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Preface

This book originated with a series of lectures related to the production of oil and
gas from layered permeable rocks, which were focused on the challenge of the areal
sweep of oil from injection to production wells, through complex, heterogeneous rock.
Over the past few years, these lectures have been combined with some of my ongoing
research into various fluid mechanical aspects of (i) power generation from geother-
mal systems through recovery of heat; (ii) scale formation in porous rocks; problems
of (iii) carbon sequestration; and (iv) the dispersion of radioactive contaminants from
geological nuclear waste repositories, to form a graduate-level course related to the
fluid mechanics of energy systems in porous rocks.

The book explores the physical processes which influence oil and gas production,
CO2 sequestration and geothermal energy production. It draws together a series of
simplified physical models of the many complex processes relating to flow in porous
media to provide insight into the different phenomena, and where possible results from
laboratory experiments are used to illustrate the processes, as well as quantitative scal-
ings which identify the dominant controls on the flows and help build up insight into
the processes.

After a brief discussion of the importance of oil and gas resources for global energy
supply, this book reviews the topology of various porous rocks and presents simplified
models for pressure-driven flow through a variety of complex rock architectures. It
then briefly discusses how such models may help quantify the impact of the uncer-
tainty in the rock properties and structure in making predictions. We then discuss
the processes of dispersion and mixing in pressure driven flows, both produced by the
pore-scale flow and larger scale flows around lenses or layers of low or high permeabil-
ity. Saffman–Taylor instability is discussed and generalised to problems of reaction,
temperature change and erosion of loose sand. After a discussion of two-phase flow,
and the Buckley–Leverett shock formation process, there is a chapter discussing reac-
tions in rocks, including both compositional and thermally driven reactions; these ideas
are generalised to discuss the injection of polymers and their gelling within a porous
rock as may be desirable to modify properties of a reservoir. The book then turns to
buoyancy-driven flows and introduces gravity currents, including effects of capillary
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x Preface

trapping and leakage relevant for CO2 sequestration. We then discuss the role of
buoyancy in promoting mixing and dispersion, especially with complex rock structure,
relevant for enhanced oil recovery through gas injection or CO2 sequestration. Water
injection into hot rocks to recover geothermal energy is then discussed, and the phe-
nomena of boiling for steam generation, as well as the water flooding patterns which
may be produced when the buoyancy depends on temperature and composition, are
presented and explored. Finally, we present some models of compressible flow, which
provide insight into gas production from layered and low permeability gas/shale-gas
fields.

There are many texts on flow in porous media, including the comprehensive treatise
by Bear (1972), on modelling flow in porous media, the fascinating book on reactions
and flow in porous media by Phillips (1991), the work of Dagan on dispersion in porous
media and the book Enhanced Oil Recovery by Lake (1991). The objective of this book
is to complement these earlier works, focusing on the physical processes, with simple
laboratory models supported by simplified mathematical models. The work draws from
the well-established modelling of pressure-driven flow in layered and heterogeneous
porous rocks, including the resulting processes of dispersion, interfacial instability, and
two-phase flow dynamics, to explore problems of buoyancy-driven flows in porous
media and the dispersion of flows in complex layered strata. There is an underlying
theme of energy related applications throughout the text.

I have been extremely fortunate to work with many colleagues and students whose
quest for knowledge and application to their research has driven forward much of the
work reported in this volume, largely during my time in the BP Institute in Cambridge.
This includes in particular Silvana Cardoso, Adrian Farcas, Will Rayward-Smith, Jason
Furtney, Peter Dudfield, Thierry Menand, Mats Nigam, Gennaro Del Ioio and Karen
Otto, who has kindly assisted with figures in Chapters 5, 6 and 9. I am also very grateful
to Colm Caulfield for carefully checking the contents, as well as to Gil Arnaud, Alex
Evans and Adrian Farcas. In addition, I have been very fortunate to work with numer-
ous colleagues from industry who have shared their challenges and experience of real
energy systems in helping to frame many of the problems set out in this work, includ-
ing in particular Pete Smith, Andy Leonard, Ian Collins, Tony Espie, Simon Norris and
Bryan Lovell.

I am first and foremost indebted to my family for their generous encouragement,
patience and support in the writing of this book, and also the research reported herein,
especially my wife Sharon.



1 Introduction

The energy of the mind is the essence of life
Aristotle

In this book we explore flow processes in permeable rocks which are important for
the energy industry and the environment. As well as the oil and gas industry, flows in
porous rocks are key for geothermal energy production, CO2 sequestration, intersea-
sonal heat storage and the geological disposal of nuclear waste. The motivation for the
book stems from the flourishing interest in energy systems and the use of such energy,
much of which relies on fluids. As well as being the raw material, for example oil and
gas, fluids can transport the energy, as occurs in geothermal systems and in some cases
the product of energy consumption, namely CO2, can be sequestered in the ground
to reduce atmospheric emissions from burning fossil fuels. Flow in permeable rocks
impacts the nuclear industry, with the challenges of geological disposal of radioactive
waste and especially the potential for dispersal of such waste through the subsurface.
Contamination of groundwater systems can also arise from spillages for example of
non-aqueous phase petroleum liquids (NAPLs).

There are many classic texts on flow in porous media, and the recovery of oil, includ-
ing those by Muskat (1937), Bear (1972), Phillips (1991) and Lake (1991). However,
recently, there has been a resurgence of interest in a number of new fundamental phys-
ical problems relating to flow in porous media. These arise for a number of factors.
First, it is becoming increasingly challenging to recover the remaining oil and gas
reserves. The challenges arise as operators work in more extreme environments as they
search for increasingly high temperature and high pressure deep reservoirs of viscous
oil; shale gas is being recovered from very low permeability rocks; very heavy oil is
being recovered from tar sands; and operators are exploring in difficult deep water and
arctic environments. However, developing effective secondary and tertiary recovery of
oil from existing fields through injection of water and chemicals is also likely to be
key to enabling the continued effective recovery of hydrocarbons from existing fields,
especially as global energy consumption rises and oil demand approaches the global
production capacity. Furthermore, although there have been spectacular advances
in geophysical imaging of reservoirs using seismic waves, the remote and harsh
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2 Introduction

environments of new oil provinces leads to increased cost of exploration wells and
other data-acquisition systems. This emphasises the importance of developing models
of flow in permeable rock which can help inform decisions by reflecting uncertainty in
the architecture of and potential production from oil fields.

Other challenges for flow in permeable rocks are associated with the emerging sci-
ence of CO2 sequestration, where there is interest in the fate of CO2 injected into
the subsurface, both on the short timescale of injection, and on the longer timescale
of hundreds to thousands of years when buoyancy forces dominate the flow. Related
to this, there are important questions about the dispersal of contaminants in the sub-
surface, especially concerning potential geological waste repositories designed for the
long-term storage of radioactive waste. Knowledge of flow patterns and contaminant
dispersal by these flows can be key for risk assessment.

Flows in porous media are also of importance for the renewable energy industry,
including the challenge of geothermal heat production from the circulation of fluids
through hot, permeable rock. Here, we explore the transport and dispersal of heat, both
as a liquid and a vapour, following liquid injection into the system. We also study the
role of convection on the fate of liquid injected for geothermal energy recovery. These
issues are strongly coupled with challenges of aquifer thermal energy storage.

The objective of this book is to introduce simplified quantitative models, in some
cases supported by experiment, to help to understand some of the different fluid
mechanical processes which arise in porous rocks. Many of the flows described above
are so complex and ill-constrained by data about the specific geological formations
that it is very difficult to simulate the flows in detail. In many cases, the detailed struc-
ture of the rock, at the scale of the layers and other heterogeneities in the formation, is
unavailable and so only relatively coarse, averaged models are available to describe the
flow. These models are often informed by the structure of analogue rocks visible at the
surface. Many of the parameters relating to the rock structure can only be constrained
probabilistically, owing to the difficulty and expense of measuring such properties far
below the surface. The idealised modelling approach proposed herein, which focuses
on quantifying specific physical flow processes, enables discussion and illustration of
the impact of geological uncertainties on the flow. Indeed, in Chapter 4, with a series of
very simple models, we outline some of the challenges related to assessing uncertainty
and the ultimate use of models to help inform decisions.

The book has been arranged in a series of themes to reflect some of the above chal-
lenges. First, we start with a simplified introduction to the complexity and diversity of
geological formations which constitute the rocks involved in oil and gas recovery, CO2

sequestration and geothermal heat recovery. This leads to the challenge of developing
models of the effective large-scale flow properties within a formation as these tend
to be strongly controlled by individual geological layers and the interaction between
these layers. We illustrate how the geological complexity of a reservoir can impact
the effectiveness of the displacement of fluid through the reservoir by the injection of
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water. We then explore how the predictions of simplified models depend on the geo-
logical parameterisation and how the sensitivity of models to these parameters might
be determined, identifying that the boundary conditions are key. In Chapter 5, we turn
to a discussion of dispersion by pressure-driven flow in porous media. This topic has
been very thoroughly studied, and there have been many substantial books describing
the processes from the pore scale to the scale of the macroscopic heterogeneities in the
formation. The present physically based account is designed to illustrate some of the
different phenomena, and to develop simplified scaling rules to assess the likely magni-
tude of the dispersion in some idealised systems. We then describe the classical process
of viscous instability, whereby less viscous fluid develops a fingering pattern through a
more viscous fluid rather than displacing the more viscous fluid with a planar front; this
presents a fundamental challenge for oil recovery, and we illustrate how the associated
instability pervades many fluid–fluid displacement problems in porous rock, includ-
ing a fascinating erosional instability when liquid is injected into unconsolidated sand.
In Chapter 7, we introduce immiscible flow in porous media, and describe how, in a
two-phase flow, there is an asymmetry between the resistance experienced by the wet-
ting and non-wetting phases. This leads to prediction of the classical Buckley–Leverett
shock front, across which there is a jump in the saturation of the wetting fluid in the
pore space, across an advancing wetting front in which the upstream pore space may
be largely occupied with, for example, water to a flow downstream which is dominated
by the non-wetting phase, for example oil. There are again many excellent texts which
explore two- and three-phase flow dynamics in porous media in detail (Bear, 1972;
Lake, 1991). We focus much of the continuing discussion in the present book on the
dynamics of fronts and fluid–fluid interfaces. We first explore the dynamics of ther-
mal fronts and reaction fronts as building blocks to describe the dynamics of gelling
polymer fronts. Such fronts are likely to have a growing importance in enhanced recov-
ery, and we illustrate some of the effects of using gels in layered geological strata. In
Chapter 9, we turn to buoyancy-driven flows, and explore how buoyancy forces tend
to localise interface instabilities into a single gravity dominated flow. We then develop
various models of buoyancy-driven flows to illustrate the processes associated with
CO2 sequestration, including capillary retention and leakage across layer boundaries.
In Chapter 10, we discuss the possible influence of heterogeneity in the geological
structure of a formation in dispersing such buoyancy-driven flows, a process which is
key for CO2 dispersal and possible hydrogen gas release from geological waste repos-
itories. In Chapter 11, we turn to the transport of thermal energy, and illustrate how
injection of liquid into superheated rock can lead to vaporisation, while the injection
into warm rock can lead to heating and a change in the buoyancy of the flow, producing
a range of complex patterns of water flood with associated changes in the efficiency of
heat recovery from the system. In Chapter 12, we return to hydrocarbon production, but
focus on the dynamics of gas production, for which the compressibility of the system is
key. We illustrate how important cross-layer flows between high and low permeability
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rock can be for enhancing the production of gas, and discuss the analogous benefits of
fracturing the formation normal to the well in very low permeability systems.

Before launching into the fluid mechanics of these different processes, it is of inter-
est to describe present energy resource production. This provides context for the very
substantial challenge of maintaining present rates of energy supply, and the need for
new technology in the oil and gas industry in order to continue to develop hydrocarbons
at scale, while also building up the technology base and infrastructure for renewable
energy and CO2 sequestration.

1.1 The energy context

Interest in energy resources arises from concerns about security of energy supply and
its maintenance over the next few decades; abatement of carbon emissions from those
sources which are hydrocarbon based; the challenge of supplying a material fraction
of the energy base from renewable resources; and the more efficient usage of energy,
so the output in productivity per unit of fuel is increased. Although projections of
energy consumption depend on many interrelated factors the historical data shown in
Figure 1.1 indicate that there has been a nearly linear increase in global energy supply
over the past four decades, with the last decade occurring in a post-Kyoto Protocol
world (Figure 1.1). It is not unreasonable to assert that over the next few decades there
is likely to be further growth in demand. Feeding this demand requires the development
of new energy sources. Energy supplies today are largely sourced from hydrocarbons,
as seen in Figure 1.1. Over 80% of global energy is derived from fossil fuels and the
remaining sources are dominated by nuclear and hydroelectric.

Before considering the challenges and opportunities for continued hydrocarbon pro-
duction, and the need for managing the associated CO2 emissions it is worth reflecting
on the other sources of energy.

Nuclear energy is a viable alternative to hydrocarbons, and can provide a nearly
carbon-free energy source. However, there are challenges for the global growth of
nuclear power, including the large upfront cost and timescale to bring new nuclear
online, and the environmental concerns relating to accidents. In addition, there is a
long-term challenge of the storage of the waste. Many countries have adopted a strat-
egy of using a geological repository, whereby the waste will be stored in a low per-
meability part of the subsurface. As part of these plans, there is considerable research
effort underway to explore the possible interaction of such waste with subsurface flow
processes over the very long time comparable to several half lives of the radioactive
material.

Hydroelectric power generation already makes a substantial contribution to global
energy supply and, for example, in South America and China contributes a significant
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Figure 1.1 Breakdown of the global primary energy supply by fuel type. From 1970 to 2010 there is a
near linear rise in total consumption with time, with oil, coal and gas accounting for over 85% of the
total supply. Data from BP Statistical Review of Energy (2013). ‘Other’ which includes wind, solar
and biomass is gradually increasing.

amount of energy, in part through large river-dam systems. Other renewable energy
sources, such as wind and solar, presently only account for a relatively small fraction
of the whole energy supply. However, this is a rapidly growing sector of the energy
industry and installed capacity is increasing (Figure 1.1) although this is likely a multi-
decadal process. A further challenge for such sources of power is associated with pos-
sible storage, to level out the somewhat intermittent supply. Here, battery technology or
other storage systems can play an important role, and we consider some challenges of
aquifer thermal energy storage systems in Chapter 11. Geothermal energy could also
play a very significant role. At a large scale, there are several high temperature sys-
tems, with the Geysers in northern California and Larderello in Tuscany, Italy, being
two examples with potential electrical power generating capacity of order 1000 MW,
and very many lower temperature systems providing thermal energy for direct use in
heating. Biofuel technology has made enormous progress, and there are major plants
generating bioethanol as a transport fuel, with, for example, Brazil fuelling a substan-
tial fraction of its car fleet through bioethanol from sugar cane. Tidal and wave power is
less well developed, but at EMEC, offshore Orkney (www.pelamiswave.com) there are
new installations being developed with the Pelamis wave system and submarine tidal
turbines, although they are a relatively minor part of the global energy supply. With all
these renewable energy sources, cost is a key factor in order that they are competitive.

www.pelamiswave.com
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Given the present mix of energy supply, and the associated infrastructure which is
built around this energy supply, it is likely that we will continue to produce and use
hydrocarbons over several decades, even if it was straightforward to replace the supply
with alternative sources of power. One of the key drivers for renewable energy is asso-
ciated with carbon emissions produced by burning fossil fuels. Although an aspiration
would be to move all supply to renewable energy sources, the time required for this to
become a material reality on a global scale may be decades. There are two important
ways of reducing emissions associated with the likely use of fossil fuels during this
period while the renewable energy supply grows. First, there could be a switch from
coal to gas for power generation. Coal is a very substantial part of the energy supply but
when used for power generation it produces nearly 1.5–2.0 times the CO2 emissions per
kilowatt hour of electric power that is produced by natural gas. Switching from coal- to
gas-fired power stations could therefore have an enormous impact on CO2 emissions,
as has happened recently in the United States. Second, CO2 produced at power sta-
tions, and other large consumers of fossil fuels, can be captured and geosequestered
underground into deep saline aquifers. This would reduce the continued supply of CO2

to the atmosphere, although incurring a substantial cost in infrastructure.
However, underpinning the above arguments is the assertion that the supply of

hydrocarbons is readily maintained. The continued supply of hydrocarbons, and espe-
cially liquid hydrocarbons, at present production rates is not straightforward and will
rely heavily on new technology. Hydrocarbon reserves can be categorised into differ-
ent groups, called conventional and unconventional. Conventional resources describe
reservoirs with good quality rock and fluid oil, which can be recovered using tech-
niques available today.

In typical oil fields, initial approval to develop the field may be based on an aspiration
to extract 30–40% of the oil, while the technical limit, based on the effect of capillary
retention, for example, may indicate that up to 80% may be recovered. The effects of
layering, heterogeneities and compartmentalisation of the field can lead to significant
challenges in recovering this secondary oil, as described in Chapter 3. However, it
is possible to produce considerably more of the resource. There are examples in the
North Sea where over 70% of the intial oil in place has been produced, including the
Fortes field. In achieving high recovery rates, much technology has been developed
and applied relating to (i) lower cost and horizontal drilling technology, to enable a
larger surface area of the well to be located within oil-bearing horizons; (ii) seismic
imaging of oil fields before and during their production which can enable improved
three-dimensional characterisation of the reservoir and identification of regions of the
reservoir in which there has been little flow, which may be targets for infill drilling, (iii)
use of surfactants and polymers in water injected into the field to enhance the recovery
of the residual oil. All of these techniques can benefit from knowledge of the dynamics
of flow in permeable rock, and this forms the first major set of topics of the book,
including discussion of the effects of the macroscopic and microscopic structure of the
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rock formation on the flow, and the intermingling or dispersion of an injected fluid
through the original reservoir fluid (Chapters 3–7).

Challenges in the development of oil from new oil fields are often associated with
their being located in more remote or hostile environments: new fields may be deeper
in the ground, under deeper bodies of water and in many potential reservoirs, the oil
may be very viscous, contained in low permeability rocks or loose-packed sand requir-
ing considerable post-extraction processing. Data about the detailed structure of these
remote fields may be limited up to the point of development, owing to the cost and inac-
cessibility, and this introduces risk, which increases the cost and impacts the likelihood
of their successful development. The early sections of this volume are concerned with
describing some of the difficulties of oil recovery, especially relating to water flood-
ing. In large part, this is a result of the complex structure of these reservoir rocks and
the difficulty of driving liquids through the different geological layers in a formation;
it also depends on the pore-scale structure and the capillary forces which ultimately
retain a fraction of the oil within the pores.

Data available in the BP Statistical Review of Energy and information available
from the IEA suggests that up to the present day, the world has used about 1000 bil-
lion barrels of oil. However, there are very substantial resources remaining. As well
as the significant volume of conventional resources which are still to be developed,
which exceeds that already produced, there are enormous volumes of non-coventional
resources for which new approaches are required to produce the hydrocarbons. One
fascinating example of a so-called non-conventional resource is shale gas: here, gas is
bound within extremely low permeability rock. By fracturing the rock in the subsur-
face, around a well, a fraction of the gas can be released, and with sufficient fracture
area, this leads to economic rates of recovery of the gas. This has transformed the US
gas market, supplying nearly 40% of US gas requirements, and illustrates the power of
technology in opening up new resources.

Some of the major non-conventional oil resources include heavy oil and bitumen
deposits in the Canadian and Venezuelan tar sands, where estimates suggest that about
another 1 billion barrels of oil may exist. Oil shales are rocks containing high lev-
els (tens of per cent) of organic material which were deposited in shallow seas in
anoxic conditions, but which have not been buried to sufficient depth within the Earth
to pyrolise. By heating these resources to temperatures of 400–500◦C, the bitumen
can be converted into hydrocarbons; technology for this is at a very early stage of
development, but the Green River Basin in Colorado, USA, may contain 500–1000
billion barrels of oil. Perhaps one of the most intruiging unconventional resources are
the methane hydrates, which consist of ice type structures within which methane is
trapped. These hydrates are stable at the pressure and temperature conditions found
in shallow marine sediments and the permafrost. The resources of such hydrates
are thought to be very substantial, of the same order as conventional hydrocarbons,
but there remain major challenges in the extraction technology before these become
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Figure 1.2 Illustration of the reserves to production ratio of oil in different parts of the world,
illustrating the number of years of remaining proved resource based on present day production rates.
Data from BP Statistical Review of Energy 2013. The total global resources are much larger than the
proved reserves shown here.

material energy resources. In particular, the dissociation of the gas and the ice requires
latent heat, and this typically leads to freezing of the surrounding permeable layer,
thereby suppressing flow of the methane. Also, in some areas, the methane hydrates
play a key geotechnical role in supporting the geological strata, and if they dissociate,
then slope instability may ensue.

In the short term, the major source of oil production is likely to be that which still
remains in existing oil fields, with exploration focusing on the habitat of the oil within
the reservoir after the initial phases of oil recovery. Much of the resource is located
in the Middle East, where there are some very large reservoirs in carbonate rocks.
There are also very significant ongoing oil production developments around the globe,
including deep-water offshore West Africa, the Brazilian offshore deposits, the North
Sea and the Gulf of Mexico, as well as northern Canada and Alaska. The potential
resource base around the globe is often characterised by the reserves to production
ratio, where reserves represent those resources which can be recovered economically
using known technology. Figure 1.2 illustrates that many of the oil-producing centres
round the globe have many decades of future production based on present rates.

As well as the many challenges of oil recovery through water flooding and related
techniques, there are a number of related problems in the emerging technology of car-
bon sequestration. Carbon sequestration is the process of capturing CO2 from combus-
tion of hydrocarbons and injecting it into subsurface aquifers to reduce the emissions of
CO2 directly into the atmosphere (Figure 1.3). There are still numerous challenges for
its implementation and in particular the establishment of a viable economic framework
to grow an industry able to inject large volumes of CO2 into the subsurface. Also the
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Figure 1.3 Illustration of the source of greenhouse gas emissions associated with use of primary
energy. Data from BP Statistical Review of Energy, 2013. The increasing use of coal has led to an
increase in coal-related emissions.

assessment of the risk that a significant fraction of sequestered CO2 may escape from
the storage reservoir back to the surface or to subsurface potable aquifers, with the
associated problems of cross-contamination is critical. We address some of the techni-
cal challenges of modelling and monitoring the fate of the CO2 during and after injec-
tion. Again, fluid mechanics lies at the heart of this process, with the motion of CO2

often being dominated by buoyancy forces as the plumes ascend through the geological
strata or spread horizontally along the strata (Chapters 9 and 10). Some of the processes
which control the dispersal of CO2 in the subsurface are also in operation in the disper-
sal of plumes of dense non-aqueous phase liquid (DNAPL) following a spillage, and in
the migration of plumes of buoyant hydrogen gas which may be emitted from geolog-
ical waste repositories, and we consider the implications of buoyancy-driven flow for
these applications as well (Chapter 10).

Geothermal power involves the recovery of thermal energy from the subsurface,
often by pumping cold water into the rock and recovering hot water. Again this is a
fluid mechanical process, but involves the migration of thermal fronts, and often min-
eralisation fronts, as the injected water heats up and in supercritical systems boils.
There are significant reserves globally, although at present those which provide sub-
stantial sources of energy tend to be strongly coupled to geologically active regions,
such as Iceland and New Zealand. In superheated geothermal systems, such as the
Geysers in Santa Rosa, northern California and the Lardarello field in Tuscany, cold
water is injected into the system to generate additional steam through heating from
the rock. This leads to some fascinating phase change problems, which we explore in
Chapter 11. There is also interest in using aquifers for interseasonal thermal energy
storage, for improving power station efficiency and also for levelling load from inter-
mittent renewable energy sources such as wind. We consider some challenges associ-
ated with this in terms of the fluid dynamics of injection and production of water to
transport thermal energy.
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In Chapter 12, we discuss flow in gas fields, initially considering conventional gas,
but then extending the models to account for shale gas. In gas fields, often the pressure
is allowed to fall as gas is produced. This can lead to a gradual waning of the flow over
time which may introduce other challenges, such as suppression of the gas production
if water flows into the production wells from the formation, increasing the backpres-
sure in the field. We examine how gas flows through layered strata, in which the flow
path from deep in the reservoir to the well is typically dominated by the flow through
high permeability pathways, while the main source of the gas may be in the low per-
meability matrix surrounding these high permeability channels. The models are also
useful in building understanding of the production of gas from very low permeability
rocks which are fractured during development, and can be developed to account for
the release of adsorbed gas as the formation is decompressed; this is relevant for the
production of shale-gas reservoirs.



2 Porous rocks

Oil and gas reservoirs are composed of permeable rock, often arranged in layers.
Although there are many different types of formation which can become oil-bearing
rocks, the dominant requirements are a source of hydrocarbon in the source rock, a
reservoir rock and a seal. A classic source rock may be seen in Kimmeridge Bay on
the South Coast of England (Figure 2.1), in which organic material from a shallow
marine environment is buried in an anoxic environment and then, as it is compressed
and heated over geological times, pyrolyses to form oil and gas. This then migrates
upwards through the geological strata and accumulates in permeable rock provided
there is a seal or caprock which arrests further ascent. Depending on the geological
environment and history of the formation, the reservoir rock may be composed of many
superposed layers of sandstone, clay and shales or carbonate rocks including limestone
and chalk. There has been an enormous effort over the past century in the geological
community to describe the processes by which such sedimentary rocks form and the
post-depositional processes which ultimately shape the geological strata. The excellent
texts by Allen (1992) and Nichols (2009) introduce many of the concepts and processes
involved, and we defer to the geological literature for details of this. Our purpose is to
review, in a simplified fashion, some of the dominant topologies of permeable rocks, to
help motivate some of the modelling in later sections of the book, but also to emphasise
the complexity of the geology in controlling the boundary conditions for flow in porous
rocks. The presentation is designed to be illustrative and not in any way exhaustive.

2.1 Turbidites

Deep-sea turbidite deposits tend to be extensive sheet-like structures which form from
the rapid discharge of a large volume of sediment from high up on the continental shelf.
The turbidite flow runs down the shelf and then spreads out on the deep abyssal plain,
where it gradually sediments, producing a fan-type deposit. On geological timescales,
there will be multiple discharge events leading to the accumulation of many turbidite
fan-like deposits. Although each layer may be metres to tens of metres thick, the overall

11
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Figure 2.1 Photograph of the Kimmeridge source rock in the cliffs on the beach at Kimmeridge Bay,
Dorset. The photograph also shows the active gathering station on top of the cliffs, at which oil from
a deeper reservoir directly below is being produced at the surface. Photo courtesy of D. van
Sommeren. A black and white version of this figure will appear in some formats. For the colour
version, please refer to the plate section.

Wings
Leveed turbidite
channel

Stacked layers of sand from
multiple large flow events each
forming fan deposit (cf. Loop Head)

Clay layers
between successive
sand deposits

Turbidite
fan deposit
on ocean floor

Main
channel

Figure 2.2 Schematic of the channel and wing structure of a turbidite and of the distal fan deposit,
where multiple flows may stack over time. These features may be seen in Figure 2.3.

deposit may be many tens or hundreds of metres thick. There may be some channelling
of the deposits from successive flows, leading to the characteristic channel and wing
structure often seen in turbidites (Figure 2.2). The channel contains sands from multi-
ple events, as the flow from successive events follows similar pathways. Larger sized
events may lead to the flow overspilling the channel to form the wing deposits and
between successive discharges there may be gradual accumulation of finer grained
material. This produces thin clay or shale deposits between successive turbidite flows.
The clay layers may often be eroded in the channel leading to formation of a massive
sandy channel deposit, whereas they remain in the wings, dividing the successive flows.
This leads to a complex reservoir geometry in which the channel is well-connected,
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whereas the wings are vertically stratified and may even be independent owing to the
low permeability clay layers. If a turbidite layer forms an oil reservoir, there may be
a considerable challenge in displacing oil from the wings of the deposit, whereas the
channel may form very good reservoir rock.

Further from the source, the distal end of the turbidite deposits, most distant from
the source, typically consist of layer upon layer of fan-like deposits, sometimes sepa-
rated by thin clay or other fine-grained sediment layers, which can act as a hydraulic
seal between the layers. Owing to post-emplacement processes, the seal may become
fractured and permeable. The formation may therefore approximate a two-dimensional
sheet-like structure, leading to relatively simple topology of the permeable rock. One
tremendous turbidite outcrop may be found in Western Ireland, at Kilbaha Bay and
the nearby Loop Head formation (Figure 2.3). The first two panels show a series of
turbidite layers, with evidence of a channel feature in the centre and wings to the sides
which are separated by layers of shale and clay ranging from a few millimetres to
many centimetres thickness. An image of the coastline reveals the extensive layered
fan deposit which forms the Loop Head Cliffs. Here a large number of sand sheets,
each a few metres in thickness are stacked above each other, separated by thin shale
layers of much smaller permeability. Note also the significant fold at the right-hand
end of the cliffs.

Flows over the continental shelf may channellised, and may erode some of the
underlying strata to form submarine canyons. As successive events generate sediment
flows, this may lead to meandering channels being superposed, and can lead to com-
plex topology of the final deposits. Successive deposits may have common boundaries,
enabling hydraulic communication for fluids migrating through the rocks which are
subsequently formed.

2.2 Deltaic deposits

Moving up the continental shelf, another important type of reservoir arises in estuarine
or deltaic environments where there are sand bars and channels, which are typically
layered sandy formations, again of high permeability, and often separated by finer
grained sediment layers. Figure 2.4 illustrates a picture of a distributary channel in
a deltaic setting at Tullig Point in County Clare, Western Ireland. The scale is about
20 m high by 100 m across, and this photograph illustrates a complex, layered system,
which would again represent a high quality reservoir rock owing to the high content of
coarse-grained sand.

Estuarine deposits may develop as complex deltas which involve many smaller
streams, with bars of sand and finer sediment of complex topology separating the
streams; this can ultimately produce rocks with regions of high and low permeability,
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(a)

(b)

(c)

Figure 2.3 (a) Kilbaha Bay, County Clare, Western Ireland. A multilayered turbidite deposit
illustrating how the sand layers are separated by smaller grain-size shale rock which acts as a seal
between layers. (b) Cliffs on the coast near Kilbaha Bay, illustrating the laterally extensive stacked
turbidite deposits, interspersed with thin layers of seal rock. (c) Loop Head Cliffs, County Clare,
Western Ireland, showing a series of laterally extensive distal turbidite fan deposits. Note the fold in
the layers at the right-hand side of the photograph.
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Figure 2.4 Tullig Point, County Clare, Western Ireland. A distributary channel illustrating the highly
layered nature of a deltaic environment. A black and white version of this figure will appear in some
formats. For the colour version, please refer to the plate section.

with preferred orientations which are related to the original estuarine flow environment.
Shallow, near-shore deposits may include tidal sand bars, storm deposits and other
structures, which lead to large-scale anisotropy in the ultimate rocks, and hence in the
permeability field, as we explore in Chapter 3. Another fine example of a near-shore
deposit are the cliffs at West Bay in Bridport, Dorset (Figure 2.5). Here, there is a lat-
erally extensive formation, which is nearly 100 m high and consists of many horizontal
and laterally extensive layers, each a few metres thick. This formation, known as the
Bridport Sandstone dips below the surface towards the east, and at Poole Harbour, the
Bridport formation is saturated with oil, 900 m below the surface, supplying oil to a
major onshore oil field, the Wytch Farm reservoir. As may be seen in this exposed
section, the rock consists of a series of layers 1–10 m thick, with a cemented, lower
permeability layer between these units, perhaps up to 1 m thick. Modelling flow in this
formation requires description of the flow within layers and also between the layers.
In the context of a subsurface reservoir, this is challenging since only the relatively
coarse-scale features of the rock, on lengthscales typically in excess of 10 m can be
measured from surface geophysical techniques, such as seismic-imaging techniques.

In contrast to the sandy relatively good quality formations in deltaic and turbidite
sediments, shallow marine deposits can be much finer grained and highly layered, lead-
ing to much less favourable rock for hydrocarbon resources. They may also include
localised storm deposits which are composed of somewhat coarser sediment and can
therefore provide a high permeability conduit through the system. Sedimentary rocks
produced in a range of depositional settings can also include cross-bedding or cross-
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(a)

(b)

(c)

Figure 2.5 Photograph of the Bridport Sandstone, Dorset, UK. (a) Panoramic view of the cliffs
and (b) a close-up showing the complexity of the layering, with each layer being in the range of
2–5 m thick; (c) close-up of a single layer in the sequence bound above and below by cemented
horizons. Photograph courtesy of D. van Sommeren. A black and white version of this figure will
appear in some formats. For the colour version, please refer to the plate section.
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Figure 2.6 (a) Cartoon of cross-bed formation owing to deposition migrating upstream or
downstream. Illustration of cross-bedding on walls of (b) Glen Canyon, USA, and (c) in the
Tabernas Basin, Spain. The bedding has a very fine scale and variable direction relative to the strata
leading to potentially complex flow trajectories through the formation. A black and white version of
this figure will appear in some formats. For the colour version, please refer to the plate section.
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Figure 2.7 Illustration of braided stream, with diverse patterns and structures of deposition in the
stream owing to formation of sand bars.

lamination, and this may be critical for the subsequent flow of liquids through the
porous rock. Figure 2.6 shows some cross-bedded deposits for illustration.

2.3 Fluvial deposits

Upstream of the coastline, fluvial deposits can be very complex, with river beds trans-
porting a wide range of sediment particle sizes downstream and, in some cases, eroding
the underlying substrate. The rocks forming from such deposits may be of high per-
meability in places, but may also be very variable spatially owing to the complexity
of river deposition processes. Often there is cross-bedding in the deposit, in which the
layers of sediment build up on the downstream or upstream side of the formation, so
that the local layering is not parallel to the direction of the overall deposit. Also, as a
river flow varies seasonally, sand bars and braided river systems may evolve, and the
grain size carried by the flow may also change, leading to a very intricate and heteroge-
neous rock structure with lenses of high or low permeability embedded throughout the
rock (Figure 2.7). Such structures can have an enormous influence on the flow patterns
and the dispersal or spreading of flow through the rock, as we explore in Chapters 5
and 10. An image of a fluvial deposit from the Dingle Peninsula in Western Ireland is
shown in Figure 2.8a,b, illustrating cross-bedding and in the lower panel a fault which
runs orthogonal to the bedding direction. Some sedimentary deposits are very complex
and involve layers of larger pebble-sized rocks interspersed with finer grain deposits as
shown in Figure 2.8c.



(a)

(b)

(c)

Figure 2.8 (a,b) Photographs of a fluvial deposit, Dingle Peninsula, Ireland, illustrating the intricate
pattern of cross-bedding, and the local variability in grain sizes and layer permeability. The lower
panel illustrates a fault running orthogonal to the bedding direction. (c) Photograph of very
heterogeneous layering in a sedimentary deposit at Point Lobos, California, showing pebble laden
deposits, of order centimetres in size, interleaved with fine sandy deposits. A black and white version
of this figure will appear in some formats. For the colour version, please refer to the plate section.
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(a)
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Figure 2.9 (a–c) Photograph of an aeolian deposit in the Dingle Peninsula, Western Ireland,
illustrating (a) the lee side of the slope, with multiple parallel layers and (b,c) close-ups of the
layering showing the highly stratified nature of the layering on both metre and centimetre scales.
(d) Schematic to illustrate the formation process of aeolian dune formation, with successive layers
forming as the dune migrates. A black and white version of this figure will appear in some formats.
For the colour version, please refer to the plate section.

2.4 Aeolian

Aeolian deposits result from wind-blown sand which often forms dunes. Typically, the
deposits are formed of grains with similar size and include a series of parallel layers,
associated with the seasonal avalanching and deposition on the lee side of the dune.
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Figure 2.9 illustrates an image of an aeolian deposit, showing the very anisotropic
structure of the formation, which tends to favour flow down the lee side of the dune
parallel to the layers. As the grains avalanche down the lee side of the slope, the grains
become progressively finer grained, so that the pore size and permeability progressively
decrease towards the base of the dune (see next chapter). This leads to a very stratified
permeability structure, both across the layers and also along the layers. The lower panel
shows the layers in the deposit running from left (top of deposit) to the right (base of
deposit). Each layer has some changes in depth along the formation.

2.5 Compaction

Post-depositional processes can also be critical for the evolution of sedimentary rocks.
The sediment layers are typically compressed as they are buried and the water within
the sediment is driven out owing to the stress imposed by the overlying rocks. This
process, known as compaction, can lead to deformation of the sediment if the verti-
cal permeability structure is non-uniform and leads to accumulation of water-rich and
hence buoyant layers below low permeability seal layers (Figure 2.10). In addition,
regional stresses resulting from the relative motion of different parts of the surface
can lead to folding and faulting of the strata. This can add further complexity to the
topology of an oil-bearing rock.

Folding and faulting can also lead to compartmentalisation of a reservoir if a fault
cuts through a permeable layer allowing relative movement along the fault of the geo-
logical strata on each side of the fault. Such compartmentalisation can lead to small
pockets of permeable rock which have poor or no communication with neighbouring
compartments. If the faults become impermeable through subsequent mineral precipi-
tation then wells may be required in each compartment in order to produce the fluids
within.

Figure 2.10a illustrates a small sand-injection structure which has been exposed on a
horizontal surface. Also shown is a deformation structure, of scale 0.5 m in height and
1 m in length (Figure 2.10b), in which a layer of sediment has been distorted following
formation. Fluid migrating through such a rock would follow the tortuous pathway
along the fold, within each of the flow-units in the formation. This would decrease the
effective permeability of the rock and lead to a different pattern of flow streamlines than
may be envisaged in a uniform homogeneous sand. Figure 2.10c illustrates the presence
of a large fold in one layer 15–20 m thick in a deposit in the Tabernas Basin in Spain.
This fold involves a series of the individual depositional layers in the rock. Modelling
flow in such a structure is difficult, owing to the range of lengthscales required in a
model; also, detecting the precise shape of such structures is likely to be difficult from
remote observation again leading to imprecision in the ability to model flow through
such a system.
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(a)

(b)

(c)

Figure 2.10 Photograph of (a) a small sand-injection structure breaking through on overlying layer of
sediment; (b) a side view of a small-scale deformation structure in the formation, with a vertical
scale of about 50 cm and length 1 m; (c) an illustration of the folding of sediment layers following
deposition in a turbidite deposit in Tabernas Basin, southern Spain. Here the scale is about 15–20 m.
A black and white version of this figure will appear in some formats. For the colour version, please
refer to the plate section.

2.6 Carbonates

Carbonate reservoirs are built up in shallow, hot, marine environments and can be
very complex structures. Reservoirs include oolitic limestone, mudstones and also reef
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deposits. Ooids are small near-spherical particles of carbonate which precipitate from
the supersaturated marine waters. These particles gradually grow as they move towards
shore, and may build dune structures, ultimately forming oolitic limestone. This is a
very permeable rock with a well-defined grain size. In contrast, mud flats are composed
of very small particles and so are highly impermeable, although they may include frag-
ments of shells or other larger particles. These can lead to local layers of high per-
meability which may provide dominant pathways through the system, causing water
floods to short-circuit through the rock. Also, biota can lead to horizons of high per-
meability within these layers and such layers can act as high permeability lenses or
conduits, which can again divert fluids injected into such rocks (Chapter 3).

2.7 Modelling flow in complex rocks

The above brief tour through some reservoir rocks has identified, in a simplified fash-
ion, the complexity and variability in the structure of permeable rocks which are host
to oil fields and geothermal reservoirs, and possible sites for CO2 sequestration or geo-
logical waste repositories. Given that such reservoirs are in the subsurface, it is not
possible to map out all of the detailed structure of the geological strata in order to
build a model, although different well-logging and seismic techniques can lead to a
reasonably detailed picture of the system on scales of 10–20 m. Ideally, one might then
develop effective flow models of the geological strata which are sufficiently flexible to
accommodate the uncertainty in the detailed structure of the formation. However, this
is a non-trivial task, especially when processes which operate at very small scales, such
as capillarity, can influence the predictions at large scale.

For example, a simple, yet surprisingly complex, modelling question is to assess the
potential fraction of the oil in place which may be recovered from a reservoir, given
a particular extraction strategy. Suppose we consider one of the turbidite layers at the
Loop Head cliffs and adopt a strategy of producing oil from the layer by injecting water
into one well and extracting oil at a second well as it is displaced by the injected water.
With time, we envisage that the water front migrates to the production well and eventu-
ally breaks through. Following water breakthrough, the effectiveness of the water flood
is reduced as the water begins to short-circuit through the reservoir (Figure 2.11) and
the rate of growth of the region of the reservoir flooded with water decreases.

In order to predict the potential production from a reservoir, first, one might calculate
the volume of oil in the system which can be produced at a production well through the
injection of water (Figure 2.11). To this end, one needs to estimate the average porosity
of the rock, φ, and the volume of the reservoir which is likely to be swept by the water.
This depends on the location of the boundaries relative to the wells and the distribution
of pressure and hence pressure gradients which develop in the reservoir. The fraction of
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Figure 2.11 Schematic of the flow involved in oil production from a laterally extensive layer by water
flooding. The water progressively sweeps the oil towards the production well.

the reservoir from which one can reasonably expect to displace the oil may also depend
on the geological complexity of the system, in terms of layers, baffles, compartments,
folds, as seen in the figures above. A part of this estimation process also relates to the
volume of water which can be injected into the reservoir on an economic timescale.
Finally, we require parameterisations of the processes at smaller scales. For example,
the fraction of oil which can be displaced from the system depends on the details of
the displacement of oil by water within each pore; the key to this is to determine the
fraction of the oil which is retained in pore spaces by capillary forces, overcoming the
viscous stresses exerted by the passing water.

Combining all these calculations leads to an estimate of the fraction of the total oil
which can be recovered. This typically represents about 5–10% of the rock volume,
and 10–50% of the pore space. Indeed, to date many of the oil fields in the North
Sea have recovered only 35–40% of the oil in place. Recovery of additional oil is
more challenging and requires an understanding of the distribution of oil in the field,
a model of the geological structure in sufficient detail to drill infill wells appropriately
and perhaps the use of some chemical systems, such as surfactants or polymers, to
reduce the short-circuiting of water through the field to the producing well. In order to
determine these values with more precision, more detailed models can be developed
to quantify the different physical and chemical processes. However, even with more
detailed models, there still remains uncertainty about the description of the topology of
the reservoir, including the location of the boundaries, and the details of the total pore
space and its distribution within these boundaries. Quantification of such uncertainty
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Figure 2.12 Time series of data illustrating the production of oil (dashed line) and then water and oil
as a function of time during the water flooding of a North Sea reservoir. The water flux is given by
the difference between the solid and dashed lines. The gaps in the data denote intervals of no
production and serve to illustrate the complexity of water flooding and oil production, especially at
offshore platforms. The long-term trend is a gradual evolution to less oil and more water production,
with the overall flow rate decreasing after reaching the maximum. However, large short-term
fluctuations arise in addition to the long-term trend.

is critical in establishing the possible range of recovery factors for the reservoir and
identifies the limitations in the precision of any model of the system.

To help illustrate this discussion, in Figure 2.12, we present a typical example of
oil and water production data from an oil field in the North Sea, offshore UK, over a
period of about 1 year. In this field, the flow was largely controlled by one injection
and one production well. It is seen that during the first quarter of the time shown on
the plot, the oil rate was low, but then increased to a maximum, coincident with the
successful deployment of water injection. However, soon after this, water arrived at
the production well, with the difference between the solid and dashed line denoting
the water flux. As a result, the oil–water ratio and the oil rate gradually decreased
with time. The data illustrate the complexity of real operations, in which the total flow
rate and oil–water ratio varies with time over a wide range of scales; some of this is
associated with operational issues, while some is associated with the complexity of the
flow system.

In order to model and quantify the different effects, we might build a hierarchy of
models to account for the different elements which influence the process. As with much
physical modelling, we examine the lengthscales in the problem, and then build models
appropriate for each lengthscale (Figure 2.13).
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Figure 2.13 Illustration of the range of lengthscales involved in flow in porous rocks.

In modelling the flow between wells, spaced several hundred metres apart, it is dif-
ficult to include all the details of the flow at the finest scale (even if they were known).
On the larger scale of individual layers in the geological strata, there are differences
in the properties of each layer, and this can lead to differences in the flow rate and
flow pattern in the different layers. As a consequence, if water is injected with uniform
pressure into a series of layers in the reservoir, some layers may be swept of oil, with
water breaking through to production well, long before others.

Guided by this discussion, and Figure 2.13, in Chapter 3 we introduce the governing
equations for single-phase flow in a porous layer, modelled over a scale sufficiently
large that there are well-defined continuum properties, and we then explore a series
of problems to quantify pressure-driven flow in heterogeneous rocks, including the
effects of multiple layers, lenses of high or low permeability, cross-bedding, seal rock
and faults as expected from the different geological strata described in this chapter. In
Chapter 4 we then assess how one might use such models, in combination with param-
eterisations of the uncertainty of the physical properties of the rock, to help establish
the mean and range of flow behaviour expected in the system, and how such models
may help inform engineering decisions.

In the remainder of the book, we then build from the simplified model of flow in het-
erogeneous rocks, to account for a number of additional physical processes which can
influence the flow and transport of fluids. These include modelling dispersion at pore
scale and on the larger scale of the geological heterogeneities. We also introduce mod-
els to describe interface instability when a less viscous fluid displaces a more viscous
fluid. We assess the role of interfacial tension and wetting in controlling the structure
of immiscible flows which arise when one fluid, for example water, displaces a second
fluid, for example oil. Having considered these processes in the context of pressure-
driven flows, we then turn the discussion to buoyancy-driven flows. We assess some of
the effects of heterogeneities in permeable rocks in dispersing buoyancy-driven flows,
as relevant for CO2 sequestration. In Chapter 11, we consider heat transport through
porous media, and explore the possible consequences of thermal inertia in controlling



27 2.7 Modelling flow in complex rocks

buoyancy-driven flows, as arise in both oil fields and geothermal systems. Finally, in
Chapter 12 we turn to compressible flows, relevant for gas production.

Guided by the complexity of the geology, which leads to considerable uncertainty in
model predictions, the focus in this book is on developing a very simplified picture of
the flows to build intuition about the different processes. Where possible we use simpli-
fied analytic solutions to illustrate the phenomena and complement more conventional
numerical models of these complex flow processes. Inevitably, only a fraction of pos-
sible flow geometries and flow processes are explored in this volume, but the aim is
to provide an introduction to a range of flow problems which illustrate the complexity
but also fascination of flow in porous rocks. Indeed, many examples are guided by the
geometry of laterally extensive, relatively thin layers of permeable rock, as described
in this chapter, for which the flow is dominantly two dimensional.



3 Flow in porous rocks

Flow through porous rocks occurs in the connected pore space, with volume fraction
or porosity φ. The interstitial speed of the flow corresponds to the actual speed of the
fluid particles, and is denoted vi in direction xi. Owing to the variations of porosity with
position in the rock, it is convenient to work with the volume transport. On a suitable
lengthscale, L, larger than the grain size, but over which the porosity has a well-defined
value, the volume flow in each direction ui can be defined in terms of the interstitial
speed in that direction, averaged over an area A = L2,

ui =
1

A

∫
φvidA (3.1)

The conservation of mass may then be written in terms of the Darcy or transport
velocity u in the form

φ
∂ρ

∂t
+ ∇.(ρu) = 0 (3.2)

assuming the matrix is incompressible. With incompressible fluid this reduces to the
simpler form

∇.u = 0 (3.3)

Coupled with the mass conservation, we require an equation of motion. For many
porous flow problems, the flow typically has a very low Reynolds number, and so
for an isotropic medium we can relate the applied pressure gradient with the averaged
viscous stress in the fluid, according to Darcy’s law which has the form

u = − k

μ
∇p (3.4)

where k is called the permeability, a function of the size and shape of the grains, and the
structure and packing of the porous medium composed of the grains or other pathways
through the matrix. k has units of length2 and in many permeable rocks has values of
order 0.001–1.0 Darcy, where 1.0 Darcy = 10−12 m2.

The assumption of low Reynolds number can be checked by writing the Reynolds
number, ρvd/μ, where the density ρ has value 1000 kg/m3 and the viscosity μ has

28
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Figure 3.1 Illustration of different grain packing structures in a permeable matrix, leading to different
forms of anisotropic permeability.

value of about 0.001 kg/m2/s for water. With grain size d ∼ 0.001–0.0001 m, and flow
speeds v of 1 m/year, the Reynolds number is about 0.01.

In an idealised system, composed of close packed glass ballotini, the permeability
typically follows the Kozeny–Carman relation

k =
φ3d2

180(1 − φ)2
(3.5)

where φ is the porosity. In general, however, with irregular shaped grains, the perme-
ability requires measurement. The model for flow in porous rocks is usually more com-
plex owing to the non-isotropic nature of many porous rocks. For example, the grains
may be asymmetric, or there may be some clay or other particles in the mixture which
result in preferred directions for flow (Figure 3.1). Indeed, after sediment is deposited,
it is typically of high water content. As it gradually compacts and reduces its water
content, as a result of the continually growing overburden of subsequent sediment, the
grains may deform or preferentially align, leading to anisotropic permeability.

We can generalise Darcy’s law to the form

ui = − 1

μ
Kij

∂p

∂xj
(3.6)

where Kij is the permeability tensor. With anisotropic media, the flow is no longer
necessarily parallel to the pressure gradient and we consider this in the discussion of
cross-bedding later in this chapter.

3.1 Source–sink flows

In many permeable rocks, the geological strata are highly layered (Chapter 2), and so
many flows occur within the layers. If the distance between the injector and producer
wells far exceeds the depth of the layer, then this leads to a flow which fills the depth
of the layer and hence is effectively two dimensional. Numerous solutions for flows
in such a planar two-dimensional geometry exist, especially in the case of steady flow
of one fluid. Indeed, the flow can be expressed in terms of a streamfunction ψ and a
potential φf (not to be confused with the porosity), where the potential is related to the
pressure by the relation p = −μφf /k, according to the relations
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u =

(
∂ψ

∂y
, −∂ψ

∂x

)
=

(
∂φf

∂x
,
∂φf

∂y

)
(3.7)

There are many books detailing techniques from the theory of complex variables
to solve for such two-dimensional flows, with a variety of boundary conditions, for
example by using the hodograph transform (e.g. Muskat, 1937; Bear, 1972) for two-
dimensional flow. We do not plan to expand on such approaches herein, except to note
that the solution for a source of strength m takes the form

u =
m

2πr2
(x, y) with φf =

m

2π
ln(r) where r2 = x2 + y2 (3.8)

A useful extension of this solution describes the flow from a source at position r1

towards a sink at the origin, with the flow confined within a circular impermeable
boundary of radius R centred at the origin

φf =
m

2π

[
ln |r − r1| + ln

∣∣∣∣r − R2

r1
2 r1

∣∣∣∣ − ln |r|
]

(3.9)

In this solution, to ensure that there is no flow across the boundary r = R, we have
introduced the image source outside the boundary at position R2

r2
1

r1. Owing to linearity, a

number of solutions of this form can be superposed, for example to represent a multiple
source and sink flow within a finite domain. The closed form solution is also useful
for estimating the swept volume of a reservoir after a finite time, in the case that a
reservoir is developed using vertical wells, and in the case that the injection fluid is
of comparable viscosity to the formation fluid. To this end, we integrate along each
streamline to find the location of the leading edge of the injected fluid after a given time.

In Figure 3.2, we illustrate the potential, φf , for the flow associated with a source–
sink pair located at x = 50 and x = −50 in a circular domain of radius 100. We can
calculate the path followed by a ring of particles released from the injection well at time
t = 0 at a number of successive times by using the velocity field associated with this
source–sink pair. The position of the particles at each time are calculated numerically
using the analytical expression for the flow field in the cases that the source and sink
are located at x = 9 and −9 with the domain of radius 10 (Figure 3.3). It is seen that the
swept area develops a tear drop shape as the flow advances through the porous medium.
Eventually the fluid reaches the sink and some injection fluid is then extracted, reducing
the sweep of the remaining porous layer.

In some situations, reservoirs are developed using horizontal wells; these are drilled
using a drill bit which can establish an angle with the drilled hole, and thereby change
direction of the hole. In that case, we can model the flow with line sources and sinks.
If the spacing between such horizontal sources and sinks is comparable to the length
of the wells, or if the flow domain is essentially a long channelised system, with chan-
nel width much smaller than the spacing between the wells, then the flow may be
approximated, to leading order, as having one horizontal dimension. If the reservoir
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Figure 3.2 Potential field for a source–sink flow confined within a circular boundary. Source and sink
are located along a common diameter, each midway between the centre and the circumference of the
model reservoir. A black and white version of the figure will appear in some formats. For the colour
version, please refer to the plate section.
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Figure 3.3 Illustration of the migration of a pulse of tracer released into the flow at the injection well
as it is carried by the flow towards the producing well. Flow has the potential field shown in
Figure 3.2. Curves correspond to the position of the tracer at different times following release. The
shape of the outer domain is circular. The area within the tracer provides a simplified picture of the
area of the reservoir from which the oil has been swept (although effects of fractional flow will be
added to this picture in Chapter 7).
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has vertical variations in the permeability associated with isolated shale or clay layers,
this can lead to a vertical structure in the flow, depending on whether these baffles lead
to hydraulic isolation or reduced hydraulic coupling of different layers in the reservoir.
We now consider some of these effects.

3.2 Sweep and flow in a two-layer system

As a simple example of the use of Darcy’s law we can consider flow in a confined
layered permeable rock, including the case in which the flow is parallel to the strata
and perpendicular to the strata (Figure 3.4a,b).

In the case of flow in series (Figure 3.4a), driven by a pressure decrease across
the medium from pressure PA to PC we apply Darcy’s law to the first section of the
medium, 0 < x < L, with permeability k1 and the second section, L < x < 2L, with
permeability k2 to find that in order that the flow is uniform the pressure PB is given by
the algebraic mean of the two pressures at the end of the sample,

PB =
k1PA + k2PC

k1 + k2
(3.10)

k1 k2 PCPA

L L

h

k1

k2

PCPA h

2L

(b)

(a)

Figure 3.4 (a) Flow perpendicular to the strata; (b) flow parallel to the strata.
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and thereby we find the flow has the corresponding uniform Darcy flow throughout the
sample,

u =
2k1k2

(k1 + k2)

(PA − PC)

2μL
(3.11)

In the case in which the samples are arranged in parallel, as shown in Figure 3.4b, then,
assuming the samples are in good contact all along the boundary, the pressure in both
layers will be the same at each position along the boundary. This leads to the result that
the vertically averaged Darcy flow is given by

u =

(
k1 + k2

2

)
(PA − PC)

2μL
(3.12)

It follows that the effective permeability of the layers when arranged in parallel is
greater than with the layers in series, except for the case k1 = k2 when they are identical.
This leads to the interesting question of how to maximize the flux of original formation
fluid at the production well through injection of a second fluid. The case of flow in
parallel leads to a greater flux at early times; this is because the flow speed in the high
permeability layer is larger than that in the low permeability layer, and so this layer
is swept of original fluid very rapidly. Once this layer is swept, however, the flux of
original formation fluid through the layers in series becomes greater; as a consequence,
all the original fluid is swept from the system with the layers in series before the low
permeability layer is swept in the case in which the layers are in parallel (Figure 3.5a).

The value of the production typically decays exponentially with time according to
models of economics in which value is discounted with time. This leads to a net present
value of some future production at time t given by

V(t) = Vo exp(−λt) (3.13)

where Vo is the present value of that production, and λ is related to the discount rate in
that 1/λ is the time for the value to decrease by a factor e. In order to evaluate the net
present value of a scheme, we therefore integrate into the future the product of the value
and the production rate (Figure 3.5b). Depending on the discount rate, this may imply
the rapid early production associated with flow in parallel is most valuable, or that the
later, higher flux in the production associated with the layers in series is more valuable.

In the case of flow in parallel, once the higher permeability layer is all swept, then
some of the injection fluid is produced. In the analogous situation of oil recovery,
this would correspond to water and oil being co-produced. This adds a second chal-
lenge which is the need for separation of the produced water from the oil and then
disposal of the produced water which can be costly owing to the need to filter/clean
this water. In some reservoirs, the effect of such short-circuiting of the reservoir, as for
the parallel flow model, driven by the injection of liquid leads to the water production
rate being over ten times the oil production rate. Ultimately, the ability to process the
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Figure 3.5 Example calculation comparing (a) the cumulative production and (b) the cumulative
value with time from a system with the layers in parallel and the layers in series. In this specific
case, the discount rate is sufficiently rapid that the cumulative value for the parallel arrangement
exceeds that for the series arrangement.

produced water economically may become a rate-limiting factor in the late-life eco-
nomics of a well and hence on the overall fraction of the original oil in place which can
be recovered. However, in Chapter 8, we illustrate the potential for the use of polymers
in reducing this problem by the process of flow diversion.

3.3 Sweep in a multi-layer system

Although the above example is very helpful in identifying some of the challenges of
producing oil, many rocks are composed of multiple sedimentary layers with different
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permeability and hence different flow speeds and rates of sweep. In a laterally extensive
system, in which there are wells placed a large distance apart relative to the thickness
of the layers, then if we assume that the wells open into each of the layers, that the
layers are independent, and that the two liquid phases have the same viscosity, μ, then
the pressure will vary at a similar rate through each layer. As a result the net flow will
be given by

Qtotal =
�hiki

μ

∂p

∂x
(3.14)

while the flow in layer i is

Qi =
hiki

�hiki
Qtotal (3.15a)

with ki and hi the permeability and thickness of layer i. The time of flight in layer i,
given by the travel time over the well–well distance L, has value

ti = hiLφ/Qi (3.15b)

The effect of the variable time of flight is that in different layers the injected fluid
(water) arrives at the production well at different times. This leads to a gradual evo-
lution of the flow rate of original fluid (oil) at the production well. For example, we
have calculated the flux through a simplified model of a 20-layer rock (cf. the Loop
Head turbidite, Figure 2.3b), in which there is a range of permeabilities as shown in
Figure 3.6a. This leads to a variation in the fraction of the flow in each layer, and hence
the travel time of the fluid through each layer (Figure 3.6b). In turn, the fractional flow
of injected fluid increases with time as the injected fluid in each layer arrives at the
production well (Figure 3.6c). The time to sweep the lowest permeability layers may
be much longer than that required to sweep the highest permeability layers, and this
leads to some of the difficulty in recovering oil from a layered reservoir.

3.4 Lenses and trapping

As well as the effects of layering impeding efforts to recover all of the original fluid in
the formation, lenses of low or high permeability in the formation can lead to the flow
bypassing large regions of the rock, and thereby limiting the efficiency of the sweep.
For example, if there is a laterally extensive lens of permeability k2 and thickness d
embedded in a layer of sediment of permeability k1 and thickness H, perhaps as a result
of dune formation or reworking of sand and silt in a tidal zone during the formation of
the rock, then as fluid migrates through the rock it may be diverted into the lens if it
has higher permeability than the formation, or otherwise will be diverted around a lens
of low permeability (cf. Figure 3.7).



36 Flow in porous rocks

Permeability

(a)

Permeability

F
ra

ct
io

na
l f

lu
x 

in
 e

ac
h 

la
ye

r

0
0 5 10 15 20 25

0.05

0.1

0.15

0.2

0.25

(b)

0

0.25

0.5

0.75 Water

Oil

1

0 1 2 3 4 5

F
ra

ct
io

na
l f

lo
w

 o
f

w
at

er
 a

nd
 o

il

Time

(c)

D
ep

th
 o

f 
la

ye
r

0
0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

1.2

Figure 3.6 (a) Variation of the thickness and permeability in a model 20-layer reservoir; each dot
corresponds to one layer. (b) Fraction of the flow in each layer as a function of the permeability of
the layer, where the thickness of each layer is shown in (a). (c) The fraction of the total flux
composed of the injection fluid, as a function of time. The progressive sweep of water through the
high permeability layers leads to successive watering out of the layers, and an increase in the water
production rate.
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Figure 3.7 Flow diversion into a lens of high permeability
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Figure 3.8 Fraction of the flow which bypasses the formation through a high permeability lens, as a
function of the permeability ratio and thickness of the lens as a fraction of the total layer depth, d/H,
shown by the numbers on the curves.

Providing the lens is much longer than the width H, then in the region of the lens the
pressure gradient is approximately the same inside and outside the lens, so a flow in
the along layer direction will be partitioned into a fraction in the lens F and a fraction
outside the lens, 1 − F, in the proportion

F

(1 − F)
=

k2d

k1(H − d)
(3.16)

with the total flow Q in the formation being given by

Q = − 1

μ
[k1(H − d) + k2d]dp

dx
= −Hk

μ

dp

dx
(3.17)
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Globally the flux through the formation has value

Q =
H	p

μ
∫ L

0
dx
k

(3.18)

in terms of the pressure drop across the layer, 	p. We can then find the local speed in
the lens, u2(d), which is a function of the thickness of the lens, d(x), and also the speed
outside the lens, u1(d), in terms of the total flux and the permeability ratio, with values
given by

u2(d) =
k2

k2d + k1(H − d)
Q and u1(d) =

k1

k2d + k1(H − d)
Q (3.19)

It is interesting to note that the flux ratio may be as large as 10:1 even if the lens is only
1 m thick in a layer of thickness 100 m, provided the permeability ratio is 1:1000. This
may be realistic with relatively large grains in the lens, and smaller grains, mixed with
clay in the remainder of the formation. In this case, most of the formation is bypassed,
and 90% of the flow passes through the thin high permeability streak. The remaining
fluid in the formation will then require a much longer time to be displaced than may
be estimated based on the layer thickness and the flux. Indeed, without the lens, for
the same pressure gradient, the flux would be reduced to about 0.1 of the value with
the lens.

One of the key features of this flow is the range of travel times of fluid particles from
one end of the porous layer to the other, which, in turn, depends on the time spent in
the lens of high permeability. In the simple parallel flow model, with a symmetric lens,
located in the centre of the aquifer, then for a total flux, Q, we can label the streamfunc-
tion which passes through the boundary between the lens and the surrounding medium
when the thickness of the lens is d as ψ(d). In travelling from the point x = 0 upstream
to a point x = L downstream, the time a particle spends within the lens travelling along
this specific streamline, ψ(d) say, is given by

t2(d) = φ

∫ x2(d)

x1(d)

dx

u2
(3.20)

where the lens has thickness d at points x1 and x2. It also spends a time

t1(d) = φ

∫ x1(d)

0

dx

u1
+ φ

∫ L

x2(d)

dx

u1
(3.21)

ouside the lens, in the regions upstream and downstream of the lens. The total travel
time is then given by t1(d) + t2(d) in travelling from x = 0 to x = L, assuming the lens
thickness increases monotonically to a maximum and then decreases back to zero.

If we follow streamlines which cross the lens at different times, the travel time also
changes as more or less time is spent in the lens. This has a key effect in controlling
the shape of a pulse of tracer injected into the formation, and hence in dispersing the
pulse; we explore this further in Chapter 5.
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3.5 Wavy layers

In some rocks, the boundary between successive layers may be wavy or sinuous owing
to the depositional environment; for example, in shallow marine settings where wave
and tidal action combine to generate sand bars. In this case, the effective permeability
of the formation and the fraction of the formation which may be swept by the flow
will depend on the spatial distribution of the different layers. In Figure 3.9a, we show
an image of a shallow marine sediment, illustrating a wavy horizon within the strata.
A simple model of a wavy interface between the two layers of rock, with depth

d(x) = H(0.5 + a sin(2nπx/L)) (3.22a)

of one layer and H − d(x) of the other layer, leads to the integral expression for the
effective permeability in a region 0 < x < L which is host to n waves in the interface

k =
L

H

[∫ L

0

dx

k1d(x) + k2(H − d(x))

]−1

(3.22b)

In this model, we assume the upper and lower boundary of the domain is sealed. For
such a sinuous interface, centred in the middle of the domain (Figure 3.9b), the effec-
tive permeability then depends on the amplitude of the wavy interface, aH (Eq. 3.22a)
and the permeability contrast between the layers, k2/k1 as shown in Figure 3.10. With
a permeability ratio of 1:10 and a wave amplitude a = 0.25 of the total layer thick-
ness, the permeability is a fraction 0.502 of the maximum permeability, k1, whereas
with two parallel layers, and no sinuous interface, the permeability is a fraction 0.55 of
the maximum. Such reductions in the effective permeability, resulting from the regions
where there is a thicker zone of low permeability rock, can lead to reduced flow rates
and production as compared to the parallel-sided two-layer model. In Chapter 10, we
return to wavy horizons in the context of buoyancy-driven flow, and explore how they
can lead to trapping of gas or CO2.

