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Chapter 1
Introduction

Abstract This chapter motivates the study of finite resource quantum information
theory and the mathematical framework that is required to do so. We will present a
motivating example and outline the content of the book.

As we further miniaturize information processing devices, the impact of quantum
effects will become more and more relevant. Information processing at the micro-
scopic scale poses challenges but also offers various opportunities: Howmuch infor-
mation can be transmitted through a physical communication channel if we can
encode and decode our information using a quantum computer? How can we take
advantage of entanglement, a form of correlation stronger than what is allowed by
classical physics? What are the implications of Heisenberg’s uncertainty principle
of quantum mechanics for cryptographic security? These are only a few amongst the
many questions studied in the emergent field of quantum information theory.

One of the predominant challenges when engineering future quantum information
processors is that large quantum systems are notoriously hard to maintain in a coher-
ent state and difficult to control accurately. Hence, it is prudent to expect that there
will be severe limitations on the size of quantum devices for the foreseeable future.
It is therefore of immediate practical relevance to investigate quantum information
processing with limited physical resources, for example, to ask:

How well can we perform information processing tasks if we only have access
to a small quantum device? Can we beat fundamental limits imposed on infor-
mation processing with non-quantum resources?

This book will introduce the reader to the mathematical framework required to
answer such questions, and many others. In quantum cryptography we want to show
that a key of finite length is secret from an adversary, in quantum metrology we want
to infer properties of a small quantum system from a finite sample, and in quan-
tum thermodynamics we explore the thermodynamic properties of small quantum
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2 1 Introduction

systems. What all these applications have in common is that they concern properties
of small quantum devices and require precise statements that remain valid outside
asymptopia—the idealized asymptotic regime where the system size is unbounded.

1.1 Finite Resource Information Theory

Through the lens of a physicist it is natural to see Shannon’s information theory [144]
as a resource theory. Data sources and communication channels are traditional exam-
ples of resources in information theory, and its goal is to investigate how these
resources are interrelated and how they can be transformed into each other. For
example, we aim to compress a data source that contains redundancy into one that
does not, or to transform a noisy channel into a noiseless one. Information theory
quantifies how well this can be done and in particular provides us with fundamental
limits on the best possible performance of any transformation.

Shannon’s initial work [144] already gives definite answers to the above example
questions in the asymptotic regime where resources are unbounded. This means that
we can use the input resource as many times as we wish and are interested in the
rate (the fraction of output to input resource) at which transformations can occur.
The resulting statements can be seen as a first approximation to a more realistic
setting where resources are necessarily finite, and this approximation is indeed often
sufficient for practical purposes.

However, as argued above, specifically when quantum resources are involved we
would like to establish more precise statements that remain valid even when the
available resources are very limited. This is the goal of finite resource information
theory. The added difficulty in the finite setting is that we are often not able to produce
the output resource perfectly. The best we can hope for is to find a tradeoff between
the transformation rate and the error we allow on the output resource. In the most
fundamental one-shot setting we only consider a single use of the input resource and
are interested in the tradeoff between the amount of output resource we can produce
and the incurred error. We can then see the finite resource setting as a special case of
the one-shot setting where the input resource has additional structure, for example
a source that produces a sequence of independent and identically distributed (iid)
symbols or a channel that is memoryless or ergodic.

Notably such considerations were part of the development of information the-
ory from the outset. They motivated the study of error exponents, for example by
Gallager [63]. Roughly speaking, error exponents approximate how fast the error van-
ishes for a fixed transformation rate as the number of available resources increases.
However, these statements are fundamentally asymptotic in nature and make strong
assumptions on the structure of the resources. Beyond that, Han and Verdú estab-
lished the information spectrum method [69, 70] which allows to consider unstruc-
tured resources but is asymptotic in nature. More recently finite resource information
theory has attracted considerable renewed attention, for example due to the works of
Hayashi [77, 78] and Polyanskiy et al. [133]. The approach in these works—based
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on Strassen’s techniques [148]—is motivated operationally: in many applications we
can admit a small, fixed error and our goal is to find the maximal possible transfor-
mation rate as a function of the error and the amount of available resource.1

In an independent development, approximate or asymptotic statements were also
found to be insufficient in the context of cryptography. In particular the advent of
quantum cryptography [18, 51] motivated a precise information-theoretic treatment
of the security of secret keys of finite length [99, 139]. In the context of quantum
cryptography many of the standard assumptions in information theory are no longer
valid if one wants to avoid any assumptions on the eavesdropper’s actions. In partic-
ular, the common assumption that resources are iid or ergodic is hardly justified. In
quantum cryptography we are instead specifically interested in the one-shot setting,
where we want to understand how much (almost) secret key can be extracted from a
single use of an unstructured resource.

The abstract view of finite resource information theory as a resource theory also
reveals why it has found various applications in physical resource theories, most
prominently in thermodynamics (see, e.g., [30, 47, 52] and references therein).

Rényi and Smooth Entropies

The main focus of this book will be on various measures of entropy and informa-
tion that underly finite resource information theory, in particular Rényi and smooth
entropies. The concept of entropy has its origins in physics, in particular in the works
of Boltzmann [28] and Gibbs [66] on thermodynamics. Von Neumann [170] gen-
eralized these concepts to quantum systems. Later Shannon [144]—well aware of
the origins of entropy in physics—interpreted entropy as a measure of uncertainty
of the outcome of a random experiment. He found that entropy, or Shannon entropy
as it is called now in the context of information theory,2 characterizes the optimal
asymptotic rate at which information can be compressed. However, we will soon see
that it is necessary to consider alternative information measures if we want to move
away from asymptotic statements.

Error exponents can often be expressed in terms of Rényi entropies [142] or
related information measures, which partly explains the central importance of this
one-parameter family of entropies in information theory. Rényi entropies share many
mathematical properties with the Shannon entropy and are powerful tools in many
information-theoretic arguments. A significant part of this book is thus devoted to
exploring quantumgeneralizations ofRényi entropies, for example the ones proposed
by Petz [132] and a more recent specimen [122, 175] that has already found many
applications.

The particular problems encountered in cryptography led to the development of
smooth entropies [141] and their quantum generalizations [139, 140]. Most impor-
tantly, the smooth min-entropy captures the amount of uniform randomness that
can be extracted from an unstructured source if we allow for a small error. (This

1The topic has also been reviewed recently by Tan [151].
2Notwithstanding the historical development, we follow the established tradition and use Shannon
entropy to refer to entropy. We use von Neumann entropy to refer to its quantum generalization.
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example is discussed in detail in Sect. 7.3.) The smooth entropies are variants of
Rényi entropies and inherit many of their properties. They have since found various
applications ranging from information theory to quantum thermodynamics and will
be the topic of the second part of this book.

We will further motivate the study of these information measures with a simple
example in the next section.

Besides their operational significance, there are other reasons why the study of
information measures is particularly relevant in quantum information theory. Many
standard arguments in information theory can be formulated in term of entropies, and
often this formulation ismost amenable to a generalization to the quantum setting. For
example, conditional entropies provide us with a measure of the uncertainty inherent
in a quantum state from the perspective of an observerwith access to side information.
This allows us to circumvent the problem that we do not have a suitable notion
of conditional probabilities in quantum mechanics. As another example, arguments
based on typicality and the asymptotic equipartition property can be phrased in terms
of smooth entropies which often leads to a more concise and intuitive exposition.
Finally, the study of quantum generalizations of information measures sometimes
also gives new insights into the classical quantities. For example, our definitions
and discussions of conditional Rényi entropy also apply to the classical special case
where such definitions have not yet been firmly established.

1.2 Motivating Example: Source Compression

We are using notation that will be formally introduced in Chap.2 and concepts that
will be expanded on in later chapters (cf. Table1.1). A data source is described
probabilistically as follows. Let X be a random variable with distribution ρX (x) =
Pr[X = x] that models the distribution of the different symbols that the source emits.
The number of bits of memory needed to store one symbol produced by this source so
that it can be recovered with certainty is given by �H0(X)ρ�, where H0(X)ρ denotes
the Hartley entropy [72] of X , defined as

H0(X)ρ = log2
∣
∣{x : ρX (x) > 0}∣∣. (1.1)

The Hartley entropy is a limiting case of a Rényi entropy [142] and simply measures
the cardinality of the support of X . In essence, this means that we can ignore symbols

Table 1.1 Reference to detailed discussion of the quantities and concepts mentioned in this section

Concept To be discussed further in

Hα Rényi entropy Chapters4 and 5

Δ(·, ·) Variational distance Section3.1, as generalized trace distance

H ε
max Smooth Rényi entropy Chapter6, as smooth max-entropya

Entropic AEP Section6.4, entropic asymptotic
equipartition property

aWe will use a different metric for the definition of the smooth max-entropy

http://dx.doi.org/10.1007/978-3-319-21891-5_7
http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_4
http://dx.doi.org/10.1007/978-3-319-21891-5_5
http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_6
http://dx.doi.org/10.1007/978-3-319-21891-5_6
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that never occur but otherwise our knowledge of the distribution of the different
symbols does not give us any advantage.

As an example, consider a source that outputs lowercase characters of the English
alphabet. If we want to store a single character produced by this source such that it
can be recovered with certainty, we clearly need �log2 26� = 5 bits of memory as a
resource.

Analysis with Rényi Entropies

More interestingly, we may ask how much memory we need to store the output of
the source if we allow for a small probability of failure, ε ∈ (0, 1). To answer this
we investigate encoders that assign codewords of a fixed length log2 m (in bits) to
the symbols the source produces. These codewords are then stored and a decoder is
later used to compute an estimate of X from the codewords. If the probability that
this estimate equals the original symbol produced by the source is at least 1−ε, then
we call such a scheme an (ε, m)-code. For a source X with probability distribution
ρX , we are thus interested in finding the tradeoff between code length, log2 m, and
the probability of failure, ε, for all (ε, m)-codes.

Shannon in his seminal work [144] showed that simply disregarding the most
unlikely source events (on average) leads to an arbitrarily small failure probability
if the code length is chosen sufficiently long. In particular, Gallager’s proof [63, 64]
implies that (ε, m)-codes always exist as long as

log2 m ≥ Hα(X)ρ + α

1 − α
log2

1

ε
for some α ∈

[1

2
, 1

)

. (1.2)

Here, Hα(X)ρ is the Rényi entropy of order α, defined as

Hα(X)ρ = 1

1 − α
log2

(
∑

x

ρX (x)α
)

. (1.3)

For all α ∈ (0, 1) ∪ (1,∞) and as the respective limit for α ∈ {0, 1,∞}. The Rényi
entropies are monotonically decreasing in α. Clearly the lower bound in (1.2) thus
constitutes a tradeoff: larger values of the order parameter α lead to a smaller Rényi
entropy but will increase the penalty term α

1−α
log2

1
ε
. Statements about the existence

of codes as in (1.2) are called achievability bounds or direct bounds.
This analysis can be driven further if we consider sources with structure. In partic-

ular, consider a sequence of sources that produce n ∈ N independent and identically
distributed (iid) symbols Xn = (Y1, Y2, . . . , Yn), where eachYi is distributed accord-
ing to the law τY (y).We then consider a sequence of (ε, 2n R)-codes for these sources,
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where the rate R indicates the number of memory bits required per symbol the source
produces. For this case (1.2) reads

R ≥ 1

n
Hα(Xn)ρ + α

n(1 − α)
log2

1

ε
= Hα(Y )τ + α

n(1 − α)
log2

1

ε
(1.4)

where we used additivity of the Rényi entropy to establish the equality. The above
inequality implies that such a sequence of (ε, 2n R)-codes exists for sufficiently large
n if R > Hα(X)ρ . And finally, since this holds for all α ∈ [ 12 , 1), we may take the
limit α → 1 in (1.4) to recover Shannon’s original result [144], which states that
such codes exists if

R > H(X)ρ, where H(X)ρ = H1(X)ρ = −
∑

x

ρX (x) log2 ρX (x) (1.5)

is the Shannon entropy of the source. This rate is in fact optimal, meaning that
every scheme with R < H(X)ρ necessary fails with certainty as n → ∞. This is an
example of an asymptotic statement (with infinite resources) and such statements can
often be expressed in terms of the Shannon entropy or related information measures.

Analysis with Smooth Entropies

Another fruitful approach to analyze this problem brings us back to the unstructured,
one-shot case. We note that the above analysis can be refined without assuming any
structure by “smoothing” the entropy. Namely, we construct an (ε, m) code for the
source ρX using the following recipe:

• Fix δ ∈ (0, ε) and let ρ̃X be any probability distribution that is (ε − δ)-close to ρX

in variational distance. Namely we require that Δ(ρ̃X , ρX ) ≤ ε − δ where Δ(·, ·)
denotes the variational distance.

• Then, take a (δ, m)-code for the source ρ̃X . Instantiating (1.2) with α = 1
2 , we

find that there exists such a code as long as log2 m ≥ H1/2(X)ρ̃ + log2
1
δ
.

• Apply this code to a source with the distribution ρX instead, incurring a total error
of at most δ + Δ(ρX , ρ̃X ) ≤ ε. (This uses the triangle inequality and the fact
that the variational distance contracts when we process information through the
encoder and decoder.)

Hence, optimizing this over all such ρ̃X , we find that there exists a (ε, m)-code if

log2 m ≥ H ε−δ
max (X)ρ + log2

1

δ
, where H ε′

max(X)ρ := min
ρ̃X :Δ(ρX ,ρ̃X )≤ε′ H1/2(X)ρ̃

(1.6)

is the ε′-smooth max-entropy, which is based on the Rényi entropy of order 1
2 .

Furthermore, this bound is approximately optimal in the following sense. It can
be shown [138] that all (ε, m)-codes must satisfy log2 m ≥ H ε

max(X)ρ . Such bounds
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that give restrictions valid for all codes are called converse bounds. Rewriting this,
we see that the minimal value of m for a given ε, denoted m∗(ε), satisfies

H ε
max(X)ρ ≤ log2 m∗(ε) ≤ inf

δ∈(0,ε)

⌈

H ε−δ
max (X)ρ + log2

1

δ

⌉

. (1.7)

We thus informally say that thememory required for one-shot source compression
is characterized by the smooth max-Rényi entropy.3

Finally, we again consider the case of an iid source, and as before, we expect that
in the limit of large n, the optimal compression rate 1

n m∗(ε) should be characterized
by the Shannon entropy. This is in fact an expression of an entropic version of the
asymptotic equipartition property, which states that

lim
n→∞

1

n
H ε′
max(Xn)ρ = H(Y )τ for all ε′ ∈ (0, 1). (1.8)

Why Shannon Entropy is Inadequate

To see why the Shannon entropy does not suffice to characterize one-shot source
compression, consider a source that produces the symbol ‘�’ with probability 1/2
and k other symbols with probability 1/2k each. On the one hand, for any fixed
failure probability ε � 1, the converse bound in (1.7) evaluates to approximately
log2 k. This implies that we cannot compress this source much beyond its Hartley
entropy. On the other hand, the Shannon entropy of this distribution is 1

2 (log2 k + 2)
and underestimates the required memory by a factor of two.

1.3 Outline of the Book

The goal of this book is to explore quantum generalizations of the measures encoun-
tered in our example, namely the Rényi entropies and smooth entropies. Our expo-
sition assumes that the reader is familiar with basic probability theory and linear
algebra, but not necessarily with quantum mechanics. For the most part we restrict
our attention to physical systems whose observable properties are discrete, e.g. spin
systems or excitations of particles bound in a potential. This allows us to avoidmathe-
matical subtleties that appear in the study of systems with observable properties that
are continuous. We will, however, mention generalizations to continuous systems
where applicable and refer the reader to the relevant literature.

The book is organized as follows:

Chapter 2 introduces the notation used throughout the book and presents the
mathematical framework underlying quantum theory for general (potentially con-
tinuous) systems. Our notation is summarized in Table2.1 so that the remainder of

3The smoothing approach in the classical setting was first formally discussed in [141]. A detailed
analysis of one-shot source compression, including quantum side information, can be found in [138].

http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_2
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the chapter can easily be skipped by expert readers. The exposition startswith intro-
ducing events as linear operators on a Hilbert space (Sect. 2.2) and then introduces
states as functionals on events (Sect. 2.3). Multi-partite systems and entanglement
is then discussed using the Hilbert space tensor product (Sect. 2.4) and finally
quantum channels are introduced as a means to study the evolution of systems in
the Schrödinger and Heisenberg picture (Sect. 2.6). Finally, this chapter assembles
the mathematical toolbox required to prove the results in the later chapters, includ-
ing a discussion of operator monotone, concave and convex functions on positive
operators (Sect. 2.5). Most results discussed here are well-known and proofs are
omitted. We do not attempt to provide an intuition or physical justification for
the mathematical models employed, but instead highlight some connections to
classical information theory.
Chapter 3 treats norms and metrics on quantum states. First we discuss Schatten
norms and a variational characterization of the Schatten norms of positive oper-
ators that will be very useful in the remainder of the book (Sect. 3.1). We then
move on to discuss a natural dual norm for sub-normalized quantum states and the
metric it induces, the trace distance (Sect. 3.2). The fidelity is another very promi-
nent measure for the proximity of quantum states, and here we sensibly extend
its to definition to cover sub-normalized states (Sect. 3.3). Finally, based on this
generalized fidelity, we introduce a powerful metric for sub-normalized quantum
states, the purified distance (Sect. 3.4). This metric combines the clear operational
interpretation of the trace distance with the desirable mathematical properties of
the fidelity.
Chapter 4 discusses quantum generalizations of the Rényi divergence. Diver-
gences (or relative entropies) are measures of distance between quantum states
(although they are not metrics) and entropy as well as conditional entropy can con-
veniently be defined in terms of the divergence. Moreover, the entropies inherit
many important properties from corresponding properties of the divergence. In
this chapter, we first discuss the classical special case of the Rényi divergence
(Sect. 4.1). This allows us to point out several properties that we expect a suitable
quantum generalization of the Rényi divergence to satisfy. Most prominently we
expect them to satisfy a data-processing inequality which states that the divergence
is contractive under application of quantum channels to both states. Based on this,
we then explore quantum generalizations of the Rényi divergence and find that
there is more than one quantum generalization that satisfies all desired properties
(Sect. 4.2).
We will mostly focus on two different quantum Rényi divergences, called the
minimal and Petz quantum Rényi divergence (Sects. 4.3 and 4.4). The first quan-
tum generalization is called the minimal quantum Rényi divergence (because it
is the smallest quantum Rényi divergence that satisfies a data-processing inequal-
ity), and is also known as “sandwiched” Rényi relative entropy in the literature.
It has found operational significance in the strong converse regime of asymmet-
ric binary hypothesis testing. The second quantum generalization is Petz’ quan-
tum Rényi relative entropy, which attains operational significance in the quantum

http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_3
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generalization of Chernoff’s and Hoeffding’s bound on the success probability in
binary hypothesis testing (cf. Sect. 7.1).
Chapter 5 generalizes conditional Rényi entropies (and unconditional entropies as
a special case) to the quantum setting. The idea is to define operationally relevant
measures of uncertainty about the state of a quantum system from the perspective
of an observer with access to some side information stored in another quantum
system. As a preparation, we discuss how the conditional Shannon entropy and
the conditional von Neumann entropy can be conveniently expressed in terms of
relative entropy either directly or using a variational formula (Sect. 5.1). Based on
the two families of quantum Rényi divergences, we then define four families of
quantum conditional Rényi entropies (Sect. 5.2). We then prove various properties
of these entropies, including data-processing inequalities that they directly inherit
from the underlying divergence. A genuinely quantum feature of conditional Rényi
entropies is the duality relation for pure states (Sect. 5.3). These duality relations
also show that the four definitions are not independent, and thereby also reveal a
connection between the minimal and the Petz quantum Rényi divergence. Further-
more, even though the chain rule does not hold with equality for our definitions,
we present some inequalities that replace the chain rule (Sect. 5.4).
Chapter 6 deals with smooth conditional entropies in the quantum setting. First,
we discuss the min-entropy and the max-entropy, two special cases of Rényi
entropies that underly the definition of the smooth entropy (Sect. 6.1). In particular,
we show that they can be expressed as semi-definite programs, which means that
they can be approximated efficiently (for small quantum systems) using standard
numerical solvers. The idea is that these two entropies serve as representatives
for the Rényi entropies with large and small α, respectively. We then define the
smooth entropies (Sect. 6.2) as optimizations of the min- and max-entropy over a
ball of states close in purified distance.We explore some of their properties, includ-
ing chain rules and duality relations (Sect. 6.3). Finally, the main application of
the smooth entropy calculus is an entropic version of the asymptotic equiparti-
tion property for conditional entropies, which states that the (regularized) smooth
min- and max-entropies converge to the conditional von Neumann entropy for iid
product states (Sect. 6.4).
Chapter 7 concludes the book with a few selected applications of the mathemati-
cal concepts surveyed here. First, we discuss various aspects of binary hypothesis
testing, including Stein’s lemma, the Chernoff bound and the Hoeffding bound as
well as strong converse exponents (Sect. 7.1). This provides an operational inter-
pretation of the Rényi divergences discussed in Chap.4. Next, we discuss how the
duality relations and the chain rule for conditional Rényi entropies can be used
to derive entropic uncertainty relations—powerful manifestations of the uncer-
tainty principle of quantummechanics (Sect. 7.2). Finally, we discuss randomness
extraction against quantum side information, a premier application of the smooth
entropy formalism that justifies its central importance in quantum cryptography
(Sect. 7.3).

http://dx.doi.org/10.1007/978-3-319-21891-5_7
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http://dx.doi.org/10.1007/978-3-319-21891-5_6
http://dx.doi.org/10.1007/978-3-319-21891-5_6
http://dx.doi.org/10.1007/978-3-319-21891-5_6
http://dx.doi.org/10.1007/978-3-319-21891-5_6
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What This Book Does Not Cover

It is beyond the scope of this book to provide a comprehensive treatment of the
many applications the mathematical framework reviewed here has found. However,
in addition to Chap.7, we will mention a few of the most important applications in
the background section of each chapter. Tsallis entropies [162] have found several
applications in physics, but they have no solid foundation in information theory and
we will not discuss them here. It is worth mentioning, however, that many of the
mathematical developments in this book can be applied to quantum Tsallis entropies
as well. There are alternative frameworks besides the smooth entropy framework that
allow to treat unstructured resources, most prominently the information-spectrum
method and its quantum generalization due to Nagaoka and Hayashi [124]. These
approaches are not covered here since they are asymptotically equivalent to the
smooth entropy approach [45, 157]. Finally, this book does not cover Rényi and
smooth versions of mutual information and conditional mutual information. These
quantities are a topic of active research.

http://dx.doi.org/10.1007/978-3-319-21891-5_7


Chapter 2
Modeling Quantum Information

Abstract Classical as well as quantum information is stored in physical systems, or
“information is inevitably physical” as Rolf Landauer famously said. These physical
systems are ultimately governed by the laws of quantum mechanics. In this chapter
we quickly review the relevant mathematical foundations of quantum theory and
introduce notational conventions that will be used throughout the book.

In particular we will discuss concepts of functional and matrix analysis as well as
linear algebra that will be of use later. We consider general separable Hilbert spaces
in this chapter, even though in the rest of the book we restrict our attention to the
finite-dimensional case. This digression is useful because it motivates the notation
we use throughout the book, and it allows us to distinguish between themathematical
structure afforded by quantum theory and the additional structure that is only present
in the finite-dimensional case.

Our notation is summarized in Sect. 2.1 and the remainder of this chapter can
safely be skipped by expert readers. The presentation here is compressed andwe omit
proofs. We instead refer to standard textbooks (see Sect. 2.7 for some references) for
a more comprehensive treatment.

2.1 General Remarks on Notation

The notational conventions for this book are summarized in Table2.1. The table
includes references to the sections where the corresponding concepts are introduced.
Throughout this book we are careful to distinguish between linear operators (e.g.
events andKraus operators) and functionals on the linear operators (e.g. states),which
are also represented as linear operators (e.g. density operators). This distinction is
inspired by the study of infinite-dimensional systems where these objects do not
necessarily have the same mathematical structure, but it is also helpful in the finite-
dimensional setting.1

1For example, it sheds light on the fact that we use the operator norm for ordinary linear operators
and its dual norm, the trace norm, for density operators.

© The Author(s) 2016
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Table 2.1 Overview of notational conventions

Symbol Variants Description Section

R, C R+ Real and complex fields (and non-negative reals)

N Natural numbers

log, exp ln, e Logarithm (to unspecified basis), and its inverse, the
exponential function (natural logarithm and Euler’s
constant)

H HAB ,HX Hilbert spaces (for joint system AB and system X ) 2.2.1
〈·|, |·〉 Bra and ket

Tr(·) TrA Trace (partial trace) 2.3.1
⊗ (·)⊗n Tensor product (n-fold tensor product) 2.4.1
⊕ Direct sum for block diagonal operators 2.2.2
A � B A is dominated by B, i.e. kernel of A contains kernel of B

A ⊥ B A and B are orthogonal, i.e. AB = B A = 0

L L (A, B) Bounded linear operators (from HA to HB ) 2.2.1
L † L †(B) Self-adjoint operators (acting on HB )

P P(C D) Positive semi-definite operators (acting on HC D)

{A ≥ B} Projector on subspace where A − B is non-negative

‖ · ‖ Operator norm 2.2.1
L• L•(E) Contractions in L (acting on HE )

P• P•(A) Contractions in P (corresponding to events on A) 2.2.2
I IY Identity operator (acting on HY )

〈·, ·〉 Hilbert-Schmidt inner product 2.3.1
T T ≡ L ‡ Trace-class operators representing linear functionals

S S ≡ P ‡ Operators representing positive functionals

‖ · ‖∗ Tr | · | Trace norm on functionals 2.3.1
S• S•(A) Sub-normalized density operators (on A) 2.3.2
S◦ S◦(B) Normalized density operators, or states (on B)

π πA Fully mixed state (on A), in finite dimensions 2.3.2
ψ ψAB Maximally entangled state (between A and B), in finite

dimensions
2.4.2

CB CB(A, B) Completely bounded maps (from L (A) to L (B)) 2.6.1
CP Completely positive maps 2.6.2
CPTP CPTNI Completely positive trace-preserving

(trace-non-increasing) map

‖ · ‖+ ‖ · ‖p Positive cone dual norm (Schatten p-norm) 3.1

�(·, ·) Generalized trace distance for sub-normalized states 3.2

F(·, ·) F∗(·, ·) Fidelity (generalized fidelity for sub-normalized states) 3.3

P(·, ·) Purified distance for sub-normalized states 3.4
‡This equivalence only holds if the underlying Hilbert space is finite-dimensional

http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_3
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We do not specify a particular basis for the logarithm throughout this book, and
simply use exp to denote the inverse of log.2 The natural logarithm is denoted by ln.

We label different physical systems by capital Latin letters A, B, C , D, and E ,
as well as X , Y , and Z which are specifically reserved for classical systems. The
label thus always determines if a system is quantum or classical. We often use these
labels as subscripts to guide the reader by indicating which system a mathematical
object belongs to. We drop the subscripts when they are evident in the context of an
expression (or if we are not talking about a specific system). We also use the capital
Latin letters L , K , H , M , and N to denote linear operators, where the last two
are reserved for positive semi-definite operators. The identity operator is denoted I .
Density operators, on the other hand, are denoted by lowercase Greek letters ρ, τ ,
σ , and ω. We reserve π and ψ for the fully mixed state and the maximally entangled
state, respectively. Calligraphic letters are used to denote quantum channels and other
maps acting on operators.

2.2 Linear Operators and Events

For our purposes, a physical system is fully characterized by the set of events that
can be observed on it. For classical systems, these events are traditionally modeled
as a σ -algebra of subsets of the sample space, usually the power set in the discrete
case. For quantum systems the structure of events is necessarily more complex, even
in the discrete case. This is due to the non-commutative nature of quantum theory:
the union and intersection of events are generally ill-defined since it matters in which
order events are observed.

Let us first review the mathematical model used to describe events in quantum
mechanics (as positive semi-definite operators on a Hilbert space). Once this is done,
we discuss physical systems carrying quantum and classical information.

2.2.1 Hilbert Spaces and Linear Operators

For concreteness and to introduce the notation, we consider two physical systems
A and B as examples in the following. We associate to A a separable Hilbert space
HA over the field C, equipped with an inner product 〈·, ·〉 : HA ×HA → C. In the
finite-dimensional case, this is simply a complex inner product space, but we will
follow a tradition in quantum information theory and callHA a Hilbert space also in
this case. Analogously, we associate the Hilbert spaceHB to the physical system B.

2The reader is invited to think of log(x) as the binary logarithm of x and, consequently, exp(x) = 2x ,
as is customary in quantum information theory.
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Linear Operators

Our main object of study are linear operators acting on the system’s Hilbert space.
We consistently use upper-case Latin letters to denote such linear operators. More
precisely, we consider the set of bounded linear operators from HA to HB , which
we denote by L (A, B). Bounded here refers to the operator norm induced by the
Hilbert space’s inner product.

The operator norm on L (A, B) is defined as

‖ · ‖ : L �→ sup
{√〈Lv, Lv〉B : v ∈ HA, 〈v, v〉A ≤ 1

}

. (2.1)

For all L ∈ L (A, B), we have ‖L‖ < ∞ by definition. A linear operator is
continuous if and only if it is bounded.3 Let us now summarize some important
concepts and notation that we will frequently use throughout this book.

• The identity operator on HA is denoted IA.
• The adjoint of a linear operator L ∈ L (A, B) is the unique operator L† ∈
L (B, A) that satisfies 〈w, Lv〉B = 〈L†w, v〉A for all v ∈ HA, w ∈ HB . Clearly,
(L†)† = L .

• For scalars α ∈ C, the adjoint corresponds to the complex conjugate, α† = α.
• We find (L K )† = K †L† by applying the definition twice.
• The kernel of a linear operator L ∈ L (A, B) is the subspace of HA spanned by
vectors v ∈ HA satisfying Lv = 0. The support of L is its orthogonal complement
inHA and the rank is the cardinality of the support. Finally, the image of L is the
subspace ofHB spanned by vectors w ∈ HB such that w = Lv for some v ∈ HA.

• For operators K , L ∈ L (A) we say that L is dominated by K if the kernel of K
is contained in the kernel of L . Namely, we write L � K if and only if

K |v〉A = 0 =⇒ L |v〉A = 0 for all v ∈ HA. (2.3)

• We say K , L ∈ L (A) are orthogonal (denoted K ⊥ L) if K L = L K = 0.
• We call a linear operator U ∈ L (A, B) an isometry if it preserves the inner
product, namely if 〈Uv, Uw〉B = 〈v, w〉A for all v, w ∈ HA. This holds if U †U =
IA.

3Relation to Operator Algebras: Let us note that L (A, B) with the norm ‖ · ‖ is a Banach space
over C. Furthermore, the operator norm satisfies

‖L‖2 = ‖L†‖2 = ‖L†L‖ and ‖L K‖ ≤ ‖L‖ · ‖K‖. (2.2)

for any L ∈ L (A, B) and K ∈ L (B, A). The inequality states that the norm is sub-multiplicative.
The above properties of the norm imply that the spaceL (A) is (weakly) closed under multipli-

cation and the adjoint operation. In fact, L (A) constitutes a (Type I factor) von Neumann algebra
or C∗ algebra. Alternatively, we could have started our considerations right here by postulating a
Type 1 von Neumann algebra as the fundamental object describing individual physical systems,
and then deriving the Hilbert space structure as a consequence.
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• An isometry is an example of a contraction, i.e. an operator L ∈ L (A, B) sat-
isfying ‖L‖ ≤ 1. The set of all such contractions is denoted L•(A, B). Here the
bullet ‘•’ in the subscript ofL•(A, B) simply illustrates that we restrictL (A, B)

to the unit ball for the norm ‖ · ‖.
For any L ∈ L (A), we denote by L−1 its Moore-Penrose generalized inverse

or pseudoinverse [130] (which always exists in finite dimensions). In particular, the
generalized inverse satisfies L L−1L = L and L−1L L−1 = L−1. If L = L†, the
generalized inverse is just the usual inverse evaluated on the operator’s support.

Bras, Kets and Orthonormal Bases

We use the bra-ket notation throughout this book. For any vector vA ∈ HA, we use
its ket, denoted |v〉A, to describe the embedding

|v〉A : C → HA, α �→ αvA. (2.4)

Similarly, we use its bra, denoted 〈v|A, to describe the functional

〈v|A : HA → C, wA �→ 〈v, w〉A. (2.5)

It is natural to view kets as linear operators from C to HA and bras as linear
operators fromHA to C. The above definitions then imply that

|Lv〉A = L |v〉A , 〈Lv|A = 〈v|A L†, and 〈v|A = |v〉†A . (2.6)

Moreover, the inner product can equivalently be written as 〈w, Lv〉B = 〈w|B L|v〉A.
Conjugate symmetry of the inner product then corresponds to the relation

〈w|B L|v〉A = 〈v|A L†|w〉B . (2.7)

As a further example, we note that |v〉A is an isometry if and only if 〈v|v〉A = 1.
In the following we will work exclusively with linear operators (including bras

and kets) and we will not use the underlying vectors (the elements of the Hilbert
space) or the inner product of the Hilbert space anymore.

We now restrict our attention to the space L (A) := L (A, A) of bounded linear
operators acting on HA. An operator U ∈ L (A) is unitary if U and U † are isome-
tries. An orthonormal basis (ONB) of the system A (or the Hilbert space HA) is a
set of vectors {ex }x , with ex ∈ HA, such that

〈

ex
∣
∣ey

〉

A = δx,y :=
{

1 x = y

0 x �= y
and

∑

x

|ex 〉〈ex |A = IA. (2.8)

We denote the dimension ofHA by dA if it is finite and note that the index x ranges
over dA distinct values. For general separable Hilbert spaces x ranges over any
countable set. (We do not usually specify such index sets explicitly.) Various ONBs
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exist and are related by unitary operators: if {ex }x is an ONB then {Uex }x is too,
and, furthermore, given two ONBs there always exists a unitary operator mapping
one basis to the other, and vice versa.

Positive Semi-Definite Operators

A special role is played by operators that are self-adjoint and positive semi-definite.
We call an operator H ∈ L (A) self-adjoint if it satisfies H = H†, and the set of all
self-adjoint operators in L (A) is denoted L †(A). Such self-adjoint operators have
a spectral decomposition,

H =
∑

x

λx |ex 〉〈ex | (2.9)

where {λx }x ⊂ R are called eigenvalues and {|ex 〉}x is an orthonormal basis with
eigenvectors |ex 〉. The set {λx }x is also called the spectrum of H , and it is unique.

Finally we introduce the set P(A) of positive semi-definite operators in L (A).
An operator M ∈ L (A) is positive semi-definite if and only if M = L†L for some
L ∈ L (A), so in particular such operators are self-adjoint and have non-negative
eigenvalues. Let us summarize some important concepts and notation concerning
self-adjoint and positive semi-definite operators here.

• We call P ∈ P(A) a projector if it satisfies P2 = P , i.e. if it has only eigenvalues
0 and 1. The identity IA is a projector.

• For any K , L ∈ L †(A), we write K ≥ L if K − L ∈ P(A). Thus, the relation
‘≥’ constitutes a partial order on L (A).

• For anyG, H ∈ L †(A), we use {G ≥ H} to denote the projector onto the subspace
corresponding to non-negative eigenvalues of G − H . Analogously, {G < H} =
I − {G ≥ H} denotes the projector onto the subspace corresponding to negative
eigenvalues of G − H .

Matrix Representation and Transpose

Linear operators in L (A, B) can be conveniently represented as matrices in
C

dA × C
dB . Namely for any L ∈ L (A, B), we can write

L =
∑

x,y

| fy〉〈 fy |B L|ex 〉〈ex |A =
∑

x,y

〈 fy |L|ex 〉 · | fy〉〈ex |, (2.10)

where {ex }x is an ONB of A and { fy}y an ONB of B. This decomposes L into
elementary operators | fy〉〈ex | ∈ L•(A, B) and the matrix with entries [L]yx =
〈 fy |L|ex 〉.

