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The Road Not Taken

TWO roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,

Because it was grassy and wanted wear;
Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!

Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I –
I took the one less traveled by,

And that has made all the difference.

—Robert Frost
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Abstract

This doctoral thesis encompasses a detailed study of phenomenological as well as
theoretical consequences derived from the existence of a graviton mass within the
ghost-free theory of massive gravity, the de Rham-Gabadadze-Tolley (dRGT) the-
ory, which incorporates a two-parameter family of potentials. In this thesis we
pursue to test the physical viability of the theory. To start with, we have put con-
straints on the parameters of the theory in the decoupling limit based on purely
theoretical grounds, like classical stability in the cosmological evolution. Hereby, we
were able to construct self-accelerating solutions which yield similar cosmological
evolution to a cosmological constant. Furthermore, we studied the degravitating
solutions, which enables us to screen an arbitrarily large cosmological constant in the
decoupling limit. Nevertheless, conflicts with observations push the allowed value
of the vacuum energy to a very low value rendering the found degravitating solution
phenomenologically not viable for tackling the old cosmological constant problem.
Next, we constructed a proxy theory to massive gravity from the decoupling limit
resulting in non-minimally coupled scalar–tensor interactions as an example of a
subclass of Horndeski theories. We explored the self-accelerating and degravitating
solutions in this proxy theory in analogy to the decoupling limit and extended the
analysis by studying the change in the linear structure formation.

Furthermore,Galileonmodels are a class of effectivefield theories that naturally arise
in the decoupling limit of theories of massive gravity. We show that the existence of
superluminalpropagatingsolutionsformulti-Galileontheoriesisanunavoidablefeature.

Finally, we addressed the natural question of whether the introduced parameters
in the theory are subject to strong renormalization by quantum loops. Starting with
the decoupling limit we have shown how the non-renormalization theorem protects
the graviton mass from quantum corrections. Beyond the decoupling limit the
quantum corrections are proportional to the graviton mass, proving its technical
naturalness in an explicit realization of ’t Hooft’s naturalness argument. Moreover,
we pushed the analysis beyond the decoupling limit by studying the stability of the
graviton potential when including matter and graviton loops. One-loop matter

xv



corrections contribute a cosmological constant term leaving the potential unaf-
fected. On the contrary, the one-loop contributions from the gravitons destabilize
the special structure of the potential. Nevertheless, we showed that even in the case
of large background configuration, the Vainshtein mechanism redresses the one-
loop effective action so that the detuning remains irrelevant below the Planck scale.
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Chapter 1
Introduction

1.1 Field Theories in Cosmology

Physics studies Nature, its matter content and its evolution modeled by the laws
of physics. Physicists like Newton, Galileo or Kepler successfully postulated the
physical laws of the “every day physics scales”, the theory of classical mechanics,
which describes the motion of objects with velocities much smaller than the speed of
light and with sizes much larger than atoms or molecules. Nevertheless, on the two
edges of these scales, i.e. on very large or very small scales and at speeds close to
the speed of light, the theory of classical mechanics breaks down. After a significant
theoretical and observational efforts pioneered by physicists like Einstein, Planck,
Heisenberg, Dirac or Schroedinger, the laws of physics were also extended towards
these extreme scales, incorporating concepts of relativity and quantum mechanics
to describe physics on atomic and galactic scales. As an outcome, physicists now
describe the macroscopic and microscopic world by two simple standard models: the
Standard Model of particle physics and the Standard Model of Big Bang cosmology.
A dream of every physicist is the unification of these two standard models into a
single ultimate “theory of everything” in a consistent way. Thanks to the advances
in our understanding of many physical phenomena at a fundamental level, we are
witnessing remarkable attempts towards this direction.

The Standard Model of particle physics unifies the electro-weak and strong inter-
actions with an exquisite experimental success. It is a theory consisting of elemen-
tary and composite particles described by the robust framework of quantum field
theory. In this picture, particles correspond to the excited states of an underlying
physical field which can be created/annihilated by local operators given by the irre-
ducible unitary representations of the Poincaré group (Weinberg 2005). It is the
SU(3) × SU(2) × U(1) gauge symmetry that defines the Standard model of parti-
cle physics. The group SU(3) corresponds to the color gauge symmetry of Quantum
Chromodynamics, whereas SU(2)×U(1) is the gauge symmetry of the electro-weak
interaction and breaks down spontaneously to U(1) through the Higgs mechanism,
process thanks to which the elementary particles acquire their masses. This symme-
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2 1 Introduction

try breaks spontaneously down to SU(2) × U(1) which is the remaining symmetry
of the electro-weak interactions and to SU(3) which is the symmetry of the quantum
chromodynamics.

The StandardModel consists of fermions and bosons, which differ fundamentally
from each other by their spin statistics. The twelve elementary fermions divide into
six leptons (electron, muon, tau and the corresponding neutrinos) and six quarks (up,
down, charm, strange, top and bottom). The twelve bosons (photon, W±,Z, eight
gluons) carry the strong, weak and electromagnetic forces. Interactions between the
electrically charged particles mediated by the photons are successfully described by
quantum electrodynamics, whereas the interactions between quarks (color charged)
and gluons is described by quantum chromodynamics. The weak force mediated
by the W±,Z bosons is mathematically merged with the electromagnetic force via
electroweak interaction. Last but not least the Higgs boson detected recently at LHC
is the crucial ingredient to explain the masses of the particles. All these elementary
particles come in with different masses and from a theoretical point of view it is
essential to study the interactions of massless and massive spin-n particles. The
natural starting point is to find the consistent Lagrangian of the classical field theories
with the corresponding Hamiltonian being bounded from below. Once this non-
trivial prerequisite is successfully fulfilled, then the classical fields can be quantized
using different quantization techniques like canonical quantization or path integral
quantization. Even though Standard Model of particle physics provides theoretical
robustness of quantum fields and breathtaking experimental predictions, it is still far
from being complete since it does not incorporate the theory of general relativity.

Cosmology has progressively developed from a philosophical to an empirical
scientific discipline. Given the high precision achieved by the cosmological observa-
tions, cosmology is now a suitable arena to test fundamental physics. The challenging
task of cosmology is to unite the physics of the large scale structures in the Universe
with the physics of the small scale structures in order to describe the dynamics of
the Universe successfully. Therefore, cosmology is highly multi-disciplinary and
merges together concepts from general relativity, quantum mechanics, field theory,
fluidmechanics and statistics. Furthermore, its interplaywith high energy and particle
physics facilitates the creation of synergies between these different fields.

Observations of the Cosmic Microwave Background (CMB), supernovae Ia
(SNIa), lensing and Baryon Acoustic Oscillations (BAO) have led to the cosmo-
logical standard model which requires an accelerated expansion of the late Universe,
driven by dark energy. The physical origin of the accelerated expansion is still a
mystery. In the Standard Model of particles the detection of the missing fundamental
particle, the Higgs boson, was a revolutionary event and an unexaggerated merit of
Nobel-prize. In a similar way, the missing particles in the StandardModel of cosmol-
ogy, like the graviton or dark matter, and the resolution to the puzzle of accelerated
expansion and its origin would be as revolutionary. There are promising explanatory
attempts which fall into three primary categories.

The first solution consists of considering a small cosmological constant λ with
a constant energy density giving rise to an effective repulsive force between cos-
mological objects at large distances (Peebles and Ratra 2003). The Einstein-Hilbert
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action is invariant under general diffeomorphisms and a cosmological constant λ can
be included to this action without breaking this symmetry.1 If we assume that the
cosmological constant corresponds to the vacuum energy density, then the theoreti-
cal expectations for the vacuum energy density caused by fluctuating quantum fields
differ from the observational bounds on λ by up to 120 orders of magnitude. This
giagantic mismatch between the theoretically computed high energy density of the
vacuum and the low observed value has remained for decades as one of the most
challenging puzzles in theoretical physics and is called the cosmological constant
problem. Indeed the cosmological constant problem is a puzzle concerning both
particle physics and cosmology, since it involves quantum field theory techniques
applied to cosmology. One of the lines taken in this thesis will be trusting the result
from particle physics and tackle the cosmological constant problem from the gravity
side, although many of the techniques employed lie at the interface between particle
physics and cosmology.

The second solution could for instance consist in introducing new dynamical
degrees of freedom by invoking new fluids with negative pressure. Quintessence is
one of the important representatives of this class of modifications. The acceleration
is due to a scalar field whose kinetic energy is small in comparison to its potential
energy, causing a dynamical equation of state with initially negative values (Doran
et al. 2001). This class of theories might exhibit fine-tuning problems analogous to
the cosmological constant.

Alternatively, the third solution would correspond to explaining the acceleration
of the Universe by changing the geometrical part of Einstein’s equations. In partic-
ular, weakening gravity on cosmological scales might not only be responsible for a
late-time speed-up of the Hubble expansion, but could also tackle the cosmological
constant problem. Such scenarios arise in infrared modifications of general relativity
likemassive gravity or in higher-dimensional frameworks, whichwill be summarized
shortly in the following.

1.1.1 Infrared Modifications of GR

In this thesis we will consider the first and third categories, namely cosmological
constantλ andmodifiedgravity.Wewill particularly study the infra-redmodifications
of gravity. One of the important large scale modified theories of gravity in the higher
dimensional picture is the Dvali-Gabadadze-Porrati (DGP)model (Dvali et al. 2000).
In this braneworldmodel ourUniverse is confined to a three-brane embedded in afive-
dimensional bulk (Fig. 1.1). On small scales, four-dimensional gravity is recovered
due to an intrinsic Einstein Hilbert term given by the brane curvature, whereas on
larger, cosmological scales gravity is systematically weaker as the graviton leaks into
the extra dimension. The action of the DGP model is given by

1In fact, it must be included from an effective field theory point of view.
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Fig. 1.1 Could our universe be just a part of higher dimensional space-time?

SDGP = M3
5

2

∫
d5x

√−g5R5 + M2
Pl

2

∫
d4x

√−g4R4

+M2
Pl

∫
d4x

√−g4K (1.1)

where MPl and M5 respectively correspond to the fundamental Planck scales in the
bulk and on the brane and K is the trace of the extrinsic curvature on the brane.
Similarly, R5 and R4 are the corresponding Ricci scalars on the bulk and the brane
respectively. The brane is positioned at y = 0 where y denotes the extra fifth dimen-
sion and xμ are the four-dimensional coordinates. The crossover scale between 4-
and 5-dimensional gravity is given by the ratio of these two Planck scales: rc = 1/mc
where mc = M3

5/M
2
Pl.

Using the principle of least action one obtains the modified Einstein equations

M3
5G

(5)
ab + M2

PlG
(4)
μνδ

μ
a δ

ν
bδ(y) = Tμνδ

μ
a δ

ν
bδ(y). (1.2)

where here a, b = 0, · · · , 4 and μ, ν = 0, · · · , 3. Being a fundamentally higher
dimensional theory, the effective four-dimensional graviton on the brane carries five
degrees of freedom, namely the usual helicity-2 modes, two helicity-1 modes and
one helicity-0 mode. Whilst the helicity-1 modes typically decouple, the helicity-0
one can mediate an extra fifth force. In the limit mc → 0, one recovers General
Relativity (GR) through the Vainshtein mechanism: The basic idea is to decouple
the additional modes from the gravitational dynamics via nonlinear interactions of



1.1 Field Theories in Cosmology 5

the helicity-0 mode of the graviton, Vainshtein (1972). As a result, at the vicinity of
matter, the non-linear interactions for the helicity-0 mode become large and hence
suppress its coupling to matter. This decoupling of the nonlinear helicity-0 mode is
manifest in the limit where MPl → ∞ and mc → 0 while the strong coupling scale
�3 = (MPlm2

c )
1/3 is kept fixed. This limit enables a linear treatment of the usual

helicity-2 mode of gravity while the helicity-0 mode π is described non-linearly,
which is the so-called decoupling limit (Luty et al. 2003).

One of the successes of the DGP model is the existence of a self-accelerating
solution, where the acceleration of the Universe is sourced by the graviton own
degrees of freedom (more precisely its helicity-0 mode). Unfortunately that branch
of solutions seems to be plagued by ghost-like instabilities (Deffayet et al. 2002;
Koyama 2005; Charmousis et al. 2006), in the DGP model, but this issue could be
avoided in more sophisticated setups, for instance including Gauss-Bonnet terms in
the bulk (de Rham and Tolley 2006).

More recently, it has been shown that the decoupling limit of DGP could be
extended to more general Galilean invariant interactions (Nicolis et al. 2009). This
Galileon model relies strongly on the symmetry of the helicity-0 mode π: Invari-
ance under internal Galilean and shift transformations, which in induced gravity
braneworldmodels can be regarded as residuals of the 5-dimensional Poincaré invari-
ance. These symmetries and the postulate of ghost-absence restrict the construction
of the effectiveπ Lagrangian. There exist only five derivative interactions which ful-
fill these conditions (1.83). From the five dimensional point of view these Galilean
invariant interactions are consequences of Lovelock invariants in the bulk of gener-
alized braneworld models, de Rham and Tolley (2010). Since their inception there
has been a flurry of investigations related to self-accelerating de Sitter solutions
without ghosts (Nicolis et al. 2009; Silva and Koyama 2009), Galileon cosmology
and its observations (Chow and Khoury 2009; Khoury and Wyman 2009), inflation
(Creminelli et al. 2010; Burrage et al. 2011;Mizuno andKoyama 2010; Hinterbichler
and Khoury 2012), lensing (Wyman 2011), superluminalities arising in spherically
symmetric solutions around compact sources (Hinterbichler et al. 2009), K-mouflage
(Babichev et al. 2009), Kinetic Gravity Braiding (Deffayet et al. 2010), etc. Further-
more, there has been some effort in generalizing the Galileon to a non-flat back-
ground. The first attempt was then to covariantize directly the decoupling limit and
to study its resulting cosmology (Chow andKhoury 2009). In particular, it was shown
in Deffayet et al. (2009) that the naive covariantization would yield ghost-like terms
at the level of equations of motion but a given unique nonminimal coupling between
π and the curvature can remove these terms resulting in second order equations of
motion (Deffayet et al. 2009), which are also consistent with a higher-dimensional
construction (deRhamandTolley 2010).While this covariantization is ghost-free, the
Galileon symmetry is broken explicitly in curved backgrounds. However, there has
been a successful generalization to the maximally symmetric backgrounds (Burrage
et al. 2011; Goon et al. 2011).

There exists a parallel to theories centered on a massive graviton: Galileon-type
interaction terms naturally arise in gravitational theories using amassive spin-2 parti-
cle as an exchange particle, which has, in addition, been constructed to be ghost-free,
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be it in three dimensions, Bergshoeff et al. (2009), de Rham et al. (2011) or for a
generalized Fierz-Pauli action in four dimensions (de Rham et al. 2011; de Rham
and Gabadadze 2010b). Such a theory was also constructed using auxiliary extra
dimensions, de Rham and Gabadadze (2010a). The massive graviton of spin 2, has a
total of 5 degrees of freedom. These degrees of freedom show different behaviours
in the decoupling limit, namely 2 helicity-2 modes, 2 helicity-1 modes which decou-
ple from the other degrees of freedom, and one helicity-0 mode, which again does
not decouple giving rise to the vDVZ-discontinuity. As in the braneworld models
presented previously, this can be cured by invoking the Vainshtein-mechanism in
which the scalar mode appears as a scalar field with second order derivative inter-
action terms in the equation of motion. Not only is the existence of a graviton mass
a fundamental question from a theoretical perspective, it could also have important
consequences both in cosmology and in solar system physics, Koyama et al. (2011),
Chkareuli and Pirtskhalava (2012). Although solar system observations have con-
firmed General Relativity to high accuracy and placed bounds on the graviton mass
to be smaller than a few ∼10−32 eV, even such a small mass would become relevant
at the Hubble scale which corresponds to the graviton Compton wavelength.

While the self-accelerating solutions in the above models yield viable expan-
sion histories including late-time acceleration, they do not address the cosmological
constant problem, i.e., the giant mismatch between the theoretically computed high
energy density of the vacuum and the low observed value. A possible answer comes
from the idea of degravitation, which asserts that the energy density could be as
large as the theoretically expected value, but would not bear a large effect on the
geometry. Technically, gravity is less strong on large scales (IR-limit) and could act
as a high-pass filter suppressing the gravitational effect of a potentially large vacuum
energy. Since such modifications of gravity in the IR naturally arise in models of
massive gravity, they logically provide a possible mechanism to degravitate the vac-
uum energy density, Dvali et al. (2002, 2003, 2007), Arkani-Hamed et al. (2002).
Analogously, the DGP braneworld model can be extended to higher dimensions to
tackle the cosmological constant problem as well, Dvali et al. (2007), Gabadadze
and Shifman (2004), de Rham et al. (2008).

All these models of infrared modifications of general relativity are united by the
common feature of invoking new degrees of freedom. These degrees of freedom
in the considered space-time are particles characterized by their masses and spins
(or equivalently helicities). These particles are the excited quanta of the underlying
fields. Their Lagrangian are constructed based on the requirement of yielding second
order equations of motion, hence with a bounded Hamiltonian from below. Let us
briefly discuss the zoo of these new degrees of freedom and their property based on
their masses, spins and interactions given by the symmetries.
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1.1.2 Quantum Field Theories

In the standard model of particle physics as well as in cosmology the mostly studied
fields are those with particles (massless or massive) of spin-0, 1/2, 1 and 2. Particles
with higher spin only arise in theories beyond the standard model. Particles with zero
mass can be described by their helicities, i.e. how they change under rotational trans-
formations transversal to the motion direction. For long range forces only massless
bosons (or with very light masses) come into consideration since forces carried by
massive particles have the exponential Yukawa suppression. In this section, we will
introduce the protagonists of the particle zoo and discuss their main properties.

1.1.2.1 Spin-0 Fields

After a tremendous effort, physicists have finally succeeded in finding the missing
piece of the StandardModel of particle physics at Cern: the Higgs boson. This consti-
tutes the so far only observed fundamental spin-0 particle in nature. This outstanding
experimental discovery motivates now more than ever the study of scalar degrees
of freedom as a candidate for dark energy since we now know that they really exist
in nature. Nevertheless, this is not the only reason why they are by far the most
extensively explored candidates in cosmology. On an equal footing of importance
the other reason for considering scalar fields is that they can provide accelerated
expansion without breaking the isotropy of the universe. In addition to this practical
reason, scalar fields arise in a very natural manner in modified theories of gravity
or high energy physics. Demanding Lorentz invariance, the Lagrangian for a scalar
field π, with the consistent self-interactions can be constructed very easily:

Lπ = −1

2
(∂π)2 − V(π) (1.3)

The construction of a mass term for the scalar field is trivial 1
2m

2
ππ2 and is contained

in the general potential term. In fact, the most general renormalizable potential for
a scalar field in 4 dimensions only contains up to quartic powers of the scalar field.
Also notice that adding a mass term (or a potential in general) for the scalar field
does not alter the number of propagating physical degrees of freedom, since there is
no gauge symmetry to be broken.

As a candidate for dark energy, one obstruction that one usually meets is that the
effective mass of the scalar field must be very small (of the order of today’s Hubble
constant H0 � 10−33 eV). Thus, if this light scalar degree of freedom couples to
ordinary matter, then it can mediate a fifth force with a long range of interaction
which has never been detected in Solar System gravity tests or laboratory experi-
ments. On that account, it is crucial to reconcile the existence of a current phase
of accelerated expansion driven by a light scalar field on very large scales with the
absence of fifth forces on small scales. One could fine-tune its coupling to matter
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Fig. 1.2 The effective
potential of the chameleon
scalar field π

which is less satisfactory. Fortunately, there exist alternatives to fine-tunings thanks
to the screening mechanisms that allow to hide the scalar field on small scales while
being unleashed on large scales to produce cosmological effects. Typical examples of
screening mechanisms are Vainshtein, chameleon or symmetron.2 In the chameleon
mechanism the important ingredient is a conformal coupling between the scalar and
the matter fields Lmatter[g̃μν = gμνA2(π)] such that the equation of motion for a
static configuration of the scalar field becomes (Khoury and Weltman 2004)

∇2π = V,π − A3A,πT̃ = V,π + A,πρ (1.4)

where T̃ ∼ ρ/A3. As it is clear from the equation of motion, the conformal coupling
to the matter fields gives rise to an effective potential which depends explicitly on
the environmental density:

Veff(π) = V(π) + ρA(π). (1.5)

This means that the mass of this new degree of freedom as a scalar field depends on
the local density

m2
min(π) = V,ππ(πmin) + ρA,ππ(πmin). (1.6)

Depending on the choice of the potential V(π) and the conformal coupling A(π),
the mass of the scalar field can be made large in regions of high density and so screen
the scalar field (Fig. 1.2).

The symmetron screening mechanism is conceptually very similar to the
Chameleon mechanism even though the realization is slightly different. Again the
important ingredient is a conformal coupling to the matter fields but with a very

2One can basically use the mass term, the coupling to matter or the kinetic term of the scalar field
in order to achieve screening.
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specific function A(π) and potential (Hinterbichler and Khoury 2010)

A(π) = 1 + π2

2M2 + · · ·

V(π) = −1

2
μ2
1π

2 + 1

4
μ2π

4 (1.7)

with the free parameters μ1,μ2,M. Again the conformal coupling results in an
effective potential of the form

Veff(π) =
(
1

2
μ2
1 − ρ

2M2

)
π2 + 1

4
μ2π

4. (1.8)

The perturbations of the scalar field couple to thematter fields as π̄

M2 δπρ. In high den-

sity symmetry-restoring environments ρ > μ2
1M

2, the scalar field sits in a minimum
at the origin with the vacuum expectation value (VEV) ∼ 0 and so the fluctuations
of the field do not couple to matter. As the local density drops, the symmetry of
the field is spontaneously broken and the field falls into one of the two new minima
with a non-zero VEV. Hence, the coupling to matter depends on the environment,
becoming small in regions of high density (Fig. 1.3).

Last but not least the Vainshtein mechanism relies on the strong derivative self-
interactions of the scalar degree of freedom. At the classical level the background
configuration relies on non-linearities being large�−3

3 π(∂π)2 � 1 but perturbations
on top of this classical background configurations are weakly coupled. Consider
a localized source T = Mδ

(3)(r) + δT and perturbations of the scalar field π =
π̄(r) + δπ(xμ). The Vainshtein mechanism works by modifying the kinetic matrix
symbolically as

Fig. 1.3 The effective potential of the symmetron scalar field π in two different density regimes
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Fig. 1.4 Between twomassive objects, there is not only the exchange of the helicity-2 field hμν, but
also of the helicity-0 degree of freedom π. However, the latter becomes screened due to derivative
self-interactions

L = −1

2

(
1 + ∂2π̄0

�3 + (∂2π̄0)
2

�6 + · · ·
)

(∂δπ)2 + 1

Mp
δπδT. (1.9)

After properly canonically normalizing the field, the effective coupling to matter
depends on the self-interactions of the scalar field (Vainshtein 1972; Deffayet et al.
2002)

L = −1

2
(∂δπ)2 + 1

Mp

δπδT√
(1 + ∂2π̄0

�3 + (∂2π̄0)2

�6 + · · · )
. (1.10)

The coupling to matter becomes small for strongly self-interacting fields (1+ ∂2π̄0
�3 +

(∂2π̄0)
2

�6 +· · · ) � 1. As we mentioned before the strength with which this new scalar
degree of freedom can couple to the standard model fields is highly constrained
by searches for fifth forces and violations of the weak equivalence principle and is
typically required to be orders of magnitude weaker than gravity. Thanks to these
screening mechanisms the new scalar degrees of freedom can naturally couple to
standard model fields, whilst still being in agreement with observations and source
the acceleration of the universe (Fig. 1.4).

1.1.2.2 Spin-1/2 Fields

The Standard Model is rich in spin 1/2 particles. It comprises two important fami-
lies of elementary fermions, the leptons and quarks. They obey the Pauli exclusion
principle, meaning that only one fermion can occupy a quantum state at the same
time. Fermions come in three different types, namely the massless Weyl fermions,
the massive Dirac fermions and Majorana fermions. Nevertheless, most of the Stan-
dard Model fermions are Dirac fermions. We can describe the Dirac fermion by the
following Lagrangian

Lψ = ψ̄(iγμ∂μ − m)ψ (1.11)
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where ψ is the Dirac spinor and ψ̄ ≡ ψ†γ0. The γ matrices generate the Clifford
algebra {γμ, γν} = 2ημν and, in the Dirac representation, are given in terms of the
Pauli matrices σ i. In the cosmological evolution, standard spinorial fields have been
much less intensively explored than bosonic fields. One reason for this is the diffi-
culty in interpreting classical fermionic fields in terms of their underlying quantum
particles. Since fermions cannot condensate in coherent states, they cannot produce
classical fermionic fields. Of course, fermions can play a relevant role in the cosmo-
logical evolution as a thermal distribution, as it happens for instance with neutrinos.
The second reason is related to the fast decay of fermions in an expanding universe
and the inefficient production of fermions during preheating.

1.1.2.3 Spin-1 Fields

The StandardModel of elementary particles contains both abelian (photon) and non-
abelian vector fields (weak and strong interactions carriers) as the fundamental fields
of the gauge interactions. They come in both as massless and massive vector fields.
Therefore this motivates an exploration of the role of vector fields (not necessarily
those of the standard model) in the cosmological evolution. Vector fields also arise in
a naturalmanner inmodified theories of gravity or high energy physics. Nevertheless,
vector fields in cosmology have the additional difficulty with respect to scalars that
they naturally lead to the presence of large scale anisotropic expansion that could
conflict the high isotropy observed in the CMB. However, they could be used to
explain the reported anomalies by WMAP and Planck in cosmological observations
at large scales that could be signalling the presence of a preferred direction in the
universe. The Lagrangian for a massless vector field must be constructed such that
it is invariant under the gauge symmetry

Aμ → Aμ + ∂μθ. (1.12)

The gauge symmetry is mandatory in order to have two propagating degrees of
freedom. This requirement uniquely leads to Maxwell theory

LAμ = −1

4
F2μν − JμA

μ, (1.13)

where Fμν = ∂μAν − ∂νAμ is the field strength and Jμ is an external source. The
equations of motion are simply given by

∂νFμν = Jμ. (1.14)

Taking the divergence of the equation of motion yields ∂μJμ = 0 and hence the
external source must be conserved. Since we have the gauge symmetry, we can
choose a gauge, for instance the Lorenz condition ∂μAμ = 0. This gauge choice
brings the equations of motion into the form �Aμ = Jμ. Together with the residual
gauge �θ = 0 this kills the two unphysical modes.
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We can add a mass term to the Maxwell action by explicitly breaking the gauge
symmetry

LAμ = −1

4
F2μν − 1

2
m2

AA
2
μ − JμA

μ (1.15)

yielding a massive spin-1 theory with three propagating degrees of freedom (see
Sect. 3.7 in Chap.3 for a more general Lagrangian with derivative interactions yield-
ing three propagating degrees of freedom). The equations of motion change to

∂νFμν − m2
AA

μ = Jμ (1.16)

Now taking the divergence of the equations of motion gives the constraint

− m2
A∂μA

μ = ∂μJ
μ (1.17)

For a conserved current the equation of motion becomes simply a Klein-Gordon
equation (� − m2

A)Aμ = Jμ, together with the condition ∂μAμ = 0.
We can restore the gauge invariance using the Stueckelberg trick. For this we add

an additional scalar field via
Aμ → Aμ + ∂μπ (1.18)

such that the action for the massive spin-1 field becomes

LAμ = −1

4
F2μν − 1

2
m2

A(Aμ + ∂μπ)2 − Jμ(Aμ + ∂μπ) (1.19)

making the action nowagain invariant under the simultaneous transformationsAμ →
Aμ + ∂μθ and π → π − θ . After canonically normalizing the additional field
π → 1

mA
π the interactions can be expressed as (Fierz and Pauli 1939)

LAμ = −1

4
F2μν − 1

2
m2

AA
2
μ − 1

2
(∂π)2 − mAAμ∂μπ − Jμ

(
Aμ + ∂μπ

mA

)
(1.20)

Now taking the mA → 0 limit for a conserved source results in a theory of a massless
scalar field completely decoupled from a massless vector field

LAμ = −1

4
F2μν − 1

2
∂π2 − JμA

μ (1.21)

This is the reason why taking the mA → 0 limit does not give rise to the vDvZ
discontinuity in the case of massive vector fields.

Vector fields have extensively been investigated in cosmological scenarious as
candidates to explain the current phase of accelerated expansion (Boehmer and
Harko 2007) or to drive the inflationary epoch (Golovnev et al. 2008) or to generate

http://dx.doi.org/10.1007/978-3-319-18935-2_3
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magnetic fields during inflation using non-minimal couplings (Turner and Widrow
1988). There has been also some attempts to screen the vector field on small scales
(Jimenez et al. 2013).

1.1.2.4 Spin-2 Field

Similarly as in the massless spin-1 case, the theory for a pure massless spin-2 field
needs to have a gauge symmetry in order to have two propagating degrees of freedom.
This uniquely leads to general relativity with the action

S =
∫

d4x (LGR + Lmatter) (1.22)

= M2
Pl

2

∫
d4x

√−gR +
∫

d4xLmatter . (1.23)

This Lagrangian is invariant under full general coordinate transformations which in
the linearized limit corresponds to the invariance under the gauge symmetry

hμν → hμν + ∂μξν + ∂νξμ (1.24)

once one expands the action to second order in the metric perturbations around flat
space-time

gμν = ημν + 2

MPl
hμν and gμν = ημν − 2

Mp
hμν + 4

M2
p
hμαhν

α + · · · . (1.25)

The full Lagrangian to second order in h is

L = −hμνÊαβ
μνhαβ + 1

MPl
hμνTμν + 1

2M2
Pl

hμνhαβT
μναβ , (1.26)

where Ê is the Lichnerowicz operator

Êαβ
μνhαβ = −1

2

(
�hμν − 2∂α∂(μhα

ν ) + ∂μ∂νh − ημν(�h − ∂α∂βh
αβ)

)
, (1.27)

and Tμν is the stress-energy tensor, whilst Tμναβ is its derivative with respect to the
metric,

Tμν = −2√−g

δ
√−gLm

δgμν
and Tμναβ = − 2√−g

δ
√−gTμν

δgαβ
(1.28)
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At first order in perturbation the Einstein equations simplify to

Ê αβ
μν hαβ = 1

2Mp
Tμν. (1.29)

Taking the divergence of the equation of motion yields again the conservation of
external sources ∂μTμν = 0. Choosing the Lorenz gauge ∂μh̄μν = 0 the equations
of motion simplify to − 1

2�h̄μν = 1
2Mp

Tμν, where h̄μν = hμν − 1
2
ημνh. Together

with the residual gauge symmetry �ξα = 0 this gauge choice eliminates eight out
of ten degrees of freedom.

The question whether or not the graviton is massless is a fundamental question
from a theoretical perspective. Is the graviton really massless or does its mass just
happen to be so small that it can be safely neglected on sufficiently small distance
scales? How do you make the graviton massive? You might naively start with an
analog ansatz to the case of Proca field m2gμνAμAν by writing the massive gravity
as √−g

[
m2

2

(
c1gμνg

μν + c2g
μ
μg

ν
ν

)]
(1.30)

but very soon you realize that this just corresponds to a cosmological constant rather
than a mass term. You could then try with the ansatz m2R2 and also very soon realize
that this contains derivatives of gμν and can not be a valid mass term. Sooner or later
you would end up with the more promising ansatz

m2

2

(
c1hμνhμν + c2h

μ
μh

ν
ν

)
(1.31)

once themetric fluctuations are expanded aroundflat space-time gμν = ημν+ 2
MPl

hμν.
Fierz-Pauli was the first successful construction of a linear mass term without giving
rise to any Boulware-Deser ghost degree of freedom with the restriction c2 = −c1.
One can show that away from the Fierz-Pauli tuning the mass of the ghost degree

of freedom would correspond to m2
g = − c1(c1+4c2)m2

4(c1+c2)
which goes to infinity for the

Fierz-Pauli tuning. Thus, the safe linear mass term for the graviton reads

L = −hμνÊαβ
μνhαβ − m2

2

(
hμνhμν − hμ

μh
ν
ν

) + 1

MPl
hμνTμν. (1.32)

The equations of motion yield

−2Ê αβ
μν hαβ − m2 (

hμν − ημνh
) = − 1

Mp
Tμν (1.33)

Taking the divergence of the equations of motion implies m2(∂μhμν − ∂νh) =
1
Mp

∂μTμν. In the case of a conserved source this is simply the statement that ∂μhμν =
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∂νh. Furthermore, taking the trace of the equation of motion gives rise to −3m2h =
T
Mp

. These constraints equations allow us to get rid of the five unphysical degrees of
freedom. Plugging these relations back into the field equations results in

(� − m2)hμν = − 1

Mp

(
Tμν − 1

3
ημνT − 1

3m2 ∂μ∂νT

)
(1.34)

Because of the mass term one has lost the invariance under general coordinate trans-
formations. However, the diffeomorphism invariance can be restored by introducing
the Stueckelberg fields in a similar way as for the massive spin-1 field. This can be
achieved by defining new fields in the form (Siegel 1986)

hμν → hμν + ∂μAν + ∂νAμ and Aμ → Aμ + ∂μπ (1.35)

which once plugged in back into the lagrangian gives

L = −hμνÊαβ
μνhαβ − m2

2

(
hμνhμν − hμ

μh
ν
ν

) + 1

MPl
hμνTμν

−m2

2
F2μν − 2m2(hμν∂

μAν − h∂A) − 2

MPl
Aμ∂νTμν

−2m2(hμν∂
μ∂νπ − h∂2π) + 2

MPl
π∂μ∂νTμν (1.36)

This lagrangian is now invariant under the transformations

hμν → hμν + ∂μξν + ∂νξμ and Aμ → Aμ − ξμ

Aμ → Aμ + ∂μθ and π → π − θ (1.37)

After canonically normalizing the fields Aμ → 1
mAμ and π → 1

m2 π and taking the
m → 0 limit, the Lagrangian simply becomes (for conserved sources)

L = −hμνÊαβ
μνhαβ − 1

2
F2μν + 1

MPl
hμνTμν

−2(hμν∂
μ∂νπ − h∂2π) (1.38)

This corresponds to a scalar-vector-tensor theory in which the scalar field is kineti-
cally mixed with the tensor whereas the vector field is completely decoupled.

In the next Sect. 1.2 we will try to generalize the interactions of the spin-2 field
to the non-linear case and discuss the difficulties one usually encounters. But before
doing that let us first introduce the concept of Effective Field Theories since it became
an essential tool in particle physics and modern cosmology.
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1.1.3 Effective Field Theories

Nature discloses itself at different energy scales. Indeed the atomic physics scale and
the galactic physics scale are the two edges of a large hierarchy of scales. In order to
study a given physical system it is an indispensable task to find a framework in which
the most relevant physics at that scale are captured by a simple description without
having to understand everything from the rest. This means that one can study the
low-energy physics, independently of the specific aspects of the high-energy physics.
The appropriate framework is the framework of effective field theory. It essentially
describes the lowenergyphysics below the energy scale�c after integratingout all the
degrees of freedom beyond�c. The resulting low-energy Lagrangian is an expansion
in powers of 1/�c of the non-renormalizable interactions among the light degrees
of freedom incorporating all important symmetries of the underlying fundamental
theory. In order to construct the effective field theory of the physical problem one
needs to

• specify the fields content and the underlying symmetries of the physical problem
• write down the most general Lagrangian containing all terms allowed by the sym-
metry.

According to the effective field theory approach, the terms in the Lagrangian can
be classified into relevant, marginal and irrelevant operators of dimensions d < 4,
d = 4 and d > 4 respectively. The relevant and marginal operators can be renor-
malized while the irrelevant operators are not renormalizable. At low energies, the
contribution of the non-renormalizable irrelevant operators are negligible since they
come in as inversely proportional powers of the cut-off scale �c. On the other hand,
the relevant operators give rise to contributions with positive powers of the cut-off.
An effective field theory with only marginal operators is a good renormalizable low
energy effective field theory.With the techniques of effective field theory we are now
at a better position to understand the physical interpretation of non-renormalizable
theories. Even if a theory can not be renormalized, its quantization can make perfect
sense assuming we are applying it only to the low-energy physics.

Let us concretize this by looking at a few explicit examples. Our Lagrangian for
the spin-0 field in Eq.1.3 can be extended to

Lπ = −1

2
(∂π)2 − 1

2
m2

ππ2 + c1π
4 + c2

μ2
1

π6 + c3
μ4
2

π8 + · · ·

+ d1
μ2
3

π2(∂π)2 + d2
μ4
4

π4(∂π)2 + · · · (1.39)

This Lagrangian can be considered as an effective field theory describing the dynam-
ics of the light scalar degree of freedom π which contains all the important symme-
tries of the underlying fundamental theory. The requirement of the symmetry of the
system and locality constraints these interactions. As an effective field theory, the
operators (∂π)2 and π2 with dimension d < 4 correspond to the relevant operators,
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the operator π4 with dimension d = 4 to a marginal operator and all the remaining
operators with dimension d > 4 are the irrelevant operators. The cutoff scale is the
lowest among the scalesμ1,μ2,μ3 · · · . And once the energies considered go beyond
this cutoff scale, an infinite number of interactions need to be taken into account.
This Lagrangian can be further restrained to a smaller subgroup of interactions by
demanding additional symmetries like shift symmetry or Galileon symmetry.

As a next example consider the light by light scattering in Quantum Electrody-
namics (QED) at very low photon energies. The QED Lagrangian is given by

LQED = −1

4
F2μν + ψ̄(iγμ∂μ − mψ)ψ − eψ̄γμAμψ (1.40)

In the low-energy regime, where the photon energies are much smaller than mψ, the
physics can be rather described by the effective Lagrangian

LQED = −1

4
F2μν + c1

m4
ψ

(FμνFμν)2 + c2
m4

ψ

(FμνF̃μν)2 + · · · (1.41)

where F̃μν = εμναβFαβ is the dual field strength tensor. This Lagrangian can be
obtained by integrating out the electron field � from the original QED generating
functional or equivalently by calculating the lowest order light-by-light box diagram
given by a single electron loop. However, one would also obtain this Lagrangian as
a consequence of the imposed symmetries of gauge, lorentz, charge conjugation and
parity invariance. The scaling of the constants can then be estimated through a naive
power counting (Burgess 2007).

Another very illustrative example comes fromQuantumChromodynamics (QCD).
The Lagrangian of QCD is given by

LQCD = −1

2
G2

μν + q̄(iγμ∂μ − mq)q + gq̄γμGμq (1.42)

where q represents the quark and Gμν the gluon field strength tensor

Gμν = ∂μGν − ∂νGμ − ig[Gμ,Gν] (1.43)

with Gμ being the gluon field. The quarks differ in their masses. One can divide
them into two groups, the low mass quarks: up, down, strange quarks and the heavy
quarks: charm, bottom, top quarks. One can now construct the effective field theory
in the low energy limit in which the c, b, t quarks can be treated as infinitely heavy
whereas the light mass quarks can be approximated as massless quarks. In this chiral
limit the QCD Lagrangian becomes

LQCD = −1

2
G2

μν + q̄iγμ∂μq + gq̄γμGμq (1.44)



18 1 Introduction

with the extra chiral symmetry (Scherer 2003). This is the essence of the Chiral
Perturbation Theory which is used in order to study hadronic physics.

We have been giving examples from QED and QCD and actually General Rela-
tivity itself is also an effective field theory valid at low energies below MPl. General
Relativity can be perfectly quantized in the effective field theory sense provided that
we are working within a regime where the irrelevant operators are small compared
to the relevant ones. Loop calculations give higher order derivative interactions of
the form (Burgess 2007)

LGR = √−g

(
M2

Pl

2
R + c1R

2 + c2RμνRμν + c3RμναβR
μναβ + d1

M2
Pl

R3 + · · ·
)

(1.45)

which would need to be taken into account above energies beyondMPl, meaning that
these irrelevant operators start dominating once we go beyond the cut off scale of
the effective field theory.

Throughout this thesis, we shall be working with non-renormalizable theories
and interactions. As discussed in this section, this does not necessarily represent a
flaw of the theories, but rather they should be regarded as effective field theories and
treated as such. At this respect, it is a crucial aspect for their reliability to compute
the corresponding cut-off scale below which the theory is sensible. This is not a
straightforward computation and some debate about the true cut-off scale of a given
theory still exists in the literature.

1.2 Massive Gravity

Brimming over with enthusiasm for having found the linear ghost freemassive spin-2
field (1.32) one can take a step forward and compute the graviton exchange amplitude
between two sources. What one rather encounters is a worrying result. In the limit
of vanishing graviton mass one does not recover the general relativity result for the
exchange amplitude between the sources. Actually this result is not surprising at all.
After doing the field redefinition hμν = h̃μν + πημν the mixing between the scalar
and tensor interactions in Eq. (1.38) vanish at the expense of the coupling of the scalar
field to the stress energy tensor πT. It is exactly this coupling that gives rise to the
vDVZ discontinuity which survives the m → 0 limit. However, we were working
in a regime in which some of the degrees of freedom of the massive graviton were
interacting highly non-linearly and therefore the vDVZdiscontinuity is just an artifact
of the linear approximation. Unfortunately introducing a non-linear mass term for
the graviton is not as easy as it might look at first sight.3 The ghost we have cured
by Fierz-Pauli tuning comes back at non-linear level (the sixth degree of freedom is

3The non-linear extension for the spin-1 field is trivial in the sense that one does not have to deal
with the Boulware-Deser ghost.
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associated to higher derivative terms for the helicity-0 degree of freedom). For the
construction of a mass term the requirements are that it can not contain derivative
interactions for gμν and that it should only contain five physical degrees of freedom
with a positive kinetic energy. The only quantities without derivative interactions are
detg corresponding to a cosmological constant and trg. Therefore one is forced to
introduce an extra auxiliary rank twometric fμν on top of which the massive graviton
can propagate. The de Rham-Gabadadze-Tolley (dRGT) model of massive gravity
resolves the ghost-problem, being the first example of a ghost free non-linear theory
ofmassive gravity in arbitrary dimensions. In this original constructions the reference
metric was chosen to be flat fμν = ημν. In general the mass term can be constructed
out of the scalar functions of gμαfαν. As we mentioned in the previous chapter the
action (1.32) does not have the invariance under general coordinate transformations
and either ημν nor hμν are real tensors. Instead, for the construction of the higher
non-linear interactions we shall work in a framework in which the diffeomorphism
invariance is restored by introducing the Stueckelberg fields. For this purpose lets
define a tensor Hμν of the following form

Hμν = gμν − ηab∂μϕa∂νϕ
b (1.46)

which will enter in the scalar functions of the mass term gμαfαν = δ
μ
ν − Hμ

ν . The
tensor Hμν is now a covariant tensor as long as the four fields ϕa transform as scalars
under a change of coordinates (Arkani-Hamed et al. 2003). Next step consists of
writing down all the possible contractions for the tensor Hμν to construct the most
general potential (de Rham and Gabadadze 2010b)

L = M2
Pl

√−gR − M2
Plm

2

4

√−g (U2(g,H) + U3(g,H) + U4(g,H) · · · ) (1.47)

with Ui’s standing for the mass and potential terms of ith order in Hμν

U2(g,H) = H2
μν − H2 ,

U3(g,H) = c1H
3
μν + c2HH

2
μν + c3H

3 ,

U4(g,H) = d1H
4
μν + d2HH

3
μν + d3H

2
μνH

2
αβ + d4H

2H2
μν + d5H

4 ,

U5(g,H) = f1H
5
μν + f2HH

4
μν + f3H

2H3
μν + f4H

2
αβH

3
μν

+f5H(H2
μν)

2 + f6H
3H2

μν + f7H
5 . (1.48)

The coefficients ci, di and fi are a priori arbitrary. The four fields ϕa in Hμν can be
expanded in terms of the coordinates xα and the fields πα, as ϕa = (xα − πα) δ

a
α

(Arkani-Hamed et al. 2003) and we also expand the metric around Minkowski in the
usual convention, gμν = ημν + hμν/MPl, such that we obtain

Hμν = hμν

MPl
+ ∂μπν + ∂νπμ − ηαβ∂μπα∂νπ

β . (1.49)
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The πα’s represent the Stückelberg fields that transform under reparametrization
to guarantee that the tensor Hμν in (1.49) transforms covariantly. In other words
the covariant tensor Hμν is a gauge transformed version of hμν. In particular under

linearized diffeomorphism, xμ → xμ + ξμ

MPl
, the metric perturbations and the Stück-

elberg transform respectively as

hμν → hμν − ∂(μ ξν) and πμ → πμ + ξμ

MPl
. (1.50)

In the unitary gauge where πα = 0 (or, ϕa = xα
δ
a
α), Eq. (1.47) reduces to the

standard Fierz-Pauli theory extended by a potential for the field hμν. However, this
is not always a convenient way of dealing with these degrees of freedom. For most
of the studies in this thesis we will retain πα and fix a gauge for hμν unless otherwise
pointed out.

The theory (1.47)was studied in detail in deRhamandGabadadze (2010a, b), and a
two-parameter family of the coefficients was identified forwhich no sixth (Boulware-
Deser ghost) degree of freedom arises. Interestingly, also extensions of GR by an
extra auxiliary dimension (Gabadadze 2009; deRham2010), automatically generates
the coefficients from this family at least up to the cubic order. In these theories the
higher derivative nonlinear terms either cancel out, or organize themselves into total
derivatives. Not only for a better intuition but for most of the purposes one can
gain a quick insight into the physical properties of the theory by studying a specific
limit, the so called decoupling limit. This limit creates a framework in which the
most important physical properties of the theory become visible. For instance, the
realization of theVainshteinmechanism is best seen in the decoupling limit or if there
is a Boulware-Deser ghost present in the theory, it can already be observed within
the decoupling limit. Hence, the decoupling limit offers powerful tools to study the
physical properties of the considered theory and we expect to recover analog results
beyond this limit. For this ghost free theory of massive gravity, the decoupling limit
is defined as follows

m → 0, MPl → ∞, �3 = (MPlm
2)1/3 fixed. (1.51)

In the decoupling limit we can ignore the helicity-1 modes as they do not couple
to a conserved stress-tensor at the linearized level and focus on the helicity-2 and
helicity-0 modes. At this point, it is worth pointing out that in the decoupling limit
MPl → ∞, the Stückelberg field πμ ends up being gauge invariant under linearized
diffeomorphism as clearly seen in Eq. (1.50).
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We use the following decomposition for Hμν in terms of the canonically normal-
ized helicity-2 and helicity-0 fields after setting πa = ∂aπ/�3

3
4

Hμν = hμν

MPl
+ 2∂μ∂νπ

�3
3

− ∂μ∂απ∂ν∂απ

�6
3

. (1.52)

The Lagrangian (1.47) with the two-parameter family of the coefficients reduces in
the decoupling limit to the following expression (de Rham and Gabadadze 2010b)

L = −1

2
hμνEαβ

μνhαβ + hμν
3∑

n=1

an

�
3(n−1)
3

X(n)
μν [�], (1.53)

where the first term represents the usual kinetic term for the graviton defined in the
standard way with the Lichnerowicz operator given by (1.27), whereas a1 = −1/2,
and a2,3 are two arbitrary constants, related to the two parameters from the set {ci, di}
which characterize a given ghostless theory of massive gravity. The tensors X(1,2,3)

μν

denote the interactions with the helicity-0 mode (de Rham and Gabadadze 2010b)

X(1)
μν = �πgμν − �μν (1.54)

X(2)
μν = �2

μν − �π�μν − 1

2
([�2] − [�]2)gμν (1.55)

X(3)
μν = 6�3

μν − 6[�]�2
μν + 3([�]2 − [�2])�μν

−gμν([�]3 − 3[�2][�] + 2[�3]) . (1.56)

Quite soon de Rham, Gabadadze and Tolley realized that beyond the decoupling
limit these infinite interactions (1.47) could be resumed into a compact expression
once the quantity

Kμ
ν (g,H) = δ

μ
ν −

√
δ
μ
ν − Hμ

ν = −
∞∑
n=1

dn(H
n)

μ
ν (1.57)

with

dn = (2n)!
(1 − 2n)(n!)24n (1.58)

and with the property
Kμ

ν (g,H)|hμν=0 = �μν, (1.59)

4Note that we are neglecting the helicity-1 field in ϕa since at linear order this field decouples
completely. If we had included the helicity-1 field in the expansion of ϕa = (xα + Aα − πα) δ

a
α

then the expression for the covariant tensor would have contained the contribution of that field as
well Hμν = hμν

MPl
+ ∂μAν + ∂νAμ + ∂μπν + ∂νπμ + · · · .
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was defined (de Rham et al. 2011). They showed that the most generic potential that
bears no Boulware-Deser ghost in four dimensions is

U(g,H) = −4 (U2 + α3 U3 + α4 U4) (1.60)

where α3,4 are two free parameters and the potentials Ui given by de Rham et al.
(2011)

U2 = [K]2 − [K2] (1.61)

U3 = [K]3 − 3[K][K2] + 2[K3] (1.62)

U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4] . (1.63)

These potential terms have been constructed by demanding the criteria that the h = 0
part of the interactions contain only total derivatives for the π-field. Soon it was
realized that this criteria was automatically fulfilled by writing the interactions in
terms of a deformed determinant (Hassan and Rosen 2011) det(δ

μ
ν + ∂μ∂νπ) =√

det(gμαfαν)|hμν=0. Since the determinant can be expressed in terms of the anti-
symmetric Levi-Civita tensor

det(δ
μ
ν + ∂μ∂νπ) =

4∑
i=0

−1

i!(4 − i)!Eμ1···μiαi+1···α4Eν1···νiαi+1···α4

× ∂μ1∂ν1π · · · ∂μi∂νiπ (1.64)

the total derivative nature of the interactions for theπ-field ismanifest. Beyond h = 0
the mass term can be constructed by replacing δ

μ
ν + ∂μ∂νπ by

√
gμαfαν = δ

μ
ν +Kμ

ν

in the determinant

det(δ
μ
ν + Kμ

ν ) =
4∑

i=0

−αi

i!(4 − i)!Eμ1···μiαi+1···α4Eν1···νiαi+1···α4

× Kμ1
ν1 · · ·Kμi

νi (1.65)

This can be written further in a more compact way realizing that the determinant of a
matrix

√
gμαfαν can be expressed in terms of the elementary symmetric polynomials

det(δ
μ
ν + Kμ

ν ) =
4∑

n=0

αnen(K) (1.66)
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with

e0(K) = 1

e1(K) = [K]
e2(K) = 1

2
([K]2 − [K2])

e3(K) = 1

6
([K]3 − 3[K][K2] + 2[K3])

e4(K) = 1

24
([K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3] − 6[K4]) (1.67)

Notice that e4 can be expressed in terms of e2,3 and the tadpole e1 = [K], Hassan and
Rosen (2011). The potential interactions can be also in an analog way constructed
from the polynomials

4∑
n=0

βnen(
√

(gμαfαν)). (1.68)

The Lagrangian for the massive graviton written in this compact form then becomes

L = M2
Pl

√−gR + 2M2
Plm

2√−g

4∑
n=0

βnen(
√

(gμαfαν)), (1.69)

where the elementary symmetric polynomials can also be written in terms of the
eigenvalues λi of

√
(gμαfαν) (Hassan and Rosen 2011)

e0(
√

(gμαfαν)) = 1

e1(
√

(gμαfαν)) = λ1 + λ2 + λ3 + λ4

e2(
√

(gμαfαν)) = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

e3(
√

(gμαfαν)) = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

e4(
√

(gμαfαν)) = λ1λ2λ3λ4. (1.70)

The forth polynomial

√−gβ4e4(
√

(gμαfαν)) = √−gβ4det(
√

(g−1f)) = β4
√
detf (1.71)

does not depend on gμν and therefore does not contribute to its equations of motion.
In the case of a non-dynamical fμν this forth polynomial can be completely neglected.
However, in the generalization ofmassive gravity to two dynamical metrics, meaning
in the case in which both gμν and fμν are considered to be dynamical, the forth
polynomial will correspond to a potential for fμν and can not any longer be neglected.
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1.2.1 Bi-Gravity

This was precisely considered in Hassan and Rosen (2012) where they added an
additional kinetic term for fμν and so constructed the first ghost-free non-linear
bimetric theory for gravity

L = M2
Pl

√−gRg + M2
f

√−fRf + 2M2
effm

2√−g

4∑
n=0

βnen(
√
g−1f) (1.72)

where

M2
eff =

(
1

M2
Pl

+ 1

M2
f

)−1

. (1.73)

Note that the potential term is now the potential term for both metrics. The potential
term can also be expressed in terms of the matrix

√
f−1g using the following relation

√−detg
4∑

n=0

βnen(
√
g−1f) = √−detf

4∑
n=0

βne4−n(
√
f−1g) (1.74)

This bimetric theory at the linearized level corresponds to a massless spin-2 particle
together with a massive spin-2 particle and hence contains seven physical degrees
of freedom (Hassan and Rosen 2012). In order to make the mass spectrum apparent,
consider the following metric perturbations

gμν = ημν + 2

MPl
hμν (1.75)

fμν = ημν + 2

Mf
lμν (1.76)

The action for the bigravity (1.72) reduces simply to

S =
∫

d4x
{
−hμνÊμναβhαβ − lμνÊμναβlαβ

−m2M2
eff

4

[(
hμ
ν

MPl
− lμν

Mf

)2

−
(

hμ
μ

MPl
− lμμ

Mf

)2
]}

, (1.77)
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with M2
eff as defined in (1.73). We can diagonalize these interactions by making the

following change of variables

1

Meff
wμν = hμν

Mf
+ lμν

MPl

1

Meff
vμν = hμν

MPl
− lμν

Mf
, (1.78)

such that the action at linear order becomes (Hassan and Rosen 2012)

S =
∫

d4x

{
−wμνÊμναβwαβ − vμνÊμναβvαβ − m2

4

[
[v2] − [v]2

]}
. (1.79)

In the unitary gauge, vμν encodes all the five physical degrees of freedomof amassive
spin-2 fluctuation, namely the two helicity-2, the two helicity-1 and the helicity-0
mode, and wμν encodes the two helicity-2 modes of the massless spin-2 fluctuation.