3.6 Seal layers

In the examples described above concerning layered rocks, we have assumed the layers
are in good pressure communication, and then illustrated the associated flow patterns.
However, if there is a low permeability seal layer, with permeability kb, between suc-
cessive layers of reservoir rock, of permeability ku and kl, then this can limit the
flow between successive layers in the formation and pressure gradients may develop
between the layers. In turn, such low permeability layers may limit the vertical extent of
the sweep of fluid through a reservoir. In order to illustrate the effect, we can consider
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Figure 3.9 (a) Illustration of a wavy horizon in a shallow marine sediment in the Dingle Peninsula,
South West Ireland; (b) cartoon of a sinuous interface used in the modelling of effective
permeability. A black and white version of this figure will appear in some formats. For the colour
version, please refer to the plate section.
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Figure 3.10 Calculation of the dimensionless permeability of layers with sinuous interfaces, for the
case in which the amplitude of the wavy interface a/H is 0.125, 0.25 and 0.375, with the two outer
values labelled on the graph. Values are shown for different values of the permeability ratio. The
permeability is scaled relative to the value of the more permeable layer.

the two-dimensional flow in the case in which a two-layer reservoir has an injection
well and producing well located within the same layer, a distance L apart, and a thin
low permeability layer, of thickness b, separating this from a second permeable layer.
We assume for simplicity that the outer boundary of each of these layers is imperme-
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Figure 3.11 Flow from an injector to a producer through a two-layer permeable rock in which the
layers are separated by a low permeability seal layer. The flow migrates across the low permeability
seal layer into the lower high permeability layer, leading to an increase in the effective thickness of
the flow domain which is being swept.

able. We can then explore the fraction of the flow which migrates through neighbouring
permeable layers as a function of the permeability and thickness of the seal rock, and
the permeability and thickness of the two permeable layers (Figure 3.11). As may be
typical, we assume that the interwell spacing is large compared to the vertical extent of
the layers, so that there is a large surface area connecting the two layers.

To solve for the flow in such a long, thin reservoir, we observe that to leading order
the flow will be parallel to the line joining the wells, but that there will be a slow
leakage flow between the two layers associated with the pressure mismatch between
the layers. Near the injector well this will drive the flow into the second layer, while
near the producer well this will drive the flow back into the primary layer in which
the wells supply and extract the flow (Figure 3.11). Given the separation of the scales
between the along-layer and cross-layer flow, we will develop an approximate solu-
tion, by expanding in terms of the small aspect ratio of the layers. First, however, it is
worth noting the two limiting physical balances in the problem. If kb/b � ku/L, then
the resistance to flow through the seal rock is small compared to the resistance to flow
through layer 1 from the injector to the producer. In this limit, there will be near pres-
sure equilibrium between the layers, and a substantial volume swept through the lower
layer, with the total flux scaling as (kuhu + klhl)	P/Lμ, where ku and kl are the upper
and lower layer permeabilities and hu and hl the upper and lower layer depths. In the
other limit, kb/b � ku/L then the resistance to flow across the layers is large compared
to the resistance to flow from the injector to producer, and so the flow will largely be
limited to the upper layer in which the fluids are injected, so that the flux will tend to
the value kuhu	P/μL.

We now develop an asymptotic expansion to capture the details of the transition
from one of these regimes to the other. It is convenient to work with dimensionless
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equations, and so we scale the spatial coordinates (x, y) in terms of the length and
thickness, (L, hu), of the primary layer containing the wells, to define dimensionless
coordinates (x̂, ŷ). We also assume that the pressure relative to the background P is
scaled relative to the pressure difference between the injector and producer well, 	P,
so that the dimensionless pressure is given by p̂ = P	P. Finally we use subscripts
i = u, l to denote the property of the primary layer, i = u and secondary layer i = l.
(Note the ‘adventurous’ reader could extend the approach to explore the flow in a
multi-layer system.) The reference velocity is U = ku	P/μL and the dimensionless
velocities are then ûi = ui/U. Darcy’s law requires that in layer i

ûi = − ki

ku
∇p̂i (3.23)

and combining this with the equation for continuity, we find

ε2 ∂2p̂i

∂ x̂2 +
∂2p̂i

∂ ŷ2 = 0 (3.24)

where ε = H/L.
The boundary conditions for the problem require that the dimensionless pressure at

the two ends of the upper layer, x̂ = 0 and x̂ = 1, are given by

p̂u(0) = 1 and p̂u(1) = 0 (3.25)

In this calculation, we aim to find the dimensionless horizontal speed of the flow in the
upper layer at both x̂ = 0, 1. The quantity

∂ p̂u

∂ x̂

∣∣∣∣
x=0

− 1 (3.26)

denotes the dimensionless increase in the flow speed, relative to the single layer case,
owing to any flow through the lower permeable layer.

In the lower, secondary layer we require

∂ p̂l

∂ x̂
= 0 at x̂ = 0, 1 (3.27)

since there is no flux in that layer through the end boundaries of the domain, x̂ = 0, 1.
In addition, there is no flow through the upper and lower horizontal boundaries of the
two-layer domain, which we assume to be impermeable. This leads to the constraint

∂ p̂u

∂ ŷ
= 0 at ŷ = 1 and

∂ p̂l

∂ ŷ
= 0 at ŷ = −H2 (3.28)

where H2 = hl/hu. Finally at the interface between the two layers, we require that
the flux normal to the boundary is continuous, and given by the flux across the low
permeability seal layer
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∂ p̂u

∂ ŷ
= K

∂ p̂l

∂ ŷ
= ω(p̂u − p̂l) (3.29)

where ω = hukb
kb and we assume the seal layer has depth b � hu, hl and permeability

kb � ku.
To proceed we introduce a power series expansion for the pressure in each layer,

p̂i = p̂o
i (x̂, ŷ) + ε2p̂1

i (x̂, ŷ) + . . . (3.30)

and, in developing the solution, we determine a consistency condition for the boundary
condition (3.29).

The leading order solution for the flow involves two functions p̂o
i (x̂, ŷ), one for each

of the layers. On inspection it is seen that there is no dependence on the vertical coordi-
nate ŷ owing to the boundary condition along the upper and lower impermeable bound-
aries of the domain. This implies there is a near uniform horizontal flow in each layer
at each position x̂, which can slowly change owing to the leakage between the layers.
In order to determine the functions p̂o

i (x̂) we are required to solve the O(ε2) problem
relating to the flux across the boundary; in solving this we also require that the flux
associated with the cross-layer flow changes slowly along each layer, for consistency,
so that the flow remains approximately parallel.

The second terms in the perturbation expansion for each layer satisfy the differential
equations for i = u, l

∂2p̂1
i

∂ ŷ2 = −∂2p̂o
i

∂ x̂2 (3.31)

and these equations have solutions

p̂1
u(x̂, ŷ) = −∂2p̂o

u

∂ x̂2

[
ŷ2

2
− ŷ

]
+ fu(x̂) (3.32a)

p̂1
l (x̂, ŷ) = −∂2p̂o

l

∂ x̂2

[
ŷ2

2
+ H2ŷ

]
+ fu(x̂) (3.32b)

Here fu(x̂) and fl(x̂) are unknown functions which can be determined by higher order
terms in the expansion. The vertical structure of the solutions (3.32a,b) has been
selected to satisfy the boundary conditions at the top, ŷ = 1, and bottom, ŷ = −H2,
impermeable boundaries. At the interface between the two layers, ŷ = 0 we then have

ε2 ∂2p̂o
u

∂ x̂2
= −ε2KH2

∂2p̂o
l

∂ x̂2
= ω[p̂o

u − p̂o
l ] (3.33)

In the case ε �ω, we require p̂o
u ∼ p̂o

l so that the flux in the upper and lower layers
are similar; the analysis then breaks down in detail near the points x̂ = 0 and x̂ = 1 since
there is a narrow boundary layer across which there is flow from the upper layer to the
lower layer. In the case ε � ω, we require p̂o

u = 1 − x and p̂o
l = 0 so the flow in the lower
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layer is small compared to the upper layer and there is little enhancement of the flow.
In the intermediate regime, ω ∼ O(ε2), we define

� =
ω

ε2
(3.34)

and seek solutions for p̂u and p̂l which emerge from combining equations (3.32) and
(3.33) and solving(

∂2

∂ x̂2 − �

)(
KH2

∂2

∂ x̂2 − �

)
p̂o

u = �2p̂o
u (3.35)

This has solutions

p̂o
u(x̂) = au exp(x̂) + bu exp(−x̂) + cux̂ + du (3.36)

where

 =

[
�

(
1 + H2K

H2K

)]1/2

(3.37)

and the coefficients ai, . . . , di emerge by applying the boundary conditions for each
layer. After some algebra, we find that

a1 =
1

2(1 − exp()) − 
H2K (1 + exp())

; b1 = − exp()a1 ; (3.38a)

c1 = 

(
1 + exp()

H2K

)
a1 ; d1 = 1 − a1(1 − exp()) (3.38b)

so the dimensionless speed at x̂ = 0, 1 in the upper layer is given by − ∂ p̂o
u

∂ x̂ |x=0 and leads
to the expression for the flux

Q̂ = − [(1 + H2K)(1 + exp())]
[2KH2(1 − exp()) −  (1 + exp())]

(3.38c)

It may be shown that this reduces to the limits

Q̂ = 1 as � → 0 (3.39a)

Q̂ → (1 + KH2) as � → ∞ (3.39b)

provided KH2 remains finite. These correspond to either no flow in the lower layer or
fully coupled flow in the lower layer, in which the pressure gradient in each layer
is essentially the same, depending on whether the permeability of the seal rock is
small, and hence allows no communication between the layers, or the layers are in
good communication and the seal rock has no influence on the flow. The more general
flow solution for Q̂, which lies between these two limits, is shown in Figure 3.12 and
depends in detail on the value of � and H2K.
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Figure 3.12 Dimensionless flow as the permeability of the seal rock increases, as parameterised by .
The leakage flux through the seal rock increases the total flow by sweeping some of the lower layer.
Here we take KH2 = 1 so in the limit of good pressure communication the flux is double that in a
single layer.

In practice, it would be very difficult to determine the permeability of such a seal
layer, since it may be fractured, or spatially variable in thickness or laterally discon-
tinuous owing to erosion by subsequent geological flows. If we could generate a prob-
ability distribution for the likely range of permeability of this seal rock, then we can
determine the expected enhancement of the flux owing to the leakage into the lower
layer as a function of this probability distribution using the above relation for the net
flux (see Chapter 4).

3.7 Effects of multiple baffles and reduced vertical permeability

The above model calculations have identified the impact of weakly permeable baffles
in isolating the horizontal flow in different parts of a permeable rock. A more direct
effect of such baffles is to reduce the effective permeability normal to the direction
of the baffles for a pressure-driven flow. With a pressure-driven flow normal to the
orientation of a series of permeable baffles, the flow is diverted around the baffles and
so has a considerably greater flow path which leads to a greater pressure drop. The
cartoon (Figure 3.13) illustrates a possible example of such a convoluted flow. In the
case that the openings in individual layers of baffles are of width d and that these
openings are a distance of order L apart, and the vertical spacing between successive
layers of baffles is h where L � h � d, we can approximate the pressure loss through
the system as follows, assuming two-dimensional flow.

The pressure loss in moving through such a system can be estimated by considering
the pressure loss as the flow migrates through the gaps between the baffles, of width d,
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Figure 3.13 Convoluted flow around a series of fractured baffles.

using results from point sources and point sinks, and the pressure loss as the flow
migrates a distance L/2 from one inter-baffle opening to the next by using the results
for pressure loss in a parallel-sided channel. The pressure loss as a sink flow, in a half-
space, with flux Q, contracts from the inter-layer width h to one half the gap width d/2,
and then as a source flow expands from a radius comparable to one half the gap width
d to a radius comparable to the inter-layer distance h, scales as

	p1 =
Qμ

πk
ln

(
2h

d

)
(3.40)

The pressure drop as the flow Q/2 migrates parallel to the baffles, a distance L/2,
through a layer of thickness h, prior to passing through the next gap follows the scaling

	p2 =
μQL

4kh
(3.41)

The approximate pressure drop associated with the flux Q, which extends over a length
L, as it moves vertically a distance h is the sum of these two pressure losses. We can
compare this to the pressure loss in a purely vertical flow, in the absence of baffles,

	p =
μQh

Lk
(3.42)

and this leads to the ratio K of the effective permeability of the baffled system, com-
pared to the original system, as given by

K =

(
h

L

)[
L

4h
+

1

π
ln

(
2h

d

)]−1

(3.43)

The value of K is shown in Figure 3.14 as a function of h/L � 1 for two values of
h/d � 1. In the case that d ∼ h, the effect of the pressure loss through the baffles
becomes small, and it is the excursion of the flow along the baffles, between successive
openings in the baffles, which accounts for the main loss of pressure (Eq. (3.41)). In
the case that the gaps between the baffles are very narrow, d � h, the pressure loss in
passing through each layer (Eq. (3.40)) may, in contrast, have the dominant effect in
reducing the effective permeability.
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Figure 3.14 Variation of the effective dimensionless permeability of a baffled porous rock as a
function of the ratio of the spacing between successive rows of the baffles and the length of the
baffles, h/L (Figure 3.13) for the three values d/h = 0.01, 0.1 and 0.5 corresponding to the width of
the gap between successive baffles through which the flow passes, compared to the spacing between
successive rows of baffles.

We return to this picture of a baffled permeable rock in Chapter 10, where we explore
the effect of such baffles on buoyancy-driven flow rather than the uniform pressure-
driven flow considered herein. In that case, the baffles can have a very different effect
on the flow, and we show the above effective permeabilities do not describe the flow in
that case.

3.8 Faults

Another heterogeneity which arises in permeable rock are faults, across which there
may be some offset of the geological strata. Faults may be permeable if they remain
open following formation, or in some cases, the geothermal circulation which develops
following their formation can lead to cement precipitation and closure of the fault
suppressing the flow across and along the fault. We envisage that the vertical offset
across a fault reduces the vertical extent of the flow path from the layer thickness
H to the smaller value h � H, and that in the fault, of thickness b there is a layer of
permeability kf � k where k is the permeability of the formation. The pressure decrease
across the fault, in a region −H < x < H upstream to downstream of the fault, may then
be approximated, in a very simple way by combining the pressure fall across a one-
quarter sink, followed by the loss across the fault, and then across a one-quarter source,
as suggested in Figure 3.15.
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Figure 3.15 Schematic of the flow through an offset fault, indicating the convergence and then
divergence of the flow which produces a large pressure drop and hence decreases the effective
permeability of the formation.

This leads to a pressure decrease across each of the one-quarter sinks which scales as

	ps ≈ 2μQln
(H

h

)
πk

(3.44)

combined with the pressure loss across the fault, which is

	pf ≈ Qμb

hkb
(3.45)

If we compare this to the case of a uniform aquifer with no fault, the pressure loss
in the region −H < x < H is 2Qμ/k leading to a dimensionless permeability in the
region −H < x < H around the fault of order

keff

k
≈

(
1

π
ln

(
H

h

)
+

kb

2kbh

)−1

(3.46)

In turn, based on our earlier results for layers in series, if there are a source and sink
well which are a distance L apart, and which drive flow through the region with the
fault, then, for a one-dimensional flow, the effective well–well permeability, kw, will
take the value

kw =

(
Lkkeff

2Hk + (L − 2H)keff

)
(3.47)

in terms of keff given by Eq. (3.46). Since keff may be as small as 0.01k if H/L ∼ 0.1,
the fault may lead to an effective reduction of the well–well permeability by a factor
of order 10, leading to a substantial reduction in flow rate.
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Figure 3.16 (a) Photograph of cross-bedding in Glen Canyon, USA. The horizontal scale of the figure
is about 10 m and (b) schematic diagram of cross-bedded deposit, with angle θ between the
orientation of the bedding and the impermeable bounding rock, as used in the model prediction of
cross-flow. A black and white version of this figure will appear in some formats. For the colour
version, please refer to the plate section.

3.9 Cross-bedding

One of the important features of many fluvial deposits, and the boundaries between
some aeolian deposits is the presence of cross-bedding, whereby the depositional layers
are inclined at an angle to the main depositional direction (Figures 2.6, 2.8, 3.16).
Typically, the permeability is greater in the direction parallel to the deposition, and so
in this case, the flow may tend to flow at an angle to the direction of the main geological
strata. However, if the lateral boundaries of the cross-bedded deposit are impermeable,
then the flow will migrate parallel to the boundaries rather than along the direction
of maximum permeability (Figure 3.16). We now model this flow. Let us consider the
bedding planes to have angle θ to the direction of flow, and the permeability of the rock
to be k1 in that direction and k2 < k1 in the cross-bed direction.

If there is a pressure gradient Gx in the direction, x, of the formation, then this has a
component Gx cos θ in the direction of the bedding plane, and Gx sin θ in the direction
normal to this. These two pressure gradient components lead to a flow in the x direction



50 Flow in porous rocks

ux(Gx) =
1

μ

(
k1Gx cos2 θ + k2Gx sin2 θ

)
(3.48)

and in the y direction normal to the lateral boundaries, given by

vx(Gx) =
1

μ
(k1Gx sin θ cos θ − k2Gx cos θ sin θ) (3.49)

In order that there is no flow normal to the boundaries of the domain, a pressure gradi-
ent, Gy, will develop normal to the boundaries to suppress the flow (3.49) normal to the
boundaries produced by the along-layer pressure gradient Gx. The pressure gradient,
Gy, leads to a flow normal to the boundaries

vy(Gy) =
1

μ

(
k1Gy sin2 θ + k2Gy cos2 θ

)
(3.50)

and a flow along the layer

uy(Gy) =
1

μ

(
k1Gy sin θ cos θ − k2Gy cos θ sin θ

)
(3.51)

If we impose the condition of no flow normal to the boundaries,

vx(Gx) + vy(Gy) = 0 (3.52)

we find a relation between Gy and Gx so that the net flow along the layer, ux(Gx) +
uy(Gy) is given by

u =
Gx

μ

(
k1k2

k1 sin2 θ + k2 cos2 θ

)
(3.53)
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Figure 3.17 Graph illustrating the reduction in the effective (dimensionless) permeability as a
function of the angle of the cross-bedding and the ratio of the minimum to maximum permeability
of the cross-bedded deposit with values of 0.01, 0.2 and 0.5, as shown.
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leading to the prediction that the effective permeability as a function of the angle of
inclination of the bedding

keff =

(
k1k2

k1 sin2 θ + k2 cos2 θ

)
(3.54)

Figure 3.17 illustrates the reduction in the permeability associated with such anisotropy,
as a function of the permeability ratio k2/k1 and the angle of the beds, θ , to the x
direction.

3.10 Exercises

1. Calculate the effective permeability of a two-layer rock, of thickness H and length
L(� H) bounded above and below by impermeable boundaries in which one layer
has thickness d(x) = Hx/L and permeability k1 and the other layer has thickness
H−d(x) and permeability k2, for 0 ≤ x ≤ L. This illustrates the effect of the pinching
out of one layer by another.

2. Calculate the minimum travel time between a source and a sink located at the points
(a, 0) and (−a, 0) within a circular impermeable boundary centred at the origin and
of radius R, when there is a two-dimensional volume flux of fluid, Q, supplied to the
source. This illustrates the control on the water breakthrough time of the location of
the source–sink relative to the boundary of the domain.

3. For a two-dimensional domain, find the velocity potential, φf and streamfunction
ψ in the case that there is a uniform flow (u, v) = (U, 0) far upstream, x → −∞,
and a point source which supplies two-dimensional flux Q at the origin. Calculate
how far upstream, x < 0, the flow from the source advances before being arrested
by the oncoming flow. Show that far downstream, x → ∞, the flux issuing from the
source is located in the region −Q/2U < y < Q/2U.

4. A two-dimensional reservoir consists of two layers of permeable rock, each of thick-
ness H and lateral extent L � H, and of permeability k. The layers are separated
by an impermeable layer of shale, at y = 0, of thickness b � H and permeability
kb � k, and the exterior of the flow domain, on the four surfaces y = H + b/2,
y = −H −b/2, x = 0 and x = L are impermeable. A line source located in the region
b/2 < y < H + b/2 at x = 0 has a pressure p + 	p while a sink, located at x = L and
−H − b/2 < y < −b/2 has pressure p. Find the flow from the source to the sink,
and hence calculate the effective permeability. This illustrates the impact of a seal
layer in reducing the flow between a source and a sink located on either side of the
seal, in an otherwise uniform permeable rock.



4 Accounting for uncertainty

As mentioned in Chapter 2, it is difficult to describe the full detail of the subsur-
face rocks, especially in terms of the layer thicknesses, cross-bedding, seal layers, and
the presence and permeability of faults and fractures, yet such details can be key for
modelling the effective flow properties, as illustrated with the simplified models of
Chapter 3. The difficulty arises from the remoteness of subsurface geological strata,
the spatial resolution of the methods to image the system remotely, and ultimately
the computational challenge even if all the data were available. Well data provide a
highly resolved vertical sample of the full reservoir, but provide very limited spatial
information. Geophysical techniques, such as seismic imaging, provide a fully three-
dimensional image of the system, but can only distinguish features on scales typically
of order 10 m or greater. This contrasts with the possible cm to m scale heterogeneities
in rock fabric which can impact the flow and sweep patterns, as described in Chap-
ters 2 and 3.

To test the sensitivity of models to the unknown properties of the system, such as
seal layers, lenses and heterogeneities within the strata, one can parameterise the prop-
erties and test the sensitivity of model predictions to uncertainties in the parameters.
In developing the models, and exploring the sensitivity of the model predictions, it is
important to identify the key uncertainties in a problem, so that the range of possible
outputs from a model reflects the uncertainty. In assessing a particular model predic-
tion, one can then quantify the expected outcome and the variance of the outcome
relative to the mean. In general in fluid flow problems, the boundary conditions are
critical and this was reflected in some of the models in Chapter 3 concerning systems
with seal rock, faults and multiple layers. Uncertainty analysis should therefore reflect
the uncertainty in the position of the boundaries amongst other properties. We now
consider a number of simple porous flow problems to illustrate the possible variance
in model predictions associated with parameterisation of permeabilities and boundary
locations. We then explore one approach to determine the sensitivity of model predic-
tions based on the uncertainty in the precise values of the parameters governing the
problem. The approach outlined in this chapter is simplified, but serves to highlight the
role of simplified models in assessing uncertainty in complex physical processes. For
more formal accounts of uncertainty analysis, and the challenge of accounting for the

52
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unknown details of heterogeneities, amongst many papers, there are fascinating contri-
butions by Chiles and Delfiner (1999), Gerritson and Durlofsky (2005) and Naff et al.
(1998).

4.1 Sweep in the layered reservoir

A very simple example to illustrate the variance in model outputs concerns the flow and
sweep in a quasi-one-dimensional model of a permeable rock composed of 20 parallel
layers of equal thickness, each connected to a producer and injector well. We assume
that there is the same pressure difference applied across each layer, and that the fluid
within each layer is displaced by a uniform flood front and that the speed in the different
layers varies with the permeability of that layer. We assume that the permeability of
each layer is known to lie within two limits, and that each value between these limits
is equally likely. We have calculated the time at which the injection fluid first arrives
at the production well, which occurs in the highest permeability layer, and we have
calculated the fraction of the area of the reservoir which is swept when one reservoir
volume of fluid has been injected into the system. These metrics are somewhat arbitrary
but provide two complementary measures relating to the sweep efficiency and volume
of water injected into the system.

For the calculations, we generated 10 000 realisations of the permeability of the
different layers, and we have then plotted the breakthrough time and the fraction swept
for each realisation to determine the likely range of values these properties may take in
this simple model. Figure 4.1 illustrates the results of the calculations in the case that
the permeability ranges by (a) a factor of 10 from 0.1 to 1.0, and (b) a factor of 2 from
0.5 to 1.0. It is seen that with a factor of 10 variability in the permeability the fraction
swept after one reservoir volume is injected ranges from about 0.7 to 0.9, and the range
of water breakthrough times varies from about 0.4 to 0.8 of the time required to inject
one reservoir volume of fluid. With a factor 2 variability in the permeability, the fraction
swept varies from 0.85 to 0.95 while the time for water breakthrough ranges from
about 0.65 to 0.9 of the time to inject one reservoir volume. However, such variations
in the effective properties of the rock are entirely reasonable, and may be motivated for
example by the effect of the heterogeneities considered in Chapter 3.

4.2 Boundary location and geological uncertainty

A fundamental problem concerns the location of the wells within a reservoir in order to
maximise the recovery of the original fluid in place. Although the details of this prob-
lem require knowledge of fractional flow, interface instability and the role of reservoir
heterogeneity on the flow, some of the basic principles emerge by consideration of a
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Figure 4.1 Variation of the water breakthrough time and the fraction of the original fluid swept from
the reservoir after injecting one pore volume for a series of realisations of the values of the
permeability in the five-layer porous rock. Permeabilities are sampled from a uniform distribution
ranging from 0.1–1.0 and 0.5–1.0 for the left- and right-hand panels.

much simpler problem. Essentially, as a well-posed challenge, we aim to determine
how to locate the wells to maximise the volume of original reservoir fluid which is
produced when one reservoir volume of water is injected into the system.

Although we can carry out numerical calculations given an arbitrary shape of the
reservoir boundary, for the present purposes, we assume the reservoir is circular, and
we position the wells symmetrically about the origin. We can then use the source–sink
potential theory described in Chapter 3 to model the flow, and use this to calculate
the volume of original fluid recovered from the system as a function of the volume of
injected water. The results can be parameterised in terms of the volume of injected fluid
and the distance between the wells. As may be anticipated, for a given injected volume,
the swept volume progressively increases as the well spacing increases, since there is
more fluid between the wells which requires displacement by the flow. The calcula-
tions could be more complex, by adding heterogeneity to the structure of the formation
(Chapter 3), and including a more complete model of the motion of an immiscible
fluid–fluid displacement (see Chapters 6, 7). However, already we have identified from
the idealised fluid mechanics that the wells should be placed on the boundary of the
reservoir and this in itself introduces a challenge. The problem is that while this may
be possible in principle, in practice, one does not know the location of the reservoir
boundary with very great precision. The sand may thin out near the distal end of a flow,
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and the grains may become finer, leading to lower permeabilities. As a result, the calcu-
lations are likely to be sensitive to the rock properties near the boundary of the domain.

In order to develop a quantitative approach to selecting a well location, one can try
to develop a probability distribution as to the likelihood that for a given well spacing,
the wells lie within the reservoir. Such a probability distribution might be based on
seismic imaging of the reservoir combined with analysis of outcrops of analogue sys-
tems and well data. Such a probability distribution is likely to indicate that as the well
spacing increases beyond some value, then the probability that the wells lie within the
good quality rock in the reservoir decreases. One might then combine the fluid mechan-
ical prediction of the volume of reservoir fluid which is produced from the extraction
well as a result of the injection of one reservoir volume of water at the injection well
(see Figure 4.3), with the probablility analysis, to estimate the location of the wells
at which there will be the highest expected production of reservoir fluid. The problem
highlights the criticality of the boundary conditions.

Figure 4.2 illustrates the position of the leading edge of the injected liquid as a
function of time, until reaching the time when the injected volume of fluid matches the
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Figure 4.2 Sweep pattern for a typical flood within a circular reservoir, illustrating the location of the
leading edge of the injected fluid at a series of times up to the time when one reservoir volume has
been injected. In this figure the distance between the wells is a fraction 0.4 of the radius of the circle
bounding the reservoir.
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Figure 4.3 Illustration of the fraction of oil swept from a reservoir which has a circular shape, of
radius 10, and is bounded by impermeable rock at the boundary, as a function of the spacing between
the wells (different curves) ranging from a fraction 0.2 to 0.4 to 0.8 of the radius, with the wells
located symmetrically about the origin, and also as a function of the fraction of the reservoir volume
which has been injected into the injection well, as shown on the x-axis. With one pore volume
injected, the typical fraction of the original fluid which is extracted from the reservoir lies between
40 and 80%, and depends on the time at which the injected fluid reaches the production well.

volume of the reservoir pore space for a typical source–sink flow. Once the injected
liquid breaks through to the production well, the fraction of the extracted fluid which
was originally in the reservoir decreases (Figure 4.3). If the wells are located closer
together, the fraction of the original fluid which is extracted decreases, as less of the
reservoir is swept.

Figure 4.4 illustrates how the fraction of the original fluid in the reservoir which
is produced after one reservoir volume of fluid has been injected, the swept volume
varies as a function of the well spacing. In this figure, we also show an example of
how the probability that the wells lie within the reservoir varies as a function of the
well spacing. For each well spacing the product of the probability with the swept vol-
ume gives the expected recovery. Using this we can determine well spacing, L∗, which
would maximise the expected recovery. However, the selection of this spacing, L∗, is
highly dependent on the probability distribution relating to the location of the reservoir
boundary. Such a strategy is therefore extremely sensitive to any missing information
about the location of the reservoir boundary. Different geo-experts are likely to draw
different conclusions about the range of values which the missing information may
take, and hence they would generate different probability curves. If information about
the possible range of values that the probability distribution could take could be gen-
erated, then the sensitivity of L∗ to the uncertainty in the probability distribution could
be quantified.
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Figure 4.4 Expected recovery of oil after injecting one reservoir pore volume of fluid into the system,
as based on the estimated probability distribution for the likelihood that wells with a given spacing
will lie in the reservoir.

One approach may be to select a number of geo-experts to generate independently a
probability distribution about the likelihood that the wells lie within the reservoir. The
distributions should agree near the centre of the reservoir, when there is little separation
of the wells, and when the wells are far apart, in which case they will fall outside
the reservoir. However, near the actual boundary region, there may be considerable
difference in the probability distributions produced by different experts, as shown in
Figure 4.5a, where example probability distributions generated by three different geo-
experts are shown (in principle one could use as many independent geo-experts as are
available). The different estimates of the probability can be used to generate different
expected recovery curves (Figure 4.5a). The average and variance of the production
can then be assessed based on these three production curves. The variance helps to
identify where there is most uncertainty about the produced volume as a function of
the well placement (Figure 4.5b). Strategies which lead to a large variance based on
the different probability distributions might be rejected, since these strategies are most
sensitive to the lack of information, while strategies which have a smaller range of
model prediction, are less sensitive to the lack of information. Figure 4.6 illustrates the
relationship between the expected value of the fraction of original fluid which would
be produced and the variance: as one moves along the curve from the origin, the well
spacing increases (cf. Figure 4.5b).

In selecting the optimal well placement for development, one may introduce a utility
function, U, to describe the value of a particular well placement L,

U = U(E(L), V(L)) (4.1)



58 Accounting for uncertainty

Figure 4.5 (a) Model prediction of recovery for three different probability distributions of the
likelihood that the wells lie within the reservoir (see Figure 4.4). (b) The average of these expected
recovery curves has a maximum near the point where the difference between the curves is
significant, as measured by the variance in the expected recovery. In economic terms, such variance
has a cost, and so the optimal solution will correspond to a closer well spacing than given by the
maximum expected recovery.

where the value depends on both the expected recovery, E(L), and the variance of this
expected recovery, V(L), which corresponds to a cost. The precise form of the utility
function depends on commercial imperatives, but one might anticipate that dU/dE > 0
and dU/dV < 0.

For the above problem, one can plot contours of U in the (E, V) plane, and these are
shown in Figure 4.6 as faint dotted lines, using the example that U is a linear function
of E and V for simplicity.

For small well spacings, Figure 4.6 shows that E and V are both small, and that
increasing L initially leads to an increase in E and subsequently an increase in V as
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Figure 4.6 Illustrative example of contours of the value or utility of a particular drilling strategy (thin
black lines) in which the utility increases linearly with expected return and decreases linearly with
the variance of the return. The dashed line maps out the values of E (return) and V (variance) as a
function of the implicit variable, L, the well spacing for the model shown in Figure 4.5. The shaded
zone may correspond to the optimal strategy.

the expected location of the boundary of the reservoir is approached (cf. Figure 4.5b).
For larger values of L, the variance remains high, but the expected recovery decreases
as the likelihood that the wells have missed the reservoir increases. The shaded zone
represents the optimal choice for L, which differs from that leading to the maximum
expected recovery.

In summary, although highly simplified, this problem has identified how the uncer-
tainty of the boundary locations may be key for specific engineering decisions. Optimi-
sation of a development strategy may then depend on developing models to highlight
the importance of the uncertainty in the boundary location. Such information may then
be used to inform the possible value of acquiring new data or the selection of an optimal
strategy for production based on the existing limited data.

4.3 Difference in spatial distribution of mean and variance

In using model predictions to assess optimal recovery strategies, it is important to
account for the variability in the possible recovery given the uncertainty in the geo-
logical properties of the formation (e.g. Figure 4.1). As the complexity of a prob-
lem increases, this becomes increasingly difficult, since there are progressively more
parameters which control the solution. Often Monte Carlo methods are used to sam-
ple a wide range of the possible parameter space to determine the different possible
outcomes in a flow problem. However, in using the data from such calculations, it is
important to account for both the expected value of a given metric and also the vari-
ance of this metric as different properties are varied, especially in problems with spatial
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Figure 4.7 Illustration of the flow which may arise when an injection well is located near a leaky
boundary so that some of the injected water leaks off from the reservoir, while the remainder flows
to the production well.

variability. This issue is important, since the non-linear nature of many flow problems,
associated with the boundary conditions, results in different spatial distributions of the
expected value of a given metric and the variance of this metric. This can again be
important in informing the selection of optimal strategies. As a simple example, we
consider the two-dimensional problem of locating an injection well in a field in which
there is already a production well, but in which there is a bounding fault of uncertain
permeability (Figure 4.7; following Furtney and Woods, 2014).

For a given value of the permeability of the fault, one can carry out a systematic
series of calculations in which the position of the well is varied throughout the reser-
voir. One can then determine the fraction of the injected fluid which drives original
reservoir fluid through the fault, compared to the fraction which leads to production
of the original fluid out of the extraction well. As a simple metric we can consider the
fractional volume of the reservoir which is produced once one reservoir volume of fluid
has been injected into the well.

In Figure 4.8, we show contours of this fractional recovery for four values of the
fault permeability, ke, based on a series of calculations in which the wells were placed
at a regular series of positions within the reservoir. We denote these fractional recov-
ery values for a given value of ke and well position (x, y) as F(x, y, ke). The figure
shows that with a low fault permeability, the maximum fractional production occurs
when the injection well is placed near the fault. However, as the fault permeability
increases, there is more leakage from the reservoir, and the maximum fractional pro-
duction requires the injection to move into the reservoir, away from this boundary,
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Figure 4.8 Illustration of the contours of the expected fraction of fluid which is recovered after
flooding with one pore volume in an ideal square reservoir, as a function of the location of the
production well. In the calculations, the location of the injection well is given and the permeability
of the boundary fault is fixed in each panel, with the four panels corresponding to increasing
permeability of the fault which is located on the y-axis. Figure courtesy of J. Furtney (as described
in Furtney and Woods, 2014).

while not being too close to the production well to avoid the short-circuiting of the
injection fluid directly into the production well.

If one can generate a probability distribution p(ke) to assess the likely permeability
of the fault, ke, perhaps informed by field observations, well tests and studies of ana-
logue geological systems, then for each location of the injection well, we can compute
the expected value and the variance of the fractional volume which may be produced:
this is achieved by calculating the recovery when a well is placed at that point for
a range of values of fault permeability and then using the probability distribution to
weight each of these calculations. At each point (x, y), the expected recovery E(x, y) is
then given by

E(x, y) =
∫ kmax

kmin

p(ke)F(x, y, ke)dke (4.2)
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Figure 4.9 Illustration of (a) the expected fraction of the original fluid in place which may be
recovered from the reservoir as a function of the location of the well. The values are calculated by
taking the average of the fraction of the original reservoir fluid which may be recovered by injecting
one reservoir volume of fluid, where the averaging is carried out over the range of possible values of
the permeability of the fault located on the y-axis. Each calculation is weighted according to the
probability distribution for that value of the permeability. (b) The square root of the variance of the
fraction of the original reservoir fluid which may be recovered for wells located at each position in
the reservoir, based on calculations used to estimate the mean (panel a). These values are based on a
specific probability distribution for the permeability of the fault at the edge of the reservoir. Figure
courtesy of J. Furtney (as described in Furtney and Woods, 2014).

and the variance V(x, y) is given by

V(x, y) =
∫ kmax

kmin

[F(x, y, ke) − E(x, y)]2p(ke)dke (4.3)

By calculating E and V at a series of possible well locations distributed through-
out the field, we can produce a contour plot of the expected fractional sweep and the
standard deviation of this sweep as a function of the location of the injection well, as
illustrated in Figure 4.9 using a specific model for the probability p(ke).

The contour plots of E and V
1
2 are shown side by side in Figure 4.9, and we see that

the two quantities have different spatial distributions. This is a result of the non-linear
variations of the flow as the boundary condition (i.e. the permeability) on the fault is
changed. In practice, in order to use the information contained in the calculations of the
expected value and the variance, a utility function U(E, V) is required as in Section 4.2,
so that the cost of the uncertainty associated with each possible well location can be
priced and combined with the value of the expected recovery. Since the two properties
have different spatial distributions, as shown in Figure 4.9, this will, in general, lead to
a selection of a well location which differs from that corresponding to the maximum
expected recovery, since, in general, that choice would involve a larger uncertainty and
hence cost of the associated risk.
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4.4 Sensitivity to geological uncertainties

In general in geological formations, precise values for the permeability and other prop-
erties may not be available, and so calculations are made using estimates of the proper-
ties. It is then useful to assess the possible sensitivity in the predictions to the estimates
used for the different properties, such as the permeability. As described in the above
examples, this may be achieved with a series of calculations for different realisations
of the properties, and then, by combining these calculations with probability distribu-
tions for the properties one can gain some understanding of the variance in the model
predictions. However, although in principle this approach is rational, in practice, the
number of parameters in many problems are prohibitively large, and so it is not pos-
sible to carry out sufficient numerical calculations, sampling the different probability
distributions, to gain an accurate statistical picture of the uncertainty. In order to move
forward, if the critical parameters to which the model predictions are most sensitive can
be identified, then this helps to focus the numerical parameter studies on a small subset
of parameters, thereby enabling a large number of calculations to be made relating to
the major uncertainties in a flow process.

However, identification of the parameters upon which model predictions are most
sensitive is not always straightforward. Even with the simplified models, as developed
in this book, there may be several parameters, or dimensionless groups, which influ-
ence the model predictions. One strategy to help identify the parameters upon which
the model predictions are most sensitive is to differentiate the model predictions with
respect to each parameter, and determine which parameters have the largest gradients
and hence sensitivity, at least in a linearised sense.

This process is in general rather complex, given that the flow is the solution of a series
of partial differential equations, in which the coefficients of different terms represent the
parameters relative to which we want to test the sensitivity of the model predictions. By
evaluating the derivative of the model predictions with respect to the estimates of the
rock properties one could in principle optimise particular metrics of the flow, such as
the swept volume, but in general this is a numerically intensive operation.

From a physical perspective, the model predictions are likely to be more sensitive to
those properties of the formation through which the majority of the fluid passes, and
less sensitive to those parts of the system which are bypassed by the flow. This intuitive
picture can be formalised in some simple flow problems. For example, in the case
of a source–sink flow, our aspiration may be to determine the effective permeability
of the formation for flow between an injection and production well, given a pressure
difference applied across the wells.

We may also wish to explore the sensitivity of the flux from an injection to a pro-
duction well to the possible variability in the permeability of a formation. For example,
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if for simplicity we consider a two-dimensional flow, in the (x, y) plane, then we can
represent the permeability in parametric form

k = k(x, y, qi) (4.4)

where qi, i = 1, . . . , n are n parameters which prescribe the permeability field. This may
represent for example the n grid cells being used in a numerical calculation, or n param-
eters used to define a spatially continuous permeability field. Using Darcy’s law

ui = − k

μ

∂p

∂xi
(4.5)

and the equation for continuity

∂ui

∂xi
= 0 (4.6)

where the summation notation is assumed, one can then show that the integral over the
flow domain∫

S
ui

∂p

∂xi
dS =

∫
CI+CP

niuipdl = − 	pQ (4.7)

where the line integral is calculated around the injection and production wells, CI and
CP, and the surface integral is evaluated over the two-dimensional flow domain S. This
provides a useful expression for the flux Q, and if we choose a reference value for
k(x, y, qi) we can find the reference flux Q and reference velocity and pressure fields,
uo and po say.

If we now consider a small change, δqk to parameter qk, then the change in the
permeability field is given by

δk =
∂k

∂qk
δqk (4.8)

where we assume δqk � qk. This leads to a corresponding change to the velocity and
pressure

δu = −δk
∂p0

∂x
− εko

∂p1

∂x
(4.9)

δp = εp1 (4.10)

where, by linearity, we expect ε � 1 to be proportional to δqk
qk

� 1. For fixed pressure
at the injection and production wells, this perturbation leads to a change in the flow
rate given by Eq. (4.7), after substituting in the perturbations,

∂Q

∂qk
δqk =

1

	p

∫
s

[
2ε

∂po

∂xi
ko

∂p1

∂xi
+

∂po

∂xi
δk

∂po

∂xi

]
dS (4.11)
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Figure 4.10 Cartoon of the injector–producer flow problem in a layered permeable rock for which the
sensitivity of the flux to variations in the permeability of the layers is calculated. In order to assess
the sensitivity, the distance of the wells from the interface between the layers is varied as seen in the
Figures 4.11 and 4.12.

The first term on the right-hand side of this integral equals zero, since the pressure
perturbation at the injector and producer are zero, and this term may be rewritten as∫

s
2
∂po

∂xi
ko

∂p1

∂xi
dS =

∫
s

2uoi
∂p1

∂xi
dS = 2

∫
C1+C2

njuojp1dl = 0 (4.12)

where we have used the fact that the flow field is incompressible (Eq. (4.6)).
This leads to an expression for the derivative of the flow rate with respect to the

parameter qi

∂Q

∂qk
=

1

	p

∫
s

∂po

∂xi

(
∂k

∂qk

)
∂po

∂xi
ds (4.13)

This integral depends only on the gradient of the permeability field with respect to
the parameter qk, and the reference pressure field, po, associated with the flow through
rock based on the reference model for the permeability, k(x, y, qk).

In many cases, there is a correlation scale for the properties of a formation; as a sim-
ple example, one may parameterise the flow properties of an n-layer turbidite forma-
tion (cf. Figure 2.3) on a layer by layer basis, while a fluvial deposit may also require
parameterisation of the permeability in localised lenses of high or low permeability
within each layer. In the case of a turbidite in which the parameter qk may correspond
to the value of the permeability kk in the kth geological layer of the formation, where
index k = 1, . . . , n, then the sensitivity of the flow to the permeability of the kth layer

∂Q

∂kk
=

1

	p

∫
sk

∂po

∂xi

∂po

∂xi
ds (4.14)

where sk is the area of the kth layer, and po is the pressure solution for the flow based
on the reference permeability field. In this case, the sensitivity of the volume flux to
the permeability of each layer is readily calculated using the reference pressure field,
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Figure 4.11 Variation of the sensitivity of the flux to the permeability of the central three layers, as the
location of the wells within the central layer migrates from the lower boundary to the upper
boundary. The figure shows how the sensitivity to the permeability of the neighbouring layers
depends on the location of the wells relative to the boundary between the layers.

and in this way those parts of the domain which influence the flux most strongly can
be identified.

As a simple application of this result we consider a source–sink flow in a layered
turbidite reservoir in which the permeability of each layer is approximately the same,
but may vary between layers, as each layer corresponds to a specific geological flow
event (e.g. the Loop Head rock described in Chapter 2) (Figure 4.10). If the source
and sink well are placed in a specific layer, then we can calculate the pressure field
throughout the flow domain, taking the reference permeability to be a constant, equal
in each layer. Using this reference solution for the flow and pressure distribution, we
can then calculate the integrals given by Eq. (4.14) for each of the layers to determine
the sensitivity of the flow solution to the value of permeability used in that layer. Since
the reference permeability is taken as being a constant, Eq. (4.14) shows the sensitivity
of the model prediction to the permeability in each layer varies in proportion to the
square of the flow speed averaged over that layer. If we label the layers in the turbidite
as being i = −n, . . . , n where the wells lie within layer i = 0, then we can calculate how
sensitive the estimate for the flux is to variations of the permeability in each layer.

In making such calculations, one requires information about the location of the wells
relative to the interface between layer i = −1 and layer i = 0, and between layers i = 0
and layer i = 1. In practice, even if the well has been drilled into layer i = 0, the vertical
position within this layer may be uncertain. This has an important impact on our uncer-
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Figure 4.12 Example of the sensitivity of the flux to the permeability of each layer, in a layered
reservoir containing 9 layers, with the same mean permeability for each layer. The sensitivity of
each layer is the average value assuming that there is an equal probability that the wells lie anywhere
within the central layer i = 0 (see Figure 4.11). The figure shows that the value of the permeability in
the central layer containing the well is the most sensitive, and that the sensitivity of the flux to the
permeability in the neighbouring layers decays with distance from the central layer. Further
calculations show that the rate of decay depends on the well spacing relative to the thickness of the
layers.

tainty assessment. To illustrate this point, we calculate the integral (4.14) with respect
to variations of the permeability in layers i = − 1, 0 and 1 for a range of realisations of
the positions of the wells, starting with a calculation in which they are assumed to lie
close to the boundary with the layer i = −1 and exploring how the sensitivity changes
as the position of the wells moves up through layer i = 0, so that eventually the wells lie
just below the interface with layer i = 1. The sensitivity is normalised with respect to the
maximum value, which arises for variations of the permeability in the layer i = 0 when
the wells are assumed to lie in the centre of the layer (Figure 4.11). In Figure 4.11,
we show the sensitivity of the flux to the permeability of each of the layers i = 1 (upper
layer), i = 0 (central layer) and i = −1 (lower layer), as a function of the vertical location
of the wells within layer i = 0. When the wells lie at the interface between two layers
(i = 0 and i = 1) or (i = 0 and i = −1), the sensitivity to the permeability value in each
layer near the wells is the same However, the sensitivity to the permeability of i = 1
or i = −1 decreases if the location of the wells migrates away from the interface and
into the central layer i = 0, while the sensitivity to the permeability of the central layer,
i = 0 increases.

Further calculations show that the sensitivity of the flux to the permeability of the
layers further from that containing the wells falls off with distance (Figure 4.12), and
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the rate of decrease of the sensitivity depends on the well spacing relative to the thick-
ness of the layers. With relatively thin layers, there is a significant flux through several
layers and the sensitivity decays slowly, whereas with relatively thick layers, most of
the flow is carried by the central layer and the sensitivity decays rapidly away from the
central layer.

In the limiting case that the fluctuations in the permeability are parameterised as
being small, but non-zero, relative to the mean permeability, it is possible to use
Eq. (4.14) to estimate the variance of the flux, relative to the mean flux, as a function
of the variance of the distribution of permeability in each layer, assuming that the
variation in permeability of each layer is independent. For example, if we assume that
the variance in the permeability is the same in each layer, then the variance of the
flux, V(Q) is given in terms of the variance of the permeability of each layer, σ by the
relation

V(Q) = σ�k = 1,...,n

[
∂Q

∂kk

]2

(4.15)

Such models, although linear, are valuable in helping to determine the relative sensitiv-
ity of model predictions to assumptions about different reservoir properties. In many
cases, production data can be used to invert for the reservoir properties; the above
model can be combined with such data to identify that the best resolved information
about the field properties lies in the region near to and between the wells.

In concluding this chapter, we note that in order to develop a non-linear picture of
such uncertainties, non-linear numerical calculations are required; that is much more
numerically intensive than the linearised approach herein. However, the linearised anal-
ysis of the very simplified models illustrates the importance of the location of the
boundaries in such calculations, and may identify the parameters to which the flow pre-
dictions are most sensitive. This may provide key input in determining the ordering of
parameters which should be varied when a series of non-linear calculations are made to
assess the uncertainty, since, when constrained by numerical computation time, it may
be most valuable to explore variations with respect to the most sensitive parameters. A
comparison of such non-linear calculations with the linearised model may be found in
Evans et al. (2014).

4.5 Exercises

1. In a reservoir embedded in a long, thin channel, of cross-sectional area A, the flow is
primarily along channel and the permeability decreases as k exp(−λx) with distance
x along the channel. If an injector well is placed at x = 0, find how the production rate
varies for a given pressure difference from the injector to producer if the producer is
to be placed a distance L down the channel from the injector. You may assume that



69 4.5 Exercises

when L = 1/λ, the flow speed u = 1. If the value of the oil decays into the future with
exponential rate β determine an expression for the value of the oil produced at the
point that the water breaks through into the production well. You may assume the
oil and water have the same mobility, and there is no mixing between phases. If λ

is uncertain to within a factor of 20%, find the possible range in the cumulative (net
present) value of the production calculated up to the time at which water breaks
through into the production well. Make calculations for a range of values of L,
and for the cases β = 0.5 and β = 2. (This latter part of the question may require
numerical solution.)



5 Dispersion in porous media

The motion of fluid through a permeable matrix can follow complex pathways and
this can lead to intermingling and mixing of fluid as it migrates through the porous
medium. There are several different mechanisms which lead to mixing, and we shall
explore these in this chapter. Dispersion can have important implications in many con-
texts. In enhanced oil recovery, water is injected into the formation, and knowledge of
the spatial distribution of the water is key, especially if chemicals such as polymers are
added to the injected water to assist the flow. In groundwater remediation problems,
such as associated with cleanup of LNAPL and DNAPL (light and dense non-aqueous
petroleum liquids), which result from spillages of fuel and industrial chemicals, knowl-
edge of the distribution of the contaminant in the ground is key to inform cleanup
strategies (see Chapter 10). Models of dispersion are also of relevance in predicting the
possible long-term distribution of radioactive contaminants in the subsurface if geolog-
ical storage facilities are breached. On shorter timescales, understanding dispersion is
key for interpreting tracer tests, which are used by both the oil industry and the geother-
mal industry to infer transport properties in the subsurface. Dispersion is important in
modelling reactions which occur in porous rocks as a result of chemical disequilibrium
between the injected fluid and the formation fluid or the formation itself.

Owing to the importance of dispersion for numerous problems in groundwater trans-
port and enhanced oil recovery, there is a large literature on the topic. The recent con-
tribution by Bear and Cheng (2010) provides a comprehensive review of large part
of such modelling approaches, and the discussion of Phillips (1991, 2009) provides
a simple physical picture of the various processes. Other important works include the
review by Berkowitz et al. (2010) and earlier papers by Koch and Brady (1985), Young
and Jones (1991), Saffman (1959) and Bear (1972), as well as the works of Dagan
(1989). One important paper summarising field observations is by Gelhar, Welty and
Rehfeldt (1991) illustrating the variability of dispersion coefficients from 59 different
aquifers.

In this chapter, which is designed to provide an introduction to the physical processes
of dispersion, we develop some simple models to illustrate various effects. Pore-scale
mechanical dispersion arises because neighbouring streamlines become decorrelated
as the flow passes around solid grains in the matrix, and follow different pathways

70
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(Section 5.2). This spreading of the flow front is a mechanical dispersion process,
dependent on the decorrelation of different fluid particles at junctions in the porous
layer. There is also larger scale mechanical dispersion which arises if the formation is
heterogeneous, with regions of high and low permeability causing the flow speed to
vary in space. This results in a range of fluid travel times on different streamlines and
hence leads to decorrelation on a larger scale. If there are extended regions of shear
in the flow, then as discrete clouds of tracer become stretched out, there will be an
increased surface area normal to the flow direction across which the tracer may diffuse
into the surrounding fluid. This process, known as Taylor dispersion, can also produce
very substantial dispersion of a cloud of tracer. In porous layers, there are additional
effects, such as the no-slip condition on pore walls and dead-end pores, which can lead
to anomalous dispersion characterised by clouds of tracer spreading at rates different
from the normal diffusive-type spreading, in which the scale of the cloud grows in pro-
portion to t1/2. Finally, we discuss the effects of oscillatory or time-dependent flows
which can lead to dispersion even in the absence of a mean flow.

In this chapter, the focus is on pressure-driven flows and the transport of a passive
scalar by the flow. One aspect we identify is that the structure of the rock has an impor-
tant control on the dispersion, since it causes intermingling of the different fluids owing
to spatial variations in the permeability. Some of the principles which emerge from
such macroscopic dispersion may also be used to help interpret more complex trans-
port processes in porous media. These include the transport of thermal energy, which
we consider in Chapters 8 and 11, the transport of chemical phases which react with
the matrix, again considered in Chapters 8 and 11, and the evolution of the saturation
of one fluid phase as it migrates through a second fluid phase within a porous medium,
as considered in Chapter 7. However, the force balance driving the flow can also have
a critical impact on the dispersion associated with the heterogeneity of the formation.
Although the present chapter focuses on pressure-driven flows, in Chapter 10 we dis-
cuss some dispersion effects particular to buoyancy-driven flows; there we identify
some different flow patterns and phenomena which can lead to buoyancy-driven dis-
persion of a passive tracer and indeed, one fluid within a second.

5.1 Molecular diffusion in a porous layer

In a porous layer, molecular diffusion tends to be suppressed relative to that in an
unconstrained fluid owing to the presence of the matrix walls which only allow diffu-
sion parallel to the boundaries. As a result, if the direction of a pore channel has angle θ

relative to a concentration gradient, the diffusive flux will act on a fraction cos θ of the
gradient and the component of this flux in the direction of the gradient will then be
proportional to φ cos2 θ , where the φ denotes the fraction of the rock consisting of
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pores. If this directional effect is averaged over all the pore channels in a representative
volume, and the pore channels are oriented in random directions, then the average of
the geometrical factor, known as the inverse of the tortuosity, 1/τ , should be used in
evaluating the molecular transport, since there will be no bias in the transport direction.
Typically the tortuosity has a value of order 10, resulting in an effective reduction of the
molecular diffusion by a factor of order 10. For example, many salts in solution have
a diffusion coefficient Dm of order 10−9 m2/s and so the effective molecular diffusion
in a porous layer is of order 10−10 m2/s.

In a fractured rock, bounded above and below by impermeable strata, the situation
may be more complex, especially if there are two preferred directions of the fractures,
with different fracture density or aperture in the two preferred directions. For example,
if the effective aperture area, per unit cross-sectional area, in direction θ to the along-
layer direction is φ1 while it is φ2 in the direction π/2 − θ , then there will be a net flux
associated with a gradient, ∂c

∂x , along the layer, of magnitude

Dm(φ1cos2θ + φ2sin2θ)
∂c

∂x
(5.1)

However, owing to the asymmetry, there will also be a net cross-layer flux,

Dm(φ1 − φ2) cos θ sin θ
∂c

∂x
(5.2)

and this will induce a cross-layer gradient ∂c
∂y which will exactly cancel this flux. As

with the permeability of cross-bedded strata we considered in Chapter 3, this cross-
layer gradient will then lead to a flux in the along-layer direction, which, when added
to the original flux, will result in a net along-layer flux

Dm

(
φ1φ2

φ1 sin2 θ + φ2 cos2 θ

)
∂c

∂x
(5.3)

5.2 Pore-scale mechanical dispersion

As fluid migrates through a porous rock, the fluid particles continually change direc-
tion as they reach junctions with the grains and move round the grains. This leads
to a random-walk-type process in which individual particles gradually spread owing
to the decorrelation of fluid trajectories at the grain–grain junctions. To illustrate the
phenomenon, in Figure 5.1 we show how a patch of red-dyed fluid spreads out as it
moves in a uniform downward flow through a bead pack. In the experiment, the beads
are 1 mm in size, and the cell is 15 cm across and 1 cm deep. Note that although the
patch of dye spreads a considerable distance in the flow direction, produced by the
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Figure 5.1 Illustration of the longitudinal and transverse dispersion of a parcel of dye as fluid
migrates through a porous layer. The flow is from top to bottom, and the dye streak is seen to spread
much more rapidly in the along-flow longitudinal direction than the cross-flow transverse direction.
Photograph courtesy of C. Otto. A black and white version of this figure will appear in some
formats. For the colour version, please refer to the plate section.

longitudinal dispersion, it does not spread very far in the cross-flow direction, associ-
ated with the transverse dispersion.

We first illustrate a simple model which enables quantification of the mechanical
dispersion. We then assess additional processes which can modify the mixing and lead
to different parameterisations of the dispersion. As noted, there are many classic works
on this topic, and this chapter primarily serves as an introduction to some of the key
points, as well as being a building block for some flow problems considered later in
this volume.

First we consider the migration of a single particle through a porous layer, denoting
the position at time t, x(a, t) in terms of the initial position a at time t = 0 according to
the relation

x(a, t) =
∫ t

0
v(a, t)dt + a (5.4)

where v is the interstitial velocity, v = u/φ. If we consider a large number of such
particles, migrating through a porous layer (Figure 5.2), then, given the fluctuations
in the precise structure of the medium, we can take an ensemble average to define the
motion of the centre of mass of the cloud of particles

x(a, t) − a =
∫ t

0
v(x, t)dt = v(a)t (5.5)
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Figure 5.2 Illustration of the migration of different fluid particles through a porous layer, indicating
the decorrelation of the fluid particles with distance downstream as they pass successive junctions
between particles in the formation.

and the location of a specific particle relative to this centre of mass is then given by

x(a, t) − x(a, t) =
∫ t

0
[v(a, t) − v(a)]dt (5.6)

where v(x, t) denotes the interstitial velocity and v(a) is the ensemble average intersti-
tial velocity. The rate of change of the ensemble average of the square of the variation
in position from the centre of mass is then given by

1

2

d

dt
(x(a, t) − x(a, t))2 =

∫ t

0
dt′[v(a, t) − v(a)][v(a, t′) − v(a)] (5.7)

The integral on the right-hand side of Eq. (5.7) represents the velocity correlation
in time. As a simplifying approach, we assume that fluid particles decorrelate at the
grain junctions, then neglecting no-slip effects and side branches, as a simple picture,
the decorrelation time scales with the travel time across the grains δ/v where δ is the
typical grain size and v the average interstitial velocity. Hence to leading order, if we
approximate the correlation integral with the value λδv/2 where λ is a constant which
depends in detail on the geometry of the porous media, we find that

[x(a, t) − x(a, t)]2 = λvδt (5.8)

This implies particles become dispersed as a random-walk-type process owing to the
tortuous path they follow through the medium. The dispersive flux which leads to
spreading of gradient, ∇c, of the concentration field c therefore has the form

J = φλvδ∇c (5.9)

We note that the cross-flow transverse dispersion λT is typically 1–2 orders of mag-
nitude smaller than that of the longitudinal dispersion λL (see Section 5.4). Note this
is a simplified picture since in some cases the correlation may not decrease as rapidly
with distance (see Phillips, 2009).
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The above discussion is somewhat simplified in that we have neglected effects of the
no-slip condition on the surface of particles, the effects of dead ends or side branches,
and the effects of there being a structure associated with fractures or finite layers of
impermeable clay or shale which we refer to as baffles, which lead to a non-random
geometry and anisotropic dispersion. We have also assumed that on the timescale of
the flow within the pore spaces, the molecular diffusion is small, so that the dispersion
is mechanical and uninfluenced by molecular mixing. This is valid provided the pore-
scale diffusion time is much longer than the travel time across the pore, δ2/D � δ/u.
With a flow speed 10−5 m/s, this requires grains larger than 10−5 m, which is typically
the case, although with slower flows, molecular diffusion on scales < 0.1 mm may
begin to become significant.

5.3 No-slip effects

The effects of the no-slip condition can lead to a delay in the spreading of the tail of
a patch of dye as it is carried through the formation. Saffman (1959) described this
anomalous dispersion which can lead to a skewed tail in the distribution of the tracer,
and Bear and Cheng (2010) discuss the generalisation of this approach in the case of
anisotropic and heterogeneous media. In order to illustrate the effect, it is useful to
consider a simplified model of the geometry of the porous layer. We adopt a model in
which the porous layer consists of a series of channels or tubes, connected at junctions,
and in which the flow migrates along the channels as a parallel flow, and then mixes
in the junctions to redistribute itself uniformly into the next channel (cf. Young and
Jones, 1991). In this case, if the velocity in a two-dimensional channel (for example a
local fracture) has the form

u(y) =
6uo

h2 (yh − y2) (5.10)

where y is the distance from one wall of the channel, y = 0 to the other, y = h, then the
mean flow speed is uo. If the channel is of length L and is initially filled with fluid A
but then displaced by fluid B, the volume of fluid A remaining in the channel decreases
with time (see Figure 5.3). At long times, owing to the no-slip condition, Eq. (5.10)
reveals that there will be a small layer adjacent to each wall containing fluid A. Since
the speed very near the wall varies approximately linearly with distance from the wall,
then the point which was originally at x = 0 and at a height y � h above the wall y = 0
will have migrated to the end of the channel, x = L, after a time t given by the relation

y ≈ hL

6uot
(5.11)
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L

h

Figure 5.3 Effect of the no-slip condition on the dispersion in a channel. The curves denote the
position of the fluid interface at successive times, showing that at long times, a small approximately
triangular shaped region of original fluid remains beside the walls of the channel owing to the
no-slip condition.

At long times, the volume of fluid A remaining in the channel is then given by the
approximate relation

V(A, t) ≈ L2h

6uot
(5.12)

given there are two walls at y = 0, h and hence two zones of trapped particles. All the
points in these two remaining zones of fluid have approximate speed −uo relative to
the centre of mass.

As mentioned above, the fluid velocity remains correlated while the fluid remains in
the channel, but becomes decorrelated after each junction, and so the fraction of the
original particles in the channel whose velocity remains correlated after time t is given
by

C(t) ≈ L

6uot
(5.13)

and the correlation velocity is −uo approximately. Using this ensemble average, we
can evaluate an integral of the form Eq. (5.7) at long times, t � L/6uo, and this leads
to the result that

d

dt
[x(a, t) − x(a, t)]2 =

Luo

3
ln(t) (5.14)

and so

[x(a, t) − x(a, t)]2 =
Luo

3
(tln(t) − t) ∼ Luo

3
tln(t) (5.15)

This illustrates the anomalous spreading of a moving slug of concentration owing to the
no-slip condition on the walls of the flow channels. However, this effect only persists
for times less than the cross-channel diffusion time, d2/D, beyond which time, tracer in
the fluid layer near the wall will tend to mix into the fluid in the centre of the channel.
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Figure 5.4 Experimental data on the longitudinal dispersion coefficient in a porous layer as a function
of the Peclet number, defined in terms of the molecular diffusivity, Dm, the grain size, δ, and the
Darcy speed, u as Pe = uδ/Dm. The data points have been collated from a wide series of references
in the literature, as compiled by Delgado (2007). The relationship becomes dominated by
mechanical dispersive transport for Pe in excess of about 10–100. Reprinted from Chemical
Engineering Research and Design, Vol. 85, J.M.P.Q. Delgado, Longitudinal and Transverse
Dispersion in Porous Media, 1245–1252. Copyright (2007) with permission from Elsevier.

5.4 Experimental laws for dispersion

The above discussion illustrates the potential complexity in making theoretical pre-
dictions for the pore-scale dispersivity. The mechanical dispersion model above
(Section 5.2) predicts a dispersivity which is a linear function of the Pe (Peclet)
number, given by uδ/Dm where u is the speed, δ the pore size and Dm the molecular
diffusivity (Section 6.1). However, the effects of the no-slip condition, dead ends and
other factors may lead to a non-linear dependence on the Peclet number. Experimental
evidence from many laboratory tests suggests that the dispersion coefficient is primar-
ily a function of the Peclet number, with the mechanical dispersion being the dominant
process. One rather comprehensive compilation of data by Delgado (2007) provides
some detailed empirical models for the dispersion, including the effect of the Schmidt
number (Dm/ν) as well as the Peclet number (see Figures 5.4 and 5.5). However, a
model which is useful for aqueous systems suggests that the longitudinal dispersion
can be approximated as
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Figure 5.5 Experimental data on the transverse dispersion coefficient in a porous layer as a function
of the Peclet number, defined in terms of the molecular diffusivity, Dm, the grain size, δ, and the
Darcy speed, u as Pe = uδ/Dm. The data points have been collated from a wide series of references
in the literature, as compiled by Delgado (2007). The relationship becomes dominated by
mechanical dispersive transport for Pe in excess of about 10–100. Reprinted from Chemical
Engineering Research and Design, Vol. 85, J.M.P.Q. Delgado, Longitudinal and Transverse
Dispersion in Porous Media, 1245–1252. Copyright (2007), with permission from Elsevier.

DL ≈ Dm

(
1

τ
+ (1.8 ± 0.4)Pe

)
for 300 < Pe < 105 (5.16a)

and

DL ≈ Dm

(
1

τ
+ 0.5Pe1.2

)
for 5 < Pe < 300 (5.16b)

while the transverse dispersion, in the direction orthogonal to the flow, can be described
by

DT ≈ Dm

(
1

τ
+ 0.025Pe

)
for 300 < Pe < 105 (5.17a)

and

DT ≈ Dm

(
1

τ
+ 0.025Pe1.1

)
for 5 < Pe < 300 (5.17b)

This parameterisation concurs with the scalings which emerged from the numerical
study of Bijeljic et al. (2004) using a pore-network model of sandstone cores to model
the pore geometry.
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The above correlations show that the dispersive transport typically dominates the
diffusive transport provided the Peclet number exceeds a value of about 10–100.

Given the parameterisations of the transport, and noting its simplifications, we can
write down an effective equation for conservation of an inert tracer which does not
interact with the rock formation

φ
∂c

∂t
+ u.∇c = φ∇[Deff ∇c] (5.18)

In this equation, the second term on the left-hand side denotes the advective transport
through the medium associated with the flow, while the term on the right-hand side
represents the diffusive and dispersive transport. As shown in the correlations above,
the transverse dispersivity is typically much smaller than the longitudinal dispersivity
and so Deff should be written as a tensor. Note also that the advection speed of inert
tracer of concentration c is given by u/φ, the interstitial speed, as illustrated by this
equation, where the speed u = |u|.

According to (5.18), if fluid in the region x < 0 has concentration c = co and fluid
in the region x > 0 has concentration c = 0 at t = 0, then the concentration evolves
according to the solution

c(x, t) = co

(
1 − erf

[
x − ut

2(Deff t)1/2

])
(5.19)

for flow in the positive x direction with net Darcy speed u where φ is the porosity.
There are more complex models which account for the adsorption of the tracer onto

the formation and solutions for flow in fractures (e.g. van Genuchten and Wierenga,
1976; Freeze and Cherry, 1979; Sudicky and Frind, 1982). We do not aim to replicate
all this material herein, but observe that there is a significant literature in this topic.

