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Supervisor’s Foreword

This impressive PhD thesis focuses on the rich physics associated with the tidal
disruption of stars by supermassive black holes. In exploring various aspects of this
astrophysical frontier, the author, Dr. Nicholas Stone, mastered advanced topics in
theoretical hydrodynamics, general relativity, and stellar dynamics. The thesis shows
unusual levels of creativity and physical insights. Let me illustrate these qualities
with two examples.

Dr. Stone suggests that the tidal disruption rate of stars will be enhanced around
a black hole that forms out of a merger between two progenitor black holes, and
which then recoils as a result of anisotropic emission of gravitational waves. The
standard disruption event rate is limited by the frequency at which new stars are
gravitationally scattered into highly radial orbits, namely the rate at which the “loss
cone” of disrupted stars is re-populated. Dr. Stone realized that if the black hole
suddenly recoils relative to the background stars, then there is no need to re-populate
the loss cone through relaxation processes, because the black hole encounters a fresh
supply of stars along its new orbit. Dr. Stone demonstrated that the resulting rate of
tidal disruption events could reach values of one per several decades, allowing the
detection of multiple events per galaxy within an astronomer’s lifetime.

Subsequently, Dr. Stone realized that Lense-Thirring precession due to black
hole spin will lead to precession of accretion disks formed in tidal disruption events,
periodic modulation of disk luminosity, and possible precession of associated jets. In
2011, the Swift satellite discovered an intense, transient gamma- and X-ray flare from
a galactic nucleus at a redshift of 0.35. This flare has been explained as jet emission
from a tidal disruption event aligned with our line of sight, offering a chance to probe
an open question in accretion physics: which way will jets point in tilted accretion
flows? Dr. Stone showed that the persistence of jetted X-ray emission in the Swift
J164449.3+573451 flare over a timescale of weeks suggests that the jet aligned with
the steady spin axis of the black hole (rather than the variable disk axis) during this
event.
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I have benefited greatly from Dr. Stone’s insights during our collaboration, and I
hope you will share my experience after reading this book.

Cambridge, MA, USA Avi Loeb
September 2014



Preface

This book presents a theoretical treatment of an exciting problem in astrophysics: the
tidal disruption of stars by supermassive black holes (SMBHs). The multiwavelength
flares produced by tidal disruption events (TDEs) have supernova-like luminosities,
and their associated relativistic jets are visible to cosmological distances. TDEs probe
the demography of quiescent SMBHs, and are natural laboratories for jet launching
mechanisms and super-Eddington accretion. Although for many years this was an
area of purely theoretical research, the first observations of TDEs began in the mid-
1990s, and since then the sample of TDE candidates has grown rapidly. Many of
the newest observations do not fit easily into the predictions of past TDE models,
highlighting the need for renewed theoretical work on the subject.

Much state-of-the-art TDE research is done using numerical simulations, but the
large hierarchy of mass, distance, time, and energy scales in tidal disruption means
that analytic techniques are in many cases applicable, and often necessary. This book
evolved out of my PhD thesis on stellar tidal disruption, and has retained as its central
focus the study of TDEs through analytic methods. A majority of the chapters in this
book represent my original research on TDEs, and they are interspersed with shorter
chapters reviewing general results from the greater literature. These general chapters
aim to provide a useful introduction for those new to the field, and to place the results
of my thesis work in a greater context. The originality of the work presented in each
chapter is covered here, and is also clearly labeled at the start of each chapter.

The first chapter broadly surveys TDE physics, and will be of the most interest to
non-experts looking for a general introduction. The second chapter reviews existing
literature on TDE rates to provide a formalism for calculating these rates in stan-
dard galactic nuclei. This rate calculation sets the stage for two chapters of original
research; in the third and fourth chapters, we estimate the TDE rate following gravi-
tational wave (GW) recoil of a SMBH (after a SMBH binary merger). Immediately
after GW recoil, the TDE rate increases, sometimes to ∼ 10− 1 TDEs per year. This
“burst” of TDE flares can provide an electromagnetic counterpart to low frequency
GW signals, localizing sources and measuring cosmological parameters. Millions
of years later, recoiled SMBHs wandering through their host galaxies will produce
spatially offset TDEs at a rate which is likely detectable with the LSST ; this is the
subject of the fourth chapter.
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x Preface

In the fifth chapter, we present another original research paper, showing that
standard estimates for �ε, the energy spread of TDE debris, are wrong, sometimes
by orders of magnitude. Correcting this error reduces the observability of manyTDEs.
We introduce a new analytic model for tidal disruption, calculate the dependence of
�ε on stellar spin, estimate general relativistic corrections to �ε, and quantify the
GW signal generated from tidal compression.

The seventh chapter surveys past work on the importance of general relativistic
effects for TDEs, describing the ways in which general relativity can modify TDE
rates, the tidal disruption process, and the formation of accretion disks. Although
this chapter primarily summarizes past research in the literature, it concludes with a
brief summary of original, numerical research on how relativity can mediate debris
circularization. The eighth chapter introduces the final original work of my thesis. In
it we show that TDE light curves can constrain or measure SMBH spins, as Lense-
Thirring torques produce quasiperiodic variability in disk emission. Precession of
a relativistic jet could also measure SMBH spin, and we apply our model to the
relativistic Swift J1644+57 TDE.

Finally, the ninth chapter offers concluding remarks, and thoughts on future
directions for theoretical and observational development of this exciting subject.
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Chapter 1
Introduction

1.1 SMBHs in Our Universe

From an observational perspective, supermassive black holes (SMBHs) are nearly
ubiquitous in nearby galactic nuclei. These massive objects (∼105−10M�) gener-
ally reside at the center of their host galaxy’s stellar bulge, and can be observed
either through the luminous accretion of gas, or via gravitational interactions with
surrounding stellar populations. In this thesis, we focus on strong, disruptive tidal
encounters between SMBHs and nearby stars, but SMBHs themselves are objects of
much intrinsic interest, as we outline in this introductory section.

Mathematically, black holes are very simple objects, characterized by a mere three
numbers (Wald 1984, Sect. 12.3): mass, spin, and charge1. For this reason, measur-
ing the demographics of black holes is appealingly straightforward at a conceptual
level - but the devil lies in the details. Although a variety of techniques can be used
to measure the masses of SMBHs, the only effective approaches at large distances
involve the luminous accretion flows present around a small minority of SMBHs.
This introduces a potentially serious bias into SMBH mass measurements. Such bias
is more pronounced for spin measurements, which for even the nearest SMBHs can
only be performed by taking advantage of surrounding accretion flows. Probing the
universe’s “silent majority” of quiescent SMBHs is an inherently difficult task, but
the many scientific motivations for studying SMBHs should encourage us to find
ways to do this.

The most fundamental motivation for studying SMBHs is that as strongly rel-
ativistic objects, they offer a laboratory to probe and test general relativity (GR).
Observations of Sgr A*, the SMBH in the center of the Milky Way, have provided
some of the strongest evidence to date for the existence of event horizons (Broderick
et al. 2009). Future observations of SgrA* (and M87’s SMBH) with Very Long Base-
line Interferometry will likely provide direct imaging of event horizons and the gas
flows around them (Broderick and Loeb 2005; Doeleman et al. 2009; Broderick and
Loeb 2009). Measurements of SMBH spin in distant galaxies using relativistically

1 However, electric charge is expected to be negligibly small for any astrophysical black hole.

© Springer International Publishing Switzerland 2015 1
N. C. Stone, The Tidal Disruption of Stars by Supermassive Black Holes,
Springer Theses, DOI 10.1007/978-3-319-12676-0_1



2 1 Introduction

broadened iron lines (Reynolds et al. 1999; Reynolds 2013) provide a zeroth-order
check on the cosmic censorship hypothesis2, and perhaps a more detailed test of the
no-hair theorem as well (Johannsen and Psaltis 2012). Future detections of stellar
motion in our own Galactic Center may enable a direct test of GR by measuring
the mass, spin, and quadrupole moment3 of Sgr A* (Merritt et al. 2010). Such a
test could be facilitated by the discovery of a pulsar in the Galactic Center (Pfahl
and Loeb 2004). SMBHs can also be used to probe other questions in fundamental
physics; for example, general relativistic Kerr black holes are believed to possess a
semiclassical instability to scalar fields in specific (low) energy ranges. The existence
of spinning SMBHs in the universe places valuable constraints on massive photons
(Pani et al. 2012) and other exotic light particles.

SMBHs also seem to play an integral role in the growth and evolution of galaxies.
Specifically, the coevolution of galaxies and their central SMBHs has been observa-
tionally established by scaling relations linking the SMBH mass to a variety of galaxy
parameters (Kormendy and Richstone 1995; Ferrarese and Merritt 2000; Ferrarese
2002; Tremaine et al. 2002; Bandara et al. 2009; Burkert and Tremaine 2010). These
relationships are sometimes disputed (Kormendy and Bender 2011, for example)
and are somewhat surprising, given that the SMBH mass is typically ∼1/500 the
total stellar mass of the bulge it resides in (Marconi and Hunt 2003). The standard
explanation, at least for the well-known MBH −σ relation, is that the gas accretion
processes which grow a SMBH will also drive strong outflows that can self-regulate
star formation through energy or momentum deposition (Silk and Rees 1998; Wyithe
and Loeb 2003; Di Matteo et al. 2005; Hopkins et al. 2006). Alternative explana-
tions, such as the central limit theorem (Peng 2007; Jahnke and Macciò 2011), exist
as well, however. If there is a causal link between SMBH accretion and star for-
mation, understanding the demographics and growth history of SMBHs becomes a
crucially important step in understanding many other aspects of astrophysics.

The extreme accretion environments surrounding a minority of SMBHs are also
sites of intrinsic astrophysical interest. These active galactic nuclei (AGN) are im-
portant targets for observations at all electromagnetic wavelengths. Although a full
review of AGN phenomenology and accretion physics is well beyond the scope of
this paper—indeed, it is the subject of many books, such as Krolik (1999) and Beck-
mann and Shrader (2012)—we do wish to mention a few points of interest. Because
of their extreme luminosities, AGN are some of the most distant objects observed
in the universe (Fan et al. 2003; Mortlock et al. 2011). Relativistic jets launched by
AGN are also a possible source for observed ultra high energy cosmic rays (Biermann
and Strittmatter 1987; Pierre Auger Collaboration et al. 2008; Farrar and Gruzinov
2009), whose origin is an important open question in particle astrophysics.

As a result of their compactness, large masses, and abundance (Volonteri et al.
2003), SMBH binaries (SMBHBs) are key sources for gravitational wave (GW)

2 Which would be falsified by the discovery of a single SMBH with super-extremal spin.
3 The black hole quadrupole moment is uniquely determined by mass and spin in GR, but not in
many alternative theories of gravity (Johannsen and Psaltis 2010).



1.1 SMBHs in Our Universe 3

astronomy, detectable both by space-based, low frequency GW interferometers (Jen-
nrich 2009; Amaro-Seoane et al. 2012b), and by pulsar timing arrays (Sazhin 1978;
Jenet et al. 2004; Sesana et al. 2009). The coalescence of a SMBHB is an extremely
energetic event, as numerical relativity simulations indicate that up to ∼10% of the
binary rest mass energy can be radiated in GWs during the final orbits and plunge
(Pretorius 2005). Small anisotropies in this final burst of gravitational radiation give
a recoil kick to the merged SMBH, typically ∼100 km s−1 (Lousto et al. 2010a), but
up to ≈5000 km s−1 (Campanelli et al. 2007; Lousto and Zlochower 2011; Lousto
and Zlochower 2012). The instantaneous GW luminosity of such a merger can ex-
ceed the electromagnetic luminosity of the entire observable universe (Schnittman
2011), and in the right mass range (∼105−6M�) would be detectable by a LISA-like
instrument to any realistic redshift (Amaro-Seoane et al. 2012b, Fig. 3).

The detection of LISA-band GWs would lead to many scientific opportunities. By
observing mergers of SMBHBs across cosmic time, SMBH demography could be
studied in ways that lack the biases of AGN observations. The spins and redshifted
masses of the merging SMBHs could be measured to high precision, with errors
�1% (Klein et al. 2009; Amaro-Seoane et al. 2012b); if the merger is accompanied
by an electromagnetic counterpart (to break the GW degeneracy between redshift
and luminosity distance), these “standard sirens” would measure cosmological pa-
rameters independent of the standard cosmic distance ladder (Schutz 1986; Holz
and Hughes 2005). Alternatively, if a low frequency GW observatory measures the
GW-driven inspiral of a stellar mass compact object into a SMBH, the SMBH’s Kerr
spacetime could be mapped out in high precision (Ryan 1995). This would both
measure the SMBH mass and spin, and test extensions of GR (Amaro-Seoane et al.
2007; Sopuerta 2010).

To summarize, both electromagnetic and GW observations of SMBHs offer im-
mense scientific value. SMBHs are probes of strong-field GR, and also objects that
play an important role in many different areas of astrophysics. In the next subsection,
we briefly outline the most prominent of the many techniques used today to directly
identify and measure SMBHs in our universe.

1.1.1 Observed SMBHs

The nearest SMBH, Sgr A*, resides in the center of the Milky Way. The advent of
adaptive optics technology has allowed all six orbital elements to be measured for
an entire population of stars, the S stars, on tight orbits around Sgr A* (Ghez et al.
2005; Gillessen et al. 2009). Until recently, the most tightly bound S-star known was
S0-2 (Schödel et al. 2002), which orbited with a period of 16 years. Very recently,
the much dimmer star S0-102 has been discovered to lie on an 11.5 year orbit (Meyer
et al. 2012). The measurement of S star orbital properties has allowed the mass and
distance of Sgr A* to be measured with high precision (Ghez et al. 2008)—although
much closer S stars will need to be found in order to observe relativistic precession
effects, let alone test GR (Merritt et al. 2010).



4 1 Introduction

Although Sgr A* is the nearest SMBH, its extremely underluminous nature
(Baganoff et al. 2003) prevented it from being the first detected by astronomers.
The first strong evidence for astrophysical black holes was inferred by Lynden-Bell
(1969), following earlier work by Hoyle and Fowler (1963) and Salpeter (1964).
These theoretical papers were written in response to the first discoveries of quasars
(Hazard et al. 1963; Schmidt 1963), which are found in much larger numbers to-
day. AGN observations can provide SMBH mass estimates through photoionization
modeling (Wandel et al. 1999) or reverberation mapping (Kaspi et al. 2000) of broad
emission line regions, among other methods. As mentioned previously, observations
of AGN can also measure SMBH spin through relativistically broadened iron lines
(Reynolds 2013), whose profiles depend sensitively on the location of the innermost
stable circular orbit (ISCO).

In the nearest galaxies, SMBH masses can be measured dynamically (albeit not
as directly as for Sgr A*). This is generally accomplished using integrated stellar
kinematic data (Gebhardt et al. 2000, for example) and comparing to three-integral
dynamical models (Schwarzschild 1979) with ranges of SMBH masses. A different
dynamical technique uses stimulated emission from water masers in SMBH accretion
disks, which can provide both distance (Herrnstein et al. 1999) and mass (Greenhill
et al. 1997) estimates for extragalactic SMBHs; other gas dynamical mass estimates
can be used as well.

Taken together, the above techniques have taught us that SMBHs are nearly ubiq-
uitous in nearby galactic nuclei (Kormendy and Richstone 1995; Ferrarese and Ford
2005). The SMBH mass function has been characterized using combinations of these
methods, as well as host galaxy scaling relations (Franceschini et al. 1998; Shankar
et al. 2004; Hopkins et al. 2007; Greene and Ho 2007). Its z = 0 peak is near
MBH ∼ 106 − 107M�, with a gradual decline at higher and perhaps lower masses
(the low mass end is limited by small sample sizes and observational selection ef-
fects). The SMBH spin function seems to indicate a bias towards rapidly spinning
SMBHs, but is limited by small number statistics (with roughly 20 measurements
so far), strong selection effects, and a lack of independent checks on relativistic line
broadening, the primary method of measurement (Reynolds 2013).

1.1.2 SMBH Formation and Growth

Despite the wealth of observational data on nearby SMBHs, and distantAGN, the ori-
gin of massive black holes in the universe is far from clear. Studying their growth and
accretion history offers a few basic constraints. Soltan’s argument (Soltan 1982; Yu
and Tremaine 2002) indicates that typical SMBHs grow primarily through radiatively
efficient accretion of gaseous matter (rather than through mergers with other SMBHs,
or through the capture of stellar mass compact objects). However, the discovery of
extreme quasars at high redshift (Mortlock et al. 2011, for example) suggests that at
least some SMBHs were capable of reaching enormous sizes (�109M�) in the first
Gyr of the universe. If their growth occurred due to Eddington-limited gas accretion
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capable of spinning up the SMBHs, the seed black hole mass they grew from must
have been quite large, in the range of �104M� (Volonteri and Rees 2006). Ejection
of SMBHs via GW recoil makes the observed high-z sample even more challenging
to explain, although the problem can be ameliorated by invoking super-Eddington
accretion (Alexander and Natarajan 2014), “chaotic accretion” of randomly aligned
gas, or radiatively inefficient accretion flows (Volonteri and Rees 2006). Many dif-
ferent mechanisms have been proposed for the formation of SMBH seeds (Sesana
2012), of which three stand out as particularly promising:

• Population III stellar remnants: the first generation of stars have traditionally
been estimated to reach sizable masses, hundreds of times as large as the Sun.
The lack of metal line opacity in their atmospheres would limit mass loss in line
driven winds, allowing for extreme supernovae that can produce black holes with
MBH � 102M� (Madau and Rees 2001; Volonteri et al. 2003). Although the
production of these SMBH seeds is likely more reliable than the other mecha-
nisms listed here, the black holes produced from Population III stars are relatively
small, and might have problems growing into observed high-z SMBHs assuming
Eddington-limited accretion. Recent theoretical work indicating that Population
III stars can fragment during formation into lower mass objects may worsen this
problem (Stacy et al. 2010).

• Star cluster instabilities: at extreme densities, a population of stars or compact
remnants can begin undergoing runaway collisions, culminating in the direct
production of an intermediate mass black hole (IMBH), the ejection of all massive
compact remnants, or the formation of a supermassive star. If the latter object
forms, its lifetime is limited by both its available fuel and general relativistic
instability, leading to slightly delayed IMBH formation. The densities required
to begin this collisional runaway arise from the Spitzer instability (Spitzer 1987):
the negative heat capacity of stellar systems means that the heaviest stars will
sink to the center and become more tightly bound in a “core collapse” process.
If the core collapse timescale is less than the lifetime of the most massive stars,
the collisional runaway will begin and form a supermassive star (Devecchi and
Volonteri 2009; Devecchi et al. 2010, 2012). IMBHs formed in this way will have
massesMBH ∼ 103M�, somewhat larger than in the prior scenario. Alternatively,
if the core collapse timescale is longer than the relevant stellar lifetimes, then the
cluster’s densest central regions will be composed of stellar mass black holes.
These black holes will typically eject themselves from the cluster (through strong
scatterings and post-merger GW recoil), preventing IMBH formation. However,
collisions in a cluster of stellar mass black holes can still produce an IMBH if
their core collapse is mediated by a large-scale gas inflow that deepens the cluster
potential (Davies et al. 2011). An IMBH produced in this way could possess an
initial massMBH ∼ 105M�.

• Direct collapse: at high redshifts, primordial gas can collapse into a large SMBH
seed, either directly (Loeb and Rasio 1994; Bromm and Loeb 2003; Mayer et
al. 2010) or through a short-lived, intermediate “quasistar” phase (Begelman et
al. 2006, 2008). This mechanism produces the largest SMBH seeds, generally
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with MBH � 105M� - but see Begelman et al. (2008) for a scenario in which
MBH is limited to ∼103 − 104M�. However, direct collapse requires somewhat
delicate conditions to operate: if the dense gas is able to cool through molecular
(H2) or metal line emission, it will fragment into stars instead. Even slight metal
enrichment from Population III stars could suffice to deactivate this channel of
black hole formation (Volonteri et al. 2008).

Although demographics seem like the best tool to distinguish between these hy-
potheses, current observations of SMBHs do not yet strongly discriminate between
SMBH formation mechanisms or patterns of growth. As our sample of SMBH spin
measurements expands, we will increasingly be able to distinguish between growth
mechanisms for SMBHs (Volonteri et al. 2005; Berti and Volonteri 2008). Spin mea-
surements can also strengthen or relax the constraints that the present day SMBH
mass function places on black hole seed masses. However, the limitations of current
observational techniques will contribute significant uncertainty to any inferences
drawn from SMBH demographic data. In particular, our measurements of SMBH
masses and spins are biased towards the largest AGN; most SMBHs in the universe
are smaller, and undergoing much weaker accretion.

More exotic future efforts could improve our understanding of SMBH demo-
graphics. In particular, low frequency GW astronomy will let us measure masses and
spins of quiescent SMBHs out to large redshifts. Unfortunately, the funding situation
for LISA-like instruments is quite uncertain, and pulsar timing arrays are unlikely to
resolve any but the most massive SMBH binaries.

1.1.3 Stellar Tidal Disruption

There is one technique accessible to today’s observers which enables the demograph-
ics of quiescent SMBHs to be measured. Over long timescales, stellar dynamics in
galactic nuclei are collisional: the orbital parameters of individual stars change due
to perturbations from other stars, compact stellar remnants, or more massive objects.
Infrequently, a star can be perturbed onto an almost radial trajectory, and pass so
close to the central SMBH that it is shredded by tidal forces (Hills 1975; Lidskii and
Ozernoi 1979; Rees 1988). The fallback of stellar debris onto the SMBH will create
a transient accretion disk, which in turn powers a luminous high-energy flare.

Roughly twenty of these tidal disruption events (TDEs) have been seen over the
last two decades, and our theoretical picture of them is steadily improving. This
thesis describes our work to better understand TDEs: their rates (Stone and Loeb
2011; Stone and Loeb 2012b), their dynamics (Hayasaki et al. 2013; Stone et al.
2013b), and their radiative emission (Stone and Loeb 2012a)4. The remainder of

4 We also have examined an analogous scenario, in which a neutron star is tidally disrupted by a
stellar mass black hole, producing a short gamma ray burst (Stone et al. 2013a). However, that type
of tidal disruption is beyond the scope of this book.
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this introduction will outline the current understanding of stellar tidal disruption,
from both theoretical and observational perspectives. The study of TDEs is rapidly
accelerating due to the wealth of new and unexpected observations over the last few
years. However, if the potential of TDEs to trace SMBH demography in a less (or
differently) biased way thanAGN-based techniques is to be realized, much theoretical
progress remains to be made. In the following introductory sections, we place special
emphasis on the many important open questions which await solution.

1.2 Tidal Disruption Basics

1.2.1 The Newtonian Picture

Unlucky stars in galactic nuclei are occasionally perturbed onto nearly radial orbits.
Although these trajectories are doomed by their interaction with the (strongly rela-
tivistic) central SMBH, much of the relevant physics can be derived in a Newtonian
framework, which we employ here. If a star of massM∗ and radius R∗ orbits a black
hole of massMBH with orbital pericenter, Rp, less than the tidal radius

Rt = R∗(MBH/M∗)1/3, (1.1)

the star will be tidally disrupted (Hills, 1975). To within a factor of order unity, this
is the same as the Roche radius or Hill radius seen in other areas of astrophysics. The
strength of the disruption event can be measured by a dimensionless inverse impact
parameter,

β = Rt/Rp, (1.2)

which measures the strength of the tidal encounter (alternatively, some papers in the
literature parametrize the strength of tidal encounters with ηtidal = β−3/2). Because
the horizon of a black hole grows linearly withMBH, i.e.

Rs = 2GMBH

c2
(1.3)

for a non-spinning hole, while the tidal radius only grows as M1/3
BH , above a critical

mass (known as the Hills mass)

MHills = 1.1 × 108 M� r3/2
∗ m−1/2

∗ , (1.4)

stars will be swallowed by the horizon prior to tidal disruption, making such events
uninteresting from an electromagnetic point of view—although gravitational wave
(GW) signals can still be emitted. In this and subsequent formulae, r∗ = R∗/R� and
m∗ = M∗/M�. We illustrate the region of parameter space accessible to TDEs in
Fig. 1.1.
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Fig. 1.1 The parameter space of tidal disruption: only a star within its respective triangle can be
tidally disrupted by a black hole (Luminet and Pichon 1989). The three triangles are calculated for
solar-type stars (blue, dashed), red giants with M∗ = M�, R∗ = 10R� (red, solid), and white
dwarfs with M∗ = M�, R∗ = 10−2R� (black, dotted). Below the triangles, β < 1 and tidal
encounters are not fully disruptive. In the upper left of the diagram, R∗ > Rp and deeply plunging
orbits around small black holes lead to engulfment of the black holes by the stars. In the upper
right of the diagram, the stars encounter a black hole past their Hills mass limit and are swallowed
whole. Using these approximate formulae, white dwarfs, solar type stars and red giants can reach
maximum β values of 13, 62, and 133, respectively

When a star is tidally disrupted, its constituent gas begins moving on roughly
ballistic trajectories, with a spread of specific orbital energies that (approximately)
“freezes in” at the moment of disruption, i.e. when the orbital radius R = Rt . This
spread in orbital energies arises because at the moment of disruption, leading portions
of the star sit deeper in the SMBH potential well than the trailing portions, which
are in shallower regions of the SMBH potential. Taking the Taylor expansion of
the SMBH’s potential at the star’s position gives the approximate spread in debris
specific energy (Rees 1988),

�ε = GMBHR∗
R2

t

. (1.5)

In much past literature this was incorrectly written asGMBHR∗/R2
p; Chapter 5 goes

into significantly more detail on this disagreement. Tidal compression of the star
orthogonal to the orbital plane (Carter and Luminet 1982; Carter and Luminet 1983)
redistributes energies of individual fluid elements, but likely does not change the
overall spread (Stone et al. 2013b; Guillochon and Ramirez-Ruiz 2013).

Most stars tidally disrupted in realistic galactic nuclei approach the SMBH on
nearly parabolic, zero energy orbits whose apocenters lie at parsec scales (Magorrian
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Fig. 1.2 The hierarchy of specific energy scales in stellar tidal disruption, plotted in units of c2. The
red curve shows the specific energy of circularization, εcirc; the orange curve shows the frozen-in
tidal energy spread �ε; the blue curve shows the star’s specific binding energy, ε∗, and the purple
curve shows the center of mass orbital specific energy for stars scattered in from the SMBH influence
radius. For simplicity, we approximate the influence radius as 3 pc (MBH/106M�)1/2. The absolute
values of all energies are taken

and Tremaine 1999; Wang and Merritt 2004). We can therefore write a hierar-
chy of relevant specific energies, with the center of mass orbital specific energy
|εorb| � ε∗ � �ε. Here ε∗ = GM∗/R∗ is the approximate specific binding energy
of the star prior to disruption. Since |εorb| � �ε, the value of �ε sets the fallback
timescale for the most tightly bound debris,

tfall = 3.5 × 106 sM1/2
6 m−1

∗ r
3/2
∗ . (1.6)

Here M6 = MBH/(106M�). It is generally expected (Ulmer 1999; Strubbe and
Quataert 2009), although far from established, that after a few fallback times, energy
dissipation in shocks will circularize the returned tidal debris into an accretion disk,
which can begin transporting gas to the SMBH through viscous processes. The
exact nature of the circularization mechanism is quite uncertain, because of the
inherent difficulty in numerically simulating thin debris streams travelling between
a pericenter ∼10Rg and an apocenter ∼104Rg. If the material circularizes without
significant loss of angular momentum in outflows, it will have a specific energy

|εcirc| = GMBH

2Rp
, (1.7)

in the limit of initially parabolic orbits. We plot the hierarchy of specific energies in
Fig. 1.2.
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Although we discuss the complex details of disk formation in greater detail in
§ 1.4 and Chap. 6, we will skip ahead here to discuss basic properties of the disk,
assuming it has been established. The viscous timescale at a radius R in the disk will
be

tvisc = α−1�−1(R)

(
H

R

)−2

, (1.8)

which is generally much shorter than both the mass fallback timescale and the time
t since tidal disruption. Here α < 1 is the dimensionless Shakura-Sunyaev viscosity
parameter (Shakura and Sunyaev 1973),H (R) is the disk scale height, and�(R) is the
orbital frequency. Material that returns to the disk is quickly accreted onto the SMBH,
leading to a roughly steady-state accretion flow. The rate at which this accretion flow
is fed with mass will be Ṁ = (dM/dε)(dε/dt). For Keplerian orbits, the derivative
of orbital energy with respect to orbital period is dε/dt ∝ t−5/3 (Phinney 1989). If
we now make the assumption, valid at late times, that the distribution of stellar debris
mass dM/dε is roughly flat with orbital specific energy, then

Ṁ = M∗
3tfall

(
t

tfall

)−5/3

. (1.9)

This equation is often taken as evidence that the luminosity of a TDE flare should
decline as t−5/3; however, this is only true for the bolometric luminosity (Lodato and
Rossi 2011), and is only valid at late times. At early times, our assumption of constant
dM/dε is not valid and the original structure of the disrupted star is imprinted onto the
light curve evolution (Lodato et al. 2009; Guillochon and Ramirez-Ruiz 2013). For
most SMBHs below the Hills mass, this rate of mass accretion is initially highly super-
Eddington. If we assume a radiative efficiency 0 < η < 1, the Eddington-limited
mass fallback rate

ṀEdd = 1.37 × 1021 kg s−1 η−1
−1M6 (1.10)

and the peak rate of mass fallback (i.e. mass fallback at t = tfall) is

Ṁpeak

ṀEdd
= 133η−1M

−3/2
6 m2

∗r
−3/2
∗ . (1.11)

Here we have defined η−1 = η/0.1. While super-Eddington, the thick, radiation
pressure-dominated accretion flow may drive a powerful outflow capable of power-
ing an exceptionally bright electromagnetic transient (Strubbe and Quataert 2009;
Strubbe and Quataert 2011); we elaborate on this possibility in § 1.5. The fallback
rate will decline below the Eddington limit at a time

tEdd = 2.1 yr η3/5
−1M

−2/5
6 m1/5

∗ r3/5
∗ , (1.12)

after which the accretion disk will settle into a cooler and geometrically thinner
configuration (Ulmer 1999). The timescales we have presented here are compared
in Fig. 1.3.
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Fig. 1.3 Timescales relevant for the disruption of a solar type star by a SMBH. The solid purple line
is tfall as given by Eq. (1.6). The red dotted lines are the viscous timescale, Eq. (1.8) at an initial disk
outer edge of 2Rt and assumingH/R = 0.5; the thick line assumesα = 0.1 and the thin line assumes
α = 0.01. The dashed orange lines represent the Eddington timescale, Eq. (1.12), for radiatively
efficient accretion onto Schwarzschild (η = 0.1, thin curve) and extremal Kerr (η = 0.4, thick
curve) SMBHs. Early time accretion fails to be super-Eddington forMBH � few × 107M�. Matter
circularized into the disk will generally accrete rapidly (tfall � tvisc), although this assumption can
break down for very smallMBH and α

1.2.2 The Role of General Relativity

Because real black holes are highly relativistic objects, the simple Newtonian pic-
ture presented above will be complicated by GR effects. Indeed, the first mentions of
stellar tidal disruption in the literature were made by relativists interested in exotic
ways to activate the classical Penrose process (Wheeler 1971). Although this orig-
inal motivation no longer seems realistic, GR effects still lead to qualitatively new
behavior that can be studied by TDE observations.

One simple effect concerns whether stars can be tidally disrupted or not. The Hills
mass is an approximate limit in two ways, both involving the neglect of general rela-
tivity (GR) in Eq. (1.4). First, most astrophysical TDEs are expected to arise from zero
energy, parabolic orbits. In GR, the minimum pericenter distance for such an orbit
overlaps with the innermost bound circular orbit, or IBCO (Bardeen et al. 1972). For
a non-spinning SMBH, the IBCO is located at 4Rg, where Rg = GMBH/c

2 = Rs/2.
So, for non-spinning black holes, a more accurate Hills mass would have a prefactor
of 4.0 × 107 M�. However, SMBH spin (in dimensionless units, a) can reposition
the IBCO between 1Rg (prograde equatorial orbits, a = 1) and 5.83Rg (retrograde
equatorial orbits, a = −1). The IBCO is also angle-dependent, and for prograde (ret-
rograde) orbits will increase (decrease) as the orbit becomes increasingly inclined.
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Favorable combinations of SMBH spin and stellar angle-of-incidence can lead to ob-
servable TDE flares for SMBH masses an order of magnitude larger than Eq. (1.4),
as was shown in Beloborodov et al. (1992) and Kesden (2012b).

General relativistic gravity can also have more subtle implications. In Newtonian
gravity, the vertical collapse of the star is governed by self-similar equations (Carter
and Luminet 1983); this is not the case in GR (Luminet and Marck 1985, also § 1.3,
§ 6.2.2), which can lead to multiple compressions and bounces for high-β orbits.
Circularization of TDE debris streams may be aided by apsidal GR precession, or
hindered by nodal GR precession (Kochanek 1994); these possibilities are explored
in greater detail in § 1.4 and § 6.4. Finally, Lense-Thirring torques felt by the cir-
cularized accretion disk can induce nearly rigid body precession, as is described in
Chap. 7.

1.3 Tidal Disruption Event Rates

1.3.1 Two Body Relaxation

Most stars in a galaxy travel on effectively collisionless orbits, with trajectories de-
termined by the smooth, large-scale potential of the galaxy rather than by discrete
interactions with other stars. If we view a population of stars as a fluid out of thermo-
dynamic equilibrium, the collisionless Boltzmann equation is generally an accurate
approximation, with which the dynamics of isolated or interacting galaxies can be
studied. Quantitative justification can be found for these claims by calculating, to
order of magnitude, the two-body relaxation timescale for orbits in a uniform density
stellar environment (Binney and Tremaine 2008, Eq. 1.38):

tr ∼ 0.1
N

lnN
torb. (1.13)

Here N is the number of stars in the system, and torb is the orbital timescale. For a
typical galaxy, N ∼ 1011 and torb � 106 yr, so tr � tHubble: the galaxy is effectively
collisionless.

However, the assumptions of a smooth background potential and collisionless
orbits can break down in regions of extreme stellar density, such as globular clusters
and galactic nuclei. For many of these dense stellar systems, tr � tHubble, so two-body
interactions relax stellar distribution functions toward equilibria within a Hubble
time. We refer to such dense stellar systems as “collisional,” even though physical
collisions between stars are generally rare; our terminology refers primarily to close
gravitational two-body encounters that alter stellar orbits. This type of relaxation is
a crucial component of TDE rate calculations.

In the vicinity of a SMBH, the population of stars can be treated as a distribution
function f (	x, 	v) over a six dimensional phase space. For now, we only consider
spherically symmetric stellar systems, meaning that these phase space coordinates
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map to a conserved specific energy and angular momentum, i.e. f (ε, J ). This distri-
bution function will be depleted in a zone of phase space known as the “loss cone5,”
defined in terms of specific angular momentum as

J 2
LC(ε) ≈ 2GMBHRt. (1.14)

As in prior sections, MBH is the black hole mass and Rt the tidal radius (we will
specialize for now to the idealized case of single-mass stellar populations). Any star
with specific orbital angular momentum J = |	x× 	v| < JLC will be tidally disrupted
on an orbital timescale, as its pericenter Rp < Rt . In a purely collisionless stellar
system, the loss cone will drain on dynamical timescales and leave a permanent
scar on f (	x, 	v). However, in a collisional stellar environment, the relaxation of
stars through ε and J space will slowly refill the loss cone (Bahcall and Wolf 1976;
Frank and Rees 1976; Lightman and Shapiro 1977; Cohn and Kulsrud 1978). For the
highly eccentric orbits which produce most TDEs, the angular momentum relaxation
timescale tJ is much less than the energy relaxation timescale, tr. Specifically, the
time it takes for J to change by its initial value is

tJ(ε, e) = tr(ε)
J 2

J 2
c (ε)

≈ tr(ε)(1 − e2). (1.15)

Here Jc(ε) is the angular momentum of a circular orbit at fixed energy. Likewise,
e is the orbital eccentricity at fixed semimajor axis a(ε), in the limit of the almost
Keplerian orbits where a(ε) < rinfl. We have defined the SMBH’s radius of influence,
rinfl, to be the radius which contains twice the black hole’s mass in stars.

The relaxational repopulation of loss cone orbits occurs in two different regimes
(Frank and Rees 1976; Lightman and Shapiro 1977). Close to the SMBH, where the
loss cone is much larger than typical collisional perturbations (�J � JLC), stars
slowly diffuse into the loss cone across many orbital periods. In this “diffusive”
regime, almost all TDEs have β ≈ 1. Far from the SMBH, �J � JLC, and a star
can safely wander into and out of the loss cone many times during a single orbit. In
this “pinhole” regime, stars are tidally disrupted with a large range of β values. The
two regimes can be differentiated with a parameter,

q(ε) = �J 2(ε)

J 2
LC(ε)

= P (ε)

tLC(ε)
, (1.16)

where P (ε) is the orbital period, and tLC(ε) = tr(ε)(Rt/a(ε))2 is the characteristic
time it takes for J to change by JLC. The diffusive regime occurs for q(ε) � 1; the
pinhole regime for q(ε) � 1.

5 This terminology was taken by analogy from plasma kinetic theory in the 1970s (Cohn and Kulsrud
1978). At the time, American fusion research focused on magnetic confinement devices known as
magnetic mirrors, which eventually proved nonviable due to plasma leaks from a geometrically
conical region of phase space.
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Although the idealized theory of collisional stellar dynamics near loss cones was
developed long ago, it was only more recently that observations of nearby galactic
nuclei enabled realistic TDE rates to be calculated (Magorrian and Tremaine 1999;
Wang and Merritt 2004). For most observed galaxies, the net flux of stars into the
loss cone peaks near a radius rcrit , which is defined as the radius where a circular
orbit has q(εcrit) = 1. This critical radius, from where most TDEs originate, is by
coincidence ∼rinfl (Wang and Merritt 2004). Therefore most TDEs arise from orbits
at ∼100 − 101 pc scales, validating § 1.2’s approximation of parabolic trajectories.

Using empirically constructed galaxy models based on Hubble Space Telescope
(HST) observations by the Nuker team (Lauer et al. 1995), both Magorrian and
Tremaine (1999) and Wang and Merritt (2004) have estimated TDE rates over a sam-
ple of nearby galaxies. Both of these papers find TDE rates 10−4 yr−1 � ṄTDE �
10−6 yr−1, with the integrated rate dominated by low mass galaxies that contain a
steep, power law stellar density profile. TDE rates in large galaxies are suppressed
by the shallower (“cored”) stellar density profiles, and also by the Hills mass limit.
Both of these works may slightly underestimate the true TDE rate; Magorrian and
Tremaine (1999) systematically overestimates SMBH masses, while Wang and Mer-
ritt (2004) ignores the enhancement to ṄTDE from axisymmetric stellar potentials
(which we elaborate on in the next sections).