1.2.2 Vielbein Formulation

In the metric formulation the potential term for the massive gravity (as well as for the
bimetric gravity) has the complication through the matrix square roots. This mathe-
matically cumbersome structure can be avoided using the vielbein EA = E A

μ instead
of the metric since the vielbein is the “square root” of the metric gμν = E A

μ E B
ν

ηAB.
In the vielbein language, the Lagrangian for the massive gravity becomes

L = M2
PlEabcd

[
1

4
Ea ∧ Eb ∧ Rcd − m2β0

4! Ea ∧ Eb ∧ Ec ∧ Ed

−m2β1

3! Ia ∧ Eb ∧ Ec ∧ Ed − m2β2

2!2! I
a ∧ Ib ∧ Ec ∧ Ed

−m2β3

3! Ia ∧ Ib ∧ Ic ∧ Ed − m2β4

4! Ia ∧ Ib ∧ Ic ∧ Id
]

(1.80)

where Ia = δ
a
μdx

μ (Hinterbichler and Rosen 2012; Ondo and Tolley 2013). In a very
similar way as in the metric formulation one can restore gauge invariance by adding
the Stueckelberg fields

Ea
μ → �a

bEb
ν

∂xν

∂φμ (1.81)
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Along the lines of the vielbein formulation the bimetric gravity similarly becomes

L = M2
PlEabcd

[
1

4
Ea ∧ Eb ∧ Rcd

E + 1

4
Fa ∧ Fb ∧ Rcd

F

−m2β0

4! Ea ∧ Eb ∧ Ec ∧ Ed − m2β1

3! Fa ∧ Eb ∧ Ec ∧ Ed

−m2β2

2!2! F
a ∧ Fb ∧ Ec ∧ Ed − m2β3

3! Fa ∧ Fb ∧ Fc ∧ Ed

−m2β4

4! Fa ∧ Fb ∧ Fc ∧ Fd
]

(1.82)

where Fa is the vielbein corresponding to the metric f as fμν = F A
μ F B

ν
ηAB (Hin-

terbichler and Rosen 2012; Fasiello and Tolley 2013). The equivalence between the
vielbein and metric formulation can be shown using the symmetric vielbein condi-
tion (�E)aμηabFbν = (�E)bμηabFaν (Hinterbichler and Rosen 2012; Ondo and Tolley
2013; Hassan et al. 2012).

The ghost free construction of massive gravity has initiated a flurry of investiga-
tions in the field. Not only its extension to bi- and multi metric gravity theories but
also the question of whether or not it might be at the origin of the observed acceler-
ated expansion of the universe has woken up a lot of interests. It is also going to be
the central topic of this thesis. We will try to address the burden problems of modern
cosmology like the cosmological constant problem or the dark energy problem in
the framework of massive gravity and discuss the reliability of its solutions in given
specific realizations.

1.3 Galileons

Another important class of infra-red modifications is the Galileon theory. As we
mentioned before the Galileon interactions were introduced as a natural extension
of the decoupling limit of DGP (Nicolis et al. 2009). It can be considered as an
effective field theory constructed by the restriction of the invariance under internal
Galilean and shift transformations and the ghost absence. In order for the theory to
be viable, the Vainshtein mechanism is needed, which on the other hand relies on the
presence of interactions at an energy scale � � MPl. From a traditional effective
field theory point of view these interactions are irrelevant operators which renders the
theory non-renormalizable, but to contrary to the traditional case, within the Galileon
theory these irrelevant operators need to be large in the regime of interest, in the so
called strong coupled regime ∂2π ∼ �3. Therefore, one might have concerns that
the effective field theory could go out of control in this strong coupling regime
where the irrelevant operators need to be large. Nevertheless, the Galileon theories
are not typical effective field theories in the sense that it is organized in the small
parameter expansion of the whole operator but rather it has to be reorganized in a way
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that the derivative now plays the role of the small parameter rather than the whole
operator itself. There exist a regime of interest for which π ∼ �, ∂π ∼ �2 and
∂2π ∼ �3 even though any further derivative is suppressed ∂3π � �4, meaning
that the effective field expansion is reorganized such that the Galileon interactions
are the relevant operators with equations of motion with only two derivatives, while
all other interactions with equations of motion with more than two derivatives are
treated as negligibale corrections.

The symmetry and ghost absence conditions are fulfilled by only five interactions
in four dimensions:

L1 = π

L2 = (∂π)2

L3 = (∂π)2�π

L4 = (∂π)2
[
(�π)2 − (∂μ∂νπ)2

]

L5 = (∂π)2
[
(�π)3 − 3�π(∂μ∂νπ)2 + 2(∂μ∂νπ)3

]
(1.83)

This effective action is local and contains higher order derivatives. Nevertheless,
these interactions come in a very specific way such that they only give rise to second
order equations of motion, which are invariant under the transformations

π → π + c + xμb
μ (1.84)

with constant c and bμ. They can be written in a more compact way by using the
iterative relation

Ln+1 = −(∂π)2En (1.85)

with n ≥ 1 and En = δLn
δπ

are the equations of motion

E1 = 1

E2 = �π

E3 = (�π)2 − (∂μ∂νπ)2

E4 = (�π)3 − 3�π(∂μ∂νπ)2 + 2(∂μ∂νπ)3

E5 = (�π)4 − 6(�π)2(∂μ∂νπ)2 + 8�π(∂μ∂νπ)3 + 3((∂μ∂νπ)2)2

−6(∂μ∂νπ)4 (1.86)

The allowed interactions for the Galileon were originally determined order by order
by writing down all the possible contractions for the scalar field interactions and
without giving any higher dimensional realization, for which these theories could be
the decoupling limit of.However, deRhamandTolley could construct an unified class
of four dimensional effective theories starting from a higher dimensional setup and
show that these effective theories reproduce successfully all the interaction terms of
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theGalileon in the non-relativistic limit (de Rham andTolley 2010). The construction
of the action is based on a brane localized in a higher dimensional bulk y = π(xμ)

where xμ are the four-dimensional coordinates while y describes the direction of
the fifth dimension. The planck masses of the four and five dimensions are M4
and M5 respectively and their ratio is m = M3

5/M
2
4. The Lagrangian is allowed to

contain interactionswhich only yield second order equations ofmotion andwhich are
manifestly covariant. TheLovelock invariants are the onlymanifestly covariant terms
giving rise to second order equations ofmotion, therefore the allowed interactions are
the Lovelock invariants in four dimensions or the Gibbons-Hawking-York boundary
terms associated with Lovelock invariants in five dimensions (de Rham and Tolley
2010).

L = √−g

(
−λ + M2

4

2
R − M3

5K − β
M3

5

m2KGB

)
(1.87)

whereKμν is the extrinsic curvature on the brane (K its trace) andKGB is theGibbons-
Hawking-York boundary term

KGB = −2

3
K3

μν + KK2
μν − 1

3
K3 − 2GμνKμν (1.88)

associated with a bulk Gauss-Bonnet term (Davis 2003; de Rham and Tolley 2010)

LGB = R2 + 2R2
μναβ − 4R2

μν. (1.89)

In four dimensional space-time the only non-trivial Lovelock invariants are the
cosmological constant and the Ricci scalar. Related to the Lovelock invariants one
can construct divergenceless tensors. The divergeless tensor associated to the cosmo-
logical constant is the metric gμν and the divergence less tensor associated to the ricci
scalar is the einstein tensor Gμν. Since the Gauss Bonnet Lovelock invariant in four
dimensions is just a total derivative the corresponding divergeceless tensor is zero.
However, one can still construct another divergeceless tensor, which is the dual Rie-
mann tensor Lμανβ and linear in the curvature. Written in terms of the Levi-Civita
antisymmetric tensors their structure is more apparent (linearized in perturbation
hμν) (Fig. 1.5).

λ ∼ EabcdEabcd
gμν ∼ E abc

μ Eνabc

R ∼ EabcdEa′b′
cd∂a∂a′hbb′

Gμν ∼ E abc
μ E a′b′

ν c∂a∂a′hbb′

Lμανβ ∼ E ab
μα E a′b′

νβ ∂a∂a′hbb′ (1.90)

However, in five dimensions we can have an additional divergenceless tensor like
the dual Riemann tensor but this time with six indices (still linear in the curvature).
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Fig. 1.5 A four dimensional brane embedded in five dimensional bulk: the Lovelock invariants on
the brane are the cosmological constant λ and four dimensional Ricci scalar R(4). The Lovelock
invariants in five dimensions are the five dimensional Ricci scalar R(5) and the Gauss Bonnet term
LGB, which give rise to the extrinsic curvature K and Gibbons-Hawking-York boundary term on
the brane KGB

λ ∼ EabcdeEabcde
gμν ∼ E abcd

μ Eνabcd

R ∼ EabcdeEa′b′
cde∂a∂a′hbb′

Gμν ∼ E abcd
μ E a′b′

ν cd∂a∂a′hbb′

Lμανβ ∼ E abc
μν E a′b′

αβ c∂a∂a′hbb′

Lμανβρσ ∼ E ab
μνρ E a′b′

αβσ ∂a∂a′hbb′ (1.91)

The Gauss Bonnet lovelock invariant, being second order in the curvature, corre-
sponds to a total derivative in four dimensions and therefore does not yield any
non-trivial contribution. However, in five dimensions it yields a non-trivial contribu-
tion and therefore there exists an additional divergenceless tensor associated to the
Gauss Bonnet lovelock invariant, which can be expressed as

LGB
μν = Rμν − 1

4
Rgμν, (1.92)
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where Rμν stands for the short-cut notation

Rμν = RRμν − 2RμαR
α
ν − 2RαβRμανβ + RμαβρR

αβρ
ν . (1.93)

Again written in terms of the Levi-Civita antisymmetric tensor for a small fluctuation
hμν the structure becomes more apparent

LGB = EabcdeE a′b′c′d′
e∂a∂a′hbb′∂c∂c′hdd′

LGB
μν = E abcde

μ E a′b′c′d′
ν ∂a∂a′hbb′∂c∂c′hdd′ . (1.94)

In the following, we will consider a probe brane embedded in five dimensional
Minkowski space-time at the position y = π(xμ). First of all, the induced metric on
the brane will be given by

gμν = ημν + ∂μπ∂νπ

gμν = ημν − ∂μπ∂νπ

1 + (∂π)2
(1.95)

while the extrinsic curvature by

Kμν = −γ∂μ∂νπ with γ = 1√
1 + (∂π)2

. (1.96)

The individual invariants in (1.87) on the brane are the cosmological constant Lf
2,

the extrinsic curvature Lf
3, the induced Ricci tensor Lf

4 and the boundary term from
the Gauss-Bonnet curvature in the bulk Lf

5. Thus, the invariants (1.87) on the flat
background become

L f
2 = γ−1

L f
3 =

(
[�] − γ2[φ]

)

L f
4 = γ

(
([�]2 − [�2]) + 2γ2([φ2] − [�][φ])

)

L f
5 = γ2

(
([�]3 + 2[�3] − 3[�][�2]) + 6γ2([�][φ2] − [φ3])

− 3γ2([�]2 − [�2])[φ]
)

, (1.97)

where �μν = ∂μ∂νπ and [φn] = ∂π · �n · ∂π. Taking now the non-relativistic
limit (∂π)2 � 1 gives exactly the Galileon interactions in (1.83) back5 (de Rham
and Tolley 2010). Galileon theories have also initiated a lava of investigations in
cosmology. Not only the fact that they give rise to second order equations of motion

5In general, there is also a tadpole contribution L1, that depends on the bulk content.
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and have symmetry, but also the non-renormalization theorem makes them theoreti-
cally very interesting since once the parameters in the theory are tuned by observa-
tional constraints they are going to be stable under quantum corrections. Even if the
naive covariantization of the Galileon interactions on non-flat backgrounds break the
Galileon symmetry explicitly, one can successfully generalize the Galileon interac-
tions to the case with maximally symmetric backgrounds. This was precisely what
we studied in our work in Burrage et al. (2011). For this, consider now a probe brane
embedded into a warped five dimensional de Sitter space-time instead of Minkowski
as before

ds25 = e−2Hy
(
dy2 + qμνdxμdxν

)
, (1.98)

where qμν is no longer flat as in Eq. (1.95) but rather taken to be in a de Sitter slicing

ds2dS = qμνdxμdxν = −n2(t)dt2 + a2(t)dx2 (1.99)

with ȧ
na = const = H. The brane is still positioned at y = π(xμ). Now again, from

the five-dimensional theory, five invariant quantities can be induced on the brane
(de Rham and Tolley 2010): The tadpole LdS

1 , the DBI equivalent LdS
2 , the extrinsic

curvature LdS
3 , the induced Ricci tensor LdS

4 and finally the boundary term from the
Gauss-Bonnet curvature in the bulk LdS

5 . These are constructed out of the induced
metric at y = π(xμ)

gμν = e−2Hπ
(
qμν + ∂μπ∂νπ

)
. (1.100)

For a de Sitter geometry the invariants are

√−qLdS
1 = 1

5H

√−q
(

e−5Hπ − 1
)

√−qLdS
2 = √−g = e−4Hπ

√−qLf
2√−qLdS

3 = −√−gK = e−3Hπ
√−q

(
Lf
3 + 4HγLf

2

)
√−qLdS

4 = √−gR = e−2Hπ
√−q

(
Lf
4 + 6HγLf

3 + 12H2γ2Lf
2

)
√−qLdS

5 = −3

2

√−gKGB

= e−Hπ
√−q

(
Lf
5 + 6HγLf

4 + 18H2γ2Lf
3

+ 24H3γ3Lf
2

)
(1.101)

where the Lf
i are the flat space invariants (1.97) and KGB is the Gibbons-Hawking-

York boundary term as in Eq. (1.88) associatedwith a bulkGauss-Bonnet term (1.89),
with the expressions for the extrinsic and intrinsic curvature on the brane are given
by the following,
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Kμν = γe−Hπ
(
�μν + Hγμν + H∂μπ∂νπ

)
(1.102)

Rμν = 2Hγ2�μν + γ2([�]�μν − �2
μν) + γ4(φ2

μν − [φ]�μν) (1.103)

+Hγ2
(
3H + γ2[�] + γ2([�](∂π)2 − [φ])

)
(qμν + ∂μπ∂νπ)

R = e2Hπ
(
12H2γ2 + 6Hγ2

(
[�] − γ2[φ]

)
+ γ2([�]2 − [�2])

+ 2γ4([φ2] − [φ][π])
)

. (1.104)

Furthermore they also satisfy the recursive relations, first introduced by Fairlie et al.
(1992), and explained more recently within the context of the Galileon (de Rham
and Tolley 2010; Fairlie 2011)

LdS
n+1 = −eHπγ−1 δLdS

n

δπ
for n ≥ 1 , (1.105)

which generalizes the flat space-time relations (1.85). It is straightforward to check
that there cannot be any further invariant beyond n = 5 because δπLdS

5 is a total
derivative. Similarly as in the flat space case, we can build the non-relativistic limit,
(∂π)2 � 1, of this theory. For this, we first canonically normalize the field π =
π̂/

√
λ and then send λ → ∞. In this limit the Galileon symmetry on flat background

(1.84) is promoted to (after setting the lapse to n = 1),

π̂ −→ π̂ + eHt

(
c + vix

i + 1

2
v0Hx

ixi

)
+ v0

H
sinh(Ht) , (1.106)

which in the flat space limit H → 0 reduces to the Galileon shift symmetry π̂ →
π̂ + (

c + vμxμ
)
of Nicolis et al. (2009). Keeping the lapse arbitrary to retain the

gauge freedom, the Galilean transformation becomes,

π̂ −→ π̂ + a(t)

(
c + vix

i + v0Hx
ixi − v0

(
n(t)
˙a(t)

)2
)

, (1.107)

with ȧ
an = H = const.

The specific combination ofLdS
1 andLdS

2 which remains finite in the limitλ → ∞
is

L(NR)
2 = λ(LdS

2 + 4LdS
1 − 1)

λ → ∞−−−−−→ 1
2

(
(∂π̂)2 − 4H2π̂

2
)

, (1.108)

which is indeed invariant under the non-relativistic transformation (1.106), andwhich
gives back the usual first Galileon kinetic term, 1/2(∂π)2, in the limit H → 0.

We can now go further and consider the non-relativistic limit of the higher order
invariants (extrinsic curvature term, scalar curvature, etc.) which are also invariant
under (1.106). The de Sitter generalization of the Galileon derivative interactions are
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then:

L(NR)
2 = (∂π̂)2 − 4H2π̂

2

L(NR)
3 = (∂π̂)2�π̂ + 6H2π̂(∂π̂)2 − 8H4π̂

3

L(NR)
4 = (∂π̂)2

(
[�̂2] − [�̂]2

)
− 6H2π̂(∂π̂)2�π̂

−1

2
H2(∂π̂)4 − 18H4π̂

2
(∂π̂)2 + 12H6π̂

4

L(NR)
5 = (∂π̂)2

(
[�̂]3 − 3[�̂2][�̂] + 2[�̂3]

)
− 4H2π̂(∂π̂)2

(
[�̂2] − [�̂]2

)

− 1

2
H2(∂π̂)4�π̂12H4π̂

2
(∂π̂)2�π̂ + 2H4π(∂π̂)4

+ 24H6π̂
3
(∂π̂)2 − 48

5
H8π̂

5
. (1.109)

These are the de Sitter Galileons. One can check that the actions S(NR)
i =∫

a3(t)n(t)L(NR)
i are indeed invariant under the transformation (1.107) up to a total

derivative.
Similarly, one can consider a brane embedded into a warped five dimensional

Anti de Sitter space-time. In this case, the induced metric and the extrinsic curvature
on the brane become

gμν = e−2π/lημν + ∂μπ∂νπ

Kμν = −γ̃

(
∂μ∂νπ + ∂μπ∂νπ

l
+ gμν

l

)
(1.110)

where l is AdS length and γ̃ = 1√
1+e2π/l(∂π)2

. Now, taking the non-relativistic limit

e2π/l(∂π)2 � 1 yields the conformal extension of the Galilean. This is equivalent
to defining π = lπ̂ and then taking the limit l → 0. The conformal Galilean have
the following form (de Rham and Tolley 2010)

L1 = e−4π̂

L2 = −1

2
e−2π̂(∂π̂)2

L3 = 1

2
(∂π̂)2�π̂ − 1

4
(∂π̂)4

L4 = 1

20
e2π̂(∂π̂)2

(
10([�̂]2 − [�̂2]) + 4((∂π̂)2�π̂ − [φ̂]) + 3(∂π̂)4

)

L5 = e4π̂(∂π̂)2
(
1

3
([�̂]3 + 2[�̂3] − 3[�̂][�̂2]) + (∂π̂)2([�̂]2 − [�̂2])

+ 10

7
(∂π̂)2((∂π̂)2[�̂] − [φ̂]) + 1

28
(∂π̂)6

)
. (1.111)
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Recall that we are using the notation (∂π)2 = ∂μπ∂μπ and�μν = ∂μ∂νπ and [φ] =
∂μπ∂νπ∂μ∂νπ. SinceGalileons and conformalGalileons have been constructed from
a higher dimensional framework inwhich the Lovelock interactionsmanifestly fulfill
the symmetry and give rise to only second order equations, the Galileon/conformal
Galileons themselves give only second order equations of motion and yet preserve
the symmetry. The generalization of the Galileon interactions we have inferred is
only preserved on a pure de Sitter/Anti de Sitter background. However, for any
cosmological scenario, we would need to include small departures from de Sitter.
One could in principle covariantize this model, similarly as what was performed
in Deffayet et al. (2009), however we would then loose the Galileon symmetry.
Instead, another way forward is to generalize the description to a generic Friedmann-
Robertson-Walker (FRW) background. In principle, this extension is straightforward
when considering the FRW-slicing of five-dimensional Minkowski

ds2 = e−2Hy
[
a2(t)dx2 + dy2 + 2(1 + Hy − eHy)

Ḣ

nH2 dydt

−(
1 − Ḣ

nH

) (
1 + 2(1 − eHy)

Ḣ

nH2 + y
Ḣ

nH

)
dt2

]
. (1.112)

However, the realization of the Poincaré symmetry in this gauge is highly non-trivial,
and its non-relativistic limit appears non-local. This is however not surprising, as there
is no reasons why FRW which is not maximally symmetric should enjoy similar
amount of symmetry. In the five-dimensional picture, the coordinate transformation
to transfer from flat slicing of Minkowski to an FRW slicing is non-local, and so the
Poincaré symmetry expressed in the five-dimensional FRW slicing does not have the
similar close form as in de Sitter.

In this thesis we will not aim to study the Galileon interactions on FRW back-
grounds and their cosmological impact but rather concentrate on their behavior
around static spherically symmetric backgrounds. In particular, we will study the
propagation speed of fluctuations on top of these backgrounds. We will devote some
time to investigate how the superluminal propagation is an unavoidable feature in
these Galileon theories.

1.4 Outline of This Work

This thesis presents the summary of the scientific results and knowledge gathered
duringmy four years of PhDeducation. It consists of four parts and each part is further
divided into chapters. In the first chapter we introduced the framework within which
wewill be working in this thesis, so at this stage we are in possession of all the impor-
tant quantities for the remaining parts of the thesis. The first chapter was dedicated
to the concept of field theories in cosmology, where we introduced the main features
of the Standard Model of Particle Physics and the Standard Model of cosmology,
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paying special attention to the cosmic acceleration problem which became firmly
established by means of a variety of cosmological observations. Moreover, we have
summarized the three categories of the theoretical proposals for dark energy that have
been considered in the literature and very soon concentrated on massive gravity as an
alternative to dark energy in Sect. 1.2.We discussed the recently developed ghost-free
nonlinear theory for massive spin-2 fields, the de Rham-Gabadadze-Tolley theory.
We introduced the bimetric gravity model and illustrated its construction from mas-
sive gravity. Section1.3 was devoted to the introduction of the Galileon interactions
as an important class of infrared modifications of general relativity. We presented
their main features and discussed how they can be constructed in the framework of
higher dimensional space-time.

The first part of the thesis concentrates on the cosmology in the framework of
massive gravity and consists of two chapters. Chapter 2 is the summary of our work
in de Rham et al. (2011) where we study at great length the cosmology of the dRGT
theory in the decoupling limit. In this chapter we will explore the existence of self-
accelerating and degravitating solutions in the decoupling limit of massive gravity.
We will put constraints on the parameters of the theory in the decoupling limit based
on the classical stability in the cosmological evolution. From the decoupling limit we
will construct a proxy theory to massive gravity in Chap.3, which will represent our
work in de Rham and Heisenberg (2011). This proxy theory corresponds to a very
specific type of non-minimally coupled scalar-tensor interactions as a subclass of
Horndeski theories. We will study the self-accelerating and degravitating solutions
in this proxy theory as well. Furthermore, we will mention the analog non-minimal
interactions for a vector field based on our work in Jiménez et al. (2013). This will
give us also the opportunity to present our preliminary results on the Horndeski Proca
field interactions, which describe the most general interactions for a vector field with
three propagating degrees of freedom. We will finalize Chap. 3 with a summary and
a critical view of our previous analysis and the assumptions made there.

The second part consisting of Chap.4 discusses the superluminal propagation in
Galileon models. This superluminal propagation is a shared property also in massive
gravity since the Galileon models naturally arise in the decoupling limit of massive
gravity. This chapter is manly based on our work in de Fromont et al. (2013) where
we show in great detail that the feature of superluminal propagating solutions for
multi-galileon theories is unavoidable.

The third part of the thesis is fully consecrated to the study of quantum corrections
inmassive gravity. It is amandatory question to askwhether the parameters of the the-
ory are stable under quantum corrections. We will start with the non-renormalization
theorem in the decoupling limit and show how it protects the graviton mass from
quantum corrections in Chap.5. This will be the summary of our work in de Rham
et al. (2012). We will then move on to explore the quantum corrections beyond the
decoupling limit in Chap.6 and study explicitly the stability of the graviton potential
when includingmatter and graviton loops based on ourwork in deRham et al. (2015).
The analysis of the one-loop matter quantum corrections reveals that the potential
remains unaffected since they contribute only in form of a cosmological constant.
On the other hand, the one-loop quantum corrections coming from the gravitons
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do destabilize the special structure of the potential, howbeit even in the case of
large background configuration, the Vainshtein mechanism redresses the one-loop
effective action so that the detuning remains irrelevant below the Planck scale. This
allows us to draw the conclusion that the one-loop quantum corrections to the poten-
tial are harmless. We will finish the Chap.6 by presenting our preliminary results
on the quantum corrections in bimetric gravity theories and commenting on some
prospects concerning future potential investigations.

The last part of the thesis with Chap.7 recapitulates the main results and contri-
butions made in this thesis. We will also provide an outlook for future investigations
in the field.
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Part I
Cosmology with Massive Gravity



Chapter 2
Cosmology of Massive Gravity
in the Decoupling Limit

In this chapter we will aim the ambitious task of addressing the burdensome prob-
lems of cosmology using the framework of massive gravity. More concrete, we will
try to answer the questions of whether or not massive gravity can produce a theoret-
ically reliable self-accelerated geometry and whether or not it can also resolve the
cosmological constant problem. On these grounds, we will first dare to tackle these
problems in a certain approximation of the full theory. This approximation manifest
itself in a way such that the helicity ±2, ±1, and helicity-0 modes of the massive
graviton decouple from each other in the linearized theory, constituting the so-called
decoupling limit of massive gravity. The nonlinear self-interactions, and interactions
between these modes, are encoded in a few leading higher-dimensional terms in the
Lagrangian, as we introduced in detail in Sect. 1.2. Within this approximation we
will study two branches of solutions, in which the graviton can

• either form a condensate whose energy density sources self-acceleration,
• or formacondensatewhose energydensity compensates the cosmological constant.

In the following we will successfully show that it is indeed possible to construct
self-accelerated solutions in the decoupling limit of massive gravity. The accelera-
tion is due to a condensate of the helicity-0 field of the massive graviton, which in
the decoupling limit is reparametrization invariant as we showed in Sect. 1.2. At this
point, it is worth to emphasize again that the helicity-0 field of the massive graviton
is not an arbitrary scalar field like in the Quintessence models, since it descends from
a full-fledged tensor field. This is the reason why it has no potential interactions, but
enters the Lagrangian via very specific derivative interactions fixed by symmetries de
Rham and Gabadadze (2010). These derivative interactions induce an effective neg-
ative pressure causing the accelerated expansion. We will show that the fluctuations
on top of this self-accelerating background are stable.

A rather unexpected result from this branch of self accelerating solutions is enun-
ciated clearly in the fact that from the observational point of view, the obtained
self-accelerating background is indistinguishable from that of the Standard Model
of cosmology, the �CDM model, at leading order. This result was indeed very sur-
prising since we expected that the helicity-0 could have introduced some differences
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to the fluctuations and consequently to the evolution of the fluctuations. Essentially,
we would have expected that the helicity-0 field could give rise to an additional force
at cosmological distance scales modifying the growth and distribution of structure
[as it was for instance the case for the helicity-0 mode of the DGP model (Lue
et al. 2004; Scoccimarro 2009; Chan and Scoccimarro 2009; Afshordi et al. 2009)],
while at shorter scales still being strongly screened via the Vainshtein mechanism
(Vainshtein 1972). This would then guarantee the recovery of General Relativity
with small departures (Vainshtein 1972; Deffayet et al. 2002), that on the other hand
may result in measurable small changes (Dvali et al. 2003; Lue and Starkman 2003)
in high-precision Laser Ranging experiments. This is exactly what happens in the
self accelerating branch of the DGP model. Anyhow, this does not happen on the
self-accelerated background in the massive gravity theory in the decoupling limit.
Contrary to expectations, the fluctuation of the helicity-0 field of themassive graviton
on top of this self accelerating background decouples in the linearized approximation
from an arbitrary source. Consequently, the astrophysical sources will not excite this
fluctuation, giving rise exactly to the same�CDMresults.We should emphasize here
that this similarity of the self-accelerated solution and its fluctuations to the �CDM
results hold in the decoupling limit and it could be that it will not hold beyond this
limit.

In addition to the self accelerating branch, we will also show that massive grav-
ity can indeed tackle the cosmological constant problem successfully, avoiding S.
Weinberg’s no-go theorem (Steven 1989). We will proceed as follows: We will ac-
cept a large vacuum energy and show that it gravitates very weakly (Dvali et al.
2002, 2003). The large vacuum energy will not manifest itself as strongly as naively
anticipated in General Relativity, i.e. it will be degravitated, while all the astrophys-
ical sources will still exhibit the General Relativity behavior (Arkani-Hamed et al.
2002). Strictly speaking, one can think of degravitation as a promotion of Newton’s
constant to a high pass filter operator thereby modifying the effect of long wave-
length sources such as a cosmological constant while recovering General Relativity
on shorter wavelengths (Dvali et al. 2002, 2003; Arkani-Hamed et al. 2002). Theo-
ries of massive and resonance gravitons are particularly adequate for exhibiting the
high pass filter behavior to degravitate the cosmological constant (Dvali et al. 2002,
2003) since they are infra-red modifications of General Raltiviy, meaning that they
modify the effects of long wavelength sources. Moreover, it was shown in Dvali
et al. (2007) that any causal theory that can degravitate the cosmological constant is
a theory of massive gravity or resonance gravitons.

It is important to emphasize that in theories of massive gravity degravitation is a
causal process. The real measure of whether or not a source is degravitated is given
by its time evolution. During inflation for instance, the vacuum energy driving the
acceleration of the Universe will not be degravitated for a long time. It is only after
long enough periods of time that the IR modification of gravity kicks in and can
effectively slow down an accelerated expansion (Dvali et al. 2002, 2003; Arkani-
Hamed et al. 2002). Hence, a crucial ingredient for the degravitation mechanism to
work is the existence of a (nearly) static solution in the presence of a cosmological
constant towards which the geometry can relax at late time (or after some long period
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of time). Indeed, Dvali et al. (2007) studied linearizedmassive gravity demonstrating
that in this approximation degravitation takes place after a long enough period of
time.

We will successfully show that massive gravity accommodates static solutions
while evading any ghost issues at least in the decoupling limit. We will illustrate that
in this framework an arbitrary vacuum energy can be neutralized by the effective
stress-tensor of the helicity-0 component of the massive graviton. Furthermore, we
will put constraints on the two parameters of the theory by demanding the small
fluctuations around the degravitating solution to be stable.

An intriguing result we find is that the energy scale at which the interactions of the
helicity-0 modes become highly nonlinear is affected by the scale of the degravitated
cosmological constant. To be more precise, the interaction scale is higher for larger
values of the cosmological constant. Unfortunately, this phenomenon creates a prob-
lem by postponing Vainshtein’s recovery of General Relativity to shorter and shorter
distance scales. As a result, the tests of gravity impose a stringent upper bound on the
vacuum energy that can be degravitated in this framework without conflicting mea-
surements of gravity. Disappointingly, this upper bound turns out to be of the same
order as the critical energy density of the present-day Universe, (10−3 eV)4—the
value that does not need to be degravitated.

In spite of this low upper bound on the vacuum energy, let us emphasize that there
still are two important virtues of the degravitating solution with the low value of the
degravitated Cosmological Constant we find here:

• It is a concrete example of how degravitation could work in four-dimensional
theories of massive gravity without giving rise to ghost-like instabilities.

• The degravitated solution with small values of cosmological constant can be com-
bined with the self-accelerated solution, to give a satisfactory solution that is in
agreement with the existing cosmological and astrophysical data.

Last but not least, the solutions found in the decoupling limit do not necessar-
ily imply the existence of the solutions with identical properties in the full theory.
Nevertheless, the decoupling limit solutions should capture the local dynamics at
scales well within the present-day Hubble four-volume, as argued in Nicolis et al.
(2009). On the other hand, at larger scales the full solutions may be very different
from our ones. These differences would kick in at scales comparable to the graviton
Compton wavelength. Therefore, our solutions should manifest themselves at least
as transients lasting long cosmological times.

Aswe introduced in detail in Sect. 1.2 the dRGT theory ofmassive gravity reduces
in the decoupling limit to the following interactions for the helicity-2 and helicity-0
components of the massive graviton (de Rham and Gabadadze 2010)

L = −1

2
hμνEα β

μν hα β + hμν
3∑

n=1

an

�
3(n−1)
3

X(n)
μν [�], (2.1)

where the first term represents the usual kinetic term for the helicity-2 field with
(Eh)μν denoting the linearized Einstein operator acting on hμν defined in Eq.1.27,
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a1 = −1/2, and a2,3 are two arbitrary constants, related to the two parameters from
the set {ci, di} which characterize a given ghostless theory of massive gravity.

The three symmetric tensors X(n)
μν [�] are composed of the second derivative of

the helicity-0 field �μν ≡ ∂μ∂νπ. In order to maintain reparametrization invariance

of the full Lagrangian the tensors X(n)
μν [�] should be identically conserved. These

properties uniquely determine the expressions for X(n)
μν at each order of non-linearity.

The obtained expressions agree with the results of the direct calculations of de Rham
and Gabadadze (2010). A convenient parametrization for the tensors X(n)

μν which we
adopt in this chapter is as follows:

X(1)
μν [�] = εμ

α ρ σ εν
β
ρ σ �α β,

X(2)
μν [�] = εμ

α ρ γ
εν

β σ
γ�α β�ρ σ ,

X(3)
μν [�] = εμ

α ρ γ
εν

β σδ�α β�ρ σ �γ δ . (2.2)

The Lagrangian in the decoupling limit (2.1) represents the exact Lagrangian in the
sense that it has a finite number of interactions.1 All the terms higher than quartic
order vanish in this limit, making (2.1) a unique theory to which any nonlinear,
ghostless extension of massive gravity should reduce in the decoupling limit (de
Rham andGabadadze 2010).Moreover, note that the stress-tensor of external sources
only couple to the physical metric hμν. In the basis used in (2.1) there is no direct
coupling of π to the stress-tensors. Therefore the Lagrangian (2.1) is invariant with
respect to the shifts and the galilean transformations in the internal space of the π

field, ∂μπ → ∂μπ + bμ, where bμ is a constant four-vector. The latter invariance
guarantees that there is no mass nor potential terms generated for π by the loop
corrections.

The tree-level coupling of π to the sources arises only after diagonalization: The
quadratic mixing hμνX(1)

μν , and the cubic interaction hμνX(2)
μν , can be diagonalized

by a nonlinear transformation of hμν, that generates the following coupling of π

(de Rham and Gabadadze 2010)

1

MPl

(
−2a1ημνπ + 2a2∂μπ ∂νπ

�3
3

)
Tμν . (2.3)

Moreover, the above transformation also generates all the Galileon terms for the
helicity-0 field, introduced in a different context in Nicolis et al. (2009). In this
approximation of massive gravity the coupling of the Galileon field to matter after
diagonalization is not only given byπT as considered in the original Galileon theory
(Nicolis et al. 2009), but also includes more generic derivative mixing of the form
∂μπ ∂νπTμν.

Since the Galileon terms are known to exhibit the Vainshtein recovery of General
Relativity at least for static sources (Nicolis et al. 2009), so does the above theorywith

1Recall that we excluded the helicity-1 part since it only appears quadratically.
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Fig. 2.1 There are two
branches of solution: the
self-accelerating solution in
which the graviton forms a
condensate sourcing the
acceleration and the
degravitating solution where
the graviton forms a
condensate whose energy
density compensates the
cosmological constant

a3 = 0. The quartic interaction hμνX(3)
μν , however, cannot be absorbed by any local

redefinition of hμν. It is still expected though to admit the Vainshtein mechanism.
However, as we will show in the next section, on the self-accelerated background

the fluctuation of the helicity-0 field decouples from an arbitrary source, making the
predictions of the theory consistent with General Relativity already in the linearized
approximation. This decoupling is a direct consequence of the self-accelerated back-
ground and the specific form of the coupling (2.3).

In the following we will explicitly study the two branches of solutions in the de-
coupling limit: the self-accelerating solution and the degravitating solution (Fig. 2.1).

2.1 The Self-Accelerated Solution in the Decoupling Limit

The universality of the decoupling limit Lagrangian (2.1) for the class of ghostless
massive gravities, suggests the possibility of a fairly model-independent phenom-
enology of the massive theories that should be captured by the limiting Lagrangian
(2.1). In the present section, we will be interested in the cosmological solutions in
these theories. We will directly work in the decoupling limit, which implies scales
much smaller than the Compton wavelength of the graviton. In the case of the self-
accelerated de Sitter solution for instance, this corresponds to probing physics within
the Hubble scale, which as one would expect, is set by the value of the graviton mass.

2.1.1 Self-Accelerating Background

Below we look for homogeneous and isotropic solutions of the equations of motion
that follow from the Lagrangian (2.1). The helicity-0 equation of motion reads as
follows:
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∂α∂βh
μν

(
a1εμ

α ρ σ εν
β
ρ σ + 2

a2
�3

3

εμ
α ρ σ εν

β γ
σ �ρ γ

+ 3
a3
�6

3

εμ
α ρ σ εν

β γ δ�ρ γ�σδ

)
= 0 , (2.4)

while variation of the Lagrangian w.r.t. the helicity-2 field gives

−Eα β
μν hα β +

3∑
n=1

an

�
3(n−1)
3

X(n)
μν [�] = 0. (2.5)

We are primarily interested in the self-accelerated solutions of the system (2.4)–
(2.5). This solution is obtained by choosing the configuration for π such that the
second factor in (2.4) vanishes. This has for consequence to kill the first order mixing
between hμν and π and hence the coupling of π to matter at leading order (which
arises after diagonalization of the mixing term). As a consequence the perturbations
around the self-accelerated solution we obtain here do not couple to matter. This will
be presented in more details in what follows.

For an observer at the origin of the coordinate system, the de Sitter metric can
locally (i.e., for times t , and physical distances |x|, much smaller than the Hubble
scale H−1) be written as a small perturbation over Minkowski space-time Nicolis
et al. (2009)

ds2 = [1 − 1

2
H2xαxα]ημνdxμdxν. (2.6)

The linearized Einstein tensor for the metric (2.6) is given by

Glin
μν = 1

MPl
Eα β

μν hα β = −3H2ημν. (2.7)

For the helicity-0 field we look for the solution of the following isotropic form

π = 1

2
q�3

3x
αxα + b�2

3t + c�3 , (2.8)

where q, b and c are three dimensionless constants.
The equations of motion for the helicity-0 and helicity-2 fields (2.4)–(2.5), there-

fore, can be recast in the following form

H2
(

−1

2
+ 2a2q + 3a3q

2
)

= 0, (2.9)

MPlH
2 = 2q�3

3

[
−1

2
+ a2q + a3q

2
]

. (2.10)
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Solving the quadratic equation (2.10) for q (for H �= 0), we obtain the Hubble
constant of the self-accelerated solution from (2.10). Itsmagnitude, H2 ∼ �3

3/MPl =
m2, is set by the graviton mass, as expected (positivity of H2 is one of the conditions
that we will be demanding below). It is not hard to convince oneself that there exists
a whole set of self-accelerated solutions, parametrized by a2 and a3. This range,
however, will be restricted further by the requirement of stability of the solution,
which is the focus of the next section.

2.1.2 Small Perturbations and Stability

Here we investigate the constraints that the requirement of stability imposes on a
possible background. Let us adopt a particular solution of the system (2.9)–(2.10)
and consider perturbations on the corresponding de Sitter background

hμν = hbμν + χμν, π = πb + φ, (2.11)

where the superscript b denotes the corresponding background values, and φ here
stands for the perturbation of the helicity-0 mode. The Lagrangian for the perturba-
tions (up to a total derivative) reads as follows

L = −1

2
χμνEα β

μν χα β + 6(a2 + 3a3q)
H2MPl

�3
3

φ�φ −3a3
H2MPl

�6
3

(∂μ φ)2�φ

+a2 + 3a3q

�3
3

χμνX(2)
μν [	] + a3

�6
3

χμνX(3)
μν [	] + χμνTμν

MPl
, (2.12)

where 	 denotes the four-by-four matrix with the elements 	μν ≡ ∂μ∂νφ. The first
term in the first line of the above expression is the Einstein term for χμν, the second
term is a kinetic term for the scalar, and the third one is the cubic Galileon. The
second line contains cubic and quartic interactions between χμν and φ, which are
identical in form to the corresponding terms in the decoupling limit on Minkowski
space-time (2.1). None of these interactions therefore lead to ghost-like instabilities
(de Rham and Gabadadze 2010), as long as the φ kinetic term is positive definite.
Most interestingly, however, there is no quadratic mixing term between χ and φ in
(2.12), i.e. there is no mixed term like χμνX(1)

μν . Since it is only χμν that couples to
external sources Tμν in the quadratic approximation, then therewill not be a quadratic
coupling of φ to the sources generated in the absence of the quadratic χ −φ mixing.
Therefore, for arbitrary external sources, there exist consistent solutions for which
the fluctuation of the helicity-0 is not excited, φ = 0. On these solutions one exactly
recovers the results of the linearized General Relativity. The above phenomenon
provides a mechanism of decoupling the helicity-0 mode from arbitrary external
sources! This mechanism is a universal property of the self-accelerating solution in
ghostless massive gravity.
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Hence, there are no instabilities in (2.12), as long as a2 + 3a3q > 0. The latter
condition, alongwith the requirement of positivity of H2, and the equations ofmotion
(2.10), requires that the following system be satisfied:

−1

2
+ 2a2q + 3a3q

2 = 0,

MPlH
2 = 2q�3

3

[
a2q + a3q

2 − 1

2

]
> 0, a2 + 3a3q > 0,

for the self-accelerating solution to be physically meaningful. The above system can
be solved. The solution is given as follows

a2 < 0, − 2a22
3

< a3 < −a22
2

, (2.13)

while the Hubble constant and q are given by the following expressions

H2 = m2[2a2q2 + 2a3q
3 − q] > 0, q = − a2

3a3
+ (2a22 + 3a3)1/2

3
√
2a3

. (2.14)

It is clear from (2.13), that the undiagonalizable interaction hμνX(3)
μν plays a crucial

role for the stability of this class of solutions: All theories without this term (i.e.
the ones with a3 = 0) would have ghost-like instabilities on the self-accelerated
background.

We therefore conclude that there exists a well-defined class of massive theories
with the parameters satisfying the conditions (2.13), which propagate no ghosts on
asymptotically flat backgrounds, and also admit stable self-accelerated solutions in
the decoupling limit.

As seen from the decoupling limit Lagrangian (2.1), the helicity-0 mode π pro-
vides an effective stress-tensor that is felt by the helicity-2 field:

Tπ
μν = MPl

3∑
n=1

an

�
3(n−1)
3

X(n)
μν [�]

= −6qMPl�
3
3

[
−1

2
+ a2q + a3q

2
]

ημν . (2.15)

It is this stress-tensor that provides the negative pressure density required to drive
the acceleration of the Universe. Supplemented by the matter density contribution,
it leads to the usual �CDM—like cosmological expansion of the background in the
sub-horizon approximation used here.

As alreadymentioned, irrespective of the completion (beyond theHubble scale) of
the self-accelerated solution, it is locally indistinguishable from the �CDM model.
At horizon scales, however, it is likely that these two scenarios will depart from
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each other: As we emphasized before, the solutions found in the decoupling limit
do not necessarily imply the existence of full solutions with identical properties. A
given solution in the decoupling limit can just be a transient state of the full solution.
Significant deviations of the latter from the former should kick in at distance/time
scales comparable to the graviton Compton wavelength.

2.2 Screening the Cosmological Constant in the Decoupling
Limit

One explicit realization of degravitation is expected to occur in massive gravity,
where gravity is weaker in the IR, and the graviton mass could play the role of a
high-pass filter (Dvali et al. 2002, 2003). In this section we show explicitly how the
dRGT theory of massive gravity successfully screens an arbitrarily large cosmolog-
ical constant in the decoupling limit, while evading any ghost issues and preserving
Lorentz invariance.

For convenience we recall the decoupling limit Lagrangian of (2.1) coupled to an
external source

L = −1

2
hμνEα β

μν hα β + hμν
3∑

n=1

an

�
3(n−1)
3

X(n)
μν [�] + 1

MPl
hμνTμν . (2.16)

The equations of motion for the helicity-0 and 2 modes are then

−Eα β
μν hα β +

3∑
n=1

an

�
3(n−1)
3

X(n)
μν [�] = − 1

MPl
Tμν , (2.17)

and

(
a1 + a2

�3
3

�π + 3a3
2�6

3

(
[�]2 − [�2]

) ) [
�h − ∂α∂βh

α β
]

+ 1

�3
3

(
a2�μν − 3

a3
�3

3

(
�2

μν − �π�μν

) )[
2∂μ∂αh

α ν − �hμν − ∂μ∂νh
]

− 3a3
�6

3

(
�μ α�ν β − �μν�α β

)
∂α∂βhμν = 0 . (2.18)

We now focus on a pure cosmological constant source, Tμν = −λημν, and make use
of the following ansatz,
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hμν = −1

2
H2x2MPl ημν , (2.19)

π = 1

2
q x2�3

3 . (2.20)

The equations of motion then simplify to

(
−1

2
MPlH

2 +
3∑

n=1

an q
n�3

3

)
ημν = − λ

6MPl
ημν , (2.21)

H2
(
a1 + 2a2q + 3a3q

2
)

= 0 . (2.22)

As we will see below, this system of equations admits two branches of solutions,
a degravitating one, for which the geometry remains flat (mimicking the late-time
part of the relaxation process), and a de Sitter branch which is closely related to the
standard GR de Sitter solution. We start with the degravitating branch before explor-
ing the more usual de Sitter solution and show that the stability of these branches
depends on the free parameters a2,3, as well as the magnitude of the cosmological
constant.