However, at this point, it is relevant to note that in the field, the larger scale hetero-
geneities of the system can lead to additional dispersion, as we discuss below with a
description of dispersivity in localised lenses of different permeability within the for-
mation. In the case that the heterogeneity of the formation is correlated a significant
distance in the along-flow direction, transverse mixing across streamlines may also
become important and we also discuss this below. We will see that some of macro-
scopic dispersion processes can lead to a scale dependence of the dispersion, which is
consistent with some observations in real aquifers. For example Gelhar et al. (1991)
critically reviewed data from 59 field sites, in which the dispersivity was measured
over different scales and found considerable scatter, but also suggestion of a general
relation between the value of the longitudinal dispersivity and the scale of observation.
They also presented data on transverse dispersivity in both the horizontal and verti-
cal direction, which again had considerable scatter and was typically 1–2 orders of
magnitude smaller than the longitudinal dispersivity (Figure 5.6). In their compilation
of the data, they defined the dispersion coefficients in terms of ALv and ATv where v
is the seepage or interstitial velocity, u/φ where u is the Darcy velocity. The plot in
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Figure 5.6 Field data on dispersivity as a function of scale from 59 field sites, as reviewed by Gelhar
et al. (1991). The quality of the data was assessed as indicated on the figure. The data show a trend
of increasing dispersion coefficient as a function of scale, and illustrate the challenge of modelling
the large-scale dispersion and its variability. After Gelhar et al. (1991).

Figure 5.6 shows the values AL and AT . With typical flow speeds in the subsurface of
10−7–10−5 m/s these values correspond to dispersivities with values in the range 10−8–
10−4 m depending on the scale of the process and the scatter, although Gelhar et al.
(1991) emphasise the reliability of the smaller values in this range.

5.5 Lenses of different permeability

The presence of localised lenses of different permeability, such as often occurs in flu-
vial deposits (Chapter 2) also leads to mechanical dispersal of the flow. As an example,
we focus on the case of a localised lens of different permeability and develop a simpli-
fied picture for the macrosopic dispersion associated with the different travel time of
fluid through the lens compared to the background flow (Section 3.4; Figures 5.7–5.9).
Different approaches have been adopted in the literature to examine the impact of such
a lens, including models of random walks and drift flux (Eames and Bush, 1999). If we
consider the fraction of the flow which is diverted into a lens of different permeability,
and the travel time of this diverted fluid through the lens, we can estimate the evolution
in time of the correlation in the fluctuations of the velocity field relative to the mean
flow (cf. Eq. 5.7). We can then use this to assess the effective mechanical dispersivity.
In proceeding with this strategy, it is useful to consider the flow through a cylindrical
shaped lens; this approach can be extended to consider flow through different shaped
inclusions, for example an elongated lens, within the permeable rock. In each case, we
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Figure 5.7 Illustration of the gradual distortion of a material surface passing through a series of local
regions of high permeability.

can assess the fraction of the flow which is diverted into the lens and the travel time of
the fluid through the lens, and thereby develop a scaling for the dispersion.

We consider a uniform flow in the x direction far upstream, u, in a rock of per-
meability ko which contains a cylindrical lens of radius a, and permeability kc whose
axis is oriented normal to the flow. We seek a solution for the pressure equation (see
Chapter 3)

∇2p = 0 (5.20a)

where u = − k
μ
∇p such that at the boundary of the cylinder the pressure is continuous

[p]+− = 0 and the velocity normal to the boundary is continuous
[

k
μ

∂p
∂r

]+

− = 0. This has

solution

p = −μu

ko

(
1 +

a2(ko − kc)

r2(ko + kc)

)
r cos θ for r > a

and

p = − 2uμ

(kc + ko)
r cos θ for r < a (5.20b)

which illustrates that the flow within the cylindrical region has uniform speed with a
maximum value 2u when kc � ko while the minimum speed in the cylinder is approxi-
mately 2ukc/ko → 0 as kc/ko → 0.

From this solution, we can infer that with a uniform flow in a layer of vertical extent
H � a (in the direction normal to the flow and the axis of the cylinder), and with a very
permeable lens, kc � ko, of size a, the fluid within a region 4a wide upstream of the
cylinder is diverted into the cylinder. In the cylinder this fluid has an approximate speed
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Figure 5.8 Experiment in which fluid is injected from the top and travels down through a thin bead
pack which includes a high permeability lens. The lens may be identified as the bright elliptical
region in the centre of the porous layer. The figure illustrates the migration and distortion of an
initially horizontal line of red dye as it moves through the high permeability lens. The flow
short-circuits into the lens, and then emerges downstream leading to considerable dipersion.
Photographs courtesy of C. Otto. A black and white version of this figure will appear in some
formats. For the colour version, please refer to the plate section.

u relative to the background speed. In this region, the travel time scales as a/u and so
the tracer particles are displaced from the mean longitudinal position by an amount
of order a. If we have a slug of tracer, initially distributed uniformly in the cross-flow
direction, 0 < y < H, and migrating along the porous layer with the flow (Figure 5.8),
then the fraction of the tracer entering the cylinder is 4a/H. If there is a volume fraction
α of such lenses within the formation, then after time t, the number of lenses which
will have been encountered is n ∼ αHut/πa2. The longitudinal dispersion coefficient
associated with the sum of all the lenses, assuming they are sufficiently far apart to act
independently, is given by one half the rate of change of the variance in longitudinal
position (cf. Eq. 5.7), σ 2(t) and this is equal to the sum of the displacements of the
tracer by the individual lenses. So the net variance scales as

σ 2(t) = 2λh(a/H)(αHut/a2)a2 = 2λhαaut (5.21)

where λh is a constant for the high permeability lens. This leads to the expression for
longitudinal dispersion

DL =
1

2t
σ 2(t) = λhαua (5.22)

Eames and Bush in fact calculated that λh = 2.59. This model assumes that the cross-
lens diffusive transport is slow compared to the travel time through the lens, so that
there is little time for cross-streamline diffusion as the fluid migrates through the cylin-
der, ua/D � 1.
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Figure 5.9 Experiment in which fluid is injected from the top and migrates down through a high
permeability porous layer which includes a low permeability region, which may be identified as the
darker zone in the centre of the cell. The figures show the migration and distortion of an initially
horizontal line of red dye through the low permeability lens in a flow which is uniform far upstream
and far downstream. The dye is retarded in the lens, and then emerges in a thin plume trailing behind
the original red dye front. Photographs courtesy of C. Otto. A black and white version of this figure
will appear in some formats. For the colour version, please refer to the plate section.

In the case of a lens of low permeability, the speed within the cylinder has very low
values relative to the background (Figure 5.9), scaling as

u ∼ 2ukc/ko (5.23)

and so fluid from a region of width 4akc/ko is diverted into the cylinder, and has res-
idence time of order koa/2ukc within the cylinder. This leads to a net variance in the
position of the fluid relative to that of the mean flow of order k2

oa2/k2
c in passing one

cylinder. The ensemble average variance then has value

σ 2(t) = 2λl(akc/Hko)(αHut/a2)(koa/kc)
2 = 2λlα(ko/kc)aut (5.24)

with λl a constant, which Eames and Bush calculated to have value 8/3π . In this case,
the effective longitudinal dispersivity has value

DL =
1

2t
σ 2(t) = λlαau

ko

kc
(5.25)

again assuming the cross-streamline diffusion is small. This is greater than the high
kc result since the residence time of the tracer within the lens is greater, leading to a
larger variance from the mean, even though a smaller fraction of the flow is diverted
into the lens. The model may be generalised to account for lenses with a distribution
of shapes and sizes.

Cross-streamline diffusion may become important in the limit that the travel time
through the low permeability lens exceeds the diffusion time in the cross-lens direction,
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a2

DT
< ako

ukc
. In this case, the tracer will diffuse transversely from the low permeability

lens into the main stream, substantially reducing the magnitude of the mechanical dis-
persion. Indeed, in the cross-layer diffusion time a2/DT , the background flow will
spread a distance of order (DLt)1/2 ∼ a(DL/DT)1/2 in the along-flow direction. This
will be larger than the distance that the tracer moving through the lens has been delayed
relative to the main flow, over this time, owing to the low permeability of the lens,
≈ a2u/DT , if au <(DLDT)1/2.

Some anomalous dispersion effects have been described in terms of a random
walk in which there are random waiting times at the nodes of the walk, between
successive displacements (cf. Berkowitz and Scher, 1997, 2001). Such effects can
lead to a skewness in the dispersal of tracer and more complex models for the
dispersion.

5.6 Large-scale shear dispersion

The above models pertain to a representative volume of rock in which the heterogene-
ity is localised and leads to mechanical dispersion associated with the difference in the
travel times between the local regions of different permeability and the main matrix.
However, if the heterogeneities extend over longer scales, the transverse pore-scale
dispersion may be key in controlling the macroscopic dispersion. To quantify these
effects, we can build a model in which we adopt the above picture of dispersion on
the pore scale; the larger scale processes are then dominated by the macroscopic struc-
ture of the heterogeneity of the formation combined with the cross-flow pore-scale
dispersion. Here we consider pressure-driven flow, but in Chapter 10, we extend the
analysis to consider the effects of buoyancy-driven flow.

Shear can lead to macroscopic spreading of a patch of tracer, producing an exten-
sive interface between the tracer filled fluid and the original fluid (Figure 5.10). If
the interface persists for a sufficiently long distance, coherent dispersive transport
across this interface can then be very effective, since the interface may be much larger
than the original front. With time, one may envisage that a balance becomes estab-
lished between the along-stream shear and the cross-stream diffusion. This balance is
known as shear dispersion, after G.I. Taylor (1953) who explored such dispersion in a
Poiseuille flow in a tube.

In order to illustrate how the magnitude of shear dispersion in a porous layer can
be calculated, we present a simplified two-dimensional problem in which there is a
parallel flow migrating in the x direction through a stratified aquifer, of thickness w,
0 < z < w, with the flow speed, u(z) varying in the z direction, normal to the flow. We
decompose the concentration and velocity fields into a mean component which only
varies along the layer and a fluctuating component which varies across the layer, in the
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Figure 5.10 Illustration of the physical process of shear dispersion, which leads to cross-streamline
diffusion of the tracer as the flow shears out the interface between tracer laden and tracer free fluid.

z direction, and impose zero flux of concentration normal to the boundary at z = 0 and
z = w

c = c(x) + ĉ(x, z) and u = u + û(z) (5.26)

where

c(x) =
1

w

∫ w

0
dzc(x, z) (5.27)

If we then write the transport equation for concentration in terms of c̄ and ĉ and ū and
û, we find the overall equation has the form

φ
∂(c + ĉ)

∂t
+ (u + û)

∂(c + ĉ)

∂x
= φ

[
DL

∂2(c + ĉ)

∂x2 + DT
∂2(c + ĉ)

∂z2

]
(5.28)
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and so the cross-channel average is

φ
∂c

∂t
+ u

∂c

∂x
+

1

w

∫ w

0
û
∂ ĉ

∂x
dz = φDL

∂2c

∂x2 (5.29)

The challenge in this equation is to determine the non-linear term associated with
the fluctuations in concentration and velocity in the cross-channel direction (the last
term on the left-hand side). We can make progress with this by noting that the shear
along-channel spreads the mean gradient and this produces large concentration gradi-
ents cross-channel which are then dispersed in the transverse direction, leading to a net
along-channel dispersive flux.

In this limiting regime, we expect the fluctuations to satisfy the relation

DT
∂2ĉ

∂z2
∼ û

φ

∂c

∂x
(5.30)

The detailed solution of this relation requires a parameterisation of the local transverse
dispersion coefficient, and for simplicity we take this to be a constant, as is consistent
with slow flow for which the molecular transport dominates in the transverse direction
or in which the mean velocity is much larger than the fluctuations, so that there is little
variation of Peclet number across the flow domain. In each case we can write

ĉ ∼
∫ z

o
dz′

∫ z′

0
dz′′

(
û(z′′)
φDT

)
∂c

∂x
(5.31)

We may then evaluate the integral using the knowledge of the velocity shear for a
specific flow problem, and this enables us to calculate the non-linear transport. This
leads to the relation

1

w

∫ w

0
ûĉdz ∼ βu2w2

φDT

∂c

∂x
(5.32)

where β is a constant of order unity, which depends on the details of the flow structure.
It follows that the non-linear transport associated with the velocity and concentration
fluctuations is diffusive in character, and we obtain the full transport equation

φ
∂c

∂t
+ u

∂c

∂x
=

(
DL +

βu2
ow2

φ2DT

)
φ

∂2c

∂x2 (5.33)

where uo is a scale for the velocity fluctuations. Given that DL ≈ 1.8ud + Dm/τ and
DT ≈ 0.025ud + Dm/τ (Section 5.4), with d the pore size and τ the tortuosity, then
with high Peclet number, the two terms on the right-hand side can be written as

Deff = ud

(
1.8 + 40β

(
u2

o

u2

)2 (w

d

)2
)

(5.34)
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Figure 5.11 Schematic illustration of the effect of cross-flow dispersion in spreading a tracer about
the location of the mean flow: cross-streamline diffusion occurs as a tracer becomes stretched by the
shear flow, about this mean speed, and this diffusion limits the distance over which tracer can spread
ahead and behind the characteristic which migrates with the mean speed.

Note, in building this model, we have assumed that the along-flow distance is suf-
ficient to establish the cross-flow diffusion. This requires a domain of along-stream
scale L > uH2/DT . If the domain is much shorter than this, then the velocity shear will
generate mechanical dispersion, as described in the section on localised lenses.

In order to determine the importance of the macroscopic shear dispersion compared
to the longitudinal dispersion we require an estimate of the second term in the bracket
of Eq. (5.34). For a velocity fluctuation of order 0.1 of the mean, and a layer which
has width w in excess of 103–104 times the pore scale, d, the shear dispersion will
typically dominate the longitudinal dispersion as we illustrate in the detailed calcula-
tion below. Note that since the macrodispersion acts as a diffusive-type effect in this
reduced model, one can show that the two terms which are balanced in Eq. (5.35) are
indeed the long-time dominant terms in the equation for fluctuations about the mean.

In the above model, we have assumed that the perturbations to the background flow
are small so that the local dispersion coefficient may be taken to be approximately
constant. However, if the perturbations are comparable to the background flow, this
can lead to anomalous dispersion effects if the local dispersion coefficient depends
on the local speed, in a somewhat analogous fashion to that described for the no-slip
condition (Section 5.3) in which there is a long tail in the dispersing flow associated
with the slow release of the fluid from the low velocity zones.
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As a simple example of the basic calculation we can consider the case of a linear
shear flow, in the x direction

u = U + Uo(
z

h
− 1/2) for 0 < z < h (5.35)

along a porous layer of finite cross-flow extent, 0 < z < h, with impermeable bound-
aries at z = 0 and z = h. The mean and perturbation flow is therefore given by

u = U and û = Uo

[
z

h
− 1

2

]
(5.36)

using Eq. (5.31), the perturbation concentration in the layer, is given by

ĉ =
Uo

φDT

[
z3

6h
− z2

4

]
∂c

∂x
(5.37)

and combining this with the perturbation velocity, we find that the dispersive transport
is given by

1

h

∫ h

0
ûĉdz = − U2

oh2

120φDT

∂c

∂x
(5.38)

where we assume that U � Uo. In a porous layer of depth h ∼ 1 m, with a flow speed
of about 10−6 m/s, and with pore-scale dispersion for a typical tracer being of order
10−8 m2/s, it follows that the longitudinal shear dispersion associated with the macro-
scopic flow has value ∼ 10−5 m2/s, which far exceeds the pore-scale longitudinal dis-
persive transport.

The model described above, in which we work with the averaged properties in the
formation, requires time for the cross-flow diffusion to act. Since the pore-scale diffu-
sivity is so small, the flow will in fact shear out a distance

L = Uoτ (5.39)

over the time τ required to diffuse a distance h in the cross-flow direction as given by

τ ∼ h2

DT
∼ 109 − 1010s (5.40)

based on the typical flow values above, with DT ∼ 10−9 − 10−10 m2/s. We therefore
expect the tracer to homogenise across a layer of 1 m thickness over times of order
30–300 years, and the flow will migrate a distance 1–10 km. These times may be rela-
tively short compared to times of interest in the transport of radionuclides or contam-
inants from DNAPL plumes in groundwater flows, and so may be key in long-term
modelling of the dispersion of such flows: we note, however, that in modelling such
flows effects of adsorption onto the porous matrix can have an impact on the trans-
port patterns. In large oil fields, with production over 10–15 years, such effects may
become important for the transport and dispersal of injected water and in some cases
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treatment chemicals. However, on shorter times, even though tracer will be sheared
and will diffuse in the cross-flow direction it may not homogenise across the layer. The
description of the depth averaged properties of the flow is very useful for gaining a
picture of the rate of spread of a cloud of tracer. It is important to note, however, that if
the along-flow scale of the heterogeneity is much smaller, there may be more localised
shearing of the tracer leading to mechanical dispersion as discussed for localised lenses
of different permeability (Section 5.5).

A shear flow, as considered in this idealised example, might arise, in principle, in
a porous layer in which the grains were deposited from a waning flow, and hence in
which at each point in the deposit, the grain size would gradually fine upwards, leading
to a gradual decrease in permeability, speed and also dispersivity. In such a formation,
the macrodispersion associated with the large-scale shear in theory produces a transport
flux which is inversely proportional to the transverse pore-scale dispersion, and scales
with the square of the fluctuations in the mean speed.

5.7 Oscillatory flow

We have focused on dispersion in simple translational flows to this point. However,
in various situations oscillatory flows develop and lead to dispersive mixing with the
rate of mixing dependent on the Peclet number for the oscillatory flow. As a simple
example, if we consider a rectilinear oscillatory flow for which the flow has frequency
ω and oscillation amplitude a then we can in fact define a Peclet number based on
the oscillation amplitude, Po = ωa2/Dm as well as the Peclet number based on the pore
scale, as used above, Pe = ωad/Dm. For the mechanical mixing limit we might envisage
that the effective longitudinal dispersion has the form

DL = αDmPof (a/d) (5.41)

where α is a constant of order unity. Laboratory models of the mixing in bead packs
with beads of sizes 0.5–1.0 mm, and oscillation amplitudes ranging from 0.5–5.0 cm,
with frequencies of 0.1–1.0 Hz, using a saw-tooth profile for the oscillation, suggest
that the dispersive mixing coefficient for this range of Peclet number, 103–105, col-
lapses to the form

D = 0.3DmPo = 0.3ωa2 (5.42)

A laboratory experiment of this mixing is shown in Figure 5.12, in which panel a
illustrates the growth of the intermediate zone between the lower (orange) and upper
(blue) layers, and the black and white adjacent image illustrates the growth of the mixed
zone. Figure 5.12b illustrates the collapse of a wide range of experimental data to this
mixing law. Such oscillatory mixing may be important in situations in which there
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Figure 5.12 (a) Illustration of the mixing at an interface with an oscillatory flow, showing the
broadening of the intermediate coloured zone between the lower and upper layer fluid, with
successive oscillations, and a black–white image illustrating the growth of the region of intermediate
concentration. (b) Estimate of the dispersion coefficient, as compared to laboratory data, by
comparing the thickness of the mixed zone h with a(ωt)1/2. Figure courtesy of C. Otto. A black and
white version of this figure will appear in some formats. For the colour version, please refer to the
plate section.

are tidal oscillations or fluctuations in rainfall and aquifer recharge, causing mixing of
different fluids within an aquifer even with no mean flow. In heterogeneous formations,
the longitudinal mixing is much more effective in the high permeability layers in which
there is a higher amplitude of oscillation. If there is also a density difference between
the two bodies of fluid, this can induce a substantial transverse dispersion driven by the
ensuing unstable density gradient across the layers (Otto et al., 2014).

With unidirectional flow in a porous layer, the asymmetry between transverse and
longitudinal dispersion causes much more dispersion in the along-flow direction (see
Figure 5.1). However, if there is a forced flow which is intermittent in direction and
time, then it may be possible to produce a more spatially uniform pattern of dispersion
even with no net flux. If a chemical treatment is being injected into a porous layer, the
use of such a spatially varying oscillation may enable more complete dispersion of the
chemical within the medium. Otherwise, the chemical may become very effectively



91 5.8 Exercises

dispersed in the flow direction, owing to the relatively large longitudinal dispersion,
while remaining relatively localised in the transverse direction.

5.8 Exercises

1. Calculate the anomalous dispersion associated with the no-slip condition in a cylin-
drical tube–connector–tube type porous medium, in which you may assume perfect
mixing in each of the connectors.

2. Calculate the distortion to a line 0 < y < H originally far upstream, x � 0, pro-
duced by a flow through a two-dimensional porous layer containing a lens of width
d(x) = do sin(2πx/L) of permeability k1 in the region 0 < x < L, where the lens is
embedded in a porous layer of width H � do and of permeability ko � k1. If there
are n such lenses per unit length in a laterally extensive layer of porous rock, such
that the lenses do not overlap, calculate the dispersion associated with the lenses.

You may use the result that 1
2t

(
[x(t) − x(t)]2

)
equals the sum of the area of distor-

tion of the line, relative to the uniform flow per unit time.
3. In the case of a radial flow with uniform flux such that DL ∼ ud where u is the speed

and d the pore size, show that the dispersive mixing at a fluid front may initially be
significant but at long times, the dispersion becomes small relative to the advection,
leading to a localised front on the scale of the flow.



6 Frontal instability

In Chapters 3 and 4 we presented a series of problems which relate to the displacement
of one fluid by a second, and prediction of the sweep; these flows involve fronts. To
date we have modelled fronts between miscible fluids, and we have treated the fronts as
being planar in our theoretical discussion. However, in many problems associated with
the extraction of natural resources there will also be immiscible fronts, or fronts across
which there may be changes in the viscosity and density of the fluids. We now explore
the stability of such fronts, and find that in numerous circumstances fronts in porous
layers can become unstable. This is a classical problem, first described by Saffman and
Taylor (1956) and there is a fascinating review by Homsy (1987). Since then there has
been an enormous body of work on viscous fingering, and variants thereof, which arise
with non-Newtonian fluids (e.g. Linder et al., 2002), reacting fronts (Hinch and Bhatt,
1990), granular media and fronts with phase change (e.g. Riolfo et al., 2012). Our aim
in this chapter is to provide a basic understanding of viscous fingering, and consider
its role in flow in porous media, especially for injection or extraction phenomena, but
we mention analogous processes in non-consolidated media. In order to mitigate the
instability when water is used to displace viscous oil, viscosifiers are added to the water
to make it more viscous, and we discuss the implications of the instability for injection
of a discrete slug of viscosified water into an oil field. In later chapters we consider
the effect of reactions and the dissolution instability (Chapter 8) and the instability of
a boiling front, relevant for geothermal systems (Chapter 11).

6.1 A model of the instability

Figure 6.1 shows a series of four photographs, at successive times in which fresh low
viscosity water displaces a more viscous sugar solution in a bead pack which is 10 cm
wide, 1 cm deep (into the page) and composed of beads of size 1 mm. The mechanism
of instability can be understood by observing that the pressure gradient in the more
viscous fluid downstream is greater than that in the less viscous fluid upstream. Thus,
instead of displacing the high viscosity fluid downstream with a uniform flow, the

92
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Figure 6.1 Development and evolution of miscible fingers in a porous bead pack as water displaces a
more viscous sugar solution. The motion is in the downwards direction in the figure. Small fingers
of the red water migrate through the sugar solution in an irregular pattern, developing a zone of
intermingled fluid, which grows with time. There is little mixing of the phases during this
experiment owing to the relatively long time for diffusion across the fingers compared to the time of
the experiment. Figure courtesy of C. Otto. A black and white version of this figure will appear in
some formats. For the colour version, please refer to the plate section.

Figure 6.2 Viscous fingering produced as water (red) migrates upwards and displaces oil (clear) in a
bead pack of width 10 cm. The intermingled zone grows with time. Figure courtesy of C. Otto.
A black and white version of this figure will appear in some formats. For the colour version, please
refer to the plate section.

lower viscosity fluid advancing from upstream drives the more viscous fluid sideways,
generating channels or fingers into which the displacing fluid continually advances.
This provides a path of much lower resistance, and much of the more viscous fluid
is bypassed. In Figure 6.2, we illustrate viscous instability arising in an immiscible
oil–water system in the same bead pack. The bead pack acts as a permeable layer, as
red water migrates upwards to displace clear oil. In this case the fingers become more
dispersed as they pass successive beads and break up into multiple fingers. Again the
two-phase zone becomes progressively larger with time in the flow direction.

To model this instability we consider a uniform flow of one fluid displacing a second
across an interface, and perturb the interface with a sinusoidal perturbation parallel to
the interface. We then examine how the perturbations vary in time, to see if the interface
is stable under displacement. The pressure is modelled in terms of a base pressure
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gradient for rectilinear flow with a small perturbation pressure field associated with a
sinusoidal distortion of the interface,

p(x, y, t) = po
m(x, t) + εp1

m(x, y, t) (6.1)

where ε � 1.
The basic state has pressure gradient in each layer given by

dpo
m

dx
= − μmu/k (6.2)

where subscript m denotes the upstream displacing fluid m = 1 or the downstream dis-
placed fluid, m = 2. We analyse the stability of a sinusoidal perturbation to the flat
interface in the form

x =
ut

φ
+ η exp(iny + σ t) (6.3)

where σ is the growth rate of the perturbation and n the wavenumber (Figure 6.3). The
pressure perturbation p1

m satisfies

∇2p1
m = 0 (6.4)

with boundary conditions that (i) p is continuous across the interface (for miscible
flow); (ii) the perturbation decays far from the interface since the instability is gener-
ated at the interface; and (iii) the fluid speed matches the interface speed at the inter-
face. This leads to the solution

p1
m = εam exp

[
iny − (−1)mn

(
x − ut

φ

)
+ σ t

]
(6.5)

for m = 1, 2 and the boundary condition (iii)

∂η

∂t
= − ε

k

φμm

∂p1
m

∂x
(6.6)

requires that

ση = − ε
k

φμ1
na1 = ε

k

φμ2
na2 (6.7)

and the pressure continuity condition requires that

εa1 − μ1uη

k
= εa2 − μ2uη

k
(6.8)

Eliminating a1 and a2 we find the dispersion relation for the growth rate of perturba-
tions

σ =
nu

φ

(
μ2 − μ1

μ1 + μ2

)
(6.9)
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Figure 6.3 Cartoon illustrating the geometry for the Saffman–Taylor instability calculation.

We see that if a low viscosity fluid displaces a high viscosity fluid, μ1 <μ2, the pertur-
bation to the interface grows. As the instability becomes non-linear, the low viscosity
fluid can finger through the high viscosity fluid. According to this model, the most
unstable wavelength for the instability is zero, as this corresponds to the shortest cross-
flow displacement of the high viscosity fluid in order to allow a finger of low viscosity
fluid to move forward. However, the short wavelength instability tends to be suppressed
by several effects: first in miscible displacements, diffusion between the species will
cancel out the difference in properties and tend to prevent very short wavelength pertur-
bations from growing (cf. Homsy et al., 1987). Second, in immiscible displacements,
the surface tension will tend to stabilise the interface; the effect of surface tension is
greatest for short wavelengths which have the greatest curvature and this leads to a
minimum wavelength for instability (see below).

In the case that the fluids also have different density, then the instability will either
be promoted or suppressed by gravity when the motion has a component parallel to
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the gravitational acceleration. With the interface oriented at angle θ to the horizontal,
with fluid 2 above fluid 1, the dispersion relation becomes modified to include the
hydrostatic pressure gradient in the fluid, leading to the relation

σ =
n

φ(μ2 + μ1)
[(μ2 − μ1)u + k(ρ2 − ρ1)g cos θ] (6.10)

From this relation, it may be seen that a favourable viscosity gradient with high
viscosity fluid displacing low viscosity fluid, μ1 >μ2 may stabilise a gravitationally
unstable front with dense fluid above less dense fluid, ρ2 >ρ1, if the interface migrates
sufficiently rapidly. Also, a viscously unstable interface may be stabilised by gravity if
ρ2 <ρ1 and the interface migrates sufficiently slowly.

In Chapter 9, we turn to gravitationally driven flows, in which the difference in den-
sity of one fluid relative to a second controls the flow. However, we illustrate a photo-
graph from a laboratory experiment showing a gravitational instability on a downward
moving front, in which a layer of relatively dense red saline fluid displaces a layer of
clear fresh liquid; with a sufficiently slow injection rate, the interface develops fingers
which advance ahead of the main front, and leads to a dispersed interface (Figure 6.4:
see Chapter 10). The process, while the instability is still of small amplitude, is directly
analogous to the viscous instability on a moving front, as seen in the analysis above. In
both cases, one assumes that the initial state involves a planar interface with an exten-
sive zone of fluid on each side of this interface. In practice this can be established by
setting up the system upside-down and then inverting the cell.

The analysis above was based on modelling flow in a porous medium. In order to
explore some of these phenomena, it is convenient to use an analogue two-dimensional
system, known as a Hele–Shaw cell. This consists of two parallel plates with a thin

Figure 6.4 An example of gravitational instability as a layer of saline dense red liquid migrates
downwards into a layer of less dense clear fresh water in a bead pack. A black and white version of
this figure will appear in some formats. For the colour version, please refer to the plate section.
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gap, b, so that the flow between the plates is of low Reynolds number, and for single
phase flow develops a Poiseuille flow profile,

u(y) = ∇p
(y2 − by)

2μ
(6.11)

as a function of the cross-gap position y, 0 < y < b, so that the mean flow between the
plates is given by

u = − b2

12μ
∇p (6.12)

for a pressure gradient 	p. This corresponds to a porous medium with φ = 1 and perme-
ability k = b2/12. Paterson (1985) has proposed that with a Hele–Shaw cell, the mini-
mum wavelength of instability for a miscible displacement scales with the thickness of
the cell in order that the viscous dissipation is minimised; with smaller wavelengths,
the distortion associated with the flow leads to greater dissipation.

6.2 Surface tension

If we consider an immiscible displacement, we need to account for the effects of sur-
face tension. In a Hele–Shaw cell, the surface tension has a constant component asso-
ciated with the curvature normal to the plane of the plates, and a component parallel to
the plane of the plates associated with the displacement and instability of the interface.
In addition to the consideration of the interfacial tension between the two fluids, the
wetting properties of the fluids on the walls of the Hele–Shaw cell, which are related
to the difference in the fluid–fluid and each of the fluid–wall interfacial tensions, deter-
mines whether the fluid being displaced leaves a thin film on the walls of the cell,
or if there is an advancing contact line. This effect, as well as the effect of the nor-
mal viscous stress at the interface, has been considered by several researchers in more
complete models of the process, and leads to correction terms in modelling immisci-
ble Hele–Shaw displacements (Schwartz, 1986; Reinelt, 1987; Maxworthy, 1989; Kim
et al., 2007). However, many of the general principles follow from a simplified analysis
in which we model the cross-layer curvature of the interface as being constant, leading
to a pressure drop across the interface x = x(y, t) given by

	p = T

[
2

b
+

∂2x

∂y2

]
(6.13)

The first term denotes the pressure drop from the curvature normal to the plates, a
distance 2b apart. Substituting this expression into the pressure boundary condition
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at the interface, as given above, the dispersion relation acquires an additional term,
leading to the expression, for φ = 1,

[μ1 + μ2

k

]
σ = n

[
u(μ2 − μ1)

k
+ g(ρ2 − ρ1)

]
− Tn3 (6.14)

The maximum growth rate occurs when

n =

[
u(μ2 − μ1) + kg(ρ2 − ρ1)

3kT

]1/2

(6.15)

For a flow with speed u = 10−4 m/s, viscosity contrast 10−3 Pa s, and Hele–Shaw per-
meability 10−7 m2, and with surface tension T = 70 mN/m2, we find that the wave-
length of the instability has length of order 0.15 m. The expression (6.14) also illus-
trates that the system is unstable for small values of n, but that above a critical value,
all wavenumbers are stable, as expected (see Figure 6.5).

In a porous rock, the effects of surface tension strictly only apply on the scale of
the grains, across the pores; however, we will see in the next chapter that owing to
the possible flooding of the pore space with both fluids, there is an effective capillary
pressure in the pore space which depends on the saturation of each phase within the
pore space. There is also typically a capillary entry pressure for the non-wetting phase
if a non-wetting fluid migrates into a porous layer.
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Figure 6.5 Calculation of the dimensionless growth rate of the viscous fingering instability
(Saffman–Taylor) as a function of the wavelength, for the case of an immiscible front in which
surface tension can stabilise the front.
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Figure 6.6 Evolution of a viscous fingering instability in a circular Hele–Shaw cell. Three images, in
different shades of blue, are superposed to illustrate the evolution with time of the fingers. A black
and white version of this figure will appear in some formats. For the colour version, please refer to
the plate section.

6.3 Axisymmetric flow

With a radially spreading flow issuing from a point source, the linear instability evolves
in time since the radius of the interface increases with time, and this leads to a transition
in the most unstable modes. For example, Figure 6.6 shows the instability which devel-
ops when air is injected into a Hele–Shaw cell filled with glycerol at three successive
times, shown by the different shades. Initially the interface is approximately circular,
but then breaks up into a series of fingers which then bifurcate into more fingers as they
develop non-linearly. To explore this process, we consider a radially spreading flow,
with a constant injection rate and consider perturbations to the interface in the form of
azimuthal waves of the form An(t) exp(inθ) where we denote position as (r, θ) in polar
coordinates. We then develop the linearised equation for the evolution of each An(t) by
perturbing the pressure upstream and downstream of the interface, and matching the
jump in pressure with the surface tension.

To solve for the pressure field, p, we note that the pressure on each side of the
interface is now given by Laplace’s equation in a radial geometry, leading to
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prr +
1

r
pr +

1

r2
pθθ = 0 (6.16)

The base state is given by

po
j = − μQ

2πk
lnr + cj for j = 1, 2 (6.17)

and the first-order perturbations, driven by the interface, are given by the azimuthal
modes, n ≥ 1

p1
j = (−1) jβ

(
rn

Rn

)(−1) j − 1

exp(inθ) (6.18)

for the inner, j = 1 and outer j = 2 regions of the fluid, such that the perturbations decay
from the interface. We match the perturbation to the fluid speed at the interface with the
speed of the perturbation of the interface, which is located at r = R(t) + An(t)exp(inθ),
where R(t) = (Qt/π)1/2. Also, we match the change in dynamic pressure across the
perturbed interface with the change in surface tension associated with the perturbation
to the position of the interface. After some algebra we obtain the expression for the
growth rate of mode n, with amplitude An(t)

1

An

dAn

dt
=

Qn

2πR2

μ2 − μ1

μ1 + μ2
− Q

2πR2 − n(n2 − 1)Tk

R3(μ1 + μ2)
(6.19)

where subscript 2 denotes the outer fluid and R is the radius of the interface. Since the
base state is evolving with time, as manifest by the gradual increase of R with time, the
growth of the modes is not exponential as for the planar case, and indeed the growth
rate for each mode varies non-monotonically with R.

In Figure 6.7 we plot the right-hand side of the above equation to determine the
growth rate of the instability as a function of radius for illustrative parameter values.
Each mode becomes unstable at a given radius, with the surface tension stabilising that
mode for smaller radii. Also, each mode reaches a maximum growth rate as the radius
reaches a specific point; the growth rate of that mode subsequently wanes as the radius
continues to grow. As a result, if a perturbation is initially composed of all wavelengths,
then as the radius grows, the amplitude of progressively larger wavenumbers become
the largest, until the perturbation becomes non-linear. The gradual evolution of the
amplitude of the modes is shown in Figure 6.8 and this identifies how the mode with
the largest amplitude gradually becomes of higher wavenumber with time.

6.4 Fluid annuli and droplet formation

The viscous instability has substantial implications for the recovery of oil through the
injection of water. If the water is more mobile it will tend to finger through the oil
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Figure 6.7 Illustration of the variation of growth rate of the different azimuthal modes, as indicated
by the numbers on the curves, for injection of fluid from a central well, into a porous layer, with
two-dimensional axisymmetric flow. The horizontal axis corresponds to the radius of the flow front.
After Cardoso and Woods (1993).
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Figure 6.8 Amplitude of each mode as a function of the radius of the interface, relative to the initial
amplitude of the disturbance of that mode. Curves are shown for azimuthal modes 2, 3 and 4. As the
radius increases the most unstable mode coincides with a greater wavenumber; this leads to a
cascade of the most unstable mode with radius. After Cardoso and Woods (1993).

towards the producing well, thereby leaving considerable amounts of oil in the for-
mation. In order to suppress or limit the development of the instability, a number of
polymer systems have been developed to viscosify the injected water in an attempt to
stabilise the front. However, in many cases, the chemical solutions are expensive and
cannot be supplied with all the injected water. Instead, a finite slug of chemical which
acts to viscosify the water may be injected with the water, and this is then followed
by a water flood. The presence of a viscous fluid ahead of the injected water leads to
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the development of two interfaces. In some situations, the leading interface involves a
viscous fluid displacing the oil (or a previously water-flooded region) and this interface
will typically be stable to viscous instability. The trailing front involves the relatively
mobile injection water displacing the viscosified fluid, and so is unstable. The stabil-
ity of the overall system depends on the viscosity ratio of the two outer fluids, but
the presence of the intermediate layer may affect the growth rate and morphology of
the instability; indeed, since one of the interfaces of the intermediate layer may be
unstable, it may break up into droplets. The benefit of the viscosifier may then lie in
delaying, rather than preventing, the onset of instability. Cardoso and Woods (1993)
analysed this instability in detail, by using a perturbation expansion for each of the two
interfaces, in a fashion analogous to the single front described above. From this they
showed that, even in the case that the overall interface of the two outer fluids is stable,
one of the interior interfaces may be unstable and that this can lead to break up of the
annulus into droplets (cf. Figure 6.9). This effect is important in that it identifies how
the addition of a third fluid may lead to delay in the growth of the interfacial insta-
bilities but also that the intermediate layer may be breached by the fingering process,

(b)(a)

(d)

(e)

(c)

Figure 6.9 Illustration of the formation of a series of droplets on the boundary of the fluid–fluid
interface as the annulus breaks up through viscous instability. After Cardoso and Woods (1993).
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reducing its effectiveness. We return to the effect of polymer floods on the pattern of
flow in a reservoir in Chapter 8.

In many porous rocks, the heterogeneity of the formation can lead to irregularities in
the shape of the flow front and these in turn can control the wavelength of the viscous
instability, but may also dominate the spreading of the interface by viscous instability
as fluid migrates along the higher permeability pathways. As a result, although viscous
instability is pervasive in leading to the dispersal of interfaces, it occurs in tandem with
the process of dispersion, as described in the previous chapter, and, for immiscible
displacements in a porous layer, it is also influenced by the effects of two-phase flow,
which we describe in the next chapter. However, at the end of this chapter, we discuss
viscous fingering in a Hele–Shaw cell of variable aperture.

6.5 Instability of reaction fronts

The instability mechanism identified for the Saffman–Taylor instability can be seen in
many other processes in porous media in which there is an increasing pressure gradient
across a front. For example, with a dissolution front, the region of rock upstream of the
front, where the dissolution has already occurred, will have an elevated permeability,
while downstream the rock is unreacted and still has the original permeability. As a
result, the reaction front will become unstable and develop dissolution channels. One
important process where such an instability is critical is in the acidising process (cf.
Hinch and Bhatt, 1990). In a number of oil-production systems in which there is water
injection, the formation water containing barium in solution may reach the production
well at one height in the producing zone, while the injected water containing sulfate
may reach the production well at a different height, if it follows a different more per-
meable layer through the formation. When these solutions mix, barium sulfate may
be precipitated, leading to scale formation and a loss of permeability of the production
well. In order to mitigate this phenomenon, acid is injected into the well with the objec-
tive of dissolving the scale and restoring the permeability of the formation. Although
there may be some kinetics controlling the dissolution rate, and we explore this in more
detail in Chapter 8, a simple model to demonstrate the process arises if we assume that
there is a sharp reaction front across which the permeability changes from k1 to k2.
Typically, such a reaction front advances at a fraction λ of the interstitial speed, i.e.
with speed λu

φ
, dependent on the stochiometry of the reaction (Chapter 8). If we fol-

low the stability approach used to study the viscous instability, given in Section 6.1,
but now applied at the reacting interface, we find that across this interface, which has
speed λu/φ, the perturbation to the speed of the front requires that (cf. Eq. 6.7)

ση = − λ

φ

k1np1

μ1
=

λ

φ

k2np2

μ2
(6.20)
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since the interface migrates at a fraction λ of the interstitial speed, while the pressure
continuity condition (cf. Eq. 6.8) is of the form

p1 − μ1uη

k1
= p2 − μ2uη

k2
(6.21)

where the perturbation pressures upstream and downstream have magnitude p1 and p2

respectively (cf. εai, Eq. 6.5). Combining these relations, following the same approach
as in Section 6.1, we find the growth rate of perturbations

σ =
λun

φ

(
μ2
k2

− μ1
k1

μ2
k2

+ μ1
k1

)
(6.22)

where subscripts 1 and 2 denote the properties upstream and downstream of the front.
Here, the rock upstream has reacted already while the fluid downstream carries off the
dissolved material and hence may suffer a change in viscosity, and density, the latter of
which we neglect herein. If the permeability of the unreacted rock, k2, is smaller than
that of the reacted rock, k1, corresponding to a dissolution reaction, then the system
will tend to be unstable, and the dissolution front will break up into small channels,
provided the effect of any change in viscosity of the fluid following the dissolution is
smaller than the effect of the change in permeability. It is also seen that a precipita-
tion reaction tends to be stable, since the permeability will decrease from upstream to
downstream as the pore spaces become filled with precipitate, k2 > k1.

Such instabilities are influenced by molecular diffusion, which can diffuse the reac-
tants and lead to cut-off of the smallest wavelengths, but also by the kinetics of the
reaction which typically leads to formation of a reaction zone across which the fluid
properties change, as described in Chapter 8. Other fronts involving phase change and
reaction also exhibit instability in some situations. For example, the migration of a
boiling front can become unstable, as described in Chapter 11 in relation to geother-
mal systems. Some recent analysis and experiments on the stability of reacting fronts
have been reported by Riolfo et al. (2012).

6.6 Instabilities in unconsolidated porous media

In young sedimentary rock, the grains may not be fully cemented and so even though
buried below other sediment, the permeable layer is unconsolidated. In permeable
rocks, the load of the overlying rock is supported by a combination of the pore pressure
in the formation and the stress associated with the grain–grain contacts in the perme-
able rock. With a sufficient load supported by the grain–grain contacts, the medium
may behave as a solid framework through which the fluid can migrate. However, if
the pore pressure increases and supports more of the load, then the effective stress of
the medium decreases, for constant load, and the frictional forces between particles
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(b)(a)

Figure 6.10 Instability of flow in an unconsolidated porous layer. At low flow rates (a) the fluid
migrates as a Darcy flow, whereas at higher flow rates, the grains are mobilised and channels
develop as the grains are displaced to the side of the flow (b). Photograph courtesy of G. Del Ioio. A
black and white version of this figure will appear in some formats. For the colour version, please
refer to the plate section.

are reduced so that grain–grain motion becomes possible provided there is space.
Indeed, as the pore pressure increases, the stress on the surrounding layers eventu-
ally increases, leading to deformation and creation of this space. The grains may then
become mobile. Since the grain–fluid mixture has a very high resistance to flow, for
near close packed grains, any fluid displacing the grains will tend to develop channels
through the medium rather than displacing the granular mixture in the direction of flow,
in a fashion akin to the Saffman–Taylor instability.

In a series of experiments using a Hele–Shaw cell packed with sand, this process
has been demonstrated by injecting fluid from a central source (Del Ioio and Woods,
2014). With a low injection pressure, the fluid pressure within the cell remains small,
and the system remains stable, with the flow migrating as a Darcy flow (Figure 6.10a).
However, as the injection pressure increases, in these experiments, the cell begins to
deform, and as the load taken by the grains falls, grain–grain motion ensues, leading
to formation of pure fluid channels as the granular suspension is displaced sideways
(Figure 6.10b). This is an important process, since it effectively increases the perme-
ability of the sand pack in the near injection region where otherwise the pressure gra-
dients for Darcy flow are greatest. As a result, the overall flow rate for a given applied
pressure becomes substantially larger. Indeed, the resistance to flow in the channels is
very small compared to the porous layer.

As a simple demonstration of the impact of the channels on the flow, consider the
far-field pressure, at radius R to be constant, as in the laboratory, then the flow is given
from Darcy’s law by the approximate relationship

Q =
k	p

μ

1

ln
(

R
ri

) (6.23)
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Figure 6.11 Variation of the flow rate with source pressure for conditions before instability, for which
the flow rate is low, and after instability at higher pressure, for which there is a significant jump to
larger values of the flow rate. Curves are given for four values of the overpressure of the confining
vessel. Figure courtesy of G. Del Ioio.

where ri is the inner radius of the porous layer, outside of which the sand pack is
unchannelised. As ri increases with channelisation, the flow rate also increases. If the
well radius rw is very small, then the change in flow rate as ri grows to values of
order 10 times the well radius may be very substantial. This effect may be seen in
data from the laboratory experiments in which the flow rate increases rapidly once
the system reaches a critical pressure such that the cell is sufficiently deformed to
allow particle motion, and formation of fluid channels. Subsequently, the flow rate has
much larger values for a given injection pressure owing to the presence of the channels
(Figure 6.11).

6.7 Fingering in fractures of variable width

In many fractures which transmit fluid from the well to the permeable formation, the
fracture width may be non-uniform. In this case, the flow speed may vary with position
in the fracture, leading to a preferred mode of instability and non-linear finger develop-
ment. Such control from the geometry of the fracture is important since any naturally
occurring fractures will be of variable aperture thickness.

As a simple model of the phenomenon, we can consider a long fracture, 0 < x < L
of thickness b(y) = bo(1 − |y|/W), where y is the cross-fracture position, −W < y < W
and L � W. If we model the flow along the fracture, in the x direction as driven by an
applied pressure gradient along the fracture, then the flow speed along the cell of fluid i

u = − b2

12μi

∂p

∂x
(6.24)
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where we assume the pressure is independent of the cross-fracture position, and that
the flow is directed along the fracture. If fluid 1 displaces fluid 0, and V = μ1/μo, then
the pressure gradient is related to the total flux along the cell Q according to the relation

−2
∂p

∂x

[∫ w

0

b3

12μ1
dy +

∫ W

w

b3

12μo
dy

]
= Q (6.25)

where the injected fluid is assumed to lie in the region −w(x, t) < y < w(x, t).
The conservation of injected fluid, at position x along the cell, is given by

∂

∂t

∫ w(x,t)

0
bdy = − ∂Q1(w(x, t))

∂x
(6.26)

where the flux of fluid 1 at position x along the fracture is given by

Q1(w(x, t)) =
∫ w(x,t)

o
budy (6.27)

Combining (6.24)–(6.27) leads to the relation for the evolution of s = w(x, t)/W along
the fracture

∂s

∂t
+

4VQ

Wbo

(
(1 − s)2

[1 + (V − 1)(1 − s)4]2

)
∂s

∂x
= 0 (6.28)
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Figure 6.12 Illustration of the speed of surfaces of the displacing fluid, of a given width s, as they
advance along the Hele–Shaw cell of non-uniform cross-sectional area, as given by Eq. (6.29).
Curves are given for V = 1.1, 2 and 5.
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Figure 6.13 (a) Variation of x(s, t) as a function of s for 4 times following the injection of fluid into
the cell. (b) Series of photographs of the time evolution of a laboratory experiment, illustrating the
displacement of blue glycerol with green corn syrup in a Hele–Shaw cell in which the gap varies
from 1 mm at the edge of the cell to 2 mm at the centre of the cell. A black and white version of this
figure will appear in some formats. For the colour version, please refer to the plate section.

This is a non-linear wave equation which illustrates how the position of surfaces with
a given value of s, x(s, t) say, varies according to

dx(s, t)

dt
=

4QV

Wbo

(1 − s)2

[1 + (V − 1)(1 − s)4]2 (6.29)

For V < 4/3, this speed decreases monotonically with s (Figure 6.12) and so the dis-
placing fluid becomes progressively stretched out along the centre of the cell. The
above solution then represents a non-linear solution for a viscous finger in a cell of
slowly varying aperture. Figure 6.13 illustrates the growth of the finger with time as it
advances along the fracture, and compares this with a laboratory experiment illustrating
the growth of such a non-linear finger. In the case V > 4/3, there is a maximum value
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of dx(s, t)/dt at a particular value of s, 0 < s < 1 (Figure 6.12). This implies that a shock
forms at the nose of the flow, across which the flux is conserved. The shock forms since
s cannot be multi-valued at a given position x. The injection of a more viscous fluid
thus leads to a partial stabilisation of the fingering associated with the variable width
of the cell. More details of such shocks are given in Chapter 7.

6.8 Exercises

1. Develop a model for the stability of the interface between a layer of fluid which fills
the space between two planes connected by a hinge at x = 0 initially separated by
angle θ in the case that the hinge is opened with angular velocity ω. Assume that
initially the fluid fills the gap to a distance L from the hinge at t = 0, and that there
is air beyond this point. In developing a model of the flow, you may assume that the
flow advances with the cross-plane averaged uniform speed, and that the resistance
of the planes to the flow dominates the friction, producing an effective permeability
d2/12 where the gap spacing is d.

2. Calculate the stability of a circular ring of fluid which is extracted from a point sink
in a Hele–Shaw cell, in the case that the external boundary of the fluid is bound by
air. Describe how the most unstable mode evolves in time if the extraction rate is
constant.



7 Two-phase flow

When modelling oil–water flows or CO2–water flows in porous media, one of the key
challenges lies in the description of the effects of the immiscibility between the two
phases and its impact on the flow. Within each pore space, a fraction of the volume
will be occupied by each phase, known as the saturation of that phase. The interaction
with the pore walls also depends on which phase is preferentially in contact with the
solid, which depends on the wetting characteristics of the two fluids. A very significant
body of work has been carried out in developing methods to measure and characterise
these properties in porous rocks in which the complexity of the pore structure and the
diversity of the minerals within the porous structure can lead to non-unique and spa-
tially variable properties. The books by Bear (1972), Dullien (1991) and Lake (1991)
provide more details of some of the multi-phase flows which may arise in porous rocks.
The objective of this chapter is to introduce some of the fundamental ideas concerning
two-phase flow in a porous layer, and to explore the consequences of these ideas in
terms of the evolution of saturation fronts as one fluid displaces another.

7.1 Wetting

In order to determine the relative wetting properties of two fluids in a porous layer, we
turn to Young’s law, which relates the interfacial tension between each fluid phase and
the solid surface σas and σbs with the interfacial tension between the two fluid phases,
σab, according to the relation (see Figure 7.1)

σab cos θ = σas − σbs (7.1)

where θ is the contact angle of the fluid–fluid interface with the solid surface. In the
case that

σas − σbs

σab
> 1 (7.2)

110
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Figure 7.1 Illustration of the relation between the interfacial tension and the contact angle, for two
fluids in contact with a solid surface. In this figure, fluid b is the wetting phase.

then there is no solution to (7.1) for the contact angle θ and so one fluid phase, the
wetting fluid, will be in contact with the surface at all points. This is known as total
wetting, whereas if 0 <θ <π/2 then the fluid b is known as the wetting fluid, but
for π/2 < θ < π , then fluid a is the wetting phase. There is a fundamental difference
between the flow of the wetting and non-wetting phases, since the non-wetting phase
tends to migrate through the centre of the pore spaces, and is lubricated by the wetting
phase, whereas the wetting phase is in contact with the solid surfaces and therefore
follows a no-slip condition. This leads to an increase in resistance to flow.

The motion of a wetting phase migrating into a porous layer and displacing the non-
wetting phase is known as an imbibition flow, since the wetting phase is drawn into the
porous layer along the surfaces of the porous matrix. In contrast, when a non-wetting
phase displaces the wetting phase in a porous matrix, the flow is called a drainage flow,
and the advancing fluid tends to migrate through the centre of the pores.

During an imbibition flow, as the wetting phase increases its volume fraction in
each pore space, droplets of the non-wetting fluid may become stranded in the cen-
tre of the pores, leaving a residual saturation of the non-wetting phase. This phase
may be unconnected through space. The critical size for such droplets depends on the
interfacial tension between the two fluids which tends to suppress the deformation of
the interface as the viscous stress drives the fluid forward through the pore throats
(Figure 7.2a)

In a drainage process, the wetting phase is displaced and this leads to some resid-
ual trapping of the wetting phase in the corners of the pores, on thin films around the
grains, and in pendular rings of fluid between touching grains. The residual saturation
of the wetting fluid in such a flood typically has value of about 0.1–0.2 of the pore
space, although again it depends on the detailed structure of the material (Figure 7.2b).
Depending on the geometry, there may be islands of the porous matrix which are iso-
lated by the films of wetting fluid, and through which the non-wetting fluid may not
enter, if the pore openings are too small to distort the interface through the opening.
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(a)

(b)

Figure 7.2 (a) Schematic of the topology of a wetting and non-wetting fluid in the limit of small
saturation of the non-wetting fluid, illustrating the droplets of non-wetting fluid trapped within the
pore spaces between grains. (b) Schematic of the topology of a wetting and non-wetting fluid in the
limit of large saturation of the non-wetting fluid, illustrating the connected non-wetting fluid, while
the wetting fluid manifests itself as films around the grains, some of which may be unconnected.

7.2 Capillary entry pressure

The result of the interfacial tension σ12, is to create a pressure difference between the
two fluids, 1 and 2. In a simple capillary the magnitude of this pressure jump, the
capillary pressure, has value of order

pc = σ12

(
1

r1
+

1

r2

)
=

2σ12

r∗ (7.3)

where ri are the principal radii of curvature of the interface and r∗ is defined by
Eq. (7.3). However, in a porous rock, the capillary pressure varies over space, and
depends on the local geometry of the pore space. It has a complex spatial dependence
but is often modelled in terms of a continuous function of the saturation of each phase
in the porous matrix. One important detail relates to the hysteresis between capillary
pressure during the imbibition process and the drainage process: with imbibition, the
wetting phase enters the pore spaces, and so there is no threshold capillary entry pres-
sure for the advancing fluid to enter the pore spaces. In contrast, during a drainage flow
in which the formation is initially flooded with the wetting phase, there is a thresh-
old capillary entry pressure for the non-wetting phase to pass through the pore throats
and displace the wetting fluid (Figure 7.3). As the wetting phase saturation decreases
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Figure 7.3 Illustration of the difference in the capillary pressure associated with imbibition- and
drainage-type flows. There is a capillary entry pressure for a drainage flow as the non-wetting phase
requires a minimum pressure to pass through pore throats when at very low saturation. The residual
saturation of the non-wetting phase may correspond, for example, to droplets of the non-wetting
phase trapped in the centre of the pores (Figure 7.2a). The connate saturation of the wetting phase
corresponds to the saturation of the irreducible water which remains when the non-wetting phase
has displaced the wetting phase from the pores (Figure 7.2b). This may correspond to a water film
over the grains, or to water trapped in the very small openings and gaps between grains, places into
which the non-wetting fluid cannot enter owing to the interfacial tension.
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Figure 7.4 Hysteresis in the contact angle on the upstream and downstream side of a moving drop.

to small values, the capillary pressure increases since it becomes increasingly diffi-
cult to displace the remaining wetting phase because the interface between the fluids
requires distortion to progressively smaller radius of curvature. One common observa-
tion of hysteresis of a draining and imbibition flow is that the contact angle of a drop
of water moving on a pane of glass is different on the advancing and the receding front
(Figure 7.4).
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Various models have been developed to quantify the capillary pressure, based on the
dimensional scaling that capillary pressure varies as

pc = σ

(
φ

k

)1/2

J(sw) (7.4)

This essentially relates the surface tension, σ , and the lengthscale associated with
the permeability (k/φ)1/2, with the capillary pressure, modified by a function J of the
saturation, sw, which represents the volume fraction of the pore space occupied by the
wetting fluid. J may have a different functional form for imbibition and drainage in
order to capture the above hysteresis.

The other property which arises in the above discussion is the residual saturation
(minimum) of the non-wetting phase and connate saturation (minimum) of the wetting
phase. These determine the limiting values for the recovery of each phase when it
is displaced by the other. There are numerous models and experiments in which the
displacement process on the pore scale has been studied in detail. Typically it is found
that the residual saturation depends on the capillary number of the flow, which is the
ratio of the viscous stress to the capillary stress

Ca =
μu

kσ
(7.5)

with the residual saturation typically varying from 0.1–0.2 as the capillary number Ca
falls below values typically of order 0.01–0.001.

7.3 Gas cap size and transition zones

The capillary pressure has an important control on the static properties of fluids, and
especially the interface between immiscible fluids, in porous layers. First, the depth of
a layer of buoyant, non-wetting fluid which can accumulate below a seal rock, with a
capillary entry pressure pe is given by

h =
pe

g(ρw − ρo)
(7.6)

where (ρw − ρo) is the density difference between the wetting, w, and non-wetting, o,
phase.

This simple result illustrates how the capillary entry pressure determines the efficacy
of a particular seal rock to suppress the upward motion of a non-wetting fluid phase,
and the possible volume of that fluid which may be trapped below the seal. Such effects
play a key role in the formation of oil and gas reservoirs, as well as in influencing the
distribution of CO2 following injection into a reservoir for geosequestration. As hydro-
carbons migrate upwards through the geological strata, they accumulate in anticlines
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Figure 7.5 Illustration of (a) the leakage of a buoyant non-wetting fluid through a seal layer while the
depth of the buoyant fluid is sufficient for the overpressure to exceed the capillary entry pressure
into the seal and (b) an equilibrium pool of liquid which is just trapped below a capillary seal.

and other structural traps. If they deepen beyond the depth given by Eq. (7.6) then the
overpressure can drive the hydrocarbon upwards through the seal into the overlying
geological strata. However, assuming that the seal rock remains water wet, once the
depth of the hydrocarbon layer below the seal falls to the depth given by (7.6), the
remaining hydrocarbon is trapped.

For example, with an oil–water surface tension of about 70 mN/m2 and a permeabil-
ity of 10−14 m2, the capillary entry pressure may be of order 70 000 Pa. With a density
contrast of 200 kg/m3 between the oil and water, we may expect an oil layer of depth
of about 35 m below a seal layer. If the oil is denser, the depth of the seal would be
greater, while a gas layer, of much lower density may only have a trapped gas cap of
order 15–20 m, depending on the depth of the reservoir. Such trapping may also be
key in the migration of CO2 and DNAPL plumes through layered rock. The capillary
entry pressure restriction may lead to trapped pockets of CO2 forming wherever the
heterogeneities within the geological strata form structural traps and for which there is
an effective capillary entry pressure (see Chapter 10; Farcas and Woods, 2009). Note
that with a gas cap, if there is a background hydrological flow, there will be a pressure
gradient along the cap, in the along-flow direction of order μu/k, and this will tilt the
lower interface of the gas cap to an angle θ to the horizontal so that the buoyancy pres-
sure gradient in the cap, 	ρg sin θ matches the along-cap pressure gradient associated
with the flow, μu/k.

In many systems in which there is a buoyant phase overlying an immiscible relatively
dense phase, the capillary pressure and preferential wetting of one phase leads to a
region in which the fluids intermingle in the sense that the saturation continuously
varies across the interface between the two fluids. This process arises as the wetting
fluid is drawn into the non-wetting fluid region along the grain boundaries. The depth
of the transition zone, and the variation of saturation within this transition zone, s(h), is
then controlled by a balance between the capillary pressure driving the intermingling
and the buoyancy force which stabilises the region (Figure 7.6)
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Figure 7.6 Variation of the saturation across a capillary transition zone as the saturation of the
wetting phase varies from the connate saturation, which is the minimum irreducible saturation and
the maximum saturation when the non-wetting fluid is displaced from the medium.

pc(s(h)) = (ρw − ρo)gh (7.7)

Brooks and Corey (1959) carried out experiments to measure the capillary transition
zone in a series of rock types, and found that in many natural samples, the transition
zone, across which the capillary pressure varies, extends a distance of order 10–100 cm,
although in some systems, with small grain sizes, the transition zone could be much
larger. The capillary transition zone represents a static balance, but in order to establish
the zone from an initially planar interface between the two phases a transient exchange
flow will develop, and we consider this later in the chapter.

7.4 Two-phase flow

The above static problems illustrate the impact of the capillary pressure on the distribu-
tion of the fluid within a porous layer. If the fluid is also migrating through the matrix,
then the effects of wetting and the capillary pressure can have a profound impact on
the flow. If a pressure gradient is applied across a porous medium saturated with two
immiscible fluids, then the pressure gradient will act on each phase, driving a flow, but
each of the phases will respond differently, since the non-wetting phase is lubricated by
the wetting phase, and the wetting phase has a no-slip condition with the walls of the
matrix. Also the pressure within the non-wetting phase will equal that in the wetting
phase plus the capillary pressure. These two effects can lead to substantial differences
between the flow of each phase. There are many works on this general topic, owing
to its importance for oil recovery and other two-phase-flow problems in porous media
(e.g. Bear, 1972; Lake, 1989); here we present a simplified model to illustrate some of
the key physics.
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It is useful to start by writing the effective Darcy law for each phase. For simplicity,
we adopt a one-dimensional analysis, although the system may be readily generalised
to three dimensions. In the wetting phase w, we can write

uw = −kwk

μw

∂pw

∂x
(7.8a)

where kw, known as the relative permeability, 0 < kw < 1, denotes the reduction in the
effective permeability seen by phase w when it only occupies a fraction of the pore
space. It is assumed to be a function of the saturation, sw; in principle it also depends
on the viscosity contrast between the fluids, and the structure of the porous matrix
but we will proceed with a simplified picture in which the main dependence is on the
saturation. This model also assumes a unique dependence of the relative permeability
on the saturation which may not always be borne out in a real porous rock, especially
owing to local fluctuations in pore structure, shape and grain size, and also since the
two-phase flow within a three-dimensional pore space does not need to be unique.
However, the parameterisation kw(sw) represents an averaged phenomenological
description of the process, and our purpose is to explore the implications of this
model in terms of the macroscopic dynamics, especially since these implications may
be quite profound. Later in the chapter, we also present a detailed calculation for
flow in a tube or two-dimensional slot, which is a well-defined and precise flow prob-
lem, and which exhibits some similar phenomena predicted by this model of relative
permeability. In the non-wetting phase we have, in a similar way,

unw = −knwk

μnw

∂pnw

∂x
(7.8b)

where subscript nw denotes a property of the non-wetting phase. The conservation of
mass of the phase w is expressed in terms of the evolution of the saturation of phase w,
with saturation sw, according to the form

φ
∂sw

∂t
= −∂uw

∂x
(7.9)

The equation for the conservation of the total flux of fluid, per unit area, has the form

Q = uw + unw (7.10)

Equations (7.8a) and (7.9) lead to the local evolution of saturation

φ
∂sw

∂t
=

∂

∂x

(
kwk

μw

∂pw

∂x

)
(7.11)

while the total flux follows the relation

Q = −
(

kwk

μw

∂pw

∂x
+

knwk

μnw

∂pnw

∂x

)
(7.12)



118 Two-phase flow

The capillary pressure relates the pressure in the non-wetting phase to that in the wet-
ting phase

pnw(sw) = pw(sw) + pc(sw) (7.13)

Combining Equations (7.11)–(7.13), we can substitute for
∂pw

∂x
to find the governing

equation for the saturation

φ
∂sw

∂t
+ Q

dF

dsw

∂sw

∂x
= − ∂

∂x

((
knwkF

μnw

dpc

dsw

)
∂sw

∂x

)
(7.14)

where the function F is the ratio of the flux of the wetting phase to the total flux,
sometimes called the fractional flow, and this has value

F =

(
1 +

knwμw

kwμnw

)−1

(7.15)

From a physical perspective, the flux of the wetting phase varies from (i) the case
where it has value zero, when the saturation equals the residual saturation and all the
flow is of the non-wetting fluid, to (ii) the case when it represents all the flow, Q,
once the saturation of the wetting phase has increased until there is just the residual
saturation of the non-wetting phase left in the formation. Assuming the flux increases
and decreases smoothly, this leads to a curve of the form shown in Figure 7.7.

The above Eq. (7.14) for the evolution of the saturation is an advection diffusion
equation in which one may envisage the speed of the saturation surfaces is Q

φ
dF
ds . Given

the shape of F shown in Figure 7.7, this suggests that, in general, the fronts of constant
small and large values of saturation migrate more slowly than those with intermediate
values, and as a result, there will tend to be steepening of the saturation gradient until a
shock develops, connecting a region of intermediate saturation to one of low saturation,
as depicted in Figure 7.8b. Neglecting effects of capillarity, the shock solution is known
as the Buckley–Leverett solution (e.g. Bear, 1972; Lake, 1991).

Water
saturation

Fractional
flow of
wetting
fluid, F

1

1 – (residual oil saturation)Connate water
saturation

Figure 7.7 Illustration of the fractional flow of the wetting phase as a function of the saturation of the
wetting phase.
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Figure 7.8 (a) Time development of a non-monotonic saturation profile as a function of the position
downstream as a result of the non-monotonic speeds of different saturation surfaces, and the
associated advection of the saturation surfaces by the flow as predicted by Eq. (7.14). (b) Formation
of a shock to allow for a unique value of saturation at each point in the invading wetting fluid.
Shaded zones have equal area.