1.3.2 Resonant Relaxation

Well inside a SMBH’s radius of influence, the central potential of the black hole is
so dominant that subrelativistic stellar orbits trace nearly closed Keplerian ellipses.
If we time-average these orbits over many orbital periods, we can think of a stel-
lar population as a system of mass-weighted wires exerting torques on each other
(Rauch and Tremaine 1996). The Poisson noise produced by the discreteness of the
stellar distribution function f (	x, 	v) leads to each wire feeling net torques from the
larger population of wires. Over a “coherence timescale,” tcoh, these torques are
coherent rather than stochastic, and can therefore lead to rapid changes in orbital
parameters (unlike the uncorrelated random walk through phase space produced by
two-body relaxation). The relevant tcoh is the time it takes for the system of wires to
change appreciably. Because the wires are fixed in space over a coherence timescale,
the system’s potential is stationary and orbital energy (therefore semimajor axis) is
constant for each star. However, other orbital parameters are not.

Coherent changes in an orbit’s eccentricity, e, are referred to as “scalar resonant
relaxation” (SRR); coherent changes in the orbit’s orientation, Ĵ , are referred to
as “vector resonant relaxation” (VRR). The VRR timescale is generally orders of
magnitude shorter than the SRR timescale (Hopman and Alexander 2006). Both
SRR and VRR lead to rapid evolution of 	J for timescales t < tcoh, but random walks
(in e and Ĵ , respectively) for t > tcoh. Orbits at fixed semimajor axis a experience
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retrograde “mass precession” from the background stellar potential on a timescale

tm ∼ MBH

N (<a)M∗
P (a), (1.17)

where N (<a) is the number of stars at smaller semimajor axis, and P(a) is orbital
period. For large values of J , this is the dominant source of precession, and tcoh ≈ tm.
Closer to the black hole, GR apsidal precession dominates and tcoh ≈ tGR, where

tGR = 8

3

J 2

J 2
IBCO

P (a), (1.18)

and JIBCO = 4GMBH/c is the Newtonian angular momentum of an IBCO-grazing
parabolic orbit.

The dynamics of SRR change dramatically for pericenters very close to the SMBH,
where GR torques have more subtle effects than simple reductions of the coherence
time. Recent work has identified a “Schwarzschild barrier” in {a, e} space, along the
locus of orbital parameters where the SRR timescale tSRR = tGR. Contrary to some
previous expectations, orbits do not simply accumulate at this barrier but instead
bounce backwards to lower eccentricity states. This greatly reduces SRR’s ability
to produce high-eccentricity encounters between stellar mass objects and an SMBH
(Merritt et al. 2011; Brem et al. 2012).

Even prior to the discovery of the Schwarzschild barrier, detailed calculations had
found that resonant relaxation would be a subdominant source of TDEs relative to
standard two-body relaxation (Rauch and Tremaine 1996; Rauch and Ingalls 1998;
Hopman and Alexander 2006; Madigan et al. 2011). This is because the bulk of
stellar flux into the loss cone comes from scales rcrit ∼ rinfl at which resonant relax-
ation is ineffective due to mass precession from the stellar potential. However, SRR
was once thought to dominate the rate of “extreme mass ratio inspirals” (EMRIs). In
an EMRI, a compact stellar mass object spirals into an SMBH under gravitational
radiation reaction. If observed by a LISA-like instrument, EMRIs would serve as
superb tracers of the Kerr spacetime, enabling precision tests of GR by measur-
ing SMBH multipole moments (Sopuerta 2010). An important side motivation for
studying TDEs is to better understand the nuclear stellar populations and relaxation
processes that generate EMRIs. However, the existence of the Schwarzschild barrier
severely reduces realistic EMRI rates (Merritt et al. 2011)6, and also reduces the
contribution of SRR to the TDE rate even further. It is therefore reasonable to dis-
regard SRR in TDE rate calculations, except in unusual situations where two-body
relaxation is suppressed or a large population of stars exists at very small semimajor
axis.

6 It has recently been argued (Brem et al. 2012) that a subpopulation of very high eccentricity
EMRIs may successfully penetrate the barrier; these were previously disregarded because it was
thought they would plunge directly into the horizon. Properly accounting for SMBH spin shows that
many of these “plunge” EMRIs can in fact accumulate high SNR in the LISA band (Amaro-Seoane
et al. 2013).
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1.3.3 Alternative Relaxational Mechanisms

Beyond two-body and resonant relaxation in spherical potentials, other mechanisms
can also feed stars to SMBHs. In particular, axisymmetric or triaxial stellar potentials,
infalling massive perturbers, SMBHBs, and the tidal separation of stellar binaries
have all been suggested as ways to enhance a galaxy’s TDE rate. We will briefly
review each of these mechanisms here.

A significant enhancement to the TDE rate can arise if the central distribution of
stars is axisymmetric or triaxial. Orbits in nonspherical potentials generally fail to
conserve all components of angular momentum, and orbits in fully triaxial potentials
generally conserve no components of angular momentum. Over many orbital times,
this lets an individual orbit sample pericenters of arbitrarily low value, eventually
falling inside the tidal radius and causing a TDE. Axisymmetric potentials can lead to
modest, factor of a few enhancements to the TDE rate (Magorrian and Tremaine 1999;
Vasiliev and Merritt 2013). Orbits in these potentials still conserve the component of
angular momentum parallel to the symmetry axis, but in a fully triaxial potential no
component of 	J is conserved (Poon and Merritt 2004), and a large subpopulation of
stars live on centrophilic, chaotic orbits. In such a potential, ṄTDE can be enhanced by
a factor ∼10 relative to the two-body relaxation baseline (Merritt and Poon 2004).
Interestingly, the enhancement is greatest for large SMBHs near the Hills limit,
which can achieve rates up to ṄTDE ∼ 10−3 yr−1. However, the long-term stability
of these potentials remains unclear; in many cases, triaxial potentials evolve toward
axisymmetry, reducing the TDE rate enhancement (Poon and Merritt 2004). Due to
a lack of observational data, it is unclear whether the stable triaxial configurations
form naturally in galaxy evolution.

Periodically, the orbits of stars in a galactic nucleus can be perturbed by an
infalling massive object—a giant molecular cloud, or a star cluster, for example.
These perturbations will scatter stars through phase space, helping to fill the inner
regions of the loss cone and enhancing the TDE rate. This enhancement has been
estimated to be substantial, and can contribute at leading order to the total TDE rate.
However, because these massive perturbers are unlikely to penetrate inward of rcrit

without themselves being tidally disrupted, their enhancement to the two-body ṄTDE

is at most a factor of a few (Perets et al. 2007).
A massive perturber can have a greater effect on the TDE rate if it penetrates

well into the empty or diffusive loss cone regime. The hardening of a SMBHB, or
SMBH-IMBH binary, can accomplish this. At orbital separations comparable to the
larger black hole’s influence radius, the combination of Kozai effects (Ivanov et al.
2005) and chaotic three-body interactions (Chen et al. 2009, 2011) can lead to a
huge enhancement in the TDE rate, perhaps up to ∼10−1 disruptions per year. This
phase is short-lived, however, typically lasting ∼105 yr and ending once ejection and
disruption of the available stars has led the SMBH binary system to stall its hardening
(Chen et al. 2011). Nonetheless, the total number of stars disrupted is substantial,
and TDEs generated by SMBHBs may account for up to ∼3 % of the total TDE rate
(Chen et al. 2011; Wegg and Bode 2011). Following the merger of an SMBHB, GW
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recoil will tilt the loss cone in phase space, instantaneously refilling a portion of it;
this can also elevate the TDE rate to ∼10−1 yr (Stone and Loeb 2011) and will be
discussed in greater detail in Chap. 3.

A final source of stars to be disrupted arises when a SMBH tidally separates a
binary star system (Hills 1988). One star is ejected at high speeds, often to become a
hypervelocity star. The other becomes bound to the SMBH, and its subsequent orbital
evolution (driven by a combination of two-body relaxation, SRR, and GW emission)
determines whether it will be tidally disrupted (Amaro-Seoane et al. 2012a). If GW
emission dominates, the bound star will circularize efficiently and begin stably trans-
ferring mass to the SMBH at a low luminosity (Dai and Blandford 2011). Although
such mass transfer is interesting and potentially detectable, it differs qualitatively
from a violent TDE. If two-body angular momentum relaxation or SRR is able to
driveRp < Rt , a TDE will be produced; however, the discovery of the Schwarzschild
barrier has made this scenario somewhat uncertain. Nonetheless, the production rate
of bound stars from binary separation is so large that if a substantial fraction can
evolve to low angular momentum orbits, they could dominate the TDE rate and
perhaps contribute substantially to SMBH growth (Bromley et al. 2012). TDEs orig-
inating from this channel might visibly differ from standard TDEs due to their lower
eccentricity, which would manifest in a nonstandard light curve (Hayasaki et al.
2013, see also Chap. 6).

1.4 Dynamics of Disruption

The pioneering work of Carter and Luminet (1983) introduced a shorthand for the
dynamical phases of strong star-SMBH tidal encounters which we adapt for our
purposes in this paper. In phase I, the star is still a distance R > Rt from the SMBH,
and exists in a slightly perturbed hydrostatic equilibrium. During this phase, the
weak tidal forces from the SMBH begin to excite oscillatory modes in the star,
which can be described with a straightforward linear multipole formalism (Press and
Teukolsky 1977). For nondisruptive tidal encounters (β � 1), the star survives its
first pericenter passage, although some mass may be lost from its envelope. Repeated
pericenter passages likely occur if the star is in the “diffusive” loss cone regime, and
can lead to continued mode excitation. On longer timescales the dissipation of mode
energy can lead to thermal expansion of the star’s envelope (Novikov et al. 1992),
modulations of stellar luminosity (Alexander and Morris 2003), and runaway tidal
stripping of the star (Li and Loeb 2013).

1.4.1 Vertical Collapse and Crunch: (Semi-)Analytic

Alternatively, if β � 1, a violent and fully disruptive TDE will ensue. In phase II of a
TDE, R < Rt and the star’s internal forces are subdominant to the tidal acceleration
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it experiences. During this stage of stellar disruption, especially if β is large, the
star undergoes approximate tidal free fall, with its fluid elements moving on roughly
ballistic or geodesic trajectories (altered slightly by the subdominant internal forces).
It is in this regime where the dynamics of the tidal tensor,

r̈i = −CijRj , (1.19)

are most relevant. In this notation, the vector components Ri represent positions of
stellar fluid elements in the star’s center of mass frame. The Newtonian tidal tensor
(Brassart and Luminet 2008) is given by

CN
ij = GMBH

R3

(
δij − 3

RiRj

R2

)
. (1.20)

Denoting X = R cos f , Y = R sin f , and the Z direction (normal to the orbital
plane) as the 1st, 2nd, and 3rd principal axes, respectively, the nonzero components
of CN

ij are

CN
11 = MBH

R3

(
1 − 3 cos2 f

)
(1.21)

CN
22 = MBH

R3

(
1 − 3 sin2 f

)
(1.22)

CN
33 = MBH

R3
(1.23)

CN
12 = MBH

R3
(−3 cos f sin f ) . (1.24)

An analogous, general relativistic tidal tensor can be defined for Schwarzschild or
Kerr spacetimes; we write the Schwarzschild case out in Eqs. (6.21–6.24). In both
cases, Cij is a symmetric tensor, so C21 = C12. The most important qualitative
difference between the Newtonian and GR tidal tensors concerns the vertical, C33

component: in the Newtonian case, z̈ ∝ z, leading to a roughly homologous collapse
(perfectly homologous if internal forces are neglected). Vertical tidal compression
in general relativistic gravity is stronger and not self-similar.

Phase II of a TDE comes to an end when the vertical compression of the star
has adiabatically increased internal pressure to the point where it competes with and
then dominates both tidal acceleration and the inertia of the star’s vertical collapse.
The resulting vertical “bounce” of the star defines the short-lived phase III of a
TDE, where the vertical pressure gradient leads to a rapid reversal of the ongoing
compression. Forβ ≈ 1, phases II and III will be overlapping and ill-defined, because
in a marginal disruption (i) the tides do not strongly compress the star, (ii) the star
does not remain in the tidal sphere for long, and (iii) internal forces never become
truly subdominant. Further complications to this simple picture arise from the fact
that different portions of the star enter the tidal sphere at different times, so that the
“leading edge” of the star collapses and bounces before the center; also, the existence
of a strong density contrast between the mean stellar density and the stellar core will
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alter the picture of tidal free fall, as the core can only disrupt at a radius R′
t < Rt

(Guillochon et al. 2009).
The complex dynamics of phases I-III of stellar tidal disruption intermingle orbital

mechanics, hydrodynamics, GR, and in some cases even nuclear fusion reactions.
These dynamics have been studied analytically, semi-analytically using the so-called
“affine model,” and with the use of direct numerical simulation, in either one or three
dimensions. We now will quickly review the existing literature on these stages of a
TDE.

The earliest analytic estimates of hydrodynamic effects in phases II and III date
back to Carter and Luminet (1982) and Carter and Luminet (1983), who were initially
interested in detonating tidally compressed stars through runaway thermonuclear
reactions. By analyzing the vertical equation of motion for a tidally free falling
column of star, i.e. Eqs. (1.19) and (1.23), these authors estimated that the external
“piston” of tidal acceleration will compress the column until the star’s internal energy
reaches

Uc ∼ β2U∗, (1.25)

the star’s central density reaches

ρc ∼ β−2/(γ−1)ρ∗, (1.26)

and the star’s central temperature reaches

Tc ∼ β2T∗. (1.27)

In these approximate equations, U∗ = GM∗/R∗, ρ∗ is the pre-disruption central
density of the star, T∗ is the pre-disruption central temperature of the star, and γ is
the star’s adiabatic index. The duration of peak compression, i.e. phase III, will only
last for a timescale

τc ∼ β−(γ+1)/(γ−1)τ∗, (1.28)

where τ∗ = √
R3∗/(GM∗). In Stone et al. (2013b), we coupled these hydrodynamic

scaling relations to a more precise analytic model for tidal free fall to investigate the
β dependence of �ε; this is described in Chap. 5.

Much early progress on the problem of stellar tidal disruption was made using the
framework of the affine model (Carter and Luminet 1983), which combines the tensor
virial theorem with the assumption that a tidally disrupting star can be thought of as
nested ellipsoidal shells. The affine model accounts for the SMBH tidal field, stellar
self-gravity, and hydrodynamic forces, and can loosely be thought of as an extension
of stellar perturbation theory (Press and Teukolsky 1977) to nonlinear regimes, but
restricted to the  = 2 mode. The earliest work in the affine framework validated the
approximate hydrodynamic scaling relations in Eqs. (1.25), (1.26), (1.27), and (1.28).
Later papers calibrated these relations and surveyed more widely the joint parameter
space of β andM∗ (Luminet and Carter 1986). Comparisons to full hydrodynamical
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simulations indicate that the affine approximation becomes much less applicable
after phase III of a disruption, when the stellar matter deviates strongly from the
ellipsoidal approximation. The affine model was later placed on a more formal footing
(Carter and Luminet 1985), and extended to include the effects of GR (Luminet and
Marck 1985) and thermonuclear reactions (Luminet and Pichon 1989). The increased
vertical tidal acceleration due to general relativistic gravity, i.e. Eq. (6.19), can lead
to the star recollapsing and undergoing a second vertical bounce, provided its orbit is
relativistic (Rp ∼ RIBCO) and deeply penetrating (β � 1). During single or multiple
collapses of a main sequence star, the conditions for explosive helium burning are
generally not satisfied, but alpha-capture and proton-capture reactions may lead to
significant nucleosynthesis. Within the affine framework, these reactions change the
composition of the star at the ∼1 − 5 % level and for β � 10 release many times the
star’s original binding energy, but are still energetically subdominant to the tidally
imprinted spread of debris energy, �ε (Luminet and Pichon 1989).

More recent extensions of the affine model allow individual ellipsoidal shells
to have different properties and orientations (Ivanov and Novikov 2001), enabling a
treatment of partial mass loss in encounters that are not fully disruptive (β � 1). Later
work using the extended affine model found reasonably good agreement between its
results and those of three dimensional grid-based simulations (Ivanov et al. 2003).
The extended affine model has also been used to produce realistic, angle-dependent
cross-sections for disruption and swallowing of main sequence stars by spinning
SMBHs (Ivanov and Chernyakova 2006).

1.4.2 Vertical Collapse and Crunch: Hydrodynamic Simulations

Although the affine model and its descendants are computationally efficient and pro-
vide analytic insight, they are ultimately limited by their assumptions, so for a fully
self-consistent treatment of stellar tidal disruption it is necessary to use hydrodynam-
ical simulations. Such simulations discretize either mass or volume and then integrate
the equations of hydrodynamics in a Lagrangian or Eulerian way, respectively. For
the problem of stellar TDEs, the Lagrangian approach is generally implemented with
Smoothed Particle Hydrodynamics (Lucy 1977, hereafter SPH) algorithms, dating
back to the pioneering work of Nolthenius and Katz (1982), which was limited by
the small number of SPH particles used per simulation (40). Subsequent simulations
by Bicknell and Gingold (1983) increased the number of SPH particles to 2000,
and found significantly less tidal compression than in the affine model. This was
later attributed to numerical viscosity and insufficient vertical resolution (Luminet
and Carter 1986), but as we shall see, disagreements along these lines have per-
sisted with more modern simulations. Later generations of three dimensional SPH
simulations verified analytic expectations for �ε (Evans and Kochanek 1989, but
only for the β = 1 case), examined the role of GR by adapting SPH to curved
spacetimes (Laguna et al. 1993), followed the evolution of returning debris streams
(Ayal et al. 2000), measured the imprint of stellar structure on the early-time, rising



1.4 Dynamics of Disruption 21

portion of a TDE lightcurve (Lodato et al. 2009), and simulated debris circularization
in eccentric center of mass trajectories (Hayasaki et al. 2013, see also Chap. 6).

Complementary efforts by grid-based hydrodynamics codes began later, with
early work focusing on partial mass loss and mode excitation in weak tidal encoun-
ters (Khokhlov et al. 1993b), as well as the transition to complete disruption for
higher β values (Khokhlov et al. 1993a). Similar techniques were combined with the
GR tidal tensor and center of mass trajectories to examine the impact of relativity
on disruptions of white dwarfs by IMBHs (Frolov et al. 1994). A subsequent paper
conducted the first systematic exploration of parameter space for nondisruptive tidal
encounters (Diener et al. 1997). More recently, grid-based one dimensional simu-
lations have followed vertically collapsing columns of star at high resolution with
the aim of precisely capturing shocks launched during phase III, both in Newtonian
(Brassart and Luminet 2008) and general relativistic (Brassart and Luminet 2010)
gravity. These one dimensional works found degrees of compression in close agree-
ment with earlier affine model studies (Luminet and Marck 1985; Luminet and Carter
1986), but in disagreement with state of the art three dimensional Eulerian simula-
tions (Guillochon et al. 2009), which found a significantly smaller degree of vertical
compression. This difference is likely due to a combination of lower resolution in
the three dimensional simulations, physical three dimensional effects (e.g., pressure
waves communicating between the fully collapsed, phase III leading edge of the star,
and the more central portions of the star still undergoing phase II compression), and
possible inaccuracies introduced via one dimensional initial conditions7. A param-
eter study of three dimensional simulations has also investigated the β dependence
of the dM/dε mass distribution, finding both the critical β values leading to full dis-
ruption, and a lack of β dependence in fully disruptive encounters (Guillochon and
Ramirez-Ruiz, 2013). This last finding parallels analytic work (Stone et al. 2013b)
presented in Chap. 5 of this thesis.

1.4.3 Debris Expansion and Circularization

Following the vertical bounce of the star, internal forces again become negligible,
beginning phase IV of a TDE: free expansion. At this point, half the star’s mass is
unbound from the SMBH and enters onto its escape trajectory, while the other half
remains bound. In this phase of expansion, the star is governed by the same tidal
equations that dominated phase II. As mentioned before, this can lead to another
vertical collapse for deeply plunging, relativistic orbits. Eq. (1.19) ceases to describe
the dynamics of the stellar debris as it leaves the tidal sphere, due to its increasing
physical size and (for low β) the reemerging importance of internal forces. Phase V
of a TDE - the dynamics of thin, gaseous debris streams - is the least studied, due to
the difficulty of direct numerical simulation. The most tightly bound debris stream

7 James Guillochon, Morgan MacLeod, and Enrico Ramirez-Ruiz, private communication.
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has an eccentricity

emin = 1 − β−1

(
MBH

M∗

)−1/3

, (1.29)

implying that the orbital apocenter will be at least two orders of magnitude larger
than orbital pericenter for star-SMBH TDEs. The evolution of the stellar debris as
it leaves the tidal sphere depends sensitively on both β and the initial structure of
the star. For marginal, β ≈ 1 disruptions, a surviving stellar core can accrete a
large portion of the debris through gravitational collapse. Even for fully disrup-
tive β ≈ 1 encounters, self-gravity can have important effects on stream evolution
(Kochanek 1994).

Two mechanisms for debris circularization have been proposed so far in the lit-
erature. In the first of these models, apsidal GR precession causes tightly bound
debris that has completed its second pericenter passage to intersect with less bound
debris still returning from its first apocenter. Shocks will form in the large-angle col-
lision between these streams, dissipating energy and leading to circularization (Rees
1988), a process which has been seen in our hydrodynamical simulations of eccentric
(e = 0.8) TDEs around SMBHs (Hayasaki et al. 2013, also see § 6.4). This circu-
larization mechanism could be delayed, perhaps strongly, by nodal GR precession
from Lense-Thirring torques around rapidly spinning SMBHs (Kochanek 1994). An
alternate type of circularization can arise from vertical compression of stellar debris
during second (and later) pericenter passages, when the thin streams are funneled
by tidal acceleration into a vertically compressed “nozzle.” The convergent flow at
pericenter leads to shocks. Direct energy dissipation in the nozzle is unlikely to be
an efficient circularizer; if we assume roughly ballistic motion for the stellar debris
between the first and second pericenter passages, the specific kinetic energy of ver-
tical collapse at pericenter return will be εz ∼ β2(GM∗/R∗), so that even if 100% of
this energy is dissipated in shocks, the gas will need to return to pericenter

Nperi ∼ 1

2β

(
MBH

M∗

)2/3

(1.30)

times in order to circularize8. However, shocks in the nozzle do change the orbital
parameters of the gas exiting pericenter, which can lead to an effective apsidal pre-
cession, circularizing the gas through collisions and shocks with material returning
from its first apocenter passage (as in the GR precession case). This type of circular-
ization has been seen in simulations of stars on parabolic orbits disrupted by 103M�
IMBHs (Ramirez-Ruiz & Rosswog 2009), but it is unclear whether this mechanism

8 This argument could break down if a large fraction of the debris re-collapses due to gravitational
instability, but it is not clear whether that would aid or hinder nozzle-driven circularization (it would
certainly hinder GR-driven circularization, by reducing the stream cross-section and magnifying
the impact of nodal GR precession). This is because the collapsed streams will see a higher effective
β, but will likely have a lower specific internal energy than the original star.
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scales up to e = 1, star-SMBH disruptions9. Analogously, the GR-mediated circu-
larization seen in the e = 0.8, star-SMBH TDEs of Hayasaki et al. (2013) has not
been demonstrated to scale up to the canonical e = 1, star-SMBH TDE scenario.
The question of debris circularization is a subtle one that needs to be resolved before
theorists can hope to understand the earliest emission from stellar tidal disruption
flares. This is an important question to address because the early-time, rising portion
of a TDE light curve may encode the parameters of the disrupted star (Lodato et al.
2009; Guillochon and Ramirez-Ruiz 2013). A second motivation for understanding
debris circularization is that if GR precession is the dominant mechanism, the spin
of the SMBH may be encoded into the circularization timescale.

1.5 Accretion of Circularized Debris

Although the process of debris circularization is complex and, as of now, poorly
understood, it is reasonable to assume that at some point after tidal disruption, a
circularized accretion flow will exist around the SMBH. The evolution and emission
of this transient accretion disk has been the subject of much theoretical study, as it
relates much more directly to observations than do many of the subtle dynamical
processes in § 1.3 and § 1.4.

The short viscous timescales of these disks suggest that mass accretion onto the
SMBH is limited by the supply of fallback material into the disk, rather than internal
viscous processes. For example, in the simple analytic slim disk model of Strubbe
and Quataert (2009), the time since disruption is greater than Eq. (1.8) for ∼1−3 yr.
On timescales longer than this, a reservoir of fallback material will accumulate,
and the supply of fuel to the SMBH will be governed by the (now slow) viscous
transport of material within the accretion disk (Cannizzo et al. 1990). For SMBHs
with MBH � 2 × 107 M�, the disk will initially pass through a stage of super-
Eddington accretion, before the mass fallback rate declines and the disk becomes
cool and geometrically thin. At very late times, the disk may once again become
thick as it transitions into a radiatively inefficient mode of accretion.

While the late-time evolution of the disk has been described analytically by
Cannizzo et al. (1990), the early-time disk evolution can be studied with the time-
dependent slim disk model of Strubbe and Quataert (2009). In this model, the disk
can be treated as a multicolor blackbody, where each disk mass annulus of radius R

9 The SPH simulations ofAyal et al. (2000) appear to capture nozzle-driven circularization in e = 1,
MBH = 106M� TDEs. However, the reliability of these results may be limited by (i) the difficulty
of accurately capturing shocks in SPH codes, (ii) the low particle resolution (N = 5000) of these
simulations, and (iii) the particle-splitting algorithm employed to address resolution issues, since the
vertical compression of the star will be sensitive to spurious changes in stream geometry. If vertical
compression at pericenter is under-resolved, the net effect will be unphysical velocity perturbations
in the orbital plane (Guillochon et al. 2009; Stone et al. 2013b) and correspondingly unphysical
apsidal precession.
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Fig. 1.4 Temperature profiles for the “slim disks” of Strubbe and Quataert (2009). All curves
represent disks formed from the disruption of a solar-type star by a 106M� SMBH. The purple
curve is at a time t = tfall, the blue curve is at a time t = 10tfall, and the orange curve is at a time
t = 20tfall. The accretion rate reaches the Eddington limit at ≈ 19tfall
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Here σ is the Stefan-Boltzmann constant, and f = 1 − (RISCO/R)1/2. We can also
compute the disk surface density profile, �(R), using the relation

� = Ṁ

3παH�K
, (1.33)

where�K is the Keplerian orbital frequency. We plot the temperature, height, and sur-
face density profiles in Figs. 1.4, 1.5, and 1.6, respectively. Because of the simplicity
of this model, we will make use of it several times in this paper (Chaps. 3, 7).

Although the bolometric luminosity of TDE accretion disks (at early times, when
t < tvisc) may scale as L ∝ Ṁ ∝ t−5/3, disk emission is likely peaked in the UV
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Fig. 1.5 Normalized disk height (H/R) profiles for the “slim disks” of Strubbe and Quataert (2009).
The line styles are the same as in Fig. 1.4

Fig. 1.6 Surface density profiles for the “slim disks” of Strubbe and Quataert (2009). The line
styles are the same as in Fig. 1.4
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or soft X-ray, and wavelengths far from this peak will see distinct time evolution. In
particular, if we are observing the Rayleigh-Jeans tail of disk emission (as will usually
be the case for optical instruments),L ∝ t−5/12 (Lodato and Rossi 2011). At very late
times, observations may move to wavelengths shorter than the blackbody temperature
of the inner disk edge; at this point the observed luminosity will exponentially decline
in time. It remains unclear why so many UV and optical observations of TDEs see
luminosity declining with approximately t−5/3 power laws (Gezari et al. 2012, for
example); these observations may suggest significant reprocessing of disk luminosity.

At the low end of the SMBH mass function, a significant source of non-continuum
emission may be emission lines formed when the unbound debris reprocesses hard
radiation from the central accretion disk. The half of the star that is dynamically
ejected expands as it travels away from the SMBH, forming a wall of gas subtending
a solid angle

�� ∼ 481/2(R∗/Rt)
3/2 ∼ 7 × 10−3M

−1/2
6 m1/2

∗ (1.34)

on the sky (Strubbe and Quataert 2009). The gas remains mostly neutral, but with a
very thin ionization front that emits broad emission lines (the velocity dispersion of
the gas is�v ≈ √

�ε ≈ 4.4 × 106 m s−1M
1/2
6 m

1/3
∗ r

−1/2
∗ ). These lines are generally

weak, but are stronger for small SMBHs and at late times (Strubbe and Quataert
2009). Recombination in the ejected gas may also power a short-lived optical transient
(Kasen and Ramirez-Ruiz 2010). However, recent simulations (Guillochon et al.
2014) suggest that gravitational recollapse of unbound streams with β � 3 would
reduce their covering fraction by orders of magnitude, effectively eliminating all
emission lines from these events.

During the earliest stages of disk accretion, when t < tEdd, the accretion disk
will be geometrically thick and radiation pressure dominated. There are many un-
certainties about such super-Eddington accretion flows, but most existing radiation
hydrodynamics simulations indicate that they can drive powerful outflowing winds
(Ohsuga et al. 2005; Ohsuga and Mineshige 2011). As these outflows expand and adi-
abatically cool, their photosphere emits like a blackbody peaked in the optical. The
presence of a strong super-Eddington outflow can increase the optical luminosity of
a TDE by orders of magnitude, strongly enhancing detectability by optical time do-
main surveys (Strubbe and Quataert 2009; Lodato and Rossi 2011). Such an outflow
would be characterized by strong UV absorption lines (Strubbe and Quataert 2011).
A qualitatively different model for the super-Eddington stage of a TDE flare would
be the formation of a roughly spherical envelope, near hydrostatic equilibrium and
supported by radiation pressure (Loeb and Ulmer 1997). A more spherical geometry
could be achieved if circularization is delayed by Lense-Thirring precession, and
the orbital planes of the debris streams are strongly isotropized. However, achiev-
ing hydrostatic equilibrium requires a fine-tuning of Ṁ ≈ ṀEdd, and significantly
super-Eddington accretion rates will lead to an expansion of the envelope that may
develop into a wind rather than reaching a new equilibrium (Ulmer et al. 1998).

A final source of electromagnetic emission in TDEs is the launching of collimated
relativistic jets. Such jets are seen in a wide range of accreting black hole systems,
from puny galactic microquasars to the largest extragalactic blazars. Only, recently,
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however, has interest in TDE jets arisen, with a handful of theoretical papers (Far-
rar and Gruzinov 2009; Giannios and Metzger 2011) preceding the observational
discovery of one (Bloom et al. 2011; Zauderer et al. 2011; Levan et al. 2011) or
possibly two (Cenko et al. 2012b) relativistic TDE flares by the Swift satellite. These
unexpected observational discoveries have sparked much theoretical interest in TDE
jets. These jets have been studied as sources of ultra high energy cosmic rays (Farrar
and Gruzinov 2009), tools for measuring SMBH spin (Stone and Loeb 2012a), and
probes of the gaseous circumnuclear medium (De Colle et al. 2012; Metzger et al.
2012). Furthermore, the relatively clean initial conditions of a TDE makes such jets
ideal laboratories to examine open questions about the roles played by net magnetic
flux (Giannios and Metzger 2011) and disk-jet misalignment (Stone and Loeb 2012a,
Chap. 7) in jet launching mechanisms.

1.6 Observed Flares

The first strong candidate tidal disruption flares were found by X-ray instruments
in the mid-1990s (Brandt et al. 1995; Grupe et al. 1995; Bade et al. 1996). In the
nearly 20 years since then, roughly twenty more events have been found. The rate of
TDE detection is increasing rapidly, as is the quality of observations. Upcoming time-
domain optical surveys, in particular the LSST, could discover hundreds to thousands
of TDEs every year (Gezari et al. 2009; Strubbe and Quataert 2009), finally realizing
the promise of TDEs as probes of SMBH demography. In this section, we review the
history of TDE observations.

1.6.1 X-ray and UV Observations

The satellite Röntgensatellit (ROSAT) conducted a low-cadence X-ray and EUV
survey which detected several candidate tidal disruption flares (Brandt et al. 1995;
Grupe et al. 1995; Bade et al. 1996; Komossa and Bade 1999; Komossa and Greiner
1999). The long time lag between observations (�6 months) makes it challenging
to compare these early flares to detailed TDE models, but in general the strongest
candidates (e.g. RX J1242.6-1119A) possessed several convincing characteristics:

• Large amplitude nuclear X-ray variability. Standard AGN vary their X-ray lumi-
nosity by factors of a few, rather than the multiple orders of magnitude expected
for TDEs.

• A relatively soft X-ray spectrum, consistent with models of TDE accretion disks.
• No signs of prior host galaxyAGN activity in optical spectroscopy (e.g. no narrow

line region).

From these earliest TDE candidates it was already clear that multiwavelength obser-
vations are key for distinguishing TDEs from other sources of high-energy emission.
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Followup HST spectroscopy helped to clarify the ROSAT candidate hosts, classifying
one as a likely AGN and two others as inactive galaxies (Gezari et al. 2003). Like-
wise, Chandra followup observations found evidence for huge (factors of 102 −104)
declines in the X-ray luminosity of all three strong ROSAT TDE candidates, sup-
porting the TDE hypothesis (Halpern et al. 2004). Attempts to extrapolate a TDE
rate from the ROSAT sample (Donley et al. 2002), although limited by selection
effects and small number statistics, found a low rate, ∼10−5 galaxy−1 yr−1, broadly
consistent with (albeit somewhat below) theoretical expectations (Magorrian and
Tremaine 1999).

A similar X-ray survey performed with XMM-Newton identified two more likely
TDE flares (Esquej et al. 2008) with the aid of X-ray and optical followup.
Other XMM TDE candidates were later detected (Saxton et al. 2012b), while
XMM followup was also used to strengthen the case for ROSAT flares (Komossa
et al. 2004). In the UV, the GALEX satellite identified three candidate TDE flares
(Gezari et al. 2006; Gezari et al. 2008; Gezari et al. 2009), all of which seemed to
originate from inactive galactic nuclei. All of the GALEX flares were fit surprisingly
well by t−5/3 decay laws and simple blackbody spectra, and the masses inferred from
simple TDE models, while somewhat imprecise, were in agreement with galaxy scal-
ing relations. The large fitted size of the emitting blackbodies, ∼10Rt , may imply
a large shell of matter reprocessing emission from the inner disk, as in Loeb and
Ulmer (1997); Ulmer et al. (1998).

1.6.2 Optical Detection of TDEs

At longer wavelengths, twoTDE candidates have been found (vanVelzen et al. 2011b)
in Sloan Digital Sky Survey (SDSS) archival searches (in combination with GALEX
archival data). SDSS data combined with followup spectroscopy has also found a
sample of seven extreme coronal line emitters (ECLEs), which can be interpreted as
light echoes of recent SMBH flares, possibly originating in stellar tidal disruption
(Komossa et al. 2009; Wang et al. 2011; Wang et al. 2012). Although this novel
spectroscopic diagnostic shows great promise as a way to detect TDEs, and to probe
the central gas distributions of distant galaxies, it remains relatively unexplored
from a theoretical perspective. Due to selection effects, it is also difficult to correlate
against other samples of TDE candidates; most prior searches explicitly discarded
TDE candidates with strong line emission as a cut against pre-existing AGN (Wang
et al. 2012). An improved theoretical understanding of the light echoes generated by
TDEs would help validate the ECLE sample of TDE candidates.

The advent of time domain optical astronomy raises the prospect of a large, high
cadence TDE sample. However, optically-selected TDE flares are more susceptible
to confusion with (intrinsically more common) nuclear Type II supernovae, and also
depend sensitively on the uncertain details of super-Eddington accretion. One such
TDE candidate found by the Palomar Transient Factory was observed to decay very
quickly, over ≈10 days (Cenko et al. 2012a). If this was in fact a tidal disruption
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flare, it emphasizes the need for high cadence optical surveys. Very recently, the
discovery of a UV/optical flare with GALEX and Pan-STARRS data has provided our
most detailed look at a presumptive TDE (Gezari et al. 2012). The excellent time
resolution of this event’s observations allows detailed comparisons to TDE models.
The authors even compare the “rising” portion of the light curve to predictions about
the effects of stellar structure variation across the main sequence (Lodato et al.
2009). The most mysterious aspect of this TDE candidate, however, is the presence
of helium lines and the absence of hydrogen lines. Tidally disrupting helium stars at
a significant fraction of the total TDE rate is a nontrivial dynamical challenge, but
so too is hiding the hydrogen from the disruption of a main sequence star.

1.6.3 Relativistic TDEs

Finally, there appears to be a subset of TDE flares capable of emitting powerful rela-
tivistic jets; if seen on-axis, these blazar-like objects can be observed at cosmological
distance in hard X-rays and soft γ -rays. The 2012 discovery of two such relativistic
TDEs by the Swift satellite has generated much interest in these events, as they offer
a new TDE detection method, probe the central regions of distant galactic nuclei, and
serve as laboratories for studying jet launching mechanisms. The first event, Swift
J1644+57, was observed in the nucleus of a galaxy at a redshift of z = 0.354, and has
been widely interpreted as the onset of a tidal disruption flare (Bloom et al. 2011;
Burrows et al. 2011; Levan et al. 2011) due to rapid variability and lack of prior
activity, although alternative explanations exist (Quataert and Kasen 2012). Despite
optical nondetection of this flare (Bloom et al. 2011), possibly due to dust extinc-
tion, Swift J1644+57 has been observed in radio wavelengths (Zauderer et al. 2011),
where the late time radio light curve indicates jet interaction with circumnuclear gas
(Zauderer et al. 2013). The second event, Swift J2058+05, was seen at a redshift of
z = 1.1853 (Cenko et al. 2012b). Unlike Swift J1644+57, this event was bright in
the optical and so far lacks a detected host galaxy.

Even off-axis, the late-time radio afterglows of these jets may be detectable (al-
though Doppler boosting will reduce the observed flux). Very Large Array (VLA)
followup observations of seven previously detected TDE candidates all failed to de-
tect 5 GHz radio emission (van Velzen et al. 2013). Different VLA observations of
seven X-ray selected TDE candidates found two possible radio counterparts (Bower
et al. 2013), possibly indicating a dichotomy in TDE jet production, with unknown
variables (such as SMBH spin, orbital pericenter, or spin-orbit alignment) dictating
whether or not jets occur.

