian: Exact Analytical versus Numerical MCTDHB (M) and TDGP Results

Dimensions System Eexact Numerically exact EGP

1D N=2, K=0.5 1.36602540 EM=5 = 1.36602543 EM=1 = 1.41421356
1D N=2, K=2.0 2.00000000 EM=8 = 2.00000002 EM=1 = 2.23606798
1D N=10, K=0.5 15.42481156 EM=8 = 15.42481156 EM=1 = 15.81138870
1D N=10, K=2.0 29.31405907 EM=10 = 29.31405908 EM=1 = 30.41381265

3.2.1 One-Dimensional HIM

Ground State Benchmarks

To determine the properties of the convergence of the MCTDHB towards the exact
results, it is instructive to choose a rather small particle number and a rather strong
interaction, because the difference of the exact and the GP energies per particle
is largest then, see Fig. 3.1. This means that one has more room to benefit from
a many-body method systematically improving from the TDGP by increasing the
orbital number M in theMCTDHB treatment in this situation. In order to benchmark
MCTDHB with the HIM, the one-body potential V(x), the values of K and the
number of particles N have been chosen as V(�r) = 1

2�r2, N = 2, N = 10 and
K = 0.5, K = 2.0. The exact ground state energies for these values (cf. Refs. [6, 7])
and the values obtained with MCTDHB with a different number of orbitals M for
the one-dimensional case are collected in Table3.1.

The convergence of the MCTDHB towards the exact solution of the HIM, is best
seen by increasing the number of orbitals, M, used for the computation and plot the
relative difference, (EMCTDHB − Eexact)/Eexact, to the corresponding exact energy.
The one-dimensional results for these differences are given in Fig.3.2.

The results prove that numerically exact solutions of the HIM can be obtained
using the MCTDHB method with just a few time-adaptive self-consistent orbitals.
Another instructive comparison, to check the behavior of the convergence of MCT-
DHB when changing the particle number, is to vary the particle number and inter-
actions such that the mean-field energy per particle, EGP/N , remains constant. This
implies that ω = K /(N − 1) is constant. Fig. 3.2(b) shows the relative energy dif-
ference for the particle numbers N = 2, 5, 10, 50 in the case of ω = 2.0. The
convergence is faster for larger particle numbers as it can be anticipated already
from results in Fig. 3.1(b), cf. Fig. 3.2(b).

Before concluding the benchmark on the ground state of the HIM Hamiltonian
it is timely to stress here, that in MCTDHB the many-body wave function is avail-
able for all time-points in a given computation in a very compact form which makes
it amenable to compute from it one-body and two-body densities, first and sec-
ond order correlation functions and other quantities of interest. When the energy is
converged, also all these invariants describing the quantum many-body system
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Fig. 3.2 Convergence of MCTDHB and Exact Energies in the Harmonic Interaction Model. The
relative difference of the MCTDHB energy and the exact energy, (EMCTDHB − Eexact)/Eexact , is
shown for the one-dimensional case for different orbital number M. In panel (a), the red line
are for the N = 2, K = 0.5, the blue line for the N = 10, K = 0.5, the green line for the
N = 2, K = 2.0 and the magenta line for the N = 10, K = 2.0 cases. The relative difference is
decreasing exponentially with M. Panel (b) depicts the convergence with M for different particle
numbers where ω = K/(N − 1) is kept constant for N = 2 (red line), N = 5 (green line), N = 10
(magenta line) and N = 50 (turquoise line) particles. The pace of the convergence improves when
increasing the particle number

converge. This will be shown for the nonequilibrium studies in Sect. 3.2.1. This
concludes the benchmark study of the convergence of MCTDHB against the HIM
ground state. The overall convergence with orbital number is exponential. In more
than one dimension, the number of spherical harmonics is of importance. The con-
vergence is improving, when the number of particles is increased while keeping a
fixed ω = K(N − 1).

Nonequilibrium Benchmarks in One Dimension

The next step is to compare the nonequilibrium dynamics of a given initial state
within the HIM to the respective time-evolution within MCTDHB. As the scope
of the present study is to benchmark and find the accuracy of the MCTDHB it is
appropriate to select the most involved possible setup: time-dependent one-particle
potentialsV(�r, t) and time-dependent two-body interactions Ŵ(�r, �r∞, t). For this, one
has to shortly revisit the Hamiltonian of the HIM. It is given in its time-dependent
form as follows:

Ĥ(t) =
N∑

i=1

(−1

2
∂2�r + 1

2
υ(t)2�r2) + K(t)

j=N∑

i<j

(�ri − �rj
)2 = ĤCM(t) + Ĥrel(t).

It is important to remember, that the ĤCM describes a single particle and Hrel
describes N − 1 uncoupled particles, and the corresponding one-particle TDSEs
are therefore easy to solve numerically, see Refs. [15, 16], even when the one-body
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potential is time-dependent. The used time-dependent trapping potential is defined
by:

υ ≡ υ(t) = υ0
⎩
1 + f (t)

]
. (3.7)

In order to have a simple relation to the HIM Hamiltonian, one can choose λN such
that Ĥrel remains time-independent. This can be achieved by making the interaction
strength K time-dependent as follows:

K ≡ K(t) = K0

[
1 − υ2

0

2NK0
f (t)

⎡
. (3.8)

With the two time-dependencies, Eqs. (3.7), (3.8), λN =
⎣

υ2
0 + 2NK0 is time-

independent. Since the Hamiltonian is now time-dependent, the energy is no longer
conserved. The expectation value of the Hamiltonian in Eq. (3.4) is (cf. e.g. Refs.
[6, 7]):

→δ(t)|ĤCM(t) + Ĥrel|δ(t)√ = φ(t) + D

2
(N − 1)λN . (3.9)

φ(t) is obtained by integrating the one-body center ofmass Schrödinger equationwith
theHamiltonian ĤCM(t) = − 1

2∂
2
�r + 1

2υ
2
0(1+f (t))2�r2. It is instructive to state here that

the time-dependencies, Eqs. (3.7), (3.8), can be more general and it is of course not
necessary to choose them such that the relativeHamiltonianHrel is time-independent.
Yet, there are two advantages to this particular choice: first, only a single additional
one-particle Schrödinger equation has to be integrated and second, the convergence
in the untransformed Hamiltonian which is solved within the MCTDHB, is more
difficult to achieve. A very high fidelity of themethod is needed in order to accurately
reproduce the complex dynamics of only a small fraction of the system, i.e., one
particle out of N . This is obvious from the coordinate transformations, see Eqs. (3.3),
which decompose the original HIM Hamiltonian into subsystems made of N − 1
identical effective particles in relative motion and to a quasi-particle representing
the center of mass motion. In the chosen setup, one can picture the total system as a
medium formed by N −1 identical, uncoupled particles. This medium is in a relative,
oscillatorymotionwith a time-independent frequency λN , where the effective particle
with coordinate xN , representing the center of mass, is moving with a different time-
dependent frequency υ. In what follows, two different time-dependent trapping and
interaction potentials are chosen as

f1(t) = 0.2 sin2(t)

f2(t) = sin(t) cos(2t) sin(0.5t) sin(0.4t). (3.10)

The one-body center of mass Schrödinger equation with the respective time-
dependent potentials is solved to obtain the corresponding one-body energies
φ1(t), φ2(t). See Figs. 3.3, and 3.4 for a plot of these quantities.



42 3 Benchmarks with Analytically Solvable Problems

Fig. 3.3 Time-Dependent Energy φ1(t) and Time-Dependence f1(t) to Modify the Harmonic Inter-
action Hamiltonian. The convergence of φ1(t)when increasing the number of orbitals M is depicted
for the one-dimensional case in the upper panel. For convenience, the time-dependency entering
the Hamiltonian, f1(t), is plotted in the lower panel. The difference to the exact result is decreasing
to 0 when increasing M. See text for discussion

The agreement of the time-dependent parts of the energies corresponding to φ1(t)
in one dimension is striking, see Fig. 3.3, even for the wildly oscillatory φ2(t), see
Fig. 3.4. It is obvious from the convergence studies with φ1(t) that the MCTDHB
converges very well when one increases the number of variational parameters, i.e.,
orbitals and coefficients, even for the present cases with time-dependent one-body
and two-body potentials. The reason for the slight differences at bigger times in the
φ2(t) case is that the strong time-dependence of the potential and the interaction force
the system to fragment quickly and the number of orbitals is insufficient to achieve
convergence for times larger than t ⊗ 25 in the N = 10, M = 6 and N = 50, M = 5
cases with K = 0.5. When increasing M to N = 10, M = 7 and N = 50, M = 6,
convergence improves, see Fig. 3.4 and its inset. The oscillatory motion of the center
of mass results in a relatively small contribution to the total energy: the values of
φ1(t), φ2(t) are roughly one to two orders of magnitude smaller than the energies in
Table3.1. It is noteworthy, that this implies that a high fidelity is needed to describe
accurately the motion of a small fraction of the system (as discussed above). This
makes the number of orbitals for the convergence higher compared to the other
calculations. In general, a calculation can be considered as numerically exact when
the least occupied orbital has a population of less than 10−3. In the high fidelity cases
with small energy oscillations and long-range interactions presented here 10−6 or
less is needed. An appropriate measure for the fidelity of theMCTDHBmethod is the
absolute relative error κE1D

1 (t) of the time-dependent total energies, E1D/2D
MCTDHB(t)

for the one-dimensional calculations with the time-dependency f1(t), respectively,

κE1D
1 (t) =

⎛⎝⎝⎞
⎠

E1D
MCTDHB,1(t) − E1D

exact,1(t)

E1D
exact,1(t)

⎤2

. (3.11)
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Fig. 3.4 Time-Dependent Energy φ2(t) and Time-Dependence f2(t) to Modify the Harmonic Inter-
action Model.* In panel (a) the time-dependent contribution in the energy of the MCTDHB calcu-
lation for N = 10, M = 6/7 and N = 50, M = 5/6 is shown for the case of f2(t). The red line is the
exact solution. Small discrepancies start to occur when the number of orbitals becomes insufficient
to account for the large amount of energy pumped into the system. In panel (b) the time-dependency
f2(t) chosen for the HIMHamiltonian is plotted for convenience. See Video 1 for the time-evolution
of the density and the coherence computed with MCTDHB. See text for discussion

Fig. 3.5 Absolute Relative Error of the Time-Dependent Total Energies ComputedwithMCTDHB.
This plot depicts the relative total error in the time-dependent energies, κE1D

1 (t), for N = 10,
K = 0.5 with the time-dependency f1(t) in one dimension. See text for further discussion

Here, E1D
MCTDHB,1(t) is the computed MCTDHB energy at time t and E1D

exact,1(t)
is the exact energy, obtained from solving the relative one-body problem with the
Hamiltonian Ĥrel and the time-dependent center of mass one-body problem with the
Hamiltonian ĤCM with the time-dependency f1(t). For a plot ofκE1D

1 (t) see Fig. 3.5.
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Fig. 3.6 Convergence of the Occupation Numbers for the Time-Dependent Potentials in One
Dimension. Panel (a) shows all occupations of the converged N = 10, K = 0.5 time-dependent
study with M = 7. Panel (b–d) show how the time-evolution of the first three occupation numbers
ρNO
1 (t), ρNO

2 (t) and ρNO
3 (t) converges for increasing orbital number M. The color code indicated

by the labels in panel (d) holds also for panels (b) and (c). See text for discussion

From this figure it can be clearly seen that the MCTDHB method reveals this high
fidelity and grasps the highly oscillatory motion of the center of mass quasi-particle
through the harmonic oscillators of the relative motion with great accuracy. Given
the small depletion, one could assume that the TDGP would provide a reasonable
description of the system in some cases. Yet, the TDGP result plotted in Fig. 3.3
shows that only the higher frequency of the dynamics is covered but the lower one
is not captured at all. So, even in the situation where one assumes the validity of the
TDGP mean-field, the proper description of the many-boson system can be obtained
only within the framework of exact many-body methods. To display a general way to
find out if a given calculation with MCTDHB is converged it is appropriate to check
on the convergence of the natural occupation numbers ρi

(NO)(t), i = 1, . . . , M,
see Eq. (2.26) for their definition. A plot of those for the respective time-dependent
potential is given in Fig. 3.6 that for the present one-dimensional study.

One can deduce from Figs. 3.3, 3.4, 3.6 that the convergence of the natural occu-
pations ρ

(NO)
i implies the convergence of the energies. Generally, the occupations of

the least occupied orbitals are very small. As their sum is normalized, it is obvious
that the higher occupations do not change anymore when the lowest ones become
negligibly small. Depending on the desired accuracy of a given calculation it is
therefore appropriate to use the size of the smallest occupation as a measure for
the convergence. In the present example, the energies were numerically exact when
the smallest occupation was below 10−6. It has to be stressed, that this holds for the

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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Table 3.2 Selected Ground State Energies of the Two-Dimensional Harmonic Interaction Hamil-
tonian: Exact Analytical versus Numerical MCTDHB(M) and TDGP Results

2D N=2, K=0.5 2.73205081 EM=10 = 2.73205682 EM=1 = 2.82842712
2D N=2, K=2.0 4.00000000 EM=18 = 4.00008958 EM=1 = 4.47213595
2D N=10, K=0.5 30.84962311 EM=18 = 30.84964834 EM=1 = 31.62277660
2D N=10, K=2.0 58.62811814 EM=18 = 58.63132065 EM=1 = 60.82762530

present examples with time-dependent one-body and long-range two-body potentials
only; in themuchmore usual case of dynamics without those time-dependencies, and
for short-range interaction potentials, convergence is achievable easier, i.e., already
when the smallest occupation is below 10−3.

3.2.2 Two-Dimensional HIM

To complement the previous subsection on the one-dimensional HIM model
(Sect. 3.2.1) and show the applicability of theMCTDHBmethod to themany-particle
problem also in higher dimensionalities D ∗ 2, the present subsection illustrates the
results obtained in the application of MCTDHB to the two-dimensional HIM. This
is achieved by following the same strategy as in the one-dimensional case. First the
MCTDHB accuracy for two-dimensional ground states and thereafter for the time-
dependent variation of the HIM Hamiltonian (cf. Eqs. (3.4), (3.10)) is quantified.

Ground State Benchmarks

Table3.2 collects several representative values for the energies of the two-dimensional
HIM Hamiltonian and compares the MCTDHB energies to the exact and the TDGP
ones. As it can be deduced from the comparison of numerical to the exact values in
Table3.2, the convergence towards the exact eigenenergies of the HIM Hamiltonian
of MCTDHB is outstanding also in the present two-dimensional case. To continue
the analysis of the convergence properties of MCTDHB, it is instructive to plot
the eigenenergies of the two-dimensional HIM Hamiltonian obtained for different
orbital numbers M. See Fig. 3.7 for a plot. One can see from Fig. 3.7 that in the
two-dimensional case, the respective number of spherical harmonics shows up as a
staircase in the plots. This is of course due to the spherical symmetry of the problem,
i.e., because an isotropic parabolic trap V(�r) was chosen as the one-body potential.
The benefit in accuracy is larger, when a new shell in the set of two-dimensional
spherical harmonics is opened by a respective new orbital. It now remains to check
if the good convergence properties of the MCTDHB method prevail in the case of
the time-dependent one-body and two-body potentials in two dimensions studied in
Sect. 3.2.1 for the one-dimensional case.
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Fig. 3.7 Convergence of MCTDHB and Exact Energies in the Harmonic Interaction Model. The
relative difference of the MCTDHB energy and the exact energy, (EMCTDHB − Eexact)/Eexact ,
is shown for the two-dimensional case for different orbital number M. The red line are for the
N = 2, K = 0.5, the blue line for the N = 10, K = 0.5, the green line for the N = 2, K = 2.0 and
the magenta line for the N = 10, K = 2.0 case. The relative difference is decreasing exponentially
with M. For the two-dimensional systems, the number of spherical harmonics is of importance. See
text for further discussion

Fig. 3.8 Time-Dependent Energy φ1(t) and Time-Dependence f1(t) to Modify the Two-
Dimensional Harmonic Interaction Hamiltonian. The convergence of φ1(t) when increasing the
number of orbitals M is depicted for the two-dimensional case in the upper panel. For convenience,
the time-dependency entering the Hamiltonian, f1(t), is plotted in the lower panel. The difference
to the exact result is decreasing to 0 when increasing M. See text for discussion

Nonequilibrium Benchmarks in Two Dimensions

For the study of the time-dependent Hamiltonian of the HIM in two dimensions, one
can straightforwardly apply the transforms in Eqs. (3.7), (3.8). Because of brevity,
this section is restricted to the simple time-dependency f1(t) in Eq. (3.10). For a plot
of the time-dependent energy φ

(2D)
1 and the time-dependence f1(t), see Fig. 3.8. It is

seen from this Figure, that an exact solution of the two dimensional time-dependent
HIMmodel ismore difficult to achieve.Heuristically, this comes from the fact that the
excitation energy compared to the total energy of the system is much smaller in the
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Fig. 3.9 Convergence of the Occupation Numbers for the Time-Dependent Potentials in Two
Dimensions. Panel (a) shows all occupations of the converged N = 10, K = 0.5 time-dependent
study with M = 16. Panel (b–d) show how the time-evolution of the first three occupation numbers
ρNO
1 (t), ρNO

2 (t) and ρNO
3 (t) converges for increasing orbital number M. The color code indicated

by the labels in panel (d) holds also for panels (b) and (c). See text for discussion

Fig. 3.10 Absolute Relative Error of the Time-Dependent Total Energies in Two Dimensions
Computed with MCTDHB. The plot depicts κE2D

1 (t) for N = 10, K = 0.5 in two dimensions. To
achieve the same relative total error in the time-dependent energies more orbitals are needed in the
respective two-dimensional systems. See text for further discussion

two-dimensional case as in the one-dimensional one discussed in Sect. 3.2.1. Because
of this, the number of orbitals needed to treat the time-dependent two-dimensional
HIM Hamiltonians numerically, is larger, see Fig. 3.8. To quantify this observation,
it is interesting to graph the time-evolution of the natural occupations ρ

(NO)
i (t) as

well as the relative error of the time-dependent energy φ
(2D)
1 (t),κE(2D)

MCTDHB(t)which
is defined analogous to Eq. (3.11). For a plot, see Figs. 3.9 and 3.10, respectively.

It is seen nicely from Fig. 3.9 that the occupation numbers are converging to
the exact solution when the number of orbitals is increased and the occupations
of the lowest ones become negligibly small. This resembles the behavior in the
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one-dimensional case (cf. Sect. 3.2.1) and is as expected for a treatment of the TDSE
using the TDVP. The next Fig. 3.10 shows the time-dependent relative error and
thereby further quantifies this observation.

It is seen from Fig. 3.10 that the time-dependent relative error E2D
1 (t) tends to 0

when the orbital number M is increased also in the present case. Numerically exact
solutions of the problem can hence be achieved by increasing M also in the two-
dimensional cases with time-dependent one- and two-body interactions. Taking a
closer look at the scale in Figs. 3.10 and 3.5 which shows the E1D

1 , i.e., the time-
dependent relative error in the one-dimensional case, one notes that the error in the
two-dimensional case is roughly twice as large as in the one-dimensional ones, i.e.,
E2D
1 ∇ 2 · E1D

1 when twice the number of orbitals are used for in the respective two-
dimensional computation. This can be explained by arguing with the separability of
the isotropic problem studied here, see Sect. 3.4.

3.3 Dynamics of an Interaction Quench in the Harmonic
Interaction Model

The HIM features a lot of the physics of the Hamiltonian with contact interactions.
One of these, which can be nicely shown by applying theMCTDHB, is the dynamical
change of the occupation numbers, when quenching the interaction. To investigate
it, one sets up a solution of the HIM Hamiltonian, Eqs. (3.1), (3.2), with a certain
interaction Ki as the initial guess. Subsequently, the interaction is abruptly switched
to another value Kf . This interaction quench causes the dynamics, which are the
topic of this section. As an illustrative example N = 10 one- and two-dimensional
bosons with initial interactions Ki

1 = 0.5, Ki
2 = 2.0 were chosen as initial guesses.