2.2.1 The Degravitating Branch

It is easy to check that the geometry can remain flat i.e. H = 0 and gμν ≡ ημν,
despite the presence of the cosmological constant. Such solutions are possible due to
the presence of the extra helicity-0 mode that carries the source instead of the usual
metric. With H = 0, Eq. (2.22) is trivially satisfied, while the modified Einstein
equation (2.21) determines the coefficient (which we denote by q0 here) for the
helicity-0 field in (2.20),

a1q0 + a2q
2
0 + a3q

3
0 = − λ̃

6
, (2.23)

in terms of the dimensionless quantity λ̃ = λ/�3
3MPl. Notice that as long as the

parameter a3 is present, Eq. (2.23) has always at least one real root. There is therefore
a flat solution for arbitrarily large cosmological constant.

Let us now briefly comment on the stability of the flat solution, as this has impor-
tant consequences for the relaxation mechanism behind degravitation. We consider
the field fluctuations above the static solution,

π = 1

2
q0�

3
3 x

2 − φ/κ, (2.24)

Tμν = −λημν + τμν, (2.25)
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where q0 is related to λ via (2.23) and the coupling κ is determined by

κ = 2(a1 + 2a2q0 + 3a3q
2
0) . (2.26)

To the leading order, the action for these fluctuations is then simply given by

L(2) = −1

2
hμνEα β

μν hα β − 1

2
hμνX(1)

μν [	] + 1

MPl
hμντμν , (2.27)

with 	μν = ∂μ∂νφ. The stability of this theory is better understood when working
in the Einstein frame where the helicity-0 and -2 modes decouple. This is achieved
by performing the change of variable,

hμν = h̄μν + φ ημν , (2.28)

which brings the action to the following form

L(2) = −1

2
h̄μνEα β

μν h̄α β + 3

2
φ �φ + 1

MPl

(
h̄μν + φημν

)
τμν. (2.29)

Stability of the static solution is therefore manifest for any region of the parameter
space for which κ is real and does not vanish. As already mentioned, if a3 �= 0 there
is always a real solution to (2.23), which is therefore stable for κ �= 0. This suggests
the presence of a flat late-time attractor solution for degravitation. The special case
a3 = 0 is discussed separately below.

2.2.2 de Sitter Branch

In the presence of a cosmological constant, the field equations (2.21) and (2.22) also
admit a second branch of solutions; these connect with the self-accelerating branch
presented in Sect. 2.1, and we refer to them as the de Sitter solutions. The parameters
for these solutions should satisfy

a1 + 2a2qdS + 3a3q
2
dS = 0 , (2.30)

H2
dS = λ

3M2
Pl

+ 2�3
3

MPl

(
a1qdS + a2q

2
dS + a3q

3
dS

)
. (2.31)

This solution is closer to the usual GR de Sitter configuration and only exists if
a22 ≥ 3a1a3. The stability of this solution can be analyzed as previously by looking
at fluctuations around this background configuration,
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π = 1

2
qdS �3

3 x
2 + φ , (2.32)

hμν = −1

2
H2
dS x

2 ημν + χμν , (2.33)

Tμν = −λημν + τμν . (2.34)

To second order in fluctuations, the resulting action is then of the form

L(2) = −1

2
χμνEα β

μν χα β + 6H2
dSMPl

�3
3

(a2 + 3a3qdS)φ �φ + 1

MPl
χμντμν . (2.35)

It is interesting to point out again that the helicity-0 fluctuation φ then decouples
from matter sources at quadratic order (however the coupling reappears at the cubic
order). Stability of this solution is therefore ensured if the parameters satisfy one of
the following three constraints, (setting a1 = −1/2 and λ̃ > 0)

a2 < 0 and − 2a22
3

≤ a3 <
1 − 3a2λ̃ − (1 − 2a2λ̃)3/2

3λ̃2
, (2.36)

or

a2 <
1

2λ̃
and a3 >

1 − 3a2λ̃ + (1 − 2a2λ̃)3/2

3λ̃2
, (2.37)

or

a2 ≥ 1

2λ̃
and a3 > −2

3
a22 . (2.38)

These are consistent with the results (2.13) found for the self-accelerating solution
in the absence of a cosmological constant. Notice here that in the presence of a
cosmological constant, the accelerating solution can be stable even when a3 = 0.
This branch of solutions therefore connects with the usual de Sitter one of GR.

2.2.3 Diagonalizable Action

In Sect. 2.1 we have emphasized the importance of the contribution of X(3)
μν for the

stability of the self-accelerating solution. However, in the presence of a nonzero
cosmological constant, this contribution is not a priori essential for the stability of
either the degravitating or the de Sitter branches. Furthermore, since the helicity-
0 and -2 modes can be diagonalized at the nonlinear level when a3 = 0, as was
explicitly shown in de Rham and Gabadadze (2010), we will study this special case
separately below. In particular, we will show that it leads to certain special bounds
both in the degravitating and de Sitter branches of solution.
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Stability: To start with, when a3 = 0, the degravitating solution only exists if

2a2λ̃ < 3a21 . (2.39)

This bound ensures the absence of ghost-like instabilities around the degravitating
solution. Assuming that the parameters a1,2 = O(1) take some natural values then
the situation a2 > 0 implies a severe constraint on the value of the vacuum energy
that can be degravitated. This is similar to the bound in the non-linear realization
of massive gravity (de Rham 2010), as well as in codimension-two deficit angle
solutions,λ � m2M2

Pl. The situation a2 < 0 on the other hand allows for an arbitrarily
large cosmological constant.

On the other hand, the bound a22 ≥ 3a1a3 for the existence of the de Sitter solution
is always satisfied if a3 = 0.However, the constraints on the parameters (2.36)–(2.38)
which guarantee the absence of ghosts on the de Sitter branch imply that

2a2λ̃ > 3a21 . (2.40)

In this specific case then, we infer that when the Sitter solution is stable, the degrav-
itating branch does not exist, and when the degravitating branch exists the de Sitter
solution is unstable. Therefore, at each point in the parameter space there is only
one, out of these two solutions, that makes sense. In the more general case where
a3 �= 0 the situation is however much more subtle and it might be possible to find
parameters for which both branches exist and are stable simultaneously.

Einstein’s frame: Let us nowwork instead in theEinstein frame,where the helicity-
2 and -0 modes are diagonalized (which is possible as long as a3 = 0). The transition
to Einstein’s frame is performed by the change of variable (de Rham and Gabadadze
2010)

hμν = h̄μν − 2a1πημν + 2a2
�3

3

∂μπ ∂νπ, (2.41)

such that the action takes the form

L = −1

2
h̄μν(E h̄)μν + 6a21 π�π −6a2a1

�3
3

(∂π)2[�]

+2a22
�6

3

(∂π)2
(
[�2] − [�]2

)

+ 1

MPl

(
h̄μν − 2a1 πημν + 2a2

�3
3

∂μπ ∂νπ

)
Tμν, (2.42)

and the structure of the Galileon becomes manifest. Notice however, that the co-
efficients of the different Galileon interactions are not arbitrary. Furthermore, the
coupling to matter includes terms of the form ∂μπ ∂νπTμν, absent in the original
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Galileon formalism (Nicolis et al. 2009). Both of these distinctions play a crucial role
in screening the cosmological constant—the task which was thought impossible in
the original Galileon theory. Here, however, as long as the bound (2.39) is satisfied,
the solution for π reads

π = 1

2
q0 �3

3 x
2 with a1q0 + a2q

2
0 = − λ̃

6
, (2.43)

while the helicity-2 mode h̄μν now takes the form

h̄μν =
(

ξ

2
− λ

6MPl

)
x2ημν + ξ xμxν, (2.44)

with ξ being an arbitrary gauge freedom parameter. Fixing ξ = −2a2q20�
3
3, the

physical metric is then manifestly flat:

gμν = ημν + 1

MPl

(
h̄μν − 2a1 π ημν + 2a2

�3
3

∂μπ ∂νπ

)

= ημν − λ33

MPl

(
a1q0 + a2q

2
0 + λ̃

6

)
x2ημν + xμxν

MPl

(
ξ + 2a2q

2
0�

3
3

)

≡ ημν.

To reiterate, the specific nonlinear coupling to matter that naturally arises in the
ghostless theory of massive gravity is essential for the screening mechanism to work.
This allows us to understand why neither DGP nor an ordinary Galileon theory
are capable of achieving degravitation. As we already pointed out, the Galileon
interactions arise naturally after diagonalization. However, let us summarize the
common and different points between Galileon theory and the interactions in the
decoupling limit after diagonalization.

Common Differences
IR modification of gravity as due to a light scalar
field with non-linear derivative interactions (→
Vainshtein mechanism)

Non-diagonazable interaction
a3
�6

3
hμνX(3)

μν which is important for

the self-accelerating solution
Respects the symmetry π → π+c + bμxμ Extra coupling ∂μπ ∂νπTμν which is

important for the degravitating solu-
tion

Second order equations of motion, containing at
most two time derivatives

Only two free parameters

Non-renormalization theorem applies Observational differences
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2.2.4 Phenomenology

Let us now focus on the phenomenology of the degravitating solution. This mecha-
nism relies crucially on the extra helicity-0 mode in the massive graviton. However
tests of gravity severely constrain the presence of additional scalar degrees of free-
dom. As is well known in theories of massive gravity, the helicity-0 mode can evade
fifth force constraints in the vicinity of matter if the helicity-0 mode interactions are
important enough to freeze out the field fluctuations, Vainshtein (1972).

Around the degravitating solution, the scale for helicity-0 interactions are no
longer governed by the parameter �3, but rather by the scale determined by the
cosmological constant �̃3 ∼ (λ/MPl)1/3. To see this, let us pursue the analysis of
the fluctuations around the degravitating branch (2.24) and keep the higher order
interactions. The resulting Lagrangian is then

L(2) = −1

2
hμνEα β

μν hα β − 1

2
hμν

(
X(1)

μν [	] + ã2
�̃3

X(2)
μν [	] + ã3

�̃6
X(3)

μν [	]
)

+ 1

MPl
hμντμν, (2.45)

with

ã2
�̃3

= −2
a2 + 3a3q0

�3
3 κ2

, and
ã3
�̃6

= − 2a3
�6

3 κ3
. (2.46)

Assuming a2,3 ∼ O(1), a large cosmological constant λ̃ 	 1, implies q0 	 1, so
that a3q20 	 a2q0 	 a1 and κ ∼ a3q0 such that

ã2
�̃3

∼ 1

�3
3a3q

3
0

∼ 1

�3
3λ̃

∼ MPl

λ
(2.47)

(notice that this result is maintained even if a3 = 0), and similarly

ã3
�̃6

∼
(
MPl

λ

)2

. (2.48)

To evade fifth force constrains within the solar system, the scale �̃ should therefore
be small enough to allow for the nonlinear interactions to dominate over the quadratic
contribution and enable the Vainshtein mechanism. In the DGP model this typically
imposes the constraint, �̃3/MPl � (10−33 eV)2, while this value can be pushed by
a few orders of magnitude in the presence of Galileon interactions, (Nicolis et al.
2009; Burrage and Seery 2010). Therefore, the allowed value of vacuum energy that
can be screened without being in conflict with observations is fairly low, of the order
of (10−3 eV)4 or so.
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An alternative would be to impose a hierarchy between the dimensionless co-
efficients ai. Since the Galilean interactions satisfy a non-renormalization theorem
(Nicolis and Rattazzi 2004), which we will discuss in more detail in Chap.5 such a
tuning would remain technically natural. To explore this avenue in a simple way, let
us set a3 = 0. In that case, the effective strong coupling scale is given by

�̃3 = �3
3

3
4 − 2a2λ̃

a2
. (2.49)

The strong coupling scale can then be tuned to small values by adjusting the parameter
a2 within the very small window

|a2λ̃ − 3

8
| � (10−33eV)2MPl

�3
3

. (2.50)

Therefore even when allowing a hierarchy between the parameters, once they are
fixed only very restricted values of the degravitated cosmological constant would
be compatible with solar system tests. The previous argument would have been
unaffected if we had set a3 �= 0.

The above constraint on the vacuum energy that can be degravitated makes the
present framework not viable phenomenologically for solving the old cosmological
constant problem. There may be a way out of this setback though: As mentioned
previously, one may envisage a cosmological scenario in which the neutralization
of vacuum energy takes place before the Universe enters the epoch for which the
Vainshtein mechanism is absolutely necessary to suppress the helicity-0 fluctuations.
Such an epoch should certainly be before the radiation domination.During that epoch,
however, the cosmological evolution should reset itself—perhaps via some sort of
phase transition—to continue subsequent evolution along the other branch of the
solutions that exhibits the standard early behavior followed by the self-acceleration.
This scheme would have to address the cosmological instabilities discussed in Grisa
and Sorbo (2010), Berkhahn et al. (2010). Moreover, the viability of such a scenario
would depend on properties of the degravitating solution in the full theory—which
are not known. Therefore, we do not rely on this possibility.

Nevertheless, there are certain important virtues to the degravitating solution with
the low value of the degravitated cosmological constant. This is an example of high
importance in understanding how S. Weinberg’s no-go theorem can be evaded in
principle. As already emphasized in Rham et al. (2008, 2009), such mechanisms
evade the no-go theorem by employing a field which explicitly breaks Poincaré
invariance in its vacuum configurationπ ∼ x2, while keeping the physics insensitive
to this breaking. Indeed, physical observables are only sensitive to �μν = ∂μ∂ν π

which is clearly Poincaré invariant, while the configuration of theπ field itself has no
direct physical bearing. This is built in the specific Galileon symmetry of the theory,
and is a consequence of the fact that π is not an arbitrary scalar field but rather
descends as the helicity-0 mode of the massive graviton. More precisely, under a

http://dx.doi.org/10.1007/978-3-319-18935-2_5
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Poincaré transformation, xμ → �
μ
νxν + aμ, the configuration for π transforms as

x2 → x2 + vμxμ + c, with vμ = 2aν�
ν
μ and c = a2 which is precisely the Galileon

transformation for π under which the action is invariant. In other words the Poincaré
symmetry is still realized up to a Galilean transformation (or, there is a diagonal
subgroup of Poincaré and internal “galilean” groups that remains unbroken by the
VEV of the π field).

Thus, we have presented here the crucial steps towards a non-linear realization of
degravitation within the context of massive gravity, and this, without introducing any
ghosts (at least in the decoupling limit). The arguments presented here only rely on
the decoupling limit and it is reasonable to doubt their validity beyond that regime.

2.3 Summary and Critics

In this chapter we have addressed the potential impact of massive gravity on cosmol-
ogy. We studied the self-accelerating and degravitating solutions in the decoupling
limit of massive gravity and put constraints on the two free parameters of the theory
from instability conditions in the cosmological evolution demanding the absence of
ghost and Laplacian instabilities. We have shown that massive gravity can be used to
construct self accelerating solutions in the decoupling limit. The helicity-0 degree of
freedom of the massive graviton forms a condensate whose energy density sources
self-acceleration and small fluctuations around these self-accelerating solutions are
stable. Furthermore, the fluctuations of the helicity-0 field do not couple to the fluctu-
ations of the helicity-2 field and hence to the matter fields such that the cosmological
evolution is exactly as in the standard �CDM model. We have also demonstrated
that massive gravity can screen an arbitrarily large cosmological constant in the de-
coupling limit without giving rise to any ghost. Unfortunately, the allowed value of
the vacuum energy that can be screened without being in conflict with observations is
fairly low. This conflict with the Vainshtein mechanism renders the degravitation so-
lution as found here phenomenologically not viable for solving the old cosmological
constant problem. Nevertheless, it is the first time that an explicit model can present a
way out fromWeinberg’s no-go theroem. A possible way out of the conflict between
the General Relativity recovery scale and the large Cosmological Constant could be
to envisage a cosmological scenario in which degravitation of the vacuum energy
takes place before the Universe enters the radiation dominated epoch—say during
the inflationary period, or even earlier. By the end of that epoch then the cosmology
should reset itself to continue evolution along the other branch of the solutions that
exhibits the standard early behavior followed by the self-acceleration. The existence
of such a transition would depend on properties of the degravitating solution in the
full theory.

As already mentioned before, these solutions found in the decoupling limit do not
guaranty the existence of full solutions with identical properties in the full theory.
The solutions in the decoupling limit could be considered just as a transient state
of the full solution. Since our work, there has been made a quite a lot of progress
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in studying the self-accelerating solutions, nevertheless the found solutions in the
literature seem to be plagued by instabilities. On the degravitating solutions side,
there has been little progress in the full theory and these solutions have been left
aside so far in the literature. Even if the decoupling limit of massive gravity fails to
degravitate an arbitrary large cosmological constant in order to make the Vainshtein
mechanism work, it could be that in the full theory there exists a cosmological
scenario in which the degravitation of the vacuum energy is not in conflict with the
Vainshtein mechanism. This is worth the effort to investigate in the future.

We would like now take a critical viewpoint on the analysis performed in this
chapter to discuss the limitations. The first limitation is the fact that the solutions
found here are only valid in the approximation we made, on scales smaller than the
Hubble scale. The secondmoreworrisome limitation is the negligence of the helicity-
1 field. As we emphasized before, the helicity-1 field enters only quadratically, or in
higher order terms in the Lagrangian, and therefore we set it to be zero.

Since the appearance of our work there has been a flurry of investigations related
to the self- accelerating solutions of the full theory in the literature, which go beyond
the study represented here in this thesis. It has been shown that if the fiducial metric is
chosen tobeflat than for the physicalmetric there is noflat FLRWsolutions (D’Amico
et al. 2011) in the full theory beyond the decoupling limit. One way out of this no-
go solution is to make the Stueckelberg field carry anisotropies but still keep the
geometry FLRW. Nevertheless, solutions found in this way turn out to have strongly
coupled degrees of freedom, meaning that some of the degrees of freedom lose their
kinetic terms. Alternatively, one can accept non-FLRW solutions but puts constraints
on the magnitude of the mass of the graviton coming from the consistency with
known constraints on homogeneity and isotropy. This would rely on the successful
implementation of the Vainshtein mechanism in the cosmological evolution which
so far has not been investigated in detail. Even if flat FLRW has been proven not
to exist, there are successful constructions of open FLRW solutions (Gumrukcuoglu
et al. 2011). However, at the level of non-linear perturbations instabilities pop up
again and render these solutions phenomenologically not viable. These negative
outcomes forced the considerations of more general fiducial metric. Indeed, if one
assumes a de Sitter reference metric, then one can find FLRW solutions. But the de
Sitter reference metric brings other problems along. The Higuchi bound imposes the
mass of the graviton to be m2 > H2 which turns these solutions inconsistent with
the observational constraints. Similarly, the generalization of the fiducial metric to
a FLRW metric forces a generalized Higuchi bound and one encounters similar
problems (Fasiello and Tolley 2012). As we already explained in the introduction
the dRGT theory is based on a framework in which the massive graviton propagates
on top of a fixed background reference metric. The generalization of dRGT gave
rise to theories of ghost-free bimetric gravity in which the reference metric becomes
dynamical as well. This bimetric generalization of dRGT gives rise to stable self-
accelerating solutions without imposing problems related to the Higuchi bound and
so put into operation new exciting research directions (Fasiello and Tolley 2013).
There has also been other extensions of massive gravity, like time-depending mass
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Fig. 2.2 The cosmological “tree” of massive gravity

of the graviton (Huang 2012) or adding additional degrees of freedom [Quasi-dilaton
D’Amico et al. (2013)] from which some of the generalization might yield stable
self-accelerating solutions (Fig. 2.2).

References

Afshordi N, Geshnizjani G, Khoury J (2009) Do observations offer evidence for cosmological-scale
extra dimensions? JCAP 0908:030. doi:10.1088/1475-7516/2009/08/030

D’Amico G, Gabadadze G, Hui L, Pirtskhalava D (2013) Quasidilaton: theory and cosmol-
ogy. Phys RevD 87:064037. doi:10.1103/PhysRevD.87.064037. http://link.aps.org/doi/10.1103/
PhysRevD.87.064037

Arkani-Hamed N, Dimopoulos S, Dvali G, Gabadadze G (2002) Nonlocal modification of gravity
and the cosmological constant problem

Berkhahn F, Dietrich DD, Hofmann S (2010) Self-protection of massive cosmological gravitons.
JCAP 1011:018. doi:10.1088/1475-7516/2010/11/018

Burrage C, Seery D (2010) Revisiting fifth forces in the Galileon model. JCAP 1008:011. doi:10.
1088/1475-7516/2010/08/011

Chan KC, Scoccimarro R (2009) Large-scale structure in brane-induced gravity II. Numerical
simulations. Phys Rev D 80:104005. doi:10.1103/PhysRevD.80.104005

D’Amico G, de Rham C, Dubovsky S, Gabadadze G, Pirtskhalava D, Tolley AJ (2011) Massive
cosmologies. Phys RevD 84:124046. doi:10.1103/PhysRevD.84.124046. http://link.aps.org/doi/
10.1103/PhysRevD.84.124046

de Rham C (2010) Massive gravity from Dirichlet boundary conditions. Phys Lett B 688:137–141

http://dx.doi.org/10.1088/1475-7516/2009/08/030
http://dx.doi.org/10.1103/PhysRevD.87.064037
http://link.aps.org/doi/10.1103/PhysRevD.87.064037
http://link.aps.org/doi/10.1103/PhysRevD.87.064037
http://dx.doi.org/10.1088/1475-7516/2010/11/018
http://dx.doi.org/10.1088/1475-7516/2010/08/011
http://dx.doi.org/10.1088/1475-7516/2010/08/011
http://dx.doi.org/10.1103/PhysRevD.80.104005
http://dx.doi.org/10.1103/PhysRevD.84.124046
http://link.aps.org/doi/10.1103/PhysRevD.84.124046
http://link.aps.org/doi/10.1103/PhysRevD.84.124046


60 2 Cosmology of Massive Gravity in the Decoupling Limit

de RhamC, Dvali G, Hofmann S, Khoury J, Pujolas O et al (2008) Cascading gravity: extending the
Dvali-Gabadadze-Porrati model to higher dimension. Phys Rev Lett 100:251603. doi:10.1103/
PhysRevLett.100.251603

de Rham C, Khoury J, Tolley AJ (2009) Flat 3-brane with tension in cascading gravity. Phys Rev
Lett 103:161601. doi:10.1103/PhysRevLett.103.161601

de Rham C, Gabadadze G (2010) Generalization of the fierz-pauli action. Phys Rev D 82:044020.
doi:10.1103/PhysRevD.82.044020

Deffayet C, Dvali GR, Gabadadze G, Vainshtein AI (2002) Nonperturbative continuity in gravi-
ton mass versus perturbative discontinuity. Phys Rev D 65:044026. doi:10.1103/PhysRevD.65.
044026

Dvali G, Gruzinov A, Zaldarriaga M (2003) The accelerated universe and the moon. Phys Rev D
68:024012. doi:10.1103/PhysRevD.68.024012

Dvali G, Hofmann S, Khoury J (2007) Degravitation of the cosmological constant and graviton
width. Phys Rev D 76:084006. doi:10.1103/PhysRevD.76.084006

Dvali G, Gabadadze G, Shifman M (2002) Diluting cosmological constant via large distance mod-
ification of gravity. pp 566–581

Dvali G, Gabadadze G, Shifman M (2003) Diluting cosmological constant in infinite volume extra
dimensions. Phys Rev D 67:044020. doi:10.1103/PhysRevD.67.044020

Fasiello M, Tolley AJ (2013) Cosmological stability bound in massive gravity and bigravity
FasielloM, Tolley AJ (2012) Cosmological perturbations inmassive gravity and the Higuchi bound.
JCAP 1211:035. doi:10.1088/1475-7516/2012/11/035

Grisa L, Sorbo L (2010) Pauli-Fierz gravitons on Friedmann-Robertson-Walker background. Phys
Lett B 686:273–278. doi:10.1016/j.physletb.2010.02.072

Gumrukcuoglu AE, Lin C, Mukohyama S (2011) Open FRW universes and self-acceleration from
nonlinear massive gravity. JCAP 1111:030. doi:10.1088/1475-7516/2011/11/030

Huang Q-G, Piao Y-S, Zhou S-Y (2012) Mass-varying massive gravity. Phys Rev D 86:124014.
doi:10.1103/PhysRevD.86.124014

LueA, ScoccimarroR, StarkmanGD (2004) ProbingNewton’s constant on vast scales:DGPgravity,
cosmic acceleration and large scale structure. Phys Rev D 69:124015. doi:10.1103/PhysRevD.
69.124015

Lue A, Starkman G (2003) Gravitational leakage into extra dimensions: probing dark energy using
local gravity. Phys Rev D 67:064002. doi:10.1103/PhysRevD.67.064002

Nicolis A, Rattazzi R, Trincherini E (2009) The Galileon as a local modification of gravity. Phys
Rev D 79:064036. doi:10.1103/PhysRevD.79.064036

Nicolis A, Rattazzi R (2004) Classical and quantum consistency of theDGPmodel. JHEP 0406:059.
doi:10.1088/1126-6708/2004/06/059

Scoccimarro R (2009) Large-scale structure in brane-induced gravity I. Perturbation Theory Phys
Rev D 80:104006. doi:10.1103/PhysRevD.80.104006

Steven W (1989) The cosmological constant problem. Rev Mod Phys 61:1–23
Vainshtein AI (1972) To the problem of nonvanishing gravitation mass. Phys Lett B 39:393–394.
doi:10.1016/0370-2693(72)90147-5

http://dx.doi.org/10.1103/PhysRevLett.100.251603
http://dx.doi.org/10.1103/PhysRevLett.100.251603
http://dx.doi.org/10.1103/PhysRevLett.103.161601
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1103/PhysRevD.65.044026
http://dx.doi.org/10.1103/PhysRevD.65.044026
http://dx.doi.org/10.1103/PhysRevD.68.024012
http://dx.doi.org/10.1103/PhysRevD.76.084006
http://dx.doi.org/10.1103/PhysRevD.67.044020
http://dx.doi.org/10.1088/1475-7516/2012/11/035
http://dx.doi.org/10.1016/j.physletb.2010.02.072
http://dx.doi.org/10.1088/1475-7516/2011/11/030
http://dx.doi.org/10.1103/PhysRevD.86.124014
http://dx.doi.org/10.1103/PhysRevD.69.124015
http://dx.doi.org/10.1103/PhysRevD.69.124015
http://dx.doi.org/10.1103/PhysRevD.67.064002
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1088/1126-6708/2004/06/059
http://dx.doi.org/10.1103/PhysRevD.80.104006
http://dx.doi.org/10.1016/0370-2693(72)90147-5


Chapter 3
Proxy Theory

The exact non-linear theory of massive gravity has a very complex structure and
therefore in this section we will take an alternative approach of covariantizing the
Lagrangian in the decoupling limit, and use the resulting theory as a proxy and
study the cosmology in this proxy theory. This procedure was successfully used
in the context of DGP model and there it was shown to be a convenient tool to
analyze the cosmology and perturbations. Once we covariantize the decoupling limit
Lagrangian, the resulting proxy theory is not a massive gravity theory anymore but
rather a non-minimally coupled scalar-tensor theory. Nevertheless, they might have
similar cosmological properties since they share the same decoupling limit. In this
section we first show how to construct the proxy theory from the decoupling limit
and illustrate its theoretical consistency. We compute the covariant equations of
motions and prove that they contain at most second order derivatives acting on the
fields. We then work out the consequences of this covariantization for cosmology
and specifically for late-time acceleration. We investigate the stability conditions for
perturbations in detail and comment on the existing of degravitating solutions. We
thenmove onto more general cosmology and follow the helicity-0 mode contribution
to the Universe throughout its evolution and its effects on structure formation. This
is based on our work presented in de Rham and Heisenberg (2011).

For the construction of our proxy theory let us start with the first interaction
between the helicity-0 and helicity-2 modes in the decoupling limit and integrate it
by part

hμνX(1)
μν = hμν(∂α∂

απημν − ∂μ∂νπ) = (�h − ∂μ∂νhμν)π (3.1)

Recall that the Ricci scalar in the weak field limit corresponds to R = ∂μ∂νhμν−�h,
such that the covariantization of (3.1) would give rise to

(�h − ∂μ∂νhμν)π →︸︷︷︸
cov.

−Rπ (3.2)
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After applying the same procedure to the other two interactions (even though more
cumbersome) we obtain the following correspondences

hμνX(1)
μν ←→ −πR (3.3)

hμνX(2)
μν ←→ −∂μπ∂νπGμν (3.4)

hμνX(3)
μν ←→ −∂μπ∂νπ�αβL

μανβ , (3.5)

which relate the decoupling limit of massive gravity to some scalar-tensor interac-
tions. The tensors Gμν and Lμανβ are the Einstein and the dual Riemann tensors
respectively

Gμν = Rμν − 1

2
Rgμν (3.6)

Lμανβ = 2Rμανβ + 2(Rμβgνα + Rναgμβ − Rμνgαβ − Rαβgμν)

+R(gμνgαβ − gμβgνα) . (3.7)

Thus, the covariantization of the decoupling limit Lagrangian (2.1) gives birth to the
following proxy theory

L = √−g
(
M2

PlR + Lπ(π, gμν) + Lmatter(ψ, gμν)
)

, (3.8)

where the Lagrangian for π is

Lπ = MPl

(
−πR − a2

�3 ∂μπ∂νπGμν − a3
�6 ∂μπ∂νπ�αβL

μανβ
)

, (3.9)

and Lmatter is the Lagrangian for the matter fields ψ living on the geometry. This
proxy theory represents a theory of GR on top of which a new scalar degree of
freedom is added, which is non-minimally coupled to gravity. This theory can now
be considered by its own and the modified equations of motion can be studied.
Actually, this form of tensor structure has been first discussed by Horndeski (1974)
in the context of the most general scalar-tensor theory. However, in difference to this
work, the interesting point is that we obtained these interactions as a direct outcome
of massive gravity. The variation of the action with respect to gμν yields the modified
Einstein equation as

Gμν = MPlT
π
μν + Tmatter

μν (3.10)

with

Tπ
μν = Tπ(1)

μν − a2
�3 T

π(2)
μν − a3

�6 T
π(3)
μν (3.11)

http://dx.doi.org/10.1007/978-3-319-18935-2_2
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and

Tπ(1)
μν = X(1)

μν + πGμν

Tπ(2)
μν = X(2)

μν + 1

2
Lμανβ∂

απ∂βπ + 1

2
Gμν(∂π)2

Tπ(3)
μν = X(3)

μν + 3

2
Lμανβ�

αβ(∂π)2 (3.12)

The structure of the Einstein and Riemann dual tensor ensures that π enters at most
with two derivatives in the stress-energy tensor. Furthermore, the fact that G00, G0i,
L0i0j and L0ikj have at most one time-derivative guarantees the propagation of con-
straints.

Since we are not in the Einstein frame, these stress-energy tensors are only trans-
verse on-shell, and satisfy the relation, DμT

μ
ν = ∂νπEπ where Eπ is the equation of

motion with respect toπ. Since both the Einstein tensor and the Riemann dual tensor
are transverse, this equation of motion is also at most second order in derivative,

Eπ = R + 2a2
�3 G

μν�μν

+3a3
�6 L

μανβ(�μν�αβ + Rγ

βαν∂γπ∂μπ) = 0 (3.13)

where we have used the fact that

DνDαDβπLμανβ = −Rγ

βαν∂γπLμανβ = 1
4∂

μπLGB (3.14)

with the Gauss-Bonnet term LGB = R2 +R2
μανβ − 4R2

μν. In the following, we study
the resulting cosmology in this proxy theory and address the question of whether or
not self-accelerating solutions exist.

3.1 de Sitter Solutions

In what follows, we focus on the cosmology of the covariantized theory (3.8), (3.9),
and focus for that on a FRW background with scale factor a(t) and Hubble parameter
H. The resulting effective energy density and pressure for the field π are then

ρπ = MPl(6Hπ̇ + 6H2π − 9a2
�3 H

2π̇2 − 30a3
�6 H3π̇3) (3.15)

Pπ = 2MPl

[
6a3
�6 Hπ̇2(π̇(Ḣ + H2) + 3

2
Hπ̈) + a2

2�3
π̇(π̇(3H2 + 2Ḣ) + 4Hπ̈)

− (π(3H2 + 2Ḣ) + 2Hπ̇ + π̈)
]

, (3.16)
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and the equation of motion for π (3.13) in the FRW space-time is equivalent to

6a2
�3

(
3H3π̇ + 2HḢπ̇ + H2π̈

)
+ 18a3

�6

(
3H2Ḣπ̇2 + 3H4π̇2 + 2H3π̇π̈

)
= R.

(3.17)
This expression can be rewritten more compactly

φ̈ + 3Hφ̇ − R = 0 (3.18)

after the field redefinition of the form

φ̇ = H2
(
6a2
�3

π̇ + 18a3
�6

π̇2H

)
. (3.19)

3.1.1 Self-accelerating Solution

Now, wewould like to study the self-acceleration solution with H = const and Ḣ = 0
and Tμν = 0 (i.e. the cosmological constant is set to zero). For the π field we make

the ansatz π̇ = q�3

H . Furthermore, we assume that we are in a regimewhere Hπ � π̇

so that we can neglect terms proportional to π and consider only the terms including
π̇ or π̈. Thus, the Friedmann and field equations can be recast into

H2 = m2

3
(6q − 9a2q

2 − 30a3q
3) (3.20)

H2(18a2q + 54a3q
2 − 12) = 0 . (3.21)

Assuming H �= 0, the field equation then imposes,

q =
−a2 ±

√
a22 + 8a3

6a3
(3.22)

while the Friedmann equation (3.20) sets the Hubble constant of the self-accelerated
solution. Similar to what we had found in the decoupling limit, our proxy theory
admits a self-accelerated solution, with the Hubble parameter set by the graviton
mass. For the stability condition of this self-accelerating solution the first constraint
we have is to demand H > 0. The other constraint comes from the stability condition
for perturbations on the background which we discuss in what follows.
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3.1.2 Stability Conditions

Our proxy theory exhibits a self-accelerating solution with H2 ≈ m2. The next
step consists of studying the perturbations on this background and their stability
constraints. For this purpose, we consider perturbations on top of the background
solution in the following way

π = π0(t) + δπ(t, x, y, z) (3.23)

The second order action for the perturbations is

Lδπ = − a2
�3 ∂μδπ∂νδπGμν − a3

�6 ∂μδπ∂νδπ�
(0)
αβ L

μανβ

− 2a3
�6 ∂μπ0∂νδπDαDβδπL

μανβ , (3.24)

which can be written in the form

L = Ktt(δπ̇
2 − c2s

a2
(∇δπ)2) (3.25)

where

Ktt = −3MPla3H2

�3

(
a2 + 6a3H

�3
π̇

)
(3.26)

and

c2s = 1

3

(
2 + a2�3

a2�3 + 6a3Hπ̇

)
. (3.27)

The condition for the stability is then given by Ktt > 0, c2s > 0 and H2 > 0, which
are fulfilled if

a2 > 0 and 0 > a3 > −1

8
a22. (3.28)

To compare this result with the condition obtained in the decoupling limit in
Eq. (2.13), we first mention that aProxy2 = −2aDL2 and aProxy3 = aDL3 . In terms of
the parameters used in the decoupling limit, we need to compare the conditions
aProxy2 < 0, aProxy3 > − 1

8 (a
Proxy
2 )2 to the conditions aDL2 < 0 and − 2

3 (a
DL
2 )2 <

aDL3 < − 1
2 (a

DL
2 )2. We see that Proxy theory is less constraining but is still within the

parameter space derived in the decoupling limit. It is not surprising that the stability
condition in the decoupling limit and in the covariantized theory do not coincide
totally as we have explicitly broken the symmetry when getting the proxy.

It is also worth pointing out that the self-accelerating solution by itself does not
propagate any superluminalmode in the approximationwe used, since 2/3 < c2s < 1.

http://dx.doi.org/10.1007/978-3-319-18935-2_2
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We emphasize as well that the constant π̇ solution is a dynamical attractor. For
this we just consider time dependent perturbations π(t) = π0(t) + δπ(t) which is a
special case of (3.23) fulfilling the same stability conditions. The equation of motion
for perturbations simplifies to1

∂t (a
3
δπ̇) = 0 (3.29)

The solution for δπ̇ is given by

δπ̇(t) ∼ a−3 . (3.30)

Thus, these perturbations δπ(t) redshift away exponentially compared to the π̇ =
const self-accelerating solution. Therefore, the self-accelerating solution is an attrac-
tor.

3.1.3 Degravitation

More interestingly, one can wonder whether degravitation can be exhibited in these
class of solutions. If one takes π = π(t) and H = 0, it is straightforward to see
that we obtain ρπ = 0, so the field has absolutely no effect and cannot help the
background to degravitate.

Interestingly, the interactions considered here are precisely of the same form as
that studied in Charmousis et al. (2012). There as well, in the absence of spatial
curvature κ = 0, the contribution from the scalar field vanishes if H = 0. Comparing
with Charmousis et al. (2012), we can hence wonder whether the addition of spatial
curvature κ �= 0 in our proxy theory could help achieving degravitation, but relying
strongly on spatial curvature brings concerns over instabilities which are beyond the
scope of this thesis.

3.2 Cosmology

In the following we would like to discuss in more detail the interplay of all the
constituents of the universe. We assume that matter, radiation and the scalar field π

contribute to the total energy density of the universe.

H2 = 8πG

3
(ρπ + ρrad + ρmat) (3.31)

1It is an attractor solution as long as Hπ � π̇.
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Consider the scalar field π as a perfect fluid with the effective energy density and
pressure given by (3.15), (3.16). Thus, the equation of state parameter of this new
field would be

ωπ = 1

P
(
−12a3H

3π̇3 + 2�3Ḣ(2�3π − a2π̇
2)

+ 3H2(2�6π − π̇2(a2�
3 + 6a3π̈))

+ 2�6π̈ + 4Hπ̇(�6 − 3a3Ḣπ̇2 − a2�
3π̈)

)
, (3.32)

where P = 3H(2�6π̇ − 10a3H2π̇3 + H(2�6π − 3a2�3π̇2)). At this point one
should mention that the energy density for the π-field is not conserved but rather
given by DμT

μ
ν = ∂νπEπ (where Eπ is the equation of motion for π), which is

not surprising since π is non-minimally coupled to gravity in the Jordan frame.
Therefore, we can have ωπ < −1.

In the following we will first assume that at early times in the evolution history
of the Universe we can neglect the extra density coming from the helicity-0 ρπ.2 We
will then check this assumption by plugging the solution for H back in the equation
of motion for π. If we assume that at early times the radiation density dominates, we
simply have

H2 = 8πG

3
ρrad0 a−4 a ∼ t1/2 ω = 1/3 (3.33)

During the radiation era, the dominant terms in the equation of motion for π are
then 54a3

�6 H2Ḣπ̇2 + 54a3
�6 H4π̇2 + 36a3

�6 H3π̇π̈ = 0 which can be solved assuming the
previous expression for H (3.33)

πrad ∼ t1.75 yielding ρπ
rad ∼ MPlt

−1/4 (3.34)

At later times when the matter dominated epoch starts we have

H2 = 8πG

3
ρmat
0 a−3 a ∼ t2/3 ω = 0 (3.35)

Now the dominant terms in the equation of motion for π are 18a2
�3 H3π̇+ 12a2

�3 HḢπ̇+
6a2
�3 H

2π̈ − 12H2 − 6Ḣ = 0. We get for π this time

πmat ∼ c2 · t + t2�3

4a2
(3.36)

2At early times the densities are large and the Vainshtein mechanism freezes out the helicity-0
mode.
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Fig. 3.1 Fluid densities ρrad ∼ a−4, ρmat ∼ a−3 and ρπ during the epochs of radiation, matter and
λ-domination normalised to today ρπ. During the radiation domination the energy density for π

goes as ρπ
rad ∼ a−1/2 and during matter dominations as ρπ

mat ∼ a−3/2 and is constant for later times
ρπ

λ = const

yielding

ρπ
mat = c2MPlt

−1 + 3MPl(−14a22 + 5a3)�3

32a32
. (3.37)

Summarizing, during radiation domination the effective energy density for the π-
field goes like ρπ

rad ∼ t−1/4 while during matter domination as ρπ
mat ∼ t−1 and

approaches a constant at late time. As shown in Fig. 3.1, ρπ can be neglected at early
times where ρπ

mat � ρmat and ρπ
rad � ρrad.

3.3 Structure Formation

We end the cosmological analysis by looking at the evolution of matter density
perturbations. The density perturbations follow the evolution

δ̈m + 2Hδ̇m = ∇2ψ

a2
(3.38)

where ψ is the Newtonian potential. The effects of π are all encoded in its contri-
bution to the Poisson equation. Consider perturbations of π around its cosmological
background solution π(x, t) = π0(t) + φ(x, t). φ gives a contribution to the New-
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tonian potential of the form ψ = φ/MPl. In the Newtonian approximation we have
|φ̇| � |∇φ|. The equation of motion for the scalar field in first order in φ is

− 2a2
�3 G

μνDμDνφ − 2a3
�3 Lμανβ(4�

αβ
0 DμDνφ + 2Rγβαν∂γπ0∂

μφ) = δR (3.39)

which is equivalent to (neglecting φ̇)

[
−2a2

�3 (3H2 + 2Ḣ) + 16a3
�6 (2H3π̇0 + 2ḢHπ̇0 + Hπ̈0)

] ∇2φ

a2
= δR (3.40)

and last but not least we need the trace of Einstein equation, (3.10)–(3.12). Perturbing
the trace to first order, we get

− MPlδR =
[
3 − 2

a2
�3 (2Hπ̇0 + π̈0) − 3a3

�6 (2Ḣπ̇2
0 + 5H2π̇2

0 + 4Hπ̈0π̇0)
]∇2φ

a2

+ δT

MPl
(3.41)

To reach that point, we have neglected the perturbations of the curvature of the form
δRπ0 as they are negligible compared to MPlδR since we work in the regime where
π0 � MPl. As a first approximation, such terms are hence ignored.

The perturbations for the source is just given by δT = −ρmδm for non-relativistic
sources, thus we have

∇2φ

a2
= ρmδm

3MPlQ (3.42)

where Q stands for

Q ≡ 1 − 2a2
�3 (2Hπ̇0 + π̈0 + MPl(2Ḣ + 3H2)) (3.43)

− a3
�6

(
5H2π̇2

0 + 2Ḣπ̇2
0 + 4Hπ̈0π̇0 − 16MPl

3
(2H3π̇0 + 2HḢπ̇0 + H2π̈0)

)
.

Finally, the modified evolution equation for density perturbations is

δ̈m + 2Hδ̇m = ρmδm

M2
Pl

(
1 + 1

3Q
)

. (3.44)

Knowing the background configuration it is then relatively straightforward to derive
the effect on structure formation. We recover the usual result that when the field is
screened Hπ̇ � �3, i.e. Q is large, the extra force coming from the helicity-0 is
negligible and the formation of structure is similar as in �CDM.
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3.4 Covariantization from the Einstein Frame

So far we have studied our proxy theory in the Jordan frame. The unavoidable ques-
tion arises whether our results remain the same in a different frame. Instead of
covariantizing our Lagrangian in the Jordan frame, it is on an equal footing to go to
the Einstein frame first where the Ricci scalar is not multiplied by the scalar field π

and covariantize the theory at that stage. Our starting Lagrangian was

LDL = −1

2
hμνEαβ

μνhαβ + hμν
3∑

n=1

an

�
3(n−1)
3

X(n)
μν (�) + 1

2MPl
hμνTμν (3.45)

Remember, the mixing between the Ricci scalar and the scalar field was due to the
covariantization of themixed term hμνX(1)

μν , which we can diagonalize by performing
the following change of variables

hμν = h̄μν + πημν . (3.46)

The Lagrangian then becomes

Ldiag = −1

2
h̄μνEαβ

μνh̄αβ + 3

2
π�π + a2

�3 h̄
μνX(2)

μν − 3

2

a2
�3 �π(∂π)2

+ a3
�6 h̄

μνX(3)
μν − 2

a3
�6 (∂π)2([�2] − (�π)2) + 1

2MPl
(h̄μν + πημν)Tμν (3.47)

Covariantizing this action is straightforward. We use again the correspondences
in (3.3) and it has been shown explicitly that the covariantization of the Galileon
interactions

�π(∂π)2 →︸︷︷︸
cov.

�π(∂π)2 (3.48)

−2(∂π)2([�2] − �π2) →︸︷︷︸
cov.

2(∂π)2
(

(�π)2 − [�2] − 1

4
(∂π)2R

)

does not yield any ghostlike instabilities (Deffayet et al. 2009; de Rham and Tolley
2010). Thus, the covariantized action in the Einstein frame is simply given by
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LEinst = M2
PlR + 3

2
π�π − a2MPl

�3 ∂μπ∂νπGμν

− 3

2

a2
�3�π(∂π)2 + 2

a3
�6 (∂π)2

(
(�π)2 − [�2] − 1

4
(∂π)2R

)

− a3MPl

�6 ∂μπ∂νπ�αβL
μανβ + Lm(ψ, (1 + π)gμν) (3.49)

As you can see, there still remain non-minimal couplings. In these types of theories
one can never fully go to the Einstein frame. Similarly as before, the properties of
Gμν and Lμανβ ensure that their equations of motion lead at most to second order
derivative terms. To find a self-accelerating solution we set again a pure de Sitter
metric, with π̇ = q�3/H. The Friedmann and the field equations then take the form

M2
PlH

2 = 3MPla2�
3q2 + 10MPla3�

3q3 − 1

2

�6

H2 q
2

+ 3a2
�6

H2 q
3 + 15a3

�6

H2 q
4 + �3(−1 + 3q(a2 + 4a3q))

+ 2MPl(a2 + 3a3q)H
2 = 0 (3.50)

When comparing the above Friedmann and the field equations with the one we had in
the Jordan frame (3.20), we see significant differences coming from the extra terms
which were not there in the Jordan frame. These terms yield Friedmann and field
equations proportional to q4 and H4 which are more difficult to solve.

Fig. 3.2 Covariantization
from different frames



72 3 Proxy Theory

For fairness, we should compare both actions in the same frame (Fig. 3.2). We do
so by performing a conformal transformation on the action (3.9):

g̃μν = �2gμν with �2 =
(
1 − π

MPl

)
. (3.51)

Using the fact that

�;μ = − 1

MPl�
∂μπ

�;μν = − 1

M2
Pl�

3
∂μπ∂νπ − 1

MPl�
�μν

(ln�);μν = −�−2�;μ�;ν + �−1�;μν (3.52)

we can write down how the following important quantities transform

√−g = �−4
√−g̃

R = �2R̃ − 18�−2

M2
Pl

(∂̃π)2 − 6

MPl
�̃π

Rμν = R̃μν − 2�−4

M2
Pl

∂̃μπ∂̃νπ − 2�−2

MPl
∇̃μ∂̃νπ

−4�−4

M2
Pl

g̃μν(∂̃π)2 − �−2

MPl
g̃μν�̃π

Gμν = G̃μν − 2�−4

M2
Pl

∂̃μπ∂̃νπ − 2�−2

MPl
∇̃μ∂̃νπ

+5�−4

M2
Pl

g̃μν(∂̃π)2 + 2
�−2

MPl
g̃μν�̃π (3.53)

For simplicity we consider the case for which a3 = 0, so under this conformal
transformation the covariantized action (3.9) becomes

LJord = M2
PlR̃ − 3

2
�−4(∂̃π)2 − a2MPl

�3

(
∂̃μπ∂̃νπG̃μν

)

−a2MPl

�3

(
3

2

�−2

MPl
(∂̃π)2�̃π + 5

4

�−4

M2
Pl

(∂̃π)4

)
(3.54)
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In the limit where π � MPl we have then finally the following expression

LJ = M2
PlR + 3

2
π�π − a2MPl

�3 ∂μπ∂νπGμν − 3

2

a2
�3�π(∂π)2 , (3.55)

which coincideswith the theory obtained from theEinstein frame, (3.49)with a3 = 0.
So within the regime of validity of our results, our conclusions are independent of
the choice of frame. However beyond the regime π � MPl the theory originally
constructed from the Jordan frame could violate the null energy condition from the
term proportional to (∂π)4.

3.5 Proxy Theory as a Subclass of Horndeski
Scalar-Tensor Theories

As we mentioned before, the proxy theory is a subclass of Horndeski scalar-tensor
theories which describe the most general scalar tensor interactions with second order
equations of motion. In the following we will relate the general functions of he
Horndeski interactions with the Proxy theory. The Horndeski theory is given by the
action

s =
∫

d4x
√−g

(
5∑

i=2

Li + Lm

)
(3.56)

with

L2 = K(π,X)

L3 = −G3(π,X)[�]
L4 = G4(π,X)R + G4,X

(
[�]2 − [�2]

)

L5 = G5(π,X)Gμν�
μν − 1

6
G5,X

(
[�]3 − 3[�][�2] + 2[�3]

)
(3.57)

where the arbitrary functions K, G3, G4 and G5 depend on the scalar field π and its
derivatives X = − 1

2 (∂π)2 and furthermore Gi,X = ∂Gi/∂X and Gi,π = ∂Gi/∂π.
Our proxy theory corresponds to the case for which the above functions take the
concrete following forms

K(π,X) = 0

G3(π,X) = 0

G4(π,X) = M2
Pl − MPlπ − MPl

�3 a2X

G5(π,X) = 3
MPl

�6 a3X (3.58)
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In the previous section we have studied the stability of the scalar field perturbation
on top of the self-accelerating background and ignored the tensor perturbations so
far. We can study the tensor perturbations as well and put constraints on the two free
parameters. For that we can use the general expression for the tensor perturbations
in the Horndeski theory studied already in Kimura and Yamamoto (2012)

L = Ktt

(
ḣ2ij −

c2s
a2

(∇hij)
2
)

(3.59)

with

Ktt = G4 − 2XG4,X − X
(
Hπ̇G5,X − G5,π

)

c2s = G4 − X
(
π̈G5,X + G5,π

)
Kt t

(3.60)

with the functions K, G3, G4 and G5 given as in (3.58). The sound speed of the tensor
perturbations depends explicitly on the background solution for π. Similarly as in
the previous sections we can put constraints on the two parameters of the theory by
demanding the ghost absence Ktt > 0 and Laplacian stability c2s > 0 with the self
accelerating background solution π̇ = q�3/H in the regime Hπ � π̇. This gives as
constraints

a2 > 0 and a3 > a22. (3.61)

These constraints are less constraining than the constraints coming from the stability
analysis of the scalar perturbations ofπ but are still within the same parameter space.
On top of these stability constraints we can tighten up more the parameters using the
constraints from gravitational Cherenkov radiation which is

c2s > 1 − 2 × 10−15 (3.62)

This constraint tighten up further the parameters space to be in the regime a2 > 0
and a3 < (3 + 5 × 10−15)a22.

