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Supervisor’s Foreword

The standard model (SM) of particle physics successfully describes the electro-
magnetic, weak and strong interactions in a unified way, and has been validated by
a number of experimental tests. After a three-year running of the Large Hadron
Collider (LHC), the ATLAS and CMS Collaborations at the LHC announced the
discovery of a new particle with a mass of around 125 GeV. All the current
experimental results and analyses show that the properties of the new particle match
those of the SM Higgs boson, which means the last block of the model has been
established.

In spite of the great success, the SM suffers from intrinsic problems, e.g., the
gauge hierarchy problem. Moreover, it cannot describe gravity, cannot interpret the
origin of dark matter as well as the matter and anti-matter asymmetry, etc. All these
problems suggest that the SM is not an ultimate theory, but just an effective theory
in the present energy region. The proton–proton collider LHC has the highest
energy in the world to explore the hitherto untouched landscapes, and thus enable
us to test the SM and search for new physics. Meanwhile, the QCD higher-order
effects are crucial for precise predictions on the scattering processes at the LHC.
This thesis is devoted to discovering the signals of new physics at the LHC and to
estimating the effects of QCD higher-order effects on the theoretical predictions.

There are three main topics studied in this thesis. The first is about the dark
matter. Most of the mass density in the universe is in the form of dark matter, the
properties of which are unclear to our knowledge. It is of high importance to study
the probability of producing dark matter directly at the LHC. In this thesis, the
potential of the LHC to discover the signal of dark matter associated production
with a photon is studied. In particular, the QCD next-to-leading order effects are
taken into account for the first time. After calculating the relic density of dark
matter to find out the allowed parameter regions, the main backgrounds from the
SM, i.e., Z boson and a photon associated production with invisible decay of
Z boson, and Z boson and a jet production with the jet misidentified as a photon are
investigated. Important kinematic distributions of both the signal and backgrounds
are also compared. It is found that the photon’s transverse momentum distributions
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of the backgrounds decrease faster than that of the signal, and that the photon’s
rapidity distribution of the signal is more concentrated in the central region than
those of the backgrounds. These features may help to select the events in experi-
ments. Finally, the parameter regions corresponding to a 5σ discovery and a 3σ
exclusion are presented.

The single top quark production is not only one of the main backgrounds in
searches for new physics, but is also a unique channel to measure the CKM matrix
element and sensitiveness to new physics. It is important to give most precise
predictions on its production at the hadron colliders. In this thesis, the collinear and
soft gluon effects in the t-channel single top quark production at both the Tevatron
and LHC are resummed to all orders in the strong interaction coupling αs. The
resummation is based on the factorization of the cross section into hard, jet, soft,
and parton distribution functions near the threshold region. Moreover, the NLO soft
functions for this process are first calculated. The resummation is performed by
evolving the different functions to a common scale by the renormalization group
equations. The results show that the resummation effects increase the NLO results
by about 9� 13 % and 4� 9 % when the top quark transverse momentum is larger
than 50 and 70 GeV at the Tevatron and the 8 TeV LHC, respectively. This
prediction is important in searching for new physics, e.g., a heavy W 0 which can
decay into a top quark and a jet.

The top quark mass is close to the energy scale of electroweak symmetry
breaking, and thus can be considered as a good probe of new physics. The monotop
signal, i.e., only a top quark and missing energy in the final state, is special and
exists in many models such as R-parity violating supersymmetry or SU(5) grand
unification model, etc. In this thesis, the potential of the early LHC to discover the
signal of monotop is investigated. First, the general renormalizable Lagrangian that
can describe the production of monotop signal is proposed. Then the parameter
spaces of the model are constrained by the K0 � �K0 mixing, the Z boson hadronic
decay branching ratio, and dijet productions at the LHC. Furthermore, the discovery
potential of the signal is studied in both the hadronic and semileptonic modes.
The parameter regions corresponding to a discovery of the signal at different
integrated luminosities are given.

All these results have been published in international recognized journals and
have attracted the interests of both theorists and experimentalists. This thesis has
been well written and presents many backgrounds and calculation details in the
research, which can be taken as examples by interested readers, especially graduate
students, to carry out studies on the frontiers of particle physics.

Beijing, China Prof. Chong Sheng Li
September 2015
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Preface

“What are the elementary building blocks of the world and ourselves?” is a question
occurring in the human mind from ancient times. Aristotle, one of the great Greek
philosophers, believed that the world is made of Earth, Air, Fire, and Water.
In ancient China, people thought that everything arises as a composition of the five
elements of Earth, Wood, Fire, Metal, and Water. However, most of these thoughts
are in the sense of philosophy. It became a scientific problem since the proposal and
discovery of molecules and atoms. As the technique of probing the structure of
matter improves, atoms are found to be composed of more fundamental elements,
i.e., the nucleus and electrons. Such a decomposition line extends continuously, and
nowadays the most fundamental elements are electrons and quarks, the latter of
which make up the baryons and mesons. The typical size of electrons and quarks is
less than 10−15 meter. It is such a small size that one cannot imagine it ordinarily.
These elements are called particles academically.

Another important discovery in probing the structure of matter is that the rules to
govern the particles are very different from those in the macro-world. They are so
weird that even scientists cannot understand them intuitively. For example, the state
of a particle cannot be measured accurately in a fixed space. They can move with
unspecified momentum. In other words, the momentum is not fixed before a mea-
surement. Furthermore, particles possess a special property, called spin, which seems
related to the rotation of something in particles. But in fact spin is not so simple and
just a unique property in the micro-world. Especially, the value of a particle’s spin is
fixed all the time and takes only integers or half integers. The known particles have
only spins of 0, 1/2 or 1. The spin-1/2 particles include electrons and quarks while the
spin-1 particles are mediators of the forces among the spin-1/2 particles, such as
photons. The only spin-0 particle was newly discovered in 2012, which plays a
crucial role in explaining the masses of spin-1 and spin-1/2 particles.

It is a fantastic work to establish such a framework, called the standard model of
particle physics, about the construction of the world. People are confident to
describe and explain almost every phenomenological event with this framework in
hand. However, it is not the final and perfect theory about the world, though the
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framework has been indeed tested by a number of experiments. There are some
phenomena that cannot be explained in the framework. Pursuing a more complete
theory is still an existing aim of scientists.

In order to look into the inner structure of tiny particles, the only way is to let
other particles collide with them to break them apart. The more energy there is in
the collision, the finer the structure people can see. Since protons are heavier than
electrons, it is easier to accelerate them with high energy. Quarks are the building
blocks of protons, and therefore a precise understanding of the interaction involving
quarks is the basis for discovery of any new physics. Quantum Chromodynamics
(QCD) is the theory to describe the interaction involving quarks. However, it is so
complicated that exact solutions cannot be obtained. The prediction made by QCD
can only become more and more precise after including more and more corrections.
As a consequence, it is important to consider QCD high-order corrections in
searching for new physics.

This is the motivation for my Ph.D. thesis. Most of the contents in this thesis
have been published in the form of academic papers. However, I provide in this
book more updated introductions to the backgrounds and recent developments in
the relevant fields, and show more useful details in my research that are not
appropriate for publication in scientific journals. Thus, I believe that graduate
students can benefit from this book.

The main contents of this thesis are arranged as follows. We first introduce the
present knowledge about the micro-world, the standard model of particle physics in
Chap. 1. In Chap. 2, the bases of Quantum Chromodynamics, including the history,
quantumlization, and renormalization, are reviewed. Then in Chap. 3 the pertur-
bative QCD calculation of the scattering processes at hadron colliders is described,
especially the factorization, infrared safety, QCD higher-order effects, and resum-
mation methods. In Chap. 4, the potential of the LHC to discover the signal of dark
matter associated production with a photon in an effective theory is studied. In
Chap. 5, the factorization and resummation of the prediction for the top quark
transverse momentum distribution at large pT at both the Tevatron and the LHC are
discussed with soft-collinear effective theory. In Chap. 6, the potential of the early
LHC to discover the signal of monotops, which can be decay products of some
resonances in models such as R-parity violating supersymmetry (SUSY) or SU(5)
grand unification model, is investigated. Chapter 7 is a summary of this thesis and
also an outlook is presented. Some calculation details and parameters used in the
calculation are given in the appendices.
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Chapter 1
Introduction to the Standard Model
of Particle Physics

The Standard Model (SM) of particle physics is a gauge field theory based on the
gauge group SU (3)C ⊗ SU (2)L ⊗ U (1)Y that describes the fundamental electro-
magnetic, weak and strong interactions. It is established after immense experimental
and inspired theoretical efforts in pursuing the answer to the question of what are the
ultimate constituents of matter.

1.1 Particles

In the SM, all matter in the Universe is made up of elementary particles, which can
be classified according to the spin and character under interaction. They are listed
in Fig. 1.1. In general, there are four categories of particles in the SM, i.e., quarks,
leptons, gauge bosons, and Higgs boson. The quarks are components of hadrons and
carry fractional charges, which means they can interact via photons (one kind of
gauge bosons), denoted by γ. This interaction is rather weak compared to another
interaction that is mediated by gluons (one kind of gauge bosons), denoted by g.
Moreover, quarks translate to each other in nucleon decays, in which the gauge
boson W plays a role. The Z boson is a sister of the W boson but carries a force
similar to γ. The prediction and confirmation by experiments of the Z boson provide
strong evidence of taking the SM as a correct theory to describe the interactions in
Nature. The leptons can interact by mediating a γ,W , or Z bosons, but do not couple
via gluons. This is the main difference between leptons and quarks. The four gauge
bosons are all force carriers and should be massless in the language of gauge field
theory. In practice, γ and g are massless, but W and Z bosons are massive, with a
mass of O(100 GeV). This phenomenon is called the electroweak gauge symmetry
breaking. In order to generate such amechanism, an additional particle, i.e., theHiggs
boson, was proposed to exist [1–5]. It was indeed discovered about three years ago
after being searched for about half a century [6, 7], and it makes the SM a closed
theory by itself. Although its mass is a free parameter theoretically, it turns out to
have a mass near the W and Z boson masses.

© Springer-Verlag Berlin Heidelberg 2016
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Fig. 1.1 The particles in the SM

1.2 The Electroweak Theory

As shown by the gauge group, the SM consists of two separate parts. The first
part is the electroweak theory dictated by the gauge group SU (2)L ⊗ U (1)Y
[8–10]. The gauge group SU (2)L has three generators, for example, taken to be
σa/2 with σa (a = 1, 2, 3) the Pauli spin matrices, to represent the independent
gauge transformations under this group. And each generator is associated with a
gauge boson, denoted byW 1,W 2, andW 3 respectively. The gauge groupU (1)Y has
only one generator and one associating gauge boson B. Two of the gauge bosons in
SU (2)L combine linearly to the mass eigenstates W± as

W+ = 1√
2
(W 1 − iW 2), (1.1)

W− = 1√
2
(W 1 + iW 2). (1.2)

The third mixes with the gauge boson inU (1)Y because they have the same quan-
tum numbers and couple with quarks or leptons in the same way. Thus an additional
parameter may be introduced to describe the extent of mixing. It is convenient to
express the mixing in an angle θw, called the Weinberg angle, and the resulting mass
eigenstates are

Z = W 3 cos θw − B sin θw, (1.3)

A = W 3 sin θw + B cos θw. (1.4)

The gauge boson A is massless, corresponding to the photon. But the gauge boson Z
is massive after the electroweak symmetry breaking. The mass difference between
the W± and Z bosons determines the Weinberg angle. In the SM, the electroweak
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symmetry breaking is triggered by a complex scalar doublet, so a simple relation
follows:

cos θw = MW

MZ
. (1.5)

Since their masses are measured to be close to each other, the Weinberg angle is
small, about 30◦. Actually, the Weinberg angle is also related to the ratio of the
couplings g2 and g1 that associates with the gauge bosons Wi (i = 1, 2, 3) and B
respectively,

tan θw = g1

g2
. (1.6)

The couplings g2 and g1 appear in the covariant derivative

Dμ = ∂μ − i
g1

2
Bμ − i

g2

2
Wi

μσ
i . (1.7)

The usual coupling between photons and electrons, denoted by e, is not an explicit
constant in the SM gauge group, but a combination of g1 and g2,

e = g1g2√
g21 + g22

. (1.8)

Therefore, the coupling structure of the electroweak part in the SM, represented by
g1 and g2, can just be determined by three experimental measurements of MW , MZ ,
and α = e2/4π. Taking MW = 80.385 GeV, MZ = 91.1876 GeV and α = 1/137,
gives g1 = 0.344 and g2 = 0.641.

Meanwhile, the interactions involving the gauge bosons are fixed by gauge invari-
ance of the theory and the quantum numbers of relevant quarks and leptons. Specif-
ically, there are electromagnetic, weak charged and weak neutral interactions, given
as

L = eAμ J
μ
EM + g2√

2
(W+

μ Jμ+
W + W−

μ Jμ−
W ) + g2

cos θw
Zμ J

μ
Z , (1.9)

where1

Jμ
EM = (−1)ēγμe +

(
2

3

)
ūγμu +

(
−1

3

)
d̄γμd, (1.10)

Jμ+
W = ν̄Lγ

μeL + ūLγ
μdL , (1.11)

Jμ−
W = ēLγ

μνL + d̄Lγ
μuL , (1.12)

1We take the first generation as an example and assume that the Cabibbo-Kobayashi-Maskawa
matrix is diagonal.
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Jμ
Z =

(
1

2

)
ν̄Lγ

μνL

+
(

−1

2
+ sin2 θw

)
ēLγ

μeL + (
sin2 θw

)
ēRγμeR

+
(
1

2
− 2

3
sin2 θw

)
ūLγ

μuL +
(

−2

3
sin2 θw

)
ū RγμuR

+
(

−1

2
+ 1

3
sin2 θw

)
d̄Lγ

μdL +
(
1

3
sin2 θw

)
d̄RγμdR . (1.13)

Here, we have denoted the electrons of left- and right-handed chirality as eL and eR ,
respectively. So does uL , dL , and uR , dR . It is obvious from these expressions that
the electromagnetic interaction does not distinguish the chirality while weak charged
current involves only left-handedparticles. The theory describing the electromagnetic
interaction is conventionally called quantum electrodynamics (QED), which has
successfully explained a lot of experiments, such as the anomalousmagnetic moment
of the electron and Lamb shift of the energy levels of hydrogen.

If the mediator W± is heavy enough compared to the external momenta in a
process, then the two charged currents can be merged together to reproduce the four
fermion operator,

LW ≈ g22
2M2

W

Jμ−
W J+

μW . (1.14)

Thus the conventional Fermi constant can be written as

GF = g22

4
√
2M2

W

= e2

4
√
2M2

W sin2 θw
. (1.15)

The weak neutral current couples with both chiralities but in different sizes. In
particular, the difference between the left- and right-handed down-type quarks is
most significant. One may have noticed that the right-handed neutrino does not take
part in any interaction. In the limit θw → 0, there are no right-handed particles
in the weak neutral current, as expected. As a consequence, the Weinberg angle
can be obtained by measuring the rates of processes induced by the weak neutral
current, especially the angular distributions in the processes. Historically, since the
Fermi constant has been measured to very high precision, the knowledge of GF and
θw was used to predict the masses of the W± and Z bosons, and then the CERN
proton–proton collider was built to discover them.

In quantum field theory, the mass of the mediator reflects the range of the interac-
tion. The range is proportional to the inverse of the mass, about 1 fm∼1/0.2 GeV.
The photon is massless, so the range of the electromagnetic interaction is infinite.
The W boson is massive, so the weak interaction happens typically in the range of
∼2.5 × 10−15 m.
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From the description in the above paragraphs, the couplings involving the photon
andW boson, e and g2/

√
2, are of the same order. The strength of theweak interaction

appears “weak” because of the suppression of the heavy mass MW in low energy
phenomena. In high energy scattering, when the heavy boson could be on-shell
produced, the weak interaction does not necessarily appear weak compared to the
electromagnetic interaction.

The massive gauge bosons are naively problematic objects in gauge field theory
because their corresponding mass terms would violate the gauge invariance, which
is crucial to ensure the behavior of the scattering rate in high energy ranges. In
the case of nothing else added, the amplitude of the scattering involving double W
bosons is proportional to the square of the center-of-mass energy in high energy
limit, violating the unitarity of the cross section. This is unacceptable and therefore
there must be something else taking part in this process to restore unitarity. Given the
measured value of the W boson mass, this unitarity constraint requires the existence
of some particles of masses below the unitarity bound∼1 TeV or the theory becomes
non-perturbative above the unitarity bound [11]. In the SM, the solution is adding
a scalar, the Higgs boson, whose coupling with the W boson is proportional to the
square of the W boson mass and whose mass is around O(100 GeV) if the theory
is still perturbative. At the same time, the mass term of the W boson does not exist
explicitly in the Lagrangian but appears spontaneously after incorporating the Higgs
boson in a doublet which transforms under the SU (2)L gauge transformation but
takes a nonvanishing vacuum expectation value. In this way, the gauge invariance of
the Lagrangian is maintained. This kind of realization of the massive gauge boson’s
mass term is called the Higgs mechanism [1–5].

The core of the Higgs mechanism is a proposed Higgs field taking a nonvanishing
vacuum expectation value. This can be realized by imposing special potential terms
of the field, for example,

V (φ) = −μ2φ†φ + λ(φ†φ)2, (1.16)

where φ is the Higgs field, parameterized by

φ(x) = U (x)
1√
2

(
0

v + h(x)

)
. (1.17)

Here U (x) is a general SU (2)L gauge transformation and can be chosen to be 1,
i.e., the unitary gauge, without any effect on physical observables.2 The factor 1/

√
2

comes as a convention. The real-valued field h(x) is physical with the vacuum expec-
tation value 〈h(x)〉 = 0, the quantization of which is just the Higgs boson. The para-
meter λ is positive so that the potential generates a stable vacuum. The parameter
μ2 should be also positive in order to induce a nonvanishing vacuum. Notice that

2The other parts of the SM should be changed correspondingly.
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in the mass term of a usual scalar field, the coefficient −μ2 is positive. Under these
assumptions, the minimum of the potential occurs at

v =
(

μ2

λ

)1/2

. (1.18)

Then the potential terms take the form

V (h) = μ2h2 + λvh3 + 1

4
λh4

= 1

2
m2

Hh
2 +

√
λ

2
mHh

3 + 1

4
λh4. (1.19)

In the second line of the above equation, we have written the coefficients in terms of
two parameters mh and λ, which are more closely related to physical observables.
The relations are

mH = √
2μ = √

2λv. (1.20)

In principle, there are two independent parameters in the potential energy that need
to be determined experimentally. However, as mentioned above, the purpose of the
Higgsmechanism is to providemass termsofmassive gaugebosons.Thus the vacuum
expectation value of theHiggs field is related to the gauge bosonmasses. Specifically,

MW = g2

2
v, MZ =

√
g21 + g22

2
v. (1.21)

It turns out that v ≈ 246GeV.Therefore, the only unknownparameter in the potential
energy of the Higgs field is the mass of the Higgs boson.

The naive mass terms of the other particles in the SM, i.e., the leptons and quarks,
involve a left-handed and a right-handed fermion, fL and fR , which transform dif-
ferently following the SM gauge group. So they should not appear in the Lagrangian,
which means all the fermions in the SM are massless. However, if the Higgs field
couples with fermions in the form of Yukawa interactions,

L f = −y f F̄L · φ fR + h.c., (1.22)

the fermions can have masses after the Higgs field gets its vacuum expectation value,

m f = 1√
2
y f v. (1.23)

Here FL denotes the SU (2)L doublet made of two left-handed fermions, such as the
left-handed neutrino and electron, (νL , eL)T , while fR is an SU (2)L singlet.
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There are no stringent constraints on the Higgs boson’s mass. The unitarity bound
is just a very loose constraint,mH < 1 TeV [11]. As a result, it has to be measured by
experiments. Given that it couples to the massive gauge boson, it is possible to search
for this particle via the associated production of a massive gauge boson, which is one
of the main goals at the large electron–positron (LEP) collider. Due to the limited
collision energy, at most 209 GeV, these direct searches have only set a lower limit
for its mass [12]

mH > 114.4 GeV. (1.24)

The more powerful hadron collider Tevatron excluded the mass range of 100 ∼ 106
GeV and 147 ∼ 179 GeV based on the analysis of signals of Higgs bosons produced
in association with a vector boson (qq̄ → W/ZH ), through gluon–gluon fusion
(gg → H ), and through vector boson fusion (VBF) (qq̄ → q ′q̄ ′H ) [13].

Apart from the direct searches, the parameter mH affects some electroweak
observables through quantum loop effects. For example, the Higgs boson couples
to W and Z bosons and changes the relations among electroweak parameters. For
example, after considering the quantum effects, the tree-level relation in Eq. (1.15)
is modified to

M2
W sin2 θw = M2

Z cos
2 θw sin2 θw = e2

4
√
2GF

(1 + �r ) (1.25)

where�r contains dependence onmH . The global fitting to the electroweak precision
data imposes a stringent constraint, mH = 94+29

−24 GeV, corresponding to a 95% CL
upper limit of mH < 152 GeV [14].

Another parameter, the Higgs self-coupling λ in the potential energy, gets cor-
rections involving the Higgs boson. It would become too large so that the theory is
not perturbative and loses its predictability, or is negative so that the vacuum is not
stable, as mentioned above. If we want to avoid such cases up to the Planck scale,
MPl ∼ 1019 GeV, it is required that 130 GeV < mH < 180 GeV [15–17]. A more
updated investigation of the vacuum stability implies mH > 126 GeV at 98% CL
[18].

A combination of direct searches and electroweak data leads to rather narrow
possible ranges for the Higgs boson mass. The final breakthrough was achieved in
2012 at the large hadron collider (LHC), which is the most powerful collider right
now. After two years running, the ATLAS and CMS collaborations both reported
the discovery of a new particle with a mass of around 125 GeV [6, 7]. The latest
combined mass value measured by the ATLAS and CMS collaborations based on
events of h → γγ and h → Z Z∗ → 4l is [19]

mH = 125.09 ± 0.24 GeV, (1.26)

which is remarkably close to the constraints set by the precision electroweak data.
This coincidence should be considered as a great achievement and a triumph for
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the SM, and makes the SM perturbative, unitary, and extrapolable to the very high
energy scale.

In addition, the spin of the Higgs boson has been probed in many ways, via its
production and decay rates, the kinematics of Higgs production in association with
the massive gauge bosons, and angular distributions in the WW, Z Z , γγ final
states. The spin 1 possibility is excluded by observation of the γγ final state due to
the Landau-Yang theorem [20, 21], while the spin 2 hypothesis is strongly disfavored
[22]. At the same time, it is shown that this particle behaves mainly like a scalar,
rather than a pseudoscalar [22, 23].

The discovered mass of the Higgs boson is in a range such that various decay final
states can be detected at the LHC. Thus it is possible to measure many couplings of
the Higgs boson with the other particles. Because every signal in different final states
depends on several Higgs couplings, a global fit to the couplings is required. The
result indicates that they are generally compatible with the SM predictions though
large uncertainties exist [24].

1.3 Quantum Chromodynamics

The other part of the SM is the theory of QCD based on the gauge group SU (3)C .
The subscript C denotes the color space in which each flavor of quark shown in
Fig. 1.1 contains three copies with different colors. They form a color triplet such as
(ur , ug, ub)T for the up quark. QCD is established to be the right theory to study the
strong interaction. The history and detail of the QCD are left to the next chapter, and
we just give a general description in the following paragraphs.

QCD is not a simple extension of theweak interaction by changing the gauge group
from SU (2) to SU (3). It is much more complicated and has not been completely
understood so far. QCD is not a broken gauge theory in the sense that the force
carrier, the gluon, is massless. However, it does not, like the photon, take a long
range force because of a special property with QCD, the confinement of quarks.
This property indicates that the individual component inside the nucleon cannot
be measured separately. In particular, the interaction between two quarks becomes
stronger and stronger as they are separated from each other further and further.
This behavior is different from the ordinary phenomena in the macro-world where
we live and where the main interaction is governed by the theory of QED. Thus the
conventional faith that anything could be decomposed into smaller parts is challenged
with the appearance of QCD confinement.

On the other hand, if we use high enough energy to probe the inner structure of
nucleons, we see the quarks swing around. The interaction between quarks is weak
in the very small region. In this circumstance, the different quarks in the nucleon can
be separated with high energy. Meanwhile, the high speed quarks would stimulate
the vacuum to produce plenty of pairs of (anti-)quarks, and take some of them to fly
together and form hadrons in order to comply with the confinement. In this sense,
the nucleons can still be decomposed, but not into smaller parts. The decomposed
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parts contain additional components that do not exist in the nucleons explicitly but
are generated dynamically from the vacuum. As a result, it is conceivable that the
decomposed parts may have masses larger than those of hadrons, and that the inner
structure of nucleons is not fixed but changes depending on the probing energy.