The interactions were quenched to the values Kf
1 = 2.0(≡ Ki

2) and Kf
2 = 0.5(≡ Ki

1),
respectively. See Fig. 3.11 for a plot of the time-evolution of the fragmentation, i.e.,
the first occupation number ρ

(NO)
1 (t) for the respective one- and two-dimensional

cases. The behavior of the fragmentation in Fig. 3.11 is oscillatory with a bigger
frequency for the Ki

1 ∀ Kf
1 quench (Q1) than for the Ki

2 ∀ Kf
2 quench (Q2). The

frequency is the same for the one-dimensional and two-dimensional cases. Intu-
itively, the fragmentation decreases, first, when one decreases the interaction, and
the wave function becomes more condensed in Q2 initially. Correspondingly, in Q1,
by increasing the interaction, the wave function becomes more fragmented initially.
In both cases the fragmentation is roughly twice larger in the two-dimensional com-
pared to the one-dimensional cases. This can be explained by the energetics of the
system. Simply, because the dimensionality is a global factor in the total energy and
consequently the change in energy by the interaction quench is twice larger in the
two-dimensional cases compared to the one-dimensional cases forQ1andQ2, respec-
tively. The degree of fragmentation hence is roughly proportional to the change in the
total energy, i.e., proportional to the energy pumped into the system by the interaction
quench. Because the interaction and the trapping potential are isotropic, the quench
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Fig. 3.11 Interaction Quench Dynamics for N = 10 Particles. Panels (a), (c) and (e) depict the
time evolution of the fragmentation for the interaction quench from Ki

1 = 0.5 ∀ Kf
1 = 2.0 and

panels (b), (d) and (f) depict the time-evolution of the fragmentation for the interaction quench from
Ki
2 = 2.0 ∀ Kf

2 = 0.5. In (a) and (b) the fragmentation for both the one-dimensional (turquoise
lines) and the two-dimensional (gray lines) are oscillatory. The fragmentation is roughly twice as
large in the two-dimensional case than in the one-dimensional one—this can be explained from the
separability of the problem when using center-of-mass and relative coordinates, cf. Sect. 3.4. For
convenience, the convergence of the fragmentation for the one- [panels (c), (d)] and two-dimensional
[panels (e), (f)] cases is depicted also. The color code is (c):M = 3/5/7/8,magenta/blue/green/red
line, respectively, (d): as in (c), (e): M = 10/14/15/16, magenta/blue/green/red line, respec-
tively, (f): M = 6/10/15/16, magenta/blue/green/red line, respectively. The red curves in panels
(c–f) are the converged results and are identical with the respective gray/turquoise lines in panels
(a), (b). See text for further discussion

dynamics are dynamics in the relative coordinates. That the fragmentation is roughly
twice as large as in the two-dimensional case means that roughly twice as many par-
ticles are excited to move relatively to each other. One can estimate the frequencies
of the oscillations from the difference κEQ1/2 = Ef

Q1/2 − E
Kf
1/2

of the energy after

the quench Ef
Q1/2 to the respective ground state energy at the interaction Kf

1/2, E
Kf
1/2
.

The oscillatory frequencies νQ1/2 are obtained by νQ1/2 = κEQ1/2
2θ (remind that � = 1

in the units used). In the one-dimensional case one finds νQ1 = 3.3475
2θ = 0.5328 and

νQ2 = 6.4628
2θ = 1.0286. The agreement with the frequencies in Fig. 3.11(a) and (b)

is satisfactory.
Transferring the finding for the HIM to the corresponding systems with shorter-

ranged, contact-like interaction, onewould expect the coherence of systems of higher
dimensionality to be more sensitive to changes of external parameters, such as the
interaction strength or the trap geometry, because the change in the total energy
is larger for bigger dimensionality. This is true also for parabolically confined
three- and two-dimensional ultracold bosons and their one-dimensional counterparts
with short-range interactions.
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3.4 Comment on the Effects of the Separability of the Harmonic
Interaction Model

The solutions of the TDSE with the two-dimensional HIM Hamiltonian, Eqs. (3.1),
(3.2), is separable because one can write this Hamiltonian in the form

Ĥ(�X, �Y) = ĤX(�X) + ĤY (�Y). (3.12)

Here, �X and �Y are collective coordinates of all N particles in the x and y directions,
i.e., �X = (x1, . . . , xN ) and �Y = (y1, . . . , yN ), respectively. If one considers a quench
scenario, as done above in Sect. 3.3, where the initial state is an eigenstate of an
Hamiltonian as in Eq. (3.12), then this initial state is separable, i.e.,

δ(�X, �Y; t = 0) = δX(�X, t = 0)δY (�Y , t = 0).

Furthermore, the time evolution of such an initial state with any Hamiltonian of the
form in Eq. (3.12), will preserve this separability. Therefore, one obtains that the
above equation holds for any time t ∗ 0, i.e.,

δ(�X, �Y; t) = δx(�X, t)δy(�Y , t) (3.13)

holds for the interaction quench studied in the previous Sect. 3.3. It follows, that the
RDM ρ(�X, �Y | �X ∞, �Y ∞; t) also is separable in the same way:

ρ(�r|�r∞; t) = ρx(x|x∞; t)ρy(y|y∞; t). (3.14)

Note, that the reduced one-body density ρ and its factors ρx and ρy depend not on
collective coordinates �X ∞, �X, �Y ∞, �Y but on single ones �r, �r∞, x, x∞, and y, y∞, respec-
tively. For these RDMs ρx, ρy, and ρ in Eq. (3.14) one can of course find a diagonal
representation (for reference, see the paragraph on natural occupations and natural
orbitals in Sect. 2.1.2). One obtains

ρ(�r|�r∞; t) =
⎦

⎬
∑

j

ρ
(NO,x)
j (t)α(NO)

j (x, t)α∗(NO)
j (x∞, t)

⎭



×
[
∑

k

ρ
(NO,y)
k (t)α(NO)

k (y, t)α∗(NO)
k (y∞, t)

⎡
(3.15)

=
∑

j,k

([
ρ

(NO,x)
j (t)ρ(NO,y)

j (t)
]

(3.16)

×
[
α

(NO)
j (x, t)α(NO)

k (y, t)
]

×
[
α

∗(NO)
j (x∞, t)α∗(NO)

k (y∞, t)
])

.
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In the above equations, there is only a single set of natural orbitals α
(NO)
j , as the

problem is assumed to be isotropic. A few comments on (i) the fragmentation and
(ii) an estimate of the relation of the errors in one-dimensional computations to
the error in two-dimensional ones are in place here. For (i) the fragmentation it is
interesting to note, that if one of the factors in the density matrix above, say ρx , has
a small fragmentation, i.e., let

ρ
(NO,x)
1 (t) = 1 −

⎦

⎬
∑

j>1

ρ
(NO,x)
j (t)

⎭

 ∇ 1 − φ. (3.17)

It straightforwardly follows that in the two dimensional computation for the isotropic
case of an interaction quench the fragmentation must be roughly twice as big when
φ is not too large, i.e.,

ρ
(NO,x)
1 (t)ρ(NO,y)

j (t) ∇ (1 − φ)2 = 1 − 2φ + φ2 ∇ 1 − 2φ. (3.18)

The first approximation here is that one assumes the fragmentations in x and y
direction to be roughly the same. Especially, in the case of an isotropic potential
and for a quench scenario as the one studied above, where the initial state is also
an eigenfunction of an Hamiltonian with an isotropic potential this is true up to
numerical accuracy. The second approximation consists in assuming the smallness of
the fragmentation in both, x and y directions, i.e., the negligibility ofO(φ2), which is
appropriate in the case of weak to moderate interparticle interaction K . This explains
(i) the observation of double the fragmentation for two-dimensional cases made in
the above Sect. 3.3. For the observation (ii) that the error in the two-dimensional case
is roughly twice larger for computations with twice the number of orbitals than in
a respective one-dimensional computation. This can be seen easily from the above
estimate, when one associates φ not with the fragmentation, but with the error that
remains when approximating each of the density matrices ρx and ρy with a given
number of orbitals Mx = My, respectively. It remains to stress that in view of the
conjectures lined out above it would be very interesting to study the dynamics of
a nonisotropic system or nonisotropic quench, since then the separability for the
analytics which was exploited throughout the present subsection is not given.

3.5 Discussion and Summary of the Benchmark with the
Harmonic Interaction Model

Throughout this work, the youngest method in the family of the MCTDH methods,
namely MCTDHB, has been benchmarked with the HIM for the convergence of
ground states and dynamics in one and two spatial dimensions. Furthermore, an
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application of MCTDHB to the fragmentation dynamics occurring within the HIM
in the case of an interaction quench was provided.

In conclusion, it was proven that the MCTDHB, like the other members of the
MCTDH family of methods, can be used to obtain numerically exact solutions of the
many-body TDSE for one-, and two-dimensional systems. The considered many-
boson systems can be described in a numerically exact way when the interaction is
arbitrary (weak to strong, attractive or repulsive) and the particle number is small
enough to allow one to use enough orbitals to achieve convergence, even in the
present case of parabolic long-range interactions. In the case of large orbital and small
particle number, the numerically most demanding part is to propagate the coupled
integro-differential EOMs for the orbitals, as given in Ref. [12] and Eqs. (2.46 and
2.47). Numerically exact solutions are also possible if the particle number is large
enough to make convergence achievable with a small number of orbitals, as shown
in Fig. 3.2(b). In this case, the numerically most demanding part is the propagation
of the equations for the coefficients as given in Ref. [12] and Eq. (2.46).

The convergence is improving roughly exponentially with the number of orbitals.
Less orbitals are needed for constant ω = K(N − 1) and a large particle number.
Higher dimensionality and the long-range interactions of the HIM require more
orbitals for convergence than the respective problems with short-range interactions.
The respective number of spherical harmonics becomes of importance for more than
one-dimensional studies in spherically symmetric setups.

Numerically exact solutions are obtainable even for smoothly varying, time-
dependent one- and long-range two-body potentials. For stronger oscillatory behav-
ior convergence is harder to achieve, and the necessary number of orbitals is larger
in this case. The dynamics of the time-dependent Hamiltonians with time-dependent
one-body and time-dependent two-body potentials are of course more difficult to
describe.

As an application the fragmentation dynamics of an interaction quench scenario
was studied. The behavior found is oscillatory and tends towards less fragmentation
first in the case of lowering the interaction and towards stronger fragmentation first in
the case of increasing the interaction. The oscillation frequencies are determined by
the difference of the energy after the quench to the respective ground state energies
at the final interaction strength. In the comparison of the one-dimensional and two-
dimensional quenches the fragmentation is about twice larger than in the latter case.
This is a manifestation of the relation of the change in the total energy in one dimen-
sion and two dimensions [cf. Eq. (3.5)]. The interaction quench imposes a change in
energy two times larger in two dimensions compared to that in one dimension.

The relation of the change in energy for different dimensionalities of the problem
is in turn caused by the separability of the problem in the isotropic case studied. In
fact, it was shown that the wave function as well as the 1-RDM of the problem factor
in the two-dimensional case and the above observation for the fragmentation in the
isotropic quench scenario could be deduced. It would hence be very interesting to
e.g. study a nonisotropic quench scenario, but this is beyond the scope of the present
considerations.

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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9. S. Pruski, J. Maćkowiak, O. Missuno, Reduced density matrices of a system of N coupled
oscillators. 3. The eigenstructure of the p-particle matrix for the ground-state. Rep. Math.
Phys. 3, 241 (1972)
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Chapter 4
A Case Study with an Attractive BEC:
Comparison of Lattice Model, Gross–Pitaevskii,
and MCTDHB Predictions on a Tunneling
Process

It is a mistake to think you can solve any major problems just
with potatoes.

Douglas Adams, Life, the Universe and Everything

After the previous assessment of the numerical exactness of MCTDHB (M) in the
case of convergence with the number of orbitals, see Chap.3, it remains to compare
MCTDHB to other methods in the field. For this comparison the continuous methods
MCTDHB and TDGP [i.e., MCTDHB (M = 1)] and the lattice methods DNLS and
TEBD/BH are used. It is of great interest to compare the predictions these amply
applied discrete and continuous space theories and their numerical implementations.
With this comparison, light is shed on the effects and the importance of the way
that a given many-boson problem is discretized and numerically handled. In the
lattice models DNLS and TEBD/BH, the spatial representation of the wave func-
tion is discretized using Wannier functions whereas the spatial representation of the
wave function for TDGP and MCTDHB is continuous and uses functions deter-
mined according to the time-dependent variational principle. In that, these methods
approximate the solutions of the full many-body problem in a self-consistent manner.
The importance of this self-consistency will become evident throughout the present
chapter. In Ref. [1] the two lattice methods’ predictions on the decay by tunnel-
ing dynamics of an initially trapped bosonic system comprised of different particle
numbers N , varying from N = 2 to N = 70 particles, are compared. The delicate
question, whether and how such studies with discretized space relate to scenarios in
continuous space is in the focus of the present chapter. One case, where the mapping
of a discretized BH simulation to several corresponding simulations and analytical
predictions in continuous spacewas successful is Ref. [2]. Hence, the straightforward
strategy to perform the comparison of the self-consistent continuous space methods

Electronic Supplementary Material Supplementary material is available in the online version
of this chapter at http://dx.doi.org/10.1007/978-3-319-07085-8_4. Videos can also be
accessed at http://www.springerimages.com/videos/978-3-319-07084-1.

A. U. J. Lode, Tunneling Dynamics in Open Ultracold Bosonic Systems, 55
Springer Theses, DOI: 10.1007/978-3-319-07085-8_4,
© Springer International Publishing Switzerland 2015
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TDGP and MCTDHB with the discrete models BH and DNLS in this section is thus
to apply the discrete-to-continuous-space-mapping of Ref. [2] to the potential given
in Ref. [1] and solve the corresponding Schrödinger equation in continuous space
(i.e., self-consistently) approximately by the TDGP and exactly by the MCTDHB
method. The comparison will be done in terms of a quantitative comparison of the
escape times and the coherence dynamics and many-body physics in the process.

4.1 Mapping of Discrete and Continuous Space Problems

Following Ref. [2], the many-body Hamiltonian of a one-dimensional Bose gas,

Ĥ =
∫

dx υ̂†
[
−1

2
∂2x + V (x) + g

2
υ̂†υ̂

]
υ̂, (4.1)

where again � = m = 1, can be transformed to the BHH, see Eq. (2.49), by replacing
the integrals by sums and approximating the second spatial derivative in the kinetic
energy operator with a difference quotient, i.e.,

∂2x υ̂ ≈
[
υ̂(x j+1) + υ̂(x j−1) − 2υ(x j )

]
· 1

2λx2
. (4.2)

The parameters of the BHH, U and J , are then

J = 1

2λx2
; U = g

λx
. (4.3)

In order to get a continuous version of a desired discrete BHH problem only the λx
in the above equation has to be chosen according to Ref. [2]. In Ref. [1] on the BHH
and the DNLS, so-called hopping units are used, i.e., J ≡ 1 is set and all quantities
are expressed in units of J . By this choice, in the mapping of Ref. [2], as outlined
above, λx and the interaction parameter g are defined and read

λx = 1√
2
; g = Uλx = U√

2
. (4.4)

To define the many-body Hamiltonian which can be studied within the continuous
TDGP andMCTDHBmethods it remains to express the discrete potential V ext

i , given
in Ref. [1], as a function V (x) in continuous x-space. The potential given in Fig. 1
of Ref. [1] is of rectangular shape for the initial state, i.e., at times t < 0,

V ext,t<0
i =

⎧
⎪⎨

⎪⎩

∀ for i ≤ 0

0.05J for i ∞ xs

0 otherwise

(4.5)

while for the time evolution

V ext,t∞0
i =

{∀ for i ≤ 0

0.05J for xs ≤ i ≤ xe

0 otherwise.

. (4.6)

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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Fig. 4.1 Rectangular Continuous Space Potential for the Comparison of the DNLS, BH, TDGP
and MCTDHB Approaches. The potential for the generation of the initial guess is given by the
black-dashed line and the red line indicates the potential for the propagation. To guide the eye, an
initial density, δ(x, t = 0), obtained from MCTDHB is plotted in blue. All quantities shown are in
dimensionless units

Here xs marks the start of the barrier and xe the end of the barrier. Such rectangular
potentials can be modeled conveniently by Heaviside step functions α(·). Yet, to get
the proper continuous space potential V (x), the start/stop of the barrier, xs/e, has to
be translated via the specified λx = 1√

2
. Finally, one obtains:

V (x; t < 0) =

⎧
⎪⎨

⎪⎩

∀ for x ≤ 0

0.05 for x ∞ xs√
(2)

0 otherwise

(4.7)

for the continuous space potential for the initial state and

V (x; t ∞ 0) =

⎧
⎪⎨

⎪⎩

∀ for x ≤ 0

0.05 for xs√
(2)

≤ x ≤ xe√
(2)

0 otherwise

(4.8)

as the potential for the dynamics. For a plot of these potentials, see Fig. 4.1. This
concludes the description of themapping of discretized and continuous-spaceHamil-
tonians in general and for the particular decay by tunneling example in Ref. [1]. For
further details, see Ref. [2] and References therein.
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Fig. 4.2 BH, TDGP and Exact Density for the Decay by Tunneling of an Attractive System of 70
Bosons from a RectangularWell.* The darker the color the bigger the particle density. The left panel
(BH dynamics) shows more structure than the middle (TDGP) and the right one (MCTDHB). There
is no noticeable difference between the TDGP and MCTDHB solutions. The data of the BH plot
was extracted from Fig. 2b of Ref. [1] and is printed here with the permission of the authors of Ref.
[1]. See Video 2 for the time-evolution of the spatial and momentum densities in the MCTDHB
simulation depicted in the right panel. See text for further discussion

4.2 Comparison of DNLS, BH, TDGP and MCTDHB Dynamics

In order to compare the dynamics of the model Hamiltonians introduced in this
section, i.e., the BH and the DNLS, with the TDGP description and the full many-
bodySchrödinger equation (solved exactlywithMCTDHB) it is timely tofirst specify
the interaction and the potential V (x; t). For convenience, the parameters are chosen
identically to the ones used to produce Fig. 3c of Ref. [1]: the interaction in this
subsection is given by U N

J = −0.15 in discretized space and by ω0(N − 1) =
0.15·λx = 0.15√

2
in continuous space dimensionless units [cf. Eq. (4.4)]. Furthermore,

the barrier is chosen from discretized xs = 18 to xe = 20—or, in continuous,
dimensionless units from 18√

2
to 20√

2
. With these parameters specified, the TDGP

and MCTDHB dynamics should (in accordance with Ref. [2]) correspond to the
respective DNLS and BH ones. It is instructive to first compare the time-evolution
of the one-body density of the discrete systems with the continuous ones. For a plot
of the BH, TDGP and exact density, see Fig. 4.2.

Qualitatively, the decay of the initially localized state is covered by all three
theoretical approaches. It’s very interesting to note that the middle and right panels
of Fig. 4.2 which show the TDGP and exact MCTDHB solutions, respectively, are
practically indistinguishable. This can only be the case if the dynamics are fully
coherent, i.e., the correlation functions are all equal to 1 because all the particles
occupy one single-particle state.

It’s instructive to measure the decay times depicted in Fig. 3c of Ref. [1] for the
DNLS and BHH models also with the continuous and self-consistent TDGP and
MCTDHB methods in order to quantify how accurately the dynamics of the density
δ(x, t) are captured. Figure4.3 shows a plot of the nonescape times tesc obtainedwith
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Fig. 4.3 Nonescape Times Obtained with the BHH/TEBD, DNLS, TDGP and Exact MCTDHB.
Themean-fieldmethods,DNLS andTDGP, do not distinguish different particle numbers. Themany-
bodymethods, TEBD/BHHandMCTDHBare sensitive to the particle number. The exactMCTDHB
solutions differ only at the most by 1% from the TDGP ones. The discrepancy of the continuous and
self-consistentmethods to the discrete ones is≡50% and≡30% for theDNLS and the TEBD/BHH,
respectively.Bothdiscretemethods,TEBD/BHHandDNLSseem tounderestimate the escape times.
Data points for TEBD/BHH and the DNLS have been extracted from Ref. [1]. See text for further
discussion

the methods in question for various particle numbers between N = 2 and N = 70.
The quantity tesc is defined such that the integral

∫ xe
−∀ dxδ(x; tesc) is equal to e−1.

From this figure one can read on one hand, that the many-body dynamics are very
close to full coherence because of the close proximity of the escape times for the
TDGP and the MCTDHB methods. On the other hand, it shows that the discrete
methods TEBD/BHH and DNLS on the present example seem not to describe the
escape by tunneling accurately. First, they underestimate the escape times (by 30
and 50%, respectively) and second, the prediction of the many-body properties is
qualitatively different: while the exact description reveals the full coherence of the
process and the insensitivity of the escape times also to a change in the particle
number N , a discrepancy of 20% in the escape times tesc is predicted between the
DNLS and the TEBD/BHH. Hence, the TEBD/BHH description predicts a departure
of the process from coherence, which is unphysical. This behavior underlines the
importance of a self-consistent treatment of the many-boson problem in this case.
The description with TEBD/BH and DNLS is qualitatively appropriate for the decay
times but fails to capture the many-body features of the process.

To further corroborate the above statements and to investigate the dynamics of the
coherence in the present example it is instructive to plot the first order correlation
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Fig. 4.4 Coherence of the Tunneling Process fromNormalizedCorrelation Functions.* Top Panels:
Normalizedfirst-order correlation function |g(1)(x →, x, t)|2 of N = 70 bosons for t = 0 and t = 100.
The dynamics do not depart from coherence, i.e., |g(1)|2 ≈ 1 holds for all space and time with a
deviation not greater than 1%. See text for further discussion. Bottom Panel: Diagonal of the
normalized second-order correlation function |g(2)(x1, x2, t)|2 of N = 70 bosons for t = 0 and
t = 100. The dynamics show almost full second-order coherence, i.e., |g(2)|2 ≈ 1 holds for all space
and time with a deviation not greater than 3%. See Video 3 for the time-evolution of the normalized
first- and second-order coherence computed with MCTDHB. See text for further discussion

function g(1). |g(1)|2 describes the fringe visibility in interference experiments and
is, hence, a direct measure for the first order coherence. For the MCTDHB a plot of
g(1) is provided in Fig. 4.4 in the two upper panels for representative times.