Taken together, observations at all wavelengths provide convincing evidence for
tidal disruption flares in rough agreement with our first-order theoretical picture. The
onus is now on theorists to improve existing models for the rates and properties of
these flares, both to better understand our existing sample of events and to maxi-
mize the scientific yield of future surveys. Only by combining future observations
with improved theoretical modeling can we use these dramatic events to probe GR
phenomena, and to study SMBH demographics across cosmic time.



Chapter 2
Tidal Disruption Rates from Two-Body
Relaxation

2.1 Introduction

In this chapter, we review the standard TDE rate calculation in greater detail than was
covered in the introduction. This is meant to provide context for the following two
chapters of this thesis, which cover original work on ways in which tidal disruption
rates are affected by SMBH recoil. These standard TDE rate estimates are also
highly valuable calculations in their own right! Throughout this chapter, we will
follow the relatively recent work of Wang and Merritt (2004), which represents a
simplification of many other works on TDE rate calculations (Lightman and Shapiro
1977; Cohn and Kulsrud 1978; Magorrian and Tremaine 1999). This approach is
therefore pedagogically appealing, but the interested reader is advised to thoroughly
review the classical two-body relaxation literature for a fuller picture.

2.2 Two Body Relaxation

The loss cone of a SMBH can be defined as the region in angular momentum space
for which

J 2 < J 2
LC(ε) = 2r2

t (ψ(rt) − ε) ≈ 2GMBHrt , (2.1)

where MBH is the black hole mass, rt is the stellar tidal radius, J is specific orbital
angular momentum, ε is specific orbital energy, andψ(r) is the gravitational potential
at a radius r from the SMBH, which is assumed to lie in the bottom of the stellar
potential well1. Throughout this chapter we employ the common stellar dynamical
convention of negating the standard definitions of orbital energy and gravitational

1 In this chapter we denote three dimensional radii with r rather than R to avoid confusion with an
angular momentum-like variable.
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potential; that is to say,ψ > 0 and, for bound stars, so is ε. The gravitational potential
is defined as

ψ(r) = ψ∗(r) + GMBH

r
. (2.2)

We will now make the assumption of a spherical star cluster surrounding the SMBH,
with a stellar mass density profile ρ(r). We will also employ the equivalent stellar
number density profile, n(r), throughout this section. This enables us to write the
stellar potential as

ψ∗(r) = GM(r)

r
+ 4πG

∫ ∞

r ′
ρ(r ′)r ′dr ′, (2.3)

where M(r) is the total stellar mass enclosed at a radius r . With this potential in
hand, we can calculate the stellar distribution function using the Eddington formula:

f (ε) = 1

π2
√

8

d

dε

∫ ε

0

dn

dψ

dψ√
ε − ψ (2.4)

= 1

π2
√

8

(∫ ε

0

d2n

dψ2

dψ√
ε − ψ + 1√

ε

(
dn

dψ

)
ψ=0

)
.

Using the distribution function f (ε), we can now calculate the flux of stars into the
loss cone, F(ε). Integrating this over all energies will give the total stellar disruption
rate for a given galaxy,

ṄTDE =
∫

F(ε)dε. (2.5)

To calculate F(ε), we define the angular momentum proxy

R = J 2

J 2
LC

, (2.6)

which we shall use to define an orbit-averaged angular momentum diffusion
coefficient,

μ̄(ε) = 2

P (ε)

∫ ra

rp

dr

vr(r)
lim
R−>0

〈(�R)2〉
2R

. (2.7)

Here P (ε) is the orbital period, vr(r) is the radial component of orbital velocity, and
the locally-defined angular momentum diffusion coefficient is

lim
R−>0

〈(�R)2〉
2R

= 32π2r2G2M2∗ ln�

3J 2
c (ε)

(
3I1/2(ε) − I3/2(ε) + 2I0

)
. (2.8)
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Fig. 2.1 The apocenter of a radial orbit, ra, plotted against orbital energy ε, for the cusp galaxy
NGC 4551 (solid green line) and the core galaxy NGC 4168 (dashed brown line). NGC 4551 has
MBH = 107.11M�, while NGC 4168 hasMBH = 107.89M�

For simplicity we assume that all stars in the cusp have the same mass2, M∗. The
angular momentum of a circular orbit with energy ε is Jc(ε), and the Coulomb
logarithm is ln�. We have also defined the auxiliary integrals

I0(ε) =
∫ ε

0
f (ε′)dε′ (2.9)

and

In/2 = (2ψ(r) − 2ε)−n/2
∫ ψ(r)

ε

(
2ψ(r) − 2ε′)n/2 f (ε′)dε′. (2.10)

We can now specify the flux of stars per unit time per unit energy into the loss cone
as

F(ε)dε = 4π2J 2
c (ε)P (ε)μ̄(ε)

f (ε)

ln−1 R0(ε)
dε. (2.11)

The quantityR0(ε) accounts for the fact that our distribution function, which we have
so far treated as isotropic, is not exactly so; very radial orbits have been depleted due
to interactions with the loss cone. R0(ε) is the value of R beneath which no more
stars exist, and is given by

R0(ε) = RLC(ε) ×
⎧⎨
⎩

exp (− q(ε)), q(ε) > 1

exp
(
− 0.186q(ε) − 0.824

√
q(ε)

)
, q(ε) < 1.

(2.12)

2 Generalizing this calculation to a realistic present day mass spectrum increases TDE rates by a
factor � 2 (Magorrian and Tremaine 1999).
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Fig. 2.2 The period of a radial orbit, P (ε), plotted against orbital energy ε. The line types are the
same as in Fig. 2.1

Fig. 2.3 The geometric size of the loss cone, RLC(ε) = J 2/Jc(ε), plotted against orbital energy ε.
The line types are the same as in Fig. 2.1

The dimensionless quantity q(ε) can be thought of as the ratio of per-orbit changes
in R to the R value of a loss cone orbit (all at fixed energy). It is defined as

q(ε) = P (ε)μ̄(ε)

RLC(ε)
, (2.13)
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Fig. 2.4 The distribution function of stars, f (ε), plotted against orbital energy ε. Qualitatively
different behavior is seen for the core galaxy (whose distribution function peaks at a finite ε) and
the cusp galaxy (whose distribution function monotonically increases toward small radii). The line
types are the same as in Fig. 2.1

and it demarcates the boundary between two different regimes of loss cone dynamics.
When q � 1, stars diffuse slowly through angular momentum space, taking small
steps that eventually result in grazing disruptions (rp ≈ rt ; β ≈ 1). This “diffusive”
regime is the one that dominates for stars near the SMBH. Beyond a critical radius
rcrit , q(ε) grows quickly in value until q � 1. In this “pinhole” regime, the loss cone
is close to full because stars can jump in and out of it multiple times per orbit. Notably,
this produces TDEs that sample a full distribution of β, with ṄTDE(β) ∝ 1/β.

2.3 Tidal Disruption Rates in Realistic Galaxies

We now have defined the theoretical formalism to calculate TDE rates in a galactic
nucleus with known SMBH massMBH and stellar mass density profile ρ(r) (assum-
ing a mean stellar mass M∗ to calculate n(r) = ρ(r)/M∗). However, ρ(r) can only
be inferred indirectly from observations of distant galactic nuclei. What is actually
measured is the surface brightness profile I (s), where s is a projected radial coordi-
nate. In order to retrieve ρ(r) from I (s), we must assume (or measure) the mass to
light ratio ϒ , and also make the assumption of spherical symmetry.

Although many parametrizations for I (s) exist in the literature, we will employ
the “Nuker” surface brightness density profile

I (s) = Ib2
B−�
α

(
s

sb

)−� (
1 +

(
s

sb

)α)�−B
α

. (2.14)
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Fig. 2.5 The orbit-averaged angular momentum diffusion coefficient, μ̄(ε), plotted against orbital
energy ε. The line types are the same as in Fig. 2.1

This five-parameter model is essentially a broken power law for the surface density
profile; B is the inner power law slope, � is the outer power law slope, and α is a
parameter governing the behavior at the break radius sb. The normalization Ib is the
magnitude of the surface brightness at s = sb. Using an assumed or measuredϒ , we
can deproject a measured I (s) into ρ(r) using the Abel inversion

ρ(r) = −ϒ
π

∫ ∞

r

dI

ds

ds√
s2 − r2

. (2.15)

Once we know ρ(r), it is straightforward to calculateM(r) andψ(r), and from there,
to calculate TDE rates using the formalism of the previous section.

As a demonstration of this method, we now follow the example of Wang and
Merritt (2004), and plot several quantities of interest for the galaxies NGC 4551 and
NGC 4168. The SMBH masses for these galaxies, as inferred from the MBH − σ

relation, are MBH = 107.11M� and MBH = 107.89M�, respectively. In Figs. 2.1
and 2.2 we plot the apocenters and periods of radial orbits against orbital energy.
Figure 2.3 shows the small geometric size of the loss cone, RLC(ε), against orbital
energy, while Fig. 2.4 shows the stellar distribution functions for both galaxies.
Interestingly, f (ε) shows qualitatively different behavior for core and cusp galaxies:
in core galaxies, the distribution function peaks near the SMBH influence radius,
but in cusp galaxies it increases monotonically toward small radii. Figure 2.5 plots
the orbit-averaged angular momentum diffusion coefficient, μ̄(ε), which like f (ε)
shows different behavior for core and cusp galaxies. The related quantity q(ε) is
plotted in Fig. 2.6, and, finally, we show flux into the loss cone, F(ε), in Fig. 2.7.
The colored text in this figure shows the integrated loss cone flux, i. e. the TDE rate
for each galaxy.
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Fig. 2.6 The normalized per-orbit diffusion in R, q(ε) ≈ (�J (ε)/JLC(ε))2, plotted against orbital
energy ε. The thin black line indicates where q(ε) = 1; this defines a critical energy (and therefore
a critical radius) where flux into the loss cone transitions from diffusive to pinhole. The line types
are the same as in Fig. 2.1

Fig. 2.7 The flux of stars into the loss cone, per unit energy per unit time, F(ε), plotted against
orbital energy ε, for the galaxies NGC 4551 and 4168. Integrals of these curves dε are shown as
colored text (i. e. the total number of TDEs per galaxy per year). The line types are the same as in
Fig. 2.1. Note that this function is very sharply peaked in energy space, with the vast majority of
tidally disrupted stars coming from a relatively narrow range in orbital energies
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Fig. 2.8 The per galaxy rate of tidal disruption events, ṄTDE, in units of yr−1, plotted againstMBH.
The blue circles show cusp galaxies, and the red squares show core galaxies; both are taken from
the sample in Wang and Merritt (2004). The dashed black line shows a simple best fit power law to
the entire sample (ṄTDE ∝ M−0.52

BH ). The large scatter above and below the best fit power law is due
to intrinsic scatter in Nuker parameters, particularly ϒ and �

Generally speaking, the highest TDE rates occur in smaller galaxies, for two
reasons. The first reason is that high-resolution HST imaging indicates a bimodality
in nuclear surface brightness profiles: smaller (“cusp”) galaxies tend to have higher
values of the Nuker parameter γ ≈ 1, indicating steeper central density profiles
and denser star clusters with shorter relaxation times. Larger galaxies preferentially
have low-density “cores,” with γ ≈ 0 and correspondingly longer relaxation times.
These cores are thought to be scoured by the inspiral of a binary SMBH system
following a galaxy merger; smaller galaxies generally lack them because the larger
gas fractions in smaller galaxies allow the rebuilding of stellar cusps after the SMBH
merger. The second reason is that in dense cusp galaxies, ṄTDE actually increases with
decreasing SMBH mass, while the opposite is true for core galaxies. Specifically,
Wang and Merritt (2004) find that for constant σ ,

ṄTDE ∝ Mδ
BH, (2.16)

δ = 27 − 19γ

6(4 − γ )
,

where γ ≈ 1 + � is defined as the 3D power law slope of stellar density, i. e.
ρ(r) ∝ r−γ . When γ < 27/19, δ > 0 and the TDE rate increases with increasing
SMBH mass.

Because the specific TDE rate is highest for low-mass galaxies (as can be seen
in Fig. 2.8), and because low-mass galaxies are more numerous, it has long been
thought that large samples of TDEs could serve as excellent probes for the uncertain
bottom end of the SMBH mass function. In particular, while almost all galaxies
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with stellar bulge masses M > 109M� are believed to host a central SMBH, the
occupation fraction below this mass is unclear. Estimating this occupation fraction
represents an important scientific goal for future TDE observations.

Ultimately, tidal disruption events are quite rare. Past work has estimated typical
values of ṄTDE ∼ 10−4 − 10−5 yr−1 (Magorrian and Tremaine 1999; Wang and
Merritt 2004), although this may be increased by a factor of a few due to the effects
of nonspherical, axisymmetric stellar cusps. Interestingly, this theoretical estimation
is somewhat above the rates inferred from observational samples of TDEs (Donley
et al. 2002), which is puzzling, as the TDE rate due to two-body relaxation is a
lower limit that can be increased by, e. g., massive perturbers or strongly triaxial
cusps. However, inferred rates are convolved with complicated selection effects,
currently suffer from small number statistics, and in any event are being compared to
theoretical estimates which themselves carry large uncertainties, so this discrepancy
is not yet severe.

The following two chapters of this thesis describe original work by the author on
TDE rates in a specific and unusual type of galaxy: one where the central SMBH is
recoiling out of the center due to the anisotropic emission of gravitational radiation
following the merger of two SMBHs.



Chapter 3
Prompt Tidal Disruption of Stars as an
Electromagnetic Signature of Supermassive
Black Hole Coalescence

N. Stone & A. Loeb The Monthly Notices of the Royal
Astronomical Society, Vol. 412, pp. 75–80, 20011

3.1 Introduction

In the last decade, a series of breakthroughs in numerical relativity made it possible
to simulate black hole binary coalescence on the computer, in fully dynamical space-
time (Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006). The most important
astrophysical result of these new techniques has been a self-consistent calculation of
gravitational wave (GW) kicks: the recoil imparted via momentum conservation to a
newly merged black hole. The final stages of black hole inspiral and merger are ac-
companied by anisotropic GW emission, which has been numerically demonstrated
to produce typical recoil kicks ∼102−3 km s−1. The magnitude of the kick depends
most sensitively on the initial binary mass ratio and on the spin vectors of the black
holes. Kicks are maximized for mass ratios somewhat below unity (q ≈ 1/3) and for
large values of black hole spin. Non-spinning black holes have a maximum recoil
velocity ∼200 km s−1, but the right angular configurations of large-magnitude spin
vectors will produce “superkicks” with vk ≈ 4000 km s−1, or even larger “hangup
kicks” with vk ≈ 5000 km s−1. In principle, a perfectly symmetric configuration
(e.g. non-spinning, equal mass black holes) would result in a recoilless merger.

Supermassive black holes (SMBHs) in the universe are expected to form binaries
as a consequence of hierarchical structure formation and galaxy mergers (Escala
et al. 2005; Mayer et al. 2007; Callegari et al. 2009; Colpi and Dotti 2009). If their
mass ratio is not too extreme (q � 0.1), dynamical friction will efficiently sink a
pair of SMBHs to the center of a newly merged galaxy in less than a Hubble time
(Wetzel and White 2010). Three body interactions with central stars will harden the
binary down to ∼pc scales, but eventually depletion of these stars will render this
angular momentum sink ineffective. At this point, the SMBH binary (SMBHB) has
entered the “final parsec problem,” as the GW merger timescale does not become less
than a Hubble time for binaries with �10−3 pc separation (Begelman et al. 1980).
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There are many possible solutions to the final parsec problem, which can be broadly
classified as “wet” and “dry” in nature. Assuming that one of these mechanisms is
able to harden SMBH binaries down to a scale where GW emission takes over, the
binary will eventually merge.

Merging SMBH binaries provide copious sources of gravitational radiation for
future space-based laser interferometers, or for existing Pulsar Timing Arrays
(PTAs). Space-based laser interferometers, such as the European Space Agency’s
planned eLISA instrument1, are most sensitive to SMBH binaries with masses
MBH ∼ 106M�. PTAs such as NANOGrav2, the Parkes Pulsar Timing Array3, or the
European Pulsar Timing Array4, are most sensitive to lower frequency GWs emitted
by SMBHBs with total mass �108M� (Sesana et al. 2009). A major challenge for
both of these SMBHB detection methods is poor sky localization: error boxes of
∼10 − 100 square degrees are typical for each method (Sesana and Vecchio 2010).

If prompt electromagnetic (EM) counterpart signals to the GW-driven coalescence
of SMBHBs exist, then sky positions could be accurately determined and SMBHB
mergers could be used as “standard sirens” in cosmology (Holz and Hughes 2005;
Arun et al. 2009; Schutz 2009; Bode et al. 2010). The GW signal gives a highly
accurate luminosity distance measurement, which, when combined with the redshift
of the host galaxy, would allow precision cosmology independent of the standard
cosmic distance ladder. Identification of host galaxies in SMBHB mergers is also of
interest for the study of SMBH demographics, and the final parsec problem.

These considerations have motivated much theoretical work aimed at identifying
viable EM counterparts. With the exception of the mechanism outlined here, all
of these possible counterparts rely on the existence of a circumbinary disk, whose
properties are uncertain in wet mergers and which may be absent entirely from dry
merger SMBHBs. Most disk-related counterparts are made difficult to detect by pre-
merger decoupling of the SMBHB from its circumbinary disk. Decoupling occurs
once the rate of energy loss due to GWs exceeds the the rate of energy extraction
due to gas inflow; the consequence is that a large cavity exists in the disk at the time
of merger and for ∼7(1 + z)(MBH/106M�)1.32 year afterward (Milosavljević and
Phinney 2005). Disk luminosity is significantly reduced as a result (Schnittman and
Krolik 2008). Some examples of counterparts, arranged in order of time after the
SMBHB merger, include:

• Viscous dissipation of GWs in the circumbinary disk will heat its gas and produce a
weak EM transient in the hours after the GWs pass through the disk. Unfortunately,
this signal is likely too weak to outshine the luminosity produced by standard
viscous heating of accretion disks (Kocsis and Loeb 2008).

1 https://www.elisascience.org/.
2 http://nanograv.org/.
3 http://www.atnf.csiro.au/research/pulsar/ppta/.
4 http://www.epta.eu.org/.
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• The viscous refill of the inner regions of the disk will rebrighten its spectrum
at UV and X-ray wavelengths, but on unfavorable timescales of 10–103 year
(Milosavljević and Phinney 2005).

• Shocks produced in the disk by the rapid change in the central potential (from a
combination of GW mass loss and recoil) will dissipate as heat, enhancing the
infrared luminosity of the disk over timescales of ∼104 year (Lippai et al. 2008;
Schnittman and Krolik 2008).

• The portion of the disk within a radius ∼GMBH/v2
k of the merged SMBH will

remain bound to it after the recoil kick. This bound disk will appear anomalous
both kinematically (due to a velocity offset between it’s broad lines and the narrow
lines of the host galaxy) and spatially (Loeb 2007; Bonning et al. 2007; Shields
and Bonning 2008; Komossa et al. 2008; Comerford et al. 2009; Shields et al.
2009). The lifetime of this signature is limited by the draining of disk gas into the
kicked SMBH, which will lead to order of magnitude declines in disk luminosity
by 106–107 year after the recoil (Blecha and Loeb 2008).

In this chapter we outline an entirely different type of prompt EM counterpart, one
which does not rely on the uncertain properties of pre-existing gas disks. In particular,
we find that the post-merger recoil of a SMBH results in a series of stellar tidal
disruption events (TDEs), with an effective rate that is up to four orders of magnitude
higher than that for stationary SMBHs. This enormous enhancement occurs because
TDE rates in normal galaxies are set by slow relaxational processes that repopulate a
depleted loss cone; here we study the instantaneous tilting of the loss cone in phase
space due to a GW kick.

Such a TDE burst could serve as an effective EM counterpart if observed in
the years following detection of a GW signal from a coalescing SMBHB. In the
most optimistic scenarios considered, multiple TDEs could occur within the same
galaxy on timescales of human interest. A sequence of multiple TDEs within the
same galaxy is vanishingly unlikely when considering TDEs produced by two-body
relaxation (which occur at rates �10−4 year−1). Repeating TDEs could potentially
serve as an indicator of SMBHB merger and recoil even independent of a GW signal,
although careful future study must be undertaken to separate this explanation from
one other recently considered alternative: TDE rate enhancements due to chaotic
orbits and the Kozai effect around wide SMBHBs (Ivanov et al. 2005; Chen et al.
2009).

3.2 Tilting the Loss Cone

As discussed earlier, stars are tidally disrupted when their orbital pericenters Rp fall
belowRt . In the usual scenario (a spherically symmetric potential around a stationary
SMBH), this condition can be written in terms of specific angular momentum J :

J 2 = |	x × 	v|2 < J 2
LC ≈ 2GMBHRt. (3.1)
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Orbits that satisfy J < JLC fall into the loss cone. Near the SMBH, the loss cone
is empty, and stars are fed to the black hole by relaxational processes that impart
typical per-orbit angular momentum perturbations �J � JLC. Stars in this regime
slowly diffuse into the loss cone. Far from the SMBH (the “pinhole” regime), the tiny
angular size of the loss cone means that�J � JLC, and stars will pass in and out of
the loss cone many times per orbit. Both regimes contribute to the total TDE rate in
normal galaxies, with the stellar density profile determining which one dominates.
Regardless, TDE rates set by two-body relaxation are generally quite low, between
10−4 year−1 and 10−6 year−1 (Wang and Merritt 2004; Magorrian and Tremaine
1999).

The mechanism for TDE production considered here is quite different, and relies
on the fact that the timescale for SMBH kicks due to GW recoil (∼Rg/c) is effectively
instantaneous when compared to the long orbital periods of nearby stars. If we adopt
the reference frame of the SMBH, surrounding stars instantaneously translate through
velocity space so that a new loss cone can be written as

J 2 = |	x × (	v − 	vk)|2 < J 2
LC ≈ 2GMBHRt , (3.2)

This new loss cone overlaps with non-empty portions of phase space very near to
the SMBH; any stars in these regions are firmly in the diffusive regime of two-
body scattering and will therefore be destroyed on an orbital time. To quantify the
properties of this sequence of TDEs (in particular, the number of stars in the tilted
loss cone, and their orbital periods), we adopt a simple parametrization for the stellar
density profile around a coalescing SMBHB:

ρ(r) = ρ0(r/r0)−γ , (3.3)

making the assumptions of spherical symmetry and (almost) isotropic velocities.
A small but crucial anisotropy in the stellar velocity distribution must be added to
reflect regions of phase space emptied by the orbital dynamics of the SMBHB. This
will likewise truncate ρ(r) below some r; both complications are discussed after a
few more preliminaries.

A spherically symmetric, isotropic power law stellar density profile requires the
pre-kick stellar distribution function

f (r , v) = C(2GMBH/r − v2)γ−3/2, (3.4)

where f (r , v) is defined within the velocity space sphere

	v2
< 2GMBH/r. (3.5)

The normalization constant

C = (3 − γ )(γ − 1/2)�(γ + 1)

2π5/2�(γ + 1/2)

MBH

r3
infl

(
rinfl

2GMBH

)γ
. (3.6)
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Here rinfl is the SMBH influence radius, defined as the radius containing twice the
SMBH’s mass in stars. High resolution observations of galactic nuclei have produced
empirical fits for rinfl(MBH) (Merritt et al. 2009). In particular,

rinfl = 24(MBH/108M�)0.51 pc, (3.7)

although if we limit ourselves to “core” galaxies (γ ≈ 1) then

rinfl = 35(MBH/108M�)0.56 pc. (3.8)

The set of stars that will be tidally disrupted due to the post-merger tilt of the loss cone
is the intersection of Eqs. (3.2) and (3.5). We count the number of disrupted stars,
N , by integrating the relevant distribution function within the bounds of these three
inequalities. Because of its relatively high dimensionality (and sensitivity to very
small portions of the domain that contain the highest stellar densities), this integral
is time-consuming and easiest to perform with Monte Carlo methods. Although both
bound and unbound stars can contribute to the total number of stars disrupted post-
merger, in practice only a small fraction (�10 %) of disrupted stars are on hyperbolic
orbits. Hyperbolic TDEs are in principle interesting because an orbit with center of
mass energy |εorb| ∼ �ε would not asymptote to the standard Ṁ ∝ t−5/3 power
law, and an orbit with |εorb| � �ε would not produce any bound debris with which
to make an accretion disk! However, in order to achieve εorb ≈ v2

k/2 ∼ �ε, kick
velocities vk � 2000 km s−1 are required; such kicks, while physically possible, are
quite rare.

Although the total number of stars N is of interest, the quantity of greater obser-
vational relevance is N<(t), defined as the number of stars with orbital periods less
than t/2 years that inhabit the post-recoil loss cone (the factor of 2 comes from the
fact that almost all stars in the post-merger loss cone begin their final orbit very near
apocenter). A small correction to this calculation comes from the fact that the final
burst of gravitational radiation removes �5 % (Campanelli et al. 2006) of the pre-
merger combined SMBH mass (so that in addition to receiving a kick, stars become
marginally less bound). This reduces N by ≈10 %, a correction we include in our
calculations.

BothN and, especially,N<(100), are quite sensitive to the innermost stars around
the SMBHB at the moment of coalescence, implying that the simplistic treatment of
ρ(r) and f (r , v) given above is inadequate. In the following sections, we consider
more realistic stellar densities and distribution functions that account for the portions
of stellar phase space excavated during an SMBHB inspiral. The depletion of stars
by interactions with an SMBHB will proceed differently for gas-poor (“dry”) and
gas-rich (“wet”) mergers, so we consider these cases separately.

3.3 The Final Parsec Problem

When two galaxies merge, dynamical friction will efficiently bring their SMBHs (of
masses M1 and M2, with M1 >M2) down to small radii provided the mass ratio
q = M1/M2 is not too unequal; typically q < 10 is required for dynamical friction
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to operate in less than a Hubble time. Once a SMBHB has formed, it will harden
via three-body encounters with surrounding stars; as stars enter the gravitational
“blender” of the binary, they are ejected and extract its energy and angular momen-
tum. The binary can be thought of as possessing a loss cone analogous to the phase
space region discussed earlier around single black holes. The binary loss cone is
the set of stellar orbits with pericenters less than twice the binary semimajor axis.
This process scours a low-density “core” into the pre-existing stellar density profile
(Merritt, 2006). However, once the SMBHB has reached a small enough separation
that there are no longer enough stars to further harden its orbit, orbital evolution will
stall. This typically occurs at ∼pc scales, but the gravitational radiation timescale
for a circular SMBHB with semimajor axis a is

TGW = 2.53 × 105 year
( a

1014 m

)4
(
ζ

1

)−1 (
M1 +M2

108M�

)−3

, (3.9)

where ζ = 4M1M2/(M1 +M2)2. This timescale only falls below a Hubble time at
a ∼ mpc scales. This apparent barrier to merger of black hole binaries is the so-
called “final parsec problem” (Milosavljević and Merritt 2001), although so many
solutions to it have been proposed that it is no longer clear whether it even qualifies
as a problem! Among the possible solutions are

1. Collisional binary loss cone repopulation: two-body relaxation around SMBHBs
can repopulate the binary loss cone and harden a binary to the point where grav-
itational radiation takes over. However, this process is inefficient for all but the
smallest SMBHB systems, requiringM1 +M2 � 107 M� (Merritt et al. 2009).

2. Collisionless binary loss cone repopulation: the presence of significant non-
sphericity - either axisymmetry or triaxiality (Merritt and Poon 2004) - in the
stellar potential around the SMBHB will result in non-conservation of stellar
angular momentum. Depending on the orientation of a star’s orbital plane with
respect to the potential’s principal axes, stellar orbits will (collisionlessly) vary
their pericenters over time, greatly expanding the population of stars vulnerable
to extractive three-body encounters with the SMBHB. This scenario has been the
subject of much recent excitement, and may provide a general solution to the final
parsec problem (Khan et al. 2013, for example).

3. Further galaxy mergers: a galaxy containing a stalled SMBHB will occasionally
merge with a third galaxy. The introduction of a third SMBH can lead to rapid
orbital hardening from either the Kozai effect or strong encounters (Hoffman and
Loeb 2007).

4. Circumbinary gas disks: in a wet merger, a massive circumbinary disk may form.
Tidal torques from this disk will harden the SMBHB (Dotti et al. 2010), although
the efficiency of this may be hampered by star formation in Toomre-unstable
regions of the disk, which can choke off gas supply to the innermost disk annuli
(Thompson et al. 2005).

In dry mergers, only the first three of these solutions can drive a SMBHB to
coalescence, but in wet mergers the fourth solution is also possible.



3.3 The Final Parsec Problem 47

3.3.1 Dry Mergers

Any GW signal produced in the aftermath of a dry galactic merger will require one of
scenarios 1-3 to operate. In this section we ignore scenario 3 due to the large number
of associated uncertainties, and instead focus on the first two solutions to the final
parsec problem: collisional and collisionless repopulation of the SMBHB loss cone.
In both of these scenarios, we define the SMBH influence radius using Eq. (3.8).

If collisional processes dominate, then the shallow stellar core excavated by the
SMBHB’s earlier inspiral will be repopulated as surrounding stars diffuse in orbital
energy. This process builds up a Bahcall-Wolf equilibrium cusp (Bahcall and Wolf
1976) around the SMBHB out to a radius of ≈0.2rinfl (Merritt et al. 2009); beyond
this point, relaxation times are too long to modify the original core profile. In our
collisional scenario, we therefore consider a γ = 1 profile extending from rinfl down
to 0.2rinfl (which determines the overall mass normalization), but smoothly join a
γ = 1.75 profile at r = 0.2rinfl and extend that density profile inward. Alternatively,
if collisionless processes dominate, there is insufficient time for inner regions of the
stellar profile to relax into a cuspier equilibrium, and the core profile (γ = 1) extends
down to small radii.

Regardless of the slope of the stellar density profile, we must also determine an
innermost cutoff to place on the stellar population. The numerical simulations of
Merritt et al. (2007) indicate that, in the regime of collisional loss cone repopulation,
GW energy losses will decouple the SMBHB from the stellar cusp at a semimajor axis
of aeq ∼ 10−3rinfl. In both scenarios, we remove all stars with semimajor axes interior
to this radius (a conservative choice for collisionless loss cone repopulation). Because
angular momentum relaxation proceeds faster than energy relaxation for non-circular
orbits, the gap in angular momentum space (pericenter) will be significantly smaller
than this gap in semimajor axes. Following Merritt and Wang (2005), the timescale
to refill a gap in angular momentum space is

Tgap = rJ

rinfl
Tr, (3.10)

where the relaxation time at the radius of influence is given by (Merritt et al. 2009)

Tr ≈ 8.0 × 109year

(
MBH

106M�

)1.54

. (3.11)

Here rJ is the gap in angular momentum space; we remove all stars with pre-kick
pericenters smaller than the value of rJ at which Tgap = TGW.

Beyond the issue of inner boundaries, we must also consider the actual functional
form of the two-dimensional distribution function f (E, J ). Cohn and Kulsrud (1978)
demonstrated that in steady state, solutions to the orbit-averaged Fokker-Planck equa-
tion depend logarithmically on J at fixed values ofE. We adopt a simpler functional
form, where f (E, J ) is constant with respect to J within the region permitted by
decoupling; this increasesN<(t) by a factor ≈2 −4. We make this simplification for
two reasons; the first is that the loss cone of a SMBHB does not behave in a purely
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sink-like fashion as in Cohn and Kulsrud (1978) (i.e. stars scattered by the SMBHB
may remain on bound orbits). The second reason is that the near-radial orbits most
affected by a logarithmic distribution in J are the ones least well-described by the
Cohn and Kulsrud (1978) steady-state solution; they interact more strongly with the
non-Keplerian potential of the SMBHB, and may also be subject to strong star-star
scatterings not described by a Fokker-Planck approach.

A final correction to our Monte Carlo integral is incorporation of a Salpeter initial
mass function (IMF) where dN�/dM� ∝ M−2.35

� for 0.1M� < M� < 100M�. The
large number of low mass stars in this IMF causes them to dominate the disruption
rate; N<(100) would be reduced by a factor of a few if we switch to a more extreme,
top-heavy IMF, as is sometimes discussed for galactic nuclei (Bartko et al. 2010).

3.3.2 Wet Mergers

If the final parsec problem is instead solved dissipatively, through the presence of a
massive circumbinary disk, then the resulting stellar profile will be different. Stellar
densities will be reduced by the lack of time needed for relaxation to refill the core
scoured by SMBHB inspiral (Merritt et al. 2009). Conversely, in situ star formation
may increase stellar densities at small radii relative to a gas-free scenario. The capture
and subsequent migration of pre-existing stars into disk-aligned orbits (Syer et al.
1991) would have a similar effect. Because of the complex and uncertain physics
of both star formation (Shlosman and Begelman 1987; Alexander et al. 2008) and
migration (Goodman and Tan 2004), we consider a simple set of parameters to
describe the final outcome: γ = {1.5, 1.75, 2.0}. In all wet merger cases, we estimate
the radius of influence as Eq. (3.7), as wet mergers are believed to be responsible for
the (re)building of dense stellar cusps.

As in the dry mergers discussed above, we use decoupling arguments to determine
the innermost permitted pericenters of stellar orbits that will exist when the SMBHs
coalesce. In a thin disk, the viscous timescale at the marginally self-gravitating radius
is (Goodman and Tan 2004)

Tvisc = 4.2 × 105 yr α−1/3
0.3 κ−1/2μ1/3

(
ε0.1

E

)1/6

M
1/2
8 , (3.12)

where κ is the opacity in units of the Thomson opacity, μ is the mean atomic weight
of disk gas, α0.3 is the Shakura-Sunyaev viscosity parameter scaled to 0.3, ε0.1 is the
radiative efficiency scaled to 0.1, E is the total luminosity in units of the Eddington
limit, and MBH = M8 × 108M�. We can determine the decoupling radius (and
innermost stellar pericenter) by equating Tvisc = TGW. Because Tvisc has only a
weak power law dependence on most parameters (aside from MBH), we take their
fiducial values as representative. For simplicity, we assume that the remaining stars
are able to isotropize into a spherical distribution after decoupling. Although this
may at first glance seem unlikely (as in this scenario, Tvisc � Tr by assumption),
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we note that relaxation rates are orders of magnitude faster in thin disks of stars
than in spherical distributions of stars with the same radial extent (Stewart and Ida
2000); significant, albeit not full, isotropization is therefore likely. Since the IMF
of stars formed in circumbinary disks is highly uncertain, as is the mass accretion
history of stars migrating through disks, we assume M� ∼ 1M� for wet mergers.
Finally, we note that in wet mergers, accretion of gas onto the SMBHs during their
inspiral is likely to align their spins and seriously suppress kicks above ∼200 km s−1

(Bogdanović et al. 2007; Dotti et al. 2010).

3.4 Other Considerations

We neglect in our calculation two potentially important physical effects. The first
concerns orbital resonances around the SMBHB; in analogy to resonant migration in
planetary systems (Yu and Tremaine 2001), stars can be captured into mean-motion
resonance with an inspiraling SMBHB. This effect has the potential to make our
calculations very conservative, as resonant migration would deliver stars far inside
the decoupling radius. Several papers have examined the special 1:1 Lagrange point
resonance and found that stars trapped around the L4 or L5 Lagrange points can
migrate inward to tens of Schwarzschild radii from the system barycenter (Seto and
Muto 2010), only breaking out of resonance when post-Newtonian precession terms
become too strong (Schnittman 2010). There are many more higher-order mean
motion resonances; these clearly affect stellar orbits during SMBHB inspiral (Chen
et al. 2009, Figs. 5, 6, 7). Subsequent work has shown that higher order MMRs can
also deliver stars to tens of Schwarzschild radii (Seto and Muto 2011).

The second effect we neglect is that of redshift. A TDE burst at redshift z will be
delayed in onset by a factor of 1 + z due to relativistic time dilation; this will also
lengthen the duration of each observed flare (while reducing their luminosity). Al-
though these effects have a mild negative impact on detectability (except for severely
cadence-limited surveys), high redshift galaxies are observed to have higher mean
densities, with ρ̄ ∝ (1 + z)3 (Oesch et al. 2010). If this observation holds down to
the much smaller scales of high-z galactic nuclei, then the net enhancement in the
TDE rate would go ∝ (1 + z)2 per galaxy. In this paper, however, we set z = 0 as the
net effect of z on our results is ambiguous and likely modest, and in any event most
optically detected TDEs occur at low redshift (although the minority of relativistic
TDEs can be found at moderate, z ≈ 1, redshifts).

As a final note, for simplicity we only consider equal mass SMBH mergers. This
choice of parameters is likely conservative for major mergers; an uneven mass ratio
would increase TGW and, therefore, N<(t). On the other hand, very extreme mass
ratios (q � 0.1) will reduce expected kick velocities, which, as we show in the next
section, will suppress N<(t) once vk � 200 km s−1.
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Fig. 3.1 The expectation value for N<(100), the number of stars disrupted within 100 years of
SMBHB coalescence. This plot shows results for dry mergers that solve the final parsec problem
through collisional refill of the binary loss cone, producing a joint core-cusp stellar density profile.
The dotted blue line (“BLC”) represents our fiducial scenario, where the joint core-cusp profile is
truncated for stars whose pericenters or semimajor axes fall within the binary loss cone at the time
of decoupling. The solid black line (“NBLC”) does not truncate the stellar density profile at small
radii; although this curve is not physically motivated, it illustrates the importance of the innermost
(∼100) stars for N<(100). The left panel shows N<(100) as a function of SMBH mass MBH (at
fixed vk = 400 km s−1), while the right panel shows N<(100) as a function of kick velocity vk (at
fixedMBH = 106.5M�)

3.5 Event Rates

In Fig. 3.1, we present the results of our MC integrals in our most physically-
motivated model: the joint core-cusp profile that describes the stellar profile left over
after an SMBHB is brought down to GW-dominated scales by collisional loss cone
repopulation. This model (labeled BLC in the figure) removes all stars with the semi-
major axes or pericenters that would fall into the binary loss cone after decoupling.
Figure 3.1 illustrates that there is a “sweet spot,” in both kick velocity and black hole
mass, for maximizing N<(100). Specifically, we find interesting numbers of post-
merger TDEs whenMBH � 107M� and 200 km s−1 � vk � 1000 km s−1.N<(100)
is suppressed at low vk by overlap between the pre- and post-merger loss cones; at the
highest velocities, it is instead suppressed by the unbinding of the vast majority of
cusp stars. The total number of stars in the post-kick loss cone grows with increasing
MBH, but N<(100) turns over near MBH ≈ 5 × 106M� due to the fact that orbital
periods also increase with MBH. Once the SMBH mass grows significantly higher
than this, essentially all short-period stars are removed by the pre-merger binary loss
cone. The γ = 1 curve representative of collisionless loss cone repopulation does
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Fig. 3.2 The expectation
value for N<(100) in the wet
merger scenario. The panels
are the same as in Fig. 3.1
(although in this plot the left
panel has vk = 200 km s−1 to
reflect the lower kick
velocities expected in wet
mergers), but the line types
indicate different power law
slopes for a simple cusp
parametrization of the stellar
density profile. Specifically,
the solid green line, dotted
blue line, and dashed black
line represent γ = 1.5,
γ = 1.75, and γ = 2.0
power-law cusps

not produce a significant number of post-merger TDEs, and is therefore not shown
here.