The strong coupling,gs , plays a central role in the descriptionofQCD. It also varies
depending on the energy. Therefore, different experiments can measure different
values for this coupling due to the different energy setting, from a few GeV to a
few TeV. The evolution of gs with respect to the energy is predictable in QCD.
After considering this evolution effect, the measured values of gs from different
experiments are in good agreement with each other. Taking the value at the MZ as a
reference, the parameter αs ≡ g2s /4π is measured to be [25]

αs(MZ ) = 0.1193 ± 0.0016, (1.27)

which gives gs(MZ ) = 1.224 ± 0.008, much larger than g1 and g2.
The largest collider LHC employs collisions of proton beams to search for new

particles or new interactions. Any prediction on the event generation at the LHC
resorts to the understanding of QCD because of the partons in the initial state. More-
over, the processes generated via QCD have significant rates generally due to the
large coupling, while the rates of potential processes involving new physics are
rather small. It seems that we want to hear a very feeble music in a room full of big
noise. The fluctuation of the noise would easily cover the music. Therefore, it is of
great importance to predict the noise precisely, which means we need to consider
more QCD corrections.

1.4 Open Questions

The SM has been tested by a large number of precision measurements and proved to
be a very precise theory of elementary particles and interactions. However, the SM
is not a theory about everything. The following questions are still open within the
SM and need to be addressed in the future.

• How can gravity be incorporated in the SM?
• What is the nature of dark matter?
• The masses of fermions span from less than 1 eV to larger than 1011 eV. Is there
any mechanism to arrange them?

• Are the neutrinos Dirac fermions or Majorana fermions?
• Why is the matter much more than antimatter in the universe?
• Why is the coefficient of the quadric term in the Higgs potential negative?

As a result, the SM can be only considered as an effective theory, an approximation
of a more complete theory in the low energy limit. It is necessary to extend the SM,
and search for new physics beyond the SM.
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Chapter 2
Foundations of the Quantum
Chromodynamics

2.1 Origin of QCD

Quantum chromodynamics (QCD) is a theory to describe the strong interaction in
hadrons. It was developed in the history of understanding the structure of the hadrons.
In the 1950s, a large number of hadrons were discovered in experiments. Some of
them are stable, but most are unstable, decaying tomore stable particles immediately.
This makes it doubtful that all of them could be fundamental particles, and it is
proposed that hadrons are composed of more fundamental particles. Later, Gell-
Mann et al. discovered that hadrons can be classified according to amethod called the
eightfold way, which can be explained by an SU (3) flavor symmetry. Consequently,
the quark model and three fundamental quarks, called u, d, and s with spin- 12 and
fractal charges, were proposed [1–3]. Many experiment results can be understood
based on the quark model. However, there are still some phenomena that cannot be
explained. For example, the hadron�++(1232) is the ground state composed of three
u quarks with spin- 32 . As a result, the wave function should be symmetric in both the
spin and position spaces. An extra quantum number of the quark, namely color, is
proposed in order not to violate the spin-statistics theorem. However, the subsequent
experiments to discover free quarks all failed, which forced people to presume that
the quarks are confined forever in hadrons. In 1972 and 1973, Fritzsch, Gell-Mann
and Leutwyler extended the symmetry in the color configuration to SU (3) gauge
symmetry, establishing the theory of QCD [4, 5]. This theory can not only explain
the properties predicted by the quark model, but can also satisfy the requirement
of quark confinement. Later, many other theoretical and experimental developments
convinced people that QCD is just the right theory for strong interaction.

One of the most important experiments is the deeply inelastic scattering (DIS)
of electrons and protons. This process can be described as l(p) + N (P) → l ′(p′) +
X (pX ), where l, l ′ denotes the in-going and outgoing leptons, respectively, N denotes

The original version of this chapter was revised: Incorrect equation has been corrected. The erratum
to this chapter is available at 10.1007/978-3-662-48673-3_8

© Springer-Verlag Berlin Heidelberg 2016
J. Wang, QCD Higher-Order Effects and Search for New Physics,
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Fig. 2.1 A DIS process

u

u

d
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the proton, X represents all the unobserved final states, p, P, p′ and pX are the
correspondingmomenta. As shown in Fig. 2.1, in the collision of a bunch of electrons
with a proton, most electrons go through the proton. Only very few of the electrons
change their directions significantly. These processes can be called as the DIS. It
happens because the high energy electrons collide with the possible inner small
ingredients of the hadron. The ingredients of a hadron are not fixed before any
measurement. And the content of the ingredients in a measurement depends on
the energy of the measuring particle. The larger the transferred momentum from the
lepton Q ≡ √−q2 = √−(p′ − p)2 in a DIS, the smaller the measurable ingredients
and structure of the hadron. Another important fact in the DIS is that the interaction
between the ingredients of a hadron has little impact on the interaction between the
lepton and the collided component, because they correspond to interactions with
different reaction timescales. For example, if the transferred energy is about 100
GeV, then the interaction of the DIS happens in about 0.67 × 10−26 s, while the
interaction between components of hadrons takes place in about 0.67 × 10−22 s after
taking into account the time dilation in transferring from the hadron inertial frame to
the laboratory frame. This picture was described in the parton (referring to the part
of a hadron) model [6], and the scattering cross section of a DIS process is simplified
to a sum of contributions from scattering of the lepton with various partons,

dσ DIS =
∑

j

∫
dξ f j (ξ) × dσ̂ j , (2.1)

where
∑

j is over all partons, f j (ξ) is the parton distribution function (PDF), and
f j (ξ)dξ represents the possibility to find a parton j with a momentum fraction of
the total momentum of the proton between ξ and ξ + dξ. σ̂ j is the scattering cross
section between the lepton and partons.

On the other side, according to the general scattering theory, the cross section of
the DIS process can be expressed as

E ′ dσDIS

d3 �p′ � πe4

2s

∑

X

δ(4)(pX − P − q)|〈p′| j leptλ |p〉 1

q2
〈pX | jλ|P〉|2 (2.2)

= 2α2

sQ4
LμνW

μν, (2.3)
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where
√
s is the hadronic center-of-mass energy, andα = e2/(4π) is the fine structure

constant. jλ is the current
jλ =

∑

j

e j ψ̄ jγ
λψ j , (2.4)

where ψ j denote the different partons and e j are their charges.
The leptonic part in Eq. (2.3) can be calculated easily as

Lμν = 1

2
Trγν p/γμ p/

′ = 2(pμ p
′
ν + p′

μ pν − gμν p · p′). (2.5)

The hadronic part in Eq. (2.3) is complicated, and it can be written as

W μν ≡ 4π3
∑

X

δ(4)(pX − P − q)〈P| jμ(0)|pX 〉〈pX | jν(0)|P〉 (2.6)

= 1

4π

∫
d4zeiq·z〈P| jμ(z) jν(0)|P〉. (2.7)

The matrix element in the above equation cannot be calculated analytically due to
the non-perturbative properties, but must satisfy the following requirements:

• The current is conserved, i.e., ∂μ jμ = 0 and therefore qμW μν = qνW μν = 0;
• The P-parity is conserved in QED interactions (weak interaction is omitted);
• The scattering amplitude is unitary, i.e.,Wμν is Hermitian, and therefore (W μν)∗ =
W νμ.

Then W μν should be decomposed to

Wμν =
(

−gμν + qμqν

q2

)
F1(x, Q

2) + (Pμ − qμP · q/q2)(Pν − qν P · q/q2)

P · q F2(x, Q
2),

(2.8)
in which F1(x, Q2) and F2(x, Q2) are called the structure function, and x is the
Bjorken variable, defined as

x ≡ Q2

2P · q . (2.9)

Comparing the results in the parton model and the general scattering theory, one
obtains

F2(x, Q
2) =

∑

j

e2j x f j (x); F1(x, Q
2) = 1

2x
F2(x, Q

2). (2.10)

From the above equation, the structure function has nothing to dowith the transferred
momentum Q. This behavior is called Bjorken scaling [7], which was verified in
experiments at SLAC in 1969. Bjorken scaling is a result of the parton model, and
thus its confirmation also supported the parton model.
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After a while, Callan and Gross et al. understood that Bjorken scaling implies that
the strong interaction is weak at a short distance [8]. At the same time, it was well
known that the strong interaction is strong at a long distance. It follows that the strong
interaction becomes weaker and weaker as the interaction distance becomes shorter
and shorter, i.e., asymptotic freedom. Gross, Wilczek, and Politzer et al. calculated
the anomalous dimension of the QCD coupling, and found that it indeed manifests
this behavior [9, 10].

2.2 Lagrangian of QCD and Feynman Rules

QCD is a gauge field theory based on the gauge group SU (3) in color space. The
Lagrangian of QCD can be written as

LQCD = LB + LGF + LG . (2.11)

The basic Lagrangian LB is

LB = −1

4
Fa

μνF
μν
a +

∑

j

q̄ ja(i D/ − m j )abq jb, (2.12)

where Fa
μν is the strength tensor with the gluon field Aa

μ

Fa
μν = ∂μAa

ν − ∂νAa
μ + gs f

abcAb
μAc

ν . (2.13)

Here a, b, c are color indices, gs is the QCD coupling, and f abc is the structure
constant of SU (3). D/ = γμDμ with the covariant derivative is defined as

Dμ = ∂μ − igs t
aAμ

a , (2.14)

where ta, a = 1, ..., 8 are the generators of SU (3), satisfying

Tr[tatb] = TFδab = 1

2
δab. (2.15)

m j denotes the mass of the quark q j .LB is invariant under the gauge transformation

qa(x) �→ q ′
a(x) = exp(i t · θ(x))abqb(x) ≡ �(x)abqb(x), (2.16)

t · Aμ �→ t · A′
μ = �(x)

(
t · Aμ + i

gs
∂μ

)
�−1(x). (2.17)

The number of the gluon’s physical degree of freedom is less than that the gauge
field Aa

μ has. A well-defined propagator for such a field can only be obtained after
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choosing a specific gauge condition. The covariant gauge is generally used, repre-
sented by the gauge-fixing Lagrangian

LGF = − 1

2λ
(∂μAa

μ)
2, (2.18)

in which λ is a free parameter. Under this gauge, an additional field, called ghost
field, is brought out, whose interaction is contained in the ghost Lagrangian

LG = ∂μη
a†(Dμ

abη
b), (2.19)

where ηa is a complex scalar field satisfying the anti-communication relation.
When performing the quantization of QCD, the quadratic term of every field is

separated to obtain the corresponding propagator. In momentum space, the two-point
correlation function of the quark field is

�
(2)
q,ab(p) = −iδab(p/ − m). (2.20)

Its inverse gives the quark propagator

�
(2)
q,ab(p) = iδab

p/ − m + iε
, (2.21)

where iε with ε → 0 is a prescription for picking poles coincident with causality.
The propagator of the ghost field is

�
(2)
η,ab(p) = iδab

p2 + iε
. (2.22)

The two-point correlation function of the gluon field under the covariant gauge is

�
(2)
A,ab,μν(p) = iδab

[
p2gμν − (1 − 1

λ
)pμ pν

]
. (2.23)

Therefore, the propagator of the gluon field is given as

�
(2)
A,ab,μν(p) = iδab

p2

[
−gμν + (1 − λ)

pμ pν

p2

]
. (2.24)

The choice of λ = 1, corresponding to Feynman gauge, can simplify the calculation
significantly in practice. Of course, choosing a general λ and keeping it everywhere
in calculation can help to check the correctness of the computation, since the depen-
dence on λ is supposed to be canceled at the end.
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There is another kind of gauge for the gluon field, given by the constant gauge-
fixing vector nμ and the associating Lagrangian

LGF = − 1

2λ
(nμAa

μ)
2, (2.25)

In this case, no ghost field is needed and the two-point correlation function of the
gluon field is

�
(2)
A,ab,μν(p) = iδab

[
p2gμν − pμ pν + 1

λ
nμnν

]
. (2.26)

Therefore, the propagator of the gluon in such a gauge is given as

�
(2)
A,ab,μν(p) = iδab

p2

[
−gμν + nμ pν + nν pμ

n · p − (n2 + λp2)pμ pν

(n · p)2
]

. (2.27)

If λ = 0, n2 = 0, i.e., the light-cone gauge, the propagator is

�
(2)
A,ab,μν(p) = iδab

p2

[
−gμν + nμ pν + nν pμ

n · p
]

, (2.28)

which agrees with

nμ�
(2)
A,ab,μν(p) = 0, pμ�

(2)
A,ab,μν(p) = iδabnν

n · p . (2.29)

One can see that only two physical polarization degrees of freedom, perpendicular
to nμ and pμ, are active in the propagator.

The other Feynman rules for the three- and four-point interactions can be read
from the LQCD by path integration, summarized in Eqs. (2.30–2.36).

a, μ b, νp

−iδab

p2 +
gμν + (λ − 1)

pμpν

p2
(2.30)

p
i(p/ + m)

p2 − m2 +
(2.31)
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pa b
iδab

p2 +
(2.32)

a, μ

igsγ
μta (2.33)

a, μ k

b, ν

p

c, ρ
q

gsf
abc[gμν(k − p)ρ

+ gνρ(p − q)μ

+ gρμ(q − k)ν ]

(2.34)

a, μ b, ν

c, ρ d, σ

−ig2
s [f

abef cde(gμρgνσ − gμσgνρ)

+ facef bde(gμνgρσ − gμσgνρ)

+ fadef bce(gμνgρσ − gμρgνσ)]

(2.35)

p
a

b, μ

c

gsf
abcpμ (2.36)
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2.3 Renormalization

Making use of the Feynman rules of QCD, one can calculate the amplitudes or cross
sections of the hadronic scattering processes. Generally, the amplitudes are hard to
be calculated analytically, and should be expanded in a series of the coupling of the
strong interaction αs = g2s /(4π) ∼ 0.12.

M = M0 + αs

4π
M1 +

( αs

4π

)2
M2 + · · · , (2.37)

where M0,M1,M2 are referred to as leading order (LO), next-to-leading order
(NLO), next-to-next-to-leading order (NNLO) amplitudes, and so forth.

The LO amplitudes are usually easy to calculate. However, the NLO amplitudes
are complicated because of the loop integrals in which the momentum of the virtual
particles could be infinite, making the integration meaningless. This kind of result
is called ultraviolet-divergent, a feature of the local field theory. To recover the
prediction ability of QCD, renormalization of the theory is needed, which means
redefinitions of the parameters in the Lagrangian, such as m j , gs . Any observable O
is a function of m j , gs , i.e., O(m j , gs), and meanwhile is finite. Then it is required
that the parameters m j , gs are also divergent that just cancel the divergences in the
loop integrals. It seems unreasonable to use infinite parameters in the calculations.
However, if the divergence is universal, which means the structure of infinities in
the loop integrals is fixed, then the QCD theory is still predictive after redefinitions
of a finite number of parameters. It is remarkable that QCD has been proven to be
renormalizable to all orders of αs [11].

Incorporating infinite parameters in the Lagrangian seems weird at first sight.
This is related to the fact that we have considered all fundamental particles as point
particles and the interactions are all local.1 Let us take QED as an example. The
electron is charged. If the electron has a finite radius, which has been constrained to
be very small experimentally, then the electric potential energy inside the electron
would be so large that the individual parts of the electron would be repulsed against
each other. As a result, the electron could not be a stable existence. In order to be
consistent with reality, the electron is assumed to be point-like. From the uncertainty
principle, it is possible that the inside energy of the electron, reflected by the mass,
is infinite.

There are two ways to perform renormalization. The first is the bare parameter
renormalization. One uses the bare Lagrangian in Eq. (2.11) and its corresponding
Feynman rules to calculate the observable O1(m j , gs). Of course, it is divergent.
One can use some regularization techniques to represent such divergences, such as
lnn

(
�/m j

)
or 1/εn with n = 1, 2, .... The former is called cutoff regularization and

� denotes the upper limit of the loop momentum. The latter is called dimensional
regularization and the dimension of the loopmomentum is extended from 4 to 4 − 2ε

1Here, “local” means that the Lagrangian is a function of fields with the same space-time point.
Nonlocal fields and interactions have been discussed in Refs. [12–14].
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[15–18]. Taking the renormalization of the mass and coupling as an example, two
other observables O2(m j , gs) and O3(m j , gs) are supposed to be calculated before
O1(m j , gs) in order to extract the physical or renormalized mR

j and gRs , which are
finite. The relations between the bare and renormalized parameters are obtained as

mR
j = m j + C + αs

4π

1

ε
+

( αs

4π

)2
(
1

ε2
+ 1

ε

)
+ · · · , (2.38)

gRs = gs + C + αs

4π

1

ε
+

( αs

4π

)2
(
1

ε2
+ 1

ε

)
+ · · · , (2.39)

where C is a finite term and the coefficients of each term have been set to be 1
for simplicity. Then replacing the m j , gs in O1(m j , gs) with mR

j , g
R
s , one finds all

divergences cancel out and gets a finite O1(mR
j , g

R
s ). Notice that the cancelation of

divergences takes place order by order in αs .
The second way is the Bogoliubov-Parasiuk-Hepp-Zimmermann renormalization

scheme [19–21]. Since the observables are finite, it ismore natural that the parameters
they depend on are finite. Therefore, one can use renormalized parameters, such as
mR

j , g
R
s , in the Lagrangian directly and any observable is just a function of renormal-

ized parameters. However, this can be achieved at the cost of adding more interaction
terms in the Lagrangian. Explicitly, the fields in the bare Lagrangian should be rede-
fined as

q j = Z1/2
2, j q j,r , (2.40)

Aμ = Z1/2
3 Aμ

r , (2.41)

ηa = Zη
2
1/2

ηa
r , (2.42)

and the Lagrangian in Eq. (2.11) can be rewritten as

LQCD = LR
QCD + LC.T.

QCD, (2.43)

where LR
QCD = LQCD(m j → mR

j , gs → gRs ), and LC.T.
QCD contain counterterms,2

LC.T.
QCD = −1

4
δ3(∂μA

a
ν − ∂ν A

a
μ)

2 +
∑

j

q̄ j (iδ
j
2∂/ − δ j

m)q j − δ
η
2η

a†∂2ηa

+
∑

j

gRs δ
j
1 A

a
μq̄ jγ

μq j − gRs δ
3g
1 f abc(∂μA

a
ν)A

b
μA

c
ν

− 1

4
gRs

2
δ
4g
1 ( f eab Aa

μA
b
ν)( f

ecd Ac
μA

d
ν) − gRs δ

η
1 f

abcηa†∂μAb
μη

c. (2.44)

2All the fields here are renormalized but the subscript ’r’ is omitted for simplicity.
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Here the various new parameters are defined as

δ
j
2 = Z2, j − 1, δ3 = Z3 − 1, δ

η
2 = Zη

2 − 1, δ j
m = Z2, jm j − mR

j ,

δ
j
1 = gs

gRs
Z2, j Z

1/2
3 − 1, δ

3g
1 = gs

gRs
Z3/2
3 − 1,

δ
4g
1 = g2s

gRs
2 Z

2
3 − 1, δ

η
1 = gs

gRs
Zη
2 Z

1/2
3 − 1. (2.45)

Now, all the divergences in LQCD are implicitly incorporated in LC.T.
QCD . Specifically,

δ2 (including δ
j
2 and δ

η
2 ), δm(including δ

j
m), and δ3 cancel the divergences in the

propagators of quarks, ghosts, and gluons, respectively. δ1 (including δ
j
1 , δ

3g
1 , δ

4g
1 ,

and δ
η
1 ) cancel the divergences associating vertices. Although they are divergent, they

cancel out against the divergences in the loop integrals order by order, resulting in
finite predictions on the observables. In general, δ1, δ2, δm, δ3 can contain arbitrary
finite terms. Different finite terms correspond to different renormalized parameters,
e.g., mR

j , g
R
s . It is only required that the same finite terms be used when comparing

the predictions on two observables. This means the absolute value of an observable
is meaningless as it depends on the definitions of counterterms in the theory. It is the
relationship between observables that is predictable and physical. Any specific choice
of the finite terms in the counterterms sets a renormalization scheme. The most used
are the modified minimal subtraction (MS) [22, 23] and on-shell renormalization
schemes. The relation between different renormalization schemes is universal. If
one has the results in one renormalization scheme, it is easy to translate them to
other schemes.

After calculating the counterterms in QCD, i.e., δ1, δ2, δm, δ3, the running behav-
iors of the renormalized parametersmR

j , g
R
s as a function of the scale are also known.

Here the scale refers to the magnitude of the energy. The content of a hadron is
different when measured by particles with different energy. Thus, the parameters
mR

j , g
R
s are also different under different energy scale. In QCD, the running equation

of gRs , i.e., the renormalization group equation (RGE), reads as

β(gRs ) ≡ dgRs
d ln μ

= gRs
d

d ln μ
[− ln(1 + δ

j
1 ) + ln(1 + δ

j
2 ) + 1

2
ln(1 + δ3)]. (2.46)

The scale μ is a result of choosing the dimensional regularization scheme, where one
should make the replacement gRs → gRs με so that the mass dimension of gRs is still
zero. At one-loop level,

β(gRs ) = − gRs
3

(4π)2

(
11

3
CA − 4

3
n f TF

)
= − gRs

3

3(4π)2

(
33 − 2n f

) = −gRs αs

4π
β0,

(2.47)
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where CA = 3 is the Casimir operator of the adjoint representation in SU (3)C , n f is
the number of active quarks, and β0 = (

11 − 2
3n f

)
. The present experiments show

n f = 6. Therefore β(gRs ) is negative, which means the strong interaction coupling
becomes smaller with the increase of scale. It is just the behavior of asymptotic
freedom.

Solving the RGE of β(gRs ) above, one obtains the running coupling at one-loop
level,

αs(μ) = αs(μ0)

1 + αs (μ0)

4π β0 ln
μ2

μ2
0

. (2.48)

Since β0 > 0, when μ → ∞, αs(μ) → 0. On the other hand, when μ → �QCD ≡
μ0 exp

(
− 2π

αs (μ0)β0

)
, αs(μ) → ∞. It suggests the perturbative QCD is not applicable

any more. �QCD denotes the lower energy limit in applying perturbative QCD, and
is found to be a few hundreds of MeV.
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Chapter 3
QCD Perturbative Calculation
of the Scattering Processes
at Hadron Colliders

When two high energetic particles A and B collide, a large number of final-state
particles can be produced. The differential cross section for the specific process
A(pA) + B(pB) → X1(p1), X2(p2), . . . , Xn(pn) is given by

dσ = 1

2s
d�n|M(pA, pB → p1, p2, . . . , pn)|2, (3.1)

where
√
s is the center-of-mass energy. The factor 1/2s is obtained in the case that

the two colliding particles are massless and moving along the same beam line. It is
boost-invariant in the beam line direction. d�n denotes the phase space of n body
final states, defined as

d�n =
⎛
⎝

n∏
f =1

d3 p f

2E f (2π)3

⎞
⎠ (2π)4δ(4)

⎛
⎝pA + pB −

n∑
f =1

p f

⎞
⎠ , (3.2)

It is invariant under Lorentz transformations. M(pA, pB → p1, p2, . . . , pn) is the
scattering amplitude of the process, which is also Lorentz invariant, calculated by

(2π)4δ(4)

⎛
⎝pA + pB −

n∑
f =1

p f

⎞
⎠M(pA, pB → p1, p2, . . . , pn)

≡ lim
t0→∞(1−iε)

(
0〈p1 p2 . . . pn|T

(
exp

[
−i

∫ t0

−t0

dtHI (t)

])
|pA pB〉0

)

C.A.

(3.3)

where |pA pB〉0 and |p1 p2 . . . pn〉0 denote the wave functions of the initial- and
final-state free particles, HI is the Hamiltonian in the interaction picture, and T is
the operator of time-ordering. The subscript “C.A.” means only the connected and
amputated Feynman diagrams need to be considered. The right-hand side of the
above equation is hard to calculate analytically, and usually expanded in series,
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exp

[
−i

∫ t0

−t0

dtHI (t)

]
= 1 − i

∫ t0

−t0

dtHI (t) + · · · , (3.4)

Each contribution from the series can be illustrated by a kind of Feynman diagrams.
In the high-energy scattering processes, the QCD coupling is small enough so that
the perturbative expansion is applicable.

3.1 Factorization

Since there are quarks or gluons in the initial and final states, the wave functions for
the free particles are not well-defined because of color confinement. So σ in Eq. (3.1)
does not correspond to any observable. Thought the quarks can be considered as
free particles in the hard scattering due to asymptotic freedom, the energy scale
with the quarks before and after the scattering is in the non-perturbative region. The
factorization between these different parts of the process is essential to obtain the
prediction for any physical observable. The picture of factorization is illustrated in
part by the parton model when discussing the DIS process in the last chapter. The
full explanation in QCD can be found in [1].

Herewe look at one simple example, i.e., theDrell–Yanprocess p(pA)+ p̄(pB) →
μ+(p1) + μ−(p2) + X at the proton and antiproton collider with the center-of-mass
energy of

√
S. The four momenta of the final-state μ+ and μ− can be measured, and

therefore the square of the invariant mass of the lepton pair

Q2 = (p1 + p2)
2 (3.5)

and rapidity

y = 1

2
ln

(p1 + p2) · pA

(p1 + p2) · pB (3.6)

can also obtained from experimental measurements. The factorization theorem
gives [1]

dσ

dQ2dy
∼

∑
a,b

∫ 1

xA

dξA

∫ 1

xB

dξB fa/p(ξA,μ) fb/ p̄(ξB,μ)Hab

(
ξA

xA
,
ξB

xB
, Q,μ,αs(μ)

)

+ O
(

�2
QCD

Q2

)
. (3.7)

The first line is called the leading twist contribution while the second line contains
higher twist contributions, which are power suppressed by Q2. The subscripts a, b
denote the partons in the proton and antiproton, respectively. xA, xB are defined as
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xA = ey
√

Q2

S
, xB = e−y

√
Q2

S
. (3.8)

Hab

(
ξA
xA

,
ξB
xB

, Q,μ,αs(μ)
)
describes the hard scattering process, which can be cal-

culated perturbatively. The non-perturbative effects are all included in the PDFs
fa/p(ξA,μ) and fb/ p̄(ξB,μ), which denote the possibility to find a parton with a
momentum fraction of ξ in the proton. The definitions for the quark and gluon are
given by [2]

fq/p(ξ,μ) = 1

4π

∫
dx−e−iξP+x−〈P|ψ̄(0, x−, 0⊥)γ+Gψ(0, 0, 0⊥)|P〉,

fg/p(ξ,μ) = 1

2πξP+

∫
dx−e−iξP+x−〈P|Fa(0, x−, 0⊥)+νGabFb(0, 0, 0⊥)+ν |P〉.