From the top panels of Fig. 4.4 it can be read that the process can indeed be
viewed as fully first order coherent, as it was already inferred from the dynamics
of the density in Fig. 4.2. This means that, to a very good approximation, one can
apply theTDGP, i.e., a self-consistent continuous spacemean-field description, to the
process. It has, hence, no collective many-body characteristics which would result in
a loss of coherence and a departure of |g(1)(x →, x, t)|2 from 1. This is corroborated by
the fact that the process is also almost completely second-order coherent, as it can be
read from the graphs of g(2) in the bottom panels of Fig. 4.4. g(2) defines the bunching
or anti-bunching properties of a quantum field [3–5]. If g(2) is larger than unity, the
particles are likely to be in these positions together and if g(2) is smaller than unity,
the particles are unlikely to be in the these positions together. The former situation
is referred to as bunching and the latter situation is referred to as anti-bunching.
The plots in Fig. 4.4 show that the tunneling process does not show any bunching or
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anti-bunching characteristics and is, hence, fully second-order coherent. Reference
[1] attributes the differences found between the two discrete DNLS and BHHmodels
to a “many-body nature of the process”. Further, Ref. [1] concludes that the “study
shows that many-body effects in macroscopic quantum tunneling can be observed
via number fluctuations and density-density correlations as well as the increased
escape time”. This is of course true only when one uses the discretized models
TEBD/BH or DNLS and in that implies a tight-binding single-band lattice potential.
The self-consistent continuous space TDGP and MCTDHB treatment shows, that it
is difficult to which continuous space potential’s dynamics to attribute these discrete
model descriptions to.

The lattice/discrete models that have been applied in Ref. [1], i.e., the DNLS and
TEBD, expand the governing Hamiltonian in a basis which is time-independent and
adapted to a situation in which there is a periodic potential for which the lowest
band and nearest neighbor coupling is a sufficient description. The potential that
Ref. [1] suggests to treat (cf. Fig. 1 in Ref. [1]), is not a continuous space potential.
It solely shows the on-site offset of the lattice potential considered. The dynamics
in continuous space are different and the effects found in Ref. [1] do not correspond
to a continuous space scenario of the many-boson tunneling process to open space.
These dynamics correspond rather to bosons in a deep optical lattice of which one
cannot straightforwardly recover a continuous space form. Themapping of reference
[2] is not applicable in the tunneling process considered here and in [1] because the
lattice potential implied by the usage of the TEBD/BHH and DNLS treatment has a
considerable influence on the dynamics. In summary, the DNLS and BHH treatment
of the problem of many-boson tunneling to open space with the current setup yields
qualitative descriptions of which the predicted many-body features are not reliable.
The self-consistency and a faithful description of continuous space seems to be of
great importance in tunneling to open space scenarios.
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Chapter 5
Theoretical Considerations and Analytical
Models on the Many-Body Physics
of Tunneling Bosons

All you really need to know for the moment is that the universe is
a lot more complicated than you might think, even if you start
from a position of thinking it’s pretty damn complicated in the
first place.

Douglas Adams, Mostly Harmless

In this Chapter, various (analytical) model consideration and general characteristics
of the methods introduced in Chap.2 are discussed. This is done in order to put the
later numerical results in a wider context and to familiarize the reader with the key
concepts of the quantum many-boson dynamics of tunneling to open space. The first
part of this Chapter is a proof that the TDGP does not account for correlations and
coherence properly. In the second part the physics of tunneling are assessed from a
many-body point of view by including correlations and coherence. This is done by
starting out from basic assumptions on the orbitals assembling the basis of many-
bosonHilbert space or a possible decomposition of theHilbert space of the considered
dynamics. The following considerations are specified for one-dimensional systems
and the respective labeling of variables, i.e., x , and k, instead of �r , and �k, is used.
Note that this restriction is for simplicity and the considerations can be generalized
to two- and three-dimensional systems in a straightforward manner.

5.1 Analytical Considerations within the Gross–Pitaevskii
Approximation

In the TDGP approximation a wave packet of a System is constructed by a product
of a single orbital with different spatial coordinates and proper normalization. Thus
TDGP is built upon the assumption that all bosons reside in one single quantum state
which is directly equivalent to the statement that the bosons form a fully coherent
condensate. The normalized Ansatz for the wave function reads:
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υG P (x1, . . . , xN , t) =
N∏

k=1

∂(xk, t). (5.1)

When one plugs this GP ansatz for the wave function, υG P , in the definition of the
RDM λ(1), see Eq. (2.24), it reads (the dependency on time is henceforward omitted
where appropriate to simplify the reading):

λ(1)(x1 | x
′
1) = N !

(N − 1)!
∫

υG P (x1, . . . , xN ) · υ√
G P (x

′
1, x2, . . . , xN )dx2 · · · dxN

= N !
(N − 1)!

∫ ( N∏

k=1

∂(xk)

)(
∂√(x

′
1)
⎧( N∏

k=2

∂√(xk)

)
dx2 · · · dxN

= N · ∂(x1) · ∂√(x
′
1). (5.2)

This RDM is simply a product of the orbital ∂ at x1 and its complex conjugate at x
′
1.

To determinewhat are the implications for the coherence properties of such awave
function, it is instructive to compute from the found RDM, Eq. (5.2), the correlation
functions of the TDGP ansatz. The first order correlation function g(1)(x1, x

′
1) reads:

g(1)(x1, x
′
1) = λ(1)(x1 | x

′
1)⎪

λ(1)(x1 | x1) · λ(1)(x
′
1 | x

′
1)

(5.3)

= ∂(x1) · ∂√(x
′
1)⎪

∂(x
′
1) · ∂√(x

′
1) · ∂(x1) · ∂√(x1)

(5.4)

|g(1)(x1, x
′
1; t)| = 1 ∀ x1, x

′
1, t. (5.5)

Intuitively, Eq. (5.5) is already clear from the way the GP-ansatz for the wave func-
tion is constructed. The TDGP theory has no feature for first order decoherence
because the first order correlation function will always be independent of the spatial
coordinates and constant within this model. This is because the denominator and
nominator of g(1) are always a product of a single complex valued function (the
orbital). The diagonal of the two-body reduced density matrix, i.e., the two-body
density is obtained analogously:

λ(2)(x1, x2 | x
′
1, x

′
2) = N !

(N − 2)!
∫

υG P (x1, . . . , xN ) ·
υ√

G P (x
′
1, x

′
2, x3, . . . , xN )dx3 · · · dxN .

Which once again can only be the product of a single complex valued function: the
orbital in the TDGP-ansatz. The diagonal of λ(2) reads:

λ(2)(x1, x2 | x1, x2) = N (N − 1) | ∂(x1) |2 · | ∂(x2) |2 . (5.6)

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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The two-body density is a product of the same complex valued function as the RDM
and hence the two-body density is a product of one-body densities. This accounts
for the fact that the system in this model is bound to be condensed.

The higher order coherence is measured by a system’s n-th order correlation
function |g(n)|2 (see e.g. [1, 2]). If it is close to (far from) 1, the system is n-th order
coherent (incoherent). The fact that the GP wave function is constructed as a product
of one orbital yields that all-order RDMs are also constructed of the same orbital.
As the correlation functions are ratios of different RDMs, the first order correlation
function is bound to be |g(1)|2 = 1 everywhere at any time. Similarly, the n-th (n > 1)
order correlation function is bound to be constant everywhere at any time. One can
obtain this from writing down g(p)(x1, . . . , x p|x ′

1, . . . , x
′
2) in terms of bosonic field

creation and annihilation operators υ̂(x), υ̂†(x):

υ̂(x)|N ; t≤ = ∞
N∂(x, t)|N − 1; t≤ υ̂†(x)|N ; t≤ = ∞

N∂√(x, t)|N + 1; t≤.
(5.7)

Therefore the p-th order normalized correlation function reads:

g(p) = λ(p)(x1, . . . , x p|x ′
1, . . . , x

′
p)⎨

p⎩
δ=1

λ(1)(xδ |xδ )λ(1)(x
′
δ |x ′

δ )

(5.8)

= ≡υ(t)|υ̂†(x
′
1) . . . υ̂†(x

′
p)υ̂(x p) . . . υ̂(x1)|υ(t)≤

p⎩
δ=1

(⎪
≡υ(t)|υ̂†(xδ )υ̂(xδ )|υ(t)≤≡υ(t)|υ̂†(x

′
δ )υ̂(x

′
δ )|υ(t)≤

⎧ .

For convenience, some time-dependencies have been omitted in Eq. (5.8). Recalling
the commutation relations of bosonic field operators

[
υ̂(xi ), υ̂

†(x j )
]

= α(xi − x j ),
[
υ̂(xi ), υ̂(x j )

]
= 0, (5.9)

one finds, as before, for the diagonal of the first order RDM:

≡υ(t)|υ̂†(x)υ̂(x)|υ(t)≤ = N |∂(x)|2. (5.10)

The above diagonal of the one-body RDM, needed for the denominator of Eq. (5.8)
within the TDGP approximation, makes g(p) take on the form:

g(p) = ≡υ(t)|υ̂†(x
′
1) . . . υ̂†(x

′
p)υ̂(x p) . . . υ̂(x1)|υ(t)≤

⎨
p⎩

δ=1

(
N |∂(xδ )|2 · N |∂(x

′
δ )|2
⎧ . (5.11)
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Also the numerator of Eq. (5.8) can be evaluated with the help of Eq. (5.7). g(p) then
reads:

g(p) =

p⎩
δ=1

(∞
(N + 1 − δ)∂(xδ )

∞
(N + 1 − δ)∂(x ′

δ )
⎧

N p
p⎩

δ=1

⎡(
|∂(xδ )|2 · |∂(x

′
δ )|2
⎧

= N · (N − 1) · · · (N − p)

N p = N !
N p · p! . (5.12)

When one considers an interactingmany-body systemwhose dynamics ismost likely
described by a time-dependent wave function of big complexity, this result would
be at least surprising. A constant correlation function of any order, everywhere at
any time is equivalent to the statement that the wave packet, from which it was
derived, has defined, constant coherence properties for all times and everywhere.
This, of course is only a good model if one wishes to describe phenomenologically a
Bose–Einstein condensate, which is in a good approximation, a coherent many-body
object. This result clarifies the fact, that the TDGP model will fail to describe the
dynamics and effects of first or higher order (anti-)correlations and first or higher
order coherence or decoherence. Furthermore, a nice way to analyze the dynamics
of many-boson systems starts from the above considerations: if one finds a deviation
(in whatever quantity) of a many-boson system from the approximative description
with the TDGP approximation, this means that the system is no longer fully coherent
and its correlation functions impact its physics.

5.2 Analytical Considerations Beyond Gross–Pitaevskii

5.2.1 Decomposition of Hilbert Space into Subspaces

As found in many cases of the dynamics of ultracold bosons, initially coherent
states develop fragmentation throughout their dynamics, see e.g. Refs [3–5]. In this
section an analytical model is constructed for the dynamics one would expect if
an initially coherent and parabolically trapped system tunnels to open space with
two momenta k1 and k2 involved in the process. As a first step it is instructive to
consider the full Hilbert space of the problem as partitioned in an inside part and an
outside part. Then one pursues a description of the tunneling process which covers
the fragmentation in the interior subspace containing initially the main part of the
density and fragmentation in the exterior subspace which initially contains the lesser
fraction of the density outside the well.

By making this assumption on the partitioning of space, one assumes that the
system is completely separable, i.e., lives in two orthogonal subspaces P (the interior)
and Q (the exterior). The wave function in P , υP , is an (a linear combination of)
eigenfunction(s) of the Hamiltonian
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ĤP = P̂

⎣
⎛

⎝

N⎞

i=1

⎠
−1

2
ω2xi

+ 1

2
x2i

⎤
+
⎞

j<k

Ŵ (x j − xk)

⎦
⎬

⎭ (5.13)

on the P subspace and the wave function υQ is an (a linear combination of) eigen-
function(s) of the Hamiltonian ĤQ = Q̂{∑N

i=1

[− 1
2ω

2
xi

] +∑ j<k Ŵ (x j − xk)} on
the Q subspace - here P̂, Q̂ denote the projectors onto the orthogonal subspaces.
Obviously, one can write the whole Hilbert space of the system then as a direct sum
of P and Q: H = P → Q. In fact one can write down the wave function υ of this
separable problem. If one assumes that the only effect of the interparticle interaction
potential Ŵ in Q is to force the system to occupy two eigenfunctions of the kinetic
energy operator (i.e. two plane waves), it is obvious that the difference of the two
momenta, k1 and k2 must relate to the interaction. In P the wave function can be
described by mollifying the Gaussian constructing, together with the Hermite poly-
nomials Kn , the eigenfunctions of the parabolic trap in P . Hence, the following wave
function is obtained:

|υP (t)≤ =
⎞

�n P

(
p̂†1(t)

⎧Nq1 · · ·
(

p̂†M (t)
⎧NMp |vac≤ (5.14)

|υQ(t)≤ =
⎞

�nQ

(
q̂†
1 (t)
⎧Np1 · · ·

(
q̂†

M (t)
⎧NMq |vac≤ (5.15)

|υ(t)≤ = |υQ≤ ⊗ |υP ≤ (5.16)

∗ υ(x1, . . . , xN , t) = υP (x1, . . . , xNP , t)υQ(x1, . . . , xNQ , t). (5.17)

Where the vector of all possible configurations of NP/NQ bosons over Mδ orbitals,

�n := (
N1, . . . , NMδ

) ; {Ni |∑Mδ

k=1 Nk = Nδ ; δ = P, Q}, the P and Q subspace

boson creation operators for the i-th orbital {q̂†
i (t), p̂†i (t)}, the numbers of bosons in

P and Q, NP and NQ , the number of orbitals to represent the wave function in P
and Q, MP and MQ , and the vacuum state |vac≤ have been used. If one represents
this in the Fock-space notation for the P-subspace, i.e. |n1, n2, . . .≤, where one omits
the P-subscripts for the sake of simplicity, one gets:

p̂†k (t)|vac≤ = P̂e−iφk t Kk−1(x)e− x2
2 wk |0, . . . , 0, 1︸︷︷︸

k-th position

, 0, . . .≤

K0 = 1 ; K1(x) = x ; Kn+1 = x Kn(x) − Kn−1(x) ; P̂ = κ(x − xP ) (5.18)

∗ p̂†1(t)|vac≤ = P̂e−iφ1t e− x2
2 w1 |1, 0, . . .≤ (5.19)

p̂†2(t)|vac≤ = P̂e−iφ2t xe− x2
2 w2 |0, 1, 0, . . .≤ (5.20)

...
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In a further analytical considerations the {wi } could be e.g. determined byminimizing
the energy functional with respect to these parameters. The tunneled density in Q
is forged from creation operators q̂†

k . Because the potential in the Q subspace is
assumed to have no structure (i.e. it is constant) and the absolute density is small, it
is timely to neglect the interaction part W (xi − x j ) of the Hamiltonian HQ , i.e.,

ĤQ = Q̂
N⎞

i=1

⎠
−1

2
ω2xi

⎤
. (5.21)

Under this assumption the q̂†
k operators create plane waves, the eigenfunctions of the

kinetic energy operator. Basically, in modeling the density this way one implies that
the interaction forces the bosons to occupymore than one state macroscopically. This
is quite easy for the bosons as there is no potential but their repulsive interactions.
Still, the interactions are weak enough such that the shape of the eigenfunctions of
ĤQ is the same as if there was no repulsion. Hence, the eigenfunctions are very
close to those of free, noninteracting particles and are plane waves, therefore. This
assumption is justified only for weak interactions and when the density in the Q
subspace is small. Hence, one can write for the action of the q̂†

k , while omitting the
Q-subscripts for the permanents for simplicity:

q̂†
j (t)|vac≤ = Q̂e−iρ j t e−ik j x = Q̂|0, . . . , 0, 1︸︷︷︸

j-th position

, 0, . . .≤. (5.22)

Here, too, the only time dependence inherits in a phase factor. Now all the ingredients
to write down the wave function of the whole system, |υ≤ = |υP ≤ ⊗ |υQ≤ are at
hand. As an example the model wave function for the case of two natural orbitals
describing the Q and one modeling the P subspace is given below.

|υ≤ =
⎞

�n p,�nq

C�n p C�nq

(
p̂†1(t)

⎧Np
(

q̂†
1 (t)
⎧Nq1

(
q̂†
2 (t)
⎧Nq2 |vac≤. (5.23)

Here, the coefficients C�ni for the i = P, Q subspace-configurations, and the com-
bined vacuum |vac≤ = |vac≤Q |vac≤P were used. �n p = (NP ) = (N − NQ) has to
hold because there is only one natural orbital for the condensate inside the trap and
�nq = (Nq1 , Nq2) = (Nq1 , NQ − Nq1) has to hold as one uses two orbitals for the
outside region.

The above considerations feature several nice physical properties. The tunneling
process from the P to the Q subspace can be described in this model even if the
escaping particles have several different momenta and even if the trapped bosons
form a (locally) fragmented object (see Appendix B for a concise definition of local
fragmentation/coherence). The density of the considered wave functions resembles
a sample of parabolically trapped bosons in P and interfering plane waves with
different momenta on the exterior Q. In the specific case introduced in Eq. (5.23),
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one finds a locally condensed fraction in P and an interference pattern formed by
permanents built from two plane waves with momenta k1 and k2 in Q—which is
in general (locally) fragmented, i.e., not coherent. The spatial density of the wave
function in Eq. (5.23) is a spatially extended oscillatory part in Q and a Gaussian
part in the interior P . The momentum density of such a wave function will be a
convolution of a structure peaked at k1 and k2 from the exterior part of the wave
function and a Gaussian part from the trapped, interior part of the wave function.
It is timely to stress here, that these features were found in the numerically exact
simulations (discussed in Chaps. 6 and 7) and it is hence justified to look at the
problem in this way. Of course, all the above considerations do not account properly
for the tunneling dynamics. The dynamics are caused by a coupling of the P and Q
spaces which makes the particle numbers NQ and NP time-dependent. To account
for such a coupling the model Hamiltonian needed to be modified. The above form
is block-diagonal. To include the dynamics one needed to introduce a coupling of
the P to the Q block. Yet, the presented considerations will be helpful to analyze
the many-boson tunneling process from the point of view of the energetics of the
interior and exterior subsystems. The energies can be approximately found from the
above Hamiltonians ĤP and ĤQ .

5.2.2 Model for the Energetics of the Many-Body Physics of
Tunneling to Open Space

Starting from the model in the previous section it is interesting to consider and
formulate the consequences for the physics from the point of view of the energies
which particles have in the interior or exterior part of space. Basically, the model in
this subsection comes from the de facto splitting of space by a barrier in tunneling
processes. The idea introduced and formalized above and applied here is to indeed
consider the interior and exterior subsystems as separate (interacting) many-boson
systems and find the physics that are to be expected. The strategy pursued is to
assemble the many-body process from basic transfer processes of single particle
or multiple particles. To analyze these basic transfer processes the above defined
Hamiltonians’ ĤP , ĤQ , cf. Eqs. (5.13), (5.21), eigenfunctions and corresponding
energies are used. For convenience, the interior, P-subspace is referred to as “IN”
subspace and the exterior, Q-subspace is referred to as the “OUT” subspace.

5.2.2.1 Basic Static Processes Assembling the Many-Body Physics

The initial and final physical situations in the “IN” and “OUT” subspaces are intu-
itively clear. The totally condensed initial state lives in the “IN” region and is confined
by a harmonic potential. Therefore, it can be described by a harmonic oscillator-like
product state, cf. e.g. Ref. [6]. In the final state all the bosons have tunneled out

http://dx.doi.org/10.1007/978-3-319-07085-8_6
http://dx.doi.org/10.1007/978-3-319-07085-8_7
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Fig. 5.1 Sequential Mean-Field Scheme toModel the Tunneling Processes. The bosons are ejected
from the “IN” to the “OUT” subspace (indicated by the red line). The chemical potential μi is
converted to kinetic energy Ekin,i . All the momenta corresponding to the chemical potentials ki =√
2m Ekin,i = ∞

2mμi ; i = N , N − 1, . . . , 1 appear in the momentum distribution, see Figs. 6.4,
6.8, 6.9. All quantities shown are dimensionless

and live entirely in the semi-infinite “OUT” region. According to Ref. [7] the static
many-body solution of the one-dimensional bosonic system with short range repul-
sive interaction on a semi-infinite axis can be constructed as a linear combination
of many correlated (incoherent) states. This implies that the dynamical final state of
our system is incoherent.

Tomodel the steps translating the fully coherent systems to complete incoherence,
let us first consider the situation in which exactly one boson has tunneled through
the barrier from “IN” to “OUT” and has no more connection with the interior. The
“IN”-system now has N − 1 particles and the “OUT”-system has 1 particle. By
assuming that no excitations have been produced in the “IN”-system, the trapped
bosons’ energy is exactly reduced by the chemical potential μ1 = E N − E N−1, see
Fig. 5.1.

Here Ei is the energy of the trapped harmonic oscillator product state with the
distribution of i bosons in the “IN” subspace. One assumes that the chemical poten-
tial does not depend on the number of emitted bosons, because in “OUT” V (x) ∇ 0.
Let us further ignore the inter-particle interaction in the exterior system. Energy
conservation requires then, that the chemical potential μ1 of the first boson tun-
neled from the “IN” to the “OUT” region must be converted to kinetic energy. A
free particle has the kinetic energy Ekin = k2

2m . We thus expect the first emitted
boson to have the momentum k1 = √

2m Ekin,1 = ∞
2mμ1. The above consider-

ations imply that the many-body wave function can be considered in a localized
basis |I N ; OU T ≤. The process of emission of the first boson in this basis reads
|N ; 0≤ → |N − 1; 1k1≤. Here the k1 superscript indicates that the emitted boson
occupies a state which is very similar to a plane wave with momentum k1 in the

http://dx.doi.org/10.1007/978-3-319-07085-8_6
http://dx.doi.org/10.1007/978-3-319-07085-8_6
http://dx.doi.org/10.1007/978-3-319-07085-8_6
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“OUT” subspace. Now one can prescribe the process of the emission of the second
boson as |N − 1; 1k1≤ → |N − 2; 1k1 , 1k2≤. By neglecting the interactions between
the first and second emitted bosons we can define the second chemical potential as
μ2 = EI N (N − 1)− EI N (N − 2). Thus, a second kinetic energy Ekin,2 = μ2 gives
rise to the momentum peak at k2 = ∞

2mμ2. Generally, the chemical potentials of
the systems made of N − i and N − i − 1, i = 0, . . . , N − 1, particles are different,
so the corresponding peaks should appear at different positions in the momentum
spectra. One can continue to apply the above scheme until the last boson is emitted
|1; 1k1 · · · 1kN−1≤ → |0; 1k1 · · · 1kN ≤. Figure5.1 indicates the chemical potentials for
these one-particle mean-field processes by horizontal lines and the processes by the
vertical arrows. This simplified mean-field picture of the tunneling dynamics is anal-
ogous to N processes of ionization, where the momenta of each independent process
or channel are defined by the chemical potential of the respective sources made of
N , N − 1, N − 2, etc. particles.