Moreover, there always exists a choice of the two bases such that the resulting
matrix is diagonal. For such a choice of bases, we find the singular value decompo-
sition L = ∑

x sx | fx 〉〈ex |, where {sx }x with sx ≥ 0 are called the singular values
of L . In particular, for self-adjoint operators, we can choose | fx 〉 = |ex 〉 and recover
the eigenvalue decomposition with sx = |λx |.
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The transpose of L with regards to the bases {ex } and { fy} is defined as

LT :=
∑

x,y

〈 fy |L|ex 〉 · |ex 〉〈 fy |, LT ∈ L (B, A). (2.11)

Importantly, in contrast to the adjoint, the transpose is only defined with regards to
a particular basis. Also contrast (2.11) with the matrix representation of L†,

L† =
∑

x,y

(〈 fy |L|ex 〉
)† · |ex 〉〈 fy | =

∑

x,y

〈ex |L†| fy〉 · |ex 〉〈 fy | = L
T
. (2.12)

Here, L denotes the complex conjugate, which is also basis dependent.

2.2.2 Events and Measures

We are now ready to attach physical meaning to the concepts introduced in the
previous section, and apply them to physical systems carrying quantum information.

Observable events on a quantum system A correspond to operators in the unit
ball of P(A), namely the set

P•(A) := {M ∈ L (A) : 0 ≤ M ≤ I }. (2.13)

(The bullet ‘•’ indicates that we restrict to the unit ball of the norm ‖ · ‖.)

Two events M, N ∈ P•(A) are called exclusive if M + N is an event in P•(A)

as well. In this case, we call M + N the union of the events M and N . A complete set
of mutually exclusive events that sum up to the identity is called a positive operator
valued measure (POVM). More generally, for any measurable space (X ,Σ) with
Σ a σ -algebra, a POVM is a function

OA : Σ → P•(A) with OA(X ) = IA (2.14)

that is σ -additive, meaning that OA(
⋃

i Xi ) = ∑

i OA(Xi ) for mutually disjoint
subsets Xi ⊂ X . This definition is too general for our purposes here, and we will
restrict our attention to the case where X is discrete and Σ the power set of X . In
that case the POVM is fully determined if we associate mutually exclusive events to
each x ∈ X .
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A function x �→ MA(x) with MA(x) ∈ P•(A),
∑

x MA(x) = IA is called a
positive operator valued measure (POVM) on A.

We assume that x ranges over a countable set for this definition, and we will
in fact not discuss measurements with continuous outcomes in this book. We call
x �→ MA(x) a projectivemeasure if all MA(x) are projectors, and we call it rank-one
if all MA(x) have rank one.

Structure of Classical Systems

Classical systems have the distinguishing property that all events commute.
To model a classical system X in our quantum framework, we restrictP•(X) to

a set of events that commute. These are diagonalized by a common ONB, which we
call the classical basis of X . For simplicity, the classical basis is denoted {x}x and
the corresponding kets are |x〉X. (To avoid confusion, we will call the index y or z
instead of x if the systems Y and Z are considered instead.)

Every M ∈ P•(X) on a classical system can be written as

M =
∑

x

M(x) |x〉〈x |X =
⊕

x

M(x), where 0 ≤ M(x) ≤ 1. (2.15)

Instead of writing down the basis projectors, |x〉〈x |, we sometimes employ the
direct sum notation to illustrate the block-diagonal structure of such operators. In
the following, whenever we introduce a classical event M on X we also implicitly
introduce the function M(x), and vice versa.

This definition of “classical” events still goes beyond the usual classical formalism
of discrete probability theory. In the usual formalism, M represents a subset of the
sample space (an element of its σ -algebra), and thus corresponds to a projector in
our language, with M(x) ∈ {0, 1} indicating if x is in the set. Our formalism, in
contrast, allows to model probabilistic events, i.e. the event M occurs at most with
probability M(x) ∈ [0, 1] even if the state is deterministically x .4

2.3 Functionals and States

States of a physical system are functionals on the set of bounded linear operators
that map events to the probability that the respective event occurs.

4This generalization is quite useful as it, for example, allows us to see the optimal (probabilistic)
Neyman-Pearson test as an event.
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Continuous linear functionals can be represented as trace-class operators. This
then allows us to introduce states for quantum and classical systems.

2.3.1 Trace and Trace-Class Operators

The most fundamental linear functional is the trace. For any orthonormal basis {ex }x

of A, we define the trace over A as

TrA(·) : L (A) → C, L �→
∑

x

〈ex | L |ex 〉A . (2.16)

Note that Tr(L) is finite if dA < ∞ or more generally if L is trace-class, as we will
see below. The trace is cyclic, namely we have

TrA(K L) = TrB(L K ) (2.17)

for any two operators L ∈ L (A, B), K ∈ L (B, A) when K L and L K are trace-
class. Thus, in particular, for any L ∈ L (A), we have TrA(L) = TrB(ULU†) for
any isometry U ∈ L (A, B), which shows that the particular choice of basis used for
the definition of the trace in (2.16) is irrelevant. Finally, we have Tr(L†) = Tr(L).

Trace-Class Operators

Using the trace, continuous linear functionals can be conveniently represented as
elements of the dual Banach space of L (A), namely the space of linear operators
onHA with bounded trace norm.

The trace norm on L (A) is defined as

‖ · ‖∗ : ξ �→ Tr |ξ | = Tr
(√

ξ†ξ
)

. (2.18)

Operators ξ ∈ L (A) with ‖ξ‖∗ < ∞ are called trace-class operators.

We denote the subspace ofL (A) consisting of trace-class operators byT (A) and
we use lower-case Greek letters to denote elements of T (A). In infinite dimensions
T (A) is a proper subspace ofL (A). In finite dimensionsL (A) andT (A) coincide,
but we will use this convention to distinguish between linear operators and linear
operators representing functionals nonetheless.
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For every trace-class operator ξ ∈ T (A), we define the functional Fξ (L) :=
〈ξ, L〉 using the sesquilinear form

〈·, ·〉 : T (A) × L (A) → C, (ξ, L) �→ Tr(ξ†L). (2.19)

This form is continuous in bothL (A) andT (A)with regards to the respective norms
on these spaces, which is a direct consequence of Hölder’s inequality |Tr(ξ†L)| ≤
‖ξ‖∗ · ‖L‖.5 In finite dimensions it is also tempting to view L (A) = T (A) as
a Hilbert space with 〈·, ·〉 as its inner product, the Hilbert-Schmidt inner product.
Finally, positive functionals map P(A) onto the positive reals. Since Tr(ωM) ≥ 0
for all M ≥ 0 if and only if ω ≥ 0, we find that positive functionals correspond to
positive semi-definite operators in T (A), and we denote these by S (A).

2.3.2 States and Density Operators

A state of a physical system A is a functional that maps events M ∈ P•(A) to the
respective probability that M is observed.Wewant the probability of the union of two
mutually exclusive events to be additive, and thus such functionals must be linear.
Furthermore, we require them to be continuous with regards to small perturbations
of the events. Finally, they ought to map events into the interval [0, 1], hence they
must also be positive and normalized.

Based on the discussion in the previous section, we can conveniently parametrize
all functionals corresponding to states as follows.We define the set of sub-normalized
density operators as trace-class operators in the unit ball,

S•(A) := {ρA ∈ T (A) : ρA ≥ 0 ∧ Tr(ρA) ≤ 1}. (2.21)

Here the bullet ‘•’ refers to the unit ball in the norm ‖ · ‖∗. (This norm simply
corresponds to the trace for positive semi-definite operators.)

For any operator ρA ∈ S•(A), we define the functional

Pr
ρ

(·) : P•(A) → [0, 1], M �→ 〈ρA, M〉 = Tr(ρA M), (2.22)

which maps events to the probability that the event occurs.

5Note also that the norms ‖ · ‖ and ‖ · ‖∗ are dual with regards to this form, namely we have

‖ξ‖∗ = sup
{ |〈ξ, L〉| : L ∈ L•(A)

}

. (2.20)

The trace norm is thus sometimes also called the dual norm.
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This is an expression of Born’s rule, and often taken as an axiom of quantum
mechanics. Here it is just a natural way to map events to probabilities. We call such
operators ρA density operators.

It is often prudent to further require that the union of all events in a POVM, namely
the event I , has probability 1. This leads us to normalized density operators:

Quantum states are represented as normalized density operators in

S◦(A) := {ρA ∈ T (A) : ρA ≥ 0 ∧ Tr(ρA) = 1}, (2.23)

(The circle ‘◦’ indicates that we restrict to the unit sphere of the norm ‖ · ‖∗.)

In the followingwewill use the expressions state anddensity operator interchange-
ably. We also use the set S which contains all positive semi-definite operators, if
there is no need for normalization.

States form a convex set, and a state is called mixed if it lies in the interior of
this set. The fully mixed state (in finite dimensions) is denoted πA := IA/dA. On
the other hand, states on the boundary are called pure. Pure states are represented
by density operators with rank one, and can be written as φA = |φ〉〈φ|A for some
φ ∈ HA. With a slight abuse of nomenclature, we often call the corresponding ket,
|φ〉A, a state.

Probability Mass Functions

The structure of density operators simplifies considerably for classical systems. We
are interested in evaluating the probabilities for events of the form (2.15). Hence, for
any ρX ∈ S◦(X), we find

Pr
ρ

(M) = Tr(ρX M) =
∑

x

M(x) 〈x | ρX |x〉X =
∑

x

M(x)ρ(x), (2.24)

where we defined ρX (x) = 〈x | ρX |x〉X . We thus see that it suffices to consider states
of the following form:

States ρX ∈ S◦(X) on a classical system X have the form

ρX =
∑

x

ρ(x) |x〉〈x |X , where ρ(x) ≥ 0,
∑

x

ρ(x) = 1. (2.25)

where ρ(x) is called a probability mass function.

Moreover, if ρX ∈ S•(X) is a sub-normalized density operator, we require that
∑

x ρ(x) ≤ 1 instead of the equality. Again, whenever we introduce a density oper-
ator ρX on X , we implicitly also introduce the function ρ(x), and vice versa.
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2.4 Multi-partite Systems

A joint system AB is modeled using bounded linear operators on a tensor product of
Hilbert spaces,HAB := HA ⊗ HB . The respective set of bounded linear operators
is denoted L (AB) and the events on the joint systems are thus the elements of
P•(AB). Analogously, all the other sets of operators defined in the previous sections
are defined analogously for the joint system.

2.4.1 Tensor Product Spaces

For every v ∈ HAB on the joint system AB, there exist two ONBs, {ex }x on A and
{ fy}y on B, as well as a unique set of positive reals, {λx }x , such that we can write

|v〉AB =
∑

x

√

λx |ex 〉A ⊗ | fx 〉B . (2.26)

This is called the Schmidt decomposition of v. The convention to use a square root is
motivated by the fact that the sequence {√λx }x is square summable, i.e.

∑

x λx < ∞.
Note also that {ex ⊗ fy}x,y can be extended to an ONB on the joint system AB.

Embedding Linear Operators

We embed the bounded linear operators L (A) into L (AB) by taking a tensor
product with the identity on B. We often omit to write this identity explicitly and
instead use subscripts to indicate on which system an operator acts. For example, for
any L A ∈ L (A) and |v〉AB ∈ HAB as in (2.26), we write

L A |v〉AB = L A ⊗ IB |v〉AB =
∑

x

λx L A |ex 〉A ⊗ | fx 〉B (2.27)

Clearly, ‖L A ⊗ IB‖ = ‖L A‖, and in fact, more generally for all L A ∈ L (A) and
L B ∈ L (B), we have

‖L A ⊗ L B‖ = ‖L A‖ · ‖L B‖. (2.28)

We say that two operators K , L ∈ L (A) commute if [K , L] := K L − L K = 0.
Clearly, elements of L (A) and L (B) mutually commute as operators in L (AB),
i.e. for all L A ∈ L (A), K B ∈ L (B), we have [L A ⊗ IB, IA ⊗ K B] = 0.
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Finally, every linear operator L AB ∈ L (AB) has a decomposition

L AB =
∑

k

Lk
A ⊗ Lk

B, where Lk
A ∈ L (A), Lk

B ∈ L (B) (2.29)

Similarly, every self-adjoint operator L AB ∈ L †(AB) decomposes in the same
way but now Lk

A ∈ L †(A) and Lk
B ∈ L †(B) can be chosen self-adjoint as well.

However, crucially, it is not always possible to decompose a positive semi-definite
operator into products of positive semi-definite operators in this way.

Representing Traces of Matrix Products Using Tensor Spaces

Let us next consider trace terms of the form TrA(K A L A) where K A, L A ∈ L (A)

are general linear operators and HA is finite-dimensional. It is often convenient to
represent such traces as follows.

First, we introduce an auxiliary system A′ such thatHA andHA′ are isomorphic
(i.e. they have the same dimension). Furthermore, we fix a pair of bases {|ex 〉A}x

of A and {|ex 〉A′ }x of A′. (We can use the same index set here since these spaces
are isomorphic.) Clearly every linear operator on A has a natural embedding into A′
given by this isomorphism. Using these bases, we further define a rank one operator
Ψ ∈ S (AA′) in its Schmidt decomposition as

|Ψ 〉AA′ =
∑

x

|x〉A ⊗ |x〉A′ . (2.30)

(Note that this state has norm ‖Ψ ‖∗ = dA, which is why this discussion is restricted
to finite dimensions.) Using the matrix representation of the transpose in (2.11), we
now observe that L A ⊗ IA′ |Ψ 〉AA′ = IA ⊗ LT

A′ |Ψ 〉AA′ and, therefore,

Tr(K A L A) = 〈Ψ | K A L A |Ψ 〉 = 〈Ψ |AA′ K A ⊗ LT
A′ |Ψ 〉AA′ . (2.31)

We will encounter this representation many times and keep Ψ thus reserved for this
purpose, without going through the construction explicitly every time.6

Marginals of Functionals

Given a bipartite system AB that consists of two sets of operatorsL (A) andL (B),
we now want to specify how a trace-class operator ξAB ∈ T (AB) acts on L (A).
For any L A ∈ L (A), we have

FξAB (L A) = 〈ξAB, L A ⊗ IB〉 = Tr
(

ξ
†
AB L A ⊗ IB

) = TrA
(

TrB(ξ
†
AB) L A

)

,

(2.32)

where we simply used that TrAB(·) = TrA(TrB(·)) where TrB as defined in (2.16)
naturally embeds as a map from T (AB) into T (A), i.e.

6Note that Ψ is an (unnormalized) maximally entangled state, usually denoted ψ .
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TrB
(

ξ
†
AB

) =
∑

x

( 〈ex |A ⊗ IB
)

ξ
†
AB

( |ex 〉A ⊗ IB
) = TrB

(

ξAB
)†

.

(2.33)

This is also called the partial trace and will be discussed further in the context of
completely bounded maps in Sect. 2.6.2.

The above discussion allows us to define the marginal on A of the trace-class
operator ξAB ∈ T (A) as follows:

ξA := TrB
(

ξAB
)

such that FξAB (L A) = FξA(L A) = 〈ξA, L A〉. (2.34)

We usually do not introduce marginals explicitly. For example, if we introduce a
trace-class operator ξAB then its marginals ξA and ξB are implicitly defined as well.

2.4.2 Separable States and Entanglement

The occurrence of entangled states on two or more quantum systems is one of the
most intriguing features of the formalism of quantum mechanics.

We call a positive operator MAB ∈ P(AB) of a joint quantum system AB
separable if it can be written in the form

MAB =
∑

k∈K
L A(k) ⊗ K B(k), where L A(k) ∈ P(A), K B(k) ∈ P(B),

(2.35)

for some index setK . Otherwise, it is called entangled.

The prime example of an entangled state is the maximally entangled state. For
two quantum systems A and B of finite dimension, a maximally entangled state is a
state of the form

|ψ〉AB = 1√
d

∑

x

|ex 〉A ⊗ | fx 〉B, d = min{dA, dB} (2.36)

where {ex }x is an ONB of A and { fx }x is an ONB of B.
This state cannot be written in the form (2.35) as the following argument, due

to Peres [131] and Horodecki [89], shows. Consider the operation (·)TB of taking a
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partial transpose on the system B with regards to { fx }x on B. Applied to separable
states of the from (2.35), this always results in a state, i.e.

ρ
TB
AB =

∑

k

σA(k) ⊗ (

τB(k)
)TB ≥ 0. (2.37)

Is positive semi-definite. Applied to ψAB , however, we get

ψ
TB
AB = 1

d

∑

x,x ′
|ex 〉〈ex ′ | ⊗ (| fx 〉〈 fx ′ |)TB = 1

d

∑

x,x ′
|ex 〉〈ex ′ | ⊗ | fx ′ 〉〈 fx |. (2.38)

This operator is not positive semi-definite. For example, we have

〈

φ
∣
∣ψ

TB
AB

∣
∣φ

〉 = − 2

d
, where |φ〉 = |e1〉 ⊗ |e2〉 − |e2〉 ⊗ |e1〉. (2.39)

Generally, we have seen that a bipartite state is separable only if it remains positive
semi-definite under the partial transpose. The converse is not true in general.

2.4.3 Purification

Consider any state ρAB ∈ S (AB), and its marginals ρA and ρB . Then we say that
ρAB is an extension of ρA and ρB . Moreover, if ρAB is pure, we call it a purification
of ρA and ρB . Moreover, we can always construct a purification of a given state
ρA ∈ S (A). Let us say that ρA has eigenvalue decomposition

ρA =
∑

x

λx |ex 〉〈ex |A, then the state |ρ〉AA′ =
∑

x

√

λx |ex 〉A ⊗ |ex 〉A′ (2.40)

is a purification of ρA. Here, A′ is an auxiliary system of the same dimension as A
and {|ex 〉A′ }x is any ONB of A′. Clearly, TrA′(ρAA′) = ρA.

2.4.4 Classical-Quantum Systems

An important special case are joint systems where one part consists of a classical
system. Events M ∈ P•(X A) on such joint systems can be decomposed as

MX A =
∑

x

|x〉〈x |X ⊗ MA(x) =
⊕

x

MA(x), where MA(x) ∈ P•(A). (2.41)
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Moreover, we call states of such systems classical-quantum states. For example,
consistent with our notation for classical systems in (2.25), a state ρX A ∈ S•(X A)

can be decomposed as

ρX A =
∑

x

|x〉〈x |X ⊗ ρA(x), where ρA(x) ≥ 0,
∑

x

Tr
(

ρA(x)
) ≤ 1. (2.42)

Clearly, ρA(x) ∈ S•(A) is a sub-normalized density operator on A. Furthermore,
comparing with (2.35), it is evident that such states are always separable.

If ρX A ∈ S◦(X A), it is sometimes more convenient to instead further decompose

ρA(x) = ρ(x)ρ̂A(x), (2.43)

where ρ(x) is a probability mass function and ρ̂A(x) ∈ S◦(A) normalized as well.

2.5 Functions on Positive Operators

Besides the inverse, we often need to lift other continuous real-valued functions to
positive semi-definite operators. For any continuous function f : R+ \ {0} → R and
M ∈ P(A), we use the convention

f (M) =
∑

x :λx �=0

f (λx ) |ex 〉〈ex |. (2.44)

If the resulting operator is bounded (e.g. if the spectrum of M is compact). That is,
as for the generalized inverse, we simply ignore the kernel of M .7 By definition, we
thus have f (U M U†) = U f (M)U † for any unitary U . Moreover, we have

L f (L†L) = f (L L†)L , (2.45)

which can be verified using the polar decomposition, stating that we can always write
L = U |L| for some unitary operator U . An important example is the logarithm,
defined as log M = ∑

x :λx �=0 log λx |ex 〉〈ex |.
Let us in the following restrict our attention to thefinite-dimensional case.Notably,

trace functionals of the form M �→ Tr( f (M)) inherit continuity, monotonicity,
concavity and convexity from f (see, e.g., [34]). For example, for any monotonically
increasing continuous function f , we have

Tr( f (M)) ≤ Tr( f (N )) for all M, N ∈ P(A) with M ≤ N . (2.46)

7This convention is very useful to keep the presentation in the following chapters concise, but some
care is required. If limε→0 f (ε) �= 0, then M �→ f (M) is not necessarily continuous even if f is
continuous on its support.
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Table 2.2 Examples of operator monotone, concave and convex functions

Function Range Op. monotone Op. anti-monotone Op. convex Op. concave√
t [0,∞) Yes No No Yes

t2 [0,∞) No No Yes No
1
t (0,∞) No Yes Yes No

tα α ∈ [0, 1] α ∈ [−1, 0) α ∈ [−1, 0) ∪ [1, 2] α ∈ (0, 1]
log t (0,∞) Yes No No Yes

t log t [0,∞) No No Yes No

Note in particular that tα is neither operator monotone, convex nor concave for α < −1 and α > 2

Operator Monotone and Concave Functions

Here we discuss classes of functions that, when lifted to positive semi-definite oper-
ators, retain their defining properties. A function f : R+ → R is called operator
monotone if

M ≤ N =⇒ f (M) ≤ f (N ) for all M, N ≥ 0. (2.47)

If f is operator monotone then − f is operator anti-monotone. Furthermore, f is
called operator convex if

λ f (M) + (1 − λ) f (N ) ≥ f
(

λM + (1 − λ)N
)

for all M, N ≥ 0 (2.48)

and λ ∈ [0, 1]. If this holds with the inequality reversed, then the function is called
operator concave. These definitions naturally extend to functions f : (0,∞) → R,
where we consequently choose M, N > 0.

There exists a rich theory concerning such functions and their properties (see, for
example, Bhatia’s book [26]), but we will only mention a few prominent examples
in Table2.2 that will be of use later.

We say that a two-parameter function is jointly concave (jointly convex) if it is
concave (convex) when we take convex combinations of input tuples. Lieb [106] and
Ando [4] established the following extremely powerful result. The map

P(A) × P(B) → P(AB), (MA, NB) �→ f
(

MA ⊗ N−1
B

)

MA ⊗ IB (2.49)

is jointly convex on strictly positive operators if f : (0,∞) → R is operator
monotone. This is Ando’s convexity theorem [4]. In particular, we find that the
functional

(MA, NB) �→ 〈Ψ | K · (

MA ⊗ N−T
B′

)α−1
MA · K † |Ψ 〉B B′ = TrA(Mα

A K †N 1−α
B K )

(2.50)

for any K ∈ L (A, B) is jointly concave for α ∈ (0, 1) and jointly convex for
α ∈ (1, 2). The former is known as Lieb’s concavity theorem. Since this will be used
extensively, we include a derivation of this particular result in Appendix.
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2.6 Quantum Channels

Quantum channels are used to model the time evolution of physical systems. There
are two equivalent ways to model a quantum channel, and we will see that they are
intimately related. In the Schrödinger picture, the events are fixed and the state of a
system is time dependent. Consequently, we model evolutions as quantum channels
acting on the space of density operators. In the Heisenberg picture, the observable
events are time dependent and the state of a system is fixed, and we thus model
evolutions as adjoint quantum channels acting on events.

2.6.1 Completely Bounded Maps

Here, we introduce linear maps between bounded linear operators on different sys-
tems, and their adjoints, which map between functionals on different systems. For
later convenience, we use calligraphic letters to denote the latter maps, for example
E andF and use the adjoint notation for maps between bounded linear operators. The
action of a linear map on an operator in a tensor space is well-defined by linearity
via the decomposition in (2.29), and as for linear operators, we usually omit to make
this embedding explicit.

The set of completely bounded (CB) linear maps fromL (A) toL (B) is denoted
by CB(A, B). Completely bounded maps E† ∈ CB(A, B) have the defining prop-
erty that for any operator L AC ∈ L (AC) and any auxiliary system C , we have
‖E†(L AC )‖ < ∞.8 We then define the linear map E from T (A) to T (B) as the
adjoint map for some E† ∈ CB(B, A) via the sesquilinear form. Namely, E is defined
as the unique linear map satisfying

〈E(ξ), L〉 = 〈ξ,E†(L)〉 for all ξ ∈ T (A), L ∈ L (B). (2.51)

Clearly, E maps T (A) into T (B). Moreover, for any ξAC in T (AC), we have

‖E(ξAC )‖∗ = sup
{∣
∣
∣

〈

ξAC ,E†(L BC )
〉∣
∣
∣ : L BC ∈ L•(BC)

}

< ∞. (2.52)

So thesemaps are in fact completely bounded in the trace norm andwe collect them in
the set CB∗(A, B). Again, in finite dimensions CB(A, B) and CB∗(A, B) coincide.

8It is noteworthy that the weaker condition that the map be bounded, i.e. ‖E†(L A)‖ < ∞, is not
sufficient here and in particular does not imply that the map is completely bounded. In contrast,
bounded linear operators in L (A) are in fact also completely bounded in the above sense.
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2.6.2 Quantum Channels

Physical channels necessarily map positive functionals onto positive functionals. A
map E ∈ CB∗(A, B) is called completely positive (CP) if it mapsS (AC) toS (BC)

for any auxiliary system C , namely if

〈E(ωAC ), MBC 〉 ≥ 0 for all ω ∈ S (AC), M ∈ P(BC). (2.53)

A map E is CP if and only if E† is CP, in the respective sense. The set of all CP maps
from T (A) to T (B) is denoted CP(A, B).

Physical channels in the Schrödinger picture are modeled by completely positive
trace-preserving maps, or quantum channels.

A quantum channel is a map E ∈ CP(A, B) that is trace-preserving, namely
a map that satisfies

Tr(E(ξ)) = Tr(ξ) for all ξ ∈ T (A). (2.54)

Naturally, such maps take states to states, more precisely, they map S◦(A) to
S◦(B) and S•(A) to S•(B). The corresponding adjoint quantum channel E† from
L (B) to L (A) in the Heisenberg picture is a completely positive and unital map,
namely it satisfies E†(IA) = IB . In fact, a map E is trace-preserving if and only if E†

is unital. Unital maps takeP•(B) toP•(A) and thus map events to events. Clearly,

Pr
E(ρ)

(M) = 〈E(ρ), M〉 =
〈

ρ,E†(M)
〉

= Pr
ρ

(

E†(M)
)

. (2.55)

Let us summarize some further notation:

• We denote the set of all completely positive trace-preserving (CPTP) maps from
T (A) to T (B) by CPTP(A, B).

• The set of all CP unital maps from L (A) toL (B) is denoted CPU(A, B).
• Finally, a map E ∈ CP(A, B) is called trace-non-increasing if Tr(E(ω)) ≤ Tr(ω)

for all ω ∈ S (A). A CP map is trace-non-increasing if and only if its adjoint is
sub-unital, i.e. it satisfies E†(IB) ≤ IA.

Some Examples of Channels

The simplest example of such a CP map is the conjugation with an operator L ∈
L (A, B), that is the map L : ξ �→ Lξ L†. We will often use the following basic
property of completely positive maps. Let E ∈ CP(A, B), then

ξ ≥ ζ =⇒ E(ξ) ≥ E(ζ ) for all ξ, ζ ∈ T (A). (2.56)
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As a consequence, we take note of the following property of positive semi-definite
operators. For any M ∈ P(A), ξ ∈ S (A), we have

Tr(ξ M) = Tr
(√

Mξ
√

M
) ≥ 0, (2.57)

where the last inequality follows from the fact that the conjugation with
√

M is a
completely positive map. In particular, if L , K ∈ L (A) satisfy L ≥ K , we find
Tr(ξ L) ≥ Tr(ξ K ).

An instructive example is the embedding map L A �→ L A ⊗ IB , which is com-
pletely bounded, CP and unital. Its adjoint map is the CPTP map TrB , the partial
trace, as we have seen in Sect. 2.4.1. Finally, for a POVM x �→ MA(x), we consider
the measurement map M ∈ CPTP(A, X) given by

M : ρA �→
∑

x

|x〉〈x | Tr(ρA MA(x)). (2.58)

This maps a quantum system into a classical system with a state corresponding to
the probability mass function ρ(x) = Tr(ρA MA(x)) that arises from Born’s rule. If
the events {MA(x)}x are rank-one projectors, then this map is also unital.

2.6.3 Pinching and Dephasing Channels

Pinching maps (or channels) constitute a particularly important class of quantum
channels that we will use extensively in our technical derivations. A pinching map
is a channel of the form P : L �→ ∑

x Px L Px where {Px }x , x ∈ [m] are orthogonal
projectors that sum up to the identity. Such maps are CPTP, unital and equal to their
own adjoints. Alternatively, we can see them as dephasing operations that remove
off-diagonal blocks of a matrix. They have two equivalent representations:

P(L) =
∑

x∈[m]
Px L Px = 1

m

∑

y∈[m]
Uy LU †

y , where Uy =
∑

x∈[m]
e
2π iyx

m Px (2.59)

are unitary operators. Note also that Um = I .
For any self-adjoint operator H ∈ L †(A) with eigenvalue decomposition H =

∑

x λx |ex 〉〈ex |, we define the set spec(H) = {λx }x and its cardinality, | spec(H)|,
is the number of distinct eigenvalues of H . For each λ ∈ spec(H), we also define
Pλ = ∑

x :λx =λ |ex 〉〈ex | such that H = ∑

λ λPλ is its spectral decomposition. Then,
the pinching map for this spectral decomposition is denoted

PH : L �→
∑

λ∈spec(H)

Pλ L Pλ. (2.60)
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Clearly, PH (H) = H , PH (L) commutes with H , and Tr(PH (L)H) = Tr(L H).
For any M ∈ P(A), using the second expression in (2.59) and the fact that

Ux MU †
x ≥ 0, we immediately arrive at

PH (M) = 1

| spec(H)|
∑

y∈[m]
Uy MU †

y ≥ 1

| spec(H)| M. (2.61)

This is Hayashi’s pinching inequality [74].
Finally, if f is operator concave, then for every pinching P, we have

f (P(M)) = f

(
1

m

∑

x∈[m]
Ux MU †

x

)

≥ 1

m

∑

x∈[m]
f
(

Ux MU †
x

)

(2.62)

= 1

m

∑

x∈[m]
Ux f (M)U †

x = P( f (M)). (2.63)

This is a special case of the operator Jensen inequality established by Hansen and
Pedersen [71]. For all H ∈ L †(A), every operator concave function f defined on
the spectrum of H , and all unital maps E ∈ CPU(A, B), we have

f (E(H)) ≥ E( f (H)). (2.64)

2.6.4 Channel Representations

The following representations for trace non-increasing and trace preserving CPmaps
are of crucial importance in quantum information theory.

Kraus Operators

Every CP map can be represented as a sum of conjugations of the input [82, 83].
More precisely, E ∈ CP(A, B) if and only if there exists a set of linear operators
{Ek}k , Ek ∈ L (A, B) such that

E(ξ) =
∑

k

Ekξ Ek
† for all ξ ∈ T (A). (2.65)

Furthermore, such a channel is trace-preserving if and only if
∑

k Ek
†Ek = I , and

trace-non-increasing if and only if
∑

k Ek
†Ek ≤ I . The operators {Ek} are called

Kraus operators. Moreover, the adjoint E† of E is completely positive and has Kraus
operators {Ek

†} since

Tr
(

ξE†(L)
) = Tr

(

E(ξ)L
) = Tr

(

ξ
∑

k

Ek
†L Ek

)

. (2.66)
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Stinespring Dilation

Moreover, every CP map can be decomposed into its Stinespring dilation [147].
That is, E ∈ CP(A, B) if and only if there exists a system C and an operator L ∈
L (A, BC) such that

E(ξ) = TrC (Lξ L†) for all ξ ∈ T (A). (2.67)

Moreover, if E is trace-preserving then L = U , where U ∈ L•(A, BC) is an
isometry. If E is trace-non-increasing, then L = PU is an isometry followed by a
projection P ∈ P•(C).

Choi-Jamiolkowski Isomorphism

For finite-dimensional Hilbert spaces, the Choi-Jamiolkowski isomorphism [96]
between bounded linear maps from A to B and linear functionals on A′B is given by

Γ : T (T (A),T (B)) → T (A′B), E �→ γE
A′ B = E

( |Ψ 〉〈Ψ |A′ A
)

, (2.68)

where the stateγE
A′ B is called theChoi-Jamiolkowski state ofE. The inverse operation,

Γ −1, maps linear functionals to bounded linear maps

Γ −1 : γA′ B �→
{

Eγ : ρA �→ TrA′
(

γA′ B(IB ⊗ ρT
A′)

)}

, (2.69)

where the transpose is taken with regards to the Schmidt basis of Ψ .
There are various relations between properties of bounded linear maps and prop-

erties of the corresponding Choi-Jamiolkowski functionals, for example:

E is completely positive ⇔ γE
A′ B ≥ 0 (2.70)

E is trace-preserving ⇔ TrB(γE
A′ B) = IA′ (2.71)

E is unital ⇔ TrA′(γE
A′ B) = IB . (2.72)

2.7 Background and Further Reading

Nielsen and Chuang’s book [125] offers a good introduction to the quantum formal-
ism. Hayashi’s [75] and Wilde’s [174] books both also carefully treat the concepts
relevant for quantum information theory in finite dimensions. Finally,Holevo’s recent
book [88] offers a comprehensivemathematical introduction to quantum information
processing in finite and infinite dimensions.

Operator monotone functions and other aspects of matrix analysis are covered in
Bhatia’s books [26, 27], and Hiai and Petz’ book [87].



Chapter 3
Norms and Metrics

Abstract In this chapter we equip the space of quantum states with some additional
structure by discussing various norms and metrics for quantum states. We discuss
Schattennorms andan important variational characterizationof these norms, amongst
other properties. We go on to discuss the trace norm on positive semi-definite opera-
tors and the trace distance associated with it. Uhlmann’s fidelity for quantum states
is treated next, as well as the purified distance, a useful metric based on the fidelity.

Particular emphasis is given to sub-normalized quantum states, and the above quan-
tities are generalized to meaningfully include them. This will be essential for the
definition of the smooth entropies in Chap.6.

3.1 Norms for Operators and Quantum States

Werestrict ourselves to finite-dimensionalHilbert spaces hereafter.We start by giving
a formal definition for unitarily invariant norms on linear operators. An example of
such a norm is the operator norm ‖ · ‖ of the previous chapter.

Definition 3.1 A norm for linear operators is a map ‖·‖ : L (A) → [0,∞)

which satisfies the following properties, for any L , K ∈ L (A).

Positive-definiteness: ‖L‖ ≥ 0 with equality if and only if L = 0.
Absolute scalability: ‖aL‖ = |α| · ‖L‖ for all a ∈ C.
Subadditivity: ‖L + K‖ ≤ ‖L‖ + ‖K‖.
A norm |||·||| is called a unitarily invariant norm if it further satisfies

Unitary invariance:
∣
∣
∣
∣
∣
∣U LV †

∣
∣
∣
∣
∣
∣ = |||L||| for any isometries U, V ∈ L (A, B).
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We reserve the notation |||·||| for unitarily invariant norms. Combining subadditivity
and scalability, we note that norms are convex:

‖λL + (1 − λ)K‖ ≤ λ ‖L‖ + (1 − λ) ‖K‖ for all λ ∈ [0, 1]. (3.1)

3.1.1 Schatten Norms

The singular values of a general linear operator L ∈ L (A) are the eigenvalues of
its modulus, the positive semi-definite operator |L| := √

L†L . The Schatten p-norm
of L is then simply defined as the p-norm of its singular values.

Definition 3.2 For any L ∈ L (A), we define the Schatten p-norm of L as

‖L‖p :=
(

Tr
(|L|p)

) 1
p

for p ≥ 1. (3.2)

We extend this definition to all p > 0, but note that in this case ‖L‖p is not a
norm. In particular, |L|p for p ∈ [0, 1) does not satisfy the subadditivity inequality
in Definition3.1. The operator norm is recovered in the limit p → ∞. We have

‖L‖∞ = ‖L‖, ‖L‖2 =
√

Tr(L†L), ‖L‖1 = Tr |L| = ‖L‖∗. (3.3)

The latter two norms are the Frobenius or Hilbert-Schmidt norm and the trace norm.
The Schatten norms are unitarily invariant and subadditive. Using this and the

representation of pinching channels in (2.59), we find

|||P(L)||| =
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∑

x∈[m]

1

m
Ux LU †

x

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤
∑

x∈[m]

1

m

∣
∣
∣

∣
∣
∣

∣
∣
∣Ux LU †

x

∣
∣
∣

∣
∣
∣

∣
∣
∣ = |||L||| . (3.4)

This is called the pinching inequality for (unitarily invariant) norms.