Figure 3.1 also shows a second curve (labeled NBLC) that disregards the effects of
the pre-merger binary loss cone. This curve is not physically motivated, but is shown
for illustrative purposes: the large enhancement inN<(100) seen in the NBLC results
indicates the sensitivity of the TDE burst to a relatively small number of stars. The
total number of stars removed from the pre-merger binary loss cone is only ∼100
forMBH = 106M�; this highlights the potential importance of resonant migration.

As stated in the previous section, our models for wet mergers are considerably
more uncertain, but the simple parametrizations we use are shown in Fig. 3.2. Our
results indicate that if star formation and/or disk migration is able to produce stellar
density cusps with slopes of γ � 1.75, interestingly large values of N<(100) will
result, and sequential TDEs may be observable from an individual galaxy.

Finally, in Fig. 3.3, we plot against time the cumulative number of stars disrupted
from the tilted, post-merger loss cone. In this figure we use only the joint-core
cusp model representative of collisional binary loss cone refill (and remove the stars
remaining in the binary loss cone at the time of decoupling). The “sweet spot” for
detectability occurs for SMBHs with 106M� � MBH � 107M�, and 400 km s−1 �
vk � 800 km s−1; the expectation value of the first post-kick disruption in this
parameter range is ≈30 year, although we note that the cumulative probability
distributions extend with nontrivial values down to smaller delay times (for example,
a recoiling SMBH with MBH = 106M� and vk = 400 km s has a ≈15 % chance of
disrupting a star less than a decade after recoil). Interestingly, this range of parameter
space largely overlaps with both the peak sensitivity of LISA-like instruments, and
typical recoil velocities for SMBHBs coalescing in dry mergers. Although not shown
in Fig. 3.3, optimistic parameter values (γ = 2) for wet mergers can produce TDEs
with delay times as low as ∼1 year.
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Fig. 3.3 Expectation values for N<(t), the number of stars disrupted within t years of
SMBHB coalescence. In the left panel, we fix the SMBH mass at 106.5M� and show vk =
{200, 400, 800, 1600} km s−1 kicks as green, blue, red, and black lines, respectively. In the right
panel, we fix the kick velocity at 400 km s−1 and show MBH = {106, 106.5, 107, 107.5} black holes
as green, blue, red, and black lines, respectively. Within the “sweet spot” of parameter space
(106M� � MBH � 107M�, and 400 � vk � 800 km s−1), the number of stars in the tilted post-
kick loss cone is typically between 1 and 10. The typical delay time between SMBH recoil and the
first disruption is ≈30 year, but with a nontrivial (�10 %) chance of a first disruption occurring
within 10 years of recoil for the smallest SMBHs (MBH � 106M�)

Figure 3.3 shows how the delay until the first post-kick disruptions changes with
black hole mass and kick velocity. Here we consider the joint core-cusp model (with
removal of pre-merger loss cone by the binary), and find that the first disruption is
expected to occur between three and five decades after SMBH coalescence for black
holes with masses between 106M� and 107M�, and kick velocities between 400
and 800 km s−1. Fortunately, this region of parameter space falls within both the
black hole mass range LISA is likely to observe, and the range of physically plausible
recoil velocities for dry mergers. In the most event-rich wet merger scenarios, the
first TDEs could occur as soon as ∼1 year after coalescence.

3.6 Discussion

The merger of two SMBHs is likely to result in a sequence of tidal disruption flares,
with an averaged rate orders of magnitude above that for normal galaxies. In gas-poor
mergers with combined mass MBH � 107M� (the rough upper limit for collisional
solutions to the final parsec problem), the first flare can occur a few decades after
coalescence, and the enhancement to the TDE rate is a factor ∼104. Gas-poor
mergers that solve the final parsec problem in a collisionless way will see much longer
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delays and much lower total numbers of recoil-induced TDEs. More speculatively,
the first flare could occur on a timescale of years if resonant migration is able to
transport stars inward past the decoupling radius. Kick velocities of 200 km s−1 �
vk � 1000 km s−1 maximize the total number of recoil-induced TDEs, and minimize
the time to the first TDE.

Our predictions for gas-rich mergers are more uncertain, as they depend on the
uncertain physics of star formation and stellar migration in circumbinary disks. If
either of these mechanisms are able to seed significant numbers of stars down to the
radius where SMBHB evolution decouples from viscous disk evolution, then total
rates could be enhanced and delay times decreased.

Kick velocities typical for mergers of comparable-mass, spinning SMBHs will
produce an EM counterpart to LISA-band GW signals, albeit one that may be delayed
by several decades. Further study is needed to determine if resonant migration or the
interplay between stars and circumbinary disks can reduce delay times to the order
of years or less. Regardless, identification of an EM counterpart to a GW signal
will identify the host galaxy, and allow measurement of important cosmological
parameters independent of the standard cosmic distance ladder (Holz and Hughes
2005). Optimistically, optical transient surveys such as PTF5, Pan-STARRS6, and
(most promisingly) LSST7 may be able to observe sequential tidal disruption events
in a single galaxy, offering a signature of SMBH recoil even without a corresponding
GW signal. Such a detection would calibrate the expected LISA event rate.

5 http://www.astro.caltech.edu/ptf/.
6 http://pan-starrs.ifa.hawaii.edu/public/.
7 http://www.lsst.org/lsst.
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4.1 Introduction

In this chapter, we calculate the rates at which stellar tidal disruption events (TDEs)
will be produced by supermassive black holes recoiling due to anisotropic gravi-
tational wave emission. These black holes are kicked out of their galactic nuclei
following the merger of their progenitors, with velocities vk ∼ 102−3 km s−1. Al-
though most kicked SMBHs will eventually return to the center of their host galaxy,
during their peregrinations they will tidally disrupt both bound and unbound stars.
We broadly survey the parameter space of kick velocities and galaxy properties, and
find that the rates of detectably offset tidal disruption flares are of interest for LSST. In
particular, emission produced thermally from a compact accretion disk can result in
∼1 TDE per year for which LSST would observe a spatial offset; if super-Eddington
outflows exist, that number would increase to ∼10 TDEs per year. Stars bound to the
recoiling SMBH dominate its disruption rate, and under optimistic choices of kick
velocities could contribute up to 1 % of the all-sky tidal disruption event rate.

Since 2005, advances in numerical relativity have demonstrated that mergers of
black hole binaries are generically accompanied by anisotropic gravitational wave
(GW) emission. Because GWs carry linear momentum, the merged black hole recoils
in the direction opposite to that of the net GW momentum flux (Pretorius 2005;
Baker et al. 2006; Campanelli et al. 2006). Supermassive black holes (SMBHs) in
the universe are believed to generally form binaries following the mergers of their
host galaxies; the eventual coalescence of these binaries will impart a kick to the
merger product. Kick velocities are strong functions of both the binary mass ratio
and the spin vectors of the merging black holes; mass ratios ∼1/3 and maximal spins
tend to maximize the kick velocity vk. The absolute masses of the merging black
holes are irrelevant to vk, as general relativity is scale free.

Non-spinning black hole kicks are typically kicked at vk ∼ 100 km s−1, while
rapidly spinning black holes can produce vk � 1000 km s−1. The high end of
this distribution easily exceeds the escape velocities of even the largest galax-
ies, and will produce rogue SMBHs escaping into intergalactic space. However,
these “superkicks” are relatively rare, and a much more common outcome will be
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vk ∼ 300 km s−1 (Schnittman and Buonanno 2007; Lousto et al. 2010a, b). In this
case, the SMBH will remain bound to the galaxy, and will oscillate on nearly radial
orbits for 106−9 year before dynamical friction pulls it back into its galactic nucleus
(Blecha and Loeb 2008; Sijacki et al. 2011; Blecha et al. 2011).

Recoiling SMBHs are of great scientific interest, both as signposts of hierarchical
galaxy evolution and as a unique prediction of strong field GR. Two broad categories
of recoil signatures have been predicted. Indirect stellar dynamical signatures include
the excavation of a low-density stellar core in a galactic nucleus (Gualandris and
Merritt 2008) and the survival of a small “hypercompact” stellar system bound to
the recoiling SMBH, which would appear similar to a globular cluster but with
significantly higher velocity dispersion (O’Leary and Loeb 2009; Merritt et al. 2009;
O’Leary and Loeb 2012). More direct signatures from accreting, recoiling SMBHs
also could exist: if the merging SMBH binary has a circumbinary disk around it,
part of the disk can follow the recoiling SMBH and accrete at later times, producing
a spatially or kinematically offset quasar (Madau and Quataert 2004; Loeb 2007).
Because of the finite supply of gas, this source of accretion power will turn off after
at most ∼107 years (Blecha and Loeb 2008; Blecha et al. 2011). Many observational
candidates exist for these offset AGN (Komossa et al. 2008; Shields et al. 2009;
Civano et al. 2010), but it is hard to definitively claim that they are due to recoiling
SMBHs (Bogdanović et al. 2009).

An alternate source of accretion luminosity around wandering SMBHs is the tidal
disruption of stars; light curves or SEDs from these events could possess analogous
spatial or kinematic offsets. Komossa and Merritt (2008, KM08) investigated this
possibility and concluded that offset TDEs could serve as promising indicators of
recoiling SMBHs, particularly for the subset of SMBH kicks that unbind the black
hole from its host galaxy. In this chapter we generalize the work of KM08 to realistic
(and generally bottom-heavy) kick velocity distributions so as to compute observable
rates of spatially or kinematically offset tidal disruption flares.

We note that even though offset tidal disruption flares should appear very distinct
from TDE flares produced through standard channels, there are several possible
sources of confusion. SMBHs can also be ejected from galactic nuclei in triple-
SMBH interactions (Hoffman and Loeb 2007); the rates of these are highly uncertain
but generally require a lack of efficient solutions to the final parsec problem. Recent
theoretical suggestions that the final parsec problem can be quickly solved by nuclear
triaxiality (Khan et al. 2013) may therefore eliminate this channel for producing
kicked SMBHs, but resolving this question is beyond the scope of this paper. A more
serious source of confusion could be tidal disruptions produced in a galaxy with two
SMBHs. A hard SMBH binary should produce an enormous enhancement in the
TDE rate for a period of ∼105 years, as stellar orbits are depleted by a combination
of the Kozai effect and chaotic three-body interactions (Ivanov et al. 2005; Chen et
al. 2009; Wegg and Bode 2011; Chen et al. 2011). However, these TDEs will have no
observable spatial offset. At earlier times in the history of a galaxy merger, an SMBH
pair will exist at wider separation. Tidal disruption flares from such a configuration
would have a large spatial offset, but could potentially be distinguished from flares
from a recoiling SMBH by the existence of two centers of light in the host galaxy.
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Finally, many galaxies may possess a population of loosely bound IMBHs (relics
of hierarchical galaxy assembly placed in the halo by past episodes of GW recoil).
These black holes can tidally disrupt stars from their small bound clouds (O’Leary
and Loeb 2012), but could likely be distinguished from recoiling SMBHs by their
lower masses. In any case, detection of tidal disruption flares from halo IMBHs
would also be an exciting example of GW recoil!

This chapter is organized as follows. § 4.2 outlines the theoretical model we use
to estimate TDE rates as a function of kick velocity and host galaxy parameters.
In § 4.3, we outline the actual rate calculation and the parameter distributions we
integrate over. § 4.4 is a discussion of the results of our model, and § 4.5 concludes
the chapter by summarizing the utility of TDE flares as signatures of SMBH recoil.

4.2 Model

In order to estimate the offset TDE rate in a given galaxy, we must calculate three
important quantities:

1. The trajectory of a recoiling SMBH through the bulge (and perhaps halo) of its
host galaxy.

2. The rate of tidal disruptions of unbound bulge stars.
3. The rate of tidal disruptions of stars from the bound cloud, which over time can

relax into loss cone orbits.

In this section, we estimate distributions of SMBH kick velocities (§ 4.2.1), outline
the basics of TDE light curves (§ 4.2.2), select a parametrization for the galaxy
density and potential profiles (§ 4.2.3), and compute the rates of TDEs from unbound
(§ 4.2.4) and bound (§ 4.2.5) stars. In general, we employ the light curve models
and rate calculation formalism of Strubbe and Quataert (2009, hereafter SQ09), but
applied to the synthetic population of recoiling SMBHs produced by our model. In
§ 4.2.6 we discuss the flux and resolution constraints of realistic surveys, with a focus
on LSST.

4.2.1 Gravitational Wave Recoil

The kick velocity vk imparted to a SMBH by anisotropic GW emission depends on
only a handful of parameters: the mass ratio and spin vectors (both amplitude and ori-
entation) of the original binary. If both progenitor black holes are non-spinning, then
the maximum attainable vk is modest, ≈175 km s−1. Increasing magnitudes of pro-
genitor spins a1 and a2 increase the maximum possible vk, but in a way that depends
sensitively on the relative orientations of the spin vectors and the orbital angular
momentum vector. Full numerical relativity simulations are required to determine
vk, but these simulations can also be used to calibrate analytic fitting formulas to high
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accuracy (Lousto et al. 2010a). In principle, maximal spin amplitudes and carefully
selected spin orientations can produce “superkicks” with vk ≈ 4000 km s−1, but
these are unlikely to be common: from a theoretical perspective, superkicks require
some fine tuning of spin vector orientations, and from an observational perspective,
virtually all galaxy bulges seem to possess SMBHs (Ferrarese and Ford 2005; Blecha
et al. 2011). The strength of this observational constraint, is, however, limited by the
hierarchical history of galaxy assembly (Schnittman 2007).

Clearly, a realistic distribution of kick velocities will depend sensitively on the
assumed distribution of pre-merger spin magnitudes; for example, the isotropic
spin angles simulated by Lousto et al. (2010b) found over 23 % of kicks exceed-
ing 1000 km s−1 for a1 = a2 = 0.97. SMBH spin magnitudes are measured through
the Fe Kα line, and sometimes are observed to be near-extremal (Brenneman and
Reynolds 2006), but such observations can only be performed for actively accreting
SMBHs and are therefore troubled by complex selection effects. The orientations
of SMBH spin vectors will depend on the environment in which the SMBH binary
hardens; gas-rich galaxy mergers likely produce a circumbinary accretion disk that
can align pre-merger SMBH spins (Bogdanović et al. 2007). Aligned spins produce a
much more bottom-heavy vk distribution than do isotropic spin angles, although cir-
cumbinary disks can also produce counter-alignment (King et al. 2005; Lodato and
Pringle 2006), which results in intermediate vk values. An analysis of wet mergers
indicates that hot accretion flows (adiabatic γ = 5/3) are less efficient at aligning
SMBH spin vectors than are cold accretion flows (γ = 7/5), but in both cases the
median kick velocity for equal mass mergers is quite small, �70 km s−1 (Dotti et al.
2010, although considering a range of mass ratios would likely increase typical vk).
Furthermore, relativistic spin precession may be capable of producing alignment or
counter-alignment even in the absence of circumbinary gas (Kesden et al. 2010). For
all of these reasons, it is necessary to generalize the analysis of KM08 to realistic kick
velocity distributions, which will only rarely feature kick velocities above galactic
escape speeds.

In the remainder of this chapter, we employ the three kick velocity distributions
presented in Lousto et al. (2010a), Fig. 2, which represent the results of Monte Carlo
simulations for isotropic spins (dry mergers), spins aligned to within 30◦ (hot wet
mergers), and spins aligned to within 10◦ (cold wet mergers). These simulations
further assume a uniform distribution of q between 0 and 1, and spin magnitudes
uniformly sampled between 0 and 0.9 (for the dry merger case) or between 0.3 and
0.9 (for the wet merger case). We calculate SMBH trajectories assuming vk values of
100, 200, 300, 400, 500, 600, 700, 800, and 900 km s−1, and perform a weighted av-
erage of the resulting TDE rates based on the Lousto et al. (2010a) vk distributions.
Although this approach neglects certain physical complications, such as relativis-
tic spin precession (Kesden et al. 2010) and realistic spin magnitude distributions
(Volonteri et al. 2005; Berti and Volonteri 2008), it brackets the parameter space
of SMBH spin orientations, which is likely the dominant uncertainty in calculating
astrophysical vk distributions.
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4.2.2 Tidal Disruption Emission

In this paper we employ the disk and super-Eddington outflow models presented in
SQ09 and Strubbe and Quataert (2011); the disk models are summarized in § 1.5,
and we present the super-Eddington outflows here. It is important to note that the
super-Eddington outflows described in this section were derived using an incorrect
expression for �ε, so that they only give the correct result for β = 1, Rp = Rt

events. Fortunately, these are the only TDEs relevant for recoiling SMBHs, as will
be discussed later in the paper.

Numerical simulations of super-Eddington accretion indicate that radiation pres-
sure can drive a powerful wind from such accretion disks. If we approximate the
outflow as spherical, its photospheric radius will be given by

Rph ∼ 10foutf
−1
v

(
Ṁr

ṀEdd

)
R

1/2
p,3RS

RS, (4.1)

and its photospheric temperature will be

Tph ∼ 2 × 105

(
fv

fout

)1/3 (
Ṁr

ṀEdd

)−5/12

(4.2)

×M−1/4
6 R

−7/24
p,3RS

K.

Peak emission will occur at max(tfall, tedge), where the time for the photosphere’s
outer edge to become optically thin is

tedge ∼ 1 f 3/8
out f

−3/4
v M

5/8
6 R

9/8
p,3RS

m3/8
∗ r−3/8

∗ days. (4.3)

In the above equations, we have parametrized the outflow wind velocity as

vw = fv

(
GMBH

rp

)1/2

, (4.4)

where fv ∼ 1. The mass ejected in the outflow is likewise parametrized as

Ṁout = foutṀr, (4.5)

wherefout = 0.1 for the remainder of this paper. We assume a radiative efficiencyη =
0.1 to compute the Eddington-limited mass accretion rate ṀEdd, and also employ the
normalizationsM6 = MBH/(106M�), Rp,3RS = Rp/(3RS), and RS = 2GMBH/c

2.
A major uncertainty in our work is whether kinematic offsets can be detected by

Doppler shifts in TDE emission or absorption lines. Past agreement on line emission
from unbound tidal debris (Bogdanović et al. 2004; Strubbe and Quataert 2009;
Kasen and Ramirez-Ruiz 2010; Strubbe and Quataert 2011) has recently been called
into question by numerical simulations demonstrating recollapse of unbound debris
into thin, self-bound structures with negligible covering fraction (Guillochon et al.
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2014, although this may not apply to β � 3 TDEs). However, even if we neglect
this recent development, the large velocity spread in the unbound debris (�v ≈
(2�ε)1/2 � 0.1c) is both a significant fraction of the speed of light, and dependent
on unknown parameters such as the inclination of the star’s pre-disruption orbit.

Absorption lines formed during reprocessing of disk radiation by a super-
Eddington outflow may be a more promising tool for the detection of kinematic
offsets. Most of these lines are in the UV, although weaker lines could exist in the
optical and soft X-ray (Strubbe and Quataert 2011). The bulk outflow velocity vw

is very large, which will produce an effective broadening, so that determination of
the SMBH velocity may require detailed modeling if (as seems likely) fv ∼ 1. Al-
ternative models of the super-Eddington phase of TDEs could be more conducive to
production of narrow absorption lines (Loeb and Ulmer 1997), but in the remainder
of this paper we consider detection of kinematic offsets to be significantly more
speculative than that of spatial offsets, which can be straightforwardly accomplished
with photometric subtraction.

A recoiling black hole will tidally disrupt stars from the small stellar cloud that
remains bound to it; it will also disrupt unbound stars randomly passing nearby. In
the next subsections, we outline our formalism for calculating both these rates. We
conservatively chooseM∗ = M� andR∗ = R�; neglect of a stellar present day mass
function likely decreases TDE rates by a factor ≈2 (Magorrian and Tremaine 1999).

4.2.3 Host Galaxy Structure

Calculations of TDE rates in galaxies with stationary SMBHs (Syer and Ulmer 1999;
Magorrian and Tremaine 1999; Wang and Merritt 2004) often model the background
stellar density using the Nuker parametrization for surface brightness:

I (s) = Ib2
B−�
α

(
s

sb

)−� (
1 +

(
s

sb

)α)− B−�
α

. (4.6)

This surface brightness profile was developed to model high-resolution HST obser-
vations of nearby ellipticals and bulges (Lauer et al. 1995), and asymptotes to power
law behavior at small (I (s) ∝ s−�) and large (I (s) ∝ s−B) radii. In Eq. (4.6), s is pro-
jected distance, sb is the break radius, and the dimensionless index α determines the
smoothness of the break between the inner and outer power laws. An Abel inversion
will yield the three dimensional stellar density profile, which likewise asymptotes to
power law behavior of ρ(r) ∝ rγ (ρ(r) ∝ rβ) when r � sb (r � sb). The power
law indices γ ≈� + 1 and β ≈B + 1.

Observed Nuker galaxies are bimodally distributed with respect to the inner power
law index�: “core” galaxies have relatively flat (� ≈0) central density profiles, while
“cusp” galaxies have steeper central density profiles (� ≈1). This dichotomy may
emerge during the process of binary SMBH coalescence: as a binary SMBH hardens,
it will eject a large number of stars from the host galaxy’s nucleus, scouring a core
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in a previously steeper central density profile (Merritt and Milosavljević 2005). In
a dry merger, the scoured core will persist, but a cusp can be rebuilt via in situ
star formation in a gas-rich merger (Kormendy et al. 2009; Blecha et al. 2011). We
therefore associate observed core (cusp) galaxies as good approximations for the
post-recoil stellar bulge in dry (wet) mergers. Because observed core galaxies are
generally quite large, we create a mock galaxy catalog using scaling relations in order
to cover the relevant range of parameter space. Three important scaling relations for
our purposes are the relation between bulge mass M∗ and MBH (Marconi and Hunt
2003)

M∗ = 4.06 × 1010M�
(
MBH

108M�

)1.04

, (4.7)

and the empirically calibrated scaling laws for SMBH influence radii rinfl in core

rinfl = 35 pc

(
MBH

108M�

)0.56

(4.8)

and cusp

rinfl = 22 pc

(
MBH

108M�

)0.55

(4.9)

galaxies. The SMBH influence radius is the radius that contains a stellar mass equal
to 2MBH.

An important limitation of the Nuker parametrization for our purposes is its
assumption of spherical symmetry; this is important because kicked SMBHs are
initially on radial orbits. In a spherical potential, these orbits remain radial, and their
repeated passages through the exact center of the galaxy will quickly damp out their
motion via stellar dynamical friction (Gualandris and Merritt 2008). However, in an
axisymmetric or triaxial potential, small torques from the stellar bulge will stochas-
tically change the recoiling SMBH’s pericenter, suppressing energy losses due to
dynamical friction. Because the assumption of spherical symmetry will artificially
reduce the wandering lifetime of kicked black holes, we use an ad hoc density-
potential pair that captures the most physically important feature of the Nuker profile
(broken power law behavior) but that is by construction axisymmetric. We use the
spheroidal isodensity surfaces

ρ∗(m) =

⎧⎪⎨
⎪⎩
K1m

−γ m < mb

K2m
−β mb ≤ m < mmax

0 m ≥ mmax

(4.10)

where we have defined an axisymmetric pseudoradius

m2 = r2

a2
+ z2

c2
. (4.11)
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Here r and z are cylindrical coordinates, and our isodensity spheroids have axis ratios
of a and c, with a > c. We define the parameters using the most recent Nuker sample
(Lauer et al. 2005): γ = �+ 1, β = B + 1, andmb = sb. Because these parameters
are not strong functions ofM∗ (within the subpopulations of core and cusp galaxies),
we approximate them as having Gaussian distributions, with means and variances
calculated from Lauer et al. (2005). The parameters K1, K2, and mmax are chosen
so as to normalize the total bulge mass to M∗, to produce the correct value of rinfl,
and to ensure continuity at the break pseudoradius mb. Our final free parameter,
ε = 1 − c/a, is calibrated from the observed isophote ellipticities in Lauer et al.
(2005), once again assuming a Gaussian distribution.

Because so few core galaxies exist with MBH < 108M�, it is not obvious that
scaling relations for their parameters (Faber et al. 1997) can be reliably extended
down to low masses. This is particularly problematic because it is only SMBHs
with MBH � 108M� that are capable of tidally disrupting stars outside their event
horizons. Most recoiling SMBHs capable of tidally disrupting stars will therefore
originate in the merger of two cuspy galaxies, but the merger product can nonetheless
look like a core galaxy if the pre-merger gas fraction is low or if all star formation
occurs prior to the final stages of the SMBH binary inspiral. Our mock catalog is
built around the two following scenarios:

1. Large amounts of free gas allow star formation to rebuild a nuclear cusp. In this
scenario, we calibrate all our free parameters {γ ,β, sb, ε} directly off the observed
sample of cusp galaxies in Lauer et al. (2005). The merged galaxy will also have
a fraction fg of its baryonic mass in a gas disk; we present our model for this in
§ 4.2.4.

2. The SMBH binary excavates a core, and a stellar cusp fails to rebuild because
either there is not enough free gas, or because star formation happens prior to
core scouring. In this scenario, β is calibrated from the Lauer et al. (2005) sample
of cusp galaxies, as are initial parameter values γ0, sb,0. However, we set fg = 0
take ε and a final power law slope γf from the subsample of core galaxies; we
also calculate a final break radius sb,f . To do this we manually excavate a mass
deficit�M = 2MBH, which increases the initial break radius by a factor of a few:

sb,f =

⎛
⎜⎜⎝

�M

4πK1(1 − e2)1/2
− s3−γ0

b,0

β − γ0

(3 − β)(3 − γ0)

s
β−γ0
b,0

γf − β
(3 − γf )(3 − β)

⎞
⎟⎟⎠

1/(3−β)

. (4.12)

In the above equation, we have defined e = √
1 − (c/a)2.

Now that we have fully defined our isodensity profiles, it is simple to use the method
of homoeoids (Binney and Tremaine 2008, Sect. 2.5) to calculate isopotential curves
through numerical integration. Even numerical calculation of two-integral distribu-
tion functions is quite challenging (Hunter and Qian 1993), so for simplicity we
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calculate a velocity dispersion in the spherical limit and substitute in m for r:

σ 2(r) = 2πGK2

(
2s3−β

b

r(3 − γ )(1 + β)
(4.13)

+ r2−β

(3 − β)(β − 1)
− 2s3−β

b

r(3 − β)(1 + β)

)

when r > sb, and

σ 2(r) = 2πGK1s
2−2γ
b rγ

(
2
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+ 1

(3 − β)(β − 1)
− 2

(3 − β)(1 + β)
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+ 1

(3 − γ )(1 − γ )

)
− 2πGK1r

2−γ

(3 − γ )(1 − γ )

when r < sb. The above estimates for σ are inaccurate for r � rinfl because the
velocity dispersion will be modified by the central black hole, and they can also
break down at large radii because of the presence of a dark matter halo (which we will
parametrize below). Therefore, instead of using the above analytic expressions, we
numerically compute a one-dimensional velocity dispersion (again in the spherical
limit, substituting in the pseudoradius):

σ 2 = 1

ρ(r)

∫ ∞

r

ρ(r ′)
GM(r ′)
r ′2

dr ′. (4.15)

Here M(r) is the total enclosed mass and ρ(r) the total density at a radius r . Be-
cause we have derived this integral assuming spherical symmetry, the dynamical
friction and gravitational focusing equations introduced in § 4.2.4 will be modestly
inaccurate.

For the largest kicks velocities, wandering SMBHs can be ejected into the dark
matter halo surrounding their host galaxy. We parametrize the gravitational influence
of this using the the standard NFW profile (Navarro et al. 1997),

ρNFW = ρ0

(r/as)(1 + r/as)2
. (4.16)

In the NFW profile, the density normalization ρ0 and scale factor as are calculated
assuming a concentration parameter of 10 and by truncating the dark matter halo
at the virial radius r200 where ρNFW(r200) = 200ρc (ρc is the cosmological critical
density). The total mass in dark matter,Mtot, is calculated using theMBH-Mtot relation
(Bandara et al. 2009),

MBH = 1.51 × 108

(
Mtot

1013M�

)1.55

. (4.17)
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We conservatively assume a spherically symmetric dark matter halo (a nonspherical
halo would extend the lifetimes of recoiling SMBHs).

Because the dynamical friction time for an inspiraling satellite galaxy will exceed
the Hubble time when the mass ratio q � 0.1 (Wetzel and White 2010), we restrict
ourselves to major mergers (q > 0.1). Major merger rates have been estimated by
Hopkins et al. (2010) using the analytic fitting formula

dNmajor

dt
= 0.04

(
1 +

(
Mmin

M0

)0.8
)

(4.18)

× (1 + z)β(Mmin) Gyr−1,

where total bulge mass Mbulge > Mmin, z is redshift, and M0 = 2 × 1010M�.
Furthermore,

β(Mmin) = 1.5 − 0.25 log

(
Mmin

M0

)
. (4.19)

Throughout this calculation we use a�CDM cosmology with parameters taken from
Spergel et al. (2007): �� = 0.73, �M = 0.27, and H0 = 71 km s−1 Mpc−1.

To summarize: we assemble a mock galaxy catalog by first choosing a value
for MBH, and then using Lauer et al. (2005) to draw a parameter set {γ ,β, sb, ε}
for the desired merger scenario (either a wet merger that rebuilds a stellar cusp,
or an “effectively dry” merger that does not). Our fiducial choices of MBH are
106, 106.5, 107, 107.5, and 108M�, which we interpolate across the SMBH mass
function from Hopkins et al. (2007).

4.2.4 Interactions with the Galaxy

To model the disruption rate of unbound stars, we evolve the SMBH’s trajec-
tory under the influence of gravity and dynamical friction through galaxies with
the axisymmetric Nuker density profiles described above. We use the fifth-order
Dormand-Prince method (with an embedded fourth-order Runge-Kutta integrator for
adaptive timestepping) described in Press et al. (2002, Chap. 17). The effects of dy-
namical friction are approximated with the Chandrasekhar formula (Chandrasekhar
1943),

	F df = −I (M)
4πρ(GMBH)2

σ 2

	vBH

vBH
, (4.20)

with σ the local velocity dispersion and ρ the local density of the medium causing
the drag. For a collisionless medium, such as a stellar population,

Idry(M) = ln(�)

M2

(
erf

(
M√

2

)
−

√
2

π
Me−M

2/2

)
(4.21)
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where M = vBH/σ is the Mach number. The Coulomb logarithm can be fit nu-
merically (Escala et al. 2004), and for the case of SMBHs on radial orbits, is well
matched by a value of ln� = 2.5 (Gualandris and Merritt 2008). Dynamical friction
is the force which ultimately causes the kicked black hole to settle back into a near-
stationary position in the center of its host galaxy, on timescales ranging from 106 to
109 years (Madau and Quataert 2004; Blecha and Loeb 2008). The Chandrasekhar
formula is derived assuming a uniform and infinite background of stars, and it is not
immediately clear how appropriate that is for a steep density profile in galactic nu-
clei, or for a black hole massive enough to excite a response in the stellar population.
The applicability of the Chandrasekhar formula to bound, recoiling black holes has
been considered before (Gualandris and Merritt 2008), and for appropriately chosen
ln� it was found to be fairly accurate until the point when the mass interior to the
black hole’s apogalacticon is of orderMBH. After this, coherent oscillations develop
in the stars interior to the black hole’s trajectory, and dynamical friction is found to
become dramatically less effective at removing the black hole’s orbital energy. We
terminate our calculations at the onset of this orbital phase, both because our trajec-
tory approximation would become quite inaccurate and also because TDEs caused
by a slow-moving SMBH near the center of a galaxy would not be distinguishable
from those caused by a stationary black hole. During these calculations, we neglect
the extra “core scouring” caused by black hole recoil (Gualandris and Merritt 2008).
The stellar population in the galactic center responds to a moving SMBH by ex-
panding, with a mass of stars equal to a few MBH being displaced from the galactic
center for kicks close to escape velocity (and the effect is reduced for slower ones).
Neglect of this effect likely reduces the SMBH wandering time and causes us to
underestimate the total number of TDEs per galaxy merger, but probably not by
much, as axisymmetry of the stellar potentials prevents the SMBHs from returning
exactly to the center of their host galaxies where core scouring is most relevant. We
emphasize that dynamical friction removes the most orbital energy during passages
through the densest regions of the SMBH’s trajectory. Therefore trajectories with
nonzero angular momentum (due to an axisymmetric potential) last longer before
settling back into the galactic center than would center-crossing ones in spherical
geometries.

In a dry merger it is sufficient to consider dynamical friction off stars and not
gas. This regime could also apply to wet mergers where the gas is used up in star
formation (while the SMBH binary is stalled) or dispersed in binary quasar feedback.
We identify both of these scenarios with our “excavated core” galaxies. If significant
quantities of gas survive until the recoil phase of the merger, however, it is necessary
to consider the effects of gas dynamical friction, which would apply more to our
“pure cusps.” Previous work (Blecha et al. 2011) has indicated the effect of leftover
gas is to decrease black hole wandering times, reducing the observable number of
offset TDEs. To quantify this effect, Eq. (4.21) still applies; we simply need to use
gas density rather than stellar density for ρ, substitute a local sound speed cs for
σ , and modify the dimensionless parameter I (M) (for gas, M = vBH/cs). The new
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dimensionless functions are

Isubsonic(M) = 1

2
ln

(
1 +M
1 −M

)
−M (4.22)

in the subsonic regime, and

Isupersonic(M) = 1

2
ln

(
1 − 1

M2

)
+ ln

(
vBHt

rmin

)
(4.23)

in the supersonic regime (Ostriker, 1999). However, these formulae have been shown
to overestimate gas dynamical friction in the slightly supersonic regime, so we adopt
the prescription of Escala et al. (2004) and use the Chandrasekhar formula for I (M),
with ln� = 4.7 forM ≥ 0.8 and ln� = 1.5 forM < 0.8. We follow the prescriptions
of Blecha and Loeb (2008) and assume that most of the gas in the galaxy has settled
into a disk, which we align with the oblate plane of the galaxy. We employ a slightly
less complicated version of their model, as only two of their four disk zones are
relevant for our dynamical modeling: zones III and IV (zones I and II only exist in
the presence of a central SMBH). Zone III, the portion of the disk influenced by
the SMBH potential before the recoil kick, is truncated on its inner edge at the kick
radius,

rk = GMBH

v2
k

, (4.24)

and transitions to zone IV at r = rinfl. Zone IV is an exponential disk with scale rdisk.
The disk surface density in zone III will be

�III =
(

4

πQ2

) (
Ṁ2
α

α2G

)1/3

r−1, (4.25)

while in zone IV, the surface density is

�IV = Mdisk(>rinfl)

2πrdisk(rinfl + rdisk)e−rinfl/rdisk
e−r/rdisk . (4.26)

Here we take the viscosity parameter α = 0.1, and set the Toomre parameterQ = 1
(Toomre, 1964) under the assumption that star formation feedback roughly balances
cooling, leaving the disk marginally stable. The accretion rate Ṁα can be found by
mass normalization of equation (4.25) so thatMIII = 2fgasMBH:

Ṁα =
(
fgasMBHQ

2

4(rinfl − rk)

)3/2

αG1/2. (4.27)

The scale distance rdisk is then found by requiring continuity between zones III and
IV: �III(rinfl) = �IV(rinfl). Densities in both disk zones decay exponentially with
height z, with scale height

hIII = Q2

8
r (4.28)



4.2 Model 67

taken from Blecha and Loeb (2008). In zone IV, the scale height

hIV = Ṁακ�

3π2αQG�2
IV

(4.29)

is solved for using the identities Ṁα = 3παcsh� and cs = (GṀα/α)1/3. Here κ� is
the epicyclic frequency, and is calculated from the numerically integrated potentials
of the isodensity shells in Eq. (4.10).

In our models we consider values of fg (gas as a fraction of total baryonic mass)
of 0 and 0.3. The latter value is taken as a conservative upper limit for remnant
gas fraction at the time of black hole merger, as self-consistent hydrodynamical
simulations (Mihos and Hernquist 1996) have shown that ≥50 % of the initial gas
fraction, fg,i in a merger is expelled or converted into stars by the time of black
hole coalescence. Observation indicates that fg,i � 0.6 for MBH > 106M� at low
redshift (Hopkins et al. 2010, Fig. 7), so fg = 0.3 is a conservative case, likely to
result in SMBH orbits which decay somewhat faster and produce fewer offset tidal
disruptions than in more general wet mergers with smaller fg.

At each point along the SMBH’s trajectory we consider an instantaneous “tidal
disruption cylinder” of length vBH�t and radius equal to the gravitationally focused
tidal disruption radius. This lets us simply calculate instantaneous tidal disruption
rates along the trajectory,

Ṅu = ρ∗vπR2
t

(
1 + 2GMBH

Rtv2

)
(4.30)

which can be integrated to get a time-averaged TDE rate, or NTDE, the total number

of stars disrupted per recoil event. Here v =
√

v2
BH + σ 2, with σ given by Eqs. (4.13)

and (4.14).

4.2.5 Interactions with the Bound Cloud

The initial size of the bound cloud is determined by the magnitude of the received
kick, and can be approximated as encompassing all stars within rk. The mass of the
bound cloud is found by KM08 to be a fraction fb of the black hole mass, where

fb = F (γ )

(
2GMBH

rinflv2
k

)3−γ
. (4.31)

Here γ is the same as in Eq. (4.10), rinfl is the influence radius, the interior of which
contains a mass in stars twice MBH, and F (γ ) = 11.6γ−1.75. For most cloud sizes
the disruption rate of bound stars will be determined by resonant relaxation into
the SMBH’s empty loss cone, exponentially depleting the population of stars inside
on a timescale τ ≈3.6GM2

BH/(v
3
km∗) (KM08). In practice, the e-folding time is at
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least an order of magnitude below 1010 years for most of the 106M� and 106.5M�
black holes which escape from their host galaxies, strongly suppressing the averaged
intergalactic TDE rate.