(3.9)

where P± = (P0 ± P3)/
√
2 and

G = P exp

[
ig

∫ x−

0
dy−A+

c (0, y−, 0⊥)tc

]
, (3.10)

with P being the operator of path-ordering. The PDFs satisfy the RGE

d

d ln μ
fa/p(ξ,μ) =

∑
b

∫ 1

ξ

dζ

ζ
Pa/b(ζ,αs(μ)) fb/p(

ξ

ζ
,μ), (3.11)

with Pa/b(ζ,αs(μ)) the Altarelli–Parisi splitting function [3]. Notice that Eq. (3.7) is
different from Eq. (2.1) because the PDFs, fa/p(ξA,μ) and fb/ p̄(ξB,μ), depend on
the energy scale.

The factorization form of cross sections is very useful as it divides the complicate
process into different two parts. One is related to the non-perturbative low-energy
region of QCD, and can be obtained by global fitting with some precise measured
processes. The other is governed by QCD in the high-energy region, where asymp-
totic freedom occurs and thus perturbative calculation can be applied. Although
proven explicitly only for a few processes, it is usually considered valid and has
been used ubiquitously in perturbative QCD calculations. The agreement between
the theoretical predictions and experimental measurements confirms its validation
and ensures its application to more general processes.

http://dx.doi.org/10.1007/978-3-662-48673-3_2
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3.2 Infrared Safety

In the calculation of QCD higher-order corrections, one should include the virtual
and real corrections simultaneously. The virtual corrections contain ultraviolet (UV)
divergences, which is canceled after renormalization, as well as infrared divergences,
i.e., the soft and collinear divergences. The real corrections have infrared divergences
only.

In QED, the energy of soft photons is almost vanishing so that the state containing
a single electron and the state containing a electron and a bunch of soft photons consist
a degenerate state of the Hamiltonian. The sum of all degenerate states contains no
soft divergence. In QCD, the situation is more complicated because of the additional
collinear divergence. The state containing a single quark and the state containing a
quark and a collinear gluon also consist a degenerate state of the Hamiltonian. All the
infrared divergences cancel out in the sum of all degenerate initial and final states.
This is guaranteed by the famous Kinoshita–Lee–Nauenberg (KLN) theorem [4, 5].

In practice, for processes at hadron colliders, the collinear divergences of the
virtual and real corrections do not cancel completely since the momenta of initial
partons are constrained. However, the left collinear divergence is universal and can
be absorbed by renormalization of the PDFs. We can take the Drell–Yan process
as an example, of which the LO, virtual and real corrections are shown in Fig. 3.1.
The soft divergences in the diagrams (b), (c), and (d) cancel completely, while there
is still collinear divergences left. The reason is that the collinear divergent parts in
the virtual and real corrections are proportional to the LO amplitude squared with
different momenta. In processes with jets in the final state, the collinear divergences
in the jets cancel in the sum of the real and virtual corrections.

Any infrared-safe observable should not depend on the number of the soft and
collinear particles, i.e., insensitive to the emission of soft and collinear particles.
Specifically, the infrared-observable Fm

J (p1, p2, . . . , pn), n ≥ m in the general pro-
duction processes with m jets, containing n partons, must meet the conditions [6]

Fn+1
J (p1, . . . , p j−1, p j = λq, p j+1, . . . , pn+1)

→ Fn
J (p1, . . . , p j−1, p j+1, . . . , pn+1)

if λ → 0, (3.12)

p1

p2

q

p1

p2

p1

p2

q

q

p1

p2

(a) (b) (c) (d)

Fig. 3.1 The Feynman diagrams for Drell–Yan production. Diagram a is the LO, and diagram b
is the virtual correction. Diagrams c and d are the real corrections
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Fn+1
J (p1, . . . , pi , . . . , p j , . . . , pn+1) → Fn

J (p1, . . . , p, . . . , pn+1)

if pi → zp, p j → (1 − z)p, (3.13)

Fn
J (p1, . . . , pn) → 0 if pi · p j → 0. (3.14)

Equation (3.12) means that the exclusive soft particles cannot be observed. Equa-
tion (3.13) requires that the collinear particles should be observed as a whole object.
Equation (3.14) guarantees that the LO cross section is finite at a certain order of αs .
The inclusive total cross section of e+e− → hadrons is a simple example of the
infrared-safe observable.

The infrared-safe observable is more complicated when some kinematical infor-
mation about the final-state particles is required. The theoretical prediction for these
kinds of processes involves virtual and real corrections, which have different phase
spaces. The infrared divergences can appear in either part. They could be regular-
ized by the dimensional regularization in the similar way to the UV divergence. The
dimension of the space-time is extended to 4 − 2ε. The infrared divergences show
up in the form of 1/ε and 1/ε2 at the one-loop level. The quadratic divergence 1/ε2

comes from the both soft and collinear regions. In contrast, the UV divergences show
up only in the form of 1/ε at the one-loop level. Any infrared-safe observable should
contain no such divergences.

For example, the jet algorithm is widely used to cluster the partons generated in
hard collisions to experimentally observed jets. In the jet algorithm, a parameter is
defined to describe the distance among partons or between the partons and beam
lines [7],

di j = min(k2pti , k2pt j )
�2

i j

R2
, (3.15)

di B = k2pti , (3.16)

where�2
i j = (yi − y j )2 + (φi −φ j )

2, kti , yi , and φi are the momentum, rapidity, and
azimuthal angle of the i-th parton. R is the critical radius, usually chosen in the range
0.4 ∼ 1 at hadron colliders. The exponent p is usually chosen as 1, 0,−1, corre-
sponding to kt , Cambridge/Aachen, and anti-kt algorithm, respectively. All of them
are infrared safe. When applying the jet algorithm, the whole partons are included in
a set A. The distance parameters di j and di B are calculated for the partons in the set
A. If the smallest is di B , then move the i-th parton to another set B. If the smallest
is di j , then combine the i-th and j-th partons to a new parton in the set A, deleting
the original i-th and j-th partons. The above procedure is repeated until the set A is
empty. The set B contains all the jets clustered from the partons. In the combination
of two partons, there are usually two schemes. The first is simply summing the four
momenta of the two partons, resulting in massive jets. The other is summing by a
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weight Et , i.e.,

Et, jet =
∑
i

Eti , (3.17)

η jet = 1

Et, jet

∑
i

Etiηi , (3.18)

φ jet = 1

Et, jet

∑
i

Etiφi , (3.19)

which generates massless jets. At the end of the jet clustering, a minimum transverse
momentum cut is applied to make sure that a very soft element in the set B is
not counted as a measurable jet, ensuring the infrared safety of the observables.
A comprehensive review on the jet algorithm can be found in [8]. In practice, the
FastJet package can be utilized to implement most of the jet algorithms [9].

3.3 QCD Higher-Order Effects

In the past decades, the SM has been tested by a large number of experiments. The
current LHCdata also show results consistent with the SM. These agreements impose
strong constraints on any new physics model, if exists, and suggest that new physical
signal would show up as a small difference from the SM backgrounds. Therefore,
precise predictions of the SM background as well as the new physics signal are
crucial. The importance of QCD higher-order effects is summarized as

• Decreasing the renormalization scale uncertainty. In principle, the full theoretical
prediction does not depend on any scale. But the perturbative theoretical prediction
is obtained in a series of αs . The uncalculated higher order results induce renor-
malization scale uncertainty. Inclusion of more high-order results could reduce the
renormalization scale uncertainty.

• Decreasing the factorization scale uncertainty. The factorization scale involves in
the factorization of the cross section at a hadron collider. The non-perturbative
part of the cross section can only be obtained by fitting with experiments. But its
dependence on the factorization scale can be computed. More precise perturbative
calculationwould result in less dependence of the cross section on the factorization
scale.

• Simulating the jet production accurately. At the LO, each jet contains only a few
partons theoretically.At higher order, after applying the jet algorithm,more partons
are included in one jet, which is a more accurate simulation of the reality.

• Taking into account the transverse momenta of the initial partons. The total trans-
verse momenta of the initial partons is varnishing at the LO. At higher order, the
QCD radiation from the initial partons brings nonvarnishing momentum to the
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final state.1 Thus, more accurate prediction of the kinematical distributions of the
final state can be obtained.

The QCD higher-order effects consist of the virtual and real corrections for a
n → m scattering process. At the NLO, they are the one-loop virtual corrections and
the tree-level n → m + 1 cross sections. At the NNLO, they include the two-loop
virtual corrections, one-loop n → m + 1, and tree-level n → m + 2 cross sections.

In the virtual corrections, the amplitudes are evaluated by reducing the tensor
integrals to combination of the scalar integrals and momenta of the external parti-
cles, the divergent and convergent parts of which can be numerically computed by
programs, such as QCDLoop [10] and LoopTools [11]. This kind of method is
generally used in calculating the cross section of 2 → 2 and 2 → 3 processes.
Recently, an alternative method, called generalized unitarity method, was devel-
oped to deal with more complicated processes involving more external particles
in the scattering [12–19]. With this method, the coefficient of the one-loop scalar
can be obtained from tree-level amplitudes, which accelerates the calculation. This
method has been implemented in a lot of programs, e.g., Helac-NLO/CutTools
[20, 21], Golem/Samurai [22, 23], BlackHat/Sherpa [24, 25], Rocket
[26], MadLoop [27], GoSam [28], and MCFM [29]. The state of the art is the QCD
NLO corrections to W and five jets production at hadron colliders [30].

The two-loop integrals are dealt with the similar methods. But the scalar inte-
grals are not independent any more. The independent ones are chosen as the master
integrals, while others can be expressed as a combination of them using the inte-
gration by parts (IBP) [31, 32] and Lorentz invariance identities (LI) [33, 34]. This
procedure has been automated in the programs, such as AIR [35], FIRE [36], and
REDUZE [37]. Therefore, only the master integrals should be evaluated in practice.
The Mellin Barnes (MB) representation [38, 39] and the differential equations (DE)
[40–42] are widely employed to perform the integration. The basic formula in the
MB representation is

1

(X + Y )λ
= 1

�(λ)

1

2πi

∫ +i∞

−i∞
dz�(λ + z)�(−z)

Y z

Xλ+z
. (3.20)

It splits the complicate denominator into simpler ones, which is easy to integrate,
with the cost of additional integrations. Here, the contour of the integration is chosen
such that the poles associating �(. . . + z), called left poles, are to the left of the
contour and the poles associating �(. . .− z), called right poles, are to the right of the
contour. z is the MB integration variable. A normal two-loop integral would reduce
to a multifold MB integration. Fortunately, some programs written in the Maple or
Mathematica software can help to evaluate them [43–45]. The method of DE makes
use of the procedure of reducing all scalar integrals to master integrals. By taking
some derivatives of the given master integrals with respect to the known kinematical
invariants andmasses, one obtains a system ofDE that can be solvedwith appropriate

1In the case that the final state contains color-charged particles, the QCD radiation from the final
state would also make contribution.
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boundary conditions. The boundary conditions are the master integrals with some
special parameters, which is easier to calculate.

The amplitudes of the real corrections are simpler than those of virtual corrections,
but the phase space integrations becomemore complicated because of themore final-
state particle, infrared divergences, and possible kinematical cuts. For the special case
with two or three particles in the final state, one can integrate the whole phase space
analytically. But for the more general cases with more final-state particles, espe-
cially massive particles, or with kinematical cuts imposed, there is almost no way
to perform the phase space integration analytically. One has to turn to the numerical
integrations. However, the infrared divergences hinder the naive numerical calcula-
tion. One still needs to subtract or split the divergent phase space in advance, whose
contribution should be added back in an analytical form. The widely used methods to
dealwith theNLO real corrections are phase space slicing [46–48], dipole subtraction
[6, 49, 50], and FKS subtraction [51]. In the two cutoff phase space slicing methods
[48], the behavior of the cross section near the infrared divergent region is analyti-
cally calculated in the form of lnn(δs,c),with n = 1, 2, and δs,c define the boundaries
between the divergent and nondivergent phase space, i.e., the soft gluon energy is
less than δs

√
s/2 and the invariant mass of two collinear particles is less than δcs,

where
√
s is the partonic center-of-mass energy. The contribution from the the non-

divergent region can be numerically integrated. The sum of the two parts does not
depend on δs,c. The dipole and FKS subtraction methods construct the subtraction
terms which mimic the real cross section in the infrared divergent region and can
also be integrated analytically. At the level up to NLO, the cross section of them jets
production is

dσNLO =
∫

d�m+1

(
dσR

NLO − dσS
NLO

) |n=4

+
[∫

d�m+1

dσS
NLO|n=4−2ε +

∫

d�m

dσV
NLO|n=4−2ε

]
, (3.21)

where dσS
NLO is the subtraction corresponding to the real correction dσR

NLO. It has the
same behavior as dσR

NLO in the infrared divergent region. So the difference between
them can be just evaluated in the four-dimensional space-time. Meanwhile, dσS

NLO
is simpler than dσR

NLO so that it can be integrated analytically at the infrared diver-
gent region in 4 − 2ε dimensional space-time, giving rise to 1/εn with n = 1, 2,
that cancel against the infrared poles in the virtual correction dσV

NLO. At the NNLO
level, the phase space slicing and subtraction methods are much more complicated
because of the overlap of various divergent regions. Kosower [52, 53] and Weinzierl
[54, 55] tried to extend the dipole subtraction method to NNLO, but only obtain the
contribution from the leading order result in Nc expansion. The more recent methods
of dealing with the real corrections at NNLO include sector decomposition [56–58],
antenna subtraction [59–62], qT subtraction [63–65], STRIPPER subtraction [66],
and threshold subtraction [67–71]. The applications of these methods are summa-
rized in Table3.1. In particular, the qT subtraction makes use of the formalism of
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Table 3.1 The processes at the hadron collider, if not specified, calculated differentially at NNLO
in QCD

NNLO calculation methods Processes

Sector decomposition Higgs boson production [56, 72]

Higgs boson decay [73]

Drell–Yan process [74]

Antenna subtraction e+e− → 3 jets [75–78]

gg → 2 jets [79–82]

t t̄ production [83–85]

pp → Z + j [86]

qT subtraction Higgs boson production [87]

Drell–Yan process [88, 89]

V H associated production [90, 91]

VV production [92–95]

STRIPPER subtraction t t̄ production [96–98]

pp → H + j [99, 100]

Top quark decay [101]

t-channel single top quark [102]

Threshold subtraction Top quark decay [67]

e+e− → t t̄ [68]

pp → W + j [69]

pp → H + j [70]

resummation which is valid to all orders of αs . The cross section near the infrared
divergent region is obtained by expanding the resummation formalism according to
αs . At NNLO, the cross section is divergent like lnn(QT /M) with n = 1, 2, 3, 4,
where QT defines the boundary between the divergent (qT < QT ) and nondivergent
(qT > QT ) regions. The result from the nondivergent region depends on QT nume-
rically. The sum of the two parts does not depend on QT . Notice that the nondivergent
(qT > QT ) region still contains infrared divergence which can be subtracted using
the method applicable at NLO.

3.4 Resummation Methods

The QCD perturbative method has proven to be successful in describing the high-
energy scattering process. But it has the problem of nonconvergence in some cases.
For example, when the total transverse momentum pT of the final state in the low pT
region is observed or additional radiation of large pT jets is vetoed, there exists large
logarithms of the form αn

s /p
2
T ln

m(Q2/p2T ) with n = 1, . . . and m ≤ 2n − 1. The
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expansion in a series of αs is not valid any more. These kinds of large logarithms
should be resummed to all order in αs .

Resummation of soft gluon effects is a powerful way to surpass the fixed-order
perturbative calculations. It is applicable to the processes in which the hard gluon
radiations are inhibited, such as a heavy particle production and a jet-vetoed pro-
duction. These kinds of the regions of the phase space are described by a threshold
variable, namely ω, which is defined according to the process involved. For example,
it is 1 − T , with T the thrust, for the e+e− annihilation to jets [103], and 1 − M2/S
for the Drell–Yan process [104], where M is the invariant mass of the final states
and

√
S is the total available energy. And for the Drell–Yan process at small QT ,

it is ω = Q2
T /Q2. It is clear that ω → 0 corresponds the threshold region. The

fixed-order perturbative calculations in the threshold region is not stable due to the
presence of large logarithms αn

s ln
m ω/ω with m ≤ 2n− 1, which can be resummed.

The threshold variable ω is chosen to be a dimensionless function of the momenta
of the final-state particles and the initial total energy, and to encode the information of
the threshold region of the final state. In order to ensure infrared safety, the threshold
variable should also respect the relations similar to Eqs. (3.12)–(3.14), such as

ωn(k1, . . . , (1 − α)kn−1,αkn−1) = ωn−1(k1, . . . , kn−1). (3.22)

Since the resummation is closely related to the factorization of the cross section, it is
mandatory to figure out the threshold variables in terms of the individual components
of the factorized cross section. For illustration, the factorized cross section can be
generally written as

σ(ω) = C
∫ ∏

i=H,J,S,1,2

dωi H(ωH )
∏
j

J j (ωJ, j )S(ωS) f1(ω1) f2(ω2)

δ(ω − ωH −
∑
j

ωJ, j − ωS − ω1 − ω2), (3.23)

where H, J, S denote the hard function, jet function, and soft function, respectively.
And fi (i = 1, 2) are the PDFs. The coefficientC is chosen such that the leading order
(LO) expansion of the formulawould recover theLOcross section. The various scales
and kinematics dependence are not shown explicitly since we are only interested in
the threshold variables here. We should note that the above equation is established
only in the threshold region, i.e., ω → 0. The individual ωi is only associated with
its corresponding function, which means, for example, that the jet function should
not depend on ωS . The δ function exists due to the assumption that higher order
effects, such as contribution scaling as O(ω2

S), are power suppressed and therefore
neglected here. The integration is applied to the intermediate threshold variables,
not including ω. Because the hard function H does not affect the momenta of the
final-state particles, it should provide no contribution to the threshold region. So we
can omit ωH and the corresponding integration. In some cases, certain parts in the
above equation are not needed. For instance, there are no fi in the process of e+e−
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annihilation to jets. In practice, the individual part would behave as αn
s ln

m ωi/ωi

with m ≤ 2n − 1 near the threshold region. And the integration translates them
into αn

s ln
m ω/ω with m ≤ 2n − 1. Meanwhile, if some technic, especially RGE,2 is

employed, then these large logarithms can be resummed.
Actually, the fixed-order calculation would give rise to the singular terms

αn
s ln

m ω/ω with m = 2n − 1, 2n − 2, . . . , 1 after the analytical integration of the
phase space under certain constraints. More generally, a threshold variable can be
defined as ω0 = Q2

low/Q2
high → 0 for the process containing two different scales

Qlow and Qhigh with Qlow � Qhigh. The cross section is expected to contain the
singular terms αn

s ln
m ω0/ω0,m = 2n− 1, 2n− 2, . . . , 1. It is crucial to resum these

singular terms to provide stable theoretical predictions.
To resum the singular terms, it is better to understand their origin. In the dimen-

sional regularization, they appear along with the divergences, such as at NLO,

1

ε

1

[ωQa]1+ε
(3.24)

with a = 1 or 2. Therefore, a thorough understanding of the pole structure can help
to resum the large logarithms.

3.4.1 Traditional Resummation Method

Belowwe illustrate the traditional resummationmethod in detail through the example
of e+e− → dijet. The cross section in the threshold region can be factorized as [105]

σ(w) = H

(
p1
μ

,
p2
μ

, ζi

)∫
dw1

w1

dw2

w2

dws

ws
J1

(
p1 · ζ1

μ
, w1

(
Q

μ

)a1)

× J2

(
p2 · ζ2

μ
, w2

(
Q

μ

)a2)
S

(
ws

Q

μ
, ni , ζi

)
δ(w − w1 − w2 − ws),

(3.25)

where the ωs in the denominator are extracted from the jet and soft functions. The
soft function depends on the directions ni of the jets but not the energies of the
jets. The constant vectors ζ1 and ζ2 (ζ2i = 0) are used to gauge the gluon field via
ζi · A = 0. In such a gauge, the Sudakov double logarithms are encoded in the jet
function. The parameter ai is related to the kinematics of the scattering process. For
instance, a = 1 and a = 2 for the initial- and final-state jets, respectively, in the DIS.

The delta function in above equation shows the convolution of different parts in
the cross section, making the analysis complicated. It is more convenient to work in

2In traditional resummation method, the independence of the cross section on the choice of gauge
vectors is crucial in resumming the large logarithms.
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the Laplace transformed space, where the different parts are multiplied together,

σ̃(N ) =
∫ ∞

0
dwe−Nwσ(w) = H

(
p1
μ

,
p2
μ

, ζi

)
J̃1

(
p1 · ζ1

μ
,

Q

μN 1/a1

)

× J̃2

(
p2 · ζ2

μ
,

Q

μN 1/a2

)
S̃

(
Q

μN
, ni , ζi

)
(3.26)

with

J̃ (N ) =
∫ ∞

0

dw1

w1
e−Nw1 J (w1), (3.27)

S̃(N ) =
∫ ∞

0

dws

ws
e−Nws S(ws). (3.28)

The region of w → 0 correspond to the limit N → ∞. In principle, the integration
is valid only for ω → 0. But the integration for a large ω is significantly suppressed
when taking the limit N → ∞. Thus, the upper limit ofω can be set to+∞. Actually,
exp(−Nw) ∼ (1 − w)N if ω → 0, then the Laplace transformation is replaced by
the Mellin transformation.

The H , J̃i , and S̃ functions should be renormalized and therefore their dependen-
cies on the scale are determined by the anomalous dimensions,

μ
d

dμ
ln H = −γH (αs), (3.29)

μ
d

dμ
ln J̃i = −γJi (αs), (3.30)

μ
d

dμ
ln S̃ = −γS(αs). (3.31)

Because the cross section does not depend on the renormalization scale,

γH + γS +
∑
i

γJi = 0. (3.32)

In addition, the cross section on the left side of Eq. (3.26) does not depend on the
choice of gauge-fixing vector ζi , so that

0 =
(

∂

∂ ln p1 · ζ1
H

)
J̃1 J̃2 S̃ + H

(
∂

∂ ln p1 · ζ1
J̃1

)
J̃2 S̃ + H J̃1 J̃2

(
∂

∂ ln p1 · ζ1
S̃

)
,

(3.33)
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or

∂

∂ ln p1 · ζ1
ln J̃1

(
p1 · ζ1

μ
,

Q

μN 1/a1

)
= − ∂

∂ ln p1 · ζ1
ln H

(
p1
μ

,
p2
μ

, ζi

)

− ∂

∂ ln p1 · ζ1
ln S̃

(
Q

μN
, ni , ζi

)
. (3.34)

The first term on the right side is a function of αs and p1 · ζ1/μ. and the second term
is a function of αs and

1

(ni · ζi )a1−1

Q

μN
= Qa1

(pi · ζi )a1−1μN
≡ Q′

a1

μN
. (3.35)

Define

G

(
p1 · ζ1

μ
,αs(μ)

)
= − ∂

∂ ln p1 · ζ1
ln H, (3.36)

K

(
Q′

a1

μN
,αs(μ)

)
= − ∂

∂ ln p1 · ζ1
ln S̃. (3.37)

The effect of varying the gauge-fixing vector does not involve the divergence associ-
ated with the jet, therefore the anomalous dimensions are independent on the gauge-
fixing vectors; see Eq. (3.30). As a result,

μ
d

dμ

[
G

(
p1 · ζ1

μ
,αs(μ)

)
+ K

(
Q′

a1

μN
,αs(μ)

)]
= 0. (3.38)

Then one can define

μ
d

dμ
K = −γK (αs(μ)) = −μ

d

dμ
G, (3.39)

where γK is the Sudakov anomalous dimension. From the definition given in
Eqs. (3.36) and (3.37), G and K correspond to the hard and soft interactions with the
intrinsic energy scales of p1·ζ1 andQ′

a1/N , respectively.Notice that p1·ζ1 � Q′
a1/N .