We can predict the location and propagation speed of the steady shock which devel-
ops by using a mass balance approach in which the flux supplied to the shock as it
advances with a speed dL(ss)

dt matches the change in the advective flux of the wetting
phase upstream and downstream of the shock

φ(ss − so)
dL(ss)

dt
= Q[F(ss) − F(so)] (7.16)

where subscript s here denotes the value upstream of the shock and o the value down-
stream, in the region in which the saturation has the far-field value. We can also observe
that the speed of the shock matches the speed of the saturation surface just upstream of
the shock so as to produce a steady-state shock
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dL(ss)

dt
=

Q

φ

dF(sw)

dsw

∣∣∣∣
sw=ss

(7.17)

Combining these two equations leads to the result that at the shock the saturation sat-
isfies the relation

dF(sw)

dsw

∣∣∣∣
sw=ss

=
F(ss) − F(so)

ss − so
(7.18)

as shown by the graphical construction in Figure 7.9.
Behind the shock, the saturation surfaces move at progressively slower speeds, and

so a rarefaction or dispersive wave develops, with the saturation surfaces becoming
progressively more spread out in space until eventually the saturation reaches the resid-
ual value (Figure 7.10).

shock

connate water
saturation in

far field
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consisting of

wetting fluid, F

saturationSs

Figure 7.9 Illustration of the variation of the flux of the wetting phase, here taken as water, as a
function of the saturation of the pore space to this wetting phase. Also shown is the dashed line
connecting the saturation of the upstream shock, with the saturation of the formation upstream, so
that the steady shock conserves mass.
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Figure 7.10 Illustration of the migration of saturation surfaces in space and time upstream of the
shock front.
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The speed of each of the saturation surfaces, s, is given by the value Q
φ

df
ds , so that the

time required for that saturation surface to reach a particular location L say is given by
the relation

t(s) =
Lφ

Q

(
∂F(s)

∂s

)−1

(7.19)

Near the shock the saturation gradients are much larger than in the dispersive rarefac-
tion wave near the source. In this region of larger gradient, the effects of capillarity
may be important in determining the gradient of saturation across the shock. Indeed,
the saturation Eq. (7.14) shows that the effect of the capillarity is to smooth out vari-
ations in the saturation in a diffusive fashion and that the lengthscale over which such
fluctuations are smoothed and hence the thickness of the shock is given by

Lc =
1

Q

(
knwk

μnw

dpc

dsw

)
F

dsw

dF
with sw = ss (7.20)

The detailed structure of the adjustment zone around the shock front depends on the
functional form for the capillary pressure and the relative permeabilities. These prop-
erties are empirical relations, but there are some reference values for these properties
which provide useful parameterisations. First, van Genuchten has proposed that the
capillary pressure is given by an expression of the form

pc(ŝ) = σ

(
φ

k

)1/2 [
ŝ−1/m − 1

]1/n
(7.21)

in terms of the dimensionless wetting phase saturation

ŝ =
s − sr

sm − sr
(7.22)

This leads to a capillary pressure curve of the form shown in Figure 7.11, where m and
n are parameters of the model and sr denotes the minimum saturation of the wetting
phase while sm denotes the maximum saturation.

Meanwhile, the relative permeabilities have been parameterised as functions of the
saturation in a number of models; one model which has had widespread application
was presented by Corey (1954) and Brooks and Corey (1959) and has the form

knw(s) = (1 − s2)(1 − s)2 and kw(s) = s4 (7.23a,b)

leading to curves of the form shown in Figure 7.12. The asymmetry in the curves is
associated with the difference between the wetting and the non-wetting phases. These
models have been compared with small-scale core experiments in which oil–water
mixtures flow through a rock sample and there is a vast literature on the subject, in
which rocks from different geological formations have been sampled and tested. Our
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Figure 7.11 Typical capillary pressure curve as predicted by the van Genuchten law for (m, n) pairs
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Figure 7.12 Asymmetry in the relative permeability for oil and for water owing to the fact that one
phase wets the solid, as parameterised by the Corey and Brooks model.

purpose here is to present the principal results about the Buckley–Leverett shock for-
mation and the dispersive spreading of the saturation surfaces following this shock,
rather than become immersed in a review of the many data and models, but there are
many fascinating texts on the subject (e.g. Dullien, 1991).

One observation is that in a real oil-producing system, for example, the oil–water
production curve data evolve from oil flow to mixed flow with progressively more
water. As well as the effects of fractional flow in a single homogeneous layer, as dis-
cussed in this chapter, the effect of low or high permeability lenses of rock, and an
overall layered rock structure, will lead to an effective intermingling of the injected
water with the oil within the formation, so that the oil travel time along different flow
paths is very different. As a result, there will be a gradual increase in the water fraction
of the produced fluid as a function of time. In developing strategies for the continued
production of oil from reservoir, the challenge is often to distinguish how the oil–water
production history is influenced by the effect of fractional flow in one layer, the pat-
tern of sweep in each layer and the dispersion effects associated with the macroscopic
structure of the formation (Chapters 3–5).
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7.5 The thin gap analogue

Many calculations have been carried out to test the predictions of the above model,
with the details varying for different rock types. However, the phenomena we have
predicted should also arise if one fluid displaces a second immiscible fluid within a
narrow gap or capillary tube. We now show that in this situation, the flow also leads to
prediction of a shock front and ensuing dispersive tail. In fact, we can demonstrate an
analogous process for miscible flow provided the timescale is shorter so that mixing
between the fluids will be small and the interface may be regarded as being localised in
terms of there being a sharp transition from one fluid to the other, although the interface
can become dispersed along the cell. For convenience we consider the migration of a
front between fluids within a two-dimensional narrow gap and neglect any effects of
interfacial tension (Figure 7.13).

If we assume that there is no slip on the walls of the gap, and that the position of
the interface relative to the walls changes slowly along the gap, so that the along-gap
pressure gradient, ∂p

∂x , is approximately uniform in the cross-gap direction then we find
that for each of the two fluids i = 1, 2, the along-gap flow is given by

μi
∂2ui

∂y2 =
∂p

∂x
(7.24)

Assuming the velocity and shear stress are continuous across the interface, the equation
for the fractional flow of fluid 1 is

F(β) =
Q1

Q1 + Q2
(7.25)

where

Q1(β) = − H3

3μ1

∂p

∂x

(
β3 − 3β2

)
(7.26)

and

Q2(β) = − H3

3μ1

∂p

∂x

(
3β(1 − β)(β − 2) − 2V(1 − β)3

)
(7.27)

Here V is the viscosity ratio V = μ1/μ2 and fluid 1 is located in the regions
(1 −β)H < y < H, −(1 −β)H > y > − H, with fluid 2 in the region −(1 −β)H < y <

Fluid 2 (1-b)H
bHFluid 1

Figure 7.13 Illustration of the problem of displacing fluid 1 with fluid 2 in a capillary tube.
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Figure 7.14 Fractional flow curve and gradient of fractional flow curve, as a function of the saturation
of the wetting phase, β, in a two-dimensional gap, with a wetting fluid displacing a non-wetting
phase when the viscosity of the wetting phase is four times that of the non-wetting phase.

(1 − β)H. In Figure 7.14, we plot the fractional flow, and the gradient of the fractional
flow as a function of β, the fraction of the gap which is filled with fluid 1, the fluid in
contact with the wall. We assume the fluid is symmetrically distributed within the gap.
It is seen in the figure, with V = 4, that the speed of the surfaces of constant saturation,
β, which is proportional to dF/dβ, varies non-monotonically with β, so that we expect
a shock to develop at the leading edge of the flow front (cf. Figure 7.8), followed by a
dispersive tail as for the Buckley–Leverett type solution. As the viscosity ratio changes,
the shape of F(β) changes and so the detailed structure of the interface changes. In this
simplified model, we have not included the effects of interfacial tension or buoyancy
forces, but these can be included (see Lajeunesse et al., 1999). Although this is a two-
dimensional analysis, if the viscosity of fluid 2 is larger than fluid 1, we may expect
fingering to develop in the direction normal to the page (Chapter 6).

7.6 Capillary imbibition

The above analysis of the displacement of one phase by a second has identified the
classic Buckley–Leverett shock solution owing to the non-monotonic dependence of
the speed of surfaces of constant saturation with increasing saturation. This flow leads
to the shock front, across which the saturation of the displacing phase changes from
that in the far-field of the reservoir (here we have assumed that this has the residual
saturation), to a larger value; behind this shock there is then a spreading dispersive
wave as the saturation of the displacing phase increases to the fully saturated value,
leaving behind only the residual saturation of the displaced fluid phase in the reservoir.
This flow is driven by the applied pressure at the source, displacing the fluid already in
place.

A second, different flow regime can develop as a result of the capillary forces, for
example, if one region of the reservoir has a different saturation from another part
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of the reservoir. If there is no net flow through the reservoir, then the flow involves
an exchange of the two fluids, so as to produce a region of intermediate saturation,
providing there is no capillary entry pressure threshold which prevents the non-wetting
phase migrating through the reservoir; this should be satisfied in the regions of the
formation in which both of the fluid phases are continuous in space or alternatively,
in a water-wet fractured rock, water may be injected into the fractures, and then a
capillary-driven exchange flow may draw water into the matrix and drive oil back into
the fracture. The relaxation of the system to an equilibrium is then governed by the
equation for two-phase flow derived earlier, but with no net flow. This leads to the
one-dimensional equation (Eq. 7.14)

φ
∂sw

∂t
= − ∂

∂x

(
knwkF

μnw

dpc

dsw

∂sw

∂x

)
(7.28)

We now solve this subject to the initial conditions that at t = 0, sw = s1 for x > 0
and sw = s2 for x < 0. This is a non-linear diffusion equation, with the scaling for the
diffusivity depending in part on whether the mobility of the wetting phase, kwk/μw is
larger or smaller than the mobility of the non-wetting phase knwk/μnw, as expressed by
the term knwF/μnw. In general, this value may change across the transition region. If the
capillary pressure gradient with saturation is fairly uniform across the transition zone,
then the region where knwF/μnw is smallest may dominate the flux, since the saturation
gradient will tend to concentrate at that point. In the case that knw/μnw � kw/μw for
example, then the diffusivity may be approximated as

Deff = − kkw

φμw

dpc

dsw
(7.29)

and the imbibition process satisfies the approximate relation

∂sw

∂t
= Deff

∂2sw

∂x2
(7.30)

with solution

sw(x, t) = s2 +
1

2
(s1 − s2)

(
1 + erf

(
x

2(Deff t)1/2

))
(7.31)

In a typical example (Behbahani et al., 2006), consider the case in which there is a
capillary adjustment zone across which the saturation changes from s2 = 0.4 to s1 = 0.6
with dpc/dsw ≈ 30 kPa over this range. If μnw = 0.001 Pa s and knw ≈ 0.3 in a rock
of permeability k = 0.1 D, we find Deff = 10−5 m2/s. This shows that the imbibition-
driven exchange flow, which has a width of order (2Deff t)1/2 has thickness of about 1 m
after 1 day, and 10 m after about 1 year, as the process slows. This represents a signifi-
cant rearrangement of fluid within the system by the counterflow. It is possible to solve
the problem numerically, in the more usual case that Deff varies in space across the
imbibition region, to find the shape of variation of the saturation across the self-similar
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transition zone, rather than using the simplified problem illustrated herein. However,
the lengthscale of the adjustment zone will depend on similar scaling laws to that in the
error function, with the additional possible complication that as the saturation changes,
the non-linear variation in the diffusivity changes the timescale of the process, essen-
tially because the relative permeabilities of the two phases change with saturation.

As mentioned above, a complementary problem arises if a preferentially wetting
fluid is injected into a fractured reservoir. The fractures may fill with the injected fluid,
leading to a diffusive front of the wetting fluid migrating from the fractures and into
the matrix blocks beside the fractures. Provided the two fluid phases remain continuous
and no capillary pressure thresholds prevent an exchange flow developing between the
fractures and the matrix, one then expects a capillarity-driven exchange flow to develop
between the matrix and the fractures. The non-wetting phase, e.g. oil, will flow into the
fractures and will be swept off along the fractures with the injected water.

In such a situation, the flow into the fractures is again self-similar but now localised
in the half-space x > 0, with solution given in terms of the saturation of the wetting
phase sw,

sw(x, t) = s2 + (s1 − s2)erf

(
x

2(Deff t)1/2

)
(7.32)

in the idealised case of a constant diffusivity in this transition zone. In this case, s2,
the saturation adjacent to the fracture will have the value given in terms of the residual
saturation of the oil, sro, as sw = 1 − sro. If there is a boundary to the reservoir beyond
which there is no flow, at x = L say, then once the diffusive saturation wave spreads
to this boundary, a second regime of capillary imbibition will develop, in which the
saturation in the region 0 < x < L gradually builds to value 1 − sro, with zero gradient
of saturation at x = L, leading to the solution of Eq. (7.28) of the form

sw(x, t) = s2 + (s1 − s2) sin
(πx

L

)
exp

(
−π2Deff t

L2

)
(7.33)

This illustrates the long-term exponential decay of the flux driven by the capillary
imbibition in a finite domain, subject to the simplifying approximations of this model.

Using the parameters as above, it is seen that the early time flux is given by

φ
(

Deff
2t

)1/2
per unit area of matrix adjacent to the fracture and this has value of order

10−5–10−6 m/s over times from 1 day to 1 year, using the simple case above. If a well
accesses a series of fractures, with overall area 103–104 m2, then this can contribute a
significant amount of production. However, at later times the flow wanes exponentially,
according to this model, with flux into the fracture, per unit area, of magnitude

φDeff (s1 − s2)
π

L
exp

(
−π2Deff t

L2

)
(7.34)
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This form of evolution of the flux is similar to experimental data from numerous tests
showing an initial phase of decay of the production rate prior to the saturation front
reaching the far boundary of the domain followed by a long-time exponential decay as
suggested by separable solution (7.33); indeed exponential decay was proposed by Ma
et al. (1997) through an empirical fit to experimental data on imbibition.

In less permeable formations, or with more viscous oil, the capillary imbibition will
be much slower: indeed at early times, the flow decreases as the square root of the
permeability and the inverse of the square root of the viscosity, if the mobility of the
oil falls below that of the supply liquid. Capillary imbibition is used in many water-wet
systems, for example fractured chalk or other carbonate fields where this capillary-
driven exchange can provide significant additional resource.

If the matrix is oil wet, however, then the capillary entry pressure may inhibit the
invasion of the injected water into the oil-filled matrix; such reservoirs are hard to
produce. Various chemical approaches have therefore been developed to change the
viscosity/interfacial tension of the injected liquid in an attempt to change the wetting
characteristics or to change the capillary entry pressure (see Lake, 1991).

7.7 Exercises

1. A buoyant oil of density ρ−	ρ ponds at the top of a two-dimensional wavy aquifer
structure of thickness d and with upper surface which has position h(x) below the
surface of the Earth. There is a background hydrological flow with total flux q of
fluid of density ρ. Find an equation for the shape of the oil–water interface given
that the oil is static. If h(x) = Ho + a sin(2πx): where a � d and L � d, find the
maximum volume of oil which can be trapped between successive low points of
the top surface of the aquifer. You may assume the aquifer has permeability k and
the water has viscosity μ. If the upper boundary of the aquifer has a seal rock with
capillary entry pressure ρgb, where b < a find the volume of oil which may be
trapped in the aquifer between two successive low points of the upper surface of the
aquifer (cf. Woods and Espie, 2012).

2. A pipe connects the centre of a horizontal Hele–Shaw cell to a reservoir of water of
viscoity μw with fixed head 	p relative to the air initially filling the cell. If the cell
is initially filled with air, and the plates of the Hele–Shaw cell are water wet, with a
capillary pressure pc at the water–air interface, explore how the radially spreading
imbibition front of water advances in the Hele–Shaw cell, assuming that pc+	p > 0.

3. Repeat the calculation of Exercise 2 in the case that the cell is initially filled with
oil, of viscosity μo, such that the oil is able to flow freely out of the outer radius of
the cell, r = R. Calculate the rate of advance of the water front, assuming it is the
wetting phase, and that there is a capillary pressure pco at the interface. Comment
on the stability of this front to the Saffman–Taylor instability.
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We now explore a number of important processes related to the interaction of fluid
injected into a porous layer and the porous layer itself. The main focus in the present
work relates to the heat transfer in porous layers, reactions of the injected fluid with the
rock, and the migration and gelling of polymers injected into the porous layer. These
processes are of critical importance for the geothermal industry, but also for modelling
water injection in oil fields.

We first describe how thermal fronts propagate through a porous rock, and can lead
to instability owing to thermal fracturing of the rock or changes in fluid viscosity across
the thermal front. We then explore reactions which arise if the injected fluid is under-
saturated or supersaturated with respect to a mineral in the formation, or if the injected
fluid contains acid designed to dissolve some of the matrix. Acid injection treatment
is very common in some reservoirs in which insoluble salts precipitate through mix-
ing of formation and injected water, of different chemistry; the precipitate can reduce
the flow significantly in or near the wells. One important scale which forms is barium
sulfate: this forms when sulfate-bearing injected water mixes with barium-laden for-
mation water. Often this occurs near the production well as water from different zones
of the reservoir intermingle. In some wells, acid treatment is needed very frequently to
dissolve such scale.

The problems of heat flow and reaction are then combined, to explore dissolution
or precipitation reactions associated with the injection of cold and initially saturated
solution which heats up in moving through a hot rock, becomes undersaturated and
dissolves some of the mineral in the formation. We show that these thermally driven
reactions can either partially or fully dissolve the mineral in the formation, and lead to a
reduction in the permeability which may lead to channeling. We note that a very illumi-
nating account of reactions in porous rocks has been presented by Phillips (1991); the
account we present is complementary to that presentation in that we focus on acidising
and thermally controlled reactions.

Continuing the theme of reacting flows, we explore the impact of the gelling of
polymers, which may be carried with the injected liquid. Such polymers may lead to
a change in the effective rheology of the migrating fluid or in some cases they may
gel and become arrested in the formation, leading to a change in the permeability in
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the regions where they gel within the reservoir. There is an extensive literature on
polymer rheology and gelling, and their effects in reservoir flow processes (e.g. Sorbie,
1991; Lake, 1991). Gelling may be desirable in a porous rock in order to block up
a part of the formation. We explore the effect of polymers in which there may be
controlled triggering of the gelling process, through encapsulation in, for example,
a soluble or thermally sensitive shell. We describe the use of such polymers to help
manage the problems of water breakthrough at a producing well which may occur
following a programme of water injection into a reservoir (cf. Chapter 2), as water
tends to migrate along the high permeability pathways in the reservoir. The gel is used
to block these pathways in the reservoir so that subsequently, water injected into the
system will migrate through other zones of the reservoir. The analysis we present is
aimed at introducing some of the concepts of gelling, especially in terms of the spatial
distribution within the formation. We note that there are additional problems relating to
the viscosification of the injected liquid and development of non-Newtonian rheology,
but the focus in this chapter is on permeability modification through gel formation.

In all models presented in this chapter, we assume that within the pore spaces, the
fluid is uniformly mixed in concentration, so that the diffusion within a pore space is
not rate limiting for the reactions. With molecular diffusivity of 10−9 m2/s and a flow
speed of order 10−5 m/s, this requires pore spaces to be smaller than about 0.1 mm.
With larger pores or faster flow, some concentration gradients may develop in the fluid
within a pore. This can lead to a delay in the reaction, with the diffusion-controlled
transport of material within pores introducing an effective reaction time which scales
as δ2/D. In addition, the reaction rate may depend on the activity of the reactants and
their active surface area per unit volume, as well as the temperature. Owing to the com-
plex and variable morphology of the pore spaces and throats, and possible dispersive
mixing, in the following models, we allow for a first-order rate of reaction, where we
envisage that this rate of reaction combines these different controls (cf. Phillips, 1991).

8.1 Thermal energy conservation

In contrast to an inert phase, such as a passive tracer, which migrates with the flow,
the thermal energy, or strictly enthalpy, has a different advection speed from the fluid
owing to the heat exchange between the fluid and the rock. This is because as the fluid
migrates past the rock grains, then if there is a temperature contrast there will be some
heat transfer (Figure 8.1). The typical time for a fluid parcel to migrate past a grain, δ/u,
can be compared with the time for thermal diffusion across a grain, δ2/κ . In the limit of
rapid diffusion, the fluid and grains are in good thermal contact, and locally the system
is isothermal. Given the thermal diffusivity has value of about 10−6–10−7 m2/s, and
typical flow speeds are 10−5–10−8 m/s, the condition for thermal equilibrium requires
grains smaller than about 0.1–0.01 m. We infer that most sediment deposits are in very
good local thermal equilibrium with the fluid.
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Figure 8.1 Illustration of the difference in position of the fluid and thermal fronts as hot fluid
migrates into a porous layer, owing to the thermal inertia as heat exchange between the fluid and
grains leads to a region near the source of fluid with the temperature of the source, while the leading
edge of the invading fluid adjusts to the original temperature of the formation.

In developing the equation for the conservation of thermal energy, we include the
thermal energy of both the matrix and the fluid, while the advection only occurs in
the fluid. Similarly, thermal diffusion acts through both the liquid (subscript l) and
solid matrix (subscript m), and as an approximation we use the space-averaged value
to approximate the thermal diffusivity, so that property f has average value

f = (1 − φ)fm + φfl (8.1)

The conservation law therefore takes the form

ρCp
∂T

∂t
+ ρCplu∇T = K∇2T (8.2)

where T is the temperature, ρ is the density and Cρ , is the specific heat. The equa-
tion denotes the volume average of the solid and liquid, based on the porosity φ. The
equation identifies that the advection speed of temperature surfaces is given by

u =

[
ρCpl

ρCp

]
u (8.3)

This speed has a value in the range 1.1–1.2u, where u is the Darcy speed, since the pre-
multiplier, , a dimensionless constant has value 1.1–1.2 depending on the porosity and
the specific fluids. Since the fluid migrates with the interstitial speed u/φ, it follows
that with φ ≈ 0.2 the thermal signal travels at a speed of about 0.2–0.3 of the fluid
and hence lags far behind the fluid front. Physically, we can understand this process
since the porous matrix undergoes a change in thermal energy as it is flooded with the
injected fluid. This thermal energy is transferred to the leading part of the injected fluid,
which now lies ahead of the thermal front, and has the temperature of the formation
(Figure 8.1).

For example, in Figure 8.2, we include three photographs showing fluid of one
initial temperature, 35◦C and which is dyed red migrating into a porous bead pack
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Figure 8.2 Illustration of the migration of a thermal front within a porous layer. Hot red fluid is
injected at the top of the bead pack and the fluid migrates down through the pack with the red front
illustrating the advance of the fluid. The advancing temperature front is recorded by the change in
colour of a liquid-crystal strip in contact with the bead pack; the region in which the liquid-crystal
strip has a change in colour migrates down through the bead pack, but at a slower speed than the red
dye owing to the thermal inertia. After Menand et al. (2003). A black and white version of this
figure will appear in some formats. For the colour version, please refer to the plate section.

initially maintained at a second temperature, 17◦C and containing clear fluid. The tank
has a black liquid-crystal strip in the direction of the flow, and this changes colour at
about 26◦C, which is intermediate between the injected and original temperatures. The
travelling thermal front migrates with speed similar to the Darcy speed (Eq. 8.3) while
the red dye in the fluid injected into the formation advances with the advection speed,
which is about 2.5 times as large as the thermal front speed in this experiment, with
φ = 0.4.

As we have seen, mechanical dispersion operates over a range of scales associ-
ated with the presence of heterogeneities in the porous formation; the reason that
the mechanical dispersion is so significant for tracer transport results from the very
small value of the molecular diffusivity. However, the thermal diffusivity in porous
rocks has a value of order κ ∼ 10−7–10−6 m2/s and so for scales of order 0.1–1.0 m,
corresponding to localised regions of different permeability, and flow speeds of order
10−5–10−6 m2/s, the thermal Peclet number, ud/κ is of order unity, so that the effects
of dispersion of the flow are comparable to the thermal diffusion. Only with larger
scales or faster flows is the thermal dispersion likely to dominate the thermal diffu-
sivity. In a layered system, for example with a lens, i = 1, of high or low permeability,
of thickness H1, embedded in a formation, i = 2, of thickness H2, then if the travel
time along the formation L/ui is larger than the thermal diffusion time across the lay-
ers, H2

i /κ , then the lens will tend to thermally equilibrate, and the effective advection
speed of the thermal front across both layers, will then scale as the average

u =
1u1H1 + 2u2H2

H1 + H2
(8.4)
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where ui are the speeds in the two layers, i = 1, 2. This thermal equilibration can lead
to enhanced dispersion of the thermal front, and a similar effect arises through the loss
of heat from the boundaries of the permeable flow domain. The analysis of thermal
fronts described in the present chapter primarily relates to relatively thick layers or
short injection times in which we may consider the cross-flow heat loss to be small; the
modelling is developed to account for heat loss in Chapter 11 in considering geothermal
heat flow problems.

Owing to the spatial separation of the thermal front and fluid front, the injected
fluid changes temperature, producing a region filled with fluid of different density and
viscosity, and perhaps solubility, relative to the minerals in the matrix. The effects of
this thermal inertia can be key in considering reactions between the injected fluid and
minerals. We will return to these effects later in this chapter in considering reactions
between the injected fluid and minerals in the rock, as well as in exploring how ther-
mally sensitive polymers evolve as they flow into a formation. Thermal effects can also
influence the migration of plumes of CO2 or aqueous solutions of different temperature
and salinity. As the injected fluid migrates into the formation, it adjusts in temperature
and this can change the viscosity and magnitude or sign of the buoyancy of the flow
(Chapter 11). In Chapter 11, we also revisit the effects of thermal inertia in our discus-
sion of geothermal power generation, focusing on the problem of the injection of cold
water which then boils as it moves through the formation.

8.2 Instability of a thermal front

One interesting feature of a thermal front is that the change in fluid properties across
the front have the potential for instability. Typically, injection of water into the sub-
surface leads to a decrease in the viscosity of the fluid as it warms up, and this will
keep the interface stable. In parallel with this, there may also be changes in the den-
sity of the fluid, as the temperature changes, and we consider this in more detail in
Chapter 11.

In the case of the injection of cold fluid into a reservoir, as the formation near the
well-bore cools, it may begin to contract somewhat owing to the change in tempera-
ture. This can lead to the generation of stress within the formation and ultimately the
formation of cracks. The cracks will typically be aligned in the direction of maximum
principal stress, since they are opening up the rock in the direction of the minimum
principal stress. The fractures lead to an increase in the effective permeability of the
formation, and the continuing injection fluid may then advance along the fractures.
With a planar front advancing into the permeable rock, the effect of this increase in per-
meability has some analogies with the stability of a dissolution front (cf. Chapter 6).
If the advancing thermal front develops a sinusoidal perturbation, then the cooling
front will become localised about these perturbations. As the perturbations develop, the
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lengthscale κ/u provides a limit to the minimum scale for the perturbations, since on
shorter scales, thermal diffusion will smooth the cross-flow perturbations. With a flow
speed of 10−6 m/s, this leads to a scale of order 1 m, although we note that the solid
mechanics of fracturing may impose additional scales on the problem, as the fractures
may advance ahead of the cooled zone.

In the case of injection of hot water into a formation, perhaps as part of an aquifer
thermal energy storage system (Chapter 11), the reduced viscosity of the injected liquid
may lead to an instability across the thermal front, as the fluid cools and becomes more
viscous, in a fashion analogous to the Saffman–Taylor instability, although with a mass
flux across the thermal front. Again, there will be a small wavelength cut-off owing to
thermal diffusion.

8.3 Compositional reactions

We now consider a reaction between the matrix and the fluid in which the reaction rate
depends on the presence of reactant in the fluid and in the formation. Such reactions
occur for example when a fluid which is unsaturated with respect to a mineral in the
rock, migrates through the rock and dissolves the mineral. Indeed, if a porous layer
is made by filling a tank with glass beads and a small mass of salt powder, uniformly
mixed through the beads, and the pack is then immersed in saturated salt solution, the
system will react if the salt solution is displaced downwards by a solution of fresh
water. With a uniform flow through the pack, the system sets up a simple travelling
wave structure across the reaction front, as found in a laboratory experiment in which
the salinity of the water was measured across the reaction front (Figure 8.3).

In this experiment, 10 wt% of the solid matrix was composed of sodium chloride
powder and the remainder was glass ballotini, of radius 0.5 mm. As the reaction front
migrated through the cell, the salinity of the water passing through the front increased
from being fresh to taking a value 23 wt%, comparable to the saturation value. The
interface is stable in this experiment since the saturated aqueous solution has a density
of about 1.2 times that of the fresh water, and the flow is sufficiently slow that this
buoyancy stabilisation prevents the interface becoming unstable owing to the potential
dissolution instability.

Before developing a model for the structure of the reaction front, we can use a simple
mass balance to describe the speed of the front, in terms of the mass of salt required per
unit volume of fluid in order that the fluid becomes saturated in salt. Near the source,
the bead pack becomes depleted in salt, while at the leading part of the input fluid, the
injected fluid is saturated in salt (Figure 8.4).

In order to calculate the speed of the reaction front, we can use the mass balance
of salt, in that if the region of salt depleted rock has extent λut while the extent of the
liquid zone is ut/φ , then the conservation of salt requires
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Figure 8.3 Illustration of an experimental measurement of the concentration gradient across a
reaction front, in a bead pack, to demonstrate the localised nature of the front. The reaction zone
extends about 1 cm from the near uniform concentration upstream to the near uniform concentration
downstream, suggesting a very short reaction time compared to the flow rate. In this experiment, the
porous layer consisted of 90% glass beads of radius 0.5 mm, and 10% NaCl powder. The
undersaturated fresh water migrated through the pack at a speed 0.1 mm/s, and dissolved the salt in
the matrix. Measurements of the salinity were taken from an array of sampling ports at different
heights on the pack. A key observation from this experiment is the localised nature of the reaction
front, suggesting that in this case, the advection associated with the flow controls the reaction, rather
than the reaction kinetics. Note, in this experiment, the interface is stabilised by gravity in that the
aqueous solution is denser than the fresh water, and with the low flow rates this tends to suppress the
dissolution instability which might arise (cf. Chapter 6).
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Figure 8.4 Structure of the reaction front relative to the speed of the front, illustrating the depletion
of the reacting species in the fluid downstream and the solid matrix upstream.
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λutso(1 − φ) = (ut/φ − λut)(ce − co)φ (8.5)

where so is the fraction of the matrix which consists of salt and co and ce are the initial
and saturated concentrations of salt in the liquid (Figure 8.4) giving the value for the
dimensionless position of the reaction front

λ =
ce − co

φ(ce − co) + so(1 − φ)
(8.6)

In practice the reaction will not be a sharp front, but will be an extended region around
this centre of mass position, as seen in the experimental data above. There are two pro-
cesses which can lead to the dispersal of the front as explained by Phillips (1991). First,
salt in solution may diffuse upstream through the liquid; as a result, even with equilib-
rium dissolution of the salt powder, a gradient of salt develops in the fluid upstream.
Second, there may be some kinetic control on the dissolution process such that there
is a reaction rate which depends on the concentration of solid and is also proportional
to the degree of undersaturation of the solution. A simple model for this is a first-
order reaction model in which the rate of reaction is assumed to be proportional to
the mass of salt, and the degree of undersaturation of the liquid, with the constant of
proportionality γ which depends on the activity, the surface area per unit mass, and the
temperature. This gives rise to the governing relations for the salt concentration in the
fluid c, and the salt mass fraction in the solid, s,

φ
∂c

∂t
+ u

∂c

∂x
= γ (ce − c)s + φD

∂2c

∂x2
(8.7a)

(1 − φ)
∂s

∂t
= −γ (ce − c)s (8.7b)

Here β is a stochiometry constant which relates the mass of solid salt required per unit
mass dissolved in the solution. In the limit of small diffusivity, these coupled equations
admit a travelling wave-type solution in the case that c = co and s = 0 far upstream and
c = ce and s = so far downstream, given by

c(x − λut) = ce + (co − ce)f ; s(x − λut) = sog (8.8)

where integration of the equations from far upstream to far downstream requires that

λ =
ce − co

(ce − co)φ + so(1 − φ)
(8.9)

which is equivalent to the mass balance relation (8.6) and which implies that
f = 1 − g with f (η) satisfying the equation

df

dη
= −f (1 − f ) with  =

γ so

u(1 − φλ)
(8.10)
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f g

Direction of travel

Figure 8.5 Illustration of the mass balance for a travelling wave solution for a reaction front. f is the
degree of undersaturation of the reacting species in the fluid and g is the mass of material which can
react with this species in the fluid. Upstream there is no material remaining in the solid matrix, while
downstream the fluid is saturated in the reacting species.

This has an exact travelling wave solution, with speed λu, given by

f =
1

1 + exp((x − λut))
(8.11)

as shown in Figure 8.5.
In principle, we might be interested in the adjustment to this travelling wave solu-

tion from an initial injection of unsaturated fluid into the reactive permeable matrix.
Initially the reaction front will develop at the leading edge of the fluid, but it will
rapidly migrate backwards to the equilibrium travelling wave solution, as the rock near
the source becomes depleted in salt, and both the upstream and downstream branches
of the travelling wave solution can develop. This transient adjustment can be calculated
numerically in the half-space x > 0, by imposing the flux of fresh fluid at x = 0 for t > 0.
A typical calculation is shown in Figure 8.6, in which the x-axis has been scaled with
respect to the position of the reaction front at each time. It is seen that as time evolves,
the structure of the reaction zone adjusts to a solution of the form shown in Figure 8.5.

8.4 Thermally controlled reactions

In modelling reactions in permeable rock, it may be key to account for the effects of
temperature on the reactions. We have seen that porous media have thermal inertia as
heat is exchanged between the solid matrix and the fluid, and that this leads to an inter-
nal thermal boundary layer in the fluid. As a result, if a fluid is injected into a porous
rock at a temperature different to the formation, then even if the fluid is in equilibrium
with the minerals at the injection temperature, as it heats up or cools on migrating
through the porous layer, it will evolve out of equilibrium and this may lead to either
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Figure 8.6 Transient adjustment of the reaction front from the leading edge of the fluid to the
travelling wave solution which travels at a fraction of the speed of the leading edge of the fluid.

dissolution or precipitation. In the case in which the fluid becomes undersaturated, two
situations may then arise, and we consider each in turn.

In modelling such systems, we require a phase diagram which indicates how the
equilibrium composition of the liquid varies relative to the temperature: for the example
herein, this is shown by the liquidus curve in Figure 8.7. In this figure the liquidus curve
denotes the temperature at which the dissolved salt composition in the liquid is just
at equilibrium. If the temperature decreases, then salt will precipitate from solution,
decreasing the composition as the temperature falls. Conversely if the fluid remains
in contact with the solid salt phase, then as the temperature rises, some of this salt
will dissolve to increase the salt composition of the liquid as the temperature rises.
Eventually, all the solid salt phase is dissolved and then the temperature can rise with
no change in composition, and the solution becomes superheated. The amount of solid
salt in the formation therefore has an important effect on the dissolution reaction which
occurs with a moving thermal front across which the temperature increases.

8.5 The partial dissolution reaction

First, in the case in which the mass of salt in the matrix upstream of the thermal front
is more than sufficient to return the injected fluid downstream of the thermal front to
equilibrium, then the reaction front remains slaved to the thermal front, and only a
fraction of the salt dissolves. In such a situation, we can calculate the fraction of the
salt which dissolves to return the formation to equilibrium by a mass balance as shown
in Figure 8.8, assuming the thermal front is localised in space.

The equilibrium fluid concentration increases across the thermal front as the cold
injected fluid heats up (line AC, Figure 8.7). As a result of this, at the thermal front,
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Figure 8.7 Illustration of the variation of the liquidus curve with temperature. For a given liquid
concentration, once the temperature falls to the liquidus temperature, solid precipitate may develop,
and remain in equilibrium with the liquid. Above this temperature, all the material is liquid. The
path AC along the liquidus corresponds to a partial dissolution reaction in which a fluid heats up as
it migrates into a porous medium, and in the process it partially dissolves some of the salt phase
(Figure 8.8). The path ABC corresponds to a full dissolution reaction, in which the salt which lies
between the source and the thermal front is insufficient to maintain the fluid in compositional
equilibrium, and so some of the salt ahead of the thermal front also dissolves, leading to a separation
in space of the thermal and dissolution fronts (see Figure 8.10).

the salt in the rock is dissolved to provide the additional salt in solution in the liquid
passing through the thermal front. As a consequence there is a decrease in the salt
content of the rock at the thermal front, with the salt which was originally upstream of
the thermal front (Figure 8.8) now being in solution in the liquid downstream of the
thermal front.

In this case, the problem is to calculate the decrease in the salt concentration in
the rock upstream of the thermal front. If the mass of salt in solution increases from
concentration co to value ce then the mass of mineral dissolved in the injected fluid,
now downstream of the thermal front, is

(ut/φ − ut)(ce − co)φ (8.12)

while the mass of salt upstream of the reaction front decreases from se to value sD

where by mass balance

sD = se − (1/φ − )(ce − co)φ/[(1 − φ)] (8.13)
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Figure 8.8 Illustration of the thermal and solutal changes across a thermal front in the case of a
partial dissolution front. The reaction front is slaved to the thermal front.

In order that this solution can develop, we require that sD ≥ 0, so that there is some
solid salt remaining upstream of the reaction front.

We can calculate the evolution of the reaction front to this localised travelling front
solution, by solving for the thermal field, and then the compositional field in the liquid,
assuming it adjusts towards equilibrium through dissolution everywhere in space. We
assume the dissolution has a rate constant which we parameterise as γ as in the simple
reaction model above, Eq. (8.7). Neglecting latent heat associated with the dissolu-
tion, the thermal front is then given by the solution of the thermal advection–diffusion
equation and has the form

T =
(To + T1)

2
+

(T1 − To)

2
erf

(
x − ut

2(κt)1/2

)
(8.14)
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Figure 8.9 Illustration of the transient evolution of the temperature and composition in which the
partial dissolution reaction develops. The compositional front (dotted line) becomes driven by the
thermal front (dashed line) after an initial transient, as indicated by the sequence of compositional
profiles with time. The long-time asymptotic zone of reacted and unreacted rock are also shown.

where To is the upstream temperature and T1 is the downstream temperature. The equa-
tion for the composition is then given by the relation

φ
∂c

∂t
+ u

∂c

∂x
= γ (ce(T) − c)s (8.15)

Figure 8.9 presents a solution of the evolving temperature (dashed line), and also com-
position (dotted line), with time, as a front advances into a porous layer and dissolves
some of the salt in the matrix. The figure shows distance normalised with respect to the
position of the injected fluid front. The temperature asymptotes to the solution (8.13)
and the compositional front is initially located at the fluid front, but as the reaction
takes place, the compositional field also rapidly adjusts towards the thermal front with
the reaction rate imposing a lengthscale u/γ for the reaction, which becomes small
compared to the location of the advancing thermal front.

8.6 The full dissolution reaction

If the injected liquid is sufficiently undersaturated on being heated to the reservoir
temperature, then the partial dissolution model leads to the prediction that sD < 0
(Eq. (8.13)). The reason for this unphysical prediction is that there is insufficient salt
upstream of the thermal front to keep the solution in equilibrium. Instead, the dis-
solution front now extends well beyond the thermal front, since there is insufficient
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Figure 8.10 Structure of a reaction front produced through the heating of the injected fluid, in the
case that the rock becomes depleted of salt upstream of the thermal front, so that the reaction front
advances more rapidly than the thermal front. Dashed lines denote the equilibrium saturation profile.

salt upstream of the thermal front to return the fluid to compositional equilibrium (see
Figure 8.10). The problem now becomes one of defining the location of the reaction
front downstream of the thermal front.

In this case, Figure 8.10 illustrates that the mass of newly dissolved salt in the
injected fluid downstream of the reaction front, Md, is given by

Md = (ut/φ − λut)(ce − co)φ (8.16)

while the mass of salt dissolved from the rock, Ms, which supplies this additional salt
in the fluid downstream of the dissolution front, is given by

Ms = λutse(1 − φ) (8.17)
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Figure 8.11 Evolution in time of the thermal field (dashed) which converges to the asymptotic
thermal front, and the liquid concentration (dotted) which converges to the asymptotic reaction
front, as a function of time, showing the convergence to the frontal solution. The horizontal axis has
been scaled so that the position of the leading edge of the injected fluid is always unity to help
interpret the convergence to the travelling wave solutions.

Matching these expressions leads to the prediction that the location of the dissolution
front, now downstream of the thermal front, is given by

λ =
(ce − co)

(ce − co)φ + se(1 − φ)
(8.18)

This reaction front speed is directly analogous to the compositional reaction speed
described in Section 8.3 above in which an unsaturated fluid enters a porous matrix
and dissolves the salt in the matrix (Eq. (8.16)), although here the reacting fluid only
becomes superheated (i.e. undersaturated) after passing through the thermal front.

We can again solve the initial value problem for the evolution of the salt content
(Eq. (8.7b)) of the porous layer as a function of time, and for the evolution of the tem-
perature and composition of the fluid with time, which again follow the relations (8.14)
and (8.15). The transient solutions for the fluid temperature (dashed) and composition
(dotted) shown in Figure 8.11 lead to the prediction that the solution converges towards
the travelling front solution illustrated in Figure 8.10.

It is possible to envisage more complex reaction fronts in which the original injected
fluid has multiple components, and is super- or undersaturated with respect to the salt in
the formation at the formation temperature, but also that the temperature of the injected
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fluid is different from that in the porous layer. However, the solutions above provide the
building blocks to develop these more complex solutions. In Chapter 11 we describe
an experimental technique to model reaction fronts in porous layers using solutions of
sugar and salt in the presence of salt crystals. These experiments however also lead
to density changes across the reaction fronts and we explore how this can control the
dynamics of the reaction.

8.7 Polymer floods

As mentioned in the introduction to the chapter, it is possible to add polymers to the
fluid injected into oil fields with the purpose of gelling the polymer at some loca-
tion within the reservoir, thereby reducing the flow through that part of the reservoir
(Figure 8.12). In general, it is not desirable to add the active polymer directly into
the field since it may gel up near the injection point and this may have a very sub-
stantial impact on the flow rate since the flow typically spreads radially in this region,
with the largest pressure decrease near the source (cf. Eq. (6.23); Figure 6.11); for-
mation of a polymer skin near the well can lead to a very large pressure drop and
hence reduction in flow rate. Ideally, the polymer would be injected into the field
prior to being activated, with a trigger causing the polymer to activate within the field
away from the injection well. There are various types of trigger possible, including
the use of an encapsulant to contain the unactivated polymer until some point in
the field where the encapsulant releases the polymer (e.g. van Triet et al., 2014);
a kinetic delay in the activation of the polymer may also be possible, essentially
limiting the reaction of the polymer with the formation fluid. For the purposes of
modelling the formation of a polymer gel within a field, we explore two simpli-
fied models. First a model in which we envisage the polymer is released from an
encapsulant at a time τ following injection, and in the second model we envisage
the polymer is injected with cold water and only becomes active once it reaches a
region of the reservoir which is sufficiently hot. In both cases, we assume the gelling
process is an order-one reaction dependent on the mass of unreacted polymer which is
present.

8.8 Polymer released from a dissolving encapsulant

The polymer may be injected within an encapsulant which shields the polymer from the
formation water, for example, but which gradually dissolves within the permeable rock,
eventually allowing the polymer to contact the formation fluid and gel. The dispersal of
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Figure 8.12 Schematic of the injection of polymer to plug or reduce the permeability of a highly
permeable layer, following recovery of oil from this layer. A black and white version of this figure
will appear in some formats. For the colour version, please refer to the plate section.

the injected liquid and any effects of two-phase flow may then lead to a diffuse region
in which the polymer gels. We now develop a simplified one-dimensional model for
the gel formation in a one-dimensional flow to provide insight into some of the controls
on the polymer distribution in space and time.
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Figure 8.13 Characteristic diagram illustrating the region in space and time where the polymer
gelling occurs as the polymer solution passes through the porous layer.

To model the flow, we envisage that the encapsulant dissolves after a time τ in the
rock (Figure 8.13) and then the polymer gels with a rate constant λ. As the ungelled
polymer migrates through the formation, it may disperse with a longitudinal dispersiv-
ity D (Chapter 5). We also assume that the gel is trapped in the pore space, reducing
the permeability and hence increasing the pressure gradient. One of the uncertainties
in such a model is that successive parcels of ungelled polymer laden fluid migrate
through the same pore space, and in principle lead to further gel formation. In the sim-
plified model presented below, we assume that this ungelled polymer is able to migrate
through any pre-existing gel, although that may not always be the case if the length-
scale for the flow through the gel becomes smaller than the size of the ungelled poly-
mer; this potential filtration process merits further investigation. The associated change
in permeability is likely to be non-linear, as the flow path becomes progressively more
blocked and successive polymer molecules are added to those already deposited at that
point in space. In the following model we assume a constant flow rate, and so implic-
itly the pressure associated with the flow increases. With experimental modelling, one
could develop a model for the change in permeability in terms of the mass of polymer
which gels at each point, and then explore the flow in the case of a constant pressure
boundary condition, although this is beyond the scope of the present discussion.
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We can write down a family of conservation equations for the formation of the
gel, by introducing a concentration of ungelled polymer c and gelled polymer G. We
assume the gel formation commences after it has been released from an encapsulat-
ing shell, at time τ after it has entered the porous rock and that the concentration of
ungelled polymer then decays with a rate constant proportional to the concentration

φ
∂c

∂t
+ u

∂c

∂x
= −λφH(t − τ)c + φD

∂2c

∂x2 (8.19)

where H(t − τ) is the step function defined as H(x) = 1 if x > 0 and H(x) = 0 if x ≤ 0,
and this is the parameterisation of the time delay of the onset of gelling. The mass of
gelled polymer then evolves in time according to

φ
∂G

∂t
= λφH(t − τ)c (8.20)

We could also assume the permeability varies with G according to a non-linear dimen-
sionless function F(G),

k(G) = koF(G) (8.21)

so that the speed satisfies

u = −k(G)

μ

∂p

∂x
(8.22)

although in the present analysis, we assume a constant flow rate; with a model for F(G)

a more general class of problems can however be explored.
In the case in which there is relatively little dispersion of the concentration, D ∼ 0,

the above equations can be solved using the method of characteristics by following
parcels of fluid once they have been injected into the formation (Figure 8.13). If the
polymer gel is supplied over a time interval 0 < t < t1 from an injection well x = 0, then
the concentration of ungelled polymer in a parcel of fluid once it has passed the point
xg = uτ/φ where gelling commences, is given by

c = co exp
(

−λφ

u

[
x − uτ

φ

])
for x > xg (8.23)

As the polymer cloud passes through the matrix, gel continues to form in the matrix,
according to the gel formation relation (8.20) and (8.23) so that at the point x(> xg),
the amount of polymer will increase from the time of first arrival of the polymer cloud
to a maximum at the time at which the whole cloud has passed, and this final value is
given by combining (8.20) and (8.23),

G(x, t) = t1λco exp
(

−λφ

u

[
x − uτ

φ

])
provided t > t1 +

xφ

u
(8.24)

The above solution for the concentration of the gel illustrates that the concentra-
tion of gel decays exponentially in space beyond the region where the gel is initially
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Figure 8.14 Illustration of the variation of the polymer concentration with distance into the rock;
each curve is scaled relative to the maximum concentration on that curve, which coincides with the
point at which the polymer first begins to react, x = uτ/φ. The distances are scaled relative to the
distance at which the polymer is first released from the encapsulant, uτ/φ, and the three curves
correspond to the polymer reaction distance u/λφ having value 1 (fast reaction), 3 and 10 (slow
reaction) times the initial release distance uτ/φ.

released from the soluble encapsulant, as shown in Figure 8.14. The maximum con-
centration and the rate of decay depend on the reaction constant λ. In turn this will
have an impact on the change in permeability of the formation since the relationship
between the gel concentration and the permeability is typically non-linear; in any event,
the change in permeability of the formation is likely to differ substantially for a given
mass of polymer as the spatial distribution of the gelled zone changes (Section 8.10).
Combining the model for the spatial distribution of the gel with a model of the varia-
tion of permeability with gel concentration would enable optimisation of the impact of
a finite mass of gel.

8.9 Polymer activated by a thermal trigger

In some cases, polymer may be released from an encapsulant and become activated
through a thermal trigger. For example, the polymer PNIPAM may be thermally trig-
gered, so that above 32◦C, a suspension of the polymer in water forms a gel and the
liquid becomes much more viscous. If this is placed in a porous layer, the gel tends to
become trapped in the pore space once the gelled polymer particles grow to a size in
excess of the pore throats. This can lead to a substantial reduction in the permeability of
the matrix. In contrast, for lower temperatures, < 32◦C, the polymer remains as indi-
vidual molecules, which are not cross-linked, and so does not have a substantial impact
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Figure 8.15 Change in the permeability of a bead pack following the heating of the bead pack to 45◦C
and the formation of a PNIPAM gel. Data show the permeability as a function of the concentration
of the PNIPAM and symbols correspond to different initial values of the permeability prior to
formation of the gel. These correspond to initial bead sizes. After van Triet et al. (2014).

on the viscosity of a water solution. Experiments carried out by van Triet et al. (2014)
show the reduction in the permeability of a bead pack which arises when a solution
containing cold polymer is heated above 32◦C (Figure 8.15).

To model the gelling of such a polymer, one may envisage that if the cold polymer
is injected in a finite slug, then as the fluid invades the hot porous layer, the successive
parcels of polymer-laden fluid will reach the thermal front and gel (Figure 8.16). If the
gelling process has some kinetic delay, so that once the polymer is sufficiently warm the
rate of polymer gelling depends on the concentration of the ungelled polymer then we
can write an analogous model to Eqs. (8.19–8.20) for the time-delay release of polymer
but now accounting for the critical temperature Tc at which gelling commences. In this
case we also assume that the polymer gel concentration increases in time at each point
as progressively more polymer arrives at that point.

φ
∂c

∂t
+ u

∂c

∂x
= −λφcH(T − Tc) + φD

∂2c

∂x2 (8.25)

∂T

∂t
+ u

∂T

∂x
= κ

∂2T

∂x2
(8.26)

φ
∂G

∂t
= λφcH(T − Te) (8.27)

Suppose the polymer slug is released between the times t = 0 and t = t1 as shown on
the characteristic diagram Figure 8.16. The polymer slug speed, u/φ, is greater than
the thermal front speed, u, and hence the first polymer will begin to gel on entering
the formation. However, the latter part of the polymer slug, released at times t > 0, will
need to travel through the porous medium some distance to reach the thermal front
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Figure 8.16 Characteristic diagram of a polymer which gels as a result of passing through a thermal
front. Note that once gelled, we assume the polymer is immobile and that the gelling reaction is
irreversible so the polymer remains in place.

prior to commencing gel formation (Figure 8.16). We assume in this model that the
polymer can migrate through the gelled zone, and that the reaction is not reversible on
the timescale of the flow. For example, polymer released at time to, where 0 < to < t1,
will migrate through the porous rock with interstitial speed u/φ catching the thermal
front, of speed u, at time tT(to) and position xT(to) say, where

xT(to) = utT(to) = u(tT(to) − to)/φ (8.28)

At this point the polymer is heated up and the gelling process then commences. As this
parcel of fluid migrates forward through the formation ahead of this point, it remains
hot and the concentration of ungelled polymer, c, will wane as it continues gelling
with the rate constant λ. At the time tT(to), the initial fraction of the polymer slug,
released in the time interval 0 < t < to will have travelled ahead of the thermal front,
and so this polymer will be undergoing the gelling process. The polymer released after
time, to, does not catch up with the thermal front until it has travelled to points further
from the source, x > xT (to) (Figure 8.16). The trailing edge of the polymer slug reaches
the thermal front at the point xT (t1) and for points further downstream from the source
than this, the gel which forms in the matrix will have contributions from all the polymer
initially released (Figure 8.16).

In the limit of small dispersion and small thermal diffusivity, the solutions for the
concentration of the polymer in the liquid, and for the concentration of gel which forms
from the solution, beyond the thermal front, are found by the method of characteristics,
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following each parcel of polymer as it travels beyond the thermal front. At time t,
the concentration of ungelled polymer carried by the liquid, at the position x > xT(to)
where

xT(to) =
uto

(1 − φ)
(8.29)

downstream from the source varies with the time of release to = t − φx/u according to

c(x, t) = co exp
[
−λφ

u

(
x − uto

(1 − φ)

)]
(8.30)

where to = t − φx/u, 0 < to < t1
If t > φx/u + t1 or t <φx/u there is no polymer at position x (see Figure 8.16).
The final concentration of gelled polymer in the matrix a distance x from the source

is found by integrating Eq. (8.27) in time at this value of x using the solution (8.30) for
the concentration. For x < xT(t1) we integrate over the interval φx/u < t < tT(t∗) where
t∗ is the time of release of that polymer which meets the thermal front at x, x = xT (t∗).
For x > xT (t1) we integrate over the interval φx/u < t < tT (t1). This leads to the result

G(x) = co
[1 − φ]

φ

[
1 − exp

(
−λφx

u

)]
if x <

ut1
1 − φ

= d (8.31)

G(x) = co
[1 − φ]

φ

[
exp

(
−λ	Tφx

u

)](
exp

(
λ	Tφd

u

)
− 1

)
if x > d (8.32)

In the region 0 < x < x(t1), the amount of gel progressively increases with distance,
as more of the slug of polymer gels at that point, but beyond this the amount of gel
then decreases, since the gel becomes progressively more depleted since it has already
gelled at points closer to the source. This is shown in Figure 8.17.

The above picture of the migration and gelling of a polymer has neglected the effects
of thermal diffusion and dispersion. These act to spread the active polymer zone, but if
the polymer slug is of sufficient extent, ut1/φ compared to the dispersion and thermal
diffusion scales, κ/u, D/u then the diffusion will only act to spread the boundary region
of the polymer, rather than change the overall structure of the solution. Typically, κ/u is
of order 0.1–1.0 m, and so with injection for longer than 1–2 hours, with u ∼ 10−5 m/s,
dispersion will not dominate.

The solutions also assume that the polymer gel zone is stable to frontal instabilities,
with the gelling reaction being irreversible. However, this may not always be the case,
and if the gel can break down when the cold front migrates through the gel, that front
may become unstable in a similar fashion to a dissolution front (Chapter 6), since
the permeability is reduced by the advancing fluid. As a result, a series of channels
may develop in which the water following the polymer slug can migrate through the
polymer, reducing the potential effectiveness of the polymer treatment.



Figure 2.1 Photograph of the Kimmeridge source rock in the cliffs on the beach at Kimmeridge Bay,
Dorset. The photograph also shows the active gathering station on top of the cliffs, at which oil from
a deeper reservoir directly below is being produced at the surface. Photo courtesy of D. van
Sommeren. A black and white version of this figure will appear in some formats.

Figure 2.4 Tullig Point, County Clare, Western Ireland. A distributary channel illustrating the highly
layered nature of a deltaic environment. A black and white version of this figure will appear in some
formats.
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Figure 2.3 (a) Kilbaha Bay, County Clare, Western Ireland. A multilayered turbidite deposit
illustrating how the sand layers are separated by smaller grain-size shale rock which acts as a seal
between layers. (b) Cliffs on the coast near Kilbaha Bay, illustrating the laterally extensive stacked
turbidite deposits, interspersed with thin layers of seal rock. (c) Loop Head Cliffs, County Clare,
Western Ireland, showing a series of laterally extensive distal turbidite fan deposits. Note the fold in
the layers at the right-hand side of the photograph.
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Figure 2.5 Photograph of the Bridport Sandstone, Dorset, UK. (a) Panoramic view of the cliffs
and (b) a close-up showing the complexity of the layering, with each layer being in the range of
2–5 m thick; (c) close-up of a single layer in the sequence bound above and below by cemented
horizons. Photograph courtesy of D. van Sommeren. A black and white version of this figure will
appear in some formats.
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Figure 2.6 (a) Cartoon of cross-bed formation owing to deposition migrating upstream or
downstream. Illustration of cross-bedding on walls of (b) Glen Canyon, USA, and (c) in the
Tabernas Basin, Spain. The bedding has a very fine scale and variable direction relative to the strata
leading to potentially complex flow trajectories through the formation. A black and white version of
this figure will appear in some formats.
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Figure 2.8 (a,b) Photographs of a fluvial deposit, Dingle Peninsula, Ireland, illustrating the intricate
pattern of cross-bedding, and the local variability in grain sizes and layer permeability. The lower
panel illustrates a fault running orthogonal to the bedding direction. (c) Photograph of very
heterogeneous layering in a sedimentary deposit at Point Lobos, California, showing pebble laden
deposits, of order centimeters in size, interleaved with fine sandy deposits. A black and white
version of this figure will appear in some formats.
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Figure 2.9 (a–c) Photograph of an aeolian deposit in the Dingle Peninsula, Western Ireland,
illustrating (a) the lee side of the slope, with multiple parallel layers and (b,c) close-ups of the
layering showing the highly stratified nature of the layering on both metre and centimetre scales.
(d) Schematic to illustrate the formation process of aeolian dune formation, with successive layers
forming as the dune migrates. A black and white version of this figure will appear in some formats.
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Figure 2.10 Photograph of (a) a small sand-injection structure breaking through on overlying layer of
sediment; (b) a side view of a small-scale deformation structure in the formation, with a vertical
scale of about 50 cm and length 1 m; (c) an illustration of the folding of sediment layers following
deposition in a turbidite deposit in Tabernas Basin, southern Spain. Here the scale is about 15–20 m.
A black and white version of this figure will appear in some formats.
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Figure 3.2 Potential field for a source–sink flow confined within a circular boundary. Source and sink
are located along a common diameter, each midway between the centre and the circumference of the
model reservoir. A black and white version of the figure will appear in some formats.
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Figure 3.9 (a) Illustration of a wavy horizon in a shallow marine sediment in the Dingle Peninsula,
South West Ireland; (b) cartoon of a sinuous interface used in the modelling of effective
permeability. A black and white version of this figure will appear in some formats.



Figure 5.1 Illustration of the longitudinal and transverse dispersion of a parcel of dye as fluid
migrates through a porous layer. The flow is from top to bottom, and the dye streak is seen to spread
much more rapidly in the along-flow longitudinal direction than the cross-flow transverse direction.
Photograph courtesy of C. Otto. A black and white version of this figure will appear in some
formats.



Figure 5.8 Experiment in which fluid is injected from the top and travels down through a thin bead
pack which includes a high permeability lens. The lens may be identified as the bright elliptical
region in the centre of the porous layer. The figure illustrates the migration and distortion of an
initially horizontal line of red dye as it moves through the high permeability lens. The flow
short-circuits into the lens, and then emerges downstream leading to considerable dipersion.
Photographs courtesy of C. Otto. A black and white version of this figure will appear in some
formats.



Figure 5.9 Experiment in which fluid is injected from the top and migrates down through a high permeability porous layer which includes a low permeability
region, which may be identified as the darker zone in the centre of the cell. The figures show the migration and distortion of an initially horizontal line of red
dye through the low permeability lens in a flow which is uniform far upstream and far downstream. The dye is retarded in the lens, and then emerges in a thin
plume trailing behind the original red dye front. Photographs courtesy of C. Otto. A black and white version of this figure will appear in some formats.
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Figure 5.12 (a) Illustration of the mixing at an interface with an oscillatory flow, showing the broadening of the intermediate coloured zone between the lower
and upper layer fluid, with successive oscillations, and a black–white image illustrating the growth of the region of intermediate concentration. (b) Estimate of
the dispersion coefficient, as compared to laboratory data, by comparing the thickness of the mixed zone h with a(ωt)1/2. Figure courtesy of C. Otto. A black
and white version of this figure will appear in some formats.



Figure 6.1 Development and evolution of miscible fingers in a porous bead pack as water displaces a
more viscous sugar solution. The motion is in the downwards direction in the figure. Small fingers
of the red water migrate through the sugar solution in an irregular pattern, developing a zone of
intermingled fluid, which grows with time. There is little mixing of the phases during this
experiment owing to the relatively long time for diffusion across the fingers compared to the time of
the experiment. Figure courtesy of C. Otto. A black and white version of this figure will appear in
some formats.

Figure 6.2 Viscous fingering produced as water (red) migrates upwards and displaces oil (clear) in a
bead pack of width 10 cm. The intermingled zone grows with time. Figure courtesy of C. Otto.
A black and white version of this figure will appear in some formats.



Figure 6.4 An example of gravitational instability as a layer of saline dense red liquid migrates
downwards into a layer of less dense clear fresh water in a bead pack. A black and white version of
this figure will appear in some formats.

(a)

(b)

y

qx

k1
k2

Figure 3.16 (a) Photograph of cross-bedding in Glen Canyon, USA. The horizontal scale of the figure
is about 10 m and (b) schematic diagram of cross-bedded deposit, with angle θ between the
orientation of the bedding and the impermeable bounding rock, as used in the model prediction of
cross-flow. A black and white version of this figure will appear in some formats.



Figure 6.6 Evolution of a viscous fingering instability in a circular Hele–Shaw cell. Three images, in
different shades of blue, are superposed to illustrate the evolution with time of the fingers. A black
and white version of this figure will appear in some formats.

(b)(a)

Figure 6.10 Instability of flow in an unconsolidated porous layer. At low flow rates (a) the fluid
migrates as a Darcy flow, whereas at higher flow rates, the grains are mobilised and channels
develop as the grains are displaced to the side of the flow (b). Photograph courtesy of G. Del Ioio. A
black and white version of this figure will appear in some formats.
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Figure 6.13 (a) Variation of x(s, t) as a function of s for 4 times following the injection of fluid into
the cell. (b) Series of photographs of the time evolution of a laboratory experiment, illustrating the
displacement of blue glycerol with green corn syrup in a Hele–Shaw cell in which the gap varies
from 1 mm at the edge of the cell to 2 mm at the centre of the cell. A black and white version of this
figure will appear in some formats.

Figure 8.2 Illustration of the migration of a thermal front within a porous layer. Hot red fluid is
injected at the top of the bead pack and the fluid migrates down through the pack with the red front
illustrating the advance of the fluid. The advancing temperature front is recorded by the change in
colour of a liquid-crystal strip in contact with the bead pack; the region in which the liquid-crystal
strip has a change in colour migrates down through the bead pack, but at a slower speed than the red
dye owing to the thermal inertia. After Menand et al. (2003). A black and white version of this
figure will appear in some formats.



Water short circuits

(a)

Bank of polymer blocks high
permeability channel

(b)

Figure 8.12 Schematic of the injection of polymer to plug or reduce the permeability of a highly
permeable layer, following recovery of oil from this layer. A black and white version of this figure
will appear in some formats.
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Figure 9.6 Shape of the evolving gravity-driven flow produced by the release of a finite volume of
fluid in a two-dimensional Hele–Shaw cell. Note in the early images, there is a thin film left on the
plates which gradually drains with time, although at long times, as the current speed decreases, this
draining film becomes very small. Photo courtesy of Caren Otto. A black and white version of this
figure will appear in some formats.



Figure 9.7 Shape of the evolving gravity-driven flow produced by a constant flux of fluid supplied to
a two-dimensional bead pack. A black and white version of this figure will appear in some formats.

Figure 9.27 Illustration of a reaction front migrating through a confined porous layer. The reaction
is driven by the injection of fresh water which reacts with salt powder in the porous layer. The
original fluid in the formation is saturated salt solution in equilibrium with the salt powder, and on
reaction the injected fluid density matches that of the original formation fluid. The colour of the
injected fluid is changed from blue to red to help visualise the flow. After Verdon and Woods (2007).
A black and white version of this figure will appear in some formats.



(a) (b)

Figure 9.13 Illustration of the motion of a two fluid gravity current in a Hele–Shaw cell showing the cases in which the less dense fluid is also (a) less viscous
and (b) more viscous (after Woods and Mason, 2000). A black and white version of this figure will appear in some formats.



Figure 9.26 Comparison of the upslope draining plume model Eq. (9.99) with the shape of the plume
in Horizon 1 observed from seismic data at the Sleipner field in the North Sea. After Farcas and
Woods (2013). A black and white version of this figure will appear in some formats.

Figure 10.7 Experiment in a porous bead pack illustrating the steady plume structure near the
injection point, when saline fluid is injected into a bead pack initially containing fresh water. In the
first panel, a solid line, corresponding to the theoretical model of the outer boundary of the plume is
compared with the experiment. In the following panels, a pulse of dark dye is added to the injected
plume fluid and the evolution of the dye front may be seen as it flows from the source and adjusts to
the flow far downstream.



Figure 10.10 Flow of a plume around a series of inclined baffles as shown by a Hele–Shaw cell in which there is a series of inclined baffles, over which a cloud
of dense red syrup flows. By changing the colour of the dye in the supply fluid from red to dark blue part way through the experiment, the dispersion and
non-uniform speed of the flow may be observed. The darker dye migrates faster in the centre of the plume than at the edges. A black and white version of this
figure will appear in some formats.