3.6 Critical Assessment of the Proxy Theory

We would like now undertake a critical assessment of the analysis performed so
far in this chapter, which were the outcomes in de Rham and Heisenberg (2011).
The following results obtained in this section are unpublished results and serve as
clarification of the validity of our previous results. The first limitation is the fact
that the solutions found in Sect. 3.1.1 are only valid in the approximation Hπ � π̇

we used. There, we have argued that de Sitter is a legitimate solution when such an
approximation holds. In the followingwewill study the validity of this approximation
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in more detail. In a pure de Sitter background with constant expansion rate HdS, the
exact homogeneous field equation reads

6H2
dS

�3

(
a2 + 6a3

HdS

�3
π̇

)
π̈ + 18

H3
dS

�3

(
a2 + 3a3

HdS

�3
π̇

)
π̇ = 12H2

dS. (3.63)

In our previous analysis, we solved this equation together with Friedman equation
by using the approximation πH � π̇ and the ansatz of constant π̇. However, this
equation can actually be exactly solved and the corresponding solution exhibits the
two following branches for π̇:

π̇ =
−a2�3 ± e− 3

2HdSt
√
4a3eC1 + (a22 + 8a3)e3HdSt�6

6a3HdS
(3.64)

with C1 an integration constant. At late times, one can easily see that π̇ evolves
towards the constant value

π̇(t � H−1
dS ) � − �3

6a3HdS

[
a2 ±

√
a22 + 8a3

]
. (3.65)

This coincides with our previous finding when assuming the ansatz π̇ = q �3

HdS
,

showing that such a solution is indeed the attractor solution in a de Sitter background.
It is important to notice that this solution has been obtained by assuming that the de
Sitter background is not driven by theπ field, but by some other independent effective
cosmological constant. Now we want to study if such an effective cosmological
constant can be generated by the π field itself so that de Sitter is an actual solution of
the system. From the above solution for π̇, it is straightforward to obtain the solution
for π by means of a simple integration

π(t � H−1
dS ) � − �3

6a3HdS

[
a2 ±

√
a22 + 8a3

]
t + C2 (3.66)

where C2 is another integration constant. If we plug this solution into the energy
density of π (which gives the r.h.s. of Friedman equation), we obtain

ρπ �Mp�
3

18

[
108C2

H2
dS

�3 +
(
a32
a23

+ 6
a2
a3

)
±

(
a22 + 2a3

a23

)√
a22 + 8a3

]

− Mp�
3

a3

(
a2 ±

√
a22 + 8a3

)
HdSt. (3.67)

At early times when HdSt � 1 we can neglect the second term in this expression,
the energy density of the π field is approximately constant, as it corresponds to a de
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Sitter solution. However, we must keep in mind that this solution is actually valid
at late times and, in that case, the second term growing linearly with time drives
the energy density evolution and, thus, de Sitter cannot be the solution. This also
agrees with the fact that the condition πH � π̇ will be eventually violated at late
times because the scalar field grows in time, whereas H and π̇ are assumed to be
constant. One might think that a way out would be to tune the parameters so that

a2 ±
√
a22 + 8a3 = 0. However, the only solution to this equation is a3 = 0, which

represents a singular value. In fact, if we take the limit a3 → 0 in the above solution,
we obtain ρπ → 6C2HdSMp + 4Mp�

3HdSt/a2 so the growing term remains. From
this simple analysis, it seems that de Sitter cannot exist as an attractor solution of
the phase map, but it can only represent transient regimes. This can in turn be useful
for inflationary models where the accelerated expansion needs to end, but it is less
appealing as dark energy model.

In the following, we will make this simple analysis more rigorous and look at it
in more detail. In order to obtain a general overview of the class of cosmological
solutions that one can expect to find in the proxy theory, we shall perform a dynamical
system analysis. This will give us the critical points of the cosmological equations
as well as their stability. The first step to perform the dynamical system analysis will
be to obtain the equations to be analysed. Since we are interested in cosmological
solutions, the metric will be assumed to take the FRW form with flat spatial sections.
The most convenient time variable for the analysis will be the number of e-folds
N ≡ ln a. The equation of motion for the π field in terms of this time variable is
given by

(
a2 + 6a3H

2 π′

�3

)
π′′ + 3

[
a2

(
1 + H′

H

)
+ a3H2

�3

(
3 + 5

H′

H

)
π′

]
π′

= 2
�3

H2

(
1 + H′

2H

)
(3.68)

where the prime denotes derivative with respect to N. In addition to this equation,
we also need the corresponding Einstein equations, which in our case are given by

H2 = 1

6M2
p

ρπ (3.69)

2HH′ + 3H2 = − 1

2M2
p

pπ (3.70)

where we have used that dN = Hdt and ρπ and pπ are the energy density and
pressure of the π field expressed in terms of N. We have now 3 equations for the
two variables π and H. Of course, not all three equations are independent. In order
to reduce these equations to the form of an autonomous system, we will first use
the Friedman constraint to obtain an expression for π in terms of π′ and H. The
resulting expression will constitute a constraint for π and will allow us to get rid of
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its dependence in the remaining equations so that we end upwith dependence only on
H, H′,π′ andπ′′. This will result very useful since it reduces the number of variables
in our autonomous system. In fact, we can use y ≡ π′ as one of our dynamical
variables and, then, we have a system of two first order differential equations for y
and H. After some simple algebra, one can reduce the equations to the following
autonomous system:

dy

dN
= −1 + 3b2H2y + (25b3 − 9b22)H

4y2 − 87b2b3H6y3 − 180b23H
8y4

1 − 6b2H2y + 6(b22 − 5b3)H4y2 + 52b2b3H6y3 + 105b23H
8y4

y

dH

dN
= −2 − 8b2H2y + (9b22 − 33b3)H4y2 + 72b2b3H6y3 + 135b23H

8y4

1 − 6b2H2y + 6(b22 − 5b3)H4y2 + 52b2b3H6y3 + 105b23H
8y4

H

(3.71)

where we have introduced the rescaled parameters b2 ≡ M3
p

�3 a2 and b3 ≡ M6
p

�6 a3. One

can immediately see that H = y = 0 is a stable critical point which is independent of
the parameters and corresponds to the vacuumMinkowski solution. For the remaining
critical points, we need to solve the equations

1 + 3b2H
2y + (25b3 − 9b22)H

4y2 − 87b2b3H
6y3 − 180b23H

8y4 = 0,

2 − 8b2H
2y + (9b22 − 33b3)H

4y2 + 72b2b3H
6y3 + 135b23H

8y4 = 0.

To solve these equations, it will be convenient to introduce a new rescaling as ŷ ≡
H2yb2 and the new constant c3 ≡ b3/b22 = a3/a22. Then, the previous equations can
be written in the simpler form

1 + 3ŷ + (25c3 − 9)ŷ2 − 87c3ŷ
3 − 180c23ŷ

4 = 0, (3.72)

2 − 8ŷ + (9 − 33c3)ŷ
2 + 72c3ŷ

3 + 135c23ŷ
4 = 0. (3.73)

As we can see, we have an overdetermined system of equations so that solutions
cannot be found for arbitrary c3. In fact, the above equations can be solved for ŷ and
c3 in order to obtain the models with additional critical points. Remarkably, there is
only one real solution for these equations and is given by c3 � 0.094 and ŷ � −3.99.
Notice that this in fact does not represent one single critical point for the autnomous
system, but a curve of critical points in the plane (y,H). The obtained result implies
that pure de Sitter does not correspond to a critical point of the proxy theory and
can only exist as a transient regime, as we had anticipated from our previous simple
analysis.

Another interesting feature of the autonomous system is the existence of sepa-
ratrices in the phase map determined by the curve along which the denominators
in (3.71) vanish, i.e.

1 − 6b2H
2y + 6(b22 − 5b3)H

4y2 + 52b2b3H
6y3 + 105b23H

8y4 = 0. (3.74)
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This curve can be simplified if we use our previously defined rescaled variable ŷ and
parameter c3, in terms of which the separatrix is determined by

1 − 6ŷ + 6(1 − 5c3)ŷ
2 + 52c3ŷ

3 + 105c23ŷ
4 = 0 (3.75)

which is a quartic polynomial equation. Being the independent term and the highest
power coefficient both positive, this equation does not always have real solutions so
the separatrix does not exist for arbitrary parameters. Indeed, the previous equation
determines a curve in the plane (ŷ, c3), which can be regarded as the function

c3 = 15 − 26ŷ ± √
2
√
60 − 75ŷ + 23ŷ2

105ŷ2
. (3.76)

This function has been plotted in Fig. 3.3. As we can see in that figure, the value of
c3 determines the number of real solutions and, therefore, the number of separatrices
in the phase map of the autonomous system. We find that for c3 > 0, the system
always exhibits 4 separatrices. When c3 = 0, the cubic and quartic terms of the
separatrix equation vanish, so we only have two real solutions. In the cases with
0 > c3 > −0.093, the system has 4 separatrices again. When −0.093 > c3 >

−0.215, there are only 2 separatrices and, finally, for c3 < −0.215, the equation has
no real solutions and, therefore, it does not generate any separatrix. Special cases are
c3 = −0.093 with 3 separatrices and c3 = −0.215 with only one separatrix. All this
can be clearly seen in Fig. 3.3.

If the solutions of Eq. (3.76) are denoted by ŷ = y∗
i , then, the separatrices are

given by the curves y = b2y∗
i /H

2 or, equivalently, H = ±√
b2y∗

i /y in the phase map.
Notice that, depending on the sign of b2y∗

i , the corresponding separatrix will only
exist in the semi-plane y > 0 or y < 0 for b2y∗

i > 0 or b2y∗
i < 0 respectively. This

can be seen in the examples shown in Fig. 3.4 where we have plotted the phase maps
corresponding to two characteristic cases, namely, one with c3 = 1.5 (which has 4
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Fig. 3.3 In this plot we show the curve determined by Eq. (3.75) in the plane (ŷ, c3). The left panel
shows a detail to see more clearly the structure of the corresponding area. As explained in the main
text, the value of the parameter c3 determines the number of separatrices in the phase map
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Fig. 3.4 In this figure we show two examples of phase map portraits of the dynamical autonomous
system for b2 = 1 and b3 = 1.5 (with c3 = 1.5) in the left panel and b2 = 1 and b3 = −0.1
(with c3 = −0.1) in the right panel. These values have been chosen to show examples with c3 > 0
(always with 4 separatrices) and c3 < 0 with 2 separatrices (see main text and Fig. 3.3). The red
lines represent the corresponding separatrices and the red point denotes the Minkowski vacuum
solution. We can see that this solution is indeed an attractor. Concerning the attracting behaviour
of the separatrices, we can see that the upper ones behave as attractors, whereas the lower ones act
as repelers. In the right panel, we additionally indicate with green points the analytical solutions
found in previous sections under the approximation πH � π̇

separatrices and positive c3) and one with c3 = −0.1 (which has only 2 separatrices
and negative c3). One interesting feature that we can observe in both cases is the
attracting nature of the upper separatrices,whereas the lower ones behave as repellers.
Remarkably, the attracting separatrices do not behave as asymptotic attractors, but
the trajectories actually hit the separatrix and the universe encounters a singularity.

The phase map shown in the right panel corresponds to parameters satisfying
all the existence and stability requirements obtained in previous sections from the
approximate analytical solutions. The green points in the phase map denote the
solutions that we had identified with stable self-accelerating solutions. However,
we can see now that the eventual attractor solution is not actually de Sitter but the
Minkowksi vacuum solution. The stability condition for such a solution actually
corresponds to the convergence of the nearby trajectories.

It is worthwhile pointing out once more that, although (quasi) de Sitter solutions
do not exist as critical points in the phase maps, it is possible to have transient
regimes with quasi de Sitter expansion. One possibility where such transient regimes
can be found correspond to the trajectories above the upper separatrix in the right
panel of Fig. 3.4. These trajectories initially evolve towards large values of y, but,
at some point, there is a turnover where it goes towards smaller values of y. While
this turnover is taking place, the value of H can remain nearly constant for some
time and, thus, we can have a period of quasi de Sitter expansion. The number of e-
folds corresponding to this transient regime depends on the parameters and the initial
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Fig. 3.5 In this figure we show the numerical solution for H (left panel) and y (right panel) with the
initial conditions Hini = 2 and yini = 5. We can see the transient period of quasi de Sitter expansion
in the evolution of H corresponding to the turnover explained in the main text and how it lasts for
barely 1−2 e-folds. In addition, we can see the discussed singularity corresponding to the moment
when the trajectory reaches the separatrix at a finite number of e-folds

conditions, but it is generally quite small (see Fig. 3.5 where we plot the evolution
of one particular solution).

In order to study the properties of the dynamical systemnear the separatrix,wewill
rewrite the autonomous system in terms of the variable ŷ, since, as suggested from
our previous analysis, the equations will look simpler. In particular, the separatrices
will become straight vertical lines in this variable and the behaviour of the trajectories
near them can be straightforwardly studied. In such variables, the autonomous system
reads

dŷ

dN
= − 5 − 13ŷ + (9 − 41c3)ŷ + 57c3ŷ3 + 90c23ŷ

4

1 − 6ŷ + 6(1 − 5c3)ŷ2 + 52c3ŷ3 + 105c23ŷ
4

ŷ

dH

dN
= −2 − 8ŷ + (9 − 33c3)ŷ2 + 72c3ŷ3 + 135c23ŷ

4

1 − 6ŷ + 6(1 − 5c3)ŷ2 + 52c3ŷ3 + 105c23ŷ
4
H. (3.77)

As we anticipated, the equations look simpler in these variables. In particular, the
equation for ŷ completely decouples from the equation for the Hubble expansion
rate. Near the separatrix located at ys we can expand ŷ = ŷs + δŷ and obtain the
leading terms of the above equations, given by

dδŷ

dN
= ky

δŷ
,

dH

dN
= kH

δŷ
H (3.78)

with

ky ≡ − 5 − 13ŷs + (9 − 41c3)ŷs + 57c3ŷ3s + 90c23ŷ
4
s

1 − 6 + 12(1 − 5c3)ŷs + 156c3ŷ2s + 420c23ŷs
ŷs (3.79)

kH ≡ −2 − 8ŷs + (9 − 33c3)ŷ2s + 72c3ŷ3s + 135c23ŷ
4
s

1 − 6 + 12(1 − 5c3)ŷs + 156c3ŷ2s + 420c23ŷs
. (3.80)
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Now, it is straightforward to read the conditions for the separatrix to attract the
trajectories. Notice that the attracting or repelling nature of the separatrix will be
the same from both sides of it. Thus, whenever ky is negative, the separatrix will
represent an attractor of the phase map, whereas it will be a repeller for positive ky.

The equation for δŷ near the separatrix can be easily integrated to give

δŷ(N) � ±√
2kyN + Cy (3.81)

with Cy an integration constant and the two branches correspond to both sides of the
speratrix. If the separatrix is an attractor, we have that ky is negative and, therefore,

the solution only exists until Ns = − Cy
2ky

, confirming our previous statement that
the trajectories do not approach asymptotically the separatrix, but they hit it and end
there. On the other hand, with the solution for δŷ, we can also obtain the solution for
H, which is given by

H(N) = CHe
± kH

ky

√
2kyN+Cy (3.82)

with CH another integration constant. We see that the Hubble expansion rate does
not diverge at the separatrix, but it goes to the constant value CH so that the energy
density of the field remains finite. However, the derivative of the Hubble expansion
rate near the separatrix evolves as

Ḣ � H2 kH√
2kyN + Cy

(3.83)

so it goes to infinity as it approaches the separatrix. This signals a divergence in the
pressure of the scalar field when the trajectory hits the separatrix so we find a future
sudden singularity. This kind of singularity was first studied in Barrow (2004) and
corresponds to the type II according to the classification performed in Nojiri et al.
(2005).

So far, in our study we have focused on the case when only the π field contributes
to the energy density of the universe and we have neglected any other possible
component that might be present. We have shown that the only critical point is the
pure vacuum Minkowski solution with H = y = 0. Moreover, we have shown that
the separatrices can also act as attractors of the phase map and, when this happens,
the evolution ends in a singularity where the derivative of the Hubble expansion
rate diverges. In order to have a more realistic scenario, at least a matter component
should be included. This will add a new dimension to the phase space and, thus, a
new phenomenology is expected to arise. In particular, it could change some stability
requirements and additional critical points might appear. Therefore, let us discuss in
the following the case with matter fields.
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If we include a pressureless matter component and use the variables H, ŷ and3

�m ≡ ρmb2/(6H2), to describe the extended cosmological evolution, the corre-
sponding autonomous system reads

dŷ

dN
= −

(
5 − 13ŷ + (9 − 41c3)ŷ2 + 57c3ŷ3 + 90c23ŷ

4
)
ŷ + (1 − 3ŷ − 9c3ŷ2)H2�m

1 − 6ŷ + 6(1 − 5c3)ŷ2 + 52c3ŷ3 + 105c23ŷ
4 − 2(1 + 6c3ŷ)H2�m

dH

dN
= −2 − 8ŷ + (9 − 33c3)ŷ2 + 72c3ŷ3 + 135c23ŷ

4 − 3(1 + 6c3ŷ)H2�m

1 − 6ŷ + 6(1 − 5c3)ŷ2 + 52c3ŷ3 + 105c23ŷ
4 − 2(1 + 6c3ŷ)H2�m

H

d�m

dN
= 1 + 2ŷ + 24c3ŷ2 − 12c3ŷ3 − 45c23ŷ

4

1 − 6ŷ + 6(1 − 5c3)ŷ2 + 52c3ŷ3 + 105c23ŷ
4 − 2(1 + 6c3ŷ)H2�m

�m. (3.84)

Since we are seeking for critical points with �m �= 0, we can solve for it from the
vanishing of dŷ/dN to obtain the expression

�mH
2 = 5 − 13ŷ + (9 − 41c3)ŷ2 + 57c3ŷ3 + 90c23ŷ

4

−1 + 3ŷ + 9c3ŷ2
ŷ (3.85)

for the potential new critical points. Then, we can plug this relation into the remaining
two equations given by the vanishing of dH/dN and d�md/N to obtain the critical
points. However, when doing so we end up with two equations that only depend on
ŷ which are, in general, incompatible for any value of c3. Therefore, the inclusion of
matter does not introduce new critical points in the phase map.

Above we have seen that the only critical point existing in the phase map of
the Proxy theory (even if we include a dust component) is the vacuum Minkowski
solution. As it is known, Gauss-Bonnet terms can give rise to accelerated expansion
so that we will now modify our original Proxy theory by including a coupling of
the scalar field to the Gauss-Bonnet term of the form LπGB = a4π(RαβγδR

αβγδ −
4RαβRαβ + R2). The cosmological equations in this case can be expressed as the
following autonomous system:

dŷ

dN
= −

(
5 − 13ŷ + (9 − 41c3)ŷ2 + 57c3ŷ3 + 90c23ŷ

4
)

+ 4εĤ2(3 − 3ŷ − 10c3ŷ2)

1 − 6ŷ + 6(1 − 5c3)ŷ2 + 52c3ŷ3 + 105c23ŷ
4 + 16Ĥ4 + 8εĤ2(1 − 2ŷ − 9c3ŷ2)

ŷ

dĤ

dN
= −2 − 8ŷ + (9 − 33c3)ŷ2 + 72c3ŷ3 + 135c23ŷ

4 + 16Ĥ4 + 12εĤ2(1 − 2ŷ + 8c3ŷ2)

1 − 6ŷ + 6(1 − 5c3)ŷ2 + 52c3ŷ3 + 105c23ŷ
4 + 16Ĥ4 + 8εĤ2(1 − 2ŷ − 9c3ŷ2)

Ĥ

where ε ≡ sign(b4) and Ĥ ≡ H
√|b4|, with b4 ≡ a4M3

p/�
3 (and the number of

e-folds is defined with such rescaled Hubble expansion rate). In order to look for
critical points with H �= 0, we solve for Ĥ2 from the equation dŷ/dN = 0 and plug
the obtained solution into the equation dĤ/dN = 0. After doing so, we arrive at the
following equation:

3Notice the factor b2 in this definition of the matter density parameter that does not appear in the
usual definition.
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Ĥ

2 − 3ŷ − 10c3ŷ2
= 0 (3.86)

whose solution is again Ĥ = 0, signaling that the simple coupling of the scalar field
to the Gauss-Bonnet term that we have considered is not able to introduce additional
critical points.

To end, let us point out that the problematic term avoiding the existence of de Sitter
critical points in the cosmological evolution is theπR term in the action. Our original
approximation πH � π̇ actually means that said term is negligible. However, our
findings show that such a term cannot be consistently maintained small and it is the
responsible for the absence of de Sitter solutions in the Proxy theory. Thus, a natural
modification of it that will lead to de Sitter solutions consists in simply dropping the
problematic termπR from the action. It is evident that this modified theory will have
de Sitter solutions because in that case our previously used approximation is exact.
In fact, such a term is the only one violating the shift symmetry so that without it,
only the derivatives of the scalar field are physically relevant, but not the value of
the field itself. We can proceed analogously as before to obtain the corresponding
autonomous system and look for the critical points. When doing so, one can show
that there are de Sitter critical points and that they are stable. In Fig. 3.6 we plot an
example of the phase map for the case without the πR term in the action and we
show the existence of the de Sitter attractor.

Fig. 3.6 In this figure we
show an example of the
phase map for the proxy
theory without the πR term
that spoils the existence of de
Sitter critical points. We can
see that the de Sitter solution
is a an attractor of the
cosmological evolution. The
red lines denote the
corresponding separatrices
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3.7 Horndeski Vector Fields

We have seen that our proxy theory corresponds to a subclass of Horndeski scalar
tensor interactions which contain second order equations of motion. The Galileon
interactions present a subclass of Horndeski interactions as well. It has been shown
that there is no theory equivalent to scalar Galileons for vector fields meaning that
there is no “vector Galileons” besides the Maxwell kinetic term with second order
equations of motion on flat space-times (Deffayet et al. 2013). However, motivated
by the non-minimal coupling between the scalar field and Einstein tensor Gμν and
dual Riemann tensor Lμναβ we can ask a similar question for a vector field, i.e. what
is the most general action for a vector field with a non-minimal coupling to grav-
ity leading to second order equations of motion for both, the vector field and the
gravitational sector. Hereby, we want preserve the gauge symmetry and so consider
an action containing only kinetic terms for the vector field so that neither poten-
tial terms nor direct couplings of the vector field to curvature will be considered,
but only derivative couplings. In principle, we could consider all possible terms
involving a coupling of Fμν to the Riemann tensor. However, in order to guarantee
that the gravitational equations remain of second order, the couplings must be to a
divergence-free tensor constructed with the Riemann tensor. We have seen in the
above sections that in 4-dimensions, in addition to the metric there are only two ten-
sors satisfying this condition, namely the Einstein tensor and the dual Riemann tensor
defined by Lαβγδ = − 1

2 ε
αβμνεγδρσRμνρσ , where εμναβ = ε[μναβ] is the Levi-Civita

tensor. This divergenceless tensors are related to the non-trivial Lovelock invariants
in 4 dimensions, i.e., the Ricci scalar and the Gauss-Bonnet term as explained in
Sect. 1.3.

Since the Einstein tensor is symmetric, its contraction with Fμν vanishes for sym-
metry reasons GμνFμν = 0. Note that even though Gμν and gαβ are both divergence-
free, their product Gμνgαβ is not so that we cannot allow the termGμνgαβFμαFνβ. The
same argument applies to the product of two Einstein tensors so that GμνGαβFμαFνβ

is not allowed either. Only the dual Riemann tensor is divergence-free and it can
be coupled to FμαFνβ. Thus, the desired action with only second order equations of
motion is remarkably simple and reads

S =
∫

d4x
√−g

[
−1

2
M2

pR − 1

4
FμνFμν + 1

4M2 L
αβγδFαβFγδ

]

=
∫

d4x
√−g

[
−1

2
M2

pR − 1

4
FμνFμν

+ 1

2M2

(
RFμνFμν − 4RμνFμσFν

σ + RμναβF
μνFαβ

)]
, (3.87)

where M2 would be the only free parameter of the theory and its sign will be fixed
by stability requirements. One might further wonder if interactions of the form
LαβγδF̃αβF̃γδ and LαβγδFαβF̃γδ (with F̃αβ = 1

2 ε
αβμνFμν being the dual of Fμν) could

http://dx.doi.org/10.1007/978-3-319-18935-2_1
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fulfill our requirements and be a valid interaction which should be taken into account.
The latter one would explicitly break the parity invariance, but this symmetry is not
one of our requirements. Nevertheless, at a closer look one realizes that these inter-
actions are nothing else but coupling of the Riemann tensor to FμαFνβ. Since the
Riemann tensor is not divergence-free, these interactions give rise to higher order
equations of motion. So interactions of the form LαβγδFαβFγδ fulfill our require-
ment of second order equation of motion and gauge invariance and are equivalent
to RαβγδF̃αβF̃γδ, while interactions of the form LαβγδF̃αβF̃γδ are not since they are
equivalent to RαβγδFαβFγδ and thus give higher order equations of motion. This rea-
soning can be understood from the fact that Fμν is a closed form (so it satisfies
Bianchi identities) whereas its dual is not. Furthermore, one might wonder whether
the interaction changes if we contract the indices between the dual Riemann ten-
sor and FμαFνβ in a different way, i.e. whether LαγβδFαβFγδ gives rise to a different
interaction but it turns out to be that this term is proportional to LαβγδFαβFγδ such
that one can reabsorb its effect into M2. Note also that this Horndeski interaction is
the only interaction yielding second order equations of motion in four dimensions.
In higher dimensions one can construct other non-minimal interactions based on the
divergence-free tensors in that dimension; more precisely, one will have additional
divergence-free tensors associated to the corresponding Lovelock invariants which
can then be contracted with the field strength tensor.

After working out the scalar field case, Horndeski proved that this coupling is
actually the only non-minimal coupling for the electromagnetic field leading to sec-
ond order equations of motion and recovering Maxwell theory in flat spacetime.
As can be seen from the action, Maxwell theory corresponds to the limit where the
spacetime curvature is much smaller thanM2. In this limit, the non-minimal coupling
is strongly suppressed with respect to the usual Maxwell term.

That the particular combination appearing in (3.87) leads to second order equa-
tions of motion can be easily understood. Only the non-minimal coupling contains
more than two derivatives so this is the only term that could lead to higher order terms
in the equations of motion. In order to show that the equations remain of second order
is convenient towrite the dualRiemann tensor asLαβγδ = − 1

2 ε
αβμνεγδρσRμνρσ . Then,

it becomes apparent why the M2-term will lead to second order equations of motion
by virtue of the Bianchi identities for the Riemann tensor and Fμν. For instance, if we
perform the variation of the non-minimal interactionwith respect toAμ, the only pos-
sible danger terms with higher order derivatives will come from derivatives applying
on the Riemann tensor once we do integration by parts 1

2 ε
αβμνεγδρσ∇γRμνρσFαβδAδ.

Using the Bianchi identity for the Riemann tensor Rμν[ρσ;γ] = 0 we see that this
dangerous terms automatically cancel.4 We can also see this explicitly by comput-
ing the corresponding equations of motion. The non-gravitational field equations are
therefore of second order and are given by

4The Bianchi identity for an arbitrary p-form dω = 0, where ω is the strength of the p-form,
guaranties that the Lagrangian εμν...εab...ωμν...ωab... · · · (∂ρωcd...) · · · (∂eωστ ...) for the p-form will
only give rise to second-order equations of motion (Deffayet et al. 2010).
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[
gμρ

gνσ − 1

M2 L
μνρσ

]
∇νFρσ = 0 . (3.88)

Because of the transversality of the dual Riemann tensor, we see that the above
equation is divergence-free. Moreover, since Lαβγδ is divergence-free, we can also
write the above equation as

∇ν

[
Fμν − 1

M2 L
μνρσFρσ

]
= 0, (3.89)

which resembles the usual form of Maxwell equations.
Varying the action (3.87) with respect to the metric yields the following energy

momentum tensor for the vector field

Tμν = 1

2M2

[
−RαβγδF̃

αβF̃γδgμν + 2RμβγδF̃
β

ν F̃γδ + 4∇γ∇β
(
F̃μβF̃γν

)]

−FμαF
α

ν + 1

4
gμνFαβF

αβ (3.90)

Although the M2-term of the energy momentum tensor might seem to contain more
than second order derivatives, because F̃αβ is divergence-free in the absence of exter-
nal currents, this is actually not the case. In fact, it can be written in the more
suggestive form

∇γ∇β

(
F̃μβF̃γν

)
= Rμ

λβγF̃
λβF̃γν + RλγF̃μλF̃γν + ∇γF̃μβ∇βF̃

γν . (3.91)

If a current is present so that F̃αβ is no longer divergence-free, this equation acquires
a contribution from the current. In Eq. (3.91) one sees explicitly that only second
derivatives are present. For more detail see our work in Jiménez et al. (2013).

If one gives up on the gauge invariance meaning that we allow for terms which
are not invariant under Aμ → Aμ + ∂μθ then one can indeed construct “vector
Galileons” or in more general Horndeski vector interactions giving rise to three
propagating degrees of freedom with second order equations of motion. In the fol-
lowing our purpose will be to find a generalization of the Proca action for a massive
vector field. In particular, we aim to finding the general lagrangian terms (includ-
ing derivative non-linear interactions) with the requirement that only three physical
degrees of freedom propagate, as it corresponds to a general massive spin-1 field.
We will first analyse the case of a flat Minkowksi spacetime and we will general-
ize our results to the case of an arbitrary curved spacetime. This is an unpublished
result which we quote here without entering into much details. The Proca action is
the theory describing a massive vector field, which propagates the corresponding 3
polarizations (2 transverse plus 1 longitudinal) . The mass term breaks explicitly the
U(1) gauge invariance such that the longitudinal mode propagates as well. How-
ever, the zero component of the vector field does not propagate. The Proca action is
given by
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SProca =
∫

d4x

[
−1

4
F2μν + 1

2
m2A2

]
(3.92)

In this theory, the temporal component of the vector field does not propagate and
generates a primary constraint. The consistency condition of this primary constraint
generates a secondary constraint, whose Poisson bracket with the primary constraint
is proportional to the mass so that only in the massless case it corresponds to a first
class constraint generating a gauge symmetry.

Now we want to generalize the above Proca action to include derivative self-
interactions of the vector field, but without changing the number of propagating
degrees of freedom. In order to obtain such interactions, we will analyze all the
possible Lorentz invariant terms that can be built at each order. The simplest modi-
fication is of course promoting the mass term to an arbitrary potential V(A2), since
this trivially does not modify the number of degrees of freedom.

The first term that we can have to the next order in the vector field is simply

L3 = f3(A
2)(∂ · A) (3.93)

with f3(A2) and arbitrary function of the vector field norm. It is a trivial observation
that in (3.93) the component A0 does not propagate, even if we include the Maxwell
kinetic term, and it acts as a lagrange multiplier. The easiest way to see it is by
computing the corresponding Hessian, which vanishes trivially. Also notice that the
presence of the function f3 is crucial since if it was simply a constant, that termwould
be a total divergence and, thus, with no contribution to the field equations.

To next order, the independent interaction terms that we can have are given by

L4 = f4(A
2)

[
c1(∂ · A)2 + c2∂ρAσ∂

ρAσ + c3∂ρAσ∂σAρ
]

(3.94)

with a priori free parameters c1, c2 and c3 and f4 an arbitrary function. Now, we need
to fix the parameters such that only three physical degrees of freedom propagate,
i.e., such that we still have a second class constraint. In order to eliminate one
propagating degree of freedom, we need a constraint equation, which is guaranteed
if the determinant of the Hessian matrix vanishes. The Hessian matrix for (3.94) is
given by

Hμν

L4
= ∂2L4

∂Ȧμ∂Ȧν

= f(A2)

⎛
⎜⎜⎝
2(c1 + c2 + c3) 0 0 0

0 −2c2 0 0
0 0 −2c2 0
0 0 0 −2c2

⎞
⎟⎟⎠ (3.95)

For a vanishing Hessian matrix we have two possibilities. First possibility corre-
sponds to choosing c2 = 0. In this case the Hessian matrix contains three vanishing
eigenvalues corresponding to three constraints. Therefore, if we choose c2 = 0, only
the zero component of the vector field propagate while the other three degrees of
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freedom do not propagate. The other possibility for a vanishing determinant of the
Hessian matrix corresponds to c1 + c2 + c3 = 0. Without loss of generality we
can set c1 = 1 and therefore c3 = −(1 + c2). In this case the Hessian matrix only
contains one vanishing eigenvalue and hence only one propagating constraint. This
case corresponds to three propagating degrees of freedom.

L4 = f4(A
2)

[
(∂ · A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂σAρ
]

(3.96)

The vanishing of the determinant of the Hessian matrix guaranties the existence
of a constraint. To find the expression for the constraint, we have to compute the
conjugatemomentum�

μ

L4
= ∂L4

∂Ȧμ
. The zero component of the conjugatemomentum

is given by
�0

L4
= −2f4(A

2) �∇ �A (3.97)

As one can see, the zero component of the conjugate momentum does not contain
any time derivative yielding the constraint equation.

For the next order interactions the possible terms are the following:

L5 = f5(A
2)

[
d1(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂

ρAσ − 3d3(∂ · A)∂ρAσ∂σAρ

+ 2d4∂ρAσ∂
γAρ

∂σAγ + 2d5∂ρAσ∂
γAρ

∂γAσ
]

(3.98)

with the free parameters d1, d2, d3, d4 and d5. In this quantic Lagrangian (3.98)
the additional possible term ∂σAρ∂

γAρ∂γAσ is equal to ∂ρAσ∂γAρ∂γAσ since
∂γAρ∂γAσ is symmetric under the exchange of ρ and σ. The Hessian matrix for
this quintic Lagrangian is giving by

H00
L5

= −6(d1 − d2 − d3)( �∇ �A) + 6(d1 − 3d2 − 3d3 + 2(d4 + d5))Ȧt

H01
L5

= H10
L5

= (6d3 − 2(3d4 + d5))At,x + 2(3d2 − 2d4)Ax,t

H02
L5

= H20
L5

= (6d3 − 2(3d4 + d5))At,y + 2(3d2 − 2d4)Ay,t

H03
L5

= H30
L5

= (6d3 − 2(3d4 + d5))At,z + 2(3d2 − 2d4)Az,t

H11
L5

= −6d2A
2
α(Az,z + Ay,y) − 2(3d2 − 2d4)(Ax,x − At,t)

H12
L5

= H21
L5

= 2d5(Ax,y + Ay,x)

H13
L5

= H31
L5

= 2d5(Ax,z + Az,x)

H22
L5

= 2(−3d2Az,z + (−3d2 + 2d5)Ay,y − 3d2Ax,x + (3d2 − 2d5)At,t)

H23
L5

= H32
L5

= 2d5(Ay,z + Az,y)

H33
L5

= (−6d2 + 4d5)Az,z − 6d2(Ay,y + Ax,x) + 2(3d2 − 2d5)At,t (3.99)
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In order to have only three propagating degrees of freedom the parameters need to
fulfill the following conditions

d1 − d2 − d3 = 0, d1 − 3d2 − 3d3 + 2(d4 + d5) = 0,

3d3 − 3d4 − d5 = 0, 3d2 − 2d5 = 0 (3.100)

which are fulfilled by choosing (again without loss of generality we can choose
d1 = 1)

d3 = 1 − d2, d4 = 1 − 3d2
2

, d5 = 3d2
2

(3.101)

Hence, the quintic Lagrangian with only three physical propagating degrees of free-
dom is given by

L5 = f5(A
2)

[
(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂

ρAσ − 3(1 − d2)(∂ · A)∂ρAσ∂σAρ

+ 2

(
1 − 3d2

2

)
∂ρAσ∂

γAρ
∂σAγ + 2

(
3d2
2

)
∂ρAσ∂

γAρ
∂γAσ

]
(3.102)

The Hessian matrix with this chosen parameters then becomes

Hμν

L5
= f5(A

2)

⎛
⎜⎜⎝
0 0 0 0
0 −6d2(Az,z + Ay,y) 3d2(Ax,y + Ay,x) 3d2(Ax,z + Az,x)

0 3d2(Ax,y + Ay,x) −6d2(Az,z + Ax,x) 3d2(Ay,z + Az,y)

0 3d2(Ax,z + Az,x) 3d2(Ay,z + Az,y) −6d2(Ay,y + Ax,x)

⎞
⎟⎟⎠

with a vanishing determinant det (Hμν

L5
) = 0 as we required. The corresponding zero

component of the conjugate momentum �
μ

L5
= ∂L5

∂Ȧμ
is given by

�0
L5

= −3f5(A
2)

(
d2(A

2
x,z + A2

y,z + A2
x,y) − 2Az,zAy,z − 2(−1 + d2)Ay,zAz,y

+ d2A
2
z,y − 2(Az,z + Ay,y)Ax,x + 2Ax,yAy,x − 2d2Ax,yAy,x + d2A

2
y,x

− 2(−1 + d2)Ax,zAz,x + d2A
2
z,x

)
(3.103)

As you can see, there is no time derivatives appearing in the expression of the
zero component of the conjugate momentum, representing the constraint equation.
Thus the Lagrangian for the most general Proca vector field yields

LProca = −1

4
F2μν + 1

2
m2(Aμ)2

L3 = f3(A
2)(∂ · A)

L4 = f4(A
2)

[
(∂ · A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂σAρ
]
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L5 = f5(A
2)

[
(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂

ρAσ − 3(1 − d2)(∂ · A)∂ρAσ∂σAρ

+ 2

(
1 − 3d2

2

)
∂ρAσ∂

γAρ
∂σAγ + 2

(
3d2
2

)
∂ρAσ∂

γAρ
∂γAσ

]
(3.104)

The interactions can be also expressed in terms of the Levi-Civita tensors

L2 = − 1

24
EμναβEμναβf2(A

2) = f2(A
2) (3.105)

L3 = −1

6
EμναβEρ

ναβf3(A
2)∂μAρ = f3(A

2)(∂ · A) (3.106)

L4 = −1

2

(
EμναβEρσ

αβf4(A
2)∂μAρ∂νAσ + c2EμναβEρσ

αβf4(A
2)∂μAν∂ρAσ

)

= f4(A
2)

[
(∂ · A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂σAρ
]

(3.107)

L5 = −f5(A
2)((1 − 3

2
d2)EμναβEρσγ

β∂μAρ∂νAσ∂αAγ

+3

2
d2(EμναβEρσγ

β∂μAρ∂νAσ∂γAα))

= f5(A
2)

[
(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂

ρAσ − 3(1 − d2)(∂ · A)∂ρAσ∂σAρ

+ 2

(
1 − 3d2

2

)
∂ρAσ∂

γAρ
∂σAγ + 2

(
3d2
2

)
∂ρAσ∂

γAρ
∂γAσ

]
(3.108)

The Lagrangians L2,L3,L4,L5 in (3.104) are the only Vector interactions which
propagate three degrees of freedom. The interactions beyond the quintic order give
zero contributions, hence the serie stops here.

L6 = EμναβEρσδγAκA
κ∂μAρ∂νAσ∂αAδ∂βAγ = 0 (3.109)

When we constructed the interactions out of the Levi-Civita tensors, the indices of
the potential interactions were always contracted with each other, meaning that we
had always AμAμ. One might wonder, if it yields different interactions once the
indices of the mass term are contracted with the Levi-Civita tensors as well. But
on closer inspection one can see that they give rise to the same interactions once
integrations by part are performed (where we choosed without loss of generality
f2,3,4,5(A2) = (Aμ)2)

Lal
2 = −1

6
EμναβEρ

ναβAμAρ = (Aμ)2 (3.110)

Lal
3 = −1

2
EμναβEρσ

αβAμAρ∂νAσ = (Aμ)2(∂ · A) − Aμ Aν∂νAμ (3.111)

Lal
4 = −EμναβEρσδ

βAμAρ∂νAσ∂αAδ = (Aμ)2
[
(∂ · A)2 − ∂ρAσ∂σAρ

]
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− 2AμAν∂νAμ(∂ · A) + 2AμAν∂νAρ∂
ρAμ (3.112)

Lal
5 = EμναβEρσδγAμAρ∂νAσ∂αAδ∂βAγ = (Aμ)2

[
−(∂ · A)3 + 3(∂ · A)∂ρAσ∂σAρ

2∂ρAσ∂
γAρ

∂σAγ

] + 3AμAν∂νAμ(∂ · A)2 − 6AμAν∂νAρ∂
ρAμ(∂ · A)

+ 6AμAν∂νAρ∂
ρAγ∂

γAμ − 3AμAν∂νAμ∂ρAσ∂σAρ (3.113)

Indeed, let us pay more attention to the special case with f2,3,4,5(A2) = (Aμ)2

LProca = −1

4
F2μν + 1

2
m2(Aμ)2

L3 = (Aμ)2(∂ · A)

L4 = (Aμ)2
[
(∂ · A)2 + c2∂ρAσ∂

ρAσ − (1 + c2)∂ρAσ∂σAρ
]

L5 = (Aμ)2
[
(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂

ρAσ − 3(1 − d2)(∂ · A)∂ρAσ∂σAρ

+ 2

(
1 − 3d2

2

)
∂ρAσ∂

γAρ
∂σAγ + 2

(
3d2
2

)
∂ρAσ∂

γAρ
∂γAσ

]
(3.114)

Now, if we extract out only the longitudinal mode of the vector field, meaning that
we replace the vector field as Aμ = ∂μφ then we recover the Galileon interactions

L2 = (∂π)2

L3 = (∂π)2�π

L4 = (∂π)2
[
(�π)2 − (∂μ∂νπ)2

]

L5 = (∂π)2
[
(�π)3 − 3�π(∂μ∂νπ)2 + 2(∂μ∂νπ)3

]
(3.115)

This is another way of showing that the interactions we found for the vector field
indeed only propagate three degrees of freedom, since when we plug in the longitu-
dinal mode, we obtain the Galileon interaction with at most second order equations
of motion. The terms for the vector field ∂ρAσ∂ρAσ and ∂ρAσ∂σAρ are not the same,
but when we replace Aμ = ∂μφ, they are since the derivatives acting on the scalar
field commute ∂μ∂νπ = ∂ν∂μπ . This has a huge concequence: the interactions for
the vector field have more free parameters than the Galileon interactions. It means
that if we had started with the Galileon interactions and performed the replacement
∂μφ → Aμ we would have been missing some of the interactions which also yield
three propagating degrees of freedom. The vector interaction have two more free
parameters (namely what we called c2 and d2 in (3.114)). In fact, an alternative way
of finding our generalized Proca action is by restoring the U(1) gauge invariance and
imposing that the Stueckelberg field propagates only one degree of freedom, i.e., it
satisfies second order field equations. One must be careful though, since in addition
to the pure Stueckelberg sector, it is also necessarily to analyse the terms mixing
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the Stueckelberg field and the vector field. For L4, no additional constraints arise
from the mixing terms, since we obtain terms of the general form Kμν(Aμ)∂μφ∂νφ,
which automatically leads to second order contributions for φ. However, for L5 we
obtain terms like Kαβγδ(Aμ)∂α∂βφ∂γ∂δφ so we need to impose the tensor Kαβγδ(Aμ)

to have the correct structure. It is also worth noticing that the arbitrary functions
appearing in our generalized Proca action have been assumed to be functions of A2.
In the Stueckelberg language, this is so in order to guarantee the second order nature
of the field equations with respect to φ. There are however additional contribution
upon which those arbitrary functions might depend without altering the number of
degrees of freedom. Such terms are those for which the Stueckelberg field give a
trivial contribution, i.e., those which are U(1) gauge invariant. Thus, those functions
could actually depend also on the combinations F2 or FF∗. From the vector field
perspective, these terms do not contain time derivatives of A0, so that it will not
spoil the existence of the constraints. One must be cautious however, since arbitrary
functions of such invariants typically give rise to violations of the hyperbolicity of
the field equations. The equations of motion for (3.114) are given by

EProca = ∇νFμν + m2Aμ

E3 = 2Aμ(∂ · A) − 2Aν∂μAν

E4 = 2
(
Aμ

[
(∂ · A)2 − (1 + c2)∂ρAσ∂σAρ + c2∂ρAσ∂σAρ

]

+ c2A
2(−�Aμ + ∂ν∂μA

ν) − 2c2A
ρ
∂νAρ∂νAμ − 2(∂ · A)Aρ

∂μAρ

+ 2(1 + c2)A
ρ
∂νAρ∂μA

ν
)

E5 = 2Aμ

[
(∂ · A)3 + 3(−1 + d2)(∂ · A)∂ρAσ∂σAρ − 3d2(∂ · A)∂ρAσ∂

ρAσ

+ (2 − 3d2)∂ρAσ∂
γAρ

∂σAγ + 3d2∂ρAσ∂
ρAγ

∂σAγ

]
− 3Aρ

(
−d2(4∂νAρ∂νAμ(∂ · A) − 2(∂νAμ∂νAσ + ∂νAμ∂σAν)∂

σAρ

+Aρ(∂νAμ(∂σ∂νAσ − �Aν) + 2(∂ · A)(�Aμ − ∂σ∂μA
σ)

+ (∂ν∂μAσ − 2∂σ∂νAμ + ∂σ∂μAν)∂
σAν))

+ 2((∂ · A)2 + ((−1 + d2)∂νAσ − d2∂σAν)∂
σAν)∂μAρ

+ (4(−1 + d2)∂νAρ(∂ · A) + d2Aρ(−∂σ∂νAσ + �Aν)

+ 2((2 − 3d2)∂νAσ + d2∂σAν)∂
σAρ)∂μA

ν
)

(3.116)

Note also that the equations of motion for the vector field does reproduce the
equations of motion of the Galileon if we take the divergence of it and replace
Aμ = ∂μφ.

Now we would like to consider the interactions on a curved space-time. The
Lagrangian in curved space-time becomes (with the short cut X = − 1

2A
2
μ)
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Lkin = −1

4
F2μν

L2 = G2(X)

L3 = G3(X)(DμA
μ)

L4 = G4(X)R + G4,X

[
(DμA

μ)2 + c2DρAσD
σAρ − (1 + c2)DρAσD

σAρ
]

L5 = G5(X)GμνDμAν − 1

6
G5,X

[
(DμA

μ)3 − 3d2(DμA
μ)DρAσD

ρAσ

− 3(1 − d2)(DμA
μ)DρAσD

σAρ + 2(1 − 3d2
2

)DρAσD
γAρDσAγ

+ 2(
3d2
2

)DρAσD
γAρDγAσ

]

+ e1G
μνAμAν + e2L

μναβFμνFαβ (3.117)

All these interaction give only rise to three propagating degrees of freedom in curved
background.

3.8 Summary and Discussion

In this chapter we have started with the decoupling limit interactions of massive
gravity and constructed a proxy theory to it by covariantizing the interactions. The
resulting theory represents a specific class of non-minimally coupled scalar-tensor
interactions.Wehave shown that the equations ofmotion contain atmost secondorder
derivatives acting on the fields. We studied the theory in the context of cosmology
and were able to find self-accelerating solutions in a given approximation. However,
beyond this approximation we have shown that self-accelerating solutions do not
exist due to the existence of the πR coupling. But once one is willing to give up on
this term, one can successfully construct stable de Sitter solutions. This would still
correspond to a subclass of Horndeski theories and in their own right still be worth
to investigate in more detail for cosmology.

On solar system and galactic scales gravity is very well compatible with General
Relativity and correction terms from a modified gravity model like the Proxy theory
need to be investigated carefully. Since we constructed the Proxy theory from the
decoupling limit of massive gravity, the effects of Proxy theory on these scales
are cloaked by the Vainshtein mechanism exactly in the same way as in massive
gravity, where the scalar field interactions become appreciable to freeze out the
field fluctuations, yet with some observational signatures on larger scales in cosmic
structure formation. In contrast to the decoupling limit the self-accelerating solution
we found in the approximated regime differs from a�CDM cosmological evolution.
The alteration of theHubble function can be experimentally tested using the distance-
redshift relation of supernovae, and measurements of the angular diameter distance
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as a function of redshift, as in the case of the cosmic microwave background and the
baryon acoustic oscillations.

Apart from these geometrical tests, the time-dependence of evolving cosmic struc-
tures can be investigated, and the influence of the gravitational theory on the geodesics
of relativistic (photons) and nonrelativistic (dark matter) test particles. The first cat-
egory includes gravitational lensing and the Sachs-Wolfe effects, which have been
shown to differ from their GR-expectation in some modified gravity theories, and a
similar result can be expected in Proxy theory.

The second category includes the homogeneous growth of the cosmic structure,
and the formation of galaxies and clusters of galaxies by gravitational collapse.
Again, the additional scalar degree of freedom would influence the time sequence
of gravitational clustering and the evolution of peculiar velocities, as well as the
number density of collapsed objects. In particular, we expect that it would enhance
gravitational clustering since the collapse threshold for density fluctuations in the
large-scale structure would be lowered, leading to a higher comoving number density
of galaxies and clusters of galaxies. Naturally, these changes are degenerate with
a different choice of cosmological parameters and with introducing non-Gaussian
initial conditions, which would be very interesting to quantify.