One exception to this picture is if rk ∼ rinfl; in this case nonresonant relaxation
could become important, and resonant relaxation alone will significantly underesti-
mate the TDE rate. This regime is of minimal significance for this paper, however,
since small kicks are likely to produce few spectrally and no spatially offset flares.
A more significant exception is for relatively low-mass SMBHs, which can reach
an energy relaxation timescale in less than their wandering time. Relaxation will
eventually allow the cloud to expand in radius (O’Leary and Loeb 2009), changing
the time evolution of the tidal disruption rate from exponential depletion to ∝ t−3/2

(O’Leary and Loeb 2012). Therefore, we adopt KM08’s prescription for resonant
relaxation,

Ṅb ≈ CRR(γ )
ln�

ln (rk/rt)

vk

rk
fbe

−t/τ (4.32)

when t < tr, but transition to Ṅb ∝ t−3/2 at later times. The energy relaxation
timescale tr is taken to be (O’Leary and Loeb 2012)

tr = 109 years

(
MBH

105M�

)5/4 (
rk

rinfl

)1/4

. (4.33)

This power law disruption rate is only relevant for MBH < 106.5M�, but for lower
mass SMBHs we transition to power law depletion after an energy relaxation time.
For both scenarios, the initial disruption rate is

Ṅb ≈ 1.5×10−6

(
MBH

107M�

) (
rinfl

10 pc

)−2

(4.34)

×
( vk

103 km s−1

)−1
year−1.

One uncertainty is the resonant relaxation coefficientCRR, found by KM08 to have a
value of 0.14 for γ = 1. Since the spatial power law exponents for core galaxies are
close to 1, we adopt this value, though it is less well motivated for cuspier galaxies.

We also consider growth of the bound cloud by capture of members of binary star
systems. This three-body interaction is treated in the same way as tidal disruption of
unbound stars, except instead of a stellar tidal disruption radius we use an “orbital
tidal disruption radius”, given by

rt,o = abin

(
MBH

2m∗

)1/3

, (4.35)

where abin is the binary semimajor axis. While one member of the binary is ejected
at high velocities (Hills, 1988), the other is bound to the black hole, with apoapsis
rmax given by

rmax ≈ GMBH

v2
eject

(
m∗
MBH

)1/6 ( a

0.1 AU

)1/2
(4.36)
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(Yu and Tremaine 2003), with veject ≈ 145 km s−1 (Hills, 1988). To calculate the
rate of these captures, we assume Öpik’s Law (Öpik, 1924), a flat distribution of
binary semimajor axes a in units of log (a), between amin and amax . Following
Vereshchagin et al. (1988) and Kouwenhoven et al. (2007) we adopt amin = 5R�
and amax = 5 × 106R�. We only consider captures with rmax < rt,c, with the cloud’s
tidal radius conservatively given by rt,c = rinfl. This refill mechanism is in principle
capable of counterbalancing losses due to tidal disruption and evaporation from the
cloud. Without a refill source, resonant relaxation into the loss cone will normally
cause the population of the bound cloud to evolve due to ṄTDE ∝ N , leading to a
population (and TDE rate) depleted exponentially in time, at least until t = tr. We
can roughly see the effect of stellar capture into the bound cloud if we assume

Ṅ = −kN +m, (4.37)

with k the average frequency with which bound stars evaporate or are scattered into
the loss cone and m a time-averaged capture rate. This differential equation has the
solution

N (t) = N (0)e−kt + m

k
(1 − e−kt ). (4.38)

By itself, relaxation will deplete the bound cloud, but 3-body capture allows the
number of stars in the cloud to asymptotically approach a nonzero value. If the time-
averaged binary capture rate is high enough (i.e. if m/k > N (0)), then the size of
the cloud would even grow over time. The importance of this effect is determined
for each galaxy/kick velocity pair.

A final consideration is stability of the bound cloud to perturbations. Analytically,
it seems unlikely that interactions with unbound stars will eject significant numbers
of bound stars from the cloud: if the cloud stars are bound to the black hole with
typical energy Ebind ∼ −v2

km∗, and during encounters with unbound stars a change
in energy �E ∼ Gm2∗/rp is available (where rp is the closest approach of the two
stars), encounters must be within r < rp ∼ rk(m∗/MBH). For a 107M� black hole on
typical trajectories, this works out to at most ∼1 unbound stars making close enough
approaches to eject a bound star during the SMBH’s passages through the bulge.

4.2.6 Observability of Recoil-Induced TDEs

To translate the total recoil-induced TDE rate into a rate of identifiably recoil-induced
TDEs, it is necessary to consider observational constraints. LSST’s rapid cadence,
high sensitivity and thorough sky coverage make it an ideal survey to detect disrup-
tion flares - as mentioned in § 4.2.2, LSST could detect up to thousands of TDEs
per year. LSST’s limiting g-band magnitude is 25 (LSST Science Collaboration et
al. 2009); because of LSST’s short cadence we assume any flares brighter than that
will be detected. The detectability of a spatial offset will depend on how well the
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TDE centroid can be distinguished from the host galaxy centroid after photometric
frame subtraction. For LSST the expected differential astrometric precision will be
∼0.7′′/SNR (LSST Science Collaboration et al. 2009). Using the LSST Science

Manual’s prescription for SNR−1 = σtot =
√
σ 2

sys + σ 2
rand, we infer astrometric pre-

cision by calculating the signal to noise ratio for each event in our sample. We also
calculate the rate of spectroscopically identifiable flares associated with a recoil-
ing SMBH. Although UV spectroscopy would be ideal, soft X-ray spectrometers -
SXS, for example, on the planned ASTRO-H mission (Takahashi et al. 2010), ex-
pected to be operating contemporarily with LSST - should be able to identify the
absorption lines discussed in § 2.2, if they exist with sufficient equivalent width. To
investigate this possibility, we consider a fiducial case of absorption lines at 10 keV,
observed by SXS followup with an energy resolution of 7 eV. If the outflowing wind
can be accurately modeled, these lines would allow black hole velocities down to
∼200 km s−1 to be spectrally resolvable. As mentioned before, it is not clear that
the super-Eddington phase of accretion will produce winds in which a ∼200 km s−1

offset is detectable, so predictions of kinematic offsets should be regarded as some-
what hypothetical. Because spatial and kinematic offsets are angle-dependent, we
average the observable quantities over all inclination angles for the host galaxy.

4.3 TDE Rate

Using the potentials and frictional forces described above, we integrate the trajec-
tories of five different black hole masses at nine different kick velocities and seven
inclination angles in galaxies with eighteen different possible permutations of mass-
independent structural parameters, for a total of 11340 runs (the final factor of two
comes from wet vs dry mergers). During preliminary test runs, a very weak depen-
dence of the wandering time on β and γ was apparent (once variation in β and γ
due to the core/cusp dichotomy is allowed for), so we set those quantities equal to
their average values. Among the remaining structural parameters, we only varied ε
and sb,0.

We terminate our trajectory calculations after a Hubble time, if the black hole has
left the stellar bulge (and its attendant sources of friction) with escape velocity, or
upon the onset of the “Phase II” orbital oscillations of Gualandris and Merritt (2008),
discussed in § 4.2.4.

To calculate the total observable rate of TDEs due to recoiling black holes, ϒ , we
use a modified version of Eq. (31) in SQ09. Specifically,

dϒ

dlnMBH
=

∫ Rt

RISCO

∫ dmax(Rp)

0
4πr2fsky

dn

dlnMBH
(4.39)

×dυ(r ,Rp)

dlnRp
drdlnRp
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Here dmax(Rp) represents the maximum comoving distance a TDE flare with given
pericenterRp can be seen at, using a 25AB g-band magnitude limit. LSST will detect
flares at cosmological distances, so it is necessary to employ a K-correction, which
has a modest impact on dmax. The rate υ(r ,Rp) is integrated over inclination/azimuth
angles and galaxy properties, and is the rate at which either TDE flares are produced
at a distance r by TDEs with Rp. Further cuts are added to the integrand to calculate
the rate at which observably spatially offset TDE flares, or observably kinematically
offset TDE flares are produced, using the criteria described in § 4.2.6 (with an
average over azimuthal angles to account for projection effects). In our average
over galaxy properties, we give MBH-dependent weights to the “pure cusp” and
“excavated core” scenarios from § 4.2.3. These weights are determined in two ways.
The first is to bin the the Lauer et al. (2005) galaxy sample and compute the fraction
of cusps and cores in each σ bin (with the small minority of intermediate cases
taken as 50 % core, 50 % cusp). The σ bins are translated into masses from the
measured σ using a recent calibration (Graham et al. 2011) of theMBH − σ relation
(Tremaine et al. 2002). The second approach is to bin the larger Lauer et al. (2007)
sample in magnitude MV, and to then translate to MBH using the relation between
MBH and V-band magnitude in Bentz et al. (2009) (specifically, the “FITEXY FF05
ellipticals - outliers” fit). We average the results of these two methods, and find
that forMBH/M� of 106, 106.5, 107, 107.5, and 108, the fractions of core galaxies are
0.03, 0.125, 0.125, 0.114, and 0.302, respectively.

To calculate dmax for super-Eddington flares we use Eqs. (4.1), (4.2), and (4.3),
while to do the same for disk emission we use Eq. (1.4). For simplicity, we neglect
the less important emission from photoionized, unbound disruption debris, noting
that this is a conservative approximation. For disruptions from the bound cloud,
resonant relaxation slowly diffuses stars across the loss cone in phase space, meaning
that nearly all bound TDEs will have Rp ≈Rt . Unbound stars will have a wider
variety of Rp, but the geometry of gravitational focusing will bias them towards
Rp ≈Rt as well. For these reasons we simplify Eq. (4.39) by taking Rp = Rt. This
approximation produces slightly more disk emission (due to physically larger disks),
and significantly less luminous super-Eddington flares, than does the flat distribution
of TDEs across lnRp assumed in SQ09. Consequently, our results show a much less
pronounced difference in the observable TDE rate between the disk emission and
super-Eddington outflows cases.

We then interpolate the results of these trajectory calculations over three different
black hole physics scenarios, as discussed in § 2.1. In the first scenario, a lack of
free gas during the SMBH inspiral leaves the spin vectors of the SMBH binary
randomly aligned with each other, producing a top-heavy kick distribution and a
high average value of dimensionless spin (aBH = 0.73). The other two scenarios
involve wet mergers with warmer and cooler gas, producing spin vectors aligned
to within 30 and 10◦, respectively, and remnant mean spins of aBH = 0.88 and
aBH = 0.90. Because the disruption of stars by 108M� black holes is so sensitive to
aBH (aBH > 0.92 required), we bracket these fiducial assumptions (the aBH values
above are the peaks of the remnant spin probability distributions in Lousto et al.
(2010a)) about remnant spin with aBH = 0 and aBH = 0.99 cases. We also consider
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Fig. 4.1 The importance of
asphericity on SMBH
trajectories. All the lines
represent trajectories of
107 M� SMBHs kicked at
400 km s−1 in a gas-free core
galaxy. The green solid line is
the course of a SMBH kicked
in the plane of the galaxy’s
two semimajor axes, while
the blue dot-dashed line
represents a SMBH kicked
15 ◦ above the plane, and the
black dotted line a SMBH
kicked 45 ◦ above the plane

two different cases of tidal disruption physics; one in which the super-Eddington
mass outflows proposed by SQ09 exist (for simplicity we take their canonical case
of fv = 1 and fout = 0.1), and the other in which they do not. In the latter, optical
emission is limited to the Rayleigh-Jeans tail of the newly-formed accretion disk.

4.4 Results and Discussion

Figures 4.1 and 4.2 illustrate the importance of nonspherical potentials for the life-
times of wandering black holes. In the axisymmetric stellar potential that we employ,
stars initially on radial orbits will quickly acquire angular momentum unless they
lie on a principal axis of the stellar ellipsoid or in the equatorial plane. The latter
is true of the 0◦, green orbit, which is seen in Fig. 4.1 to decay somewhat faster
than the blue, 15◦ orbit and dramatically faster than the 45◦, black orbit. For the dry
mergers illustrated here, the variation in decay time is due entirely to differences
in stellar dynamical friction, which is the strongest at orbital pericenter. In the wet
merger scenarios we considered, recoils in the plane of the gas disk are very quickly
damped out, but axisymmetry in the stellar potential still affects orbital lifetimes for
other inclination angles. Figure 4.2 illustrates the torques that act on orbits out of
the equatorial plane, and in the inset we can see that those torqued orbits are able to
avoid close pericenter passages, explaining their longevity.

The total number of disruptions per merger, NTDE, was found to be fairly insensi-
tive to the power-law slopes γ and β, but 1σ changes in sb or ε can changeNTDE by a
factor of a few. The sensitivity to sb really reflects a sensitivity to the ratio vk/vesc, as
the wandering time can jump by ∼1−2 orders of magnitude when vk/vesc rises above
a value ∼0.5 − 0.6 (where vesc here is the escape velocity of the stellar bulge). This



4.4 Results and Discussion 73

Fig. 4.2 The same black
holes as in Fig. 4.1, now
viewed in two dimensions.
The inset plot zooms in on the
central 100 parsecs to
highlight the lack of center
crossings for SMBHs ejected
at nonzero inclination angles

sensitivity to kick velocity is due to the decreased effectiveness of dynamical friction
once the SMBH begins passing through the galactic center at high velocities, giving
the black hole more time to disrupt bound cloud stars. Because the SMBHs spend
most of their near-radial orbit at apocenter, most bound cloud disruptions occur at an
observably offset distance. As a side note, the binary capture mechanism introduced
in § 4.2.5 was found to operate at negligible levels.

Figures 4.3 and 4.4 illustrate how our results vary with assumptions about the
kick velocity distribution, final spin amplitudes of the SMBHs, and existence of
super-Eddington outflows. In both figures, bound cloud disruptions are represented
as thick lines and unbound stellar disruptions as thin lines. The total number of
disruptions is shown as a solid line, while those with an observable spatial offset are
shown with a dotted line, and those with an observable kinematic offset are shown
with a dashed line. Unless otherwise noted, discussion of TDE rates in this section
refers only to SMBHs which remain bound to their host galaxy.

Figure 4.3 displays dϒ/dlnMBH, the number of TDEs observed by LSST per year
per logarithmic black hole mass, for our models without super-Eddington emission.
Both the unaligned (<180◦) and moderately aligned (<30◦) progenitor spin mod-
els produce interesting values of ϒ . Both bound and unbound disruption rates are
dominated by the highest black hole mass permitted by its spin amplitude to disrupt
stars; for the first row (fiducial aBH values), this corresponds to 107.5M�, while for
the second row (aBH = 0.99) it is 108M� and for the third row (aBH = 0.0) it is
107M�. We note here that 107M� black holes can always disrupt solar-type stars,
but require a modest amount of spin in order for the ISCO to lie inside the tidal
radius, which we take as a precondition for either disk or super-Eddington outflow
emission (thereby neglecting the short-lived X-ray shock breakout signature of the
TDE, explored in Guillochon et al. (2009), which LSST would not detect). Almost
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Fig. 4.3 Mass dependence of total TDE rates,ϒ . In the left (green) column, we show the unaligned
spin case; in the middle (blue), spins aligned to within 30◦; and the right (red), spins aligned to
within 10◦. The top row has fiducial final spin amplitudes, while the middle has aBH = 0.99 and
the bottom row has aBH = 0.0. The thick lines represent disruptions of bound stars; the thin lines,
disruptions of unbound stars. The solid lines represent total number of disruptions, while dotted
lines represent disruptions with observable spatial offsets and dashed lines represent disruptions
with observable kinematic offsets. In this plot only disk emission is considered

all bound cloud disruptions have an observable spatial offset, while unbound dis-
ruptions never have an observable offset. On the other hand, a higher fraction of
unbound disruptions possess an observable kinematic offset relative to the bound
cloud disruptions. Both these correlations are easily explainable: due to high orbital
eccentricity, the SMBHs in our sample spend the majority of their time far from
the galactic nucleus, so most bound cloud disruptions occur with a large physical
offset and low velocity. At the same time, virtually all unbound disruptions occur
during perigalacticon, where the SMBHs move at their highest velocities. The highly
aligned (<10◦) progenitor spin model produces a negligible number of disruptions;
high kick velocities are suppressed, and SMBHs escape the galactic nucleus too
infrequently to disrupt significant numbers of stars.

In Fig. 4.4, we display dϒ/dlnMBH for models with super-Eddington flares. The
results are similar to those in Fig. 4.3, although dϒ/dlnMBH is everywhere greater
than or equal to its values in the previous figure. Two special points of contrast are the
large increase in observable disruptions at the low end of the SMBH mass function,
and the (corresponding) increase in disruptions for the highly aligned progenitor
spin model. The addition of super-Eddington flares has, as expected, little effect



4.4 Results and Discussion 75

Fig. 4.4 The same as the previous figure, but assuming the existence of super-Eddington outflows

on values of dϒ/dlnMBH above 107M�, but disruption flares become dramatically
more visible for 106M� and 106.5M� SMBHs.

Figure 4.5 displays dϒs/dlnMBH, the mass dependence of the total observable
(spatially offset) rate ϒs, integrated over all kick velocities and all galaxies in our
mock catalog, and given fiducial spin values.ϒs is, as discussed in § 4.2.6, the rate of
spatially offset flares that will be identified as offset by LSST’s automatic photometric
subtraction, without any followup observations. When we integrate over black hole
mass, we find that two of our kick velocity distributions produce a robustly observable
(∼10) number of disruptions per year assuming super-Eddington flares, while the
third produces a more marginal number of TDEs, of order unity per year. Likewise,
progenitor spin distributions aligned to within 180◦ or within 30◦ produce ∼1 flare
per year with an observable spatial offset if we are only able to observe disk emission.
Higher-mass SMBHs contribute the most to observable disk flares, due to the lower
temperatures and higher optical luminosities of their disks, while super-Eddington
accretion flares are dominated by the lower-mass end of the SMBH distribution.
Although the rate enhancement from inclusion of super-Eddington outflows is almost
a factor of 10, this is considerably lower than the comparable factor in SQ09. The
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Fig. 4.5 Mass dependence of
the total, galaxy- and
velocity-averaged rate of
spatially offset TDEs, ϒs, in
the case of fiducial spin.
180, 30, and 10◦ progenitor
spin alignment correspond to
solid green lines, dotted blue
lines, and dashed red lines,
respectively. Thick lines
represent disk emission only,
while the thin lines
correspond to disk plus
super-Eddington outflows

reason for this disparity is that the brightest super-Eddington outflows correspond
to the deepest plunges (lowest Rp) into the tidal disruption region. SQ09 considered
a logarithmically flat distribution of Rp, while we took a constant Rp = Rt , for the
reasons explained in § 3.

A variety of observable TDE rates are displayed in Table 4.1. These numbers
have been integrated over galaxy type, kick velocity distribution, inclination angle,
and black hole mass function, and indicate that the ultimate observability of recoil-
induced TDEs will depend strongly on both the existence of super-Eddington flares,
and the average distribution of pre-merger spin alignments. In this table,ϒ values for
fiducial SMBH spins are shown, with the aBH = 0 and aBH = 0.99 cases appearing
as lower and upper limits in parentheses. It is only in the case where super-Eddington
flares do not exist and substantial progenitor spin alignment occurs where we expect
LSST to observe negligible numbers of spatially offset TDEs per year. We note that
if the progenitor spins are unaligned, or even aligned with scatter ≥30◦, the tidal
disruption rate from recoiling black holes is almost 1 % of the total inferred TDE
rate (∼10−5year−1 per galaxy) for all galaxies. For most of our models, the number
of kinematically offset TDEs, ϒk, is comparable to ϒs, although we note again that
the theoretical basis for expecting appropriate absorption lines in a super-Eddington
outflow is less secure than that for a simple spatial offset. We have also included
in Table 4.1 the rates of spatially and kinematically offset TDEs for SMBHs which
escape their host galaxy altogether, labeling these asϒs,esc andϒk,esc. Only in the case
of unaligned spins and super-Eddington outflows are ϒs,esc ∼ ϒs and ϒk,esc ∼ ϒk;
in all other scenarios the number of observable TDEs due to ejected SMBHs is at
least a factor of 7 smaller than the number due to bound SMBHs.

For most of the models we have considered, a large majority of the TDEs asso-
ciated with recoiling SMBHs occur for black holes bound to their host galaxy. This
is due to two factors: both the relatively low fraction of SMBHs recoiled at escape
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Fig. 4.6 Fraction of recoiled
SMBHs which escape into
intergalactic space, as a
function of black hole mass,
for the three different kick
velocity distributions. As in
the previous figure, the green
solid line represents the 180◦
alignment distribution, the
dotted blue the 30◦, and the
dashed red (not visible; a
negligible fraction of SMBHs
from this distribution escaped
their host galaxies) the 10◦

velocity (see Fig. 4.6 for a plot of the SMBH escape fraction, fesc), and the smaller,
more rapidly decaying bound clouds of those low-mass SMBHs which do escape.
This highlights the importance of searching for SMBHs bound to the bulge or halo
of their host galaxy; although the intergalactic TDEs of the KM08 scenario offer a
cleaner signal, they are intrinsically much fewer in number. Our work has differed
from KM08 primarily in considering much wider ranges of vk, using kick velocity
distributions motivated by merger gas content. Our treatment of disruption rates for a
given vk is mostly similar, with the exception of incorporating the results of O’Leary
and Loeb (2012) for late-time relaxation in the bound cloud.

Finally, it is worth summarizing the primary assumptions we made in this work,
where we have tried to err on the side of conservatism. To simplify our calculations,
we neglected emission from the unbound TDE debris, although that can substantially
increase optical (non-super-Eddington) emission for low-mass SMBHs (SQ09). Our
SMBH wandering lifetimes were likely reduced by the fact that we limited ourselves
to axisymmetric stellar bulge geometries, and even more importantly only considered
spherical dark matter haloes. Our simple choice of stellar mass function is slightly
conservative for calculations of TDE rate.

4.5 Conclusions

In this paper, we have generalized the work of KM08 to include a mock galaxy
catalogue and physically motivated distributions of kick velocities, so as to estimate
the observability of offset tidal disruption flares. We have demonstrated that super-
Eddington flares from recoiling black holes, if they exist along the lines envisioned
in SQ09, will be observably offset to LSST in numbers ranging from ∼1 to ∼10
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TDEs per year. This is true for a broad range of assumptions about kick velocity
distributions and galactic structure. This subset of transients would contain important
scientific value as evidence of black hole recoil, and could potentially constrain the vk

distribution. If super-Eddington flares do not exist or if they differ significantly from
the SQ09 picture (for example, if fout � 0.1), optical emission from the accretion
disks of TDEs around recoiling black holes will still be accessible to LSST, although
here the case is more marginal. If a large fraction of local universe SMBH mergers
proceed without significant spin alignment, the prospects for optical detection of
disk emission from recoiling TDEs are relatively good, but moderate amounts of
alignment would likely suppress this. Importantly, the majority of recoiled SMBHs
will remain bound to their host galaxies, making photometric subtraction critical for
identification of recoil-associated disruption flares. Depending on the nature of the
super-Eddington phase of accretion, a comparably large population of kinematically
offset flares is potentially detectable, but would require spectroscopic followup to be
realized.

We have also shown that confusion with TDEs from stationary SMBHs will not
be a major challenge in the detection of off-nuclear TDEs, leaving supernova con-
tamination as the main concern. If the scientific potential of spatially offset TDEs is
to be utilized, it will be necessary to construct transient survey pipelines which do
not employ the typical “galactic center” cut when searching for TDEs. Although the
challenges inherent to TDE identification have been discussed elsewhere (van Velzen
et al. 2011b), the distinctive lightcurve and color evolution of tidal disruption flares
are helpful in separating them. The large number of TDEs expected to be observed
by time domain surveys in the coming decade will calibrate our understanding of
these events, so that once LSST is online, it may be able to confirm the SMBH recoil
predictions of numerical relativity.



Chapter 5
Consequences of Strong Compression
in Tidal Disruption Events

N. Stone, R. Sari, & A. Loeb The Monthly Notices of the Royal
Astronomical Society, Vol. 435, pp. 1809–1824, 2013

The dynamics of stellar tidal disruption depend strongly on how deeply the victim
star’s orbit plunges into the tidal sphere. In this Chapter, we show that most previous
estimates of the spread in debris energy, �ε, are inaccurate when β = Rt/Rp > 1;
the traditional formula for �ε can be incorrect by orders of magnitude for high β
events. After presenting a revised formula that is independent of β and correct to
leading order, we develop a new analytic model for tidal disruption events (TDEs)
and employ this to test our conclusion that �ε does not depend on β. We find that
�ε is not modified at leading order by general relativistic effects, stellar spin, or
the hydrodynamic bounce of a tidally compressed star, although it is possible that
a combination of these factors could restore some β dependence to �ε. We present
a first estimate of high frequency gravitational wave emission that accompanies the
compression of a star during high β events, and find that the Advanced LIGO horizon
for tidal disruptions of white dwarfs by intermediate mass black holes can be tens of
megaparsecs.

5.1 Introduction

Many different theoretical methods exist for studying stellar tidal disruption. These
range from the purely analytic (Rees 1988; Phinney 1989), to the semi-analytic meth-
ods of the “affine model” pioneered by Carter and Luminet (1983, hereafter CL83)
and further developed in subsequent papers (Carter and Luminet 1985; Luminet and
Marck 1985; Luminet and Carter 1986), to numerical hydrodynamic simulations,
of both the Eulerian (Khokhlov et al. 1993a; Frolov et al. 1994; Guillochon et al.
2009; Guillochon and Ramirez-Ruiz 2013) and Lagrangian (Nolthenius and Katz
1982; Evans and Kochanek 1989; Laguna et al. 1993; Lodato et al. 2009; Hayasaki
et al. 2013) varieties. These approaches have built on each other to improve our
theoretical understanding of TDEs; however, in this paper we argue that they have
overlooked a critical feature of deeply plunging tidal disruption events. In particu-
lar, the “frozen-in” spread in debris orbital energy (�ε) has been overestimated by
past analytic work in the β � 1 limit, and this overestimate has gone unnoticed
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by numerical simulations because of the focus of past simulations on the β = 1
events that dominate the TDE rate. Calculating a correct leading-order�ε is the first
focus of this paper; the second is to analytically study the vertical compression (or
“pancaking”) phase of a TDE, which has been explored by the affine model but is
quite difficult for full numerical simulations to resolve.

In § 5.2 we argue that the conventional expression for�ε is incorrect, sometimes
by orders of magnitude, and propose a more accurate leading-order expression for
this important dynamical quantity. In § 5.3 we introduce a new analytic model that
describes the tidal free fall experienced by a star between Rt and Rp. This formalism
is in some ways a simplification of the affine model, but possesses somewhat more
flexible initial conditions and, appealingly, can be written in closed form. Using this
new model for tidal free fall, in § 5.4 we analyze redistribution of orbital energy
during the hydrodynamic bounce of a tidally compressed star. More complicated
scenarios involving desynchronized collapse and general relativistic corrections are
considered in § 5.5 and § 5.6, respectively. In § 5.7 we perform novel calculations
estimating the frequencies and wave strain of gravitational waves (GWs) emitted
during the bounce phase: interestingly, we find that these GWs may be detectable
by Advanced LIGO for white dwarfs disrupted by intermediate mass black holes. In
§ 5.8, we apply our revised estimates of �ε to more directly observable quantities,
and find that the most strongly super-Eddington accretion rates predicted in past
literature are unlikely to be physical. A general discussion of the results in § 5.9
concludes this work.

5.2 Dynamical Energy Spread

To leading order, a tidally disrupted star’s internal forces become subdominant shortly
after it passes inward ofRt . After this point, the star’s fluid elements travel on roughly
ballistic trajectories, and to a reasonable approximation, their orbital energies have
“frozen in.” In the standard literature (Evans and Kochanek 1989; Kochanek 1994;
Ulmer 1999; Kasen and Ramirez-Ruiz 2010; Strubbe and Quataert 2009; Lodato
and Rossi 2011), the spread in frozen-in energy is given by

�ε = k
GMBHR∗
R2

p

. (5.1)

This equation can be obtained in two ways: either by Taylor expanding the SMBH
potential around the star at the point of pericenter passage (the point where inter-
nal forces are most subdominant), or by the simple calculation �ε = Vp�Vp ∼
GMBHR∗/R2

p . Here we have defined the pericenter velocity Vp = (2GMBH/Rp)1/2,
and the impulsive delta-v at pericenter �Vp = ApTp. Using Vp = (2GMBH/Rp)1/2,
where tidal acceleration at pericenter Ap ∼ (GMBH/R

2
p)(R∗/Rp) and the dynamical

time Tp ∼ (GMBH/R
3
p)−1/2.

This reasoning is, however, incorrect. A simple Taylor expansion of the SMBH
potential would accurately evaluate the frozen-in energy spread for a static sphere
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of matter, but by the time the star reaches pericenter, it is highly nonspherical due to
tidal stretching. More importantly, its fluid elements are moving on geodesic trajec-
tories with a large velocity shear; the differential energy between two fluid elements
depends not just on their relative positions (captured by a Taylor expansion) but also
on their velocities. Equivalently, it is not accurate to estimate �Vp as ApTp. This is
because the eigenvectors of the Newtonian tidal tensor rotate as the tidally free falling
star progresses along its parabolic center of mass trajectory (Brassart and Luminet
2008). Let us define X̂ as the direction connecting the star and the SMBH; Ŷ as the
direction in the orbital plane orthogonal to X̂; and Ẑ as the direction perpendicular
to the orbital plane. These three basis vectors are the eigenvalues of the tidal tensor;
the star is stretched in the X̂ direction but compressed in the Ŷ and Ẑ directions. The
rotation of {X̂, Ŷ } across a parabolic orbit limits the total stretching and compression
suffered by the star within the orbital plane, and invalidates the above estimate of
�Vp (however, the fixed direction of Ẑ produces extreme compression orthogonal to
the orbital plane, which will be discussed in much greater detail in § 5.3 and § 5.4).

Given the above problems with the traditional formula for �ε, we propose this
alternative:

�ε = k
GMBHR∗
R2

t

. (5.2)

When the star is located at R = Rt , it is to first order still a static, spherical ball
of gas; a simple Taylor expansion of the SMBH potential is therefore an accurate
estimate of the spread in orbital energy across the star. However, it is not immediately
obvious that Eq. (5.2) measures a frozen-in energy spread: the star’s internal forces
are not nearly as subdominant at R = Rt as they are at Rp for β > 1 events. We
perform the following post-hoc check on our revised formula: the internal forces of
the star produce accelerations Ain ∼ GM∗/R2∗; this produces a perturbation to the
frozen-in energy spread of order�εin � GMBHR∗/R2

t . We note that this is an upper
limit on the amount that internal forces can modify the frozen-in�ε; internal forces
do the most work on the star’s fluid elements atR = Rt , but at this point pressure and
self-gravity are still self-canceling to first order (Carter and Luminet 1983, Fig. 4),
as the star was originally in hydrostatic equilibrium. Our estimate forAin is therefore
too large, as is �εin; however, even these upper limits imply that Eq. 5.2 is correct
to leading order, and there is no β dependence in the energy spread that freezes in
at the tidal radius. It is worth noting that similar conclusions were reached by Sari
et al. (2010, hereafter SKR10) on the tidal separation of binary stars by SMBHs.

Could additional pieces of physics that we have not yet accounted for modify this
conclusion? To approach this question with an open mind, we adopt the more general
equation

�ε = kβn
GMBHR∗
R2

t

, (5.3)
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where n = 2 in the standard literature, and n = 0 in our revised picture. We will now
determine if additional physics can restore a β dependence (i.e. n �= 0) to �ε; after
addressing this question, we consider the observational implications of a revised n
in § 5.8.

5.3 Free Solutions, and Free Collapse

Other factors could influence or invalidate the simple analytic argument presented in
§ 5.2, such as redistribution of energy during the period of maximum compression,
GR corrections, stellar spin, or simply work done on the star’s fluid elements by
subdominant internal forces inside the tidal sphere. In this section, we introduce a
new analytic model for the tidal free fall of a disrupted star that will help us approach
these issues.

Because the dominant source of TDEs is expected to be stars scattered onto radial
orbits from ∼ pc scales (Magorrian and Tremaine 1999; Wang and Merritt 2004),
we assume a parabolic orbit for the center of mass of the star, with distance from the
SMBH given by:

R = 2Rp

1 + cos f
. (5.4)

For such an orbit, time t is related to true anomaly f via

t = 1

3

(
2R3

p

GMBH

)1/2

tan (f/2)
(
3 + tan2 (f/2)

)
, (5.5)

although the differential form

df

dt
= 1

81/2
(1 + cos f )2

√
GMBH

R3
p

(5.6)

is more generally useful. We set t = f = 0 at R = Rp, and use ḟ > 0 throughout
this paper.

The sequence of events in a TDE, first noted by CL83, will be useful shorthand
for us, so we introduce it here. Phase I (near-equilibrium) of a TDE lasts while
R > Rt , and the star remains in approximate if slightly perturbed equilibrium. Phase
II (free fall) begins when the star crosses the tidal sphere and becomes gravitation-
ally unbound; in this paper we will treat the transition between Phases I and II as
instantaneous, an assumption we justify below in § 5.5. The assumption of tidal
free fall is very useful because of the existence of analytic, “free” solutions to the
Hill equations in the parabolic restricted 3-body problem, but it is not immediately
obvious that internal forces in the star can be neglected for R < Rt . To first order
the approximation seems reasonable because the ratio of tidal acceleration to self-
gravitational acceleration grows quickly, as at/ag ≈ (Rt/R)3 for the bulk of the star.



5.3 Free Solutions, and Free Collapse 85

Furthermore, the star’s internal pressure and self-gravity partially cancel each other,
further reducing their combined contribution. For now, we assume the validity of the
free fall assumption, but after developing further machinery we will justify it further
in § 5.5.

During this free fall, the star is compressed perpendicular to the orbital plane
(along Ẑ) and in one direction within the orbital plane, while being stretched along
the other in-plane direction. Although for the limiting case of radial infall the problem
is self-similar in all three dimensions (SKR10), the rotation of the line connecting
the star’s center of mass to the SMBH breaks the in-plane similarity. By the time
the star has reached pericenter, the X̂ direction (which is parallel to the line between
the SMBH and the orbital pericenter), is compressed, and Ŷ is stretched, but the
distortions are both much smaller than the compression orthogonal to the orbital
plane. Shortly after passing pericenter, synchronous tidal free fall in the Ẑ direction
leads to very strong compression of the star, which is eventually reversed by hy-
drodynamic forces. Phase III (bounce) begins when hydrodynamical forces become
strong enough to begin slowing the collapse of the star along its vertical axis. Once
the star’s collapse has reversed, hydrodynamical forces quickly become negligible
again, and Phase IV (the rebound) begins, with stellar gas once again moving on
ballistic trajectories.

We take as initial conditions for Phase II a spherically symmetric star at the
tidal sphere, with fluid elements possessing initial positions 	r (the coordinate origin
tracks the star’s center of mass) and initial velocities in the center of mass frame
	u(	r). Making the approximation that upon entering the tidal sphere, internal forces
become negligible unless and until compression triggers shock formation or isen-
tropic pressure buildup, we take the pre-shock trajectories of these fluid elements to
be completely ballistic. This means that their trajectories are given by the parabolic
Hill equations, 	rH = {xH, yH, zH}. Unlike the {X̂, Ŷ , Ẑ} coordinates, which rotate
as f progresses, the {x̂, ŷ, ẑ} which are used in the Hill equations define a fixed lab
frame. The free solutions to these equations, neglecting self-gravity, can be written
in closed form (SKR10) using coordinates where distance has been normalized by
R∗ and time by

√
R3∗/(GM∗); we denote such coordinates in this paper by writing

tildes over them. All other coordinates are in physical units, unless otherwise noted.
The equations of motion themselves are derived in Appendix A. Although there are
6 independent solutions to these equations, motion out of the orbital plane is decou-
pled from motion within it, so only two are relevant for perturbed motion in the ẑ
direction:

z̃H = Ez̃E + F z̃F

z̃E = 1

β

2 sin f

1 + cos f
(5.7)

z̃F = 1

β

2 cos f

1 + cos f
.

Here E and F are undetermined coefficients that are set by the initial conditions
described above. In particular, if we require that a fluid element of initial position
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z = z0 has initial velocity w = ż = 0 at f = ft , where the true anomaly upon entry
into the tidal sphere is given by

ft = − arccos (2/β − 1), (5.8)

then

E = −z̃0

√
β − 1 (5.9)

F = z̃0. (5.10)

If we introduce a tidal potential� felt in the rest frame of the star, the tidal acceleration
is given by SKR10 as

¨̃z = −∂�
∂ z̃

= −β3 (1 + cos f )3

8
z̃. (5.11)

We note that the self-similarity of Eq. 5.11 implies that the free solutions all collapse
to z = 0 simultaneously at a true anomaly fc, although physically this collapse will
be reversed shortly before by the buildup of pressure gradients strong enough to
counteract the tidal forces compressing the star. However, it is useful to solve for fc

using Eq. 5.7:

tan fc = 1

(β − 1)1/2
. (5.12)

From this formula we see that in the limit of β → ∞, collapse along the z-axis occurs
at fc = 0, i.e. at pericenter, while in the marginal disruption limit of β → 1, collapse
occurs at fc = π/2, i.e. at a fixed point past pericenter. We have already mentioned
that the free solutions become less valid for small β due to the increasing importance
of internal forces, but we can see from Eq. 5.12 a second, stronger, inconsistency
at low β, which is that the free solutions dictate vertical collapse after the disrupted
star leaves the tidal sphere, i.e. fc > |ft|. This occurs for β � 1.3.

Although the onset of Phase III is dictated by compression in the ẑ direction, the
outcome of the bounce will be affected by motion within the orbital plane during
Phase II, when f < fc. We therefore describe here the free solutions within the
orbital plane (SKR10):

x̃H = Ax̃A + Bx̃B + Cx̃C +Dx̃D

ỹH = AỹA + BỹB + CỹC +DỹD

x̃A = − 1

β

sin f

1 + cos f

ỹA = 1

β

cos f

1 + cos f

x̃B = − 1

β
sin f
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ỹB = 1

β
(1 + cos f ) (5.13)

x̃C = 1

β
(2 − cos f )

ỹC = − 1

β
cos f tan (f/2)

x̃D = 1

β
(8 + 12 cos f ) tan4 (f/2)

ỹD = 1

β

35 sin f − 2 sin (2f ) + 3 sin (3f )

(1 + cos f )2

If we consider a point on the star with an initial position, relative to the star’s center
of mass, of (x0, y0, z0) and zero initial velocity (here, as before, “initial” refers to
f = ft , i.e. crossing into the tidal sphere), then we have 4 initial conditions for 4
unknowns: {A,B,C,D}. Using Eq. 5.8, we find

A = 1

β2

(
−8x̃0

√
β − 1 + 2ỹ0(β2 + 2β − 4)

)
(5.14)

B = 1

5β2

(
2x̃0

√
β − 1(β3 − 4β2 + 8) (5.15)

+ ỹ0(9β3 − 12β2 − 8β + 16)
)

C = 1

β2

(
x̃0(2β2 + β − 2) − 2ỹ0

√
β − 1(β2 − 1)

)
(5.16)

D = − 1

20β2

(
x̃0(β − 2) + 2ỹ0

√
β − 1

)
(5.17)

All six of the free solutions we have listed can be thought of as slight perturbations
to a different orbital element of the parabolic center of mass trajectory, boosted into
the center of mass frame. The free solutions represent freely falling particles in a
Newtonian potential, but with a coordinate origin following a parabolic center of
mass trajectory.