5.2.3 Model with Two Momenta from Single-Particle States

After the previous sections’ presented considerations on the mechanism in many-
boson tunneling to open space, the present paragraph is to shed light on the shape
and properties of the wave functions and densities of the process. It was found,
that the situation in the exterior is well-described by a discrete peak-structure in
the momentum distribution and the situation in the interior is well-described by a
coherent, Gaussian-like density. Such a situation can be straightforwardly modeled
by constructing a many-boson wave function from the following two single-particle
states:

ν1 = μ(x) + θ(x − C)eik1x ; ν2 = ρ(x) + θ(x − C)eik2x . (5.24)

μ(x), ρ(x) are assumed to be localized inside the well such that μ(x) = ρ(x) ∇ 0
if x > C holds.

From here on it remains only to derive the two particle RDM with this density
after symmetrizing it. For this lengthy but straight forward calculation as well as the
definition of the coefficients we refer the reader to Appendices D, E and display only
the result for the diagonal of the two-body RDM, diag(λ(2)), here:

diag(λ(2)) = A
[

P̂CNP C√
NP

exp
(
−w

(
x21 + x22

⎧⎧]
(5.25)

× B Q̂
(
|C2,0|2 + |C0,2|2 + |C1,1|2

+ α cos((k2 − k1)(x2 − x1))

+ π cos

(
(k2 − k1)(x1 + x2)

2

)
cos

(
(k2 − k1)(x1 − x2)

2

))
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Fig. 5.2 Structures in the Two-BodyDensity of a Two-MomentumTunneling Process. The left plot
shows the two-body density with equal coefficients, the middle plot shows the beam pattern, and
the right one the egg-carton pattern. It is evident, that the tunneling dynamics which incorporate
two momenta rather than a single momentum must have an interesting structure in their two-body
density and correlations

One ends up having three main parts of the diagonal of the reduced two-body density
matrix, a beam pattern which is weighted by α, an egg-carton pattern, weighted by
π and the trapped part of the density which resembles a condensate wave function
of a parabolic trap. See Fig. 5.2 for a plot of the structure.

The two-body correlation function, g(2), can also be calculated within this model,
it is deferred to Appendix F. This model does not include the decay dynamics so far,
but one could do this by adding a negative complex term −i�P to the Hamiltonian
operator for the interior space which will result in an exponential decay with the rate
exp(−�). Then, to keep the total wave function normalized it would be necessary to
include another complex part in the exterior subspace, i.e. add +i� in the exterior.
Yet, the above model consideration nicely shows—with very basic assumptions on
the one-particle states—how an intricate bunching and antibunching [8–10] structure
must arise in the tunneling of systems with more than one momentum.

To conclude this section, it remains to mention that a reformulation of the above
model is possible using a single-particle basis which consists in functions which are
products of a function in the interior and the plane wave exterior part:

ν1 = μ(x) · eik1x ; ν2 = μ(x) · eik2x . (5.26)

This ansatz is somewhat more realistic, because it turned out that in all the numerical
computations presented in the later Chaps. 6 and 7, the natural orbitals are delocalized
and have a shape like the one in Eq. (5.26). Explicitly, the orbitals have very similar

Gaussian like structures in the interior part of space, i.e., μ(x) ∝ e− x2
2 . The calcula-

tion of the full densities λ(1) and λ(2) is a bit more cumbersome and lengthy and is,
like the results of it, deferred to the Appendix G. In essence, its two-body density λ(2)

is the one of the above model (cf. Eq. (5.24)), but decaying exponentially in space.
One important advantage is, that the model in Eq. (5.26) and Appendix G repro-
duces also the natural occupations, λ(N O)

1/2 , of the numerical simulations reliably. It is
interesting to note here, that it’s in principle also possible to construct densities and

http://dx.doi.org/10.1007/978-3-319-07085-8_6
http://dx.doi.org/10.1007/978-3-319-07085-8_7
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momentum distributions with almost identical features from coherent product states
(see Appendix C). Although these coherent model densities are seemingly correct,
they do not capture the many-body features and the wave function in the process as
obtained numerically exactly in the following Chaps. 6 and 7. The fragmented states
in this Chapter and Appendix G are the ones that contribute to the dynamics in the
system. This is due to the TDVP selecting states that minimize the action [11]—such
states are hence delocalized and fragmented ones in the case of many-body tunneling
to open space.
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Chapter 6
Tunneling of a Many-Boson System to Open
Space Without a Threshold

There is a theory which states that if ever anyone discovers
exactly what the Universe is for and why it is here, it will
instantly disappear and be replaced by something even more
bizarre and inexplicable. There is another theory which states
that this has already happened.

Douglas Adams, The Restaurant at the End of the Universe

The scope of this chapter is to analyze the tunneling process of initially parabolically
trapped many-boson systems to open space. A scheme of the process is depicted in
Fig. 6.1. In order to really observe a tunneling process the energy of the system has to
have a value such that the one-body potential V (x, t) has classically forbidden aswell
as classically allowed domains. In the numerical example considered the energies
per particle are close to υ ≈ 1

2 and the height of the barrier is ≈2.26. This makes the
potential well and the asymptotic part (where x → √) classically allowed, because
V (x, t > 0) < υ holds. Consequently the barrier region where V (x, t) > υ is
classically forbidden. Such a situation is the paradigmatic example for the tunneling
effect to occur: due to the probabilistic nature of quantum mechanics the particles’
probability to be present on the other side of the barrier is not zero although they do
not have sufficient energy to pass over the barrier. This chapter (re-)considers the
study presented in Ref. [1].

The tunneling effect lies at the very heart of quantum mechanics (QM), as there
is no classical analogon to it and there is plenty of realizations of it in nature:
∂-decay, fusion and fission in nuclear physics, photoassociation and photodisso-
ciation in biology and chemistry [2–6] and many others more. The effect has been
a matter of discussion since the advent of QM, see Refs. [7–9] and a theoretical
overview in Ref. [10]. The physical analysis is usually made under the assumption

Electronic Supplementary Material Supplementary material is available in the online version
of this chapter at http://dx.doi.org/10.1007/978-3-319-07085-8_6. Videos can also be
accessed at http://www.springerimages.com/videos/978-3-319-07084-1.
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Fig. 6.1 Protocol of the
Tunneling Process. An initial
density λ(x, t < 0) (blue line)
is prepared as the ground state
of a parabolic trap V (x, t < 0)
(dashed black line). The trap
is transformed to the open
shape V (x, t ∀ 0) (black
line), which allows the system
to tunnel to open space.
All quantities shown are
dimensionless
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that the correlation between decay products (i.e., between the remaining and emitted
fractions of particles) can be neglected. However, it has to be stressed first that, at
any finite decay time, the remaining and emitted particles still constitute one total
many-body wave function and, therefore, can be correlated. Second, in contrast to
the tunneling of an isolated single particle into open space, which has been amply
studied and understood [10], nearly nothing is known about the tunneling of a many-
body system. To shed light onto this process the initial state of an ultracold atomic
gas of bosons is prepared coherently in a parabolic trapping potential [11] which is
subsequently transformed to an open shape allowing for tunneling (see the Fig. 6.1).
In this tunneling system the correlation between the remaining and emitted parti-
cles can be monitored by measuring deviations from the initial coherence of the
wave function. This is because the final state is entirely in open space to the right
of the barrier, where the bosons populate many many-body states, related to Lieb-
Liniger states [12–14], which are generally not coherent. It is instructive to ask the
following guiding questions for this chapter: what happens in between these two
extremes of complete coherence and complete incoherence? And how does the cor-
relation (coherence) between the emitted particles and the source evolve? Finding
the answers to these questions will allow for a deeper theoretical understanding of
many-body tunneling and explains whether the studied ultracold atomic clouds qual-
ify as candidates for atomic lasers [15–20] or as a toolbox for the study of ionization
or decay processes [2–5]. An instructive way to start investigating is to analyze the
many-body dynamics for N = 2, N = 4, N = 101 weakly repulsive (δ0 = 0.3

N−1 )
bosons computed numerically exactly with theMCTDHB. The outline of the remain-
der of this chapter is first to investigate the one-body density λ(x, t), see Eq. (2.25),
and integrals on it, Px

not (t), Pk
not (t), derived from Eq. (2.28). Subsequently one finds

the characteristic momenta involved in the process by investigating the one-body
momentum density λ(k, t), see Eq. (2.25) and last one can learn on the coherence
of the process by analyzing the natural occupations, see Eq. (2.26), and correlation
functions, see Eq. (2.27).

http://dx.doi.org/10.1007/978-3-319-07085-8_2
http://dx.doi.org/10.1007/978-3-319-07085-8_2
http://dx.doi.org/10.1007/978-3-319-07085-8_2
http://dx.doi.org/10.1007/978-3-319-07085-8_2
http://dx.doi.org/10.1007/978-3-319-07085-8_2
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Fig. 6.2 Density of Many-
Body Tunneling to Open
Space for N = 101.* To
represent the overall decay
dynamics, the density λ(x, t)
is plotted for various times
t on logarithmic scale. The
shape of the internal parts
in the left inset is almost
unchanged throughout the
time evolution and the velocity
of the wavefront is seemingly
constant. See Video 4 for the
time-evolution of the spatial
and momentum densities
in the depicted MCTDHB
simulation. All quantities
shown are dimensionless
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6.1 One-Body Density and Integrals on It

To get an overall impression of the dynamics a plot of the time-evolution of the
density of the decay by tunneling process is given in Fig. 6.2.

With time the source of bosons leaks to open space. During the process it preserves
its shape, but its absolute value decays. The constant velocity of the wavefront prop-
agating away from the well suggests that the underlying involved momenta are not
time-dependent. Qualitatively the process is identical for the other particle numbers.
To assess the nature of the decay and to study the correlation between the source
and emitted bosons with the densities it’s natural to decompose the one-dimensional
space into the internal “IN” and external “OUT” regions with respect to the top of the
barrier in Fig. 6.1. With this decomposition one is able to compute Px

not,λ(t) which
measures the probability to find a particle in the IN region:

Px
not,λ(t) =

∫ C

−√
λ(x, t)dx, (6.1)

where C is the position of the barrier [cf. Eq. (2.28)]. Its counterpart in momentum
space, Pk

not,λ(t), corresponds to the fraction of the momentum distribution which is
associated with a harmonic oscillator eigenstate:

Pk
not,λ(t) =

∫
λGauss(k, t)dk, (6.2)

whereλGauss(k, t) is obtainedby least-squaresfitting aGaussian functionλGauss(k, t)=
A(t)exp(−(B(t)x)2) to the k < 0 portion of the momentum density λ(k, t). For a
plot of these quantities for N = 2, N = 101, see Fig. 6.3.

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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Fig. 6.3 Many-BodyTunneling toOpen Space as a Fundamental Decay Process. To picture how the
fraction of atoms remaining in the trap decays with time the density related nonescape probabilities
Px

not,λ(t) in real and Pk
not,λ(t) in momentum space are depicted, indicated by the respective green

dots and solid red lines. All quantities shown are dimensionless

A first main observation is that the tunneling of bosonic systems to open space
resembles an exponential decay process—a least squares fit shows slight differences,
though: they can be attributed to the interaction. The close similarity of the Px

not,λ(t),
characterizing the amount of particles remaining in the internal region in real space,
and Pk

not,λ(t) confirms the validity of the natural decomposition of Hilbert space
into “IN” and “OUT”, cf. Sect. 5.2.1. This means that it is of interest to analyze
the local properties of the many-boson wave function in these sub-spaces (see also
Appendix B). A good point to start from is the quantities from which the Pk

not,λ were
extracted: the momentum distributions.

6.2 Momentum Distributions

The key features of the dynamics of quantum mechanical systems manifest them-
selves very often in characteristic momenta. Therefore, it is worthwhile to compute
and compare evolutions of the momentum distributions λ(k, t) of the interacting
bosonic systems. Figure6.4 depicts λ(k, t) for N = 2, 4, 101 bosons. At t = 0 all
the initial real space densities have Gaussian-shaped profiles resting in the inter-
nal region (see Fig. 6.1). Therefore, their distributions in momentum space are also
Gaussian-shaped and centered around k = 0. With time, the bosons start to tunnel
out of the trap. This manifests itself in the appearance of a pronounced peak structure
on top of the Gaussian-shaped background, see central upper panel of Fig. 6.4. The
peak structure is very narrow—similar to a laser or an ionization process, the bosons
seem to be emitted with a very well defined momentum. For longer propagation
times a larger fraction of bosons is emitted and more intensity is transferred to the
peak structure from the Gaussian background. Thus, one can relate the growing peak
structures in the momentum distributions to the emitted bosons and the Gaussian
background to the bosons in the source. The value of the estimated momentum from

http://dx.doi.org/10.1007/978-3-319-07085-8_5
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Fig. 6.4 The Peak Structures in the Momentum Distributions Characterize the Physics of Many-
BodyTunneling toOpenSpace.*The totalmomentumdistributionsλ(k, t) forN = 101 (top center)
and their peak structures for N = 2 (a), N = 4 (b), N = 101 (d), and the respectiveGross–Pitaevskii
solutions (c), at times t1 < t2 < t3 < t4. The broad Gaussian-shaped backgrounds correspond to
the bosons remaining in the trap, the sharp peaks with positive momenta can be associated with the
emitted bosons. For N = 2 one finds two peaks in panel (a), for N = 4 one finds three peaks and
an emerging fourth peak at longer times, in panel (b). In panel (d) one finds three washed out peaks
for N = 101. The corresponding GP dynamics reveal only a single peak for all times in (c). The
arrows in the plots mark the momenta obtained from the model consideration, cf. Sect. 5.2.1. See
Video 5 for the time-evolution of the momentum density and its decomposition into internal and
external parts of the MCTDHB simulation in panel (d). All quantities shown are dimensionless
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the model consideration, see Sect. 5.2.1, agrees excellently with the position of the
peak in the computed exact momentum distributions, see the arrows marked k1 in
Fig. 6.4(a)–(d). This agreement allows us to interpret the peak structures in λ(k, t)
as the momenta of the emitted bosons. As a striking feature, also other peaks with
smaller k appear in these spectra at later tunneling times (see Fig. 6.4(a), (b) and
(c)). These correspond to the momenta associated with the next chemical potentials
μ2, etc., see model in Chap. 5, Sect. 5.2.1. The momentum spectrum for N = 101
bosons shows a similar behavior—the multi-peak structures gradually develop with
time starting from a single-peak to two-peaks and so on, see Fig. 6.4(d). The close
proximity of the chemical potentials {μi } for a big particle number makes the peaks
corresponding to the trapped subsystems of different particle numbers overlap. Still,
the emission momenta are always enclosed by the first and the last chemical poten-
tials, μ1 and μN . However, from this figure one can see that the positions of the
peaks’ maxima, and with them the momenta of the emitted bosons change slightly
with time. On the one hand one can see that the considered tunneling bosonic sys-
tems can not be utilized as an atomic laser: the initially coherent bosonic source
emits particles with different, weakly time-dependent momenta. In optics a source
behaving like the bosons momentum spectrums would be called polychromatic. On
the other hand one can associate the peaks with different channels of an ionization
process and their time-dependency with the channels’ coupling. Thus, one can con-
clude that it is possible to model and investigate ionization processes with tunneling
ultracold bosonic systems. To investigate the coherence of the tunneling process
itself a comparison to the TDGP approximation is instructive. The above analysis
of the momentum spectra relied on the exact numerical solutions of the TDSE for
N = 2, 4, 101 bosons. In the context of ultracold atoms the Gross–Pitaevskii (GP)
theory is a popular and widely used mean-field approximation describing systems
under the assumption that they stay fully coherent for all times, cf. Sect. 5.1. The GP
approximation assumes that the ultracold atomic cloud coherently emits the bosons
to open space and keeps the source and emitted bosons coherent all the time. To
learn about the coherence properties of the ongoing dynamics it is thus instructive to
compare exact many-body solutions of the TDSE with the idealized GP results, see
Fig. 6.4(c). The strengths of the inter-boson repulsion have deliberately been chosen
such that the GP gives identical dynamics for all N studied. It is clearly seen that
for short initial propagation times the dynamics is indeed coherent. The respective
momentum spectra obtained at the many-body and GP levels are very similar, see
Fig. 6.4(a)–(d) for λ(k, t1 = 100). At longer propagation times (t > t1), however,
the spectra become considerably different. This means that with time, the process of
emission of bosons becomes less coherent. To assess the mechanism of this loss of
coherence, it is giving to analyze the natural occupations and the correlation functions
of the process.

http://dx.doi.org/10.1007/978-3-319-07085-8_5
http://dx.doi.org/10.1007/978-3-319-07085-8_5
http://dx.doi.org/10.1007/978-3-319-07085-8_5
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Fig. 6.5 Monitoring the Coherence of the System. Left The first order correlation functions in
momentum space |g(1)(k≤|k; t)|2 for N = 101 are plotted at t = 0, 400, 600, 700. At t = 0 the
system is totally coherent, i.e., |g(1)|2 = 1. At times t > 0, the system remains coherent everywhere
in k-space apart from the region around k = 1, where the peaks in the momentum distributions
appear. The loss of coherence, |g(1)|2 ≈ 0 only in these regions allows one to conclude that the
source (trapped) bosons remain coherent at all times while the emitted ones are incoherent. Right
The time evolution of the first few natural occupation numbers λN O

i (t) for N = 2, N = 4, and
N = 101 bosons. The coherence in the systems is gradually lost with time. The systems fragment
because more and more natural orbitals become populated. All quantities shown are dimensionless

6.3 Coherence from Natural Occupations and Correlation
Functions

To quantify the coherence and correlations between the source and emitted bosons
the momentum correlation functions |g(1)(k≤, k|t)|2 are computed and plotted in the
left panel of Fig. 6.5 for N = 101 (for N = 2, 4 they look almost the same).

It has to be stressed here that the proper correlation properties cannot be accounted
for by approximate methods. For example the GP solution of the problem gives
|g(1)|2 = 1, i.e., full coherence for all times, cf. Chap.5, Sect. 5.1 for a proof. For
the exact solution one also obtains that at t = 0 the system is fully coherent, and
thus |g(1)(k≤|k; t = 0)|2 = 1. Hence, the top left panel of Fig. 6.5 is also a plot
for the GP time-evolution. However, during the tunneling process the many-body
evolution of the system becomes incoherent, i.e., |g(1)|2 → 0. The coherence is
lost only in the momentum-space domain where the momentum distributions are
peaked, the k-region associated with the emitted bosons (see left panel of Fig. 6.5).
In the remainder of k-space the wave function stays coherent for all times. The
conclusion is that the trapped bosons within the source remain coherent. The emitted
bosons become incoherent with their source and among each other. Therefore, the
coherence between the source and the emitted bosons is lost. A complementary
argumentation with the normalized real-space correlation functions is also possible
and given below. The finding of a loss of coherence from the correlation functions
among the emitted bosons and between the emitted bosons and the source is featured

http://dx.doi.org/10.1007/978-3-319-07085-8_5
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Fig. 6.6 TheReal-SpaceNormalizedCorrelation Function of the Tunneling toOpen Space Process.
|g(1)(x ≤

1|x1; t)|2 is used to measure the spatial coherence in the decaying system of N=101 bosons
at various tunneling times. White corresponds to |g(1)|2 = 1 and black to |g(1)|2 = 0 The red lines
in the top left part separate the “IN” and “OUT” regions. Here white corresponds to full coherence
and black to complete incoherence. In the “OUT” region the spatial coherence is lost with time,
i.e., |g(1)|2 ≈ 0 on the off-diagonal |g(1)(x ≤

1 ∞= x1|x1; t)|2. The coherence of the source bosons is
conserved, because in the “IN” part |g(1)|2 = 1 for all times. See text for discussion

also in the time-evolution of the occupation numbers λ
(N O)
i (t) (see Eq. (2.26) for

their definition), as shown in the right panel of Fig. 6.5. This time-evolution for all
particle numbers N = 2, N = 4, and N = 101 shows a similar overall behavior:
Initially λ

(N O)
1 ≈ 1 up to t ≈ 100 signifies coherent dynamics. Subsequently, the

system loses its coherence gradually until it becomes fully fragmented, eventually,
severalλ(N O)

i are of a similar order ofmagnitude. To characterize the coherence of the
tunnelingmany-boson system in real space one needs to compute the normalized real
space first order correlation function g(1)(x ≤

1|x1; t) at various times t . It is depicted
for the system of N = 101 boson in Fig. 6.6.