Recent discrepancies of �CDM with observational data on large scales include
the number of very massive clusters, the strong lensing cross section, anomalous
multipole moments of the CMB, the axis of evil, and large peculiar velocities. It is
beyond the scope of this thesis to address these issues using the Proxy theory, but
we propose how to proceed from constructing a Proxy theory to providing observa-
tionally testable quantities. From our point of view it is advisable to focus on probes
of large scales, due to difficulties related to nonlinear structure formation and the
influence of baryons on small scales. Natural questions concern the homogeneous
dynamics of the Universe, the formation of structures and the shape of geodesics of
relativistic and nonrelativistic particles. Basically, using our proxy theory one should
be able to make predictions concerning these four issues and the combination of the
four should give insight into the nature of the gravitational sector. In our proxy theory,
from the modified field equation the Hubble-function can be derived easily, which
allows the definition of distance measures, needed in the interpretation of super-
nova data. Cosmic structure growth tests the Newtonian limit for slowly-moving
particles and describes the clustering of galaxies and the growth of structures which
are investigated by e.g. gravitational light deflection. Lensing, in turn, makes use of
the geodesic equation for relativistic particles, and measures the correlation func-
tion of the matter density, weighted with the lensing efficiency function, which in
turn is derived from distance measures. It would be quite interesting to study these
observational consequences and constraints of our proxy theory in future works.
An additional complication comes from the cosmological application of the Vain-
shtein mechanism which works such that at early times, the scalar field interactions
are dominated by self-interaction, which suppresses their energy density relative to
that of matter or radiation. If the matter density has decreased sufficiently by cosmic
expansion, the scalar field constitutes an important contribution to the energy density
of the universe and drives cosmic expansion.
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Part II
Superluminality



Chapter 4
Superluminal Propagation
in Galileon Models

Since the Galileon has been introduced, they witnessed a plethora of investiga-
tions. They exhibit a broad and interesting phenomenology. However there is also a
potentially worrying phenomenon, namely the fluctuations of the Galileon field can
propagate superluminally in the regime of interest (Nicolis et al. 2009; Goon et al.
2011), i.e. faster than light. This will be the main focus of this chapter. Since the
Galileon interactions arise in a natural way inmassive gravity, the theories of massive
gravity share the same destiny. So superluminal modes are generic to Galileon and
massive gravity constructions. The theory of special relativity does not accommodate
propagations faster then the speed of light, therefore one often encounters concerns
in the literature about theories yielding propagation faster than light. Superluminal
fluctuations are considered to be a symptom of a sick theory. This is still an ongoing
debate which we will not comment in detail about. Instead, our aim here is to prove
how some class of modified gravities unavoidably give rise to superluminal propaga-
tion. Specially we will focus on the Galileon theories. The superluminal propagation
in the single fieldGalileonmodels has been already shown inNicolis et al. (2009).We
will summarize the essence of the calculation and refer for more detail to the original
paper (Nicolis et al. 2009). The single Galileon scalar field theory has been gener-
alized to a multitude of interacting Galileon fields whose origin again can be traced
back to Lovelock invariants in the higher co-dimension bulk, Hinterbichler et al.
(2010), or such as in Cascading Gravity, de Rham et al. (2008), Padilla et al. (2010,
2011). Furthermore, they have been extended to arbitrary even p-forms whose field
equations still only contain second derivatives (Deffayet et al. 2010). In the literature,
it was claimed that the generalization of the single Galileon field to Bi-Galileon, con-
sisting of two coupled scalar fields with the corresponding invariance under internal
galileon- and shifting transformations of the two fields, avoid superluminal propaga-
tion (Padilla et al. 2010, 2011), which has attracted much attention. A priori there is
no reason what so ever why the Bi-Galileon should avoid superluminal propagation.
In this chapter we will scrutinize the superluminality in Multi-Galileon theories and
argue that in these models, the existence of the Vainshtein mechanism about a static
spherically symmetric source comes hand in hand with the existence of superluminal
modes. We will show that propagation of superluminal fluctuations is a common and
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unavoidable feature in Bi- and Multi-Galileon theories, unlike previously claimed in
the literature. We will start with the proof of superluminal propagation in the case
of the Cubic Galileon for a localized point-source. We show that the mere presence
of Cubic Galileon interactions guaranties the superluminal propagation of modes
in either the radial or the orthoradial direction far away from a point source. This
is intrinsic to the fact that for such configurations, at least one field falls as 1/r at
large distance as expected from the Coulomb potential. For that behaviour, the ma-
trix encoding the temporal perturbations at the order 1/r3 vanishes at infinity while
the orthoradial and radial perturbations arise with opposite sign. This property is
independent of the number of Galileon fields present. We then push the proof fur-
ther for the case of the Quartic Galileon for extended static spherically symmetric
sources. Since the previous result is ubiquitous to any Cubic Galileon interactions,
the only possible way to avoid superluminalities at large distances, is to set all the
Cubic Galileon interactions to zero. In that case, we show that the Quartic Galileon
always lead to some superluminalities at large distances in either the radial or the
orthoradial direction again when considering a sensible extended source. Even if we
restrict ourselves to point sources, we show that the Quartic Bi-Galileon always lead
to the propagation of at least one superluminal radial mode for some range of r. This
result contradicts previous claims found in the litterature. We shall emphasize that
our result relies crucially on the assumption that (1) the field decay as the Coulomb
potential at infinity, (2) that no ghost are present and (3) that the Vainshtein mecha-
nism is active (i.e. the Quartic Galileon interactions dominate over quadratic kinetic
terms near the source), i.e. using the same assumptions as the ones used previously
in the literature. The derivation of our generic result relies on the interplay between
the behaviour of the field at large and at small distances. Finally, we show that near a
localized source superluminalities are also present in the radial direction in a theory
which includes only the Cubic Galileon. In the following we will first recapitulate
the superluminal propagation in the single Galileon model before we move on to the
Bi- and Multi-Galileon theories.

4.1 Single Galileon

Let us first review the equations of motion for the single field Galileon (1.86) in the
spherical coordinates and assume a localized point source ρ = Mδ

3(�r). The equations
of motion for the single Galileon π in the static spherically backgrounds becomes

1

r2
d

dr

{
r3

(
c2

π′

r
+ 2c3(

π′

r
)2 + 2c4(

π′

r
)3

)}
= M

MPl
δ
3(�r) (4.1)

where π′ is the derivative with respect to the radial coordinate r. (Note that for a
time independent Galileon field the equation of motion for L5 is exactly zero). This
equation is equivalent to

http://dx.doi.org/10.1007/978-3-319-18935-2_1
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c2
π′

r
+ 2c3(

π′

r
)2 + 2c4(

π′

r
)3 = M

4πr3MPl
(4.2)

In order to have a healthy spherical solution the coefficients have to fulfill the
following conditions

c2 > 0

c4 ≥ 0

c3 > −
√
3

2
c2c4. (4.3)

Now we have to study the stability of the perturbations around this radial solution
π0(r). For that we expand the Lagrangian to quadratic order in perturbations π =
π0(r) + δπ(t,�r)

L = 1

2
∂tδπKtt∂tδπ − 1

2
∂rδπU rr∂rδπ − 1

2
∂�δπV��∂�δπ (4.4)

with the matrices given by

Urr = c2 + 4c3
π′
0

r
+ 6c4(

π′
0

r
)2

Ktt = c22 + 4c2c3
π′
0
r + 12(c23 − c2c4)(

π′
0
r )2 + 24(c3c4 − 2c2c5)(

π′
0
r )3

c2 + 4c3
π′
0
r + 4c4(

π′
0
r )2

+ 12(3c24 − 4c3c5)(
π′
0
r )4

c2 + 4c3
π′
0
r + 4c4(

π′
0
r )2

V�� = c22 + 2c2c3
π′
0
r + (4c23 − 6c2c4)(

π′
0
r )2

c2 + 4c3
π′
0
r + 6c4(

π′
0
r )2

(4.5)

The stability of the perturbations require Ktt > 0 etc., which is only fulfilled if the
parameters are constrained to

c2 > 0

c4 ≥ 0

c3 ≥
√
3

2
c2c4

c5 ≤ 3

4

c24
c3

(4.6)

Taking into account these stability conditions we can now study the propagation
speed of fluctuations. The radial speed of fluctuations is given by1

1Stability conditions enforce superluminal propagation of radial fluctuationswhile subluminal prop-
agation in the angular direction.



102 4 Superluminal Propagation in Galileon Models

c2r = Urr

Ktt
= 1 + 4

c3
c2

π′
0

r
+ · · · > 1 (4.7)

which is always superluminal in order to fulfill the stability conditions while the ang-
ular speed of fluctuations is forced to be subluminal c2� = V��/Ktt < 1. For the
single Galileon field the superluminal propagation is an unavoidable consequence
for the fluctuations to be stable.

4.2 Multi-Galileon

In the following we will first review the formalism of the Bi- and Multi-Galileon
and hereby adopt the same notation as in Padilla et al. (2010). We start first with
the analysis needed for the study of the propagation of fluctuations around spherical
symmetric backgrounds. We study the perturbations around the background gener-
ated by a point mass at large distances from that source. We show that there is always
one mode which propagates superluminally whenever at least one Cubic Galileon
interaction is present, regardless of the number of Galileons present in the theory.We
also find that there are sensible source distributions around which there will always
be a superluminal mode at large distances even if all the Cubic Galileon interactions
are absent, for any number of Galileons. We then consider more closely the case of
a point mass source when all the Cubic Galileon interactions are absent. In partic-
ular we study the short distance behaviour around a point mass background in the
Bi-Galileon theory, and we find that there is again always a superluminal mode. In
the case of vanishing asymptotic conditions π → 0 the existence of the Vainshtein
mechanism comes hand in hand with the existence of superluminal modes. This con-
stitutes a No-go theorem showing that superluminal modes are generic to Galileon
theories.

We consider the most general Multi-Galileon theory, in four dimensions. This
model consists of N coupled scalar fields, π1, . . . ,πN. For simplicity we neglect
gravity in our analysis and study the theory on Minkowski space-time. Similarly to
Galileon theories (Nicolis et al. 2009), the Multi-Galileon theory is invariant under
internal Galilean and shift transformations

π1 → π1 + bμ
1 xμ + c1

· · ·
· · ·
πN → πN + bμ

Nxμ + cN

If we consider the Galileon scalar fields as scalar fields in their own right, they could
in principle couple to matter in a number of different ways. At the linear level, they
can either couple as a conformal mode, πi T or as a longitudinal mode, ∂μ∂νπiTμν.
However when dealing with conserved matter sources, this coupling vanishes and is
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thus irrelevant, nomatter howmany fields are considered. At the non-linear level, one
can considermore general types of conformal couplings of the form f(π1, . . . ,πN)T.
Notice however that a general non-linear conformal coupling of that form breaks the
Galileon symmetry at the level of the equations of motion directly. In other words, if
one considers a general conformal coupling of the form f(π1, . . . ,πN)T, one could
always perform a field redefinition πi → π̂i of the form π̂1 = f(π1, . . . ,πN) and
π̂j = πj for j = 2, . . . , N, such that only π̂1 couples to matters in a linear way.
The field redefinition π̂1 = f(π1, . . . ,πN) might imply that the field interactions
are no longer of the Galileon type, which is just another way to see that an arbitrary
non-linear coupling of the form f(π1, . . . ,πN)T is not part of the Galileon fam-
ily. Finally non-linear couplings of the form f1(π1, . . . ,πN)∂μπi∂νπjTμν can also
be considered. For instance the coupling of the ∂μπ∂νπTμν is generic in Massive
Gravity (de Rham et al. 2010). However such a type of coupling cancels at the back-
ground level for static spherically symmetric sources, and are thus irrelevant to the
present discussion. In conclusion, only the conformal coupling to external matter
is important when dealing with conserved and static spherically symmetric sources
and analyzing the behaviour of the perturbations in the vacuum. Whilst in principle
the conformal coupling could be fully non-linear, only the linear one respects the
Galileon symmetry at the level of the equations ofmotion. So inwhat followswe only
focus on this linear conformal coupling, without any loss of generality. Furthermore,
we couple only one of the N scalar fields to the trace of the stress energy tensor, as
one can always rotate the field space π1, . . . ,πN to do so.

Considering the previous linear conformal coupling to matter, the most general
multi-Galileon Lagrangian in four dimensions is

L = L2 + L3 + L4 + L5 + π1T , (4.8)

where the respective Quadratic L2, Cubic L3, Quartic L4 and Quintic Galileon L5
interactions are given by

Ln(π1, . . . ,πN) =
∑

m1+···+mN=n−1

Lm1,...,mN (4.9)

with
Lm1,...,mN = (α1m1,...,mN

π1 + · · · + αN
m1,...,mN

πN)Em1,...,mN , (4.10)

where the αnm1,...,mN
are the coefficients for the Galileon interactions. Notice that this

parameterization allow for a lot of redundancy, so not all theαn
m1,...,mN

aremeaningful
(many of them can be set to zero without loss of generality). Notice as well that in
this language these coefficients α’s are dimensionfull (the dimension depends on
m1 + · · · +mN). We stick nonetheless to this notation for historical reasons, Padilla
et al. (2010). In this formalism, all the derivative are included in the Em1,...,mN which
can be expressed as
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Em1,...,mN = (m1 + · · · + mN)!δμ1
[ν1 · · · δμm1

νm1
· · · δρ1

σ1
· · · δρmN

σmN ]

×
[
(∂μ1∂

ν1π1) · · · (∂μm1
∂νm1π1)

]
· · ·

×
[
(∂ρ1∂

σ1πN) · · · (∂ρmN
∂σmN πN)

]
, (4.11)

using the formalism derived in Deffayet et al. (2009).

4.2.1 Bi-Galileon

Specializing this to the Bi-Galileon N = 2 is straightforward. The analogue to (4.10)
for the Bi-Galileon would simply be

Lπ1,π2 =
∑

0≤m+n≤4

(αm,nπ1 + βm,nπ2)Em,n , (4.12)

with

Em,n = (m + n)!δμ1
[ν1 · · · δμm

νm δ
ρ1
σ1

· · · δρm
σn](∂μ1∂

σνn π1) (4.13)

× · · · (∂μm∂νmπ1)(∂ρ1∂
σ1π2) · · · (∂ρn∂

σnπ2) .

The equations of motion for the two scalar fields π1 and π2 are then

∑
0≤m+n≤4

am,nEm,n = −T and
∑

0≤m+n≤4

bm,nEm,n = 0 , (4.14)

where the coefficients am,n and bm,n can be expressed in terms of the parameters
αm,n and βm,n as

am,n = (m + 1)(αm,n + βm+1,n−1) and bm,n = (n + 1)(βm,n + αm−1,n+1) .

(4.15)
We refer to Padilla et al. (2010, 2011) for more detailed discussions.

4.3 Spherical Symmetric Backgrounds

In this section, we recapitulate the formalism needed to study the superluminality of
fluctuations about spherical symmetric solutions. For this we split every field into a
spherically symmetric background configuration π0(r) and a fluctuation δπ(t,�r),

πn(t,�r) = π0
n(r) + δπn(t,�r) , ∀ n = 1, . . . , N , (4.16)
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and introduce the N-dimensional fluctuation vector in field space,

�(t,�r) =
⎛
⎜⎝

δπ1(t,�r)
...

δπN(t,�r)

⎞
⎟⎠ . (4.17)

Similarly as in the single field Galileon case, at quadratic order in the fluctuations,
the Lagrangian can be written as

Lπ1,...,πN = 1

2
∂t� .K . ∂t� − 1

2
∂r� .U . ∂r� − 1

2
∂�� .V . ∂�� . (4.18)

The kinetic matrix K and the two gradient matrices U and V are defined as follows:

K = (1 + r

3
∂r) (�1 + 3�2 + 6�3 + 6�4) (4.19)

U = �1 + 2�2 + 2�3 (4.20)

V = (1 + r

2
∂r)U , (4.21)

where the� matrices depend on the spherically symmetric background configuration
(and are thus functions of r). In this language the nth matrix �n encodes information
about the (n + 1)th order Galileon interactions Ln+1,

�n =
⎛
⎜⎝

∂y1f
a1
n · · · ∂yNf

aN
n

...
. . .

...

∂y1f
a1
n · · · ∂yNf

aN
n

⎞
⎟⎠ , (4.22)

with

fαn (y1(r), . . . , yN(r)) =
n∑

i=0

(α1
′

i,n−i + αN′
i,n−i)y

i
1(r) · · · yn−i

N (r) , (4.23)

and for each of the Galileon field, we define,

yn(r) = ∂rπ
0
n(r)

r
. (4.24)

In terms of the matrix U , the background equations of motion are given by

1

r2
∂r

⎛
⎜⎜⎜⎝r2U(π0(r)).∂r

⎛
⎜⎜⎜⎝

π0
1(r)

π0
2(r)
...

π0
N(r)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

T
0
...

0

⎞
⎟⎟⎟⎠ . (4.25)
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In particular for a point source of mass M = 4πm localized at the origin r = 0, we
have

(�1 + 2�2(r) + 2�3(r)) .

⎛
⎜⎜⎜⎝

y1(r)
y2(r)

...

yN(r)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

m
r3
0
...

0

⎞
⎟⎟⎟⎠ , (4.26)

where �1 is independent of yn and is thus simply a constant, �2 is linear in the yn
and �3 is quadratic in the fields.

Notice that the expressions (4.19–4.21) for the matrices K, U and V in terms of
the �n matrices are universal and do not depend on the number N of fields.

4.3.1 Focus on the Bi-Galileon

In the following we restrict our attention to the Bi-Galileon since we will first
focus on that case and then generalize our results to the Multi-Galileon case. In the
Bi-Galileon case, the matrices �n are given explicitly as below:

�n =
(

∂yfan ∂yfbn
∂zfan ∂zfbn

)
with fαn =

n∑
i=0

α′
i,n−iy

izn−i (4.27)

The functions y and z appearing in the coefficients fαn are shortcuts for

y(r) = 1

r

∂π0
1

∂r
(4.28)

z(r) = 1

r

∂π0
2

∂r
, (4.29)

such that the equations of motion for π0
1 and π0

2 become simply

fa1 + 2(fa2 + fa3) = m

r3
(4.30)

fb1 + 2(fb2 + fb3 ) = 0 , (4.31)

where m = M/4π, and M is the mass of the point particle introduced at r = 0. More
explicitly, in terms of y and z the two equations of motion are given by

a10y + a01z + 2
(
a20y

2 + a11yz + a02z
2
)

+ 2
(
+a30y

3 + a21y
2z + a12yz

2 + a03z
3
)

= m

r3
, (4.32)
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a01y + b01z + 2
(a11

2
y2 + 2a02yz + b02z

2
)

+ 2
(
a21/3y

3 + a12y
2z + 3a03yz

2 + b03z
3
)

= 0 . (4.33)

In terms of the parameters aij and bij, the �1,2,3 matrices can then be expressed
respectively as

�1 =
(
a10 a01
a01 b01

)
, (4.34)

�2 =
(
2a20y + a11z a11y + 2a02z
a11y + 2a02z 2a02y + 2b02z

)
, (4.35)

�3 =
(
3a30y2 + 2a21yz + a12z2 3a03z2 + 2a12zy + a21y2

3a03z2 + 2a12zy + a21y2 3b03z2 + 6a03zy + a12y2

)
, (4.36)

in theBi-Galileon case. To get these expressionswe have used the fact that form < n
we have the correspondences Em,n = En,m|π0

1↔π0
2
. The exclusion of superluminal

mode propagation implies that the sound speed of both modes along both the radial
and orthoradial directions be less than or exactly equal to 1. The two sound speeds
in the radial direction are given by the eigenvalues of the matrix Mr = K−1U and
the two sound speeds along the orthoradial direction are given by the eigenvalues
of the matrix M� = K−1V . Therefore the condition for no superluminality is
equivalent to requiring that all the eigenvalues of both matricesMr − I andM� − I

be zero or negative (and larger than −1), with I the identity matrix. In the following
sections we study the behavior of the system in two different regimes, in the large
and short distance regimes and confirm explicitly that there always exists at least one
superluminal mode in one direction.

4.4 Superluminalities at Large Distances

This section is devoted to the behavior at large distances, specially we will study
how the superluminal propagation appears through the existence of Cubic or Quartic
Galileon at large distances. We will first show that if at least one Cubic Galileon in-
teraction is present, then superluminal propagation is always present at large enough
distances from a point source. It can be an interaction involving just one of the N
Galileon fields, or an interaction mixing different Galileon fields together, the result
remains unchanged. One way to bypass this conclusion might be to remove all the
Cubic Galileon interactions for all N fields L3 ≡ 0, meaning that any αnm1,...,mN

with
n = 1, . . . , N and m1 + · · · + mN = 2 has to vanish exactly (for example in the Bi-
Galileon case, this implies a20 = a11 = a02 = a02 = 0). If the coefficients aremerely
small, then one can always go to large enough distances where the Cubic Galileon
dominates over the Quartic and Quintic Galileon interactions. Nevertheless even if
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all the Cubic Galileon terms vanishL3 ≡ 0, we can still find perfectly sensible static,
spherically symmetric matter distributions around which there are superluminalities
due to the Quartic Galileon at large distances. As a consequence, we will see in this
section that as soon as either a Cubic or a Quartic Galileon interaction is present one
can always construct a sensible matter distribution which forces at least one of the
N Galileon fields to propagate superluminally in one direction (either the radial or
the orthoradial one). We emphasize again that the Quintic Galileon interactions L5
always vanish at the background level around static, spherically symmetric sources,
independently of the number of fields, so that if one tries to avoid the above con-
clusions by making both the Cubic and the Quartic Galileon vanish, then there is no
Vainshtein mechanism at all about these configurations.

4.4.1 Superluminalities from the Cubic Galileon

In the Multi-Galileon case, the background equations of motion for a point source at
r = 0 are given in (4.26). At this point it is worth to mention that we assume trivial
asymptotic conditions at infinity which implies that the Galileon interactions ought
to die out at large distances. The contributions from �1 are thus the leading ones
at large distances. Consistency of the theory requires that det�1 
= 0 (so that the
theory does indeed exhibitN degrees of freedom) and thematrix�1 is thus invertible.
Therefore at large distances, the background equations of motion simplify to

�1 .

⎛
⎜⎜⎜⎝

y1(r)
y2(r)

...

yN(r)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

m
r3
0
...

0

⎞
⎟⎟⎟⎠ . (4.37)

Recalling that �1 is invertible and independent of the field (�1 is a constant), this
implies that to leading order at large distance about a point-source, the fields die off
as r−1

y(r) ∼ r−3 + O(r−6) ⇒ π0(r) ∼ r−1 + O(r−4) , (4.38)

for at least one of the N fields, as expected from the Newtonian inverse square law
which should be valid at infinity. As a result, at large distances the� matrices behave
as follows:

�1 = �̄1 (4.39)

�2 = 1

r3
�̄2 + O

(
r−6

)
(4.40)

�3 = 1

r6
�̄3 + O(r−9) , (4.41)
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where the ‘barred’ matrices �̄1,2,3 are independent of r.
As a direct result of this scaling, it is trivial to see that at large distances, the

kinetic and gradient matrices K, U and V are given by

K = �̄1 + 0 + O
(
1

r6

)
, (4.42)

U = �̄1 + 2

r3
�̄2 + O

(
1

r6

)
(4.43)

V = �̄1 − 1

r3
�̄2 + O

(
1

r6

)
. (4.44)

It is apparent that the perturbations at the order 1
r3

in the matrix K vanish while in
the matrices U and V they always come with the opposite sign, hence there is always
a superluminal direction at infinity.2 These results coincide with what is already
known in the case of one Galileon (Nicolis et al. 2009). This is intrinsic to the 1

r3
behaviour at infinity and to the presence of the Cubic Galileon, and is independent
of the number of fields.

One possible way to bypass this very general result is to require the matrix �̄2
to vanish entirely, which could be for instance achieved by imposing all the Cubic
Galileon interactions to vanish. At large enough distances the Cubic Galileon would
always dominate over the Quartic one (assuming trivial asymptotic conditions at
infinity), so imposing a hierarchy between the Cubic Galileon interactions and the
other ones is not sufficient to avoid superluminalities. Therefore, one way would
be if all the Cubic interactions would be completely absent. In particular, even if
some eigenvalues of �̄2 vanish, the previous result remains unchanged, as long as
�̄2 has at least one non-vanishing eigenvalue which would imply that the associated
eigenmode in field space has a superluminal direction (either a radial or an orthoradial
one). But if all the eigenvalues of �̄2 vanish, then we can in principale evade the
previous argument, which for example can be accomplished by demanding all the
coefficients arising from the cubic Galileon interactions to vanish exactly, in other
words if the next to leading interactions arise from the Quartic Galileon.

In the very special case where �̄2 vanishes entirely (i.e. all its eigenvalues are
identically 0), then the previous argument needs special care. The contribution from
�̄3 implies that (K−1U) and (K−1V) do not necessarily have opposite sign. In any
Multi-Galileon theory one can always tune the coefficients of L3 so that the matrix
�̄2 vanishes identically and so the r−3 scaling is not the leading order correction to U
and V . For example, for the Bi-Galileon if the parameters of the theory are carefully
chosen so as to satisfy a20 = b02c3, a11 = 2b02c2 and a02 = b02c with c = a01/b01
then U and V vanish identically at O(r−3) for a pure point source and the argument
given above breaks down. However as soon as we consider an extended source with
energy density going as 1/r3−ε would revive �̄2 and the argument would then again

2The presence of the Cubic Galileon guaranties the presence of superluminal propagation at large
distances from a point source.
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be the one above. So even for these special coefficients, there is a whole class of
otherwise physically sensible solutions which exhibit superluminal propagation.

In Sect. 4.5 we consider this case more closely in the Bi-Galileon scenario and
find that there is still always at least a superluminal mode for some range of r.
For instance superluminalities unavoidably arise near the origin through the Quartic
Galileon, unlike what was claimed in Padilla et al. (2011). But first we point out
that one can very easily construct an extended source for which superluminalities
are present at large distance for the Quartic Galileons just in the same way as they
were for the Cubic ones.

4.4.2 Superluminalities from the Quartic Galileon About an
Extended Source

When the Cubic Galileon is absent, the presence of superluminalities about a point-
source is more subtle to prove and will be done explicitly in the next section. Nev-
ertheless, even if the coefficients in the Cubic Galileon vanish, we can always find
a background configuration in which we can see superluminalities at large distances
arise using the same argument as for theCubicGalileon. In particular we can consider
a gas of particles with a spatially varying density of the form

T = M0

( r0
r

)3/2
(4.45)

where r0 characterizes the scale over which the density varies and M0 controls the
overall strength of the density profile. Thismatter distribution can always be imagined
for some arbitrarily large radius before being cut off.

In this case the asymptotic behavior of the background fields becomes

yn(r) = Y(1)
n

r3/2
+ Y(2)

n

r9/2
+ O(

1

r15/2
) , (4.46)

for all the fields n = 1, . . . , N, and we find once again using Eq. (4.19) that to order
O(r−3/2),K vanishes and U and V have opposite signs, guaranteeing a superluminal
direction.3

This illustrates the basic reason we expect any theory that exhibits the Vain-
shtein mechanism to inevitably contain superluminalities when considering trivial
asymptotic conditions. Every new source configuration gives rise to a new back-
ground Galileon field configuration. Because the theory must be nonlinear in order
to have a Vainshtein mechanism, the fluctuations around this background will prop-
agate on aneffective metric determined by the background. Since the sources are not

3The presence of the Quartic Galileon guaranties the presence of superluminal propagation at large
distances from an extended source.



4.4 Superluminalities at Large Distances 111

constrained by the theory, we are free to choose any source we like, and so we
have a lot of freedom to change the parameters in this background metric and create
superluminalities.

4.5 Quartic Galileon About a Point-Source

In the previous section we have shown that superluminalities are ubiquitous in
Galileon models. No matter the number of field there is no possible choice of para-
meters that can ever free the theory from superluminal propagation. The argument
in the previous section was completely generic and independent of the number of
fields. It only required the behaviour at large distances (when the non-linear Galileon
interactions can be treated perturbatively).

In what follows we show that even for a point source in the Quartic Bi-Galileon
model, superluminalities can never be avoided in a consistent model. Again, the only
requirements we pose are the absence of ghost, the presence of an active Vainshtein
mechanism, and trivial conditions at infinity. This result is in contradiction with
previous results and examples in the literature, but upon presentation of this following
argument, the previous claims have been reconsidered.

The philosophy of the argument goes as follows: We analyze the model both at
large distances in the weak field limit and at short distances from the point source
where the quartic interactions dominate (as required by the existence of an active
Vainshtein mechanism). The requirement for stability (in particular the absence of
ghost) sets some conditions on the parameters of the theory. We then show that these
conditions are sufficient to imply the presence of superluminalmodes near the source.
We emphasize that this result could not be obtained, should we just have focused on
the near origin behaviour without knowledge of the field stability at infinity.

4.5.1 Stability at Large Distances

To ensure the stability of the fields, the kinetic matrix K as well as the gradient
matrices U and V should be positive definite at any point r. At infinity in particular
these three conditions are equivalent and simply imply that the matrix �1 ought to
be positive definite. In the case of the Bi-Galileon, this implies

det�1 = a10b01 − a201 > 0 and Tr �1 = a10 + b01 > 0 . (4.47)

In terms of the coefficients of the quadratic terms, these two conditions imply

a10 > 0 and b01 >
a201
a10

> 0 . (4.48)
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The behaviour of the fields at large distance from a point source localized at r = 0
is determined by the coefficients of the quadratic terms, (or equivalently by �1),

y(r) = Y1

r3
+ O

(
1

r6

)
, with Y1 = b01

det�1
m (4.49)

z(r) = Z1

r3
+ O

(
1

r6

)
, with Z1 = −a01

det�1
m , (4.50)

and as expected, we recover a Newtonian inverse square law behavior for each mode
at infinity, namely ∂rπ

0
1 ∼ ∂rπ

0
2 ∼ r−2. At this stage it is worth to mention that the

stability condition (4.48) implies that Y1 > 0, which is consistent with the fact that
the force mediated by the one field π1 that couples to matter is attractive.

4.5.2 Short Distance Behavior

We now study the field fluctuations at small distances near the source (i.e. at leading
order in r, assuming we are well within the Vainshtein region). From the equations
of motion (4.32), (4.33) after setting the coefficients of the cubic Galileon to zero
near the origin, we infer the following expansion

y(r) = y1
r

+ y2r + O(r3) (4.51)

z(r) = z1
r

+ z2r + O(r3) , (4.52)

with

a30y
3
1 + a21y

2
1z1 + a12y1z

2
1 + a03z

3
1 = m

2
(4.53)

a21
3
y31 + a12y

2
1z1 + 3a03y1z

2
1 + b03z

3
1 = 0 . (4.54)

Note that the O(r0) terms vanish since the Cubic Galileon is not present.
Expanding �3 in powers of r, we have

�3 = �
(l)
3 + �

(nl)
3 + · · · = 1

r2
�̃

(l)
3 + �̃

(nl)
3 + O

(
r2

)
, (4.55)

where the leading order contribution to �3 is given by

�̃
(l)
3 =

(
3a30y21 + 2a21y1z1 + a12z21 3a03z21 + 2a12y1z1 + a21y21

3a03z21 + 2a12y1z1 + a21y21 3b03z21 + 6a03y1z1 + a12y21

)
. (4.56)

Solving the equation of motion (4.54) for b03 gives
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b03 = (−a21y
3 − 3a12y

2z − 9a03yz
2)/(3z3). (4.57)

Similarly solving the equation of motion (4.53) for a30 yields

a30 = ((m − 8a21πr
3y2z − 8a12πr

3yz2 − 8a03πr
3z3)/(8πr3y3)). (4.58)

Using these expressions for b03, a30 and introducing the combination B defined as
follows:

B = 3a03z
2
1 + 2a12y1z1 + a21y

2
1 , (4.59)

we can then write �̃
(l)
3 simply as:

�̃
(l)
3 =

(− z1
y1
B + 3m

2y1
B

B − y1B
z1

)
. (4.60)

4.5.3 Stability at Short Distances

As mentioned previously, me must ensure that the eigenvalues of K are strictly
positive. At small distances near the source, the matrix K can be expressed as

K = 2

r2
�̃

(l)
3 + O(1) . (4.61)

In terms of y1, z1 and B, the absence of ghost near the origin implies the following
conditions on the parameters

det�̃3 = −3

2

Bm
z1

> 0 (4.62)

Tr�̃3 = 3mz1 − 2B(y21 + z21)

y1z1
> 0 , (4.63)

which are equivalent to

y1 > 0, and
B
z1

< 0 . (4.64)

This seems a priori in contradiction with the results presented in Padilla et al. (2011),
where a specific example was provided. Analyzing this example in
Appendix A.1 we find the presence of superluminalities in agreement with the argu-
ment presented in this section. We see in particular in that example that the modes
are superluminal at large distances already. Furthermore in the example presented in



114 4 Superluminal Propagation in Galileon Models

Padilla et al. (2011) there is a mode with the wrong kinetic term near the origin. Since
at infinity, the eigenvalues of K are positive in this example, the kinetic term of one
of the modes must vanish at a given r, which would imply strong coupling issues.
No healthy theory can accept such a behavior within its own regime of validity, it
therefore seems unlikely that the explicit coefficients chosen in Padilla et al. (2011)
lead to a physically healthy model. We now use the stability conditions derived at
both large and small distances to deduce the behaviour of the radial sound speed in
this model.

4.5.4 Sound Speed Near the Source

Similarly as we did at large distances, we can now compute the ‘radial sound speed’
matrixMr = K−1U near the origin,

Mr = I − 2r2(�̃(l)
3 )−1�̃

(nl)
3 + O(r4) . (4.65)

We note that unlike the Cubic Galileon case described in more detail below, the
leading order behaviour of M is not manifestly superluminal. However, this is not
enough to guarantee the absence of superluminal modes, we must carefully check
the sign of the smallO(r2) correction term before making any conclusions. A simple
formulation for the matrix �

(l)
3 is given in (4.60), and a similar expression for �

(nl)
3

can be found in an analogous way,

�̃
(nl)
3 =

(
−a10 − a01

z1
y1

− 2ζ z1y1 2ζ

2ζ −b01 − a01
y1
z1

− 2ζ y1z1

)
, (4.66)

with the notation:

ζ = a21y1y2 + a12y2z1 + a12y1z2 + 3a03z1z2 . (4.67)

This allows us to compute the radial sound speed

c2s± = 1 + r2(a′ ± √
b′) + O(r4) , (4.68)

with a′ and b′ some coefficients that depend on y1, z1, B, m and (a, b)ij. So for both
modes to be subluminal along the radial direction, the following conditions should
be satisfied:

a′ < 0, b′ > 0 and a′2 − b′ > 0 . (4.69)

However as we shall see, these are not consistent with the stability conditions estab-
lished previously.
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The explicit form of the coefficients a′ and b′4 is given by:

a′ = −1

3mBy1
(
3(a01y1 + 2ζy1 + b01z1) − 2BD

)
(4.70)

a′2 − b′ = −8

3mBy1
(
(a10y1 + a01z1)(a01y1 + b01z1) + 2ζD

)
, (4.71)

with the notation

D = a10y
2
1 + 2a01z1y1 + b01z

2
1 . (4.72)

We may re-express the quantity D as follows

D = a10y
2
1 + 2a01z1y1 + b01z

2
1 (4.73)

= a10

(
y1 + a01

a10
z1

)2

+ z21
a10

(
a10b01 − a201

)
> 0 . (4.74)

Recall from the expression of the kinetic matrix K at infinity, that the following
two conditions should be satisfied, (4.47): a10 > 0 and

(
a10b01 − a201

)
> 0, which

directly implies that D is strictly positive. Knowing this, we check whether or not
a′ < 0 and a′2 − b′ > 0 which if true, would imply that both modes are sub-luminal.

We start with the requirement that a′ < 0. This implies that 3m(a01y1 + 2ζy1
+ b01z1) − 2B(a10y21 + 2a01z1y1 + b01z21) has the same sign as B. Once this con-
dition is satisfied, we check the sign of a′2 − b′ > 0. This quantity is positive only
if F has the opposite sign as B, where

F = (a10y1 + a01z1)(a01y1 + b01z1) + 2ζD . (4.75)

In what follows, we will start by assuming that z1 is positive and show that in
that case the condition to avoid any super-luminal modes cannot be satisfied. The
same remains true if z1 is assumed to be negative. We can therefore conclude that
the Quartic Bi-Galileon interactions always produce a superluminal mode already in
the configuration about a point source.

We recall from Eq. (4.64) that if z1 > 0, the absence of ghost-like modes
near the origin imposes the condition B < 0. Furthermore, knowing that D =
a10y21 + 2a01z1y1 + b01z21 > 0, we can infer that a′ negative only if

a01y1 + 2ζy1 + b01z1 <
2BD
3m

< 0 . (4.76)

Then using the fact that D = a10y21 + 2a01z1y1 + b01z21 > 0, this implies (knowing
from (4.64) that y1 > 0):

4It easy to check that b′ is always positive.
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a01y1 + 2ζy1 + b01z1 < 0 ⇒ ζ < −1

2
(a01 + b01

z1
y1

) . (4.77)

Finally to avoid any superluminal mode, the quantity a′2−b′ should also be positive.
Since in this case B is negative, a′2 − b′ has the same sign as F , where

F = (a10y1 + a01z1)(a01y1 + b01z1) + 2ζD
< (a10y1 + a01z1)(a01y1 + b01z1) − (a01 + b01

z1
y1

)D

< − z1
y1

(a01y1 + b01z1)
2 . (4.78)

Since y1 > 0 and z1 > 0 this implies that F < 0. Since a′2 − b′ has the same sign
as F , we can therefore conclude that if we assume z1 to be positive and a′ < 0, the
quantity (a′2 − b′) will also be negative, or in other words, there is one superluminal
mode.5 This argument was made assuming z1 > 0, however it is straightforward
to reproduce the same argument for negative z1. If we choose for instance negative
z1 (z1 < 0) then the condition coming from the absence of ghost-like instabilities
Eq. (4.64)will require this time the opposite sign forB, namelyB > 0 and thereforeF
will be a positive numberF < − z1

y1
(a01y1 + b01z1)2 while the expression (a′2 −b′)

in Eq. (4.71) will have the opposite sign to F and therefore again there would not
be any choice of coefficients (a, b)ij to make both modes (sub)luminal. With this we
have proven that there is no generic choice for the parameters aij and bij near the
origin which would prevent the propagation of superluminal modes.

4.5.5 Special Case of Dominant First Order Corrections

In the previous section we proved that close to the source there is always one mode
which propagates superluminaly in a generic theory where only the Quartic Galileon
is present. However we made a technical assumption in Eq. (4.65) that �̃

(l)
3 was

invertible, or equivalently that we did not make the special choice of parameters
aij, b0i which gives B = 0 (implying that the leading order pieces in �3 were strictly
larger than the first order corrections). However we could consider a specific choice
for which some of the leading order pieces of �3 vanish and the subleading pieces
become dominant. Therefore in this section we will examine this possible loophole
more closely. We will find that even in this case one always finds that a superluminal
mode is present. When B = 0, �̃(l)

3 takes the following trivial form:

�̃
(l)
3 =

( 3m
2y1

0
0 0

)
. (4.79)

5The presence of the Quartic Galileon guaranties the superluminal propagation at short distances
from a point source.
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The stability of the theory now depends not only on the leading behavior of the
kinetic K and radial derivative U matrices, but also on the subleading behavior. In
terms of the � matrices, K and U take the following form

K = 2
�̃

(l)
3

r2
+ �1 + 6�̃(nl)

3 , U = 2
�̃3

(l)

r2
+ �1 + 2�̃(nl)

3 . (4.80)

The theory is stable only if K and U have positive eigenvalues, or in other words
only if the following three quantities are positive:

y1 > 0,

λ
2
1 ≡ − 3m

y1z21

(
6(a01 + 2ζ)y1z1 + 5b01z

2
1

)
> 0, (4.81)

λ
2
2 ≡ − 3m

y1z21

(
2(a01 + 2ζ)y1z1 + b01z

2
1

)
> 0.

Nowwe construct again the radial speed of soundmatrixMr ≡ K−1U in this specific
case with B = 0. We can write the trace and determinant as

trMr =
(
1 + λ2

2

λ2
1

)
+ r2 τ+O(r4),

detMr = λ2
2

λ2
1

+ r2δ + O(r4). (4.82)

where τ and δ are functions of the given parameters (however we will only need
τ − δ as shown below). The speed of sound is given by, to O(r2),

• If λ2
1 > λ2

2

c2± =

⎧⎪⎨
⎪⎩
1 + r2 λ2

1

λ2
1−λ2

2
(τ − δ),

λ2
2

λ2
1

− r2 λ2
1

λ2
1−λ2

2
(τ − δ).

(4.83)

In this case we will have superluminal propagation if and only if τ− δ > 0.We show
that one always has τ − δ > 0 in this case by carefully making use of the stability
constraints in Appendix A.2.

• If λ2
1 < λ2

2

c2± =

⎧⎪⎨
⎪⎩

λ2
2

λ2
1

+ r2 λ2
1

λ2
2−λ2

1
(τ − δ),

1 − r2 λ2
1

λ2
2−λ2

1
(τ − δ).

(4.84)
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Since λ2
1 < λ2

2, in this case superluminal propagation is guaranteed.
One might argue that this only guarantees superluminalitiy at the origin which is

inside the redressed strong coupling radius of the theory, where we can no longer
trust the results of the theory. However, we note that explicitly factoring out powers
of M and � that the speed of sound is given by

c2± = λ2
2

λ2
1

+
(

r

rV

)2
λ2
1

λ2
2 − λ2

1

(τ̂ − δ̂), (4.85)

where rV ≡ (M/MPl)1/3/� is the Vainshtein radius and where τ̂ and δ̂ are dimen-
sionless. Since rV > �−1, and since the redressed strong coupling radius is always
smaller than �−1, there is a range of r in which we can trust the theory and we can
also trust the leading order behavior of the speed of sound above.

4.6 Cubic Lagrangian Near the Source

Lets have a quick look into the contributions coming from aCubic Bi-Galileon theory
near the origin and study the superluminality. In the Sect. 4.4.1 we had seen that the
existence of the Cubic Galileon guarantees superluminal propagation at infinity. Now
lets also see the effect of a pure Cubic Galileon term on short distances. We quickly
recall the equations of motion in the Cubic Galileon case near the origin here again:

2
(
a02z

2 + a11yz + a20y
2
)

= m

r3
(4.86)

2

(
b02z

2 + 2a02yz + 1

2
a11y

2
)

= 0 . (4.87)

At short distance the fields then behave as

y(r) = y1
r3/2

+ y2 + O(r3/2) , (4.88)

z(r) = z1
r3/2

+ z2 + O(r3/2) . (4.89)

The leading order matrix �̃
(l)
2 can be expressed as follows (after use of the equations

of motion):

�̃
(l)
2 =

(
m
y1

− z1
y1
C C

C − y1
z1
C

)
. (4.90)

with the notation
C = a11y1 + 2a02z1 . (4.91)
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The stability condition in the short distance regime requires detK ≈ det�(l)
2 > 0 and

TrK ≈ Tr�̃(l)
2 > 0:

Tr�(l)
2 = m − Cz1

y1
> 0 (4.92)

det�(l)
2 = −mC

z1
> 0 . (4.93)

These conditions imply C
z1

< 0 and y1 > 0. After using the next-to-leading order

equations of motion to simplify the next-to-leading order matrix �̃
(nl)
2 , we find

�̃
(nl)
2 =

(− a10
2 − a01

z1
2y1

− 2 β z1
y1

2 β

2 β − b01
2 − a01y1

2z1
− 2 β

y1
z1

)
, (4.94)

with β ≡ a02z2 + a11
2 y2.

Assuming�
(l)
2 is invertible (which is the case if there is at least one non-vanishing

Cubic Galieon interaction), the matrixMr is given by

Mr = K−1U =
[
3

2

�
(l)
2

r3/2
+ (�1 + 3�(nl)

2 )

]−1 [
2
�

(l)
2

r3/2
+ (�1 + 2�(nl)

2 )

]

= 4

3
− 2

3
r3/2

[
�

(l)
2

]−1 [
�1 + 4�(nl)

2

]
. (4.95)

This in turn implies that the Cubic Galileon also gives rise to superluminal propa-
gation near the origin. If on the other hand we consider the possible loophole with
vanishing determinant of the leading matrix �

(l)
2 (choosing parameters such C = 0)

nothing changes. The matrix Mr has still one eigenvalue going as 4/3 + O(r),
and another eigenvalue whose leading behavior depends on the signs and relative
strengths of β and z1. But the existence of one eigenvalue that is 4/3 at leading order
is enough to prove the existence of superluminalities in that regime as well.

4.7 Summary and Discussion

We have shown that Multi-Galileon theories inevitably contain superluminal modes
around some backgrounds, for any number of Galileon fields. At large distances from
a static point source, we have shown that if the Cubic Galileon is present (even if its
coefficients are very small), it will eventually dominate over the other Galileons and
lead to a superluminal mode. Even if no Cubic Galileon interactions are present (i.e.
all the Cubic Galileon coefficients are exactly zero), we find that there are simple,
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perfectly valid matter distributions (such as a static gas of particles whose density
falls of as r−3/2) around which perturbations propagate superluminally.

We also considered the case studied in the journal version of Padilla et al. (2011) of
perturbations around a static point source in the Bi-Galileon when only the Quartic
Galileon is present. By studying the speed of sound of perturbations close to the
source, we find, in contradiction to their original claims, that the presence of a
superluminal mode cannot be avoided. This is a nontrivial result, which can only be
seen by carefully taking into account the constraints that stability at large distances
places on the theory, and the interplay between these conditions coming from infinity
and the action for perturbations near the source. In otherwords, this is not a local result
which could have been derived from the knowledge of the behaviour near the source
only. We have also showed that there will always be superluminal perturbations
around a point source if only a Cubic Galileon is present.

Our results physically arise from the link between the Vainshtein mechanism and
superluminalities in typical Galileon theories. So long as one is considering theories
that are ghost-free, with trivial asymptotic conditions at infinity and avoid quantum
strong-coupling issues (fieldswith vanishing kinetic terms), these two effects are inti-
mately connected. Oneway to see this link is to note that theVainshteinmechanism is
inherently nonlinear, and so the behavior of the perturbations depends strongly on the
source distribution present. Thus one expects to always be able to find backgrounds
around which there are superluminalities. However, the connection may be stronger
than this: As we have shown, even in the case of a static point source with only a
Quartic Galileon present, where the presence of superluminalities at large distances
is not manifest, there are still inevitably superluminalities close to the source.

We believe that the superluminalities are a crucial feature of Galileon theories.
As shown in Adams et al. (2006), the presence of superluminalities around some
backgrounds is ultimately tied with the failure of the Galileon theory to have a
Wilsonian completion. It would be interesting to understand whether this aspect and
the presence of a Vainshtein mechanism could however be tied to theories which
allow for an alternative to UV completion such as classicalization, Dvali et al. (2012,
2011), Vikman (2013).

Recently, a dual description to the Galileon interactions has been discovered
(de Rham et al. 2013). This duality map the original Galileon theory to another
Galileon theory by a non trivial field redefinition x̃μ = xμ + ∂μπ(x). The inverse
transformation of it defines the dual Galileon xμ = x̃μ + ∂̃μ ρ(x̃). For a given very
specific Galileon coefficients it has been shown that the Galileon interactions are
dual to a free massless scalar field. This mapping between a free luminal theory and
the superluminal Galileon theory suggest that the naive existence of superluminal
propagation can still give rise to causal theory with analytic and unitary S-matrix
(de Rham et al. 2013). This duality maps a strongly coupled state to a weakly cou-
pled state, therefore this technique can be used to perform the UV completion via
classicalization.

The worry about the superluminal propagation comes from the fact that superlu-
minal fluctuations could allow for acausality and build configurations with Close-
Timelike-Curves (CTCs). Nevertheless there are cases in which the superluminal
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fluctuations come with their own metric and causal structure, which can be very dif-
ferent to that felt by photons, and the causal cones of these fluctuations might even
lie outside the causal cones of photons. Regardless of all this, the causal structure
of the spacetime can be protected (Babichev et al. 2008) if there exists one foliation
of spacetime into surfaces which can be considered as Cauchy surfaces for both
metrics. In theories of Galilean invariant interactions it is possible to construct CTCs
within the naive regime of validity of the effective field theory (as is also the case in
GR). Nevertheless, as we have shown in Burrage et al. (2012), the CTCs never arise
since theGalileon inevitably becomes infinitely strongly coupled implying an infinite
amount of backreaction. The backreaction on the background for the Galileon field
breaks down the effective field theory and forbids the formation of the CTC through
the backreaction on the spacetime geometry. The setup of background solutions with
CTCs becomes unstable with an arbitrarily fast decay time. As a result, theories of
Galilean invariant interactions satisfy a direct analogue of Hawking’s chronology
protection conjecture (Burrage et al. 2012).

We conclude by reviewing the only known way (so far) to have a Vainshtein
mechanism and still avoid superluminalities. If the Galileon is not considered as a
field in its own right, but rather as a component of anther fully fledge theory, one
needs not to impose trivial asymptotic conditions at infinity. In massive gravity for
instance, the Galileon field that appears in its decoupling limit is not a fundamental
field. In such setups, it is then consistent to consider configurations for which the
Galileon field does not vanish at infinity, so long as the metric is well defined at
infinity (which does not necessarily imply Minkowski space-time). In such cases,
we can thus have more freedom to fix the asymptotic boundary conditions for the
Galileon field. A specific realization has recently been found in Berezhiani et al.
(2013), where the asymptotic behaviour is non trivial and the metric asymptotes to a
cosmological one at large distances. These results do rely on the existence of a non-
trivial coupling to matter of the form ∂μπ∂νπTμν which naturally arises in Massive
Gravity, de Rham et al. (2010). When such non-trivial asymptotics conditions are
considered, the results derived in this work are no longer valid and open the door
for a way to find configurations which do exhibit the Vainshtein mechanism without
necessarily propagating a superluminal mode around these configurations. Future
work should consider the role of boundary conditions in the selection of viable
configurations.
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Part III
Quantum Corrections in Massive Gravity



Chapter 5
Quantum Corrections: Natural Versus
Non-natural

The cosmological constant problem is an inveterate puzzle which resisted several
decades of a considerable amount of effort devoted by numerous physicists. It reflects
the enormous discrepancy between field theory predictions and observations. Similar
puzzles are also encountered within the Standard Model of particle physics, for
example the Higgs Hierarchy problem of why the Higgs mass is so small relative to
the Planck scale. These hierarchies are puzzling as they do not seem to be protected
without the help of new physics, such as supersymmetry. Solutions proposed to solve
theHierarchy problem are helpless to tackle the cosmological constant problem since
they rely on physics at different scales. Technically natural tunings on the other hand
are very common within the Standard model of particle physics. For example the
electron mass me is much smaller than the electroweak scale, however is technically
natural. In the limit me → 0 there is an enhancement of the symmetry of the system,
due to the recovery of chiral symmetry. The existence of this symmetry in themassless
limit is enough to protect the electronmass from receiving large quantum corrections
thanks to the ’t Hooft naturalness argument (’t Hooft and Veltman 1974; ’t Hooft
1980). Therefore quantum corrections will only give rise to a renormalization of the
electronmass proportional to itself, and thus the hierarchy between the electronmass
and the electroweak scale is technically natural.