Hölder Inequalities and Variational Characterization of Norms

Next we introduce the following powerful generalization of the Hölder and reverse
Hölder inequalities to the trace of linear operators:

http://dx.doi.org/10.1007/978-3-319-21891-5_2
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Lemma 3.1 Let L , K ∈ L (A), M, N ∈ P(A) and p, q ∈ R such that
p > 0 and 1

p + 1
q = 1. Then, we have

|Tr(L K )| ≤ Tr |L K | ≤ ‖L‖p · ‖K‖q if p > 1 (3.5)

Tr(M N ) ≥ ‖M‖p · ∥
∥N−1

∥
∥−1

−q if p ∈ (0, 1) and M 
 N . (3.6)

Moreover, for every L there exists a K such that equality is achieved in (3.5).
In particular, for M, N ∈ P(A), equality is achieved in all inequalities if
M p = aN q for some constant a ≥ 0.

Proof Weomit the proof of thefirst statement (see, e.g.,Bhatia [26,Corollary IV.2.6]).
For p ∈ (0, 1), let us first consider the case where M and N commute. Then, (3.5)

yields

‖M‖p
p = Tr(M p) = Tr(M p N p N−p) ≤ ‖M p N p‖ 1

p
· ‖N−p‖ 1

1−p
(3.7)

= (

Tr(M N )
)p ·

(

Tr
(

|N |− p
1−p

))1−p
,

(3.8)

which establishes the desired statement. To generalize (3.6) to non-commuting oper-
ators, note that the commutative inequality yields

Tr
(

M N
) = Tr

(

PN (M)N
) ≥ ∥

∥PN (M)
∥
∥

p · ∥
∥|N |−1

∥
∥

−1
−q . (3.9)

Moreover, since t �→ t p is operator concave, the operator Jensen inequality (2.64).
establishes that

∥
∥PN (M)

∥
∥

p
p = Tr

((

PN (M)
)p) ≥ Tr

(

PN
(

M p)) = Tr
(

M p). (3.10)

Substituting this into (3.9) yields the desired statement for general M and N . �

TheseHölder inequalities are extremely useful, for example they allowus to derive
various variational characterizations of Schatten norms and trace terms. For p > 1,
the Hölder inequality implies norm duality, namely [26, Sect. IV.2]

‖L‖p = max
K∈L (A)
‖K‖q ≤1

∣
∣
∣Tr

(

L†K
)
∣
∣
∣ for

1

p
+ 1

q
= 1, p, q > 1. (3.11)

This is a quite useful variational characterization of the Schatten norm, which we
extend to p ∈ (0, 1) using the reverse Hölder inequality. Here we state the resulting
variational formula for positive operators.

http://dx.doi.org/10.1007/978-3-319-21891-5_2
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Lemma 3.2 Let M ∈ P(A) and p > 0. Then, for r = 1 − 1
p , we find

‖M‖p = max
{

Tr
(

M Nr ) : N ∈ S◦(A)
}

if p ≥ 1 (3.12)

‖M‖p = min
{

Tr
(

M Nr ) : N ∈ S◦(A) ∧ M 
 N
}

if p ∈ (0, 1]. (3.13)

Furthermore, as a consequence of the Hölder inequality for p > 1 we find

log Tr(M N ) ≤ 1

p
log Tr(M p) + 1

q
log Tr(N q) (3.14)

≤ log

(
1

p
Tr(M p) + 1

q
Tr(N q)

)

, (3.15)

where the last inequality follows by the concavity of the logarithm. Hence, we have

Tr(M N ) ≤ 1

p
Tr(M p) + 1

q
Tr(N q) with equality iff M p = N q , (3.16)

which is a matrix trace version of Young’s inequality. Similarly, the reverse Hölder
inequality for p ∈ (0, 1) and M 
 N yields again (3.16)with the inequality reversed.

3.1.2 Dual Norm for States

We have already encountered the norm ‖ · ‖∗, which is the dual norm of the operator
norm on linear operators. Given the operational relation between density operators
(positive functionals) and events (positive semi-definite operators), it is natural to
consider the following dual norm on positive functionals:

Definition 3.3 We define the positive cone dual norm as

‖ · ‖+ : T (A) → R+, ω �→ max
M∈P•(A)

∣
∣Tr

(

ωM
)∣
∣ . (3.17)

Here we emphasize that the maximization in the definition of the dual norm is
only over events inP•(A). In fact, optimizing over operators inL•(A) in the above
expression yields the Schatten-1 norm as we have seen in (3.11). Thus, we clearly
have ‖ξ‖+ ≤ ‖ξ‖1.

Let us verify that this is indeed a norm according to Definition3.1. (However, it
is not unitarily invariant.)
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Proof From the definition it is evident that ‖αξ‖+ = |α|·‖ξ‖ for every scalar α ∈ C.
Furthermore,the triangle inequality is a consequence of the fact that

‖ξ + ζ‖+ = max
M∈P•(A)

∣
∣Tr

(

(ξ + ζ )M
)∣
∣ ≤ max

M∈P•(A)

∣
∣Tr

(

ξ M
)∣
∣ + max

M∈P•(A)

∣
∣Tr

(

ζ M
)∣
∣

= ‖ξ‖+ + ‖ζ‖+ (3.18)

for every ξ, ζ ∈ L . It remains to show that ‖ξ‖+ ≥ 0 with equality if and only if
ξ = 0. This follows from the following lower bound on the dual norm:

‖ξ‖+ ≥ max|v〉: 〈v|v〉=1
|〈v| ξ |v〉| = w(ξ) ≥ 0 with equality only if ξ = 0. (3.19)

To arrive at (3.19), we chose M = |v〉〈v| and letw(·) denote the numerical radius (see,
e.g.,Bhatia [26, Sect. I.1]). The equality condition is thus inherited from thenumerical
radius. �

For functionals represented by self-adjoint operators ξ ∈ T (A), we can explicitly
find the operator that achieves the maximum in (3.17) using the spectral decompo-
sition of ξ . Specifically, we find that the expression is always maximized by the
projector {ξ ≥ 0} or its complement {ξ < 0}, namely we want to either sum up all
positive or all negative eigenvalues to maximize the absolute value. The dual norm
thus evaluates to

‖ξ‖+ = max
{

Tr
({ξ ≥ 0}ξ)

, −Tr
({ξ < 0}ξ)}

. (3.20)

This can be further simplified using max{a, b} = 1
2 (a + b + |a − b|), which yields

‖ξ‖+ = 1

2
Tr

(({ξ ≥ 0} − {ξ < 0})ξ
)

+ 1

2

∣
∣
∣Tr

(({ξ ≥ 0} + {ξ < 0})ξ
)∣
∣
∣ (3.21)

= 1

2
Tr |ξ | + 1

2

∣
∣Tr(ξ)

∣
∣ = 1

2
‖ξ‖1 + 1

2

∣
∣Tr(ξ)

∣
∣. (3.22)

Finally, for positive functionals this further simplifies to ‖ω‖+ = ‖ω‖1 = Tr(ω).

3.2 Trace Distance

We start by introducing a straightforward generalization of the trace distance to gen-
eral (not necessarily normalized) states. The definition also makes sense for general
trace-class operators, so we will state the results in their most general form.

Definition 3.4 For ξ, ζ ∈ T (A), we define the generalized trace distance
between ξ and ζ as Δ(ξ, ζ ) := ‖ξ − ζ‖+.
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This distance is also often called total variation distance in the classical literature.
It is a metric on T (A), an immediate consequence of the fact that ‖ · ‖+ is a norm.

Definition 3.5 A metric is a functional T (A) × T (A) → R+ with the
following properties. For any ξ, ζ, κ ∈ T (A), it satisfies

Positive-definiteness: Δ(ξ, ζ ) ≥ 0 with equality if and only if ξ = ζ .
Symmetry: Δ(ξ, ζ ) = Δ(ζ, ξ).
Triangle inequality: Δ(ξ, ζ ) ≤ Δ(ξ, κ) + Δ(κ, ζ ).

When used with states, the generalized trace distance can be expressed in terms
of the trace norm and the absolute value of the trace using (3.22). This yields

Δ(ρ, τ) = 1

2
‖ρ − τ‖1 + 1

2
|Tr(ρ − τ)| . (3.23)

Hence the definition reduces the usual trace distance Δ(ρ, τ) = 1
2‖ρ − τ‖1 in case

both density operators have the same trace, for example if ρ, τ ∈ S◦(A). More
generally, for sub-normalized states inS•(A), we can express the generalized trace
distance as

Δ(ρ, τ) = 1

2
‖ρ̂ − τ̂‖1 = Δ(ρ̂, τ̂ ), (3.24)

where ρ̂ = ρ ⊕ (1 − Tr(ρ)) and τ̂ = τ ⊕ (1 − Tr(τ )) are block-diagonal. We will
use the hat notation to refer to this construction in the following.

For normalized states ρ, τ ∈ S◦(A), this definition expresses the distinguishing
advantage in binary hypothesis testing. Let us consider the task of distinguishing
between two hypotheses, ρ and τ , with uniform prior using a single observation. For
every event M ∈ P•(A), we consider the following strategy: we perform the POVM
{M, I − M} and select ρ in case we measure M and τ otherwise. Optimizing over
all strategies, the probability of selecting the correct state can be expressed in terms
of the distinguishing advantage, Δ(ρ, τ), as follows:

pcorr(ρ, τ ) := max
M∈P•(A)

(
1

2
Tr(ρM) + 1

2
Tr(τ (I − M))

)

= 1

2

(

1 + Δ(ρ, τ)
)

.

(3.25)

Like any metric based on a norm, the generalized trace distance is also jointly
convex. For all λ ∈ [0, 1], we have

Δ(λρ1 + (1 − λ)ρ2, λτ1 + (1 − λ)τ2) ≤ λΔ(ρ1, τ1) + (1 − λ)Δ(ρ2, τ2). (3.26)

Moreover, the generalized trace distance contracts whenwe apply a quantum channel
(or any trace-non-increasing completely positive map) on both states.
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Proposition 3.1 Let ξ, ζ ∈ T (A), and let F ∈ CPTNI(A, B) be a trace-non-
increasing CP map. Then, Δ(F(ξ),F(ζ )) ≤ Δ(ξ, ζ ).

Proof Note that if F ∈ CP(A, B) is trace non-increasing, then F† ∈ CP(B, A) is
sub-unital. In particular, F† maps P•(B) intoP•(A). Then,

Δ(F(ξ),F(ζ )) = max
M∈P•(B)

∣
∣
∣Tr(MF(ξ − ζ ))

∣
∣
∣ = max

M∈P•(B)

∣
∣
∣Tr(F†(M)(ξ − ζ ))

∣
∣
∣

(3.27)

≤ max
M∈P•(A)

|Tr(M(ξ − ζ ))| = Δ(ξ, ζ ). (3.28)

where we used the definition of the norm in (3.17) twice. �

As a special case when we take the map to be a partial trace, this relation yields

Δ(ρA, τA) ≤ min
ρAB,τAB

Δ(ρAB, τAB) (3.29)

where ρAB and τAB are extensions (e.g. purifications) of ρA and τA, respectively.
Can we always find two purifications such that (3.29) becomes an equality? To

see that this is in fact not true, consider the following example. If ρ is fully mixed
on a qubit and τ is pure, then, Δ(ρ, τ) = 1

2 , but Δ(ψ, ϑ) ≥ 1√
2
for all maximally

entangled states ψ that purify ρ and product states ϑ that purify τ .

3.3 Fidelity

The last observation motivates us to look at other measures of distance between
states. Uhlmann’s fidelity [165] is ubiquitous in quantum information theory and we
define it here for general states.

Definition 3.6 For any ρ, σ ∈ S (A), we define the fidelity of ρ and τ as

F(ρ, τ ) :=
(

Tr
∣
∣
√

ρ
√

τ
∣
∣

)2
. (3.30)

Next we will discuss a few basic properties of the fidelity, and we will provide
further details when we discuss the minimal quantum Rényi divergence in Sect. 4.3.
In fact, the analysis in Sect. 4.3will reveal that (ρ, τ ) �→ √

F(ρ, τ ) is jointly concave

http://dx.doi.org/10.1007/978-3-319-21891-5_4
http://dx.doi.org/10.1007/978-3-319-21891-5_4
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and non-decreasing when we apply a CPTP map to both states. The latter property
thus also holds for the fidelity itself.

Beyond that, Uhlmann’s theorem [165] states that there always exist purifications
with the same fidelity as their marginals.

Theorem 3.1 For any states ρA, τA ∈ S (A) and any purification ρAB ∈
S (AB) of ρA with dB ≥ dA, there exists a purification τAB ∈ S (AB) of τA

such that F(ρA, τA) = F(ρAB, τAB).

In particular, combining this with the fact that the fidelity cannot decrease when we
take a partial trace, we can write

F(ρA, τA) = max
τAB∈S (AB)

F(ρAB, τAB) = max
φAB,ϑAB∈S (AB)

∣
∣〈φAB|ϑAB〉∣∣2, (3.31)

where τAB is any extension of τA. The latter optimization is over all purifications
|φAB〉 of ρA and |ϑAB〉 of τA, respectively, and assumes that dB ≥ dA.

Uhlmann’s theorem has many immediate consequences. For example, for any
linear operator L ∈ L (A), we see that

F(LρL†, τ ) = F(ρ, L†τ L) (3.32)

by using the latter expression in (3.31). This can be generalized further as follows.

Lemma 3.3 For ρ, τ ∈ S (A) and a pinching P, we have F(P(ρ), τ ) = F(ρ,

P(τ )).

Proof By symmetry, it is sufficient to show an inequality in one direction. Let σA =
P(ρA) = ∑

x PxρA Px and {σ x
A}x with σ x

A = PxρA Px be a set of orthogonal
states. Then, introducing an auxiliary Hilbert space A′ with dA′ = dA, we define the
projector Π = ∑

x Px
A ⊗ Px

A′ . The state σA entertains a purification in the support
of Π , namely we can write

|σ 〉AA′ = Π |ρ〉AA′ =
∑

x

∣
∣σ x 〉

AA′ , where σ x
A′ = TrA(σ x

AA′) (3.33)

are again mutually orthogonal. Hence,by Uhlmann’s theorem

F(P(ρA), τA) = max
τAA′

Tr(σAA′τAA′) = max
τAA′

Tr(ρAA′ΠτAA′Π) (3.34)

≤ max
τAA′

F
(

ρA,TrA′(ΠτAA′Π)
)

, (3.35)
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where the maximization is over purifications of τA. Finally, by choosing a basis
{|z〉A′ }z that commutes with all projectors Px

A′ , we find that

TrA′(ΠτAA′Π) =
∑

x,y,z

〈z|A′ Px
A ⊗ Px

A′τAA′ P y
A ⊗ P y

A′ |z〉A′ (3.36)

=
∑

x,z

Px
A 〈z|A′ τAA′ |z〉A′ Px

A =
∑

x

Px
AτA Px

A = P(τA), (3.37)

which concludes the proof. �

Finally, we find that the fidelity is concave in each of its arguments.

Lemma 3.4 The functionals ρ �→ F(ρ, τ ) and τ �→ F(ρ, τ ) are concave.

Proof By symmetry it suffices to show concavity of ρ �→ F(ρ, τ ). Let ρ1
A, ρ2

A ∈
S◦(A) and λ ∈ (0, 1) such that λρ1

A + (1 − λ)ρ2
A = ρA. Moreover, let τAA′ ∈

S◦(AA′) be a fixed purification of τA.
Then, due to Uhlmann’s theorem there exist purifications ρ1

AA′ and ρ2
AA′ of ρ1

A
and ρ2

A, respectively, such that the following chain of inequalities holds:

λF(ρ1
A, σA) + (1 − λ)F(ρ2

A, σA) = λ
∣
∣〈τAA′ |ρ1

AA′ 〉
∣
∣2 + (1 − λ)

∣
∣〈τAA′ |ρ2

AA′ 〉
∣
∣2 (3.38)

= 〈

τAA′
∣
∣
(

λ|ρ1
AA′ 〉〈ρAA′ | + (1 − λ)|ρ2

AA′ 〉〈ρ2
AA′ |)

∣
∣τAA′

〉

(3.39)

= F
(

τAA′ , λ|ρ1
AA′ 〉〈ρ1

AA′ | + (1 − λ)|ρ2
AA′ 〉〈ρ2

AA′ |) (3.40)

≤ F
(

τA, λρ1
A + (1 − λ)ρ2

A

)

. (3.41)

The final inequality follows since the fidelity is non-decreasing when we apply a
partial trace. �

3.3.1 Generalized Fidelity

Before we commence, we define a very useful generalization of the fidelity to sub-
normalized density operators, which we call the generalized fidelity.

Definition 3.7 For ρ, τ ∈ S•(A), we define the generalized fidelity between
ρ and τ as

F∗(ρ, τ ) :=
(

Tr
∣
∣
√

ρ
√

τ
∣
∣ + √

(1 − Tr ρ)(1 − Tr τ)
)2

. (3.42)
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Uhlmann’s theorem (Theorem3.1) adapted to the generalized fidelity states that

F∗(ρ, τ ) = max
ϕ,ϑ

F∗(ϕ, ϑ) = max
ϑ

F∗(φ, ϑ), where (3.43)

√

F∗(ϕ, ϑ) = |〈ϕ|ϑ〉| + √

(1 − Tr ϕ)(1 − Tr ϑ), (3.44)

and ϕ and ϑ range over all purifications of ρ and τ , respectively, and φ is a fixed
purification of ρ. Moreover, using the operators ρ̂ and τ̂ defined in the preceding
section, we can write

F∗(ρ, τ ) = F∗(ρ̂, τ̂ ) =
(

Tr
∣
∣
∣

√

ρ̂
√

τ̂

∣
∣
∣

)2
. (3.45)

From this representation also follows that the square root of the generalizedfidelity
is jointly concave on S•(A) × S•(A), inheriting this property from the fidelity.
Moreover, the generalized fidelity itself is concave in each of its arguments separately
due to Lemma 3.4.

The extension to sub-normalized states in Definition3.7 is chosen diligently so
that the generalized fidelity is non-decreasing when we apply a quantum channel, or
more generally a trace non-increasing CP map.

Proposition 3.2 Let ρ, τ ∈ S•(A), and let E be a trace non-increasing CP
map. Then, F∗(E(ρ),E(τ )) ≥ F∗(ρ, τ ).

Proof Recall that a trace non-increasing map F ∈ CP(A, B) can be decomposed
into an isometry U ∈ CP(A, BC) followed by a projection Π ∈ P(BC) and a
partial trace over C according to the Stinespring dilation representation.

Let us first restrict our attention to CPTP maps E where Π = I . We write ρ′
B =

E[ρA] and τ ′
B = E[τA]. From the representation of the fidelity in (3.44) we can

immediately deduce that

F∗(ρA, τA) = max
ϕAD,ϑAD

F∗(ϕAD, ϑAD) = max
ϕAD,ϑAD

F∗(U(ϕAD), U(ϑAD)) (3.46)

≤ max
ϕ′

BCD,ϑ ′
BCD

F∗(ϕ′
BCD, ϑ ′

BCD) = F∗(ρ′
B, τ ′

B). (3.47)

The maximizations above are restricted to purifications of ρA and τA, respectively.
The sole inequality follows since U(ϕAD) and U(ϑAD) are particular purifications of
ρ′

B and τ ′
B inS•(BCD).

Next, consider a projection Π ∈ P(BC) and the CPTP map E : ρ �→
(

ΠρΠ 0
0 Tr(Π⊥ρ)

)

with Π⊥ = I − Π . Applying the inequality for CPTP maps to

E, we find
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√

F∗(ρ, τ ) ≤
∥
∥
∥

√

ΠρΠ
√

ΠτΠ

∥
∥
∥
1
+

√

Tr(Π⊥ρ)Tr(Π⊥τ)

≤ √

F∗(ΠρΠ,ΠτΠ) (3.48)

where we used that Tr ρ ≤ 1 and Tr τ ≤ 1 in the last step. �

The main strength of the generalized fidelity compared to the trace distance lies in
the following property, which tells us that the inequality in Proposition3.2 is tight if
the map is a partial trace. Given two marginal states and an extension of one of these
states, we can always find an extension of the other state such that the generalized
fidelity is preserved by the partial trace. This is a simple corollary of Uhlmann’s
theorem.

Corollary 3.1 Let ρAB ∈ S•(AB) and τA ∈ S•(A). Then, there exists an
extension τAB such that F∗(ρAB, τAB) = F∗(ρA, τA). Moreover, if ρAB is pure
and dB ≥ dA, then τAB can be chosen pure as well.

Proof Clearly F∗(ρA, τA) ≥ F∗(ρAB, τAB) by Proposition3.2 for any choice of τAB.
Let us first treat the case where ρAB is pure. Using Uhlmann’s theorem in (3.44),
we can write

F∗(ρA, τA) = max
ϑAB

F∗(φAB, ϑAB), where φAB = ρAB. (3.49)

We then take τAB to be any maximizer. For the general case, consider a purifi-
cation ρABC of ρAB. Then, by the above argument there exists a state τABC with
F∗(ρABC, τABC) = F∗(ρA, τA). Moreover, by Proposition3.2, we have F∗(ρABC,

τABC) ≤ F∗(ρAB, τAB) ≤ F∗(ρA, τA). Hence, all inequalities must be equalities,
which concludes the proof. �

3.4 Purified Distance

The fidelity is not a metric itself, but for example the angular distance [125] and the
Bures metric [31] are metrics. They are respectively defined as

A(ρ, τ ) := arccos
√

F(ρ, τ ) and B(ρ, τ ) :=
√

2
(

1 − √

F(ρ, τ )
)

. (3.50)

We will now discuss another metric, which we find particularly convenient since it
is related to the minimal trace distance of purifications [67, 134, 156].
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Definition 3.8 For ρ, τ ∈ S•(A), we define the purified distance between
ρ and τ as P(ρ, τ ) := √

1 − F∗(ρ, τ ).

Then, for quantum states ρ, τ ∈ S◦(A), using Uhlmann’s theorem we find

P(ρ, τ ) = √

1 − F∗(ρ, τ ) =
√

1 − max
ϕ,ϑ

|〈ϕ|ϑ〉|2 = min
ϕ,ϑ

Δ(ϕ, ϑ). (3.51)

Here, |ϕ〉 and |ϑ〉 are purifications of ρ and τ , respectively.
As it is defined in terms of the generalized fidelity, the purified distance inherits

many of its properties. For example, for trace non-increasing CP maps F, we find

P(F(ρ),F(τ )) ≤ P(ρ, τ ). (3.52)

Moreover, the purified distance is a metric on the set of sub-normalized states.

Proposition 3.3 The purified distance is a metric on S•(A).

Proof Let ρ, τ, σ ∈ S•(A). The condition P(ρ, τ ) = 0 if and only if ρ = τ can be
verified by inspection, and symmetry P(ρ, τ ) = P(τ, ρ) follows from the symmetry
of the fidelity.

It remains to show the triangle inequality, P(ρ, τ ) ≤ P(ρ, σ ) + P(σ, τ ).
Using (3.45), the generalized fidelities between ρ, τ and σ can be expressed as
fidelities between the corresponding extensions ρ̂, τ̂ and σ̂ . We employ the triangle
inequality of the angular distance, which can be expressed in terms of the purified
distance as A(ρ̂, τ̂ ) = arccos

√
F∗(ρ, σ ) = arcsin P(τ, τ ). We find

P(ρ, τ ) = sin A(ρ̂, τ̂ ) (3.53)

≤ sin
(

A(ρ̂, σ̂ ) + A(σ̂ , τ̂ )
)

(3.54)

= sin A(ρ̂, σ̂ ) cos A(σ̂ , τ̂ ) + sin A(σ̂ , τ̂ ) cos A(ρ̂, σ̂ ) (3.55)

= P(ρ, σ )
√

F∗(σ, τ ) + P(σ, τ )
√

F∗(ρ, σ ) (3.56)

≤ P(ρ, σ ) + P(σ, τ ), (3.57)

where we employed the trigonometric addition formula to arrive at (3.55). �

Note that the purified distance is not an intrinsic metric. Given two states ρ, τ

with P(ρ, τ ) ≤ ε it is in general not possible to find intermediate states σλ with
P(ρ, σλ) = λε and P(σλ, τ ) = (1−λ)ε. In this sense, the above triangle inequality
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is not tight. It is thus sometimes useful to employ the upper bound in (3.56) instead.
For example, we find that P(ρ, σ ) ≤ sin(ϕ) and P(σ, τ ) ≤ sin(ϑ) implies

P(ρ, τ ) ≤ sin(ϕ + ϑ) < sin(φ) + sin(θ) (3.58)

if ϕ, ϑ > 0 and ϕ + ϑ ≤ π
2 .

The purified distance is jointly quasi-convex since it is an anti-monotone function
of the square root of the generalized fidelity, which is jointly concave. Formally, for
any ρ1, ρ2, τ1, τ2 ∈ S•(A) and λ ∈ [0, 1], we have

P
(

λρ1 + (1 − λ)ρ2, λτ1 + (1 − λ)τ2
) ≤ max

i∈{1,2} P(ρi , τi ). (3.59)

The purified distance has simple upper and lower bounds in terms of the gener-
alized trace distance. This results from a simple reformulation of the Fuchs–van de
Graaf inequalities [59] between the trace distance and the fidelity.

Lemma 3.5 Let ρ, τ ∈ S•(A). Then, the following inequalities hold:

Δ(ρ, τ) ≤ P(ρ, τ ) ≤
√

2Δ(ρ, τ) − Δ(ρ, τ)2 ≤ √

2Δ(ρ, τ). (3.60)

Proof We first express the quantities using the normalized density operators ρ̂ and
τ̂ , i.e. P(ρ, τ ) = P(ρ̂, τ̂ ) and Δ(ρ, τ) = Δ(ρ̂, τ̂ ). Then, the result follows from the
inequalities

1 −
√

F(ρ̂, τ̂ ) ≤ D(ρ̂, τ̂ ) ≤
√

1 − F(ρ̂, τ̂ ) (3.61)

between the trace distance and fidelity, which were first shown by Fuchs and van de
Graaf [59]. �

3.5 Background and Further Reading

We defer to Bhatia’s book [26, Chap. IV] for a comprehensive introduction to matrix
norms. Fuchs’ thesis [58] gives a useful overview over distance measures in quantum
information. The fidelity was first investigated by Uhlmann [165] and popularized
in quantum information theory by Jozsa [97] who also gave it its name. Some recent
literature (most prominently Nielsen and Chuang’s standard textbook [125]) defines
the fidelity as

√
F(·, ·), also called the square root fidelity. Here we adopted the

historical definition.
The discussion on generalized fidelity and purified distance is based on [152]

and [156].The purified distance was independently proposed by Gilchrist et al. [67]
and Rastegin [134, 135], where it is sometimes called ‘sine distance’. However, in
these papers the discussion is restricted to normalized states. The name ‘purified
distance’ was coined in [156], where the generalization to sub-normalized states was
first investigated.



Chapter 4
Quantum Rényi Divergence

Abstract Shannon entropy as well as conditional entropy and mutual information
can be compactly expressed in terms of the relative entropy, or Kullback–Leibler
divergence. In this sense, the divergence can be seen as a parent quantity to entropy,
conditional entropy andmutual information, andmany properties of the latter quanti-
ties can be derived from properties of the divergence. Similarly, we will define Rényi
entropy, conditional entropy andmutual information in terms of a parent quantity, the
Rényi divergence.Wewill see in the following chapters that this approach is very nat-
ural and leads to operationally significant measures that have powerful mathematical
properties. This observation allows us to first focus our attention on quantum gener-
alizations of theKullback–Leibler andRényi divergence and explore their properties,
which is the topic of this chapter.

There exist various quantum generalizations of the classical Rényi divergence due
to the non-commutative nature of quantum physics.1 Thus, it is prudent to restrict our
attention to quantum generalizations that attain operational significance in quantum
information theory. A natural application of classical Rényi divergence is in hypoth-
esis testing, where error and strong converse exponents are naturally expressed in
terms of the Rényi divergence. In this chapter we focus on two variants of the quan-
tumRényi divergence that both attain operational significance in quantum hypothesis
testing. Here we explore their mathematical properties, whereas their application to
hypothesis testing will be reviewed in Chap.7.

4.1 Classical Rényi Divergence

Before we tackle quantumRényi divergences, let us first recapitulate some properties
of the classical Rényi divergence they are supposed to generalize.We formulate these
properties in the quantum language, and we will later see that most of them are also
satisfied by some quantum Rényi divergences.

1In fact, uncountably infinite quantum generalizations with interesting mathematical properties can
easily be constructed (see, e.g. [9]).

© The Author(s) 2016
M. Tomamichel, Quantum Information Processing with Finite Resources,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-21891-5_4

47

http://dx.doi.org/10.1007/978-3-319-21891-5_7


48 4 Quantum Rényi Divergence

4.1.1 An Axiomatic Approach

Alfréd Rényi, in his seminal 1961 paper [142] investigated an axiomatic approach
to derive the Shannon entropy [144]. He found that five natural requirements for
functionals on a probability space single out the Shannon entropy, and by relaxing
one of these requirements, he found a family of entropies now named after him.

The requirements can be readily translated to the quantum language. Here we
consider general functionals D(·‖·) that map a pair of operators ρ, σ ∈ S (A) with
ρ �= 0, σ � ρ onto the real line. Rényi’s six axioms naturally translate as follows:

(I) Continuity: D(ρ‖σ) is continuous in ρ, σ ∈ S (A), wherever ρ �= 0 and
σ � ρ.

(II) Unitary invariance: D(ρ‖σ) = D(UρU †‖UσU †) for any unitary U .
(III) Normalization: D(1‖ 12 ) = log(2).
(IV) Order: If ρ ≥ σ , then D(ρ‖σ) ≥ 0. And, if ρ ≤ σ , then D(ρ‖σ) ≤ 0.
(V) Additivity: D(ρ ⊗ τ‖σ ⊗ ω) = D(ρ‖σ) + D(τ‖ω) for all ρ, σ ∈ S (A),

τ, ω ∈ S (B) with ρ �= 0, τ �= 0.
(VI) General mean: There exists a continuous and strictly monotonic function

g such that Q(·‖·) := g(D(·‖·)) satisfies the following. For ρ, σ ∈ S (A),
τ, ω ∈ S (B),

Q(ρ ⊕ τ‖σ ⊕ ω) = Tr(ρ)

Tr(ρ + τ)
·Q(ρ‖σ)+ Tr(τ )

Tr(ρ + τ)
·Q(τ‖ω). (4.1)

Rényi [142] first shows that (I)–(V) implyD(λ‖μ) = log λ− logμ for two scalars
λ,μ > 0, a quantity that is often referred to as the log-likelihood ratio. In fact, the
axioms imply the following constraint, which will be useful later since it allows us
to restrict our attention to normalized states.

(III+) Normalization: D(aρ‖bσ) = D(ρ‖σ)+ log a − log b for a, b > 0.

We also remark that invariance under unitaries (II) is implied by a slightly stronger
property, invariance under isometries.

(II+) Isometric Invariance: D(ρ‖σ) = D
(

VρV †
∥
∥V σ V †) for ρ, σ ∈ S (A) and

any isometry V from A to B.

Rényi then considers general continuous and strictlymonotonic functions to define
a mean in (VI), such that the resulting quantity is still compatible with (I)–(V).
Under the assumption that the states ρX and σX are classical, he then establishes that
Properties (I)–(VI) are satisfied only by the Kullback–Leibler divergence [103] and
the Rényi divergence for α ∈ (0, 1) ∪ (1,∞), which are respectively given as

D(ρX‖σX ) =
∑

x ρ(x)(log ρ(x)− log σ(x))
∑

x ρ(x)
with g : t �→ t, (4.2)
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Dα(ρX‖σX ) = 1

α − 1
log

∑

x ρ(x)ασ (x)1−α

∑

x ρ(x)
with gα : t �→ exp

(

(α−1)t).
(4.3)

These quantities are well-defined if ρX and σX have full support and otherwise we
use the convention that 0 log 0 = 0 and 0

0 = 1, which ensures that the divergences
are indeed continuous whenever ρX �= 0 and σX � ρX . Finally, note that both
quantities diverge to +∞ if the latter condition is not satisfied and α > 1.

4.1.2 Positive Definiteness and Data-Processing

Unlike in the classical case, the above axioms do not uniquely determine a quantum
generalization of these divergences. Hence, we first list some additional properties
we would like a quantum generalization of the Rényi divergence to have. These are
operationally significant, but mathematically more involved than the axioms used by
Rényi. The classical Rényi divergences satisfy all these properties.

The two most significant properties from an operational point of view are positive
definiteness and the data-processing inequality. First, positive definiteness ensures
that the divergence is positive for normalized states and vanishes only if both argu-
ments are equal. This allows us to use the divergence as a measure of distinguisha-
bility in place of a metric in some cases, even though it is not symmetric and does
not satisfy a triangle inequality.

(VII) Positive definiteness: If ρ, σ ∈ S◦(A), then D(ρ‖σ) ≥ 0 with equality iff
ρ = σ .

Thedata-processing inequality (DPI) ensures the divergencenever increaseswhen
we apply a quantum channel to both states. This strengthens the interpretation of the
divergence as a measure of distinguishability—the outputs of a channel are at least
as hard to distinguish as the inputs.

(VIII) Data-processing inequality: For any E ∈ CPTP(A, B) and ρ, σ ∈ S (A),
we have

D(ρ‖σ) ≥ D(E(ρ)‖E(σ )). (4.4)

Finally, the following mathematical properties will prove extremely useful. (Note
that we expect that either (IXa) or (IXb) holds, but not both.)

(IXa) Joint convexity (applies only to Rényi divergence with α > 1): For sets of
normalized states {ρi }i , {σi }i ⊂ S◦(A) and a probability mass function {λi }i
such that λi ≥ 0 and

∑

i λi = 1, we have

∑

i

λiQ(ρi‖σi ) ≥ Q

(
∑

i

λiρi

∥
∥
∥
∥
∥

∑

i

λiσi

)

. (4.5)
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Consequently, (ρ, σ ) �→ D(ρ‖σ) is jointly quasi-convex, namely

D

(
∑

i

λiρi

∥
∥
∥
∥
∥

∑

i

λiσi

)

≤ max
i

D(ρi‖σi ). (4.6)

(IXb) Joint concavity (applies only to Rényi divergence with α ≤ 1): The inequal-
ity (4.5) holds in the opposite direction, i.e. (ρ, σ ) �→ Q(ρ‖σ) is jointly
concave. Moreover, (ρ, σ ) �→ D(ρ‖σ) is jointly convex.

These properties are interrelated. For example, we clearly have D(ρ‖σ) ≥ 0 in
(VII) if data-processing holds, since D(ρ‖σ) ≥ D(Tr(ρ)‖Tr(σ )) = D(1‖1) = 0.
Furthermore,D(ρ‖ρ) = 0 follows from (IV). To establish positive definiteness (VII)
it in fact suffices to show

(VII-) Definiteness: For ρ, σ ∈ S◦, we have D(ρ‖σ) = 0 =⇒ ρ = σ .

when (IV) and (VIII) hold. The most important connection is drawn in Proposi-
tion 4.2 in Sect. 4.2, and establishes that data-processing holds if and only if joint
convexity resp. concavity holds (depending on the value of α) for all quantum Rényi
divergences. The last property generalizes the order property (IV) as follows.

(X) Dominance: For states ρ, σ, σ ′ ∈ S (A) with σ ≤ σ ′, we have D(ρ‖σ) ≥
D(ρ‖σ ′).

Clearly, dominance (X) and positive definiteness (VII) imply order (IV).

In the following we will show that these properties hold for the classical Rényi
divergence, i.e. for the case when the states ρ and σ commute. As we have argued
above (and will show in Proposition 4.2), to establish data-processing, it suffices to
prove that the KL divergence in (4.2) and the classical Rényi divergences (4.3) satisfy
joint convexity resp. concavity as in (IXa) and (IXb). For this purpose we will need
the following elementary lemma:

Lemma 4.1 If f is convex on positive reals, then F : (p, q) �→ q f
( p

q

)

is jointly
convex. Moreover, if f is strictly convex, then F is strictly convex in p and in q.