We have now exactly specified the motion of the idealized star’s fluid elements in
the orbital plane during Phase II. We plot the vertical free solutions for a variety of
β in Fig. 5.1, and snapshots from motion within the orbital plane in Fig. 5.2. Here
we list several important features of the free solutions, when they are initialized with
static spheres of matter at f = ft :

• For f > ft , an initially spherical shell of matter will deform into a sequence of
roughly ellipsoidal shapes. It is simple to demonstrate that they do not generally
take the form of true ellipsoids, however.

• Initially concentric spherical shells of matter remain concentric, with in-plane
principal axes that remain aligned with those of other concentric shells.

• Slices of the star through the orbital plane (z=0) maintain reflection symmetry
across their rotating in-plane principal axes.
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a b

dc

Fig. 5.1 Normalized height z̃ = z/R∗ versus true anomaly f for the vertical collapse of one-
dimensional stars at varying β. The solid blue curves in panel (a) are β = 2; the dashed orange
curves in panel (b) are β = 4; the dotted purple curves in panel (c) are β = 10; the dot-dashed
brown curves in panel (d) are β = 40. Each scenario is initialized at f = ft (β). Note that f = 0
corresponds to pericenter

• The derivation of the free solutions assumes that R∗/R � 1 (SKR10). If we
neglect stretching of the star, this is equivalent to requiring β � (MBH/M∗)1/3,
a condition that is in general easily satisfied: a 106M� SMBH, if non-spinning,
cannot disrupt solar-type stars with β � 11 (higher β values will place the peri-
center interior to the marginally bound circular orbit, and the star will plunge
directly into the horizon). Even a maximally spinning SMBH of this mass cannot
disrupt solar-type stars with β � 47. The effects of tidal stretching will make it
somewhat harder to satisfy this assumption, but only for the minority of the star’s
mass that is strongly stretched.

The free solutions allow us to directly solve for the stellar axis ratio as a function of
f or t , and it is trivial to do so numerically, but there is an exact analytic solution
as well. If we denote the lengths of the long and short principal axes of our tidally
distorted star (within the orbital plane) as rlong and rshort, respectively, we can solve
for them by rewriting x̃0 = cos θ0, ỹ0 = sin θ0, and finding the appropriate θ0. More
specifically, we set d

dθ R
2
H(f ) = 0 (with R2

H = x2
H + y2

H), and solve for θex, the values
of θ0 which extremize RH. More physically, we are searching for the initial angles
θex around the star which at a later orbital phase f will correspond to its principal
axes in the orbital plane. Once we have the initial angular positions of the principal
axes, θex, we can plug in to Eqs. (5.13) and solve for the size of the principal axes at
a later true anomaly f > ft . We also find the misalignment angle ν between the long
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Fig. 5.2 The x and y
coordinates (in units of Rt ,
which for the 106M� SMBH
in this example is 100 R�) of
the free solutions for varying
β, translated so that the origin
lies on the SMBH. As before,
we mark the β = 2 trajectory
as solid blue, β = 4 as dashed
orange, β = 10 as dotted
purple, and β = 40 as
dot-dashed brown. The free
solutions for an initially
circular midplane slice of a
star are magenta at f = ft ,
pink at f = 0.7ft , and red at
f = fc. The tidal radius is
marked as a gray dashed
circle. The right plot is a
zoomed-in version of the left.
The free solutions are
breaking down for the β = 40
curve near pericenter, as the
long axis of the star exceeds
the orbital radius in size

in-plane principal axis and the orbital velocity vector. The in-plane stellar geometry
is presented in Fig. 5.3.

The algebra involved in this solution is unenlightening, so we leave the general
solution θex(f ) for numerical work and only derive analytic expressions for θex(fc),
which is the situation of greatest interest. The details are contained in Appendix
B, but we plot the results below in Fig. 5.4. Specifically, these are the sizes of the
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Fig. 5.3 An initially (f = ft ) circular ring of stellar fluid elements has been tidally distorted by
the time it reaches f = fc. The principal axes of the distorted, free-falling body are the solid green
vectors, the center of mass velocity is the dashed yellow vector, and the direction to the SMBH is
the dotted red vector. The angle ψc (ϒc) is measured between the negative x̂ direction and the long
principal axis (stellar velocity vector). We define the misalignment angle νc = ϒc − ψc

principal axes at f = fc. For comparison we plot curves of the high β limiting
behavior, for which r̃long ≈ 4

5β
1/2 + 22

5 β
−1/2 and r̃short ≈ 2β−1/2 − 23

2 β
−3/2.

The primary interesting feature of the axis ratio calculations is that for disruptions
of stars by supermassive black holes, the physically relevant range of rlong and rshort

is quite narrow, being confined between 3 and 5 for the former, and 0.3 to 0.5 for the
latter. For the tidal disruption of a star by an intermediate mass black hole (IMBH),
or perhaps more exotic disruption scenarios, a larger range of β (and therefore rlong,
rshort) can be attained, but for star-SMBH TDEs only a surprisingly narrow range of
principal axis lengths are accessible. This implies that the naive Taylor expansion
of the SMBH potential as the star passes through R = Rp, i.e. Eq. 5.1, will fail
primarily because of internal velocities within the free-falling stellar debris, and
only secondarily because of distortions in the star’s shape.
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Fig. 5.4 The principal axis lengths, rlong and rshort , of the distorted star (at f = fc) vs β. Here
rlong is plotted as thick green curves; rshort as thin yellow curves. The exact solutions are solid lines,
while the dashed curves are the high-β Taylor expansions given by Eqs. (B.6), (B.7)

As we shall see in § 5.4, when estimating energy redistribution during maximum
vertical compression, the misalignment angle ν plays a larger role than the slowly-
varying axis ratio. This will prove relevant when calculating corrections to �ε, and
is shown in Fig. 5.5. The angle νc (as elsewhere, the subscript c denotes evaluation
at f = fc) is found to be a rapidly decreasing function of β; to leading order,
tan νc ∝ β−3/2.

We can now use the free solutions {A,B,C,D,E,F } to quantify precisely the
spread in debris energy at the tidal radius. Because these solutions can be thought
of physically as perturbations to the orbital elements of a parabolic trajectory, all
possess exactly zero energy except for the in-plane “D” solution, which has specific
energy given by

ε = −20GM∗D
R∗

(
MBH

M∗

)1/3

β, (5.18)

whereD is the coefficient of the fourth in-plane free solution, corresponding to slight
variations in the eccentricity of a near-parabolic orbit (SKR10). If we initialize our
free solutions with an unperturbed sphere, i.e. Eqs. 5.14, then we find a specific
energy for each fluid element of

εu = GMBHR∗
R2

t

(
x̃0(1 − 2/β) + 2ỹ0

√
β−1 − β−2

)
, (5.19)

where x̃0 and ỹ0 are the initial positions of a debris stream relative to the star’s center
of mass at R = Rt normalized by the stellar radius. Notably, the specific energy is to
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Fig. 5.5 Curves illustrating misalignment of the tidally raised bulge and the orbital velocity vector
at the point of z-collapse (f = fc). The red dotted curve is the angle between the negative x-axis and
the tidal bulge (ψc), the green dashed curve is the angle between the negative x-axis and the orbital
velocity vector, and the solid yellow curve is the difference between them, i.e. the misalignment
angle (νc). These angles are plotted against the penetration factor β. The high β limit for νc is the
dot-dashed yellow curve

leading order independent of β, with the weak β-dependence becoming negligible
at high penetration factors. Defining x̃0 = r̃0 cos θ0 and ỹ0 = r̃0 sin θ0 (0 ≤ r̃0 ≤ 1
is the initial internal radius, and 0 ≤ θ0 < 2π is the initial azimuthal angle), we can
analytically extremize Eq. 5.19 with respect to θ0, to find that the spread in energy
of these unperturbed free solutions is actually fully independent of β:

�εu = 2GMBHR∗
R2

t

. (5.20)

In our idealized model of a spherical, stationary star undergoing tidal free fall, the
assumption of energy freeze-in at the moment of disruption implies n = 0, and no
β dependence in �εu. This result reflects an assumption of our model: by imposing
energy freeze-in at the tidal radius, the energy spread of the debris will simply be the
potential spread across the star at that point. This picture is complicated slightly if
our initial conditions become more general, and in particular a weak β dependence,
below leading order, can be reintroduced for spinning stars (see § 5.5.3).

Energy freeze-in can be understood geometrically: curves of constant specific
energy across the test particles of a spherical (static) star are lines with slope ỹ0/x̃0 =
(2 − β)/(2

√
β − 1). Since this slope ỹ0/x̃0 = cot ft , these lines are orthogonal to

X̂(f = ft), and the zero-energy D=0 line is the one passing through the center of
the star. On one side of that line, stellar matter is closer to the SMBH and remains
gravitationally bound; the half of the star on the other side of the line is unbound.
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In the following three sections, we examine the robustness of this model, and
consider possible corrections to our expressions for�ε. With limited exceptions, we
find that the arguments made in this section remain generally valid.

5.4 Total Vertical Collapse and Bounce

For f ≈ fc, motion in the vertical direction has decoupled from in-plane motion
and the star undergoes a homologous vertical collapse. In this regime, the vertical
velocity of the free solutions near the point of maximum collapse is very close to a
constant value, with wc ∝ β, a result known since CL83, although the exact value,
for arbitrary fc, is

wc = β z̃0

(
GM∗
2R∗

)1/2 (
(1 − β−1)1/2 + 1

)
. (5.21)

With this formula we can begin thinking about Phase III of a tidal disruption event,
and in particular whether it can alter Eq. 5.20.

As we have seen in the previous section, once f ≈ fc, the majority of the
star simultaneously “pancakes” into a sheet of matter strongly compressed in the
vertical direction. If non-gravitational forces were truly negligible, an idealized, one-
dimensional (ẑ extent only) star would momentarily possess zero height at f = fc,
but in reality sufficient compression will create a pressure gradient strong enough
to oppose free fall in the z-direction. The resulting bounce will reverse the vertical
free fall and lead to vertical expansion at speeds comparable to wc. The vertical
rebound will have a limited impact on �ε because it is effectively decelerated by
the tidal potential (for example, if we generously approximate the rebound as elastic
due by reflecting w at f = fc, the asymptotic free solution velocity w → 0 as
f → π ), but the smaller rebound velocities �υx,�υy in the orbital plane can in
principle have more significant effects, as �ε ∼ Vp�v. In this section we assume
the bounce is adiabatic; in particular, we neglect both dissipation in shocks and the
thermonuclear energy release from the compression of the stellar core. For a more
thorough discussion of these possibilities see Luminet and Pichon (1989); Brassart
and Luminet (2008).

During Phase III of a TDE, the requirement that central pressure rises to halt the
kinetic energy of collapse (∼ M∗w2

c ) implies that the star’s peak internal specific
energy will be

Uc ∼ β2U∗
(√

1 − β−1 + 1
)2

(5.22)

where U∗ = GM∗/R∗. Assuming a polytropic equation of state P = Kργ , and
furthermore that strong compression in the ẑ direction means that the density en-
hancement will be due to collapse in ẑ alone (since the cross-sectional area within
the orbital plane, ≈ πrlongrshort remains roughly constant), gives a minimum stellar
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height and maximum stellar density of

zmin

R∗
∼ ρ∗
ρc

∼ β−2/(γ−1), (5.23)

where ρ∗ is the mean pre-disruption stellar density. The duration of maximum com-
pression will be roughly τc ∼ wc/(R2∗Pc). This yields a steep power of the impact
parameter, specifically

τc ∼ β−(γ+1)/(γ−1)τ∗, (5.24)

with τ∗ = 1/
√
Gρ∗. Although we have only derived these formulas at the order of

magnitude level, they have been calibrated over a wide range of β by both the affine
model (Luminet and Carter 1986) and one-dimensional hydrodynamical simulations
(Brassart and Luminet 2008) (hereafter BL08). Specifically, for γ = 5/3 polytropes,
the affine model found Uc ≈ 1.2U∗β2, ρc = 1.3ρ∗β3 and τc = 8.5τ∗β−4, calibra-
tions which were essentially duplicated in BL08. Likewise, zmin ≈ 4.5β−3R∗ if
we assume that the rise in density comes entirely from homologous, vertical stellar
collapse (i.e. that the in-plane area of the compressed star is ∼ rlongrshort).

If we assume that the pressure-driven bounce acts isotropically (i.e. that shear
stresses from viscosity or shocks remain unimportant), then the relevant changes in
velocity can be estimated as ρc�υi/τc ∼ �Pc/ri, with ri the physical dimension of
the star parallel to the pressure gradients that impart �υi. Specifically,

�υz ∼ √
Uc

zmin

zmin

�	υshort · V̂c ∼ √
Uc

zmin

rshort
sin (νc) (5.25)

�	υlong · V̂c ∼ √
Uc

zmin

rlong
cos (νc),

where we have denoted the direction of the orbital velocity at f = fc as the di-
mensionless unit vector V̂c. As β increases, the increasing central pressure would
enhance the in-plane velocity perturbations, but is counterbalanced by the increas-
ingly extreme compression of the star, i.e. the increasing ratio of the vertical pressure
gradient to in-plane pressure gradients. The latter factor win out, and the velocity
perturbations decrease with increasing β.

This leads to energy perturbations within the orbital plane at bounce of
�εIII ∼ Vc�v. Using our exact formulae for axis lengths and alignment, we
plot the results in Fig. 5.6, along with the limiting behavior at high β, which is
well-approximated by the Taylor expansions in Appendix A as:

�εIII,short ∼ 31β−5/2�εu (5.26)

�εIII,long ∼ 9β−2

(
1 + 11

2β

)−1

�εu. (5.27)
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Fig. 5.6 Fractional specific energy perturbations during the bounce phase. We plot perturbations
along the short axis of the star as thick yellow curves, and along the short axis as thin green curves.
Exact solutions are solid lines, and the leading order behavior from Eqs. (5.26) and (5.27) are dashed
lines. The bounce represents at most a factor ≈ 2 correction to specific energy of the stellar debris
for 4 � β � 3; above these values, the bounce is negligible. Below β ≈ 3, a larger correction is
possible, but the free solutions become somewhat unreliable. The high degree of alignment between
the stellar bulge and the orbital velocity vector causes perturbations along the long axis to actually
dominate those along the short axis above β ≈ 15

Here we have assumed γ = 5/3, and that zmin ≈ 5R∗β−3 based on the BL08
calibration. We have also approximated Vc ≈ Vp, which is accurate for high β
though a mild overestimate at low β. Even with this overestimate, we can see from
Fig. 5.6 that only for β � 3 (where our model’s assumption of tidal free fall begins to
break down) can the pressure-driven bounce along the short principal axis of the star
provide an order unity enhancement to the total spread in (in-plane) debris energy.
The contribution of the bounce along the longer principal axis remains negligible at
all β.

Because the z-component of 	Vc = 0, the spread in kinetic energy of vertical
motion at the time of bounce is given by

�εIII,z ∼ �υ2
z ∼ β2 GM∗

R∗
. (5.28)

Interestingly, for β � 10 the total spread in kinetic energy at the time of bounce is
dominated by�εIII,z, not�εu. However, the instantaneous vertical kinetic energy at
f = fc will disappear as f → π . Even neglecting dissipation of the kinetic energy
of vertical free fall into shocks, and assuming a perfectly elastic bounce, the tidal
potential (Eq. 5.11) will efficiently decelerate the vertical motion of the debris during
the phase IV rebound and later expansion. This can be seen by continuing the free
solutions past f = fc, which corresponds to a reflection of vertical velocity.
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Here we have ignored energy release from thermonuclear burning at the time
of maximum compression, which in principle could increase �ε. However, past
estimates made in the framework of the affine model (Luminet and Pichon 1989,
Table 8) found that for the range of β values considered (5 ≤ β ≤ 20), the total
thermonuclear energy release was less than Uc, making it unlikely to change the
analysis of this section.

Of course, our analysis of energy redistribution in Phase III depends critically on
how synchronously the vertical collapse of the star proceeds. If individual “columns”
of the star do not collapse in the homologous manner implied by Eq. 5.11, it is unlikely
zmin will reach the extreme values predicted by the simple arguments in this section.
Alternatively, if separate columns collapse in a desynchronized way, it is possible
that pressure waves from collapsed regions of the star will propagate upstream to
uncollapsed regions and cause them to rebound prematurely. In either scenario, the
effective zmin will be enhanced, enabling greater coupling of the bounce energy to
motions within the orbital plane, and increasing the values of�εIII,short and�εIII,long.
Therefore, Eq. 5.20 should be regarded as a lower bound on�ε - a higher value of n
would be favored if the desynchronization of vertical collapse transfers kinetic energy
to in-plane motions more efficiently than in our estimates here. A similar effect should
arise in hydrodynamical simulations of TDEs that lack sufficient vertical resolution
to capture the maximum compression of the star (we discuss this further in § 5.9; see
also Guillochon et al. 2009). In the following section, we consider physical sources
of desynchronization.

5.5 Desynchronization

The synchronous vertical collapse of a one-dimensional star into a thin, pancake-like
sheet only occurs if the initial distribution of vertical velocities is self-similar, i.e.
the initial vertical velocity w0(z0) ∝ z0. In previous sections we have assumed the
trivial self-similarity of w0 = 0. Deviations from self-similarity will be seeded at
early times by the nonlinear hydrodynamics of actual disruption at the tidal radiusRt ,
and also later, as the self-gravity and pressure of the stellar debris perturbs the free
solutions for f < fc. In this section we quantify in an approximate way the effect of
desynchronization on our idealized earlier conclusions, finding that both the stellar
properties during Phase III (important for any shock breakout signal) as well as �ε
could be significantly altered. However, we then argue that past hydrodynamical
simulations indicate that desynchronization is likely to be suppressed in physical
TDEs, justifying our use of the parabolic free solutions. Finally, we consider the
desynchronization of stellar collapse in three dimensions.
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5.5.1 Desynchronized Free Solutions

At f = ft , during the transition from Phase I to Phase II, velocity perturbations of
order ∼ √

GM∗/R∗ could be imprinted on the free-falling stellar debris. Normalizing
our initial conditions {z0, w0} in units of R∗ and

√
GM∗/R∗, we derive coefficients

for the “perturbed” (i.e. w0 �= 0) vertical free solutions to be

Ep = −z̃0

√
β − 1 − w̃0

√
1

2β
(β − 2) (5.29)

Fp = z̃0 + w̃0

√
2

β

√
β − 1. (5.30)

Therefore the true anomaly of a perturbed vertical collapse to z = 0 is

tan (f ′
c ) = z̃0 + w̃0

√
2
√
β − 1/

√
β

z̃0
√
β − 1 + w̃0

√
2(β/2 − 1)/

√
β
. (5.31)

We note that both fc and f ′
c go ∝ β−1/2 in the large β limit. Unless w0 ∝ z0, the

collapse will be non-homologous, with f ′
c depending on z0. Modest deviations from

homologous initial conditions will desynchronize the collapse, which we illustrate
by plotting the desynchronized free solutions for β = 2 and β = 10. We can see that
in both cases, the time at which the free solutions cross the orbital plane becomes
strongly desynchronized, which complicates our previously simple treatment of the
transition from “tidal free fall” to “pressure-driven bounce” and also raises the pos-
sibility that the vertical kinetic energy of free fall could be effectively isotropized
and transferred to motions within the orbital plane, restoring a β dependence to�ε.

We can estimate the amount of desynchronization by using trigonometric identities
and Eqs. 5.12 and 5.31 to find �f = f ′

c − fc. Specifically,

tan (�f ) = λ̃0√
2β + λ̃0

√
β − 1

, (5.32)

where λ̃0 = w̃0/z̃0.
Interestingly, both Figs. 5.7 and 5.8 show that most of the star’s desynchronized

free solutions have two crossings of the orbital plane, raising the possibility of a
double bounce in desynchronized collapse scenarios (something previously seen
only due to GR effects, e.g. Luminet and Marck (1985) - see § VI). But is it realistic
to expect desynchronized collapse?

5.5.2 Validity of Free Solutions in One Dimension

From the above discussion, it is clear that only modest deviations from self-similarity
in the initial velocity perturbations w0 will produce a strongly non-homologous ver-
tical collapse at most realistic β. We can quantify the magnitude of the initial velocity
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a

c

b

d

Fig. 5.7 Here we plot several sets of free solutions (z̃ versus t̄) for β = 2. In panel a, the ini-
tial vertical velocity w0 = 0. In panel b, all fluid elements in the star receive initial velocity
perturbations |w0| = √

GM∗/R∗; in panel c, |w0| = √
GM∗/R∗/3. In panel d, the star receives

homologous velocity perturbations w0 = −z̃0
√

GM∗/R∗, causing synchronous collapse before
pericenter passage

a

c

b

d

Fig. 5.8 The same as Fig. 5.7, but for β = 10. Desynchronization is less severe at higher β
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perturbations λ̃0 required to significantly desynchronize one-dimensional collapse by
making the approximation (valid for small�f ) that the desynchronization timescale

�t1D ≈ �f
√
R3

p/(GMBH). If we then require�t1D < τc = χcτ∗, then for a γ = 5/3

polytrope (with χc ≈ 8.5) and inwardly directed velocity perturbations we find the
condition that

|λ̃0| �
√

2β tan (2χcβ
−5/2)

1 + √
β − 1 tan (2χcβ−5/2)

. (5.33)

The factor of ≈2 inside the argument of the tangent comes from the difference
between τ∗ = √

1/Gρ∗ and
√
R3/(GM∗). This condition grows more restrictive as

β increases, with the right hand side of Eq. 5.33 roughly proportional to β−2.
For one-dimensional stellar collapse, high-resolution hydrodynamical simula-

tions indicate that a highly homologous collapse is physically realized (BL08). As
noted before, this is likely due to a combination of two factors: the partial cancellation
of stellar pressure with self-gravity, and also that at/ag ≈ (Rt/R)3. This explanation
is supported by past investigations of stellar tidal disruption in the affine ellipsoids
approximation: for example, Fig. 4 in CL83 shows the first order cancellation of
pressure and self-gravity for early parts of Phase II. Three results of BL08 further
support the validity of the unperturbed free solutions in Phase II of a TDE:

• The actual collapse of the star is visually homologous during Phase II, as seen by
the near-linearity of a vertical velocity versus height plot at different times (BL08,
Fig. 2). Although the figure deviates slightly from homologous collapse at large
radii, possibly due to the fact that the low-density outermost regions of the star
are disrupted slightly before the higher density inner regions (like the peeling of
onion shells), these outer deviations do not appear to affect the key dynamics of
the bounce.

• The maximum central compression ρc ∼ β2/(γ−1)ρ∗ in accordance with the as-
sumption of fully synchronized tidal free fall (BL08, Eq. 43). We note that this is
a geometric proxy for zmin.

• The bounce of the collapsing star occurs after pericenter passage (BL08, Table 5).
As shown above, this places a strong constraint on the initial velocity pertur-
bations. In particular, let us consider a perfectly homologous collapse for the
sake of argument, with w̃0 = −λ̃0z̃0. Eq. 5.31 will only be positive (i.e. bounce
after pericenter passage) if λ̃0 < (

√
2β

√
β − 1)−1, a rather small perturbation

(λ̃ < 0.04 for β = 7, as is relevant here).

These numerical results indicate that realistic one-dimensional stars behave during
Phase II much like the unperturbed free solutions we presented in § 5.3, supporting
our earlier assumption that debris energy “freezes in” from f = ft down to the
bounce, at f = fc.

A final source of one-dimensional desynchronization can arise from the star’s
internal, pre-disruption density gradient, which will cause the core of the star (with
density ρcore) to see an effective βcore less than the mean β. If a star on a parabolic
orbit has a mean density ρ∗, and its core in isolation on that orbit would possess
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βcore = β(ρ∗/ρcore)1/3, we can alter our desynchronization formula to read τc �√
R3

p/(GMBH)(fc,core − fc), or for a γ = 5/3 polytrope

βcore � 1 + (
tan (fc + 8.5β−5/2)

)−1/2
. (5.34)

This condition is restrictive: if β = 3 (10), it implies a maximum density con-
trast ρcore/ρ∗ = 6 (53). The fact that this effect does not lead to significantly
non-homologous collapse in the BL08 simulations implies that this lower bound
on βcore must be generous.

5.5.3 Validity of Free Solutions in Three Dimensions

The full problem of tidal disruption is three dimensional, and some three dimen-
sional simulations (Laguna et al. 1993; Guillochon et al. 2009) have indicated that
one-dimensional descriptions of the bounce phase (Luminet and Carter, 1986) may
strongly overestimate the degree of compression. However, lack of vertical resolution
in the three dimensional simulations makes it difficult to interpret the discrepency,
and some high resolution simulations (Rosswog et al. 2009) do find degrees of com-
pression closer to our analytic expectations in § 5.4. Although the impact of higher
dimensional effects on Phase III of a TDE will only be resolved through higher
resolution hydrodynamical simulations, we present here a simple analytic argument
suggesting that a star made of many columns, each undergoing homologous collapse,
should attain zmin comparable to one-dimensional predictions.

Three dimensional desynchronization is an important effect that cannot be ignored
at high β: the bounce timescale τc ≈ 8.5τ∗β−4 for γ = 5/3, while the time it takes
the bulk of the star to pass across the tidal radius is�t3D ≈ 1.4τ∗(M∗/MBH)1/3. This
implies that for β larger than a critical value,

βd = 1.6

(
MBH

M∗

)1/12

, (5.35)

τc � �t3D, and the leading edge of the star will collapse and rebound well before
the trailing edge. If we assume that the star is truly in tidal free fall during Phase
II, and seed velocity perturbations remain as small in three dimensions as has been
indicated in one dimensional simulations, then each column of the star will reach its
maximum compression at different t but the same fc.

This fc remains fixed in space, much like a nozzle, as the star passes through
it. An example of this “tidal nozzle” has been seen in hydrodynamical simulations
of tidal disruptions of white dwarfs; for example, Fig. 6 of Rosswog et al. (2009).
Even if we assume the maximum compression predicted by one-dimensional models
of stellar collapse (zmin ≈ 4.5R∗β−3, for γ = 5/3), the sound speed in the stellar
midplane, cs,c, will remain a small fraction of the stellar orbital velocity. Specifi-
cally cs,c/Vp ≈ β1/2(M∗/MBH)1/3, indicating that unphysically large β values are
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required for pressure waves from the region of maximum compression to commu-
nicate upstream to the Phase II material. Unless three dimensional effects influence
earlier stages of a TDE (by seeding large perturbations during the transition from
Phase I to Phase II), it seems unlikely that the star will be prevented from reaching
the strong compressions suggested by models of one-dimensional collapse. Among
other things, this highlights the importance of thermonuclear network calculations
for high-β TDEs (Luminet and Pichon 1989).

A further complication is the desynchronization due to the “effective β” seen by
different regions of the star with different pre-disruption densities. This will have
the effect of spreading fc out over a range of angles for different parts of the star.
As the star passes through phase III compression, the nozzle point will move from a
starting point slightly ahead of pericenter outward along the orbit (as higher density
regions of the star get disrupted), and then inward, back to its starting point. We leave
a detailed analysis of this for future work.

With these caveats in mind, we generalize the work of § 5.3 to perturbed in-plane
free solutions, i.e. where every fluid element at f = ft has initial positions {x0, y0}
but also initial velocities {u0, υ0}. The in-plane coefficients for the corresponding
“perturbed” free solutions are

Ap = 1

β2

(
− 8x̃0

√
β − 1 + 2ỹ0(β2 + 2β − 4)

)
(5.36)

+ 2
√

2

β3/2

(
ũ0(2 − 3β) + ṽ0

√
β − 1(β − 2)

)

Bp = 1

5β2

(
2x̃0

√
β − 1(β3 − 4β2 + 8) + ỹ0(9β3 (5.37)

− 12β2 − 8β + 16)
)

+ 1

5
√

2β3/2

(
ũ0(β3 − 8β2

+ 28β − 16) + 2ṽ0

√
β − 1(3β2 − 6β + 8)

)

Cp = 1

β2

(
x̃0(2β2 + β − 2) − 2ỹ0

√
β − 1(β2 − 1) (5.38)

− √
2β

(
ũ0(1 − 2β)

√
β − 1 + ṽ0(β − 1)2)

)

Dp = − 1

20β2

(
x̃0(β − 2) + 2ỹ0

√
β − 1 (5.39)

− √
2β(ũ0

√
β − 1 + ṽ0)

)
.

If we now calculate the perturbed specific energy of the free solutions, we find

εp =GMBHR∗
R2

t

(
x̃0(1 − 2/β) + 2ỹ0

√
β−1 − β−2 (5.40)
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Fig. 5.9 The enhancement �εp/�εu to the energy spread for initially unperturbed free solutions,
when pre-disruption stellar spin (along an axis parallel to orbital angular momentum) is considered.
The energy spread is plotted against pre-disruption spin ω̃, where ω̃ is stellar spin normalized by
the breakup spin

√
GM∗/R3∗ . As in previous plots, the solid blue, dashed orange, dotted purple, and

dot-dashed cyan curves represent β = 2,β = 4,β = 10, and β = 40, respectively. The thin lines
represent the dynamical effects of stellar spin when the tidal radius is held constant; in the more
realistic thick lines, the tidal radius is also allowed to vary with stellar spin

− √
2/β(ũ0

√
β − 1 + ṽ0)

)
,

where the initial velocities have been normalized by
√

GM∗/R∗. Again, there is
no leading order β dependence in the specific energy, although a calculation of
�εp does not find it completely β-independent as in Eq. 5.20. Nonetheless, the
assumption of tidal free fall during Phase II implies clearly that the frozen-in �ε
should be, to leading order, independent of β. As a simple test case, we now apply
these perturbed free solutions to a uniformly spinning star, with normalized angular
velocity ω̃ = ω/

√
GM∗/R3∗ such that ω̃ = 1 is approximately the breakup frequency

(and the spin is taken as parallel to the orbital angular momentum). In Eq. 5.40, we
relabel x̃0 = r̃0 cos θ0, ỹ0 = r̃0 sin θ0, ũ0 = −ω̃r̃0 sin θ0, ṽ0 = ω̃r̃0 cos θ0, and then
extremize �ε with respect to θ0.

Results for constant Rt are plotted as thin lines in Fig. 5.9; in general, prograde
pre-disruption stellar spin will enhance the energy spread �ε by a small factor, �2.
Low β and high ω̃ will maximize this energy spread. Generally, retrograde spins
will decrease the energy spread by smaller factors. The difference between prograde
and retrograde behavior is geometrical: for prograde spins, the unbound (bound)
half of the star tends to receive positive (negative) specific energy perturbations
�ε ∼ Vtω0r0, whereVt is the center of mass velocity at the tidal radius. For retrograde
spins, this behavior is reversed, although for retrograde spins close to breakup the
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non-orthogonality of X̂ and 	V allows an enhancement to �εp. The alignment of X̂
and 	V at f = ft increases as β increases, so that the highest values of β see similar
energy spreads for both prograde and retrograde spins.

However, an important complication1 is that for spins near breakup (prograde or
retrograde), the tidal radius will increase, decreasing the spread in specific debris
energy. Using Eq. 13 of Kesden (2012b), we derive that

Rt(ω̃0) = R∗(MBH/M∗)1/3(1 − ω̃2
0)−1/3. (5.41)

This differs by a factor of 21/3 from the equivalent formula in Kesden (2012b) due to a
slight difference in the definition ofRt . The effect of the growing tidal radius leads to
sharp decreases in�εp for spins very close to breakup, and, for ω̃0 � 0.5, dominates
the dynamical spin effects described in the previous paragraph. The combined effects
of a variable tidal radius and the dynamical contribution of stellar spin to frozen-in
energy are plotted as thick lines in Fig. 5.9. In general,�εp is within a factor of 2 of
�εu except for ω̃0 � 0.9 or ω̃0 � −0.6.

We note here that large stellar spins misaligned with the orbital angular momentum
vector could have a much greater impact on�ε by inducing vertical desynchroniza-
tion. A thorough investigation of misaligned spin effects is beyond the scope of
this work, but as an idealized limiting case we apply Eq. 5.33 to approximate, as a
function of β, the maximum stellar spin allowed before the Phase III bounce would
be vertically desynchronized. Specifically, we set w0 = ω0r0. More specifically,
Eq. 5.33 lets us calculate the regions of parameter space in which the dynamical
desynchronization of stellar compression (due to the spread of velocities in a spin-
ning star) stretches out for longer than the hydrodynamical bounce time. We plot
these results in Fig. 5.10, and find that combinations of high β and relatively rapid
values of stellar spin are needed to strongly desynchronize the vertical collapse.

Figure 5.9 can be taken as representative of the effects of both primordial stellar
spin, and the angular momentum imparted during tidal spin-up of the star prior to
its full disruption, during the transition between phases I and II of a TDE. Tidal
spin-up is unlikely to produce misaligned spin, however, so the more dramatic type
of desynchronization suggested by Fig. 5.10 can only come from the star’s original,
pre-disruption spin. Furthermore, tidal spin-up may produce effects similar to the
thin curves of Fig. 5.9, provided the spin-up occurs close to the tidal radius of an
equivalent, nonspinning star.

For one dimensional stellar collapse, the frozen-in �ε will dominate the post-
bounce �ε for all β. For three dimensional collapse, the numerical literature is
less clear, but we have argued here that three-dimensional effects are unlikely to
strongly redistribute energy to in-plane motion, with the possible exception of when
sufficiently rapid stellar spin is misaligned with the orbital plane, or perhaps when a
similar misalignment between SMBH spin and orbital angular momentum exists.

1 This was pointed out to us by Michael Kesden.
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Fig. 5.10 The maximum value of normalized stellar spin ω̃ that will not produce significant 1D
desynchronization leading into the phase III bounce. We plot the exact value calculated from Eq. 5.33
as a solid green line, and the asymptotic behavior ω̃ � 2

√
2χcβ

−2 as a dashed yellow line. Regions
above the curves will experience desynchronization of vertical collapse

5.6 General Relativistic Corrections

The results of all prior sections have assumed purely Newtonian gravity; however, for
SMBHs with massesMBH > 106M�, tidal disruption of solar-type stars occurs at an
orbital distance Rt � 50Rg. Here the gravitational radius Rg = GMBH/c

2. At these
small separations, ballistic motion follows the geodesics of the Schwarzschild or Kerr
metric rather than free-fall trajectories in Newtonian gravity: general relativity (GR)
is important. A fully relativistic analysis of the problem of tidal disruption is beyond
the scope of this paper, although it has been treated in the past in the case of the
affine model (Luminet and Marck 1985), and in one-dimensional hydrodynamical
simulations (Brassart and Luminet 2010). If we treat the internal dynamics of the
star in a Newtonian way (i.e. assume tangentially flat space-time in the small region
occupied by the star), then Eq. 5.11’s description of vertical collapse will be modified,
to become

z̈GR = ∂�

∂z

(
1 + 3

L2

r2

)
, (5.42)

where L is the orbital angular momentum of the star, r is the orbital radius of
the star (both in geometrized units) and we have limited ourselves to non-spinning
black holes. The qualitative results of both Luminet and Marck (1985) and Brassart
and Luminet (2010) were that the increased strength of the GR tidal field (relative to
Newtonian gravity) can actually result in multiple vertical collapses, each followed by
separate bounces which are reversed by the relativistically enhanced tidal field. For all
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but the most deeply-plunging TDEs (β � 30), the maximum compression is obtained
on the first vertical collapse and is similar to the Newtonian zmin (Luminet and
Marck 1985, Fig. 5.10). Therefore, even though the formation of multiple outgoing
shockwaves could be an important outcome of relativistic compression, the first-
order spread in debris energy is unlikely to be affected by multiple compressions for
β � 30.

A separate relativistic effect concerns modifications to the pre-bounce spread in
debris energy, �ε. Eq. 5.2 was derived by Taylor expanding the Newtonian grav-
itational potential about the star’s position when it crossed into the tidal sphere,
then subtracting the zeroth-order component. We will now repeat that procedure
for a post-Newtonian (PN) effective potential which incorporates leading-order GR
effects for non-spinning, Schwarzschild black holes. Specifically, we use the 1PN
harmonic coordinate Lagrangian presented in Blanchet (2006, Eq. 174):

Lharm = Gm1m2

2r12
+ m1υ

2
1

2
+ 1

c2

(
− G2m2

1M2

2r2
12

+ m1υ
4
1

8
(5.43)

+ Gm1m2

r12

(
− 1

4
(	n12 · 	υ1)(	n12 · 	υ2) + 3

2
	υ2

1 − 7

4
(	υ1 · 	υ2)

))

We define the effective potential as �eff = K − Lharm, where K represents the
kinetic energy component of the Lagrangian, i.e. those terms which depend only on
velocities. This equation was derived for arbitrary mass-ratio systems, but here we
identify the star as particle 1, the SMBH as particle 2, and have dropped all terms
proportional to υ2 or m1/m2. The Taylor expansion of �eff up to first PN order,
around R = Rt , is given by

�εGR = GMBHR∗
R2

t

(
1 + 3V 2

t

2c2
− Rg

Rt

)
. (5.44)

From this equation, it is clear that GR corrections to the Newtonian potential will
only matter for large, MBH > 107M� SMBHs, with tidal radii close to or within
the ISCO. However, all TDEs due to such black holes, or even more massive ones
(Kesden, 2012b), will have debris energy spreads modified by GR around the ∼2
level (although we caution that our PN approximation breaks down for tidal radii
approaching the ISCO). In this discussion we have neglected spin effects, but they
may also play an important role for the subset of TDEs with Rp � RISCO. During
completion of this paper, a more precise formalism was presented for estimating
the GR corrections described in this section (Kesden, 2012a). The results indicate
generally small (factors �3) GR corrections which are maximized when the spread
in energy of a spherical star is calculated near the ISCO, in qualitative agreement
with our findings. We note however that Kesden (2012a) uses the older, less accurate
approach to treating “frozen-in” debris energy, i.e. evaluating the spread in energy
at Rp rather than Rt . The primary difference between our approaches is that if debris
energy freezes in at the tidal radius, GR corrections to �ε can only reach large, ∼2
levels forMBH � 107.5M�. TDEs around low-mass SMBHs will see negligible GR
corrections to �ε, even if β is large.
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5.7 Gravitational Waves

The parabolic motion of a star past orbital pericenter will produce low-frequency
gravitational waves due to time variation in the quadrupole moment of the star-
SMBH system. For pericenters Rp < Rt , past work has indicated that such a
signal could be marginally detectable with a LISA-like instrument (Kobayashi et
al. 2004). Analogous work has focused on the inspiral of a white dwarf (WD) into
an intermediate-mass black hole, where a similar signal could be generated by a
violent disruption (Rosswog et al. 2009; Haas et al. 2012), or a longer-lived GW
signal could be accompanied by electromagnetic transients due to inspiral and stable
mass transfer (Zalamea et al. 2010). An alternate, internal source of GWs in TDEs
comes from time variation of the star’s own quadrupole moment during the Phase
III vertical rebound, which was estimated in the past to generate gravitational waves
with strain h ∝ β3 (Guillochon et al. 2009).