Any choice of a fixed renormalization scale μwould induce a large logarithm inG or
K . In order to avoid such a large logarithm, one should choose the respective intrinsic
scales, at which G or K are evaluated individually. And then they are evolved to the
common scale μ using the RGE,

G

(
p1 · ζ1

μ
,αs(μ)

)
+ K

(
Q′

a1

μN
,αs(μ)

)

= G(1,αs(p1 · ζ1)) + K (1,αs(Q
′
a1/N )) −

∫ p1·ζ1

Q′
a1

/N

dμ′

μ′ γK (αs(μ))
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= −
∫ p1·ζ1

Q′
a1

/N

dμ′

μ′ A(αs(μ
′)) + A′(αs(p1 · ζ1)), (3.40)

in which

A(αs) = γK (αs) + β(g)
∂

∂g
K (1,αs), (3.41)

A′(αs) = K (1,αs) + G(1,αs). (3.42)

Solving Eqs. (3.30) and (3.34), one obtains the jet function

J̃

(
p · ζ

μ
,

Q

μN 1/a
,αs(μ)

)
= J̃ (1, 1,αs(Q/N 1/a)) exp

[
−

∫ μ

Q/N 1/a

dλ

λ
γJ (αs(λ))

]

× exp

[
−

∫ p·ζ

Q/N 1/a

dλ

λ

(∫ λ

Qa/λa−1N

dξ

ξ
A(αs(ξ)) − A′(αs(λ))

)]
.

(3.43)

In general, p ·ζ = CQ withC a constant. After redefinition of A′, it is possible to
setC = 1.CombiningEqs. (3.29)–(3.31), one gets the resummedcross section σ̃(N ),

ln σ̃(N ) = ln H(1, 1, αs(Q)) + ln S̃(1,αs(Q/N )) +
∑

i=1,2

ln J̃i (1, 1, αs(Q/N1/ai ))

−
∑

i

∫ Q

Q/N1/ai

dλ

λ

[ ∫ λ

Qai /λai−1N

dξ

ξ
A(αs(ξ)) − A′(αs(λ)) + γJi (αs(λ))

]

−
∫ Q

Q/N

dλ

λ
γS(αs(λ)). (3.44)

This resummed result can be expanded in a series of αs to obtain the approximated
fixed-order results. Up to NLO,

ln σ̃(N ) = D(0) + αs

π

[
D(1) − A(1)

(
1

a

)
ln2 N + 2B(1)

(
1

a

)
ln N

]
. (3.45)

The coefficients A(1), B(1), D(1) are then determined by comparing with the fixed-
order result.

The above resummation method can be generalized to the hard scattering process
with colored particles in both the initial and final states. Now the soft and hard
functions appear in the form of matrix in the color space. The Laplace transformed
cross section is given by
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σ̃(N ) =
∫ ∞

0
dωe−Nωσ(ω)

=
∑
I J

HI J

(
p1
μ

,
p2
μ

, ζi

)
S̃I J

(
Q

μN
, ni , ζi

) ∏
i

J̃i

(
pi · ζi

μ
,

Q

μN 1/ai

)

(3.46)

where I J are color indices. The corresponding anomalous dimensions are also
matrices,

μ
d

dμ
(ln H)I J = (�H (αs))I J , (3.47)

μ
d

dμ
(ln J̃i ) = γJi (αs), (3.48)

μ
d

dμ
(ln S̃I J ) = (�S(αs))I J , (3.49)

which satisfy the condition

(�H (αs))I J + (�S(αs))I J +
∑
i

γJi (αs)δI J = 0. (3.50)

Other procedure is similar to that in the resummation for e+e− → dijet.
At the end, the cross section in the momentum space is obtained after performing

the inverse Laplace transformation,

σ(ω) = 1

2πi
lim
y→∞

∫ x+iy

x−iy
eωN σ̃(N )dN , (3.51)

where x is chosen to make the integration contour in the convergence region of
σ̃(N ). In the inverse Laplace transformation, N can be so large that the integrand in
Eq. (3.44) hits the Landau pole. In this case, one would resort to the Principle Value
Resummation or the Minimal Prescription schemes [106–109].

In the above example, the soft gluon effects in the threshold region have been
resummed to all orders of αs . There is another kind of resummation method which
only resums the gluon with small transverse momentum. In this case, the transverse
momentum of the parton in the hadron should be taken into account and then the
factorization formalism is different. The interested reader is encouraged to refer to
the original papers, such as Refs. [110–112]. The typical processes in which the large
logarithms have been resummed are shown in Table3.2.
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Table 3.2 Typical processes in which the large logarithms have been resummed

High energy scattering processes Threshold regions References

e+e− → j j T → 1 [113, 114]

DIS process Bjorken variable x → 1 [104, 115]

Drell–Yan process τ = M2/S → 1 [104, 115, 116]

pp → H τ = M2/S → 1 [117, 118]

pp → j j τ = M2/S → 1 [119]

pp → t t̄ τ = M2/S → 1 [120]

pp → γ + X xT = 2ET /
√
S → 1 [121, 122]

pp → t τ = M2/S → 1 [123]

Drell–Yan process at small QT QT → 0 [106]

pp → H at small QT QT → 0 [110–112]

pp → t̃1 at small QT QT → 0 [124]

pp → single graviton at small QT QT → 0 [125]

pp → single slepton at small QT QT → 0 [126]

M and QT are the invariant mass and the transverse momentum of the final state, respectively.
The threshold variable has another definition in pp → j j , i.e., M2 = p1 · p2 [119] rather than
(p1 + p2)2, where p1 and p2 are the momenta of the two jets

3.4.2 Resummation with SCET

The soft-collinear effective theory (SCET) is a special effective theory of QCD
[127–131], which concentrates on the soft and collinear degrees of freedom. The
hard freedoms are incorporated in the Wilson coefficient after matching operators
from QCD to SCET. It separates the different scales in a complicated process and
proves to be an efficient method to deal with the problem of scale hierarchies.

To describe collinear fields in SCET, it is convenient to define a lightlike vector
nμ = (1,n),n2 = 1. Any four vectors can be light-cone decomposed with respect
to nμ and n̄μ = (1,−n) as

lμ = l−
nμ

2
+ l+

n̄μ

2
+ lμn⊥, (3.52)

with l+ = n·l and l− = n̄·l. The momentum of a collinear particle moving along the
nμ direction has the following scaling:

pμ = (p+, p−, pn⊥) ∼ (λ2, 1,λ), (3.53)

while for a soft particle, the momentum scales as

q ∼ (λ2,λ2,λ2), (3.54)
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where λ � 1 is a small expansion parameter in SCET. For example, for an energetic
jet with invariantmassmJ and energy EJ ,λ = mJ/EJ . From themomentum scaling,
one can see that the interaction between collinear fields of different directions ni and
n j with ni ·n j � λ2 will inevitably change themomentum scaling; thus it is forbidden
in SCET, but can be included as an external current. The soft fields, on the other hand,
can interact with any collinear field without changing the scaling.

In SCET, the n-collinear quark ψn and gluon field Aμ
n can be written as

χn(x) = W †
n (x)ξn(x) with ξn(x) = n/n̄/

4
ψn(x),

Aμ
n⊥(x) = [

W †
n i D

μ
n⊥Wn(x)

]
, (3.55)

where
i Dμ

n⊥ = Pμ
n⊥ + gs A

μ
n⊥ (3.56)

is the collinear covariant derivative and the label operator P is defined to project out
the large momentum component of the collinear field, e.g., Pμ

n ξn = p̄μξn . Here we
have split p into a sum of large label momentum and small residue momentum,

pμ = p̄μ + kμ with p̄μ = p− nμ

2
+ pμ

n⊥. (3.57)

The n-collinear Wilson line,

Wn(x) = P exp

(
igs

∫ 0

−∞
ds n̄ ·Aa

n(x + sn̄)ta
)

, (3.58)

which describes the emission of arbitrary n-collinear gluons from an n-collinear
quark or gluon, is constructed to make the collinear fields as defined in Eq. (3.55)
invariant under the collinear gauge transformation. The operator P is the path-
ordering operator acting on the color generator ta .

At the LO in λ, only the n · As component of soft gluons can interact with the
n-collinear field. Such interaction is eikonal and can be removed by a field redefini-
tion [130]:

χn(x) → Yn(x−)χn(x),

Aμ
n⊥(x) → Yn(x−)Aμ

n⊥(x)Y †
n (x−), (3.59)

where

Yn(x) = P exp

(
igs

∫ 0

−∞
ds n ·Aa

s (x + sn)ta
)

(3.60)

for an incoming Wilson line [130, 132]. And for an outgoing Wilson line, it is
defined as
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Ỹn(x) = P̄ exp

(
−igs

∫ ∞

0
ds n ·Aa

s (x + sn)ta
)

, (3.61)

with P̄ the anti-path ordering operator.
The soft gluon fields are multipole expanded around x− to maintain a consistent

power counting in λ. For the interaction between the soft gluon fields and massive
quark fields, there exists a similar timelike Wilson line [133], for example,

Yv(x) = P exp

(
igs

∫ 0

−∞
ds v ·Aa

s (x + sv)ta
)

. (3.62)

After the field redefinition, the LO SCET Lagrangian is factorized into a sum of
different collinear sectors and a soft sector, which do not interact with each other.

LSCET =
∑
ni

L(0)
ni + Ls + · · · . (3.63)

The decoupling of soft gluons from collinear fields is crucial for deriving the factor-
ization formula.

The advantage of performing resummation with SCET is that the different scales
are separated in constructing the effective Lagrangian. The factorization is trans-
parent by integrating out heavier modes step by step in a process, and every part
of the factorized matrix element has an explicit field definition, allowing a precise
perturbative calculation directly. The resummation is performed by solving the RGE
of different parts, which can be expressed in compact form. A comprehensive review
on SCET can be found in Ref. [134].

Notice that the resummations in the traditionalmethod and SCET are equivalent in
principle though they may produce different theoretical predictions numerically. The
similarity and difference between the two methods have been investigated carefully
in Refs. [135–140].
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Chapter 4
QCD NLO Prediction on the Dark
Matter and Photon Associated Production
at the LHC

4.1 Introduction

Astrophysical and cosmological observations have confirmed the existence of dark
matter (DM) in our universe and the density of DM is about four times larger than that
of the visible matter [1]. Here, the visible matter refers to the matter made of all the
known particles, e.g., shown in Fig. 1.1. Since any matter that exists for a long time
in the Universe must be stable, the visible matter is generally made of electrons and
protons, both of which are electricity charged. Thus, they could absorb and radiate
photons, allowing them to be observed even if they are far away from us. In contrast,
the invisible matter is called the DM, which means that it does not radiate photons,
i.e., it is electric neutral, and thus is invisible to telescopes. In order to keep DM
stable, DM particles are usually assumed to carry a special quantum number, such as
−1 in a global Z2 transformation, while the SM particles are unchanged under this
transformation. The conservation of the quantum number ensures that a single DM
particle would not decay into SM particles.

The existence of DM is mainly established from the gravitational effect. Galaxies
are the building blocks of the present Universe and the easiest objects we can observe
from Earth. A galaxy is a system of stars, gases, and dust, which are bound together
and generally rotate around the galaxy center. And most galaxies live together to
form a cluster of galaxies. As far as we know, all these movements are controlled by
the gravity, whose property is elucidated by Einstein’s theory of general relativity.
After estimating the mass of the Coma galaxy cluster and the velocities of the galaxy
members in it, it was found by Zwicky in 1930s that the visible matter (stars, gas,
dust) alone is not enough to attract the galaxy members in the cluster. Thus DM is
present and is in much greater amount than luminous matter [2, 3].

More obvious evidence can be found in the observations of the motions of stars in
the spiral galaxies. The rotation velocity would drop down with the increasing of the
distance if the gravity is produced only by the luminous matter, as shown in Fig. 4.1.
However, the observation illustrates that the velocity becomes almost a constant at
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Fig. 4.1 The rotation
velocity of stars in a galaxy
versus the distance from the
galaxy center
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the long distance, which necessitates the introduction of DM in the galaxy. Detailed
investigation proves that the most part of the mass in a galaxy is in the form of DM.

Because most of the matter in the Universe is DM, the existence of DM could also
change the structure of the Universe at large scale, and the formation of galaxies. If
the DM is made up of slow-moving particles, often called cold DM, the gravitation
force among DMs can attract DMs together quickly to form the core of galaxies. If
the DM is relativistic particles, called hot DM, then the formation of galaxies is so
slow that we can not observe so many galaxies in the present Universe. The latest
measurements of microwave background (CMB) anisotropy, the baryon acoustic
oscillation (BAO) scale, and the Hubble constant shows that the cold DM density
normalized by critical density is [1]

�c = 0.2408+0.0093
−0.0092. (4.1)

For comparison, the baryon density normalized by critical density is [1]

�b = 0.0472 ± 0.0010. (4.2)

We can see that the cold DM density is about 4 times larger than that of baryon
matter. Here, the critical density corresponds to the case that the spatial geometry is
flat, which has been measured to be nearly a fact. Since the total normalized density
in the Universe should be 1, the other parts are occupied by dark energy density
which is still a mystery too.

The DM density measured today is called the relic density of DM. Actually, the
precise prediction of the DM relic density requires the knowledge or assumptions
about the history of the Universe. In the early hot Universe, there would be a large
quantity of matter, including DM and ordinary matter, which are in thermal equi-
librium. As the Universe cooled down, they could reduce their densities through
pair annihilation and the densities decrease exponentially with decreasing tempera-
ture, due to the Boltzmann factor. However, this procedure would not go on forever
because that it becomes more and more difficult for particles to find others with
which to annihilate, as the their densities decrease. At some point, the annihilation
rate becomes smaller than the Hubble expansion rate of the Universe and the den-
sities become constants that are the values measured today. This point is called the
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freeze-out epoch, corresponding to the temperature of the Universe T f.o. ∼ m/20 for
a particle of mass m. The resulted densities are determined by the annihilation rate.
The greater is the annihilation rate, the less is the relic density. Based on several
general assumptions, an approximation equation for the DM relic density reads

�DMh
2 � 0.1

3 × 10−26 cm3/s

〈σanv〉 , (4.3)

where h = 0.693 ± 0.009 is the rescaled Hubble parameter, related to the Hubble
constant H by

H = 100h km s−1 Mpc−1. (4.4)

v is the relative velocity of the annihilating particles and 〈σanv〉 is the thermally
averaged total annihilation cross section. The typical cross section of the order
3 × 10−26 cm3/s can be obtained if the DMs are massive particles with weak
interactions.1 This kind of DMs are called the weakly interacting massive parti-
cles (WIMP), and have been the mostly investigated candidates so far. Since there
are no such candidates in the standard model (SM), any discovery of the signal of
WIMP imply new physics.

At present, people are making a lot of efforts to search for DM particles with
experiment facilities on the Earth, including indirect, direct detections, and collider
experiments. The indirect detection receives the signals ofDMannihilations in distant
zones, such as galaxies centers. These signals should be stable to propagate through
the interstellar space and be detected by experiments on the Earth, e.g., PAMELA [4],
ATIC [5], HESS [6] and Fermi-LAT [7]. They usually consist of photons, electrons,
positrons. If their fluxes are greater than what are expected from the cosmic rays, it
is possible that they are products of DM annihilations. This method depends on the
assumptions of the distribution of DM and the propagator model. Other astrophysical
interpretations, such as pulsars, must be examined carefully.

The direct detection aims to detect the DM in our own galaxy, which may
collide with nuclei on the Earth via weak interactions, including the experiments
of DAMA [8], CDMS [9], CoGeNT [10], XENON [11], and LUX [12]. The DAMA
and CoGeNT experiments reported results that hint a light DM with a mass around
10GeV.However, these discoveries are not confirmed byCDMS,XENON, and LUX
experiments which set upper limits on the WIMP and nucleon spin-dependent and
spin-independent cross sections if the mass of theWIMP ranges from 6 to 1000 GeV.

The third approach is to produce the DM in the laboratory directly, such as the
Large Hadron Collider (LHC), if DM exists and has interactions with the SM par-
ticles. Given that the LHC is operating at such high energies, it is expected it can
probe very large parameters regions of DM models. Many investigations have been
carried out to search for signals of DM at the LHC in varies of DM models [13–30].

Since a single DM particle would not interact with SM particles, it manifests
as missing energy at hadron colliders. It is mandatory to study the process of DM

1Here weak interactions are not necessarily the interactions mediated by the W and Z bosons.
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associated production with some visible particles, e.g., a jet, a lepton, or a photon.
Different associating particles leads to different signals and backgrounds, and need
to be investigated independently.

In this chapter, wewould investigate the signal ofDMvia its associated production
with a photon, since this signal is clear and suffer from fewer backgrounds from the
SM than a jet-associated production. Since the LHC is a proton-proton collider, the
QCD correction should be considered for any process if we want to make reliable
and precise predictions. Thus, in our analysis, we include the next-to-leading (NLO)
order QCD effects.

4.2 Effective Operators

The identity of DM is still unknown so far. From the knowledge in the known world,
it is possible that they consist of spin-0, spin-1/2, or spin-1 particles. Since ordinary
matter is made of spin-1/2 particles while spin-1 particles mediate the forces, the
spin-1/2 DM has aroused most interest.

Aswe havementioned, the DM relic density hints a weak interaction betweenDM
and SM particles. Effective operators are appropriate to describe such interactions,
as they do in the form of Fermi’s four-fermion operators. For example, the effective
operators between two fermionicWIMPs (χ) and two SM fermions ( f ) are shown as

OS = κS

�2
χ̄χ f̄ f, (4.5)

OP = κP

�2
χ̄γ5χ f̄ γ5 f, (4.6)

OV = κV

�2
χ̄γμχ f̄ γμ f, (4.7)

OA = κA

�2
χ̄γμγ5χ f̄ γμγ5 f, (4.8)

OT = κT

�2
χ̄σμνχ f̄ σμν f. (4.9)

Here, the coefficients κi , i = S, P, V, A, T denote the effective couplings and are
O(1) numbers. � is a large energy scale and can be considered as the masses
of new mediators whose effects have been integrated in low energy physics. The
most general effective operators involving DM and SM particles can be found in
Refs. [23, 27, 31–34]. The effective operators, defined by only a few parameters,
simplify the comparison between experiments and various theoretical models, and
are very useful before the discovery of any signal of new physics. However, one
should keep in mind that there are complicated models, such as the supersymmetry,
cannot be correctly described by these effective operators.

We take the scalar operators in Eq. (4.5) as an example to illustrate our method
in the following content. We assume that the DM χ is singlet under the SM gauge
group SU (3)C ⊗ SU (2)L ⊗U (1)Y , so that there is no other way to generate the DM
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at hadron colliders except for the operator in Eq. (4.5). In addition, we only consider
the operators involving SM quarks and rewrite the operator in the form

O = κ

�2
χ̄χq̄q. (4.10)

This four-fermion operator has been discussed inRefs. [23, 31, 32, 35].Here, the new
physics scale � can be considered as the remnant of integrating a heavy propagator
between the SM particles and DM particles. In this picture, the effective operator
is valid only in the case that � > 2m,

√
ŝ, where, m is the mass of DM and

√
ŝ

is the center-of-mass energy of the collision. Generally speaking, it is possible that√
ŝ > � for collisions at the LHC. However, the parton distribution functions of the

initial partons in the process drops very fast with the increasing of
√
ŝ at the LHC.

Therefore, we trust that this limit can be satisfied in practical numerical calculation
if we set the default value of � above 500 GeV.

4.3 Relic Density

As mentioned in the introduction, the DM relic density is a precision observable
in cosmology. The DM we study contributes to the relic density of cold DM. The
current density n of WIMPs can be computed from the Bolzmann transport equation
and the law of entropy conservation [36]:

dn

dt
= −3Hn − 〈σanv〉(n2 − n2EQ), (4.11)

ds

dt
= −3Hs, (4.12)

where t is time, H is the Hubble parameter, and s is the entropy density. The
above Bolzmann transport equation is valid for the DM particles χ annihilating with
its antiparticles χ̄, and there is no particle-antiparticle asymmetry, nχ = nχ̄ = n.
nEQ is the equilibrium number density, in the non-relativistic limit (m � T ) given
by [36]

nEQ = g

(
mT

2π

)3/2

exp
(
−m

T

)
, (4.13)

where g accounts for the spin degrees of freedom of the particle.
It is convenient to use a new variable Y ≡ n/s to separate out the effect of expan-

sion of theUniverse, and change the time to x = m/T with T the photon temperature.
It then follows that

dY

dx
= 1

3H

ds

dx
〈σanv〉(Y 2 − Y 2

EQ). (4.14)
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In order to solve the above differential equation, we should express every component
in terms of the temperature or x .

The Hubble parameter is given by

H =
√

8πρ

3m2
Pl

(4.15)

where mPl = 1.22 × 1019 GeV is the Planck mass, and ρ is the total energy density
of the Universe. In the radiation dominated stage,

ρ = π2

30
g∗(T )T 4, (4.16)

with g∗(T ) the effective number of degrees of freedom for the energy density,
given by

g∗(T ) =
∑
Bose

gB

(
Ti
T

)4

+ 7

8

∑
Fermi

gF

(
Ti
T

)4

, (4.17)

where Ti is the temperature of species i , gB , and gF denotes the number of
degrees of freedom for the bosons and fermions, respectively. The entropy density
is defined as

s ≡ S

V
= ρ + p

T
� 2π2

45
g∗S(T )T 3, (4.18)

with g∗S(T ) the effective number of degrees of freedom for the entropy density,
given by

g∗S(T ) =
∑
Bose

gB

(
Ti
T

)3

+ 7

8

∑
Fermi

gF

(
Ti
T

)3

. (4.19)

If Ti = T , then g∗(T ) = g∗S(T ) = g∗ and they are independent of temperature. After
defining a new degree of freedom parameter

g
1/2
eff = g∗S

g
1/2
∗

(
1 + 1

3

T

g∗S
dg∗S
dT

)
, (4.20)

Equation (4.14) can be written as

dY

dx
= −

√
45

πm2
Pl

g
1/2
eff m

x2
〈σanv〉(Y 2 − Y 2

EQ). (4.21)

The equilibrium value YEQ takes the form in the non-relativistic limit (x � 3)

YEQ = 45

2π4

(π

8

)1/2 g

g∗S
x3/2e−x . (4.22)
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It is instructive to consider the approximation that g∗S is independent of T , which
is valid most of the time. Then Eq. (4.14) becomes

x

YEQ

dY

dx
= −�an

H

[(
Y

YEQ

)2

− 1

]
, (4.23)

with�an = nEQ〈σanv〉 the equilibrium annihilation rate. At high temperatures,�an >

H , Y closely tracks its equilibrium value YEQ. Since�an decreases faster than H with
decreasing T , it happens that �an � H so that dY/dx � 0, which means that the
number of particles per comoving volume becomes constant, i.e., the particles freeze
out. The freeze-out epoch T f.o. is thus determined roughly by �an(T f.o.) � H(T f.o.).

The exact analytical solution of Eq. (4.21) does not exist, and it can only be
numerically solved with the initial condition Y = YEQ at x � 1 to obtain the present
WIMPabundanceY0.However, an approximate solution can be found if the thermally
averaged annihilation cross section can be expanded as

〈σanv〉 = a + b〈v2〉 + O(v4), (4.24)

where σanv is calculated by [37]

σanv = β f

64π2(s − 2m2)

∫
d�|M|2 (4.25)

with

β f =
[
1 − (m3 + m4)

2

s

]1/2 [
1 − (m3 − m4)

2

s

]1/2

, (4.26)

and it is expanded in terms of s = 4m2 + m2v2. Then the freeze-out epoch is evalu-
ated recursively by [38]

x f = ln

[
c(c + 2)

√
45

8

gmmPl(a + 6b/x f )

2π3
√

g∗(x f )

]
(4.27)

with x f ≡ m/T f.o and c a constant of order unity. The WIMP relic density is given
by [36]

�χh
2 = ρ0χh

2

ρ0c
= ms0Y0h2

ρ0c
= 1.04 × 109 GeV−1x f

mPlg∗S/g
1/2
∗ (a + 3b/x f )

, (4.28)

where ρ0c and s0 are the present critical density and entropy density respectively, and
we have used T0 = 2.725K for the present background radiation temperature. For
most of the history of the universe all particle species had a common temperature,
and g∗S can be replaced by g∗. The current experiment value for the relic density of
cold DM is [1]
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Fig. 4.2 The Feynman diagrams for the DM annihilation. Diagram a is the LO. Diagram b is the
virtual correction while diagram c denotes contribution of the counterterm. Diagrams d and e are
the real corrections

�CDMh
2 = 0.1157 ± 0.0023. (4.29)

In our case, we need to calculate the total annihilation cross section of DMs to
get the relic density. The leading order (LO) and NLO Feynman diagrams are shown
in Fig. 4.2. The LO total annihilation cross section can be calculated according to
Eq. (4.25),

σan
B v = NcN f

κ2

�4

s(s − 4m2)

16π(s − 2m2)
, (4.30)

where Nc and N f are the numbers of color and flavor of quarks, respectively, and we
have only considered the massless quarks in the final state because the contribution
from heavy quarks are suppressed by the phase space.