From this figure one can see that initially the system is fully coherent, namely
|g(1)(x ≤

1|x1; t = 0)|2 = 1. For t > 0 |g(1)(x ≤
1|x1; t)|2 < 1 only in the “OUT” region,

indicating that only the emitted bosons quickly lose their coherence. In contrast, the
source bosons living in the interior around x1 = x ≤

1 = 0 remain coherent for all times.
This corroborates the findings from the first order normalized momentum correlation
function g(1)(k≤

1|k1; t) analyzed before: the bosons are ejected incoherently from
a source, which preserves its initial coherence already for the weak inter-particle
interactions δ = 0.3.

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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Fig. 6.7 Nonescape Probability for Sevenfold Stronger Interactions. To confirm that the fraction of
atoms remaining in the trap decays exponentially with time, the density-related nonescape proba-
bilities Px

not,λ(t) in real and Pk
not,λ(t) in momentum space are depicted, indicated by the respective

green dots and solid red lines. Even for stronger interactions the many-body tunneling to open space
is a close to exponential decay process

6.4 Tunneling without a Threshold and Stronger Interactions

The previous section focused on the many-body tunneling process of an initially-
coherent weakly interacting bosonic cloud. In this section, the generality of the found
mechanism of many-body tunneling is shown by first analyzing what happens in the
case of seven-times stronger interactions,δ = 2.1,when the initial state is still mostly
condensed, but exhibits a larger depletion. The nonescape probabilities Px/k

not (t) for
N = 2, 101 in are shown in Fig. 6.7.

The decay is faster than in the case of theweakδ = 0.3 interactions. The real space
quantity Px

not is also very close to the momentum space quantity Pk
not . To investigate

the mechanism of the decay, the momentum distributions for N = 2, 4, 101 bosons
and the respective TDGP calculation are plotted in Fig. 6.8 in the same way as in
Fig. 6.4 of the previous section on weak interactions.

The model described in Sect. 5.2.1 predicts well the characteristic momenta of the
dynamics also in the present case of seven-times stronger interactions, see the black
arrows in Fig. 6.8. Of course, since the interaction is stronger, the positions of the
peaks in the momentum distributions shift to higher values, compare Figs. 6.8 and
6.4. Even, when one turns to the case of two-hundred-times stronger interactions,
where the initial state is fermionized, the model predicts well the occurring momenta
in the momentum distributions as shown in Fig. 6.9 and the black arrows therein.

To conclude, this shows the generality of the found mechanism of many-body
tunneling to open space as illustrated in Fig. 6.1 of the previous section on the weak
interactions δ = 0.3.

http://dx.doi.org/10.1007/978-3-319-07085-8_5


84 6 Tunneling of a Many-Boson System

(a)-(d)

(a) (b)

(c) (d)

Fig. 6.8 Momentum Distributions for Sevenfold Stronger Interaction.* The total momentum dis-
tributions λ(k, t) for N = 101 (top center) and their peak structures for N = 2 (a), N = 4 (b),
N = 101 (d), and the respective Gross–Pitaevskii solutions (c). The arrows in the plots mark the
momenta obtained from the model consideration. Even for stronger interactions the peak structures
in the momentum distributions characterize the physics of many-body tunneling to open space.
See Video 6 for the time-evolution of the momentum density and momentum coherence for the
MCTDHB simulation shown in panel (a)

6.5 Direct Detection of the Momentum Spectra

It remains to line out the possible straightforward experimental verification of the
emerged physical picture. In typical experiments the bosons are ultracold many-
electron atoms in a very-well defined electronic state. According to the conjectures
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(b)(a)

Fig. 6.9 The Peak Structures in theMomentumDistributions Characterize the Physics of Strongly-
Interacting Bosons Tunneling to Open Space.* The total momentum distributions’ peak structures
for the N = 2 (a) and N = 4 (b) bosons with δ = 60 (the color code is as in Fig. 6.8). The
arrows in the plots mark the momenta obtained from the model consideration. See Video 7 for the
time-evolution of the momentum density and momentum coherence for the MCTDHB simulation
shown in panel (b)

Fig. 6.10 Proposed Experimental Realization of the Momentum Spectroscopy of the Many-Boson
System Tunneling to Open Space. At some propagation distance from the experiment (left panel)
the bosons are ionized by, e.g., a laser beam. Subsequently, the ions/electrons are deflected by a
static electric field and counted by a detector (center right). The momentum distribution can be
obtained as histogram from different realizations of the few- or many-boson tunneling process by
detection of the deflected particles (right)

put forward in Sect. 6.4 and Chap. 5, Sect. 5.2.2 above, the bosons will tunnel to open
space with definite kinetic energy. To detect the kinetic energy of the emitted bosons
one can utilize the techniques and principles of mass-spectrometry as schematically
depicted in Fig. 6.10.

One can place an ionization chamber at some distance from the trapping potential
to ionize the propagating bosonic atoms suddenly. The respective experimental ion-
ization techniques are presently available, see e.g. Ref. [21] and references therein.
The now charged particle will, by application of a static electric field, experience a
corresponding driving force and change its trajectory. The trajectory of the ionized
atom or, alternatively, the trajectory of the ionized electron are completely described
by the respective driving force, the electronic state of the atom and its initial kinetic
energy. By using a detector capable to detect the charged atom or a photoelectron
multiplier for the electrons one canmonitor the deflection of the ionized particle from
the initial direction of propagation. The kinetic energy and, therefore, the momentum
of the emitted boson can be calculated. By this one can detect in situ the momentum

http://dx.doi.org/10.1007/978-3-319-07085-8_5


86 6 Tunneling of a Many-Boson System

spectra λ(k, t) corresponding to different tunneling times and study the tunneling to
open space as a function of time.

For the few-particle case it is especially interesting not only to obtain the momen-
tum spectra, but also to monitor the time-ordering in which the peaks appear, i.e., to
monitor the time evolution of the momentum peak densities λ(k, t). In such an
experiment one can see whether the signals corresponding to the different ki ,
i = 1, . . . , N , will be detected sequentially, starting from the largest momentum,
or they appear to some degree simultaneously. The latter case is a clear indication
that the tunneling is a combination of several single particle tunneling processes
happening simultaneously, as predicted in the previous section. Additionally, this
measurement would be among the first direct observations of the dynamics of coher-
ence and normalized correlations in ultracold bosonic systems.

To summarize, the deterministic preparation of few particle ultracold systems is
now possible, see Ref. [22]. Mass-spectrometry is one of the most well-studied tech-
niques and working tools available and even more sophisticated detection schemes
have been developed on atom chips (see Ref. [23]). The combination of these facili-
tiesmakes the detailed experimental time-resolved study of the tunnelingmechanism
feasible at present time.

6.6 Connection of the Numerical Experiment to Prior Model
Considerations

Let us first compute the momenta available in the system of N = 2 bosons with inter-
particle interaction strength δ0 = 0.3, following Ref. [24]. The difference between
the total energies of the trapped system made of N = 2 and N = 1 bosons provides
k1 = 1.106. The second momentum associated with the emission of the last boson
from the parabolic trap gives k2 = 1.000. A similar analysis done for the system of
N = 4 bosons with the interparticle interaction strength δ0 = 0.1 [δ0(N −1) = 0.3]
gives k1 = 1.106, k2 = 1.075, k3 = 1.038 and k4 = 1.000 for the first, second, third
and fourth momentum, respectively. To relate the model and the full many-body
results we draw the momenta estimated from the respective chemical potentials
in Figs. 6.4, 6.8 and 6.9 by vertical arrows. The agreement between the momenta
obtained from the model and the respective ones from the dynamics is very good,
see the arrows and the peaks in the orange framed plots in Figs. 6.4(a) and (b).
From this figure it is clearly seen that the later in time we look at the momentum
distributions λ(k, t), the closer the peaks’ maxima locate to the estimated results.
Moreover, our model explains why for N = 101 the peaks are washed out. The
chemical potentials of neighboring systems made of a big particle number (101 and
100, for instance) become very close and, as a result, the corresponding peaks start
to overlap and become blurred. Nevertheless, they are always enclosed by the first
and last chemical potentials contributing, see the labels k1 and kN in Fig. 6.4(d).
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The good agreement between our model and full numerical experiments validates
the applicability of the emerged physical picture to the tunneling to open space.
We continue by excluding the possibility that the observed peaks in the momentum
spectra can be associated with excitations inside the initial parabolic trap potential.
This can be done straightforwardly by calculating the chemical potentials associated
with the configurations where one or several bosons reside in the second, third, etc.
excited orbitals of the trapped system. It is easy to demonstrate that the bosons emitted
from these excited orbitals would have higher kinetic energies resulting in spectral
features with higher momenta. Since the computed spectra depicted in Figs. 6.4, 6.8
and 6.9 do not reveal such spectral features we conclude that the excitations inside
the initial parabolic trap potential do not contribute to the tunneling process in a
visible manner.

The above analysis suggests that the overall many-body tunneling to open space
process is assembled by the elementary mean-field-like tunneling processes anal-
ogous to the ionization of the systems made of different particle numbers which
are happening simultaneously. We also are in the position to deduce now that every
elementary contributing process is of a single-particle type. Indeed, if it were a
two-particle process, the kinetic energy of the emitted bosons would have been

Ekin
2b =

(
k2b
1

)2+(
k2b
2

)2

2·2m . For large N one can assume that the chemical potentials of the
first two processes are almost equal, i.e., μ2b

1 ≈ μ2b
2 ≈ 2μ1. The momentum associ-

atedwith a two-particle tunneling processwould be k2b
tot = ≡

4mμ1 = ≡
2k1—which

is far out of the domain where the peaks occur in the exact solutions.
In conclusion this chapter has shown how the many-body tunneling to open space

process is built up by concurrently happening single-boson ejections. These emerge
from sources with different particle numbers and convert the respective different
chemical potentials to kinetic energies. Model predictions agree extremely well with
the exact solution of the TDSE. The mechanism of fragmentation is explained by
a loss of the coherence of the emitted bosons both among each other and with the
source.
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Chapter 7
Tunneling of a Many-Boson System to Open
Space with a Threshold

When we remember that we are all mad, the mysteries disappear
and life stands explained.

Mark Twain

This chapter is dedicated to investigate how to control the tunneling process of
the many-body system by introducing a threshold in the one-body potential of the
Hamiltonian of the system. In the present case this is done by setting the potential
to a constant value in the asymptotic region: The threshold T . The considerations
presented in this chapter are related and extend [1]. The protocol for the process is
unaltered: the ground state of an interacting system in a parabolic trap is prepared,
then the potential is abruptly transformed to an open shape and finally the dynamics
are analyzed from a many-body perspective and for different interaction strengths
υ0. To describe and assess the impact of the threshold on the occurring dynamics, it
is appropriate to find a suitable smooth shape for the potential and then to analyze
the energetics in this new potential. This can be achieved starting out from the con-
jectures presented in Chap. 6 and the model in Sect. 5.2.1. The viewpoint of available
energies in the problem is subsequently used to control the final state as well as the
correlation dynamics of the process with the threshold T and the interaction strength
υ0. Illustrative numerical examples are given and discussed. In the wider context of
atom lasers [2–6] and ionization processes, the modification of the threshold T and
the interaction strength υ0 result in a modification of the ionization threshold, the
characteristic velocity of the emission and the distance of the peaks in the momen-
tum distribution. Hence, manipulating the threshold and the interaction, one is in the
position to configure the dynamics of the ultracold atoms such that these dynamics
simulate the desired ionization or atom laser process.

Electronic Supplementary Material Supplementary material is available in the online version
of this chapter at http://dx.doi.org/10.1007/978-3-319-07085-8_7. Videos can also be
accessed at http://www.springerimages.com/videos/978-3-319-07084-1.
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7.1 Setup

The setup of the system is very similar to the setup of the tunneling with zero
threshold. The aim of this section is to give an outline of the changes with respect
to the potential used for the tunneling dynamics with zero threshold in Chap. 6,
Sect. 6.1.

The Potentials

In order to be flexible with the threshold T it is practical to use a smooth polynomial
continuation of the harmonic trap Vh(x) = 1

2 x2 from xc1 = 2 to xc2 = 4. There are
four constraints to the polynomial continuation, namely: the polynomial and its first
derivative have to be equal to the potential and its derivative at both connection points
xc1 and xc2. Therefore, a polynomial of at least third order with four coefficients,
A, B, C, D, to satisfy the four constraints is required:

P(x) = Ax3 + Bx2 + Cx + D (7.1)

With the constraints

P(xc1) = Ax3c1 + Bx2c1 + Cxc1 + D = Vh(xc1) =2 (7.2)

d

dx
P(x) |x=xc1= 3Ax2c1 + 2Bxc1 + C = d

dx
Vh(x) |x=xc1=2 (7.3)

for the connection at xc1 to the harmonic trapping potential Vh(x) and

P(xc2) = Ax3c2 + Bx2c2 + Cxc2 + D =T (7.4)

d

dx
P(x) |x=xc2= 3Ax2c2 + 2Bxc2 + C = d

dx
T =0 (7.5)

for the connection to the constant threshold T at xc2. From these four equations the
coefficients A(T ), B(T ), C(T ), D(T ) are obtained. Hence, one can manipulate the
threshold T arbitrarily while maintaining a smooth potential. The coefficients are
collected in Table 7.1.
The overall potential then reads:

V (x) = ∂(xc1 − x) · 1
2

x2 +∂(x − xc1) ·∂(xc2 − x) · P(x)+∂(x − xc2) · T (7.6)

where ∂(·) is the Heaviside step function. Plots of the potential with T = 0.1, . . . ,

2.0 are depicted in Figure7.1.

By using a polynomial continuation to the threshold, the position of the maximum
of the potential (xm) now depends on the threshold T as follows:

http://dx.doi.org/10.1007/978-3-319-07085-8_6
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the potential is transformed to its open form with a threshold (various solid colored lines, V (x, t >

0)). This allows for a tunneling process to open space—inhibited by a threshold—to occur. The
energy of a single, parabolically trapped particle, E(N = 1), is indicated by the horizontal black
dashed line. The initial potential, V (x, t = 0), is the same as in the tunneling dynamics with zero
threshold. Between xc1 and xc2 (indicated in magenta on the x-axis) the potential is the polynomial
P(x) of Eq. (7.1) with the coefficients as given in Table7.1. Figure reprinted from Ref. [1]

Table 7.1 Parameters of the Potential with a Threshold

Coefficient Dependency on T Value at T=0.5

A A(T ) = − 1
4 T + 1 0.875

B B(T ) = 9
4 T − 19

2 8.375
C C(T ) = −6T + 28 25.0
D D(T ) = 5T − 24 21.5

xm(T ) = 2 + 1

3 − 3
4T

. (7.7)

Some quantities of interest now depend on the threshold, such as the nonescape
probability

Pnot (T, t) =
xm (T )∫

−∞
λ(x, t)dx, (7.8)

because it should measure the remaining density up to the maximum of the barrier
xm(T ) defined in Eq. (7.7).
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Fig. 7.2 Scheme toModel the Tunneling with a Threshold T by Concurrent Mean-Field Processes.
The bosons are tunneling from the “IN” to the “OUT” subspace (indicated by the red line). If the
threshold is large enough, some particles might become bound (see e.g. the N = 1 state indicated
by the lowest black line in the above plot). The chemical potential μi is first used to overcome the
threshold T and the remainder is transformed to the kinetic energy Ekin,i if the state is not bound.
The momenta corresponding to the chemical potentials ki = √

2m(Ekin,i ) = √
2m(μi − T ); i =

N , N − 1, . . . , 1 appear in the momentum distribution, see the arrows in Fig. 7.5 and lines in
Fig. 7.6. All quantities shown are dimensionless. Figure reprinted from Ref. [1]

7.2 Threshold Potentials and Their Dynamics from the Point
of View of Energetics

Starting from the model consideration in Sect. 5.2.1 and its successful description of
the tunneling dynamics of systemswith zero threshold inChap. 6, it is straightforward
to adapt themodel to the present potentials with a threshold. One can conveniently do
that by going through the steps of the model consideration in Sect. 5.2.1 again, care-
fully taking into account the impact of the threshold onto the energetics—especially
in the external part of the potential.

As a first step, it is natural to consider the system as split into an “IN” part, to
the left of the maximum of the barrier at xm , and an “OUT” part to the right of the
maximum of the barrier at xm . For a depiction, see Fig. 7.2. Consider the situation,
when a single boson has escaped from the “IN” to the “OUT” region. According
to the previous consideration in Sect. 5.2.1, the available energy of this boson must
come from the energy difference of the trapped systems with N and with N − 1
particles, E N − E N−1 = μ1 — the chemical potential of the N -particle system.
With this energy available, the ejected boson has to overcome the threshold T—
hence, it remains with an energy μ1 − T in the “OUT” part of the potential to the
right of the barrier. As the potential in the “OUT” part is flat the ejected boson will
convert its available energy to kinetic energy. Because the density can be assumed to
be small, the effects of the interaction on the plane wave nature of the wave function
can be neglected. Analogous to the model in Sect. 5.2.1, the other particles, hence,

http://dx.doi.org/10.1007/978-3-319-07085-8_5
http://dx.doi.org/10.1007/978-3-319-07085-8_6
http://dx.doi.org/10.1007/978-3-319-07085-8_5
http://dx.doi.org/10.1007/978-3-319-07085-8_5
http://dx.doi.org/10.1007/978-3-319-07085-8_5
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are ejected taking their available energy from the chemical potentials μi . One can
derive momenta ki from the related kinetic energies and the threshold:

Ekin,i = μi − T = k2i
2m

√ kT
i = √

2m(Ekin,i ) = √
2m(μi − T ). (7.9)

This assumes that the interaction in the exterior only forces the bosons to occupy
different single-particle states and ignores the effect of the interaction on the shape
of these states in the “OUT” part of space. It is further evident, that in the case of the
absence of interaction, all chemical potentials are equal, i.e.,μ1 = μ2 = · · · = μN .

A particularly interesting feature of the class of potentials with non-zero asymp-
totic value is that they can have bound states. If one raises the threshold T beyond
the chemical potential μl of a certain parabolically trapped L-boson system then the
boson to be ejected does not have enough energy to overcome T and stays trapped—
hence, the system is in a bound state (cf. Fig. 7.2 and Eq. (7.9)). One can thus control
the number of bound particles with the interaction υ0 and the threshold T . By manip-
ulating the interaction υ0 the energies and particularly the chemical potentials can
be controlled, and by adjusting the threshold T , the number of bound particles can
be regulated. In the case of a vanishing interaction, the threshold T controls whether
the whole system is bound or not. It is convenient to adopt the |I N , OU T ∀ notation
of the model in Sect. 5.2.1. The energy for the “IN” subsystem, EI N , is given by the
energy of NI N interacting bosons in a parabolic potential, EH O(NI N ). The minimal
energy for the “OUT” system, EOU T , is given by NOU T bosons at rest, i.e., with
momentum k j = 0, at threshold potential energy, hence, EOU T = NOU T · T . It
follows for the total energy ET OT :

ET OT (NI N , NOU T , T, υ0) = EH O(NI N ) + NOU T · T . (7.10)

To summarize, one can adjust the energies of the initial states, EI N by tuning the
interaction and the energies of the final states, EOU T , by tuning the threshold T . The
following subsections explore these possibilities for the tunneling bosonic systems
with a threshold constituted by N = 2,N = 3, and N = 101 particles, respectively.

7.3 Controlling the Dynamics of Two Bosons by the Threshold

As a first step to explore the dynamics in the new potential with a threshold and
the physics of the above model it is instructive to fix the interaction υ0 and vary
the potentials’ threshold. Fig. 7.3 shows the energies of the possible final states
with constant interaction and variable threshold, i.e., ET OT (NI N , NOU T , T, υ0 =
1.0)|NI N +NOU T =2.

The respective lowest line in Fig. 7.3 shows the energetically favorable final state
for the dynamics. Hence, the crossing points of the lines define critical thresholds at
which the energetically favorable final state of the dynamics is changing. It would

http://dx.doi.org/10.1007/978-3-319-07085-8_5
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Fig. 7.3 Scheme for Controlling the Two-Boson Dynamics with the Threshold T . This plot shows
the total energies ET OT = EH O (Nin) + T Nout of the possible final states, |2, 0∀, |1, 1∀ and |0, 2∀
of two bosons at fixed interaction υ0 = 1.0 and variable threshold T . At T = 0.5 a one-particle
bound state emerges in the trap and at T ≤ 0.8 the two-boson system becomes bound. The crossing
points determine the (un)availability of final states. See text for further discussion. Figure reprinted
from Ref. [1]

expected that for T ∞ 0.5 both of the particles decay, and for 0.5 < T � 0.8 one
particle decays and the other stays bound. For T � 0.8 the whole system is bound
and no particle decays. This behavior is because the final states available are |0, 2∀,
|1, 1∀ and |2, 0∀, respectively. The nonescape probability Px

not (t) should tend to 0 for
the |0, 2∀ final state, to 0.5 for the |1, 1∀ final state and stay at 1 for the bound |2, 0∀
final state. To verify this behavior Fig. 7.4 shows a plot of the nonescape probabilities
for the thresholds T = 0.1, 0.6 and 0.9.

One can see nicely that the expected behavior of the nonescape probability is
recovered and that the prior analysis of the energetics of the problem is applicable.
Furthermore, the above analysis demonstrates, how the threshold can be used to
control the final state of the dynamics by modifying EOU T = NOU T · T . By tuning
T · NOU T beyond the chemical potential of an NI N -body system, an NI N -body
bound state is created. This allows for a flexible control of the counting statistics in
the “IN”-subspace and the “OUT”-subspace. It remains to validate the predictions
of the energetics model presented in Fig. 7.2 on the momenta of the ejected particles,
see Eq. (7.9). For this validation it is good to inspect a plot of the peak structure
in the momentum distribution of the tunneling processes occurring at equal times
and varying different thresholds. See Fig. 7.5 for plots of λ(k, t, T ) for t = 600 and
T = 0.1 to T = 0.6.