In this section, we present more detailed estimates of the “internal” GWs due to
stellar pancaking and rebound, a process analogous to GW generation during core-
collapse supernovae (CCSNe). As we shall demonstrate, TDE GWs are weakened
relative to those in CCSNe due to lower collapse velocities and bounce accelerations,
but are increased due to the large degree of stellar asymmetry, and perhaps also by
the correspondingly long lever arm of collapse in the quadrupole moment tensor.

Specifically, we consider GW emission at the moment of maximum stellar com-
pression, which we for now take to be synchronized throughout the star (but which
will actually occur at different times for each point in the star, as seen in § 5.5).
The two polarization components of a GW signal, h+ and h×, can be read off of the
transverse traceless GW strain

hTT
ij = 2G

dc4
J̈ TT

ij , (5.45)

where d is the distance from the observer to the source, Jij = Iij − 1
3δij δ

klIkl is the
reduced quadrupole moment tensor, J TT

ij is a projection of Jij , and Ikl is the standard
quadrupole moment tensor:

Ïkl =
∫

d3	rρ × (5.46)

⎛
⎜⎜⎝

2ẋ2 + 2xẍ 2ẋẏ + ẍy + xÿ 2ẋ ż + ẍz + x z̈

2ẋẏ + ẍy + xÿ 2ẏ2 + 2yÿ 2ẏ ż + ÿz + y z̈

2ẋ ż + ẍz + x z̈ 2ẏ ż + ÿz + y z̈ 2ż2 + 2zz̈

⎞
⎟⎟⎠.

To order of magnitude in the limit of fully synchronous vertical collapse, and
neglecting the (weak) β dependence of all x and y terms, we then have

Ïkl

M∗R2∗τ
−2∗

∼
∫

d3	r

⎛
⎜⎜⎝
β0 β0 β5

β0 β0 β5

β5 β5 β2

⎞
⎟⎟⎠,
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where we have taken γ = 5/3 (as we will for the remainder of this section) and
approximated z ∼ β−3R∗, ż ∼ β

√
GM∗/R∗, and z̈ ∼ ż/τc ∼ β5GM∗/R2∗ .

If only diagonal terms are considered, the second derivative of the quadrupole
tensor will be ∝ β2. However, the extremely steep β5 dependence of the off-diagonal
Ïxz and Ïyz terms indicates that viewing angles not closely aligned with ẑ could in
principle observe copious GW production. This steeper β dependence arises from
the y z̈ and x z̈ terms, which couple the long (and only weakly β dependent) lever
arms within the orbital plane to the rapid vertical acceleration of the bounce. We note
that physically, Ïxz ∼ 10Ïyz because for the large β where GW emission is relevant,
ŷ will be aligned with the star’s longest principal axis.

However, two degrees of symmetry present in this problem will substantially
reduce the magnitudes of Ïxz and Ïyz. The free solutions indicate that to lowest order,
tidally free-falling bodies should possess reflection symmetry about their in-plane
principal axes. There is also an additional symmetry of reflection about the orbital
plane. If these symmetries are exact, the off-diagonal terms in Eq. 5.46 will integrate
to 0. The in-plane symmetries are broken when R∗/R ∼ 1, i.e. for deeply plunging
disruptions around low-mass SMBHs. The orbital plane reflection symmetry is more
robust, and likely can only be broken by misalignment between the orbital plane and
SMBH or stellar spin, which is beyond the scope of this paper. For the remainder
of this section, we treat GW emission from off-diagonal terms as speculative, but
the large magnitude of these terms in the integrand should motivate future work on
disruptions of spinning stars, or TDES around spinning SMBHs.

For β < βd, three-dimensional desynchronization is unimportant and the star
collapses almost simultaneously, emitting GWs with a peak frequency of ≈1/τc,
which, using the calibration of τc ≈ 8.5β−4τ∗ from the affine model and one-
dimensional hydro simulations (§ 5.4), gives

fGW ≈ 15 Hz

(
β

25

)4

m1/2
∗ r−3/2

∗ , (5.47)

where we have normalized m∗ = M∗/M� and r∗ = R∗/R�. Low mass stars have
an easier time achieving high frequencies; if we use the relation R∗ ∝ M0.8∗ for main
sequence stars withM∗ ≤ M�, we find fGW ≈ 10 Hz at β = 15, forM∗ = 0.1M�.

These frequencies are located on the far edge of the Advanced LIGO band, al-
though with steep β dependence. Because the three-dimensional desynchronization
discussed in § 5.5 results in the leading edge of the star collapsing before the trail-
ing edge (which lags by a time �t3D), the GW signal will be smeared out over a
range of frequencies between 1/�t3D and 1/τc when β > βd. This smears out the
gravitational wave emission by a factor �t3D/τc, giving us the strain estimates

h+ ≈ 1 × 10−25m2
∗r

−1
∗ d−1

10

⎧⎪⎪⎨
⎪⎪⎩

(
β

βd

)2

, β � βd(
β

βd

)−2

M
1/6
6 , β � βd

(5.48)
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h× ≈ 1 × 10−23  m2
∗r

−1
∗ d−1

10

⎧⎪⎪⎨
⎪⎪⎩

(
β

βd

)5

, β � βd(
β

βd

)
M

5/12
6 , β � βd

(5.49)

Here d10 is distance to the source normalized to 10 megaparsecs, and for clarity (i.e.
to separate diagonal and off-diagonal components of J̈ij into different polarization
states) we have assumed a line of sight along the y axis so that dh+ = G(J̈xx−J̈zz)/c4,
and dh× = 2GJ̈xz/c

4. As in § 5.5, βd ≈ 6 is the critical β value above which
TDEs experience significant three dimensional desynchronization. We have defined
a parameter,  (which is most likely �1), to parametrize the unknown degree of
reflection asymmetry in Phase III of a TDE.

The prospects for high frequency GW observation of TDEs involving main se-
quence stars appear dim, unless  � 0.1. If we limit ourselves to GWs from Ïzz,
then disruptions of abundant low mass stars have an easier time falling within the
Advanced LIGO band, but produce too little strain to be detected; disruptions of
solar-type stars produce a barely detectable strain at d ∼ 1 Mpc, but will lie outside
the Advanced LIGO band for β � 25.

Tidal disruptions of white dwarfs by intermediate mass black holes appear more
promising: a WD of mass 1 M� and radius 6 × 106 m disrupted at β = 5 by a
104M� IMBH will produce h+ ≈ 6 × 10−24 from a distance of 20 Mpc (neglecting
all strain from off-diagonal terms in J̈ij ). The peak emission frequency fGW ≈
60 Hz, but the existence of IMBHs is sufficiently uncertain that we do not attempt
a rate estimate. We note that the level of emission seen at ∼ 50 Hz frequencies in
full numerical relativity simulations of WD-IMBH disruptions (Haas et al. 2012)
was approximately ×103 smaller than our prediction. This may not surprising, as
the maximum density enhancement seen in these simulations is �10, not ∼200
as predicted by one-dimensional models (γ = 5/3,β ≈ 10). It is likely that this
discrepency is at least partially due to insufficient vertical resolution: after disruption,
the smallest grid cell in these simulations is ≈ RWD/40. Furthermore, Newtonian
and pseudo-Newtonian simulations of β ≈ 10 WD TDEs (Rosswog et al. 2009) find
maximum degrees of vertical compression ∼100, in approximate agreement with
the arguments presented in § 5.4 and 5.5.

5.8 Observational Implications

In this section, we discuss the observational implications of a revised�ε for optical
transient searches. In general, we predict longer decay times but lower initial mass
fallback rates than prior works (Strubbe and Quataert 2009).

Using the introduced index n, we rederive here a number of important conse-
quences of Eq. 5.3 in a parametrized way. The fallback time for the most tightly
bound debris is

tfall = 3.5 × 106 sec k−3/2β−3n/2M
1/2
6 m−1

∗ r
3/2
∗ , (5.50)
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where we have used the normalizations M6 = MBH/(106M�), m∗ = M∗/M�, and
r∗ = R∗/R�. The rate of mass fallback evolves with time t as

Ṁfall ≈ M∗
3tfall

(
t

tfall

)−5/3

, (5.51)

and is initially super-Eddington for disruptions of solar-type stars by SMBHs with
MBH � 107.5M�. Assuming a radiative efficiency 0 < η < 1, the peak (i.e. time of
first pericenter return) mass fallback rate is given by

Ṁpeak

ṀEdd
≈ 133 η−1k

3/2β3n/2M
−3/2
6 m2

∗r
−3/2
∗ , (5.52)

implying that the maximum black hole mass that can undergo a phase of super-
Eddington accretion is given by

MBH,max = 2.6 × 107M�η
2/3
−1 kβ

nm4/3
∗ r−1

∗ . (5.53)

The mass fallback rate becomes sub-Eddington at a time

tEdd = 6.6 × 107 sec η3/5
−1 k

−3/5β−3n/5M
−2/5
6 m1/5

∗ r3/5
∗ , (5.54)

although if tEdd < tfall there is no super-Eddington accretion phase. Here we have set
η−1 = η/.1. Considering the dependences of Eqs. 5.50, 5.52, 5.53, and 5.54 on nwe
see that adopting Eq. 5.2 can have dramatic effects on TDEs from stars on deeply
plunging (β > 3) orbits. In particular, using the correct values of �ε reduces the
peak mass fallback rate, decreasing the maximum SMBH mass that can produce a
super-Eddington accretion phase. On the other hand, for TDEs with super-Eddington
accretion, the duration of the super-Eddington phase is extended for (realistic) low-n
values.

We plot the effect of n on the mass fallback rate in Fig. 5.11. In previous literature
(n = 2) a wide variety of mass fallback curves were possible, with high peaks and fast
decay times accompanying large β values. If n = 0, however, the mass fallback rate
is generally independent of β. Under simplifying assumptions about the relationship
of disk luminosity to Ṁ (often but inaccurately taken as L ∝ Ṁ; for complications
see Lodato et al. (2009); Lodato and Rossi (2011)), the fallback timescale can be
inferred by sufficiently long lightcurve observations. Alternatively, in the future it
may be possible to measure tfall directly, by measuring the delay between the onset of
accretion and a prompt signal accompanying stellar disruption (either X-ray shock
breakout or GWs). In either case, the β independence of tfall will simplify parameter
extraction, in particular measurement ofMBH.

Adopting n = 0 will also alter the distribution of β in the TDEs detected by
individual wide-field surveys, Ṅdet(β). This is a quantity distinct from the distribution
of the intrinsic TDE rate, ṄTDE(β), which scales as ṄTDE ∝ β−1 for two-body
relaxation in the “pinhole” regime (Brassart and Luminet 2008). Alternatively, if
the dominant source of loss cone fueling is two-body relaxation in the “diffusion”
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Fig. 5.11 Mass fallback curves (normalized by the Eddington fallback rate) versus time since
disruption in days, for a variety of TDEs. SMBH masses of 106M�, 107M�, and 5 × 107M� are
plotted as thin, normal, and thick curves, respectively. Likewise, β values of 1, 2, and 10 are plotted
as black dot-dot-dashed, blue solid, and purple dotted curves assuming n = 2, the power law index
defined by�ε ∝ βn - see Eq. 5.3. If n = 0, the black dot-dot-dashed curves represent all β values.
Here we consider solar-type stars, and for simplicity set k = 1 and η = 0.1

regime, almost all TDEs will have β = 1; however, since most SMBHs are supplied
with stars coming from the boundary between these regimes we will consider the
pinhole regime for the remainder of this section (as it is the relaxational regime
with nontrivial β dependence). If the TDE rate is dominated by the effects of an
axisymmetric (Vasiliev and Merritt 2013) or triaxial (Merritt and Poon 2004) stellar
potential, the distribution of β will also follow the pinhole regime’s scaling.

If we first consider UV or soft X-ray surveys sensitive to the peak frequencies
of TDE disk emission, then the peak luminosity L ∝ Ṁpeak ∝ β3n/2, implying a
survey horizon rhor ∝ β3n/4 and a detection rate Ṅdet ∝ β(9n−4)/4. Optical detections
of TDE disks will not be sensitive to the event’s bolometric luminosity but rather
to emission on the Rayleigh-Jeans tail, for which L ∝ Ṁ1/4 and Ṅdet ∝ β (9n−16)/16

(Lodato and Rossi 2011). However, both of these scaling relations for Ṅdet assume a
purely flux-limited survey; in the old picture of TDE energy spread (n = 2), high-β
events would be favored by their high flux but disfavored by their shorter timescales
of peak emission. If the timescale of peak emission, tfall, is less than the survey
cadence, tcad, then the probability of detection will be approximately reduced by the
factor tfall/tcad. This gives Ṅdet ∝ β (3n−4)/4 and Ṅdet ∝ β (−15n−16)/16 for X-ray and
optical disk emission, respectively.

Although the details remain uncertain, several recent papers (Strubbe and Quataert
2009; Lodato and Rossi 2011) have predicted that super-Eddington, radiation-driven
outflows may dominate early emission from TDE accretion disks, particularly at long
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Table 5.1 Here we display the scaling exponents s for the β dependence of the TDE detection rate,
Ṅdet(β) ∝ βs . In the first column we describe the frequency and source of emission (SE indicates
a super-Eddington outflow); in the second we give s for the standard scenario n = 2 and a high-
cadence survey; in the third we again consider s in the standard scenario, but for a slow-cadence
survey; in the final column we give s for our revised �ε, with n = 0, at any cadence. In this table
νbb refers to the “blackbody” frequency of peak emission (the super-Eddington outflow is assumed
to have a thermal spectrum; the disk emission is better modeled as a multicolor blackbody)

Scenario n = 2 ( tfall
tcad
> 1) n = 2 ( tfall

tcad
< 1) n = 0

Disk, ν ≈ νbb 7/2 1/2 -1

Disk, ν < νbb 1/8 -23/8 -1

SE, ν ≈ νbb -2/5 -17/5 -7/10

SE, ν < νbb 81/16 33/16 -33/16

wavelengths. Using a simple blackbody model with peak frequency νbb (Lodato and
Rossi 2011), which predicts a peak luminosity L ∝ β97/24 at frequencies ν < νbb,
or L ∝ β2/5 for ν > νbb, we can repeat the above calculations. The β dependence
of all different scenarios are presented in Table 5.1. With n = 0, all observational
strategies are biased in favor of low β detections, including many strategies that once
favored high β TDEs.

5.9 Discussion

In this Chapter we have analyzed the tidal disruption and free fall of a star in the
context of “free solutions” to the Hill equations of the parabolic restricted three-body
problem. The important conclusions of this work are the following:

1. During the tidal disruption of a star, debris energy freezes in at R = Rt , not
R = Rp.

2. Consequently, the spread in debris energy is smaller than in past analytic predic-
tions. This will result in flares with longer fallback times, i.e. ones that decay more
slowly but have smaller initial fallback rates. Fewer TDEs will drive powerful
super-Eddington outflows than has been predicted in the past.

3. The spread in debris energy is generally dominated by the freeze-in energy, al-
though redistribution of the kinetic energy of vertical collapse to in-plane motions
may result in slight variation in �ε for low β( �5). Rapidly spinning stars may
see a stronger version of this effect at high β if their spins are misaligned with
the orbital angular momentum vector.

4. The leading order GR corrections to the frozen-in value of �ε are small, and
generally negligible unless Rp � 6Rg. For such TDEs (i.e. all TDEs for SMBH
masses above 107.5M�) we have derived for the first time the 1PN modifications
to �ε.
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5. The free solution model we have introduced is, in the limit of spherical and static
initial conditions, an approximate simplification of the affine model . However, the
ability to include a range of nonspherical or dynamic initial conditions gives it a
degree of flexibility not present in the affine model. Furthermore, the deformations
to an initially spherical body in tidal free fall are not ellipsoids, as is assumed by
the affine model.

6. Gravitational waves are generated from variation in the internal quadrupole mo-
ment of a tidally disrupting star, reaching peak amplitude at the moment of
maximum compression and bounce. GW emission is likely dominated by a single
term in the quadrupole moment tensor, Ïzz ∝ β2. For main sequence stars, these
are unlikely to be detectable by ground-based GW interferometers. GWs from the
tidal disruption of WDs by IMBHs are more promising targets, and for modest β
values (∼5) could be detectable to tens of megaparsecs.

7. Gravitational wave emission from nondiagonal terms in the star’s quadrupole
moment could alter the previous conclusion, since Ïxz, Ïyz ∝ β5. However, in
order for these terms to possess a nonzero prefactor, the reflection symmetry
of the TDE about the orbital plane must be broken by either SMBH or stellar
spin. Whether this can be done without desynchronizing the vertical collapse and
weakening the β dependence of Ïxz, Ïyz is unclear.

The existing hydrodynamical literature did not until very recently support the first
three of these conclusions. With a few exceptions, prior work has focused mainly on
the common β = 1 events, for which Eqs. 5.1 and 5.2 are identical. In Laguna et al.
(1993), the authors conducted SPH simulations in a static Schwarzschild background
geometry for β = {1, 5, 10}. They found that the fallback time scaled approximately
as tfall ∝ β−1.5 and the velocity of unbound ejecta υej ∝ β0.5, both of which imply the
intermediate value of n = 1, for the power-law index defined in Eq. 5.3 as�ε ∝ βn.
However, the limited resolution of their simulations (7000 SPH particles) makes
it unclear whether they would have possessed the midplane resolution to resolve
the phase of maximum compression; indeed, they find that ρc ∝ β1.5−2, a scaling
well below analytic predictions as well as the higher-resolution one-dimensional
simulations of BL08.

It is also possible that our approximations have underestimated the efficiency with
which the bounce phase can redistribute the energy of vertical collapse to motions
within the orbital plane, perhaps due to neglect of GR effects during phase III.
Alternatively, the simulations of Laguna et al. (1993) may be altered by entropy
production due to artificial viscosity, as suggested by the authors.

More recent hydrodynamical simulations of high-β disruptions did not publish
details on the spread of debris energy (Kobayashi et al. 2004; Guillochon et al. 2009),
although we note that Kobayashi et al. (2004), using a one-dimensional mesh code,
found results in qualitative agreement with BL08. On the other hand, Guillochon et
al. (2009) found a vastly lower degree (ρc ≈ 4ρ∗) of central compression for a β = 7
event than what is predicted analytically, by the affine model, or by one-dimensional
hydrodynamic simulations, with the difference attributed to a combination of insuf-
ficient midplane resolution, the internal density gradient of the star, and the physical,
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three-dimensional effects discussed in § 5.5. We have shown that some multidimen-
sional effects are unlikely to be large due to the proximity of the sonic point to the
region of maximum compression. Desynchronization due to density differences in
the star, which will result in the core seeing a different “effective β” than the rest of
the star, may be an exception to this.

During the completion of this paper, an independent numerical study (Guillochon
and Ramirez-Ruiz 2013) was posted which found an approximate constancy in �ε
for 1 � β � 4, in the course of a thorough investigation of low-β TDEs. This result
is broadly compatible with our paper, although further hydrodynamical simulations
will be required to explore high β values, and to test our prediction of desynchronized
collapse for rapidly rotating, misaligned stars (which could restore a β dependence
to�ε, for deeply plunging disruptions). Like Guillochon and Ramirez-Ruiz (2013),
we argue that the assumption of frozen-in debris energy is made much more valid by
assuming the energy freezes in when internal forces become negligible at R = Rt ,
not at later times.

We note that the free solutions are of course an approximation to the physical
reality of tidal disruption, and neglect a number of important physical effects. Some
areas in particular need of further clarification by hydrodynamical simulation are the
velocity and shape perturbations induced on the star by the nonlinear hydrodynamics
of tidal disruption at R ≈ Rt . Although BL08 found these effects to generally be
negligble for Phase II and III of a TDE, their simulations were one-dimensional and
it is conceivable that in three dimensions the picture may change. The free solutions
also fail to capture GR effects relevant for large β values, although we have argued
based on our own analysis and past literature that these effects do not qualitatively
change our conclusions. Furthermore, we have not considered the effects of SMBH
spin, which if misaligned with the orbital plane may be able to desynchronize stellar
collapse.

Despite these limitations, the free solutions are a simple yet powerful method
for considering the tidal free fall of disrupted bodies. Although we have focused on
the disruption of main sequence stars by supermassive black holes, we stress that
much of our analysis is general and applies equally well to other scenarios, such
as tidal disruption of white dwarfs by intermediate mass black holes, or of planets
or asteroids by more compact bodies. In all of these scenarios, the decoupling of
vertical from in-plane motion will strongly compress the disrupted object, often by
many orders of magnitude. In future work, we aim to apply the free solutions to these
alternative physical regimes, as well as to internal motions such as pre-disruption
rotation or post-disruption shock formation.



Chapter 6
General Relativistic Effects in Tidal
Disruption Flares

K. Hayasaki, N. Stone, & A. Loeb The Monthly Notices of the
Royal Astronomical Society, Vol. 434, pp. 909–924, 2013

6.1 Introduction

In this chapter, we review the literature on ways in which general relativity (GR)
can strongly modify aspects of stellar tidal disruption. It is natural to expect that GR
should play an important role in TDEs, as these events occur deep in the potential
wells of supermassive black holes (SMBHs): for a 106M� SMBH, the gravitational
radius Rg = GMBH/c

2 is roughly 1/47 the value of the tidal radius Rt . For a
MBH = 108M� SMBH, Rg ≈ Rt/2: the tidal radius has almost moved inside the
horizon! We focus on three particular manifestations of GR:

• Modifications to the “Hills mass,” the maximum mass SMBH capable of disrupt-
ing a given star. This mass is quite sensitive to SMBH spin, and can be increased
by up to an order of magnitude for favorable (prograde equatorial) orbits around
rapidly spinning SMBHs.

• Repeated tidal compressions and bounces during disruption. A TDE with both
high β and a relativistic pericenter will undergo more than one vertical collapse
and bounce, unlike in the Newtonian regime.

• Circularization of the debris from stellar tidal disruption. General relativistic
effects likely play a crucial role in this process.

GR has other important effects on TDEs as well. In Chap. 5, we discussed more
speculative manifestations of GR (desynchronization of the vertical collapse for
misaligned SMBH spin; high frequency GWs from the bounce). Because of the
important role of asymmetries in these scenarios, further study will likely require
numerical simulations. In Chap. 8, we will discuss a more direct way in which TDEs
can be used to measure SMBH spin. But first, we will examine the existing literature.

© Springer International Publishing Switzerland 2015 115
N. C. Stone, The Tidal Disruption of Stars by Supermassive Black Holes,
Springer Theses, DOI 10.1007/978-3-319-12676-0_6



116 6 General Relativistic Effects in Tidal Disruption Flares

6.2 SMBH Spin and the Hills Mass

As was described in § 1, the Hills mass (Eq. 1.4) exists because the tidal radius
Rt ∝ M

1/3
BH while the horizon scale RS ∝ MBH. For MBH > MHills, stars are not

disrupted until they have fallen inside the horizon; from an outside observer’s per-
spective, they are swallowed whole. Eq. 1.4 defined MHills in the simplest possible,
Newtonian way: by equating Rt = RS and solving for MBH. However, this neglects
two important relativistic effects:

1. In GR, orbits near black hole horizons cannot penetrate arbitrarily close to the
event horizon. For non-spinning black holes, an innermost stable circular orbit
(ISCO) exists at 6Rg, while an unstable circular orbit exists at 4Rg. This unstable
circular orbit (which we will refer to as the IBCO, or innermost bound circular
orbit) is also the minimum pericenter to which a parabolic orbit can plunge while
still escaping to infinity. Parabolic orbits cannot have pericenters interior to the
IBCO without plunging directly into the horizon. Both the IBCO and the ISCO
are modified by SMBH spin.

2. Our calculation ofRt in Eq. (1.1) was likewise approximate; a more accurate cal-
culation must compare the self-gravitational acceleration felt at the surface of the
star to eigenvalues of the general relativistic tidal tensor1. For highly relativistic
orbits, with Rp ≈ RIBCO, these eigenvalues depend strongly on SMBH spin.

Interestingly, for non-spinning black holes, the errors introduced into Eq. (1.4) by
neglect of these points will largely self-cancel. However, rapidly spinning SMBHs
will have a much larger (somewhat smaller) Hills mass for prograde (retrograde)
orbits, as we discuss below. First, however, we must introduce the basics of geodesic
motion in Kerr spacetime.

6.2.1 The Kerr Metric

The Kerr metric describes the geometry of spacetime around spinning black holes.
The metric can be written with several different choices of coordinates, but in this
subsection, we follow the presentation of Bardeen et al. (1972). Specifically, line
elements in the Kerr metric are given in Boyer-Lindquist (approximately, spherical
polar) coordinates {t , r , θ ,φ} as

ds2 = − (1 − 2Mr/�)dt2 − (4Ma sin2 θ/�)dtdφ (6.1)

+ (�/�)dr2 +�dθ2 + (r2 + a2 + 2Ma2r sin2 θ/�) sin2 θdφ2.

1 Of course, the most accurate calculation would require a general relativistic hydrodynamical
simulation. In this section, as in the rest of this thesis, we focus mainly on an analytic treatment of
stellar tidal disruption.
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In this equation, as in the rest of this subsection, we will use relativistic units where
G = c = 1. For brevity (and unlike in other sections of this thesis), we denote black
hole mass and spin asM and a, respectively. This definition of the Kerr metric uses
the support functions

� =r2 − 2Mr + a2 (6.2)

� =r2 + a2 cos2 θ. (6.3)

If we set a = 0, we recover the limit of the Schwarzschild metric. Ballistic motion of
test particles (such as stars) around SMBHs admits four conserved quantities: energy
E, z-component of angular momentum L, Carter constantQ, and (trivially) particle
mass μ. Orbits are determined by the four geodesic equations, which can be written
as first order ODEs using the affine parameter λ = τ/μ:

�
dr

dλ
= ± √

Vr (6.4)

�
dθ

dλ
= ± √

Vθ (6.5)

�
dφ

dλ
= − (aE − L/ sin2 θ ) + aT /� (6.6)

�
dt

dλ
= − a(aE sin2 θ − L) + (r2 + a2)T/�. (6.7)

Here we have defined effective potentials

T =E(r2 + a2) − La (6.8)

Vr =T 2 −�(μ2r2 + (L− aE)2 +Q) (6.9)

Vθ =Q− cos2 θ (a2(μ2 − E2) + L2/ sin2 θ ). (6.10)

Although analytic solutions for these geodesics have recently been found (Fujita
and Hikida 2009), they are in general complicated functions of incomplete elliptic
integrals, and yield limited insight. It is often more straightforward to solve the
geodesic equations numerically. Direct integration of Eqs. (6.4–6.7) requires a careful
treatment of turning points in r and θ ; however, these turning points can be removed
using the coordinate transformations of Drasco and Hughes (2004).

Several radii of interest exist. The event horizon for Kerr black holes is located at

rh = M +
√
M2 − a2, (6.11)

while in the equatorial plane the ISCO is given by

rISCO =M (
3 + Z2 ∓ ((3 − Z1)(3 + Z1 + 2Z2))1/2

)
, (6.12)

Z1 =1 + (1 − a2/M2)1/3
(
(1 + a/M)1/3 + (1 − a/M)1/3

)
, (6.13)

Z2 =(3a2/M2 + Z2
1)1/2. (6.14)
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Fig. 6.1 A pair of geodesics describing test particle motion around a Kerr black hole with a = 0.68
(both geodesics haveQ = 0 and are confined to the equatorial plane). The solid black curve shows
the first two radial orbits of an E = 0.98, L = 4.5 trajectory; the dashed red curve shows the
first two radial orbits of an E = 0.98, L = 3.5 trajectory. Notably, the lower angular momentum
geodesic undergoes much greater per-orbit pericenter precession

Likewise, the IBCO radius that defines the minimum pericenter of a parabolic orbit
is

rIBCO = 2M ∓ a + 2M1/2(M ∓ a)1/2. (6.15)

Later in this section, we will need to calculate the angular momentum of IBCO
orbits; in general, any circular, equatorial orbit has a vertical angular momentum
component given by

L = ±M1/2(r2 ∓ 2aM1/2r1/2 + a2)

r3/4(r3/2 − 3Mr1/2 ± 2aM1/2)1/2
. (6.16)

In the above formulas, the upper sign always refers to prograde equatorial orbits,
while the lower sign refers to retrograde ones. In Fig. 6.1 we plot sample geodesics
for a pair of orbits in the equatorial plane of a Kerr black hole with a = 0.68. The
orbits have the same energy but different angular momentum; the one with lower
angular momentum has a smaller pericenter and a correspondingly faster rate of
pericenter precession.
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6.2.2 Relativistic Tidal Tensors

Previously , we wrote the Newtonian tidal tensorCij (defined as r̈i = −Cij rj ) in Eq.
(1.20) asCN

ij = (GMBH/R
3)(δij−3RiRj/R2). Likewise, the general relativistic tidal

tensor in Schwarzschild spacetime (G = c = 1) is given by (Brassart & Luminet,
2010)

CS
11 = GMBH

R3

(
1 − 3

R2 + L2

R2
cos2 F

)
(6.17)

CS
22 = GMBH

R3

(
1 − 3

R2 + L2

R2
sin2 F

)
(6.18)

CS
33 = GMBH

R3

(
1 + 3

L2

R2

)
(6.19)

CS
12 = GMBH

R3

(
−3
R2 + L2

R2
cosF sinF

)
(6.20)

The Schwarzschild case differs from the Newtonian one in two notable ways: tidal
accelerations are increased by the addition of terms ∼L2/R5, and we have used a
slightly different orbital anomaly, replacing the Newtonian f with a variable F that
equals 0 at pericenter and evolves as Ḟ = EL/(R2 +L2). Here E and L are the GR
specific orbital energy and angular momentum, respectively. The Kerr metric tidal
tensor, relevant for spinning SMBHs, is provided in Marck (1983a); Marck (1983b);
Kesden (2012b). The full Kerr tidal tensor is beyond the scope of this thesis, but in
order to calculate the relativistic Hills mass we will need to use its eigenvalues for
orbits restricted to the equatorial plane. In this limit, the Kerr tidal tensor becomes

CS
11 = GMBH

R3

(
1 − 3

R2 +K
R2

cos2�

)
(6.21)

CS
22 = GMBH

R3

(
1 − 3

R2 +K
R2

sin2�

)
(6.22)

CS
33 = GMBH

R3

(
1 + 3

K

R2

)
(6.23)

CS
12 = GMBH

R3

(
−3
R2 +K
R2

cos� sin�

)
, (6.24)

whereK = Q+(L−aE)2 and the phase angle� is a generalization ofF (but for our
purposes, it suffices to know that � = 0 at pericenter). All point-mass tidal tensors
(Newtonian, Schwarzschild, or Kerr) have two positive eigenvalues corresponding
to squeezing, and one negative eigenvalue that represents stretching. The Kerr tensor
has eigenvalues
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β− = − 2

(
1 + 3K

2R2

)
M

R3
(6.25)

β+,1 =
(

1 + 3K

R2

)
M

R3
(6.26)

β+,2 =M
R3
. (6.27)

6.2.3 The Relativistic Hills Mass

Following Kesden (2012b), we define the following criterion for stellar tidal
disruption:

rIBCO < R∗
( |β−|
MBH/r

3
IBCO

)1/3 (
MBH

M∗

)1/3

. (6.28)

When this inequality is satisfied, stars can be disrupted on non-plunging orbits. If
we equate the two sides of this inequality, we have an implicit equation for MBH;
solving it numerically (using the equatorial prograde IBCO radius) gives the Hills
mass for a given star. The eigenvalue β− depends on orbital angular momentum,
which can be calculated for any circular, prograde Kerr orbit using Eq. (6.16). We
show Hills masses for a variety of main sequence stars in Fig. 6.2, using the lower
main sequence mass-radius relationR∗ ≈ R�(M∗/M�)0.8 (Magorrian and Tremaine
1999). Inclusion of relativistic effects increases the Hills mass by almost an order of
magnitude when one compares Schwarzschild SMBHs to extremal Kerr SMBHs.

The mass-radius relation for white dwarfs of mass MWD is approximately
(Zalamea et al. 2010)

RWD = 0.013R�
(
MCh

MWD

)1/3 (
1 − MWD

MCh

)0.447

, (6.29)

where MCh = 1.43M� is the Chandrasekhar mass. We plot Hills masses for white
dwarf tidal disruptions in Fig. 6.3. Schwarzschild SMBHs (defined as MBH >

106M�) are unable to tidally disrupt white dwarfs; however, when considering
extremal Kerr black holes, the Hills mass moves up to a few × 106M�.

6.3 Multiple Compressions

In Chap. 5, we explored the vertical compression of a star during its passage through
the tidal sphere. A Newtonian treatment of the tidal tensor yielded a vertical ac-
celeration z̈ ∝ −z, which translates physically into a homologous vertical collapse
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Fig. 6.2 The general relativistic Hills mass for main sequence stars tidally disrupted by black holes
with dimensionless spins a. The solid purple line is for stars with M∗ = M�; the dashed blue line
is for M∗ = 0.3M�; the dotted light blue line is for M∗ = 0.1M�. Note that this is the maximum
Hills mass, i.e. the Hills mass for stars on prograde equatorial orbits. Stars on tilted orbits will see
a significantly lower Hills mass (which in fact will decrease below the a = 0 value if the orbit is
retrograde)

Fig. 6.3 The same as Fig. 6.2, but now for tidal disruptions of white dwarf stars. The solid purple
line is for M∗ = 0.2M�; the dashed blue line is for M∗ = 0.6M�; the dotted light blue line is for
M∗ = M�
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occurring shortly after pericenter passage. However, in the previous section, we have
seen that the relativistic tidal tensor has a very different functional form. The stronger
tidal accelerations present in GR give z̈ ∝ −z(1 + 3K/R2) (for equatorial orbits),
using the relativistic definitions of K and R. For a combination of high β and rel-
ativistic Rp, this can lead to qualitatively new behavior in TDEs: the point of peak
compression can occur before pericenter passage, leading to a hydrodynamic bounce
that is followed by a second stage of collapse and compression, all within the tidal
sphere. Extreme events can even suffer three or more cycles of tidal compression
and bounce.

Few three dimensional numerical simulations of tidal disruption exist that in-
corporate general relativistic effects (even using an approximate post-Newtonian or
pseudo-Newtonian potential); of those in the literature, none have resolved multiple
compression and bounce cycles2. To date, the only works published on the phenom-
ena of relativistic multiple compressions are either in the framework of the affine
model (Luminet and Marck 1985), or one dimensional hydrodynamics simulations.
The more recent simulations of Brassart and Luminet (2010) indicate that subse-
quent compression/bounce phases are not as extreme as the first, which produces
the highest central pressures and temperatures. Whether multiple compressions have
an observable signature is unclear: repeated X-ray shock breakout signals are one
possibility, as are repeated high-frequency GW bursts (§ 5.7), but both of these
possibilities are speculative at this point.

6.4 Circularization of Debris

The mechanism by which loosely bound debris streams from a tidal disruption event
are able to dissipate their orbital energy and circularize into a luminous accretion
disk remains mysterious, and is one of the most important unsolved problems in
TDE physics. Our lack of knowledge of this process complicates our ability to
translate theoretical predictions for mass fallback rates Ṁ(t) into light curves: the
usual assumption that bolometric luminosityL ∝ Ṁ assumes that returning material

2 Most three dimensional hydrodynamical simulations of TDEs that incorporate relativity are not
in the correct regime of parameter space to produce multiple compressions; others are resolution
limited. The highest resolution numerical simulation that plausibly should have seen multiple com-
pression cycles is Rosswog et al. (2009). However, this simulation focused on tidal disruption of
white dwarfs, which were seen to experience significant thermonuclear energy injection during the
first bounce phase; the lack of subsequent bounces may therefore have been physical.
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circularizes rapidly into an accretion disk3. Interestingly, the circularization of tidal
debris may be mediated by general relativistic effects.

The first suggestion that GR could play a role in TDE circularization was made
by Rees (1988), who argued that relativistic apsidal precession (precession of the
longitude of pericenter, within the orbital plane) would cause debris streams to self-
intersect at large angles, creating strong shocks that could efficiently dissipate orbital
energy into heat. Shortly afterwards, Cannizzo et al. (1990) pointed out that this
circularization process could be delayed for stars disrupted on non-equatorial orbits
around spinning SMBHs. In this regime, nodal precession (precession of the orbital
plane due primarily to the Lense-Thirring effect) would cause sufficiently narrow
debris streams to miss each other at the self-intersection points predicted for the
coplanar case. In general, nodal precession is much weaker than apsidal precession:
the lowest-order orbit averaged values of both are given by (Merritt et al. 2009)

δω =AS − 2AJ cos ι− 1

2
AQ(1 − e cos2 ι) (6.30)

δ� =AJ − AQ cos ι (6.31)

AS =6π

c2

GMBH

a(1 − e2)
(6.32)

AJ =4πaBH

c3

(
GMBH

a(1 − e2)

)3/2

(6.33)

AQ =3πa2
BH

c4

(
GMBH

a(1 − e2)

)2

. (6.34)

where δω is the total per-orbit shift in the longitude of pericenter, and δ� is the total
per-orbit shift in the line of ascending nodes. Here aBH is the dimensionless SMBH
spin, while a and e are orbital semimajor axis and eccentricity, respectively. AS, AJ,
and AQ represent lowest-order precession contributions from the greater strength
of GR relative to Newtonian gravity, frame-dragging, and the SMBH quadrupole
moment. Whether or not the streams are able to self-intersect depends both on the
total amount of nodal precession and on the width of the streams, which is set
internally by hydrodynamic equilibrium; properties of thin debris streams have been
modeled in a semi-analytic way by Kochanek (1994).