In the case of the cosmological constant, λ, there is no symmetry recovered in
the limit λ → 0. The Einstein Hilbert action is invariant under general diffeomor-
phism and a cosmological constant can be included to this action without breaking
this symmetry. Therefore the smallness of the cosmological constant is thus unnat-
ural in the ’t Hooft sense. Now an elegant way to tackle the cosmological constant
problem would consist of introducing instead another technically natural small scale
which could account for the late time acceleration. Thus, infrared modifications of
General Relativity could give a hope to find a resolution to the cosmological con-
stant problem. From a theoretical point of view, one might argue that a model with
a technically natural small parameter, m, which describes the accelerated Universe
is more elegant and offers theoretical advantages over the one in which dark energy
is due to a technically-unnatural small cosmological constant. Of course this is a
rather philosophical reasoning and can not be justified using a meaningful physical
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comparison as in the Bayesian evidence case. There is not such a thing as a measure
of the beauty of a theoretical modeling. Anyways, we will follow the philosophy of
preferring a theory based on technically natural parameters. Since massive gravity
is one of the most relevant large scale modified theories of gravity, it gives a promis-
ing framework to describe the accelerated expansion of the late Universe without
the need of fine-tuning. In order to give rise to a reliable accelerating expansion of
the universe the graviton mass needs to be tuned to no much larger than the Hubble
scale today. This tuning of the graviton mass m is of course in the same order than
that of the vacuum energy m2 ≈ 10−120M2

Pl. Nevertheless, this tuning is expected to
be technically natural since we recover a local symmetry in the limit m → 0. How-
ever, there is a possible loophole in this reasoning: the m → 0 limit is obviously
discontinuous in the number of gravitational degrees of freedom and the presence
of these extra polarizations for m �= 0 deserves a special treatment in the context
of naturalness. Nevertheless, this does not mean that the physical predictions of the
theory are discontinuous. The presence of the Vainshtein mechanism in this model
(Koyama et al. 2011a, b; Chkareuli and Pirtskhalava 2012; Sbisa et al. 2012), as well
as general (Babichev et al. 2010) extensions of the Fierz-Pauli theory make most
of the physical predictions identical to that of General Relativity in the massless
limit. In this chapter we are not only interested in the question of whether or not the
mass of the graviton is technically natural. It could be for instance that the quantum
corrections yield contributions fulfilling the naturalness argument in the sense that
they are proportional to the mass of the graviton but still detune the nice structure
of the interaction potential which was chosen so as to guaranty the absence of ghost
instabilities. If the detuning reintroduces the ghost at a scale much smaller than the
Planck mass, than this turns the theory to be unreliable and unstable under quantum
corrections. So we want to address the two essential questions in this chapter:

• Are the quantum corrections to the graviton mass technically natural, i.e. are they
proportional to the mass of the graviton itself?

• Do the quantum corrections detune the specific structure of the potential interac-
tions?

We will first study the quantum corrections in the decoupling limit (m → 0, MPl →
∞) of massive gravity and show that the graviton mass remains protected against
quantum corrections. Since this analysis is very similar to the non-renormalization
theorem in Galileon theories, we will first recapitulate the quantum corrections in
Galileons. We will then move on to the full theory beyond the decoupling limit
and first consider only the 1-loop contributions coming through the coupling to the
matter fields and then extend the analysis to the 1-loop contributions with only virtual
graviton running in the loops.

Furthermore, we shall emphasize that we are not addressing the old cosmological
constant problem reflecting the robustness of the theoretical prediction of a large
vacuum energy, which was already pointed out before the dark energy was even
discovered. We assume that there exist some mechanism which provides a vanishing
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cosmological constant (it could be for instance due to degravitation which was the
original idea and motivation of massive gravity). On top of this mechanism we study
the naturalness of massive gravity.

5.1 Non-renormalization Theorem for the Galileon Theory

In the following we will demonstrate why the Galileon interactions are protected
against quantum corrections. First of all, the shift andGalileon symmetrywill prevent
to generate local operators by loop corrections which breaks explicitly these symme-
tries. Nevertheless, quantum corrections might still generate local operators which
are invariant under shift and Galileon transformations, either renormalizing Galileon
interactions themselves or generating operators of higher derivative interactions. It is
the non-renormalization theorem, which ensures that the Galileon interactions them-
selves are not renormalized at all and that the higher derivative operators are irrelevant
corrections in the regime of validity of the effective field theory ∂nπ � �n+1 for
n ≥ 3.Wewill show the non-renormalization theorem perturbatively at the Feynman
diagram level by showing how each vertex in an arbitrary Feynman diagram gives
rise to interactions with at least one more derivative. For this purpose, it is convenient
to write the Galileon interactions 5.8 in the following form

L2 = πEμ α ρ σEν
α ρ σ�μν,

L3 = πEμ α ρ σEν β
ρ σ�μν�α β,

L4 = πEμ α ρ σEν β γ
σ�μν�α β�ρ γ

L5 = πEμ α ρ σEν β γ δ�μν�α β�ρ γ�σ δ . (5.1)

Without loss of generality, let us for a moment concentrate on the cubic Galileon
interaction πEμ α ρ σEν β

ρ σ�μν�α β. We will consider an arbitrary Feynman diagram
with this interaction at a given vertex (Fig. 5.1).We can contract an external helicity-0
particle πwith momentum qμ with the helicity-0 field coming without derivatives in
this vertex from the cubic Galileon while letting the other two π-particles run in the
loop with momenta kμ and (q + k)μ. The contribution of this vertex to the scattering
amplitude is

A ∝
∫

d4k

(2π)4
GkGk+qEμ α ρ σEν β

ρ σ kμkν (q + k)α (q + k)β · · · , (5.2)

where Gk = k−2 is the Feynman massless propagator for the Galileon field. Now,
it is a trivial observation that all the terms which are linear in the external momen-
tum Eμ α ρ σEν β

ρ σkμkνkαqβ as well as all the contributions which are independent
of it Eμ α ρ σEν β

ρ σkαkβkμkν will cancel owing to the antisymmetric nature of the
vertex (carried by the indices in the Levi-Civita symbols). Therefore, the only non-
vanishing term will come in with at least two powers of the external Galileon field
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Fig. 5.1 An arbitrary
Feynman diagram with the
cubic Galileon vertex

πEμαρσEνβ
ρσΠμνΠαβ

π

Πμν

Παβ

qμ

kμ

kμ + qμ

with momentum qαqβ. This is the essence of the non-renormalization theorem of
the Galileon interactions (5.1). In a similar way, if we contract the external leg with
the derivative free field in vertices of quartic and quintic Galileon, the same argu-
ment straightforwardly leads to the same conclusion regarding the minimal number
of derivatives on external fields. Therefore there is no counterterm which takes the
Galileon form, and the Galileon interactions are hence not renormalized. This would
mean that the Galileon coupling constants may be technically natural tuned to any
value and remain radiatively stable. On the other hand, to understand why the gen-
eration of higher derivative interactions is harmless, bear in mind the fact that for
fluctuations δπ on top of the background configuration, interactions do not arise at
the scale �3 but rather at the rescaled strong coupling scale �̃3 = √

Z�3 (where
Z is the modified kinetic matrix due to the background configuration as in 1.9, i.e.

Z ∼
(
1 + ∂2π̄0

�3 + (∂2π̄0)
2

�6 + · · ·
)
), which is much larger than �3 within the strong

coupling region. The higher interactions for fluctuations on top of the background
configuration are hence much smaller than expected and their quantum corrections
are therefore suppressed.

The non-renormalization theorem is not unique to theGalileon theory only. A sim-
ilar non-renormalization theorem applies in the DBI scalar field models, in which a
brane is embedded within a wrapped extra dimension

LDBI = f(π)4
(
1 −

√
1 + f(π)−4(∂π)2

)
− V(π)

= −1

2
(∂π)2 + (∂π)4

6f(π)4
+ · · · − V(π) (5.3)

In a similar way as in the Galileon theory the field operator itself and its velocity can
be considered to be large π ∼ f(π) and ∂π ∼ f(π)2 as long as the higher derivatives
are suppressed ∂nπ � f(π)n+1 with n ≥ 2 and hence the quantum corrections are
negligible.

In a straightforward manner one can apply the same philosophy to the de
Sitter Galileons, which describe Galileon interactions on a de Sitter background
which we introduced in Sect. 1.3. In this case, the de Sitter Galileon interac-
tions are dressed with corrections coming from the Hubble parameter, schemat-
ically as ∂π → ∂π + βHπ, with a given constant β so that for instance,
(∂π)2�π → (∂π)2�π + 6H2π(∂π)2 − 8H4π3. In this framework, the Hubble
parameter plays a similar role as the gradient, H ∼ ∂ , so that the previous counting
remains identical. As a consequence, the de Sitter Galileon interactions are again

http://dx.doi.org/10.1007/978-3-319-18935-2_1
http://dx.doi.org/10.1007/978-3-319-18935-2_1
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not renormalized, and the effective field theory remains under control as long as
∂/� ∼ H/� � 1, i.e. ∂3πcl/�

4 ∼ H3πcl/�
4 � 1 even around classical configu-

rations with ∂2πcl/�
3 ∼ H2πcl/�

3 ∼ 1. In the next section we will explicitly show
that the same non-renormalization theorem applies in the decoupling limit ofmassive
gravity. Because of the antisymmetric structure of the interactions in the decoupling
limit, the quantum corrections yield terms which belong to a different class of inter-
actions and therefore do not renormalize the decoupling limit interactions. The proof
works exactly in the same way as for the Galileons.

5.2 Non-renormalization Theorem in the Decoupling Limit
of Massive Gravity

Before we demonstrate the non-renormalization theorem for the decoupling limit of
massive gravity, lets recapitulate some of the important properties and equations of
this limit. As we already explained in more detail in Chap.2 the leading part of the
ghost-free massive gravity is described by an action giving by the interactions of the
helicity-2 and helicity-0 polarizations of the graviton in the limit m → 0,MPl →
∞ and �3 ≡ (MPlm2)1/3 = finite

L = −1

2
hμνEα β

μν hα β + hμν
3∑

n=1

an

�
3(n−1)
3

X(n)
μν (�) , (5.4)

with the three matrices X’s explicitly given by the following expressions in terms of
�μν = ∂μ∂νπ and the Levi-Civita symbol Eμν α β

X(1)
μν (�) = Eμ

α ρ σEν
β
ρ σ�α β,

X(2)
μν (�) = Eμ

α ρ γEν
β σ

γ�α β�ρ σ,

X(3)
μν (�) = Eμ

α ρ γEν
β σ δ�α β�ρ σ�γ δ . (5.5)

The three matrices X(1,2,3) are respectively linear, quadratic and cubic in ∂2π,
so that the action involves operators up to quartic order in the fields. As you can
see, the interactions are very similar to the Galileon interactions with the difference
that the π field in front of the interactions in Eq. (5.1) is replaced by the hμν field.
This decoupling limit comprises a massless spin-two field hμν, and a scalar field π,
which couple to each other via some dimension 4, 7, and 10 operators; the latter two
are suppressed by powers of the dimensionful scale �3. The interactions become
strong at the energy scale E ∼ �3. In a similar way as in the Galileon theory, even
though the interactions involve more then two derivatives on the scalar field π, the
theory is ghost-free (de Rham and Gabadadze 2010; de Rham et al. 2011). It means
that it propagates exactly 2 polarizations of the massless tensor field and exactly one
massless scalar.

http://dx.doi.org/10.1007/978-3-319-18935-2_2
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The theory contains the following symmetries:

• linearized diffeomorphisms, hμν → hμν + ∂(μξν), which represent a symmetry of
the full non-linear decoupling limit action up to total derivative (i.e. including the
interactions hμνX(n)

μν )
• (global) field-space Galilean transformations, π → π + bμxμ + b.

In difference to theGalileon theory the symmetry for the scalar field in this decoupling
limit is an exact symmetry without total derivatives. Similarly as for Galileons, these
symmetries protect the theory from a certain class of quantum corrections, which do
not satisfy the symmetry. In the following, we will show explicitly how the operators
of the decoupling limit of massive gravity remain protected against quantum correc-
tions to all orders in perturbation theory. At the heart of this non-renormalization is
the specific anti-symmetric structure of the interaction vertices containing two deriv-
atives per scalar line, all contracted by the epsilon tensors. Then, it is not too difficult
to show that the loop diagrams cannot induce any renormalization of the tree-level
terms in (5.4). Conceptually, the non-renormalization appears because the tree-level
interactions in the Lagrangian are diffeomorphism invariant up to total derivatives
only. On the other hand, the variations of the Lagrangian with respect to the fields
in this theory are exactly diffeomorphism invariant. Therefore, no Feynman diagram
can generate operators that would not be diffeomorphism invariant, and the original
operators that are diffeomorphism invariant only up to total derivatives stay unrenor-
malized. This becomes apparent by looking at the resumed Feynman diagrams, the
one-particle irreducible effective action (1PI action)1

e−Seff (hab,π) =
∫

DhDπe
−h

(
δ
2 S

δ h2
|π=π̄

)
h−π

(
δ
2 S

δ π2
|hab=h̄ab

)
π

(5.6)

The expression on the left hand side fulfills the symmetry exactly because the
right hand side contains the variation with respect to the fields which fulfill the
symmetry exactly as the equations of motion. This is similar to non-renormalization
of the Galileon operators (Luty et al. 2003; Nicolis and Rattazzi 2004; Nicolis et al.
2009), with diffeomorphism invariance replaced by galilean invariance which is
also fulfilled up to total derivatives. Let us consider one-loop terms in the 1PI action.
These are produced by an infinite number of one-loop diagramswith external h and/or
π lines. The diagrams contain power-divergent terms, the log-divergent pieces, and
finite terms. The power-divergent terms are arbitrary, and cannot be fixed without the
knowledge of the UV completion. For instance, dimensional regularization would set
these terms to zero. Alternatively, one could use any other regularization, but perform
subsequent subtraction so that the net result in the 1PI action is zero. In contrast, the
log divergent terms are uniquely determined and would have to be included in the
1PI action.

All the induced terms in the 1PI action would appear suppressed by the scale �3,
since the latter is the only scale in the effective field theory approach (including the

1Without loss of generality we assume for now that h and π are diagonalized.
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scale of theUV cutoff).Moreover, due to the same specific structure of the interaction
vertices that guarantees non-renormalization of (5.4), the induced terms will have
to have more derivatives per field than the unrenormalized terms. Therefore at low
energies, formally defined by the condition (∂/�3) � 1, the tree-level terms will
dominate over the induced terms with the same number of fields, as well as over the
induced terms with a greater number of fields and derivatives. This property clearly
separates the unrenormalized terms from the induced ones, and shows that the theory
(5.4) is a good effective field theory below the scale �3.

As an alternative approach, one can rely on the decoupling limit to infer that
the additional degrees of freedom do decouple in the massless limit, and the local
symmetry is indeed recovered as m → 0. Beyond this limit, the free parameters of
the theory are expected to be renormalized, albeit by an amount that should vanish
in the limit. As a result, quantum corrections to the three defining parameters of
the full theory (namely the mass m and the two free coefficients a2,3) are strongly
suppressed. In particular, the graviton mass receives a correction proportional to
itself (with a coefficient that goes as δm2/m2 ∼ (

m/MPl
)2/3), thus establishing the

technical naturalness of the theory.
One should stress at this point that technical naturalness is not an exclusive prop-

erty of ghost-free massive gravity. Even theories with the Boulware-Deser ghost, can
be technically natural, satisfying the δm2 ∝ m2 property (Arkani-Hamed et al. 2003).
Besides the fact that the latter theories are unacceptable, there are two important
distinctions between the theories with and without Boulware-Deser ghosts. These
crucial distinctions can be formulated in the decoupling limit, which occurs at a
much lower energy scale, �5 = (m4MPl)

1/4 � �3, if the theory propagates a
Boulware-Deser ghost. In the latter case the classical part of the decoupling limit
is not protected by a non-renormalization theorem. As a consequence: (a) quantum
corrections in ghost-free theories are significantly suppressed with respect to those
in the theories with the Boulware-Deser ghost, and (b) unlike a generic massive grav-
ity, the non-renormalization guarantees that any relative tuning of the parameters in
the ghost-free theories, that is m, a2, a3, is technically natural. The latter property
makes any relation between the free coefficients of the theory stable under quantum
corrections. For example, a particular ghost-free theory with the decoupling limit,
characterized by the vanishing of all interactions in (5.4) has been studied due to its
simplicity (e.g. see (Buchbinder et al. 2012) for one-loop divergences in that model).
The non-renormalization of ghost-free massive gravity in this case guarantees that
such a vanishing of the classical scalar-tensor interactions holds in the full quantum
theory as well.

Using the antisymmetric structure of these interactions, we can follow roughly
the same arguments as for Galileon theories to show the RG invariance of these
parameters, Luty et al. (2003). The only possible difference may emerge due to the
gauge invariance hμν → hμν +∂(μξν), and consequently the necessity of gauge fixing
for the tensor field.Working in e.g., the deDonder gauge, the relevant modification of
the arguments is trivial: gauge invariance is Abelian, so the corresponding Faddeev-
Popov ghosts are free and do not affect the argument in any way. Moreover, the
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gauge fixing term changes the graviton propagator, but as we shall see below, all
the arguments that follow solely depend on the special structure of vertices and are
hence independent of the exact structure of the propagator. With these arguments in
mind, one can thus proceed with the proof of the non-renormalization of the theory
without being affected by gauge invariance.

The scalar π only appears within interactions/mixings with the spin-2 field in
(5.4). In order to associate a propagator with it, we have to diagonalize the quadratic
lagrangian by eliminating the hμνX(1)

μν (�) term. Such a diagonalization gives rise to
a kinetic term forπ, as well as additional scalar self-interactions of the Galileon form
(de Rham and Gabadadze 2010),

L = −1

2
hμνEα β

μν hα β + 3

2
π�π +

(
hμν + π

μν
η

) 3∑
n=2

an

�
3(n−1)
3

X(n)μν (�) , (5.7)

(here the interactions of the formπX(n)(�) are nothing else but the cubic and quartic
Galileons).

In the special case when the parameter a3 vanishes, all scalar-tensor interactions
are redundant and equivalent to pure scalar Galileon self-interactions as we have seen
in Chap.2. This can be seen through the field redefinition (under which the S-matrix
is invariant) hμν = h̃μν + πημν − 2a2

�3
3
∂μπ∂νπ. We then recover a decoupled spin-2

field, supplemented by the Galileon theory for the scalar of the form

LGal = −1

2

2∑
n=0

bn
�3n

3

X(n)
μν (�) ∂μπ∂νπ , (5.8)

where the Galileon coefficients bn are in one-to-one correspondence with an and
X (0)

μν ≡ ημν. The non-renormalization of the theory (5.4) then directly follows from
the analogous property of the Galileons. For a3 �= 0, such a redefinition is however
impossible (de Rham and Gabadadze 2010). This can be understood by noting that
the hμνX(3)

μν coupling encodes information about the linearized Riemann tensor for
hμν, which can not be expressed through π on the basis of the lower-order equations
of motion (Chkareuli and Pirtskhalava 2012).

We will now show that, similarly to what happens in the pure Galileon theories,
any external particle comes along with at least two derivatives acting on it in the
1PI action, hence establishing the non-renormalization of the operators present in
(5.4) (the only difference comes from the fact that instead of π in front of each
interaction, we now have hμν). Of course, we keep in mind that these operators are
merely the leading piece of the full 1PI action, which features an infinite number
of additional higher derivative terms. They however are responsible for most of the
phenomenology that the theories at hand lead to, making the non-renormalization
property essential (Fig. 5.2).

The absence of the ghost in these theories is tightly related to the antisymmet-
ric nature of their interactions, which in turn guarantees their non-renormalization.

http://dx.doi.org/10.1007/978-3-319-18935-2_2
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. . . hμν

π

Fig. 5.2 An arbitrary 1PI diagram with gravitational degrees of freedom in the loop

The same reasoning applies to the construction of the Lovelock invariants. For exam-
ple, in linearized GR, linearized diffemorphism tells us that the kinetic term can be

writtenusing the antisymmetricLevi–Cevita symbols asEμν α βEμ′ν′
α β
Rμνμ′ν′ ,which

ensures the non-renormalization. Notice that gauge invariance alonewould still allow
for a renormalization of the overall factor of the linearized Einstein–Hilbert term,
which does not occur in the decoupling limit.

The key point is that any external particle attached to a diagram has at least two
derivatives acting on it. This in turn implies that the operators generated are all of
the form (∂2π)n1(∂2h)n2 , n1, n2 ∈ N, and so are not of the same class as the original
operators. This means that a2 and a3 are not renormalized. Furthermore, the new
operators that appear in the 1PI are suppressed by higher powers of derivatives.

To be more precise, any external particle contracted with a field with two deriv-
atives in a vertex contributes to a two-derivatives operator acting on this external
particle—this is the trivial case. On the other hand, if we contract the external
particles with fields without derivatives we could in principle generate operators
with fewer derivatives. But now the antisymmetric structure of the interactions
plays a crucial role. Without loss of generality consider for instance the interac-
tion V ⊇ hμνE α ρ γ

μ E β σ
ν γ�α β�ρ σ, and contract an external helicity-2 particle with

momentum pμ with the helicity-2 field coming without derivatives in this vertex; the
other twoπ-particles again run in the loop with momenta kμ and (p + k)μ (Fig. 5.3).
The contribution of this vertex gives (de Rham et al. 2012)

A ∝
∫

d4k

(2π)4
Gk Gk+p f

μν E α ρ γ
μ E β σ

ν γ kα kβ (p + k)ρ (p + k)σ · · · , (5.9)
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Fig. 5.3 An arbitrary
Feynman diagram with the
decoupling limit interaction
hμνE α ρ γ

μ E β σ
ν γ �α β�ρ σ at the

vertex

Πμν

Παβ

kμ

h

hμνε αργ
μ ε βσ

ν γΠαβΠρσ

kμ + pμ
pμ

where Gk = k−2 is the Feynman massless propagator for the helicity-0 mode π, and
fμν is the spin-2 polarization tensor. The ellipses denote the remaining terms of the
diagram, which are irrelevant for our argument. Similarly to what happened in the
case of the pure Galileon interactions, the only non-vanishing contribution to the
scattering amplitude will come in with at least two powers of the external helicity-2
momentum pρpσ

A ∝ fμνE α ρ γ
μ E β σ

ν γ pρpσ

∫
d4k

(2π)4
Gk Gk+p kα kβ · · · , (5.10)

which in coordinate space corresponds to two derivatives on the external helicity-2
mode.

Thus any external leg coming out of the hμνX(2)
μν vertex will necessarily have two

or more derivatives on the corresponding field in the effective action. The same is
trivially true for theπX(2)

μν vertexwhich corresponds to the pureGalileon interactions.
Similarly, if the external leg is contracted with the derivative-free field in vertices

hμνX(3)
μν and πX(3)

μν , their contribution will always involve the external momentum
pμ and the loop momenta kμ and k′

μ with the following structure,

A ∝
∫

d4kd4k′

(2π)8
GkG

′
kGk+k′+p f μνE α ρ γ

μ E β σ δ
ν kαkβk

′
ρk

′
σ

×(p + k + k′)γ(p + k + k′)δ · · ·
∝ fμνE α ρ γ

μ E β σ δ
ν pγpδ

∫
d4kd4k′

(2π)8
GkGk′Gk+k′+p kαkβk

′
ρk

′
σ · · · , (5.11)

where the contraction on the Levi-Civita symbols is performed with either the gravi-
ton polarization tensor fμν or with fμν = ημν depending on whether we are dealing
with the vertex hμνX(3)

μν or πX(3)μ
μ. Similar arguments, as can be straightforwardly

checked, lead to the same conclusion regarding the minimal number of derivatives
on external fields for cases in which there are two external states coming out of these
vertices (with the other two consequently running in the loops).

This completes the proof of the absence of quantumcorrections to the scale�3, the
two parameters a2,3, as well as to the spin-2 kinetic term and the scalar-tensor kinetic
mixing in the theory defined by (5.4). This is the essence of the non-renormalization
theorem in the decoupling limit of massive gravity: there are no quantum corrections
to the two parameters a2 and a3, nor to the scale �3. Moreover, the kinetic term of
the helicity-2 mode is radiatively stable.
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5.3 Implications for the Full Theory

In this sectionwewill comment on the implications of the above emergent decoupling
limit non-renormalization property for the full theory.

We have established in the previous section that in the decoupling limit the leading
scalar-tensor part of the action does not receive quantum corrections in massive
gravity: all operators generated by quantum corrections in the effective action have
at least two extra derivatives compared to the leading terms, making the coefficients
ai invariant under the renormalization group flow. This in particular implies the
absence of wave-function renormalization for the helicity-2 and helicity-0 fields in
the decoupling limit. Moreover, the coupling with external matter fields goes as
1

MPl
hμνTμν and thus is negligible as MPl → ∞. The non-renormalization theorem is

thus unaffected by external quantum matter fields in the decoupling limit.
The decoupling limit analysis of the effective action, much like the analogous

nonlinear sigma models of non-Abelian spin-1 theories (Vainshtein and Khriplovich
1971), provides an important advantage over the full treatment (see Arkani-Hamed
et al. (2003) for a discussion of these matters). In addition to being significantly
simpler, the decoupling limit explicitly displays the relevant degrees of freedom and
their (most important) interactions. In fact, as we will see below, we will be able to
draw important conclusions regarding the magnitude of quantum corrections to the
full theory based on the decoupling limit power counting analysis alone.

Now, whatever the renormalization of the specific coefficients αi (and more gen-
erally, of any relative coefficient between terms of the form [H�1] · · · [H�n ] in the
graviton potential) is in the full theory, it has to vanish in the decoupling limit, since
αi are in one-to-one correspondence with the unrenormalized decoupling limit para-
meters ai. Let us work in the unitary gauge, in which Hμν = hμν, and for example
look at quadratic terms in the graviton potential. We start with an action, the relevant
part of which (in terms of the so-far dimensionless hμν) is

L ⊃ −1

4
M2

Plm
2
(
(1 + c1) h

2
μν − (1 + c2) h

2 + · · ·
)

, (5.12)

where c1 and c2 are generated by quantum corrections after integrating out a small
Euclidean shell of momenta and indices are assumed to be contracted with the flat
metric. There is of course no guarantee that the two constants c1,2 are equal, so they
could lead to a detuning of the Fierz-Pauli structure and consequently to a ghost below
the cutoff, unless sufficiently suppressed. Returning to the Stückelberg formalism,
in terms of the canonically normalized fields

hμν → hμν

MPl
, π → π

MPlm2 (5.13)

the tree-level part (i.e. the one without c1 and c2) of the above Lagrangian would
lead to the following scalar-tensor kinetic mixing in the decoupling limit (5.4)
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L ⊃ −hμν

(
∂μ∂νπ − η

μν
�π

)
+ · · · . (5.14)

Now, from the decoupling limit analysis, we know that this mixing does not get
renormalized. What does this imply for the renormalization of the graviton mass and
the parameters of the potential in the full theory?

One immediate consequence of such non-renormalization is that in the decoupling
limit, c1 and c2 both vanish. To infer the scaling of these parameters with MPl, let
us look at the scalar-tensor interactions that arise beyond the decoupling limit. They
are of the following schematic form2

L ⊃
∑

n≥1, �≥0

fn,�

�
3(�−1)
3

h(∂2π)�
(

h

MPl

)n

, (5.15)

i.e., they are all suppressed by an integer power of M−1
Pl compared to vertices arising

in the decoupling limit. Then, judging from the structure of these interactions, gener-
ically the non-renormalization theorem for the classical scalar-tensor action should
no longer be expected to hold when considering the previous vertices present beyond
the decoupling limit.

This implies that c1 and c2 generated by quantum corrections are of the form
(remember that c1 and c2 are dimensionless)

c1,2 ∼
(

�3

MPl

)k

, (5.16)

with k some positive integer k ≥ 1, if the loops are to be cut off at the �3 scale3 (the
fact that k needs to be an integer relies on the fact that the theory remains analytic
beyond the decoupling limit). Taking the worst possible case (i.e., k = 1), one can
directly read off the magnitude of the coefficients c1,2,

c1,2 ∼<
(

�3

M Pl

)
∼

(m

MPl

)2/3
. (5.17)

In terms of the quantum correction to the graviton mass itself, this implies (using
simply δm2 = m2

δ c1,2)

δm2 ∼< m2
(

m

MPl

)2/3

, (5.18)

2We are omitting here the part containing the helicity-1 interactions, which can uniquely be restored
due to diff invariance of the helicity-2+helicity-1 system, and the U(1) invariance of the helicity-
1+helicity-0 system.
3In this analysis, the graviton mass m is completely absorbed into �3, and nothing special happens
at the scale m as far as the strong coupling is concerned.
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providing an explicit realization of technical naturalness for massive gravity.
Naively, this implies that the correction to the graviton mass goes like

δm2 ∼ �2
3 (m/MPl)

n, (5.19)

where n is any positive number, since in this case the r.h.s. of the latter equation van-
ishes in the decoupling limit. This can be recast in the form δm2 ∼ m2 (m/MPl)

n−2/3

(up to the fact of course, that if the Foerz Pauli tuning is spoiled at O(1), m loses
a physical interpretation of being the graviton mass), therefore for 0 < n ≤ 2/3
the theory would be badly non-technically natural. But n in fact should be larger
than 2/3, as a consequence of the non-renormalization theorem. Indeed, taking the
decoupling limit and computing quantum corrections should commute, so the non-
renormalization of the leading decoupling limit action means the following: if one
takes the original Lagrangian (5.12) and takes the decoupling limit (by keeping
exactly the same scalings for different helicities) first by setting c1 = c2 = 0 and
then by giving these constants their actual values computed from loops, one should
get the same answer. This implies c1, c2 ∼ (m/MPl)

k, where k > 0. On the other
hand, n < 2/3 would imply that c1 and c2 blow up in the�3 decoupling limit, which
is inconsistent with non-renormalization. This can be verified by looking at explicit
operators, generated quantum mechanically. Although the couplings of the leading
part of the decoupling limit action does not run in the effective theory, there certainly
are operators of e.g. the form,

(∂2π)n

�3n−4
3

, (5.20)

in theWilsonian action, the couplings ofwhich do runwith the renormalization group.
The quadratic operator from the latter set is directly linked to the renormalization
of the graviton mass.4 Moreover, simply looking at the n = 2 operator from (5.20),
one can directly read off the magnitude of the coefficients c1,2,

c1,2 ∼
(

m

MPl

)2/3

, (5.21)

providing an explicit realization of technical naturalness for massive gravity.
One can extend these arguments to an arbitrary interaction in the effective poten-

tial. Consider a generic term of the following schematic form in the unitary gauge
involving � factors of the (dimensionless) metric perturbation

L ⊃ M2
Plm

2√−g (c̄ + c)h� . (5.22)

4Of course, as noted above, one should be cautious about themeaning of “gravitonmass”, if c1 �= c2
in (5.12), which one should anticipate to hold in the quantum theory. However, such a detuning
of the Fierz-Pauli structure, as is well-known, does not spoil consistency of the effective theory if
c1,2 � 1, which is true for the theory at hand.
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Here indices are contracted with the full metric, c̄ denotes the “classical” coefficient
of the given term obtained from the ghost-free theory, and c is its quantum correction.
Our task is to estimate the magnitude of c based on the non-renormalization of the
decoupling limit scalar-tensor Lagrangian. Introducing back the Stückelberg fields
through the replacement hμν → Hμν, and recalling the definition of different helicities
(5.13), the quantum correction to the given interaction can be schematically written
in terms of the various canonically normalized helicities as follows

(
1 + h

MPl
+ · · ·

)1+�
(

h

MPl
+ ∂A

MPlm
+ ∂2π

�3
3

+ ∂A∂2π

MPlm�3
3

+ (∂A)2

M2
Plm

2
+ (∂2π)2

�6
3

)�

.

The first parentheses denotes a schematic product of
√−g and � factors of the inverse

metric, needed to contract the indices. In the classical ghost-free massive gravity,
the pure scalar self-interactions are carefully tuned to collect into total derivatives,
projecting out the Boulware-Deser ghost. From the decoupling limit arguments, we
know that quantum corrections do produce such operators, e.g. of the form (∂2π)�,
suppressed by the powers of �3. This immediately bounds the magnitude of the
coefficient c to be the same as for the � = 2 case

c ∼<
(

�3

M Pl

)
∼

(
m

MPl

)2/3

. (5.23)

Indeed, for c given by (5.23), we get M2
Plm

2c ∼ �4
3 and the upper bound on c is

the same as that coming from the mass term renormalization. In the next chapter we
will explicitly compute the quantum corrections beyond the decoupling limit and see
whether or not these implications from the decoupling limit remain true in the full
theory.
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Chapter 6
Renormalization Beyond the Decoupling
Limit of Massive Gravity

In this chapter we study the naturalness of the graviton mass and whether or not the
specific structure of the graviton gets detuned in the full theory beyond the decoupling
limit, and compare our conclusions to the estimations coming from the decoupling
limit analysis. More concrete, we will address the two essential questions.

• Do the overall parameters of the full theory get large quantum corrections? In
order to have a viable cosmological phenomenon, the mass of the graviton needs
to be tuned to a very small value. This tuning is as extreme as for the cosmological
constant. Therefore the first essential question is whether this tuning is technically
natural, meaning whether the graviton mass receives large quantum corrections.
The results from the decoupling limit suggest a technically natural mass for the
graviton andwewould like to investigate this explicitly by computing the one-loop
quantum corrections beyond the decoupling limit.

• How do the specific interactions that we need to avoid the ghost renormalize. For
instance we need at linear order c1h2+c2h2μν with c1 = 1 and c2 = −1, but now if
they renormalize differently, i.e. if the counter terms we need to add for h2 and for
h2μν do not have the same tuning as the classical coefficients, then we would expect
the ghost to come back to us at the quantum level. For example in the DGP model
this combination is imposed upon us from 5 dimensional General Relativity and
there we know that the 5 dimensional diffeomorphism invariance prevents us from
having different quantum corrections, i.e. the 5 dimensional symmetry protects
us against the reemergence of the ghost at the quantum level. Now in massive
gravity, what we have to do, is either try to find a symmetry or compute some of
the quantum corrections explicitly to see if the specific form of the interactions we
need is maintained at the quantum level. Since the interactions of massive gravity
are not protected by any known symmetry we do expect that the nice structure
of the interactions will be detuned by quantum corrections. The question then
becomes at which scale this detuning happens and whether the ghost reappears at
a smaller scale.

For the quantum stability analysis, in this chapterwe focus on quantumcorrections
arising at one-loop only, and assume for simplicity a massive scalar field as the

© Springer International Publishing Switzerland 2015
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Fig. 6.1 At one loop there is
either the matter fields
(dashed line) running in the
loop or the gravitons but not
both simultaneously

external matter field. In particular this implies that either gravitons or matter field are
running in the loops, but not both simultaneously (Fig. 6.1). Furthermore, byworking
in dimensional regularization, we discard any measure issues in the path integral
related to field redefinitions which show up in power law divergences. We thus focus
on logarithmic running results which are independent of this measure factor—in the
language of field theory we concentrate on the runnings of the couplings.

Moreover, our aim is to study the stability of the graviton potential against quan-
tum corrections, rather than the whole gravity action. As a result it is sufficient to
address the diagrams for which the external graviton legs have zero momenta (i.e. ,
we focus on the IR limit of the runnings). This approach is complementary to the
work developed by in Buchbinder et al. (2012) who used the Schwinger–DeWitt
expansion of the one-loop effective action. This method allows one to obtain the
Seeley–DeWitt coefficients associated with the curvature invariants generated by
quantum corrections (see also Buchbinder et al. (2007)). Our approach differs in
two ways. First, we introduce a covariant coupling to the matter sector and obtain
the quantum corrections generated by matter loops. And second, we go beyond the
minimal model investigated by Buchbinder et al. (2012) and study the quantum cor-
rections to the full potential. As a by product, we do not focus on the radiatively
generated curvature terms since these would also arise in GR and would therefore
not be exclusive of theories of massive gravity. Finally, we use units for which � = 1.

6.1 Quantum Corrections in the Metric Formulation

In this section we will perform the computation in the metric formulation. Even if the
end results will not be different the computation will differ significantly whether we
use the metric or the vielbein formulation. In any case, it offers a good consistency
check to perform the computation in both languages and point out the differences.
Starting with the metric formulation, we will show perturbatively that the one loop
matter contributions give rise to a cosmological constant in the same way as in
General Relativity. Unfortunately, the one loop graviton contributions detune the
nice structure. In the next section we will perform the computations in the vielbein
formulation and obtain consistent results.
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Let us first compute the quantum corrections coming from the one matter loop
in usual General Relativity. Our staring point is the action for gravity and a massive
scalar field which plays the role of our source for gravity,

S =
∫

d4x (LGR + Lmatter) (6.1)

= M2
Pl

2

∫
d4x

√−gR −
∫

d4x
√−g

(
1

2
(∂χ)2 + 1

2
M2χ2

)
. (6.2)

Aswe already pointed out,we are only interested in the effect of loops ofmatter on the
graviton mass and thus expand this action to second order in the metric perturbations
around flat space-time gμν = ημν + 2

MPl
hμν such that the full Lagrangian to second

order in h is

L = −hμνÊαβ
μνhαβ + 1

MPl
hμνTμν + 1

2M2
Pl

hμνhαβT
μναβ, (6.3)

where Ê is the Lichnerowicz operator and Tμν is the stress-energy tensor, whilst
Tμναβ is its derivative with respect to the metric,

Tμν = ∂μχ∂νχ − 1

2
ημν

(
(∂χ)2 + M2χ2

)
(6.4)

Tμναβ = ∂μχ∂νχηαβ + ∂αχ∂βχημν − 4∂(αχ∂(νχημ)β)

+ 1

2
fμναβ

(
(∂χ)2 + M2χ2

)
, (6.5)

where we use the symmetrization convention (a, b) = 1
2 (ab + ba) and in particular

4X(μ(α, ν)β) ≡ Xμα, νβ + Xμβ, να + Xνα,μβ + Xνβ,μα, and

fμναβ = ημ(αηνβ) − 1

2
ημνηαβ. (6.6)

With these conventions, the correctly normalized Feynman propagator for the gravi-
ton and the scalar field are

Gμναβ = 〈hμν(x1)hαβ(x2)〉 = fμναβ

∫
d4k

(2π)4

eikμ(x
μ
1 −xμ

2 )

k2 − iε
(6.7)

Gχ = 〈χ(x1)χ(x2)〉 =
∫

d4k

(2π)4

eikμ(x
μ
1 −xμ

2 )

k2 + M2 − iε
. (6.8)

For simplicity,wewill perform the computation in theEuclidean space.Wego into
Euclidean space by performing the Wick rotation t → −i τ, such that the Euclidean
action is
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SE = −
∫

d4xE

(
(∂χ)2

2
+ M2

2
χ2 + hμν

(
Êαβ
μνhαβ − Tμν

MPl
− hαβTμναβ

2M2
Pl

))
, (6.9)

where all raising and lowering of the indices are now performed with the flat Euclid-
ean space metric δμν. Massive gravity on a Minkowski reference metric is thus
mapped to massive gravity on a flat Euclidean reference metric δab in Euclidean
space.

6.1.1 Quantum Corrections in the Matter Loop

Wewant to focus on the renormalization of the graviton potential and not on its wave
function or higher derivatives. For the potential renormalization it is sufficient to
focus on the IR behaviour of these scattering amplitudes and set the momentum of
any external leg to zero. Using these relations, we find that the 1-loop contribution
to the tadpole (as represented on the first line of Fig. 6.2) is given by

A(1pt)
μν = 1

MPl

∫
d4k

(2π)4

kμkν − 1
2δμν(k2 + M2)

k2 + M2 = 1

4

M4

MPl
JM,1δμν. (6.10)

where

JM,1 = 1

M4

∫
d4k

(2π)4

k2

k2 + M2 , (6.11)

as quoted in Appendix A.3.
Now turning to the 2-point correlation function, the 1-loop contribution arising

for the cubic vertex hμνTμν is given by

Fig. 6.2 1-loop matter
contributions to the tadpole
and 2-point correlation
function
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A(2pt,3vt)
μναβ = (−1)2 (2 · 2)

2!M2
Pl

∫
d4k

(2π)4

kμkνkαkβ − 1
2

(
δμνkαkβ + δαβkμkν

)
(k2 + M2)(

k2 + M2
)2

= 2M4

M2
Pl

[
1

24
JM,2

(
2δμαδνβ + δμνδαβ

) − 1

4
JM,1δμνδαβ

]

= 1

4

M4

M2
Pl

JM,1
(
2δμαδνβ − δμνδαβ

) = 1

2

M4

M2
Pl

JM,1 fμναβ, (6.12)

where the terms in bracket in the first line are combinatory factors and already on
the first line we ignored the terms that would cancel in dimensional regularization.

Finally focusing on the contribution from the quartic vertex, hμνhαβTμναβ, we get

A(2pt,4vt)
μναβ = (−1) (2)

2M2
Pl

∫
d4k

(2π)4

4δ(μ(αkβ)kν) − (
δμνkαkβ + δαβkμkν

)
k2 + M2

= − M4

M2
Pl

JM,1fμναβ. (6.13)

The total 1-loop contribution to the 1-point and 2-point functions are thus given by

A(1pt)
μν = 1

4

M4

MPl
JM,1δμν (6.14)

A(2pt)
μναβ = A(2pt,3vt)

μναβ + A(2pt,4vt)
μναβ = −1

2

M4

M2
Pl

JM,1 fμναβ. (6.15)

This corresponds to the following counter-terms at the level of the action

LCT = −
(
A(1pt)

μν hμν + 1

2
A(2pt)

μναβh
μνhαβ

)
(6.16)

= −M4

4
JM,1

(
1

MPl
[h] + 1

2M2
Pl

(
[h]2 − 2[h2]

))
(6.17)

= −M4

4
JM,1

(√−g − 1
) + O

(
h3/M3

Pl

)
, (6.18)

so we see that the effective potential generated at 1-loop corresponds precisely to a
cosmological constant with scale given by the scalar field mass M. This is precisely
what causes the cosmological constant problem: any massive particle of mass M
contributes to the vacuum energy proportional to M4.

It is actually easier to derive the previous results by performing first a change of
variable: ψ = √−gχ. Since we are only interested in potential corrections to the
graviton action and not in derivative corrections, any terms involving derivatives of
g are irrelevant for this study (vanish in the IR limit), and the matter Lagrangian
reduces to (keeping the same conventions as before)
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Lmatter = −
∫

d4x
√−g

(
1

2
(∂χ)2 + 1

2
M2χ2

)

= −
∫

d4x

(
gμν∂μψ∂νψ

2
+ M2

2
ψ2

)
+ ((∂g) corrections).

The only place where the graviton interacts with matter is then through the kinetic
termgμν∂μψ∂νψ, andwe then simplyhave the following interactions betweengravity
and the matter field ψ

Lhψ =
(
hμν − 2(h2)μν + 4(h3)μν

)
∂μψ∂νψ, (6.19)

with (h2)μν = hμαhα
ν and similarly for (h3)μν. Using these vertices we can then

compute the n-point graviton scattering amplitudes. For simplicity we use the nota-
tion A(n pt) = A(n pt)

a1b1···anbnh
a1b1 · · · hanbn such that the contributions are

A1pt = 1

MPl

∫
d4k

(2π)4

hμνkμkν(
k2 + M2

) = 1

4

M4

MPl
JM,1[h] (6.20)

A(2pt,3vt) = 2

M2
Pl

∫
d4k

(2π)4

hμνhαβkμkνkαkβ(
k2 + M2

)2

= 1

12

M4

M2
Pl

JM,2

(
2[h2] + [h]2

)
(6.21)

A(2pt,4vt) = − 4

M2
Pl

∫
d4k

(2π)4

(h2)μνkμkν(
k2 + M2

) = − M4

M2
Pl

JM,1 [h2] (6.22)

so once again

A(2pt) = A(2pt,3vt) + A(2pt,4vt) = 1

4

M4

M2
Pl

JM,1

(
[h]2 − 2[h2]

)
(6.23)

and we can keep playing the same game for higher n-point functions, for instance
the three-point scattering amplitude is given by (Fig. 6.3)

Fig. 6.3 1-loop matter
contributions to the 3-point
function
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A(3pt,3vt) = M4

3!M3
Pl

(3!4.2) 1

192

(
[h]3 + 6[h][h2] + 8[h3]

)
JM,3

A(3pt,3−4vt) = −2.2M4

2!M3
Pl

(3!.2) 1

24

(
[h2][h] + 2[h3]

)
JM,2

A(3pt,5vt) = 4M4

M3
Pl

(3!)1
4
[h3]JM,1 (6.24)

so that the total 3-point function goes as

A(3pt) = 1

4

M4

M3
Pl

JM,1

(
[h]3 − 6[h][h2] + 8[h3]

)
, (6.25)

which is precisely the correct combination that describes a cosmological constant,

LCT = −
(
A(1pt) + 1

2
A(2pt) + 1

3!A
(3pt)

)

= −M4

4
JM,1

(
1

MPl
[h] + 1

2M2
Pl

(
[h]2 − 2[h2]

)

+ 1

6M3
Pl

(
[h]3 − 6[h][h2] + 8[h3]

))

= −M4

4
JM,1

(√−g − 1
) + O

(
h4/M4

Pl

)
, (6.26)

The computation for the one-loop matter contributions was so far for the usual Gen-
eral Relativity, which gave rise to counter terms in form of a cosmological constant,
which is at the origin of the cosmological constant problem. We now move onto the
1-loop effect of matter when the graviton is massive. The only modification comes
from the graviton propagator, which is now given by

Gmassive
μναβ = 〈hμν(x1)hαβ(x2)〉 = f̃μναβ

∫
d4k

(2π)4

eikμ(x
μ
1 −xμ

2 )

k2 + m2 , (6.27)

with

f̃μναβ =
(

η̃μ(αη̃νβ) − 1

3
η̃μνη̃αβ

)
and η̃μν = ημν + kμkν

m2 , (6.28)

i.e. its polarization is now no longer proportional to ημ(αηβ)ν − 1
2
ημνηαβ. However

as we have seen in the massless case, to that level of the computation, considering
only loops of matter, the graviton propagator has no effect on the computation of the
effective potential and these effects are thus irrelevant. Not surprisingly, the one loop
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contributions in Massive Gravity are identical to General Relativity. The reason for
that is that the graviton mass only affects the graviton propagator and not the vertices
(as we are keeping the same coupling to matter as we do in General Relativity, i.e. a
covariant coupling). Since loops only involve the matter field propagator and are
independent to the graviton mass, there is no contributions from the graviton mass
to these quantum corrections, and we recover exactly the same result as in General
Relativity. So matter loops (at the 1-loop level) only give rise to a cosmological
constant as in (6.26) but do not affect the structure of the graviton potential.

6.1.2 Quantum Corrections in the Graviton Loop

We now focus on quantum corrections arising from graviton loop (focusing first
on the corrections from the potential to the potential). We will see that if we only
consider effects from the potential, the quantum corrections to the mass are going
as δm2 ∼ m4/M2

Pl ∼ 10−120 m2 and are hence highly suppressed (the naturalness
argument is fully present). However a key aspect to consider is whether or not the
special structure of the potential (which is essential for the absence of ghost) is
preserved under quantum corrections. We will organize the quantum corrections
under powers of α3 and α4.

6.1.2.1 Quantum Corrections from Potential U4

Wewill now compute the one-loop graviton contributions coming from the potential
interactions. Lets start with the potential U4, which was given by

L4 = α4m
2M2

Pl
√
g EabcdEαβγδ Kα

a Kβ
b Kγ

c Kδ
d (6.29)

so that expanding it to leading order in hμν whilst keeping the notation gμν =
ημν + 2

MPl
hμν, we have

L4 = α4
m2

M2
Pl

EabcdEαβγδ h
α
a h

β
b h

γ
c h

δ
d + O(h5). (6.30)

Notice that since the potential U4 starts at quartic order in h, it does not renormalize
the tadpole at one-loop (or at linear order in α4) and so there can be no contribution to
the cosmological constant at this level. Nevertheless, this potential leads to quantum
corrections to the 2-point function which go as
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A(2pt,4vt)
α4 = A(2,4vt)

μναβ hμνhαβ

= (4.3)α4
m2

M2
Pl

haαhbβ

∫
d4k

(2π)4

EabcdEαβγδ f̃cγdδ(
k2 + M2

) (6.31)

= −12α4
1

M2
Pl

haαhbβ

∫
d4k

(2π)4

1(
k2 + M2

)

× 5

3

[
kakβ

δ
αb + kbkα

δ
aβ − kakα

δ
bβ − kbkβ

δ
aα

]

= −10α4
m4

M2
Pl

Jm,1

(
[h2] − [h]2

)
, (6.32)

using dimensional regularization. This is precisely of the Fierz-Pauli structure which
means that this one-loop correction to the mass from terms linear in α4 do preserve
the structure of the potential. This are good news: the counter terms to the two point
function coming from the quartic potential U4 are in form of the Fierz-Pauli structure
(Fig. 6.4).

Now still at one loop and linear order in α4, we expect a correction to the three
point function from the terms going as α4

m2

M3
Pl
h5 etc. to all orders, and we should

check that they combine to give terms which are simply a superposition of the three
potentials U2,3,4 which would correspond to a renormalization of α2,3,4 but not a
change of the structure.