Proof Let {λi }i , {pi }i , {qi }i be positive reals such that∑i λi pi = p and
∑

i λi qi = q.
Then, employing Jensen’s inequality, we find

∑

i

λi qi f

(
pi

qi

)

= q
∑

i

λi qi

q
f

(
pi

qi

)

≥ q f

(
∑

i

λi qi

q

pi

qi

)

= q f

(
p

q

)

. (4.7)

The second statement is evident if we fix either pi = p or qi = q. �

This lemma is a generalization of the famous log sum inequality, whichwe recover
using the convex function f : t �→ t log t .



4.1 Classical Rényi Divergence 51

Let us then recall that for normalized ρX , σX ∈ S◦(X), we have

Qα(ρX‖σX ) := gα

(

Dα(ρX‖σX )
) =

∑

x

σ(x)

(
ρ(x)

σ (x)

)α

. (4.8)

First, note that Qα has the form of a Csiszár-Morimoto f -divergence [39, 117],
where fα : t �→ tα is concave for α ∈ (0, 1) and convex for α > 1. Joint convexity
resp. concavity of Qα is then a direct consequence of Lemma 4.1, which we apply
for each summand of the sum over x individually. By the same argument applied for
f : t �→ t log t (i.e. the log sum inequality), we also find that

D(ρX‖σX ) =
∑

x

σ(x) f

(
ρ(x)

σ (x)

)

(4.9)

is jointly convex.
The Rényi divergences satisfy the data-processing inequality (VIII), i.e. Dα is

contractive under application of classical channels to both arguments. This can be
shown directly, but since we have established joint convexity resp. concavity, it also
follows from (a classical adaptation of) Proposition 4.2 below and we thus omit the
proof here.

Dominance (X) is evident from the definition. It remains to show definiteness
(VII-) and thus (VII). This is a consequence of the fact that Q and Qα are strictly
convex resp. concave in the second argument due to Lemma 4.1. Namely, let us
assume for the sake of contradiction that D(ρX‖ρX ) = D(ρX‖σX ) = 0. Then we
get that D(ρX‖ 12ρX + 1

2σX ) < 0 if ρX �= σX , which contradicts positivity. A similar
argument applies to Qα , and we are done.

TheKullback–Leibler divergence and the classical Rényi divergence as defined
in (4.2) and (4.3) satisfy Properties (I)–(X).

4.1.3 Monotonicity in α and Limits

Due to the parametrization in terms of the parameter α, we also find the following
relation between different Rényi divergences.

Proposition 4.1 The function (0, 1) ∪ (1,∞) � α �→ log Qα(ρX‖σX ) is convex
for all ρX , σX ∈ S (X) with ρX �= 0 and σX � ρX . Moreover, it is strictly convex
unless ρX = aσX for some a > 0.

Proof It is sufficient to show this property for ρX , σX ∈ S◦(X) due to (III+). We
simply evaluate the second derivative of this function, which is
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F ′′ = Q′′α(ρX‖σX )Qα(ρX‖σX )− Q′α(ρX‖σX )2

Qα(ρX‖σX )2
(4.10)

where

Q′α(ρX‖σX ) =
∑

x

ρ(x)ασ (x)1−α
(

ln ρ(x)− ln σ(x)
)

, (4.11)

Q′′α(ρX‖σX ) =
∑

x

ρ(x)ασ (x)1−α
(

ln ρ(x)− ln σ(x)
)2

. (4.12)

Note that P(x) = ρ(x)ασ (x)1−α/Qα(ρX‖σX ) is a probability mass function. Using
this, the above expression can be simplified to

F ′′ =
∑

x

P(x)
(

ln ρ(x)− ln σ(x)
)2 −

(
∑

x

P(x)
(

ln ρ(x)− ln σ(x)
)

)2

. (4.13)

Hence, F ′′ ≥ 0 by Jensen’s inequality and the strict convexity of the function t �→ t2,
with equality if and only if ρ(x) = aσ(x) for all x . �

As a corollary, we find that the Rényi divergences are monotone functions of α.

Corollary 4.1 The function α �→ Dα(ρX‖σX ) is monotonically increasing.
Moreover, it is strictly increasing unless ρX = aσX for some a > 0.

Proof We set Qα ≡ Qα(ρX‖σX ) to simplify notation and note that log Q1 = 0.
Let us assume that α > β > 1 and set λ = β−1

α−1 ∈ (0, 1). Then, by convexity of
α→ log Qα , we have

log Qβ = log Qλα+(1−λ) ≤ λ log Qα + (1− λ) log Q1 = β − 1

α − 1
log Qα. (4.14)

This establishes that Dα(ρX‖σX ) ≥ Dβ(ρX‖σX ), as desired. The inequality is strict
unless ρX = σX , as we have seen in Proposition 4.1.

For 1 > α ≥ β, an analogous argument with λ = 1−α
1−β

establishes that log Qα ≤
1−α
1−β

log Qβ , which again yields Dα(ρX‖σX ) ≥ Dβ(ρX‖σX ) taking into account the
sign of the prefactor. �

Since we have now established that Dα is continuous in α for α ∈ (0, 1)∪(1,∞),
it will be interesting to take a look at the limits as α approaches 0, 1 and∞. First, a
direct application of l’Hôpital’s rule yields

lim
α↘1

Dα(ρX‖σX ) = lim
α↗1

Dα(ρX‖σX ) = D(ρX‖σX ). (4.15)
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So in fact the KL divergence is a limiting case of the Rényi divergences and we
consequently define D1(ρX‖σX ) := D(ρX‖σX ). In the limit α→∞, we find

D∞(ρX‖σX ) := lim
α→∞ Dα(ρX‖σX ) = max

x
log

ρ(x)

σ (x)
, (4.16)

which is themaximum log-likelihood ratio.We call this themax-divergence, and note
that it satisfies all the properties except the general mean property (VI). However,
the max-divergence instead satisfies

D(ρ ⊕ τ‖σ ⊕ ω) = max
{

D(ρ‖σ), D(τ‖ω)
}

. (4.17)

The limit α→ 0 is less interesting because it leads to the expression

D0(ρX‖σX ) := lim
α→0

Dα(ρX‖σX ) = − log
∑

x :ρ(x)>0

σ(x), (4.18)

which is discontinuous in ρX and thus does not satisfy (I). Hence, we hereafter
consider Dα with α > 0 as a single continuous one-parameter family of divergences.

Monotonicity of Dα is not the only byproduct of the convexity of log Qα . For
example, we also find that

λD1+λ(ρ‖σ)+ (1− λ)D∞(ρ‖σ) ≥ D2(ρ‖σ). (4.19)

for λ ∈ [0, 1] and various similar relations.

4.2 Classifying Quantum Rényi Divergences

Clearly, we expect suitable quantum Rényi divergences to have the properties dis-
cussed in the previous section.

Definition 4.1 Aquantum Rényi divergence is a quantityD(·‖·) that satisfies
Properties (I)–(X) in Sect. 4.1.1. (It either satisfies IXa or IXb.)

A family of quantum Rényi divergences is a one-parameter family α �→
Dα(·‖·) of quantum Rényi divergences such that Corollary 4.1 in Sect. 4.1.3
holds on some open interval containing 1.

Before we discuss two specific families of Rényi divergences in Sects. 4.3 and 4.4,
let us first make a few observations that apply more generally to all quantum Rényi
divergences.
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4.2.1 Joint Concavity and Data-Processing

First, the following observation relates joint convexity resp. concavity and data-
processing for all quantum Rényi divergences. It establishes that for functionals
satisfying (I)–(VI), these properties are equivalent.

Proposition 4.2 Let D be a functional satisfying (I)–(VI) and let g and Q be
defined as in (VI). Then, the following two statements are equivalent.

(1) Q is jointly convex (IXa) if g is monotonically increasing, or jointly concave
(IXb) if g is monotonically decreasing.

(2) D satisfies the data-processing inequality (VIII).

Proof First, we show (1) =⇒ (2). Note that the axioms enforce that Q is invariant
under isometries and consulting the Stinespring dilation, it thus remains to show that
the data-processing inequality is satisfied for the partial trace operation. For the case
where Q is jointly convex, we thus need to show that Q(ρAB‖σAB) ≥ Q(ρA‖σA)

for ρAB, σAB ∈ S◦(AB) and A and B are arbitrary quantum systems.
To show this, consider a unitary basis ofL (B), for example the generalized Pauli

operators {Xl
B Zm

B }l,m , where l, m ∈ [dB]. These act on the computational basis as

X B |k〉 = |k + 1mod dB〉 and Z B |k〉 = e
2π ik
dB |k〉 . (4.20)

(If we only consider classical distributions, we can set Z B = IB .) Then, after col-
lecting these operators in a set {Ui = Xl

B Zm
B }i with a single index i = (l, m), a short

calculation reveals that

∑

i

1

d2
B

(

IA ⊗Ui
)

ξAB
(

IA ⊗Ui
)† = ξA ⊗ πB (4.21)

for any ξAB ∈ T (AB). Consequently, unitary invariance and joint convexity yield

Q(ρAB‖σAB) =
∑

i

1

d2
B

Q
(

UiρABUi
†
∥
∥UiσABUi

†) (4.22)

≥ Q

(
∑

i

1

d2
B

UiρABUi
†
∥
∥
∥
∥

∑

i

1

d2
B

UiσABUi
†

)

= Q(ρA ⊗ πB‖σA ⊗ πB). (4.23)

Finally,Q(ρA⊗πB‖σA⊗πB) = Q(ρA‖σA)byProperties (IV) and (V).Analogously,
joint concavity of Q implies data-processing for −Q, and thus D.

Next, we show that (2) =⇒ (1). Consider ρ, σ, τ, ω ∈ S◦ and λ ∈ (0, 1). Then,
the data-processing inequality implies that
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D
(

λρ + (1− λ)τ
∥
∥λσ + (1− λ)ω

) ≤ D
(

λρ ⊕ (1− λ)τ
∥
∥λσ ⊕ (1− λ)ω

)

. (4.24)

If g is monotonically increasing, we find that

g
(

D
(

λρ + (1− λ)τ
∥
∥λσ + (1− λ)ω

))

(4.25)

≤ g
(

D
(

λρ ⊕ (1− λ)τ
∥
∥λσ ⊕ (1− λ)ω

))

(4.26)

= λg
(

D(λρ‖λσ)
)+ (1− λ)g

(

D((1− λ)τ‖(1− λ)ω)
)

(4.27)

= λg
(

D(ρ‖σ)
)+ (1− λ)g

(

D(τ‖ω)
)

, (4.28)

where we used property (VI) for the first equality and (V) and (IV) for the last. It
follows that Q(·‖·) is jointly convex. An analogous argument yields joint concavity
if g is decreasing.

4.2.2 Minimal Quantum Rényi Divergence

Let us assume a quantum Rényi divergence Dα satisfies additivity (V) and the data-
processing inequality (VIII). Then, for any pair of states ρ and σ and their n-fold
products, ρ⊗n and σ⊗n , we have

Dα(ρ‖σ) = 1

n
Dα(ρ⊗n‖σ⊗n) ≥ 1

n
Dα

(

Pσ⊗n (ρ⊗n)
∥
∥σ⊗n)

, (4.29)

where Pσ (·) is the pinching channel discussed in Sect. 2.6.3 and the quantity on the
right-hand side is evaluated for two commuting and hence classical states.

So, in particular, a quantum Rényi divergence Dα with property (V) and (VIII)
that generalizes Dα must satisfy

Dα(ρ‖σ) ≥ lim
n→∞

1

n
Dα

(

Pσ⊗n (ρ⊗n)
∥
∥σ⊗n)

(4.30)

= 1

α − 1
log Tr

((

σ
1−α
2α ρσ

1−α
2α

)α
)

. (4.31)

The proof of the last equality is non-trivial and will be the topic of Sect. 4.3.1.
Conversely, this inequality is a necessary but not a sufficient condition for additivity
and data-processing. Potentially tighter lower bounds are possible, for example by
maximizing over all possiblemeasurementmaps on n systems on the right-hand side.
However, we will see in the next section that the minimal quantum Rényi divergence
(also known as sandwiched Rényi divergence), defined as the expression in (4.31),
has all the desired properties of a quantum Rényi divergence for a large range of α.

http://dx.doi.org/10.1007/978-3-319-21891-5_2
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4.2.3 Maximal Quantum Rényi Divergence

A general upper bound can be found by considering a preparation map, using
Matsumoto’s elegant construction [113]. For two fixed states ρ and σ , consider
the operator Δ = σ−1/2ρσ−1/2 with spectral decomposition

Δ =
∑

x

λx�x , as well as q(x) = Tr(σ�x ), p(x) = λx q(x). (4.32)

Then, the CPTP map Λ(·) =∑

x 〈x | · |x〉 1
q(x)

√
σ�x
√

σ satisfies

�(p) =
∑

x

p(x)

q(x)

√
σ�x
√

σ = ρ, �(q) =
∑

x

q(x)

q(x)

√
σ�x
√

σ = σ. (4.33)

Hence, any quantum generalization of the Rényi divergenceDα with data-processing
(VIII) must satisfy

Dα(ρ‖σ) ≤ Dα(p‖q) = 1

α − 1
log Tr

(

σ
1
2
(

σ−
1
2 ρσ−

1
2
)α

σ
1
2

)

. (4.34)

We call the quantity on the right-hand side of (4.34) the maximal quantum Rényi
divergence. For α ∈ (0, 1), the term in the trace evaluates to a mean [102]. Specif-
ically, for α = 1

2 the right-hand side of (4.34) evaluates to −2 log Tr(ρ#σ), where
‘#’ denotes the geometric mean. These means are jointly concave and thus we also
satisfy a data-processing inequality. Furthermore, D2(p‖q) = log Tr(ρ2σ−1) is an
upper bound on D2(ρ‖σ). and in the limit α→ 1 we find that

D1(ρ‖σ) ≤ Tr
(

σ
1
2 ρσ−

1
2 log

(

σ−
1
2 ρσ−

1
2
)) = Tr

(

ρ log
(

ρ
1
2 σ−1ρ

1
2
))

. (4.35)

The last equality follows from (2.45) and the expression on the right is the
Belavkin-Staszewski relative entropy [17]. In spite of its appealing form, the max-
imal quantum Rényi divergence has not found many applications yet, and we will
not consider it further in this text.

The minimal and maximal Rényi divergences are compared in Fig. 4.1.

4.2.4 Quantum Max-Divergence

The bounds in the previous subsection are not sufficient to single out a unique quan-
tum generalization of the Rényi divergence for general α (and neither are the other
desirable properties discussed above), except in the limit α →∞, where the lower
bound in (4.31) and upper bound in (4.34) converge. Hence, the max-divergence has
a unique quantum generalization.

http://dx.doi.org/10.1007/978-3-319-21891-5_2


4.2 Classifying Quantum Rényi Divergences 57

D̃α (ρ‖σ)

Dα (ρ‖σ)

D̂α (ρ‖σ)

D(ρ‖σ)

D2(ρ‖σ)

α
0.0 0.5 1.0 2.0 3.0

ρ = 1
12

⎡
⎣5 5 2
5 5 2
2 2 2

⎤
⎦

σ = 1
8

⎡
⎣5 0 0
0 2 0
0 0 1

⎤
⎦

Fig. 4.1 Minimal, Petz and maximal quantum Rényi entropy (for small α). These divergences are
discussed in Sects. 4.3, 4.4, and 4.2.3, respectively. Solid lines are used to indicate that the quantity
satisfies the data-processing inequality in this range of α

Let us verify this now. First note that for α→∞ Eq. (4.34) yields

D∞(ρ‖σ) ≤ D∞(p‖q) = max
x

log λx = log ‖Δ‖∞ = inf{λ : ρ ≤ exp(λ)σ }.
(4.36)

So let us thus define the quantum max-divergence as follows [41, 139]:

Definition 4.2 For any ρ, σ ∈ P(A) with ρ �= 0, we define the quantum
max-divergence as

D∞(ρ‖σ) := inf{λ : ρ ≤ exp(λ)σ }, (4.37)

where we follow the usual convention that inf ∅ = ∞.

Using the pinching inequality (2.61), we find that

ρ ≤ exp(λ)σ =⇒ Pσ (ρ) ≤ exp(λ)σ, (4.38)

Pσ (ρ) ≤ exp(λ)σ =⇒ ρ ≤ | spec(σ )| exp(λ)σ, (4.39)

and, thus, the quantum max-divergence satisfies

D∞(Pσ (ρ)‖σ) ≤ D∞(ρ‖σ) ≤ D∞(Pσ (ρ)‖σ)+ log
∣
∣ spec(σ )

∣
∣. (4.40)

We now apply this to n-fold product states ρ⊗n and σ⊗n and use the fact that
| spec(σ⊗n)| ≤ (n + 1)dA−1 grows at most polynomially in n, such that

http://dx.doi.org/10.1007/978-3-319-21891-5_2
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0 ≤ lim
n→∞

1

n
log

∣
∣ spec(σ )

∣
∣ ≤ lim

n→∞
dA − 1

n
log(n + 1) = 0. (4.41)

The term thus vanishes asymptotically as n→∞, which means that

1

n
D∞(ρ⊗n‖σ⊗n) and

1

n
D∞

(

Pσ⊗n (ρ⊗n)
∥
∥σ⊗n)

(4.42)

are asymptotically equivalent. Further using that D∞ is additive, we establish that

D∞(ρ‖σ) = lim
n→∞

1

n
D∞

(

ρ⊗n
∥
∥σ⊗n) = lim

n→∞
1

n
D∞

(

Pσ⊗n (ρ⊗n)
∥
∥σ⊗n)

. (4.43)

This argument is in fact a special case of the discussion that we will follow in
Sect. 4.3.1 for general Rényi divergences.

Hence, Eq. (4.31) yields thatD∞(ρ‖σ) ≥ D∞(ρ‖σ) for any quantum generaliza-
tion of the max-divergence satisfying data-processing and additivity. We summarize
these findings as follows:

Proposition 4.3 D∞ is the unique quantum generalization of the max-divergence
that satisfies additivity (V) and data-processing (VIII).

Weleave it as an exercise for the reader to verify that that the quantummax-divergence
also satisfies Properties (I)–(X).

4.3 Minimal Quantum Rényi Divergence

In this section we further discuss the minimal quantum Rényi divergence mentioned
in Sect. 4.2.2. In particular, we will see that the following closed formula for the
minimal quantum Rényi divergence corresponds to the limit in (4.30) for all α.

Definition 4.3 Let α ∈ (0, 1) ∪ (1,∞), and ρ, σ ∈ S (A) with ρ �= 0. Then
we define the minimal quantum Rényi divergence of σ with ρ as

D̃α(ρ‖σ) :=
⎧

⎨

⎩

1
α−1 log

∥
∥σ

1−α
2α ρσ

1−α
2α

∥
∥

α

α

Tr(ρ)
if (α < 1 ∧ ρ �⊥ σ) ∨ ρ � σ.

+∞ else
(4.44)

Moreover, D̃0, D̃1 and D̃∞ are defined as limits of D̃α for α→ {0, 1,∞}.

In Sect. 4.3.2 we will see that D̃∞(ρ‖σ) = D∞(ρ‖σ) (cf. Definition 4.2). The
minimal quantum Rényi divergence is also called ‘quantum Rényi divergence’ [122]
and ‘sandwiched quantum Rényi relative entropy’ [175] in the literature, but we
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propose here to call it minimal quantum Rényi divergence since it is the smallest
quantum Rényi divergence that still satisfies the crucial data-processing inequality
as seen in (4.31). Thus, it is the minimal quantum Rényi divergence for which we
can expect operational significance.

By inspection, it is evident that this quantity satisfies isometric invariance (II+),
normalization (III+), additivity (V), and general mean (VI). Continuity (I) also holds,
but one has to be a bit more careful since we are employing the generalized inverse in
the definition. (See [122] for a proof of continuity when the rank of ρ or σ changes.)

4.3.1 Pinching Inequalities

The goal of this section is to establish that D̃α is contractive under pinchingmaps and
can be asymptotically achieved by the respective pinched quantity. For this purpose,
let us investigate some properties of

Q̃α(ρ‖σ) :=
∥
∥
∥σ

1−α
2α ρσ

1−α
2α

∥
∥
∥

α

α
= Tr

((

σ
1−α
2α ρσ

1−α
2α

)α)

(4.45)

= Tr
((

ρ
1
2 σ

1−α
α ρ

1
2

)α)

. (4.46)

for ρ, σ ∈ S◦(A) with ρ � σ . First, we find that it is monotone under the pinching
channel [122].

Lemma 4.2 For α > 1, we have

Q̃α(ρ‖σ) ≥ Q̃α

(

Pσ (ρ)
∥
∥σ

)

(4.47)

and the opposite inequality holds for α ∈ (0, 1).

Proof We have σ
1−α
2α Pσ (ρ)σ

1−α
2α = Pσ

(

σ
1−α
2α ρσ

1−α
2α

)

since the pinching projectors
commute with σ . For α > 1, we find

Q̃α(Pσ (ρ)‖σ) =
∥
∥
∥Pσ

(

σ
1−α
2α ρσ

1−α
2α

)
∥
∥
∥

α
≤

∥
∥
∥σ

1−α
2α ρσ

1−α
2α

∥
∥
∥

α
= Q̃α(ρ‖σ), (4.48)

where the inequality follows from the pinching inequality for norms (3.4). For

α < 1, the operator Jensen inequality (2.64) establishes that
(

Pσ

(

σ
1−α
2α ρσ

1−α
2α

))α ≥
Pσ

((

σ
1−α
2α ρσ

1−α
2α

)α)

. Thus,

Q̃α(Pσ (ρ)‖σ) ≥ Tr
(

Pσ

((

σ
1−α
2α ρσ

1−α
2α

)α
))

= Q̃α(ρ‖σ). (4.49)

http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_2
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The following general purpose inequalities will turn out to be very useful:

Lemma 4.3 For any ρ ≤ ρ′, we have Q̃α(ρ‖σ) ≤ Q̃α(ρ′‖σ). Furthermore, if
σ ≤ σ ′ and α > 1, we have

Q̃α(ρ‖σ) ≥ Q̃α(ρ‖σ ′) (4.50)

and the opposite inequality holds for α ∈ [ 12 , 1).
Proof Set c = 1−α

α
. If ρ ≤ ρ′, then σ

c
2 ρσ

c
2 ≤ σ

c
2 ρ′σ c

2 and the first statement
follows from the monotonicity of the trace of monotone functions (2.46).

To prove the second statement for α ∈ [ 12 , 1), we note that t �→ tc is operator
monotone. Hence,

ρ
1
2 σ

1−α
α ρ

1
2 ≤ ρ

1
2 σ ′

1−α
α ρ

1
2 (4.51)

and the statement again follows by (2.46). Analogously, for α > 1 we find that
t �→ t−c is operator monotone and the inequality goes in the opposite direction. �

In particular, the second statement establishes the dominance property (X). On
the other hand, we can employ the first inequality to get a very general pinching
inequality. For any CP maps E and F, and any α > 0, we have

Q̃α

(

E(ρ)
∥
∥F(σ )

) ≤ | spec(σ )|α Q̃α

(

E(Pσ (ρ))
∥
∥F(σ )

)

. (4.52)

A more delicate analysis is possible for the pinching case when α ∈ (0, 2]. We
establish the following stronger bounds [80]:

Lemma 4.4 For α ∈ [1, 2], we have

Q̃α(ρ‖σ) ≤ | spec(σ )|α−1 Q̃α

(

Pσ (ρ)
∥
∥σ

)

(4.53)

and the opposite inequality holds for α ∈ (0, 1].
Proof By the pinching inequality, we have ρ ≤ | spec(σ )|Pσ (ρ). Then, we write

Q̃α(ρ‖σ) = Tr
((

σ
1−α
2α ρσ

1−α
2α

)α−1
σ

1−α
2α ρσ

1−α
2α

)

(4.54)

Then, for α ∈ (1, 2], we use the fact that t �→ tα−1 is operator monotone, such that
the pinching inequality yields the following bound:

Q̃α(ρ‖σ) ≤ | spec(σ )|α−1 Tr
((

σ
1−α
2α Pσ (ρ)σ

1−α
2α

)α−1
σ

1−α
2α ρσ

1−α
2α

)

. (4.55)

Now, note that the pinching projectors commute with all operators except for the
single ρ in the term that we pulled out initially, and hence we can pinch this operator
“for free”. This yields

http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_2
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Tr
((

σ
1−α
2α Pσ (ρ)σ

1−α
2α

)α−1
σ

1−α
2α ρσ

1−α
2α

)

= Q̃α(Pσ (ρ)‖σ) (4.56)

and we have established Eq. (4.53). Similarly, we proceed for α ∈ (0, 1), where

the pinching inequality again yields σ
1−α
2α ρσ

1−α
2α ≤ | spec(σ )|σ 1−α

2α Pσ (ρ)σ
1−α
2α ,

and thus we have

(

σ
1−α
2α ρσ

1−α
2α

)α−1 ≥ | spec(σ )|α−1(σ 1−α
2α Pσ (ρ)σ

1−α
2α

)α−1 (4.57)

on the support of σ
1−α
2α ρσ

1−α
2α . Combining this with the development leading to (4.53)

yields the desired bound. �

A combination of the above Lemmas yields an alternative characterization of the
minimal quantumRényi divergence in terms of an asymptotic limit of classical Rényi
divergences, as desired.

Proposition 4.4 For ρ, σ ∈ S (A) with ρ �= 0, ρ � σ , and α ≥ 0, we have

D̃α(ρ‖σ) = lim
n→∞

1

n
Dα

(

Pσ⊗n (ρ⊗n)
∥
∥σ⊗n)

.

Proof It suffices to show the statement for ρ, σ ∈ S◦(A). Summarizing Lem-
mas 4.2–4.4 yields

D̃α

(

Pσ (ρ)
∥
∥σ

) ≥ D̃α

(

ρ
∥
∥σ

)

(4.58)

≥ D̃α

(

Pσ (ρ)
∥
∥σ

)−
{

log | spec(σ )| for α ∈ (0, 1) ∪ (1, 2]
α

α−1 log | spec(σ )| for α > 2
.

(4.59)

Since α
α−1 < 2 for α > 2, we can replace the correction term on the right-hand side

by 2 log | spec(σ )|, which has the nice feature that it is independent of α. Hence, for
n-fold product states, we have

∣
∣
∣
∣

1

n
D̃α

(

Pσ⊗n (ρ⊗n)
∥
∥σ⊗n)− D̃α(ρ‖σ)

∣
∣
∣
∣
≤ 2

n
log

∣
∣ spec(σ⊗n)

∣
∣. (4.60)

The result then follows by employing (4.41) in the limit n→∞.
Finally, we note that the convergence is uniform in α (as well as ρ and σ ), and

thus the equality also holds for the limiting cases D̃0, D̃1 and D̃∞. �

The strength of this result lies in the fact that we immediately inherit some prop-
erties of the classical Rényi divergence. More precisely, α �→ log Q̃α(ρ‖σ) is the
point-wise limit of a sequence of convex functions, and thus also convex.
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Corollary 4.2 The function α �→ log Q̃α(ρ‖σ) is convex, and α �→ D̃α(ρ‖σ)

is monotonically increasing.

4.3.2 Limits and Special Cases

Instead of evaluating the limits for α → ∞ explicitly as in [122], we can take
advantage of the fact that Proposition 4.4 already gives an alternative characterization
of the limiting quantity in terms of the pinched divergence. Hence, as Eq. (4.43)
reveals, the limit is the quantum max-divergence of Definition 4.2 as claimed earlier.

In the limit α → 1, we expect to find the ‘ordinary’ quantum relative entropy or
quantum divergence, first studied by Umegaki [166].

Definition 4.4 For any state ρ ∈ S (A) with ρ �= 0 and any σ ∈ S (A), we
define the quantum divergence of σ with ρ as

D(ρ‖σ) :=
⎧

⎨

⎩

Tr
(

ρ(log ρ−log σ)
)

Tr(ρ)
if ρ � σ

+∞ else
. (4.61)

This reduces to the Kullback–Leibler (KL) divergence [103] if ρ and σ are clas-
sical (commuting) operators. We now prove that D̃1(ρ‖σ) = D(ρ‖σ).

Proposition 4.5 For ρ, σ ∈P(A) with ρ �= 0, we find that D̃1(ρ‖σ) equals

lim
α↘1

D̃α(ρ‖σ) = lim
α↗1

D̃α(ρ‖σ) = D(ρ‖σ). (4.62)

The proof proceeds by finding an explicit expression for the limiting diver-
gence [122, 175]. (Alternatively one could show that the quantum relative entropy
is achieved by pinching, as is done in [73].) We follow [175] here:

Proof Since the proposed limit satisfies the normalization property (III+), it is suffi-
cient to evaluate the limit for ρ, σ ∈ S◦(A). Furthermore, we restrict our attention
to the case ρ � σ . By l’Hôpital’s rule and the fact that Q̃1(ρ‖σ) = 1, we have

lim
α↘1

D̃α(ρ‖σ) = lim
α↗1

D̃α(ρ‖σ) = log(e) · d

dα
Qα(ρ‖σ)

∣
∣
∣
∣
α=1

. (4.63)
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To evaluate this derivative, it is convenient to introduce a continuously differentiable
two-parameter function (for fixed ρ and σ ) as follows:

q
(

r, z
) = Tr

((

σ
r
2 ρσ

r
2
)z

)

with r(α) = 1− α

α
and z(α) = α (4.64)

such that ∂r
∂α
= − 1

α2 and ∂z
∂α
= 1 and therefore

d

dα
Qα(ρ‖σ)

∣
∣
∣
∣
α=1
= − 1

α2

∂

∂r
q(r, z)

∣
∣
∣
∣
α=1
+ ∂

∂z
q(r, z)

∣
∣
∣
∣
α=1

(4.65)

= − ∂

∂r
Tr

(

σ rρ
)
∣
∣
∣
∣
r=0
+ ∂

∂z
Tr

(

ρz)
∣
∣
∣
∣
z=1
= Tr

(

ρ(ln ρ − ln σ)
)

.

(4.66)

In the penultimate step we exchanged the limits with the differentiation and in the
last step we simply used the fact that the derivate commutes with the trace and that
d
dz ρ

z = ln(ρ)ρz . �

Let us have a look at two other special cases that are important for applications.
First, at α = { 12 , 2}, we find the negative logarithm of the quantum fidelity and the
collision relative entropy [139], respectively. For ρ, σ ∈ S (A), we have

D̃1/2(ρ‖σ) = − log F(ρ, σ ), D̃2(ρ‖σ) = log Tr
(

ρσ−
1
2 ρσ−

1
2
)

. (4.67)

4.3.3 Data-Processing Inequality

Here we show that D̃α satisfies the data-processing inequality for α ≥ 1
2 . First,

we show that our pinching inequalities in fact already imply the data-processing
inequality for α > 1, following an instructive argument due to Mosonyi and Ogawa
in [119]. (For α ∈ [ 12 , 1) we will need a completely different argument.)

From Pinching to Measuring and Data-Processing

First, we restrict our attention to α > 1. According to (4.52), for any measurement
map M ∈ CPTP(A, X) with POVM elements {Mx }x , we find

Q̃α

(

M(ρ)
∥
∥M(σ )

)

| spec(σ )|α ≤ Q̃α

(

M(Pσ (ρ))
∥
∥M(σ )

)

(4.68)

=
∑

x

(

Tr
(

MxPσ (ρ)
))α(

Tr(Mxσ)
)1−α

(4.69)

=
∑

x

(

Tr
(

Pσ (Mx )Pσ (ρ)
))α(

Tr(Pσ (Mx )σ )
)1−α

. (4.70)
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Now, note that W (x |a) = 〈a|Pσ (Mx ) |a〉 is a classical channel for states that are
diagonal in the eigenbasis {|a〉}a of σ . Hence the classical data-processing inequality
together with Lemma 4.2 yields

| spec(σ )|−α Q̃α

(

M(ρ)
∥
∥M(σ )

) ≤ Q̃α(Pσ (ρ)‖σ) ≤ Q̃α(ρ‖σ). (4.71)

Using a by now standard argument, we consider n-fold product states ρ⊗n and σ⊗n

and a product measurement M⊗n in order to get rid of the spectral term in the limit
as n→∞. This yields

D̃α(ρ‖σ) ≥ D̃α(M(ρ)‖M(σ )) (4.72)

for all measurement maps M.
Combining this with Proposition 4.4 and interpreting the pinching map as a mea-

surement in the eigenbasis of σ , we have established that, for α > 1, the minimal
quantum Rényi divergence is asymptotically achievable by a measurement:

D̃α(ρ‖σ) = lim
n→∞

1

n
max

{

Dα

(

Mn(ρ⊗n)
∥
∥Mn(σ⊗n)

) : Mn ∈ CPTP(An, X)
}

.

(4.73)

We will discuss this further below. Using the representation in (4.73) we can derive
the data-processing inequality using a very general argument.

Proposition 4.6 Let Dα be a quantum Rényi divergence satisfying (4.73). Then, it
also satisfies data-processing (VIII).

Proof We show that Dα(ρ‖σ) ≥ Dα(E(ρ)‖E(σ )) for all E ∈ CPTP(A, B) and
ρ, σ ∈ S (A).

First note that sinceE is trace-preserving,E† is unital. For everymeasurementmap
M ∈ CPTP(B, X) consisting of POVM elements {Mx }x , we define the measurement
map ME ∈ CPTP(A, X) that consists of the POVM elements {E†(Mx )}x . Then,
using (4.73) twice, we find

Dα(E(ρ)‖E(σ ))

= lim
n→∞

1

n
sup

{

Dα

(

Mn(E(ρ)⊗n)
∥
∥Mn(E(σ )⊗n)

) : Mn ∈ CPTP(Bn, X)
}

(4.74)

= lim
n→∞

1

n
sup

{

Dα

(

ME⊗n

n (ρ⊗n)
∥
∥ME⊗n

n (σ⊗n)
) : Mn ∈ CPTP(Bn, X)

}

(4.75)

≤ lim
n→∞

1

n
sup

{

Dα

(

Mn(ρ⊗n)
∥
∥Mn(σ⊗n)

) : Mn ∈ CPTP(An, X)
}

(4.76)

= Dα(ρ‖σ). (4.77)

This concludes the proof. �
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Data-Processing via Joint Concavity

Unfortunately, the first part of the above argument leading to (4.73) only goes through
for α > 1 (and consequently in the limits α → 1 and α →∞). However, the data-
processing inequality holds more generally for all α ≥ 1

2 , as was shown by Frank
and Lieb [57].

It thus remains to showdata-processing forα ∈ [ 12 , 1).Herewe show the following
equivalent statement (cf. Proposition 4.2):

Proposition 4.7 The map (ρ, σ ) �→ Q̃α(ρ‖σ) is jointly concave for α ∈ [ 12 , 1).
Proof First, we express Q̃α as a minimization problem. To do this, we use (3.16)
and set c = 1−α

α
∈ (0, 1], M = σ

c
2 ρσ

c
2 , and N = σ− c

2 Hσ− c
2 to find

Q̃α(ρ‖σ) = Tr
((

σ
c
2 ρσ

c
2
)α

)

≤ α Tr(Hρ)+ (1− α)Tr
((

σ−
c
2 Hσ−

c
2
)− 1

c
)

.

(4.78)

for all H ≥ 0 with H � ρ and equality can be achieved. Thus, we can write

Q̃α(ρ‖σ) = min

{

α Tr(Hρ)+ (1− α)Tr
((

H−
1
2 σ c H−

1
2
) 1

c
)

: H ≥ 0, H � ρ

}

.

(4.79)

This nicely splits the contributions of ρ and σ and we can deal with them sep-
arately. The term Tr(Hρ) is linear and thus concave in ρ. Next, we want to show
that the second term is concave in σ . To do this, we further decompose it as follows,
using essentially the same ideas that we used above. First, using (3.16), we find

Tr
(

H−
1
2 σ c H−

1
2 X1−c) ≤ c Tr

((

H−
1
2 σ c H−

1
2
) 1

c
)

+ (1− c)Tr(X), (4.80)

which allows us to write

Tr
((

H− 1
2 σ c H− 1

2
) 1

c
)

= max

{
1

c
Tr

(

H− 1
2 σ c H− 1

2 X1−c)− 1− c

c
Tr(X) : X ≥ 0

}

.