Figure 10.6 Time evolution of a plume of saline fluid, produced by a constant fluid injection rate,
descending into a bead pack initially saturated with fresh water. A steady plume tail develops,
feeding the dispersively mixing head. This head appears to leave a halo of intermediate density fluid
around the continuing tail. Photograph by Caren Otto. A black and white version of this figure will
appear in some formats.
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Figure 10.8 Dispersion of a vertical plume around a series of baffles. In this example, the system is shown upside-down, as for the dispersal of a CO2 plume
through a layered, fractured reservoir. Two experiments correspond to the release of fluid in a symmetric and an axisymmetric distribution of baffles showing
the pattern of flow and the spatial distribution of the volume flux after passing through the baffles. After Hesse and Woods (2010). A black and white version
of this figure will appear in some formats.
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Figure 10.9 Flow past a baffle in a Hele–Shaw cell, with different locations of the impinging plume
relative to the centre of the baffle. The figure shows the measured flux and the predicted flux on the
longer side as a function of the position of the plume relative to the centre. A black and white
version of this figure will appear in some formats.



Figure 10.2 Illustration of the seismic reflection profile associated with the migrating cloud of CO2
spreading in the Sleipnir field in the Norwegian North Sea. Seven images are shown at progressively
later times following the start of the injection of CO2, indicating the migration pattern of the CO2.
After Boait et al. (2012). A black and white version of this figure will appear in some formats.
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Figure 11.14 Gradual spreading of the injected thermal energy (horizontal axis) to form a region of
hot rock over 23 cycles of injection and extraction, with time shown on the vertical axis. The thermal
signal gradually diffuses into the far field, ahead of the maximum extent of the injection fluid.
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Figure 10.12 (a) Flow in a five-layer Hele–Shaw cell as a model of the dispersal of the flow in a
multi-layered rock. The white line shows the prediction of the model for the dispersal in each of the
layers. (b) Experimental measurements at a series of times scaled by the similarity coordinate,
showing the collapse to the self-similar solution. (b) courtesy of A. Farcas. A black and white
version of this figure will appear in some formats.

(a)

(b)

Figure 10.15 Illustration of a wavy irregular boundary between two layers of sediment, from West
Bay, Bridport, Dorset; (b) illustrates the outline of the wavy layer. The crest-to-crest distance is
about 10 m. A black and white version of this figure will appear in some formats.
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Figure 10.16 Time evolution of a current of red glycerol running downslope over the wavy bed,
illustrating the thinning and thickening of the flow over the wavy topography, as the flow sets up a
steady state (photographs are shown upside down). The region wetted by the fluid represents the
region where there will be capillary trapping. In the last image, the source is removed and the
current allowed to drain downslope. The regions behind each of the crests on the wavy boundary is
shown by the dotted line in the bottom panel, illustrate the regions where there are trapped pools of
fluid remaining after the source is removed. A black and white version of this figure will appear in
some formats.
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Figure 11.17 Experimental measurement of the current at the end of the injection and extraction
phases of the first 3 cycles; the experiment was carried out using a Hele–Shaw cell with two layers
of glycerol, the lower of which was more dense and dyed red. This lower fluid was periodically
injected into the cell. After Dudfield and Woods (2014). A black and white version of this figure will
appear in some formats.
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Figure 11.8 Three frames, at successive times illustrating the buoyancy-driven flow in a porous
medium driven by (a) a fresh plume migrating through an initially saline solution of the same
temperature, and (b) a hot plume migrating through an initially cold fluid of the same composition.
During the experiment, the colour of the injected fluid is changed from red to blue to help visualise
the flow pattern. After Menand et al. (2003). A black and white version of this figure will appear in
some formats.
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Figure 11.9 Three frames at successive times illustrating the buoyancy-driven flow of a hot,
compositionally enriched injection fluid through a porous layer, in the case that the injection fluid is
initially less dense than the original fluid in the porous layer. The fluid is injected from (c), the base
(left-hand panels) and (d), the top of the layer (right-hand panels). During the experiment the colour
of the dye in the injected fluid is changed from red to blue to help visualise the flow pattern. After
Menand et al. (2003). A black and white version of this figure will appear in some formats.
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Figure 11.12 Figure illustrating the pattern of flow when a sugar–salt solution is injected into a bead pack saturated with a sugar–salt solution of different sugar
content. The bead pack includes a small fraction of salt powder, and as the injected fluid enters the system it dissolves some of this salt, leading to a change in
density. The different patterns of flow are illustrated by the sequence of three photographs in each of cases a–d. In a the injected fluid is less dense than the
original solution in the bead pack both before and after dissolving the salt, and thereby forms a compositional plume; the halo around the centre of the plume
denotes the earlier plume fluid once it has dissolved some of the salt and become of intermediate density between the formation fluid and the injected fluid.
This rises more slowly than the more recent injection fluid which rises along the dissolution channel in the centre of the bead pack, until eventually reaching
some salt higher in the bead pack. The flow pattern is visualised by changing the colour of the injected fluid from red to black during the experiment. In b the
injected fluid is initially more buoyant but becomes neutral on reacting with the salt, and this is analogous to the thermal plume shown in Figure 11.8b. In case
c, the injected fluid is initially buoyant but becomes dense on reacting with the salt powder, this leads to a dissolution channel which rises directly above the
source, and then a collapsing fountain of dense fluid around the channel which feeds a laterally spreading gravity current on the base of the system. In d the
injected fluid is initially dense, but becomes even more dense on reacting with the salt powder, therefore forming a dense laterally spreading gravity current.
Photographs courtesy of Will Rayward-Smith. A black and white version of this figure will appear in some formats.



Figure 12.2 Analogue experiment of gas draining from a porous layer using syrup draining from a
Hele–Shaw cell, with an initial constant depth in the cell. A black and white version of this figure
will appear in some formats. After Farcas and Woods (2007).

Figure 12.12 Illustration of a shale sample showing the very layered, fine structure of the rock.
A black and white version of this figure will appear in some formats.
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Figure 8.17 Illustration of the variation of the gel concentration with distance downstream from the
source when a thermally sensitive polymer is released into the formation and begins to gel once it
reaches a temperature threshold. The thermal front migrates at a constant fraction of the fluid speed.
The mass of gel initially increases with distance, since near the source, only a fraction of the
polymer gels, since the thermal front moves forward, while further from the source nearly all the
polymer has passed the thermal front. In the far field, the gel concentration then begins to wane
since the initial polymer pulse was finite.

8.10 Polymer injection into a multi-layer formation

At the outset to this chapter, we mentioned the role of polymers in diverting fluid within
a reservoir so that the zones of high permeability from which water has been displaced
can be blocked and subsequently the main flow arises through other layers. The effec-
tiveness of such a strategy is dependent on whether the geological strata are connected
or remain independent, and on the volume of the polymer slug injected into a system.
In the previous models of polymer contained within an encapsulant, we assumed the
encapsulant released the polymer after a time τ following injection, with the injection
being a continuous process over time t1. The shape of the gel zone was then dependent
on the kinetics of gelling, following the release of the polymer at the point uτ/φ within
the reservoir. However, one can also envisage a batch process, in which a volume of
polymer is mixed with a volume of injection fluid prior to injection, and then pumped
into the formation. In this case, if the encapsulant releases the polymer a time τ after
being mixed with the injection fluid, then the polymer will spread out as a slug within
the reservoir. The length of this slug d will be related to the injection volume, if for
simplicity, we neglect effects of dispersion. The polymer will then become active at
the same time. In the limit that the gelling, which occurs over a timescale τg = 1/λ, is
rapid compared to the time to travel a distance comparable to the length of the slug,
τa = dφ/u, so λdφ/u � 1, then to leading order, the polymer gels on activation, pro-
ducing a zone of length d of reduced permeability, kG.
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Figure 8.18 Schematic of the location of polymer gel in a two-layer system, in which one layer is of
higher permeability and so takes up more of the polymer pulse. Figure 8.19 illustrates the resulting
change in the permeability ratio of the two layers, following the placement of the polymer slug.

In this limit, we can compare the impact of the polymer treatment in two layers
of different permeability (Figure 8.18). If the two layers independently connect an
injection and production well, and have permeability k1 and k2, then the ratio of the
flow in each layer, per unit depth of that layer, equals the ratio of the permeabilities.
If the gelling occurs after the polymer has been injected, then the ratio of the volume
of polymer which is injected into each of the layers, per unit depth of that layer, also
equals the permeability ratio. Hence the layer with larger permeability receives more
polymer and thereby will suffer a larger reduction in permeability. For a simplified case
of a channelised deposit, or with a linear injection and production well, in which the
injector and producer are a distance L apart, and in which the flow is primarily one
dimensional, the effective permeability of each layer, i, after formation of the gelled
zone, is given by

ki =
kikgiL

kidi + kgi(L − di)
(8.33)

where di is the extent of the polymer in layer i, di = dki/(k1 + k2), with d the total
length of polymer slug, and kgi is the permeability of the region of layer i in which the
polymer has gelled.
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Figure 8.19 Variation of the permeability of the high and low permeability layers following injection
of a polymer slug (Eq. (8.33)). The polymer slug gels and is assumed to reduce the permeability by
a factor of 10 (kgi = 0.1ki). It is seen that the permeability of the original low permeability layer
decreases much more slowly as the length of the polymer slug increases, since this layer receives
less of the polymer, in proportion to the initial permeability ratio. As a result, the total flow decreases
primarily through the suppression of the flow in the high permeability layer. This reduces the high
flow rates of water until more of the oil has been swept, although the overall flow rate decreases.
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Figure 8.20 Ratio of the permeability of the low permeability layer to the high permeability layer as a
function of the length of the slug of polymer injected into the reservoir. Curves correspond to
different initial values of permeability ratio (2, 10 and 20). As more polymer is added and then gels,
the difference in the permeability of the two layers decreases.

In Figure 8.19 we show the variation of the permeability of each layer as a function
of the length of the polymer slug d for the case in which the initial permeabilities of
the two layers are 1 and 10, in arbitrary units (Eq. (8.33)). The permeability of the
layer with the higher initial value of permeability decreases more rapidly as polymer is
added since it receives more of the polymer. Indeed, in Figure 8.20 we show how the
permeability ratio decreases as the amount of polymer added to the system is increased.
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This result illustrates how in the continuing flow, the polymer leads to diversion
of a larger fraction of the injected fluid through the lower permeability zone, and so
although the permeability of both layers decrease, thereby decreasing the flow rate for
a given pressure forcing, more of the continuing flow migrates through the less well
swept regions. This may be relevant in oil production systems, since it provides a strat-
egy to reduce the flow in the layers through which water has already reached the pro-
duction well. As a result the fraction of water in the produced fluids will decrease. In
later field life, this can be a dominant factor in extending the life of the wells, owing to
the cost of treating the produced water compared to the value of the hydrocarbons pro-
duced. There are many possible extensions to the modelling presented herein, includ-
ing the effects of hydraulic connections between the layers, dispersion and instability
of the polymer fronts; the analysis presents a picture of some of the controls on siting
polymer gels within a reservoir, and their impact on the production.

8.11 Exercises

1. A reservoir consists of two permeable layers of permeability k1 and k2 directly in
contact. A polymer slug of extent d is injected into the formation from a long line
well, leading to a one-dimensional flow in each layer normal to the well. There is
a time delay τ before it gels, where τ is longer than the time to inject the gel into
the reservoir. The gel is virtually impermeable. Describe the location of the slug of
polymer in each of the layers at the time they gel, assuming a total flow rate Q per
unit length along the well. Also, describe the flow path of liquid injected into the
system following the gelling of the polymer, assuming that the slugs of polymer in
each of the layers do not overlap.

2. A reservoir consists of a laterally extensive layer of permeability k and thickness
H inclined at angle θ to the horizontal. Fresh water is injected from a line well
along a horizontal line y = 0 and extracted from a second horizontal well at y = L.
The geothermal temperature is TG(y) = To − Gy◦C (G > 0). Calculate how the
temperature in the field evolves with time if fluid of temperature T1 is injected into
the injection well. If the formation fluid is in equilibrium with the minerals in the
rock, and the solubility of mineral a varies with temperature as c = ca + α(T − To)

calculate the pattern of precipitation of mineral associated with the migration of
the formation water, and the following front of injected water, assuming that the
injection well is deeper than the production well. You may assume that there is
negligible heat loss to the surrounding rock.

3. If the gelled polymer reduces the permeability of the formation from value k to
value k exp(−G) where G is the mass of polymer gelled at that point in the forma-
tion, calculate the effective permeability of a permeable rock between a source x = 0
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and sink at x = L if polymer is released from a dissolving encapsulant, according
to Eqs. (8.19–8.24). Explore how the permeaility changes as co and t1 are changed
such that cot1 is a constant corresponding to the injection of a constant mass of
polymer. You may assume the injection rate u, the gelling delay time τ and kinetic
constant λ are fixed.

4. (Numerical exercise) Develop a model for the effect of a polymer gelling in a porous
medium in a discrete way using a pore-network model in which there is a regular
grid of pathways from node to node. Flow is modelled by assuming each node has
a pressure, and the flow between neighbouring nodes is proportional to the pressure
difference. By imposing a pressure on an upstream and downstream boundary, the
flux through the system can then be calculated. For example, in two dimensions, a
square grid can be used for the network. If a polymer floods the pore network and is
assumed to produce gel flocs in a fraction f of the pathways, the macroscopic per-
meability will decrease. Gelled flocs of the polymer may be assumed to accumulate
in particular pathways of the network between adjacent nodes with probability f ,
making the pathway of lower permeability. If a large number of realisations for the
distribution of the flocs is taken, and for each distribution the effective permeability
is measured, one can determine the range of permeabilities of the gelled system.
For a critical range of values of f , there will be two types of distributions of flocs
in space: ones for which there is no path remaining which does not pass through a
node–node pathway which hosts a polymer floc, and ones for which there remains
a polymer-free path from the injection to the extraction point somewhere in the net-
work. By numerical calculation find how the ratio of the number of each of these
path types depends on f . (See van Triet et al., 2014, for more details of these types
of calculations: note the continuum modelling in this chapter has assumed that the
system is sufficiently large that well defined mean properties may be used in mod-
elling the gelling process.)



9 Gravity-driven flow in porous media

In the analysis we have considered to this point, we have largely focused on pressure–
driven flows, and the impact of heterogeneous pore structure, immiscibility and viscos-
ity contrasts in driving the flow and reactions. However, in a number of situations in
porous media, the flow is controlled or influenced by buoyancy forces, and this leads to
different patterns of flow. We have touched on the role of density differences in driving
instability of a moving front in our discussion of the Saffman–Taylor type instability
(Chapter 6), and in the discussion of the migration of gas and oil through capillary-
pressure-limited seal layers above anticline-type traps (Chapter 7). In this chapter we
consider the dynamics of buoyancy-driven flows, largely associated with the injection
of fluid of one density into a porous layer saturated with a fluid of a second density.

The role of the buoyancy forces on the flow depends on the geometry of the flow,
and can lead to a range of different phenomena. We can envisage two end members for
gravity-driven flows, namely vertical plumes in which the flow is parallel to the gravi-
tational acceleration and horizontal flows, in which fluid of one density migrates along
a boundary, displacing a second fluid of different density. In this chapter, we focus
on the case of gravity-driven flows along horizontal or sloping boundaries, while in
Chapter 10 we consider vertical flows, including the dynamics of both plumes, but
also vertical exchange flows. We also consider how buoyancy affects the dispersion
associated with such flows as they migrate through porous layers, exploring both the
pore-scale dispersion, and the combination of buoyancy forces with heterogeneity of
the rock structure in causing dispersion and mixing. The simplified models we present
illustrate some important differences with the dispersion associated with pressure-
driven flows described in Chapter 5. Finally, in Chapter 11, we explore some of the
flows which result from the combination of density differences produced by temper-
ature and compositional contrasts between the injected and formation fluid: owing to
the thermal inertia, this leads to flows in which the buoyancy evolves within the flow,
including the possibility of reversing buoyancy.

The effect of buoyancy on flow in porous media is important in a number of engi-
neering applications in which fluid is injected into the formation to displace a second
fluid including the recovery of oil and gas, sequestration of CO2, and the recovery of
thermal energy from geothermal systems.

156
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Buoyancy forces associated with the difference in density between the oil and water
can have an important impact in understanding the pattern of water flooding especially
in more permeable reservoirs and far from injection wells, as the flow spreads and
the pressure gradients decrease. If we consider injection of a volume flux Q from a
point source, into an aquifer with a vertical extent H, which extends a large distance
laterally from the well, L � H, with angle of inclination θ to the horizontal, then if
we assume that the flow spreads axisymmetrically from the well, and for the moment
neglect gravity so that the flow floods the whole depth of the layer, the speed at radius
r from the well will have value

u =
Q

2πHr
(9.1)

The cross-layer buoyancy-driven speed, ub, owing to the density difference 	ρ

between the injected and formation fluid, is given by

ub =
k	ρg cos θ

μ
(9.2)

where k is the permeability of the formation. This becomes comparable to the radial
flow speed when the flow front has reached a radius

r =
Qμ

2πHk	ρg cos θ
(9.3)

At this point, we expect the slumping of the flow front under gravity to become sig-
nificant. In a typical case that Q ∼ 0.01 m3/s, 	ρ = 10−100 kg/m3, μ = 0.001 Pa/s,
and k = 0.1 Darcy, with θ < 10◦, the radius (9.3) is related to the depth of the layer
according to r ∼ 104/H and so with a thin permeable layer, of order 10 m thick, the
buoyancy-driven flow will only produce a siginficant gravity slump after a distance of
order 103 m, and within this radius, the flow is essentially pressure-driven. In contrast,
with a layer 50–100 m deep, the buoyancy-driven slumping flow will be significant
when the flow has spread of order 102 m from the source, and buoyancy effects then
become important in the flow (Figure 9.1).

In a more steeply dipping reservoir, the along slope component of gravity may be
very important. If the layer is relatively thin, H ≤ 10 m, then the flow may flood the
whole depth of the layer, but the downslope buoyancy forces may impact the shape of
the flood front between the injected and original fluid (Figure 9.2); alternatively a three-
dimensional plume may rise from a point source of buoyant fluid. In Chapter 10 we
explore these flows in more detail, developing a model for the shape of a steady buoyant
plume in the absence of mixing (cf. Figure 9.2), and also exploring the dispersion of a
buoyant plume as it rises and spreads out through a layered permeable rock.

Buoyancy-driven flows also arise with miscible gas injection in reservoirs, for exam-
ple with CO2 injection for enhanced oil recovery. Following an initial water flood in
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Figure 9.1 Illustration of the gravity-driven tonguing of a water flood as it displaces relatively dense
oil within the formation.

Figure 9.2 Water injection into an inclined reservoir in which the buoyancy force impacts the shape of
the plume and hence the sweep efficiency as the water passes from the injector to the producer well.

a reservoir, the residual oil trapped in the pore spaces which have been swept by the
initial water flood may have a relatively low saturation. As the gas advances through
these pore spaces, it will dissolve into the remaining oil phase increasing the satura-
tion of the oil–CO2 mixture. This may enable a secondary displacement of the oil–
CO2 mixture by use of a second water flood, known as water-alternating-gas recovery.
Although the subsequent recovery of hydrocarbons has a high CO2 content, the gas
does enable more of the oil to be mobilised. A key part of the flooding relates to the
gravity override of the low viscosity gas phase which is influenced by the buoyancy.
This motivates analysis of the role of buoyancy displacement flows within a porous
layer of finite depth (cf. Figure 9.3).

With increasing concern about CO2 emissions, there has also been interest in the
dispersal of CO2 injected into subsurface aquifers for CO2 sequestration. Following
the injection phase, the cloud of CO2 injected into the subsurface will be controlled by
buoyancy forces, and analysis of such flows provides estimates of the possible dispersal
of the CO2 in the subsurface. In this case, the migration of the CO2 cloud is influenced
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Figure 9.3 Illustration of the gravity-driven spreading of an alternating buoyant gas and dense water
flood to displace oil within the formation.

by the capillary trapping of CO2 at the rear of the flow, dissolution of the cloud into
the underlying water and the effect of heterogeneities in the formation.

There are presently three large-scale CO2 sequestration projects: the In Salah field
in Algeria, the Sleipner field in the Norwegian North Sea and the Weyburn field in
Canada. These fields span permeabilities from high values of about 10−12–10−13 m2

at Sleipnir to smaller values of 10−14–10−15 m2 at the In Salah field. Different mon-
itoring systems have collected seismic data and other subsurface data which can be
used to infer the location of the CO2 in time as the plumes of CO2 spread under buoy-
ancy and pressure forces through the layered strata (Verdon et al., 2013). There has
been much research aimed at uncovering some of the controlling processes related to
the migration of supercritical CO2 in the subsurface given it is a relatively low den-
sity (400–700 kg/m3) and low viscosity (0.0001–0.0003 Pa s) phase relative to water,
which has density ∼ 1000 kg/m3 and viscosity 0.01–0.001 Pa s depending on pressure
and temperature. (Note, supercritical fluids exist above the critical temperature and
pressure under which conditions there is no distinction between the liquid and the gas
phase.) For context, CO2 injection rates of about one million metres cubed per year are
envisaged for typical storage wells.

One concept for the sequestration of CO2 emerging from these studies is to inject
the CO2 into anticlines, which are structural traps in subsurface aquifers (Figure 9.4).
The process of migration into the trap and the subsequent dissolution of the CO2

into the underlying groundwater from the trap have been explored in some detail (e.g.
Hesse et al., 2008; Woods and Espie, 2012; Szulczewski et al., 2013). In migrating
through an aquifer, the capillary trapping of the CO2 phase in the wake of the plume of
CO2 can lead to a substantial fraction of the plume being trapped and becoming immo-
bile prior to reaching the anticline (Figure 9.5), depending on the volume injected and
the volume of pore space in the aquifer and we explore this below. In Chapter 10 we
describe some of the controls on the long-term dissolution of the CO2; these are primar-
ily associated with the supply of unsaturated groundwater either from the host aquifer
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Figure 9.4 Illustration of a CO2 plume trapped in an anticline, involving the dissolution into
groundwater and subsequent convection as dense CO2-laden water exchanges with the less dense,
unsaturated aquifer water.

Mobile CO2
plume

Mobile

Mobile

Capillary trapped

Capillary trapped

Figure 9.5 Illustration of the capillary trapping of the rear of a CO2 plume as it runs along an
impermeable boundary, with some dissolution of CO2 into the formation water developing on the
lower surface of the plume.

containing the CO2 or through exchange flow with adjacent aquifers, connected to the
original aquifer by a series of fractures through the impermeable geological strata.

There is a related class of problem associated with subsurface geological waste
repositories for disposal of radioactive material; these repositories can become sources
of hydrogen gas if organic material in the repository comes into contact with water.
Although the volume of release of hydrogen is likely to be much smaller than in the
case of CO2 sequestration, with estimates suggesting volumes of order 1000 m3, if this
gas breaches the repository boundary and enters fractured volcanic rock or layered
sedimentary rock, the migration of the hydrogen, which can also transport radionu-
clides, may involve some analogous buoyancy-driven flow problems (Woods and
Norris, 2010). It is worth noting, however, that many such repositories are being
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designed to reside within very low permeability clay horizons in the subsurface and in
that case the problems related to gas migration are very different owing to the very low
permeability of the clay.

The migration and dispersal of LNAPL and DNAPL contaminants can also be influ-
enced by buoyancy forces. LNAPL is typically associated with the spillage of oils
into the subsurface. The oils are light and after descending through the vadose zone,
i.e. the shallow water-unsaturated geological strata, they spread on the surface of the
water table. DNAPLs, typically associated with chemical solvents and other industrial
chlorinated petroleum products, are dense, and these migrate through the groundwa-
ter, forming a dispersed cloud of contaminant within the water table. Since they are
weakly soluble in the water, as the background hydrological flow migrates past the
contaminants, they can produce laterally extensive plumes of contaminated groundwa-
ter. Prediction of the spatial distribution of contaminated plumes of groundwater and
strategies for their cleanup are critically dependent on knowledge of the original distri-
bution of the LNAPL and DNAPLs within the geological strata. In turn, this depends
on the balance of buoyancy and capillary effects controlling their flow from the surface
source and through the geological strata. We consider some of the problems relating to
the balance of buoyancy and capillary forces as flow migrates along low permeability
layers later in this chapter.

The problems described above relate to buoyancy-driven flows in which the density
difference is associated with the composition of the two fluids. There is, however, a
different class of problem related to heat flow in the ground, in which density changes
associated with temperature differences between different regions of an aquifer can
be key. Such problems arise in geothermal reservoirs in which water is injected and
extracted to mine the thermal energy stored in the permeable rock. Density changes
of the water as it heats up can lead to an important control of buoyancy forces on the
propagation pattern of the fluid, and we consider this in more detail in Chapter 11.
Of particular importance are flows in which the composition and temperature of the
injection water differ from that in the host rock. This can lead to some very curious
flow patterns in which the buoyancy evolves with distance in the flow because the
thermal and compositional fields migrate through the formation at different speeds.
There is also an important class of problem involving the boiling of water injected
into the formation, in which the density difference between the water and vapour can
control the surface area and hence rate of vaporisation of the liquid. We also consider
these effects in more detail in Chapter 11.

We commence with a discussion of two-dimensional flows, for example associated
with injection from a line well, in which a buoyancy-driven flow leads to a horizon-
tally spreading gravity current (Figures 9.1 and 9.6). We first consider the case of a
very deep formation, in which the displacement flow of the original fluid in the forma-
tion is small compared to the injected fluid. We then develop this analysis to assess the
flow which develops in a formation of finite vertical extent, in which case the motion
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of both fluid phases is key and accounts for various effects which can modify the flow,
including reactions, capillary trapping, dissolution and leakage into neighbouring geo-
logical layers (cf. Figures 9.2, 9.3). In Chapter 10, we build on this by assessing the
dispersion of such flows in heterogeneous rocks.

9.1 Point release of buoyant fluid

A pedagogical problem to consider is the two-dimensional gravity-driven flow pro-
duced when fluid of density ρ1 migrates along a horizontal boundary from a line source
and the displacement of the original fluid in place, of density, ρ2 = ρ1 − 	ρ, does not
impose a significant backpressure on the flow. This occurs, for example, in the vadose
zone, when fluid is injected at a point and then spreads along an impermeable boundary
(Figure 9.6).

Before constructing the exact solutions, it is helpful to infer the scalings for the
current length L(t) and depth H(t) as functions of time using simple arguments. For
example, for a finite release of fluid in two dimensions, with volume per unit length in
the cross-flow direction, Vo, a current with length L(t) and maximum depth H(t) has
nose speed

dL

dt
∼ 	ρgH

μL
(9.4)

Coupling this with the volume conservation, φHL ∼ Vo we expect that the length will
scale with time as

L(t) ∼
(

	ρgVot

μφ

)1/3

(9.5)

We now develop the governing equation for the flow and develop some exact solu-
tions which confirm this physical scaling analysis. In a porous layer in which there is
an impermeable horizontal boundary, z = 0, and along which dense fluid spreads under
gravity, the flow becomes relatively long and thin, with lengthscale L and depth H,
� L, so that the continuity equation leads to the balance (Figure 9.6)

∇.u = 0 → v = O

(
Hu

L

)
� u (9.6)

and as a result, the vertical pressure gradient is approximately hydrostatic, so that

p(x, z, t) = pH +
∫ H

z
ρgdz = pH +

∫ h

z
ρ1gdz +

∫ H

h
ρ2gdz (9.7)

where h(x, t) is the local depth of the flow, as a function of the horizontal position x
and time t and pH is a reference pressure at height H above the boundary. Here we
have assumed that there is no mixing between the injected and reservoir fluid. The
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horizontal component of Darcy’s law then takes the simplified form

u = − k

μ
(ρ1 − ρ2)g

∂h

∂x
for 0 < z < h (9.8)

at each height in the current.
The local equation for the conservation of mass takes the form

φ(h)
∂h

∂t
= − ∂

∂x

(∫ h

0
u(x, z, t)dz

)
(9.9)

In the case that the permeability is uniform in the layer, this leads to the non-linear
diffusion-type equation which governs the evolution of the depth of the flow

∂h

∂t
=

(
k	ρg

μφ

)
∂

∂x

[
h
∂h

∂x

]
(9.10)

while the conservation of mass in the formation is given by the balance between the
volume of the current and the mass injected

V(t) =
∫ L(t)

0
dx

∫ h(x,t)

0
φ(z)dz (9.11)

In the case in which a finite volume of fluid is released, or with a flux of fluid at x = 0
which varies as a power of time so that the volume of fluid in the current is given by

V(t) = Qtγ (9.12)

these equations admit self-similar solutions, which represent the natural solutions of
the differential equation, in the absence of any external lengthscale. To find the solu-
tions from the differential equation, we try an ansatz of the form

h(x, t) = D
( t

τ

)α

f

(
x( t

τ

)β
D

)
(9.13)

where the timescale and lengthscale, τ and D are given in terms of the natural buoyancy
speed

S =
kg	ρ

μφ
(9.14)

and the quantity Q (Eq. (9.12)) by using dimensional analysis leading to the relations

τ =

(
S2

Q

) 1
γ−2

and D =

(
Q

Sγ

) 1
2−γ

(9.15)

On substitution of this ansatz into the governing equation, we seek values for the expo-
nents α and β such that the governing equation is purely a function of the similarity
variable
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η =
x( t

τ

)β
D

(9.16)

This leads to the relations

α =
2γ − 1

3
; β =

 + 1

3
(9.17)

and the ordinary differential equation for the shape of the current,

3
d

dη

(
f

df

dη

)
= (2γ − 1)f − (γ + 1)η

df

dη
(9.18)

Finally the boundary conditions relating to the conservation of mass require that at
the end of the current, where η = ηo,

f (ηo) = 0 ;
∫ ηo

0
f (η)dη =

(
t

φ

)
(9.19)

In general, this non-linear differential equation for f requires numerical solution. How-
ever, in the special case of a finite volume release of fluid, the differential equation can
be integrated exactly since γ = 0 and the shape equation becomes

3
d

dη

[
f

df

dη

]
= −f − η

df

dη
(9.20)

with exact solution

f (η) =
1

6

(
η2

o − η2
)

where ηo =

(
9

φ

) 1
3

(9.21)

This solution is shown in Figure 9.6 at a series of times, together with the result of a
laboratory experiment in which a finite volume of fluid was released at the end of a
Hele–Shaw cell. The shape of the top surface is shown on each of the images, taken at
four different times after release of the lock gate; these have been rescaled and super-
posed in the lowest image on the figure. The differences in these profiles are smaller
than the line thickness in the plot and coincide with the parabolic solutions (9.21).

The self-similar slumping allows the current to become thinner and more laterally
extensive in time, while maintaining the same shape. As anticipated by the scalings
(9.4) and (9.5), the current length L(t) and depth at the origin, h(0, t) evolve according
to the relations

L(t) = ηoD
( t

τ

)1/3
(9.22a)

h(0, t) =
η2

oD

6

(τ

t

)1/3
(9.22b)
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Figure 9.6 Shape of the evolving gravity-driven flow produced by the release of a finite volume of
fluid in a two-dimensional Hele–Shaw cell. Note in the early images, there is a thin film left on the
plates which gradually drains with time, although at long times, as the current speed decreases, this
draining film becomes very small. Photo courtesy of Caren Otto. A black and white version of this
figure will appear in some formats. For the colour version, please refer to the plate section.

This fundamental solution provides key insight into the dynamics of a buoyancy-
driven flow, where the horizontal pressure gradient is produced by the variation of the
depth of the flow as a function of position along the boundary. In Figure 9.7, we present
a series of images of a gravity current produced by a constant flux of saline solution,
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Figure 9.7 Shape of the evolving gravity-driven flow produced by a constant flux of fluid supplied to
a two-dimensional bead pack. A black and white version of this figure will appear in some formats.
For the colour version, please refer to the plate section.

Q per unit length, in a two-dimensional porous bead pack originally filled with fresh
water. In this case, the length increases as

L ∼
(

k
	ρgQt2

μφ

)1/3

(9.23)

and the theoretical solution for the flow, based on Eq. (9.18), with γ = 1 has been
superposed on each image.

There are many extensions to this model which enable more realistic or complex
rock morphologies to be studied.

9.2 The leaky boundary

If the boundary of the porous layer includes a thin seal layer of thickness b and of much
lower permeability, kb, than the main flowing layer, k, so that kb/b � k/h, where h
is current depth, then, as the flow migrates along the boundary, a small fraction of the
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flow may drain through the boundary, this may be modelled by a sink or loss term in
the equation for the conservation of mass. If the drainage is controlled by the local
head of the dense fluid in the current, this drainage will be proportional to the depth of
the flow, and the permeability of the low permeability ‘seal’ layer. Assuming that the
low permeability layer is underlain by a more permeable layer, the rate of drainage of
fluid per unit length will then be given by the depth of the flow

loss =
kb	ρgh

μb
(9.24a)

and the governing equation for the two-dimensional current depth becomes

∂h

∂t
= S

∂

∂x

(
h
∂h

∂x

)
− λh (9.24b)

where λ = kbS
kb . The draining of the flow leads to loss of fluid from the current, and

this may be found by integrating Eq. (9.24b) along the length of the flow, leading to
the expression for the evolution of the volume of fluid per unit length in the cross-flow
direction

V = φ

∫ L(t)

0
h(x, t)dx (9.25)

given in terms of the source flow Q by

dV

dt
= Q(t) − λV (9.26)

with solution

V(t) = exp(−λt)

[
V(0) +

∫ t

0
Q(t′) exp(λt′)dt′

]
(9.27)

By transforming time,

τ =
(1 − exp (−λt))

λ
(9.28)

we can find the exact solution for the depth of the current in the case of a finite release
(Figure 9.8)

h(x, t) =
V(0)2/3

6S1/3τ1/3 exp (−λt)

(
92/3 − x2

V(0)2/3S2/3τ 2/3

)
(9.29)

where the maximum run out distance varies with time according to the relation

xm =

[
9V(0)kb

φkb
(1 − exp (−λt))

]1/3

(9.30)

as the current drains into the underlying strata. This model has been tested with experi-
ments in a Hele–Shaw cell in which syrup spreads between two parallel vertical planes,
with a narrow gap at the base of the cell representing the low permeability seal layer.
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Figure 9.8 Shape of the evolving gravity-driven flow produced by a finite volume of fluid released
into a Hele–Shaw cell with a leaky base. Profiles are shown at a series of dimensionless times
τ = 1, 5, 10, 20 and 30.
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Figure 9.9 Comparison of the length of a draining gravity current as a function of time, following the
release of a fixed volume of fluid, with the model prediction (9.30). After Pritchard et al. (2001).

As the current drains through the base it spreads laterally, eventually runs out of fluid
(Figure 9.9).

On the field scale, the maximum run out distance for a two-dimensional current,
which is given by (9.30) for large time, can be found for typical parameters. For exam-
ple, with an initial volume 100 m2 per unit length normal to the flow, with a seal rock
of thickness 0.1 m and permeability 10−4 times that of the main formation, then the
run out length is approximately 100 m. The timescale to reach this distance in a layer
with permeability 1 Darcy, and with fluid of density difference 100 kg/m3 is a few
years. This is consistent with the buoyancy-driven flow being of speed S ∼ 10−5 m/s.
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This provides a source term for the flow in the neighbouring permeable layer, and
illustrates how a buoyancy-driven flow may gradually leak through a low permeabil-
ity boundary of a porous layer, even with a large permeability contrast. In building
a model of the flow in a layered medium, this calculation introduces important con-
straints on how the different layers should be characterised, and in particular, on what
constitutes seal rock. Woods and Farcas (2009) extended this model to account for a
finite capillary entry pressure which can suppress the leakage of the fluid through the
low permeability boundary once the current becomes too thin.

9.3 Rapid injection and drain back: the dipole

An interesting exact solution to the non-linear diffusion equation relates to the so-called
dipole or drainback solution, in which a volume of fluid rapidly invades a porous layer,
for example, through a fracture or an injection well, and then, subsequently, the fluid
drains out of the layer and back into the fracture. As the draining occurs, the remainder
of the fluid is able to spread into the formation under gravity thereby contacting a
fraction of the porous layer with the injected fluid, until it has all drained back into the
fracture. This flow, in which the depth of the current is zero both at the origin, h(0) = 0,
beside the fracture, and in the far field, as the current spreads outwards, has the curious
property that the dipole moment D is conserved (Barenblatt, 1996), where

D =
∫ L(t)

0
xh(x, t)dx (9.31)

By seeking a similarity solution and constraining the exponents in time such that the
dipole moment is conserved and that the boundary conditions at x = 0 and in the far
field are satisfied, we find that the solution to the non-linear differential equation (9.10)
has the form (Barenblatt, 1996)

h(x, t) =
1

6

(
D

St

)1/2 (
403/8η1/2 − η2

)
where η =

x

(DSt)1/4
(9.32)

The structure of this flow solution is shown in Figure 9.10. From the solution, we see
that the current only occupies the finite region of the porous layer, given in similarity
space as

0 < η < ηe = 401/4 (9.33)

where the depth of the flow at the nose of the current, h(ηe) = 0.
In practice, a flow entering the reservoir will take some time to adjust to this solu-

tion, but as the solution shows, the flow then drains away with the volume per unit
length decreasing as the inverse one quarter root of time, while the nose of the cur-
rent continues to advance into the formation. In the case of a layer which has depth
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Figure 9.10 Shape of the evolving gravity-driven flow produced by a finite release in a
two-dimensional porous layer–, here a Hele–Shaw cell, in the case that the flow can drain back
through an opening at the end of the cell x = 0. The figure compares the laboratory data of the shape
of the current with the theoretical solution, for observations at a series of times. After King and
Woods (2003).

of order 10 m and extends 10 m into the formation following injection over a period
of months, for example corresponding to a wet winter in which there may be recharge
of the permeable layer, the dipole moment has value of about 500 m3. Assuming the
current adjusts to the dipole solution, then with a transport speed of S ∼ 10−5 m/s, the
leading edge of the current will have travelled to a distance of about 20 m into the rock
after 1 year while some of the flow drains into the fracture. If the flow persists, then
after 10 (100) years, there will be a fraction of about 0.3 (0.1) of the fluid remaining,
and the nose will have advanced to a distance of about 35 (60)m.

This solution may be extended to account for draining through the lower boundary
of the formation by rescaling time as in Section 9.2; details are given by King and
Woods (2003).

9.4 Multiple fluids and stratified currents

Although the similarity solutions we have described are special solutions, and only
apply for specific boundary conditions, they do provide useful insight into the motion
of two-fluid currents in a porous layer. The similarity solutions for a single discrete
release may be extended to consider the motion of two discrete volumes of fluid of
different density and viscosity spreading into a porous layer.

This type of flow may arise, in principle, if a fluid is injected into a porous rock in an
attempt to contain a second, hazardous liquid which may have infiltrated the rock at an
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Figure 9.11 Illustration of the different modes in which a two-fluid gravity current spreads from a
source as a function of the difference in viscosity of the two fluids. Fluid i becomes progressively
more viscous in the successive panels. After Woods and Mason (2001).

earlier time. The second fluid may perhaps be seeded with a time-delay polymer with
the objective that the gelling process is triggered after the liquid has spread through
the rock for a particular time at which it can contain the spill. This two-fluid model
also sets the scene for exploring the dynamics of reacting currents in which there is an
internal interface across which the fluid properties change.

Physically the structure of two-fluid currents may be inferred by observing that the
less dense fluid will overlie the denser fluid, and the less viscous fluid will tend to
outrun the more viscous fluid. However, the detailed topology of the flow will depend
on the volume ratio, the viscosity ratio and also buoyancy ratio of the two fluids. Given
this physical picture, it follows that there are a series of different spreading patterns of
two fluids, with the interface between the two fluids sloping forwards or backwards, as
illustrated in Figure 9.11. In this figure, the fluid labelled i is less dense than the fluid
labelled ii, but, as we move from the top panel to the bottom panel, the viscosity ratio
varies from fluid i being much less viscous to fluid ii being much less viscous.

To model the motion of such a flow, and derive the profiles shown in Figure 9.11,
we again assume the flow becomes long and thin, with the pressure being hydrostatic
in the cross-flow direction. If we label the buoyancy of the less dense fluid as 	ρu and



172 Gravity-driven flow in porous media

the buoyancy of the denser fluid as 	ρl, then the pressure in the upper fluid is

pu(x, y) = po(y) + 	ρug(hu + hl − y) (9.34)

while that in the lower fluid is

pl(x, y) = po(y) + 	ρlg(hl − y) + 	ρughu (9.35)

with po the reference pressure in the background fluid. We then use conservation of
fluid in each phase with Qi the flux of fluid i,

φ
∂hi

∂t
= −∂Qi

∂x
(9.36)

coupled with Darcy flow, to develop an equation for the evolution of the depth of each
layer of fluid as a function of the distance from the source. This leads to the governing
equations

∂hu

∂t
=

[
k	ρug

φμu

]
∂

∂x

(
hu

(
∂hu

∂x
+

∂hl

∂x

))
(9.37a)

∂hl

∂t
=

[
k	ρug

φμl

]
∂

∂x

(
hl

(
∂hu

∂x
+

	ρl

	ρu

∂hl

∂x

))
(9.37b)

As may be seen in the equations, the key parameters are the viscosity ratio, V = μu/μl,
the buoyancy ratio, R = 	ρl/	ρu, and the volume ratio F = Vu/Vl. By direct analogy
with the original problem of the finite release of one fluid (Section 9.1), these equations
admit self-similar solutions of the form

hu = V1/2
u τ−1/3fu(η) and hl = V1/2

u τ−1/3fl(η) where η =
x

V1/2
u τ1/3

(9.38)

with τ = tSu/V1/2
u Su = k	ρug

φμu
and

− d

dη
(ηfu) = 3

d

dη

(
fu

(
dfu
dη

+
dfl
dη

))
(9.39)

and

− d

dη
(ηfl) = 3V

d

dη

(
fl

(
dfu
dη

+ R
dfl
dη

))
(9.40)

The shape factors for the upper and lower layers of fluid, fu(η) and fl(η) can be
described by piecewise continuous parabolae, as in the solution for the finite volume
release of single fluid. However, in the present problem, the depth of one of the fluids
typically falls to zero before the other (Figure 9.11) and so there is a change in the shape
of the parabola describing the continuous fluid, such that the depth and flux of fluid
are continuous across this transition. The different regimes of the flow, illustrated in
Figure 9.11, can be mapped in terms of the volume ratio and viscosity ratio of the fluids,
for a given buoyancy ratio, as shown in Figure 9.12. The changes in regime correspond
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Figure 9.12 Regime diagram illustrating the different morphologies of a two-fluid gravity current in
a porous layer as a function of the viscosity ratio and the volume ratio of the two volumes of fluid
(Woods and Mason, 2001).

(a) (b)

Figure 9.13 Illustration of the motion of a two fluid gravity current in a Hele–Shaw cell showing the
cases in which the less dense fluid is also (a) less viscous and (b) more viscous (after Woods and
Mason, 2001). A black and white version of this figure will appear in some formats. For the colour
version, please refer to the plate section.

to the cases in which the upper and lower layer have the same run out distance as a
function of time, and also the cases in which one of the fluids just remains in contact
with the point x = 0. Illustrations of experimental models of two-fluid gravity currents
are shown in Figure 9.13 for the case of (a) a less viscous and (b) a more viscous upper
layer (further details of this analysis are given by Woods and Mason, 2001).

9.5 Reacting fronts

In Chapter 8 we explored the kinematics of pressure-driven reaction fronts, such as the
acidising reaction or a thermally controlled reaction. Also, in Chapter 6, we noted that
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if a reacting interface commences as a planar front, then by analogy with the Saffman–
Taylor instability, a precipitation front remains stable, while a dissolution front tends
to become unstable and develop dissolution channels. However, in many systems, the
reacting injected fluid may be of different density from the original reservoir fluid, and
as it spreads from the injection site, the buoyancy forces can dominate the flow. This
leads to a reaction front whose morphology is controlled by the buoyancy forces. The
lateral extent and spatial distribution of the reaction front then depends on whether the
reaction is one of dissolution or precipitation. Although the pressure-driven dissolution
front is unstable to non-linear channel formation, we will see that with buoyancy-driven
flow, a dominant buoyancy-driven channel develops.

The solutions for two-fluid gravity currents presented in the previous section
provide insight into the migration of a gravity-driven reaction front. However, since
reaction fronts migrate more slowly than the fluid, there is mass transfer across the
reaction front. There will then be a fluid–fluid front ahead of the reaction front where
the reacted, injection fluid meets the original formation fluid. For simplicity, in this
analysis, we assume the change in density or viscosity of the reacting fluid as it passes
through the reaction front is small relative to the impact of the change in permeability
across the reaction front. This is likely to be the case in situations where reactions
arise near the channel throats in the porous medium, since a small change in the throat
diameter can lead to a large change in the resistance to flow and hence permeability.

As the flow evolves, and the reaction front becomes laterally extensive compared to
the vertical extent of the reaction front, then the pressure will remain approximately
hydrostatic, and the flux of fluid which migrates across the reaction front will lead to
a two-zone gravity current, corresponding to the flow upstream and downstream of
the reaction front, with different permeabilities. If the density difference between the
reacting fluid and the original fluid is 	ρ, then the pressure is governed by the relation

p = po(y) + g	ρ(hl + hu − y) for 0 < y < hl + hu (9.41)

where the reaction front is located at y = hl and the reacted fluid which has passed
through the reaction front is located in the region hl < y < hl + hu. If we denote the
flux in the lower layer of unreacted fluid, which approaches the reaction front by Ql,
and the flux in the upper layer of reacted fluid, which advances ahead of the reaction
front as Qu, then it follows that

Ql = −hl
kl

μ

∂p

∂x
; Qu = −hu

ku

μ

∂p

∂x
(9.42)

where kl is the permeability of the reacted rock, which lies between the source and the
reaction front at h = hl, and ku is the permeability of the unreacted rock. The model can
be completed by noting that if the reaction front advances at a rate λu where λ depends
on the stoichiometry of the reaction with the rock (Chapter 8), then the conservation of
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mass in the region of unreacted fluid advancing towards the reaction front requires that

φ
∂hl

∂t
= −λ

∂Ql

∂x
(9.43)

and the overall conservation of mass then requires that

φ
∂hu

∂t
= −(1 − λ)

∂Ql

∂x
− ∂Qu

∂x
(9.44)

Note that these equations apply to the region in which unreacted fluid migrates through
the reaction front, so that ∂hl

∂t > 0. If there is any region of the flow in which the flow
reverses at the reaction front, so that reacted fluid migrates across the front, then the
reaction at this point will cease, and a region of reacted fluid will develop within the
reacted rock – this is not described by these equations, although in principle this is
a straightforward extension of the modelling in which account needs to be made of
the location of the region of reacted fluid within the reacted rock. However, in the
present discussion, we consider the case of a constant injection rate, in which a two-
dimensional reaction front propagates forward everywhere and the above model admits
self-similar solutions to describe the flow.

The solutions identify the important difference between the morphology of a dis-
solving and a precipitating flow. In the former case, the fluid dissolves a high perme-
ability channel along the base of the permeable layer (for a relatively dense injected
fluid compared to the original formation fluid). A region of unreacted rock above the
dissolution channel then becomes invaded by the reacted injection fluid as it spreads
from the dissolution channel as shown in Figure 9.14b. In the case of precipitation,
the fluid generates a zone of low permeability near the well, and as the injection fluid
advances across the reaction front it enters a region of higher permeability where it can
spread forward ahead of the reaction front much faster, thereby forming a relatively
thin gravity-driven current (Figure 9.14a).

The distance travelled by these gravity-driven reaction fronts depends on the volume
of fluid required to react with unit volume of rock, as given by λ, and the permeability

(a) (b)

Reacted fluid

Reacted rock

Reacted rock

Reacted fluid

Figure 9.14 Illustration of the migration of (a) a precipitation front and (b) a dissolution front driven
by gravity. More details of these solutions are given by Raw and Woods (2003).
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ratio of the reacted and unreacted rock. In the case of an acidising reaction, in which
the objective is to dissolve scale in the formation near the well. However if there is
a large change in permeability and if the buoyancy forces are important in the flow,
as would be the case with relatively slow injection, or a vertically extensive interval
of rock, it may be that a relatively shallow and laterally extensive channel develops,
rather than the acid dissolving all the scale near the well (Raw and Woods, 2003).

9.6 Capillary trapping

One fascinating problem related to the motion of gravity currents in porous media
arises in problems where there is some mass loss from the current associated with
motion of the fluid interface through the porous layer. For example, in the vadose zone,
if a finite mound of liquid spreads along a horizontal boundary under gravity then in
the descending region of the flow near the centre of the current, a fraction of the fluid
is trapped by capillarity, and this leads to a gradual reduction in the overall mass of the
flow, while in the ascending region far from the source the flow continues to migrate
forwards. Since there is no independent lengthscale for this trapping which occurs on
a pore scale, we expect the flow to be self-similar. However, the exponent governing
the rate of loss of mass with time should be governed by the fraction of the flow which
is capillary trapped. This problem has been described by Barenblatt (1996), and has
relevance for the problems of boiling in geothermal reservoirs, in which, as a variant
on the original problem, it is the leading part of the current across which there is loss of
mass through boiling (see Chapter 11). A further problem for which this process arises
are currents of CO2 migrating through water-saturated aquifers, in which the CO2 can
become capillary trapped, in a fashion directly analogous to that in a mound of water.
Here we focus on the case of an initial volume φV of fluid which spreads out along an
impermeable horizontal plane.

If a fraction of the fluid s is capillary trapped as the flow evacuates the porous layer,
then the governing equation for the flow, expressed in terms of the depth of the flow
(for a long thin current), has the form

∂h

∂t
= S

∂

∂x

[
h
∂h

∂x

]
if

∂h

∂t
> 0 (9.45a)

for the advancing and invading region and

(1 − s)
∂h

∂t
= S

∂

∂x

[
h
∂h

∂x

]
if

∂h

∂t
< 0 (9.45b)

for the trailing and descending region, where, as before, S = k	ρg
μφ

is the buoyancy-
driven interstitial flow speed. The boundary conditions for a finite release are that
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∂h

∂x
= 0 at x = 0 (9.46)

and the condition at the nose of the current, x = xN(t), that the depth of the current falls
to zero, h(xN) = 0. Somewhere within the current, there is a point, x∗ say, at which the
depth does not change in time, while ahead of this point the depth increases and behind
this point the depth falls. At the point at which ∂h

∂t = 0, the flux is continuous

[
Sh

∂h

∂x

]x∗
+

x∗−
= 0 (9.47)

and the depth is also continuous

[h]x∗
+

x∗−
= 0 (9.48)

We now seek solutions for which the total volume of fluid decreases with time as

V(t) = Vo

( t

τ

)−γ

(9.49)

where τ is a timescale and Vo is a volumescale for the flow, per unit distance in the
cross-flow direction for a two-dimensional flow.

The self-similar solutions have the form

h = V1/2
o

( t

τ

)α

f

(
x

V1/2
o

( t
τ

)β

)
(9.50)

Equation (9.45) requires that α = 2β − 1 while volume conservation (Eq. (9.49))
requires that α + β = −γ , and also that

∫ λ

0
f (η)dη =

1

φ
(9.51)

where the leading edge of the flow, η = λ satisfies f (λ) = 0. The problem is completed
by noting that the rate of change of the mass of the current, associated with the capillary
trapping, can be found from the governing equations

d

dt

∫ λ(t/τ)β

0
h(x, t)dx = Sh

∂h

∂x
|x∗

+
− S

1 − s
h
∂h

∂x
|x∗− (9.52)

We can solve this problem numerically using a shooting technique: we choose a
value of γ and solve Eqs. (9.46–9.51) to find the solution for f . We then test whether
the condition (9.52) is satisfied, and iterate until it is satisfied, at which point we have
the value γ for that value of s. The relation between γ and s is shown in Figure 9.15;
we present the analogous problem of boiling in Chapter 11.
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Figure 9.15 Variation of the exponent in the power law decay, V = Vo(t/τ)−γ as a function of the
fraction of the fluid which is not trapped by capillarity at the rear of the current, 1 − s, for the
gravity-driven slumping of a current in which a fraction s of the pore space retains fluid as the
current evacuates those pores.

9.7 Flow on a slope

In the case that a buoyancy-driven flow migrates through an inclined porous layer with
impermeable boundaries there is a component of gravitational acceleration along the
slope as well as across the slope. This fundamentally changes the controls on the prop-
agation of the flow, since the alongslope component of gravity exerts a constant buoy-
ancy force which leads to a steady advection along the slope. In contrast, the problems
we have considered so far have related to spreading on a horizontal surface for which
the flow is controlled by non-linear diffusion-type spreading associated with the cross-
flow component of gravity.

We first consider the motion of a buoyant fluid within a deep aquifer for which the
fluid will run upwards under the upper sealed boundary and we assume the motion
of the fluid in the ambient has only a small influence on the buoyant injected fluid,
although we return to this issue later in the chapter. In this case, the injected fluid
spreads upslope as a thin current, and the pressure in the cross-slope direction is hydro-
static, leading to the governing equation

∂h

∂t
+ S sin θ

∂h

∂x
= S cos θ

∂

∂x

[
h
∂h

∂x

]
(9.53)

where the slope has angle θ , to the horizontal, x is the distance upslope and as before

S =
k	ρg

μφ
(9.54)
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For a constant flux, Q, per unit width, the flow migrates upslope with depth

h =
Qμ

k	ρg sin θ
(9.55)

while at the nose of the current there is an adjustment zone controlled by the cross-slope
component of gravity as given by the expression on the right-hand side of Eq. (9.53).
Details of this adjustment are presented by Rayward-Smith and Woods (2011). With
a finite release of fluid, the flow migrates upslope and gradually slumps in the cross-
slope direction, as governed by the solution for a spreading finite release on a horizontal
plane, but now the centre of mass of the fluid migrates upslope with the constant speed
(Huppert and Woods, 1995)

u =
k	ρg sin θ

φμ
(9.56)

9.8 Capillary trapping in a plume running upslope

In the case of a current running upslope, if there is any capillary trapping of the flow,
then the trapping now occurs at the trailing edge of the flow, behind the point of maxi-
mum height. This trailing surface migrates more rapidly than the leading surface of the
flow by conservation of mass in the current. For a two-dimensional flow the equation
for the evolution of the trailing edge of the current, where x is the distance upslope, is

(1 − s)
∂h

∂t
+ S sin θ

∂h

∂x
= S cos θ

∂

∂x

[
∂h

∂x

]
(9.57a)

where, as in Section 9.6, we denote the residual saturation of the fluid in the pore space,
as left by the current, by the variable s, and S is given by Eq. (9.54). In contrast, the
leading edge follows the law

∂h

∂t
+ S sin θ

∂h

∂x
= S cos θ

∂

∂x

[
∂h

∂x

]
(9.57b)

In the case of a finite release, such that the flow driven by the cross-slope slumping,
as given by the right-hand side of (9.57), is slow compared to the advection associated
with the along slope component of gravity as given by the second terms on the left-
hand side of (9.57), then the flow structure may be calculated by tracking the location
along the slope of the advancing and the receding surfaces of the current. Owing to
the capillary trapping, the trailing edge of the current advances more rapidly, and so,
in making this calculation, at each time, we track the depth at which the leading and
trailing currents meet. At that time, this becomes the point of maximum depth in the
flow, and only those parts of the current which were originally shallower than this
remain mobile (see Figure 9.16). If initially the current location has leading edge given
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Figure 9.16 Characteristic diagram showing the trailing edge catching up with the leading edge
through capillary trapping, leading to waning of the current. Eventually there is no mobile fluid
remaining. The points a–a’ and b–b’ denote points with the same depth on the upstream and
downstream face of the plume of mobile CO2 and the characteristic diagram illustrates how they
meet once this depth coincides with the maximum depth of the current.

by x+(h) and trailing edge given by x−(h), as a function of the depth, then after time t,
those parts of the current on the leading edge, on which the interface ascends, have
position

x(h, t; x+) = x+ + S sin θ t (9.58)

while those parts of the current on the trailing edge, on which the interface descends
and hence results in capillary retention of some of the fluid, have position

x(h, t; x−) = x− +
S sin θ

(1 − s)
t (9.59)

as a function of the depth h. As described above, the depth for which these two posi-
tions, one on the ascending and one on the descending current, coincide at each time t
corresponds to the maximum depth of the current at that time.

x+ = x− + S sin θ

[
1

1 − s
− 1

]
t (9.60)
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This solution is illustrated on the characteristic diagram (9.16), also showing the wake
of capillary trapped fluid.

This calculation is of relevance for the potential sequestration of CO2 in which a
plume of CO2 spreads upslope in an aquifer and leaves a capillary trapped wake in
its trail. The model provides an estimate for the distance at which a plume ceases to
be mobile, by calculating when the rear of the original trailing edge and front of the
original leading edge of the flow meet. If the original plume has length L, the time T at
which it ceases to be mobile is given by

T =
L(1 − s)

S sin θs
(9.61)

while the distance travelled and hence lateral extent of the capillary wake, X, from the
rear of the original current is

X =
L

s
(9.62)

Given that s ≈ 0.1–0.2, we infer that capillary trapping is a very powerful effect in
limiting the lateral distance travelled by a CO2 plume.

The model also provides an estimate for the shape of the trapped capillary wake
of the flow, by tracking the shape of the surface h(x(t)) at which the points initially
located at x+(h, t = 0) and x−(h, t = 0) meet. Although the model neglects the effects
of the non-linear diffusive spreading, it provides a good leading-order approximation
for an initially long and thin plume, as may be determined by full numerical solution
of Eqs. (9.57a,b).

9.9 Confined gravity-driven flows

The above analyses of buoyancy-driven flows are simplified in that we have neglected
the flow of the original reservoir fluid, assuming the permeable layer is deep. However,
in many cases, geological strata involve many layers of finite depth (Chapter 2), and
so the injection of fluid can generate a comparable flow of the original formation fluid
ahead of the invading front. When there is a significant density contrast between the
fluids, the buoyancy force will cause the flow front to spread out and so the motion
of the invading fluid can still be described in terms of the depth of the interface, but
we now need to account for both fluids. There are a series of flow geometries and
processes which may be examined, building from the unconfined problems described
above. We include two important examples, the confined radially spreading current,
and the confined two-dimensional flow up a sloping layer. We then turn to a more
general problem of a three-dimensional gravity-driven flow along a sloping layer, in
which there is motion both downslope and across-slope.
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Figure 9.17 Schematic of a dense current flowing radially into a porous layer from a central,
maintained source.

In the case of injection of a fluid of density ρ from a central well with a volume flow
rate Q(t) into an aquifer of depth H containing fluid of density ρ − 	ρ, we expect the
flow to spread out along the lower boundary and become long and thin (Figure 9.17)
and, to leading order, the vertical pressure gradient will be hydrostatic. However, there
is now a net radial pressure gradient associated with the overall flow, po(r, t), which
we take to apply on the lower boundary of the domain, z = 0. Assuming the vertical
pressure is hydrostatic, as occurs with a long thin flow, we find the general expression
for the pressure

p(r, z, t) = po(r, t) + gρz if 0 < z < h (9.63)

p = po + ρgh + (ρ − 	ρ)g(z − h) if h < z < H (9.64)

The local conservation of mass in the lower layer has the form

φr
∂h

∂t
=

∂

∂r
(rulh) (9.65)

while in the limit of incompressibility, the flux of fluid, Q(t), is constant at each radius,
which requires that

Q = −2πrk

μ

[
H

∂po

∂r
+ 	ρg(H − h)

∂h

∂r

]
(9.66)

Darcy’s law describes the horizontal flow in each layer,

ul = − k

μ

∂p

∂r
if 0 < z < h (9.67)

uu = − k

μ

∂p

∂r
if h < z < H (9.68)

Here, we have taken the viscosity in each layer to be the same, but this assumption
may be relaxed, as described by, for example, Dudfield and Woods (2013). Combining
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these equations leads to the relation for the depth of the invading fluid as a function of
the radius,

r
∂h

∂t
+

Q

2πφH

∂h

∂r
=

k	ρg

φμH

∂

∂r

(
rh(H − h)

∂h

∂r

)
(9.69)

In practice, to solve this equation, one imposes a far-field boundary at some finite
distance R, but while the interface, h(r, t), is located within this radius, the flow passing
R is a uniform pressure-driven flow of the original formation fluid. It is worth noting
that in reality, the effects of compressibility, in both the rock and the fluid, become
important on very long scales, typically beyond the scale of the gravitational intrusion.
They act to dissipate this pressure, as we describe in Chapter 12 in our discussion of
compressible flow; as a result, near the source, the effectively incompressible gravity
current dynamics we present herein applies.

Our interest lies in the shape and rate of propagation of the interface, h(r, t), between
the injected and original fluid, and this is given by a similarity solution of the form

h = HF(η) where η = r

(
2πφH

Qt

) 1
2

(9.70)

and F(η) satisfies(
1 − η2

2

)
dF

dη
= 

d

dη

[
ηF(1 − F)

df

dη

]
(9.71)

with the parameter

 =
2πk	ρgH2

μQ
(9.72)

 represents the balance between the flow rate associated with buoyancy-driven flow,
compared to the flow rates associated with the injection, and so as  increases we
expect more gravitational slumping.

In solving Eq. (9.71) we require boundary conditions, and in this context we note
that at the origin, there is no flux of the original formation fluid, so that we require
F = 1 at η = 0. We therefore seek solutions of the form

F = 1 for 0 < η < η1,

0 < F < 1 for η1 < η < η2 and

F = 0 for η > η2 (9.73)

Equation (9.71) requires that

dF

dη
=

η2
1 − 2

2η1
at η = η1 (9.74)
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Figure 9.18 Variation of the inner and outer radius of the radially spreading, confined gravity current,
η1 and η2 as a function of the gravitational parameter . Data are from experiments of Mitchell and
Woods (2006).

while

dF

dη
=

2 − η2
2

2η2
at η = η2 (9.75)

Numerical calculations have determined the values of η1 and η2 as a function of 

and these are shown in Figure 9.18 along with a series of experimental data points,
reported by Mitchell and Woods (2006), with which the model was compared. In these
experiments, dense saline solution was injected into a water-saturated bead pack, mea-
suring 1 m by 1 m in horizontal dimension and 10 cm deep. The motion of the fluid was
recorded through the side walls and base of the tank, to measure the values η1 and η2,
for a range of injection rates and density differences. Although there is scatter in the
experimental data, the results do concur with the model.

9.10 Confined buoyancy-driven flow on a slope

Buoyancy-driven flow in a confined aquifer on a slope leads to an alongslope and cross-
slope component of gravity as well as the alongslope pressure gradient; the problem
is of interest as it leads to an advection–diffusion equation, in which the advection
term has a coefficient which varies with the depth of the fluid. As a result, the flow
may be solved using the method of characteristics, in an analogous fashion to the
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Figure 9.19 Illustration of a confined gravity-driven flow on a slope produced by injection into faulted
geological strata; (a) corresponds to the case with an upslope leaking fault and (b) to the case with a
downslope leaking fault. After Gunn and Woods (2011).

dynamics of the capillary trapped CO2 plume running upslope, which we considered
earlier. However, the wave speeds are now non-linear, and in some cases, the non-linear
model leads to the prediction of wave steepening and hence localised jumps in depth
of the fluid, while in other cases, it leads to the prediction of dispersion and spreading
out of gradients in the depth of the current. Although the algebra is somewhat involved,
we develop the non-linear advection–diffusion equation to enable illustration of some
of these effects. MacMinn and Juanes (2010, 2011) and Gunn and Woods (2011) have
considered the motion of a plume of buoyant fluid migrating up a sloping aquifer allow-
ing for a source and a sink, which may be upslope or downslope, depending on the
structure of the geological strata (Figure 9.19) and we draw from their analyses. This
problem brings in more of the complexity of a real flow system, in that now we have
a viscosity contrast, a density contrast and an applied flow (Figure 9.20). However, in
this section our analysis remains two dimensional, as appropriate for a current supplied
from a line source which is directed across-slope.