The changes in the momentum distributions by the threshold are intuitive. The
peak structure in the momentum distribution corresponds to the ejected bosons. If
the threshold is increased, two effects upon the peaks are seen. First, by a larger
threshold the peak is shifted towards 0, as the escaping bosons have to invest a larger
part of their available energy to overcome the threshold (cf. Eq. (7.9)). Second, the
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Fig. 7.5 Effects of Various Thresholds in the Momentum Distributions’ Peak Structures.* This
plot depicts λ(k, t = 600) for the tunneling processes in the potentials with thresholds T =
0.0, 0.1, . . . , 0.6. The arrows at the bottom of the plot indicate the momenta kT

1 obtained from
the model consideration. The momenta are shifted towards 0 by an increasing threshold T . The
intensity, i.e. λ(kT

1 , t = 600), of the peaks is diminished by an increasing threshold. See Video 8
for the time-evolution of the momentum density for the depicted MCTDHB simulations. See text
for further discussion. Figure reprinted from Ref. [1]

higher the threshold, the smaller is the intensity of the kT
1 peak, i.e. λ(kT

1 , t = 600).
This means that the increase of the threshold decreases the rate with which the first
boson is escaping.
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As in the previous case of the tunneling to open space with 0 threshold, the
agreement of the peaks’ positions in k-space with the model’s prediction is very
good (see the arrows in Fig. 7.5). To further determine the validity of the model,
especially also for the second peak at kT

2 , it is instructive to graph the change of the
peak positions with varying threshold (see Fig. 7.6).

From the good agreement of the model predictions to the peaks of the exact solu-
tions in Fig. 7.6, it can be deduced that the tunneling process of the many-boson
system can indeed be pictured as an interference of different single-boson tunnel-
ing processes. These single-boson processes are happening simultaneously. Their
momenta are determined by the chemical potentials of systems with different parti-
cle numbers. The momenta are shifted by the threshold. When the threshold is above
the chemical potential of a certain process a bound state emerges and the momentum
of this process becomes zero (see k2, i.e., green line in Fig. 7.6 at T ≡ 0.5). The
emergence of a bound state in the system closes at least one of the final states. In
the present case of N = 2, υ0 = 1 the final state |NI N , NOU T ∀ = |0, 2∀ becomes
energetically unfavorable for T ≡ 0.5 and consequently the counting statistics of
the final state are altered to |NI N , NOU T = |1, 1∀ (see Fig. 7.3) and the nonescape
probability Px

not (t) of the decay converges to NI N = 1 from above (see Fig. 7.4).
Several different quantities can be controlled in the many-body tunneling dynam-
ics to open space by modification of the threshold. First, the counting statistics can
be controlled with the threshold by creating bound states. Second, this implies a
control on the momentum spectra of the emitted bosons. Peaks can be switched off
(on) by making the corresponding single-boson process energetically unaccessible
(accessible).
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by the increase of the threshold T . See text for further discussion. Figure reprinted from Ref. [1]

Effect of the Threshold on the Coherence and Correlation Dynamics

In Sect. 6 on the tunneling process of bosonic systems to open space without a thresh-
old, the discussed dynamics of correlation and coherence were of key importance.
The ejected bosons loose the coherence both with the source and among each other.
As processes with a threshold are explained by a similar model, one would expect
the correlation or coherence properties of the present process with a threshold to be
similar to those properties of the process without a threshold. To prove this behav-
ior, this section discusses the quantities describing the dynamics of coherence: the
occupation numbers λ

(N O)
i (t) of the single-particle reduced density matrix and the

one-particle and two-particle normalized correlation functions g(1) and g(2).

Time-Evolution of the Occupation Numbers

To find the effect of a change in the potentials threshold on the time-evolution of
the occupation numbers, it is a good start to plot them for N = 2, υ0 = 1.0 and
thresholds T = 0.0, 0.1, 0.2, . . . , 0.6 in Fig. 7.7.

The behavior of the occupation numbers upon increasing thresholds is as follows:
as the process is slowed down by the threshold, the occurrence of fragmentation is
delayed. Furthermore, the initial depletion of the system is delayed, i.e., λ(N O)

1 ≤ 1
holds for a longer initial time, when T is bigger. It is very interesting to note that
the development of fragmentation persists also in the cases of T ≡ 0.5, where
a one-boson bound state emerges and the counting statistics of the final state are
changing from |0, 2∀ to |1, 1∀. This is somewhat counterintuitive, because one would
naively argue that the final state |1, 1∀ could be described with a single permanent
(see Eq. (2.8)). Yet, the chosen |NI N , NOU T ∀ notation refers to the counting statis-

http://dx.doi.org/10.1007/978-3-319-07085-8_6
http://dx.doi.org/10.1007/978-3-319-07085-8_2
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Fig. 7.8 Coherence inTunneling toOpenSpacewith aThreshold. Shown is the absolute value of the
single-particle normalized correlation function, |g(1)(k→, k; t)|2 for t = 600 for various thresholds
T . White corresponds to full first-order coherence, i.e., |g(1)|2 = 1 and black to full first-order
incoherence, i.e., |g(1)|2 = 0. Black, i.e., |g(1)|2 ≤ 0 lines appear at the positions of the peaks in
the momentum distribution (cf. Figs. 7.5 and 7.6). The ejected particles lose the coherence with the
source. The change of the final state manifests in the absence of a second line where coherence is
lost (cf. bottom right plot for T = 0.6). See text for further discussion. Top left, bottom left and
bottom right Panel of Figure reprinted from Ref. [1]

tics and not to permanents or eigenfunctions of a many-body Hamiltonian. Hence,
fragmentation is occurring anyways because one needs possibly many permanents
to represent the final |NI N = 1, NOU T = 1∀ state.
Effects of Threshold on the Coherence and Correlation Dynamics

To explore, whether there is an effect of the threshold on the correlation dynamics
during the fragmentation in the tunneling to open space, the normalized single-
particle correlation function g(1) has to be inspected. See Fig. 7.8 for a plot of g(1)

in momentum space.
In the correlation functions in Fig. 7.8 the single-particle processes, from which

the many-boson tunneling process is built up, are seen as lines of incoherence. The
positions of these lines coincide with the momenta k1, k2 predicted by the model
considerations in Sect.7.2. During the time-evolution, the positions of the lines and
hence the structure of g(1) does not change and it is therefore sufficient to depict
g(1) at a single point in time. With the increase of the threshold the system’s final
state is changed from |0, 2∀ to |1, 1∀, i.e., only one of the two particles is decay-
ing for T ≡ 0.5. This change manifests itself in the correlation functions by the
disappearance of the line at k2 corresponding to the now energetically forbidden
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Fig. 7.9 Bunching and Anti-Bunching in Tunneling to Open Space with a Threshold. Shown is
the value of the diagonal of the two-particle normalized correlation function, g(2)(k1, k2; t) for
t = 600 for various thresholds T . The cases of T = 0.0 and T = 0.2 show anti-bunching for the
k-space region with the first peak in the momentum distributions and anti-bunching for the region
of the second peak. Increasing the threshold gradually switches off the second peak and leaves
behind a slightly anti-bunched single line. Throughout the time-evolution (not shown) the peaks on
the diagonal at k1 = k2 = kT

1 and k1 = k2 = kT
2 attain maximal bunching. See text for further

discussion

process (cf. e.g. bottom left and bottom right part of Fig. 7.8). By the increase of the
threshold the loss of coherence around the momentum k2 is gradually decreasing
until it becomes fully coherent for the T = 0.6 case, eventually. In this manner,
peak after peak, corresponding to the model processes, is becoming fully coherent,
as soon as the corresponding final state is energetically unfavorable. It is interesting
that the coherence of the system is still lost in the cases where only a single particle
is ejected (statistically). Hence, the two-body correlations in the tunneling process
should be considered. The two-body correlations should show changes of the many-
boson process, when the system is switched from two-boson to one-boson decay. In
the spirit of Hanbury Brown and Twiss, Refs. [7–9], the situation where g(2) > 1 is
referred to as bunching and g(2) < 1 is referred to as anti-bunching. For a plot of
g(2) in momentum space for t = 800, see Fig. 7.9.

The structure of the diagonal of the two-particle normalized momentum
correlation function, g(2)(k1, k2) is intricate: it has a line-structure similar to g(1)

in Fig. 7.8. Yet, in the case of g(2) coherence can be lost in two ways—through
bunching, i.e. g(2) > 1, or anti-bunching, i.e. g(2) < 1. In the case of bunching, the
two momenta are likely to occur together whereas in the case of anti-bunching they
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are not. From the general structure of Fig. 7.9 it can be observed that the resting part
of the cloud, i.e., where k1 = k2 ≤ 0, is initially and throughout the tunneling process
a slightly anti-bunched, almost second order coherent entity, because g(2) � 1 holds
for k1 = k2 ≤ 0 at all different thresholds T . The lines are located at kT

1 and kT
2

where the peaks in the momentum distribution are. The first line at the bigger kT
1

shows bunching whereas the second line at the smaller kT
2 shows anti-bunching. This

means that it is likely to find one boson at rest and onewith kT
1 , while it is rather likely

that the second boson also propagates when one finds the first one at kT
2 . The change

in the final state of the tunneling process is again visible by the disappearance of the
line around kT

2 (cf. bottom right part of Fig. 7.9). The diagonal point at kT
1 = k1 = k2

is strictly anti-bunched in this case. The line structure is less bunched. This behavior
is expected because only one boson can leave and, hence, it is becoming more and
more likely to have a boson at rest and another one propagating with kT

1 . In those
cases where both bosons are decaying, the degree of sequentiality can be assessed
with g(2): when one analyzes the line around kT

2 in the plots of g(2) for T = 0.0, 0.2
and 0.4 bunching occurs only at the intersections with the other lines and this means
that it is very likely that one boson has already left the trap and propagates with
momentum kT

1 when the second one follows with momentum kT
2 .

In the cases of two-particle decay, the intensities of the peaks at the intersection
points of the lines are time-dependent. The ratio of the intensities of the peaks/holes
at k1 = k2 = kT

1 and k1 = k2 = kT
2 on the diagonal to the intensities of the

peaks/holes on the off-diagonal at k1 = kT
1 ; k2 = kT

2 and k1 = kT
2 ; k2 = kT

1 and
the dynamics show the interference of the simultaneously happening single particle
emission processes in themodel consideration fromSect. 7.2. The interference causes
the final state of the dynamics to contains two bosons neither of which is propagating
with a specific momentum, but rather both bosons are simultaneously propagating
with the momenta kT

1 and kT
2 to a certain degree.

To summarize, the dynamics of the tunneling process to open space can be con-
trolled by the threshold T . The occurrence of bound states manifests itself by closing
final states of the dynamics. The energies available in the decay process are obtained
from the chemical potentials of systemswith reduced particle number. These energies
are first used to overcome the threshold and subsequently converted to characteris-
tic momenta. The coherence of the ejected particles with the source is lost and the
bunching and anti-bunching properties explain to which degree the processes occur
(non-)sequentially and show the dynamics of the interference of the single-particle
emission processes.

7.4 Controlling the Dynamics of Three Bosons by the
Interactions

The aim of this section is to underline and corroborate the generality of the findings
of the previous section for larger particle numbers. The control mechanism employed
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Fig. 7.10 Energetics of the N = 3 System with a Threshold of T = 0.7. This plot shows the
minimal energies ET OT (NI N , NOU T , T, υ0) which are needed to allow the different final states
|NI N , NOU T ∀ = |3, 0∀; |2, 1∀, |1, 2∀, and |0, 3∀, as solid green, red, blue, and magenta line, respec-
tively. The crossing points at υck show for which interactions final states are available. See text for
discussion. Figure reprinted from Ref. [1]

for the final states is generalized: instead of the interaction strength υ0 the threshold
T is kept at a fixed value, T = 0.7. By changing υ0 it is possible to determine which
final states are favorable in the dynamics.A plot of ET OT (NI N , NOU T , T = 0.7, υ0)
for N = NI N + NOU T = 3 particles is given in Fig. 7.10.

Here, only the energies of |3, 0∀, and |2, 1∀, i.e., ET OT (NI N = 3, NOU T =
0, T = 0.7, υ0), and ET OT (NI N = 2, NOU T = 1, T = 0.7, υ0), are dependent
on the strength of the interaction, υ0. The energies of both |1, 2∀, and |0, 3∀, on
the other hand, are independent of υ0 in the considered model. The reason is that
the energy of a single boson does not depend on the interaction (EH O(1) = 0.5)
and the interaction in the exterior is neglected in the model. The energy of |1, 2∀
is ET OT = (1, 2, 0.7, υ0) = 0.5 + 2 · T = 0.5 + 1.4 = 1.9 and the energy of
|0, 3∀ is ET OT (0, 3, 0.7, υ0) = EH O(NI N = 0) + 3 · T = 3 · 0.7 = 2.1. These are
the minimal energies the system would need in order to eject two or three particles,
respectively. The energy of the final state, in which a single particle has tunneled,
ET OT (2, 1, 0.7, υ0) = EH O(NI N = 2) + 1 · T = 0.7 + EH O(NI N = 2), is
dependent on the interaction, because the energy of the trapped system, EH O(NI N =
2), with two bosons depends on interaction and so does the energy of the trapped
system |3, 0∀ for the analogous reason.

If an interaction υ0 smaller than υc1 is chosen for the initial state of N = 3
parabolically trapped particles, the system becomes bound at a threshold of
T = 0.7 because all the possible final states, |2, 1∀, |1, 2∀, and |0, 3∀ are energetically
not available. If one chooses an interaction of υc1 ∞ υ0 ∞ υc2 , then the final state
|2, 1∀ is energetically allowed, i.e., EH O(3) > ET OT (2, 1, 0.7, υ0), but the other
final states are energetically forbidden. In this regime, the N = 3 system should thus
decay by emitting a single boson, leaving behind two bound bosons. In the case of
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e.g. υc3 > υ0 > υc2 , two final states, i.e., |2, 1∀, and |1, 2∀, are energetically allowed,
because EH O(3) > ET OT (1, 2, 0.7, υ0) > ET OT (2, 1, 0.7, υ0). In this situation,
it turns out that the energetically lowest configuration is the actual final state. This
means that e.g. in the above case of υc3 > υ0 > υc2 one finds the final state of the
dynamics to be |2, 1∀, i.e., the ejection of a single particle is preferred. This can be
illustrated by the physics of decay processes: the rate at which a decay process is
occurring is determined by the overlap of the initial and the final states. Intuitively,
the overlap of the |NI N = 3, NOU T = 0∀ and |NI N = 2, NOU T = 1∀ states is
larger than that of the |NI N = 3, NOU T = 0∀ and |NI N = 1, NOU T = 2∀ states.
This is simply due to their contributions in the I N subspace. Furthermore, there is
also an overlap of the |NI N = 1, NOU T = 2∀ and the |NI N = 2, NOU T = 1∀ states.
This means that there is a rate with which |NI N = 1, NOU T = 2∀ is transformed
to |NI N = 2, NOU T = 1∀. With this reasoning the final state is, hence, the ener-
getically lowest final configuration. One can apply a similar reasoning for the other
critical interactions υc4 , υc5 . It is interesting to note the peculiarity of the process—
determined by the overlap of |NI N = 1, NOU T = 2∀ and |NI N = 2, NOU T = 1∀:
the trapped particle number NI N is actually increasing by one. With this reasoning it
should thus be possible to find sets of parameters for which the nonescape probability
of the system increases for a limited amount of time. This is at times at which the
predominant part of the wave function is similar to e.g. |NI N = 1, NOU T = 2∀.
However, in all the presented examples in this section this was not the case. This
makes the following conclusion tempting: the rate at which the above-mentioned
transformation of |NI N = 1, NOU T = 2∀ to |NI N = 2, NOU T = 1∀ is very large
and this makes the observation of the counterintuitive behavior of the nonescape
probability impossible. Any population in |NI N = 1, NOU T = 2∀ is momentarily
shifted to |NI N = 2, NOU T = 1∀ and the respective counting statistics cannot be
found.

In order to consistently investigate such populations so-called loss operators are
needed (see Appendix A). With these loss operators the time-evolution of the popu-
lation of any final state is, in principle, accessible. In the current implementation of
theMCTDHB [10], these loss operators are not available. To check the validity of the
above considerations, it remains to quantify the counting statistics in the dynamics
with the nonescape probabilities Px

not (t), cf. Chap.6, Sect. 6.1.

7.4.1 Nonescape Probabilities

To verify the above considerations, it is timely to first analyze the time-evolution
of the nonescape probabilities, Px

not (t) in the given example of N = 3 bosons in
a potential with T = 0.7 for various interactions υ0. For a plot of all nonescape
probabilities, corresponding to the different possible final states, see Fig. 7.11.

The behavior of the nonescape probabilities also for N = 3 is as predicted from
the energetics: when a certain final state becomes energetically unavailable, then the
counting statistics of the final state change. For example, for υ0 = 0.5, the available

http://dx.doi.org/10.1007/978-3-319-07085-8_6
http://dx.doi.org/10.1007/978-3-319-07085-8_6
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Fig. 7.11 Time-Evolution of Nonescape Probabilities for Different Final States for N = 3 Bosons.
The dependence on the interaction υ0 of the nonescape probability for N = 3 bosons tunneling to
open space in a potential with a threshold of T = 0.7 is shown. The interactions and the threshold
were chosen according to energetics (cf. Fig. 7.10) of the process such that there is a bound state
for either N = 1 (red and blue solid lines) or N = 2 (green solid line) bosons. See text for further
discussion

final state in the |I N , OU T ∀ notation is |2, 1∀—consequently, the normof the density
in the “IN” subspace, i.e., the nonescape probability Pnot , converges to 2

3 . In the case
of the stronger interaction υ0 = 1.0, the final state |1, 2∀ is energetically favorable
and consequently the nonescape probability converges to 1

3 . The model introduced
in Sect. 7.2 is indeed accurate in predicting the counting statistics of the tunneling
to open space process with a threshold also for the control of the process with the
interaction for N = 3 bosons.

It remains to analyze the many-body physics of coherence and correlations also
for the N > 2 cases.

7.4.2 Coherence and Correlations in the Tunneling Process with a
Threshold for N = 3

In order to determine the effects in the processes’ correlation and coherence dynam-
ics, it is convenient to investigate the correlation functions g(1) and g(2) inmomentum
space. Fig. 7.12 shows the coherence |g(1)(k1, k→

1, t = 800)|2 for different interac-
tions and afixed threshold T = 0.7 in the left and center panel. For convenience and in
order to display all possible final states of the dynamics with an |NI N = 3, NOU T =0∀
initial state, the right panel of Fig. 7.12 shows the coherence in the T = 0 dynamics.

Indeed, the behavior of the case of N = 2 bosons is reproduced in the dynamics of
the coherence in the tunneling to open space process of N = 3 bosons. Upon increase
of the interaction υ0 across the critical value for the availability of a certain final state,
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Fig. 7.12 Coherence Dynamics in Tunneling to Open Space with a Threshold for N = 3 Bosons.⊗
The first order correlation function |g(1)|2 is plotted for three different final states with NI N = 2,
1, and NI N = 0 in the left, middle and right Panel, respectively, for the time t = 800. White
corresponds to |g(1)|2 = 1 and Black to |g(1)|2 = 0. The left Panel for the interaction υ0 = 0.5 and
threshold T = 0.7 shows a single line at the momentum with which the single boson escapes. In
the middle Panel for υ0 = 1.0 and T = 1.0 two bosons are emitted and the wave function looses
it’s coherence at precisely their respective momenta. For convenience, the right Panel shows the
case of υ0 = 1.0 and T = 0.7 where all N = 3 bosons can decay—and consequently 3 lines show
up where |g(1)|2 ≤ 0. See Video 9 for the time-evolution of the momentum coherence for the
MCTDHB simulation shown in the left and middle panels. See text for further discussion. Left and
middle Panel of Figure reprinted from Ref. [1]

Fig. 7.13 Bunching Dynamics of Tunneling to Open Space with a Threshold for N = 3 Bosons.*
The second order correlation function g(2) is plotted for three different final states with NI N = 2,
1, and NI N = 0 in the left, middle and right Panel, respectively for the time t = 800. The line
structure of the first order correlation functions in Fig. 7.12 is preserved. The lines corresponding to
the biggest momenta show slight anti-bunching. In their intersection the anti-bunching is intense.
Where the lines corresponding to the bigger k intersect the lines of the smaller momenta and also
on the diagonal, bunching occurs—the time-dependence of this (anti-)bunching pattern shows the
dynamics of the interference of the concurrent ejection of two bosons. See Video 10 for the time-
evolution of the momentum bunching and anti-bunching for the MCTDHB simulation shown in the
left and middle panels. See text for further discussion

new lines, which are incoherent, show up (cf. left and middle panel of Fig. 7.12).
Hence, with themomentum distributions, also the first order coherence in the process
can be controlled by the manipulation of υ0. Of course, the dynamics shown involve
the fragmentation of the initially coherent sample of N = 3 parabolically trapped
bosons. Both, the time evolution of the occupation numbers and the momentum
distributions resemble in this case those in Figs. 7.7, and 7.5 and are not shown,
therefore. It remains to find out what are the two-body properties of the process. For
this purpose, a plot of the second order coherence g(2) is shown in Fig. 7.13.
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The structure of the first order coherence |g(1)|2 in Fig. 7.12 is preserved for the
diagonal part of g(2) in Fig. 7.13. The anticipated behavior from the case of N = 2
bosons (cf. Fig. 7.9) prevails: the (anti-)bunching intensities on the intersections of the
lines corresponding to different ejection momenta shows the dynamics of the inter-
ference of the single-boson emission processes. The degree of the (anti-)bunching
on the diagonal and the (off-)diagonal measures the sequentiality and interference
of the processes. Interestingly, the line corresponding to the largest momentum is
all cases the closest to uncorrelated (i.e., white in Fig. 7.13) and the anti-bunching
for this line on the diagonal is the strongest. Hence, the boson emitted and propa-
gating at the corresponding momentum kT

1 is very unlikely to be found, if another
boson also propagates with the same momentum. Furthermore, the boson propa-
gating with kT

1 is uncorrelated with all the other momenta—one could say it does
not care at all about the remainder of the N -boson system. This explains the good
applicability of the model introduced in Sect. 7.2. While the escaped bosons loose
their first order coherence with the source entirely, their second order coherence is
closer to being preserved. This is because a given process, accounting for a sin-
gle line, is of a single particle. The model’s elementary processes describe exactly
such a behavior. Analogous reasoning can be applied to the other lines in g(2). This
concludes the discussion of the first- and second-order coherence in the many-boson
process of tunneling to open space. To assess the found conjectures and the generality
of the discussed model considerations, the following section explores the tunneling
process with a threshold for stronger interactions and large particle numbers.