(4.81)

Since c ∈ (0, 1), Lieb’s concavity theorem (2.50) reveals that the function we maxi-
mize over is jointly concave in σ and X . Note that generally themaximum of concave
functions is not necessarily concave, but joint concavity in σ and X is sufficient to
ensure that the maximum is concave in σ . Hence, Q̃α(ρ‖σ) is the minimum of a
jointly concave function, and thus jointly concave. �

The same proof strategy can be used to show that Q̃α(ρ‖σ) is jointly convex
for α > 1, but we already know that this holds due to our previous argument in
Sect. 4.3.3 that established the data-processing inequality directly.

http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_2
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Summary and Remarks

Let us now summarize the results of this subsection in the following theorem.

Theorem 4.1 Let α ≥ 1
2 and ρ, σ ∈ S (A) with ρ �= 0. The minimal quantum

Rényi divergence has the following properties:

• The functional (ρ, σ ) �→ Q̃α(ρ‖σ) is jointly concave for α ∈ ( 12 , 1) and
jointly convex for α ∈ (0,∞).
• The functional (ρ, σ ) �→ D̃α(ρ‖σ) is jointly convex for α ∈ ( 12 , 1].• For every E ∈ CPTP(A, B), the data-processing inequality holds, i.e.

D̃α(ρ‖σ) ≥ D̃α

(

E(ρ)
∥
∥E(σ )

)

. (4.82)

• It is asymptotically achievable by a measurement, i.e.

D̃α(ρ‖σ) = lim
n→∞

1

n
max

{

Dα

(

Mn(ρ⊗n)
∥
∥Mn(σ⊗n)

) : Mn ∈ CPTP(An, X)

}

.

(4.83)

A few remarks are in order here. First, note that one could potentially hope that
the limit n → ∞ in (4.83) is not necessary. However, except for the two boundary
points α = 1

2 and α = ∞, it is generally not sufficient to just consider measurements
on a single system. (This effect is also called “information locking”.)

For α ∈ { 12 ,∞}, we have in fact (without proof)

D̃α(ρ‖σ) = max
{

D̃α(M(ρ)‖M(ρ)) :M ∈ CPTP(A, X)
}

, (4.84)

which has an interesting consequence. Namely, if we go through the proof of Propo-
sition 4.6 we realize that we never use the fact that E is completely positive, and
in fact the data-processing inequality holds for all positive trace-preserving maps.
Generally, for all α, the data-processing inequality holds if E⊗n is positive for all n,
which is also strictly weaker than complete positivity.

The data-processing inequality together with definiteness of the classical Rényi
divergence also establishes definiteness (VII-) of the minimal quantum Rényi diver-
gence for α ≥ 1

2 , and thus of all quantum Rényi divergences. Namely, if ρ �= σ , then
there exists ameasurements (for example an informationally completemeasurement)
M such that M(ρ) �=M(σ ), and thus

D̃α(ρ‖σ) ≥ Dα(M(ρ)‖M(σ )) > 0. (4.85)

This completes the discussion of the minimal quantum Rényi divergence.
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The minimal quantum Rényi divergences satisfy Properties (I)–(X) for α ≥ 1
2 ,

and thus constitute a family of Rényi divergences according to Definition 4.1.

4.4 Petz Quantum Rényi Divergence

A straight-forward generalization of the classical expression to quantum states is
given by the following expression, which was originally investigated by Petz [132].

Definition 4.5 Let α ∈ (0, 1) ∪ (1,∞), and ρ, σ ∈ S (A) with ρ �= 0. Then
we define the Petz quantum Rényi divergence of σ with ρ as

�Dα(ρ‖σ) :=
⎧

⎨

⎩

1
α−1 log

Tr
(

ρασ 1−α
)

Tr(ρ)
if (α < 1 ∧ ρ �⊥ σ) ∨ ρ � σ

+∞ else
. (4.86)

Moreover, �D0 and �D1 are defined as the respective limits of �Dα for α→ {0, 1}.

This quantity turns out to have a clear operational interpretation in binary hypoth-
esis testing, where it appears in the quantum generalization of the Chernoff and
Hoeffding bounds. More surprisingly, it is also connected to the minimal quantum
Rényi divergence via duality relations for conditional entropies, as we will see in the
next chapter.

We could as well have restricted the definition to α ∈ [0, 2] since the quantity
appears not to be useful outside this range. For α = 2 it matches the maximal
quantum Rényi divergence (cf. Fig. 4.1) and it is also evident that

�Qα(ρ‖σ) := Tr(ρασ 1−α) (4.87)

is not convex in ρ (for general σ ) since ρα is not operator convex for α > 2.

4.4.1 Data-Processing Inequality

As a direct consequence of the Lieb concavity theorem and the Ando convexity
theorem in (2.50), we find the following.

Proposition 4.8 The functional �Qα(ρ‖σ) is jointly concave for α ∈ (0, 1) and
jointly convex for α ∈ (1, 2].

http://dx.doi.org/10.1007/978-3-319-21891-5_2
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In particular, the Petz quantum Rényi divergence �Dα thus satisfies the data-
processing inequality. As such, we must also have

�Dα(ρ‖σ) ≥ D̃α(ρ‖σ) (4.88)

since the latter quantity is the smallest quantity that satisfies data-processing. This
inequality is in fact also a direct consequence of the Araki–Lieb–Thirring trace
inequalities [5, 108], which we will not discuss further here.

Alternatively, the function �Qα can be seen as a Petz quasi-entropy [132] (see
also [85]). For this purpose, using the notation of Sect. 2.4.1, let us write

�Qα(ρ‖σ) = Tr(ρασ 1−α) = 〈Ψ | σ 1
2 fα(σ−1 ⊗ ρT )

σ
1
2 |Ψ 〉 (4.89)

where fα : t �→ tα is operator concave or convex for α ∈ (0, 1) and α ∈ (1, 2]. Petz
used a variation of this representation to show the data-processing inequality.

We leave it as an exercise to verify the remaining properties mentioned in
Sects. 4.1.1 and 4.1.2 for the Petz Rényi divergence.

The Petz quantum Rényi divergences satisfy Properties (I)–(X) for α ∈ (0, 2].

4.4.2 Nussbaum–Szkoła Distributions

The following representation due to Nussbaum and Szkoła [127] turns out to be quite
useful in applications, and also allows us to further investigate the divergence. Let
us fix ρ, σ ∈ S◦(A) and write their eigenvalue decomposition as

ρ =
∑

x

λx |ex 〉 〈ex |A and σ =
∑

y

μy
∣
∣ fy

〉 〈

fy
∣
∣ . (4.90)

Then, the two probability mass functions

P [ρ,σ ]
XY (x, y) = λx

∣
∣
〈

ex
∣
∣ fy

〉 ∣
∣2 and Q[ρ,σ ]

XY (x, y) = μy
∣
∣
〈

ex
∣
∣ fy

〉 ∣
∣2 (4.91)

mimic the Petz quantum divergence of the quantum states ρ and σ . Namely, they
satisfy

�Dα(ρ‖σ) = Dα

(

P [ρ,σ ]
XY

∥
∥
∥Q[ρ,σ ]

XY

)

for all α ≥ 0. (4.92)

Moreover, these distributions inherit some important properties of ρ and σ . For
example, ρ � σ ⇐⇒ P [ρ,σ ] � Q[ρ,σ ] and for product states we have

P [ρ⊗τ,σ⊗ω] = P [ρ,σ ] ⊗ P [τ,ω]. (4.93)

http://dx.doi.org/10.1007/978-3-319-21891-5_2
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Dα (ρ‖σ)

Dα (ρ‖σ)

D(ρ‖σ)+ α−1
2 V (ρ‖σ)

D(ρ‖σ)

α

ρ =
[
0.5 0.5
0.5 0.5

]

σ =
[
0.01 0
0 0.99

]

4.12.16.0 8.0 0.1

Fig. 4.2 Minimal and Petz quantum Rényi entropy around α = 1

Last but not least, since this representation is independent of α, we are able to
lift the convexity, monotonicity and limiting properties of α �→ Dα to the quantum
regime—as a corollary of the respective classical properties.

Corollary 4.3 The function α �→ log Q̃α(ρ‖σ) is convex, α �→ D̃α(ρ‖σ) is
monotonically increasing, and

�D1(ρ‖σ) = Tr
(

ρ(log ρ − log σ)
)

Tr(ρ)
. (4.94)

So, in particular, �D1(ρ‖σ) = D̃1(ρ‖σ). This means that these two curves are
tangential at this point and their first derivatives agree (cf. Fig. 4.2).

First Derivative at α = 1

In fact, the Nussbaum–Szkoła representation gives us a simple means to evaluate the
first derivative of α �→ �Dα(ρ‖σ) and α �→ D̃α(ρ‖σ) at α = 1, which will turn out
to be useful later.

In order to do this, let us first take a step back and evaluate the derivative for
classical probability mass functions ρX , σX ∈ S◦(X). Substituting α = 1 + ν and
introducing the log-likelihood ratio as a random variable Z(X) = ln(ρ(X)/σ (X)),
where X is distributed according to the law X ← ρX , we find

D1+ν(ρX‖σX ) = 1

ν
log

∑

x

ρ(x)

(
ρ(x)

σ (x)

)ν

= logE
(

eνZ
)

ν
= log(e)

G(ν)

ν
,

(4.95)

where G(ν) is the cumulant generating function of Z .
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Clearly, G(0) = 0. Moreover, using l’Hôpital’s rule, its first derivative at ν = 0 is

lim
ν→0

(
d

dν

G(ν)

ν

)

= lim
ν→0

νG ′(ν)− G(ν)

ν2
(4.96)

= lim
ν→0

G ′(ν)+ νG ′′(ν)− G ′(ν)

2ν
= G ′′(0)

2
, (4.97)

which is one half of the second cumulant of Z . The second cumulant simply equals
the second central moment, or variance, of the log-likelihood ratio Z .

G ′′(0) = E
(

(Z − E(Z))2
) = E(Z2)− E(Z)2 (4.98)

=
∑

x

ρ(x)

(

ln
ρ(x)

σ (x)
−

∑

x

ρ(x) ln
ρ(x)

σ (x)

)2

=: V (ρX‖σX )/log(e)2.

(4.99)

Combining these steps, we have established that

d

dα
Dα(ρX‖σX )

∣
∣
∣
α=1 =

1

2log(e)
V (ρx‖σx ). (4.100)

Nowwe can simply substitute theNussbaum–Szkoła distributions to lift this result
to the Petz quantum Rényi divergence, and thus also the minimal quantum Rényi
divergence. We recover the following result [109]:

Proposition 4.9 Let ρ, σ ∈ S◦(A) with ρ � σ . Then the functions α �→
D̃α(ρ‖σ) and α �→ �Dα(ρ‖σ) are continuously differentiable at α = 1 and

d

dα
D̃α(ρ‖σ)

∣
∣
∣
α=1 =

d

dα
�Dα(ρ‖σ)

∣
∣
∣
α=1 =

1

2log(e)
V (ρ‖σ), (4.101)

where V (ρ‖σ) := Tr
(

ρ
(

log ρ − log σ − D(ρ‖σ)
)2

)

.

Theminimal and Petz quantumRényi divergences are thus differentiable at α = 1
and in fact infinitely differentiable. Hence, by Taylor’s theorem, for every interval
[a, b] containing 1, there exist constants K ∈ R+ such that, for all α ∈ [a, b], we
have

∣
∣
∣
∣
�Dα(ρ‖σ)− D(ρ‖σ)− (α − 1)

1

2log(e)
V (ρ‖σ)

∣
∣
∣
∣
≤ K (α − 1)2. (4.102)

The same statement naturally also holds if we replace �Dα with D̃α . An example of
the first-order Taylor series approximation is plotted in Fig. 4.2.
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4.5 Background and Further Reading

Shannon was first to derive the definition of entropy axiomatically [144] and many
have followed his footsteps since. We exclusively consider Rényi’s approach [142]
here, but a recent overview of different axiomatizations can be found in [40].

The Belavkin-Staszewski relative entropy [17] was considered a reasonable alter-
native to Umegaki’s relative entropy [166] until Hiai and Petz [86] established the
operational interpretation of Umegaki’s definition in quantum hypothesis testing.
The proof that joint convexity implies data-processing is rather standard and mimics
a development for the relative entropy that is due to Uhlmann [163, 164] and Lind-
blad [110, 111]. The data-processing inequality for the quantum relative entropy has
been shown in these works, building on previous work by Lieb and Ruskai [107] that
established it for the partial trace. The data-processing inequality can be strength-
ened by including a remainder term that characterizes how well the channel can
be recovered. This has been shown by Fawzi and Renner [53] for the partial trace
(see also [25, 29] for refinements and simplifications of the proof). Recently these
results were extended to general channels in [173] (see also [23]) and further refined
in [149].

The max-divergence was first formally introduced by Datta [41], based on Ren-
ner’s work [139] treating conditional entropy. However, the idea to define a quan-
tum relative entropy via an operator inequality appears implicitly in earlier litera-
ture, for example in the work of Jain, Radhakrishnan, and Sen [94]. The minimal
(or sandwiched) quantum Rényi divergence was formally introduced independently
in [122, 175]. Some ideas resulting in the former work were already presented pub-
licly in [54, 153], and partial results were published in [50, Th. 21, 121]. The initial
works only proved a few properties of the divergence and left others as conjectures.
Various other authors then contributed by showing data-processing for certain ranges
of α concurrently with Frank and Lieb [57]. Notably, Müller-Lennert et al. [122]
already establishes data-processing for α ∈ (1, 2] and conjectured it for all α ≥ 1

2 .
Concurrently with [57], Beigi [15] provided a proof for data-processing for α > 1
and Mosonyi and Ogawa [119] provided the proof discussed above, which is also
only valid for α > 1. Their proof in turn uses some of Hayashi’s ideas [75].

The minimal, maximal and Petz quantum Rényi divergence are by no means the
only quantum generalizations of the Rényi divergence. For example, a two-parameter
family of Rényi divergences proposed by Jaksic et al. [95] and further investigated
by Audenaert and Datta [9] (see also [35, 84]) captures both the minimal and Petz
quantum Rényi divergence.

Both quantum Rényi divergences discussed in this work have found applications
beyond binary quantum hypothesis testing. In particular, the minimal quantumRényi
divergence has turned out to be a very useful tool in order to establish the strong con-
verse property for various information theoretic tasks. Most prominently it led to
a strong converse for classical communication over entanglement-breaking chan-
nels [175], the entanglement-assisted capacity [68], and the quantum capacity of
dephasing channels [161]. Furthermore, the strong converse exponents for coding
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over classical-quantum channels can be expressed in terms of the minimal quantum
Rényi divergence [120]. The minimal quantum Rényi divergence of order 2 can also
be used to derive various achievability results [16]. Besides this, the quantum Rényi
divergences have also found applications in quantum thermodynamics, e.g. in the
study of the second law of thermodynamics [30], and in quantum cryptography, e.g.
in [115].

Finally, we note that many of the definitions discussed here are perfectly sensible
for infinite-dimensional quantum systems.However, some of the proofswe presented
here do not directly generalize to this setting. Ohya and Petz’s book [129] treats quan-
tum entropies in the even more general algebraic setting. However, a comprehensive
investigation of the minimal quantum Rényi divergence in the infinite-dimensional
or algebraic setting is missing.



Chapter 5
Conditional Rényi Entropy

Abstract Conditional Entropies aremeasures of the uncertainty inherent in a system
from the perspective of an observer who is given side information on the system. The
system aswell as the side information can be either classical or a quantum.The goal in
this chapter is to define conditional Rényi entropies that are operationally significant
measures of this uncertainty, and to explore their properties. Unconditional entropies
are then simply a special case of conditional entropies where the side information is
uncorrelated with the system under observation.

We want the conditional Rényi entropies to retain most of the properties of the
conditional von Neumann entropy, which is by now well established in quantum
information theory. Most prominently, we expect that they satisfy a data-processing
inequality: we require that the uncertainty of the system never decreases when the
quantum system containing side information undergoes a physical evolution. This
can be ensured by defining Rényi entropies in terms of the Rényi divergence, in
analogy with the case of conditional von Neumann entropy.

5.1 Conditional Entropy from Divergence

Let us first recall Shannon’s definition of conditional entropy. For a joint probabil-
ity mass function ρ(x, y) with marginals ρ(x) and ρ(y), the conditional Shannon
entropy is given as

H(X |Y )ρ =
∑

y

ρ(y) H(X |Y = y)ρ (5.1)

=
∑

y

ρ(y)
∑

x

ρ(x |y) log
1

ρ(x |y)
(5.2)

=
∑

x,y

ρ(x, y) log
ρ(y)

ρ(x, y)
(5.3)

= H(XY )ρ − H(Y )ρ, (5.4)
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where we used the conditional probability distribution ρ(x |y) = ρ(x, y)/ρ(y), and
the corresponding Shannon entropy, H(X |Y = y)ρ . Such conditional distributions
are ubiquitous in classical information theory, but it is not immediate how to gen-
eralize this concept to quantum information. Instead, we avoid this issue altogether
by generalizing the expression in (5.4), which is also called the chain rule of the
Shannon entropy. This yields the following definition for the quantum conditional
entropy.

Definition 5.1 For any bipartite state ρAB ∈ S◦(AB), we define the condi-
tional von Neumann entropy of A given B for the state ρAB as

H(A|B)ρ := H(AB)ρ − H(B)ρ where H(A)ρ := −Tr(ρA log ρA).

(5.5)

Here, H(A)ρ is the von Neumann entropy [170] and simply corresponds to the
Shannon entropy of the state’s eigenvalues. One of the most remarkable properties
of the von Neumann entropy is strong subadditivity. It states that for any tripartite
state ρABC ∈ S◦(ABC), we have

H(ABC)ρ + H(B)ρ ≤ H(AB)ρ + H(BC)ρ (5.6)

or, equivalently H(A|BC)ρ ≤ H(A|B)ρ . The latter is an expression of another
principle, the data-processing inequality. It states that any processing of the side
information system, in this case taking a partial trace, can at most increase the uncer-
tainty of A. Formally, for any E ∈ CPTP(B, B ′) map we have

H(A|B)ρ ≥ H(A|B ′)τ , where τAB′ = E(ρAB). (5.7)

This property of the vonNeumann entropywas first proven by Lieb andRuskai [107].
It implies weak subadditivity, and the relation [6]

|H(A)ρ − H(B)ρ | ≤ H(AB)ρ ≤ H(A)ρ + H(B)ρ. (5.8)

The conditional entropy can be conveniently expressed in terms of Umegaki’s
relative entropy, namely

H(A|B)ρ = H(AB)ρ − H(B)ρ (5.9)

= −Tr (ρAB log ρAB) + Tr (ρB log ρB) (5.10)

= −Tr
(

ρAB
(

log ρAB − log(IA ⊗ ρB)
))

(5.11)

= −D(ρAB‖IA ⊗ ρB). (5.12)

Here, we used that log(IA ⊗ ρB) = IA ⊗ log ρB to establish (5.11). Sometimes it is
useful to rephrase this expression as an optimization problem. Based on (5.11) we
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can introduce an auxiliary state σB ∈ S◦(B) and write

H(A|B)ρ = −Tr
(

ρAB
(

log ρAB − IA ⊗ log σB
)) + Tr

(

ρB(log ρB − log σB)
)

(5.13)

= −D(ρAB‖IA ⊗ σB) + D(ρB‖σB). (5.14)

Since the latter divergence is always non-negative and equals zero if and only if
σB = ρB , this yields the following expression for the conditional entropy:

H(A|B)ρ = max
σB∈S◦(B)

−D(ρAB‖IA ⊗ σB). (5.15)

5.2 Definitions and Properties

In the case of quantum Rényi entropies, it is not immediate which of the rela-
tions (5.9), (5.12) or (5.15) should be used to define the conditional Rényi entropies.
It has been found in the study of the classical special case (see, e.g. [55, 93]) that
generalizations based on (5.9) have severe limitations, for example they generally
do not satisfy a data-processing inequality. On the other hand, definitions based on
the underlying divergence, as in (5.12) or (5.15), have proven to be very fruitful and
lead to quantities with operational significance and useful mathematical properties.

Together with the two proposed quantum generalizations of the Rényi divergence,
D̃α and 	Dα , this leads to a total of four different candidates for conditional Rényi
entropies [122, 154, 155].

Definition 5.2 For α ≥ 0 and ρAB ∈ S◦(AB), we define the following
quantum conditional Rényi entropies of A given B of the state ρAB :

	H ↓
α (A|B)ρ := −	Dα(ρAB‖IA ⊗ ρB), (5.16)

	H ↑
α (A|B)ρ := sup

σB∈S◦(B)

−	Dα(ρAB‖IA ⊗ σB), (5.17)

H̃ ↓
α (A|B)ρ := −D̃α(ρAB‖IA ⊗ ρB), and (5.18)

H̃ ↑
α (A|B)ρ := sup

σB∈S◦(B)

−D̃α(ρAB‖IA ⊗ σB). (5.19)

Note that for α > 1 the optimization over σB can always be restricted to σB

with support equal to the support of ρB . Moreover, since small eigenvalues of σB

lead to a large divergence, we can further restrict σB to a compact set of states
with eigenvalues bounded away from 0. Since we are thus optimizing a continuous
function over a compact set, we are justified in writing a maximum in the above
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Fig. 5.1 Overview of the different conditional entropies used in this paper. Arrows indicate that
one entropy is larger or equal to the other for all states ρAB ∈ S◦(AB) and all α ≥ 0

definitions. Furthermore, pulling the optimization inside the logarithm, we see that
these optimization problems are either convex (for α > 1) or concave (for α < 1).

Consistent with the notation of the proceeding chapter, we also useHα to refer to
any of the four entropies and Hα to refer to the respective classical quantities. More
precisely, we useHα only to refer to quantum conditional Rényi entropies that satisfy
data-processing, which—as we will see in Sect. 5.2.3—means thatHα encompasses
	Hα for α ∈ [0, 2] and H̃α for α ∈ [ 12 ,∞].

For a trivial system B, we find that

Hα(A)ρ = −Dα(ρA‖IA) = α

1 − α
log ‖ρA‖α. (5.20)

reduces to the classical Rényi entropy of the eigenvalues of ρA. In particular, ifα = 1,
we always recover the von Neumann entropy.

Finally, note that we use the symbols ‘↑’ and ‘↓’ to express the observation that

H ↑
α (A|B)ρ ≥ H ↓

α (A|B)ρ and H̃ ↑
α (A|B)ρ ≥ H̃ ↓

α (A|B)ρ (5.21)

which follows trivially from the respective definitions. Furthermore, the Araki-Lieb-
Thirring inequality in (4.87) yields the relations

H̃ ↑
α (A|B)ρ ≥ H ↑

α (A|B)ρ and H̃ ↓
α (A|B)ρ ≥ H ↓

α (A|B)ρ. (5.22)

These relations are summarized in Fig. 5.1.

Limits and Special Cases

Inheriting these properties from the corresponding divergences, all entropies are
monotonically decreasing functions of α, and we recover many interesting special
cases in the limits α → {0, 1,∞}.

For α = 1, all definitions coincide with the usual von Neumann conditional
entropy (5.12). For α = ∞, two quantum generalizations of the conditional min-
entropy emerge, both of which have been studied by Renner [139]. Namely,

H̃ ↓∞(A|B)ρ = sup
{

λ ∈ R : ρAB ≤ 2−λ IA ⊗ ρB
}

and (5.23)

H̃ ↑∞(A|B)ρ = sup
{

λ ∈ R : ∃ σB ∈ S◦(B) such that ρAB ≤ 2−λ IA ⊗ σB
}

.

(5.24)

http://dx.doi.org/10.1007/978-3-319-21891-5_4
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For α = 1
2 , we find the conditional max-entropy studied by König et al. [101],1

H̃ ↑
1/2(A|B)ρ = sup

σB∈S◦(B)

log F(ρAB, IA ⊗ σB). (5.25)

For α = 2, we find a quantum conditional collision entropy [139]:

H̃ ↓
2 (A|B)ρ = − log Tr

(

ρAB

(

IA ⊗ ρ
− 1

2
B

)

ρAB

(

IA ⊗ ρ
− 1

2
B

))

. (5.26)

For α = 0, we find a generalization of the Hartley entropy [72], proposed in [139]:

	H ↑
0 (A|B)ρ = sup

σB∈S◦(B)

log Tr
({ρAB > 0} IA ⊗ σB

)

. (5.27)

5.2.1 Alternative Expression for �H ↑
α

For the quantity 	H ↑
α we find a closed-form expression for the optimal (minimal or

maximal) σB . This yields an alternative expression for 	H ↑
α as follows [145, 154].

Lemma 5.1 Let α ∈ (0, 1) ∪ (1,∞) and ρAB ∈ S (AB). Then,

	H ↑
α (A|B)ρ = α

1 − α
logTr

((

TrA(ρα
AB)

) 1
α

)

. (5.28)

Proof Recall the definition

H ↑
α (A|B)ρ = sup

σB∈S◦(B)

1

1 − α
log Tr

(

ρα
AB σ 1−α

B

) = sup
σB∈S◦(B)

1

1 − α
log Tr

(

TrA(ρα
AB)σ 1−α

B

)

.

(5.29)

This can immediately be lower bounded by the expression in (5.28) by substituting

σ ∗
B =

(

TrA(ρα
AB)

) 1
α

Tr
((

TrA(ρα
AB)

) 1
α

) (5.30)

for σB . It remains to show that this choice is optimal. For α < 1, we employ the
Hölder inequality in (3.5) for p = 1

α
, q = 1

1−α
, L = TrA(ρα

AB) and K = σ 1−α
B to

find

1The notation Hmin(A|B)ρ|ρ ≡ H̃ ↓∞(A|B)ρ and Hmin(A|B)ρ ≡ H̃ ↑∞(A|B)ρ is widely used. The
alternative notation Hmax(A|B)ρ ≡ H̃ ↑

1/2(A|B)ρ is often used too, for example in Chap.6.

http://dx.doi.org/10.1007/978-3-319-21891-5_3
http://dx.doi.org/10.1007/978-3-319-21891-5_6
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Tr
(

TrA(ρα
AB)σ 1−α

B

) ≤
(

Tr
((

TrA(ρα
AB)

) 1
α

))α
(

Tr(σB)
)1−α

, (5.31)

which yields the desired upper bound since Tr(σB) = 1. For α > 1, we instead
use the reverse Hölder inequality (3.6). This leads us to (5.28) upon the same
substitutions. �

In particular, note that (5.30) gives an explicit expression for the optimal σB in
the definition of 	H ↑

α . A similar closed-form expression for the optimal σB in the
definition of H̃ ↑

α is however not known.

5.2.2 Conditioning on Classical Information

We now analyze the behavior of Dα and Hα when applied to partly classical
states. Formally, consider normalized classical-quantum states of the form ρX A =
∑

x ρ(x) |x〉〈x | ⊗ ρ̂A(x) and σX A = ∑

x σ(x) |x〉〈x | ⊗ σ̂A(x). A straightforward
calculation using Property (VI) shows that for two such states,

Dα(ρX A‖σX A) = 1

α − 1
log

(
∑

x
ρ(x)ασ (x)1−α exp

(

(α − 1)Dα

(

ρh A(x)‖σh A(x)
))

)

.

(5.32)

In other words, the divergence Dα(ρX A‖σX A) decomposes into the divergences
Dα(ρ̂A(x)‖σh A(x)) of the ‘conditional’ states. This leads to the following relations
for conditional Rényi entropies.

Proposition 5.1 Let ρABY = ∑

y ρ(y)ρ̂AB(y) ⊗ |y〉〈y| ∈ S◦(ABY ) and
α ∈ (0, 1) ∪ (1,∞). Then, the conditional entropies satisfy

H
↓
α(A|BY )ρ = 1

1 − α
log

(
∑

y

ρ(y) exp
(

(1 − α)H↓
α(A|B)ρ̂(y)

))

, (5.33)

H
↑
α(A|BY )ρ = α

1 − α
log

(
∑

y

ρ(y) exp

(
1 − α

α
H

↑
α(A|B)ρ̂(y)

))

. (5.34)

(Here, Hα is a substitute for H̃α or 	Hα .)

Proof The first statement follows directly from (5.32) and the definition of the
‘↓’-entropy. To show the second statement, recall that by definition,

H
↑
α(A|BY )ρ = max

σBY ∈S◦(BY )
−Dα(ρABY ‖IA ⊗ σBY ) (5.35)

http://dx.doi.org/10.1007/978-3-319-21891-5_3
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where the infimum is over all (normalized) states σBY , but due to data processing
(we can measure the Y -register, which does not affect ρABY ), we can restrict to states
σBY with classical Y , i.e. σBY = ∑

y σ(y) |y〉〈y| ⊗ σ̂B(y). Using the decomposition
of Dα in (5.32), we then obtain

H
↑
α(A|BY )ρ = max

σBY
− 1

α − 1
log

(
∑

y

ρ(y)ασ (y)1−α exp
(

(α − 1)Dα

(

ρ̂AB(y)‖IA ⊗ σ̂B(y)
))

)

= max{σ(y)}y

1

1 − α
log

(
∑

y

ρ(y)ασ (y)1−α exp
(

(1 − α)H↑
α(A|B)ρ̂(y)

))

. (5.36)

Writing ry = ρ(y) exp
( 1−α

α
H

↑
α(A|B)ρ̂(y)

)

, and using straightforward Lagrangemul-
tiplier technique, one can show that the infimum is attained by the distribution
σ(y) = ry/

∑

z rz . Substituting this into the above equation leads to the desired
relation. �

In particular, considering a state ρXY = ρ(x, y) |x〉〈x | ⊗ |y〉〈y|, we recover two
notions of classical conditional Rényi entropy

H ↓
α (X |Y )ρ = 1

1 − α
log

(
∑

y

∑

x

ρ(y)ρ(x |y)α
)

, (5.37)

H ↑
α (X |Y )ρ = α

1 − α
log

(
∑

y

ρ(y)

(
∑

x

ρ(x |y)α
) 1

α
)

, (5.38)

where the latter was originally suggested by Arimoto [7].

5.2.3 Data-Processing Inequalities and Concavity

Let us first discuss some important properties that immediately follow from the
respective properties of the underlying divergence. First, the conditional Rényi
entropies satisfy a data-processing inequality.

Corollary 5.1 For any channel E ∈ CPTP(B, B ′) with τAB′ = E(ρAB) for
any state ρAB ∈ S◦(AB), we have

	Hα(A|B)ρ ≤ 	Hα(A|B ′)τ for α ∈ [0, 2] (5.39)

H̃α(A|B)ρ ≤ H̃α(A|B ′)τ for α ≥ 1

2
. (5.40)

(Here, 	Hα is a substitute for either 	H ↑
α or 	H ↓

α , and the same for H̃α .)

In particular, these entropies thus satisfy strong subadditivity in the form
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Hα(A|BC)ρ ≤ Hα(A|B)ρ (5.41)

for the respective ranges of α.
Furthermore, it is easy to verify that these entropies are invariant under applica-

tions of local isometries on either the A or B systems. Moreover, for any sub-unital
map F ∈ CPTP(A, A′) and τA′ B = F(ρAB), we get

	H ↓
α (A′|B)τ = −	D(τA′ B‖IA′ ⊗ τB) ≥ −	D(τA′ B‖F(IA) ⊗ τB) (5.42)

≥ −	D(ρAB‖IA ⊗ ρB) = 	H ↓
α (A|B) (5.43)

and an analogous argument for the other entropies revealsHα(A′|B)τ ≥ Hα(A|B)ρ
for all entropies with data-processing. Hence, sub-unital maps on A do not decrease
the uncertainty about A. However, note that the condition that the map be sub-unital
is crucial, and counter-examples are abound if it is not.

Finally, as for the divergence itself, the above data-processing inequalities remain
valid if the maps E and F are trace non-increasing and Tr(E(ρ)) = Tr(ρ) and
Tr(F(ρ)) = Tr(ρ), respectively.

As another consequence of the joint concavity of 	Qα for α < 1, we find that
ρ �→ 	Hα(A|B)ρ is concave for all α ∈ [0, 1]. Moreover it is quasi-concave for
α ∈ [1, 2]. Similarly ρ �→ H̃α(A|B)ρ is concave for all α ∈ [ 12 , 1] and quasi-
concave for α > 1.

5.3 Duality Relations and Their Applications

We have now introduced four different quantum conditional Rényi entropies. Here
we show that these definitions are in fact related and complement each other via
duality relations. It is well known that, for any tripartite pure state ρABC , the relation

H(A|B)ρ + H(A|C)ρ = 0 (5.44)

holds. We call this a duality relation for the conditional entropy. To see this, simply
write H(A|B)ρ = H(ρAB)− H(ρB) and H(A|C)ρ = H(ρAC )− H(ρC ) and verify
consulting the Schmidt decomposition that the spectra of ρAB and ρC as well as
the spectra of ρB and ρAC agree. The significance of this relation is manyfold—for
example it turns out to be useful in cryptographywhere the information an adversarial
party, let us say C , has about a quantum system A, can be estimated using local state
tomography by two honest parties, A and B.

In the following, we are interested to see if such relations hold more generally for
conditional Rényi entropies.
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5.3.1 Duality Relation for �H ↓
α

It was shown in [155] that 	H ↓
α indeed satisfies a duality relation.

Proposition 5.2 For any pure state ρABC ∈ S◦(ABC), we have

	H ↓
α (A|B)ρ + 	H ↓

β (A|C)ρ = 0 when α + β = 2, α, β ∈ [0, 2]. (5.45)

Proof By definition, we have 	H ↓
α (A|B)ρ = 1

1−α
log 	Qα(ρAB‖IA ⊗ ρB). Now, note

that

	Qα(ρAB‖IA ⊗ ρB) = Tr(ρα
ABρ1−α

B ) = Tr
(

ρα−1
AB |ρ〉〈ρ|ABC ρ1−α

B

)

(5.46)

= Tr
(

ρα−1
C |ρ〉〈ρ|ABC ρ1−α

AC

) = Tr(ρα−1
C ρ2−α

AC ). (5.47)

The result then follows by substituting α = 2 − β. �

Note that the map α �→ β = 2−α maps the interval [0, 2], where data-processing
holds, onto itself. This is not surprising. Indeed, consider the Stinespring dilation
U ∈ CPTP(B, B ′ B ′′) of a quantum channel E ∈ CPTP(B, B ′). Then, for ρABC

pure, τAB′ B′′C = U(ρABC ) is also pure and the above duality relation implies that

H ↓
α (A|B)ρ ≤ H ↓

α (A|B ′)τ ⇐⇒ H ↓
β (A|C)ρ ≥ H ↓

β (A|B ′′C)τ . (5.48)

Hence, data-processing for α holds if and only if data-processing for β holds.

5.3.2 Duality Relation for ˜H ↑
α

It was shown in [122] and [15] that a similar relation holds for H̃ ↑
α , generalizing a

well-known relation between the min- and max-entropies [101].

Proposition 5.3 For any pure state ρABC ∈ S◦(ABC), we have

H̃ ↑
α (A|B)ρ + H̃ ↑

β (A|C)ρ = 0 when
1

α
+ 1

β
= 2, α, β ∈

[1

2
,∞

]

.

(5.49)

Proof Without loss of generality, we assume that α > 1 and β < 1. Since (0, 1) �
α′ := α−1

α
= −β−1

β
=: −β ′, it suffices to show that

min
σB∈S◦(B)

(

Q̃α(ρAB‖IA ⊗ σB)
) 1

α = max
σB∈S◦(B)

(

Q̃β(ρAB‖IA ⊗ σB)
) 1

β
, (5.50)



82 5 Conditional Rényi Entropy

or, equivalently, minσB∈S◦(B)

∥
∥ρ

1/2
ABσ−α′

B ρ
1/2
AB

∥
∥

α
= maxτC ∈S◦(C)

∥
∥ρ

1/2
ACτ

−β ′
C ρ

1/2
AC

∥
∥

β
.

Now, leveraging the Hölder and reverse Hölder inequalities in Lemma 3.1, we find
for any M ∈ P(A),

‖M‖α = max
{

Tr(M N ) : N ≥ 0, ‖N‖1/α′ ≤ 1
}

= max
τ∈S◦(A)

Tr
(

Mτα′)
, and (5.51)

‖M‖β = min
{

Tr(M N ) : N ≥ 0, N � M, ‖N−1‖−1/β ′ ≤ 1
}

= min
σ∈S◦(A)

σ�M

Tr
(

Mσβ ′)
.