With a long thin aquifer, we anticipate again that the flow will become parallel to
the boundary of the system, the x-axis and the cross-layer pressure gradient, in the
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Figure 9.20 Schematic of a confined gravity-driven flow running upslope.

z direction will then be dominated by the hydrostatic pressure

p(x, z, t) = po(x, t) − ρgz cos θ for z < h (9.76)

p(x, z, t) = po(x, t) − 	ρg(z − h) cos θ − ρgz cos θ for z > h (9.77)

If we apply Darcy’s law to each layer, it takes the form

u1 = − k

μ1

(
∂po

∂x
− 	ρg cos θ

∂h

∂x
+ (ρ − 	ρ)g sin θ

)
(9.78)

u2 = − k

μ2

(
∂po

∂x
+ ρg sin θ

)
(9.79)

and the conservation of mass may be written in terms of the total flux at each point in
the aquifer, with value Q between the source, at x = 0, and sink, at x = L, and zero
elsewhere

Q1 = (H − h)u1 + hu2 for 0 < x < L (9.80)

and

(H − h)u1 + hu2 = 0 for x > L or x < 0 (9.81)

Combining these relations with the local conservation of mass for each layer, and
introducing the dimensionless variables

τ = t/ts =
	ρgk sin θ

μ1φH
t, ζ =

x

H
, ĥ =

h

H
(9.82)

the system reduces to the form (cf. Gunn and Woods, 2011)

∂ ĥ

∂τ
= V

∂

∂ζ

⎛
⎝ ĥ(1 − ĥ)

(
1 + cot θ ∂ ĥ

∂ζ

)
− ĥ

1 − ĥ(1 − V)

⎞
⎠ for 0 < ζ < 1 (9.83)
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between the source and sink, and

∂ ĥ

∂τ
= V

∂

∂ζ

⎛
⎝ ĥ(1 − ĥ)

(
1 + cot θ ∂ ĥ

∂ζ

)
1 − ĥ(1 − V)

⎞
⎠ for ζ > L and ζ < 0 (9.84)

elsewhere in the aquifer. In these expressions, the dimensionless controlling param-
eters are the viscosity ratio V and the ratio of the buoyancy flow to the forced flow,
� defined as

V =
μ1

μ2
, � =

Q1μ1

	ρgkH sin θ
(9.85)

Equation (9.83) and (9.84) can be re-cast as advection–diffusion equations. As the
current spreads out along the layer, the advective component dominates the flow, as
described by the non-linear wave equation

∂ ĥ

∂τ
+ f±(ĥ)

∂ ĥ

∂ζ
= 0 (9.86)

where the speed of surfaces of constant ĥ vary non-linearly with ĥ according to the
relations

f−(ĥ) = −V

(
(1 − V)ĥ2 − 2ĥ + 1

(1 − ĥ(1 − V))2

)
(9.87)

and

f+(ĥ) = −V

(
(1 − V)ĥ2 − 2ĥ + 1 − �

(1 − ĥ(1 − V))2

)
(9.88)

Here the + and − correspond to points up- and downslope of the source, with the
sink located upstream of the source in this case. We can understand the evolution of
the flow by considering how the speed of characteristics f± vary with height of the
interface above the base of the aquifer, ĥ. Some typical examples of the variation of f+
as a function of h are shown in Figure 9.21. Here it is seen that in the upper part of the
aquifer, f+ is positive, whereas near the base of the aquifer f+ is negative. The change
in the shape of the curve arises as the viscosity ratio and flux parameter change. With
a smaller viscosity of the buoyant fluid, the region in which f+ is positive is smaller
while with a larger flux, the minimum value of ĥ at which f+ > 0 is smaller. If f+
is positive then the characteristics, and hence current of that depth tend to advance
upslope (Figure 9.21). In contrast, if for some values of ĥ, f+ is negative, then the
current does not propagate upslope in this part of the aquifer, as shown on the regime
diagram (Figures 9.22, 9.23). Also, in the case that the value of f+ increases with ĥ,
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Figure 9.21 Speed of characteristics in the upslope direction, f +; for the flow located between the
source and sink shown as a function of the height of the interface above the base of the aquifer.

the characteristics near the upper boundary travel more quickly, and so the current
disperses along the top boundary, essentially as a gravity tongue. Indeed this has an
analytical solution given by

ĥ =
1

1 − V

⎛
⎝1 −

(
1 − η − V(� − 1)

η + V
1−V

)1/2
⎞
⎠ (9.89)

provided ĥ > 0. The region in which the gravity tongue develops below the top bound-
ary depends on the flux in this layer. If the current has a large flux, the flow fills the
whole depth of the aquifer, but for smaller fluxes, the flow only migrates through the
upper part of the aquifer. Using the functional form for f+ we find this reduces to the
requirement that

� > 1 (9.90)

This suggests that if the input is not sufficiently fast, and the injected fluid is of suf-
ficiently low viscosity, it will bypass much of the fluid in the formation, forming a
gravity tongue.

The input fluid downslope of the injector becomes stationary in equilibrium, and so,
in this case, the input fluid adjusts to having a horizontal boundary with the original
fluid, as seen in Figure 9.22. In the case that the characteristics travel most rapidly at
h = 0, corresponding to the base of the layer, then the input fluid advances up the slope
with a near planar front. Given the expression for f+ it can be shown that this occurs in
the case that

V > 1 and � >
V

V − 1
(9.91)
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(a)

(b)

(c)

Figure 9.22 Three types of flow pattern as a function of the viscosity ratio and flow rate. (a) with a
small flux the current does not flood the depth of the aquifer; (b) with a larger flux the current floods
the whole depth of the aquifer; (c) if Eq. (9.91) is satisfied a shock forms which leads to a planar
front travelling upslope. After Gunn and Woods (2011).

In Figure 9.23 we summarise this brief discussion of the different topology of the
current in terms of the values of � and V , the two control parameters. Curves have
been included which delineate the different types of behaviour of the flow (Figure 9.23)
(cf. Gunn and Woods, 2011).

If there is a background flow in the aquifer this will modify these flows, and can
lead to a wider variety of flow regimes. Also, if the producer well is located downdip
of the injector, then in some cases a fraction of the buoyant injected fluid continues
updip, leading to a greater flow of the original formation fluid downdip. This effect can
be key for enhancing recovery of the formation fluid, rather than the short-circuiting
of the injection fluid which arises in the case that the producer well is updip. Further
details of the different flow morphology for a constant injection rate are given by Gunn
and Woods (2012). The complementary problem of the motion of a volume of buoyant
fluid, including capillary trapping, is given by McKibben and Juanes (2011).
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Figure 9.23 Regime diagram illustrating the three different flow patterns as a function of the
viscosity ratio (vertical axis) and flow rate (horizontal axis) for a current running upslope in a
confined aquifer. After Gunn and Woods (2011).

9.11 Three-dimensional gravity currents

The analysis presented in this chapter has primarily focused on two-dimensional flows,
which are idealisations, but which may correspond in practice to the flows which
develop from horizontal line wells either (a) within a compartmentalised or channelised
system, in which there are lateral boundaries to the flow preventing the spreading of
the flow in the along-well direction beyond the extent of the well, or (b) for that part of
a flow in which the length of the well exceeds the lengthscale of any along-well slump-
ing of the current. However, with a point source of buoyant fluid, or a relatively short
line source in an inclined system, the flow will tend to run upslope, being confined
by the upper boundary of the aquifer, but it will also tend to spread in the cross-slope
direction, thereby forming a three-dimensional plume (Figure 9.24).

With a steady source volume flux, as the plume spreads upslope, it will become pro-
gressively thinner as it spreads in the cross-slope direction, and will eventually develop
a steady-state shape. The upslope component of gravity leads to a constant speed in the
upslope direction, and so this acts as a time-like coordinate, while the motion in the cross-
slope direction arises from the gradient of the height interacting with the component of
gravity in the cross-slope direction, leading to cross-slope spreading of the flow anal-
ogously to Section 9.1. In order to describe this flow, we consider a three-dimensional
coordinate system, in which x denotes the cross-slope direction, y the upslope direction
and z is normal to the slope. If the slope makes an angle θ to the horizontal, then the
pressure within the spreading plume of buoyant fluid, at a point (x, y, z) relative to the
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Figure 9.24 Schematic of a three-dimensional gravity current spreading upslope and cross-slope
under gravity from a constant source. The top panel illustrates the variation of the depth of the
current with distance from the source The lower panel illustrates the variation of the depth along a
line within the current, running in the upslope direction, parallel to the y-axis, as shown in panel a.

source, which we assume is located on the upper boundary of the aquifer, will be

P(x, y, z) = Po + (ρw − ρg)gh cos θ + ρggz cos θ − ρwgy sin θ (9.92)

where ρw and ρg are the densities of the original and injected fluid and Darcy’s law for
the motion of the injected fluid takes the form

u = − k

μ

[∇P − ρgg(0, − sin θ , cos θ)
]

(9.93)

We now consider the case of a constant volume flux of fluid, Q, issuing from a
source. The in-plane, depth averaged flux of source fluid, at each point, is then given
by F = uh and by conservation of mass, in steady state, this requires

∇.F =
k	ρg

μ

[
cos θ∇(h∇h) − sin θ

∂h

∂y

]
= 0 (9.94)
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Once the flow has ascended the slope a sufficient distance that it is much thinner than
the depth of the permeable layer, h � H, then we expect the flow to have a relatively
small gradient in the upslope direction y, so the flux conservation relation reduces to
the form

cos θ
∂2h2

∂x2 = 2 sin θ
∂h

∂y
(9.95)

This is directly analogous to the equation governing the one-dimensional gravity-
driven slumping of a current on a flat surface (Section 9.1, Eq. (9.10)), and so we
infer that the solution for the height of the current has the form

h =
H4/3 tan θ

6y1/3

(
η2

o − x2

H4/3y2/3

)
(9.96)

where for convenience we have scaled the depth of the flow, h, so that

H =

(
Q

u sin θ tan θ

)1/2

(9.97)

and the lengths, x and y so that

ηo =

(
9

2

)1/3

(9.98)

This approximate solution is compared with a full numerical solution of Eq. (9.94)
in Figure 9.25, illustrating the close correspondence of the asymptotic solution with
the full numerical solution as the flow migrates upslope from the source. We note
that there is a non-trivial region of adjustment from the source to this asymptotic far-
field solution, since near the source, the flow may fill the whole depth of the aquifer
(details of this transition are explained by Farcas and Woods, 2013); we also note that
in these steady solutions there is no motion of the original reservoir fluid. This transient
problem for a confined system has been discussed by DeLoubens and Ramakrishnan
(2011).

It is possible to model the leakage of the current through the upper boundary, as
would arise in the case of a network of fractures in the overlying seal rock (cf. Sec-
tion 9.2). In that case, the flux conservation law becomes

sin θ
∂h

∂y
= cos θ

(
h
∂h

∂x

)
− kbh

kb
(9.99)

The solution for the steady draining through a uniform permeability boundary, devel-
oped in Section 9.2, can also be applied to this problem to describe the maximum
distance upslope that the plume reaches before it has all drained through the bound-
ary. By comparison with further full numerical solutions of the governing equation,
Farcas and Woods (2013) have shown that these approximate solutions provide a good
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Figure 9.25 Comparison of the full numerical solution for the shape of a plume running updip
from a source with the asymptotic solution for the flow in the far field Eq. (9.96). After Farcas and
Woods (2013).

description of the draining flow, in the case that the draining is slow compared to the
scale of adjustment to this solution from the near-source flow.

Such draining flows might provide insight into the shape of the plumes of CO2 which
may spread out on the upper low permeability boundary of a confined aquifer. For
example, there are seismic observations of a plume spreading over the lowest low per-
meability horizon above the CO2 injection well at the Sleipner field in the North Sea
(Figure 9.26). The figure can be interpreted as showing the variation of the depth of
the CO2 plume spreading along the boundary of the permeable layer. The finite extent
of the plume suggests that it may be draining upwards through the geological strata,
so the low permeability rock may only provide a partial barrier to upward flow. The
depth contours associated with a very simplified model of a buoyant plume running
updip, and leaking through a permeable boundary, as governed by Eq. (9.99), and using
parameters comparable to our understanding of the Sleipner field are shown by dotted
lines in Figure 9.26. Although not identical to the Sleipner plume, it may be that this
model captures some of the dynamics controlling such flows; we do note with caution
that other processes such as dissolution can also impact the dispersion of such CO2

plumes and hence interpretation of the data.
The models presented in this chapter provide a simplified picture of some complex

buoyancy-driven flow problems, which enable assessment of the effect of different
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Figure 9.26 Comparison of the upslope draining plume model Eq. (9.99) with the shape of the plume
in Horizon 1 observed from seismic data at the Sleipner field in the North Sea. After Farcas and
Woods (2013). A black and white version of this figure will appear in some formats. For the colour
version, please refer to the plate section.

processes on the dynamics. There are numerous other phenomena associated with
buoyancy-driven flows in porous media and in the next chapter we explore the motion
of vertical plumes, and some of the dispersion effects which can arise, especially when
the flows interact with the geological structure of the reservoir.

9.12 Exercises

1. Fluid is injected into a horizontal reactive porous rock of depth H with a constant
volume flux Q per unit length of a long horizontal injection well. The fluid reacts
with the rock, and its density changes from the injection density ρ − 	ρ to the
density of the original fluid in the formation, ρ, which is in equilibrium with the
reactive porous matrix. The reaction front is located in the region h(x, t) < y < H,
and the speed of the reaction front is given by λu where u is the Darcy speed of the
fluid at the interface. If the permeability of the matrix changes from kl to ku as a
result of the reaction of the injected fluid with the matrix, show that the position of
the reaction front (see Figure 9.27) is given by the equation

∂F

∂t
+

∂

∂ζ

[
F

1 + (β − 1)F

]
= B

∂

∂ζ

[
F(1 − F)

1 + (β − 1)F

∂F

∂ζ

]
(9.100)

where β = ku/kl and the depth of the reacted zone is F = 1−h/H. You may assume
B = 	ρgHkl/μQ where μ is the fluid viscosity, and Q is the constant injection rate
per unit length of the injection well, and τ = tQλβ/H2 where the dimensionless
position ζ is given by ζ = x/H.
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Figure 9.27 Illustration of a reaction front migrating through a confined porous layer. The reaction
is driven by the injection of fresh water which reacts with salt powder in the porous layer. The
original fluid in the formation is saturated salt solution in equilibrium with the salt powder, and on
reaction the injected fluid density matches that of the original formation fluid. The colour of the
injected fluid is changed from blue to red to help visualise the flow. After Verdon and Woods (2007).
A black and white version of this figure will appear in some formats. For the colour version, please
refer to the plate section.

Show that in the limit of small B this equation has solution

F =
1

β − 1

[(
τ − τo

ζ − ζo

)1/2

− 1

]
for

τ − τo

β2 < ζ − ζo < τ − τo (9.101)

while F = 1 for ζ < ζo + (τ − τo)/β
2 and F = 0 for ζ > (τ − τo) + ζo. Note Eq.

(9.101) is analogous to the equation governing the average concentration of a fluid
mixture when one fluid displaces a second miscible fluid of smaller mobility in a
confined aquifer (Bear, 1972; Yortsos and Salin, 2006; Verdon and Woods, 2007).

2. Develop the equation for the motion of a gravity current in a porous layer in which
the permeability increases with height from the base of the layer as k(y) = koy.
Develop solutions for the rate of advance of the flow and the shape of the flow
produced by a finite release of fluid. This problem represents an idealisation of the
flow through a turbidite layer in which there is a vertical grading of the grain size.

3. CO2 is injected from a long horizontal well into an aeolian reservoir, consisting of
a laterally extensive inclined layer of rock, with angle θ to the horizontal, and of
cross-layer thickness H, with 0 < y < H. The permeability increases along the
layer according to the relation k(x) = ko + k1x. A discrete cloud of CO2 is injected
into the formation of volume V per unit length of the injection well, located at x = 0.
Assuming the flow spreads upslope, and that a fraction f is capillary trapped from
the wake of the flow, calculate the shape of the region of capillary trapped CO2 pro-
duced at the wake of the flow, and the total distance travelled by the mobile cloud.
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In Chapter 5, we discussed some of the mechanisms which can lead to the intermin-
gling and mixing of fluids across interfaces as a result of both pore-scale dispersion,
which appears to be dominated by mechanical mixing at high Peclet number, and
macroscopic dispersion which is governed by the heterogeneity of the formation on
larger scales, associated with lenses or layers of different permeability embedded in
the medium. In Chapter 6, we briefly mentioned the role of buoyancy in promoting
or suppressing the stability of a fluid interface and, in particular, showed that when a
dense fluid overlies a less dense fluid, the interface may become unstable and develop
fingers. With miscible displacements, these fingers can lead to intermingling and some
mixing of the fluids, relative to the advance of a planar front. In the previous chapter,
we explored some of the macroscopic flow patterns which may develop as a result of
the buoyancy forces for flows in horizontal or inclined permeable strata. In particu-
lar we identified how the density interface between fluids tends to spread out along
the boundaries of the flow domain, for example as a result of the formation of gravity
currents. These flows may be regarded as leading to macroscopic mixing of the fluid
through the combination of the buoyancy force and the structure of the porous forma-
tion. In this chapter we draw together some of these ideas to explore the controls on the
intermingling and mixing of fluids for which there is a buoyancy contrast. Understand-
ing this mixing can be critical in a number of situations. For example, with enhanced
oil recovery, the density of the injected water may be changed with time as the compo-
sition of the water is changed; for example, a number of operators change the salinity
of the injected water as this has been shown to have an impact on the residual saturation
of oil. In an environmental context, the mixing of fresh and saline water in near coastal
aquifers, or produced by intermittent, interseaonal rainfall, can again lead to mixing of
different water masses.

In many geological systems, the rock strata are layered, and low permeability
barriers between the more permeable layers may provide seal or partial seal for the
flow. Furthermore, within individual layers, especially in fluvial type systems, there
may be local lenses of shale, or deposits of higher permeability rock, as discussed in
Chapters 2 and 5. With a buoyant fluid migrating through such a rock, the structure
of the flow may be controlled by the geometry of the relatively impermeable layers
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Surface leakage site 

Vadose zone
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water
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Permeable strata
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the subsurface and contaminating

groundwater

Figure 10.1 Illustration of the dispersal of a plume of a dense pollutant, perhaps such as DNAPL
following leakage from a surface source, as it migrates through the subsurface, passing over
impermeable baffles.

between the main layers of permeable rock. This may lead to dispersion and spreading
of the buoyant fluid as it migrates through the formation. As well as the challenge for
water flooding of reservoirs and mixing of fresh and saline water, such buoyancy-driven
dispersion of a flow front can be key for the prediction of the path followed by LNAPL
and DNAPL contaminants spreading through the subsurface, since the distribution
of these liquids in the porous layer controls the source conditions for the subsequent
dissolution as the background hydrological flow advances through the formation (Fig-
ure 10.1; Bear and Cheng, 2010). An analogous problem concerns the prediction of
the path followed by hydrogen gas in the event that it escapes from a geological waste
repository and migrates through the geological strata. Again, the dispersion of the gas
and its distribution in structural traps within the formation can control the rate and
pattern of dissolution of the gas in the background hydrological flow.

Another important example relates to the migration of very large volume plumes of
CO2 injected into subsurface aquifers for geological sequestration. Figure 10.2 illus-
trates the pattern of CO2 spreading through the Sleipnir field in the Norwegian North
Sea; the aquifer consists of nine main layers of permeable sediment, separated by low
permeability shale layers which have some connectivity either through fractures or
owing to the piecewise continuous nature of the lenses of low permeability material
between the permeable strata (cf. Figure 9.26). Figure 10.2 shows the seismic reflec-
tion amplitudes of a series of horizons within a cross-section of the strata, taken at
seven different times. The difference between the surveys and the initial survey is indi-
cated by the brightening of the reflection intensity at certain horizons and this has been
interpreted to indicate the presence of the CO2 plume (Boait et al., 2012), although
precise determination of the plume location is challenging owing to the influence of
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Figure 10.2 Illustration of the seismic reflection profile associated with the migrating cloud of CO2
spreading in the Sleipnir field in the Norwegian North Sea. Seven images are shown at progressively
later times following the start of the injection of CO2, indicating the migration pattern of the CO2.
After Boait et al. (2012). A black and white version of this figure will appear in some formats. For
the colour version, please refer to the plate section.

both fluid pressure changes and changes in the fluid saturation (water and CO2) in the
pore space on the reflection amplitude (Bickle et al., 2007; Dudfield and Woods, 2013).
It is seen that the CO2 plume has ascended into all the nine layers, covering a vertical
distance of order 200 m while it has spread laterally over distances of order 2–3 km, in
each of the layers. This pattern of CO2 dispersal produced during the injection phase is
important since it then controls the distribution of the CO2 which may be structurally
trapped, or capillary trapped, and which will dissolve into the aquifer water over a
longer time-scale as the aquifer water migrates through the formation.

An important process during CO2 geo sequestration concerns the dissolution of CO2

into the formation water, which leads to the generation of CO2 saturated water. This
transition represents an important step in the risk management of the CO2, since the
dissolution into water is thought to substantially reduce the likelihood that the CO2 can
then migrate back to the Earth’s surface. This is because CO2 saturated water is typi-
cally denser than the original formation water. In modelling the dissolution process, the
key issue concerns the rate at which unsaturated formation water can come into con-
tact with the CO2, since CO2 is only weakly soluble in the formation water; typically
a volume of water of order 100 times that of the CO2 is required to dissolve the CO2.
Since the CO2 saturated water is miscible with the unsaturated water, understanding
the controls on the rate of mixing and intermingling of the saturated water with the
original formation water is therefore key in determining the controls on the ongoing
dissolution of the CO2 (Szulczewski et al., 2014).

We first review some of the effects of buoyancy contrasts on the dispersion and mix-
ing across an advancing fluid interface. We then explore some models of buoyancy-
driven flows in idealised geometries to provide insight into the key role that buoyancy
can have on mixing. This includes exploring the structure of vertical buoyancy-driven
plumes and buoyancy-driven exchange flows within heterogeneous rock, and the role
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of layering in dispersing buoyancy-driven flows. Finally we turn to the long-term dis-
persive mixing of two miscible fluids of different density, in which the cross-flow dif-
fusion balances the along-flow shear produced by the buoyancy. We note that there are
still many more processes to explore on this subject.

10.1 Buoyancy effects on pore-scale mechanical dispersion

In a number of situations, a gravitationally unstable front may advance through a
porous layer, for example as a result of the injection of water of density different
from that in the formation. Although in some cases, this may be unstable to finger-
ing, in other cases the buoyancy contrast may enhance the dispersive mechanical mix-
ing across the interface. Conversely, with a stable density gradient one might imagine
that the buoyancy forces suppress the pore-scale mechanical mixing. In Chapter 5,
we explored how, for a passive tracer, pore-scale mixing was controlled by the local
Peclet number of the flow, Pe = ud/D where u is the pore-scale speed and d the pore
size, while D is the molecular diffusivity. When there is a density contrast across a
fluid–fluid front, we can introduce the ratio of the local buoyancy-driven flow speed
U = k	ρg

μ
, which is a vertical flow, and the background vertical flow speed u to form a

buoyancy parameter

 =
k	ρg

μu
=

U

u
(10.1)

Following the work of Pfannuch (1963), Fried and Combarnous (1971) and Bear
(1972), there have been several studies to explore the mixing and dispersion across
density interfaces. Here we report on a study by Menand and Woods (2005) who car-
ried out a series of detailed experiments in a porous bead pack to explore the mixing
across a moving vertical interface in the case that there is a density difference between
the two fluids (Figure 10.4). They explored the role of both stable and unstable density
jumps. Figure 10.3a illustrates the range of buoyancy parameter values, , and Peclet
numbers, Pe, explored in that study, and Figure 10.3b illustrates the effective disper-
sive mixing across the interface measured in the experiments with a stable density
gradient, compared to the classical results for the case of dispersion of a passive tracer
(cf. Chapter 5). It is seen that the effect of the stabilising buoyancy gradient is to sup-
press the mixing, although for large Pe, (Pe > 500) the dispersion coefficient seems to
converge, albeit to a smaller value than for the tracer mixing case. This value appears
nearly independent of the buoyancy parameter over a range of 100 in the value of 

but we note that experiments have not been conducted at higher values of  and it may
be possible that the dispersion is then further suppressed.
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Figure 10.3 (a) Illustration of the range of values of  and Pe used in the experiments to explore
dispersive mixing in a porous layer with a stable (solid symbols) and unstable (hollow symbols)
density interface. (b) Experimental measurement of the longitudinal dispersion in the case of an
advancing planar flow with a stable density interface. After Menand and Woods (2005).

Figure 10.4 An example of gravitational instability as a layer of saline dense red liquid migrates
downwards into a layer of less dense clear fresh water in a bead pack. A black and white version of
this figure will appear in some formats.

In the case that the density interface is destabilising, as shown in the experiment in
Figure 10.4, with sufficiently small flow, i.e. large , we expect fingers to develop and
run ahead of the interface. However, with small , dispersive mixing may be enhanced
relative to that of a passive tracer, and this may then delay or suppress the onset of
convective mixing. Menand and Woods found that with  < 0.1, the dispersion always
dominated the fingering instability, and although gravitationally unstable, the inter-
face remains planar, but broadens through dispersive mixing. With larger values of ,
the interface did eventually develop fingers, and there was a transition from a dif-
fusive broadening of the interface, with a length which scales as (DLt)1/2, to a
linearly growing interface zone, associated with the convective mixing driven by
fingers (see Figure 10.4).
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Figure 10.5 Variation of the dispersion coefficient as a function of the buoyancy parameter 

(horizontal axis) for an unstable interface. Data may be approximated by the empirical laws (10.2)
and (10.3). After Menand and Woods (2005).

Prior to the convective instability developing, the longitudinal mixing coefficient
scales as

DL ∼ (0.4 ± 0.1)avs for  < 0.2 (10.2)

and

DL ∼ (1.2 ± 0.2)1.2avs for  > 0.2 (10.3)

as seen in Figure 10.5. Once the fingering zone developed, it was observed to grow at a
rate 0.25Ut, relative to the forced flow, which has interstitial speed vs = u/φ. However,
the effect of dispersion delays the onset of the fingering regime since at early times the
dispersion produces a zone of intermediate density which initially grows more rapidly
than the fingering regime. The transition is observed to occur once the speed of the
fingers exceeds the rate of deepening of the dispersively mixed zone

0.25U ≥ 1

2

[
DL

t

]1/2

(10.4)

where the relations for DL are given by (10.2, 10.3).
These results suggest that the dispersive mixing of an unstable density interface

produced by flow normal to the interface can suppress or delay the convective mix-
ing across the interface. For example, with a porous layer of permeability 10−13, a
grain size of 1 mm, and a density contrast of 10 kg/m3, in which there is a mean flow
10−6 m/s, the buoyancy parameter  ∼ 0.1–0.01 and we expect the interface to remain
stable to convective instability. With a smaller flow rate, convective instability can set
in, and the interface zone with then deepen at a rate 0.25U.



202 Buoyancy effects on dispersion

10.2 Convective plumes

When buoyant fluid is released from a point or line source rather than a planar source,
as considered in the previous section, a localised plume develops. In a uniform porous
medium, the leading front of the plume suffers a considerable amount of dispersive
mixing. For example, in Figure 10.6, we see an experiment in which a two-dimensional
plume of relatively dense saline fluid descends through a thin (in the direction of the
page) permeable bead pack initially saturated with fresh water. The leading edge of
the plume breaks up into a series of fingers of relatively dense fluid, which spread
laterally as well as migrating downwards, thereby engulfing pockets of relatively fresh,
light fluid, and leading to formation of a region of intermediate density between that
of the plume and the ambient. This mixing seems to arise in part owing to the flow
of the ambient fluid displaced around the advancing head of saline solution, as seen in
Figure 10.6. If there is a steady source of fluid, then as the plume continues downwards,
a more localised tail develops, and on the short scale of the laboratory experiment, for
which transverse diffusion is small, this tail of the flow has a near vertical boundary
between the plume fluid and the ambient. We do note, however, that there is a small
annular halo of intermediate density fluid which remains from the earlier passage of
the plume head, and this can be seen for some time behind the head. Meanwhile, the

Figure 10.6 Time evolution of a plume of saline fluid, produced by a constant fluid injection rate,
descending into a bead pack initially saturated with fresh water. A steady plume tail develops,
feeding the dispersively mixing head. This head appears to leave a halo of intermediate density fluid
around the continuing tail. Photograph by Caren Otto. A black and white version of this figure will
appear in some formats. For the colour version, please refer to the plate section.
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head region continues to grow and disperse, leading to a large region in which there is
intermediate density fluid at the front of the plume (Figure 10.6).

At sufficiently long times, and sufficiently far downstream to avoid the influence
of the finite source, transverse diffusion is likely to become important and we expect
that in principle the flow would adjust to the classical solution for a spreading plume
in which the buoyant convection matches the cross-flow diffusion, as given by Wood-
ing (1963). Indeed, in Chapter 11 we explore this in the case of a thermal plume, for
which the molecular diffusivity is much larger and hence the adjustment to equilib-
rium is faster. However, with a finite mass flux in which the buoyancy is produced
by compositional differences in the fluids, this flow takes some time to establish. For a
two-dimensional plume, we can estimate this by noting that in the absence of diffusion,
the steady plume which develops behind the plume head has a steady width w which is
given by the ratio of the volume flux, Q (per unit distance normal to the flow, i.e. into
the page, Figure 10.6) and the uniform downward buoyancy-driven Darcy flow,

w =
Qμ

k	ρg
(10.5)

The time for transverse diffusion/dispersion (DT ) to penetrate a distance w is of order
w2/DT . Thus the plume may advance a distance downstream of order

Z =
Q2μ

DTk	ρg
=

Qs

DTU
(10.6)

before transverse diffusion becomes dominant and the flow converges to the Wooding-
type plume solution (Chapter 11). With a two-dimensional flux of 10−5 m2/s, asso-
ciated with a line release of fluid, and a permeability 0.1 Darcy, a saline plume may
require of order 1000 years to adjust given DT ∼ 10−10 m2/s; in contrast a thermal
plume, with D ∼ 10−6 m2/s, may require only about 1 year. The interstitial speed of a
buoyancy-driven aqueous plume in a formation with permeability 0.1 Darcy may be of
order 10−6–10−7 m/s, and so it will traverse a layer of depth 10–100 m in a timescale
of 3–300 years. Transverse diffusion in the tail of a compositionally driven buoyant
plume is therefore not likely to dominate the flow during the process of injection in an
industrial context. It may be that in smaller scale flows associated with geological pro-
cesses, transverse diffusion does become more important, and this is discussed further
in Chapter 11, especially in the context of thermal plumes.

Near the source, in a two-dimensional plume there is a region across which the flow
adjusts from being a radially spreading two-dimensional flow to a downslope buoyant
flow, of width as given by Eq. (10.5). This is shown in Figure 10.7 in which a plume
was created in a vertical Hele–Shaw cell by injecting fluid from a point source and
observing the transition from a radially spreading flow near the source, to a descending
two-dimensional plume.
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Figure 10.7 Experiment in a porous bead pack illustrating the steady plume structure near the
injection point, when saline fluid is injected into a bead pack initially containing fresh water. In the
first panel, a solid line, corresponding to the theoretical model of the outer boundary of the plume is
compared with the experiment. In the following panels, a pulse of dark dye is added to the injected
plume fluid and the evolution of the dye front may be seen as it flows from the source and adjusts to
the flow far downstream.

The shape of the interface of such non-diffusing plumes, as they spread from the
injection point and adjust to the steady downstream flow is also of interest (Figure
10.7). This shape may be determined by noting that the pressure along the interface
is given by the hydrostatic pressure of the static reservoir fluid, pR = po + ρgy where
y is the distance downstream from the source, ρ is the density of the reservoir fluid,
and po is the reservoir pressure at the level of the source. If the density of the injection
fluid is ρ + 	ρ, then the pressure of the injection fluid at the interface, relative to the
hydrostatic pressure of the injection fluid, po + (ρ + 	ρ)gy, is given by

pI = −	ρgy (10.7)

giving the Darcy speed of the plume far downstream as

U = k	ρg/μ (10.8)

so the viscous dissipation in the current exactly matches this buoyancy pressure gradi-
ent. However, to find the shape of the interface we need a second boundary condition
and then need to solve a fully two-dimensional flow problem; this may be achieved
by using complex potential theory, and in the next two pages we outline this method
following the approach of Yih (1966). We first introduce the streamfunction, ψ , and
velocity potential, φs for the flow

(u, v) =

(
∂φs

∂x
,
∂φs

∂y

)
=

(
∂ψ

∂y
, −∂ψ

∂x

)
(10.9)

It follows that φs = −Uy on the interface, and that ψ is constant on the interface. If we
define the complex potential w as

w = φs + iψ (10.10)
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where i = (−1)1/2 and define the transformed variables (ζ , η) according to

ξ = ζ + iη =
i

u − iv
=

i
dw
dz

(10.11)

with z = x + iy, then

ζ = − v

v2 + u2
(10.12)

The right-hand side of expression (10.12) has value 1/U (Eq. (10.8)) on the interface,
so that ζ = 1/U on the interface and so in (ζ , η) coordinates the interface is a line.

Finally, we can observe that on the interface dw = dφs = − Udy, and so from the
definition (10.11), we have that on the interface

i

ξ
dz = dw = −Udy (10.13)

Since ζ is constant on the interface, dξ = idη on the interface, and Eq. (10.13) leads to
the result

1

ξ

dz

dξ
= U

dy

dη
(10.14)

Since the right-hand side of (10.14) is real, this requires that

Im

(
1

ξ

dz

dξ

)
= 0 (10.15)

on the free surface. Yih notes that this is the second boundary condition required to
determine the shape of the interface.

However, it still remains to find a solution which satisfies the boundary condi-
tions. Fortunately, we know that for a two-dimensional point source of strength Q,
w = Q

2π
ln(z) and so from the definition of ξ (Eq. (10.11)), it follows that near the

source, we can write

1

ξ

dz

dξ
=

iQ

2πξ
(10.16)

In order to satisfy (10.15) on the interface, we then need to add some additional terms
to the right-hand side of (10.16). First, we add a term −iQU/2π(2−Uξ), so that when
ξ = 1/U, this balances the contribution from the source, and hence the solution satisfies
(10.15). However, as shown by Yih, this leads to a radially diverging outflow, whereas
we seek a descending dense plume. In order that the solution still satisfies (10.15) on
the interface, we can add a sink-type term of the form

Sink =
αQUi

2π(1 − Uξ)
(10.17)
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to the expression 1
ξ

dz
dξ

. We now seek the value for the strength of this sink, α, so that
the interface asymptotes to a linearly descending downward plume y →−∞. If we
integrate the relation

1

ξ

dz

dξ
=

Qi

2π

(
1

ξ
− U

2 − Uξ
+ α

U

1 − Uξ

)
(10.18)

we find the shape of the interface has the form

z =
Q

2π
i

(
(2 − α)ξ +

2

U
[ln (2 − ξU) − ln(2)] − α

U
ln(1 − ξU)

)
(10.19)

where ξ = 1
U + iη on the boundary and z = 0 coincides with ξ = 0. By setting α = 2

then

z =
Qi

πU

[
ln

(
1 − 1

iηU

)
− ln(2)

]
(10.20)

This leads to the parametric relations for the boundary of the plume

x(η) = − Q

πU
tan−1

(
1

ηU

)
and y = − Q

πU
ln

(
(1 + η2U2)1/2

2ηU

)
(10.21)

This is compared with an experiment of a plume spreading through a bead pack,
Figure 10.7. It follows that the height of the plume directly above the source where
η → ∞ is

h =
Qln2

πU
(10.22)

and as η → 0, the plume width tends to Q/U and y →−∞. This steady plume shape
provides an estimate of the area upslope of the source invaded by the plume. This
may be useful for estimating zones of contamination and also for estimates of the
residual trapping in this region once the supply terminates. For example, with a line
well producing a flux Q ∼ 10−5 m2/s per unit length of the well, and a buoyancy speed
10−6–10−7 m/s, the plume may rise 5–50 m above the source.

We are unaware of a model which quantifies the controls on the mixing in the dis-
persing head of such a plume, and hence the halo of mixed fluid which forms around
the plume. The mechanism of mixing appears to involve individual plumes of dense
fluid, and so it may depend on the lengthscale of the plume, y, the width of the tail, w,
and the speed of the plume which scales with U, implying a macroscopic dispersivity
D ∼ Uwf (w/y), where f is function of the ratio of the width of the plume tail to length-
scale of the plume y. In some cases the dispersion may also depend on the pore-scale
dispersivity. One of the challenges in applying such a model of the macroscopic mixing
in a real system is that it is most likely to apply on long scales, for which the effects
of the heterogeneity of the rock may also become important and we now explore these
effects.
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Figure 10.8 Dispersion of a vertical plume around a series of baffles. In this example, the system is
shown upside-down, as for the dispersal of a CO2 plume through a layered, fractured reservoir. Two
experiments correspond to the release of fluid in a symmetric and an axisymmetric distribution of
baffles showing the pattern of flow and the spatial distribution of the volume flux after passing
through the baffles. After Hesse and Woods (2010). A black and white version of this figure will
appear in some formats. For the colour version, please refer to the plate section.

10.3 Dispersal of a vertical plume by shale baffles

There are many types of heterogeneity in porous rocks, but one generic feature is the
low permeability layers which form between successive layers of higher permeability
coarser sediment, reflecting the intermittency over geological time of the process of
formation of large sedimentary deposits. These low permeability layers may not always
form spatially continuous barriers between successive layers, but may be localised, or
may allow localised flow between successive layers of the permeable rock for example
as a result of post-depositional compaction and fracturing. The impact of a series of
such low permeability layers within an extensive vertical sedimentary porous formation
is fundamental to the dispersal of a buoyant plume. The effect may be seen in a simple
analogue model in which we show the dispersion of a plume of golden syrup, dyed
red, as it migrates through a Hele–Shaw cell containing a series of horizontal baffles
which obstruct the flow (Figure 10.8). When a fluid migrates around one baffle, there
is a partitioning of the flow, so that a fraction migrates off each end of the baffle; as
this process continues through many layers of baffles, the original localised plumes has
become very dispersed.

The controls on the partitioning follow by considering the steady flux arriving at a
point some distance along the baffle (Figure 10.9). The flux Qa on side a of the baffle,
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Figure 10.9 Flow past a baffle in a Hele–Shaw cell, with different locations of the impinging plume
relative to the centre of the baffle. The figure shows the measured flux and the predicted flux on the
longer side as a function of the position of the plume relative to the centre. A black and white version
of this figure will appear in some formats. For the colour version, please refer to the plate section.

where La is the distance to the end of the baffle on side a, from the incoming plume,
satisfies the equation

Qa = −k	ρg

μ
h
∂h

∂x
(10.23)

where

h(0) = ho and h(La) = 0 (10.24)
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showing that

QaLa =
k	ρgh2

o

2μ
(10.25)

For this two-dimensional analysis, it follows that the flux partitions between the two
sides of the baffles, a and b, according to the inverse of the distance to that end of the
baffle, La and Lb, so that

fa =
Qa

Qa + Qb
=

Lb

La + Lb
(10.26)

as has been confirmed by experiment (Figure 10.9; Hesse and Woods, 2010).
If the flow passes over multiple baffles, then the flow will partition at each junction

according to the above rule, and so in a regular series of layers of baffles, this leads
to a continual horizontal spreading (Figure 10.8). The flux law (10.25) applied at each
junction, leads to the prediction that the flow at each successive layer of baffles fol-
lows a binomial distribution, so that the flux passing the mth gap on the nth layers of
baffles is

Qnm = Q

(
(n − 1)!

m!(n − m − 1)! f m(1 − f )n−m−1
)

(10.27a)

where Q is the total flux, and f denotes the fraction passing to one of the sides of each
of the baffles (Eq. (10.26)), and in the limit of a large number of layers of baffles, this
becomes a Gaussian distribution for the flux per unit area as a function of the vertical,
y, and horizontal, x, position, given by the relation

q(x, y) =
QH1/2

L(2πyf (1 − f ))1/2
exp

[
− Hx2

2yL2f (1 − f )

]
(10.27b)

where H is the vertical spacing between the successive layers of baffles. This expres-
sion shows that with many layers the plume disperses laterally according to the aver-
aged relation

x =

(
2L2f (1 − f )

H
y

)1/2

(10.28)

Although this is an idealized problem, it identifies the challenge of describing flow
through a complex geometrical structure within a layered porous medium. Any macro-
scopic description of the flow and dispersion should account for the horizontal
buoyancy-driven flow produced by the baffles, even though the effective buoyancy
force is vertical. For example, with baffles of horizontal length 10 m, and vertical spac-
ing 3 m, then after rising a height of 100 m, the plume may be dispersed a horizontal
distance 30–40 m depending on the distribution of intersection points of the plumes
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on the baffles. If the flow was advancing and spreading according to an advection–
dispersion equation of the form

U
∂c

∂y
= D

∂2c

∂x2 (10.29)

where U = k	ρg
μ

(Eq. (10.8)) then the width of the plume would scale as x ∼
(2Dy/U)1/2. This suggests that the transverse dispersion produced by the baffles for
this buoyancy-driven flow is given by

DT ∼ L2f (1 − f )U

H
(10.30)

where U is the vertical buoyancy-driven flow speed. The effect described in this sim-
plified system has been extended to a fully three-dimensional flow using numerical
calculations, and analogous results have emerged (Green and Ennis-King, 2012).

10.4 Dispersion by inclined baffles

The problem of dispersion of a dense fluid through a series of layers of partially seal-
ing rock becomes more involved if the baffles are inclined. Near the source, the flow
may be sufficient to spread over both sides of the baffle and so the plume gradually
disperses in the transverse direction. However, further from the source, when the dense
downslope flow has dispersed sufficiently that the flow only runs off the downslope
side of each baffle, then the transverse spreading of the plume ceases. Instead, a steady
plume develops which propagates downwards but at an angle to the vertical. This angle
is related to the geometry of the baffles (Figure 10.10).

We can extend the analysis to this more complex geometry, by calculating the flow
over an impermeable inclined baffle. We solve the flow updip (+) and downdip (−) by
adding in the component of gravity along the slope, and this leads to the relation for
the up slope (+) and down slope (−) flow

Q± = −k	ρg

μ

[
h
∂h

∂x
cos θ ± h sin θ

]
(10.31)

We now seek the critical condition that all the flow just migrates downdip. In this case,
the surface of the fluid upstream of the point of supply is horizontal. Therefore, if the
point of supply is located a distance L1 from the upstream end of the baffle, then, at the
point at which the source fluid reaches the baffle, the depth of the current on the baffle
will be ho = L1 tan θ (Figure 10.11a). The critical flow Qc such that all the flow just
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passes over the downdip side of the baffle is therefore given by the implicit relation∫ ho

o

h cos θdh[
μQc

k	ρg − h sin θ
] = L2 (10.32)

where L2 is the distance of the point of arrival of the plume to the interface to the
downdip end of the baffle (Figure 10.11a).

Relation (10.32) shows that the critical flux depends on the point along the imper-
meable layer at which the oncoming plume of buoyant fluid impinges the baffle, and
the length of the baffle upstream and downstream of this point. The prediction of the
partitioning of the flow between the upstream and downstream end of the baffle for
Q > Qc is again in good agreement with experiments. This leads to a picture for the
larger scale migration of a plume through a regular array of inclined baffles. Initially,
the flow migrates over both sides of the baffles, continually dispersing the plume in the
direction normal to the plane of the baffles. This process continues over successive lay-
ers of baffles until eventually the plume is sufficiently dispersed that the flow arriving
on any baffle is smaller than the critical flux, Qc, and the flow then only passes over
the lower side of the baffles. The plume then spreads from row to row of the baffles,
as a steady inclined plume, with angle of inclination ξ to the horizontal given by the
geometry of the array of baffles

tan(ξ) =
L2 cos2 θ

H + L2 sin θ cos θ
(10.33)

which is dependent on the inclination of the layers, θ , the distance from the point of
arrival of the plume on the baffle and the downdip end of the baffle, L2, and the perpen-
dicular distance between successive layers of baffles, H, as seen in the experimental
model (Figure 10.10). Further details of the plume evolution are given by Rayward-
Smith and Woods (2011).

Figure 10.10 Flow of a plume around a series of inclined baffles as shown by a Hele–Shaw cell in
which there is a series of inclined baffles, over which a cloud of dense red syrup flows. By changing
the colour of the dye in the supply fluid from red to dark blue part way through the experiment, the
dispersion and non-uniform speed of the flow may be observed. The darker dye migrates faster in
the centre of the plume than at the edges. A black and white version of this figure will appear in
some formats. For the colour version, please refer to the plate section.
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Figure 10.11 (a) Schematic of the plume running over an inclined baffle with the critical flux to drain
downstream. (b) Experiment showing flow over a baffle with the critical flux. After Rayward-Smith
and Woods (2011).

As mentioned above, it is interesting that with this buoyancy-driven flow, the spa-
tially averaged motion of the plume over these series of baffles is not readily described
by a macroscopic version of Darcy’s law, with a mean vertical and horizontal per-
meability. This result is in contrast with the case of a pressure–driven uniform flow
discussed in Chapter 3. One curious feature is that as the plume spreads out from the
source prior to reaching the steady angled flow regime, the net vertical speed varies
with position in the plume. This is because the vertical flow speed is controlled by the
time for the spreading layer of CO2 to migrate over each of the baffles. Near the source,
the flow is deeper near the central baffles and so has a greater speed; but as the flow
spreads, the current over each baffle becomes smaller and the speed decreases; indeed
in Figure 10.10 we illlustrate this effect by adding some blue dye to the established
steady flow. It is seen that the blue fluid migrates in a very non-uniform fashion, in
accord with the variation in the depths of the current over different baffles.
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These plume structures are clearly idealised, but indicate the importance of the
dispersal of fluid driven by buoyancy forces in a permeable rock consisting of a series
of high permeability layers separated by impermeable baffles of finite lateral extent.
It is curious to note that the effective transverse dispersion observed for a buoyancy-
driven flow from a point source, and the subsequent inclination of the steady plume to
the vertical when the baffles are inclined, is quite different from the plume which devel-
ops in a uniform porous layer shown in Section 10.2, for which the plume develops a
near parallel-sided tail. If fluid is being injected into a porous layer for displacement or
for sequestration, these differences in the possible flow pattern are likely to have a pro-
found impact on the efficiency of the sweep pattern (for oil recovery) or the fraction of
the formation into which the injected fluid may be sequestered (for CO2 sequestration).
Furthermore, if tracer tests are carried out to detect the flow pattern of the injected fluid,
very different patterns may arise depending on such dispersal, and recognition of this
is important for interpreting data sets which may often be relatively sparse in a spatial
sense owing to the cost of drilling wells for monitoring.

10.5 Dispersion in a multi-layered horizontal system

As well as the transverse and longitudinal dispersion associated with a buoyancy-
driven vertical plume in a layered, permeable rock with discrete baffles, buoyancy can
have a significant impact on the effective longitudinal dispersion which arises when
fluid is injected into a layered permeable rock, leading to the development of a series
of parallel gravity-driven flows. For simplicity, we consider the case in which there are
a series of layers each separated by a thin layer of low permeability seal rock. If the
injection well has a constant source pressure, leading to an overpressure in the top-most
layer of the formation, 	p say, then in the lower layers of the formation the flow will
be driven by an additional buoyancy head which depends on the depth of that layer, h,
below the top of the formation and so the driving pressure will be 	pn = 	p + 	ρgh.

If, for simplicity, the flow invades the vadose zone from a constant pressure reservoir,
so that the permeable formation is initially unsaturated, the flow in each layer will
consist of a region near the well in which the layer is fully flooded with the injected
fluid, and a nose region in which the flow slumps to zero depth. For example, in the
case of an increase in surface water, leading to a sustained period of drainage, water
may be supplied through a fracture to each of the layers (Figure 10.12). In the nth layer,
with overpressure 	pn, the Darcy flow speed un in the fully saturated region, of length
Ln(t) is given by

un =
k	pn

μLn
(10.34)
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Figure 10.12 (a) Flow in a five-layer Hele–Shaw cell as a model of the dispersal of the flow in a
multi-layered rock. The white line shows the prediction of the model for the dispersal in each of the
layers. (b) Experimental measurements at a series of times scaled by the similarity coordinate,
showing the collapse to the self-similar solution. (b) courtesy of A. Farcas. A black and white
version of this figure will appear in some formats. For the colour version, please refer to the plate
section.

The leading part of the flow, in which the flow only partially fills the layer, is governed
by the gravity current equation (cf. Chapter 9, Eq. (9.10))

φ
∂hn

∂t
=

k	ρg

μ

∂

∂x

[
hn

∂hn

∂x

]
(10.35)

At the edge of the fully saturated zone, the flow satisfies the boundary conditions

hn = H and − khn

μ

∂hn

∂x
= unH at x = Ln(t) (10.36)

while at the leading edge of the flow, x = xn(t), the depth h = 0. Mass conservation for
the current in this layer leads to the relation

φ

[
HLn(t) +

∫ xn(t)

Ln(t)
hndx

]
=

∫ t

0
Qn(t)dt (10.37)

where Qn(t) is the flux supplied to this layer at time t and is given by Eq. (10.34)
Qn = unH.
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Solutions of this system of equations of the form hn = x/H(t/τ)1/2 where
τ = H2/μ/k	p lead to the prediction of the flow rate in each layer of a multi-
layered system, with the pressure in each layer as prescribed above. Comparison of the
model predictions and an experiment in a Hele–Shaw cell illustrate the accuracy of the
solution for the flow in a five-layer system (Figure 10.12).

In this multi-layered system, the flow speed un is different in each layer n of the
geological strata, in accord with the different driving pressures. This is very different
from the case of a single layer of permeable rock, of the same total depth as the sum
of the layers, and with the same driving pressure. In that case, the buoyancy-driven
horizontal flow speed would be vertically uniform, provided the formation is uniform,
with a fully flooded region near the source, and a gravity-thinning nose to the flow, as
shown in the solutions for gravity-driven flow in Chapter 9.

If a tracer was injected into the system after some time in an attempt to determine the
travel time through the formation to an observation well, then this travel time would
have different values in the different layers of the strata. In turn this would lead to an
effective dispersion of the tracer as it migrates through the strata. As an example, we
take the flow field given above for a ten-layer formation, and calculate the migration
of a finite pulse of tracer which is injected at a specific time into the flow. The tracer,
shown as the shaded area, follows a layer-dependent path as shown in the panels in
Figure 10.13 which correspond to the location of the pulse of tracer at three times after
it has been injected into the system. In the figures, the horizontal distance has been
scaled with the total length of the flow; in the latter two panels the tracer appears closer
to the nose of the flow because there is more fluid in the system.

If this tracer was measured at an observation well downstream, it would not arrive as
a single pulse, but rather as a series of discrete pulses associated with the flow in each
layer. If, in addition, we account for some longitudinal dispersion in each layer, then
the observation well would detect a series of smoothed pulses of tracer, one from each
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Figure 10.13 Dispersion of a pulse of tracer as it spreads under gravity through a series of ten layers
in a permeable rock. The three panels illustrate the location of the tracer in each of the layers at three
different times following injection of the dye into the spreading plume. The horizontal axis is scaled
with the similarity variable so that the total volume of the current is in fact increasing between
frames and so the volume of the dyed fluid represents a decreasing fraction of the whole current.
Figure courtesy of A. Farcas.
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Figure 10.14 Illustration of the variation of the tracer concentration at an observation well as a
gravity-driven flow migrates through a layered permeable rock. The different lines correspond to
one-, three-, five- and ten-layer systems. The model includes a weak dispersion of the tracer within
each layer, so that the profiles in the observation well are smooth, although they still detect the pulses
from the tracer in the different layers arriving at the observation well. Figure courtesy of A. Farcas.

of the layers in the formation. In Figure 10.14, we illustrate a theoretical contaminant
profile which would be collected at a given point in time, if a tracer becomes dispersed
by the flow through a series of hydraulically separated layers. The curves correspond
to the cases of one, three, five and ten layers. It is seen that there is a very substantial
skewness in the distribution of the tracer with more layers, owing to the buoyancy
effects. A further complication in the spreading pattern of the tracer arises once the
tracer enters the nose of the current in which the depth hn < H, since in this region the
speed of the flow varies with position, leading to further dispersion.

As mentioned, insight about such buoyancy-driven dispersion is key for interpret-
ing data from observation wells. For example, in CO2 sequestration projects, it may
be that tracer is added to the injected gas with a view to determining how this tracer
subsequently spreads through space. Analogously, observation wells may be used to
try to detect a plume of DNAPL spreading in the subsurface; again this may spread
non-uniformly owing to such geometric controls on the flow. Distinguishing the dif-
ferent effects which can lead to such dispersion in buoyancy-driven flows, and the
development of inverse models of the rock permeability structure from tracer data is
an ongoing topic of research (Farcas and Woods, 2014).

10.6 Boundaries and buoyancy-driven dispersion through trapping

In many-layered porous rocks, the boundaries between layers become distorted over
geological time through compaction and tectonic stresses, and this can lead to irregular
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(a)

(b)

Figure 10.15 Illustration of a wavy irregular boundary between two layers of sediment, from West
Bay, Bridport, Dorset; (b) illustrates the outline of the wavy layer. The crest-to-crest distance is
about 10 m. A black and white version of this figure will appear in some formats. For the colour
version, please refer to the plate section.

shaped and wavy boundaries. One fine example of such an irregular boundary between
sedimentary layers can be seen at the Bridport sandstone in West Bay, Dorset, England
(Figure 10.15).

If a buoyant-fluid phase migrates along such a boundary, for example as a plume of
CO2 advances through an inclined permeable formation, then a fraction of the flow can
become trapped in the topographic highs. This will eventually lead to the flow being
trapped as a dispersed phase along the boundary, from where it may then dissolve or
perhaps leak through the low permeability seal layer. As an example, in Figure 10.16
we illustrate a photograph of a current of glycerol running along an inclined wavy
boundary in a laboratory Hele–Shaw cell. The first few panels illustrate the transient
development of the flow, and the last image shows the trapped pools of glycerol after
the source has been removed. In the case of a CO2 plume, there would likely be a
capillary trapped zone throughout the region originally flooded with the CO2, as well
as the pockets of trapped liquid, as indicated with the solid black line.

Analogous trapping can occur in oil reservoirs, such that following a water flood
designed to sweep oil from the system, there may be dispersed pockets of water trapped
by buoyancy at the lower boundary of the formation, in topographic pockets.

Geometric calculations of the volume of each of these topographic traps can be
carried out, by observing that in equilibrium, the interface between the trapped injec-
tion fluid and the original formation fluid is horizontal. For CO2 sequestration, this
calculation can then be used to estimate the mass of fluid which may be structurally
trapped compared to the mass of fluid which is trapped through capillary retention
from the original steady plume. Although the volume of the formation in which there
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Figure 10.16 Time evolution of a current of red glycerol running downslope over the wavy bed,
illustrating the thinning and thickening of the flow over the wavy topography, as the flow sets up a
steady state (photographs are shown upside down). The region wetted by the fluid represents the
region where there will be capillary trapping. In the last image, the source is removed and the
current allowed to drain downslope. The regions behind each of the crests on the wavy boundary is
shown by the dotted line in the bottom panel, illustrate the regions where there are trapped pools of
fluid remaining after the source is removed. A black and white version of this figure will appear in
some formats. For the colour version, please refer to the plate section.

is structurally trapped fluid may be smaller than the original depth of the gravity cur-
rent of buoyant CO2, the structurally trapped fluid occupies a large fraction of the pore
space, comparable to the maximum saturation of the non-wetting phase, while the cap-
illary trapped fluid may only occupy a small fraction, comparable to the minimum
saturation of the non-wetting phase (Chapter 7). As a result, the volume of fluid which
is structurally trapped may be a significant fraction of the total trapped fluid. For exam-
ple, in Figure 10.17, we illustrate a simple calculation of the total trapped mass per unit
distance along an inclined permeable formation, averaged over one topographic trap,
and compare the fraction of this which is structurally trapped to the fraction which
is capillary trapped, in the case that the topography is composed of a series of sinu-
soidal perturbations from a flat inclined boundary. The horizontal axis illustrates how
the fraction which is structurally trapped increases as the magnitude of the sinusoidal
perturbation to the shape of the boundary increases, with the magnitude scaled rela-
tive to the thickness of the depth of the current with no boundary topography. As the
amplitude increases, the current is required to deepen upslope of the lowest points on
the boundary, and this leads to an increase in the ultimate capillary trapping and the
topographic trapping.
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Figure 10.17 Comparison of the structurally trapped and capillary trapped fraction of fluid as a
function of the magnitude of a wavy structure to the boundary of the flow domain (Figure 10.16).

Such trapping may lead to a substantial reduction in the total run out distance of
a current, and a very different source topology for the subsequent dissolution of the
fluid into the background hydrological flow. This may be relevant in the context of
the cleanup of DNAPL spills as well as in predicting storage capacity in CO2 storage
reservoirs.

10.7 Exchange flows, mixing and controls on dissolution of CO2

The previous section has highlighted how a buoyant fluid can become trapped in struc-
tural highs as it propagates along a boundary. This process is responsible for the for-
mation of gas caps in oil reservoirs, or CO2 pools during CO2 sequestration. The seal
rock may retain the buoyant phase by capillary trapping (Chapter 7, Section 7.3), or
by having such low permeability that there is no significant flow through the seal. In
the case of trapped CO2, there may be some dissolution of the CO2 into the under-
lying formation water, which can typically have a few wt% CO2 in solution. If this
occurs, the CO2 saturated formation water becomes dense, and may mix downwards
into the remaining formation water below. This leads to a continual resupply of unsat-
urated formation water to the interface, until all the formation water below the pocket
of CO2, within that permeable layer becomes saturated in CO2. Following this phase
of dissolution, any continuing dissolution will be driven naturally by a further supply
of unsaturated water. This may be derived laterally from the far field of the aquifer as
an exchange flow. Alternatively, there may be a convective exchange of CO2 through
a series of faults in a seal rock which connect the permeable layer which is host to the
gas cap with a neighbouring permeable layer filled with unsaurated formation water of
lower density (Figure 10.18).
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Figure 10.18 Illustration of the dissolution directly below a trapped pocket of CO2, the convective
exchange in the aquifer and the exchange flow with the underlying aquifer.

The intermingling and mixing of the saturated and unsaturated formation fluid
in each of these processes is key for determining the timescale for dissolution of a
trapped pocket of CO2. The convective mixing process in a layer of depth H below
a trapped pocket of CO2 is driven by plumes of dense fluid separating from the
boundary and mixing into the fluid below. Classical models of convection suggest
that in the absence of background flows, then once the speed of plumes of CO2

saturated and hence relatively dense fluid, U = k	ρg/φμ exceeds the rate of deep-
ening of the boundary layer which is produced by molecular diffusion adjacent to
the CO2, uD ∼ (D/t)1/2, then convection will develop. In a finite layer of thickness
H as uD decreases to a value of order D/H, then the molecular diffusion will tend to
homogenise the fluid, suppressing convection. Thus, in order that convection develops,
we require Ra = UH/D > O(1). This quantity is known as the porous Rayleigh num-
ber and is a measure of the intensity of any convective transport which may develop
compared to molecular transport.

In a situation in which Ra � 1, unstable plumes are much smaller than the layer
thickness, and convection will be vigorous. The flux of CO2 is then expected to be inde-
pendent of the depth of the layer, since the plumes are produced when a boundary layer
of CO2 saturated water adjacent to the dissolving pocket of CO2 becomes unstable.
This is a local process and in this case, the flux of CO2 laden fluid per unit area scales
as U	c, where 	c is the difference in concentration of CO2 in the descending plumes
and the bulk of the fluid in the permeable layer immediately below the CO2 pocket.
As a result, in the absence of any lateral flows, the vertically averaged concentration of
CO2 dissolved in the underlying fluid will evolve according to a simple relation
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H
d	c

dt
= −λU	c (10.38)

where λ is a constant. This simple physical picture, which follows from the original
ideas of Howard (1964) for vigorous convection in a fluid has been compared with
numerical calculations of convection and agrees well (Hewitt et al., 2013). The key
output of such a model is that the timescale for dissolution is H/λU and subsequently
the aquifer fluid adjacent to the CO2 pool becomes saturated in CO2 provided there is
sufficient CO2 initially. With density differences of order 0.1–1.0 kg/m3, in a rock of
0.1 Darcy, this implies a timescale of order 30–300 years with H ∼ 10–100m. Since the
water can only dissolve a few wt% of CO2, this may only lead to dissolution of a depth
of order 0.1–1.0 m of CO2.

There may however be a series of deeper layers in the geological strata filled with
unsaturated formation water, as may typically be the case in a layered deposit. If the
seal rock separating the layers contains a series of fractures, then an exchange flow of
unsaturated and CO2 saturated water may develop between the different layers, lead-
ing to the continued supply of unsaturated water to the trapped CO2 pocket and hence
dissolution (Figure 10.18). The flux of unsaturated formation water and CO2 saturated
water across such a seal layer depends on the number of fractures and the direction
of flow in each fracture, with multiple solutions being possible according to the num-
ber of upflow and downflow pathways which become established within the family of
fractures. However, the typical flux of CO2 associated with such an exchange flow is
of order

F ∼ nkf df
	ρg

μ
	c (10.39)

per unit length along the n fractures, where 	c is the difference in the mass fraction
of CO2 in the two layers above and below the seal rock, and kf and df are the typical
fracture permeability and width within the seal rock (Figure 10.18). The convective
exchange between the two layers then controls the continuing dissolution, until the
lower layer also becomes saturated. The timescale for the lower layer of depth Hl, to
become saturated is now given from the evolution equation

d	c

dt
=

nkf df 	ρ(	c)g

μHl
	c (10.40)

with timescale Hlk
nkf df U where n is the number of fractures per unit length. This leads to

typical timescales of order 103–104 years, depending on the permeability of the frac-
tures, which may be one or two orders of magnitude slower than the initial dissolution.

As well as vertical exchange flows, lateral exchange flows may develop with the
unsaturated reservoir fluid further out in the original formation (Figure 10.18). These
can lead to transport of unsaturated reservoir fluid to the CO2 pocket and associated
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Figure 10.19 Transition from an exchange flow to a buoyancy driven dispersing flow in which the
flow is sufficiently slow to allow vertical diffusion of concentration.

dissolution. There is a maximum transport rate associated with such flows, which limits
the maximum dissolution rate. If a lateral exchange flow develops in the aquifer, then
there will be an upper layer of aquifer water migrating in to the gas cap from the far
field, with speed u1 and depth h1, and an outflowing lower layer of CO2 saturated fluid
with speed u2 and depth H − h1. For an equilibrium exchange flow

u1h1 = u2(H − h1) (10.41)

With a shallow inclination to the horizontal, of angle θ , the steady exchange flow in
the upper and lower layers are given by

u1 =
k

μ

(
dp

dx
− ρug sin θ

)
and u2 =

k

μ

(
ρlg sin θ − dp

dx

)
(10.42)

where x is the horizontal position from the gas cap. This leads to the prediction of a net
flux of CO2 from the saturated zone having value per unit length (cf. Woods and Espie,
2012)

F ≤ k

μ

(ρl − ρu)g sin θh(H − h)

H
	c ≤ k

4μ
(ρl − ρu)g sin θH	c (10.43)

For a shallow angle of inclination of order 1–5 degrees, this lateral exchange flow is
of comparable magnitude to the vertical exchange flow (Eq. (10.40)) above. One can
infer that the dissolution is a very long duration process which may require times in
excess of 104–106 years depending on the volume of trapped CO2.

One complexity of these long-lived, slow exchange flows is the potential for cross-
layer diffusion and homogenisation of the fluids. In a layer of thickness 1–10 m, the
diffusion time will be between about 30–30 000 years assuming a molecular diffusivity
of order 10−9–10−10 m2/s. At the longer end of this spectrum, one might then expect
the convective exchange flow to shut down, and we explore this in the next section.
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10.8 Long-time buoyancy-driven dispersion

As well as the combination of heterogeneity and buoyancy in dispersing a flow, as
illustrated above, we expect that at very long times, molecular diffusion or transverse
dispersion across the flow will lead to redistribution of the buoyancy. As a result, the
relatively sharp boundaries which we have assumed develop in buoyancy-driven flows,
especially as they spread along horizontal or inclined boundaries, become smoothed.
In this case, the flow may be described using the classical ideas of Taylor dispersion,
as presented in Chapter 5. However, rather than the shear being imposed, the shear
now naturally emerges as a consequence of the vertical redistribution of the buoyancy
through molecular diffusion. We can explore this feedback by analysing the long-time
behaviour of a buoyancy-driven flow in a long laterally extensive aquifer. For simplicity
we consider a two-dimensional flow in the (x, y) plane produced for example by a
line source of buoyancy directed normal to this plane. We assume there is a mean
background flow Q per unit distance along the source in a layer of permeability k and
thickness d (0 < y < d). In this calculation, we also assume that the line source of
buoyancy at x = 0 leads to a constant value of the buoyancy at x = 0 relative to the far
field, |x| → ∞, corresponding to rapid local dissolution of a trapped plume of CO2

(Section 10.7), although other boundary conditions could also be considered.
At long times, we expect the buoyancy field b(x, y, t) to diffuse across the depth of

the layer, d, where b = g	ρ/ρo, with ρo a reference density, and 	ρ = ρ −ρo and thus
we can write b in the form

b(x, y, t) = b(x, t) + 	b(x, y, t) (10.44)

where the b notation denotes a depth averaged quantity in the aquifer. As the flow
evolves, we expect the fluctuations in the cross-layer direction to be relatively small,
	b(x, y, t) � b, and this can be checked a posteriori from the solution. The pressure
may then be written in terms of the pressure along the base of the layer, po(x, t) at y = 0,
together with the contribution from the buoyancy, assuming the flow is dominantly
parallel to the boundary of the domain

p(x, y, t) = po(x, t) − ρoby − ρogy (10.45)

As in the analysis of Chapter 5, Section 5.6, the equation for the transport of the mean
buoyancy in the x direction is given by

φ
∂b

∂t
+ u

∂b

∂x
= φDL

∂2b

∂x2 − û
∂ b̂

∂x
(10.46)

Since the flow along the aquifer is given by
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u = − k

μ

∂p

∂x
(10.47)

we find that

û =
ρodk

2μ

∂b

∂x

(
2y

d
− 1

)
(10.48)

The equation for the perturbations in the buoyancy field is given by the difference
between the equation for the total buoyancy transport and that of the vertically averaged
transport,

φ
∂ b̂

∂t
+ û

∂b

∂x
+ u

∂ b̂

∂x
+ û

∂ b̂

∂x
= φDT

∂2b̂

∂y2 + φDL
∂2b̂

∂x2 + û
∂ b̂

∂x
(10.49)

As for Taylor dispersion in a forced flow, at long times, the dominant balance in Eq.
(10.49) is between the distortion of the mean buoyancy field by the shear flow, (10.48),
and the cross-layer diffusion/dispersion, once the front has propagated a distance which
is large compared to the thickness so that the along-layer dispersion is small. This leads
to the balance

φDT
∂2b̂

∂y2
= û

∂b

∂x
(10.50)

with solution

b̂(x, y, t) =
ρodk

φDTμ

(
∂b

∂x

)2 (
y3

6
− dy2

4
+

d3

24

)
(10.51)

to satisfy the zero flux boundary conditions on y = 0 and y = d and the requirement that∫ d
0 b̂dy = 0. We can then calculate the dispersion term in the mean transport equation,

û ∂ b̂
∂x and this leads to the mean transport equation for the buoyancy

φ
∂b

∂t
+

Q

d

∂b

∂x
= φDL

∂2b

∂x2
+

d3

120DTφ

(
kdρo

μ

)2
∂

∂x

(
∂b

∂x

)3

(10.52)

The first term on the right-hand side of the equation is the normal longitudinal dis-
persivity while the second term is the non-linear dispersion associated with the shear
flow produced by the buoyancy and the ensuing cross-flow dispersion. An interesting
solution to this problem arises in the case that the buoyancy is maintained at a constant
value at the origin x = 0, with no background flow Q = 0, as in the exchange flow
solutions described in the previous section. In this case, once the buoyancy has time to
diffuse across the depth of the layer, the exchange flow evolves to the present buoyancy-
driven dispersion described by Eq. (10.52) until at very long times, the longitudinal dis-
persion DL dominates. In the early time of the mixing controlled by buoyancy-driven
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dispersion, we match the first and last terms of Eq. (10.52) and in this case the buoy-
ancy field is given by a similarity solution in which b = bo at x = 0 and

b = boF(η) where η =

(
30DTφ2

η2d5t

)1/4

x (10.53)

and where v = kρobo
μ

is the characteristic buoyancy speed, with F satisfying the equation

−η
dF

dη
=

d

dη

[
dF

dη

]3

(10.54)

This has an exact analytic solution

F(η) = 1 − 1

(12)1/2

[
η(η2

o − η2)1/2 + η2
o sin−1(η/ηo)

]
(10.55)

with the condition F(ηo) = 0 requiring that ηo = (192/π2)1/4. This solution illustrates
that the buoyancy-driven dispersion leads to a flux of buoyancy which decays at a rate
proportional to

1

4b2
0

(
d3v2

30DTt3

)1/4

(10.56)

This flux of buoyancy regulates the flux of unsaturated fluid to the dissolution front,
and hence determines the rate of dissolution. The buoyancy-induced dispersive flux
decays much faster than that resulting from the longitudinal dispersion, DL, and so
eventually it is superceded by the transport associated with the longitudinal dispersion,
DL, which in the limit of slow flow is controlled by the molecular transport. Some
numerical solutions illustrating this flow regime are given by Szulcweski et al. (2014).