7.5 Validation of the Control Scheme for Stronger Interactions
and Larger Particle Numbers

To corroborate the findings of Sects. 7.3, 7.4 and to prove the generality of the model
considerations in Sect. 7.2 also for stronger interactions, in Fig. 7.11 also a plot of the
nonescape probability for the very strong interaction υ0 = 30.0 is shown by a red
solid line. For such a strong interaction the initial state is fermionized. It would be
expected that the model’s description is inaccurate if it was dependent on the inter-
particle interactions. Yet, the model prediction of a nonescape probability Px

not,λ of
NI N

N = 1
3 and the final state |1, 2∀ still holds. Intuitively, the decay happens at a much

faster rate in this stronger interacting case. The conclusion that the model consid-
eration should hold for particle numbers N > 3, independent of the interactions is
tempting. In order to prove the general applicability of the model, Fig. 7.14, shows
the energetics and nonescape probability for N = 101 particles. In this case, the
threshold was fixed at T = 0.6 and the tunneling process’ counting statistics were
tuned by modifying the interactions in order to obtain an NI N ≤ 50 bound state by
the energetics described in the model in Sect. 7.2.

Fig. 7.14 shows the validity of the model for a general number of particles: The
nonescape probability of the many-body process converges to NI N

N = 1
2 (see right
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Fig. 7.14 Energetics and Nonescape Probability for the Tunneling to Open Space of N = 101
Bosons. Left Panel Shown are the energies of the final states |NI N , NOU T ∀ = |41, 60∀, |51, 50∀,
and |61, 40∀ for a threshold T = 0.6. When one tunes the interaction υ0 such that it lies in between
the crossing points (marked by the black dashed vertical lines) of the green and red/blue solid
lines at υ0 = υc1/2, the energetically most favorable state will be with NI N ∗ (41, 61) and
NOU T = N − NI N particles. The black arrow shows the interaction υ0 = 0.005 chosen for the
propagation. See text for further discussion. Right Panel Shown is the nonescape probability Pnot (t)
of N = 101 particles with υ0 = 0.005 (red solid line). The green dots are an extrapolation obtained
from a least squares fit of an exponential function to the actual data. According to this extrapolation,
the final state is |NI N = 49, NOU T = 52∀ and hence in close agreement with the control objective
aimed at in the left Panel of the figure. See text for further discussion. Left Panel of Figure reprinted
from Ref. [1]

Panel of Fig. 7.14). This allows one to formulate a protocol for the deterministic
production of a desired N -boson state. In the case of a fixed potential threshold the
interactions υ0 can be used to tune the energy ET OT (NI N , NOU T , T, υ0) such that
the energy of the desired number of bosons NI N just becomes a bound state (see left
Panel of Fig. 7.14). And in the case of fixed interactions the threshold T can be used
to reach any desired number of NI N bosons in the final state. With this approach, the
counting statistics of the problem are fully under control. With just two parameters,
it is hence possible to control the interplay of one-particle potential and interparticle
interactions in order to manufacture any desired final state as the control’s objective.

In summary, this chapter has shown that it is possible to exert control on the
counting statistics and momentum density of the ejected bosons with the interplay
of the threshold of the potential and the two-body interactions. The overall many-
boson process is made up by single-particle processes which are well-described
using the presented model (cf. Fig. 7.2). The momentum kT

i of the ejection process
is defined by the chemical potential μi of the NI N -boson system in a parabolic trap.
This chemical potential μi is firstly used to overcome the potential threshold T and
secondly converted to kinetic energy ET

kin . Hence, one finds peaks in the momentum
distributions at kT

i = √
2m(μi − T ). At precisely the peaks’ positions, the first-order

coherence of the bosons is lost, but the second order one is closer to being preserved.
This illustrates the one-particle nature of the processes. It is hence also possible to
control the coherence in the process by switching on or switching off certain final
states with the interaction υ0 or the threshold T . This diversity of achievable control
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objectives qualifies the system as a tunable quantum simulator for the mechanism
of complicated ionization processes. The final states can be selected to resemble the
open channels in the considered ionization process. The interaction can be used to
tune the kinetic energies—which are associated with the ionization energies of the
ionization process under consideration—of the ejected bosons.
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Chapter 8
Final Remarks and Outlook

Experience keeps a dear school, but fools will learn in no other.

Benjamin Franklin

8.1 Final Remarks

The present thesis consists of an application, exposition, benchmark and compari-
son of the currently most efficient numerical algorithm to solve the time-dependent
many-boson Schrödinger equation: the multiconfigurational time-dependent Hartree
method for bosons. The MCTDHB was applied to the problem of one-dimensional
tunneling to open space of initially parabolically trapped coherent bosons in a poten-
tial without a threshold and also in a potential with a threshold. Throughout the
investigation of the many-boson tunneling processes, various many-body models
were formulated. These allow for a straightforward and intuitive understanding and
control of the physics in the process.

The assessment of the capabilities of the methods was done by checking the
convergence with analytical solutions of the HIMHamiltonian and a time-dependent
generalizationof theHIM, theTDHIM.For thefirst time, numerically exact solutions,
i.e., solutions of any desired accuracy of the TDSE even with time-dependent one-
and two-body potentials have been achieved (see Chap.3) and Ref. [1]. The problem
of many-boson tunneling to open space consists in dynamics which involve the
fragmentationof initially coherent samples—mean-fieldmethods and latticemethods
do not capture the correct many-body behavior. This was shown in Chap. 4 for the
DNLS and BH/TEBD approaches.

In the case of zero threshold (Chap.6), the tunneling to open space process of
initially coherent ultracold bosons includes their gradual fragmentation. The mech-
anism behind can be explained by decomposing the many-body process in elemen-
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tary single-particle processes. Reasoning with the energetics of these single particle
processes one finds: when a boson is ejected from a (close to) parabolic potential to
open space, its energy—which it converts to kinetic energy—is the chemical poten-
tial: the difference in energy of the (close to) parabolically trapped N and N − 1-
particle system. These kinetic energies define a peak structure of the momentum
distributions. The values at which the momentum density is peaked are predicted
precisely by the model consideration in Chap. 5. Once the bosons are ejected, they
propagate with different momenta and thus lose the coherence among each other and
also with the source, which retains its coherence, see also Ref. [2].

If the threshold, i.e., the absolute value of the one-body potential in the asymp-
totic open space part, is changed, the physics of the process are changed, too (see
Chap.7). The momenta of the ejected bosons are shifted towards zero and vanish
when the threshold crosses certain values. With the vanishing of the momenta the
counting statistics of the final state change—a fraction of the system is left behind if
the threshold is big enough to support a bound state of a certain number of particles.
The reasoning with the energetics in the model consideration in Chap.5 is modified:
the available energy for the bosons is still defined by the chemical potential, but after
the ejection the bosons have to first spend part of their energy to overcome the thresh-
old before they convert the remainder to kinetic energy, which manifests in a peak
in the momentum distribution. Hence, one can control the momentum of the ejected
particles with the threshold. Furthermore, one can also tune the chemical potential
with the interaction strength λ0. A detailed analysis of the first order coherence of the
process has consistently shown that the coherence dynamics can also be explained
by the model, i.e., the ejected particles lose the first-order coherence among each
other and with the source. An analysis of the second-order coherence shows the
time-dependence of the (non-)sequentiality of the processes and their single-particle
nature, see also Ref. [3].

It is appropriate to comment also on the analogs of the tunneling to open space
process: ionization and atom lasers. The use of the investigated systems as quantum
simulators for ionization processes was demonstrated. The control schemes found
employing the threshold and the interaction can be used to calibrate the system
to emulate almost any desired ionization process—by making the association of
ionization energies with the ejection momenta of the bosons. In the case of the
dynamics of atom lasers, the found dynamics show that it is very difficult to maintain
the coherence of the sample. In all the repulsive cases studied, fragmentation, i.e.,
decoherence occurs dynamically in the open space part.

In summary the exploration of the many-boson tunneling process to open space
in the present thesis not only explained the process on a many-body level, but also
put forward an easy-to-implement and intuitive scheme of control of the counting
statistics and many-body physics of the process.
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8.2 Outlook

With a method that can solve a problem exactly, likeMCTDHB, there is a plethora of
opportunities. From the physical point of view, anyquantumsystem is of course three-
dimensional. It is, hence, of interest whether there is an effect of the dimensionality
on the dynamics of the quasi one-dimensional systems studied here. It is a generally
open question how tightly a system has to be confined in the transversal direction
until it can be truly regarded as quasi one-dimensional. Certainly, the physics become
more complex in the case of two-dimensional dynamics.

Another interesting step would be to change the particle statistics, i.e., to inves-
tigate whether the physics of the many-fermion tunneling to open space process is
similar to the presented many-boson case. It is tempting to just adopt the found mod-
els and schemes for the many-boson tunneling also for a many-fermion system—yet,
a proof that these models are applicable for fermions by exact numerical simulations
or a suitable experiment (see Ref. [4]) is still needed.

In the presented cases, the interaction of the bosons was almost always repulsive.
Repulsive interactions increase the chemical potentials. If one would make the inter-
actions attractive, the chemical potentials would decrease and eventually become
negative. The many-body properties of the process in such a case might be entirely
different and rich.

The amount of control one can exert on the system with the threshold and the
interactions is vast. The momentum distribution, final state counting statistics, and
even the dynamics of coherence can be controlled. One could study the effects of
further modifications of the potential, like including a second barrier or making the
threshold time-dependent to achieve even more complicated control objectives.

The processes discussed in the present thesis all incorporate the loss of initial
coherence. It would be interesting to see if it is possible to restore the coherence
throughout the process by applying optimal control theory to a time-varying para-
meter like, for instance, the interaction or the potential threshold.

The previous points are steps to be taken in the exploration of the physics of
this process. But from a more fundamental point of view, there is also a wealth
of questions to be tackled. For instance, the definitions of a local measure for the
coherence, formulated in Appendix B, could be an interesting theoretical concept in
the physics of many-boson systems in general. Especially, for systems tunneling to
open space, it seems as if the source is alway coherent whereas the ejected bosons
always lose their coherence. Hence, a local measure of fragmentation is needed. Yet,
the implementation of the necessary general transformations for many-body bases,
see Chap.2, is very complicated and presently not available. The concept of local
fragmentation is just one of the examples of concepts andmethods that are promising
and not implemented. There is a plethora of theories in the MCTDH family, which
deserve numerical implementation as for instance, the MCTDH for three kinds of
different indistinguishable particles with up to three-body interactions, see [5].

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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Appendix A
Particle Loss Operators

In order to define an operator, whose expectation value defines the υ-particle loss
from an N -indistinguishable-particle system it is convenient to first define corre-
sponding projectors employing Heaviside functions. For the sake of simplicity the
considerations in this paragraph are restricted to the one-dimensional case. TheHeav-
iside functions readily are the projectors up to a certain position C—in the case of a
tunneling problem C is usually the position of the barrier. Yet, it is noteworthy, that
it is straightforward to generalize these considerations to projectors also in 2 or 3
dimensions. The one-dimensional projectors read:

∂−
k = ∂(C − xk) = (1 − ∂+

k ); ∂+
k = ∂(xk − C). (A.1)

In principle, these operators measure the probability density of particle k to be in the
interior, xk < C (∂−

k ), or the exterior xk > C (∂+
k ) parts of space. These operators

are the building blocks for the general operators describing the υ-particle loss from
an N -particle reservoir, denoted by L̂ N

υ . Clearly, the L̂ N
υ will be simple products of

the 1D projectors above and it will be possible to exploit the indistinguishability
of the particles in the reservoir for their computation. It is instructive to start with
the case, where one measures the probability that the whole system survives. This is
the probability of all particles remaining in the interior, xk < C,∀k. Thus one finds

L̂ N
0 =

N∏

i=1

∂−
i (A.2)

The expectation value of this operator is completely equivalent to the above defined
wave function-related nonescape probability Pnot,λ(t), cf. Eq. (2.29), where δ =
{xi < C, i = 1, ..., N }:
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〈λ|L̂ N
0 |λ√ =

∫
λ∀(x1, ..., xN ; t)

N∏

i=1

∂−
i λ(x1, ..., xN ; t)dx1 · · · dxN (A.3)

=
∫ C

−≤
λ∀(x1, ..., xN ; t)λ(x1, ..., xN ; t)dx1 · · · dxN = Pnot,λ(t).

In the last equality it is used that the action of L̂ N
0 can be simply incorporated by

restricting the boundaries for the integration on the different coordinates x1, ..., xN to
xi < C, i = 1, ..., N . In the case in which all N particles of the N -particle reservoir
are lost, one finds analogously:

L̂ N
N =

N∏

i=1

∂+
i . (A.4)

It is instructive to write down the operators for the one- and two particle losses in
order to generalize them to an arbitrary number υ ∞ N .

L̂ N
1 =

N∑

α=1

∂+
α

N∏

i=1
i ≡=α

∂−
i = N∂+

1

N∏

i=2

∂−
i , (A.5)

L̂ N
2 =

∑

{α,ω}
∂+

α ∂+
ω

N∏

i=1
i ≡=α
i ≡=ω

∂−
i = M2∂

+
1 ∂+

2

N∏

i=3

∂−
i . (A.6)

Here, the sums are running over all possible configurations of one or two of the
N particles being in the exterior and the respective last equality uses the indistin-
guishability of the considered particles. M2 denotes the cardinality of the different
possibilities to realize a subset of two elements out of N . Clearly, M2 = (N

2

)
and

Mυ = (N
υ

)
. It is now straightforward to write down the υ-of-N -particle loss operator:

L̂ N
υ =

∑

{ j1,..., jυ }

⎧
υ∏

α=1

∂+
jα

⎪
⎨

⎩⎩
N∏

i=1
i ≡→{ j1,..., jυ }

∂−
i



⎡⎡⎣ (A.7)

=
⎛

N

υ

⎝ υ∏

α=1

∂+
α

N∏

φ=υ+1

∂−
φ . (A.8)

Here, the last equality uses the indistinguishability of the considered particles. With
the expectation value of this operator it is possible to measure the loss of an arbitrary
number υ of particles from a reservoir of N by defining an interior and an exterior
region. Basically, the particle loss operators are nothing else but projectors on the
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Hilbert space of a definite particle number whose coordinates are restricted. For
instance, L̂ N

1 is a projector on the Hilbert space where one coordinate is restricted
to the exterior and all other N − 1 coordinates are restricted to the interior. Note
that, for an N -particle system, these are N -body operators and hence very difficult to
evaluate. In practical numerical computations, N -body operators’ expectation values
require N -dimensional integrals to be evaluated, which is a demanding task.



Appendix B
The Concept of Local Fragmentation

Fragmentation, i.e., the macroscopic (of order O(N )) occupation of more than one
natural orbital, is a quantity intimately related to the natural occupations κ

(N O)
i (t),

i.e., the eigenvalues of the reduced one-body density matrix κ(1)(x ⊗
1|x1; t), cf.

Sect. 2.1.2 and Ref. [1]. The 1-RDM is a quantity defined on the whole Hilbert
space of the system under consideration as an integral of the wave function. It is a
natural question to ask how to assess the fragmentation of a system locally, because
the full information might not be available in a given experimental setup. From a
fundamental theoretical point of view there are two ways of approaching the ques-
tion. The first idea takes the 1-RDM and applies a projection to a subspace to obtain
a new, truncated 1-RDM from which one computes the local natural occupations.
The second way to obtain local occupation numbers applies the projection to the
subspace on the wave function and computes from the truncated wave function a
new 1-RDM on the considered subspace, from which in turn one can obtain local
natural occupations. The first is termed 1-RDM-related local natural occupations and
the second way is termed wave function-related local natural occupations. The scope
of this section is to clarify the properties and the differences of the two approaches.

B.1 The 1-RDM-Related Local Natural Occupations

To define local occupation numbers κ̃
(N O)
i,ρ and local natural orbitals ν̃

(N O)
i,ρ it is

a natural approach to simply truncate the 1-RDM by projection to some subspace
δ = {(x1, ..., xN ) |x j ∞ xρ, j , j = 1, ..., N } of the entire space H. For the sake of
simplicity one-dimensional systems are considered in this subsection. The projector
P̂ onto δ is:

P̂ =
N∏

j=1

p̂ j =
N∏

j=1

∂(xρ, j − x j ). (B.1)
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Now one applies P̂ to the 1-RDM κ(1)(x1|x ⊗
1; t):

P̂κ(1)(x1|x ⊗
1; t) = p̂1κ

(1)(x1|x ⊗
1; t) (B.2)

= p̂1N
∫

dx2 · · · dxN λ∀(x ⊗
1, x2, ..., xN ; t)λ(x1, ..., xN ; t).

Here, it was firstly used that the 1-RDM is a function of only x1 and x ⊗
1, so only p̂1

acts onto it. Secondly, the definition of κ(1), see Eq. (2.24), was inserted. Next, one
uses the possibility to express the 1-RDM expanded in a basis set νi , i = 1, ..., M ,
cf. the paragraph on natural orbitals and occupations:

p̂1κ
(1)(x1|x ⊗

1; t) = p̂1

M∑

k,q=1

κkqν∀
i (x ⊗

1, t)νi (x1, t)

=
M∑

k,q=1

κkq p̂1ν
∀
i (x ⊗

1, t) p̂1νi (x1, t)

∗
M∑

k,q=1

κ̃kqν∀
i,ρ (x ⊗

1, t)νi,ρ (x1, t)

∗
M∑

i=1

κ̃
(N O)
i,ρ (t)ν̃∀(N O)

i,ρ (x ⊗
1, t)ν̃(N O)

i,ρ (x1, t). (B.3)

In the first step one uses the fact that p̂1 only acts on the functions used to expand
κ(1). In the second step, the respective truncated basis νi,ρ = p̂1νi , i = 1, ..., M was
introduced. In the last step the obtained truncated 1-RDMwas diagonalized to obtain
a set of truncated occupations, κ̃(N O)

i,ρ (t), as well as a set of truncated natural orbitals

ν̃
(N O)
i,ρ (x, t). Equation (B.3) also are an easy, practical guide for the implementation

of this analysis tool.

B.2 The Wave function-Related Local Natural Occupations

In this section the notion of wave function-related local natural occupation numbers
is introduced. In order to define local occupation numbers κ

(N O)
i,ρ (t) and local natural

orbitals ν
(N O)
i,ρ starting from the wave function, one first uses the projector P̂ defined

in the previous subsection to obtain a truncated wave function λρ . This is done in
the following specifically for the case of a multiconfigurational wave function:

http://dx.doi.org/10.1007/978-3-319-07085-8_2
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λρ (x1, ..., xN , t) = P̂λ(x1, ..., xN , t)

= P̂
∑

n

Cn(t)|n; t√

=
∑

n

Cn(t)P̂|n; t√

∗
∑

n

Cn(t)|n; t√ρ . (B.4)

Here, the multiconfigurational ansatz for the wave function is inserted in the second
line of the above equation. In this case, the projector P̂ acts only on the configurations
|n, t√ (third of the above equalities) and this leads to the introduction of new, projected
configurations |n; t√ρ = OP|n; t√. Two things have to be noted here: first, that the new
set of configurations is no longer orthogonal (!) and, second, that the projector P̂ again
only acts on the single particle functions constructing the permanents. In principle
one thus relies on the same basis set νi,ρ , i = 1, ..., M as in the previous paragraph.
To continue, one constructs a truncated 1-RDM κρ (x1|x ⊗

1; t) from the truncated wave
function λρ :

κρ (x1|x ⊗
1; t) = N

∫
dx2 · · · dxN λ∀

ρ (x ⊗
1, x2, ..., xN )λρ (x1, x2, ..., xN )

= N
∫

δ

dx2 · · · dxN p̂1λ
∀(x ⊗

1, x2, ..., xN ) p̂1λ(x1, x2, ..., xN ).