(5.52)

In the last expressionwe can safely ignore operatorsσ �� M since thosewill certainly
not achieve the minimum. Substituting this into the above expressions, we find

∥
∥
∥ρ

1/2
ABσ−α′

B ρ
1/2
AB

∥
∥
∥

α
= max

τAB∈S◦(AB)
Tr

(

ρ
1/2
ABσ−α′

B ρ
1/2
ABτα′

AB

)

(5.53)

and, furthermore, choosing |Ψ 〉 ∈ P(ABC) to be the unnormalized maximally
entangled state with regards to the Schmidt bases of |ρ〉ABC in the decomposition
AB : C , we find

max
τAB∈S◦(AB)

Tr
(

ρ
1/2
ABσ−α′

B ρ
1/2
ABτα′

AB

)

= max
τC ∈S◦(C)

〈

Ψ

∣
∣
∣ρ

1/2
ABσ−α′

B ρ
1/2
AB ⊗ τα′

C

∣
∣
∣Ψ

〉

ABC

(5.54)

= max
τC ∈S◦(C)

〈

ρ

∣
∣
∣σ

−α′
B ⊗ τα′

C

∣
∣
∣ρ

〉

ABC
. (5.55)

An analogous argument also reveals that

∥
∥
∥ρ

1/2
ACτ

−β ′
C ρ

1/2
AC

∥
∥
∥

β
= min

σB∈S◦(B)

〈

ρ

∣
∣
∣σ

β ′
B ⊗ τ

−β ′
C

∣
∣
∣ρ

〉

ABC
= min

σB∈S◦(B)

〈

ρ

∣
∣
∣σ

−α′
B ⊗ τα′

C

∣
∣
∣ρ

〉

ABC
.

(5.56)

At this points it only remains to show that the minimum over σB and the max-
imum over τC can be interchanged. This can be verified using Sion’s minimax
theorem [146], noting that 〈ρ|σ−α′

B ⊗ τα′
C |ρ〉ABC is convex in σB and concave in

τC , and we are optimizing over a compact convex space. �

We again note that the map α �→ β = α
2α−1 maps

[ 1
2 ,∞] onto itself.

5.3.3 Duality Relation for �H ↑
α and ˜H ↓

α

The alternative expression in Lemma 5.1 leads us to the final duality relation, which
establishes a surprising connection between two quantum Rényi entropies [154].

http://dx.doi.org/10.1007/978-3-319-21891-5_3
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Proposition 5.4 For any pure state ρABC ∈ S◦(ABC), we have

	H ↑
α (A|B)ρ + H̃ ↓

β (A|C)ρ = 0 when αβ = 1, α, β ∈ [0,∞]. (5.57)

Proof First we note that β = 1
α
and α

1−α
= − 1

1−β
. Then, using the expression in

Lemma 5.1, it remains to show that

Tr
((

TrA(ρα
AB)

) 1
α

)

= Tr
((

ρα′
C ρACρα′

C

) 1
α
)

, where α′ = α − 1

2
. (5.58)

In the following we show something stronger, namely that the operators

TrA(ρα
AB) and ρα′

C ρACρα′
C (5.59)

are unitarily equivalent. This is true since both of these operators are marginals—on
B and AC—of the same tripartite rank-1 operator, ρα′

C ρABCρα′
C . To see that this is

indeed true, note the first operator in (5.59) can be rewritten as

TrA(ρα
AB) = TrA

(

ρα′
ABρAB ρα′

AB

) = TrAC
(

ρα′
ABρABCρα′

AB

) = TrAC
(

ρα′
C ρABCρα′

C

)

.

(5.60)

The last equality can be verified using the Schmidt decomposition of ρABC with
regards to the partition AB:C . �

Again, note that the transformation α �→ β = 1
α
maps the interval [0, 2] where

data-processing holds for 	Hα to the interval [ 12 ,∞] where data-processing holds for
H̃β , and vice versa.

5.3.4 Additivity for Tensor Product States

One implication of the duality relation for H̃ ↑
α is that it allows us to show additivity

for this quantity. Namely, we can use it to show the following corollary.

Corollary 5.2 For any product state ρAB ⊗ τA′ B′ and α ∈ [ 12 ,∞), we have

H̃ ↑
α (AA′|B B ′)ρ⊗τ = H̃ ↑

α (A|B)ρ + H̃ ↑
α (A′|B ′)τ . (5.61)

Proof By definition of H̃ ↑
α (AA′|B B ′)ρ⊗τ we immediately find the following chain

of inequalities:
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H̃ ↑
α (AA′|B B ′)ρ⊗τ = min

σB B′ ∈S (B B′)
D̃α

(

ρAB ⊗ τA′ B′
∥
∥IAA′ ⊗ σB B′

)

(5.62)

≤ min
σB ∈S (B),

ωB′ ∈S (B′)
D̃α

(

ρAB ⊗ τA′ B′
∥
∥IA ⊗ σB ⊗ IA′ ⊗ ωB′

)

(5.63)

= H̃ ↑
α (A|B)ρ + H̃ ↑

α (A′|B ′)τ . (5.64)

To establish the opposite inequality we introduce purifications ρABC of ρAB and
τA′ B′C ′ of τA′ B′ and choose β such that 1

α
+ 1

β
= 2. Then, an instance of the above

inequality (5.62)–(5.64) reads

H̃ ↑
β (AA′|CC ′)ρ⊗τ ≤ H̃ ↑

β (A|C)ρ + H̃ ↑
β (A′|C ′)τ . (5.65)

Theduality relation inProposition 5.3 thenyields H̃ ↑
α (AA′|B B ′)ρ⊗τ ≥ H̃ ↑

α (A|B)ρ+
H̃ ↑

α (A′|B ′)τ , concluding the proof. �
Finally, note that the corresponding additivity relations for H̃ ↓

α and 	H ↓
α are evident

from the respective definition. Additivity for 	H ↑
α in turn follows directly from the

explicit expression established in Lemma 5.1.

5.3.5 Lower and Upper Bounds on Quantum Rényi Entropy

The above duality relations also yield relations between different conditional Rényi
entropies for arbitrary mixed states [154].

Corollary 5.3 Let ρAB ∈ S◦(AB). Then, the following holds for α ∈ [ 1
2 ,∞

]

:

H̃ ↑
α (A|B)ρ ≤ 	H ↑

2− 1
α

(A|B)ρ, 	H ↑
α (A|B)ρ ≤ 	H ↓

2− 1
α

(A|B)ρ, (5.66)

H̃ ↑
α (A|B)ρ ≤ H̃ ↓

2− 1
α

(A|B)ρ, H̃ ↓
α (A|B)ρ ≤ 	H ↓

2− 1
α

(A|B)ρ. (5.67)

Proof Consider an arbitrary purification ρABC ∈ S (ABC) of ρAB . The relations
of Fig. 5.1, for any γ ≥ 0, applied to the marginal ρAC are given as

H̃ ↑
γ (A|C)ρ ≥ H̃ ↓

γ (A|C)ρ ≥ 	H ↓
γ (A|C)ρ, and (5.68)

H̃ ↑
γ (A|C)ρ ≥ 	H ↑

γ (A|C)ρ ≥ 	H ↓
γ (A|C)ρ. (5.69)

We then substitute the corresponding dual entropies according to the duality
relations in Sect. 5.3, which yields the desired inequalities upon appropriate new
parametrization. �

Some special cases of these inequalities are well known and have operational sig-
nificance. For example, (5.67) for α = ∞ states that H̃ ↑∞(A|B)ρ ≤ H̃ ↓

2 (A|B)ρ ,
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which relates the conditional min-entropy in (5.24) to the conditional collision
entropy in (5.26). To understand this inequality more operationally we rewrite the
conditional min-entropy as its dual semi-definite program [101] (see also Chap.6),

H̃ ↑∞(A|B)ρ = min
E∈CPTP(B,A′)

− log
(

dA F(ψAA′ ,E(ρAB)
)

, (5.70)

where A′ is a copy of A and ψAA′ is the maximally entangled state on A : A′. Now,
the above inequality becomes apparent since the conditional collision entropy can
be written as [21]

H̃ ↓
2 (A|B)ρ = − log

(

dA F(φAA′,Epg(ρAB)
)

, (5.71)

where Epg denotes the pretty good recovery map of Barnum and Knill [13].
Finally, (5.66) for α = 1

2 yields H̃ ↑
1/2(A|B)ρ ≤ 	H ↑

0 (A|B)ρ , which relates the
quantumconditionalmax-entropy in (5.25) to the quantumconditional generalization
of the Hartley entropy in (5.27).

Dimension Bounds

First, note two particular inequalities from Corollary 5.3:

H̃ ↓∞(A|B)ρ ≤ 	H ↓
2 (A|B)ρ and H̃ ↑

1/2(A|B)ρ ≤ 	H ↑
0 (A|B)ρ. (5.72)

From this and the monotonicity in α, we find that all conditional entropies (that
satisfy the data-processing inequality) can be upper and lower bounded as follows.

H̃ ↓∞(A|B)ρ ≤ Hα(A|B)ρ ≤ 	H ↑
0 (A|B)ρ. (5.73)

Thus, in order to find upper and lower bounds on quantum Rényi entropies it suffices
to investigate these two quantities.

Lemma 5.2 Let ρAB ∈ S◦(AB). Then the following holds:

− logmin{rank(ρA), rank(ρB)} ≤ Hα(A|B)ρ ≤ log rank(ρA). (5.74)

Moreover, Hα(A|B)ρ ≥ 0 if ρAB is separable.

Proof Without loss of generality (due to invariance under local isometries) we
assume that ρA and ρB have full rank. The upper bound follows since 	H ↑

0 (A|B)ρ ≤
H0(A)ρ = log dA. Similarly, we find H ↓∞(A|B)ρ = − 	H ↑

0 (A|C)ρ ≥ −H0(A)ρ =
− log dA by taking into account an arbitrary purification ρABC of ρAB . On the other
hand, for any decomposition ρAB = ∑

i λi |φi 〉〈φi | into pure states, quasi-concavity
of Hα (which is a direct consequence of the quasi-convexity of Dα) yields

http://dx.doi.org/10.1007/978-3-319-21891-5_6


86 5 Conditional Rényi Entropy

H ↓∞(A|B)ρ ≥ min
i

H ↓∞(A|B)φi = min
i

−H0(A)φi ≥ − log dB . (5.75)

This concludes the proof of the first statement.
For separable states, we may write

ρAB =
∑

k

pk σ k
A ⊗ τ k

B ≤
∑

k

pk IA ⊗ τ k
B = IA ⊗ ρB, (5.76)

and, hence, H ↓∞(A|B)ρ = sup{λ ∈ R : ρAB ≤ exp(−λ)IA ⊗ ρB} ≥ 0. �

5.4 Chain Rules

The chain rule, H(AB|C) = H(A|BC) + H(B|C), is fundamentally important in
many applications because it allows us to see the entropy of a system as the sum of the
entropies of its parts. However, Hα(AB|C) = Hα(A|BC) + Hα(B|C), generally
does not hold for α �= 1. Nonetheless, there exist weaker statements that we can
prove.

For a first such statement, we note that for any ρABC ∈ S◦(ABC), the inequality

ρBC ≤ exp
( − H̃ ↓∞(B|C)ρ

)

IB ⊗ ρC (5.77)

holds by definition of H̃ ↓∞. Hence, using the dominance relation of the Rényi diver-
gence, we find

	H ↓
α (A|BC)ρ = −	Dα(ρABC‖IA ⊗ ρBC ) (5.78)

≤ −	Dα(ρABC‖IAB ⊗ ρC ) − H ↓∞(B|C)ρ, (5.79)

or, equivalently 	H ↓
α (AB|C)ρ ≥ 	H ↓

α (A|BC)ρ + H̃ ↓∞(B|C)ρ . Using an analogous
argument we get the same statement also for H̃α .

Proposition 5.5 For any state ρABC ∈ S◦(ABC), we have

H
↓
α(AB|C)ρ ≥ H

↓
α(A|BC)ρ + H̃ ↓∞(B|C)ρ. (5.80)

Several other variations of the chain rule can now be established using the duality
relations, for example

	H ↑
α (AB|C)ρ ≤ 	H ↑

0 (A|BC)ρ + 	H ↑
α (B|C)ρ. (5.81)
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Next, let us try to find a chain rule that only involves entropies of the ‘↑’ type.
For this purpose, we follow the above argument but start with the fact that

ρBC ≤ exp
( − H̃ ↑∞(B|C)ρ

)

IB ⊗ σC (5.82)

for some σC ∈ S◦(C). This yields the relation

H̃ ↑
α (AB|C)ρ ≥ H̃ ↓

α (A|BC)ρ + H̃ ↑∞(B|C)ρ (5.83)

and we can use the inequality in (5.67) to remove the remaining ‘↓’. This leads to

H̃ ↑
α (AB|C)ρ ≥ H̃ ↑

β (A|BC)ρ + H̃ ↑∞(B|C)ρ, α = 2 − 1

β
. (5.84)

This result is a special case of a beautiful set of chain rules for H̃ ↑
α that were recently

established by Dupuis [49].

Theorem 5.1 Let ρABC ∈ S (ABC) and α, β, γ ∈ ( 1
2 , 1

)∪ (1,∞) such that
α

α−1 = β
β−1 + γ

γ−1 . Then, if (α − 1)(β − 1)(γ − 1) > 0,

H ↑
α (AB|C)ρ ≥ H ↑

β (A|BC)ρ + H ↑
γ (B|C)ρ, (5.85)

and the inequality is reversed if (α − 1)(β − 1)(γ − 1) < 0.

The proof in [49] is outside the scope of this book (see also Beigi [15]). The
chain rules for the von Neumann entropy follow as a limit of the above relation. For
example, if we choose β = γ = 1 + 2ε so that α = 1+2ε

1+ε
for a small parameter

ε → 0, we recover the relation

H(AB|C)ρ ≥ H(A|BC)ρ + H(B|C)ρ. (5.86)

The opposite inequality follows by choosing β = γ = 1 − 2ε.
Finally, we want to stress that slightly stronger chain rules are sometimes possible

when the underlying state has structure.

Entropy of Classical Information

We explore this with the example of classical and coherent-classical quantum states,
which arise when we purify classical systems. For concreteness, consider a state
ρ ∈ S•(X AB) that is classical on X , and a purification of the form

ρX X ′ ABC :=
∑

x,x ′

∣
∣x ′〉〈x |X ⊗ ∣

∣x ′〉〈x |X ′ ⊗ ∣
∣ρ(x ′)

〉〈ρ(x)|ABC , (5.87)
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where ρABC (x) is a purification of ρAB(x). We say that ρX X ′ ABC is coherent-
classical between X and X ′: if one of these systems is traced out the remaining
states are isomorphic and classical on X or X ′, respectively.

Lemma 5.3 Let ρ ∈ S•(X X ′ AB) be coherent-classical between X and X ′. Then,

H
↑
α(X A|X ′ B)ρ ≤ H

↑
α(A|X X ′ B)ρ and H̃α(X A|B)ρ ≥ H̃α(A|B)ρ. (5.88)

The second statement reveals that classical information has non-negative entropy,
regardless of the nature of the state on AB. (Note that Lemma 5.2 already established
this fact for the case where A is trivial.)

Proof We will establish the first inequality for all conditional Rényi entropies of the
type ‘↑’. The second inequality then follows by the respective duality relations, and
a relabelling B ↔ C .

Let α < 1 such that Qα is jointly concave the data-processing inequality ensures
that Qα is non-decreasing under TPCP maps. Then define the projector ΠX X ′ =
∑

x |x〉〈x |X ⊗ |x〉〈x |X ′ . Clearly, ρX X ′ AB = ΠX X ′ρX X ′ ABΠX X ′ . Hence, for any σ ∈
S◦(X ′ B), the data-processing inequality yields

Qα(ρX X ′ AB‖IX A ⊗ σX ′ B) ≤ Qα(ρX X ′ AB‖IA ⊗ ΠX X ′(IX ′ ⊗ σX ′ B)ΠX X ′) (5.89)

≤ max
σ∈S◦(X X ′ B)

Qα(ρX X ′ AB‖IA ⊗ σX X ′ B), (5.90)

where we used that Tr(ΠX X ′(IX ′ ⊗ σX ′ B)ΠX X ′) = Tr(σX ′ B) = 1. We conclude that
the desired statement holds for α < 1, and for α ≥ 1 an analogous argument with
opposite inequalities applies. �

Finally, the following result gives dimension-dependent bounds on how much
information a classical register can contain.

Lemma 5.4 Let ρ ∈ S•(X AB) be classical on X. Then,

H
↑
α(X A|B)ρ ≤ H

↑
α(A|X B) + log dX. (5.91)

Proof Simply note that for any σB ∈ S◦(B), we have

Dα(ρX AB‖IX A ⊗ σB) = Dα(ρAX B‖IA ⊗ (πX ⊗ σB)) − log dX (5.92)

≥ min
σX B∈S◦(X B)

Dα(ρAX B‖IA ⊗ σX B) − log dX. (5.93)

�

For example, combining the above two lemmas, we find that

H̃ ↑
α (A|B)ρ ≤ H̃ ↑

α (AX |B)ρ ≤ H̃ ↑
α (A|B X)ρ + log dX. (5.94)
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5.5 Background and Further Reading

Strong subadditivity (5.6) was first conjectured by Lanford andRobinson in [104]. Its
first proof by Lieb and Ruskai [107] is one of the most celebrated results in quantum
information theory. The original proof is based on Lieb’s theorem [106]. Simpler
proofs were subsequently presented by Nielsen and Petz [126] and Ruskai [143],
amongst others. In this book we proved this statement indirectly via the data-
processing inequality for the relative entropy, which in turns follows by continuity
from the data-processing inequality for the Rényi divergence in Chap. 4. We also
provide an elementary proof in Appendix.

The classical version of H ↑
α was introduced by Arimoto for an evaluation of the

guessing probability [7]. Gallager used H ↑
α to upper bound the decoding error prob-

ability of a random coding scheme for data compression with side-information [64].
More recently, the classical and the classical-quantum special cases of 	H ↑

α were
investigated by Hayashi (see, for example, [79]).

The quantum conditional Rényi entropy 	H ↓
α was first studied in [155]. We note

that the expression for 	H ↑
α in Lemma 5.1 can be derived using a quantum Sibson’s

identity, first proposed by Sharma and Warsi [145]. On the other hand, the quantum
Rényi entropy H̃ ↑

α was proposed in [153] and investigated in [122], whereas H̃ ↓
α is

first considered in [154].
It is an open question whether the inequalities in Corollary 5.3 also hold for

the Rényi divergences themselves. Relatedly, Mosonyi [118] used a converse of the
Araki-Lieb-Thirring trace inequality due to Audenaert [8] to find a converse to the
ordering relation 	Dα(ρ‖σ) ≥ D̃α(ρ‖σ), namely

D̃α(ρ‖σ) ≥ α 	Dα(ρ‖σ) + log Tr
(

ρα
) + (α − 1) log ‖σ‖. (5.95)

In this book we focus our attention on conditional Rényi entropies, but similar
techniques can also be used to explore Rényi generalizations of the mutual informa-
tion [68, 80] and conditional mutual information [24].

http://dx.doi.org/10.1007/978-3-319-21891-5_4


Chapter 6
Smooth Entropy Calculus

Abstract SmoothRényi entropies are defined as optimizations (eitherminimizations
or maximization) of Rényi entropies over a set of close states. For many applications
it suffices to consider just two smooth Rényi entropies: the smooth min-entropy acts
as a representative of all conditional Rényi entropies with α > 1, whereas the smooth
max-entropy acts as a representative for all Rényi entropies with α < 1. These two
entropies have particularly nice properties and can be expressed in various different
ways, for example as semi-definite optimization problems. Most importantly, they
give rise to an entropic (and fully quantum) version of the asymptotic equipartition
property,which states that both the (regularized) smoothmin- andmax-entropies con-
verge to the conditional von Neumann entropy for iid product states. This is because
smoothing implicitly allows us to restrict our attention to a typical subspace where all
conditional Rényi entropies coincide with the von Neumann entropy. Furthermore,
we will see that the smooth entropies inherit many properties of the underlying Rényi
entropies.

6.1 Min- and Max-Entropy

This section develops a variety of useful alternative expressions for themin- andmax-
entropies, H̃ ↑∞ and H̃ ↑

1/2. In particular, we express both the min- and the max-entropy
in terms of semi-definite programs.

6.1.1 Semi-Definite Programs

Optimization problems that can be formulated as semi-definite programs are partic-
ularly interesting because they have a rich structure and efficient numerical solvers.
Here we present a formulation of semi-definite programs that has a very symmetric
structure, following Watrous’ lecture notes [171].

© The Author(s) 2016
M. Tomamichel, Quantum Information Processing with Finite Resources,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-21891-5_6
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Definition 6.1 A semi-definite program (SDP) is a triple {K, L,E}, where
K ∈ L †(A), L ∈ L †(B) and E ∈ L (L (A),L (B)) is a super-operator
from A to B that preserves self-adjointness. The following two optimization
problems are associated with the semi-definite program:

primal problem dual problem

minimize : Tr(KX) maximize : Tr(LY)

subject to : E(X) ≥ L subject to : E†(Y) ≤ K
X ∈ P(A) Y ∈ P(B)

(6.1)

We call an operator X ∈ P(A) primal feasible if it satisfies E(X) ≥ L. Similarly,
we say that Y ∈ P(B) is dual feasible if E†(Y) ≤ K . Moreover, we denote the
optimal solution of the primal problem by a and the optimal solution of the dual
problem by b. Formally, we define

a = inf
{

Tr(LX) : X ∈ P(A), E(X) ≥ K
}

(6.2)

b = sup
{

Tr(KY) : Y ∈ P(B), E†(Y) ≤ L
}

. (6.3)

The following two statements are true for any SDP and provide a relation between
the primal and dual problem. The first fact is called weak duality, and the second
statement is also known as Slater’s condition for strong duality.

Weak Duality: We have a ≥ b.
Strong Duality: If a is finite and there exists an operatorY > 0 such thatE†(Y) < K ,

then a = b and there exists a primal feasible X such that Tr(KX) = a.

For a proof we defer to [171]. As an immediate consequence, this implies that
every dual feasible operator Y provides a lower bound of Tr(LY) on α and every
primal feasible operator X provides an upper bound of Tr(KX) on β.

6.1.2 The Min-Entropy

Wefirst recall the expression for H̃ ↑∞ in (5.24), whichwewill simply callmin-entropy
in this chapter. We extend the definition to include sub-normalized states [139].

Definition 6.2 Let ρAB ∈ S•(AB). The min-entropy of A conditioned on B
of the state ρAB is

Hmin(A|B)ρ = sup
σB∈S•(B)

sup
{

λ ∈ R : ρAB ≤ exp(−λ)IA ⊗ σB
}

. (6.4)

http://dx.doi.org/10.1007/978-3-319-21891-5_5
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Let us take a closer look at the inner supremum first. First, note that there exists
a feasible λ if and only if σB � ρB. However, if this condition on the support is
satisfied, then using the generalized inverse, we find that

λ∗ = − log
∥
∥
∥σB

− 1
2 ρABσB

− 1
2

∥
∥
∥∞ (6.5)

is feasible and achieves the maximum. The min-entropy can thus alternatively be
written as

Hmin(A|B)ρ = max
σB

− log
∥
∥
∥σB

− 1
2 ρABσB

− 1
2

∥
∥
∥∞ , (6.6)

where we use the generalized inverse and the maximum is taken over all σB ∈ S•(B)

with σB � ρB. We can also reformulate (6.4) as a semi-definite program.
For this purpose, we include the factor exp(−λ) in σB and allow σB to be an

arbitrary positive semi-definite operator. The min-entropy can then be written as

Hmin(A|B)ρ = − log min
{

Tr(σB) : σB ∈ P(B) ∧ ρAB ≤ IA ⊗ σB
}

. (6.7)

In particular, we consider the following semi-definite optimization problem for
the expression exp(−Hmin(A|B)ρ), which has an efficient numerical solver.

Lemma 6.1 Let ρAB ∈ S•(AB). Then, the following two optimization prob-
lems satisfy strong duality and both evaluate to exp(−Hmin(A|B)ρ).

primal problem dual problem

minimize : Tr(σB) maximize : Tr(ρABXAB)

subject to : IA ⊗ σB ≥ ρAB subject to : TrA[XAB] ≤ IB

σB ≥ 0 XAB ≥ 0

(6.8)

Proof Clearly, the dual problem has a finite solution; in fact, we always have
Tr[ρABXAB] ≤ Tr XAB ≤ dB. Furthermore, there exists a σB > 0 with IA ⊗σB > ρAB.
Hence, strong duality applies and the values of the primal and dual problems are
equal. �

Let us investigate the dual problem next. We can replace the inequality in the
condition XB ≤ IB by an equality since adding a positive part to XAB only increases
Tr(ρABXAB). Hence, XAB can be interpreted as a Choi-Jamiolkowski state of a unital
CP map (cf. Sect. 2.6.4) fromHA′ toHB. Let E† be that map, then

exp
( − Hmin(A|B)ρ

) = max
E†

Tr
(

ρABE
†(ΨAA′)

) = dA max
E

Tr
(

E[ρAB]ψAA′
)

, (6.9)

where the second maximization is over all E ∈ CPTP(B, A′), i.e. all maps whose
adjoint is completely positive and unital from A′ to B. The fully entangled state

http://dx.doi.org/10.1007/978-3-319-21891-5_2
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ψAA′ = ΨAA′/dA is pure and normalized and if ρAB ∈ S◦(AB) is normalized as well,
we can rewrite the above expression in terms of the fidelity [101]

Hmin(A|B)ρ = − log

(

dA max
E∈CPTP(B,A′)

F
(

E(ρAB), ψAA′
)
)

≥ − log dA. (6.10)

(Note thatψ is defined as the fully entangled in an arbitrary but fixed basis ofHA and
HA′ . The expression is invariant under the choice of basis, since the fully entangled
states can be converted into each other by an isometry appended to E.)

Alternatively, we can interpret XAB as the Choi-Jamiolkowski state of a TP-CPM
map fromHB′ toHA, leading to

Hmin(A|B)ρ = − log

(

dB max
E∈CPTP(B′,A)

Tr
(

ρABE(ψBB′)
)
)

≥ − log dB. (6.11)

6.1.3 The Max-Entropy

We use the following definition of the max-entropy, which coincides with H̃↑
1/2 in the

case where ρAB is normalized.

Definition 6.3 Let ρAB ∈ S•(AB). The max-entropy of A conditioned on B
of the state ρAB is

Hmax(A|B)ρ := max
σB∈S•(B)

log F(ρAB, IA ⊗ σB). (6.12)

Clearly, the maximum is taken for a normalized state in S◦(B). However, note
that the fidelity term is not linear in σB, and thus this cannot directly be interpreted
as an SDP. This can be overcome by introducing an arbitrary purification ρABC of
ρAB and applying Uhlmann’s theorem, which yields

exp
(

Hmax(A|B)ρ
) = dA max

τABC∈S•(ABC)
〈ρABC |τABC |ρABC〉 , (6.13)

where τABC has marginal τAB = πA ⊗ σB for some σB ∈ S•(B). This is the dual
problem of a semi-definite program.

Lemma 6.2 Let ρAB ∈ S•(AB). Then, the following two optimization problems
satisfy strong duality and both evaluate to exp(Hmax(A|B)ρ).
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primal problem dual problem

minimize : μ maximize : Tr(ρABCYABC)

subject to : μIB ≥ TrA(ZAB) subject to : TrC(YABC) ≤ IA ⊗ σB

ZAB ⊗ IC ≥ ρABC Tr(σB) ≤ 1
ZAB ≥ 0, μ ≥ 0 YABC ≥ 0, σB ≥ 0.

(6.14)

Proof The dual problem has a finite solution, Tr(YABC) ≤ dA, and hence the maxi-
mum cannot exceed dA. There are also primal feasible points with ZAB ⊗ IC > ρABC

and IB > ZB. �

The primal problem can be rewritten by noting that the optimization over μ

corresponds to evaluating the operator norm of ZB.

Hmax(A|B)ρ = logmin
{

‖ZB‖∞ : ZAB ⊗ IC ≥ ρABC, ZAB ∈ P(AB)
}

.

(6.15)

To arrive at this SDP we introduced a purification of ρAB, and consequently (6.15)
depends on ρABC as well. This can be avoided by choosing a different SDP for the
fidelity.

Lemma 6.3 For all ρAB ∈ S•(AB), we have

exp
(

Hmax(A|B)ρ
) = inf

YAB>0
Tr

(

ρABY−1
AB

)‖YB‖∞. (6.16)

This can be interpreted as the Alberti form [1] of the max-entropy. Its proof is
based on an SDP formulation of the fidelity due to Watrous [172] and Killoran [98].

Proof From [98, 172] we learn that maxσB∈S (B)

√
F(ρAB, IA ⊗ σB) equals the dual

problem of the following SDP:

primal problem dual problem

minimize : Tr(ρABYAB) + γ maximize : 1
2

(

Tr X12 + Tr X21
)

subject to : γ IB ≥ TrA(Y22) subject to : X11 ≤ ρAB(

Y11 0
0 Y22

)

≥ 1
2

(

0 I
I 0

)

X22 ≤ IA ⊗ σB

Tr(σB) ≤ 1

Y11 ≥ 0, Y22 ≥ 0, γ ≥ 0

(

X11 X12
X21 X22

)

≥ 0, σB ≥ 0.

(6.17)
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Strongduality holds.Theprimal programcanbe simplifiedbynoting that

(

Y11 0
0 Y22

)

≥
(

0 I
I 0

)

holds if and only if
√

Y22Y11
√

Y22 ≥ I . This allows us to simplify the primal

problem and we find

max
σB∈S (B)

√

F(ρAB, IA ⊗ σB) = inf
YAB>0

1

2
Tr

(

ρABY−1
AB

) + 1

2
‖YB‖∞. (6.18)

Now, by the arithmetic geometric mean inequality, we have

1

2
Tr(ρABY−1

AB ) + 1

2
‖YB‖∞ ≥

√

Tr
(

ρABY−1
AB

)‖YB‖∞ = 1

2
Tr(ρAB(cYAB)−1) + 1

2
‖cYB‖∞

(6.19)

≥ inf
YAB>0

1

2
Tr(ρABY−1

AB ) + 1

2
‖YB‖∞. (6.20)

Here, c is chosen such that 1
c Tr

(

ρABY−1
AB

) = c‖YB‖∞, such that the arithmetic
geometric mean inequality becomes an equality. Therefore we have

max
σB∈S (B)

√

F(ρAB, IA ⊗ σB) = inf
YAB>0

√

Tr
(

ρABY−1
AB

)‖YB‖∞ (6.21)

and the desired equality follows. �

This can be used to prove upper bounds on the max-entropy. For example, the
quantity �H↑

0 (A|B)ρ—which is sometimes used instead of the max-entropy [139]—is
an upper bound on Hmax(A|B)ρ .

�H↑
0 (A|B)ρ = log max

σB∈S•(B)
Tr

({ρAB > 0}IA ⊗ σB
) ≥ Hmax(A|B)ρ. (6.22)

This follows from Lemma 6.3 by the choice YAB = {ρAB > 0} + εIAB with ε → 0,
which yields the projector onto the support of ρAB. Furthermore, we have

∥
∥TrA

({ρAB > 0})∥∥∞ = max
σB∈S•(B)

Tr
({ρAB > 0}IA ⊗ σB

)

. (6.23)

Min- and Max-Entropy Duality

Finally, themax-entropy can be expressed as amin-entropy of the purified state using
the duality relation in Proposition 5.3, which for this special case was first established
by König et al. [101].

Lemma 6.4 Let ρ ∈ S•(ABC) be pure. Then, Hmax(A|B)ρ = −Hmin(A|C)ρ .

http://dx.doi.org/10.1007/978-3-319-21891-5_5
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Proof We have already seen in Proposition 5.3 that this relation holds for normalized
states. The lemma thus follows from the observation that

Hmin(A|B)ρ = Hmin(A|B)ρ̃ − log t, and Hmax(A|B)ρ = Hmin(A|B)ρ̃ + log t

(6.24)

for any ρAB ∈ S•(AB) and ρ̃AB ∈ S◦(AB) with ρAB = tρ̃AB. �

6.1.4 Classical Information and Guessing Probability

First, let us specialize some of the results in Proposition 5.1 to the min- and max-
entropy. In the limit α → ∞ and at α = 1

2 , we find that

Hmin(A|BY)ρ = − log

(
∑

y

ρ(y) exp
(

− Hmin(A|B)ρ̂(y)

))

, (6.25)

Hmax(A|BY)ρ = log

(
∑

y

ρ(y) exp
(

Hmax(A|B)ρ̂(y)

))

. (6.26)

Guessing Probability

The classical min-entropy Hmin(X|Y)ρ can be interpreted as a guessing probability.
Consider an observer with access to Y . What is the probability that this observer
guesses X correctly, using his optimal strategy? The optimal strategy of the observer
is clearly to guess that the event with the highest probability (conditioned on his
observation) will occur. As before, we denote the probability distribution of x con-
ditioned on a fixed y by ρ(x|y). Then, the guessing probability (averaged over the
random variable Y ) is given by

∑

y

ρ(y) max
x

ρ(x|y) = exp
( − Hmin(X|Y)ρ

)

. (6.27)

It was shown by König et al. [101] that this interpretation of the min-entropy
extends to the case where Y is replaced by a quantum system B and the allowed
strategies include arbitrary measurements of B.

Consider a classical-quantum state ρXB = ∑

x |x〉〈x| ⊗ ρB(x). For states of this
form, the min-entropy simplifies to

exp
( − Hmin(X|B)ρ

) = max
E∈CPTP(B,X ′)

〈

Ψ

∣
∣
∣

∑

x

|x〉〈x|X ⊗ E
(

ρB(x)
)
∣
∣
∣Ψ

〉

XX ′ (6.28)

= max
E∈CPTP(B,X ′)

∑

x

〈

x
∣
∣E

(

ρB(x)
)∣
∣x

〉

X ′ . (6.29)

http://dx.doi.org/10.1007/978-3-319-21891-5_5
http://dx.doi.org/10.1007/978-3-319-21891-5_5
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The latter expression clearly reaches its maximum when E has classical output in
the basis {|x〉X ′ }x , or in other words, when E is a measurement map of the form
E : ρB �→ ∑

y Tr(ρBMy) |y〉〈y| for a POVM {My}y. We can thus equivalently write

exp
( −Hmin(X|B)ρ

) = max{My}y a POVM

∑

y

Tr(MyρB(y)). (6.30)

Moreover, let {M̃y} be a measurement that achieves the maximum in the above
expression and define τ(x, y) = Tr(M̃yρB(x)) as the probability that the true value
is x and the observer’s guess is y. Then,

exp
( − Hmin(X|B)ρ

) =
∑

y

Tr(M̃yρB(y)) (6.31)

≤
∑

y

max
x

Tr(M̃yρB(x)) = exp
( − Hmin(X|Y)τ

)

, (6.32)

and this is in fact an equality by the data-processing inequality. Thus, it is evident
that Hmin(X|B)ρ = Hmin(X|Y)τ can be achieved by a measurement on B.

6.2 Smooth Entropies

The smooth entropies of a state ρ are defined as optimizations over the min- and
max-entropies of states ρ̃ that are close to ρ in purified distance. Here, we define the
purified distance and the smoothmin- andmax-entropies and explore someproperties
of the smoothing.

6.2.1 Definition of the ε-Ball

We introduce sets of ε-close states that will be used to define the smooth entropies.

Definition 6.4 Let ρ ∈ S•(A) and 0 ≤ ε <
√
Tr(ρ). We define the ε-ball of

states inS•(A) around ρ as

Bε(A; ρ) := {τ ∈ S•(A) : P(τ, ρ) ≤ ε}. (6.33)

Furthermore, we define the ε-ball of pure states around ρ asBε∗(A; ρ) := {τ ∈
Bε(A; ρ) : rank(τ ) = 1}.
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For the remainder of this chapter, we will assume that ε is sufficiently small so
that ε <

√
Tr ρ is always satisfied. Furthermore, if it is clear from the context which

system is meant, we will omit it and simply use the notation B(ρ). We now list
some properties of this ε-ball, in addition to the properties of the underlying purified
distance metric.

i. The setBε(A; ρ) is compact and convex.
ii. The ball grows monotonically in the smoothing parameter ε, namely ε < ε′ =⇒

Bε(A; ρ) ⊂ Bε′
(A; ρ). Furthermore, B0(A; ρ) = {ρ}.