The process of debris circularization has never been self-consistently produced
in hydrodynamical simulations of realistic TDEs, so it remains unclear whether the
required dissipation comes from shocks at stream self-intersections, or from some
other process. Debris streams in a typical TDE have pericenters Rp ∼ 10Rg and

3 It also assumes that radiative efficiency is roughly independent of the Eddington ratio L/LEdd.
Several different analytic models for the luminosity of super-Eddington accretion flows exist, and
make different predictions on this point. Interestingly, the most recent radiation hydrodynamic
simulations seem to suggest roughly constant radiative efficiencies across the Eddington limit, with
most super-Eddington emission being released in outflowing material (Sadowski et al. 2014).
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apocenters Ra ∼ 104Rg, creating a huge and, so far, intractable, dynamic range
for any simulation to follow. Computer simulations of TDE circularization have,
therefore, had to cheat in various ways. One approach is to scale down the black hole
mass: circularization has been successfully simulated in encounters between stars and
IMBHs with MBH = 103M� (Ramirez-Ruiz and Rosswog 2009; Guillochon et al.
2014). Interestingly, these simulations are Newtonian, and circularization appears
to be driven by dissipation of energy during tidal compression of debris streams
returning to pericenter. This purely hydrodynamic mechanism does not appear to
scale up well to larger black hole masses, however (Guillochon et al. 2014).

An alternate approach, adopted in this thesis research (Hayasaki et al. 2013), has
been to simulate star-SMBH encounters, but with an eccentric rather than parabolic
center of mass trajectory. Because this book’s focus is on analytic rather than nu-
merical work, we will not go into the full details of Hayasaki et al. (2013) here,
but instead outline the important results. Specifically, we have performed Smoothed
Particle Hydrodynamics (SPH) simulations of stellar tidal disruption; the Lagrangian
and mass-discretized nature of SPH is useful in following narrow streams of gas over
a large dynamic range. These simulations account for the self-gravity of the stellar
gas, and use a fixed background potential for the gravitational field of the SMBH.
To simulate the effects of relativistic precession, we have modified an SPH code
(Okazaki et al. 2002) to employ the pseudo-Newtonian potential of Wegg (2012):

�(r) = −αGMBH

r
− (1 − α)GMBH

r − Rx
− GMBHRy

r2
. (6.35)

This potential is a generalization of the well-known Paczynski-Wiita potential
(Paczyńsky andWiita 1980) that much more accurately captures apsidal precession of
highly eccentric orbits. The free parameters are calibrated to be α = −4(2 +√

6)/3,
Rx = (4

√
6 − 9)Rg, and Ry = −4(2

√
6 − 3)Rg/3.

In our simulations, we first initialize a polytropic gas sphere using the Lane-
Emden equation, and allow it to relax in vacuum; as can be seen in Fig. 6.4, this does
not change the star’s configuration greatly. After the star reaches its equilibrium, it
is placed into the gravitational field of the SMBH, with an initial velocity (uniform
across the star) corresponding to center of mass trajectories with the desired β and
e. In our simulations, we have considered β = {1, 5} and e = {1.0, 0.98, 0.8}. The
most extreme of these simulations (e = 0.8, β = 5) quickly produce a circular-
ized accretion disk through shocks at relativistic stream self-intersection points; our
simulations did not run long enough to capture the circularization process for other
parameter choices.

As was hypothesized by Rees (1988), we see debris streams crash into each other
at supersonic velocities due to the influence of apsidal precession: a sequence of
snapshots is shown in Fig. 6.5. The shocks that form begin a process of runaway
circularization: the orbital energy dissipated into heat reduces the orbital period of the
gas, decreasing the time to the next self-intersection. The circularization we observe
is entirely due to relativistic precession: Fig. 6.6 shows snapshots from our control
simulation done in Newtonian gravity, where almost no dissipation occurs during the
run time of the simulation. Of course, these results do not account for the influence of
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Fig. 6.4 The initial density profile (normalized to central density ρc) of the stars we simulate in
Hayasaki et al. (2013). Here we plot ρ against a dimensionless radius χ . The numerical solution to
the Lane-Emden equation is shown as a black line; the blue circles are the equilibrium configuration
reached by our SPH simulation after a few dynamical times

SMBH spin, and even more importantly we have assumed a (perhaps unphysically)
low value of orbital eccentricity. On the other hand, at fixed pericenter Rp, the total
per-orbit apsidal precession (Eq. 6.30) is a very weak function of orbital eccentricity,
so it is not unreasonable to assume that parabolic TDEs should see self-intersecting
debris streams similar to those produced in our simulations. The ultimate resolution
of this question remains a topic for future research.
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Fig. 6.5 Snapshots of the circularization process, for a TDE with e = 0.8 and β = 5. A MBH =
106M� black hole is the small white dot at the center of each snapshot; the tidal radius is the
dashed white circle, and the precessing point particle trajectory of the star’s center of mass is the
dotted white rosette. Projected gas density is indicated logarithmically with colors (blue being
dilute, yellow being dense). Following the progression of snapshots (time t is shown in the top
right, measured in units of

√
Rt/GMBH), we see that circularization runs away quickly after the

first stream self-intersection at t = 2.5
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Fig. 6.6 The same as Fig. 6.5, but now for a simulation with purely Newtonian gravity. Almost no
energy dissipation occurs over the course of the simulation, with debris streams “frozen in” to their
initial trajectories. These results highlight the importance of GR-mediated precession for producing
shocks in TDE debris



Chapter 7
Observing Lense-Thirring Precession in Tidal
Disruption Flares

N. Stone & A. Loeb Physical Review Letters, Vol. 108,
id. 061302, 2012

7.1 Introduction

Recent observations have established that a subset of TDEs launch collimated, rela-
tivistic jets. Two such relativistic TDEs have been detected with the Swift satellite:
Swift J164449.3+573451 (Bloom et al. 2011; Burrows et al. 2011; Levan et al. 2011;
Zauderer et al. 2011, hereafter Swift J1644+57), and Swift J2058.4+0516 (Cenko
et al. 2012b). Both events are generally interpreted as the tidal disruption of a main
sequence star by a SMBH, with a relativistic jet pointed down our line of sight;
however, alternate explanations do exist (Krolik and Piran 2011; Quataert and Kasen
2012). These discoveries were not widely anticipated by theoretical work on TDEs,
with the notable exception of Giannios and Metzger (2011). Subsequent searches
for radio afterglows from off-axis jets have generally returned negative results (van
Velzen et al. 2011a), with one to two detections of afterglows around X-ray selected
TDEs that may reflect contamination from AGN (Bower et al. 2013).

In this paper we consider the following question: when an accretion disk mis-
aligned with its black hole’s equatorial plane launches a jet, in which direction will
the jet point? Although much analytic literature exists on tilted accretion disks, almost
none of it concerns the production of jets. Numerical simulations of jet production
in tilted accretion systems are almost as rare; it was only after the publication of
this paper that the first such simulation appeared in the literature. As of now, it is
unclear whether jets launched from tilted accretion disks will align with the black
hole spin vector, with the disk angular momentum vector, or in some other direction
associated with the magnetic field geometry (Fragile 2008).

These concerns are generally academic, as most observed accretion disks are in
fact aligned with the equatorial plane of their black hole. However, stars destroyed in
TDEs are scattered in from ∼pc scales via processes that have no knowledge of the
SMBH spin direction. The transient accretion disk that results from circularization
will in general possess a significant tilt. The subset of TDEs which do power rela-
tivistic jets therefore offer a unique laboratory to test open questions about accretion
and jet launching physics in tilted accretion flows. In the following sections, we
show that any jet that aligns with the disk angular momentum vector will precess
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Fig. 7.1 Cartoon picture of misaligned stellar tidal disruption. The star, initially on a parabolic
orbit, is disrupted near pericenter. The star’s initial orbit is misaligned by an angle ι∗ from the
star; we assume that the circularized disk forms with the same tilt angle, ι = ι∗. The disk angular
momentum vector 	Ldisk is misaligned from the SMBH spin vector 	JBH by the angle ι; this can cause
an associated jet to change its offset angle ψ from a fixed line-of-sight direction

significantly. We then apply our jet precession model to Swift J1644+57 to argue
that the jet launched in this event likely aligned with the (steady) SMBH spin vector.
Even in TDEs that lack associated jets, relativistic precession of the accretion disk
may produce observable consequences sensitive to the value of SMBH spin.

7.2 Spin Evolution of a Tilted Disk

The orbits of particles inclined out of the equatorial plane of a spinning SMBH can
be strongly affected by torques due to black hole spin; Lense-Thirring torques gen-
erally dominate (and diminish ∝ r−3), but torques from the quadrupole (∝ r−4) and
higher multipole moments contribute at a subdominant level. We present a cartoon in
Fig. 7.1; here the disk is tilted by an angle ι that is assumed to equal the tilt of the
pre-disruption stellar orbit, ι∗.

The response of an inclined disk to external torques depends critically on the
interplay between viscosity (parametrized with the Shakura-Sunyaev coefficient α)
and disk scale height H/R. For thin disks (H/R � α), small perturbations due to
differential precession propagate in a diffusive way (Kumar and Pringle 1985), and
the Bardeen-Petterson effect will align the inner region of the disk with the black
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hole equatorial plane. This creates a larger-scale warp in the disk structure (Bardeen
and Petterson 1975; Papaloizou and Pringle 1983). However, the response of a
thick disk (H/R � α) is qualitatively different: small perturbations from differential
precession propagate as bending waves through the disk, causing (to first order) rigid
body precession of the accretion disk (Fragile et al. 2007; Dexter and Fragile 2011).
The precession period of a solid-body rotator is

Tprec = 2π sin ι
J

τ
, (7.1)

where we have defined J as the total angular momentum of the disk, and τ is the
total integrated torque acting on it. The transient accretion flows produced in TDEs
are, initially, expected to be significantly super-Eddington and geometrically thick
(Ulmer 1999; Strubbe and Quataert 2009). Combining this with the fact that tidally
disrupted stars should arrive from arbitrary inclinations, we therefore expect most
TDE disks to initially precess like solid-body rotators.

If we parametrize the disk surface density as a power law�(R) = �i × (R/Ri)−ζ ,
then we can analytically calculate the precession timescale (Fragile et al. 2007) to
be

Tprec = 8πGMBH(1 + 2ζ )

c3(5 − 2ζ )

r
5/2−ζ
o r

1/2+ζ
i (1 − (ri/ro)5/2−ζ )

aBH(1 − (ri/ro)1/2+ζ )
. (7.2)

We have defined here the disk inner (Ri) and outer (Ro) edges, with normalizations
in units of the Schwarzschild radius RS: ri = Ri/RS, and ro = Ro/RS. We have also
used the dimensionless black hole spin parameter, 0 < aBH < 1. In this paper, we
approximate the disk inner and outer edges as constant; if this assumption were to
hold, disk precession would be nearly periodic, but in reality viscous spreading of
the disk outer-edge will grow the precession period with time. Follow-up work to
this paper provided a detailed discussion of quasi-periodicity in viscously spreading,
precessing TDE disks (Shen and Matzner 2014).

A power law parametrization is of course an approximation to the more compli-
cated reality of TDE disk accretion. Using analytic (Strubbe and Quataert 2009) and
numerical (Montesinos Armijo and de Freitas Pacheco 2011) TDE disk solutions as
motivation, we will use ζ = {−3/2, 0, 1} in this paper. Going from ζ = −3/2 to
ζ = 1 decreases Tprec by a factor ≈ 7. Throughout this paper we assume that

1. Circularization processes are able to quickly establish a small-scale accretion disk.
2. The accretion disk precesses as a solid body rotator (equivalently, H/R � α).

Assumption 1 holds after a timescale tcirc = ncirctfall; as discussed previously, the
exact value of ncirc is quite uncertain and may depend on β and aBH. Assumption
2 typically breaks down once the mass fallback rate Ṁ becomes sub-Eddington; at
this point a Bardeen-Petterson warp will develop in the geometrically thin disk, and
solid body precession will cease.

To determine a more precise timescale for the disk to become geometrically thin,
we adopt Eq. (1.32), the expression for H/R given in Strubbe & Quataert (2009).
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Fig. 7.2 Relevant timescales that bracket the duration of solid-body precession. The blue lines in
the top panel show the time required for the disk outer edge to become geometrically thin and
susceptible to Bardeen-Petterson warps; the green lines in the bottom panel show approximate
circularization timescales (both panels are functions of black hole mass MBH). In each panel, the
dotted, solid, and dashed lines are for stars of mass 2M�, 1M�, and 0.5M�, respectively. The
stellar mass-radius relationship is taken from Kippenhahn & Weigert (1994), p. 208. The top panel
assumes ncirc = 3, while the bottom takes a disk outer edge of Ro = Rt

The disk height H/R < α after a time

tthin = tfall

(
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f
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yr.

We have defined X = α/(1 − 8α2/3f ), and normalized X−1 = X/0.1. Fig. 7.2
illustrates the range of times tcirc < t < tthin during which solid body precession is
feasible. Generally speaking, such precession can persist for times �1 yr.

7.3 Differential Stream Precession

A second effect that can modulate the angular momentum vector of the accretion disk
is the time-varying orientation of returning debris streams. The streams themselves
experience differential Lense-Thirring torques, implying that the supply of gas into
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the accretion disk is not itself coming from a fixed orbital plane. This differential
stream precession (DSP) can potentially alter the direction of 	Ldisk; in this section we
compute both leading order estimates and exact geodesic values for the magnitude
of DSP.

The leading order, single-orbit angular shift in the angular momentum vector
of a returning debris stream with orbital period T is given by φorb ≈ �� sin ι =
2π sin ι(T/TLT). Here �� is the per-orbit nodal precession, and the related Lense-
Thirring precession period (Merritt et al. 2010)

tLT = T

2aBH

(
c2a(1 − e2)

GMBH

)3/2

. (7.4)

We have considered a debris stream with semimajor axis a and eccentricity e. Of
course, what matters more is the differential precession between the currently re-
turning stream at time t , and more loosely bound streams returning at a later time
∞. This differential precession is �φorb = φorb(T ) − φorb(∞), or, to leading order,

�φorb = 4πaBHsin(ι)(2rp)3/2
(
(1 + e)−3/2 − 2−3/2

)
. (7.5)

Making the further (accurate) approximation that rp/a � 1, �φorb ≈ 1.7 sin(ι)
ar

−5/2
p × r∗M−1

6 (t/tfall)−2/3.

Qualitatively, the DSP is largest for rapidly spinning SMBHs that tidally disrupt
stars near the ISCO. Eq. (7.5) is an upper limit on the modulation of 	Ldisk by the DSP:
even though the mass in a TDE disk is, at early times, dominated by material that has
just returned (as the disk viscous timescale tvisc � tfall, initially), the instantaneous
angular momentum in the disk is approximately the integrated history of angular
momentum return. Even this upper limit is quite modest; �φorb < 1◦ for realistic
circularization timescales (t > 3tfall) and tidal disruptions of solar-type stars by
SMBHs.

We check our leading order calculation by using the formalism of Drasco &
Hughes (2004) to numerically integrate the Kerr geodesic equations. Specifically,
we take a spread of debris streams with Newtonian specific energy, pericenter, and
inclination given by ε, rp, and ι, and transform these to geodesic constants of mo-
tion: specific energy E, vertical component of angular momentum Lz, and Carter
constant Q. Good agreement with our leading order approximation in Eq. (7.5)
is demonstrated in Fig. 7.3. In general, the DSP is highly subdominant to direct
precession of the accretion disk, which we focus on in the remainder of this pa-
per. The estimates presented in Fig. 7.3 are also overestimates of the true value of
�φorb, in that they assume the larger Newtonian spread in debris specific energy
�ε = 3GMBHR∗/R2

p that was current at the time this paper was written; as was seen
in §5, this is a significant overestimate of the true energy spread when Rp < Rt , and
therefore overestimates the effect of DSP as well.
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Fig. 7.3 Differential stream precession, as approximated by the angular shift �φorb. Thick curves
show tidal disruption of a solar-type star with M6 = 1, aBH = 0.8, Rp = 26Rg. Thin curves show
an alternate case with Rp = 6Rg; however, the thin curves seriously overestimate the magnitude of
DSP due to their use of the older, inaccurate expression for the Newtonian specific energy spread
�ε. Green solid lines are calculated numerically from the Kerr geodesic equations; blue dotted
lines use our leading order expression in Eq. (7.5) and show excellent agreement

7.4 Observational Implications

Lense-Thirring torques will cause direct, quasi-periodic precession of the transient
accretion disks formed in misaligned TDEs. Nodal precession of the debris streams
will affect the disk angular momentum vector more subtly through the DSP; however,
we neglect this subdominant effect for the remainder of the paper. A precessing
accretion disk will present different portions of itself to an observer at fixed viewing
angle, and its observed luminosity will be modulated by a factor ∼ cosψ . This quasi-
periodic modulation of thermal disk emission will leave an observable imprint on
the power spectrum of TDE light curves. In a subset of TDEs, a much more dramatic
signal will exist: if the disk precesses into an edge-on configuration, cutting off the
observer’s line of sight to the hottest parts of the inner disk, the SED will redden and
the observed disk luminosity will temporarily drop by up to ∼2 orders of magnitude
(Ulmer 1999). Well-sampled TDE light curves may reveal this type of “blinking” in
a subset of flares, allowing constraints to be placed on aBH.

Even more exciting observational consequences of disk precession will exist for
the subset of TDEs that launch relativistic jets. If jets powered by tilted accretion
disks align with 	Ldisk, then the jets will precess along with the disk, and a jet pointed
down an observer’s line of sight with opening angle θjet will precess away on a
characteristic time

tjet = Tprecθjet

2π sin ι
. (7.6)

The jet could precess away from the line of sight faster or slower if it is not perfectly
aligned with the observer’s viewing angle; the maximum amount of time it can
remain visible is 2tjet. Under the assumption that the jet aligns itself with 	Ldisk, even
brief observations of continuous beamed emission from a TDE can place very strong
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Fig. 7.4 The joint parameter space of black hole spin aBH and disk inclination angle ι. Solid contours
show the maximum number of days 2tobs that the Swift J1644+57 jet, with parameters inferred from
Zauderer et al. (2011), could stay on-axis with respect to an observer. In our calculation of Tprec we
assume ζ = 0, Ro = 2Rp and Ri = 6Rg. All regions of parameter space to the right of the thick red
curves are excluded by the �2 weeks a relativistic jet was observed for. Equivalent 14 day contours
are shown as black dotted and dashed lines for ζ = −3/2 and ζ = 1, respectively

constraints on the joint parameter space of aBH and ι∗ (we also assume that ι = ι∗).
Likewise, observation of a small sample of TDE jets would resolve the question of
jet alignment in (this subset of) tilted accretion systems: while a single nondetection
of jet precession could be attributed to a slowly spinning SMBH or an event with
ι ≈ 0, nondetection of jet precession in a large TDE sample would indicate that these
jets align with 	JBH.

These considerations can be made more concrete by considering the relativistic
tidal disruption event Swift J1644+57, which was found by Zauderer et al. (2011)
to possess MBH ∼ 105−6M� and θjet ∼ 10−1.5 (the jet opening angle was roughly
estimated from both rate and Eddington limit considerations). We show constraints
on the joint parameter space of {aBH, ι} in Fig. 7.4, assuming M6 = 1. Observed
relativistic emission from Swift J1644+57 lasted for at least two weeks, which rules
out those (significant!) portions of parameter space marked with red curves. For
Swift J1644+57, we are therefore presented with a trichotomy: at least one of the
three following statements must be true.
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1. The SMBH that produced this TDE was spinning extremely slowly, with aBH �
10−2 (or 10−1 if ζ = −3/2).

2. The orbit of the tidally disrupted star was closely aligned with the SMBH
equatorial plane (ι∗ � θjet).

3. In this event, the relativistic event did not align with the disk angular momentum
vector, but instead with a direction fixed in space (e.g. the SMBH spin axis).

Possibility (1) requires a low but not impossible value of SMBH spin (Berti & Volon-
teri, 2008); however, it may be inconsistent on theoretical grounds with the launching
of a jet powered by the Blandford-Znajek mechanism (Lei and Zhang 2011). Possibil-
ity (2) is statistically improbable and also implies that the Swift satellite should have
seen many more (precessing) relativistic TDEs of shorter duration. Because both
of these options seem unlikely, our tentative conclusion is that the persistent X-ray
emission observed from Swift J1644+57 points to a jet aligned with the constant spin
axis of the SMBH, and not with the angular momentum vector of a precessing disk.
Future nondetections of precession in relativistic TDEs would greatly strengthen this
conclusion; conversely, detection of precessing TDE jets would indicate alignment
with 	Ldisk and suggest that one of the unlikely alternate possibilities (small aBH, or
ι � θjet) explains the lack of precession in Swift J1644+57. Regardless, relativistic
tidal disruption flares have great potential to probe open questions in jet launching
physics.



Chapter 8
Conclusions and Future Directions

The tidal disruption of stars by supermassive black holes (SMBHs) is an exciting
research frontier in both theoretical and observational astronomy. In this thesis, we
have studied these dramatic events from a theoretical perspective and found that
they hold great promise: as measures of SMBH demography; as probes to study
general relativity; and as laboratories for high energy accretion physics. For many
decades tidal disruption events (TDEs) were a theory-dominated subject with no
substantiating observations. Fortunately, we now live in an era where exciting new
TDE detections are reported every year, and, increasingly, theorists’ models are
challenged by unexpected observations. In this concluding chapter, we summarize
recent developments in TDE research, with a focus on papers relevant to the work
in this thesis. Finally, we offer brief remarks about future avenues of research.

In Chapt. 2, we reviewed the simplest standard formalism for calculating TDE
rates due to two-body relaxation in galactic nuclei. Although the theory of two-
body relaxation is well-developed, many theoretical works have suggested alternative
mechanisms for funneling stars to hungry SMBHs. Examples of these include binary
SMBHs, axisymmetric or triaxial stellar density profiles, tidal separation of binary
stars, and infalling massive perturbers. It is currently unclear if any of these alter-
native mechanisms can compete with standard two-body relaxation, and resolving
this question will require both observational and theoretical progress on topics as
disparate as the final parsec problem, equilibrium stellar density profiles, and extra-
galactic molecular clouds. Fortunately, the observational sample of TDEs continues
to expand: just in the last year, roughly half a dozen new TDE candidates have been
announced (Arcavi et al. 2014; Chornock et al. 2014; Holoien et al. 2014; Maksym
et al. 2014). On the theoretical side, the continued progress of computational astro-
physics has recently allowed N-body simulations of two-body scattering sufficient
run time to estimate TDE rates (Zhong et al. 2014). Even though these simulations
do not yet have the same number of stars as a realistic galactic nucleus, they can be
coupled to scaling relations as a valuable check on the traditional analytic estimates
presented in Chapter 2. Complicating this picture, however, is a persistent tension
between theoretical rate calculations and observed samples of TDEs: even conserva-
tive, two-body relaxation rate estimates generally predict ṄTDE ∼ 10−4 yr−1 (Wang
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and Merritt 2004), roughly an order of magnitude higher than observationally in-
ferred rates (Donley et al. 2002). More recent estimates of the observed TDE rate
have not budged (van Velzen and Farrar 2014), and it is unclear whether the errors
are due to observations (e.g. unmodeled selection effects), due to stellar dynamical
uncertainties (e.g. assumptions of dynamical equilibrium or near-isotropy in rate
calculations), or due to something else entirely (e.g. dust obscuration). It is worth
noting that these alternate mechanisms are of interest not just as sources of TDEs, but
also as sources of the “extreme mass ratio inspirals” which form a major scientific
motivation for space-based gravitational wave observatories.

In Chapts. 3 and 4, we investigated how TDEs can be used as indicators of SMBH
recoil, a prediction of relatively recent numerical relativity breakthroughs. Immedi-
ately following the coalescence of a SMBH binary, there will be a burst of TDEs as
the host galaxy’s “loss cone” refills due to gravitational wave recoil. In a relatively
conservative dry merger scenario, this burst produces one TDE every few decades for
typical recoils among LISA-band (∼106M�) black holes. However, this rate could
be enhanced by resonant migration of stars in dry mergers, or viscous migration of
stars in wet mergers. Since publication of Stone and Loeb (2011), the first of these
possibilities has been studied analytically by Seto and Muto (2011), who conducted
three-body integrations and found that stars could indeed be captured into resonant
migration around inspiraling SMBH binaries. Post-Newtonian corrections eventually
break these stars out of their mean motion resonances at ∼ tens ofRg, which is a very
promising distance for providing EM counterparts: these stars would be disrupted
not decades but weeks after GW recoil! Stellar migration through circumbinary disks
remains less well understood. If either mechanism proves viable, it would provide a
strong electromagnetic counterpart for future low-frequency gravitational wave as-
tronomy. In the nearer term, the LSST will go online within a decade, and should be
able to detect spatially offset tidal disruption flares at a rate of ∼1−10 yr−1. Follow-
ing publication of Stone and Loeb (2012b), two subsequent papers have examined the
rate at which recoiling SMBHs will produce TDEs. The N-body simulations of Li et
al. (2012) found, in contrast to our work, that the total number of TDEs is dominated
by unbound stars disrupted during the SMBH’s pericenter passages through its host
galaxy’s nucleus. Such a result is plausible: our estimates of the unbound disruption
rate were most unreliable in the rapidly relaxing, out of equilibrium environment of
the galactic nucleus. The observable consequences of this may be minimal, however:
such TDEs will not have observable spatial offsets, and the detectability of kinematic
offsets remains uncertain at best. A subsequent analytic study (Liu and Chen 2013)
found that TDEs from widely separated SMBH pairs (during early stages of a galaxy
merger) should dominate the TDE rate from recoiling SMBHs, highlighting the need
for careful followup (e.g. searching for a second centroid of light) of spatially offset
tidal disruption flares. Although a small minority of the total TDE population, such
offset flares would serve as valuable tracers of SMBH recoil.

In Chapt. 5, we argued that traditional estimates for TDE mass fallback timescales
were only correct for grazing, marginal disruptions, and are in fact enormously in-
correct for deeply plunging disruptions. We reached this conclusion through analytic
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considerations; our approach is complementary to the numerical simulations of Guil-
lochon and Ramirez-Ruiz (2013), which covered β ≤ 4 TDEs. These simulations
were performed while our paper was being written (and, it should be noted, were
published shortly before our own work), and reached similar conclusions on the β
independence of the fallback timescale and energy spread. These conclusions were
further verified by our own subsequent hydrodynamic simulations of tidal disrup-
tion, which found similar energy spreads for β = 1 and β = 5 events (Hayasaki et
al. 2013). Midplane resolution limitations prevent numerical simulations from accu-
rately estimating the energy spread for high β events (Guillochon et al. 2009), but
our analytic estimates apply to arbitrarily large β, and found that the vertical collapse
and bounce of a tidally disrupting star, general relativity, and stellar spin are all inad-
equate on their own to alter the β-independence of �ε. It is possible, however, that
a combination of these factors might restore some β dependence to the dynamical
outcome of a TDE. Future work should address whether misaligned SMBH spin is
capable of desynchronizing a bounce strongly enough to change the spread in debris
energy. The new picture of energy freeze-in we have proposed eliminates a high-β
tail of TDEs that was once thought to produce enormous peak fallback rates; this
limits the observability of super-Eddington outflows (Strubbe and Quataert 2009)
and largely eliminates a free parameter that could once be used to explain extreme
events (Cannizzo et al. 2011). However, the distribution of β within a sample of
TDEs carries valuable information about stellar dynamical processes, and the onus
is now on theorists to discover novel ways to measure it. One speculative possibility
that we have raised for the first time is high frequency gravitational wave emission,
which can be generated by the rapidly changing internal quadrupole moment of a
tidally “bouncing” star. This is a scenario that can be studied in more detail with full
numerical simulations, or analytically with the parabolic free solutions we have used
here.

In Chapt. 6, we surveyed the different ways in which TDE rates, dynamics, and
flares can be affected by general relativistic effects. This is a topic certain to be
of much future interest, as SMBH spin sets the maximum black hole mass capa-
ble of disrupting a main sequence star, and may well play an important role in the
bounce dynamics as well. It also appears increasingly likely that debris circulariza-
tion is mediated by GR precession; Guillochon et al. (2014) have found that purely
hydrodynamic dissipation at the pericentric “nozzle” (Ramirez-Ruiz and Rosswog
2009) is unlikely to effectively circularize TDE debris around SMBHs. The pseudo-
Newtonian simulations we presented in Chap. 6 (Hayasaki et al. 2013) offer an
exploratory realization of relativistic circularization; however, this work needs to be
extended to realistic eccentricities, higher particle resolutions, and spinning SMBHs
before GR can be definitively said to explain debris circularization. Until then, con-
sideration of alternatives, such as the magnetic dissipation proposed in Guillochon
et al. (2014), offers another intriguing avenue of research.

In Chapt. 7, we argued that TDE flares offer a more direct way to measure SMBH
spin: direct precession of the accretion disk, driven by Lense-Thirring torques. A
precessing TDE disk will exhibit quasiperiodic oscillations in its light curve and
spectrum as different portions of the disk are presented to the observer, potentially
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enabling a direct SMBH spin measurement. Since the publication of Stone and Loeb
(2012a), Shen and Matzner (2014) have coupled our picture of disk precession to
a much more accurate, semi-analytic model of a viscously spreading disk. They
consequently find a precession period that grows in time, which will complicate
observational searches for precessing disks1. A very exciting TDE candidate was
recently found to have quasiperiodic breaks in its light curve (Liu et al. 2014); the
authors interpreted this as evidence for a SMBH binary periodically interrupting
the return flow of loosely bound debris streams. However, the observations are also
qualitatively similar to our proposal ofTDE “blinking,” when a precessing disk moves
into an edge-on configuration with respect to the observer’s line of sight. It will be
very interesting to see if similar dips are seen in the light curves of future TDEs.
We have tentatively used our model to address an open question in accretion physics
(alignment of jets in tilted accretion flows), and argued that in the Swift J1644+57
flare, the jet likely aligned with the SMBH spin vector. Other “one-off” possibilities
are improbable but viable, however, and a larger sample of relativistic TDE flares
will be needed to settle the question of jet alignment. Jet precession has subsequently
been studied by other authors in the context of the Swift J1644+57 TDE; for example,
power spectrum analysis of the X-ray light curve in this event has detected multiple
peaks, which have been interpreted as evidence for a weakly precessing jet (Saxton
et al. 2012a). More complicated precession models involving disk warps have been
invoked to explain this behavior (Lei et al. 2013; Wang et al. 2014), although the
small inferred amplitude of precession in Saxton et al. (2012a) raises a troubling
question (Stone and Loeb, 2012a): if TDE jets can precess, why have we not seen
a much larger number of wildly precessing ones? Recently, McKinney et al. (2013)
published the first GRMHD simulations of jet launching in tilted accretion systems,
and found mixed evidence for precession: at small radii, their jets aligned with the
BH spin vector, but at larger radii �100Rg, the jet bent to realign with the disk
angular momentum vector. If this result applies to generic initial conditions (and
not just to the large net magnetic flux scenario simulated), it implies that TDE jets
can precess along with their disk if significant emission comes from a large enough
distance in the jet. These numerical results have also motivated a more complex
analytic model, in which disk precession is eventually quenched by electromagnetic
alignment (Tchekhovskoy et al. 2014).

Many open questions still exist concerning TDEs. Does two-body relaxation dom-
inate the event rate, or is this rate significantly enhanced by more exotic dynamical
processes? Why do TDE rates inferred from observations consistently fall an order of
magnitude below the conservative event rates calculated from two body relaxation?
Is there a practical way to measure the pericenter of disruption from TDE light curves
or SEDs? Can the high frequency gravitational wave emission proposed in this thesis
be physically realized if symmetry above and below the orbital plane is broken by
misaligned SMBH spin? Are there interesting observational consequences of stellar

1 This is similar to the conclusion we reached in the analogous problem of precessing disks in short
gamma ray bursts following the merger of a neutron star and a black hole (Stone et al. 2013a).
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“pancaking” during pericenter passage? What physical mechanism drives circular-
ization in realistic TDEs? Why do observed optical light curves approximate t−5/3

behavior so well, contrary to simple predictions? What unique electromagnetic sig-
natures can observers use to separate TDEs from contaminating transients (e.g. core
collapse supernovae)? In what direction will a relativistic jet launched from a tilted
TDE disk point?

Clearly, in conducting the research outlined here, we have often come across
as many new questions as we have answered old ones. Progress will come from
many different avenues. The advent of time domain optical astronomy has already
revolutionized many fields, and it may do the same for TDE physics. Expanding
the observational sample of TDEs and better accounting for observational selection
effects should help address open questions about event rates. Some of the theoretical
questions outlined above most likely require numerical simulations to address (e.g.
any scenario with misaligned SMBH spin), but others are notoriously intractable
to numerical computations and may require an analytic or hybrid approach (e.g.
circularization). Ultimately, realizing the full scientific promise of TDEs requires
a combination of observational and theoretical progress, so that we can extract the
wealth of information these events carry on SMBH demographics, general relativity,
and extreme accretion environments.



Appendices

Appendix A

The Parabolic Hill Equations

Consider the parabolic restricted three body problem, where the central mass
MBH � M∗ and M∗ = m1 + m2. Here the smaller bodies of masses m1 and m2

represent pieces of the star undergoing tidal disruption. The equations of motion for
this system are derived in § 2 of SKR10; we present the derivation here for com-
pleteness. These differential equations do not make assumptions about the relative
masses of m1 and m2.

If we center our coordinate system on the SMBH, and define position vectors 	r1
and 	r2 for the smaller particles, we can write the Newtonian equations of motion:

	̈r1 = − GMBH

r3
1

	r1 + Gm2

|	r1 − 	r2|3 (	r2 − 	r1) (A.1)

	̈r2 = − GMBH

r3
2

	r2 − Gm1

|	r1 − 	r2|3 (	r2 − 	r1). (A.2)

Defining 	r = 	r2 − 	r1, we can then write

	̈r = −GMBH

r3
2

	r2 + GMBH

r3
1

	r1 − GM∗
r3

	r. (A.3)

Next, we assume that both of the smaller bodies are roughly following a parabolic
center of mass trajectory,

	R = 2Rp

1 + cos f
( cos f , sin f , 0), (A.4)

so we can linearize Eqs. A.1, A.2 as 	r1 ≈ 	R + δ	r1, 	r2 ≈ 	R + δ	r2 (assuming
δr1,2 � R) to find

	̈r = GMBH

R3

(
−	r + 3	r · 	R

R2
	R
)

− GM∗
r3

	r. (A.5)
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Here we have discarded all terms quadratic or higher in δr1,2. Separating this equation
of motion into components gives us three ordinary differential equations for the
coordinate motion of each small body. Following the unit convention of § 3, where
tildes denote distances normalized by R∗ and times normalized by

√
R3∗/(GM∗),

these parabolic Hill equations are

¨̃x =β3 (1 + cos f )3

8
[−x̃ + 3(x̃ cos f + ỹ sin f ) cos f ] (A.6)

− x̃

(x̃2 + ỹ2 + z̃2)3/2

¨̃y = β3 (1 + cos f )3

8
[−ỹ + 3(x̃ cos f + ỹ sin f ) sin f ] (A.7)

− ỹ

(x̃2 + ỹ2 + z̃2)3/2

¨̃z = −β3 (1 + cos f )3

8
z̃ − z̃

(x̃2 + ỹ2 + z̃2)3/2
. (A.8)

Dropping the last term (which gives the interaction between the masses m1 and m2)
in each of these three equations allows the six “free solutions” to the parabolic Hill
equations to be found analytically. These solutions are given in Eqs. 5.7 and 5.1, and
represent the motion of a cloud of test particles in tidal free fall, if m1 is taken to be
a particle located at x̃ = ỹ = z̃ = 0, and m2 is a particle located anywhere else in
the cloud.

Each of the six free solutions can be thought of as the perturbation to a single
orbital element of the parabolic center of mass trajectory. Specifically, the in-plane
solutions vary longitude of pericenter (A), time of pericenter (B), variation in the
pericenter distance (C), and variation in eccentricity given a fixed pericenter (D).
The out of plane solutions represent rotations around the apsidal line (E) and latus
rectum (F).

Appendix B

Principal Axes of Free Solutions

Using the in-plane free solutions, we find that the initial phases of the principal axes
at f = fc are given by

cos θex = ±
√

1

2
± j

2
√
j 2 + 4k2

(B.1)
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where

j = − 16

25
β + 148

25
+ 1312

25β
− 352

5β2
(B.2)

+
√

1 − β−1

(
−16

25
β + 788

25
− 2208

25β
+ 32

5β2

)

k =√
β

(
72

25
− 936

25β
+ 1144

25β2
− 16

5β3

)

+ √
β − 1

(
72

25
+ 216

25β
− 176

5β2

)

are exact expressions. Note that this gives us 8 possible solutions for θex. While 4
are spurious, the other 4 of these are valid, with each minimum (maximum) in rH
possessing an equal minimum (maximum) 180◦ around the star’s center of mass. In
particular, for sin θ0 > 0,

cos θmin = (−1)p
√

1

2
+ (−1)q

j

2
√
j 2 + 4k2

(B.3)

and

cos θmax = (−1)P
√

1

2
+ (−1)Q

j

2
√
j 2 + 4k2

. (B.4)

Here the behavior of θmin and θmax is piecewise with respect to β, due to zeros of j
and k. We can describe this behavior for all β > 1 by setting

{p, q,P ,Q} =

⎧⎪⎨
⎪⎩

{1, 2, 2, 1},β < 1.073

{2, 1, 1, 2}, 1.073 ≤ β < 4.944

{1, 2, 2, 1}, 4.944 ≤ β.
(B.5)

To gain better intuition for the geometry of these principal axes, we can Taylor expand
rlong = rH(θmax) and rshort = rH(θmin) in the limit of large β:

rlong = 4

5
β1/2 + 22

5
β−1/2 +O(β−3/2) (B.6)

rshort = 2β−1/2 − 23

2
β−3/2 +O(β−5/2). (B.7)

These results are poorly convergent for β < 10, but describe the exact solutions well
above this threshold. We are now in a position to derive approximate formulae for
the angles presented in Fig. 5.3. By expanding the numerator and denominator of
tanψc = −yH(θmax)/xH(θmax) we find

tanψc ≈ 16β1/2 + 86β−1/2

8 + 185β−1
. (B.8)
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Using trigonometric identities and the Keplerian expression tanϒc =√
β +√

β − 1 ≈ 2β1/2 (ϒc is the angle between the x̂ and a parabolic orbit’s velocity
vector at f = fc), we find the misalignment angle

tan νc ≈ 284

32β3/2 + 180β1/2 + 185β−1/2
. (B.9)

We have defined νc as the (positive) angle between the center of mass velocity and
the long principal axis at f = fc. It asymptotes to 0◦ as β goes to ∞.
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