In assessing the time at which the buoyancy-driven shear dispersion becomes impor-
tant, we require that the diffusion cross-layer has become established, and this occurs
after a time of order H2/D. For typical systems in which H ∼ 10 m and D ∼ 10−9–
10−10 s, this may require 1011–1012 s corresponding to 104–105 years. The length of
the mixed zone becomes comparable to the length of the diffusive mixed zone, (Dt)1/2

after a time of order t ∼ H4v2

120D3 . In the case of a buoyancy-driven flow, the velocity
may have value of order 10−7 m/s with k = 10−12 m2, 	ρ = 10 kg/m3 and
μ = 0.001 Pa s. In this case, the time at which diffusion becomes significant is of
order 1015 s, corresponding to about 107 years. Such processes relate to the very long-
term storage projects in the subsurface, or indeed to geological processes. However,
it is important to recognise that on such long timescales, the assumption of a static
reservoir may not be fully justified owing to other geological processes.

In assessing such models, it is relevant to observe that at a time of say 1012 s, the
dispersed front is predicted to extend of order 103–104 m from the source. If there
is a modest background hydrological flow, with speed of order 10−8 m/s, this will
carry the dispersing zone downstream a distance of order 104 m, and so the dissolution
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would then be controlled by the hydrological transport, and would not decay but would
stabilise at a dissolution flux equal to the hydrological transport Q times the concentra-
tion difference between the CO2 saturated and unsaturated water, with all the saturated
water being carried downstream.

10.9 Exercises

1. If there is a pool of CO2 near x = 0 which dissolves into the groundwater, show that
in the case that there is a uniform hydrological flow Q along the aquifer directed
from x � 0 to x � 0, then the effect of the production of dense fluid in the vicinity
of the CO2 trap will lead to a steady vertically averaged buoyancy distribution

b(x) =

(
b(0)2/3 − 2

3

(
Q

D

)1/3

x

)3/2

in the region x > 0 assuming that a balance between the buoyancy-driven disper-
sion and the background flow becomes established where D is the coefficient of the
buoyancy driven dispersion term in eqn 10.52. In this case, find the structure of the
vertically averaged buoyancy field downstream of the CO2 trap at long times, when
the buoyancy-driven shear dispersion controls the mixing.

2. Calculate the mechanical dispersion of a slug of tracer which is released at time τ

after the start of the injection in the case that a gravity current with a constant flux
of fluid spreads through a deep horizontal porous layer from a linear well. Assume
that the permeability varies with height as k = k1y. Repeat the calculation for the
case of a sloping aquifer, and compare and contrast the result with the case of a
horizontal aquifer.

3. In the case that a plume of buoyant fluid rises through a series of horizontal layers
of baffles, as discussed in Section 10.3, calculate the volume of fluid trapped on
each baffle and hence determine how the trapped volume of fluid varies from layer
to layer. Consider the implications for estimates of the storage capacity of such an
aquifer in the context of CO2 sequestration.
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Over many centuries, the extraction of thermal energy from the ground has been of con-
siderable importance, including applications in which warm subsurface water has been
used for heating and agriculture. In the 20th century, higher temperature geothermal
systems began to be used for power generation, and today there is of order 10 000 MW
of installed power generating capacity. For power generation, ideally high temperature
vapour is passed through a turbine which thereby generates power. Important examples
of high temperature systems include the Geysers in northern California and Larderello
in Tuscany, Italy. Presently there is over 3300 MW installed power-generating capacity
in the United States, 1800 MW in the Philippines, 1300 MW in Indonesia and nearly
1000 MW in Mexico. Iceland has about 660 MW. The Geysers in northern California
are a very substantial geothermal system which mainly produces dry steam from a
sandstone reservoir which is heated from below by a large magmatic intrusion over
13 km in diameter. The field has about 1500 MW of installed power-generating capac-
ity and produces a fraction of about 0.6 of this on an average annual basis. The pressure
of the steam is in part maintained by injection of treated wastewater designed to boil in
the subsurface. In Iceland, geothermal power accounts for over 25% of its electricity
generation, and also provides over 85% of the heating and hot water requirements for
the buildings.

The basic process in geothermal power generation is the extraction of thermal energy
from a high temperature permeable reservoir by production of steam from the reservoir.
In the Geysers for example, the reservoir is permeable and this enables close contact
of the water with the rock, thereby facilitating thermal energy removal by circulation
of fluids. In other ‘hot-dry rock’ systems, there are fractures through which water is
circulated, but this requires a sufficiently pervasive network of fractures to ensure good
thermal contact and efficient heat transfer.

One of the challenges for geothermal power is the maintenance of pressure in the
permeable strata as fluids are extracted. To resolve this challenge, fluid is often injected
into the system, as indicated in Figure 11.1. This leads to the migration of a fluid–fluid
front and also a thermal front, with the possibility of boiling, scale formation and also
changes in density as the injected fluid invades the reservoir.
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Figure 11.1 Schematic of the injection of water and extraction of vapour from a geothermal power
system.

In order to build a picture of the different processes involved, in this chapter we
develop a series of simplified models of the flow and heat transfer in the permeable
reservoir. We mainly focus on the migration of the injected fluid and the associated
thermal fronts. We first consider the evolution of thermal fronts associated with the
injection of cold water, and then build in the complexity of boiling in high tempera-
ture systems. We also describe how the motion of the injected water may be strongly
controlled by gravity, with both compositional and thermal contrasts leading to density
differences with the formation fluid. We explore how the thermal inertia of the injected
fluid can lead to changes in the buoyancy of the injected liquid producing a dramatic
range of flow patterns, some involving reversing buoyancy. We explore the potential
for the injected fluid to react with minerals in the reservoir which may lead to scale
precipitation or dissolution, and an associated change in the buoyancy and flow pattern
of the injected liquid, again with important implications for the efficiency of the heat
recovery from the system. We investigate how heterogeneities in the geological strata
can lead to dispersion of the thermal fronts, and we consider the role of heat exchange
with lower permeability regions of the reservoir adjacent to high permeability path-
ways in heating up the injected fluid. Finally, we turn to the somewhat related problem
of interseasonal thermal energy storage in aquifers, whereby waste heat, produced by
power stations or buildings in the summer, may be stored and then recovered in the
winter. This has many features in common with geothermal processes, although there
are some interesting differences in that for such systems the ground is in essence being
used as a thermal battery.
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11.1 Thermal fronts

In Chapter 8, we discussed the propagation of thermal fronts in porous rocks, and
introduced the idea of thermal inertia. This was shown to be important in the context
of reactions and also polymer floods in the case that the polymers are sensitive to tem-
perature. Since thermal fronts typically travel more slowly than fluid fronts, we expect
there to be a spatial separation of the leading edge of the injected fluid and the cold ther-
mal front associated with the injected fluid. The injected fluid ahead of the cold front
convects the thermal energy which was originally in the rock behind the thermal front.
In the case of injection into a warm rock, with no boiling, the location of this boundary
layer can be modelled by solving the advection–diffusion equations and calculating
how the cooled zone around the injection well grows in time.

If we consider the radial spreading of the fluid from a well into a reservoir of vertical
extent H, and if we assume the injection occurs at a rate 2πQ per unit distance along
the well, then the conservation of thermal energy takes the form

∂T

∂t
+

λlQ

r

∂T

∂r
=

κ

r

∂

∂r

(
r
∂T

∂r

)
(11.1)

where T is temperature, κ is the average thermal diffusivity of the rock and matrix,
κ = φκl + (1 − φ)κm, and λl is the ratio of the specific heat of the liquid to the vol-
ume averaged specific heat of the matrix and liquid, Cpl/(φCpl + (1 − φ)Cpm), where
subscripts l and m denote liquid and matrix. This equation is valid in the limit that
the cross-layer conduction is small so that there is no significant heat exchange with
the overlying or underlying geological strata; this limit applies for times t such that
H � (κt)

1
2 , where κ is the thermal diffusivity and H the layer thickness.

Using the similarity variable

η =
r

(2κt)1/2 (11.2)

we find the problem has solution

T(η) = To + 	T
∫ η

0
ηλlβ−1 exp

(
−η2

2

)
dη (11.3a)

where β = Q
κ

and

	T =
T1 − To∫ ∞

0 ηλlβ−1 exp
(
−η2

2

)
dη

(11.3b)

As expected, owing to the difference in speed of the thermal and fluid fronts,
this solution has an internal thermal boundary layer which in this radial geome-
try is fully resolved, since the front speed decays with time with exactly the same
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Figure 11.2 Temperature profile as a function of the radius shown in similarity variables for
comparison with the theoretical solution Eq. (11.3). After Woods (1999).

time-dependence as the thermal diffusion acts across the front. The model has been
tested with a series of experiments in which water is injected into a pack of sand, and
the radial temperature profile measured, as shown in Figure 11.2.

11.2 Boiling fronts

In the more complex case of a superheated rock, the injection of liquid leads to boiling
of the liquid and production of vapour. Boiling occurs at a prescribed pressure for each
temperature, as given by the Clausius–Clapeyron relation (Figure 11.3), and so part
of the solution to the problem is the determination of which boiling temperature and
pressure the interface selects. This is controlled by the rate of heat and mass transfer
across the interface. We note that since there is a mass flux across the boiling front, it
travels more slowly than the interstitial speed of the fluid.

To proceed we now model the flow of both the liquid and the vapour, and find the
pressure distribution in the formation around the boiling front. The liquid flow follows
Darcy’s law and solution of the liquid flow problem from the injection well to the
boiling front determines the relationship between the pressure at the injection well and
the pressure at the boiling front. This may then be combined with the vapour flow
equations, to develop a model for the pressure of the boiling front, relative to that in
the far field, in order that the newly formed vapour can migrate ahead of the interface.
Since the gas is compressible, we build a model of the gas dynamics using Darcy’s law
and an equation of state for the gas to account for the compressibility.

In general, the gas density ρ is a function of pressure p and temperature, T and
provided the gas pressure is not too large, we may assume it varies as

p = ρRT (11.4)
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Figure 11.3 Clausius–Clapeyron boiling curve, illustrating the path of the injected liquid in P−T
space, as it is heated, boils and then adjusts to the far-field superheated steam conditions.

We now combine this with Darcy’s law for the flow

u = − k

μ
∇p (11.5)

and the equation for the conservation of mass, which gives

φ
dρ

dp

∂p

∂t
= − k

μ
∇ [ρ∇p] (11.6)

If we scale the pressure with the far-field pressure, it is seen that the propagation of a
pressure disturbance through the formation is diffusive in nature, and that the effective
diffusion coefficient is

Deff =
kpo

φμRT

(
dρ

dp

)−1

(11.7)

In a typical geothermal system, with reasonably good permeability rock, of order
0.01–1.0 Darcy, and filled with vapour, this has value of order 10−3–1.0 m2/s which is
much larger than the thermal diffusion scale, κ ∼ 10−7 m2/s. For reasonable injection
rates, the vapour flow produced by boiling may be of order 10−5–10−2 m2/s per unit
length of an injection well. At the higher end of this range in a low permeability rock
Q > Deff and there may be a dynamic pressure signal in the vapour ahead of the
boiling front and this will extend over a much longer scale than the temperature field
provided Deff > κ . However, if the injection rate is small compared to the pressure
diffusivity, Q � Deff then there is negligible dynamic pressure in the vapour, and the
interface temperature is governed by the Clausius–Clapeyron temperature associated
with the far-field pressure.
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11.3 Slow boiling

In the case of slow injection and hence slow generation of vapour compared to the
pressure diffusion scale, the temperature field in the vapour follows the relation
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where f is the fraction of the liquid which boils,

λv =
ρvCpv

φρvCpv + (1 − φ)ρmCpm
(11.9)

with subscript v for vapour, m for matrix and κb = φκv + (1 − φ)κm is the effective
thermal diffusivity in the vapour zone.

Also, the change in diffusive heat flux across the interface accounts for the boiling
according to the relation

κbρCp
∂T

∂r

∣∣∣∣
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−κbρCp
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∣∣∣∣− =
f ρlLQ

r
(11.10)

Since the boiling occurs at fixed temperature, the latent heat term on the right-hand
side of this equation accounts for the difference between (i) the advective heat flux
of the vapour produced by the boiling and (ii) the advective heat flux of the liquid
supplied to the interface minus that advected with the moving boiling front. Since
there is no external lengthscale in this problem, we expect that the boiling dynamics
are governed by a similarity solution for the temperature field, and we explore solutions
of the advection–diffusion problem with the objective of determining the boiling rate.
We again use the similarity variable

η =
r

(2κt)1/2
(11.11)

and we define the boiling interface to be located at η = ω and to have temperature Ts.
In this case, assuming for simplicity that κb = κ , then the temperature in the vapour
region is given by

T(η) = Ts + A
∫ η

ω

ηλvfQ/κb−1 exp
(

−η2

2

)
dη for η > ω (11.12)

where A is chosen so that T(∞) = T∞ the far-field temperature. The temperature in the
liquid region is given by

T(η) = Ts + B
∫ η

ω

ηλlQ/κ−1 exp
(

−η2

2

)
dη for η < ω (11.13)
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Figure 11.4 Illustration of the temperature distribution through a boiling front, Eqs. (11.12) and
(11.13), as measured in an experimental sand pack and compared to the similarity solution shown
with the line. After Woods (1999).

where Ts is the boiling temperature based on the far-field reservoir pressure and the
Clausius–Clapeyron curve. B is chosen so that T(0) = To the injection temperature.
The interfacial mass conservation condition across the boiling front, η = ω requires
that

ω =

[
Q(1 − f )

φκ

]1/2

(11.14)

where f denotes the fraction of liquid which boils, as determined by the Stefan condi-
tion (11.10).

This solution has been tested with a laboratory experiment in which a cylindrical
sand pack, bound between two relatively low conductivity Perspex plates was heated
above the boiling temperature of the injected liquid. The evolving temperature distri-
bution through the sand pack can be scaled to η space, as shown, and is well described
by Eqs. (11.10–11.14) (see Figure 11.4).

11.4 Fast boiling

With a faster injection rate, comparable to or larger than the vapour diffusion scale
Q ≥ Deff , the pressure gradient in the vapour region becomes significant, and this can
lead to a larger injection pressure, and can lead to a higher interface pressure and tem-
perature. If the boiling temperature increases, there is less thermal energy which can
be released from the permeable rock to drive the boiling, and so the fraction of the
liquid which boils decreases, in response to the elevated dynamic pressure gradient in
the vapour zone. We can model this situation by noting that since the vapour pressure
diffusivity, of order 10−1−10−3 m2/s, is much larger than the thermal diffusivity, the
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thermal boundary layers are much thinner than the pressure transition zones, and so
any regions of temperature adjustment occur at nearly constant pressure. We can also
observe that if the boiling front advances at a rate larger than the speed of the ther-
mal front in the liquid, λlQ/r, then the water injected into the system will heat up to
the boiling temperature prior to reaching the boiling interface. There is then a nearly
isothermal region of water, as it advances to the boiling front, where it boils. Steam
produced by the boiling then heats up to the far-field temperature across a thermal
boundary layer and, over a longer pressure adjustment zone, the pressure adjusts to
the far-field value (see Figure 11.3). The key to model this process quantitatively lies
in the description of heat and mass conservation across the boiling front, and on the
dynamics of the migration of the vapour ahead of the front. This latter process controls
the pressure of the interface relative to the far-field pressure for a given flux of vapour.

At the boiling front, we can write down expressions for the conservation of thermal
energy by integrating across the thermal boundary layer ahead of the front, and this
leads to a balance between the heat released by the rock as it is invaded with the water
behind the boiling front, and the latent heat required to vaporise the water and increase
the temperature of the newly formed vapour to that of the far field,

f φ(ρlL + ρvCpv	T) = (1 − f )(1 − φ)ρmCpm	T (11.15)

The conservation of mass across the interface requires the fraction of the liquid which
boils to migrate ahead of the front as vapour

(ρlf + ρv(1 − f ))u = −ρv
k

μv

∂p

∂x
(11.16)

where f is the fraction of the liquid which boils and u is the liquid Darcy velocity.
In the energy relation, L denotes the latent heat of boiling and 	T is the jump in
temperature from the interface temperature to the far-field temperature of the vapour.
The pressure gradient in the vapour is calculated from the equation for the pressure
variation in the vapour phase Eq. (11.6). The final condition we apply at the interface
is the Clausius–Clapeyron equation which relates the boiling temperature to the boiling
pressure (Figure 11.3).

With radial injection, 2πQ per unit distance along the well, we expect a self-similar
profile in which the position of the boiling front increases with time according to

rb =

(
2Q(1 − f )t

φ

)1/2

(11.17)

so that a constant fraction of the injected liquid vaporises. As a result, the pressure
gradient in the vapour zone ahead of the front, which spreads in a non-linear diffusive
fashion, as given by Eq. (11.6), is always in balance with the oncoming liquid front.
Details of the structure of the similarity solutions for the vapour pressure may be found
numerically from Eq. (11.6), using the conditions for heat and mass flux conservation
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Figure 11.5 Rate of vaporisation of a liquid front illustrated in terms of the fraction which boils, f , as
the fluid reaches the boiling front. Different curves correspond to different reservoir porosities. After
Woods (1999).

across the boiling front (11.15–11.17), and selecting the solution for which the inter-
facial temperature and pressure are related according to the Clausius–Clapeyron equa-
tion. Solutions of the system show that although the total mass of liquid which boils
increases with the injection rate, the fraction of the liquid which boils decreases as the
liquid flow rate increases. Eventually as the flow rate increases to very large values,
the interfacial temperature approaches the temperature of the far field, and so there is
very little thermal energy available for boiling Eq. (11.15); the reservoir then primarily
becomes flooded with warm water (Figures 11.3 and 11.5; see Woods, 1999, for more
details).

An interesting feature of such boiling problems is that the boiling can lead to the
precipitation of salt, since salt may be soluble in the liquid state, but not in the vapour.
Typskin and Woods (2005) have explored the precipitation problem driven by such
boiling, and shown that this may lead to the cementing or calcification of permeable
strata and ultimately suppression of flow.

Another curious feature of boiling fronts in porous media is that the front can
become unstable, in a fashion similar to the Saffman–Taylor instability. To see the
mechanism for this instability, we note that upstream of the boiling front, the pressure
gradient in the liquid zone is −μlu

k , where μl is the liquid viscosity and k the perme-
ability of the porous layer while in the vapour zone directly ahead of the interface, the
mass flux of vapour is f ρlu, when a fraction f boils. This leads to a Darcy speed of
the vapour f ρlu/ρv, and hence a pressure gradient −μvρlfu

ρvk . The ratio of the pressure
gradients downstream to that upstream is therefore given by f νv/νw where ν is the
kinematic viscosity. In practice, the kinematic viscosity of vapour is higher than that
of liquid and so the pressure gradient across the boiling front increases if a sufficient
fraction of the liquid boils, f >νw/νv. In this case, there will be instability of the
boiling front.
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11.5 Boiling gravity-driven flows

In some situations, the water injected into a geothermal reservoir will only be avail-
able on a seasonal basis, perhaps associated with melt-water in spring. As a result,
the injected liquid may initially be controlled by the pressure-driven injection regime
modelled above, but then becomes controlled by gravity once the injection ceases and
it spreads beneath the vapour in the system. For this gravity-driven flow, the leading
edge of the water will advance into the hot rock and tend to boil off, while the trailing
edge of the system where the front descends, will not involve any boiling. This situ-
ation is somewhat analogous to the case discussed in the Chapter 9, Section 9.6, of a
mound of fluid slumping under gravity, in which case the trailing edge leaves behind
a capillary wake. The similarity between the two problems is that the mass of liquid
decreases in a power law fashion following a similarity solution of the second kind.
In general, there may be an elevated pressure at the boiling front in order to displace
the vapour produced by the boiling. However, in order to gain insight into the process,
if we assume that the fraction of the liquid which boils off is a constant, f , and that
the pressure in the advancing front matches the pressure in the vapour region of the
reservoir at that depth, then the governing equations for the associated gravity-driven
flow of liquid, of depth h(x, t), have the form
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∂t
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φμ
∇ [h∇h] for
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We now consider a two-dimensional flow, as would arise from a horizontal line source,
for which the global conservation of mass, including the boiling, now takes the form,

γ Qotγ−1 = φ
d

dt

∫ L2(t)

0
hdx + φ

f

1 − f

∫ L2(t)

L1(t)

∂h

∂t
dx (11.19)

where Qtγ is the total mass of injected liquid at time t.
This relation is combined with the boundary conditions that there is zero flux at

x = 0 following a finite injection and that the current depth h(L2) = 0 at the leading
edge x = L2(t). We also impose conservation of depth and flux at the point x = L1(t)
where ∂h

∂t = 0, so that for x > L1 the current boils, while for x < L1 there is no boiling.
As for the capillary trapped gravity current in Chapter 9, Section 9.6, we can seek

solutions in terms of the similarity variable η = x
H(Dt)β

of the form h = H(Dt)αff (η)

where ff satisfies the governing equations



237 11.5 Boiling gravity-driven flows

φ

(
αff − βη

dff
dη

)
=

d

dη

(
ff

dff
dη

)
for 0 < η < λ1 (11.20a)
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)
for λ2 > η > λ1 (11.20b)

together with the integral equation for mass conservation

γ = φ

∫ λ1

0
(αff − βηff )dη +

φf

1 − f

∫ λ2

λ1

(αff − βηff )dη (11.21)

along with the matching conditions at η = λ (i.e. x = L1) that the interface is continuous
and has continuous derivative. Finally we require that

ff (λ2) = 0 and ff
dff
dη

|η=0 = 0 (11.22)

where η = λ2 corresponds to the nose x = L2.
To solve the problem, we determine the value of the exponent γ for which the solu-

tion of the governing equations and the boundary conditions (11.20, 11.22) also sat-
isfies this integral condition (11.21). An illustrative solution is shown in Figure 11.6.
Here we see the evolution of the current, along with the locus of the region of rock
which has been invaded with liquid, and hence cooled. The region of cooled rock only
represents a fraction of the total rock volume, and illustrates the difficulty of injecting
water in order to mine the thermal energy from the rock through boiling of this water
(see Woods, 1998, for more details).

Figure 11.6 Evolution of the shape of a vaporising gravity current with time, shown at dimensionless
times 1, 8 and 64. The dashed leading zone of the current represents the part of the current which
ascends and vaporises. The locus of the region invaded by the current is shown by the dotted line.
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11.6 Double-advective plumes with reversing buoyancy

We have seen that when liquid is injected into a porous rock, the thermal signature of
the fluid lags behind the leading edge of the fluid owing to the local heat exchange
between the fluid and the solid. As a result, the density and viscosity of the injected
fluid will then differ between the leading region of the injected fluid, where the temper-
ature matches the far field, and near well-bore region of the flow where the tempera-
ture remains close to the injection value. The changes in the fluid density and viscosity
associated with the change in temperature can have a profound influence on the flow,
especially in high permeability systems where the gravitational forces are important.
We illustrate some of these effects in a two-dimensional model system, observing that
the model applies for times short compared to the cross-layer diffusion distance. Later
in the chapter we explore the effect of heterogeneities within the formation, which
can lead to thermal dispersion, and of heat loss to the boundaries of the system which
ultimately changes the rate of propagation of the thermal front.

We first note that if a layer of hot but salty water overlies a layer of cold and fresh
water within a porous layer, then the system may be statically stable if the upper layer
is sufficiently hot; however, if there is a disturbance to the interface of this system,
such that cold fluid rises into the hot pores or hot fluid sinks into the cold pores, the
thermal inertia will result in the leading part of the disturbed region of fluid adjust-
ing to the local ambient temperature, while the composition remains unchanged. As a
result, the buoyancy of the leading part of the parcels of fluid displaced across the inter-
face changes sign, and they may continue to ascend or descend, leading to convective
exchange of fluid. Phillips (1991) called this process the double-advective instability.
There is a very broad range of flow problems for which the double-advective insta-
bility can control the evolution of the flow, and we present some examples below. In
particular, plume or gravity current flows which may develop from a localised source
can have very different structure when double-advective effects are present. Indeed, an
internal front may develop across which the buoyancy changes in magnitude or even
in sign. Some of the different possible transitions in the density of the injected fluid are
illustrated in the temperature–composition plane shown in Figure 11.7. In this figure,
the tilted lines correspond to lines of constant density, and the origin corresponds to the
conditions in the reservoir. If the fluid composition increases, the fluid becomes denser
and if the fluid temperature increases it becomes less dense.

In Figure 11.7, the tilted line through the origin represents the (T , C) values in the
solution for which the density matches that of the reservoir fluid, which corresponds
to the conditions at the origin. This figure is useful for the interpretation of a series of
flow patterns which may develop in two-dimensional plumes involving the effects of
thermal inertia, and we now consider these. In case a, fluid of lower salinity is injected,
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Figure 11.7 Composition–temperature diagram illustrating lines of constant density, ρ1, ρ2 and ρ3.
Different flow regimes develop for the migration of fluid of one temperature and composition
through a second fluid. The cases a–d are shown in Figures 11.8 and 11.9.

and this forms a plume of buoyant fluid rising from the source (Figure 11.8a). For this
flow regime, the two-dimensional plume has a steady width, w, behind the head given
by the ratio of the volume flux (in this case per unit width of the thin cell), Q, and the
uniform upward buoyancy-driven flow (cf. Chapter 10)

w =
Qμ

k	ρg
(11.23)

In case b, fluid which is hotter and of the same composition is injected, and this forms
a buoyant plume within which the fluid temperature adjusts to equal the background
temperature once it has passed through the thermal front (Figure 11.8b). As a result
the plume develops in a very different fashion, more resembling a moving source of
fluid of neutral buoyancy, as the location of the surface across which the temperature
changes migrates forward in the cell. As a result of this loss of buoyancy across the
thermal front, the fluid spreads outwards. During the experiment, the colour of the dye
was changed to help visualise the flow pattern. It is seen that the continuing plume of
hot fluid migrates upwards and displaces the thermal front upwards past fluid which
was injected earlier but which now has cooled. A curious feature in the photograph in
Figure 11.8b is the development of a small streak of clear ambient fluid which appears
to follow the boundary between the hot continuing plume and the cooler region where
the temperature has adjusted to that of far field. This clear fluid rises up with the plume
as a result of heat conduction in the cross-flow direction just above the source. Even-
tually this will lead to a steady-state plume structure in which the cross-layer thermal
diffusion of heat matches the upward advection, as described by Wooding (1963).
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(a) (b)

t = 3880 s

t = 1960 s

t = 760 s

t = 5070 s

t = 4020 s

t = 1380 s

Figure 11.8 Three frames, at successive times illustrating the buoyancy-driven flow in a porous
medium driven by (a) a fresh plume migrating through an initially saline solution of the same
temperature, and (b) a hot plume migrating through an initially cold fluid of the same composition.
During the experiment, the colour of the injected fluid is changed from red to blue to help visualise
the flow pattern. After Menand et al. (2003). A black and white version of this figure will appear in
some formats. For the colour version, please refer to the plate section.

This steady thermal plume is expected to be of relatively small horizontal extent
compared to the vertical extent, and so involves a balance of the cross-flow diffusion
of heat with the advection by the velocity field (u, v), leading to the relations for con-
servation of heat

u
∂T

∂x
+ v

∂T

∂y
= κ

∂2T

∂x2
(11.24)

together with Darcy’s law

v = − k

μ
αgT (11.25)

where T is the temperature and the streamfunction ψ is given by

relative to the far-field u =
∂ψ

∂y
and v = −∂ψ

∂x
(11.26)

where x is the horizontal and y the vertical coordinate. For a steady plume, the vertical
heat flux, QH , is conserved and so
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(c) (d)

t = 9210 s t = 4770 s

t = 8670 s

t = 10,350 st = 1875 s

t = 6495 s

Figure 11.9 Three frames at successive times illustrating the buoyancy-driven flow of a hot,
compositionally enriched injection fluid through a porous layer, in the case that the injection fluid is
initially less dense than the original fluid in the porous layer. The fluid is injected from (c), the base
(left-hand panels) and (d), the top of the layer (right-hand panels). During the experiment the colour
of the dye in the injected fluid is changed from red to blue to help visualise the flow pattern. After
Menand et al. (2003). A black and white version of this figure will appear in some formats. For the
colour version, please refer to the plate section.

ρC
∫ ∞

−∞
vTdx = QH (11.27)

By combining Eqs. (11.24–11.27) with the conservation of heat flux (11.27), it may be
shown that these equations have similarity solution of the form

ψ(x, y) = −κ

(
y

β

)1/3

f (η) and T = (QH/ρCκ)

(
β

y

)1/3

f ′(η) (11.28)

where

β =
νκ2ρC

gαkQH
and η =

x

(βy2)1/3
(11.29a)

On substitution into (11.24), it can be shown that the shape function has solution
(Wooding, 1963)

f (η) =
9

2
tanh

(
3η

4

)
(11.29b)

This solution illustrates how the lateral diffusion of heat causes the plume volume flux
to increase as it rises An analogous effect be seen in the lowest part of the plume in
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Figure 11.8b, where the ambient fluid is drawn up around the central core of dyed
source fluid.

There are also cases in which the injected fluid is of greater composition than
the reservoir fluid, but in which the fluid is initially hotter, so that on entering the
porous medium, an upward propagating plume initially develops. However, as the
flow migrates through the porous layer and cools across the thermal front, the greater
composition of the injected fluid compared to the source fluid leads to a reversal
of the buoyancy, and formation of a dense, spreading gravity current, as shown in
Figure 11.9c corresponding to case c in Figure 11.7. In Figure 11.9c, the colour of
the dyed fluid is changed part way through the experiment from red to blue to help
visualise the flow trajectories. It is seen that the continuing flow rises to the top of the
red zone, where it encounters the colder original bead pack, cools and then spreads
laterally.

If the injected fluid is relatively saline, but initially so hot that the flow is less dense
than the original reservoir fluid (case d, Figure 11.7) then if the fluid is supplied to the
top of the porous layer, rather than the base, the flow will initially migrate along the
upper boundary of the porous layer. However, on migrating through the porous layer,
the fluid will eventually pass through the thermal front and cool to the temperature of
the surroundings. The greater salinity of the injected fluid then causes this to be denser
than the surrounding flow, and the current sinks through the porous layer. The injected
fluid then spreads as a relatively dense current on the lower boundary of the domain
(Figure 11.9d).

For this latter case, the gravity-driven flow along the upper boundary has an effec-
tively smaller mass flux, in the sense that only that fraction of the flow within the
advancing thermal front is buoyant and spreads along the upper boundary. This current
therefore only grows at the rate of advance of the thermal front. In contrast, the flux
supplied to the lower current is given by that fraction of the fluid which passes through
the thermal front. The lateral extent of the two currents, however, depends on the rela-
tive magnitudes of the positive and negative buoyancy as well as the respective supply
volume fluxes, as may be inferred from the solutions for simple gravity currents pre-
sented earlier (Chapter 9). In this case with reversing buoyancy, the descending flow
leads to considerable mixing with the ambient fluid, which increases the flux in the
lower current.

The development of these more complex flow patterns in cases where both the ther-
mal and compositional fields influence the flow may be critical for optimisation of
the heat transfer within a geothermal system. Indeed, the objective of injecting fluid
into geothermal systems is to warm up the injected fluid and then recover that ther-
mal energy at the production well downstream. If the flow arranges itself so that there
is a significant, laterally spreading plume of cold fluid, which is not localised near
the injection point, as occurs in the case of reversing buoyancy (Figure 11.9d), then the
production well may extract some of this cold fluid, reducing the effectiveness of the
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overall system. Indeed, many higher temperature geothermal systems rely on the tem-
perature of the produced fluid being sufficiently high that the thermal energy can be
converted into useful work.

Some of the examples above relate to the case in which the buoyancy changes sign
on passing through the thermal front. However, in many systems, the compositional and
thermal influence on buoyancy may not be exactly matched in magnitude; the effect of
the thermal front may then be to change the magnitude of the buoyancy and in some
cases the change in mobility of the fluid may also be significant. We now examine
some of these effects, primarily in the context of gravity currents, illustrating how the
change in buoyancy on passing through the thermal front can have a profound impact
on the spatial distribution of thermal energy within the current.

11.7 Gravity currents with thermal and compositional buoyancy

In the previous section, we examined the dynamics of plumes controlled by both ther-
mal and compositional differences, and focused in particular on the case of reversing
buoyancy in which the density of the injected fluid relative to the ambient changes
sign on passing through the thermal front. In this section, we explore flows which
arise when the density relative to the background changes in magnitude but not
in sign on passing through the thermal front. Again, for simplicity, we focus on
two-dimensional gravity currents. If the injected fluid initially has temperature 	T
in excess of the ambient and has salinity 	S smaller than the original fluid, then the
initial upslope buoyancy speed will be

uo =
kρo(α	T + β	S)g sin θ

μ
(11.30)

where ρo is a reference density and α and β are the thermal and solutal expansion
coefficients and θ is the angle of inclination of the slope to the horizontal. This will
evolve to

u1 =
kρoβ	Sg sin θ

μ
(11.31)

once the thermal field has adjusted to that of the reservoir.
Assuming the flow continues upslope, the change in depth across the thermal front

can be found using a simple mass flux balance, relating the depth upstream, Ho and
downstream, H1, according to

uoHo = u1H1 − φuo(H1 − Ho) (11.32)
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where the final term denotes the upslope migration of the thermal front, with speed
uo. This identifies the depth downstream of the thermally adjusted zone as

H1 = Ho

[
1 − φ
u1
uo

− φ

]
(11.33)

There are two different situations possible. If the flow is initially cold, 	T < 0 the
buoyancy will increase on heating up to the formation temperature, leading to an
increase in speed, u1 > uo and so (11.28) shows there is a thinning of the current
(Figure 11.10a).

If the flow is initially hot, then on cooling to the reservoir temperature, the buoyancy
of the flow will decrease, causing a deceleration u1 < uo. In this case, Eq. (11.33)
suggests that either there is a deepening of the flow if the interstitial flow speed beyond
the thermal front, u1/φ, is greater than the speed of the thermal front, uo, so that
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Figure 11.10 Characteristic diagrams in distance–time coordinates and the structure of a
buoyancy-driven flow in the case that there is an internal thermal boundary layer in the flow as it
runs upslope. (a) Corresponds to the case in which the current buoyancy increases as it heats up,
leading to an acceleration of the flow downstream of the thermal front, as shown by the arrow in the
characteristic diagram, leading to the thinning and increase of the speed of the current downstream.
(b) Corresponds to the case of injection of relatively hot fluid in which, on passing through the
thermal front, the current cools and becomes less buoyant than near the source. In this case the
buoyancy-driven flow downstream of the thermal front is faster than the speed of the thermal front
and the current continues propagating ahead of the thermal front. (c) Situation in which a hot current
cools on passing through the thermal front, but in which the speed of the thermally adjusted flow is
less than that of the thermal front, as seen in the characteristic diagram. In this case the cooled fluid
is overtaken by the thermal front, and hence the continuing cold fluid is displaced downwards by the
oncoming hot fluid, and thereby forms a layered gravity-driven flow.
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u1 > uoφ (11.34)

(Figure 11.10b). In contrast, if the buoyancy decreases so much across the thermal front
that the interstitial speed of the fluid downstream of the front is less than the speed of
the thermal front,

u1 < uoφ (11.35)

then the thermally adjusted fluid will form a new layer below the original buoyant
current, and this new layer lags behind the original buoyant current. As a result, the
thermal front will be at the leading edge of the flow (Figure 11.10c).

In order to describe such flow structures, we can use the method of characteristics
to track the evolution of the flow and the thermal front, in a fashion analogous to the
presentation in Chapter 9. In the left-hand panels in Figure 11.10 we have included a
characteristic diagram to illustrate how the fluid and the thermal fronts advance along
the boundary both upstream and downstream of the thermal front.

Case a provides an effective means of recovering the thermal energy from a system
while maintaining a relatively deep cooling front by injection of compositionally light
fluid. In the case in which a compositionally heavy and cold fluid is injected, we can
learn from cases b and c. Now the current will run downslope, along the lower bound-
ary, but as it heats up to the reservoir temperature, its buoyancy is reduced; this will
lead to a current which is analogous in structure to one of case b or c in Figure 11.10.
If the warmed current advances more rapidly than the thermal front, then the flow will
consist of a relatively thin cold current upstream of the front: in this region, the thermal
energy has been extracted from the formation. Downstream of the front there will be
a thicker heated region in which the fluid carries this thermal energy. This will lead
to a less effective spatial pattern of cooling of the formation with thermal energy only
being extracted from the thin upstream region analagous to case b, Figure 11.10. If
the warmed fluid travels less rapidly than the thermal front then cold fluid will in fact
arrive at the production well along with the warm fluid, since the thermal front outruns
the warm fluid which has passed through the thermal front (analogously to case C,
Figure 11.10). In the engineering context, this has several drawbacks; in particular, the
production well is now likely to extract mixed hot and cold fluid, so that the thermal
energy mined from the formation by the advancing thermal front is compromised by
the direct production of the cold injectate.

The above discussion has focused on models of two-dimensional gravity-driven flow
in porous aquifers. One can also examine the flow pattern associated with source–
sink flows. In this case, we might contrast the flows generated with a source updip or
downdip of the injector well, when a compositionally light but cold fluid is injected,
and then warms up to reduce its buoyancy, and the case in which a compositionally
heavy but cold fluid is injected and becomes warm, thereby decreasing the buoyancy.

Figure 11.11 shows two example calculations of the flow at an early time and after
one reservoir volume of fluid has been injected for the case in which (a) the injector
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Figure 11.11 Example of a source–sink flow in a porous medium in which the injected fluid is
initially buoyant but becomes dense on passing through the thermal front. The initial injection fluid
is shaded black, and the thermally adjusted injection fluid is shaded grey. In panel a, the fluid is
injected from the upper well, while in panel b the fluid is injected from the lower well. The
gravitational acceleration acts downwards in this figure. After Nigam and Woods (2006).

well is updip of the producer well, and the buoyancy of the injected fluid increases
across the thermal front owing to the heat transfer from the formation, and (b) the injec-
tor well is downdip of the producer well and the buoyancy of the injected fluid again
increases owing to heat transfer from the formation. The light grey region indicates
the injected fluid which has passed through the thermal front, while the black region
corresponds to injected fluid which has not reached the thermal front. The white fluid
corresponds to the original reservoir fluid. In the former case (a), the light grey region
of thermally adjusted injection fluid is buoyant and so tends to rise to the top of the
reservoir rather than flowing into the producer well and this leads to the production of
the cold injection fluid, shown as the darker fluid. In the latter case (b), the grey fluid is
again less dense than the dark fluid, and so this tends to rise upwards and is drawn into
the producer well. As the fluid which spreads downwards away from the producer well
passes the thermal front and becomes buoyant, this fluid then mixes back into the colder
injected fluid, as seen by the plumes at the base of the system. This latter configuration
(b) will recover more of the thermal energy from the system and indicates the key role
of thermal changes on the pattern of water flooding (See Nigam and Woods, 2006).

11.8 Scale precipitation and its impact on buoyancy-driven flow

A significant problem in geothermal systems concerns the formation of scale deposits
which can fill pore spaces and change the permeability. In Chapter 8 we reviewed some
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of the reactions which may arise when fluid of one temperature floods a rock at a differ-
ent temperature, leading to dissolution or precipitation reactions. We also demonstrated
that such reactions may be unstable to a viscous fingering-type instability (Chapter 6)
and that with gravity, the reactions may lead to formation of a dominant dissolution
channel (Chapter 9). However, the double-advective plumes we have described in this
chapter, associated with the change of fluid properties across the thermal front, can
also develop in a reacting flow. In particular, since the speed of the reaction front is
smaller than the fluid front, then the properties of the injected fluid may change across
the reaction front. Since the composition of the injected liquid is likely to be different
from the original formation water, the solubility of the water to minerals in the forma-
tion may also be different. As the fluid dissolves or precipitates to reach equilibrium
with the matrix, the density of the fluid may then also change. This can alter the pat-
tern of flow of the fluids within a system and the associated recovery of thermal energy.
With dissolution, it may also lead to formation of channels of high permeability which
can control the subsequent flows.

In order to illustrate some of the possible buoyancy-driven flow effects which may
arise either with a chemically driven reaction (Chapter 8) associated with differences
in composition of the injected fluid, or perhaps slaved to the thermal front, the use
of sugar–salt solutions with solid salt powder in a bead pack provides an interesting
experimental model system. As the concentration of sugar in a solution changes, the
solubility of salt in that solution, for a given temperature, also changes. The density of
a sugar–salt solution in equilibrium with salt powder at a given temperature depends
on the sugar concentration. As a result, if a sugar solution of one sugar concentration
and hence density is injected into a porous layer containing a sugar–salt solution in
equilibrium with salt powder, with a different sugar composition, then the injected
sugar solution may have a different density from the reservoir fluid. As it dissolves salt
to reach equilibrium, the injected fluid may then evolve to a third density.

Rayward-Smith and Woods (2014) developed this experimental system to explore
the possible influence of reactions on the buoyancy-driven flow of a liquid injected
into a geothermal system. They have shown that a range of flow patterns, all at a uni-
form temperature, can develop through the injection of one such sugar–salt solution
into a bead pack saturated with a second solution and also containing salt powder: in
particular, it is possible to generate flows in which the buoyancy of the injected liquid
evolves in different ways. Four examples include: (a) the case of constant buoyancy:
this regime develops when there is no salt powder in the cell and we have a constant
compositionally buoyant plume (see Figure 11.12a). (b) The buoyancy reverts to zero
on reaction: this may be achieved by injecting a fluid with the same sugar compo-
sition as the original fluid in the porous layer but initially no salt (Figure 11.12b).
As the flow advances and dissolves salt, the porous layer becomes depleted in salt
near the source. This leads to a growing dissolution channel, along which the con-
tinuing supply of unsaturated solution advances until reaching the salt powder where
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(a) (b) (c) (d) t = 3240st = 3600st = 1680st = 2520s

t = 2100st = 2400st = 1200st = 1800s

t = 960st = 1440st = 840st = 1140s

Figure 11.12 Figure illustrating the pattern of flow when a sugar–salt solution is injected into a bead
pack saturated with a sugar–salt solution of different sugar content. The bead pack includes a small
fraction of salt powder, and as the injected fluid enters the system it dissolves some of this salt,
leading to a change in density. The different patterns of flow are illustrated by the sequence of three
photographs in each of cases a–d. In a the injected fluid is less dense than the original solution in the
bead pack both before and after dissolving the salt, and thereby forms a compositional plume; the
halo around the centre of the plume denotes the earlier plume fluid once it has dissolved some of the
salt and become of intermediate density between the formation fluid and the injected fluid. This rises
more slowly than the more recent injection fluid which rises along the dissolution channel in the
centre of the bead pack, until eventually reaching some salt higher in the bead pack. The flow
pattern is visualised by changing the colour of the injected fluid from red to black during the
experiment. In b the injected fluid is initially more buoyant but becomes neutral on reacting with the
salt, and this is analogous to the thermal plume shown in Figure 11.8b. In case c, the injected fluid is
initially buoyant but becomes dense on reacting with the salt powder, this leads to a dissolution
channel which rises directly above the source, and then a collapsing fountain of dense fluid around
the channel which feeds a laterally spreading gravity current on the base of the system. In d the
injected fluid is initially dense, but becomes even more dense on reacting with the salt powder,
therefore forming a dense laterally spreading gravity current. Photographs courtesy of Will
Rayward-Smith. A black and white version of this figure will appear in some formats. For the colour
version, please refer to the plate section.

the reaction occurs and reduces the buoyancy of the advancing fluid to zero relative
to the original formation fluid. The fluid then spreads out to the side of the advancing
reaction channel while the continuing plume grows in the channel. In the photograph
the injected fluid is initially dyed red, but then changed to dark blue in order to help
visualise the flow pattern. (c) The flow is initially buoyant and rises up through the
layer since it contains no salt, although having a greater sugar content than the fluid
originally in the bead pack. As the vertical channel of salt is dissolved by the sup-
ply fluid, this fluid becomes denser than the original fluid in the formation. The flow
then falls back and spreads out on the base of the cell. The fluid is initially dyed red,
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but this is changed to dark blue part way through the experiment to help visualise the
flow. (d) The injected fluid is initially dense but as it dissolves salt it becomes even
denser.

There are numerous other cases one can envisage, and as seen, such effects can be
critical for the successful modelling of the flow pattern in geothermal systems, since
the change in density with composition may dominate the change associated with tem-
perature, depending on the temperature contrast between the injected fluid and the
formation, and the capacity to dissolve minerals. If a reaction-driven flow develops a
large-scale plume structure of the form shown in Figure 11.12a, for example, and this
plume involves a change in permeability of the formation, then this may control sub-
sequent flows within the system, limiting the potential for cold fluid to sweep through
the zones outside the dissolution channels.

11.9 Aquifer thermal energy storage

One of the challenges for renewable energy systems is associated with the storage of
energy owing to the intermittent generation, for example as occurs with wind power. In
addition, there are large seasonal fluctuations in the external temperature and this leads
to the availability of excess thermal energy during the warmer seasons, for example
at power stations. For both of these intermittent energy sources, storage of the energy
in the form of thermal energy may represent an effective means of conserving the use
of primary energy for power and/or heating applications. However, it is key that the
energy losses associated with storage are small. One strategy for such storage is known
as aquifer thermal energy storage, and has been proposed and indeed implemented in
several cases, mainly in Scandinavia and the Netherlands. Some of the fluid mechanical
principles have significant overlap with the geothermal flows we have been considering
in this chapter. We now outline some of the distinguishing processes specific to or very
important in aquifer thermal energy storage systems. which relate to (i) the loss of ther-
mal energy through conduction into the surrounding strata and its impact on the heat
recovery temperature and (ii) the recovery of the injected liquid, and potential mixing
with the groundwater, which may lead to reactions and scale formation in the system.

With interseasonal heat storage, fluid is injected at one temperature and displaces
the formation fluid for a period of order 6 months, and then the fluid is pumped out
of the system, perhaps at the same well, for about 6 months (Figure 11.13). There
is a gradual loss of thermal energy from the system by diffusion into the surround-
ing rock. It is of considerable interest to understand the heat-transfer processes in the
subsurface in order to assess the potential to recover the thermal energy and also the
temperature of this recovered thermal energy, since this may limit its use. If the tem-
perature of the water recovered from the system is too cold, apart for direct use for
low-grade heating, it may not be useful without passing through a heat pump. A heat
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Figure 11.13 A schematic of an aquifer thermal energy storage system in the case of injection from
(a) a horizontal line well and (b) a vertical well.

pump is a machine which raises the temperature at which a heat flux is being trans-
ferred, essentially by operating as a fridge in reverse. In the present context, thermal
energy would be removed from the water by a heat exchanger containing a cold refrig-
erant which is heated up by the water. The refrigerant is then compressed by an engine
which performs work on the refrigerant. This raises the temperature of the refrigerant
which then passes through a second heat exchanger at higher temperature. Thermal
energy is removed from the refrigerant at this higher temperature into a second fluid
which then carries the thermal energy away for use in a heating system or for use in
a heat engine. Meanwhile the refrigerant expands and cools, and passes through the
primary heat exchanger again to collect more thermal energy from the water which
has been extracted from the ground system. The mechanical work required to drive
the refrigerant through the system, causing the compression and expansion phases of
the flow, is typically only a fraction of about a quarter to a third of the thermal energy
flux passing through the heat pump. However, for a given output temperature, this frac-
tion increases substantially as the temperature of the input fluid decreases. As a result,
aquifer thermal energy storage is only useful if the thermal energy can be recovered
from the ground at sufficiently high temperature. Otherwise the work done by the heat
pump, and in pumping water into the ground, and recovering it from the ground may
become a significant part of the overall energetics of the system. (We note that there is
a further challenge of such systems if the heat pump engine is powered by electricity
generated remotely at a power station. This is because such electricity incurs losses in
generation, and transmission, so that typically only a fraction of order 0.2–0.25 of the
calorific value of the fuel producing the electricity is supplied to the end-user, in con-
trast to local heating systems which directly convert fuel into thermal energy on site.)

In order to help assess the potential recovery temperature and hence the fraction
of the thermal energy injected into the subsurface which may be recovered from a



251 11.10 One-dimensional injection and production of hot water

heat storage system, we develop a series of simplified models. The purpose of the
models is to develop insight into some of the limiting processes rather than provide a
full simulation of a specific field location. First, we consider a one-dimensional model
of injection and extraction from a single well, including diffusion to the far field, to
assess the temperature of the recovered fluid over successive cycles in a permeable
layer of large vertical extent. We then extend this modelling approach to examine the
effect of heterogeneities in the rock structure. These can have a fundamental influence
on the heat flow through dispersion of the thermal signal, in an analogous fashion to
the compositional dispersion we examined in Chapter 5. We then consider how the
injected and formation water interact, over successive cycles, especially in the case
that the injected water is of different composition. In particular, we explore how the
fraction of original reservoir fluid which is produced during the extraction cycle varies
from cycle to cycle. Such effects are important in the case that one does not want to
bring water from the target aquifer to the surface. For example, salts in the formation
water may precipitate at low pressure and plug the well.

11.10 One-dimensional injection and production of hot water

We first consider a one-dimensional situation, corresponding to an aquifer of consider-
able vertical extent, in which there is injection of hot water and subsequent recov-
ery of that water, on an interseasonal basis across the whole depth of the aquifer.
As motivation for this one-dimensional problem, one may envisage that to enhance
the inflow to the system, the well intersects a fracture, so that the injected water flows
into the formation from an effective planar source supplied by the well. The heat loss
is then primarily parallel to the direction of motion and the problem requires solution
of the one-dimensional advection–diffusion equation for thermal energy of the form

∂θ

∂t
+ u sin ωt

∂θ

∂x
= k

∂2θ

∂x2
(11.36)

θ(0) = 1 for 0 < t <
π

ω
(11.37)

∂θ

∂x
|0 = 0 for

π

ω
< t <

2π

ω
(11.38)

with the boundary conditions (11.37, 11.38) requiring that during the input cycle the
temperature at the input is prescribed and during the outflow cycle, the heat flux at the
origin is purely advective. In the far field the temperature is a constant, different from
the input fluid temperature. The above equations have been put in dimensionless form,
by scaling the temperature so that the input temperature is 1 and the far-field tempera-
ture is zero. Numerical solution of these equations illustrates how the temperature field
gradually diffuses into the far field beyond the region into which fluid is periodically
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Figure 11.14 Gradual spreading of the injected thermal energy (horizontal axis) to form a region of
hot rock over 23 cycles of injection and extraction, with time shown on the vertical axis. The
thermal signal gradually diffuses into the far field, ahead of the maximum extent of the injection
fluid. For the colour version, please refer to the plate section.

cycled (Figure 11.14). The colours denote different temperature, with red being hot
and blue cold. The horizontal axis denotes position and the vertical axis denotes time.

After many injection–extraction cycles, the thermal energy diffusing to the far field
becomes a progressively smaller fraction of the injected thermal energy, as its trans-
port becomes rate-limited by diffusion. As a result, the fraction of the thermal energy
injected into the system which can then be recovered tends towards unity, and the tem-
perature of the recovered water approaches the injection temperature, neglecting the
effects of heat loss through the upper and lower boundaries of the system. Similar cal-
culations can be carried out for other geometries including axisymmetric flow from
a line well; for typical injection rates, the outward advective flow will dominate the
thermal diffusion (cf. Section 11.1).

11.11 Heat loss to lenses of low permeability

The above one-dimensional picture of heat transfer in permeable rocks is simplified,
and does not account for the heat loss in the direction normal to the flow. As described
in Chapter 2, rocks may include lenses of low permeability which are bypassed by the
flow. However, the thermal diffusivity of rocks is about 5 × 10−7 m2/s. This is much
larger than the solutal diffusivity, and so the cross-stream diffusion of heat becomes
significant much sooner than the cross-stream transfer of solute.

In developing the original model of heat flow through a porous medium in Chapter 8,
we identified that the fluid and matrix remain in thermal equilibrium locally owing to
the fact that the thermal diffusion time across the grains is much shorter than the typical
travel time of the fluid across the grains. However, on larger lengthscales, character-
istic of lenses of low permeability rock, the diffusion time is longer and so we expect
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Figure 11.15 (a) Schematic of heat exchange to a series of lenses within a formation, which leads to a
reduction in the effective advection speed of the thermal signal through the formation and (b) a
schematic of the heat loss to the surrounding impermeable strata in the case of a thin permeable
layer embedded within a deeper impermeable region of formation.

that the flowing high permeability zones will change temperature first, and then cross-
streamline diffusion will cause the lower permeability zones to adjust. As a result, the
mean speed of the thermal front effectively decreases as the fluid now advects the ther-
mal energy originally contained in the matrix of both the high permeability and low
permeability zones (cf. Chapter 8); however, the shear in the velocity profile leads to
an effective dispersion of the thermal front about this mean.

For example, if there is a lens of low permeability, of thickness H and lengthscale
L � H, then the cross-lens diffusion time scales as H2/κ . If we assume that a partic-
ular layered formation consists of alternating high, h, and low, l, permeability layers,
with scale hh and hL in the cross-flow direction, we can then follow the model for
Taylor dispersion in this system (Chapter 5) to establish the long-time advection–
diffusion equation for the temperature. Assuming the flow speed in the low perme-
ability layer is a fraction kL

kh
of the flow in the high permeability layer, where kL and kh

are the permeabilities of the two layers, then the mean flow speed is

u = uhhh

(
1 + klhl

khhh

)
(hh + hl)

(11.39)

In the limit that there is negligible flow in the low permeability layer, klhl � khhh, the
mean Darcy speed averaged across both layers is then

u =

(
hh

hh + hL

)
uh (11.40)
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The mean advection speed for the temperature field is then given by u where  =
ρlCpl/(φρlCpl + (1 − φ)ρmCpm) is assumed to take the same value in each layer.

We now estimate the effective dispersion of the thermal signal. Our approach is to
define the cross-layer averaged temperature,

T(x, t) =
∫ hh+hL

0

T(x, y, t)

(hh + hL)
dy (11.41)

and the difference between the actual temperature and this cross-layer averaged tem-
perature, T̂(x, y, t) = T − T . We then aim to develop an equation for the evolution of
the heat flux through the system, noting that the cross-layer average of the thermal
advection–diffusion equation across the layers has the form (cf. Chapter 5)

∂T

∂t
+ u

∂x

∂x
= κ

∂2T

∂x2
− û

∂T̂

∂x
(11.42)

As in Chapter 5, the dispersion is quantified by the second term on the right-hand side
of (11.42) and to estimate this we require an estimate for T̂ . Again, we expect that
T̂ is controlled by the balance between the shearing of the longitudinal temperature
gradient and the cross-layer diffusion of heat, leading to the relation (cf. Chapter 5)

û
∂T

∂x
= κ

∂2T̂

∂y2
(11.43)

The flow speeds in the two layers relative to the mean are given by

û =
hL(uh − uL)

hh + hL
= f 	u for 0 < y < hh (11.44a)

and

û =
hh(uL − uh)

hh + hL
= −(1 − f )	u for hh < y < hh + hl (11.44b)

where 	u = uu − uL and f = hL/(hh + hL). Combining these expressions with equation
(11.42), we can find a general expression for the perturbation temperature field as a
function of position across the channel, subject to the simplifying assumption of zero
normal heat flux on the boundaries y = 0 and y = hu + hL. This would correspond,
for example, to a multiply layered system with alternating high and low permeability
layers, where hu and hL correspond to the half-thickness of the layers. Combining this
with the perturbation velocity, we can evaluate the dispersive flux given by the last term
on the right-hand side of (11.41),

Fdisp ≈ 2	u2H2

6κ

∂2T

∂x2
A(f ) (11.45)

where

A(f ) = 2f 2(1 − f )2 (11.46)



255 11.12 Heat loss to the surrounding formation

In the special case f = 0.5, we find A(f , hh, hL) = 1/2 and the effective transport
equation has the form

∂T

∂t
+ u

∂T

∂x
=

(
κ +

2	u2H2

48κ

)
∂2T

∂x2
(11.47)

For u ∼ 10−5−10−6 m/s, hh ∼ 1−10 m, and κ ∼ 10−7 m2/s we find De has values
in the range 10−3−10−5 m2/s and so there may be significant dispersal of the thermal
front owing to the presence of low permeability layers within the formation. With much
thinner layers, < 0.1 m wide, the longitudinal dispersion is smaller than the molecular
diffusivity, and with wider layers the dispersion becomes larger. This simplified mod-
elling establishes that provided the lenses are embedded within the flowing zone, then,
on longer timescales, they have the effect of changing the mean advection speed of the
thermal front as well as producing enhanced longitudinal dispersion.

However, if the formation is of limited extent in the cross-flow direction and is sur-
rounded by impermeable strata, then the evolution of the temperature may be different
as we explore below.

11.12 Heat loss to the surrounding formation

In the previous example, we illustrated the change in the effective heat transport speed
and dispersion in the case that there is a series of impermeable layers of finite thickness,
embedded within the porous layer. We can also envisage situations in which the aquifer
is of finite vertical extent, and loses heat to a much thicker impermeable layer of cap-
rock above and below the aquifer. In this situation, we are interested in finding the
distance beyond which the thermal signal of the injected fluid becomes depleted by
heat exchange with the surrounding formation. We consider flow in a laterally extensive
permeable layer of thickness 2H, −H < y < H, with flow in the along-layer direction
x of speed u. We assume there is a seal rock in the regions y > H and y < − H, with
thermal diffusivity κ , density ρm and specific heat Cp everywhere in the formation.

First, we develop an estimate for the distance xd(t) over which the thermal energy
in the supply fluid will diffuse from the formation into the seal rock. We suppose that
at distance x from the source, after a time t, the thermal energy has diffused into the
formation above and below the permeable layer a distance of order

yd ∼ (κ[t − tt(x)])1/2 (11.48)

where tt(x) represents the time since the thermal front reached the point x, given that
the injection commenced at t = 0 at the point x = 0. If the source supplies fluid with
speed u and temperature 	T relative to the formation, to a layer of thickness 2H then
the thermal energy supplied after time t is 2ρlCpl	THut. With the above scaling yd for
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the extent of the region of cross-layer heat loss in the surrounding impermeable rock,
we conclude that the thermal signal in the advancing fluid can only extend a distance
of order xd ∼ uH(t/κ)1/2 along the layer, in order to conserve heat.

By comparison with the one-dimensional model presented in Section 11.1, in which
we neglected heat loss from the upper and lower boundaries of the flow domain, we
infer that the heat loss becomes important once the advection distance of the thermal
front ut becomes comparable to the distance xd ∼ uH(t/κ)1/2. This occurs at the time
ta ∼ H2/κ . Subsequently the advection of the thermal energy becomes limited by
the heat loss to the neighbouring formation. In a layer of 1–10 m thickness, this time
ranges from several months to tens of years.

In order to develop an expression for the temperature profile around the permeable
layer, it is convenient to examine the typical limit, uH � κ , for which the cross-flow
diffusion distance at time ta, which scales as H/1/2 is small compared to the dis-
tance the thermal signal has advanced along the layer, which scales as uH2/κ. In this
case, for times in excess of ta, we can neglect the along-layer diffusion of heat and
approximate the heat transfer in the surrounding layers, y > H and y < − H, with the
one-dimensonal diffusion equation

∂T

∂t
= κ

∂2T

∂y2 (11.49)

while in the permeable layer, −H < y < H, the temperature satisfies

∂T

∂t
+ u

∂T

∂x
= κ

∂2T

∂y2 (11.50)

If we average across the flowing layer, in the direction normal to the flow and denote
the mean by the overline notation, then the mean temperature in the flowing layer
T(x, t) is given by

∂T

∂t
+ u

∂T

∂x
=

κ

H

(
∂T

∂y

∣∣∣∣
y=H

− ∂T

∂y

∣∣∣∣
y=−H

)
(11.51)

where the term on the right-hand side denotes the heat exchange with the non-flowing
layers. The boundary conditions are that at t = 0 the temperature in the region x > 0
is constant, T = To, while for t > 0, fluid of temperature To + 	T is supplied with
uniform speed u from a well located at x = 0 in the region −H < y < H. At y = H the
temperature and heat flux in the direction normal to the interface are conserved. For
times t � ta, we expect the temperature variations across the flowing layer to be small,
and so we make the approximation T = T(y = H) = T(y = −H) (cf. Lauwerier, 1955).
Using Laplace transforms, he showed that this problem has solution

T(x, y, t) = To + 	Terfc

(
κx/Hu + y

(κ[t − x/u])1/2

)
for x ≤ ut and |y| > H (11.52)
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while T = To for x > ut. This solution is consistent with the above scalings function
becomes of order unity when y ≤ (κt)1/2 or x ≤ Hu(τ/κ)1/2 provided t � ta.

The consequences of heat loss to the surroundings, which become important on
timescales of years if the layer is of order 10 m deep, can be very significant for the
evolution of the flow. Since the injected fluid only retains the injection temperature in a
zone close to the source then reaction fronts, buoyancy transitions and other phenom-
ena occur closer to the source, and this can change the overall distribution of the fluids
within the system. However, the principles we described earlier in the chapter in the
simplified limit of relatively deep layers still obtain, albeit on different lengthscales.
Full exploration of reacting flows in such heterogeneous rocks is a rich area for further
research.

11.13 Mixing of the injected and formation fluids on extraction

When fluid is injected into an aquifer and then recovered from the same well, there
may be some mixing of the injected fluid with the original fluid in the reservoir. As a
result some of the reservoir fluid may also be recovered from the well. In the case of a
pressure-driven flow, such mixing will be controlled by the longitudinal dispersion, in
a similar fashion to that described in Chapter 5, Section 5.7. However, in many cases,
it is likely that the composition of the liquid will differ from that naturally occurring
in the aquifer, and in that case the injected liquid may be subject to buoyancy forces as
well as the pressure-driven flow. In the case that the thermal buoyancy is comparable
to the buoyancy associated with the compositional differences, then the structure of the
current may evolve across the thermal front, in a fashion analogous to that described
earlier in this chapter (Section 11.7). However, in general, the compositional density
differences may dominate the buoyancy, and in this case we expect the injected fluid
to spread as a gravity current. In this case, the buoyancy contrast may suppress the
dispersive mixing. However, the gravitational spreading of the injected fluid is not
reversible, as it depends on the local gradient of the depth of the flow. Therefore, during
the extraction cycle, some of the formation fluid may be extracted from the well rather
than fluid in the leading edge of the spreading injected fluid.