6.2.2 Definition of Smooth Entropies

The smooth entropies are now defined as follows.

Definition 6.5 Let ρAB ∈ S•(AB) and ε ≥ 0. Then, we define the ε-smooth
min- and max-entropy of A conditioned on B of the state ρAB as

Hε
min(A|B)ρ := max

ρ̃AB∈Bε(ρAB)
Hmin(A|B)ρ̃ and (6.34)

Hε
max(A|B)ρ := min

ρ̃AB∈Bε(ρAB)
Hmax(A|B)ρ̃ . (6.35)

Note that the extrema can be achieved due to the compactness of the ε-ball (cf.
Property i.). We usually use ρ̃ to denote the state that achieves the extremum. More-
over, the smooth min-entropy is monotonically increasing in ε and the smooth max-
entropy is monotonically decreasing in ε (cf. Property ii.). Furthermore,

H0
min(A|B)ρ = Hmin(A|B)ρ and H0

max(A|B)ρ = Hmax(A|B)ρ. (6.36)

If ρAB is normalized, the optimization problems defining the smooth min- and
max-entropies can be formulated as SDPs. To see this, note that the restrictions on
the smoothed state ρ̃ are linear in the purification ρABC of ρAB. In particular, consider
the condition P(ρ, ρ̃) ≤ ε on ρ̃, or, equivalently, F2∗(ρ, ρ̃) ≥ 1 − ε2. If ρABC is
normalized, then the squared fidelity can be expressed as F2∗(ρ, ρ̃) = Tr ρABC ρ̃ABC .

We give the primal of the SDP for exp(−Hε
min(A|B)ρ) as an example. This SDP

is parametrized by an (arbitrary) purification ρABC ∈ S◦(ABC).
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primal problem

minimize : Tr(σB)

subject to : IA ⊗ σB ≥ TrC(ρ̃ABC)

Tr(ρ̃ABC) ≤ 1
Tr(ρ̃ABCρABC) ≥ 1 − ε2

ρ̃ABC ∈ S (ABC), σB ∈ P(B)

(6.37)

This program allows us to efficiently compute the smooth min-entropy as long as the
involved Hilbert space dimensions are small.

6.2.3 Remarks on Smoothing

For both the smooth min- and max-entropy, we can restrict the optimization in
Definition 6.5 to states in the support of ρA ⊗ ρB.

Proposition 6.1 Let ρAB ∈ S•(AB) and 0 ≤ ε <
√
Tr(ρAB). Then, there exist

respective states ρ̃AB ∈ Bε(ρAB) in the support of ρA ⊗ ρB such that

Hε
min(A|B)ρ = Hmin(A|B)ρ̃ or Hε

max(A|B)ρ = Hmax(A|B)ρ̃ . (6.38)

Proof Let ρABC be any purification of ρAB. Moreover, let ΠAB = {ρA > 0}
⊗ {ρB > 0} be the projector onto the support of ρA ⊗ ρB.

For the min-entropy, first consider any state ρ̃′
AB ∈ Bε(ρAB) that achieves the

maximum in Definition 6.5. Then, there exists a σ ′
B ∈ S◦(B) with Hε

min(A|B)ρ =
− log Tr(σ ′

B) such that

ρ̃′
AB ≤ IA ⊗ σ ′

B =⇒ ΠABρ̃′
ABΠAB

︸ ︷︷ ︸

=: ρ̃AB

≤ {ρA > 0} ⊗ {ρB > 0}σ ′
B{ρB > 0}

︸ ︷︷ ︸

=: σB

. (6.39)

Moreover, ρ̃AB ∈ Bε(ρAB) since the purified distance contracts under trace non-
increasing maps, and Tr(σB) ≤ Tr(σ ′

B). We conclude that ρ̃AB must be optimal.
For the max-entropy, again we start with any state ρ̃′

AB ∈ Bε(ρAB) that achieves
the maximum in Definition 6.5. Then, using ρ̃AB as defined above

max
σ ′

B∈S◦(B)
F(ρ̃AB, IA ⊗ σ ′

B) = max
σB∈S◦(B)

F
(

ΠABρ̃′
ABΠAB, IA ⊗ σ ′

B

)

(6.40)

= max
σB∈S◦(B)

F
(

ρ̃′
AB, {ρA > 0} ⊗ {ρB > 0}σ ′

B{ρB > 0})

(6.41)

≤ max
σB∈S•(B)

F(ρ̃′
AB, IA ⊗ σB). (6.42)

Hence, Hmax(A|B)ρ̃ ≤ Hmax(A|B)ρ̃′ , concluding the proof. �
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Note that these optimal states are not necessarily normalized. In fact, it is in gen-
eral not possible to find a normalized state in the support of ρA ⊗ ρB that achieves
the optimum. Allowing sub-normalized states, we avoid this problem and as a con-
sequence the smooth entropies are invariant under embeddings into a larger space.

Corollary 6.1 For any state ρAB ∈ S•(AB) and isometries U : A → A′ and
V : B → B′, we have

Hε
min(A|B)ρ = Hε

min(A
′|B′)τ , Hε

max(A|B)ρ = Hε
max(A

′|B′)τ (6.43)

where τA′B′ = (U ⊗ V)ρAB(U ⊗ V)†.

On the other hand, if ρ is normalized, we can always find normalized optimal
states if we embed the systems A and B into large enough Hilbert spaces that allow
smoothing outside the support of ρA ⊗ρB. For the min-entropy, this is intuitively true
since adding weight in a space orthogonal to A, if sufficiently diluted, will neither
affect the min-entropy nor the purified distance.

Lemma 6.5 There exists an embedding from A to A′ and a normalized state ρ̂A′B ∈
Bε(ρA′B) such that Hmin(A′|B)ρ̂ = Hε

min(A|B)ρ .

Proof Let {ρ̃AB, σB} be such that they maximize the smooth min-entropy λ =
Hε
min(A|B)ρ , i.e. we have ρ̃AB ≤ exp(−λ)IA ⊗ σB. Then we embed A into an aux-

iliary system A′ with dimension dA + dĀ to be defined below. The state ρ̂A′B =
ρ̃AB ⊕ (1 − Tr(ρ̃))πĀ ⊗ σB, satisfies

ρ̂A′B = ρ̃AB ⊕ (1 − Tr(ρ̃)) πĀ ⊗ σB ≤ exp(−λ)(IA ⊕ IĀ) ⊗ σB (6.44)

if exp(λ)(1 − Tr(ρ̃)) ≤ exp(λ) ≤ dĀ. Hence, if dĀ is chosen large enough, we have
Hmin(A′|B)ρ̂ ≥ λ. Moreover, F∗(ρ̂, ρ) = F∗(ρ̃, ρ) is not affected by adding the
orthogonal subspace. �

For the max-entropy, a similar statement can be derived using the duality of the
smooth entropies.

Smoothing Classical States

Finally, smoothing respects the structure of the state ρ, in particular if some subsys-
tems are classical then the optimal state ρ̃ will also be classical on these systems.

Lemma 6.6 For both Hε
min(AX|BY)ρ and Hε

max(AX|BY)ρ , there exist an optimizer
ρ̃AXBY ∈ Bε(ρAXBY ) that is classical on X and Y.

Proof Consider the pinching maps PX(·) = ∑

x |x〉〈x| · |x〉〈x| and PY defined analo-
gously. Since these are CPTP and unital, we immediately find thatHε

min(AX|BY)ρ̃′ ≤
Hε
min(AX|BY)ρ̃ for any state ρ̃′

AXBY and ρ̃AXBY = PX ⊗ PY (ρ̃′
AXBY ) of the desired
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form. Since ρAXBY is invariant under this pinching, the state ρ̃ lies inBε(ρ) if ρ̃′ lies
in the ball. Hence, ρ̃ must be optimal.

For the max-entropy, we follow the argument in the proof of the previous lemma,
leveraging on Lemma 3.3. Using the state ρ̃ from above, this yields

max
σ ′

BY ∈S◦(B)
F

(

ρ̃AXBY , IAX ⊗ σ ′
BY

) = max
σ ′

BY ∈S◦(B)
F

(

ρ̃′
AXBY ,PX(IAX) ⊗ PY (σ ′

BY )
)

(6.45)

≤ max
σBY ∈S◦(B)

F
(

ρ̃′
AXBY , IAX ⊗ σBY

)

. (6.46)

Hence, Hmax(AX|BY)ρ̃ ≤ Hmax(AX|BY)ρ̃′ , concluding the proof. �

6.3 Properties of the Smooth Entropies

The smooth entropies inherit many properties of the respective underlying un-
smoothed Rényi entropies, including data-processing inequalities, duality relations
and chain rules.

6.3.1 Duality Relation and Beyond

The duality relation in Lemma 6.4 extends to smooth entropies.

Proposition 6.2 Let ρ ∈ S•(ABC) be pure and 0 ≤ ε <
√
Tr(ρ). Then,

Hε
max(A|B)ρ = −Hε

min(A|C)ρ. (6.47)

Proof According to Corollary 6.1, the smooth entropies are invariant under embed-
dings, and we can thus assume without loss of generality that the spaces B and C
are large enough to entertain purifications of the optimal smoothed states, which are
in the support of ρA ⊗ ρB and ρA ⊗ ρC , respectively. Let ρ̃AB be optimal for the
max-entropy, then

Hε
max(A|B)ρ = Hmax(A|B)ρ̃ ≥ min

ρ̃∈Bε∗(ρABC )
Hmax(A|B)ρ̃ (6.48)

= min
ρ̃∈Bε∗(ρABC )

−Hmin(A|C)ρ̃ ≥ min
ρ̃∈Bε(ρAC )

−Hmin(A|C)ρ̃ = −Hε
min(A|C)ρ .

(6.49)

And, using the same argument starting with Hε
min(A|C)ρ , we can show the opposite

inequality. �

http://dx.doi.org/10.1007/978-3-319-21891-5_3
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Due to the monotonicity in α of the Rényi entropies the min-entropy cannot
exceed the max-entropy for normalized states. This result extends to smooth en-
tropies [116, 169].

Proposition 6.3 Let ρ ∈ S◦(AB) and ϕ, ϑ ≥ 0 such that ϕ + ϑ < π
2 . Then,

Hsin(ϕ)
min (A|B)ρ ≤ Hsin(ϑ)

max (A|B)ρ + 2 log
1

cos(ϕ + ϑ)
. (6.50)

Proof Set ε = sin(ϕ). According to Lemma 6.5, there exists an embedding A′ of A
and a normalized state ρ̃A′B ∈ Bε(ρA′B) such that Hmin(A′|B)ρ̃ = Hε

min(A|B)ρ . In
particular, there exists a state σB ∈ S◦(B) such that ρ̃A′B ≤ exp(−λ)IA′ ⊗ σB with
λ = Hε

min(A|B)ρ . Thus, letting ρ̄A′B ∈ Bsin(ϑ)(ρA′B) be a state that minimizes the
smooth max-entropy, we find

Hε′
max(A|B)ρ = Hmax(A

′|B)ρ̄ ≥ −D1/2

(

ρ̄A′B
∥
∥IA′ ⊗ σB

)

(6.51)

≥ λ − D1/2(ρ̄A′B‖ρ̃A′B) = λ + log
(

1 − P(ρ̄A′B, ρ̃A′B)2
)

(6.52)

≥ Hε
min(A|B)ρ + log

(

1 − sin(ϕ + ϑ)2
)

. (6.53)

In the final step we used the triangle inequality in (3.58) to find P(ρ̄A′B, ρ̃A′B) ≤
sin(ϕ + ϑ). �

Proposition 6.3 implies that smoothing states that have similar min- and max-
entropies has almost no effect. In particular, let ρAB ∈ S◦(AB) with Hmin(A|B)ρ =
Hmax(A|B)ρ . Then,

Hε
min(A|B)ρ ≤ Hmax(A|B)ρ − log(1 − ε2) = Hmin(A|B)ρ − log(1 − ε2).

(6.54)

This inequality is tight and the smoothed state ρ̃ = (1−ε2)ρBε(ρ) reaches equality.
An analogous relation can be derived for the smooth max-entropy.

6.3.2 Chain Rules

Similar to the conditional Rényi entropies, we also provide a collection of inequalities
that replace the chain rule of the vonNeumann entropy. These chain rules are different
in that they introduce an additional correction term in O

(

log 1
ε

)

that does not appear
in the results of the previous chapter.

http://dx.doi.org/10.1007/978-3-319-21891-5_3
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Theorem 6.1 Let ρ ∈ S•(ABC) and ε, ε′, ε′′ ∈ [0, 1) with ε > ε′ + 2ε′′.
Then,

Hε
min(AB|C)ρ ≥ Hε′

min(A|BC)ρ + Hε′′
min(B|C)ρ − g(δ), (6.55)

Hε′
min(AB|C)ρ ≤ Hε

min(A|BC)ρ + Hε′′
max(B|C)ρ + 2g(δ), (6.56)

Hε′
min(AB|C)ρ ≤ Hε′′

max(A|BC)ρ + Hε
min(B|C)ρ + 3g(δ), (6.57)

where g(δ) = − log
(

1 − √
1 − δ2

)

and δ = ε − ε′ − 2ε′′.

See [169] for a proof. Using the duality relation for smooth entropies on (6.55),
(6.56) and (6.57), we also find the chain rules

Hε
max(AB|C)ρ ≤ Hε′

max(A|BC)ρ + Hε′′
max(B|C)ρ + g(δ), (6.58)

Hε′
max(AB|C)ρ ≥ Hε′′

min(A|BC)ρ + Hε
max(B|C)ρ − 2g(δ), (6.59)

Hε′
max(AB|C)ρ ≥ Hε

max(A|BC)ρ + Hε′′
min(B|C)ρ − 3g(δ). (6.60)

Classical Information

Sometimes the following alternative bounds restricted to classical information are
very useful. The first result asserts that the entropy of a classical register is always
non-negative and bounds how much entropy it can contain.

Lemma 6.7 Let ε ∈ [0, 1) and ρ ∈ S•(XAB) be classical on X. Then,

Hε
min(A|B)ρ ≤ Hε

min(XA|B)ρ ≤ Hε
min(A|B)ρ + log dX and (6.61)

Hε
max(A|B)ρ ≤ Hε

max(XA|B)ρ ≤ Hε
max(A|B)ρ + log dX . (6.62)

We are also concerned with the maximum amount of information a classical register
X can contain about a quantum state A.

Lemma 6.8 Let ε ∈ [0, 1) and ρ ∈ S•(AYB) be classical on Y. Then,

Hε
min(A|YB)ρ ≥ Hε

min(A|B)ρ − log dY and (6.63)

Hε
max(A|YB)ρ ≥ Hε

max(A|B)ρ − log dY . (6.64)

We omit the proofs of the above statements, but note that they can be derived
from (5.94) together with the fact that the states achieving the optimum for the
smooth entropies retain the classical-quantum structure (cf. Lemma 6.6).

http://dx.doi.org/10.1007/978-3-319-21891-5_5
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6.3.3 Data-Processing Inequalities

Weexpectmeasures of uncertainty of the systemAgiven side informationB to be non-
decreasing under local physical operations (e.g.,measurements or unitary evolutions)
applied to the B system. Furthermore, in analogy to the conditional Rényi entropies,
we expect that the uncertainty of the system A does not decrease when a sub-unital
map is executed on the A system.

Theorem 6.2 Let ρAB ∈ S•(AB) and 0 ≤ ε <
√
Tr(ρ). Moreover, let E ∈

CPTP(A, A′) be sub-unital, and let F ∈ CPTP(B, B′). Then, the state τA′B′ =
(E ⊗ F)(ρAB) satisfies

Hε
min(A|B)ρ ≤ Hε

min(A
′|B′)τ and Hε

max(A|B)ρ ≤ Hε
max(A

′|B′)τ . (6.65)

Proof The data-processing inequality for the min-entropy follows from the respec-
tive property of the unsmoothed conditional Rényi entropy. We have

Hε
min(A|B)ρ = H↑∞(A|B)ρ̃ ≤ H↑∞(A′|B′)τ̃ ≤ Hε

min(A
′|B′)τ . (6.66)

Here, ρ̃AB is a state maximizing the smooth min-entropy and τ̃AB = (E ⊗ F)(ρ̃AB)

lies inBε(τA′B′).
To prove the result for the max-entropy, we take advantage of the Stinespring

dilation of E and F. Namely, we introduce the isometries U : AA′A′′ and V : BB′B′′
and the state A′A′B′B′′ = (U ⊗ V)ρAB(U† ⊗ V†) of which A′B′ is a marginal. Let
τ̃ ∈ Bε(A′A′′B′B′′) be the state that minimizes the smooth max-entropy Hε

max(A
′|B′)τ .

Then,

Hε
max(A

′|B′)τ = max
σB′ ∈S◦(B′)

logF2(τ̃A′B′ , IA′ ⊗ σB′
)

(6.67)

≥ max
σB′ ∈S◦(B′)

logF2(τ̃A′B′ ,TrA′′ ΠA′A′′ ⊗ σB′
)

. (6.68)

We introduced the projector ΠA′A′′ = UU† onto the image of U, which exhibits the
following property due to the fact that E is sub-unital:

TrA′′(ΠA′A′′) = TrA′′
(

UIAU†) = E(IA) ≤ IA′ . (6.69)

The inequality in (6.68) is then a result of the fact that the fidelity is non-increasing
when an argument A is replaced by a smaller argument B ≤ A. Next, we use the
monotonicity of the fidelity under partial trace to bound (6.68) further.
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Hε
max(A

′|B′)τ ≥ max
σB′B′′ ∈S◦(B′B′)

logF2(τ̃A′A′′B′B′′ ,ΠA′A′′ ⊗ σB′B′′
)

(6.70)

= max
σB′B′′ ∈S◦(B′B′)

logF2(ΠA′A′′ τ̃A′A′′B′B′′ΠA′A′′ , IA′A′′ ⊗ σB′B′′
)

(6.71)

= Hmax(A
′A′′|B′B′′)τ̂ . (6.72)

Finally, we note that τ̂A′A′′B′B′′ = ΠA′A′′ τ̃A′A′′B′B′′ΠA′A′′ ∈ Bε(ρA′A′′B′B′′) due to the
monotonicity of the purified distance under trace non-increasingmaps. Hence, we es-
tablishedHε

max(A
′|B′)τ ≥ Hε

max(A
′A′′|B′B′′)τ = Hε

max(A|B)ρ , where the last equality
follows due to the invariance of the max-entropy under local isometries. �

Functions on Classical Registers

Let us now consider a state ρXAB that is classical onX.We aim to show that applying a
classical function on the register X cannot increase the smooth entropies AX given B,
even if this operation is not necessarily sub-unital. In particular, for the min-entropy
this corresponds to the intuitive statement that it is always at least as hard to guess
the input of a function than it is to guess its output.

Proposition 6.4 Let ρXAB = ∑

x px |x〉〈x|X ⊗ ρ̂AB(x) be classical on X.
Furthermore, let ε ∈ [0, 1) and let f : XZ be a function. Then, the state
τZAB = ∑

x px |f (x)〉〈f (x)|Z ⊗ ρ̂AB(x) satisfies

Hε
min(ZA|B)τ ≤ Hε

min(XA|B)ρ and Hε
max(ZA|B)τ ≤ Hε

max(XA|B)ρ.

(6.73)

Proof A possible Stinespring dilation of f is given by the isometry U : |x〉X �→
|x〉X ′ ⊗ |f (x)〉Z followed by a partial trace over X ′. Applying U on ρXAB, we get

τX ′ZAB := UρXABU† =
∑

x

px |x〉〈x|X ′ ⊗ |f (x)〉〈f (x)|Y ⊗ ρ̂AB(x) (6.74)

which is classical on X ′ and Z and an extension of ZAB. Hence, the invariance
under isometries of the smooth entropies (cf. Corollary 6.1) in conjunction with
Proposition 6.8 implies

Hε
min(XA|B)ρ = Hε

min(X
′ZA|B)τ ≥ Hε

min(ZA|B)τ . (6.75)

An analogous argument applies for the smooth max-entropy. �
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6.4 Fully Quantum Asymptotic Equipartition Property

Smooth entropies give rise to an entropic (and fully quantum) version of the asymp-
totic equipartition property (AEP), which states that both the (regularized) smooth
min- and max-entropies converge to the conditional von Neumann entropy for iid
product states. The classical special case of this, which is usually not expressed in
terms of entropies (see, e.g., [38]), is a workhorse of classical information theory
and similarly the quantum AEP has already found many applications.

The entropic form of the AEP explains the crucial role of the von Neumann
entropy to describe information theoretic tasks. While operational quantities in
information theory (such as the amount of extractable randomness, the minimal
length of compressed data and channel capacities) can naturally be expressed in terms
of smooth entropies in the one-shot setting, the von Neumann entropy is recovered
if we consider a large number of independent repetitions of the task.

Moreover, the entropic approach to asymptotic equipartition lends itself to a gener-
alization to the quantum setting. Note that the traditional approach, which considers
the AEP as a statement about (conditional) probabilities, does not have a natural
quantum generalization due to the fact that we do not know a suitable generalization
of conditional probabilities to quantum side information. Figure6.1 visualizes the
intuitive idea behind the entropic AEP.

6.4.1 Lower Bounds on the Smooth Min-Entropy

For the sake of generality, we state our results here in terms of the smooth relative
max-divergence, which we define for any ρ ∈ S•(A) and σ ∈ S (A) as

Dε
max(ρ‖σ) := min

ρ̃∈Bε(ρ)
D∞(ρ̃‖σ). (6.76)

The following gives an upper bound on the smooth relativemax-entropy [45, 155].

Lemma 6.9 Let ρ ∈ S•(A), σ ∈ S (A) and λ ∈ ( − ∞, Dmax(ρ‖σ)
]

. Then,

Dε
max(ρ‖σ) ≤ λ, where ε =

√

2 Tr(Σ) − Tr(Σ)2 (6.77)

and Σ = {ρ > exp(λ)σ }(ρ − exp(λ)σ ), i.e. the positive part of ρ − exp(λ)σ .

The proof constructs a smoothed state ρ̃ that reduces the smooth relative max-
divergence relative to σ by removing the subspace where ρ exceeds exp(λ)σ .

Proof We first choose ρ̃, bound Dε
max(ρ̃‖σ), and then show that ρ̃ ∈ Bε(ρ). We use

the abbreviated notation Λ := exp(λ)σ and set
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n → ∞
n= 50

n= 150

n= 1250

H(X)

Hmin(X)

Hε
min(X

n)

0.0 0.25 0.5 0.75 1.0

Fig. 6.1 Emergence of Typical Set. We consider n independent Bernoulli trials with p = 0.2
and denote the probability that an event xn (a bit string of length n) occurs by Pn(xn). The plot
shows the surprisal rate, − 1

n logPn(xn), over the cumulated probability of the events sorted such
that events with high surprisal are on the left. The curves for n = {50, 100, 500, 2500} converge to
the von Neumann entropy, H(X) ≈ 0.72 as n increases. This indicates that, for large n, most (in
probability) events are close to typical (i.e. they have surprisal rate close toH(X)). The min-entropy,
Hmin(X) ≈ 0.32, constitutes the minimum of the curves while the max-entropy, Hmax(X) ≈ 0.85,
is upper bounded by their maximum. Moreover, the respective ε-smooth entropies, 1

n Hε
min(X

n) and
1
n Hε

max(X
n), can be approximately obtained by cutting off a probability ε from each side of the

x-axis and taking the minima or maxima of the remaining curve. Clearly, the ε-smooth entropies
converge to the von Neumann entropy as n increases

ρ̃ := GρG†, where G := Λ
1/2(Λ + Σ)−1/2, (6.78)

where we use the generalized inverse. From the definition ofΣ , we have ρ ≤ Λ+Σ ;
hence, ρ̃ ≤ Λ and Dmax(ρ̃‖σ) ≤ λ.

Let |ρ〉 be a purification of ρ, then (G ⊗ I) |ρ〉 is a purification of ρ̃ and, using
Uhlmann’s theorem, we find a bound on the (generalized) fidelity:

√

F∗(ρ̃, ρ) ≥ |〈ρ|G|ρ〉| + √

(1 − Tr(ρ))(1 − Tr(ρ̃)) (6.79)

≥ �(

Tr(Gρ)
) + 1 − Tr(ρ) = 1 − Tr

(

(I − Ḡ)ρ
)

, (6.80)

where we introduced Ḡ = 1
2 (G + G†) and � denotes the real part. This can be

simplified further by noting that G is a contraction. To see this, we multiply Λ ≤
Λ + Σ with (Λ + Σ)−1/2 from left and right to get

G†G = (Λ + Σ)−1/2Λ(Λ + Σ)−1/2 ≤ I. (6.81)

Furthermore, Ḡ ≤ I , since ‖Ḡ‖ ≤ 1 by the triangle inequality and ‖G‖ = ‖G†‖ ≤ 1.
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Tr
(

(I − Ḡ)ρ
) ≤ Tr(Λ + Σ) − Tr

(

Ḡ(Λ + Σ)
)

(6.82)

= Tr(Λ + Σ) − Tr
(

(Λ + Σ)
1/2Λ

1/2
) ≤ Tr(Σ), (6.83)

where we used ρ ≤ Λ + Σ and
√

Λ + Σ ≥ √
Λ. The latter inequality follows

from the operator monotonicity of the square root function. Finally, using the above
bounds, the purified distance between ρ̃ and ρ is bounded by

P(ρ̃, ρ) =
√

1 − F∗(ρ̃, ρ)
) ≤

√

1 − (

1 − Tr(Σ)
)2 =

√

2 Tr(Σ) − Tr(Σ)2.

(6.84)

Hence, we verified that ρ̃ ∈ Bε(ρ), which concludes the proof.

In particular, thismeans that for a fixed ε ∈ [0, 1) andρ � σ , we can always find a
finite λ such that Lemma 6.9 holds. To see this, note that ε(λ) = √

2 Tr(Σ) − Tr(Σ)2

is continuous in λ with ε(Dmax(ρ‖σ)) = 0 and limλ→−∞ ε(λ) = 1.
Our main tool for proving the fully quantum AEP is a family of inequalities that

relate the smooth max-divergence to quantum Rényi divergences for α ∈ (1,∞).

Proposition 6.5 Let ρ ∈ S◦(A), σ ∈ S (A), 0 < ε < 1 and α ∈ (1,∞).
Then,

Dε
max(ρ‖σ) ≤ Dα(ρ‖σ) + g(ε)

α − 1
, (6.85)

where g(ε) = − log
(

1− √
1 − ε2

)

and Dα is any quantum Rényi divergence.

Proof If ρ �� σ the bound holds trivially, so for the following we have ρ � σ .
Furthermore, since the divergences are invariant under isometries we can assume
that σ > 0 is invertible.

We then choose λ such that Lemma 6.9 holds for the ε specified above. Next,
we introduce the operator X = ρ − exp(λ)σ with eigenbasis {|ei〉}i∈S . The set
S+ ⊆ S contains the indices i corresponding to positive eigenvalues of X. Hence,
{X ≥ 0}X{X ≥ 0} = Σ as defined in Lemma 6.9. Furthermore, let ri = 〈ei|ρ|ei〉 ≥ 0
and si = 〈ei|σ |ei〉 > 0. It follows that

∀ i ∈ S+ : ri − exp(λ)si ≥ 0 and, thus,
ri

si
exp(−λ) ≥ 1. (6.86)

For any α ∈ (1,∞), we bound Tr(Σ) = 1 − √
1 − ε2 as follows:
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1 −
√

1 − ε2 = Tr(Σ) =
∑

i∈S+
ri − exp(λ)si ≤

∑

i∈S+
ri (6.87)

≤
∑

i∈S+
ri

(
ri

si
exp(−λ)

)α−1

≤ exp
( − λ(α − 1)

) ∑

i∈S

rα
i s1−α

i .

(6.88)

Hence, taking the logarithm and dividing by α − 1 > 0, we get

λ ≤ 1

α − 1
log

(
∑

i∈S

rα
i s1−α

i

)

+ 1

α − 1
log

1

1 − √
1 − ε2

. (6.89)

Next, we use the data-processing inequality of the Rényi divergences. We use the
measurement CPTP map M : X �→ ∑

i∈S |ei〉〈ei| X |ei〉〈ei| to obtain

Dα(ρ‖σ) ≥ Dα

(

M(ρ)‖M(σ )
) = 1

α − 1
log

(
∑

i∈S

rα
i s1−α

i

)

. (6.90)

We conclude the proof by substituting this into (6.89) and applying Lemma 6.9. �

We also note here that g(ε) can be bounded by simpler expressions. For example,
1−√

1 − ε2 ≥ 1
2ε

2 using a second order Taylor expansion of the expression around
ε = 0 and the fact that the third derivative is non-negative. This is a very good
approximation for small ε. Hence, (6.85) can be simplified to [155]

Dε
max(ρ‖σ) ≤ Dα(ρ‖σ) + 1

α − 1
log

2

ε2
. (6.91)

Proposition 6.5 is of particular interest when applied to the smooth conditional
min-entropy. In this case, let ρAB ∈ S•(AB) and σB be of the form IA ⊗ σB. Then,
for any α ∈ (1,∞), we have

Hε
min(A|B)ρ ≥ Hα(A|B)ρ − g(ε)

α − 1
, (6.92)

where we again take Hα to be any conditional Rényi entropy whose underlying
divergence satisfies the data-processing inequality. The duality relation for the
smooth min- and max-entropies (cf. Proposition 6.2) and the Rényi entropies (cf.
Sect. 5.3) yield a corresponding dual relation for the max-entropy.

6.4.2 The Asymptotic Equipartition Property

In this section we now apply Proposition 6.5 to two sequences {ρn}n and {σ n}n of
product states of the form

http://dx.doi.org/10.1007/978-3-319-21891-5_5
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ρn =
n

⊗

i=1

ρi, σ n =
n

⊗

i=1

σi, with ρi, σi ∈ S◦(A) (6.93)

where we assume for mathematical simplicity that the marginal states ρi and σi are
taken from a finite subset of S◦(A). Proposition 6.5 then yields

1

n
Dε
max

(

ρn
∥
∥σ n) ≤ 1

n

n
∑

i=1

D̃α(ρi, σi) + g(ε)

n(α − 1)
. (6.94)

We can further bound the smooth max-divergence in Proposition 6.5 using the
Taylor series expansion for the Rényi divergence in (4.101). This means that there
exists a constant C such that, for all α ∈ (1, 2] and all ρi and σi, we have1

D̃α(ρi‖σi) ≤ D(ρi‖σi) + (α − 1)
log(e)

2
V(ρi‖σi) + (α − 1)2C, (6.95)

It is often not necessary to specify the constantC in the above expression. However, it
is possible to give explicit bounds, which is done, for example, in [155]. Substituting
the above into (6.94) and setting α = 1 + 1√

n
yields

1

n
Dε
max(ρ

n‖σ n) ≤ 1

n

n
∑

i=1

D(ρi‖σi) + 1√
n

(

g(ε) + log(e)

2

1

n

n
∑

i=1

V(ρi‖σi)

)

+ C

n
.

(6.96)

Hence, in particular for the iid case where ρi = ρ and σi = σ for all i, we find:

Theorem 6.3 Let ρ ∈ S◦(A) and σ ∈ S (B) and ε ∈ (0, 1). Then,

lim
n→∞

{
1

n
Dε
max

(

ρ⊗n
∥
∥σ⊗n)

}

≤ D(ρ‖σ). (6.97)

This is the main ingredient of our proof of the AEP below.

Direct Part

In this section, we are mostly interested in the application of Theorem 6.3 to con-
ditional min- and max-entropies. Here, for any state ρAB ∈ S◦(AB), we choose
σAB = IA ⊗ ρB. Clearly,

Hε
min(A

n|Bn)ρ⊗n ≥ −Dε
max

(

ρ⊗n
AB

∥
∥σ⊗n

AB

)

(6.98)

1Here we use that ρi and σi are taken from a finite set, so that we can choose C uniformly.

http://dx.doi.org/10.1007/978-3-319-21891-5_4
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Thus, by Theorem 6.3, we have

lim
n→∞

{
1

n
Hε
min(A

n|Bn)ρ⊗n

}

≥ lim
n→∞

{

− 1

n
Dε
max

(

ρ⊗n
AB

∥
∥σ⊗n

AB

)
}

(6.99)

= −D(ρAB‖σAB) = H(A|B)ρ. (6.100)

This and the dual of this relation leads to the following corollary, which is the
direct part of the AEP.

Corollary 6.2 Let ρAB ∈ S◦(AB) and 0 < ε < 1. Then, the smooth entropies
of the i.i.d. product state ρAnBn = ρ⊗n

AB satisfy

lim
n→∞

{
1

n
Hε
min(A

n|Bn)ρ

}

≥ H(A|B)ρ and (6.101)

lim
n→∞

{
1

n
Hε
max(A

n|Bn)ρ

}

≤ H(A|B)ρ. (6.102)

Converse Part

To prove asymptotic convergence, we will also need converse bounds. For ε = 0,
the converse bounds are a consequence of the monotonicity of the conditional Rényi
entropies in α, i.e. Hmin(A|B)ρ ≤ H(A|B)ρ ≤ Hmax(A|B)ρ for normalized states
ρAB ∈ S◦(AB). For ε > 0, similar bounds can be derived based on the continuity of
the conditional von Neumann entropy in the state [2]. However, such bounds do not
allow a statement of the form of Corollary 6.2 as the deviation from the vonNeumann
entropy scales as nf (ε), where f (ε) → 0 only for ε → 0. (See, for example, [155]
for such a weak converse bound.) This is not sufficient for some applications of the
asymptotic equipartition property.

Here, we prove a tighter bound, which relies on the bound between smooth max-
entropy and smooth min-entropy established in Proposition 6.3. Employing this in
conjunction with (6.101) and (6.102) establishes the converse AEP bounds. Let
0 < ε < 1. Then, using any smoothing parameter 0 < ε′ < 1 − ε, we bound

1

n
Hε
min(A

n|Bn)ρ ≤ 1

n
Hε′
max(A

n|Bn)ρ + 1

n
log

1

1 − (ε + ε′)2
. (6.103)

The corresponding statement for the smoothmax-entropy follows analogously. Start-
ing from (6.103) we then apply the same argument that led to Corollary 6.2 in order
to establish the following converse part of the AEP.
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Corollary 6.3 Let ρAB ∈ S◦(AB) and 0 ≤ ε < 1. Then, the smooth entropies
of the i.i.d. product state ρAnBn = ρ⊗n

AB satisfy

lim
n→∞

{
1

n
Hε
min(A

n|Bn)ρ

}

≤ H(A|B)ρ and (6.104)

lim
n→∞

{
1

n
Hε
max(A

n|Bn)ρ

}

≥ H(A|B)ρ. (6.105)

These converse bounds are particularly important to bound the smooth entropies
for large smoothing parameters. In this form, the AEP implies strong converse state-
ments for many information theoretic tasks that can be characterized by smooth
entropies in the one-shot setting.

Second Order

It is in fact possible to derive more refined bounds here, in analogy with the second-
order refinement for Stein’s lemma encountered in Sect. 7.1. First we note that from
the above arguments we can deduce that the second-order term scales as

Dε
max

(

ρ⊗n
∥
∥σ⊗n) = nD(ρ‖σ) + O

(√
n
)

. (6.106)

and thus it suggests itselfs to try to find an exact expression for the O(
√

n) term.2

One finds that the second-order expansion of Dε
max(ρ

⊗n‖σ⊗n) is given as [157]

Dε
max

(

ρ⊗n
∥
∥σ⊗n) = nD(ρ‖σ) − √

nV(ρ‖σ) Φ−1(ε2) + O(log n), (6.107)

where Φ is the cumulative (normal) Gaussian distribution function. A more detailed
discussion of this is outside the scope of this book and we defer to [157] instead.

6.5 Background and Further Reading

This chapter is largely based on [152, Chaps. 4–5]. The exposition here is more
condensed compared to [152]. On the other hand, some results are revisited and
generalized in light of a better understanding of the underlying conditional Rényi
entropies.