There are two parts in the NLO corrections to the total annihilation cross section,
i.e., the one-loop virtual corrections and real emission corrections. The virtual correc-
tions contain ultraviolet (UV) divergences which should be canceled after including
the counterterm. To deal with UV and infrared (IR) (soft and collinear) divergences
in our computation, we use n = 4 − 2ε dimensional regularization to regulate these
divergences, and all divergences appear as 1/εi with i = 1, 2. The renormaliza-
tion constant of the external quark is usually fixed in the on-shell renormalization
scheme, while the renormalization of the effective coupling is performed using the
MS scheme. Explicitly,

δZq
2 = −αsCF

4π
Cε

(
1

εUV
− 1

εIR

)
, (4.31)

δκ = −αs

π
(4πe−γE )ε

1

εUV
. (4.32)

where Cε = �(1 + ε)[(4πμ2
R)/s]ε with μR the renormalization scale. We have used

the subscripts UV and IR to denote the origins of the divergences. The counterterm
of the vertex is defined as

O0 = ZOOR = (1 + δZO)OR, (4.33)
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where
δZO = δZq

2 + δκ. (4.34)

Then, the combination of virtual corrections and the counterterm reads

σan
V = σan,ε

B

(
αsCF

2π

)
Dε

[
− 2

ε2IR
− 3

εIR
− 3 ln

( s

�2

)
− 2 + π2

]
, (4.35)

where Dε = (4πμ2/s)ε/�(1 − ε) and σan,ε
B is the n-dimensional (n = 4 − 2ε) LO

total annihilation cross section. Because we only consider the massless quarks in the
final state, the phase space of the real corrections can be integrated analytically, and
the results of real corrections are given by

σan
R = σan,ε

B

(
αsCF

2π

)
Dε

(
2

ε2IR
+ 3

εIR
+ 21

2
− π2

)
. (4.36)

Combining the two parts, we obtain the NLO total annihilation cross section

σan
NLO = σan

B

[
1 + αsCF

2π

(
17

2
− 3 ln

( s

�2

))]
. (4.37)

As we have mentioned above, in order to obtain the relic density, we must expand
the cross section by using s = 4m2 + m2v2, then

σanv = a + bv2, (4.38)

where

a = 0,

b = KanNcN f
κ2

�4

m2

8π
, (4.39)

in which Kan is the K-factor of the DM annihilation cross section

Kan = 1 + αsCF

2π

[
17

2
− 3 ln

(
4m2

�2

)]
. (4.40)

Here, only the v2 term contributes to the relic density. This case is called the p-wave
annihilation, in contrast to the case of s-wave annihilation that the v0 term dominates.

Now the result for the relic density can be obtained after putting Eq. (4.39) into
Eq. (4.28). We show the results in the left plot of Fig. 4.3. We can see that the new
physics scale increases with the increasing of the DM mass in order to produce
the present relic density. And the new physics scale becomes larger after the QCD
NLO corrections are included. The allowed DM mass as a function of new physics
scale is shown in the right plot of Fig. 4.3. Since we do not hold the point of view
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Fig. 4.3 The relic density as a function of the new physics scale and the DM mass (left plot) and
the allowed DM mass region as a function of the new physics scale (right plot). In the left plot, the
solid and dashed lines correspond to the LO and NLO results, respectively. In the right plot, the
blue region is excluded by the relic density constraint while the red regions represent the parameter
regions where the effective theory is not appropriate

that the abundance of the WIMP is determined only by this one kind of DM, the
parameter region between the red region and solid lines in the right plot of Fig. 4.3 is
allowed. To ensure that the effective theory is appropriate, the red region in the right
plot of Fig. 4.3 is not allowed. Comparing the LO and NLO results, we find that the
NLO QCD corrections enlarge the allowed parameter regions, with the lower bound
decreased by about 10%.

4.4 DM and Photon Associated Production at the LHC

4.4.1 LO Results

Next, we turn to the signal of DM and photon associated production at the LHC. The
subprocess of this production at LO is denoted by

q(p1) + q̄(p2) → χ(p3) + χ̄(p4) + γ(p5), (4.41)

whose Feynman diagrams are shown in Fig. 4.4. In the above notation, we have
written the momentum of each particle explicitly.

The amplitude involving the DM particles, denoted byMDM , is easy to calculate.
Moreover, due to the special structure of the operator in Eq. (4.10), their contributions
to the cross section can be factorized out, so

|MDM |2 = 2
(
s34 − 4m2) . (4.42)

where si j ≡ (pi + p j )
2. Meanwhile, the LO matrix element can be written as
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Fig. 4.4 LO Feynman diagrams

MB = M1 (−t15 − t25) + 2M2t25 − 2M3t15
t15t25

MDM , (4.43)

where ti j ≡ (pi − p j )
2 and Mi , i = 1, 2, 3 represent the three independent standard

matrix elements, defined by

M1 = v̄(p2)p/5γ
μu(p1)εμ(p5),

M2 = v̄(p2)u(p1)p
μ
1 εμ(p5),

M3 = v̄(p2)u(p1)p
μ
2 εμ(p5). (4.44)

The spin and color states of thefinal-state particles are not observed, thus, the different
states should be summed. The polarizations of initial states are not specified before
collision, thus, the different states should be averaged. Then, the final summed and
averaged LO matrix element squared reads

|MB |2 = 4πακ2

3�4

s212 + s234
t15t25

|MDM |2, (4.45)

where α = e2/4π. The LO partonic cross section is given by

σ̂B = 1

2s12

∫
d�3|MB |2, (4.46)

in which�3 is the three-body phase space. After convoluting with the PDFsGq(q̄)(x),
it is easy to obtain the LO hadronic cross section

σB =
∫

dx1dx2[Gq/p(x1)Gq̄/p(x2) + (x1 ↔ x2)]σ̂B . (4.47)
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Fig. 4.5 Feynman diagrams for one-loop virtual corrections

4.4.2 NLO Results

The NLO results consist of the one-loop virtual gluon effects and contributions of
real gluon and (anti-)quark emissions.

The virtual gluon corrections toDMand photon-associated production include the
self-energy, vertex, and boxdiagrams, as shown inFig. 4.5. TheUVdivergences in the
virtual corrections are canceled between the loop diagrams and counterterms which
are the same as in discussing the relic density. The total virtual gluon corrections to
the partonic cross section are

σ̂V = 1

2s12

∫
d�3(M∗

BMV + MBM∗
V ), (4.48)

in which

MV = αsCF

4π
Cε

[(
AV
2

ε2
+ AV

1

ε1
+ AV

0

)
MB

+3M1 (t15 + t25) − 4M2t25 + 4M3t15
t15t25

MDM

]
,

(4.49)

where

AV
2 = −2,

AV
1 = −3,

AV
0 = 3 ln

�2

s12
+ ln2

(
s12
t15

)
+ ln2

(
s12
t25

)
+ 2Li2

(
− s12 + t15

t25

)

+ 2Li2

(
− s12 + t25

t15

)
+ 4Li2

(
− t15 + t25

s12

)
+ 2π2. (4.50)

We can also write Eq. (4.48) in the form



4.4 DM and Photon Associated Production at the LHC 59

dσ̂V = αsCF

2π
Cε

[(
AV
2

ε2
+ AV

1

ε
+ AV

0

)
dσ̂B + dσ̃V

]
, (4.51)

with

dσ̃V = − 1

2s12

4πακ2

3�4

4s212 + 5 (t15 + t25) s12 + 3 (t15 + t25) 2

t15t25
|MDM |2d�3. (4.52)

The divergences denoted by AV
2 and AV

1 terms are all IR divergences, which would
cancel the IR divergences in real corrections.

The Feynman diagrams for the real gluon emission process

q(p1) + q̄(p2) → χ(p3) + χ̄(p4) + γ(p5) + g(p6) (4.53)

have been shown in Fig. 4.6. The amplitude squared for this process is easy to get.
The difficulty lies in the phase space integration, in which the soft and collinear
singularities appear. When discussing the DM annihilations, the phase space inte-
gration was obtained analytically. The total cross section is enough to derive the relic
density. However, we want to obtain more kinematic information of the final states
when studying the signal of DM at the colliders. In addition, the four-body phase
space, containing massive particles, is more complicated than that in DM annihi-
lations. Therefore, more advanced technique is needed. We employ the two-cutoff
phase space slicing method to separate the regions with singularities and perform
the phase space integration analytically in these regions [39]. In this way, the real
corrections can be divided into three parts, i.e.,

dσ̂R = dσ̂S
R + dσ̂HC

R + dσ̂HC
R , (4.54)

where σ̂S
R and σ̂HC

R represent the contributions from soft- and hard-collinear regions,
respectively. The soft regions are defined by requiring that the energy of the emitted
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Fig. 4.6 Feynman diagrams for a real gluon emission
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gluon E6 ≤ δs
√
s12/2, where δs is a small dimensionless cutoff parameter. The hard-

collinear regions are defined outside the soft regions by the conditions that |ti6| <

δcs12 (ti6 = (pi − p6)2, i = 1, 2),where δc is another cutoff parameter. The hard non-
collinear cross section σ̂HC

R is evaluated in the rest part of the phase space, in which
the amplitude squared is finite and can be computed numerically by Monte Carlo
method. The optimized phase space integration over these regions are presented in
Appendix.

We first deal with the phase space integration in the soft regions. The partonic
cross section in soft regions is very simple and can be factorized as

dσ̂S
R = (4παsμ

2ε
R )dσ̂B

∫
dS�eik, (4.55)

where dS denotes the integration over the phase space of the soft gluon

dS = 1

2(2π)3−2ε

∫ δs
√
s12/2

0
dE6E

1−2ε
6 d�2−2ε. (4.56)

Here the gluon momentum is parameterized in the center-of-mass frame of the initial
partons,

p6 = E6(1, . . . , sin θ1 sin θ2, sin θ1 cos θ2, cos θ1), (4.57)

and the angular integration is defied by

d�2−2ε = sin1−2ε θ1 sin
−2ε θ2dθ1dθ2�−2ε (4.58)

with the d-dimensional unit sphere is given by

�d−1 = 2πd/2

�(d/2)
. (4.59)

The factor�eik is the amplitude squared in the soft limit except for |MB |2, defined by

�eik = CF
s12
t16t26

. (4.60)

This special property of the cross section in the soft regions is called the eikonal
approximation.After integrating the energy and angular parts in Eq. (4.56) separately,
we get

dσ̂S
R = dσ̂B

αsCF

2π
Cε

(
AS
2

ε2
+ AS

1

ε
+ AS

0

)
, (4.61)

with

AS
2 = 2, AS

1 = −4 ln δs, AS
0 = 4 ln2 δs − 2π2

3
. (4.62)
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The AS
2 term comes from the region in which the soft gluon becomes collinear to the

initial partons.
In the hard-collinear regions of this process, the momentum of the emitted gluon

become collinear to the initial partons. In this limit, the amplitude squared is approx-
imated by

|MR|2 ≈ (4παsμ
2
R)|MB |2

[−2Pqq(z, ε)

zt16
+ −2Pq̄q̄(z, ε)

zt26

]
, (4.63)

where z represents the fraction of initial partons’momentumcarried byq(q̄). Pi j (z, ε)
are the unregulated splitting functions in n-dimensions which is related to the usual
Altarelli-Parisi splitting kernels as Pi j (z, ε) = Pi j (z) + εP

′
i j (z). In our case,

Pqq(z) = CF
1 + z2

1 − z
, P

′
qq(z) = −CF (1 − z). (4.64)

In the limit t16 → 0, the four-body phase space can be written as

d�4|coll = d�3(s
′
12 = zs12)

(4π)ε

16π2�(1 − ε)
dzdt16[−(1 − z)t16]−ε. (4.65)

The integration over t16 can be performed,

∫ δcs12

0
d(−t16)(−t16)

−1−ε = −1

ε
(δcs12)

−ε. (4.66)

Therefore, we obtain

dσHC
R = dσ̂B

αs

2π
Cε

(
−1

ε

)
δ−ε
c

∫ 1−δs

xi

dz

z

(
1 − z

z

)−ε

[Pqq (z, ε)Gq/p(x1/z)Gq̄/p(x2)

+Pq̄q̄ (z, ε)Gq̄/p(x1)Gq̄/p(x2/z) + (x1 ↔ x2)]dx1dx2. (4.67)

The upper limit of z is set by the requirement that the emitted gluon is not soft. If the
emitted parton is a (anti-)quark, the upper limit is 1. Therefore, there is only 1/ε poles
which come from the hard-collinear regions. Some of these collinear singularities
can be absorbed into the PDFs. The renormalized PDFs in the MS scheme reads

Gb/p(x,μF ) = Gb/p(x) +
(

−1

ε

) [
αs

2π

�(1 − ε)

�(1 − 2ε)

(
4πμ2R
μ2F

)ε] ∫ 1

x

dz

z
Pba(z)Ga/p(x/z).

(4.68)
The above equation can be used to replace Gq(q̄)/p in the LO hadronic cross section
in Eq. (4.47). After that, we combine the result with the hard-collinear contribution
in Eq. (4.67). The resulting contribution from hard-collinear regions is
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dσhc = dσ̂B
αs

2π
Cε

{
G̃q/p(x1,μF )Gq̄/p(x2,μF ) + Gq/p(x1,μF )G̃q̄/p(x2,μF )

+
∑
a=q,q̄

[ Ahc
1 (a → ag)

ε
+ Ahc

0 (a → ag)
]
Gq/p(x1,μF )Gq̄/p(x2,μF )

+ (x1 ↔ x2)
}
dx1dx2. (4.69)

with

Ahc
1 (q → qg) = CF (2 ln δs + 3/2),

Ahc
0 (q → qg) = Ahc

1 (q → qg) ln
( s12
μ2
F

)
. (4.70)

The G̃ functions are given by

G̃b/p(x,μF ) =
∑
a

∫ 1−δsδab

x

dy

y
Ga/p(x/y,μF )P̃ba(y) (4.71)

with

P̃ba(y) = Pba(y) ln
(
δc
1 − y

y

s12
μ2
F

)
− P

′
ba(y). (4.72)

The above 1/ε pole arises because the integration ranges of z are not the same in
Eqs. (4.67) and (4.68).

Then, we consider the (anti)quark emitted processes, such as

q(p1) + g(p2) → χ(p3) + χ̄(p4) + γ(p5) + q(p6), (4.73)

the Feynman diagrams of which are shown in Fig. 4.7. Due to crossing symmetry,
these contributions can be obtained from the results of processes in Eq. (4.53) by
p1(p2) ↔ p6. Meanwhile, we should notice that the collinear divergences in these
processes can be totally absorbed into the redefinition of the PDFs in Eq. (4.68).

Combing all the pieces above, theNLOcross section for the process pp → χχ̄γ is

σNLO =
∫

dx1dx2
{[
Gq/p(x1,μF )Gq̄/p(x2,μF ) + (x1 ↔ x2)

]
(σ̂B + σ̂V + σ̂S

R + σ̂HC
R )

}

+σhc (4.74)

+
∑

a=q,q̄

∫
dx1dx2

[
Gg/p(x1,μF )Ga/p(x2,μF ) + (x1 ↔ x2)

]
σ̂C
R (ga → χχ̄γa),

where C in σ̂C
R (ga → χχ̄γa) means that the phase space integration is performed in

the non-collinear regions. It is evident that

AV
2 + AS

2 = 0, AV
1 + AS

1 + 2Ahc
1 (q → qg) = 0. (4.75)
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Fig. 4.7 Feynman diagrams for a quark emission. The Feynman diagrams for a anti-quark emission
can be obtained by flipping all the arrows on the Fermion lines

Thus there are no singularities left now.

4.4.3 Numerical Results

In this subsection, we present the numerical results for the cross sections of DM and
photon-associated production at the LHC. In numerical calculation, we choose the
CTEQ6L1 (CTEQ6M) PDF sets [40] and the one (two) loop running strong coupling
αs for the LO (NLO) calculations. The default factorization and renormalization
scales, i.e., μF and μR , are set to be 2m. We choose the model parameters (m,�) =
(200GeV, 1000GeV) andκ = 1unless specified otherwise, This choice is consistent
with the relic density constraint. We apply the following kinematic cuts

pγ
T > 100 GeV,

|ηγ | < 2.4,

pmiss
T > 100 GeV, (4.76)

in our numerical calculation. Here pmiss
T is the missing transverse momentum,

defined as

pmiss
T ≡

{
pγ
T , no jets in the final states,

pχχ̄
T , with jets in the final states,

(4.77)

where pχχ̄
T is the transverse momentum of the system of the DMs. Jets are defined

by the requirements
p j
T > 20GeV, |η j | < 2.5. (4.78)
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Fig. 4.8 Dependence of the
NLO cross sections for the
DM and photon-associated
production at the LHC on the
cutoff parameter δs with
δc = δs/50
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In order to avoid QED collinear divergences (i.e., the photon becomes collinear to
quarks), we also require the photon to be isolated from jets by the prescription [41]

∑
R jγ∈R0

p j
T < pγ

T

(1 − cos R jγ

1 − cos R0

)
. (4.79)

where R jγ ≡
√

�φ2
jγ + �η2

jγ and R0 = 0.4.

Before we show any kinematic distribution, we should validate our calculation
first. The most tricky place is that we have divided the real corrections to three
parts by two-cutoff parameters; see Eq. (4.54). Each of them depends on the cutoff
parameters, but their sum does not. If we calculate each component right, then we
would discover this phenomenon. In Fig. 4.8 we show the the NLO cross sections as a
function of the cutoff parameters.We change the parameter δs from 10−6 to 10−3, and
the parameter δc varies accordingly with δc = δs/50. The result of three-body final
states includes the LO cross section, virtual corrections, soft, and collinear limits of
the cross section of four-body final states. The result of four-body final states consists
of the cross section of four-body final states with the singular regions sliced. We see
that they change obviously but their sum is almost a constant, within an error of
±1%. This can be considered as a strong check on our calculation.

In Fig. 4.9 we show the dependence of the cross sections on m and �. The
LO (NLO) cross sections decrease from 97.7 (80.6) fb to 26.1 (28.2) fb as m
increases from 20 to 500 GeV. The corresponding K-factor, defined as the ratio
of the NLO cross sections to the LO ones, varies from 0.82 to 1.08. The LO (NLO)
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Fig. 4.9 Dependence of the LO and NLO cross sections for the DM and photon associated pro-
duction at the LHC on the DM mass and the new physics scale �. Also shown is the K-factor
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Fig. 4.10 The QCDNLO corrections to the differential distributions. Also shown is the differential
K-factor

cross sections decrease from 577 (454) pb to 3.61 (4.15) fb as � increases from
100 to 2000 GeV. The corresponding K-factor varies from 0.79 to 1.15. We also
show the QCD NLO corrections to the differential distributions in Fig. 4.10. The
distribution of the photon’s transverse momentum is enhanced and suppressed in the
small and large regions, respectively, after including the higher-order correction. The
distribution of the photon’s rapidity is increased uniformly.

We present the dependence of the cross section on the factorization scale μF

and renormalization scale μR in Fig. 4.11. This kind of theoretical uncertainty is
significantly reduced at NLO, which makes the theoretical prediction much more
reliable.
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Fig. 4.11 Dependence of
the LO (NLO) cross sections
for the DM and photon
associated production at the
LHC on the factorization
scale μF and
renormalization scale μR
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4.5 Backgrounds and Discovery Potential

The dominant SM backgrounds for this process are pp → Z(→ νν̄) + γ and pp →
Z(→ νν̄) + j with the jetmisidentified as a photon. Since theNLOQCDcorrections
to these processes are significant, we use the parton-level Monte Carlo program
MCFM [42–45] to calculate these backgrounds at the NLO level. At the Tevatron,
the probability Pγ/j that a jet fakes a photon is almost vanishing if the transverse
momentum of the photon pγ

T is larger then 100 GeV because the hits with large
pT in the central preradiator chambers are counted and thus the prompt photon can
be distinguished from meson decays [46]. At the LHC, we set Pγ/j = 10−4 as a
conservative estimation, as suggested in Ref. [47].

In Fig. 4.12, we show the differential cross sections of both the signal and back-
grounds as a function of pγ

T and pmiss
T . We can see that the Zγ production is the

dominant background. The distribution of the backgrounds decreases faster than that
of the signal with the increasing of pγ

T and pmiss
T . Therefore, the ratio of signal and

background will increase if we set a larger pγ
T or pmiss

T cut.
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Fig. 4.12 Dependence of the differential cross section on pγ
T (left) and pmiss

T (right)
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Fig. 4.13 Dependence of
the differential cross section
on ηγ
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In Fig. 4.13, we show the differential cross section of both the signal and back-
grounds as a function of ηγ . We find that the signal is more concentrated in the
central region of ηγ than the backgrounds. This is a result of the special structure of
the effective operator. This feature may help to select the events in experiments.

Fig. 4.14 shows the new physics scale corresponding to the 5σ (S/
√B = 5) dis-

covery as a function of the integrated luminosity and the DM mass at the LHC. The
physics scale increases fast before the data are accumulated up to 20 fb−1. Beyond
that it increase slowly with the increasing of the data. If the real physics scale is
around 1500 GeV, then the LHC can discover the DM signal after collecting 30 and
50 fb−1 data corresponding to the DM mass m = 100 and 200 GeV, respectively.
From the right plot in Fig. 4.14, we know the energy scale should be lower than the
green line if the signal is discovered with 10 fb−1 data. The situations with 50 fb−1

and 100 fb−1 data are shown as well.
On the other hand, the LHC may not detect this signal with 100 fb−1 data. Then,

we can derive the exclusion limits on the new physics scale and the DM mass at
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Fig. 4.14 The new physics scale corresponding to the 5σ discovery as a function of the integrated
luminosity (left plot) and the DM mass (right plot) at the LHC
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Fig. 4.15 The allowed
parameter regions if the DM
signal is not observed at the
LHC with 100 fb−1 data
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the 3σ (S/
√S + B = 3) level in Fig. 4.15. We also show the parameter regions that

have been excluded by the relic density and requirement of the theory consistency.
We can see that the regions with DMmassm < 400 GeV would be totally excluded.

4.6 Conclusions and Comments

The DM is a mystery in our knowledge about the universe. We know it exists, but
do not know what is its content. It is interesting to study the possibility of producing
DM at colliders on the earth. In this chapter, we investigate the signal of DM and
a photon associated production at the LHC induced by a dimension six effective
operator at the NLO QCD level. We analyze the parameter regions that have been
constrained by the relic density. We also look at the main backgrounds from SM to
this signal, i.e., Z boson and a photon associated production with invisible decay of
Z boson, and Z boson and a jet production with the jet misidentified as a photon. We
find some features of the kinematic distributions that may help to select the events
in experiments. After that, we present the new physics scale corresponding to the 5σ
discovery. In the case that this signal is not observed with 100 fb−1 data. we obtain
the exclusion limits on the new physics scale and the DM mass, and compare with
those from relic density and theory consistency.

This work just shows an example of predicting the NLO QCD result for mono-
photon production induced by an effective operator. It is easy to extend to other
operators, such as the vector and pseud-vector operators in Ref. [48], as well as other
associated production channels, such as the mono-W [49] and mono- j production
[50, 51]. Different production channels are sensitive to different coupling structures,
and can help to confirm a future discovery.

On the other hand, the effective operators are just approximations of more com-
plete models. Its validity should be carefully checked when applied to study the DM
production at the LHC [23, 32, 33, 52–55]. The minimal requirement that the energy
scale should be much larger than the momentum transferred to producing the DM
pair is not always guaranteed for the entire region of phase space probed by the
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experiment searches at the LHC. It is possible that the mediator (a few TeV) that has
been integrated in the effective operators can be accessible in the events with high
pT , rendering the assumption invalid. This issue will be more pressing at the LHC
Run-II. As a result, an alternative framework, called simplified models, is proposed
to probe the DM interactions [56–71]. The simplified models incorporate the com-
plete degrees of freedom of UV-complete models at the low energy region, but do
not describe the interaction by integrating out any propagator. It keeps the simplicity
of the effective operator and avoid its drawbacks. Moreover, it may provide new
search signals except for the missing energy, such as the search for the mediators.
Meanwhile, the simplified model brings some complicities. The couplings between
the mediator and the DM or SM particles should be specified in calculation, and the
width of the mediator needs to be calculated in advance. As a consequence, the result
depends on the couplings in a nontrivial way.We are going to investigate these issues
in the near future.
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Chapter 5
Resummation Prediction on Top Quark
Transverse Momentum Distribution
at Large pT

5.1 Introduction

The top quark is one of the third-generation quarks, proposed to exist in 1973 by
Kobayashi and Maskawa to explain the observed CP violations in kaon decay [1].
However, it has not been directly observed until 1995 by CDF and DØ collabora-
tions at the Tevatron [2, 3]. The reason is that the top quark is the heaviest particle
discovered so far, with a mass close to the electroweak symmetry breaking scale.
Because the top quark, as well as the Higgs boson, participate in quantum loop radia-
tive corrections to theW boson mass, the precise measurement of the top quark mass
are critical for global electroweak fits which assess the self-consistency within the
SM. In addition, because of its large Yukawa coupling, the Higgs boson mass gets
an enormous quantum correction from the top quark loop, which makes the mass
at about 125 GeV unstable if the energy scale can be extended to the Plank scale.
This problem, known as the gauge hierarchy problem in the SM, has motivated a
lot of attractive perspectives, such as the minimal supersymmetric standard model
(MSSM). The top quark mass also affects the electroweak vacuum stability within
the SM. The higher is the top quark mass, the more unstable is the electroweak vac-
uum. The present value of the top quark mass is mt = 173.34 ± 0.76GeV from the
combined analysis of the t t̄ production at both the Tevatron and the LHC [4]. This
mass is measured using a givenMonte Carlo event generator, which is different from
the pole mass within O(1 GeV) [5, 6]. If we take this value as the top quark pole
mass and remember mH = 125.09 GeV and MZ = 91.1876 GeV, then it follows

mtMZ

m2
H

= 1.010, (5.1)

which is very close to 1. It is unclear whether this is just a coincidence or some
deeper rules hide here.