(B.5)

Here, the first identity is simply the definition of κ(1) with λ replaced by λρ and in
the second identity the action of the projectors was incorporated as the boundaries of
the integration. Of course, as in the previous subsection, also this truncated 1-RDM
can be represented in the basis νi,ρ , i = 1, ..., M with weights κ⊗

kq(t):

κ(1)
ρ (x1|x ⊗

1; t) =
M∑

k,q=1

κ⊗
kqν∀

i,ρ (x ⊗
1, t)νi,ρ (x1, t)

∗
M∑

i=1

κ⊗(N O)
i,ρ (t)ν∀(N O)

i,ρ (x ⊗
1, t)ν(N O)

i,ρ (x1, t). (B.6)

Note that κ⊗
kq(t) ≡= κ̃kq(t). This is because the space where the wave function is

integrated or, in other terms, the applied projectors are different, see Eqs. (B.2) and
(B.3), from the case of the truncated κ(1) in the previous subsection. To assess and
understand better the concept of local fragmentation, it is instructive to compare the
1-RDM based approach to the present wave function-based approach directly.
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B.3 Comparison of the Wave function- and 1-RDM-Based
Approaches

The simplest way to compare two quantities is to simply calculate their difference.
For the wave function-based and 1-RDM based local 1-RDMs this is achievable
straightforwardly by subtracting Eq. (B.5) from (B.2):

κ⊗
1,ρ − κ̃1,ρ = p̂1N

∫
dx2 · · · dxN λ∀(x ⊗

1, x2, ..., xN ; t)λ(x1, ..., xN ; t)

− N
∫

δ

dx2 · · · dxN p̂1λ
∀(x ⊗

1, x2, ..., xN ) p̂1λ(x1, ..., xN )

= p̂1

∫

H\δ
dx2 · · · dxN λ∀(x ⊗

1, x2, ..., xN )λ(x1, ..., xN ). (B.7)

A comment on the two approaches from a practical point of view is in order. The com-
putation of the wave function-related local occupations is a numerically demanding
task because it relies on N -body operators or quantities. In particular, the evaluation
of the integral in Eq. (B.5) demands (unitary) transformations of permanents (see
Eqs. (2.16), (2.18)) which constitute a big numerical effort and are not yet imple-
mented in the software developed (see Ref. [2]) and in use throughout this thesis.

http://dx.doi.org/10.1007/978-3-319-07085-8_2
http://dx.doi.org/10.1007/978-3-319-07085-8_2


Appendix C
Reduced One-Body Density Matrix
and Momentum Distribution
of a Gross–Pitaevskii Wave Function
Composed of Two Plane Waves

This Appendix demonstrates that one can in principle construct coherent quantum
product states for N = 2 bosons incorporating two momenta.

Assumed GP Orbital:
One assumes a Gaussian g(x) inside the well, x < xc, and 2 plane waves with
momenta k1 and k2 outside, x > xc, where the Gaussian is 0 (no overlap is assumed).

θ(x) = g(x) + θ(x − xC )
⎞
eik1x + eik2x

⎠
. (C.1)

Construction of the GP-Wave function:
Eq. (C.1) is used and the normalization is of no significance here and skipped there-
fore:

λG P =
N∏

i=1

θ(xi ); N := 2

=
2∏

i=1

g(xi ) + θ(xi − xC )
⎞
eik1xi + eik2xi

⎠
(C.2)

= g(x1)g(x2)

+ θxC

⎞
eik1(x1+x2) + ei(k1x1+k2x2) + ei(k2x1+k1x2) + ei(k2x1+k2x2)

⎠
. (C.3)

Construction of the RDM:

κ(1)(x1|x ⊗
1) = N

∫
λ∀(x ⊗

1, x2, ..., xN ) × λ(x1, ..., xN )dx2 · · · dxN

= 2
∫

λ∀
G P (x ⊗

1, x2) × λG P (x1, x2)dx2 (C.4)

=
∫ ⎤

(g(x1))
2 g(x ⊗

1)g(x2)
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+ θxC ×
⎞
e−ik1(x ⊗

1+x2) + e−i(k1x ⊗
1+k2x2) + e−i(k2x ⊗

1+k1x2) + e−i(k2x ⊗
1+k2x2)

⎠

×
⎞
eik1(x1+x2) + ei(k1x1+k2x2) + ei(k2x1+k1x2) + ei(k2x1+k2x2)

⎠ ⎦
dx2, (C.5)

using the abbreviation θxC := θ(x1 − xC )θ(x2 − xC ) in the step from Eq. (C.4) to
Eq. (C.5). Evaluating the integrand, I = λ∀(x1, x ⊗

1)λ(x1, x2), of Eq. (C.5):

I = (g(x1))
2 g(x ⊗

1)g(x2) + θxC ×
⎤

ei(k1x2−k1x ⊗
1) + ei(k2x2−k1x ⊗

1) + ei(k2x1+k1x2−k1(x1+x ⊗
1)) + ei(k2x1+k2x2−k1(x1+x ⊗

1))

+ ei(k1x2−k2x ⊗
1) + ei(k2x2−k2x ⊗

1) + ei(k2x1+k1x2−k1x1−k2x ⊗
1) + ei(k2x1+k2x2−k1x1−k2x ⊗

1)

+ ei(k1x1+k1x2−k2x1−k1x ⊗
1) + ei((k1−k2)x1+k2x2−k1x ⊗

1 + ei(k1x2−k1x ⊗
1) + ei(k2x2−k1x ⊗

1)

+ ei((k1−k2)x1+k1x2−k2x ⊗
1) + ei((k1−k2)x1+k2x2−k2x ⊗

1) + ei(k1x2−k2x ⊗
1) + ei(k2(x2−x ⊗

1))
⎦
.

(C.6)

Performing the Integration, κ(1) = ⎬
I dx2, using the abbreviations and

assuming the existence of A = ⎬
θxC ei(k1x2)dx2 and B = ⎬

θxC ei(k2x2)dx2 and
C = ⎬

g(x2)dx2

κ(1) =
∫

C (g(x1))
2 g(x ⊗

1) + θxC ×
⎤
Ae−ik1x ⊗

1 + Beik1x ⊗
1 + Aei(k2x1−k1(x1+x ⊗

1)) + Bei((k2−k1)x1−k1x ⊗
1)

+ Ae−ik2x ⊗
1 + Be−ik2x ⊗

1 + Aei((k2−k1)x1−k2x ⊗
1) + Bei((k2−k1)x1−k2x ⊗

1)

+ Aei((k1−k2)x1−k1x ⊗
1) + Bei((k1−k2)x1−k1x ⊗

1) + Ae−ik1x ⊗
1 + Be−ik1x ⊗

1

+ Aei((k1−k2)x1−k2x ⊗
1) + Bei((k1−k2)x1−k2x ⊗

1) + Ae−ik2x ⊗
1 + e−ik2x ⊗

1

⎦
.

(C.7)

After simplifications, one obtains:

κ(1) =
∫

C (g(x1))
2 g(x ⊗

1) + θxC ×
⎤

(2(A + B))
⎭

e−ik1x ⊗
1 + e−ik2x ⊗

1

)

+ (A + B)
⎞
ei((k2−k1)x1−k1x ⊗

1) + ei((k1−k2)x1−k1x ⊗
1)

+ ei((k1−k2)x1−k2x ⊗
1) + ei((k2−k1)x1−k2x ⊗

1)
⎠ ⎦

. (C.8)

Calculation of the Momentum Distribution:
By definition the momentum distribution is the Fourier transform of the RDM:
κ( j) = ⎬

dx1dx ⊗
1e−i j (x1−x ⊗

1)κ(1)(x1|x ⊗
1). Using the abbreviations ∇( j) for the

Gaussian-shaped Fourier transforms of the Gaussian g(x) one arrives at:
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κ(1)( j) = C∇( j) +
∫ ⎤

θxC (C.9)

× 2A
⎞
e−i((k1− j)x ⊗

1+ j x1) + e−i((k2− j)x ⊗
1+ j x1)

⎠

+ 2B
⎞
e−i((k2− j)x ⊗

1+ j x1) + e−i((k1− j)x ⊗
1+ j x1)

⎠

+ (A + B)
⎞
e−i((k2−k1)x1−k1x ⊗

1− j (x1−x ⊗
1)) + e−i((k1−k2)x1−k1x ⊗

1− j (x1−x ⊗
1))

⎠ ⎦
dx2

= C∇( j) + (2A + 2B) [π( j − k1) + π( j − k2)]

+ (A + B) [π( j − k1)π( j − (k2 − k1))]

+ (A + B) [π( j − k1)π( j − (k1 − k2))] (C.10)
= C∇( j) + (2A + 2B) [π( j − k1) + π( j − k2)] . (C.11)

where Eq. (C.11) follows from the fact that k2 ≡= 0 in Eq. (C.10).
A comment is in place here: the momentum density and reduced density matrix
described above do resemble the ones obtained in exact numerical simulations (cf.
Chaps. 6, 7). The key difference is, that the exact solutions do not preserve the coher-
ence whenever there is more than one momentum present. This is caused by the state
constructed above being energetically much higher than its prescribed fragmented
counterpart (cf. Appendices D, G). States of higher energy are excluded from the
dynamics by the TDVP [3].

http://dx.doi.org/10.1007/978-3-319-07085-8_6
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Appendix D
Derivation of the Reduced One-body Density
for a System Tunneling with Two Momenta

The RDM of the N = 2 boson system with the wave function constructed in the
orbitals given in Eq. (5.24) reads as follows:

κ(1)(x1|x ⊗
1) =

∫
λ(x1, ..., xN ) × λ∀(x ⊗

1, x2, ..., xN )dx2 · · · dxN

=
∫

λ(x1, x2) × λ∀(x ⊗
1, x2)dx2

= (Cn1 )
2
∫

dx2
⎞
e− 1

2 (x21+(x ⊗)21+2x22 ) + θ(x − xc)e
ik1(x1−x ⊗

1)
⎠

+ θ(x − xc)Cn1 Cn2

∫
dx2

⎞
ei(k1(x1+x2)−k1x ⊗

1−k2x2) + ei(k1(x1+x2)−k1x2−k2x ⊗
1)
⎠

+ θ(x − xc)Cn1 Cn2

∫
dx2

⎞
ei((k1x1+k2x2)−k1(x ⊗

1+x2)) + ei(k1x2+k2x1−k1(x ⊗
1+x2))

⎠

+ θ(x − xc)(Cn2 )
2
∫

dx2
⎞
ei(k1(x1−x ⊗

1)) + ei(k2(x1−x ⊗
1))

⎠

+ θ(x − xc)(Cn2 )
2
∫

dx2
⎞
ei(k1x1−k1x2+k2x2−k2x ⊗

1) + ei(k1x2+k2x1−k1x ⊗
1−k2x2)

⎠

+ θ(x − xc)(Cn3 )
2
∫

dx2
⎞
eik2(x1+x2)−ik2(x ⊗

1+x2)
⎠

+ θ(x − xc)Cn3 Cn2

∫
dx2

⎞
e−i(k2(x ⊗

1+x2)(ei(k1x1+k2x2) + ei(k1x2+k2x1))
⎠

+ θ(x − xc)Cn3 Cn2

∫
dx2

⎞
ei(k2(x1+x2)(e−i(k1x ⊗

1+k2x2) + e−i(k1x2+k2x ⊗
1))

⎠

+ θ(x − xc)Cn3 Cn1

∫
dx2

⎞
e−ik2(x2+x ⊗

1)eik1(x1+x2) + eik2(x2+x1)e−ik1(x ⊗
1+x2)

⎠
.

(D.1)

This equation drastically reduces when one takes the diagonal x1 = x ⊗
1 and uses the

addition theorems cos2
(

λ
2

) = 1
2 (1 + cos(λ)) and cos(λ) = eiλ+e−iλ

2 :
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κ(x1|x1) = (Cn1)
2
⎞√

πe−x21
⎠

+ Cn1Cn2θ(x − xc)

[
4 cos2(x1(

k1 − k2
2

))

]

+ (Cn2)
2θ(x − xc)

[
4 cos2(x1(

k1 − k2
2

)

]

+ Cn3Cn2θ(x − xc)

[
4 cos2(

(k1 − k2)

2
x1)

]

+ Cn3Cn1θ(x − xc) [2 cos((k1 − k2)x1)]

+ θ(x − xc)
⎞
2(Cn3)

2 + 2(Cn2)
2
⎠

x2

= (Cn1)
2
⎞√

πe−x21
⎠

+ θ(x − xc)
⎞
(Cn2)

2 + Cn3Cn2 + Cn1Cn2

⎠ [
4 cos2(x1(

k1 − k2
2

))

]

+ θ(x − xc)Cn3Cn12 cos((k1 − k2)x1)

+ θ(x − xc)
⎞
2(Cn3)

2 + 2(Cn2)
2
⎠

x2. (D.2)

As the reduced one body density is a function of x1 and x ⊗
1 the term with x2 is

actually a constant coming from the undefined integral in the x2 degree of freedom.
Thus, x2 = φ = const., is furthermore assumed. Thus one gets after introducing
the abbreviations D = (Cn1)

2; E = θ(x − xc)
[
(Cn2)

2 + Cn3Cn2 + Cn1Cn2

] ; G =
θ(x − xc)

[
2(Cn3)

2 + 2(Cn2)
2
]
φ and F = θ(x − xc)Cn3Cn1 :

κ(x1|x1) = D
⎞√

πe−x21
⎠

+ 4E

[
cos2(x1(

k1 − k2
2

))

]

+ 2F cos((k1 − k2)x1)

+ G. (D.3)



Appendix E
Derivation of the Diagonal of the Reduced
Two-body Density for a System Tunneling
with Two Momenta

The two-body density of the N = 2 boson systemwith the wave function constructed
from the orbitals given in Eq. (5.24) reads as follows:

κ(2)(x1, x2|x1, x2; t) =
∫

λ(x1, ..., xN )λ∀(x1, ..., xN )dx3 · · · dxN (E.1)

= λ(x1, x2)λ
∀(x1, x2)

= (Cn1 )
2
⎞
e−(x21+x22 )

⎠

+ θ(x − xc)(Cn1

Cn2√
2

)
⎞
ei(k1−k2)x1 + ei(k2−k1)x1 + ei(k1−k2)x2 + ei(k2−k1)x2

⎠

+ θ(x − xc)(Cn3 )
2
⎞
ei[(k1−k2)x1+(k2−k1)x2] + ei[(k1−k2)x2+(k2−k1)x1]

⎠
.

The indices n1, n2, n3 refer to the configurations |2, 0√, |1, 1√, |0, 2√, respectively.
Introducing the abbreviations A = (Cn1)

2; B =; θ(x − xc)(Cn1

Cn2√
2
) and C = θ(x −

xc)(Cn3)
2 and using the relation cos(λ) = eiλ+e−iλ

2 one arrives at the following:

κ(2)(x1, x2|x1, x2; t) = A
⎞
e−(x21+x22 )

⎠

+ B [2 (cos((k1 − k2)x1) + cos((k1 − k2)x2))]

+ C [2 cos((k1 − k2)x1) cos((k1 − k2)x2)] . (E.2)

The second row of the equation above can be transformed to a single factor via the
relation cos(λ) + cos(λ⊗) = cos( λ+λ⊗

2 ) · cos( λ−λ⊗
2 ) times the coefficient B: if one

further assumes real coefficients the diagonal of κ(2) reads as follows:

κ(2)(x1, x2|x1, x2; t)= A

[
e−(x21+x22 )

]

+ B

[
4

⎛
cos((k1 − k2)

(x1 + x2)

2
) cos((k1 − k2)

(x1 − x2)

2
)

⎝]

+ C [2 cos((k1 − k2)x1) cos((k1 − k2)x2)] . (E.3)
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Appendix F
Derivation of the Diagonal of the Second Order
Correlation Function for a System Tunneling
with Two Momenta

The construction of |g(2)(x1, x2|x1, x2, t)|2 (definition see Sect. 2.1.2) for the wave
function constructed from the orbitals in Eq. (5.24) is presented in the following.
As in the previous Appendix E, the indices n1, n2, n3 refer to the configurations
|2, 0√, |1, 1√, |0, 2√, respectively. Using the abbreviations α = x1(

(k1−k2)
2 );β =

x2(
(k1−k2)

2 ); A = (Cn1)
2; B =; θ(x − xc)(Cn1

Cn2√
2
); C = θ(x − xc)(Cn3)

2;
D = (Cn1)

2; E = θ(x − xc)
[
(Cn2)

2 + Cn3Cn2 + Cn1Cn2

]
and F = θ(x −

xc)Cn3Cn1 and defining straightforwardly:

g(2)(x1, x2|x1, x2) = κ(2)(x1, x2|x1, x2)√
κ(1)(x1|x1)κ(1)(x2|x2)

|g(2)(x1, x2|x1, x2)|2 ∗ μ

ω
.

One finds the following for μ and ω:

μ = A2e−(2x21+2x22 ) + θ(x − xc)[A2 + 2AB (cos(α) + cos(β))

+ (cos(α) cos(β))
⎞

AC + 4BC(cos(α) + cos(β)) + 4C2(cos(α) cos(β))
⎠

+ 16B2 cos2(α + β) cos2(α − β)], (F.1)

and

ω = D2e−(x21+x22 ) + θ(x − xc)[E2 + 4E F(cos2(α) + cos2(β))

+ 16F2(cos2(α) cos2(β))]. (F.2)
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Appendix G
Densities of a Model with Delocalized Orbitals
and Two Momenta

The scope of this appendix is to derive the resulting densities κ(1) and κ(2) with the
ansatz for the orbitals given in Eq. (5.26), where one assumes the interior μ(x) part
to be a Gaussian. This assumption yields the orbitals:

ν1(x) = e− x2
2 · eik1x ; ν2(x) = e− x2

2 · eik2x . (G.1)

Furthermore, the description is restricted here to N = 2 bosons. In this case the
possible permanents contributing to the full wave function are |2, 0√, |1, 1√, and
|0, 2√. Explicitly, they read:

|2, 0√ = eikx− x2
2 +ik1y− y2

2

|1, 1√ = eik1x− x2
2 +ik2 y− y2

2 + eik2x− x2
2 +ik1y− y2

2

|0, 2√ = eik2x− x2
2 +ik2 y− y2

2 . (G.2)

From this basis, it is straightforward to form a multiconfigurational wave function.
The above orbitals and permanents are not normalized, but one can just assume that
the normalization is absorbed in the coefficients, u, v, w, of the multiconfigurational
expansion:

|λ√ = u|2, 0√ + v|1, 1√ + w|0, 2√
= e− x2

2 − y2

2

⎭
eik1(x+y)u + ei(k1x+k2 y)v + ei(k2x+k1y)v + eik2(x+y)w

)
. (G.3)

Having at hands the wave function one can write down the two-body density
κ(2)(x, y):
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κ(2)(x, y) = T rx3···xN [|λ√〈λ|] = λ∀(x, y)λ(x, y)

= e−x2−y2
⎭

u2 + 2v2 + w2

+ 2v(v cos[(k2 − k1)(x − y)]
+ (u + w)(cos[(k2 − k1)x] + cos[(k2 − k1)y]))
+ 2uw cos[(k2 − k1)(x + y)]) . (G.4)

In the derivation the same addition theorems for trigonometric functions as inAppen-
dix E were used. It is interesting to note that the oscillatory pattern is identical
to the one presented in Appendix E. It remains to evaluate the reduced one-body
density κ(1):

κ(1)(x, y) = T rx2,··· ,xN |λ√〈λ|
=

∫
dx2λ

∀(y, x2)λ(x, x2)

=
[
1

2
e−ik2x−ik1x− x2

2 − y2

2
√

π

×
⎭

ei(k2x+ky)
⎭

u2 + v2
)

+ eik2(x+y)v(u + w)

+ eik1(x+y)v(u + w) + ei(k1x+k2 y)
⎭
v2 + w2

))

× Er f [x2] + 1

2
e
1
4

(−k22−k21+2k2(k1−2i x)−4ik1x−2
(
x2+y2

))

× √
π
⎭⎭

eik1yu + eik2 yv
) ⎭

eik2xv + eik1xw
)

× Er f

[
1

2
(ik2 − ik1 + 2x2)

]

+
⎭

eik2x u + eik1xv
) ⎭

eik1yv + eik2 yw
)

× Er f

[
1

2
(−ik2 + ik1 + 2x2)

]⎝]≤

−≤
. (G.5)

When finally taking the limits in the above expression the terms dependent on x2 and
the error functions Er f disappear:

κ(1)(x, y) = e
1
4

(−k22−k21−4i(k2+k1)x−2
(
x2+y2

))

× √
π
⎭
2e

k2k1
2 +ik2x+ik1yuv + e

1
4

(
k22+4ik2x+k1(k1+4iy)

)

×
⎭

u2 + v2
)

+ 2e
k2k1
2 +ik2x+ik2 yvw + e

1
4

(
k22+k21+4i j (x+y)

)
v(u + w)

+ e
1
4

(
k22+k1(k+4i(x+y))

)
v(u + w) + e

1
2 k(k2+2i(x+y))

⎭
v2 + uw

)
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+ e
1
2 k2(k1+2i(x+y))

⎭
v2 + uw

)
+ e

1
4

(
k22+k1(k1+4i x)+4ik2 y

) ⎭
v2 + w2

))
.

(G.6)

This concludes the analytical exposition of this appendix. It has been verified that
the numerical diagonalization of the above one-body density matrix reproduces the
natural occupation numbers κ

(N O)
1/2 of the exact solutions of the N = 2 boson dynam-

ics if values of coefficients in MCTDHB calculations are taken for the coefficients
u, v, w.
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