Lets have an explicit look to the contribution to the three point function coming
from h5 terms. The interactions at linear order in α4 and fifth order in h are expressed
as follows (Fig. 6.5)

L5th
4 = α4

16

m2

M3
Pl

(
−6hcah

abhdbh
e
chde + 5([h2] + [h]2)hechcdhde

− 5[h]3[h2] + [h]5
)

(6.33)

Fig. 6.4 One-loop contribution to the 2-point correlation function from the potential U4

Fig. 6.5 1-loop contribution to the 3-point function linear in α4
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The contribution of these interactions to the three point function is of the Fierz-Pauli
structure which means that this one-loop correction to the mass do still preserve the
structure of the potential. Thus, the counter terms to the three point function coming
from the quartic potential U4 are also in form of the Fierz-Pauli structure

A(3pt,5vt)
α4 = −α4

25

32

m4

M3
Pl

Jm,1[h]
(
[h2] − [h]2

)
, (6.34)

Wehave seen that the one-loop graviton quantumcorrections coming from the quartic
potential U4 give rise to contributions which do preserve the nice structure of the
potential. These are promising results and motivate to study the quantum corrections
coming from the cubic potential U3.

6.1.2.2 Quantum Corrections from Potential U3

We now look at the corrections to the tadpole and 2pt function arising at linear
order in α3 (at 1-loop). In difference to the quartic potential, the cubic potential can
contribute to the tadpole and therefore could in principle yield a contribution in form
of a cosmological constant. We expand again the cubic potential

L3 = α3m
2M2

Pl
√
g EabcdEαβγd Kα

a Kβ
b Kγ

c (6.35)

in terms of the metric perturbations

L3 = α3m2

MPl
EabcdEαβγ

d

(
(1 + h

MPl
)haαhbβhcγ − 9

2MPl
haρh

ρ
αhbβhcγ

)

+O(h5). (6.36)

The cubic interactions in h from the cubic potential lead to a contribution to the
tadpole at linear order in α3 in the following form

A(1pt)
α3 = (3)α3

m2

MPl
haα

∫
d4k

(2π)4

f̃bβcγ(
k2 + m2

)EabcdEαβγ

d (6.37)

= −15

2

α3

MPl
[h]

∫
d4k

(2π)4

k2 + 2m2(
k2 + m2

) (6.38)

= 15

2
α3

m4

MPl
Jm,1[h]. (6.39)
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Let us now focus on the contributions to the 2-point function which are linear in α3.
They arise from the quartic interactions in (6.36) and there are 5 possible contractions
(2 from the hhaαhbβhcγ terms and 3 from the term going as haρh

ρ
αhbβhcγ). Combining

all these possibilities, we get

A(2pt)
α3 = α3

m2

M2
Pl

EabcdEαβγ

d

∫
d4k

(2π)4

1(
k2 + m2

)
[
(2 · 3)hhaα f̃bβcγ

− 9

2

(
(2)hσ

a hσα f̃bβcγ + (8)hσ
a hbβf̃σαcγ + (2)hbβhcγ f̃aσ

σ
α

)

+ (2 · 3)haαhbβ f̃cγσ
σ

]
. (6.40)

Performing these contractions and using the identities in (A.20), we get

A(2pt)
α3 = −α3

m2M2
Pl

∫
d4k

(2π)4

1(
k2 + m2

)[ (
26m4 + 13k2m2 + 2k4

)
[h]2

− 2
(
28m4 + 14k2m2 + k4

)
[h2]

]

= 15

2
α3

m4

M2
Pl

Jm,1

(
[h]2 − 2[h2]

)
, (6.41)

which combined with (6.74), gives rise to precisely to the correct combination for
the cosmological constant. Thus, the quantum corrections to the tadpole and 2pt
function arising at linear order in α3 combine into a contribution for the cosmologi-
cal constant. These are excellent news. Not only the contributions coming from the
quartic potential preserve the nice structure of the potential but also the contributions
coming from the cubic potential do preserve it as well. These promising results mo-
tivate the exploration of quantum corrections to next leading order in the parameters.
Lets have a quick look at the one-loop contributions to the 2-point function coming
from the cubic potential at the quadratic order in α3. There are two types of diagrams
contributing to the 2pt functions at quadratic order in α3 which we denote asA(2pt,1)

α3

and A(2pt,2)
α3 as in Fig. 6.6.

Fig. 6.6 1-loop
contributions to the 2-point
function at quadratic order
in α3
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First of all, the contribution from the first diagram A(2pt,1)
α3 is

A(2pt,1)
α3 = α23

2

m4

M2
Pl

haa′hbb′EabcdEa′b′c′
d EαβγδEα′β′γ′

δ
f̃q=0
cc′γγ′

×
∫

d4k

(2π)4

f̃αα′β′β′(
k2 + m2

)

∝ m4

M2
Pl

α23Jm,1

(
[h2] − [h]2

)
, (6.42)

and thus has precisely the correct structure of the Fierz-Pauli mass term. Inspired by
the result of the first contribution, now when turning to the second contribution, we
get

A(2pt,2)
α3 = α23

2
(3 · 3 · 2 · 2) m

4

M2
Pl

haa′hαα′EabcdEa′b′c′
d EαβγδEα′β′γ′

δ

×
∫

d4k

(2π)4

fbb′ββ′ fcc′γγ′(
k2 + m2

)2

= 5

2

m4

M2
Pl

α23Jm,1

(
7[h]2 + 8[h2]

)
, (6.43)

which unfortunately does not correspond to anything nice and we failed to combine
it into some contributions to the cosmological constant and Fierz-Pauli interaction.
Even if all the quantum corrections do indeed have a natural scaling in the sense
that they are proportional to the mass of the graviton and suppressed by the Planck
mass and so proving the technical naturalness anticipated from the decoupling limit
analysis, the nice potential structure to avoid ghost instabilities seem to be broken
by quantum corrections. We also checked the quantum corrections coming from the
quartic potential at the quadratic order inα4 andwewerefinding similar disappointing
results. The detuning of the potential at the quantum level seems to be an unavoidable
feature. The questionwe should be then pursuing is atwhich scale the lowest detuning
operator appears which would correspond to the scale at which the ghost would
reappear. Before doing that, we will first recalculate the quantum corrections in
the vielbein language and continue the analysis of the scale of the detuning in this
language, which will facilitate the computation.

6.2 Quantum Correction in the Vielbein Language

In this section we would like to perform the computations in the vielbein language
since in most of the cases they are easier to perform. First of all, we will review the
tree level ghost-free covariant non-linear theory of massive gravity in the vielbein
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in the for us most convenient notation. We will first concentrate on the one-loop
contributions arising from the coupling to external matter fields. Similarly as in the
previous section using the metric language, we will be able to show that they only
imply a running of the cosmological constant and of no other potential terms for
the graviton. However, there will be a crucial difference: the perturbative expansion
of the determinant of the metric in the vielbein language is finite, such that the
Feynman diagrams only yield contributions up to the quartic order. We will also
perform the one-loop effective action from the matter fields and confirm the same
result in form of a cosmological constant. We will than move on and discuss the
one-loop contributions from the gravitons themselves, and illustrate that whilst these
destabilize the special structure of the potential, this detuning is irrelevant below the
Planck scale. We then push the analysis further and show that even if the background
configuration is large, as should be the case for the Vainshtein mechanism to work
(1972), this will redress the one-loop effective action in such a way that the detuning
remains irrelevant below the Planck scale.

6.2.1 Ghost-Free Massive Gravity in the Vielbein Inspired
Variables

In this subsection we will recapitulate the ghost-free interactions in the theory of
massive gravity in the vielbein inspired variables. Our starting pointwill be the results
coming from the decoupling limit and to investigate the way quantum corrections
affect the general structure of the potential in the vielbein language and compare
these with the metric formulation results.

The presence of a square-root in the ghost-free realization of massive gravity
makes its expression much more natural in the vielbein language (Groot et al. 2007;
Chamseddine and Mukhanov 2011; Hinterbichler and Rosen 2012; Deffayet et al.
2013) (see also Gabadadze et al. 2013; Ondo and Tolley 2013). In the vielbein
formalism, the ghost-free potential is polynomial and at most quartic in the vielbein
fields. To make use of this natural formulation, we will work throughout this chapter
in a ‘symmetric-vielbein inspired language’ where the metric is given by

gab =
(

γ̄ab + vab
MPl

)2

≡
(

γ̄ac + vac
MPl

) (
γ̄db + vdb

MPl

)
δ
cd, (6.44)

where ḡab = γ̄2ab = γ̄acγ̄bdδ
cd is the background metric, and vab plays the role of the

fluctuations. We stress that the background metric ḡab need not be flat, even though
the reference metric fab will be taken to be flat throughout this study, fab = δab.1

1In the Euclidean version of massive gravity both the dynamical metric gμν and the reference metric
fμν have to be ‘Euclideanized’, gμν → gab and fμν = ημν → δab.
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In this language, when working around a flat background metric, γ̄ab = δab, the
normal fluctuations about flat space are expressed in terms of v as

gab − δab = 2

MPl
vab + 1

M2
Pl

vacvbdδ
cd. (6.45)

The conversion from gab to vab is a field redefinition that will contribute a measure
term in the path integral. This generates power law divergent corrections to the
action which, since we will work in dimensional regularization, can be ignored. This
reflects the fact that the physics is independent of such field redefinitions, and only
the logarithmic runnings are physically meaningful for the purposes of our study.

In this section our goal is to go beyond the non-renormalization argument in
the decoupling limit reviewed above and investigate the quantum corrections in the
full non-linear theory written in terms of the vielbein variables. We choose to work
in the unitary gauge in which the Stückelberg fields vanish and �a = Xα

δ
a
α. The

fluctuations vμν encode all the five physical degrees of freedom if it is massive (the
two helicity-±2, the two helicity-±1 and the helicity-0 modes), and only the two
helicity-±2 modes if it is massless. To remind ourselves and to prevent to scroll back
and forth, we summarize the important formulas. The Feynman propagator for the
massless graviton is given by

G(massless)
abcd = 〈vab(x1)vcd(x2)〉 = f(0)abcd

∫
d4k

(2π)4

eik·(x1−x2)

k2
, (6.46)

in which x1,2 are the Euclidean space coordinates, and where the polarization struc-
ture is given by

f(0)abcd = δa(cδbd) − 1

2
δabδcd. (6.47)

Here δa(cδbd) ≡ 1
2δacδbd + 1

2δadδbc. For the massive graviton, on the other hand, the
corresponding Feynman propagator is given by

G(massive)
abcd = 〈vab(x1)vcd(x2)〉 = f(m)

abcd

∫
d4k

(2π)4

eik·(x1−x2)

k2 + m2 , (6.48)

with the polarization structure

f(m)
abcd =

(
δ̃a(cδ̃bd) − 1

3
δ̃abδ̃cd

)
where δ̃ab = δab + kakb

m2 . (6.49)

Notice that the polarization of the massive graviton is no longer proportional to f(0)abcd.
Consequently when we take the massless limit, m → 0, we do not recover the GR
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limit, which is at the origin of the vDVZ-discontinuity (van Dam and Veltman 1970;
Zakharov 1970),

lim
m→0

f(m)
abcd 
= f(0)abcd ,

which we had commented about in Sect. 1.2. At first sight this might be worrisome
since on solar system and galactic scales gravity is in very good agreement with GR.
Nevertheless, on these small scales, the effects of massive gravity can be cloaked by
theVainshteinmechanism (1972), where the crucial idea is to decouple the additional
modes from the gravitational dynamics via nonlinear interactions of the helicity-0
graviton. The success of the Vainshtein mechanism relies on derivative interactions,
which cause the helicity-0 mode to decouple from matter on short distances, whilst
having observational signatures on larger scales. The implementation of the Vain-
shtein mechanism was so far at the classical level. In this section we will explicitly
study how the Vainshtein mechanism acts at the quantum level, and how the quantum
corrections do not diverge in the limit when m → 0, even though the propagator
(6.27) does.

We focus on the IR behaviour of the loop corrections. Startingwith loops ofmatter,
we will see that the peculiar structure in (6.112) has no effect on the computation of
the quantum corrected effective potential at one-loop in the vielbein language. In a
similar way as in the metric formulation in the previous section, this is because at
one-loop thematter field and the graviton cannot both be simultaneously propagating
in the loops if we consider only the contributions to the graviton potential. As a result,
the quantumcorrections are equivalent to those inGR.Only oncewe start considering
loops containing virtual gravitons will the different polarization and the appearance
of themass in the propagator have an impact on the results. Furthermore, the graviton
potential induces new vertices which also ought to be considered.

In terms of the ‘vielbein-inspired’ perturbations, the ghost-free potential becomes
polynomial in vab,

L = M2
Pl

2
√
gR − 1

4
M2

Plm
2

4∑
n=2

1

Mn
Pl

α̃n Ũn[v]. (6.50)

In unitary gauge the potential above is fully defined by

Ũ2[h] = EabcdEa′b′
cdvaa′vbb′ (6.51)

Ũ3[h] = EabcdEa′b′c′
d vaa′vbb′vcc′ (6.52)

Ũ4[h] = EabcdEa′b′c′d′
vaa′vbb′vcc′vdd′ , (6.53)

where Eabcd represents the fully antisymmetric Levi-Cevita symbol (and not tensor,
so in this language Eabc

d = δdd′Eabcd′
, for example, carries no information about the

metric).

http://dx.doi.org/10.1007/978-3-319-18935-2_1
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The first coefficient is fixed, α̃2 = 1, whereas the two others are free. They relate
to the two free coefficients of de Rham et al. (2011b), as α̃3 = −2(1 + α3) and
α̃4 = −2(α3 + α4) − 1 (where α3 and α4 are respectively the coefficients of the
potential U3 and U4 in that language).2 The absence of ghost-like pathologies is
tied to the fact that, when expressed in terms of π uniquely, (6.51)–(6.53) are total
derivatives.

6.2.2 Quantum Corrections from Matter Loops in the Vielbein
Language

In the previous section, we had seen how the non-renormalization theorem prevents
large quantum corrections from arising in the decoupling limit of massive gravity.
Since there the coupling to external matter fields was suppressed by the Planck scale
these decouple completely when we take MPl → ∞ limit.

Here, we will again keep the Planck scale, MPl, finite and look at the contributions
frommatter loops and investigate their effect on the structure of the graviton potential
in the vielbein formulation. Again for definiteness, we consider gravity coupled to a
scalar field χ of mass M and study one-loop effects. When focusing on the one-loop
1PI for the graviton potential, there can be no mixing between the graviton and the
scalar field inside the loop. Furthermore, since we are interested in the corrections
to the graviton potential, we only assume graviton zero momentum for the external
legs. We still use dimensional regularization so as to focus on the running of the
couplings, which are encoded by the logarithmic terms.

Our starting point is the Lagrangian for massive gravity (6.50) to which we add a
real scalar field χ of mass M,

S =
∫

d4x (LmGR + Lmatter) , (6.54)

with

Lmatter = −√
g

(
1

2
gab∂aχ∂bχ + 1

2
M2χ2

)
. (6.55)

Note the sign difference due to the fact that this is the Euclidean action. The
Feynman propagator for the scalar field reads

Gχ = 〈χ(x1)χ(x2)〉 =
∫

d4k

(2π)4

eik.(x1−x2)

k2 + M2 . (6.56)

2As in de Rham et al. (2011b), this 2-parameter family of potential is the one for which there is no
cosmological constant nor tadpole.
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The mixing between the scalar field and the graviton is encoded in (6.55) and is
highly non-linear. Before proceeding any further we again perform the following
change of variables for the scalar field

χ → (g)−1/4ψ, (6.57)

where g ≡ det{gab}, so that the matter Lagrangian is now expressed as

Lmatter = gcd

2

(
∂cψ − 1

4
ψgab∂cgab

) (
∂dψ − 1

4
ψgpq∂dgpq

)
+ M2ψ2

2
. (6.58)

Since we will only be considering zero momenta for the external graviton legs, we
may neglect the terms of the form ∂g. As a result, the relevant action for computing
the matter loops in given by

Smatter =
∫

d4x

(
1

2
gcd∂cψ∂dψ + 1

2
M2ψ2

)
. (6.59)

In what follows we will compute the one-loop effective action (restricting ourselves
to a scalar field in the loops only) and show explicitly that the interactions between
the graviton and the scalar field lead to the running of the cosmological constant,
but not of the graviton potential. This comes as no surprise since inside the loops
the virtual scalar field has no knowledge of the graviton mass and thus behaves in
precisely the same way as in GR, leading to a covariant one-loop effective action.
When it comes to the potential, the only operator it can give rise to which is covariant
is the cosmological constant. We show this result explicitly in the one-loop effective
action, and then present it in a perturbative way, which will be more appropriate
when dealing with the graviton loops. This also provides a nice consistency check
with the result obtained in the metric formulation.

6.2.2.1 One-Loop Effective Action

The one-loop effective action S1,eff(gab,ψ) is given by

e−S1,eff(ḡab,ψ̄) =
∫

D�e−� i
(
Sij(ḡab,ψ̄)

)
� j

, (6.60)

where �i is a placeholder for all the fields, �i = {gab,ψ}, and Sij is the second
derivative of the action with respect to those fields,

Sij(ḡab, ψ̄) ≡ δ
2S

δ� iδ� j

∣∣∣
gab=ḡab,ψ=ψ̄

. (6.61)
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Here ḡab and ψ̄ correspond to the background quantities around which the action for
fluctuations is expanded. Since we are interested in the graviton potential part of the
one-loop effective action, we may simply integrate over the scalar field and obtain

e−S(matter−loops)
1,eff (ḡab) =

∫
Dψe

−ψ
(

δ
2S

δψ2 |gab=ḡab,ψ=ψ̄

)
ψ
. (6.62)

We therefore recover the well-known Coleman–Weinberg effective action,

S(matter−loops)
1,eff (ḡab) = 1

2
log det

(
δ
2S

δψ
2

∣∣∣
gab=ḡab

)
= 1

2
Tr log

(
δ
2S

δψ
2

∣∣∣
gab=ḡab

)
. (6.63)

Going into Fourier space this leads to

L(matter−loops)
1,eff (ḡab) = 1

2

∫
d4k

(2π)4
log

(
1

2
ḡabkakb + 1

2
M2

)

= 1

2

√
ḡ

∫
d4k̃

(2π)4
log

(
1

2
δ
abk̃ak̃b + 1

2
M2

)

⊃ M4

64π2

√
ḡ log(μ2), (6.64)

where μ is the regularization scale and we restrict our result to the running piece.
From the first to the second equality, we have performed the change of momentum
ka → k̃a such that gabkakb = δ

abk̃ak̃b. From this analysis, we see directly that the
effect of external matter at one-loop is harmless on the graviton potential. This is
no different from GR, since the scalar field running in the loops is unaware of the
graviton mass, and the result is covariant by construction. This conclusion is easily
understandable in the one-loop effective action (however, when it comes to graviton
loops it will be harder to compute the one-loop effective action non-perturbatively
and we will perform a perturbative analysis instead). For consistency, we apply a
perturbative treatment to thematter fields as well in the next subsection and comment
on the differences to the perturbative treatment used in the metric formulation in the
previous section.

Higher Loops—Before moving on to the perturbative argument, we briefly com-
ment on the extension of this result to higher loops. Focusing on matter loops only
then additional self-interactions in the matter sector ought to be included. Let us con-
sider, for instance, a λχ3 coupling. The matter Lagrangian will then include a new
operator of the form L ⊇ λ

√
gχ3 = λ g−1/4ψ3, where g = det{gab}. At n-loops,

we have n integrals over momentum, and 2(n− 1) vertices λ g−1/4ψ3, so the n-loop
effective action reads symbolically

S(matter−loops)
n (ḡab) = λ2(n−1)

g(n−1)/2

∫
d4k1 · · · d4kn

(2π)4n
Fn

(
k21, . . . , k

2
n,M

2
)

, (6.65)
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where Fn is a scalar function of the different momenta k2j = ḡabkjakjb.3 As a result

one can perform the same change of variables as used previously, kj → k̃j, with
k2j = δ

abk̃jak̃jb ≡ k̃2j . This brings n powers of the measure
√
g down so that the

n-loop effective action is again precisely proportional to
√
g

S(matter−loops)
n (ḡab) = λ2(n−1)

g(n−1)/2
gn/2

[∫
d4k̃1 · · · d4k̃n

(2π)4n
Fn

(
k̃21, . . . , k̃

2
n,M

2
)]

∝ √
g

2
λ(n − 1)M6−2n logμ. (6.66)

The integral in square brackets is now completely independent of the metric ḡab and
the n-loop effective action behaves as a cosmological constant. The same result holds
for any other matter self-interactions. Once again this result is not surprising as this
corresponds to the only covariant potential term it can be.

6.2.2.2 Perturbative Approach

In the previous subsection we have shown how at one-loop external matter fields
only affect the cosmological constant and no other terms in the graviton potential.
For consistency we show how this can be seen perturbatively in the vielbein-inspired
perturbations about flat space, as defined in Eq. (6.45). Including all the interactions
between the graviton and the matter field, but ignoring the graviton self-interactions
for now, the relevant action is then

S =
∫
d4x

{
vab

[
Êcd
ab + 1

2
M2

(
δ
c
aδ

d
b − δabδ

cd
)]

vcd

+ 1

2

∑
n≥0

(−1)n (n + 1)(v̂ab)n∂aψ∂bψ + 1

2
M2ψ2

}
, (6.67)

where vab ≡ MPlv̂ab is the canonically normalized helicity-2 mode. Raising and
lowering of the indices is now performed with respect to the flat Euclidean space
metric, δab, since we are working perturbatively. Note that we are using the notation
(v̂ab)2 ≡ v̂ac v̂ b

c .
We now calculate the one-loop matter contribution to the n-point graviton scatter-

ing amplitudes. For simplicity of notation, we again define the scattering amplitudes
as

A(n pt) ≡ A(n pt)
a1b1···anbn v̂

a1b1 · · · v̂anbn .

3Even if different momenta kj contract one can always reexpress them as functions of k2j , following
a similar procedure to what is presented in Appendix A.3.
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Fig. 6.7 Contribution to the graviton tadpole from a matter loop. Dashes denote the matter field
propagator, whereas solid lines denote the graviton. This convention will be adopted throughout
the paper

(a) (b)

Fig. 6.8 Contribution to the graviton 2-point function from matter loops

We start with the tadpole correction, using the dimensional regularization technique,
which enables us to capture the running of the parameters of the theory.

Tadpole—At one-loop, the scalar field contributes to the graviton tadpole through
the 3-vertex v̂ab∂aψ∂bψ represented in Fig. 6.7. Explicit calculation of this vertex
gives

A(1pt) =
∫

d4k

(2π)4

v̂abkakb
k2 + M2 = 1

4
M4[v̂]JM,1, (6.68)

where

JM,1 = 1

M4

∫
d4k

(2π)4

k2

k2 + M2 , (6.69)

as explained in Appendix A.3.
Wequote for completeness the individual corrections fromeachFeynman diagram

corresponding to a given n-point function.
2-point function—There are two Feynman diagrams which contribute to the

corrected 2-point function, which arise respectively from the cubic and quartic in-
teractions in the action (6.67).

Evaluation of these one-loop diagrams shown in Fig. 6.8 gives

A(2pt)
(a) = 2v̂abv̂cd

∫
d4k

(2π)4

kakbkckd
(k2 + M2)2

= 1

4
M4

(
2[v̂2] + [v̂]2

)
JM,1,

A(2pt)
(b) = −3

∫
d4k

(2π)4

(v̂2)abkakb
(k2 + M2)

= −3

4
M4 [v̂2] JM,1,

so that the total contribution to the 2-point function is

A(2pt) = A(2pt)
(a) + A(2pt)

(b) = 1

4
M4([v̂]2 − [v̂2])JM,1. (6.70)
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(a) (b) (c)

Fig. 6.9 One-loop contributions to the 3-point function

3-point function—The three-point scattering amplitude will receive corrections
from the diagrams depicted in Fig. 6.9 which give the following contributions

A(3pt)
(a) = M4

4

(
[v̂]3 + 6[v̂][v̂2] + 8[v̂3]

)
JM,1,

A(3pt)
(b) = −9M4

4

(
[v̂2][v̂] + 2[v̂3]

)
JM,1,

A(3pt)
(c) = 3M4[v̂3] JM,1.

We conclude the total 3-point function goes as

A(3pt) = M4

4

(
2[v̂3] + [v̂]3 − 3[v̂][v̂2]

)
JM,1. (6.71)

4-point function—The Feynman diagrams contributing to the corrected 4-point
function are those in Fig. 6.10 and they give the following contributions

(a) (b) (c) (d)

(e)

Fig. 6.10 One-loop contributions to the 4-point function
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A(4pt)
(a) = M4

(
12[v̂4] + 8[v̂][v̂3] + 3[v̂2]2 + 3[v̂2][v̂]2 + 1

4
[v̂]4

)
JM,1,

A(4pt)
(b) = 27M4

4

(
[v̂2]2 + 2[v̂4]

)
JM,1,

A(4pt)
(c) = 12M4

(
[v̂3][v̂] + 2[v̂4]

)
JM,1,

A(4pt)
(d) = −9M4

2

(
[v̂2][v̂]2 + 2[v̂2]2 + 2[v̂][v̂3] + 8[v̂4] + 2[v̂][v̂3]

)
JM,1,

A(4pt)
(e) = −15M4[v̂4] JM,1,

so that the total 4-point function is given by

A(4pt) = M4

4

(
[v̂]4 − 6[v̂4] − 6[v̂2][v̂]2 + 3[v̂2]2 + 8[v̂][v̂3]

)
JM,1. (6.72)

Equations (6.70)–(6.72) have the precise coefficients to produce a running of the
cosmological constant, as shown in Eq. (6.73).

Up to the 4-point function and using Eqs. (6.68), (6.70)–(6.72), the counterterms
which ought to be added to the original action (6.67) organize themselves into

LCT = −
(
A(1pt) + 1

2!A
(2pt) + 1

3!A
(3pt) + 1

4!A
(4pt)

)

= −M4

4

(
[v̂] + 1

2!
([v̂]2 − [v̂2]) + 1

3!
([v̂]3 + 2[v̂3] − 3[v̂][v̂2])

+ 1

4!
([v̂]4 − 6[v̂4] − 6[v̂]2[v̂2] + 3[v̂2]2 + 8[v̂][v̂3])

)
JM,1

= −M4

4
√
g JM,1. (6.73)

Note that the last line is only technically correct if we include the zero-point function,
which we can do (it is a vacuum bubble). We conclude that the matter loops renor-
malize the cosmological constant, which is the only potential term one can obtain
from integrating out matter loops, in agreement with the findings of ’t Hooft and
Veltman (1974), Park (2011). Importantly, matter loops do not affect the structure of
the graviton potential.

Higher n-point functions—From the one-loop effective action argument, we
know that all the n-point functions will receive contributions which will eventually
repackage into the normalization of the cosmological constant. Seeing this explicitly
at the perturbative level is nevertheless far less trivial, butwe give a heuristic argument
here. Taking the metric defined in Eq. (6.45), the expansion of the determinant of the
metric to quartic order in v̂ as given in (6.73) is, in fact, exact. The finite nature of
the running of the cosmological constant in (6.73) is therefore no accident.
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(a) (b) (c) (d)

(e)

(f) (g)

Fig. 6.11 One-loop contributions to the 5-point function

To showwewould arrive at the same conclusion by explicit computation, consider
the one-loop correction to the 5-point function. In this case, there are five Feynman
diagrams which contribute at the same order for the quantum corrections, depicted
in Fig. 6.11. From the interactions in the Euclidean action (6.67), we find

A(5pt) = M4

4

(
[v̂]5 + 6[v̂5] − 15

2
[v̂][v̂4] + 5[v̂3][v̂]2

−5[v̂3][v̂2] + 15

4
[v̂][v̂2]2 − 5

2
[v̂2][v̂]3

)
JM,1

≡ 0,

which vanishes identically in four dimensions, as noted in de Rham and Gabadadze
(2010). We can proceed in a similar manner to show that the same will be true for
all the n-point functions, with n > 5. This supports the consistency of the formalism
introduced in (6.45) and explicitly agrees with the findings for GR as well as with
the direct computation of the one-loop effective action.

Having shown the quantum stability of the massive gravity potential at one-loop,
one can see that the same remains true for any number of loops provided there are
no virtual gravitons running in the internal lines.



164 6 Renormalization Beyond the Decoupling Limit of Massive Gravity

6.2.3 Quantum Corrections from Graviton Loops
in the Vielbein Language

In the previous section we have studied in detail the quantum corrections to the po-
tential for massive gravity arising from matter running in loops. We concluded that
these quantum corrections could be resummed and interpreted as the renormaliza-
tion of the cosmological constant. Therefore, we have shown that such loops are
completely harmless to the special structure of the ghost-free interaction potential.

Nowwepush this analysis forward by studying quantumcorrections fromgraviton
loops. We start by considering one-loop diagrams, and since we are interested in the
IR limit of the theory, we set the external momenta to zero, as before. We will
again focus on the running of the interaction couplings, and thus apply dimensional
regularization.

Based on studies within the decoupling limit (de Rham et al. 2012), we expect the
quantum corrections to the graviton mass to scale as δm2 ∼ m4/M2

Pl ∼ 10−120 m2.
Even though such corrections are parametrically small, a potential problem arises if
they detune the structure of the interaction potential. If this happens, ghosts arising
at a scale much smaller than the Planck mass could in general plague the theory,
rendering it unstable against quantum corrections. To show how such corrections
could arise, we organise the loop diagrams in powers of the free parameters α̃3 and
α̃4 of Eq. (6.50).

To draw a comparison to the previous computation in the metric formulation,
the potential interactions in Eqs. (6.51)–(6.53) are now finite in the fluctuations v

whereas in the metric formulation they were not. We start by studying the quantum
corrections arising at the linear order in the potential parameters α̃2,3,4. Since Ũ2 is
precisely quadratic in v, it leads to no corrections. Next we focus on Ũ3 in Eq. (6.50),
which is cubic in v and therefore can in principle renormalize the tadpole at one-loop.
The tadpole contribution yields

A(1pt,3vt) = −5

8
α̃3

M4

MPl
[v]JM,1, (6.74)

which on its own is harmless (this would correspond to the potential Ũ1 which we
have not included in (6.50), but which is also ghost-free (Hassan and Rosen 2012b)).
The last potential term Ũ4 is quartic in h, as shown in (6.53). This interaction vertex
leads to quantum corrections to the 2-point function as shown in Fig. 6.12,

Fig. 6.12 One-loop contribution to the 2-point correlation function from a graviton internal line
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A(2pt,4vt) = A(2,4)
abcd habhcd = 5α̃4

m4

M2
Pl

(
[v2] − [v]2

)
JM,1 ∝ Ũ2(v), (6.75)

where we have applied dimensional regularization with JM,1 given in Eq. (A.19).
This is nothing else but the Fierz–Pauli structure, which is ghost-free by construction
(Fierz and Pauli 1939)4 (Fig. 6.12).

Quadratic and other higher order corrections in α̃3 and α̃4 on the other hand are
less trivial.

We will see however, that this optimistic result will not prevail for other cor-
rections, which will induce the detuning of the interaction potential structure in
Eqs. (6.51)–(6.53). To see this we turn to the interactions coming from the Einstein–
Hilbert term. Given (6.45) we can write the Einstein–Hilbert term as

− M2
Pl

2
√
gR = vαβÊμν

αβ vμν + 1

MPl
v(∂v)2 + 1

M2
Pl

v2(∂v)2 + · · · , (6.76)

where Êμν
αβ is the usual Lichnerowicz operator written explicitly in Eq. (1.27).

Contrary to the potential in (6.51)–(6.53), Eq. (6.76) contains an infinite numbers
of interactions in v. The second order EinsteinHilbert action has the following simple
form

L2nd
EH = 1

2

(
va ,b

a (vuu,b − 2v u
b ,u) + (2vau,b − vab,u)v

ab,u
)

(6.77)

nevertheless does not give rise to any interactions. Taking, for example, the third

L3rd
EH = 1

2

(
vab(2vuw,avuw,b + vw

w,b(−2vu u,a + 3vua,u) + 3vua,bv
w

w;u
+ 2vab,u(−vw

w,u + vw
u ,w) − 2(3vuw,b + vbw,u − vbu,w)vu,wa )

+ vaa(v
b,u
b (vw

w,u − 2vw
u ,w) + (2vbw,u − vbu,w)vbu,w)

)
(6.78)

and quartic order interactions from the Einstein–Hilbert term,

L4th
EH = 1

4

(
vab(vuw(vca ;u(9vwc;b − 8vbc,w) + v ,c

au (−vbw,c + 10vbc,w)

+ 2(−4vau,bv
c
c,w + vab,u(−3vcw c + 4vcc,w) + v ,c

ab (vuw,c − 3vuc,w)))

+ vua(−6vwc
,bvwc,u + 2vcc,u(3v

w
w,b − 4vw

b ,w)

+ vw,c
b (−5vuw,c + 16vwc,u + 5vuc,w)

− 4vcw ,cv
,w
bu + 4vcc,w(−2vw

b ,u + v,w
bu)) + vab(v

uw,c(vuw,c − 2vuc,w)

− (−2v c
w ,c + vcc,w)vu ,w

u )) + vaa(2v
bu(2vwc;bvwc,u + 3v w

b ,uv
c
c,w

4At the quadratic level, the Fierz–Pauli term is undistinguishable from the ghost-free potential term
Ũ2

http://dx.doi.org/10.1007/978-3-319-18935-2_1
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+ vcc,u(−2vw
w,b + 3v w

b ,w)

− 2v w,c
b (−vuw,c + 3vwc,u + vuc,w) + 2(v c

w ,c − vcc,w)v,w
bu)

+ vbb(v
uw,c(−vuw,c + 2vuc,w) + (−2v c

w ,c + vcc,w)vu ,w
u ))

)
(6.79)

we find they do not generate any radiative correction to the tadpole

A(1pt,3vt)
EH = 0, (6.80)

but they do contribute to the 2-point function as follows

A(2pt)
EH = 35

12

M4

M2
Pl

(4[v2] − [v]2)JM,1. (6.81)

The result above also does not preserve the Fierz–Pauli structure and is thus poten-
tially dangerous.

6.2.3.1 Detuning of the Potential Structure

From the above we conclude that quantum corrections from graviton loops can spoil
the structure of the ghost-free potential of massive gravity required at the classical
level to avoid propagating ghosts. Interestingly, this detuning does not arise from the
potential interactions at leading order in the parameters α̃3,4 but does arise from the
kinetic Einstein–Hilbert term. Symbolically, the detuning of the potential occurs at
the scale

Lqc ∼ m4

Mn
Pl

vn, (6.82)

where m is the graviton mass. When working around a given background for v = v̄

(which can include the helicity-0 mode, π), this leads to a contribution at quadratic
order which does not satisfy the Fierz–Pauli structure,

Lqc, v̄ ∼ m4v̄n−2

Mn
Pl

v2. (6.83)

Reintroducing the canonically normalized helicity-0 mode as vμν = ∂μ∂νπ/m2, this
implies a ghost for the helicity-0 mode

Lqc, v̄ ∼ v̄n−2

Mn
Pl

(∂2π)2 ∼ 1

m2
ghost

(∂2π)2 with mghost =
(
MPl

v̄

)n/2

v̄.

(6.84)
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For interactions with n ≥ 3, the mass of the ghost, mghost, can be made arbitrarily
small by switching on an arbitrarily large background configuration for v̄. This is
clearly a problem since large backgrounds (v̄ � MPl, or alternatively ∂2π̄ � �3

3)
are important for the Vainshtein mechanism (1972) to work and yet they can spoil
the stability of the theory.

6.2.3.2 One-Loop Effective Action

We have shown that quantum corrections originated both from the potential as well
as from the Einstein–Hilbert term in general destabilize the ghost-free interactions
of massive gravity. This happens in a way which cannot be accounted for by either a
renormalization of the coefficients of the ghost-freemass terms, or by a cosmological
constant. This detuning leads to a ghost whose mass can be made arbitrarily small if
there is a sufficiently large background source. From the decoupling limit analysis,
we know that it is always possible to make the background source large enough
without going outside of the regime of the effective field theory since we have

v̄ ∼ 1

m2 ∂∂π̄ = MPl
1

�3
3

∂∂π̄ . (6.85)

As an effective field theorywe are allowed tomake ∂∂π � �3
3 provided ∂3π/(1+

∂2π/�3
3) � �4

3. In other words, as long as derivatives of the background v̄ are small
∂ � �, the magnitude of the background may be large v̄ � MPl.

The resolution of this problem in this case is that one also needs to take into
account the redressing of the operators in the interaction potential. In this section we
will investigate how the Vainshtein mechanism operates in protecting the effective
action from the appearance of dangerous ghosts below the Planck scale.

Our previous approach involved explicit calculation of loop diagrams to evaluate
the quantum corrections to the massive gravity potential. Here, we shall focus on the
formalism of the one-loop effective action to confirm the destabilization result and
provide a more generic argument. Since the quadratic potential Ũ2 in (6.51) has no
non-linear interactions, we can take it as our sole potential term and consider all the
graviton self-interactions arising from the Einstein–Hilbert term in Eq. (6.76). For
simplicity, and without loss of generality, we therefore consider in what follows the
specific theory of massive gravity

L = M2
Pl

2
√
gR − 1

4
M2

Plm
2Ũ2[v]. (6.86)

We start by splitting thefield vμν into a constant background v̄μν and a perturbation
δvμν(x) which, in the language of the previous sections, will be the field running in
the loops. We thus write vμν(x) = v̄μν + δvμν(x). Up to quadratic order in the
perturbation δv
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L = 1

2
δvαβ

(
Êμναβ + m2

(
δ
μα

δ
νβ − δ

μν
δ
αβ

))
δvμν

+
(

1

MPl
v̄ + 1

M2
Pl

v̄2 + · · ·
)

(∂δv)2

= 1

2
δvαβ

(
G−1 μναβ + Mμναβ(v̄)

)
δvμν

≡ 1

2
δvαβ M̃

μναβ
δvμν, (6.87)

where Mμναβ(v̄) =
(

1
MPlv̄ + 1

M2
Pl
v̄2 + · · ·

)
∂2 symbolizes all the interactions in

the Einstein–Hilbert term. G−1 is the inverse of the massive graviton propagator.
Following the same analysis of Sect. 6.2.2.1, the one-loop effective action is then
given by

Leff = −1

2
log det

(
1

μ2

{
G−1 μναβ + Mμναβ(v̄)

})

⊇ − 1

2μ2

(∫
d4k

(2π)4

fμναβMμναβ(
k2 + m2

)

−1

2

∫
d4k

(2π)4

fμναβMμνabfabcdMcdαβ

(
k2 + m2

)2 + · · ·
)

(6.88)

where Mμναβ(v̄) is expanded in Fourier space and depends explicitly on a derivative
structure (and so, on themomentumk). Hereμ denotes again a renormalization scale,
which ought to be introduced as a consequence of the renormalization procedure, and
to preserve the dimensional analysis. Equation (6.88) sources an effective potential
which goes as m4F(v̄/MPl)J1,m where F denotes an infinite series in powers of v̄.
This result implies a running of the effective potential.

To gain some insight on the formof this effective potential, we focus on the specific
case of a conformally flat background where v̄μν = λ δμν, for some real-valued λ.
It follows5

Mμναβ(v̄μν = λ δμν) = 0, (6.90)

5This can be seen more explicitly, by writing the operator M in terms of the background metric γ̄ab,
recalling that ḡab = γ̄acγ̄bdδ

cd and the metric gab is given in terms of γ̄ab and the field fluctuation
vab as in (6.44). Then it follows that symbolically,

Mabcd ∼ (δ
a
μ
γ̄νρδ

ρb)(δ
c
α
γ̄βσδ

σd)(
√
ḡ ḡμνḡαβḡγ̄δ∂γ∂δ), (6.89)

where the two first terms in bracket arise from the transition to the ‘vielbein-inspired’ metric
fluctuation and the last term is what would have been otherwise the standard linearized Einstein–
Hilbert term on a constant backgroundmetric ḡab.Written in this form,M is manifestly conformally
invariant.
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which means that in this case all interactions are lost and (6.88) also vanishes. This
implies that the effective potential for a generic v̄μν has to be of the form

Leff = c1
(
[v̄]2 − 4[v̄2]

)
+

(
c2[v̄]3 + c3[v̄2][v̄] − (16c2 + 4c3)[v̄3]

)
+ · · · , (6.91)

for some coefficients c1, c2 and c3. The explicit form of these coefficients can be read
off by computing specific Feynman diagrams corresponding to the Einstein–Hilbert
interactions, or by considering a more general background metric v̄μν. For instance,

c1 corresponds to the coefficient in Eq. (6.81), c1 = 35
12

M4

M2
Pl
. It is apparent that this

structure is very different from that of the ghost-free potential of Eqs. (6.51)–(6.53).
This confirms the results obtained in the previous sections.

At what scale does this running arise? Let us first concentrate on the quadratic
term in (6.91). Since the helicity-0 mode π enters as vμν = ∂μ∂νπ/m2, that term
would lead to a correction of the form

L(2)
eff = m4

m2
Pl

(
[v̄]2 − 4[v̄2]

)
Jm,1 ∼ 1

M2
Pl

(�π)2 ln(M2/μ2). (6.92)

This would excite a ghost at the Planck scale. Hence this contribution on its own is
harmless. Next we consider the effect of the cubic interactions,

L(3)
eff = m4

M3
Pl

[v̄]3J1 ∼ 1

M3
Plm

2
(�π)3 ln(m2/μ2). (6.93)

We now elaborate on the general argument mentioned in Sect. 6.2.3.1. We take a
background configuration for π which is above the scale �3 = (MPlm2)1/3 for the
Vainshtein mechanism to work. This will induce a splitting of the helicity-0 mode
∂2π = ∂2π̄ + ∂2δπ, with ∂2π̄ ∼ MPlm2/κ and κ < 1. Then the operator in (6.93)
could lead to a ghost at a scale much lower than the Planck scale,

L(3)
eff ∼ 1

M2
Pl κ

(�π)2 ln(m2/μ2). (6.94)

Thus by turning on a large background, thereby making κ smaller, the scale at which
the ghost arises becomes smaller and smaller, and eventually comparable to�3 itself.
This renders the theory unstable, as argued in Sect. 6.2.3.1. However, by assuming a
large background we also need to understand its effect on the original operators via
the Vainshtein mechanism (Vainshtein 1972).

6.2.3.3 Vainshtein Mechanism at the Level of the One-Loop 1PI

The formalism of the one-loop effective action makes the Vainshtein mechanism
particularly transparent as far as the redressing of the interaction potential is con-
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cerned. We further split the field v̄ into a large background configuration ¯̄vμν and
a perturbation ṽμν ∼ ∂μ∂νπ/M2, such that v̄μν = ¯̄vμν + ṽμν. Since ¯̄vμν satisfies
the equations of motion we have M̃′(v̄)|¯̄v = 0, with M̃ defined as in Eq. (6.87). We
proceed as before and expand the one-loop effective action up to second order in
ṽμν, as follows

Leff = − 1

2
Tr log

(
1

μ2 M̃
μναβ(v̄)

)

⊇ − 1

2
Tr

GμναβM̃′′μναβ( ¯̄v)
GμναβM̃μναβ( ¯̄v) ṽ2

∼ m4

M2
Pl

M̃′′( ¯̄v)
M̃( ¯̄v) [ṽ]2 ∼ �

M2
Pl

(�π)2, (6.95)

where the last line is symbolic,6 and for simplicity of notation we have denoted the
combination � ≡ M̃′′( ¯̄v)/M̃( ¯̄v). It follows that the mass of the ghost is M2

ghost =
�−1M2

Pl. Provided we can show that� � 1, the ghost will arise at least at the Planck
scale and the theory will always be under control.

Redressing the one-loop effective action—The basis of the argument goes as
follows. As explained previously, the Vainshtein mechanism relies on the fact that
the background configuration can be large, and thus M̃′′ can in principle be large,
which in turn can make � large and lower the mass of the ghost. However, as we
shall see in what follows, configurations with large M′′ automatically lead to large
M as well. This implies that � is always bounded � � 1, and the mass of the ghost
induced by the detuning/destabilization of the potential from quantum corrections is
always at the Planck scale or beyond.7

Computing the mass of the ghost—To make contact with an explicit cal-
culation we choose, for convenience, a background configuration for the metric
which is spacetime independent, in particular the following background metric
ḡab = diag{λ2

0,λ
2
1,λ

2
1,λ

2
1} = γ̄2ab, and compute the possible combinations appearing

in �. We define

∂2M̃/∂ ¯̄vαβ∂ ¯̄vγδ

M̃
≡ �(αβ,γδ), (6.96)

and use units for which M2
Pl = 1.

6In particular, by dimensional analysis, one should think of the schematic form for the effective
Lagrangian as containing a factor of 1/μ2, where μ carries units of [mass].
7The only way to prevent� from being �1 is to consider a region of space where some eigenvalues
of the metric itself vanish, which would be for instance the case at the horizon of a black hole.
However as explained in Deffayet and Jacobson (2012), Koyama et al. (2011a, b), Berezhiani et al.
(2012), in massive gravity these are no longer coordinate singularities, but rather real singularities.
In massive gravity, black hole solutions ought to be expressed in such a way that the eigenvalues of
the metric never reach zero apart at the singularity itself. Thus we do not need to worry about such
configurations here (which would correspond to λ = 1 in what follows).
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In general, the components of M̃ can be split into three categories. First, some
components do not depend on the background, and are thus explicitly independent
of λ0 and λ1. In this case M̃′′ = � = 0 trivially. Second, other components are of
the form

M̃ ∼ λ0

λ1

(
kikj + M2

)
, (6.97)

where i and j are spatial indices. In this case�(00,00) = 0,whereas�(ii,ii) ∼ λ
−2
1 � 1.

Finally the remaining category contains terms which only depend on some power
of the ratio of the components of the background metric, λ0 /λ1 or λ1 /λ0. The
structure of the components of M̃ in this case is of the form

M̃ ∼
(

λ1

λ0

)p

k20 +
(

λ0

λ1

)q ∑
i

bik
2
i + λ0

λ1
M2, (6.98)

in which i denotes a spatial component, bi, p and q are integer numbers such that
p, q ≥ 1. The last term represents the (non-vanishing) structure of the mass term.8

Let us work out the possible second derivatives in detail. On the one hand

�(00,00) ∼
(

λ1
λ0

)p
k20 λ

−2
0 +

(
λ0
λ1

)q
λ

−2
0

∑
i bik

2
i(

λ1
λ0

)p
k20 +

(
λ0
λ1

)p
λ0
λ1

∑
i bik

2
i + mass term

, (6.99)

where we have ignored factors of order unity to avoid clutter. At first sight this result
seems troublesome as it appears to be dependent on the choice of background, and
in particular on the hierarchy between λ0 and λ1. We will however show that this is
not the case:

1. if λ0 ∼ λ1 ∼ λ, then �(00,00) ∼ λ−2. Since we are interested in incorporating
the Vainshtein effect, we shall consider the case when λ � 1, and thus � � 1.

2. if λ0 � λ1 � 1, it follows � � λ
−2
0 � 1; the same holds true in the case

λ1 � λ0 � 1.

On the other hand,

�(jj,kk) = �(jj,jj) ∼
(

λ1
λ0

)p
k20 λ

−2
1 +

(
λ0
λ1

)q
λ

−2
1

∑
i bik

2
i + λ0

λ3
1
M2

(
λ1
λ0

)p
k20 +

(
λ0
λ1

)q ∑
i bik

2
i + λ0

λ1
M2

. (6.100)

We repeat the previous analysis to show that, regardless of the possible hierarchy
between λ0 and λ1, the quantum corrections will be parametrically small.

8Themass term can also arise in the form (λ1 / λ0)M2 for the components M̃00ii, but the conclusions
hereafter remain unchanged.
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1. if λ0 ∼ λ1 ∼ λ, then �(jj,jj) ∼ λ−2, and hence � � 1.
2. if either λ0 � λ1 � 1 or λ1 � λ0 � 1, then � � λ

−2
1 � 1.

Similar conclusions can be drawn for the ‘mixed’ derivative �(00,ij) or �(0i,0j).
We have shown that, despite appearances,� � 1 independently of the background

and without loss of generality. Whenever the Vainshtein mechanism is relevant, that
is, when λ0,λ1 � 1, the redressing of the operators ensures that the mass of the
ghost arises at least at the Planck scale. We therefore conclude that at the one-loop
level the quantum corrections to the theory described by (6.86) are under control.

6.3 Quantum Corrections in Bimetric Gravity

Another interesting avenue to explore is how the quantum corrections change if we
allow for a dynamical reference metric, i.e. in the bimetric theories. Since now the
reference metric becomes also dynamical, we have to include the diagrams in which
the mixing with the second metric will occur. From our experience and knowledge
gained from the quantum corrections inmassive gravity, we canmake quick estimates
about the common and possible different outcomes in bimetric gravity. The results
in the following are not published in any paper yet and are therefore preliminary.
Let us first recapitulate the important formulas we will need in this section in order
to gain some insight into the quantum corrections in bimetric theory. Consider the
ghost-free theory of bimetric gravity. Our starting point is the action for bimetric
gravity and the matter action sourcing for gravity (Hassan and Rosen 2011),

S =
∫

d4x
[
M2

p

√−gRg + M2
f

√−fRf − 2M4
√−g

4∑
n=0

βnVn(g
−1f)

+Lm(g, f,ψm)
]

(6.101)

where the potential is given by

4∑
n=0

βnVn(g
−1f) =

4∑
n=0

βnen(X =
√
g−1f) (6.102)

with the elementary symmetric polynomials (de Rham and Gabadadze 2010; de
Rham et al. 2011b)

e0(X ) = 1

e1(X ) = [X ]
e2(X ) = 1

2
([X ]2 − [X 2])
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e3(X ) = 1

6
([X ]3 − 3[X ][X 2] + 2[X 3])

e4(X ) = 1

24
([X ]4 − 6[X ]2[X 2] + 3[X 2]2 + 8[X ][X 3] − 6[X 4]) (6.103)

In difference to the massive gravity theory the potential term is now the potential for
both metrics and the forth polynomial will correspond to a potential for fμν and can
not any longer be neglected in the bimetric gravity. It has been shown that this theory
of bimetric gravity is free of any ghost-issues (Hassan and Rosen 2012a).