Given the above top quark mass, its decay width is�t = 1.3GeV [7], correspond-
ing to a life-time of about 5 × 10−25 s, much shorter than the hadronization time.
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Fig. 5.1 The LO Feynman diagrams for the top quark pair production at hadron colliders. a is qq̄
channel while b–d are gg channel

Thus, the top quarks decay before they can form bound states and the spin informa-
tion of the top quark is directly transferred to its decay products. This is a unique
feature which can be used to detect the coupling structure involving the top quark.

The top quark can decay to Wb and Ws and Wd final states in general. How-
ever, the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements Vts and Vtd , which
determine the decay rates, are estimated to be highly suppressed from neutral mesons
oscillations and meson rare decays. The matrix element Vtb can be determined from
top decays assuming the unitarity of the CKMmatrix, while the direct measurement
of Vtb is possible from the single top quark production. The world average value of
Vtb is [8]

|Vtb| = 1.021 ± 0.032. (5.2)

This suggests that the top quark almost decays only into Wb.
The main production mode of top quarks at hadron colliders is the t t̄ pair produc-

tion, as shown in Fig. 5.1. Since it is induced by strong interaction, the high-order
QCD corrections turn out to be significant. The state of art is the NNLO result
combined with soft gluon resummation at NNLL accuracy, which shows that the
cross section of top quark pair production is 245.8 and 953.6pb at the 8 and 14TeV
LHC, respectively [9]. The theoretical uncertainties have been reduced to be less than
6%, allowing precise determination of parton distribution functions (PDFs) and new
physics searches in the top quark final state.

The single top production is another main source of top quarks, of which the LO
Feynman diagrams are shown in Fig. 5.2. Since it is induced by weak interaction, it is
expected the rate is rather small. However, the threshold to produce the single top is
less than that to produce the top quark pair, thus the partonic fluxes are relative high.
The net effect is that the cross section of the single top production is suppressed
with respect to the pair production only by a factor of 2–3. However, due to the

(a) (b) (c) (d)
u d

b t

W

u

d̄

b̄

t

g

b
W

t

W

Fig. 5.2 The LO Feynman diagrams for the single top quark production at hadron colliders. a is
t-channel in five-flavor scheme. b is s-channel. c, d are tW associated production channel



5.1 Introduction 75

Fig. 5.3 The LO Feynman
diagrams for the single top
quark production at hadron
colliders in the four-flavor
scheme

u d

W

t
g b

b̄

indistinctive signature and large backgrounds, it takes a long time after the discovery
of the top quark for the DØ [10] and CDF [11] collaborations at the Tevatron to
observe the single top production. Recently, the ATLAS and CMS collaborations at
the LHC have also measured the cross section of the single top production [12–15].

The single top process is sensitive to new physics. A flavor-changing-neutral
current involving top quark, such as Zut interaction, induces the same final state.
The charged gauge boson W ′± or Higgs boson H± in some extensions of the SM
could be the mediator to generate the single top signal. In order to discover the
signal of new physics, it is mandatory to make a precise prediction of the single top
production.

There are three single top production modes at hadron colliders, depending on
the virtuality Q2 of the W boson, as shown in Fig. 5.2. If Q2 < 0, it is t-channel. If
Q2 > m2

t , it is s-channel. The associated production corresponds to Q2 = M2
W . This

distinction is obvious at LO, but becomes ambiguous at higher orders. Since the LO
result dominates the total cross section, we still use these designations for different
modes. The s-channel and associated production are suppressed compared to the
t-channel at both the Tevatron and the LHC. As a consequence, the t-channel is of
great importance and needs to be studied precisely. This process has been extensively
studied first in the five-flavor (5F) scheme [16–23] and then in the four-flavor (4F)
scheme [24]. Here, the 5F scheme means that there are five quarks in the proton,
including the bottom quark, though the bottom quark is heavier than the proton. In
contrast, the 4F scheme indicates that there are only four quarks in the proton, as
shown in Fig. 5.3. Therefore, the LO process of the single top production is a 2 → 2
and 2 → 3 scattering in the 5F and 4F scheme, respectively. Because the single top
production is induced by electroweak interaction, the QCD correction is not as large
as that in top quark pair production. It is reported that the QCD NLO corrections
increase the LO cross section in the 5F scheme by about 9 and 5% at the Tevatron
and LHC, respectively. In Ref. [24], the NLO result of the t-channel production in
the 4F scheme was obtained. The total cross section in the 4F scheme is less than
that in the 5F scheme. But the uncertainty in the 4F scheme is larger than that in the
5F scheme. The reason is that the large logarithms of the form lnn(Q2/m2

b), which
would appear in fixed-order calculations in the 4F scheme, has been resummed into
the bottomquark PDF in the 5F scheme and thus the scale dependence is significantly
reduced.
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More effects beyondNLOhave been also investigated, such as parton shower [25–
27]. Parton shower is designed to resum all the initial and final-state Bremsstrahlung
processes. The interested readers are suggested to refer to the introductional review
of Ref. [28]. However, the resummation in parton shower is performed at the lead-
ing logarithmic (LL) level. More advanced resummation has been carried out in
the traditional resummation method [29–31]. But due to the infrared singularities
and ambiguities in prescription dependence, as described in Sect. 3.4, the numerical
results are not presented. Instead, resummed cross sections are expanded to NNNLO
in αs and subsequently numerical evaluation is performed.

In this chapter, we would perform the resummation of soft and collinear gluon
effects in the t-channel single top production in the 5F scheme by using soft collinear
effective theory (SCET) [32–36]. As already introduced in Sect. 3.4, SCET is an
effective theory of QCD, which was developed specifically to describe the QCD
interactions in soft and collinear regions. The interactions in hard regions are encoded
in the Wilson coefficients. By construction, it is useful to deal with the scattering
processes containing multiple scales, e.g., soft scale and hard scale. Many precise
predictions on high energy scattering processes have been obtained in SCET. These
processes are divided into two groups, i.e., the timelike and spacelike ones. In the
timelike processes, a resonant particle with timelike momentum in the intermediate
or final state is produced, such as W/Z boson production [37–40], Higgs boson
production [38, 41–45], hadrons production at e+e− colliders [46–50], color-octet
scalar production [51], direct top quark production via FCNC coupling [52, 53],
and s-channel single top production [54]. The spacelike processes contain a particle
with spacelike momentum in the intermediate state, including deep-inelastic scatter-
ing [36, 55–57], direct photon production [58] and W/Z boson production at large
transversemomentum pT [59]. Besides, some processes are amix of these two kinds,
e.g., the top quark pair production [60–62].

The definition of the threshold variable is the basis of performing resummation
of the soft and collinear gluons. It is easy to be defined for timelike processes,
for example, 1 − m2/S, where m is the invariant mass of the timelike particle and√
S is the center-of-mass energy. However, the threshold variable for the spacelike

processes is a little subtle. The threshold variable for the deep-inelastic scattering
process is given by 1 − x with x the Bjorken scaling variable [36, 55–57]. For the
direct photon production andW(Z) boson production at large pT , the threshold region
is approached when S4 = M2 → 0, where M is the mass of everything in the final
state except the photon (W or Z ). The t-channel single top production is a spacelike
process involving four colored external particles. We define the threshold variable as
S4 = P2

X , similar to the case of W or Z production at large pT , where PX represents
the momentum of everything in the final state except the top quark. In the threshold
region S4 → 0, the cross section can be factorized as

σ = H ⊗ J ⊗ S ⊗ fPa ⊗ fPb , (5.3)

where H, J,S, and fPa ( fPb) denote the hard function, jet function, soft function and
PDF, respectively. The hard function, obtained from virtual corrections, incorporates

http://dx.doi.org/10.1007/978-3-662-48673-3_3
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the short distance contributions. The jet function describes the collinear interactions
inside the outgoing jet. The soft function represents the effects of emitting soft gluons
from all colored initial-and final-state particles. The PDF defines the probability of
finding an initial-state parton in the proton.

The final states of the t-channel single top production at hadron colliders consist of
a single top quark and a light (anti-)quark at the LO. At higher orders in the threshold
region, additional soft gluons could be emitted from the colored initial and final-state
particles, and the light quark can split into collinear quarks and gluons continuously.
These contributions are of higher orders in αs generally, but can be numerically as
significant as the LO results because of the large logarithms. In SCET, the interaction
at different scales in a process can be studied separately because that the hard degrees
are integrated into the Wilson coefficient and that the soft and collinear degrees are
decoupled by redefinitions of the fields [35]. Around each scale, one needs to deal
with the only relevant degrees of freedom.The results at different scales are connected
together by using the renormalization group (RG) evolution. Therefore, convergent
perturbative expansions can be achieved, and the singular terms in the jet and soft
functions can be resummed conveniently.

Furthermore, the threshold resummation in t-channel processes is valid onlywhen
the final particles have large transverse momenta so that the hard gluon radiations are
suppressed and the radiations from the threshold region make the main contribution
to the total cross section. In our numerical calculations, we indeed find that for top
quark pT > 50GeV, the logarithmic terms approximate the fixed-order calculations
well, but for pT < 50GeV, the logarithmic terms do not dominate over the NLO
corrections. Thus, we are interested in an improved resummation prediction on the
top quark transverse momentum distribution in the region of large pT . This top quark
transverse momentum distribution is also sensitive to new physics. For example, if
there is an extra gauge boson W ′ with a mass around 1TeV which can decay to
t b̄, the top quark is highly boosted and generally has a large transverse momentum.
In order to distinguish the signal from the SM background, a precise prediction of
the t-channel top quark transverse momentum distribution at large pT in the SM is
required.

In Sect. 5.2, we analyze the kinematics of the t-channel single top production in
detail and present the definition of the threshold region. In Sect. 5.3, we show the
factorization and resummation formalism for the t-channel single top production in
momentum space. In Sect. 5.4, we calculate the hard and soft functions at NLO. Then,
we investigate the scale independence of the final result analytically. In Sect. 5.5, we
discuss the numerical results for t-channel top quark transverse momentum distrib-
ution at the Tevatron and the LHC. Conclusion and comments are given in Sect. 5.6.

5.2 Analysis of Kinematics

We introduce the some kinematic variables needed in our analysis. As an example,
we consider the subprocess



78 5 Resummation Prediction on Top Quark …

Pa Pb

t

q

pa pb

Fig. 5.4 Illustration of the single top quark production near threshold at hadron colliders. The
radiated gluons are either collinear or soft

u(pa) + b(pa) → t (q) + X, (5.4)

as shown in Fig. 5.4. First of all, we define two lightlike vectors along the beam
directions, na and nb. They are related by na = n̄b in the center-of-mass frame. Then
we introduce two collinear fields along na and nb to describe the initial partons. In the
center-of-mass frame of the hadronic collision, the momenta of the initial hadrons
can be written as

Pμ
a = ECM

2
nμ
a , Pμ

b = ECM

2
nμ
b , (5.5)

where ECM is the center-of-mass energy of the collider and the masses of the hadrons
have been neglected. The momenta of the initial partons, with fractions xa(xb) of the
hadronic momenta, are

pa = xa
ECM

2
nμ
a , pb = xb

ECM

2
nμ
b . (5.6)

At the hadronic and partonic levels, the momentum conservation manifests as

Pa + Pb = q + PX , (5.7)

and
pa + pb = q + pX , (5.8)

respectively, where q is the momentum of the top quark. We define the partonic jet
with momentum pX including all final-state partons except the top quark, while the
hadronic jet with momentum PX contains all the hadrons in the final state, except
the top quark. In threshold region, pX = p1 + k, where p1 is the momentum of the
final-state collinear partons along the jet and k is the momentum of all soft radiations.
Such division of momentum is artificial and we have to integrate over the both p1
and k to obtain a physical observable.
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We also define the Mandelstam variables

s = (Pa + Pb)
2, u = (Pa − q)2, t = (Pb − q)2 (5.9)

at hadronic level, and

ŝ = (pa + pb)
2, û = (pa − q)2, t̂ = (pb − q)2 (5.10)

at partonic level, respectively. In terms of the Mandelstam variables, the hadronic,
and partonic threshold variables are defined by

S4 ≡ P2
X = s + t + u − m2

t , (5.11)

s4 ≡ p2X = ŝ + t̂ + û − m2
t , (5.12)

wheremt is the top quarkmass. The hadronic threshold limit is taken as S4 → 0 [63],
where the hard radiations and beam remnants are highly suppressed. And thus the
final states consist of a top quark and a narrow jet, as well as the soft radiations. This
limit forces xa → 1, xb → 1, s4 → 0 simultaneously. More explicitly, we get

S4 = s4 + ŝ(
1

xaxb
− 1) + (t̂ − m2

t )(
1

xb
− 1) + (û − m2

t )(
1

xa
− 1)

≈ s4 + ŝ(x̄a + x̄b) + (t̂ − m2
t )x̄b + (û − m2

t )x̄a
≈ s4 + (−t̂)x̄a + (−û)x̄b, (5.13)

where x̄a,b = 1 − xa,b. This expression can help to check the factorization scale
independence of the cross section. From the above equation, the hadronic threshold
necessitates the partonic threshold. However, the reverse is not true. The partonic
threshold s4 → 0 does not exclude a significant amount of beam remnants.We notice
that in both hadronic and partonic threshold limits, the top quark is, not necessarily
produced at rest; i.e., it can have a large transverse momentum.

For later convenience, we rewrite the threshold variable as

s4 = p2X = (pa + pb − q)2 = p21 + 2k+E1 + O(k2), (5.14)

where k+ = n1 ·k with k the sum of the momenta of soft radiations. E1 is the energy
of the quark jet and n1 is the lightlike vector in the jet direction. In the threshold
limit (s4 → 0), hard radiations are suppressed. Incomplete cancellation between real
and virtual corrections leads to singular distributions αn

s [lnm(s4/m2
t )/s4]+ withm ≤

2n − 1. It is the purpose of threshold resummation to sum these contributions to all
orders in αs .
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The total inclusive cross section of the t-channel single top production can be
written as

σ =
∫

dxa

∫
dxb

∫
dt̂
∫

dû fi/Pa (μF , xa) f j/Pb(μF , xb)
1

2ŝ

dσ̂i j

d t̂dû

=
∫ p2T,max

0
dp2T

∫ ymax

−ymax

dy
∫ 1

xb,min

dxb

∫ smax
4

0
ds4

1

2(xbs + u − m2
t )

fi/Pa (μF , xa) f j/Pb(μF , xb)
dσ̂i j

d t̂dû
, (5.15)

where, we have changed the integration variables to be the squared top quark trans-
verse momentum p2T , rapidity y, xb, and s4. The integration limits are set by

p2T,max = (s − m2
t )

2

4s
,

ymax = 1

2
ln
1 + √

1 − w

1 − √
1 − w

, with w = 4s(p2T + m2
t )

(s + m2
t )

2
,

xb,min = −u

s + t − m2
t
,

smax
4 = xb(s + t − m2

t ) + u, (5.16)

with

t = m2
t − √

s
√
p2T + m2

t e
y

u = m2
t − √

s
√
p2T + m2

t e
−y . (5.17)

The other kinematical variables can be expressed in terms of these four integration
variables. For example,

xa = s4 − m2
t + xb(m2

t − t)

xbs + u − m2
t

. (5.18)

5.3 Factorization and Resummation Formalism

Now we derive the factorization formula for the t-channel single top production in
SCET. We first match the full QCD onto the effective theory. We would follow the
convention and formalism in [64, 65], where the matching is performed in momen-
tum space. The relevant operator in QCD responsible for the t-channel single top
production is given by
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O(x) = (d̄Lγ
μuL ¯tLγμbL)(x), (5.19)

where, we have adopted the Feynman gauge for theW boson propagator. The denom-
inator of the W propagator is the same in different theories and thus we omit it in
the operators. The Dirac matrices do not change in the matching, and therefore,
we omit it in the following discussion. This operator consistent of three massless
(anti-)quarks, which can be described by collinear (anti-)quarks χ(x) in SCET, and
a massive quark, which can be described by h(x) in heavy quark effective theory
[66]. Additional soft gluons are compactly represented by the soft gluonWilson lines
Y (x) and Ỹ (x); see Sect. 3.4 for their definitions. Therefore, in the threshold region,
the matching from QCD to SCET is given by

O(x) −→ χ̄n1χna h̄vχnb(x)Ỹ
†
n1Yna Ỹ

†
v Ynb(x). (5.20)

The Fourier transform of the above right operators can be written as

O(p) =
∫

d4 pa
(2π)4

d4 pb
(2π)4

d4 p1
(2π)4

d4q

(2π)4

d4ks
(2π)4

CI (pa, pb; p1, q)

×Oin(pa, pb)Oout(p1, q)OS,I (ks)

× (2π)4δ(4)(p − pa − pb + p1 + q + ks), (5.21)

where we have written each field in its Fourier transformed form and performed the
integration over x . The operator Oin(pa, pb) represents the initial u and b quarks
with momenta pa and pb,

Ocd
αβ,in = χc

α(pa)χ
d
β(pb), (5.22)

with

χ(x) =
∫

d4 p

(2π)4
eipxχ(p). (5.23)

The operatorOout(p1, q) denotes the final d and t quarks with momenta p1 and q,

Oe f
γδ,out = χ̄

f
δ (p1)h̄

e
γ,v(q), (5.24)

with

χ̄(x) =
∫

d4 p

(2π)4
e−i px χ̄(p). (5.25)

Notice that we have denoted the top quark in terms of the heavy quark effective
field with a label velocity v [66]. Since there are two fermion lines in this process,
either of which connects initial and final states, we distinguish them with the explicit
Lorentz indices (α,β, γ, δ) and color indices (c, d, e, f ). We have retained only
quark fields in the operators for simplicity, leaving the other coupling structure in
the matching coefficient CI , which is at the LO level

http://dx.doi.org/10.1007/978-3-662-48673-3_3
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Cδα,γβ
I = i

g22VudVtb

8(t̂ − M2
W )

(γμ(1 − γ5))δα(γμ(1 − γ5))γβδI1. (5.26)

Here, Vi j is the CKM matrix element. We have used the color-singlet-octet basis

|c1〉 = δ f cδed , |c2〉 = (ta) f c(t
a)ed , (5.27)

and δI1 means that only the basis |c1〉 contributes to the t-channel single top produc-
tion at LO.

In Eq. (5.21), we have separated the soft gluon fields from collinear or massive
fields because of the field redefinition in Eq. (3.59). The soft operators OS,I are
given by

O f ced
S,1 (ks) =

∫
d4xeiks ·xT

[(
Ỹ †
n1(x)Yna (x)

) f c (
Ỹ †

v (x)Ynb(x)
)ed]

,

O f ced
S,2 (ks) =

∫
d4xeiks ·xT

[(
Ỹ †
n1(x)t

aYna (x)
) f c (

Ỹ †
v (x)taYnb(x)

)ed]
, (5.28)

where the time-ordering operator T is imposed to ensure the proper ordering of soft
gluon fields in the soft Wilson line.

The cross section for t-channel single top production in the threshold region can
be written as

σ = 1

2s

∑
X

〈I |O†(x = 0)|X〉〈X |O(x = 0)|I 〉(2π)4δ4(Pa + Pb − q − PX )

= 1

2s

∑
X

∫
d4x〈I |O†(x = 0)|X〉〈X |O(x)|I 〉

= 1

2s

∑
X

∫
d4x

∫
d4k

(2π)4
e−ik·x

∫
d4 p

(2π)4
〈I |O†(p)|X〉〈X |O(k)|I 〉

= 1

2s

∑
X

∫
d4 p

(2π)4
〈I |O†(p)|X〉〈X |O(0)|I 〉, (5.29)

where |I 〉 = |Pa Pb〉 denotes the initial-state (anti-)protons. The final state |X〉 =
|Xt 〉X1〉Xs〉, where |Xt 〉, |X1〉 and |Xs〉 represent the top quark, the jet originating
from the d-quark and the remaining soft radiations, respectively. In the second line
of Eq. (5.29), we have replaced the delta function with its Fourier form to shift
the operator O(0) to O(x). In the third line, we have transformed the operators to
momentum space, and matched them onto SCET operators.

Before we separate the fields in the operators, we should separate the phase spaces
first. We denote the differential phase space as d�2 = d4 pad4 pbd4 p1d4q/(2π)16.
Then, we can rewrite Eq. (5.29) as

http://dx.doi.org/10.1007/978-3-662-48673-3_3
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σ = 1

2s

∑
X

∫
d�′

2d�2C∗
J (p

′
a, p

′
b; p′

1, q
′)CI (pa, pb; p1, q)

×
∫

d4k ′
s

(2π)4

d4ks
(2π)4

(2π)4δ(4)(pa + pb − p1 − q − ks)

×〈Pa Pb|(O′
inO′

outO′
S,J )

†|Xt X1Xs〉〈Xt X1Xs |(OinOoutOS,I )|Pa Pb〉. (5.30)

Since different collinear fields are decoupled among each other and decoupled
with the soft fields due to field redefinition, the matrix elements in Eq. (5.30) can be
factorized into a product of different matrix elements, each of which obeys corre-
sponding RG equations. Subsequently, we discuss them in detail.

First, the initial-state na collinear sector reduces to the convolution with PDF,

∫
d4 p′

a

(2π)4

d4 pa
(2π)4

〈Pa|χ̄c′
α′(p′

a)χ
c
α(pa)|Pa〉

= 〈Pa|χ̄c′
α′(x = 0)χc

α(x = 0)|Pa〉
= 1

2Nc
δc

′c
∫ 1

0

dxa
xa

(
xa ECM

n/a
2

)

αα′
fu/Pa (xa,μ), (5.31)

where fu/Pa (xa,μ) is defined in Eq. (3.9). The term in bracket is the Dirac structure
and 1/2Nc denotes the average over the spin and color states. The initial-state nb
collinear sector is similar.

For the final-state d-quark jet sector, we have

∑
X1

∫
d4 p′

1

(2π)4

d4 p1
(2π)4

〈0|χ f ′
δ′ (p′

1)|X1〉〈X1|χ̄ f
δ (p1)|0〉

= δ f ′ f
∫

d4 p1
(2π)3

(
n/1
2

)

δ′δ
θ(p01)n̄1 · p1 J (p21), (5.32)

where the summation over all possible collinear states is performed. The term in
bracket and n̄1 · p are the Dirac structure. J (p2) is the spin- and color-singlet jet
function, defined as

θ(p0)n̄1 · pJ (p2) = 1

8πNc

∫
d4 p′

(2π)4
Tr〈0|n̄/1χ(p′)χ̄(p)|0〉, (5.33)

where Tr denotes the trace over spin and color indices. At LO, it is just δ(p2), which
means that the jet consists of a single parton. Here, we have constrained the off-
shellness of the momenta of all the collinear particles in the jet to be p2, since our
threshold variable s4 depends on it. In other cases, different constraints should be
imposed in the jet function.

http://dx.doi.org/10.1007/978-3-662-48673-3_3
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Then, we deal with the top quark sector. Because the soft interactions have been
decoupled by field redefinition, the top quark can be regarded as a noninteracting
particle, and the corresponding matrix element can be written as

∑
Xt

∫
d4q ′

(2π)4

d4q

(2π)4
〈0|he′

γ′,v′(q ′)|Xt 〉〈Xt |h̄eγ,v(q)|0〉

=
∫

d3q

2Eq(2π)3
(q/ + mt )γ′γδ

e′e

=
∫

dtdu

16π2ŝ
(q/ + mt )γ′γδ

e′e, (5.34)

where the summation over the final state |Xt 〉 transforms to the top quark phase space
integration. The term in bracket is the Dirac structure.

Finally, the soft function is written in terms of the soft matrix element as

∫
dk+Sd

′e′c′ f ′ f ced
J I (k+,μ) = 1

N 2
c

∑
Xs

∫
dk+ d4k ′

s

(2π)4

d4ks
(2π)4

〈0|O†,d ′e′c′ f ′
S,J (k ′

s)|Xs〉

〈Xs |O f ced
S,I (ks)|0〉δ(k+ − n1 ·ks), (5.35)

where we have inserted an identity operator

1 =
∫

dk+ δ[k+ − n1 ·ks], (5.36)

due to the constraint from Eq. (5.14). This manifests the multipole expansion of a
soft field interacting with a collinear field [58]. Notice that the summation over all
final states can be performed

∑
Xs

|Xs(k
′
s)〉〈Xs(ks)| = (2π)4δ(4)(k ′

s − ks). (5.37)

The color indices in the sectors of the top quark, light jet, and PDFs have been
written explicitly, and must be contracted with those in the soft function to obtain

SJI(k
+,μ) = δ f ′ f δc

′cδe
′eδd

′d Sd
′e′c′ f ′ f ced

J I (k+,μ). (5.38)

At the LO, it is given by

S(k+,μ) = δ(k+)
1

N 2
c

(
C2

A 0

0 C2
A−1
4

)
, (5.39)
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where CA is the Casimir operator in the adjoint representation of SU (3)C . At the
NLO, the soft function is obtained after calculating eikonal diagrams [58]. Since
the virtual corrections in SCET reduce to scaleless integrals and thus vanish, only
real emission diagrams need to be evaluated. The details of the calculation of these
diagrams are given in the next section.