In order to model the problem, it is convenient to consider the case of a two-
dimensional horizontal aquifer, 0 < y < H, with the current depth satisfying the
equations for a confined gravity current (cf. Chapter 9)

∂h

∂t
+

Q(t)

Hφ

∂h

∂x
= S

∂

∂x

(
h

(
1 − h

H

)
∂h

∂x

)
(11.53)

where h is the depth of the dense injected fluid, S is the gravitational speed of the
fluid, S = k	ρg/φμ and φ is the porosity. We now solve these equations subject to
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the time-dependent boundary conditions at the injection/extraction well, which relate
to the injection periods, 2nτ < t < (2n + 1)τ for which

−φSh
∂h

∂x
= Q(t) if 0 < h < H (11.54)

and

−φSH
∂h

∂x
= Q(t) at x = xs(t) where h = H for x < xs (11.55)

and the extraction periods, (2n + 1)τ < t < (2n + 2)τ , for which

φSh
∂h

∂x
= Q if 0 < h < H (11.56)

and

∂h

∂t
= 0 h = 0 (11.57)

Numerical solution of the system of Eqs. (11.53–11.57) and laboratory experiments
using a Hele–Shaw analogue system (Figure 11.17) show that, at long times, the flow
establishes a quasi-steady oscillating regime near the well with the flow deepening dur-
ing injection and thinning during extraction (Figure 11.16). The shapes of the current
after 1, 2 and 3 injection and also extraction cycles are shown in Figure 11.17. It is seen
that during the injection phase, the dense red injected fluid spreads out under gravity
and, during the subsequent extraction cycle, once the depth of the injected red fluid
near the source falls off, some of the original aquifer fluid is also produced at the well.

Analysis of the numerical solutions shows that the speed at which the current slowly
advances into the far field is given by the scaling (SH/t)1/2. This is in fact equivalent to
the exchange flow that would develop if there were a reservoir of dense fluid of depth

Figure 11.16 Shape of the region of injected liquid (a) during the initial injection and extraction
cycle, which runs from time 0 to time 2, and (b) after a number of episodes of cyclic injection and
extraction of fluid, illustrating the location of the injected liquid at the end of the injection cycle. The
number of injection plus extraction episodes is shown on the individual lines. After Dudfield and
Woods (2014).
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t’ = 1

t’ = 3

t’ = 5

t’ = 2

t’ = 4

t’ = 6

Figure 11.17 Experimental measurement of the current at the end of the injection and extraction
phases of the first 3 cycles; the experiment was carried out using a Hele–Shaw cell with two layers
of glycerol, the lower of which was more dense and dyed red. This lower fluid was periodically
injected into the cell. After Dudfield and Woods (2014). A black and white version of this figure will
appear in some formats. For the colour version, please refer to the plate section.

FoH < H at x = 0. In that case, the far-field flow spreads as a self-similar current in
which the depth has the form

F = Fof

(
ζ = ζo

x

(SHt)1/2

)
(11.58)

where S = k	ρg/μφ, and for which f satisfies the dimensionless governing equation
(cf. Eq. 11.53 with Q = 0)

−ζ

2

df

dζ
=

d

dζ

(
f

df (1 − f )

dζ

)
(11.59)

with boundary conditions

f = 1 at ζ = 0 and f = 0 at ζ = ζnose (11.60)

The solution to this problem is then determined by applying the global mass balance

f
df

dζ
|0 =

∫ ζnose

0
fdζ (11.61)

For each period of injection τ , and flux Q, there is a value of Fo for which the exchange
flow is directly equivalent to the leakage flux from the oscillatory flow (see Dudfield
and Woods, 2014).

As a consequence of this continuing but waning flow of injected fluid to the far field,
there is a corresponding return flow of original formation water to the production well,
which is produced during each extraction cycle. The concentration of this formation
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Figure 11.18 Variation of the concentration of original formation fluid which is produced at the well
during each of the first five extraction cycles and also during the 50th and 500th extraction cycles.

fluid may be calculated by evaluating the quantity

C =
Q − QI

Q
(11.62)

from the above solutions, where QI = −uh is the flux of injected fluid which is then
extracted at the source. Since the flow from the far field gradually decreases from cycle
to cycle, the flux of formation fluid produced also decreases with time. As a result, the
instantaneous concentration decreases with time as shown in Figure 11.18.

11.14 Exercises

1. Show that if water of temperature To is injected into a hot rock of temperature
To +	T , at a slowly decaying rate Q/t1/2 then in one dimension, the temperature in
the injected fluid may be described by a similarity solution T(x/(2κt)1/2) in the case
with no boiling. If 	T is sufficient that To + 	T exceeds the boiling temperature,
TB > To, find an implicit expression for the fraction of the injected liquid which
boils.

2. Develop a model system of equations for a gravity current supplied by a constant
flux of fluid spreading through a porous medium on a horizontal plane in which
the relatively dense injected fluid is hotter but more saline than the fluid in the
formation. You may assume that the density of the injected fluid increases as it
cools. Solution of these equations requires numerical methods.

3. A current of CO2 is injected with flux Q per unit length along the well into a hot
subsurface reservoir, with a sloping upper boundary. If the CO2 is initially of tem-
perature To − 	T relative to the reservoir, of temperature To, as would typically
be the case following injection from the surface, describe the overall structure of
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the gravity current, including the depth of the hot and cold regions of the current
and the location of the head and of the thermal front within the current. You may
assume the buoyancy of the hot CO2 is 	ρhg/ρo and of the cold CO2 is 	ρcg/ρ. If
the upper boundary of the reservoir has a capillary entry pressure 	p, find the criti-
cal conditions on the injection rate that the CO2 can break through the seal near the
well, in the cold region of the flow, but not in the distal region beyond the thermal
front.



12 Compressibility and gas flows

In most of the analysis to this point, we have assumed the system remains incom-
pressible. In considering flows between injector and producer wells this is appropriate,
provided the injected volume matches the extraction volume; similarly, in our analysis
of buoyancy-driven flows, we have considered both confined and unconfined flows, but
assumed that there is a drainage radius or outflow well to accommodate the volume of
fluid injected into the system. In a laterally extensive aquifer, the finite volume flux
which is injected into the field may be accommodated by the compressibility of the
rock and the fluid. Owing to the highly incompressible nature of both the rock and also
the fluids in the system, the lengthscale over which compressibility effects occur is
typically much greater than that of the flow, and this leads to the concept of a drainage
radius, far from a well, at which the pressure is nearly constant.

In order to understand the evolution of the pressure field, we can model the rock and
fluid as being compressible, with

cr =
1

φ

dφ

dp
and cl =

1

ρl

dρl

dp
(12.1)

representing the compressibility of the rock matrix and the fluid, where the effective
porosity of the formation changes as the grains compress or expand. The conservation
of mass then takes the form

φoρl(cr + cl)
∂p

∂t
= −∇.(ρlu) (12.2)

and combining this with Darcy’s law for the flow, we obtain

φocρl
∂p

∂t
= ∇.

(
ρlk

μ
∇p

)
(12.3a)

for a single phase flow where c = cr + cl. If the pressure changes are small compared to
the background pressure, we can linearise the right-hand side of the equation and find

∂p

∂t
=

k

cφμ
∇2p (12.3b)

262
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This is a diffusion equation with diffusivity D = k
cφμ

. For permeability k ∼ 0.01−
1.0 Darcy, viscosity 0.001 Pa s, density ∼ 103 kg/m3, and compressibility c ∼ 10−9 Pa−1,
the pressure diffusivity D ∼ 0.1−10.0 m2/s. This suggests pressure signals diffuse a
distance of 100 m in times of a few hours to a day.

For the problem in which fluid is injected into a laterally extensive reservoir, of
finite vertical extent, at a constant rate, from a central well, if we assume there are no
production wells, we can change variables to the similarity variable,

η = r

(
φμc

4kt

)(1/2)

(12.4)

and explore the evolution of the axisymmetric pressure field with time, where r is the
distance from the well. At the well we impose the boundary condition that

2πkrw

μ

∂p

∂r

∣∣∣∣
rw

= q (12.5)

where q is the volume flux per unit length of a vertical well through the formation,
and rw is the well radius. We find that p̂ = p(r, t) − p(∞, t), the pressure, relative to the
far-field pressure, follows the solution

p̂(r, t) =
μq

4πk

∫ ∞
φμcr2

4kt

1

s
exp(−s)ds (12.6a)

where the flow rate per unit depth is q and rw is the well radius in the limit r2 �
4κt/φμc̄. With pressure diffusivity of 0.1−10 m2/s and a typical flow rate of 10−5 m2/s
per metre of well-bore, the pressure signal spreads at a rate which is two to three orders
of magnitude faster than the fluid speed, so the pressure front far outruns the fluid front
and near the well the flow is essentially incompressible. With a gravity-driven flow, the
effective non-linear diffusivity of the buoyancy-driven flow (Chapter 9), which is given
by k	ρgH

φμ
, has typical value of order 10−5−10−7 m2/s, which is again much smaller,

confirming the picture that the pressure fronts propagate far beyond the injected fluid.
We infer that the near-well flow is essentially given by the confined aquifer gravity
current solutions of Chapter 9, while the far-field pressure follows the classic axisym-
metric pressure solution (12.4) (see Mathias et al., 2010, for more details). In the limit
r2 � 4κt/φμc̄, the pressure at the well (12.6) has the asymptotic form

p̂(rw, t) =
μq

4πk

[
ln(t) + ln

(
4k

φμc̄r2
w

)
− 0.5772

]
(12.6b)

so that the pressure at the well increases with ln(t).
In many oil reservoirs, the pressure is maintained close to the original pressure in

order to maintain the flow. If the pore pressure of the fluids decreases, the permeability
of the formation can decrease as more of the overburden is supported by the matrix,
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and this in turn reduces the flow rate. In addition, as the reservoir pressure decreases, it
becomes progressively harder to lift the produced fluids to the surface from the base of
the well. As a result, primary production from oil fields associated with decompression
drive may only lead to production in the order of 10% of the resource. However, with
the production of natural gas, which is much more mobile, reservoirs are often drawn
down to much lower pressures. In that case, it is often necessary to account for the
effects of compressibility. This leads to a different family of compressible flow prob-
lems in the reservoir which we now consider. These flow regimes have relevance for
gas production from depleting gas fields, as well as production from lower permeabil-
ity rocks containing so-called ‘tight’ gas and also shale-gas formations. Analysis of
some of these compressible problems forms the main thrust of this chapter.

12.1 Idealised one-dimensional gas production

The equation of state for natural gas includes a compressibility factor Z, and is given
by the form p = ρRZT where Z slowly varies with pressure. In general, the gas is much
more compressible than the formation, and so if we combine the equation of state with
Darcy’s law, and assume that Zμ is approximately constant over the range of pressures
within the field, then we obtain the mass conservation relation in approximate form (cf.
Eq. (12.3))

∂p

∂t
=

k

φμ
∇ (p∇p) (12.7)

This non-linear diffusion equation for the pressure has effective diffusivity given by

α =
kpo

φμ
(12.8)

in terms of the permeability and porosity of the formation, k and φ, and the viscosity
of the gas, μ, with po a scale for the pressure. We now explore solutions corresponding
to pressure-driven production of the gas as it flows into a production well. This has
two phases. Initially, there is a phase of depletion during which time the far bound-
ary of the system cannot be felt by the flow, and subsequently there is a phase in
which the decompression front has reached the far boundary of the reservoir and the
pressure in the overall system then falls. The former regime may be modelled by not-
ing that the lengthscale of the decompression grows in time, leading to a self-similar
behaviour. For one-dimensional flow into a line well, we can seek a similarity solution
of the form p = pof (η), where f is dimensionless, po is the initial reservoir pressure,
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and f (0) = 1 − 	p/po where 	p is the drawdown (i.e. the reduction) of pressure at the
well. If we introduce the similarity variable

η =
x

(2αt)1/2 (12.9)

then the dimensionless pressure satisfies the shape equation

f
d2f

dη2 +

(
df

dη

)2

+ η
df

dη
= 0 for η ≥ 0 (12.10)

with the boundary conditions that f (0) = 1 − 	p/po and f → 1 as η → ∞. In this
solution, we impose the condition that the reservoir pressure at the initial time t = 0
has value f = 1. The similarity solution applies until such time that the pressure signal
reaches the far boundary of the reservoir, at x = L say. In this self-similar phase, the flux
at the origin, q = qsim, decreases with time as

qsim(t) =
kpoρo

μ
f (0)

df

dη

∣∣∣∣
o

1

(2αt)1/2 (12.11)

where, numerical solution shows that, in the limit p(0, t) = 0,

limη→0

[
f (η)

df

dη

]
≈ 0.47 (12.12)

This solution is shown in Figure 12.1 with the long-dashed lines. Once the pressure sig-
nal has reached the far boundary of the system, x = L, at a time of about 0.15L2/α, the
far-field pressure begins to fall below the initial value. There is now a fixed lengthscale
over which the diffusion occurs and the flow follows a separable solution in which the
pressure retains a particular spatial profile, but the amplitude decreases in time. To find
this solution, we seek a separable solution of the form

p(x, t) = poh(t)g(x) (12.13)

by substituting into the governing equation, Eq. (12.7), we find that

h(t) =
(

1 +
cα

L2 t
)−1

(12.14)

and g(x) is given implicitly by the integral relation

x =
L

a

∫ g(x)

0

τdτ

(1 − τ 3)1/2 ; x ≤ L ; g(x) ≤ 1 ; g(1) = 1 (12.15)

where

c =
3a2

2
; a =

∫ 1

0

τdτ

(1 − τ 3)1/2 =
1

3
B

(
1

2
,

2

3

)
≈ 0.862 (12.16)

where B(a, b) is the β function.
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Figure 12.1 Profile of gas pressure with time in a decompression-driven flow. Successive curves
denote the pressure of the reservoir, with the long-dashed lines denoting the early time asymptotic
behaviour and the short-dashed lines denoting the long-time asymototic behaviour.

This solution shows that during this phase the flux decays in time as

qsep(t) = a
kpoρo

Lμ

[
1

1 + cαt
L2

]2

(12.17)

This solution corresponds to the short-dashed lines shown in Figure 12.1, as the pres-
sure at the far field begins to fall off.

The above solutions for the separable flow regime, in the full non-linear problem,
can be tested using an analogue Hele–Shaw experiment, in which a layer of syrup is
allowed to drain from the cell under gravity by removing the endplate of the Hele–Shaw
cell (Figure 12.2). Although this is an analogue system, it confirms the mathematical
analysis of the draining flow, and helps visualise the flow pattern. In the Hele–Shaw
model the depth of the flow corresponds to the pressure (after Farcas and Woods,
2007).

The relevance of these solutions for interpreting field data can be shown by com-
paring the evolution of the well pressure with time from field data with the solution
for h(t), Eq. (12.14). In the second phase of flow once the boundaries of the domain
influence the flow and the separable solution applies, then Eq. (12.14) shows that the
slope of the rate of change of the inverse well pressure reflects the effective diffusivity
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Figure 12.2 Analogue experiment of gas draining from a porous layer using syrup draining from a
Hele–Shaw cell, with an initial constant depth in the cell. A black and white version of this figure
will appear in some formats. After Farcas and Woods (2007). For the colour version, please refer to
the plate section.

of pressure within the formation. As an example of this, in Figure 12.3, we present a
graph showing the variation with time of the inverse of the pressure in a North Sea gas
well. One might argue that these data shows a trend which varies linearly with time as
predicted by the model. With the model one can then quantify the long-time average
flow properties of the reservoir by matching the rate of change of the inverse pressure
with time. In making such comparisons, there are differences between the coefficients
for one-dimensional flow (presented above) and the analogous radial flow solutions
which have a similar time-dependence to (12.14), and this should be included in the
uncertainty analysis of the inversion.

Mindful of the approximations in modelling the gas as an ideal gas, with constant
viscosity, this is a non-linear solution, corresponding to the case in which the pressure
at the well falls to zero. It is interesting to note that in the case that the pressure at the
well is only a small value less than the pressure in the far field, εpo where ε � 1, the
governing equations can be linearised to the form

∂	

∂t
= α

∂2	

∂x2 where p = po(1 + ε(	 − 1)) with ε � 1 (12.18)

Now, the most slowly decaying mode of the power series solution

∞∑
n=1

an exp
(

− (2n + 1)2π2αt

4L2

)
sin

(
(2n + 1)πx

2L

)
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Figure 12.3 Comparison of the time-dependence of the gas production from a North Sea gas field
with the simplified model, obtained by plotting inverse pressure as a function of time. The data
appear to follow an approximate linear trend as suggested by the line. The intermittent series of
lower values in the data may correspond to well shut in events, which are events when the flow is
stopped, and the well closed during which time the well pressure increases.

for the problem for which the boundary conditions have the form

	(0, t) = 0 and
∂	

∂x

∣∣∣∣
x=L

= 0 for t > 0 and 	 = 1 at t = 0 (12.19)

is given by

	1(x, t) =
4

π
exp

(
−π2αt

4L2

)
sin

(πx

2L

)
(12.20)

12.2 Well selection

Although the above solutions are simple, they have sufficient structure to provide some
insight into the selection of well spacing to maximise the economic value of a gas field.
To do this, we can observe that the value of the gas decays exponentially with time,
with a decay rate λ which depends on the interest rate, so that the total mass produced,
Pr, and the value of this production, V , can be approximated in terms of the sum of the
early time self-similar solution for the production and the late time separable solution
for the production, once the flow has reached the far boundary, in the following form
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Pr =
kpoρo

μ

⎡
⎣∫ 0.15 L2

α

0

0.47

(2αt)1/2 dt +
∫ ∞

0.15 L2
α

α
[
1 +

cαt

L2

]−2
dt

⎤
⎦ (12.21)

V =
kpoρo

μ

⎡
⎣∫ 0.15 L2

α

0

0.47 exp(−λt)

(2αt)1/2 dt +
∫ ∞

0.15 L2
α

exp(−λt)
[
1 +

cαt

L2

]−2
dt

⎤
⎦ (12.22)

By rescaling time, the latter integral can be shown to be a function of the parameter

Y =
0.15λL2

α
(12.23)

which compares the pressure diffusion time across the reservoir with the decay time-
scale for the value of money. The parameter Y allows us to recognise how the value of
the produced gas decays rapidly as the time to produce, which scales as L2/α, decreases
below the economic time, 1

λ
, over which the gas has value, as seen in Figure 12.4.

Such calculations are valuable in helping to design well spacings and well numbers
in a gas field, since the value of the produced gas can be compared with the cost of
the wells. As the number of wells increases, the cost increases but the production rate
also increases. The cost is typically expended in the early part of a project, and then
the gas is produced, leading to an optimal number of wells to maximise value. As an
extension of the model (12.21–12.22), one can add the cost for each well, so that the
model selects an optimal number of wells based on the time-weighted value of the
production from each well combined with the cost (Figure 12.5).

Value

1.0

0.5

0.0
0.1

Y = 0.15 lD2/a

1.0 10.0

Figure 12.4 Illustration of the ‘value’ of the gas in a field, scaled relative to the value of the total
volume of gas if produced today, as a function of the control parameter Y which represents the ratio
of the production time to the decay time of the value of money. If Y is large the value of the future
production is very small, and the development project becomes much less valuable.
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Length
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far apart
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Height

Net
value

(b)

(a)

Figure 12.5 (a) Typical array of wells in a low permeability gas field, each designed to drain the gas
from the permeable layer, and (b) a calculation of the value of each well spacing in terms of the
production rate, the well cost and the economic discount rate. This leads to prediction of an optimal
well spacing.

Furthermore, one could introduce a time delay in the production from successive
wells, to account for the finite time of development of each well compared to the
production life of the wells; this is becoming an increasingly important factor in less
permeable rocks presently being developed. If the wells are drilled in sequence, and
the time between drilling successive wells is much shorter than the diffusion time
0.15α/L2, where L is the well spacing, then the solutions described above apply to
leading order. As a result, the sum of n wells, which are drilled in order, would have
value �i = n

i = 1 exp(−iλτ)V(1) where V(1) is the value of the first well, and τ is the time
delay between wells. This may be approximated as V(1)/(1−exp(−λτ)), with λτ � 1
provided n > 1/λτ .

12.3 Radial flow and fracking

The above calculation illustrates the flow with a series of linear wells, assuming there
is one-dimensional flow into each well. The models can also be used to illustrate the
benefits of fracking in order to help produce a greater flux into the well. Fracking is
the process by which a fracture is generated around a well through the pressurisation
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Fracture
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Figure 12.6 (a) Illustration of the vertical plane through a fracture intersecting a vertical well; (b)
horizontal plane, including the vertical well, showing radial inflow in the case with no fracture;
(c) horizontal plane, including the fracture, showing the inflow to the fracture and then into the well.
Section A–A’ is common to panels (a) and (c).

of the well above the fracture strength of the surrounding rock. Typically the fractures
propagate in the direction of the maximum principal stress, thereby forcing the rock
apart in the direction of minimum principal stress. If a horizontal well is drilled and a
fracture is produced as shown in Figure 12.6c, then the flow from the formation will
travel directly into the fracture and then to the well. This leads to an approximately
one-dimensional flow around the fractures as indicated in the schematic, rather than the
radial inflow if the well has no fracture (Figure 12.6b). The resistance in the fracture
will typically be much smaller than in the formation.

If we assume that the fracture extends a distance R from the well, and that it drains
a zone of width R normal to the direction of the fracture (in the case that there are
multiple vertical wells spaced 2R apart and hence each has drainage scale R (Figure
12.7), then, from Eq. (2.20), the flow from one side of the fracture has a long-time flux

QH = 2
k	p

μ
exp

(−απ2t

4R2

)
(12.24)

per unit length along the fracture in the direction normal to A–A’. In contrast, if this
region of the reservoir was flowing directly into the well with no fracture then the
flow would be axisymmetric (Figure 12.6b) governed by the axisymmetric radial flow
equation
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r
∂p

∂t
=

k

μφc̄

∂

∂r

(
r
∂p

∂r

)
(12.25)

where c̄ is the compressibility. At long-times we seek a power series solution of the
form

po − p(r, t) = 	p

(
1 −

∞∑
n=1

anfn(r/R, λn) exp
(

−λnαt

R2

))
(12.26)

where the initial condition requires that
∑∞

n=1 anfn(r/R, λn) = 1. The boundary con-
dition that the pressure is drawn down at the well requires fn(ro/R, λn) = 0 where ro

is the well radius, while the condition of zero flux across the drainage radius at r = R
requires d

dr fn(1, λn) = 0. The solution to this problem may be written in terms of the
variable r̂ = r/R, as a combination of Bessel functions

fn(r̂, λn) = Yo(λ
1/2
n r̂o)Jo(λ

1/2
n r̂) − Jo(λ

1/2
n r̂o)Yo(λ

1/2
n r̂) (12.27)

where λn is the solution of the equality

Y ′
o(λ

1/2
n )Jo(λ

1/2
n r̂o) = J′

o(λ
1/2
n )Yo(λ

1/2
n r̂o) (12.28)

In figure 12.7 we compare the magnitude of the most slowly decaying mode, λ1, as a
function of r̂o = ro/R, with the most slowly decaying mode of the flow into a fracture
(Eqn 12.20), for a fracture of comparable length to R. The figure illustrates the benefit
of fracking a well in terms of accelerating the production. It is important to note that
this is a simplified picture of the benefits of fracking in that typically, around the well,
there is a damaged zone of reduced permeability, produced during the drilling process.
This region requires a larger pressure gradient to carry the same flow, and hence further
reduces the flux into a radial well.

Radial flow leads to a smaller production rate than the linear flow because of the
convergence of all the streamlines in the case of radial flow. As a result, in gas fields
with low permeability rock, it is optimal to generate fractures around the wells, so that
the gas can flow into a planar fracture, with relatively low resistance, and then flow
into the well. This can substantially increase the flow rate. The main control on the
production is then given by the linear flow model with flow in the direction normal to
the fracture. This is typically the strategy with vertical wells. Horizontal wells offer
further opportunity for fracturing in that a series of regularly spaced fractures can be
placed normal to the direction of the well. The flow into each of the fractures can
substantially enhance the flow compared to the axisymmetric flow directly into the
well (Figure 12.8).

In the next section, we also illustrate how in layered formations, cross-flow between
high and low permeability layers provides access to a much larger volume of reservoir,
in a somewhat similar fashion to fracture–matrix flow.
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Figure 12.7 Variation of the decay time 1/λ1 corresponding to the most slowly decaying mode of the
radial flow as a function of the drainage radius compared to the well radius. For comparison, the
decay time 4/π2 for the linear fracture is also shown.

Horizontal well

Fractures
normal
to well

Figure 12.8 Illustration of the flow into a series of fractures which have been produced normal to a
horizontal well in order to increase the surface area contacted by the well.

12.4 Multiple-layer formations

As shown in Chapter 2, many sedimentary reservoirs have two or more parallel layers
of different permeability, each of which may intersect a well. In some cases there may
be a thin layer of seal rock between the layers, while in other cases, the layers may be
directly in contact. If we consider the case in which a fracture from a well cuts across
the layers (Figure 12.9), then initially, the flow in each layer will migrate directly to the
fracture and hence the well. However, since the high permeability layers decompress
more rapidly, cross-layer pressure gradients will build up in the reservoir, and this will
lead to cross-layer flow. The time for the cross-layer flow from the low to the high
permeability strata scales as τe = H2/αv, where αv = kvpo/φμ refers to the effective
cross-layer gas diffusion coefficient in the low permeability layer, of thickness H. The
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Figure 12.9 Schematic illustrating the flow from the low permeability layer into the high
permeability formation and then the well, in addition to directly from the low permeability layer into
the well. At early times, the low and high permeability layers behave independently, but once the
pressure signal has diffused across the low permeability layer, the flow is dominated by the higher
permeability layer and this accesses the gas in both the high and low permeability layers.

timescale for the horizontal drainage flow directly into the well scales as τd = L2/αh for
gas located a distance L from the well, where αh = khpo/φμ. Once L is sufficient that
(L/H)2 > kh

kv
, the gas tends to migrate cross-layer into the high permeability layer and

then flows into the well, rather than flowing directly along the low permeability layer
(Figure 12.10).

At early times, since the gas flow is primarily directed to the fracture and hence the
production well, the flux is approximately equal to the sum of the fluxes in each of the
layers, as given by the similarity solution in each layer. which may be expressed, using
Eqs. (12.11) and (12.12), in terms of the flow in one of the layers, layer h, according to
the relation

Q =
khpoρoHh

μ

[
1 +

Hl

Hh

(
kh

kl

)1/2
]

0.47

(2αht)1/2 (12.29)

where Hh and Hl are the thicknesses of the high and low permeability layers.
At longer times, the pressure in each layer equilibrates owing to the cross-layer flow,

and the total flow is then given by

qequil = a
poρo

μ
khHh(1 + KH)

[
1 +

cαt

L2

]−2

(12.30)
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Figure 12.10 Pressure contours within a two-layer flow domain, illustrating the variation of the
pressure with position in the formation. Images are shown for three times. The x-axis is rescaled at
each time, according to the distance the pressure signal has travelled to allow for comparison of the
shape of the pressure profile across the layer. At early times, there is a steep cross-layer gradient
between the high and the low permeability zone, as the gas migrates directly to the well from each
layer, essentially independently. At the intermediate time, gas has time to diffuse between the layers,
with gas from the low permeability layer now being produced directly at the well but also through
the high permeability zone. At long times, the pressures are very similar at each position from the
well, and the main part of the gas production from the low permeability zone is through the high
permeability formation. After Farcas and Woods (2006).

where the effective diffusivity is given by the expression

α =
khpoρoHh

φμ

(
1 + KH

1 + H

)
(12.31)

where K = kl/kh and H = hl/hk. Here the mean permeability is given in terms of the
arithmetic average of the two layers, with the same pressure gradient, and the mass of
gas being accessed is the mass in both the high and low permeability layers.

12.5 Shale gas

Shale-gas reservoirs are extremely low permeability systems, containing very fine silt
particles, organic matter and some pore space containing gas. There is also some
adsorbed gas on the solid surfaces and there is likely some gas dissolved within the
organic material. As the pressure falls, there will be a release of dissolved and adsorbed
gas from the solid material. The release of the gas is controlled by the equilibrium
between the free gas pressure and that of the gas adsorbed in the solid material and
this is often represented by a Langmuir isotherm which is measured for a particular
sample of the material (Figure 12.11). The structure of the shale includes small pores,
fractures and very fine solid grains, with the characteristic lengthscales being on the
range of microns, as illustrated in Figure 12.12. The transport mechanism for the gas
moving through the shale likely involves a combination of diffusion and flow through
the micro-pores, at the smallest scales, with Darcy flow becoming established in the
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Figure 12.11 Illustration of the form of a Langmuir isotherm for a model shale-gas deposit,
indicating how the gas content in the formation is partitioned between the free gas in the pore space
and the gas adsorbed in the solid.

larger fractures and pores, although this is presently an area of active research, and
the controls on the flow are not fully understood. However, for sufficiently slow flow
that the micron-scale processes are not rate limiting, one can envisage a source term in
which the rock locally adjusts to the Langmuir isotherm for that pressure, leading to
an equation for mass conservation

∂p

∂t
+

dM

dp

∂p

∂t
=

k

φμ

∂

∂x

[
p
∂p

∂x

]
(12.32)

where α = kpo/φμ is the effective diffusivity for the flow through the formation, based
on an effective permeability for the macroscopic Darcy-type transport through the
material. In many cases the source term is modelled using a Langmuir isotherm, which
has the form

M =
αp

p + β
(12.33)

and leads to a prediction of the gas release with pressure, as illustrated in Figure 12.11.
In the case of small pressure changes in the flow, we can linearise the Langmuir

relation, and re-cast the problem using solutions for the problem of gas production
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Figure 12.12 Illustration of a shale sample showing the very layered, fine structure of the rock.
A black and white version of this figure will appear in some formats. For the colour version, please
refer to the plate section.

considered earlier in this chapter, but with a modified value of diffusion coefficient

α̂ =
α

1 + dM(po)
dpo

(12.34)

However, with non-linear fluctuations in pressure, the full equation (12.32) requires
numerical solution. This can be achieved in a large domain using a similarity solution
for the initial flow, with the same variable as above, η = x/(αt)1/2, leading to the
ordinary differential equation

−η

(
1 +

dM

dp

)
dp

dη
= 2α

d

dη

[
p

dp

dη

]
(12.35)

However, this now requires numerical solution of the ordinary differential equation to
calculate the initial phases of the flow using a model for the Langmuir isotherm as
measured in the specific formation.

In many shale-gas deposits, the permeability of the formation, as calculated in terms
of flow through samples of the formation, is very small, so that with simple decompres-
sion flow, the flux is negligible. As a result, the process of fracking has been used to
accelerate the release of the gas. The fractures provide a pathway for the gas from the
rock immediately around the fractures to the well. Beyond the fractures however, the
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flow is controlled by the very slow processes of desorption, diffusion and flow through
the very small matrix grains, and this can ultimately limit the accessible mass of gas.

12.6 Exercises

1. If there is a zone of damaged rock around a well-bore of radius αro(> ro), where ro

is the well-bore radius, and with permeability βk where k is the original permeabil-
ity, calculate the gas flow in a steady-state flow. You may assume the pressure in the
well is maintained at a pressure 	p lower than that at a radius R(> αro) from the
well, where 	p is much smaller than the reservoir pressure. Compare the fractional
reduction in the flow as β changes from 1.0 to 0.1.

2. Fluid is injected into a two-layer reservoir, with layers of depth H1 and H2 and
permeability k1 and k2. Using the model for compressible flow, calculate how the
flow is divided between the two layers, assuming the pressure at the well in each
layer is the same.
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In this volume we have explored a series of problems relating to flow in porous rocks
with a particular focus on problems of relevance to industry and the environment.
Owing to the vast array of processes which can arise with flow in porous rocks, espe-
cially with viscosity contrasts between different fluid phases, and applied pressure,
capillary pressure and buoyancy forces driving the flow, there are many more prob-
lems which could be discussed. However, the present volume serves to introduce the
reader to a range of these problems and to the use of different mathematical techniques,
especially the development of similarity solutions, to help expose the key physics and
in particular the scaling laws which control the time- and lengthscales for specific
processes.

In moving forward in the subject, the combination of careful laboratory experi-
ments with simplified mathematical analysis should continue to serve the community in
exploring new physical processes, and in developing leading order quantitative descrip-
tions of many flow problems. These approaches also provide an invaluable comple-
ment to numerical solution, and provide reference cases with which to test numerical
solutions. However, ultimately for engineering application, numerical models will also
need to be developed to capture some of the controls associated with specific boundary
conditions and shapes, and non-linear evolution of the flows.

Important and emerging areas relate to problems in which the deformation of the
porous layer has a dominant influence on the flow, and the continuing challenge of
describing flows in complex heterogeneous rocks. In particular, many future hydrocar-
bon resources lie in heterogeneous rock, and accurate modelling of the flow in these
systems needs to account for the heterogeneity and associated dispersion. Given the
inevitable lack of detailed quantitative data constraining the flow properties of such
systems, models with appropriate levels of parameterisation, capturing the geological
correlation scales, which enable complete assessment of the uncertainties will become
increasingly relevant. Other important problems include the development of a more
complete understanding of the flow processes in both very low permeability rocks host
to gas and some oil, and also the flow of very viscous oil in tar-sand deposits. In the
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emerging area of carbon sequestration, the acquisition of new field data will be key
for continued development of the science and also the development of inverse models
to use observations of the evolving spatial distribution of CO2 and infer the effective
flow properties of the host formation (see Dudfield and Woods, 2013). Finally, given
the magnitude of the resource, it would be fascinating to develop new insights into the
controls on the possible dissociation of methane hydrates within porous layers and the
ensuing flow of the methane.



References

Allen, J. R. L. (2001). Principles of Physical Sedimentology. Caldwall, NJ: Blackburn Press.
Barenblatt, G. (1996). Dimensional Analysis, Intermediate Asymptotics and Self-similarity.

Cambridge: Cambridge University Press.

Bear, J. (1972). Dynamics of Fluids in Porous Media. New York: Elsevier.
Bear, J. and Cheng, A. (2010). Modeling Groundwater Flow and Contaminant Transport. New York:

Springer.

Behbahani, H., DiDonato, G. and Blunt, M. (2006). Simulation of counter-current imbibition in water
wet fractured reservoirs. J. Petrol. Sci. Eng., 50, 21–39.

Berkowitz, B. (2010). Dispersion in Heterogeneous Geological Formations. New York: Springer.

Berkowitz, B. and Scher, H. (1997). Anomalous transport in random fracture networks. Phys. Rev.
Lett., 79, 20.

Berkowitz, B. and Scher, H. (2001). Application of continuous time random walk theory to tracer test
measurements in heterogeneous and fractured media. Ground Water, 39, 583–604.

Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M. and Lyle, S. (2007). Modelling carbon
dioxide accumulation at Sleipnir: implications for underground carbon storage. Earth Planet.
Sc. Lett., 255, 164–176.

Bijejic, J., Muggeridge, A. and Blunt, M. (2004). Pore scale modeling of longitudinal dispersion.
WRR 2004, WR003567.

Boait, F., White, N., Bickle, M., et al. (2012). Spatial and temporal evolution of injected CO2 at
Sleipnir field, North Sea. J. Geophys. Res., 117, B03309.

Bodvarsson, G. S., Benson, S. and Witherspoon, P. (2012). Theory of the development of geothermal
systems charged by vertical faults. J. Geophys. Res., 87, 9317–9328.

BP (2013). BP Statistical Review of World Energy. Available at: www.bp.com/statisticalreview.

Brooks, R. and Corey, A. (1959). Hydraulic properties of porous media. Hydro Paper No. 5, Colorado
State University.

Cardoso, S. and Woods, A. W. (1993). The formation of drops by viscous instability. J. Fluid Mech.,
289, 351–379.

Chiles, J. P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. New York: Wiley.

Corey, A. T. (1954). The interrelations between gas and oil permeabilities. Producers Monthly, 19,
38–41.

Dagan, G. (1989). Flow and Transport in Porous Formations. New York: Springer-Verlag.

Delgado, J. M. P. Q. (2007). Longitudinal and transverse dispersion in porous media. Trans. I. Chem.
E., Supplement 9A, 85(9), 1245.

Del Ioio, G. and Woods, A. W. (2014). Instability of an axisymmetric porous bed through deformation
of the boundaries. Manuscript subjudice. BP Institute, University of Cambridge.

281

www.bp.com/statisticalreview


282 References

DeLoubens, R. and Ramakrishnan, T. (2011). Analysis and computation of gravity-induced migration
in porous media. J. Fluid Mech., 675, 60–86.

Dudfield, P. and Woods, A. W. (2014). On the periodic injection of fluid into, and its extraction from,
a confined aquifer. J. Fluid Mech., 755, 111–141.

Dudfield, P. and Woods, A. W. (2013). On the use of seismic data to monitor the injection of CO2
into a layered aquifer. Earth Planet. Sci. Lett., 368, 132–143.

Dullien, F. A. L. (1991). Porous Media, Fluid Transport and Pore Structure. Waltham, MA: Academic
Press.

Eames, I. and Bush, J. (1999). Longitudinal dispersion by bodies fixed in a potential flow. Proc. Roy.
Soc. A, 455 (1990), 3665–3686.

Farcas, A. and Woods, A. W. (2007), On the extraction of gas from multilayered rock. J. Fluid Mech.,
581, 79–95.

Farcas, A. and Woods, A. W. (2009). The effect of drainage on the capillary retention of CO2 in a
layered permeable rock. J. Fluid Mech., 618, 349–359.

Farcas, A. and Woods, A. W. (2013). Three dimensional buoyancy driven flow along a fractured
boundary. J. Fluid Mech., 728, 279–305.

Farcas, A. and Woods, A. W. (2014). Buoyancy driven dispersion in a layered permeable rock.
Manuscript subjudice. BP Institute, Cambridge University.

Freeze, R. A. and Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice Hall.
Fried, J. J. and Cambarnous, M. A. (1971). Dispersion in porous media. In V. Show (ed.), Advances

in Hydroscience, 7. New York: Academic Press, pp. 169–282.
Furtney, J. and Woods, A. W. (2014). On the difference in spatial distribution of mean and variance

in well placement problems. Manuscript BPI.
Gelhar, L. W., Welty, C. and Rehfeldt, K. R. (1992). A critical review of data on field scale dispersion

in aquifers. Water Resour. Res., 28(7), 1955–1974.
Gerritsen, M. G. and Durlofsky, L. J. (2005). Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid

Mech., 37, 211–238.
Green, C. and Ennis-King, J. (2013). Residual trapping beneath impermeable barriers during buoyant

migration of CO2. Transport Porous Med., 98(3), 505–524.
Gunn, I. and Woods, A. W. (2011). On the flow of buoyant fluid injected into a confined, inclined

aquifer. J. Fluid Mech., 672, 109–129.
Haward, L. N. (1964). Convection at high Rayleigh number. In H. Gortler (ed.), Proc. Eleventh Intl.

Congress on Applied Mechanics. Munich: Springer, pp. 1109–1115.
Hesse, M. and Woods, A. W. (2010). Buoyant dispersal of CO2 during geological storage.
Hesse, M., Tchelepi, H. A. and Orr, F. M. (2008). Gravity currents with residual trapping. J. Fluid

Mech., 611, 35–60.
Hewitt, D. R., Neufeld, J. A. and Lister, J. R. (2013) Convective shutdown in a porous medium at high

Rayleigh number. J. Fluid Mech., 719, 551–586.
Hinch, E. J. and Bhatt, B. S. (1990). Stability of an acid front moving through a porous rock. J. Fluid

Mech., 212, 279–288.
Homsy, B. (1987). Viscous fingering in porous media. Ann. Rev. Fluid Mech., 19, 271–301.
Huppert, H. E. and Woods, A. W. (1995) The dynamics of gravity driven flow in porous media.

J. Fluid Mech., 292, 55–69.
Kim, H., Funada, T., Joseph, D. D. and Homsy, G. M. (2009). Viscous potential flow analysis of radial

fingering in a Hele–Shaw cell. Phys. Fluids, 21, 074106.
King, S. E. and Woods, A. W. (2003). Dipole solutions for viscous gravity currents: theory and exper-

iments. J. Fluid Mech., 483, 91–109.



283 References

Koch, D. and Brady, J. (1985). Dispersion in fixed beds, J. Fluid Mech., 399–427.

Lajeunesse, E., Martin, J., Rakotomalala, N., Salin, D. and Yortsos, Y. C. (1999). Miscible displace-
ment in a Hele-Shaw cell at high rates. J. Fluid Mech., 398, 299–319.

Lake, L. (1991). Enhanced Oil Recovery. Upper Saddle River, NJ: Prentice Hall.

Lauwerier, H. A. (1955). The transport of heat in an oil layer caused by the injection of hot fluid.
Appl. Sci. Res., A, 5, 145–151.

Ma, S., Morrow, N. and Zhang, X. (1997). Generalised scaling for spontaneous imbibition data for
strongly water-wet systems, J. Pet. Sci. Eng., 18, 165–178.

MacMinn, C., Szulczewski, M. L. and Juanes, R. (2010). CO2 migration in saline aquifers. Part 1:
Capillary trapping under slope and groundwater flow. J. Fluid Mech., 662, 329–351.

MacMinn, C., Szulczewski, M. L. and Juanes, R. (2011). CO2 migration in saline aquifers. Part 2:
Capillary and solubility trapping. J. Fluid Mech., 688, 321–351.

Mathias, S. A., de Miguel, G. J. G. M., Thatcher, K. and Zimmerman, R. (2011). Pressure build up
during CO2 injection in a closed brine aquifer. Trans. Porous Media, 89, 383–397.

Maxworthy, T. (1989). Experimental study of interface instability in a Hele Shaw cell. Phys. Rev. A,
39, 5863–5866.

Menand, T. and Woods, A. W. (2005). Dispersion, scale and time dependence of mixing zones under
gravitationally stable and unstable displacements in porous media. Water Resour. Res., 41, 5.

Menand, T., Raw, A. and Woods, A. W. (2003). Thermal inertia and reversing buoyancy in flow in
porous media. Geophys. Res. Lett., 30(6), 1291.

Mitchell, V. and Woods, A. W. (2006). Self-similar dynamics of liquid injected into partially saturated
aquifers. J. Fluid Mech., 566, 345–355.

Muskat, M. (1937). The Flow of Homogeneous Fluids through Porous Media. New York: McGraw
Hill.

Naff, R. L., Haley, D. F. and Sudicky, E. A. (1998). High-resolution Monte Carlo simulation of flow
and conservative transport in heterogeneous porous media. Water Resour. Res., 34(4), 663–697.

Nichols, G. (2009). Sedimentology and Stratigraphy. Chichester, UK: Wiley-Blackwell.

Nigam, M. and Woods, A. W. (2005). The influence of buoyancy contrasts on miscible source-sink
flows in a porous medium with thermal inertia. J. Fluid Mech., 549, 253–271.

Otto, C., Lapotre, M. and Woods, A. W. (2014). Transverse and longitudinal mixing across a density
interface in a layered porous rock subject to an oscillatory flow. Manuscript subjudice. BP Institute,
University of Cambridge.

Paterson, L. (1985). Fingering with miscible fluids in a Hele Shaw cell. Phys. Fluids, 28, 26–30.

Pfannkuch, H. D. (1963). Contribution to the study of miscible displacements in a porous medium.
Rev. Inst. Franc. Petrol., 18, 215–231.

Phillips, O. M. (1991). Flow and Reaction in Porous Rocks. Cambridge: Cambridge University Press.

Philips, O. M. (2009). Geological Fluid Mechanics: Subsurface Flow and Reactions. Cambridge:
Cambridge University Press.

Pritchard, D., Woods, A. W. and Hogg, A. J. (2001). On the slow draining of a gravity current moving
through a layered permeable medium. J. Fluid Mech., 444, 23–47.

Raw, A. W. V. and Woods, A. W. (2003). On gravity-driven flow through a reacting porous rock.
J. Fluid Mech., 474, 227–243.

Rayward-Smith, W. and Woods, A. W. (2011). Dispersal of buoyancy-driven flow in porous media
with inclined baffles. J. Fluid Mech., 689, 517–528.

Rayward-Smith, W. and Woods, A. W. (2014). Experimental analogues for reactions with buoyancy
reversal in porous media. Manuscript sub judice.



284 References

Reinhelt, D. (1987). The effect of thin film variations and transverse curvature in the shape of fingers
in a Hele Shaw cell. Phys. Fluids, 30, 2617.

Riolfo, L., Nagatsu, Y., Iwata, S., Maes, R., Trevelyan, P. and DeWit, A. (2012). Experimental
evidence of reaction driven miscible viscous fingering. Phys Rev., E85, 015394.

Saffman, P. (1959). A theory of dispersion in a porous medium. J. Fluid Mech., 6, 321–349.
Saffman, P. and Taylor, G. (1958). The penetration of a fluid into a porous medium or Hele–Shaw

cell containing a more viscous liquid. Proc. Roy. Soc., 245, 312–329.
Schwartz, L. (1986). Stability of Hele Shaw flow the wetting layer effect. Phys. Fluids, 29, 3086.
Sorbie, K. (1991). Polymer-improved Oil Recovery. London: Blackie.
Sudicky, E. and Frind, E. (1982). Contaminant transport in fractured porous media, analytical

solutions for a system of parallel fractures. Water Resour. Res., 18(6), 1634–1642.
Szulczewski, M. L., Hesse, M. A. and Juanes, R. (2013). Carbon dioxide dissolution in structural and

stratigraphic traps. J. Fluid Mech., 736, 287–315.
Taylor, G. I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy.

Soc., 219, 186–203.
Tyspkin, G. and Woods, A. W. (2005). Precipitate formation in a porous rock through evaporation of

saline water. J. Fluid Mech., 537, 35–53.
van Genuchten, M. and Wierenga, P. (1976). Mass transfer studies in sorbing porous media. 1. Ana-

lytical solutions. Soil Sci. Soc. Am. J., 40(4), 473–481.
van Triet, A., Routh, A. and Woods, A. W. (2014). Control of the permeability of a porous media

using a thermally sensitive polymer. AICHE, 60(3), 1193–1201.
Verdon, J. and Woods, A. W. (2007). Gravity-driven reacting flows in a confined porous aquifer. J.

Fluid Mech., 588, 29–41.
Verdon, J., Kendall, M., Stork, A., Chadwick, A., White, D. and Bissell, R. (2013). A comparison

of geomechanical deformation induced by megatonne scale CO2 storage at Sleipnir, Weyburn and
InSalah. Proc. Nat. Acad. Sci., 110, E2762–2771.

Wooding, R. A. (1963). Convection in a saturated porous medium at large Rayleigh number or Péclet
number. J. Fluid Mech., 15, 527.

Woods, A. W. (1998). Vaporising gravity currents in porous media. J. Fluid Mech., 377, 151–168.
Woods, A. W. (1999). Liquid and vapour flow in superheated permeable rock. Ann. Rev. Fluid Mech.,

31, 171–199.
Woods, A. W. (2002). Gravity driven flow in porous rock. In D. B. Ingham and I. Pop (eds.), Flow

and Transport in Porous Media. New York: Wiley, pp. 397–423.
Woods, A. W. and Espie, T. (2012). Controls on the dissolution of CO2 plumes in structural traps in

deep saline aquifers. Geophys. Res. Lett., 39, L08401.
Woods, A. W. and Farcas, A. (2009). Capillary entry pressure and the leakage of gravity currents

through a sloping layered permeable rock. J. Fluid Mech., 618, 361–379.
Woods, A. W. and Mason, R. (2001). The dynamics of two-layer gravity-driven flows in permeable

rock. J. Fluid Mech., 421, 83–114.
Woods, A. W. and Norrise, S. (2010). On the role of caprock and fracture zones in dispersing gas

plumes in the subsurface. Water Resour. Res., 46, W88522.
Yih, C.-S. (1966). Stratified Flows. Waltham, MA: Academic Press.
Yortsos, Y. C. and Salin, D. (2006). On the selection principle for viscous fingering in porous media.

J. Fluid Mech., 557, 225–236.
Young, W. and Jones, S. (1991). Shear dispersion. Phy. Fluids, 3(5), 1087–1101.



Index

accelerating flow, 244
acidising front, 103
acidising reaction, 176
adsorption, 79
advection–diffusion equation, 187
aeolian deposits, 20
agriculture, 227
along slope component of gravity, 178
anisotropy, 51
anomalous spreading, 76
aquifer thermal energy storage, 249
axisymmetric instability, 99
axisymmetric radial flow, 271

background flow, 189
baffles, 45
Barenblatt, 169, 176
barium sulfate, 103, 128
Bear, 116, 195, 199
Bear and Cheng, 70
Berkowitz, 70
Bickle, 198
Bilijvic, 78
binomial distribution, 209
Boait et al., 197
boiling, 230
boiling front, 230
boiling front instability, 235
boiling front stability, 104
boundary layer, 229
Bridport sandstone, 15, 217
Brooks and Corey, 116
Buckley–Leverett, 118
buoyancy-driven dispersion, 196, 223, 224
buoyancy-driven flow, 3, 156, 203
buoyancy-driven reaction fronts, 174, 247
buoyancy-driven speed, 157
buoyancy flows driven by temperature differences, 161
buoyancy parameter, 199
buoyancy ratio, 171
buoyancy reversal, 156, 238, 242
buoyancy speed, 163

buoyancy stabilisation, 133
buoyant plume, 202
bypass, 38, 188

capillary entry pressure, 169
capillary imbibition, 127
capillary number, Ca, 114
capillary pressure, 98, 112, 116, 125
capillary trapped wake of CO2, 181
capillary trapping, 159, 176, 179, 217
capillary tube, 123
carbon emissions, 4
carbon sequestration, 2, 156
Cardoso and Woods, 102
channels, 13, 105
Clausius–Clapeyron equation, 230, 233, 234
clay barriers, 161
coal, 6
compaction, 21
complex potential, 204
complex variables, 30
compositional dispersion, 251
compositional plume, 238
compressibility, 3, 262
compressibility factor, Z, 264
compressible flow, 183, 230
compression phase, 250
confined gravity current, 181
connate saturation, 114
conservation of heat, 240
conservation of mass, 117
conservation of salt, 133
constant flux gravity current, 166
contact angle, 110
convective flux, high Rayleigh number, 220
convective mixing, 200
convective transport, 220
conventional resource, 7
convoluted flow, 45
core experiments, 121
Corey and Brooks, 121
correlation, 59, 65

285



286 Index

cost of uncertainty, 62
cost of wells, 269
cross-bedding, 18, 49
cross-layer average, 85
cross-layer gas diffusion, 273
cross-slope component of gravity, 178
curvature of interface, 97
cycles of injection, 251
cylindrical lens, 81

Dagan, 70
Darcy flow, 105
Darcy speed, 28
Darcy’s law, 28, 117
decelerating flow, 244
decompression drive, 264
decorrelation, 71
deformation, 105
Del Ioio and Woods, 105
Delgado, 77
DeLoubens and Ramakrishnan, 192
deltaic deposits, 13
density change on reaction, 247
diffusion time, 76
diffusion-controlled transport, 129
dimensionless equations, 42
Dingle peninsula, 18
dipole moment, 169
dipole solutions, 169
discount rate, 33
dispersion, 3, 70, 185
dispersion by lenses, 79
dispersion coefficient, 77
dispersion in bead pack, 72
dispersive flux, 74
dispersive transport, 88
dispersive wave, 120
dissolution, 159, 198, 219
dissolution channels, 249
dissolution front, 103
dissolution rate, 225
dissolving gravity current, 175
DNAPL (dense non-aqueous phase liquid), 70, 161
double advection, 238
double-advective instability, 238
drainage, 111, 167
drainage experiment, 266
drainage radius, 262
drainback, 169
Dudfield and Woods, 182, 198
Dullien, 122

Eames and Bush, 80
economic time, 269
effective diffusivity, 264
effective diffusivity, layered reservoir for gas flow, 275
effective permeability, 33

effective stress, 104
effective thermal advection speed, 253
effective thermal diffusivity, 232
efficiency of heat recovery, 228
encapsulant, 143
encapsulation, 129
energy sources, 4
energy storage, 249
energy supply, 4
enhanced oil recovery, 157
Ennis-King, 210
entry pressure, 112
equation of state, 230
error function, 79
exchange flow, 126, 156, 160, 219, 221,

258
expansion phase, 250
expected recovery, 56, 59
experiment on instability of sand packs, 106
experiment on macroscopic dispersion, 82
exponential decay, 126

Farcas and Woods, 192
fast boiling, 233
faults, 47
fingering, 3
five-layer gravity current, 215
flow diversion, 151
flow in parallel, 33
flow in series, 32
flow partitioning, 207
fluid mixing, 257
fluid–matrix reactions, 133
fluvial deposits, 18
fracking, 7, 270
fractional flow, 35, 118, 122, 123
fractional recovery, 60
fracture width, 106
fractured reservoir, 126
fractured rock, 72
fractures through impermeable rock, 160
Fried and Combarnous, 199
full dissolution reaction, 141
Furtney, 60

gas, 10
gas cap, 114, 222
gas drainage, 277
Gaussian distribution, 209
Gelhar, 70, 79
geological waste repository, 4, 160
geometric controls, 216
geothermal heat, 2
geothermal power, 156
Geysers, northern California, 227
grain junctions, 74
grain–grain motion, 105



287 Index

gravity and viscous fingering, 95
gravity-driven boiling front, 236
gravity tongue, 188
Green River Basin, 7
growth rate of instability, 100
Gunn and Woods, 185

heat exchanger, 250
heat loss, 255
heat pump, 250
heat transfer, 128
heating, 227
Hele–Shaw cell, 96, 164, 203, 207,

258
Hesse, 159
Hesse and Woods, 209
heterogeneous rock, 18
Hewitt, 221
high permeability channels, 247
high-temperature vapour, 227
Hinch and Bhatt, 92, 103
Homsy, 92
horizontal baffles, 207
horizontal boundaries, 156
hot dry rock, 227
hydrates, 7
hydrocarbons, 4
hydroelectric power, 4
hydrogen gas, 160, 197
hydrological flow, 161, 197, 226
hydrostatic pressure, 162, 171, 186
hysteresis, 113

Iceland, 227
image source, 30
imbibition, 111, 125
immiscible displacement, 97
immiscible flow, 92
impermeable boundary, 162
In Salah, Algeria, 159
inclined baffles, 210
inclined porous layer, 178
Indonesia, 227
injection of wastewater, 227
injection temperature, 233
injection well, 230
injection–extraction cycle, 252
interest rate, 268
interface, 171
interfacial tension, 110
intermingling, 70
intermittent generation, 249
interstitial speed, 28

Juanes, 159

Kilbaha Bay, 13

Kim, 97
Kimmeridge Bay, 11
kinematic boundary condition, 103
kinematic viscosity, 235
kinetic delay, 143
King and Woods, 170
Koch and Brady, 70
Kozemy-Carmen relation, 29

Lajeunesse, 124
Lake, 116, 127, 129
Langmuir isotherm, 275
Laplace’s equation, 99
Larderello, Tuscany, 227
latent heat, 232, 234
lateral diffusion, 241
lateral exchange flows, 221
Lauwerier, 256
layered porous media, 209
layered strata, 10
layered turbidite, 66
layering in sedimentary deposits, 207
leakage, 192
leakage flow, 41
lens of low permeability, 252
lenses, 35
liquid crystal, 131
liquidus, 137
LNAPL (light non-aqueous phase liquid), 70, 161
longitudinal dispersion, 74, 77, 213, 224, 255
long-term dipersion, 88
Loop Head Cliffs, 13
loss of thermal energy, 249
low permeability layers, 207

Ma, 127
macroscopic dispersion, 80
mass conservation, 28
mass conservation in advancing region, 176
mass conservation in trailing region, 176
Mathias, 263
maximum principle stress, 132, 271
Maxworthy, 97
McKibben and Juanes, 185
mean thermal advection speed, 254
mean buoyancy, 223
mean flow speed, 253
mechanical dispersion, 70
Menand and Woods, 199
method of characteristics, 184, 245
Mexico, 227
miscible fingering experiment, 92
miscible flow, 92
Mitchell and Woods, 184
mixing, 70
molecular dispersion, 71
molecular transport, 220



288 Index

Monte Carlo method, 59
multiple states of convection, 221

natural gas, 264
Netherlands, 249
neutrally buoyant reacting plume, 248
no slip, 75, 116
non-conventional resource, 7
non-linear dispersion, 224
non-linear finger, 106
non-linear wave equation, 108
non-uniform velocity, 212
nuclear energy, 4

oil shales, 7
onset of convection, 220
optimisation, 59
oscillatory dispersive mixing, 89
oscillatory flow, 89, 258

partial dissolution reaction, 137
Paterson, 97
Peclet number, 77, 86, 199
permeability, 28
permeability ratio, 153
permeability reduction with polymer, 153
permeable rocks, 1
perturbation concentration, 88
perturbation expansion, 43
Pfannuch, 199
Philippines, 227
Phillips, 70, 74, 128, 238
plume mixing, 202
plume shape near source, 204
plume width, 206
plumes, 156
PNIPAM, 147
point source, 157
Poiseuille flow, 97
polymer, 128, 143
polymer floods, 103
polymer rheology, 129
pore pressure, 104, 263
pore space, 28
pore throats, 111
porosity, 28
potential, 29
power generation, 227
precipitating gravity current, 175
precipitation of salt, 235
precipitation reaction, 104
pressure-adjustment zone, 234
pressure diffusion equation, 263
pressure diffusivity, 231, 233, 263
pressure-driven flow, 71
pressure gradient, 94
pressure wave, 262

primary production, 264
production well, gas, 264

radial flow, 99
radioactive contaminants, 70
radioactive material, 160
radius of curvature, 112
random walk, 72
rarefaction wave, 120
Raw and Woods, 176
Rayleigh number, porous, 220
Rayward-Smith and Woods, 179, 211, 247
reaction front, 133, 135, 173, 175
reaction-front speed, 133
reaction time, 129
recovery temperature, 249, 252
refrigerant, 250
Reinelt, 97
relative permeability, 117, 121
reservoir fluid, 238
residual saturation, 111
reversing buoyancy, 228, 242
reversing buoyancy through reaction, 248
Reynolds number, 28
Riolfo, 92
run out distance, 219

Saffman, 70, 75
Saffman–Taylor instability, 92
salt powder, 247
sand bars, 39
sand pack, 230, 233
saturation, 117
saturation front, 110
scale, 246
scale formation, 103, 227
scaling analysis, 162
Scandinavia, 249
Schmidt number, 77
seal layer, 39
secondary displacement, 158
self-similar solution, 163, 172, 183
self-similar solutions of second kind, 177
sensitivity, 67
sensitivity analysis, 63
sensitivity of model predictions, 52
separable solution, 265, 267
shale gas, 10, 264, 275
shape function, 241
shear dispersion, 84
shear stress, 123
shock, 118, 124
shock front, 3
shock solution, 185
similarity solution, 169, 225, 232, 241, 264
similarity variable, 163, 229, 232, 236, 263
sink, 185



289 Index

sink flow, 30
Sleipnir, Norway, 159, 193, 197
sloping boundaries, 156
slow boiling, 232
slug of chemical, 101
Sorbie, 129
source, 30, 185
source–sink flow, 63
specific heat capacity, 229, 255
speed of characteristics, 187
speed of shock, 119
stable density interface, 199
static stability, 238
steady-state plume, 239
Stefan condition, 232, 233
storage capacity, 219
streamfunction, 29, 204, 240
structural trapping, 217
structural traps, 159
sugar–salt solutions, 247
supercritical CO2, 159
superheated rock, 230
surface tension, 99, 114
sweep efficiency, 53
swept area, 30
swept volume, 54

tar sands, 7
Taylor, 84
Taylor dispersion, 71, 223, 253
temperature–composition plane, 238
thermal-advection speed, 129, 131
thermal battery, 228
thermal-diffusion scale, 231
thermal diffusivity, 229
thermal dispersion, 251, 253
thermal energy, 227
thermal energy conservation, 130, 251
thermal energy storage, 9, 228
thermal equilibrium, 129, 252
thermal fractures, 132
thermal front, 148, 228
thermal inertia, 132, 228, 238
thermal Peclet number, 131
thermal plume, 203, 239
thermal trigger, 147
thermally driven reactions, 128
three-dimensional gravity current, 190
tight gas, 264
time of flight, 35
topographic trapping, 218
tortuosity, 72
total wetting, 111
tracer tests, 213
transition zone, 115, 125
transverse diffusion, 203
transverse dispersion, 74, 78, 210, 223

tranverse mixing, 79
trapped pools, 217
travel time, 80, 215
travelling wave, 133
trigger, 143
Tullig Point, 13
turbidite, 11, 195
turbine, 227
two-fluid gravity currents, 170
two-layer flow, 245
Typskin and Woods, 235

uncertainty, 24, 56
unconsolidated media, 92
unconsolidated rock, 104
ungelled polymer, 150
unsaturated formation water, 221
unstable density interface, 199
unstable wavelength, 95
upslope buoyancy speed, 243
utility function, 57

vadose zone, 161, 162, 213
value, 33
value of production, 268
van Genuchten, 121
van Triet, Routh and Woods, 143, 148
vapour flow, 230
variance, 58, 82
velocity correlation, 74
velocity potential, 204
Verdon, 159
vertical exchange flows, 221
vertically averaged transport, 224
viscosification, 92
viscosifier, 102
viscosity ratio, 171
viscous fingering, 92
volume ratio, 171

waning flow, 259
water flooding, 7, 23, 157
wavy boundary experiment, 217
wavy horizon, 39
wavy layers, 217
well spacing, 54, 268
West Bay, Bridport, 15
Weyburn, Canada, 159
wind power, 249
Wooding, 203, 239
Woods and Espie, 159, 222
Woods and Farcas, 169
Woods and Mason, 173
Woods and Norris, 160

Yih, 204
Yortsos and Salin, 195
Young and Jones, 70, 75
Young’s law, 110




	Cover
	Half-title
	Title page
	Copyright information
	Table of contents
	Preface
	1 Introduction
	1.1 The energy context

	2 Porous rocks
	2.1 Turbidites
	2.2 Deltaic deposits
	2.3 Fluvial deposits
	2.4 Aeolian
	2.5 Compaction
	2.6 Carbonates
	2.7 Modelling flow in complex rocks

	3 Flow in porous rocks
	3.1 Source–sink flows
	3.2 Sweep and flow in a two-layer system
	3.3 Sweep in a multi-layer system
	3.4 Lenses and trapping
	3.5 Wavy layers
	3.6 Seal layers
	3.7 Effects of multiple baffles and reduced vertical permeability
	3.8 Faults
	3.9 Cross-bedding
	3.10 Exercises

	4 Accounting for uncertainty
	4.1 Sweep in the layered reservoir
	4.2 Boundary location and geological uncertainty
	4.3 Difference in spatial distribution of mean and variance
	4.4 Sensitivity to geological uncertainties
	4.5 Exercises

	5 Dispersion in porous media
	5.1 Molecular diffusion in a porous layer
	5.2 Pore-scale mechanical dispersion
	5.3 No-slip effects
	5.4 Experimental laws for dispersion
	5.5 Lenses of different permeability
	5.6 Large-scale shear dispersion
	5.7 Oscillatory flow
	5.8 Exercises

	6 Frontal instability
	6.1 A model of the instability
	6.2 Surface tension
	6.3 Axisymmetric flow
	6.4 Fluid annuli and droplet formation
	6.5 Instability of reaction fronts
	6.6 Instabilities in unconsolidated porous media
	6.7 Fingering in fractures of variable width
	6.8 Exercises

	7 Two-phase flow
	7.1 Wetting
	7.2 Capillary entry pressure
	7.3 Gas cap size and transition zones
	7.4 Two-phase flow
	7.5 The thin gap analogue
	7.6 Capillary imbibition
	7.7 Exercises

	8 Fluid–rock interactions
	8.1 Thermal energy conservation 
	8.2 Instability of a thermal front
	8.3 Compositional reactions
	8.4 Thermally controlled reactions 
	8.5 The partial dissolution reaction
	8.6 The full dissolution reaction
	8.7 Polymer floods
	8.8 Polymer released from a dissolving encapsulant
	8.9 Polymer activated by a thermal trigger
	8.10 Polymer injection into a multi-layer formation
	8.11 Exercises

	9 Gravity-driven flow in porous media
	9.1 Point release of buoyant fluid 
	9.2 The leaky boundary 
	9.3 Rapid injection and drain back: the dipole 
	9.4 Multiple fluids and stratified currents
	9.5 Reacting fronts 
	9.6 Capillary trapping 
	9.7 Flow on a slope 
	9.8 Capillary trapping in a plume running upslope
	9.9 Confined gravity-driven flows
	9.10 Confined buoyancy-driven flow on a slope
	9.11 Three-dimensional gravity currents
	9.12 Exercises

	10 Buoyancy effects on dispersion
	10.1 Buoyancy effects on pore-scale mechanical dispersion
	10.2 Convective plumes
	10.3 Dispersal of a vertical plume by shale baffles
	10.4 Dispersion by inclined baffles
	10.5 Dispersion in a multi-layered horizontal system
	10.6 Boundaries and buoyancy-driven dispersion through trapping
	10.7 Exchange flows, mixing and controls on dissolution of CO[sub(2)]
	10.8 Long-time buoyancy-driven dispersion
	10.9 Exercises

	11 Geothermal power and heat storage 
	11.1 Thermal fronts
	11.2 Boiling fronts 
	11.3 Slow boiling
	11.4 Fast boiling
	11.5 Boiling gravity-driven flows
	11.6 Double-advective plumes with reversing buoyancy 
	11.7 Gravity currents with thermal and compositional buoyancy 
	11.8 Scale precipitation and its impact on buoyancy-driven flow
	11.9 Aquifer thermal energy storage
	11.10 One-dimensional injection and production of hot water
	11.11 Heat loss to lenses of low permeability
	11.12 Heat loss to the surrounding formation
	11.13 Mixing of the injected and formation fluids on extraction
	11.14 Exercises

	12 Compressibility and gas flows
	12.1 Idealised one-dimensional gas production
	12.2 Well selection
	12.3 Radial flow and fracking
	12.4 Multiple-layer formations
	12.5 Shale gas
	12.6 Exercises

	13 Epilogue
	References
	Index