The origins of the smooth entropy calculus can be found in classical cryptography,
for example the work of Cachin [32]. Renner and Wolf [141] first introduced the
classical special case of the formalism used in this book. The formalism was then
generalized to the quantum setting by Renner and König [140] in order to investigate
randomness extraction against quantum adversaries in cryptography [99]. Based on

2Analytic Bounds on the second-order term were also investigated in [11].

http://dx.doi.org/10.1007/978-3-319-21891-5_7
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this initial work, Renner [139] then defined conditional smooth entropies in the
quantum setting. He chose H̃ ↑∞ as the min-entropy (as we do here as well) and he
chose �H ↑

0 as the max entropy. Later König, Renner and Schaffner [101] discovered
that H̃ ↑

1/2 naturally complements the min-entropy due to the duality relation between

the two quantities. Consequently, the max-entropy is defined as H̃ ↑
1/2 in most recent

work. (Notably, at the time the structure of conditional Rényi entropies as discussed
in this book, in particular the duality relation, was only known in special cases.)
Moreover, Renner [139] initially used a metric based on the trace distance to define
the ε-ball of close states. However, in order for the duality relation to hold for smooth
min- and max-entropies, it was later found that the purified distance [156] is more
appropriate.

The chain rules were derived by Vitanov et al. [168, 169], based on preliminary
results in [20, 160]. The specialized chain rules for classical information in Lem-
mas 6.7 and 6.8 were partially developed in [138, 176], and extended in [152].

A first achievability bound for the quantum AEP for the smooth min-entropy was
established in Renner’s thesis [139]. However, the quantum AEP presented here is
due to [152, 155]; it is conceptually simpler and leads to tighter bounds as well as
a strong converse statement. It is also noteworthy that a hallmark result of quantum
information theory, the strong sub-additivity of the von Neumann entropy 5.6, can
be derived from elementary principles using the AEP [14].

The smooth min-entropy of classical-quantum states has operational meaning in
randomness extraction, as will be discussed in some detail in Sect. 7.3. Decoupling
is a natural generalization of randomness extraction to the fully quantum setting (see
Dupuis’ thesis [48] for a comprehensive overview), and was initially studied in the
context of state merging by Horodecki, Oppenheim and Winter [90]. Decoupling
theorems can also be expressed in the one-shot setting, where the (fully quantum)
smoothmin-entropyHε

min(A|B) attains operational significance [19, 49, 150]. Smooth
entropies have been used to characterize various information theoretic tasks in the
one-shot setting, for example in [42–44, 138]. The framework has also been used to
investigate the relation between randomness extraction and data compression with
side information [136]. Smooth entropies have also found various applications in
quantum thermodynamics, for example they are used to derive a thermodynamical
interpretation of negative conditional entropy [47].

We have restricted our attention to finite-dimensional quantum systems here, but
it is worth noting that the definitions of the smooth min- and max-entropies can be
extended without much trouble to the case where the side information is modeled by
an infinite-dimensional Hilbert space [60] or a general von Neumann algebra [22].
Many of the properties discussed here extend to these strictly more general settings.
However, general chain rules and an entropic asymptotic equipartition property are
not yet established in the most general algebraic setting [22].

http://dx.doi.org/10.1007/978-3-319-21891-5_5
http://dx.doi.org/10.1007/978-3-319-21891-5_7


Chapter 7
Selected Applications

Abstract This chapter gives a taste of the applications of the mathematical tool-
box discussed in this book. The discussion of binary hypothesis testing is crucial
because it provides an operational interpretation for the two quantum generaliza-
tions of the Rényi divergence we treated in this book. This belatedly motivates our
specific choice. Entropic uncertainty relations provide a compelling application of
conditional Rényi entropies and their properties, in particular the duality relation.
Finally, smooth entropies were originally invented in the context of cryptography,
and the Leftover Hashing Lemma reveals why this definition has proven so useful.

7.1 Binary Quantum Hypothesis Testing

As mentioned before, the Petz and the minimal quantum Rényi divergence both
find operational significance in binary quantum hypothesis testing. We thus start by
surveying binary hypothesis testing for quantum states. However, the proofs of the
statements in this section are outside the scope of this book, and we will refer to the
published primary literature instead.

Let us consider the following binary hypothesis testing problem. Let ρ, σ ∈
S◦(A) be two states. The null-hypothesis is that a certain preparation procedure
leaves system A in the state ρ, whereas the alternate hypothesis is that it leaves it in
the state σ . If this preparation is repeated independently n ∈ N times, we consider
the following two hypotheses.

Null Hypothesis: The state of An is ρ⊗n.
Alternate Hypothesis: The state of An is σ⊗n.

A hypothesis test for this setup is an event Tn ∈ P•(An) that indicates that the null-
hypothesis is correct. The error of the first kind, αn(Tn), is defined as the probability
that we wrongly conclude that the alternate hypothesis is correct even if the state is
ρ⊗n. It is given by

αn(Tn; ρ) := Tr
(

ρ⊗n(IAn − Tn)
)

. (7.1)
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Conversely, the error of the second kind, βn(Tn), is defined as the probability that
we wrongly conclude that the null hypothesis is correct even if the state is σ⊗n. It is
given by

βn(Tn; σ) := Tr
(

σ⊗n Tn
)

. (7.2)

7.1.1 Chernoff Bound

We now want to understand how these errors behave for large n if we choose on
optimal test. Let us first minimize the average of these two errors (assuming equal
priors) over all hypothesis tests, which leads us to the well known distinguishing
advantage (cf. Sect. 3.2).

min
Tn∈P•(An)

1

2

(

αn(Tn; ρ) + βn(Tn; σ)
)

= 1

2
+ 1

2
min

Tn∈S•(An)
Tr

(

Tn(σ
⊗n − ρ⊗n)

)

= 1

2

(

1 − Δ(ρ⊗n, σ⊗n)
)

. (7.3)

However, this expression is often not very useful in itself since we do not know
howΔ(ρ⊗n, σ⊗n) behaves as n gets large. This is answered by the quantumChernoff
bound which states that the expression in (7.3) drops exponentially fast in n (unless
ρ = σ , of course). The exponent is given by the quantum Chernoff bound [10,127]:

Theorem 7.1 Let ρ, σ ∈ S◦(A). Then,

lim
n→∞ −1

n
log min

Tn∈P•(An)

1

2

(

αn(Tn; ρ) + βn(Tn; σ)
)

= max
0≤s≤1

− log�Qs(ρ‖σ).

(7.4)

This gives a first operational interpretation of the Petz quantum Rényi divergence for
α ∈ (0, 1).

Note that the exponent on the right-hand side is negative and symmetric in ρ

and σ . The objective function is also strictly convex in s and hence the minimum
is unique unless ρ = σ . The negative exponent is also called the Chernoff distance
between ρ and σ , defined as

ξC(ρ, σ ) := − min
0≤s≤1

log�Qs(ρ‖σ) = max
0≤s≤1

(1 − s) �Ds(ρ‖σ). (7.5)

In particular, we have ξC(ρ, σ ) ≤ D(ρ‖σ) since (1 − s) ≤ 1 in (7.5).

http://dx.doi.org/10.1007/978-3-319-21891-5_3
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7.1.2 Stein’s Lemma

In the Chernoff bound we treated the two kind of errors (of the first and second kind)
symmetrically, but this is not always desirable. Let us thus in the following consider
sequences of tests {Tn}n such that βn(Tn; σ) ≤ εn for some sequence of {εn}n with
εn ∈ [0, 1]. We are then interested in the quantities

α∗
n(εn; ρ, σ ) := min

{

αn(Tn; σ) : Tn ∈ P•(An) ∧ βn(Tn, ρ) ≤ εn

}

. (7.6)

Let us first consider the sequence εn = exp(−nR). Quantum Stein’s lemma now
tells us that D(ρ‖σ) is a critical rate for R in the following sense [86, 128].

Theorem 7.2 Let ρ, σ ∈ S◦(A) with ρ � σ . Then,

lim
n→∞ α∗

n(exp(−nR); ρ, σ ) =
{

0 if R < D(ρ‖σ)

1 if R > D(ρ‖σ)
. (7.7)

This establishes theoperational interpretationofUmegaki’s quantumrelative entropy.
In fact, the respective convergence to 0 and 1 is exponential in n, as wewill see below.
An alternative formulation of Stein’s lemma states that, for any ε ∈ (0, 1), we have

lim
n→∞ −1

n
logmin

{

βn(Tn; σ) : Tn ∈ P•(An) ∧ αn(Tn, ρ) ≤ ε
}

= D(ρ‖σ). (7.8)

7.1.2.1 Second Order Refinements for Stein’s Lemma

A natural question then is to investigate what happens if − log εn ≈ nD(ρ‖σ) plus
some small variation that grows slower than n. This is covered by the second order
refinement of quantum Stein’s lemma [105, 157].

Theorem 7.3 Let ρ, σ ∈ S◦(A) with ρ � σ and r ∈ R. Then,

lim
n→∞ α∗

n

(

exp(−nD(ρ‖σ) − √
nr); ρ, σ

) = Φ

(
r√

V (ρ‖σ)

)

, (7.9)

where Φ is the cumulative (normal) Gaussian distribution function.
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These works also consider a slightly different formulation of the problem in the
spirit of (7.8), and establish that

− logmin
{

βn(Tn; σ) : Tn ∈ P•(An) ∧ αn(Tn, ρ) ≤ ε
}

= nD(ρ‖σ) + √

nV (ρ‖σ) Φ−1(ε) + O(log n). (7.10)

7.1.3 Hoeffding Bound and Strong Converse Exponent

Another refinement of quantum Stein’s lemma concerns the speed with which the
convergence to zero occurs in (7.7) if R < D(ρ‖σ). The quantum Hoeffding bound
shows that this convergence is exponentially fast in n, and reveals the optimal expo-
nent [76, 123]:

Theorem 7.4 Let ρ, σ ∈ S◦(A) and 0 ≤ R < D(ρ‖σ). Then,

lim
n→∞ −1

n
logα∗

n(exp(−nR); ρ, σ ) = sup
s∈(0,1)

{
1 − s

s

(�Ds(ρ‖σ) − R
)
}

. (7.11)

This yields a second operational interpretation of Petz’ quantum Rényi divergence.
A similar investigation can be performed in the regime when R > D(ρ‖σ), and

this time we find that the convergence to one is exponentially fast in n. The strong
converse exponent is given by [119]:

Theorem 7.5 Let ρ, σ ∈ S◦(A) with ρ � σ and R > D(ρ‖σ). Then,

lim
n→∞ −1

n
log

(

1 − α∗
n(exp(−nR); ρ, σ )

)

= sup
s>1

{
s − 1

s

(

R − D̃s(ρ‖σ)
)
}

.

(7.12)

This establishes an operational interpretation of theminimal quantumRényi diver-
gence for α ∈ (1,∞).

7.2 Entropic Uncertainty Relations

The uncertainty principle [81] is one of quantum physics’ most intriguing phe-
nomena. Here we are concerned with preparation uncertainty, which states that an
observer who has only access to classical memory cannot predict the outcomes of
two incompatible measurements with certainty. Uncertainty is naturally expressed in
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terms of entropies, and in fact entropic uncertainty relations (URs) have found many
applications in quantum information theory, specifically in quantum cryptography.

Let us now formalize a first entropic UR. For this purpose, let {|φx〉}x and {|ϑy〉}y

be two ONBs on a system A and MX ∈ CPTP(A, X) and MY ∈ CPTP(A, Y) the
respective measurement maps. Then, Massen and Uffink’s entropic UR [112] states
that, for any initial state ρA ∈ S◦(A), we have

Hα(X)MX (ρ) + Hβ(Y)MY (ρ) ≥ − log c , where c = max
x,y

∣
∣〈φx|ϑy〉

∣
∣
2 (7.13)

is the overlap of the two ONBs and the parameters of the conditional Rényi entropy,
α, β ∈ [ 12 ,∞), satisfy 1

α
+ 1

β
= 2. In the following we generalize this relation to

conditional entropies and quantum side information.

7.2.1 Tripartite Uncertainty Relation

First, note that an observer with quantum side information that is maximally entan-
gled with A can predict the outcomes of both measurements perfectly (see, for
instance, the discussion in [20]). This can be remedied by considering two different
observers—in which case the monogamy of entanglement comes to our rescue. We
find that the most natural generalization of the Maassen-Uffink relation is stated for
a tripartite quantum system ABC where A is the system being measured and B and C
are two systems containing side information [37, 122].

Theorem 7.6 Let ρABC ∈ S (ABC) and α, β ∈ [ 12 ,∞] with 1
α

+ 1
β

= 2.
Then,

H̃ ↑
α (X|B)MX (ρ) + H̃ ↑

β (Y |C)MY (ρ) ≥ − log c , (7.14)

with c defined in (7.13).

Proof We prove this statement for a pure state ρABC and the general statement then
follows by the data-processing inequality. By the duality relation in Proposition 5.3,
it suffices to show that

H̃ ↑
α (X|B)MX (ρ) ≥ H̃ ↑

α (Y |Y ′B)UY (ρ) − log c , (7.15)

http://dx.doi.org/10.1007/978-3-319-21891-5_5
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where CPTP(A, YY ′) � UY : ρA �→ ∑

y,y′ 〈ϑy|ρA|ϑy′ 〉|y〉〈y′|Y ⊗ |y〉〈y′|Y ′ is the map
corresponding to the Stinespring dilation unitary of MY . Let us now verify (7.15).
We have

H̃ ↑
α (Y |Y ′B)UY (ρ) = max

σY ′B∈S◦(Y ′B)
−D̃α

(

UY (ρAB)
∥
∥IY ⊗ σY ′B

)

(7.16)

≤ max
σY ′B∈S◦(Y ′B)

−D̃α

(

ρAB
∥
∥U−1

Y (IY ⊗ σY ′B)
)

(7.17)

≤ max
σY ′B∈S◦(Y ′B)

−D̃α

(

MX(ρAB)
∥
∥MX(UY (IY ⊗ σY ′B))

)

. (7.18)

The first inequality follows by the data-processing inequality pinching the states so
that they are block-diagonal with regards to the image ofUY and its complement. We
can then disregard the block outside the image since UY (ρAB) has no weight there
using the mean Property (VI). The second inequality is due to data-processing with
MX . Now, note that for every σY ′B, we have

MX(UY (IY ⊗ σY ′B)) =
∑

y

MX
( ∣
∣ϑy

〉〈

ϑy
∣
∣
A

) ⊗ 〈y|Y ′ σY ′B |y〉Y ′ (7.19)

=
∑

x,y

∣
∣
〈

φx
∣
∣ϑy

〉 ∣
∣
2 |x〉〈x|X ⊗ 〈y|Y ′ σY ′B |y〉Y ′ (7.20)

≤ c
∑

x,y

|x〉〈x|X ⊗ 〈y|Y ′ σY ′B |y〉Y ′ = c IX ⊗ σB. (7.21)

Substituting this into (7.18) yields the desired inequality.

7.2.2 Bipartite Uncertainty Relation

Based on the tripartite UR in Theorem 7.6, we can now explore bipartite URs with
only one side information system. To establish such an UR, we start from (7.15) and
use the chain rule in Theorem 5.1 to find

H̃ ↑
α (X|B)MX (ρ) ≥ H̃ ↑

γ (YY ′|B)UY (ρ) − H ↑
β (Y ′|B)UY (ρ) − log c, (7.22)

where we chose β, γ ≥ 1
2 such that

γ

γ − 1
= α

α − 1
+ β

β − 1
and (α − 1)(β − 1)(γ − 1) < 0. (7.23)

Then, using the fact that the marginals on YB and Y ′B of the state UY (ρAB) ∈
S◦(YY ′B) are equivalent and that the conditional entropies are invariant under local
isometries, we conclude that

http://dx.doi.org/10.1007/978-3-319-21891-5_5
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H̃ ↑
α (X|B)MX (ρ) + H̃ ↑

β (Y |B)MY (ρ) ≥ H̃ ↑
γ (A|B)ρ + log

1

c
. (7.24)

Interesting limiting cases include α = 2, β → 1
2 , and γ → ∞ as well as

α, β, γ → 1.
Clearly, variations of this relation can be shown using different conditional

entropies or chain rules. However, all bipartite URs share the property that on the
right-hand side of the inequality there appears a conditional entropy of the state ρAB

prior to measurement. This quantity can be negative in the presence of entangle-
ment, and in particular for the case of a maximally entangled state the term on the
right-hand side becomes negative or zero and the bound thus trivial.

7.3 Randomness Extraction

One of the main applications of the smooth entropy framework is in cryptography, in
particular in randomness extraction, the art of extracting uniform randomness from
a biased source. Here the smooth min-entropy of a classical system characterizes the
amount of uniformly random key that can be extracted such that it is independent of
the side information. More precisely, we consider a source that outputs a classical
system Z about which there exists side information E—potentially quantum | and ask
howmuch uniform randomness, S, can be extracted fromZ such that it is independent
of the side information E.

7.3.1 Uniform and Independent Randomness

The quality of the extracted randomness is measured using the trace distance to a
perfect secret key, which is uniform on S and product with E. Namely, we consider
the distance

Δ(S|E)ρ := Δ(ρSE, πS ⊗ ρE), (7.25)

where πS is the maximally mixed state. Due to the operational interpretation of the
trace distance as a distinguishing advantage, a small Δ implies that the extracted
random variable cannot be distinguished from a uniform and independent random
variable with probability more than 1

2 (1 + Δ). This viewpoint is at the root of uni-
versally composable security frameworks (see, e.g., [33, 167]), which ensure that a
secret key satisfying the above property can safely be employed in any (composable
secure) protocol requiring a secret key.

A probabilistic protocol F extracting a key S from Z using a random seed F is
comprised of the following:

• A set F = {f } of functions f : Z → S which are in one-to-one correspondence
with the standard basis elements |f 〉 of F.
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• A probability mass function τ ∈ S◦(F).

The protocol then applies a function f ∈ F at random (according to the value inF) on
the input Z to create the key S. Clearly, this process can be summarized by a classical
channel F ∈ CPTP(Z, SF). More explicitly, we start with a classical-quantum state
ρZE of the form

ρZE =
∑

z

|z〉〈z|Z ⊗ ρE(z) =
∑

z

ρ(z) |z〉〈z|Z ⊗ ρ̂E(z), ρ̂E(z) ∈ S◦(E). (7.26)

The protocol will transform this state into ρSEF = (FZ→SF ⊗ IE)(ρZE), where

ρSEF =
∑

f

τ(f )ρ̂SE(f ) ⊗ |f 〉〈f |F , and (7.27)

ρ̂SE(f ) =
∑

s

|s〉〈s|S ⊗
∑

z

δs,f (z)ρE(z) (7.28)

is the state produced when f is applied to the Z system of ρZE .
For such protocols, we then require that the average distance

∑

f

τ(f )Δ(S|E)ρf = Δ(S|EF)ρ (7.29)

is small, or, equivalently, we require that the extracted randomness is independent
of the seed F as well as E. This is called the strong extractor regime in classical
cryptography, and clearly independence of F is crucial as otherwise the extractor
could simply output the seed. A randomness extractor of the above form that satisfies
the security criterion Δ(S|EF)ρ ≤ ε is said to be ε-secret.

Finally, the maximal number of bits of uniform and independent randomness that
can be extracted from a state ρZE is then defined as log2 �ε(Z|E)ρ , where

�ε(Z|E)ρ := max
{

� ∈ N : ∃F s.t. dS = � ∧ F is ε -secret
}

. (7.30)

The classical Leftover Hash Lemma [91, 92, 114] states that the amount of
extractable randomness is at least themin-entropy of Z givenE. In fact, since hashing
is an entirely classical process, one might expect that the physical nature of the side
information is irrelevant and that a purely classical treatment is sufficient. This is,
however, not true in general. For example, the output of certain extractor functions
may be partially known if side information about their input is stored in a quantum
device of a certain size, while the same output is almost uniform conditioned on any
side information stored in a classical system of the same size. (See [65] for a concrete
example and [100] for a more general discussion of this topic.)
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7.3.2 Direct Bound: Leftover Hash Lemma

A particular class of protocols that can be used to extract uniform randomness is
based on two-universal hashing [36]. A two-universal family of hash functions, in
the language of the previous section, satisfies

Pr
F←τ

[

F(z) = F(z′)
] =

∑

f

τ(f )δf (z),f (z′) = 1

dS
∀ z �= z′. (7.31)

Using two-universal hashing, Renner [139] established the following bound.

Proposition 7.1 Let ρ ∈ S (ZE). For every � ∈ N, there exists a randomness
extractor as prescribed above such that

Δ(S|EF)ρ ≤ exp

(
1

2

(

log � − Hmin(Z|E)ρ
)
)

. (7.32)

We provide a proof that simplifies the original argument. We also note that
instead of Hmin one can write �H ↑

2 to get a tighter bound in (7.32).

Proof We set dS = �. Using the notation of the previous section, we have

Δ(S|EF)ρ =
∑

f

τ(f )
∥
∥ρ̂SE(f ) − πS ⊗ ρE

∥
∥
1. (7.33)

We note that ρ̂E(f ) = ρE does not depend on f . Then, by Hölder’s inequality, for
any σ ∈ S◦(E) such that σE � ρ

f
E for all f , we have

∥
∥ρ̂SE(f ) − πS ⊗ ρE

∥
∥
1 =

∥
∥
∥σ

1
2

E σ
− 1

2
E

(

ρ̂SE(f ) − πS ⊗ ρE
)
∥
∥
∥
1

(7.34)

≤
∥
∥
∥IS ⊗ σ

1
2

E

∥
∥
∥
2
·
∥
∥
∥σ

− 1
2

E

(

ρ̂SE(f ) − πS ⊗ ρE
)
∥
∥
∥
2

(7.35)

=
√

dS Tr
(

σ−1
E

(

ρ̂SE(f ) − πS ⊗ ρE
)2

)

. (7.36)

Hence, Jensen’s inequality applied to the square root function yields

(

Δ(S|EF)ρ
)2 ≤ dS

∑

f

τ(f )Tr
(

σ−1
E

(

ρ̂SE(f ) − πS ⊗ ρE
)(

ρ̂SE(f ) − πS ⊗ ρE
))

(7.37)

=
∑

f

τ(f )Tr
(

σ−1
E ρ̂SE(f )ρ̂SE(f )

)

− 1

dS
Tr

(

σ−1
E ρ2

E

)

, (7.38)
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where we used that πS = 1
dS

IS . Next, by the definition of ρ̂SE(f ) in (7.28), we find

∑

f

τ(f )Tr
(

σ−1
E ρ̂SE(f )ρ̂SE(f )

)

(7.39)

=
∑

f ,z,z′
τ(f )δf (z),f (z′)Tr

(

σ−1
E ρE(z)ρE(z′)

)

(7.40)

=
∑

z �=z′

1

dS
Tr

(

σ−1
E ρE(z)ρE(z′)

)

+
∑

z

Tr
(

σ−1
E ρE(z)ρE(z)

)

(7.41)

= 1

dS
Tr

(

σ−1
E ρ2

E

)

+
(

1 − 1

dS

)

Tr
(

σ−1
E ρ2

ZE

)

. (7.42)

Substituting this into (7.38), we observe that two terms cancel, and maximizing over
σE we find

Δ(S|EF)ρ ≤
√

dS exp
(−�H ↑

2 (Z|E)ρ
)

, (7.43)

where we used the definition of �H ↑
2 (Z|E)ρ and optimized over all σB. The desired

bound then follows since �H ↑
2 (Z|E)ρ ≥ Hmin(Z|E)ρ according to Corollary 5.3. �

From the definition of �ε(Z|E)ρ we can then directly deduce that

log �ε(Z|E)ρ ≥ H̃ ↑
2 (Z|E)ρ − 2 log

1

ε
≥ Hmin(Z|E)ρ − 2 log

1

ε
. (7.44)

This can then be generalized using the smoothing technique as follows:

Corollary 7.1 The same statement as in Proposition 7.1 holds with

Δ(S|EF)ρ ≤ exp
(1

2

(

log � − Hε
min(Z|E)ρ

)) + 2ε. (7.45)

Proof Let ρ̃ZE be a state maximizing Hε
min(Z|E)ρ = Hmin(Z|E)ρ̃ . Then, Proposi-

tion 7.1 yields

Δ(S|EF)ρ̃ ≤ exp
(1

2
(log � − Hε

min(Z|E)ρ)
)

. (7.46)

Moreover, employing the triangle inequality twice, we find that Δ(S|EF)ρ ≤
Δ(S|EF)ρ̃ + 2ε. �

This result can also be written in the following form:

log �ε(Z|E)ρ ≥ Hε1
min(Z|E)ρ − 2 log

1

ε2
, where ε = 2ε1 + ε2. (7.47)

http://dx.doi.org/10.1007/978-3-319-21891-5_5
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Note that the protocol families discussed above work on any state ρZE with suf-
ficiently high min-entropy, i.e. they do not take into account other properties of the
state. Next, we will see that these protocols are essentially optimal.

7.3.3 Converse Bound

We prove a converse bound by contradiction. Assume for the sake of the argument
thatwe have an ε-good protocol that extracts log � > Hε′

min(Z|E)ρ bits of randomness,
where ε′ = √

2ε − ε2. Then, due to Proposition 6.4we know that applying a function
on Z cannot increase the smooth min-entropy, thus

∀ f ∈ F : Hε′
min(S|E)ρf ≤ Hε′

min(Z|E)ρ < log �. (7.48)

This in turn implies that
∑

τ(f )Δ(S|E)ρf > ε as the following argument shows.
The above inequality as well as the definition of the smooth min-entropy implies that
all states ρ̃ with

P(ρ̃SE, ρ
f
SE) ≤ ε′ or Δ(ρ̃SE, ρ

f
SE) ≤ ε (7.49)

necessarily satisfy Hmin(S|E)ρ̃ < log �. (The latter statement follows from the
Fuchs–van de Graaf inequalities in Lemma 3.5.) In particular, these close states
can thus not be of the form πS ⊗ ρE , because such states have min-entropy log �.
Thus, Δ(S|E)ρf > ε.

Since this contradicts our initial assumption that the protocol is ε-good, we have
established the following converse bound:

log �ε(Z|E)ρ ≤ Hε′
min(Z|E)ρ. (7.50)

Collecting (7.47) and (7.50), we arrive at the following theorem.

Theorem 7.7 Let ρZE ∈ S•(ZE) be classical on Z and let ε ∈ (0, 1). Then,

Hε′
min(Z|E)ρ − 2 log

1

δ
≤ log �ε(Z|E)ρ ≤ Hε′′

min(Z|E)ρ, (7.51)

for any δ ∈ (0, ε), ε′ = ε−δ
2 , and ε′′ = √

2ε − ε2.

We have thus established that the extractable uniform and independent random-
ness is characterized by the smooth min-entropy, in the above sense. One could now
analyze this bound further by choosing an n-fold iid product state and then apply
the AEP to find the asymptotics of 1

n log �ε(Zn|En)ρ⊗n for large n. More precisely,

http://dx.doi.org/10.1007/978-3-319-21891-5_6
http://dx.doi.org/10.1007/978-3-319-21891-5_3


126 7 Selected Applications

using (6.107) we can verify that the upper and lower bounds on this quantity agree in
the first order but disagree in the second order. In particular, the dependence on ε is
qualitatively different in the upper and lower bound. Thus, one could certainly argue
that the bounds in Theorem 7.7 are not as tight as they should be in the asymptotic
limit. We omit a more detailed discussion of this here (see [157] instead) since most
applications consider the task of randomness extraction only in the one-shot setting
where the resource state is unstructured.

7.4 Background and Further Reading

The quantum Chernoff bound has been established by Nussbaum and Szkola [127]
(converse) and Audenaert et al. [10] (achievability). Quantum Stein’s Lemma was
shown by Hiai and Petz [86] (achievability and weak converse) and Ogawa and
Nagaoka [128] (strong converse). Its second order refinement was proven indepen-
dently by Li [105] and in [157]. The quantum Hoeffding bound was established by
Hayashi [76] (achievability) and Nagaoka [123] (converse). Audenaert et al. [12]
provide a good review of these results. The optimal strong converse exponent was
recently established by Mosonyi and Ogawa [119].

The limiting cases α = β = 1 and α → ∞, β → 1
2 of the tripartite Maassen-

Uffink entropic UR in Theorem 7.6 were first shown by Berta et al. [20] and in [159],
respectively. The former was first conjectured and proven in a special case by Renes
and Boileau [137] and extended to infinite-dimensional systems [56, 61]. Here we
follow a simplified proof strategy due to Coles et al. [37]. The exact result presented
here can be found in [122]. Tripartite URs in the spirit of Sect. 7.2 can also be shown
for smoothmin- andmax-entropies, both for the case of discrete observables in [159],
and for the case of continuous observables (e.g. position and momentum) by Furrer
et al. [61]. These entropic URs lie at the core of security proofs for quantum key
distribution [62, 158].

There exist other protocol families that extract the min-entropy against quantum
adversaries, for example based on almost two-universal hashing [160] or Trevisan’s
extractors [46]. These families are considered mainly because they need a smaller
seed or can be implemented more efficiently than two-universal hashing.

http://dx.doi.org/10.1007/978-3-319-21891-5_6


Appendix
Some Fundamental Results
in Matrix Analysis

One of the main technical ingredients of our derivations are the properties of oper-
ator monotone and concave functions. While a comprehensive discussion of their
properties is outside the scope of this book, we will provide an elementary proof of
the Lieb–Ando Theorem in (2.50) and the joint convexity of relative entropy, which
lie at the heart of our derivations.

Preparatory Lemmas

We follow the proof strategy of Ando [4], although highly specialized to the problem
at hand. We restrict our attention to finite-dimensional positive definite matrices here
and start with the following well-known result:

Lemma A.1 Let A, B be positive definite, and X linear. We have

(

A X
X† B

)

≥ 0 ⇐⇒ A ≥ X B−1X†. (A.1)

Proof Since the matrix

(

I −X B−1

0 I

)

is invertible, we find that

(

A X
X† B

)

≥ 0 holds

if and only if

0 ≤
(

I −X B−1

0 I

) (

A X
X† B

) (

I 0
−B−1X† I

)

=
(

A − X B−1X† 0
0 B

)

, (A.2)

from which the assertion follows. �
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From this we can then derive two elementary results:

Lemma A.2 The map (A, B) �→ B A−1B is jointly convex and the map (A, B) �→
(A−1 + B−1)−1 is jointly concave.

The latter expression is proportional to the matrix harmonic mean A!B = 2(A−1 +
B−1)−1, and its joint concavity was first shown in [3].

Proof Let A1, A2, B1, B2 be positive definite. Then, by LemmaA.1, for any λ ∈
[0, 1], we have

0 ≤ λ

(
A1 B1

B1 B1A−1
1 B1

)

+ (1 − λ)

(
A2 B2

B2 B2A−1
2 B2

)

(A.3)

=
(

λA1 + (1 − λ)A2 λB1 + (1 − λ)B2

λB1 + (1 − λ)B2 λB1A−1
1 B1 + (1 − λ)B2A−1

2 B2

)

(A.4)

and, invoking LemmaA.1 once again, we conclude that

λB1A−1
1 B1 + (1 − λ)B2A−1

2 B2

≥ (

λB1 + (1 − λ)B2
)(

λA1 + (1 − λ)A2
)−1(

λB1 + (1 − λ)B2
)

, (A.5)

establishing joint convexity of the first map.
To investigate the second map, we use a Woodbury matrix identity,

(

A−1 + B−1)−1 = B − B(A + B)−1B, (A.6)

which can be verified by multiplying both sides with A−1 + B−1 from either side
and simplifying the resulting expression. To conclude the proof, we note that B(A +
B)−1B is jointly convex due to the first statement and the fact that A + B is linear
in A and B. �

As a simple corollary of this we find that A �→ A−1 and B �→ B2 are convex.

Proof of Lieb–Ando Theorem

Let us now state Lieb and Ando’s results [4, 106].

Theorem A.1 The map (A, B) �→ Aα ⊗ B1−α on positive definite operators
is jointly concave for α ∈ (0, 1) and jointly convex for α ∈ (−1, 0) ∪ (1, 2).

Proof Using contour integration one can verify that
∫ ∞
0 (1 + λ)−1λα−1dλ =

π sin(απ)−1 for α ∈ (0, 1). By the change of variable λ → μ = tλ, we then
find the following integral representation for all α ∈ (0, 1) and t > 0:
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tα = sin(απ)

π

∫ ∞

0

t

μ + t
μα−1 dμ. (A.7)

Let us now first consider the case α ∈ (0, 1). Using (A.7), we write

Aα ⊗ B1−α = (

A ⊗ B−1)α−1 · A ⊗ I (A.8)

= sin(απ)

π

∫ ∞

0

(

μI ⊗ I + A ⊗ B−1)−1
A ⊗ I μα−1 dμ. (A.9)

Thus, it suffices to show joint concavity for every term in the integrand, i.e. for the
map

(A, B) �→ (

μI ⊗ I + A ⊗ B−1)−1
A ⊗ I = (

μA−1 ⊗ I + I ⊗ B−1)−1 (A.10)

and all μ ≥ 0. This is a direct consequence of the second statement of LemmaA.2.
Next, we consider the case α ∈ (1, 2). We again write this as

Aα ⊗ B1−α = (

A ⊗ B−1)α−1 · A ⊗ I (A.11)

= sin((α − 1)π)

π

∫ ∞
0

(A ⊗ B−1)
(

μI ⊗ I + A ⊗ B−1)−1A ⊗ I μα−2 dμ.

(A.12)

The integrand here simplifies to

(A ⊗ B−1)
(

μI ⊗ I + A ⊗ B−1)−1
A ⊗ I = A ⊗ I

(

μI ⊗ B + A ⊗ I
)−1

A ⊗ I.

(A.13)

However, the first statement of LemmaA.2 asserts that the latter expression is jointly
convex in the arguments A ⊗ I and μI ⊗ B + A ⊗ I . And, moreover, since they are
linear in A and B, it follows that the integrand is jointly convex for all μ ≥ 0. The
remaining case follows by symmetry. �

The joint convexity and concavity of the trace functional in (2.50) now follows
by the argument presented in Sect. 2.5, which allows to write

Tr(Aα K B1−α K †) = 〈Ψ | K †Aα ⊗ (

BT )1−α
K |Ψ 〉. (A.14)

This thus gives us a compact proof of Lieb’s Concavity Theorem and Ando’s Con-
vexity Theorem. Finally, we can also relax the condition that A and B are positive
definite by choosing A′ = A + ε I and B ′ = B + ε I and taking the limit ε → 0.
Choosing K = I , we find that this limit exists as long as we require that B � A if
α > 1.

http://dx.doi.org/10.1007/978-3-319-21891-5_2
http://dx.doi.org/10.1007/978-3-319-21891-5_2
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Joint Convexity of Relative Entropy

As a bonus we will use the above techniques to show that the relative entropy is
jointly convex, thereby providing a compact proof of strong sub-additivity.

Theorem A.2 The map (A, B) �→ A log(A) ⊗ I − A ⊗ log(B) is jointly
convex.

Proof It suffices to prove this statement for the natural logarithm. We will use the
representation

ln(t) =
∫ ∞

0

1

μ + 1
− 1

μ + t
dμ (A.15)

Using this integral representation, we then write

A ln(A) ⊗ I − A ⊗ ln(B) = ln
(

A ⊗ B−1) · A ⊗ I (A.16)

=
∫ ∞

0

A ⊗ I

μ + 1
− (

μI ⊗ I + A ⊗ B−1)−1 · A ⊗ I dμ

(A.17)

=
∫ ∞

0

A ⊗ I

μ + 1
− (

μA−1 ⊗ I + I ⊗ B−1)−1 dμ.

(A.18)

Invoking LemmaA.2, we can check that the integrand is jointly convex for all
μ ≥ 0. �

As an immediate corollary, we find that

D(ρ‖σ) = Tr(ρ log ρ − ρ log σ) = 〈Ψ | ρ log ρ ⊗ I − ρ ⊗ log σ T |Ψ 〉 (A.19)

is jointly convex inρ and σ . This in turn implies the data-processing inequality for the
relative entropy using Uhlmann’s trick as discussed in Proposition4.2. In particular,
we find strong subadditivity if we apply the data-processing inequality for the partial
trace:

H(ABC)ρ − H(BC)ρ = D(ρABC‖IA ⊗ ρBC) (A.20)

≤ D(ρAB‖IA ⊗ ρB) = H(AB)ρ − H(B)ρ. (A.21)

http://dx.doi.org/10.1007/978-3-319-21891-5_4
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