Combining the different sectors together, we obtain the cross section in the thresh-
old region

σ =
∫

dxadxbdt̂dû
1

2ŝ
fi/Pa (xa,μ) f j/Pb(xb,μ)

dσ̂thres
i j

d t̂dû
, (5.40)

with

dσ̂thres
i j

d t̂dû
= 1

4N 2
c

1

8π

1

ŝ
λ0,i j HI J (μ)

×
∫

dk+
∫

dp21 SJ I (k
+,μ)J (p21,μ)δ(s4 − p21 − 2k+E1) (5.41)

and

λ0,i j = g42 |Vid |2|Vjt |2 (ŝ − m2
t )ŝ

(t̂ − M2
W )2

. (5.42)

All the elements in the factorized Eq. (5.40) have precise field definitions so that
they can be calculated directly and systematically, except for the nonperturbative
PDF. The convolution between the jet and soft functions, denoted by the δ function
in Eq. (5.41), manifests that the partonic threshold consists of two parts. In the case
of s4 = 0, any collinear or soft gluons emissions is excluded. In the small s4 region,
the numbers and momenta of all collinear and soft gluons are constrained.

The hard function is defined by

λ0,i j HI J ≡ CIC
∗
J (pa, pb; p1, q), (5.43)

where we have included all the Dirac structures in the PDFs, jet function and top
quark sector in the matching coefficient so that all Lorentz indices are contracted.
Since we have separated the Born amplitude squared into λ0,i j , the hard function HI J

is normalized to δI1δJ1 at the LO. At higher orders, one needs to calculate the loop
diagrams of this process in both the full theory and SCET.However, the loop integrals
in SCET are scaleless in dimensional regularization scheme and thus vanish. So the
hard function is related to the amplitudes of the virtual corrections by [61]

λ0,i j H
(0)
I J = 1

〈cI |cI 〉〈cJ |cJ 〉 〈cI |M
(0)
ren〉〈M(0)

ren|cJ 〉,

λ0,i j H
(1)
I J = 1

〈cI |cI 〉〈cJ |cJ 〉
(〈cI |M(1)

ren〉〈M(0)
ren|cJ 〉 + 〈cI |M(0)

ren〉〈M(1)
ren|cJ 〉

)
,

(5.44)



86 5 Resummation Prediction on Top Quark …

where HI J and Mren have been expanded in series of αs . The renormalized ampli-
tudes |Mren〉 are obtained in QCD by subtracting the IR divergences in the MS
scheme. All the loop integrals in SCET actually contain both IR and UV divergences
but in different signs. By construction, the IR structures of integrals in QCD and
SCET are the same. So the matching coefficient contains no IR divergences, but can
haveUVdivergences, ofwhich themagnitude is just the negative of the IR divergence
of loop integrals in QCD. These UV divergences can be subtracted by counterterms
of the matching coefficient. As a result, they control the RG evolution equation of
the matching coefficient.

Because this process is induced by electroweak interaction, only the matrix ele-
ment H11 of the hard function contributes to the cross section at the NLO level.
The other matrix elements start to make contribution from NNLO, which is beyond
our scope in this study. Thus, we neglect them in our calculation, and consider
the t-channel single top production as a double deep-inelastic-scattering (DDIS)
process [18]. This picture has also been taken in studying the Higgs boson pro-
duction via vector boson fusion. In this picture, the dynamics associating the two
different fermion lines is independent from each other, though the kinematics is still
related. As a result, the hard function can be further factorized into two compo-
nents, i.e., Hup and Hdn, representing contributions from the up and down fermion
lines in Fig. 5.2a, respectively. This factorization is also needed to make a reliable
perturbative calculation for the hard function. The reason is that the virtual correc-
tions from the up and down fermion lines contain large logarithms ln2(−t̂/μ2

h) and
ln2((−t̂ + m2

t )/mt/μh), respectively; see Eqs. (5.46)–(5.47). It is hard to choose a
single proper hard scale to make both of them small. In the picture of DDIS, the
two separate hard functions can be evaluated in different scales so that each has a
convergent perturbative expansion. Therefore, we can rewrite Eq. (5.41) as

dσ̂thres
i j

d t̂dû
= 1

4N 2
c

1

8π

1

ŝ
λ0,i j Hup(μ)Hdn(μ)

×
∫

dk+
∫

dp21 S(k+,μ)J (p21,μ)δ(s4 − p21 − 2k+E1), (5.45)

where S(k+,μ) denotes the component S11(k+,μ) in Eq. (5.38).

5.4 Hard, Soft, and Jet Functions at NLO

Wenowhave the factorized cross section at hand, inwhich the factorized components
have explicit definitions. The LO results of them are shown to be trivial. The first
nontrivial results start from NLO. That is also what one needs to match the NNLL
resummation. Thus we present the explicit expressions of hard, jet, and soft functions
in this section.
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Fig. 5.5 The one-loop
Feynman diagrams for the
t-channel single top
production

(a) (b)
u d

b t

W

u d

b t

W

5.4.1 Hard Functions

The hard functions are defined in Eq. (5.43), and can be calculated by Eq. (5.44).
After calculating the one-loop Feynman diagrams in QCD, as shown in Fig. 5.5,

we get the hard functions at NLO as follows:

Hup(μh,up) = 1 + CFαs(μh,up)

4π

(
−2ln2

−t̂

μ2h,up

+ 6ln
−t̂

μ2h,up

+ c
H,up
1

)
, (5.46)

Hdn(μh,dn) = 1 + CFαs(μh,dn)

4π

(
−4ln2

−t̂ + m2
t

μh,dnmt
+ 10ln

−t̂ + m2
t

μh,dnmt
+ cH,dn

1

)
, (5.47)

where

cH,up
1 = −16 + π2

3
, (5.48)

cH,dn
1 = − 2

λ
ln(1 − λ) + 2ln2(1 − λ) + 6 ln(1 − λ) + 4Li2(λ) − 12 − π2

6

+ 2m2
t û

t̂(ŝ − m2
t )
ln

m2
t

m2
t − t̂

, (5.49)

with λ = t̂/(t̂ − m2
t ). These results are in complete agreement with Ref. [18]. In

order to avoid large double logarithms, the scales μh,up and μh,dn should be chosen

around
√

−t̂ and (−t̂ + m2
t )/mt , respectively. Then its value at the other scales, such

as the factorization scale, is obtained by running the RG equations.
The RG equations for hard functions are determined by the counterterms of the

matching coefficient, or the IRdivergence of the loop amplitudes inQCD.The latter is
embodied in the soft and jet functions in SCET, both ofwhich are process independent
and have been predicted up to two-loop level or even higher level [67, 68]. Therefore,
the RG evolutions of the hard functions are fully understood up to two-loop level.
For t-channel single top production, the RG equations for hard functions as

d

d lnμh,up
Hup(μh,up) =

(
2�cusp ln

−t̂

μ2
h,up

+ 2γV
up

)
Hup(μh,up), (5.50)
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d

d lnμh,dn
Hdn(μh,dn) =

(
2�cusp ln

−t̂ + m2
t

μh,dnmt
+ 2γV

dn

)
Hdn(μh,dn), (5.51)

where �cusp is the cusp anomalous dimension of Wilson loops with lightlike seg-
ments [69], which governs the double logarithmic terms. The anomalous dimensions
γV
up and γV

dn control the single logarithmic terms. All their explicit expressions up to
two-loop level are shown in appendix.

The above evolution equations are just differential equations with initial state
H(μh). The general solutions at an arbitrary scale μ are obtained by

Hup(μ) = exp
[
4S(μh,up,μ) − 2aVup(μh,up,μ)

]( −t̂

μ2h,up

)−2a�(μh,up,μ)

Hup(μh,up), (5.52)

Hdn(μ) = exp
[
2S(μh,dn, μ) − 2aVdn(μh,dn, μ)

](−t̂ + m2
t

μh,dnmt

)−2a�(μh,dn,μ)

Hdn(μh,dn),

(5.53)

where the two functions S(μh,up,μ) and aV
up(μh,up,μ) are defined by [70]

S(μh,up,μ) = −
∫ αs (μ)

αs (μh,up)

dα
�cusp(α)

β(α)

∫ α

αs (μh,up)

dα′

β(α′)
, (5.54)

a�(μh,up,μ) = −
∫ αs (μ)

αs (μh,up)

dα
�cusp(α)

β(α)
. (5.55)

Similar expressions for other functions are understood.

5.4.2 Soft Function

The soft function S(k+,μ), defined in Eq. (5.35), describes soft gluon emission from
all colored particles. Since the eikonal approximation is the same in both QCD
and SCET. Therefore, it can be directly calculated in QCD. The LO result has been
shown in Eq. (5.39). The NLO result can be obtained by calculating the real emission
diagrams, as shown in Fig. 5.6. The results of diagrams (a) and (b) are given by

S(1)
bt (k,μ) = 2g2s CFμ2ε

(2π)d−1

1

2

∫ ∞

0
dq+
∫ ∞

0
dq−
∫

dd−2q⊥

δ(q+q− − q2
⊥)δ(k − n1 · q)

nb · v

(q · nb)(q · v)
, (5.56)
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Fig. 5.6 The real emission diagrams contributing to the soft function at NLO. The contributions
from the (a) and (b) diagrams are denoted as S(1)

bt and S(1)
t t , respectively. The result of the (c) diagram

is vanishing

and

S(1)
t t (k,μ) = −g2s CFμ2ε

(2π)d−1

1

2

∫ ∞

0
dq+
∫ ∞

0
dq−
∫

dd−2q⊥

δ(q+q− − q2
⊥)δ(k − n1 · q)

1

(q · v)2
, (5.57)

respectively. The result of the diagram (c) is vanishing due to scaleless integral. The
above two integrals can be calculated as shown in appendix. We just show the final
results here,

S(1)
bt (k,μ) = 2CFαs

4π

{
4

[ ln k
μ̃

k

][k,μ̃]

�

+ δ(k)cSbt

}
,

and

S(1)
t t (k,μ) = 2CFαs

4π

{
−
[
2

k

][k,μ̃]

�

+ δ(k)cStt

}
, (5.58)

respectively, where μ̃ = μ/

√
(2nbb̄)/n

+2
1 = (μ(−û)mt )/(2(−t̂ + m2

t )E1). The

explicit expressions of cSbt and cStt can be found in appendix. The star distribution
is defined by [50]

[ f (x)][x,a]
� = f (x) for x > 0, (5.59)∫ a

0
dx [ f (x)][x,a]

� g(x) =
∫ a

0
dx f (x) [g(x) − g(0)] , (5.60)

where g(x) is a normal function of x and not divergent as x → 0. The total soft
function is

S(k,μ) = Sbt (k,μ) + Stt (k,μ). (5.61)
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The RG equation of the soft function can be obtained from the divergent part of
the soft function, which is also given in appendix. We have

d

d ln μ
S(k,μ) =

[
−2�cusp ln

k

μ̃
+ 2γS

]
S(k,μ) + 2�cusp

∫ k

0
dk′ S(k, μ) − S(k′, μ)

k − k′ ,

(5.62)

where γS is the anomalous dimensions of the soft function. It has been shown explic-
itly in the appendix. Different from the RG equation of the hard function, this is an
integro-differential equation. The solution to this equation is not easy to get. It is
convenient to work with the Laplace transformed soft function

s̃

(
ln

�

μ̃
,μ

)
=
∫ ∞

0
dke−k/�′S(k,μ) (5.63)

with �′ = eγE�. The inverse transformation is

S(k,μ) = 1

2πi

∫ c+i∞

c−i∞
dξeξk s̃

(
ln

1

eγE ξμ̃
,μ

)
, (5.64)

where the real number c is chosen to be greater than all the real part of the singular-

ities of s̃
(
ln 1

eγE ξμ̃
,μ
)
. Then the Laplace transformed soft function satisfies the RG

equation

d

d ln μ
s̃

(
ln

�

μ̃
,μ

)
=
[
−2�cusp ln

�

μ̃
+ 2γS

]
s̃

(
ln

�

μ̃
,μ

)
, (5.65)

which can be solved analogous to the hard function. And transforming back to the
momentum space, we get

S(k,μ) = exp
[−2S(μs,μ) − 2aS(μs,μ)

]̃
s(∂ηs ,μs)

1

k

(
k

μ̃s

)ηs e−γEηs

�(ηs)
, (5.66)

with ηs = 2a�(μs,μ). The Laplace transformed soft function s̃(L ,μ) up to O(αs)

is given by

s̃(L ,μ) = 1 + αs

4π

(
�0L

2 − 2γS
0 L + cS1

)
, (5.67)

with cS1 = (2cSbt + 2cStt + 2π2

3 )CF .
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Fig. 5.7 The jet function calculated at NLO. In diagrams b and c, the effective vertices with a gluon
are obtained after contracting a highly off-shell particles in SCET. The vanishing virtual corrections
are not shown explicitly here

5.4.3 Jet Function

The jet function J (p2,μ), defined in Eq. (5.33), describes the probability of a quark
with invariant mass squared p2 evolving to a jet. It is process independent and has
been obtained by calculating the diagrams of the discontinuity of the propagator. The
relevant Feynman diagrams at NLO are shown in Fig. 5.7.

Introducing the direction vectors n(n̄) parallel (anti-parallel) the jet momentum,
the contribution of the diagram a is given by

Ja = 1

8πn̄ · p
∫

d�J |Ma|2, (5.68)

where the phase space integration is

∫
d�J =

∫
ddk

(2π)d
(−2πi)2δ(k2)δ((p − k)2)

1

p2

= − (4π)ε

8π�(1 − ε)

1

p2

(
p2

μ2

)−ε

(p−)−1+2ε
∫ p−

0
dk−(k−(p− − k−))−ε

(5.69)

and the matrix element reads

|Ma|2 = −4g2s CF (d − 2)k−. (5.70)

After performing the integration, we get

Ja = −CFαs

4π
δ(p2)

1

ε
+ CFαs

4π

[(
1

p2

)[p2,μ2]

�

− δ(p2)

]
. (5.71)

The matrix elements of diagram (b) is

|Mb|2 = −8CFg2s
p−(p− − k−)

k− . (5.72)
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Then, the contribution of diagram (b) is given by

Jb = CFαs

2π

{
δ(p2)

1

ε2
−
[(

1

p2

)[p2,μ2]

�

− δ(p2)

]
1

ε

}

+CFαs

4π

⎡
⎣2
(
ln p2/μ2

p2

)[p2,μ2]

�

− 2

(
1

p2

)[p2,μ2]

�

+
(
4 − π2

2

)
δ(p2)

⎤
⎦ . (5.73)

The diagram (c) has a same result, Jc = Jb. Therefore, we get the NLO quark jet
function

J (1)(p2, μ) = CFαs

4π

⎡
⎣4
(
ln p2/μ2

p2

)[p2,μ2]

�

− 3

(
1

p2

)[p2,μ2]

�

+
(
7 − π2

)
δ(p2)

⎤
⎦ ,

(5.74)

which agrees with the results in Ref. [55]. The NNLO quark jet function has been
obtained in Ref. [71]. The RG evolution of the jet function is given by

d J (p2,μ)

d ln μ
=
(

−2�cusp ln
p2

μ2 − 2γ J
)
J (p2,μ) + 2�cusp

∫ p2

0
dq2

J (p2,μ) − J (q2,μ)

p2 − q2
,

(5.75)

whereγ J is the anomalous dimensions of the jet function. It has been shown explicitly
in the appendix. Similar to the soft function, it is better to use the Laplace transformed
jet function [36, 70]

j̃(ln
Q2

μ2
,μ) =

∫ ∞

0
dp2 exp(− p2

Q2eγE
)J (p2,μ), (5.76)

which satisfies the RG equation

d

d ln μ
j̃(ln

Q2

μ2
,μ) =

(
−2�cusp ln

Q2

μ2
− 2γ J

)
j̃(ln

Q2

μ2
,μ). (5.77)

Thus, we get the jet function at arbitrary scale μ

J (p2,μ) = exp
[−4S(μ j ,μ) + 2aJ (μ j ,μ)

]
j̃(∂η j ,μ j )

1

p2

(
p2

μ2
j

)η j
e−γEη j

�(η j )
, (5.78)

where η j = 2a�(μ j ,μ). The scale dependent part of the Laplace transformed jet
function j̃(L ,μ) is determined by the anomalous dimensions of the jet function
from Eq. (5.77), while the scale independent part can be obtained only by fixed-
order calculations. At NLO, it is
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j̃(L ,μ) = 1 + αs

4π

(
�0

2
L2 + γ J

0 L + cJ1

)
(5.79)

with cJ1 = (7 − 2
3π

2
)
CF .

5.4.4 Scale Invariance

The scale invariance is an essential property of any physical observable in principle.
In practice, the theoretical predictions cannot be calculated to all orders. As a result,
there is remaining scale dependence in theoretical predictions. This scale dependence
resides in the unknown high-order contributions. The higher order results we obtain,
the less scale dependence we get.

In the factorized cross section in Eq. (5.45), the hard function, jet function and soft
function have their intricate scales, at which the perturbative expansion is reliable.
The results at a common scale are estimated by evolving the RG equations, as shown
in the last section. The independence on the intricate scales can be checked order by
order in αs . For example, we can expand the exponents in Eq. (5.52) in a series of
αs(μ), then the dependence of the right hand of the equation on the intermediate hard
scale μh,up cancel up toO(αs). The same cancellation happens forμh,dn in Eq. (5.53).

The case for the jet scale in Eq. (5.76) is more complicated due to the partial
derivative operator and the distributions in fixed order arising from the expansion

1

p2

(
p2

μ2
j

)η j

= δ(p2)

η j
+
[
1

p2

][p2,μ2
j ]

�

+ η j

[
ln(p2/μ2

j )

p2

][p2,μ2
j ]

�

+ O(η2
j ). (5.80)

Each term above is defined in the sense of an integration with a regular test function.
Thus, it is difficult to confirm the cancellation of μ j in this form. However, we can
transform into the Laplace space in which the jet function has a similar expansion to
the hard function; see Eq. (5.79). In this space, the cancellation of μ j up toO(αs) is
easy to be checked. The case for the soft scale is similar.

Next, we discuss the dependence on the common scale. Since each part of the
cross section near the threshold in Eq. (5.45) depends on the common scale, we need
to consider the hadronic cross section,

dσ

dS4dy
∝
∫

dxadxb

∫
dp21

∫
dk+ 1

ŝ
fi/Pa (xa, μ) f j/Pb (xb,μ)Hup(μ)Hdn(μ)

J (p21, μ)S(k+,μ)δ(S4 − (−t̂)(1 − xa) − (−û)(1 − xb) − p21 − 2k+E1),

(5.81)



94 5 Resummation Prediction on Top Quark …

where we have used dS4dy instead of dp2T dy because of the δ constraint. The RG
equation of the jet function with argument p2, i.e., J (p2,μ) depends on the jet
functions with other argument, i.e., J (p′2,μ). The RG equations of the soft function
and PDFs are of the same feature. Meanwhile, the arguments of the jet function, soft
function, and PDFs are connected by the δ function. To get rid of the correlation, it is
convenient to apply the Laplace transformation to the above equation and we obtain

dσ̃

dQ2dy
=
∫ ∞

0
dS4 exp

(
− S4
Q2eγE

)
dσ

dS4dy
. (5.82)

The Laplace transformed jet function and its RG evolution are given in Eqs. (5.76)
and (5.77). The Laplace transformed soft function is similar, but satisfies the RG
equation

d

d ln μ
s̃(ln

Q2(−t̂ + m2
t )

μ(−û)mt
,μ) =

(
−2�cusp ln

Q2(−t̂ + m2
t )

μ(−û)mt
+ 2γS

)
s̃(ln

Q2(−t̂ + m2
t )

μ(−û)mt
,μ).

(5.83)

The Laplace transformed PDF near the endpoint (x → 1) is given by

f̃i/P(τ ,μ) =
∫ 1

0
dx exp

(
−1 − x

τeγE

)
fi/Pa (x,μ), (5.84)

which satisfies the RG equation

d

d ln μ
f̃i/P(τ ,μ) = (2�cusp ln τ + 2γφ

)
f̃i/P(τ ,μ). (5.85)

From the δ function in Eq. (5.81), the variables τa,b in the Laplace transformed
PDF are given by

τa = Q2

−t̂
for f̃i/Pa (τa,μ), and τb = Q2

−û
for f̃ j/Pb(τb,μ). (5.86)

Last, the RG equations for the hard functions have been given by Eqs. (5.50)
and (5.51).

Now we are ready to check the scale independence of the final results. Given
the relation between anomalous dimensions given in Eq. (7.30), we can immediately
obtain

d

d ln μ

[
f̃i/Pa (τa,μ) f̃ j/Pb (τb, μ)Hup(μ)Hdn(μ) j̃(ln

Q2

μ2
, μ)̃s(ln

Q2(−t̂ + m2
t )

μ(−û)mt
, μ)

]
= 0.

(5.87)

http://dx.doi.org/10.1007/978-3-662-48673-3_7
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Even more precisely, we have two separate equations

d

d ln μ

[
f̃i/Pa (τa,μ)Hup(μ) j̃(ln

Q2

μ2
,μ)

]
= 0,

d

d ln μ

[
f̃ j/Pb(τb,μ)Hdn(μ)̃s(ln

Q2(−t̂ + m2
t )

μ(−û)mt
,μ)

]
= 0, (5.88)

which manifest the scale invariance of the cross section. We point out that the scale
invariance discussed in this section is valid given that all functions have been known
to all orders. In practice, there would be scale dependence in the cross section due
to the unknown high-order contributions.

5.4.5 Final RG Improved Differential Cross Section

Combining the hard, jet, and soft functions together, we obtain the resummed differ-
ential cross section for t-channel single top production

dσ̂thres

dt̂dû
=
∑
i j

λ0,i j

64πN 2
c ŝ

2

exp
[
4S(μh,up,μF,up) − 2aV

up(μh,up,μF,up)
]( −t̂

μ2
h,up

)−2a�(μh,up,μF,up)

Hup(μh,up)

exp
[
2S(μh,dn,μF,dn) − 2aV

dn(μh,dn,μF,dn)
](−t̂ + m2

t

μh,dnmt

)−2a�(μh,dn,μF,dn)

Hdn(μh,dn)

exp
[−4S(μ j ,μF,up) + 2aJ (μ j ,μF,up)

]
(
m2

t

μ2
j

)η j

exp
[−2S(μs,μF,dn) − 2aS(μs,μF,dn)

](mt (−t̂ + m2
t )

μs(−û)

)ηs

j̃(∂η + L j ,μ j )̃s(∂η + Ls,μs)
1

s4

(
s4
m2

t

)η e−γEη

�(η)
, (5.89)

where η = η j + ηs and L j = ln(m2
t /μ

2
j ), Ls = ln[mt (−t̂ + m2

t )/μs(−û)]. In the
above expression, the hard function Hup and jet function (Hdn and soft func-
tion) have been evolved from their intrinsic scales to the factorization scale μF,up

(μF,dn). Though the t-channel single top production can be considered as double
DIS processes, the convolution between the jet and soft functions, as expressed in
terms of the partial derivative operator acting on the same kernel function, violates
this simple picture and relates the two DIS processes nontrivially.
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If we set scales μh,up, μh,dn, μ j , μs all equal to the factorization scale μF,up =
μF,dn = μF , then we reproduce the singular plus distributions, which should appear
in the fixed-order calculations. Up to O(α2

s ), we have

(
λ0,i j

64πN2
c ŝ2

)−1 dσ̂thresi j

dt̂dû
= δ(s4) + αs

4π

{
A2D2 + A1D1 + A0δ(s4)

}

+
(

αs

4π

)2{
B4D4 + B3D3 + B2D2 + B1D1 + B0δ(s4)

}
, (5.90)

where

Dn =
[
lnn−1(s4/m2

t )

s4

][s4,m2
t ]

�

. (5.91)

The An and Bn coefficients are given by

A2 = 3�0, (5.92)

A1 = (L j + 2Ls)�0 + γ J
0 − 2γS

0 , (5.93)

A0 =
(

−1

2
L2h,up − L2h,dn + 1

2
L2j + L2s − π2

4

)
�0

− γVup,0Lh,up − 2γVdn,0Lh,dn + γ J
0 L j − 2γS

0 Ls

+ cH1 + cJ1 + cS1 , (5.94)

B4 = A22
2

, (5.95)

B3 = 9

2
A1�0 − 5

2
β0�0, (5.96)

B2 = A21 + A2A0 − 3π2

2
�2
0 − β0�0(L j + 4Ls) − β0(γ

J
0 − 4γS

0 ) + 3�1, (5.97)

B1 = A1

(
A0 − π2

2
�0

)
+ 9ζ3�

2
0 − β0�0

(
1

2
L2j + 2L2s − 5

12
π2
)

−β0(c
J
1 + 2cS1 + γ J

0 L j − 4γS
0 Ls)

+ γ J
1 − 2γS

1 + �1(L j + 2Ls), (5.98)

where ζ3 = 1.20206 . . ., Lh,dn = ln[(−t̂ + m2
t )/μmt ], Lh,up = ln(−t̂/μ2) and

cH1 = cH,up
1 + cH,dn

1 .
To obtain most precise predictions, we resum the singular terms to all orders and

also include the nonsingular terms up to NLO. The nonsingular terms are obtained
by subtracting from the exact NLO results the singular terms. Therefore, we obtain
the final RG improved differential cross section

dσ̂Resum

dt̂dû
= dσ̂thres

dt̂dû
+
(
dσ̂NLO

dt̂dû
− dσ̂thres

dt̂dû

) ∣∣∣
expanded to NLO

. (5.99)
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In the threshold regions, the second term in the above equation almost vanishes
because the expansion of the resummed result approaches the fixed-order one, and
thus, the threshold contribution dominates. In the regions far from the threshold limit,
the resummation effect is not important and the final prediction is almost determined
by the fixed-order result.