For flat euclidean backgrounds ḡμν = δμν = f̄μν we split the mass spectrum of
bimetric gravity into massive and massless spin-2 fluctuations (for these flat back-
grounds two out of the five βn parameters are fixed, namely the ones corresponding
to a cosmological constant for the gμν metric and fμν metric). To be precise, the mass
spectrum can be obtained by performing the following metric perturbations (Hassan
and Rosen 2012a)

gμν = δμν + 2

MPl
hμν (6.104)

fμν = δμν + 2

Mf
lμν (6.105)

and plugging them back into the action for the bigravity

S =
∫

d4x

{
− hμνÊμναβhαβ − lμνÊμναβlαβ

− M2M2
eff

4

[
(
hμ
ν

MPl
− lμν

Mf
)2 − (

hμ
μ

MPl
− lμμ

Mf
)2

]}
(6.106)

where M2
eff = (1/M2

Pl + 1/M2
f )

−1 is the effective Planck mass. These interactions
can then be diagonalized by making the following change of variables

1

Meff
wμν = hμν

Mf
+ lμν

MPl

1

Meff
vμν = hμν

MPl
− lμν

Mf
(6.107)

such that the action at linear order becomes (Hassan and Rosen 2012a)

S =
∫

d4x

{
−wμνÊμναβwαβ − vμνÊμναβvαβ − M2

4

[
[v2] − [v]2

]}
. (6.108)

In the unitary gauge vμν encodes all the five physical degrees of freedom of amassive
spin-2 fluctuation (the two helicity-2, the two helicity-1 and the helicity-0 modes),
and wμν encodes the two helicity-2 modes of the massless fluctuation. The Feynman
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propagator for the massless spin-2 fluctuation w is given by

G(w)
abcd = 〈wab(x1)wcd(x2)〉 = f(w)

abcd

∫
d4k

(2π)4

eik·(x1−x2)

k2 − iε
, (6.109)

where the polarization structure has the usual prefactor of 1/2

f(w)
abcd = δa(cδbd) − 1

2
δabδcd. (6.110)

Here again δa(cδbd) ≡ 1
2δacδbd+ 1

2δadδbc.Themassive spin-2 field, on the other hand,
has the Feynman propagator

G(v)
abcd = 〈vab(x1)vcd(x2)〉 = f(v)abcd

∫
d4k

(2π)4

eik·(χ1−χ2)

k2 + m2 − iε
, (6.111)

with the prefactor of 1/3 in the polarization structure

f(v)abcd =
(

δ̃a(cδ̃bd) − 1

3
δ̃abδ̃cd

)
where δ̃ab = δab + kakb

m2 . (6.112)

6.3.1 Quantum Corrections in the Decoupling Limit
of Bimetric Theory

First of all, it is going to be a trivial statement, that in the decoupling limit of bimetric
gravity exactly the same non-renormalization theorem protects the interactions from
quantum corrections as it was the case in themassive gravity. The interaction between
the twometrics break the two copies of diffeomorphisms down to one, such that in the
decoupling limit the interactions are governed by decoupled four helicity-2 modes
hμν, lμν, two helicity-1 modes and one helicity-0 π modes giving rise in total to
seven propagating helicity modes. The decoupling limit of bigravity represents the
limit in which

MPl → ∞,Mf → ∞,m → 0 and
MPl

Mf
= const (6.113)

whereMPl andMf represent the Planck masses corresponding to the two metrics gμν

and fμν. The resulting limit contains interactions between the two helicity-2 fields
and the helicity-0 scalar field π in the following form (Fasiello and Tolley 2013)
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S =
∫

d4x

[
− hμνÊμναβhαβ − lμνÊμναβlαβ

+ �3
3

4∑
n=0

(
hμνX(n)

μν + Mp

Mf
lμνỸ(n)

μν

)]
(6.114)

where Ê is the Lichnerowicz operator and the Xμν and Ỹμν encode the derivative
interactions of the helicity-0 field

X(n)
μν = −1

2

β̂n

(3 − n)!n!E
μ···Eν···(η + �)nη3−n

Ỹ(n)
μν = −1

2

β̂n

(4 − n)!(n − 1)!E
μ···Eν···η(n−1)(η + �)nη4−n (6.115)

where β̂n = M2
pβn,�μν = ∂μ∂νπ/�3

3 and�μν = ∂μ∂νρ/�3
3 and where ρ is the dual

description of π via field redefinitions related in a form

(η + �) = (η + �)−1 (6.116)

It is a trivial step to convince ourselves that exactly the same argumentation for the
non-renormalization theorem used in massive gravity applies here in the bimetric
gravity case. The Levi-Civita symbols guaranties that any external particle contracted
with any field with or without derivatives in a vertex contributes to a two-derivatives
operator acting on this external particle. Therefore, the non-renormalization theorem
guaranties that the interactions hμνX(n)

μν and lμνỸ(n)
μν remain stable in the decoupling

limit of bimetric theory.

6.3.2 Beyond the Decoupling Limit

Beyond the decoupling limit, there will be essential differences to the case ofmassive
gravity. The first important difference will be concerning the coupling to the matter
fields. Therewill be essentially three different scenarioswhich need to be investigated
in detail.

The first scenario:—The first case consists of having the matter fields coupled
only either to gμν or to fμν but never to both of them simultaneously

√−gLχ(g,χ1) or
√−fLm(f,χ2) (6.117)

In this case, at one-loop the matter fields will contribute in form of a cosmological
constant for gμν and fμν. This can be shown in a straightforward way. Consider
again for simplicity that the matter fields χ1 and χ2 are just massive scalar fields
(and perform the change of variablesχ1 → g−1/4ψ andχ2 → f−1/4 φ respectively)



176 6 Renormalization Beyond the Decoupling Limit of Massive Gravity

Sm(g,ψ) =
∫

d4x

(
1

2
gab∂aψ∂bψ + 1

2
M2

ψψ2
)

Sm(f,φ) =
∫

d4x

(
1

2
fab∂a φ ∂b φ+1

2
M2

φ

2
φ

)
(6.118)

where we neglect again the terms of the form ∂g and ∂f. Since loops only involve
the matter field propagator and are unaware of the propagators of the two metrics,
there is no contributions from the bimetric interactions to these quantum corrections,
and we recover exactly the same result as in Massive Gravity and General Relativity.
This statement becomes trivial when we look at the one loop effective action for the
matter loops

e−S(matter−loops)
1,eff (ḡab,f̄ab) =

∫
Dψe

−ψ
(

δ
2S

δ2ψ
|gab=ḡab

)
ψ−φ

(
δ
2S

δ2 φ
|fab=f̄ab

)
φ

=
(∫

Dψe
−ψ

(
δ
2S

δ2ψ
|gab=ḡab

)
ψ
) (∫

D φ e
−φ

(
δ
2S

δ2 φ
|fab=f̄ab

)
φ
)

(6.119)

with the Coleman–Weinberg effective action given by

S(matter−loops)
1,eff (ḡab, f̄ab) = 1

2
log det

(
δ
2S

δ2ψ

∣∣∣
gab=ḡab

)
+ 1

2
log det

(
δ
2S

δ2 φ

∣∣∣
fab=f̄ab

)

= 1

2
Tr log

(
δ
2S

δ2ψ

∣∣∣
gab=ḡab

)
+ 1

2
Tr log

(
δ
2S

δ2 φ

∣∣∣
fab=f̄ab

)
.

(6.120)

We go now into Fourier space and performe the change of momentum ka → k̃a such
that gabkakb = δ

abk̃ak̃b and so the one loop effective action for the matter field ψ

coupled to gμν yields

L(matter−loops)
1,eff (ḡab) = 1

2

∫
d4k

(2π)4
log

(
1

2
ḡabkakb + 1

2
M2

ψ

)

= 1

2

√
ḡ

∫
d4k̃

(2π)4
log

(
1

2
δ
abk̃ak̃b + 1

2
M2

ψ

)

= M4
ψ

64π2

√
ḡ log(μ2), (6.121)

where μ is the regularization scale. Similarly, by doing the change of momentum
ka → k̃a with fabkakb = δ

abk̃ak̃b gives for the other metric
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L(matter−loops)
1,eff (f̄ab) = 1

2

∫
d4k

(2π)4
log

(
1

2
f̄abkakb + 1

2
M2

φ

)

= 1

2

√
f̄
∫

d4k̃

(2π)4
log

(
1

2
δ
abk̃ak̃b + 1

2
M2

φ

)

= M4
φ

64π2

√
f̄ log(μ′2), (6.122)

Exactly in the same way as in Sect. 6.2.2.1 these two contributions in the one
loop effective action give contributions in form of

√
g and

√
f. This conclusion

can be easily extended to N-metric theories to which the matter fields couple using
the one-loop effective action. In an analog way as in massive gravity, we can also
perform a perturbative analysis instead of the non-perturbative one-loop effective
action, nevertheless one needs to be careful. The real physical degrees of freedom
are wμν and vμν, so these will be the ones running in the perturbative Feynmann
diagrams. So one has to couple the matter fields to the metric fluctuations hμν or lμν

1

2

∑
n≥0

(−1)n (n + 1)(hab)n∂aψ∂bψ + 1

2
M2

ψψ2

1

2

∑
n≥0

(−1)n (n + 1)(lab)n∂a φ ∂b φ+1

2
M2

φ

2
φ

(6.123)

but rephrase them at the Feynmann diagrams level by the corresponding physical
degrees of freedom wμν and vμν, i.e. perform the following replacements

hμν = Mc(Mfvμν + MPlwμν)

lμν = Mc(−MPlvμν + Mfwμν) (6.124)

with Mc = MfMPl
Meff (M2

f +M2
Pl)
. All these one-loop Feynmann diagrams at the end will

sum into a contribution given by the above 1-loop effective action expressions [in a
similar way as inmassive gravity all the Feynmann diagrams for the n-point functions
resumed into a contribution of a cosmological constant (6.73)].

The second scenario:—In the second scenario one should consider the matter
fields coupled to both metrics. Are the 1-loop matter contributions still in form of a
cosmological constant if we couple the matter fields to the same metrics? We expect
that this will very probably yield ghost instabilities. To see this, lets have a look
at the one loop effective action and also some explicit calculations of the Feynman
diagrams. Now when we do the replacement χ → g−1/4ψ we need to be careful
since f couples to the same matter field. But we can still perform a similar change of
variables but this time with an effective metric χ → (g−1/4 + f−1/4)ψ such that
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Fig. 6.13 Tadpole contribution from matter loops with the vertices hab∂a∂bψ and lab∂a∂bψ respec-
tively. The matter field is depicted by the dashed line

L(matter−loops)
1,eff (ḡab, f̄ab, ) = 1

2

∫
d4k

(2π)4
log

(
1

2
ḡabeffkakb + 1

2
M2

ψ

)
(6.125)

with the effective metric given by

gabeff =
√−ggab + √−ffab√−g + √−f

(6.126)

Therefore, after the change of momentum ka → k̃a with gabeftkakb = δ
abk̃ak̃b this

will give rise to a contribution of a cosmological constant for the effective metric√−geff , but in terms of f and g the new contributions do not give ghost freemass term
interactions. To convince ourselves we can compute the contributions perturbatively.
We can quickly have a look at the tadpole and two point contributions for the case
where the same matter field couples to both metrics. The tadpole contributions are
coming from the interactions hab∂a∂bψ and lab∂a∂bψ. Computing the tadpole in terms
of the physical degrees of freedom give rise to contributions of the form (Fig. 6.13)

A(1pt) = (−1)(−1

2
)(
1

4
)M4

ψMc

(
Mf [v] + MPl[w]

MPl
+ −MPl[v] + Mf [w]

Mf

)
JMψ,1

= 1

8
M4

ψ

( [h]
MPl

+ [l]
Mf

)
JMψ,1 (6.127)

At this point it is worth to mention that if both metrics had the same Planck scales,
meaning that the two degrees of freedom wμν and vμν were sharing the same scaling
then there would be only the tadpole contribution for the massless degree of freedom

A(1pt)|MPl=Mf = 1

4
M4

ψMc[w] (6.128)

The two point contributions are a little bit more involved but not too difficult to
compute.Wewill first compute the separate diagrams where the metric perturbations
do not couple. Let us start with the contributions coming from the matter interactions
with h. The interaction − 1

2
hab
MPl

∂aψ∂bψ will give rise to a two point function contri-
bution from the diagram with two vertices. This diagram gives rise to a contribution
of the following form (Fig. 6.14)
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Fig. 6.14 Two point contribution A(2pt,2v)
h with the vertices − 1

2
hab
MPl

∂aψ∂bψ

Fig. 6.15 Two point contribution A(2pt,1v)
h with the vertex ( 34 h

a
ch

cb − 1
4 [h]hab)∂aψ∂bψ

A(2pt,2v)
h = 1

2

1

4
(2 · 2) 1

24

M4
ψ

M2
Pl

(
[h]2 + 2[h2]

)
· (3JMψ,1)

= 1

16

M4
ψ

M2
Pl

(
[h]2 + 2[h2]

)
JMψ,1 (6.129)

On the other hand the interaction to second order in metric perturbation ( 34h
a
ch

cb −
1
4h

ab)∂aψ∂bψ will contribute to the tadpole two-point function. This one vertex
diagram contributes (Fig. 6.15)

A(2pt,1v)
h = (−1)

M4
ψ

M2
Pl

(
3

4
(2)

1

4
[h2] − 1

4
(2)

1

4
[h]2

)
JMψ,1

= −1

8

M4
ψ

M2
Pl

(
3[h2] − [h]2

)
JMψ,1 (6.130)

Summing the two-point function contributions yields

A(2pt)
h = A(2pt,2v)

h + A(2pt,1v)
h = 1

16

M4
ψ

M2
Pl

(3[h]2 − 4[h2]) (6.131)

Now we take into account the diagrams with l-perturbations on the external legs.
This diagram gives rise to a contribution of the following form (Fig. 6.16)

Fig. 6.16 Two point contribution A(2pt,2v)
l coming from the interactions of the matter field with

the l-perturbations on the vertices
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Fig. 6.17 Two point contribution A(2pt,1v)
l coming from the interactions of the matter field with

the l-perturbations on the vertex

A(2pt,2v)
l = 1

2

1

4
(2 · 2) 1

24

M4
ψ

M2
Pl

(
[l]2 + 2[l2]

)
· (3JMψ,1)

= 1

16

M4
ψ

M2
Pl

(
[l]2 + 2[l2]

)
JMψ,1 (6.132)

And the corresponding tadpole two point function This one vertex diagram con-
tributes (Fig. 6.17)

A(2pt,1v)
l = (−1)

M4
ψ

M2
Pl

(
3

4
(2)

1

4
[l2] − 1

4
(2)

1

4
[l]2

)
JMψ,1

= −1

8

M4
ψ

M2
Pl

(
3[l2] − [l]2

)
JMψ,1 (6.133)

Similarly the two Feynmann diagrams for the interactions with the metric pertur-
bation lμν will sum into

A(2pt)
l = A(2pt,2v)

l + A(2pt,1v)
l = 1

16

M4
ψ

M2
Pl

(3[l]2 − 4[l2]) (6.134)

Now last but not least we have to also consider the mixed Feynman diagrams
with the different metrics on the external legs. The diagram with the two vertices is
basically again constructed by the interactions − 1

2
hab
MPl

∂aψ∂bψ and − 1
2
lcd
Mf

∂cψ∂dψ.
This diagram gives a contribution of the form (Fig. 6.18)

Fig. 6.18 Two point contribution A(2pt)
hl,1 with the vertices − 1

2
hab
MPl

∂aψ∂bψ and − 1
2
lcd
Mf

∂cψ∂dψ re-
spectively
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Fig. 6.19 Two point contribution A(2pt)
h1,2 with the vertex 1

4 (hab[l]) + lab[h])∂aψ∂bψ

A(2pt)
hl,1 = 1

4
(2)(3JMψ,1)

1

24

M4
ψ

MPlMf
([h][l] + 2[hl])

= 1

16

M4
ψ

MPlMf
([h][l] + 2[hl])JMψ,1 (6.135)

Now, for the last diagram we need the explicit mixing between h and l in the
coupling with the matter field. If we expand the effective metric to first order in hl,
then the interaction we have to consider is given by 1

4 (h
ab[l])+ lab[h])∂aψ∂bψ. This

diagram on the other hand gives rise to a contribution of the form (Fig. 6.19)

A(2pt)
hl,2 = (−1)

1

4

M4
ψ

MPlMf

(
1

4
[h][l] + 1

4
[h][l]

)
JMψ,1

= −1

8

M4
ψ

MPlMf
[h][l] (6.136)

Adding these two diagrams together (and taking the mirror imaged diagrams into
account as well: factor of two) gives

A(2pt)
hl = 2(A(2pt)

hl,1 + A(2pt)
hl,2 ) = M4

ψ

MPlMf

(
1

8
([h][l] + 2[hl]) − 1

4
[h][l]

)
(6.137)

As you can see from all these tadpole and two-point function contributions, the
obtained counter terms do not seem to have any nice ghost-free structure. Thus the
coupling through the effective metric (6.126) detunes the potential structure through
one-loopmatter contributions. Themass of the ghost introduced through this detuning
can be made arbitrarily small destroying the classical theory.

The third scenario:—The third case which also needs to be considered is the
case with explicit interactions between the different matter fields (for exampleχ1χ2)
while they are coupled to the two metrics separately.

√−gLm(g,χ1) + √−fLm(f,χ2) +
(√−g + √−f

)
χ1χ2μ

2 (6.138)

One can diagonalize this Lagrangian by performing a rotation

χ1 = cos(θ)φ1 − sin(θ)φ2

χ2 = sin(θ)φ1 + cos(θ)φ2 (6.139)
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+

Fig. 6.20 One loop diagrams in which the the two metric perturbations do not mix and give rise to
separate contributions

+ + · · ·

Fig. 6.21 One loop diagrams in which the the two metric perturbations mix

such that the new Lagrangian perturbed around euclidean flat metric (6.104)

L = −1

2
(∂ φ

1
)2 − 1

2
Mφ1 φ2

1 −1

2
(∂ φ

1
)2 − 1

2
Mφ2 φ2

2 +O(
1

MPl
,
1

Mf
) + · · · (6.140)

After performing this diagonalization it becomes clear that the third case corresponds
to the first one with the difference that the mass spectrum Mχ1 and Mχ2 change to
Mφ1(Mχ1 ,Mχ2 ,μ) and Mφ2(Mχ1 ,Mχ2 ,μ) in a non-trivial way.

Thiswas so far concerning only thematter loops.Of course, similarly as inmassive
gravity, we also need to compute the one-loop quantum corrections coming from the
graviton loops. In contrast to the massive gravity case, we will now also have one
loop diagrams in which both metrics come in mixed. Besides the diagrams of the
form where the two metrics appear separately, we will also have mixed diagrams as
in the Figs. 6.20 and 6.21.

It is out of scope of this thesis to study all these contributions. We expect that
the separate diagrams will give rise to detuning of the potential interactions as in
massive gravity even though some cancellations might be possible. Since the fμν is
dynamical, we have one full diffeomorphism invariance which might give rise to a
better behaviour at the quantum level.

6.4 Summary and Critics

In a theory of gravity both themass and the structure of the graviton potential are fixed
by phenomenological and theoretical constraints.While inGR this tuning is protected
by covariance, such a symmetry is not present in massive gravity. Nevertheless, the
non-renormalization theorem present in theories ofmassive gravity implies that these
tuning are technically natural (de Rham et al. 2012; Nicolis and Rattazzi 2004), and
hence do not rely on the same fine-tuning as for instance setting the cosmological
constant to zero. The emergent decoupling limit non-renormalization property, as we
have seen, allows one to estimate the magnitude of quantum corrections to various
parameters defining the full theory beyond any limit. In particular, one can show
that setting an arbitrarily small graviton mass is technically natural. The significance
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of the decoupling limit theory is hard to overestimate: it unambiguously determines
all the physical dynamics of the theory at distances �−1

3 ∼< r ∼< m−1, essentially
capturing all physics at astrophysical and cosmological scales. Technical naturalness,
alongwith a yet stronger non-renormalization theorem provide perfect predictivity of
the theory, enforcing quantum corrections to play essentially no role at these scales.
Moreover, dictated by various physical considerations, one frequently chooses to set
certain relations between the two free parameters of the theory, α3 and α4. Non-
renormalization in this case means, that such relative tunings of parameters, along
with any physical consequences that these tunings may have, are not subject to
destabilization via quantum corrections in the decoupling limit. Furthermore, we
have explored the stability of the graviton potential further by looking at loops of
matter and graviton, assuming a covariant coupling to matter (see for instance de
Rham et al. (2011a) for a discussion of the natural coupling tomatter and its stability).

When integrating out externally coupled matter fields, we have shown explicitly
that the only potential contribution to the one-loop effective action is a cosmological
constant, and the special structure of the potential is thus unaffected by the matter
fields at one-loop.

For graviton loops, on the other hand, the situation is more involved—they do
change the structure of the potential, but in a way which only becomes relevant at
the Planck scale. Nevertheless, the Vainhstein mechanism that resolves the vDVZ
discontinuity relies on a classical background configuration to exceed the Planck
scale (i.e. gμν − δμν � 1), without going beyond the regime of validity of the theory.
A naïve perturbative estimate would suggest that on top of such large background
configurations, the mass of the ghost could be lowered well below the Planck scale.
However, this perturbative argument does not take into account the same Vainshtein
mechanism that suppresses the vDVZ discontinuity in the first place. To be consistent
we have therefore considered a non-perturbative background and have shown that
the one-loop effective action is itself protected by a similar Vainshtein mechanism
which prevents the mass of the ghost from falling below the Planck scale, even if the
background configuration is large.

The simplicity of the results presented in this study rely on the fact that the coupling
to matter is taken to be covariant and that at the one-loop level virtual gravitons and
matter fields cannot mix. Thus at one-loop virtual matter fields remain unaware of
the graviton mass. This feature is lost at higher loops where virtual graviton and
matter fields start mixing.

Higher order loops are beyond the scope of this paper, but will be investigated in
depth in de Rham, Heisenberg, and Ribeiro (de Rham et al.). In this follow-up study,
we will show how a naïve estimate would suggest that the two-loop graviton-matter
mixing can lead to a detuning of the potential already at the scaleMPl(m/M)2, where
m is the graviton mass and M is the matter field mass. If this were the case, a matter
field with M ∼ �3 would already bring the mass of the ghost down to �3 which
would mean that the theory could never be taken seriously beyond this energy scale
(or its redressed counterpart, when working on a non-trivial background). However,
this estimate does not take into account the very special structure of the ghost-free
graviton potential which is already manifest in its decoupling limit. Indeed, in ghost-
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Fig. 6.22 Contribution to
the scalar field two-point
function from
graviton/matter loops

(a) (b)

free massive gravity the special form of the potential leads to interesting features
when mixing matter and gravitons in the loops.

To give an idea of how this mixing between gravitons and matter arises, let us
consider the one-loop contribution to the scalar field two-point function depicted in
Fig. 6.22 if the scalar field does not have any self-interactions.We take the external leg
of the scalar field to be on-shell, i.e. with momentum qa satisfying δ

abqaqb + M2 =
0.9

For the purpose of this discussion, it is more convenient to work in terms of the
field χ directly rather than the redefined field ψ. First, diagram (a) gives rise to a
contribution proportional to

A(a)
χχ ∝ 1

M2
Pl

∫
d4k

f(m)
abcd(k) q

apbqcpd

(k2 + m2)(p2 + M2)
, (6.141)

where k is the momentum of the virtual graviton running in the loop of diagram (a).
Bymomentum conservation, themomentum p of the virtual fieldχ in the loop is then
pa = qa − ka. Applying the on-shell condition for the external legs, q2 + M2 = 0,
we find

A(a)
χχ ∝ 1

m4M2
Pl

∫
d4k

(
(k.q)2 + m2q2

)
≡ 0. (6.142)

in dimensional regularization. So this potentially ‘problematic’ diagram that mixes
virtual matter and gravitons (which could a priori scale as m−4) leads to no running
when the external scalar field is on-shell. In other words, at most this diagram can
only lead to a running of the wave-function normalization and is thus harmless (in
particular it does not affect the scalar field mass, nor does it change the ‘covariant’
structure of the scalar field Lagrangian).

Second, we can also consider the contribution from a pure graviton-loop in di-
agram (b). Since only the graviton runs in that loop, the running of the scalar field
mass arising from that diagram is at most δM2 = m2

M2
Pl
M2 � M2 and is therefore

also harmless. As a consequence we already see in this one-loop example how the
mixing between the virtual graviton and scalar field in the loops keeps the structure
of the matter action perfectly under control.

9Technically, in Euclidean space this means that the momentum is complex, or one could go back
to the Lorentzian space-time for the purposes of this calculation, but these issues are irrelevant for
the current discussion. Moreover, note that the on-shell condition is only being imposed for the
external legs, and not for internal lines.
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Even if we can not provide the exact behavior of the two loop contributions in
which now both the graviton as well as the matter fields propagate in this thesis, we
comment on the contributions with the highest and the sub-highest scaling in the
inverse of the graviton mass which cancel exactly due to the antisymmetric structure
of the interactions. For this purpose lets have a closer look to the contribution of the
tadpole with two internal graviton propagators (Fig. 6.23). For instance lets consider
for the first vertex the interaction coming from the potential term which has the
antisymmetric structure V = EabcdEa′b′c′

d vaa′vbb′vcc′ . We can contract one of the
spin-2 field with an external vμν leg coming out of this vertex while letting the other
two spin-2-fields from this vertex run in the loop with momenta k and contract them
at the second and third vertex with the two spin-2 fields coming from the couplings
vαα′Tαα′

and vββ′Tββ′
. Now, if each internal propagator comes at least with k4/M4

than the contribution of this vertex to the graph with the most negative powers of the
graviton mass would be m−8

A ∝
∫

d4k

(2π)4

eiku(x
u
1−xu2)

k2 + m2 wwwμνEabcdEa′b′c′
d

× kaka′

m2

kbkb′

m2

kαkα′

m2

kβkβ′

m2 Tαα′
Tββ′ · · · (6.143)

Now, it is a trivial observation that this contribution cancels due to the antisymmetric
structure of the vertex. The same happens to the contribution with the m−6 scaling.
For the 2-point function consider the following diagram with three internal graviton
propagators (Fig. 6.24). These diagrams could in principle yield contributions with
the bad scalings m−12, m−10, m−8 and m−6. However, we have checked explic-
itly that these contributions are exactly zero as well. Again, the nice antisymmetric
structure of the potential prohibits the appearance of these scalings.

EabcdEa′b′c′
d
kaka′kbkb′kckc′

m6

k6

m6 = 0 (6.144)

We observe the same cancelation for the most negative power of the graviton mass
as well when we include the interactions coming from the Einstein Hilbert action,

Fig. 6.23 Tadpole function
with 2-loops
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Fig. 6.24 2-point function
with 2-loops

not just the potential term. At first sight this might look surprising. But if we recall
that the Einstein–Hilbert term can also be written as

√−gR = 4
√−gEabcdEa′b′c′d′

gaagbb′Rcdc′d′ (6.145)

Exactly in the sameway as it was the case for the potential term, the antisymmetric
Levi-Civita tensor prohibits the appearance of the highest and sub highest negative
power of the graviton mass. Contributions of the form

A ∝
∫

d4k

(2π)4

eiku(x
u
1−xu2)

k2 − iε
vcdEabcdEa′b′c′d′

kaka′

m2

kbkb′

m2

kαkα′

m2

kβkβ′

m2 kc′kd′Tαα′
Tββ′

(6.146)

cancel. Since the Riemann tensor contains two derivatives applied on the vielbein,
the contributions from the Einstein Hilbert action encloses two more k’s besides
the ones coming from the propagator and hence reinforces the argumentation based
on the antisymmetry of the Levi-Civita tensors (of course this is not the case if the
Riemann tensor contributes to O(1) order only). For a diagram with two internal
graviton propagators the worst scalings are k8

m8 k
2 and k6

m6 k
2 and the index structure

of the k’s (with now two more k’s) makes that these contributions vanish.

Fig. 6.25 n-point function
with 2 Loops

1 

2 

3 

4 

… etc …
n 
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We can generalize the above observation to any n-point function (Fig. 6.25). Again
the n-point function with the highest number of internal graviton propagators n+1
will contribute with the most negative power of m−4(n+ 1), which again cancels
exactly. The reason for that is simple. We already know that the cubic vertex from
the potential term and also from the Einstein–Hilbert term gives zero lo leading
order and m2 scaling to second leading order. Therefore for the n-point function,
each vertex cannot contribute with more than m−2, meaning that the divergence is
at worst like m−2(n+1) rather than m−4(n+1). Even if this argumentation is based on
cubic vertices, the same reasoning applies to quartic and higher dimensional vertices
in v. Each internal propagator comes at least with k2/m2. In the case in which each
propagator contributes with k2/m2 would give rise to (k/m)2n contributions in the
vertex which is fully symmetric and cancel due to the antisymmetric structure of the
potential term with the Levi-Civita tensors.

We are able to explain why the quantum corrections with the worst scaling of
the inverse graviton mass cancel, nevertheless at 2-loops there could be still some
contributions inwhich the detuning of the potential interactions occur at a lower scale
then at the one-loop level even if the inverse scaling does not happen. Therefore, it is
an indispensable task to push our analysis beyond the one-loop contributions. Even if
there is no apparent symmetry to protect the specific structure of the massive gravity
potential, computing explicitly the quantum corrections at one and two-loops might
provide us with an iterative scheme to show the absence of ghosts below the Planck
scale at all order of loops.
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Summary



Chapter 7
Summary and Outlook

7.1 Summary

Themain focus of this thesiswas the study of theoretical aswell as phenomenological
consequences derived from the existence of a graviton mass within the ghost-free
theory of Massive Gravity, which constitutes a 2-parameter family of potentials,
known under the name of dRGT theory. First of all, we studied the impact ofMassive
Gravity on cosmological contexts and obtained constraints on the parameters of the
theory based on purely theoretical grounds. To be more precise we studied the self-
accelerating and degravitating solutions in the decoupling limit of Massive Gravity
andput constraints on the two free parameters of the theory from instability conditions
(like the absence of ghost and Laplacian instabilities) in the cosmological evolution.
The self-accelerating solution we found was indistinguishable from a cosmological
constant, since the fluctuations of the extra scalar degree of freedom of the massive
graviton sourcing self-acceleration do not couple to the fluctuations of the helicity-2
field and so to the matter fields. We were also able to show that Massive Gravity
can screen an arbitrarily large cosmological constant in the decoupling limit without
giving rise to any ghost instability. Unfortunately, the allowed value of the vacuum
energy that can be screened without being in conflict with observations is fairly low.
Even if the screening of a large cosmological constant pushes the Vainshtein radius
to smaller scales, to our knowledge it is the first time that an explicit model can
present a way out from Weinberg’s no-go theroem.

Furthermore, starting from the decoupling limit we constructed a proxy theory to
Massive Gravity which gave rise to non-minimally coupled scalar-tensor interactions
as an example of a subclass ofHorndeski theories. Even if theHorndeski scalar-tensor
interactions have been studied in the literature before, the novelty in our study was
that these very specific subclass interactions descend from the very specific structure
of the decoupling limit of Massive Gravity. We studied the self-accelerating and de-
gravitating solutions in this proxy theory as well. We found stable self-accelerating
solutions and followed the cosmological evolution of the extra scalar degree of free-
dom. In difference to the self-accelerating solution found in the decoupling limit
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of Massive Gravity, the one found in the proxy theory through covariantization dif-
fers from a pure cosmological constant since the perturbations of the extra degree
of freedom do couple to the matter fields. Motivated by this result, we studied the
change in the linear structure formation. Unfortunately, we were not able to find any
degravitating solutions with an analogue ansatz as in the decoupling limit.

Additionally,Galileonmodels represent a class of effective field theories that natu-
rally arise in the decoupling limit of theories ofmassive gravity. Even thoughGalileon
models offer interesting phenomenology, they suffer from superluminal propagation.
We have shown that superluminal propagating solutions for multi-galileon theories
is an unavoidable feature, unlike previously claimed in the literature.

After studying the constraints on the parameters of the theory based on stability
condition, the natural question arises as to whether the tuning of the introduced pa-
rameters themselves are subject to strong renormalization by quantum loops. There-
fore we pushed the stability analysis from pure classical to the quantum level by
addressing the fundamental question of technical naturalness of the parameters at
the quantum level. We started the analysis with the decoupling limit and showed
how the non-renormalization theorem implies that the graviton mass and the free
parameters of the theory receive no quantum corrections. This non-renormalization
works in an exact analog way as the non-renormalization for the Galileon fields. The
interactions are safe from quantum corrections because of the antisymmetric struc-
ture of the interactions. This is a very nice exact result which hold for any number
of quantum loops. Beyond the decoupling limit the quantum corrections are present
but suppressed in such a way that the graviton mass can only be renormalized by an
amount proportional to itself, proving the technical naturalness of the small graviton
mass. This provides an explicit realization of the ’t Hooft naturalness argument to
the case of Massive Gravity. We then explicitly studied the stability of the graviton
potential under the quantum corrections coming from loops of matter and gravitons
in order to confirm ’t Hooft naturalness argument. Hereby we assumed a covariant
coupling to matter. We found that one-loop contributions from the externally cou-
pled matter fields yield a contribution to the one-loop effective action in form of
a cosmological constant and that therefore the special structure of the potential is
unaffected by the matter fields. On the contrary, the one-loop contributions from the
gravitons themselves destabilize the special structure of the potential. Nevertheless,
this detuning is irrelevant below the Planck scale. Furthermore, we showed that even
in the case of large background configuration, the Vainshtein mechanism redresses
the one-loop effective action so that the detuning remains irrelevant below the Planck
scale. Our work was one of the first attempts at invoking the Vainshtein mechanism
at the quantum level.

7.2 Outlook

There are still very interesting and promising roads to take within the field ofMassive
Gravity and multi-metric gravities which can be divided into observational and more
theoretical considerations rending the field interesting for different communities.
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7.2.1 Theoretical Concepts

An interesting follow-up investigation of the quantum corrections in Massive Grav-
ity is the question whether or not our results for one-loop corrections remain valid
at higher order loops. At the one loop level there was no mixing between graviton
and scalar propagators within loops since either gravitons or matter fields could run
in the loops. As a consequence the virtual matter fields remained unaware of the
graviton mass. But starting from two loops this mixing will play an essential role
and it becomes a compulsory task to study whether or not this higher order loop
graviton-matter mixing will detune the potential at a different scale and correspond-
ingly yield a smaller mass for the ghost, which would render the theory sick. Could
it be that the special form of the potential forces the mass of the ghost never to be
less than the Planck mass? Could loops with graviton-matter mixing give rise to an
inverse power scaling of the graviton mass? Could it be that the same very specific
form of the graviton potential arranges for the infinite number of loop diagrams to
resume into interactions which stay in the weakly-coupled regime? Can the theory be
UV-completed a la Wilsonian or forced to have an alternative approach as classical-
ization? Additionally, the propagation of superluminal fluctuations in these theories
signals the failure of having a Wilsonian UV-completion. Curiously, the Vainshtein
mechanism and the superluminal propagation seem to appear hand in hand if one
imposes trivial asymptotic conditions at infinity. Thus, it is crucial to investigate
the deep physical relations between all these phenomena which are up to date still
mysterious. All these questions are worth the effort.

Coming back to the original motivation of studying Massive Gravity, the CC
problem remains still undressed in the full theory. Even if the decoupling limit of
Massive Gravity fails to degravitate an arbitrary large CC in order to make the Vain-
shtein mechanism work, an appealing follow-up project which is worth considering,
is the investigation of degravitating solutions in the full theory. Surprisingly degravi-
tating solutions of Massive Gravity have been left aside so far in the literature. Could
it be that in the full theory there exists a cosmological scenario in which the de-
gravitation of the vacuum energy is not in conflict with the Vainshtein mechanism
or that the degravitating even takes place before the Vainshtein mechanism starts to
be at work? Another possible project is to investigate degravitating solutions with
varying mass or in bimetric gravity theories. Bimetric gravity theories provide a rich
phenomenology in the cosmological context. Stable self-accelerating solutions have
been found in the literature. Therefore it is a promising road to study in more detail
these potential effects that could give rise to cosmological signatures and that could
help discriminating the theory as well as constraining its parameters.

It is very interesting that Galileon type of theories and Massive Gravity can be
regarded as effective descriptions of braneworld constructions or compactifications
in higher-dimensional frameworks. The fact that some of the standard model of
elementary particles problems, e.g. theHiggs hierarchy problem, can also be attacked
by resorting to extra dimensions makes it even more intriguing. Thus, the two most
important hierarchy problems, namely the cosmological constant and the Higgsmass
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problems, find potential solutions in scenarios with extra-dimensions. This is very
suggestive and therefore finding ways to tackle both puzzles in a unified manner
from higher-dimensional setups deserves further investigations.

7.2.2 Observational Concepts

The confrontation of Massive Gravity and bimetric gravity theories with cosmolog-
ical observations is a crucial ingredient in testing these theories. A natural starting
point is the study of the background evolution and to constrain the parameters using
the distance redshift relation fromSupernovae, the distance priorsmethod fromCMB
and BAO measurements. The cosmological observations with the most constraining
powerwill most likely be the spectrum of temperature fluctuations of the CMBwhich
requires in addition a dark matter spectrum and a growth function. Thus, for this pur-
pose one of the publicly available numerical codes, like CAMB or CLASS, needs to
be modified to solve the whole system of Boltzmann equations together with Ein-
stein equations so that we can confront the model to CMB observations and obtain
the corresponding confidence regions for the theory parameters using Monte-Carlo
Markov-chains.

At the linear level, the CMB temperature anisotropies provide an excellent tool
to probe the evolution of the inhomogeneous perturbations in the universe. How-
ever, these are not sufficiently powerful to disentangle certain degeneracies that exist
between different cosmological models or modified gravities. The non-linear evo-
lution is in fact responsible for the formation of the structures that we observe in
the universe and, in order to fully understand how the structures in our universe are
formed, we need to resort to methods beyond the linear regime. This is so because
the gravitational processes involved in the formation of galaxies, clusters, etc. from
the primordial seeds generated during inflation are highly non-linear. The existence
of a non-vanishing mass for the graviton naturally leads to a modification of New-
ton’s potential, changing in this way the gravitational interaction between particles.
Thus, the clustering that takes place in a universe with a massive graviton will differ
from the standard one. Moreover, since not only the gravitational forces, but also
the cosmological expansion affects the structure formation, another effect to be con-
sidered is how the different Hubble expansion rate produced by a massive graviton
could impact on it. In order to perform this analysis, we need to start by studying
cosmological perturbations within the context of Massive Gravity. In particular, we
would study the spherical collapse to further proceed to the question of how the den-
sity contrast of matter fluctuations is modified with respect to the standard model.
Once this preliminary study has been accomplished, the implementation of the corre-
sponding modifications in an N-body code to run simulations of structure formation
will allow a very important step in testing the theory because of the non-linearity
of the gravitational equations. There is a series of features that cannot be properly
accounted for by resorting to cosmological perturbation theory alone, but the solu-
tion of the entire system of equations is needed. Since the existence of a mass for
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the graviton makes the gravitational interaction weaker on intermediate and large
scales with respect to General Relativity, and the Vainshtein mechanism will play a
crucial role in the gravitational collapse, we expect a different structure formation in
Massive Gravity that will allow to distinguish it from other models. In any case, and
given the complexity of the problem, N-body simulations should be run to see the ac-
tual features produced within the framework of Massive Gravity. The use of N-body
simulations is computationally very expensive so that it is crucial to develop reliable
and optimal semi-analytical codes with less computational time. In this context, it
would be useful to extend the existing PINOCCHIO code to cope with modified
gravity models such as Massive Gravity which differ from conventional models such
as �CDM by a different onset of structure formation, and investigate the parame-
ter space of Massive Gravity. We presume that Massive Gravity will significantly
influence the time sequence of gravitational clustering, especially the evolution of
peculiar velocities and the number density of collapsed objects in the PINOCCHIO
code. Developing a code including this novel scalar non-linear interactions with the
Vainshtein mechanism implemented will be a key contribution to the research field.
Moreover, the development of such a code will require a deep understanding of the
problem of structure formation so that we will gain, not only intuition and experience
within the context of strongly coupled scalar field modifications of gravity, but also
on the process of structure formation in more general setups.

EUCLIDprovides indispensable possibilities to study the effects ofMassiveGrav-
ity in weak lensing measurements. Using Fisher-formalism for forecasting statistical
errors on parameters, EUCLID weak lensing measurements will restrict the para-
meter space of Massive Gravity remarkably. Particularly the mass of the graviton
can be determined by weak lensing. For this purpose the power spectrum as well as
the growth rate are needed. Bayesian model selection will then enable us to differ-
entiate between Massive Gravity and competing dark energy and modified gravity
models. Interestingly, EUCLID will be testing a region of Massive Gravity just at
the Vainshtein radius itself which is so far not very well probed.
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A.1 Specific Example Provided in Padilla et al. (2011)

Following the example provided in Padilla et al. (2011), we now take the following
numerical values for the parameters am,n and bm,n: a10 = 3μ2, a01 = −1μ2, b01 =
1/2μ2, a30 = 2μ2/H4

0, a21 = −13μ2/H4
0, a12 = 24μ2/H4

0, a03 = −9μ2/H4
0 and

b03 = −18μ2/H4
0. Plugging these values into the expression for the sound speed

yields:

cs2+(r) ∼ 1 + 133.9
m2

r6
1

H4
0μ

4
(A.1)

cs2−(r) ∼ 1 − 14933.9
m2

r6
1

H4
0μ

4
(A.2)

We thus have one mode that propagates sub-luminaly at infinity and the other
mode propagating super-luminaly. It therefore seems that the example provided in
Padilla et al. (2011) does not achieve the goal of avoiding superluminal propagation.
At this level, this might be just due to a simple typo in the specific example provided
in Padilla et al. (2011), but as we show in this thesis, there are no possible sets of
quadratic and quartic bi-Galileon interactions that can prevent the propagation of
one superluminal mode, even though the parameters at infinity are chosen such that
bode modes propagate (sub-)luminally at far infinity.

A.2 Detailed Analysis of the Special Case in the Quartic
Galileon: Dominant First Order Corrections

In this section of the appendix we will show that τ −δ > 0 when λ2
1 > λ2

2.
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We can write τ −δ as

τ −δ = 6b01m

λ4
1y1

(1 − α) ×
[ 1

8(3 α −1)2

(
a10b01 − 2

3 α −1

5 α −1
a201

)

+ 2

(1 − α)(5 α −1)
ζ2 − 1

(5 α −1)(3 α −1)
ζa01

]
. (A.3)

We also use the notation λ2
2 = α λ2

1. Note that since y1, b01 > 0 we must have
3λ2

2 > λ2
1. Thus we have 1/3 < α < 1, the upper bound comes from our assumption

that λ2
1 > λ2

2.
Now the first term in the brackets of the expression τ −δ has the same sign as

a01b01 − εa201 , (A.4)

with 0 < ε < 1. This is positive because in order to avoid ghost instabilities at
large distances from the source a10b01 − a201 > 0 and a10, b01 > 0, (see Eq. (4.47)).
Meanwhile, the second term in the brackets is manifestly positive. Finally, the third
term has the sign of −ζa01.

So at this point our only hope of avoiding superluminalities is to consider a choice
of parameters where −ζa01 < 0. Now we will proceed to show that τ −δ > 0 in this
case as well.

Note that in the limit α → 1 with everything else fixed we have

τ −δ −→ 3b01mζ2

λ4
1y1

> 0 . (A.5)

Also in the limit α → 1/3 with everything else fixed we have

τ−δ −→ a10b201m

2λ4
1y1

1

(1 − 3 α)2
> 0 . (A.6)

Now consider the function

σ(α) = 8(1 − α)(5 α −1)(3 α −1)2
[ 1

8(3 α −1)2

(
a10b01 − 2

3 α −1

5 α −1
a201

)

+ 2

(1 − α)(5 α −1)
ζ2 − 1

(5 α −1)(3 α −1)
ζa01

]
. (A.7)
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We can write this function in the shortened notation as σ(α) = σ0 + σ1 α+ σ2 α2

with

σ
0

= 2a201 − a10b01 + 8a01ζ + 16ζ2 (A.8)

σ
1

= −8a201 + 6a10b01 − 32a01ζ − 96ζ2 (A.9)

σ
2

= 6a201 − 5a10b01 + 24a01ζ + 144ζ2 . (A.10)

The sign of σ(α) is the same as the sign of τ −δ in the regime 1/3 < α < 1. Note
that σ(1/3), σ(1) > 0 using the limits above.

Note that σ0, σ1, σ2 do not have a definite sign, because a01ζ, ζ2 > 0, but a201 −
a10b01 < 0. Therefore we need to investigate the behaviour of this function σ(α) in
more detail.

Being a quadratic function σ(α) has a single critical point (either corresponding
to a maximum or a minimum) αcrit. Given that σ(1/3), σ(1) > 0, we can avoid
superluminalities if and only if 1/3 < αcrit < 1 and simultaneously σ(αcrit) < 0.

Computing d σ(α)
d α = 0 yields for the critical point αcrit

αcrit = − σ1

2 σ2
= 4a201 − 3a10b01 + 16a01ζ + 48ζ2

σ2
. (A.11)

Plugging this back into the expression for σ(αcrit) gives the following expression

σ(αcrit) = 4(a10b01 − a201)
a201 + 8a01ζ + 16ζ2 − a10b01

σ2
. (A.12)

It is useful to consider

1 − αcrit = 2
a201 + 4a01ζ + 48ζ2 − a10b01

σ2
. (A.13)

If αcrit < 1 then this is positive. Similarly

αcrit −1

3
= 1

3

6a201 + 24a01ζ − 4a10b01
σ2

. (A.14)

If αcrit > 1/3 then this is positive.1

We will now show that we cannot simultaneously satisfy all the criteria that we
need to satisfy to avoid superluminalities. We consider four cases which will exhaust
all possibilities:

1When we write num of σ(αcrit), we mean a201 +8a01ζ+16ζ2 − a10b01 by that, i.e. we are ignoring
the uninteresting factor of 4(a10b01 − a201) > 0.
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Case 1: σ2 = 0

In this case we have
σ(α) = σ

0
+ σ

1
α

Since σ(1/3), σ(1) > 0 we know that σ(α) > 0 in the whole interval 1/3 < α < 1.

Case 2: σ2 < 0

Consider σ(αcrit). If we assume that σ2 is negative, then we can avoid superluminal-
ities if and only if the numerator of σ(αcrit) is positive.

However the condition that σ2 is negative means that a01b01 > 6
5a

2
01 + 24

5 a01ζ +
144
5 ζ2, which implies that

num of σ(αcrit) = a201 + 8a01ζ + 16ζ2 − a10b01 < −1

5
(a01 − 8ζ)2 . (A.15)

So we cannot avoid superluminalities in this case either.

Case 3: σ2 > 0, ζ > 0

Again we consider σ(αcrit). We now assume that σ2 is positive, so we need to check
if numerator of σ(αcrit) can be negative if we also assume that αcrit < 1, i.e. a10b01 <
a201 + 4a01ζ + 48ζ2, and also that αcrit > 1/3, i.e. a01b01 < 3

2a
2
01 + 6a01ζ.

The inequality αcrit < 1 tells us that

num of σ(αcrit) = a201+8a01ζ+16ζ2−a10b01 > 4a01ζ−32ζ2 = 4ζ(a01−8ζ) (A.16)

and the inequality αcrit > 1/3 tells us that

num of σ(αcrit) = a201 + 8a01ζ + 16ζ2 − a10b01 > −1

2
a201 + 2a01ζ + 16ζ2 (A.17)

Now let’s take ζ > 0. The first inequality then implies we need a01 −8ζ < 0 to avoid
superluminalities. So we set a01 = 8ζε for 0 < ε < 1 (if ε < 0 then −a01ζ > 0).
Then the second inequality becomes

num > 16ζ2(1 + ε − 2ε2) = 16ζ2(1 − ε)(1 + 2ε) > 0 (A.18)

So also in this case we are forced to have superluminalities.

Case 4: σ2 > 0, ζ < 0

Now we take ζ < 0. The first inequality then implies we need a01 − 8ζ > 0 to avoid
superluminalties. However note that both a01 and ζ are negative.

So we set a01 = 8ζε for 0 < ε < 1. Then the argument is exactly the same as
above, and that concludes our set of possibilities. In conclusion there is no possible
way to avoid superluminalities near the origin, even if one had been so lucky as to live
in a theory with specifically tuned coefficients for which the first order corrections
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near the origin vanished. Our result is thus generic: superluminalities are always
present near the origin if the field is to be trivial at infinity and stable both at small
and large distances.

A.3 Dimensional Regularization

For the one-loop diagrams we required the dimensional regularization technique to
obtain the quantumcorrections.A recurrent integralwhich appears in our calculations
is of the form

Jm̃,n = 1

m̃4

∫
d4k

(2π)4
k2n(

k2 + m̃2
)n , (A.19)

where m̃ is a placeholder for whichevermass appears in the propagator. By symmetry
we have

1

m̃4

∫
d4k

(2π)4
k2(n−j)kα1 · · · kα2j(

k2 + m̃2
)n = 1

2j(j + 1)!δα1··· α2j Jm̃,n , (A.20)

with the generalized Kronecker symbol,

δα1··· α2j = δα1 α2δα3··· α2j +
(
{α2} ↔ {α3, . . . ,α2j}

)
. (A.21)

We also note that

Jm̃,n = n(n + 1)

2
Jm̃,1 . (A.22)

We do not need to express Jm̃,1 explicitly in dimensional regularization, but can
simply rely on these different relations to showhowdifferent diagrams repackage into
a convenient form. It suffices to know that Jm̃,1 contains the logarithmic divergence
in m̃, which represents the running in renormalization techniques.
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