5.5 Numerical Results

In this section, we discuss the numerical results of threshold resummation effects in
the t-channel single top production at the Tevatron (

√
s = 1.96TeV) and the LHC

(
√
s = 8TeV). The top quark mass is chosen to be mt = 173.2GeV [72] and the

rapidity of the top quark is integrated over the region (−2.4, 2.4). TheW bosonmass
is taken to be MW = 80.4GeV. The Fermi constant is GF = 1.1664 × 10−5 GeV−2.
The CKM matrix is given by

VCKM =
⎛
⎝
0.9751 0.2215 0.0035
0.2210 0.9743 0.0410

0 0 1

⎞
⎠ . (5.100)

Throughout the numerical calculations, we use the MSTW2008NNLO PDF sets
[73] and associated strong coupling constant. The factorization scales are set at mt

unless specified otherwise.
There are four immediate scales, i.e., μh,up,μh,dn,μ j ,μs in the RG improved

cross section. Though the cross section in all orders does not depend on them, at
a fixed order, they must be properly set so that the hard, jet and soft functions
have stable perturbative expansions. This requires that each function should not
contain large logarithms. From Eqs. (5.46) and (5.47), we can see that if we choose
μh,up = Q ≡

√
−t̂ and μh,dn = (Q2 + m2

t )/mt , then the large logarithms in the hard
function vanish. On the other hand, if we combine the two hard functions into one
hard function, we cannot choose a proper hard scale to eliminate all the possible
large logarithms simultaneously. This is due to the fact that the W boson connects
interactions at different scales intrinsically. Actually, we can take another viewpoint
on the t-channel single top production, i.e., considering it as a fusion processWb →
t , as shown in Fig. 5.8. TheW boson, emitted from an initial-state up quark, collides
with a bottom quark to produce a top quark. There is no specific constraint on the

Fig. 5.8 The Feynman
diagrams for the single top
production via the fusion of a
W boson and a bottom quark

u
d

b

t

W
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Fig. 5.9 The contributions from fixed-order jet and soft functions normalized by the LO cross
section [74]
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Fig. 5.10 The singular terms contribution and fixed-order cross sections for t-channel single top
production at the Tevatron (left) and the LHC (right) [74]. The dashed line represents the contribu-
tions from the singular terms up to O(αs ) which is given in Eq. (5.90)

virtuality of the W boson in its production. However, the mass and momentum of
the final-state top quark impose constraints on the W boson. As a result, the typical
scales of the interactions involving the light quarks and heavy quarks are different,
and need to be set separately.

The choices of jet and soft scales are a little tricky. From Eqs. (5.66), (5.67),
(5.78) and (5.79) the intrinsic jet and soft scales should be

√
p2 and 2kE1(−t̂ +

m2
t )/(−û)/mt , respectively. But these two scales are integrated over so that they do

not have fixed values. Moreover, they can be so small that the theory would become
nonperturbative. Therefore, in practice, we choose the intrinsic jet and soft scales
numerically. In Fig. 5.9, we show the contributions of the fixed-order jet and soft
functions normalized by the LO cross section. The top quark transverse momentum
is fixed at three specific values, i.e., pT = 20, 60, 100GeV, while the jet (soft) scale
changes from 5 to 100GeV. We can see that the contributions are very large when
the jet or soft scale is too small. In order to make the perturbative expansions of
the jet and soft functions converge fast, we choose the intrinsic jet and soft scales
as 80 and 50GeV, respectively, and the scale uncertainties due to these choices will
be discussed below. From Fig. 5.9, we can also see that the contributions of the
jet and soft functions are positive, about 20 and 40% at the intrinsic scales. For
comparison, we also estimate the contributions of the hard functions, and find that
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Fig. 5.11 The RG improved (dashed) and fixed-order cross sections for t-channel single top pro-
duction at the Tevatron (left) and the LHC (right). We have defined δσResum = dσResum − dσNLO

the hard functions give negative contributions, about −15% at the intrinsic scales
[74].

Before discussing the numerical results of the RG improved cross section, it is
important to compare the contributions from singular terms with the fixed-order
calculations. In Fig. 5.10, we present the contribution from singular terms and fixed-
order cross sections. We can see that the NLO cross sections are well approximated
by the singular terms only if the top quark transverse momentum pT is greater than
50 (70) GeV at the Tevatron (LHC). Since we can predict the singular terms to higher
orders, we may know the approximate cross sections at higher orders. Therefore, it
is useful to resum the singular terms in the large pT region. In the small pT region,
the singular terms do not dominate the NLO corrections, so high-order results of the
cross sections cannot be known from the high-order singular terms, and one needs to
calculate the exact high-order corrections. In the following content, we only discuss
the numerical results in single top production with pT > 50 (70)GeV at the Tevatron
(LHC).

As read from Fig. 5.10, the NLO QCD correction is small for t-channel single
top production. This may due to the fact that the large positive contributions from
the soft and jet functions cancel with the large negative contributions from the hard
functions, as illustrated above. It is interesting to see whether the cancellation still
happens after these large contributions are resummed to all orders.

Then, we present the numerical results of the cross section.When discussing each
scale dependence, we fix the other scales at the intrinsic scales discussed above. We
show the RG improved cross sections as a function of the top quark pT in Fig. 5.11.
We can see that the distribution is increased by about 9–13% and 4–9% for pT >

50 and 70GeV at the Tevatron and LHC, respectively, compared to the NLO results.
In Fig. 5.12, we give the uncertainties of the resummation results due to the change
of intermediate scales μh,up, μh,dn, μ j , μs independently by a factor of two. The
uncertainties arising from μh,up, μh,dn and μ j are less than ±1%, and for μs are
about ±2%. In Fig. 5.13, we show the scale uncertainties of the resummation results
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Fig. 5.12 The scale uncertainties of the resummation results due to the variations of μh,up, μh,dn,
μ j , μs , respectively
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due to the variations of μF,dn and μF,up by a factor of two, and do not see scale
uncertainties are decreased, compared to the NLO results. In principle, the scale
uncertainties should vanish, as illustrated analytically in the last section. However,
the analysis is based on the assumption that the PDF is evaluated near the endpoint.
But in practice, this is not always true because the center-of-mass energy of the
Tevatron or LHC is much larger than the invariant mass of the final states. And the
dynamical enhancement mechanism [39] is not appropriate for a t-channel process.
On the other hand, when approaching the threshold region, i.e., with the increasing
of the top quark pT , the scale uncertainties of the resummed cross sections are
significantly reduced, as shown in Fig. 5.13.

5.6 Conclusions and Comments

The top quark is closely related to the precision electroweak fit, Higgs physics as well
as extensions of the SM. The single top quark production plays an important role
in determining the CKM matrix element Vtb and is also sensitive to new physics.
In this chapter, we present the renormalization group improved prediction on the
t-channel top quark transverse momentum distribution at large pT in the SM at both
the Tevatron and the LHC with SCET. This is the first spacelike process studied in
SCET involving both massless and massive colored particles in the final states. The
cross section in the threshold region can be factorized into a convolution of hard,
jet, soft, and PDFs. In particular, we first calculate the NLO soft functions in this
process. The renormalization group improved cross section is obtained by evolving
the scales in different functions to a common scale. We find that the resummation
effects increase the NLO results by about 9–13% and 4–9% when the transverse
momentum of the top quark is larger than 50 and 70 GeV at the Tevatron and the
8 TeV LHC, respectively. Our prediction on the transverse momentum distribution
of the top quark in the large pT region is important in the search for new physics,
e.g., a heavy W ′ which can induce the single top production through the s-channel.
In addition, we discuss the scale independence of the cross section both analytically
and numerically, and show how to choose the proper scales at which the perturbative
expansion can converge fast.

Here, we want to mention two main latest developments of the theoretical predic-
tion on the single top production. One is the prediction on the transverse momentum
spectrum of the top quark in traditional resummation method which has already been
obtained in Ref. [75], where a different threshold variable is used. Explicitly, the S4
there is given by

S4 ≡ s + t + u − m2
t

= (Pa + Pb)
2 + (Pa − p1)

2 + (Pb − p1)
2 − m2

t . (5.101)

The corresponding partonic threshold variable s4 for the underlying partonic
process u(pa) + b(pb) → d(p1) + t (q) is given by
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s4 ≡ (pa + pb)
2 + (pa − p1)

2 + (pb − p1)
2 − m2

t

= ŝ + t̂ + û − m2
t

= (q + k)2 − m2
t + p21

= p21 + 2q · k + k2

� p21 + 2q · k. (5.102)

Here, the momenta of additional radiation have been divided, compared to Born
level scattering, into the collinear part, denoted by p1, and the soft part, denoted by k.
The hadronic threshold limit S4 → 0 implies the partonic threshold limit s4 → 0 as
well as no initial remnants in the final state. More explicitly, in the threshold region,

S4 ≈ s4 + (−û1)x̄a + (−t̂1)x̄b, (5.103)

with t̂1 = t̂ − m2
t , û1 = û − m2

t . The threshold variable embodies the information of
the threshold region. We see from Eq. (5.102) that radiation of soft gluons (k → 0)
or collinear gluons (p21 → 0) implies s4 → 0. This fact means that the method in
Ref. [31] resums both the soft and the collinear gluon effects.

However, there is a difference. In the soft gluon limit, i.e., k → 0,

s4 ≈ 2q · k (5.104)

in traditional resummation method, while

s4 ≈ 2p1 · k (5.105)

in SCET. Given that q and p1 are massive and massless, respectively, the magnitudes
of s4 are not the same for a fixed k. This difference can be traced back to the theory
in which the resummation is performed. In traditional resummation method, the soft
gluon is described by its small energy in the partonic center-of-mass frame, similar
to HQET. In SCET, the soft gluon interacts with collinear particles only through its
small component in the light-cone frame of the collinear particle. This difference
also induce the different method in calculating the individual part of the factorized
cross section. Thought the result given in Ref. [75] is similar to our calculation, it is
interesting to compare the two resummation methods in more detail, which is left to
future work.

The other eminent development is the fully differential QCDNNLO correction to
the t-channel single top production in the approximation that all dynamical cross-talk
between corrections to the light and heavy quark lines are not considered [76]. The
results show that the NNLO correction is rather small but reduces the scale uncer-
tainties to less than 1%. This small increase is the result of significant cancellations
between various sources of QCD corrections. For example, NLO QCD corrections
in the bq partonic channel increase the leading order cross section by 10%, which
is largely canceled by the quark–gluon channel that appears at NLO. The similar
cancellation happens at NNLO corrections. In our work, the soft gluon effect in the
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bq partonic channel has been resummed to all order while the quark–gluon channel
is only kept at NLO. Therefore, a few percent increase is expected for the transverse
momentum of the top quark.
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Chapter 6
Search for the Signal of Monotop Production
at the Early LHC

6.1 Introduction

The main tasks of the LHC are to answer the fundamental questions in particle
physics: whether the Higgs boson exist or not; are there new physics beyond the
SM such as supersymmetry (SUSY), extra dimension, etc., at the TeV scale? The
first stage of the LHC has discovered a scalar resonance closely resembling the
SM Higgs boson, but provides no clue on the new physics beyond the SM. Instead,
stringent constraints have been imposed from experiments on the possible extensions
of the SM. Facing this fact, both theorists and experimentalists become interested
in the more signature-based strategy, focusing on unusual final states which are
difficult to detect or have not been considered yet by experimental collaborations
so far. In this way, we may discover some new physics that is not included by any
known models. Thus it provides more opportunities to explore the unknown world.
This method is also inspired by the fact that many new theories are established in
history to explain some new phenomena discovered previously. For example, the
energy nonconservation of all visible particles in β-decay was discovered before the
proposal of the neutrino. It is already a great achievement to discover some new
phenomena, even though it cannot be predicted or explained by any existing theory.

It is naturally believed that top quark may have strong connections with new
physics due to its large mass close to the scale of electroweak symmetry breaking.
Searching for this kind of new physics has been delicately designed and carried
out. Though it is possible that some new physics effects can occur in the quan-
tum loop corrections to some precise measured processes involving top quarks, it is
more evident to discover them via the top quark associated productions. The produc-
tion modes of top quark pair production with or without missing transverse energy
E/T have been extensively investigated [1–10]. However the production mode of a
top and E/T , which is so-called monotop1 [11], has only been discussed recently

1We remind that the single top production discussed in the last chapter contains a top and a jet in
the final state.
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Fig. 6.1 Feynman diagrams for monotop production in some specific models

[12, 13]. This signal is absent in the SM because of loop suppression and the
Glashow–Iliopoulos–Maiani mechanism. But it exists in models such as R-parity
violating SUSY and SU (5) grand unification model as decay products of some res-
onances. For example, in R-parity violating SUSY [14], a stop can be produced by
the fusion of two down-type antiquarks through the Yukawa-like trilinear interaction
λ

′′
i jkU

c
i D

c
j D

c
k , where Ui , Di are left-handed chiral superfields and the superscript c

denotes the charge conjugate, and then the stop decays into a top quark and a neu-
tralino, the supersymmetric partner of the Higgs or neutral gauge bosons, as shown
in Fig. 6.1a. This neutralino can be stable enough so that it escapes from the detector.
Another example is the SU (5) model [15], in which the gauge bosons Xμ, in one
case, can transform quarks to antiquarks assigned to the 10 representation; in another
case, they couple to quarks and leptons in the 5 representation. As a result, they can
be resonantly produced and decay into a top and a neutrino at hadron colliders, as
shown in Fig. 6.1b. Therefore, any discovery of such signal imply new physics, and
can help us to explore the fundamental questions mentioned above.

In this work, we propose the general model-independent renormalizable effective
Lagrangian with SU (3)C ⊗ SU (2)L ⊗U (1)Y gauge symmetry of the SM

L = λ
i j
S εαβγφαd̄

c
iβRd jγR + aiSφαū

α
i Rχ

+ λ
i j
V εαβγXμ,αd̄

c
iβLγ

μd jγR + aiV Xμ,αū
α
i Lγ

μχ

+ h.c., (6.1)

where there is a summation over the generation indices i, j = 1, 2, 3, and SU (3)C
gauge indices α,β, γ = 1, 2, 3. The superscript c denotes charge conjugation. The
neutral fermion χ is a singlet under the SM gauge group and manifests as missing
energy at colliders. The scalar field φ is color triplet and SU (2)L singlet resonance.
The vector field Xμ is color triplet and SU (2)L doublet resonance. They can appear
in some models, which obtain their masses at high energy scales. This Lagrangian
could further be generalized, such as shown in Ref. [11], although it may not be gauge
invariant any more. One can also add the interaction involving left-handed quarks,
such as φ′q̄c

LqL with φ′ SU (2)L triplet [16] and ϕq̄Lχ with ϕ SU (2)L doublet [16, 17].
The free parameters in Eq. (6.1) are masses of the resonances and missing particle,
i.e., mφ,mX and mχ, and couplings λ

i j
S,V and aiS,V , which should be constrained by
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current precise data, and will be investigated carefully in this paper. Here, we only
consider the case of scalar resonance field φ, and the case of vector resonance field
Xμ will be studied elsewhere.

The scenario of monotop production has been explored in Ref. [11], where they
only consider the mode of top hadronic decay. In the case of resonant monotop
production, they assume the branching fraction of φ → tχ equal to one and neglect
the decay channel of φ → d̄ s̄, which would lead to an overestimation of the signal.
In our study, we will take into account all decay channels of the resonance, which
turns out to be very important for estimating the sensitivity to detect the signal at
the LHC. Moreover, we also discuss the mode of semileptonic decay of top quark in
addition to the hadronic decay mode. Although the cross section of the backgrounds
for semileptonic decay mode are very large, the discovery of the signal in this mode
is still possible once appropriate cuts are imposed.

This chapter is organized as follows. In Sect. 6.2, we consider the constraints on
the model parameters from experiments such as K 0 − K̄ 0 mixing, Z hadronic decay
branching ratio and dijet productions at the LHC. In Sect. 6.3, we investigate the signal
and backgrounds of monotop production in detail and then analyze the discovery
potential at the early LHC. Conclusions and comments are given in Sect. 6.4.

6.2 Experiment Constraints

To describe the signal of monotop, we propose the Lagrangian in Eq. (6.1). The model
parameters include the couplings of the interaction vertices as well as the masses of
the new particles. It is important to know the parameter regions which are allowed
to make predictions. We consider the constraints from experiments that are related
to the Lagrangian in Eq. (6.1). First of all, we notice that some constraints have been
obtained on the stop production and decay in R-parity violating SUSY so far, the
signal of which is similar to the monotop. For example, the H1 [18] and ZEUS [19]
collaborations at HERA have studied the stop resonant production by electron-quark
fusion e+d → t̃ , followed either by a direct R-parity violating decay or by the gauge
decay to bχ̃+

1 . The stop pair production and decay into dielectron plus dijet at the
Tevatron has also been discussed [20]. However, these results can not be converted
to constraints on the parameters in our case because they contain interactions with
leptons. We are going to discuss the more relevant experiments including K 0 − K̄ 0

mixing, Z hadronic decay branching ratio and dijet production at the LHC.

6.2.1 K 0 − K̄ 0 Mixing

The neutral kaon K 0 is a meson consisting of a down quark and a strange antiquark. Its
antiparticle K̄ 0, containing a down antiquark and a strange quark, is also neutral. They
are copiously produced via strong interaction in the same way. When propagating
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K0φ φ

s b̄ d

d̄ b s̄

(b)

K0W− W+

s ui d

d̄ ūi s̄

(a)

K̄0 K̄0

Fig. 6.2 Sample Feynman diagrams for K 0 − K̄ 0 mixing. a is the contribution from the SM. b is
induced by the new particle φ

in space, they would transform into each other because of the weak interaction, as
shown in Fig. 6.2a. As a result, they are not the mass eigenstates, which are denoted
by K1 and K2. K1 is the difference of the two neutral kaons K1 = (K 0 − K̄ 0)/

√
2

and has a quantum number of CP = +1. In contrast, K2 = (K 0 + K̄ 0)/
√

2 and has
CP = −1. Depending on their lifetime under decays via weak interactions, there are
also two weak eigenstates, called the KS and KL . If CP is conserved, then KS = K1

and KL = K2, and thus they would have different masses. However, the difference is
rather small because it arises from weak interaction. If CP is violated slightly, then
there would be a small portion of K2 in KS , and K1 in KL .

The K 0 − K̄ 0 mixing is the reason of the mass difference between KS and KL ,
which has been measured very precisely. Therefore, it is a sensitive probe of new
physics beyond the SM. The typical Feynman diagram for K 0 − K̄ 0 mixing is shown
in Fig. 6.2.

The SM contribution to the KL − KS mass difference �mK is given by [21]

�mSM
K = 2Re〈K 0|H�S=2

SM |K̄ 0〉 = 2C1Re〈K 0|Q1|K̄ 0〉, (6.2)

where Q1 is the operator d̄α
Lγμsα

L d̄
β
Lγμsβ

L , andC1 is its Wilson coefficient. The matrix
element 〈K 0|Q1|K̄ 0〉 can be parameterized as

〈K 0|Q1|K̄ 0〉 = 1

3
mK f 2

K BK (μ) (6.3)

where mK is the mass of K 0 (497.6 MeV), fK is kaon decay constant (160 MeV),
and BK (μ) is related to the renormalization group invariant parameter B̂K by

B̂K = BK (μ)b(μ). (6.4)

where

b(μ) = (αs(μ))−2/9

(
1 + 307

162

αs(μ)

4π

)
(6.5)

contains the renormalization scale dependence [22]. In our numerical analysis we
will use the following result [23]:

B̂K = 0.75 ± 0.15. (6.6)
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And finally, the SM contribution is

�mSM
K = G2

F

6π2
f 2
K B̂KmK M

2
WRe[λ∗2

c η1S0(xc) + λ∗2
t η2S0(xt ) + 2λ∗

cλ
∗
t η3S0(xc, xt )]

(6.7)
where λi = V ∗

isVis , and Vi j are the CKM matrix elements. The functions S0 are
given by

S0(xt ) = 4xt − 11x2
t + x3

t

4(1 − xt )2
− 3x3

t ln xt
2(1 − xt )3

,

S0(xc) = xc,

S0(xc, xt ) = xc

[
ln

xt
xc

− 3xt
4(1 − xt )

− 3x2
t ln xt

4(1 − xt )2

]
(6.8)

with xi = m2
i /M

2
W . The next-to-leading values of ηi have been chosen according to

Refs. [24–26]:

η1 = 1.38 ± 0.20, η2 = 0.57 ± 0.01, η3 = 0.47 ± 0.04. (6.9)

The contribution from the new physics, illustrated in Fig. 6.2b, can be estimated
by straightforward calculations. We obtain

H�S=2
e f f = C̃1 Q̃1, (6.10)

where Q̃1 is the operator d̄α
Rγμsα

Rd̄
β
Rγμsβ

R , and C̃1 is its Wilson coefficient,

C̃1 = (λ13
S )2(λ23

S )2

2π2

⎡
⎢⎣
m4

φ − m4
b − 2m2

bm
2
φ ln

m2
φ

m2
b

(m2
φ − m2

b)
3

⎤
⎥⎦ b(μ). (6.11)

Our result is in agreement with those in Refs. [27, 28]. Then, the contribution to the
KL − KS mass difference is given by

�mNP
K = 2Re〈K 0|H�S=2

e f f |K̄ 0〉 = 2C̃1Re〈K 0|Q̃1|K̄ 0〉. (6.12)

The matrix element 〈K 0|Q̃1|K̄ 0〉 is the same as 〈K 0|Q1|K̄ 0〉 since the strong inter-
action preserve parity.

We require that the contribution to �mK , including both the SM and new
physics result, is not larger than the experimental value �mexp

K = (3.483 ± 0.006) ×
10−15 GeV [29] within 1σ level, assuming the CPT conservation. In Fig. 6.3, we
show the allowed region for λS as a function of mφ for the cases of λ13

S = λ23
S = λS ,

λ13
S /2 = λ23

S = λS and λ13
S = λ23

S /2 = λS . We can see that the constraint on λS is
very stringent, generally less than 0.06 or 0.04 in different cases. We also notice that
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Fig. 6.3 The allowed region
of λS by K 0 − K̄ 0 mixing as
a function of mφ. The red
region is excluded for
λS = λ13

S = λ23
S where the

blue region is excluded for
λS = λ13

S = λ23
S /2 or

λS = λ13
S /2 = λ23

S
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these couplings involves the third generation quarks, the parton distribution func-
tions (PDFs) of which are small compared with those of the first two generations.
Therefore, we choose λ13

S = λ23
S = 0 in the following discussion on the experiments

at hadron colliders.

6.2.2 Z Hadronic Decay Branching Ratio

The tree-level amplitude of a Z boson decaying into a pair of quarks in the SM can
be represented as

M = gZ q̄(p1)γ
μ(aqL PL + aqR PR)q(p2)εμ, (6.13)

with

gZ = e

sWcW
, (6.14)

aqL = T 3
q − Qqs

2
W , (6.15)

aqR = −Qqs
2
W . (6.16)

Here, sW ≡ sin θW and cW ≡ cos θW . T 3
q and Qq denote the SU (2)L and charge

quantum numbers, respectively. PL and PR are the projection operators for the left-
and right-handed components, respectively.

The interactions in Eq. (6.1) may affect the hadronic decay of the Z boson, as
shown in Fig. 6.4, and thus contribute to the branching fraction of Z boson hadronic
decay. This variable has been very precise measured experimentally, and impose
constraints on R-parity violating SUSY parameters [30]. Notice that the quarks in
the interaction are right-handed, so only the couplings of right-handed quarks with
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Fig. 6.4 Feynman diagrams for hadronic Z boson decay induced by the particle φ

Z boson are modified if all the quarks are taken to be massless. After calculating
the Feynman diagrams in Fig. 6.4, we find that the coefficient aqR is adjusted by
multiplying a factor

ξ = 1 + � f = 1 + λ2
f

8π2
g(a), (6.17)

where a = M2
Z/m2

φ and f = 1, 2, 3 corresponds to the decay of the Z boson into

dd̄ , ss̄ and bb̄ final state, respectively. λ f is related to the interaction couplings as

λ2
1 = 4[(λ12

S )2 + (λ13
S )2], (6.18)

λ2
2 = 4[(λ12

S )2 + (λ23
S )2], (6.19)

λ2
3 = 4[(λ13

S )2 + (λ23
S )2], (6.20)

where we have used the relation that λ
i j
S = −λ

j i
S due to the antisymmetry property

of the εαβγ couplings in Eq. (6.1). The explicit expression of the function g(a) reads

g(a) = (a − 4)a − 2 ln(a)((a − 2)a + 2 ln(a + 1)) − 4Li2(−a)

4a2
. (6.21)

This function is positive as long asmφ > 75 GeV. The ultraviolet poles of the triangle
and self-energy diagrams in Fig. 6.4 cancel with each other, and we finally obtain a
finite result. In this calculation, all the masses of quarks have been neglected since
they are too small compared with the Z boson mass. The result in Eq. (6.21) seems
singular in the limit a → 0 because of the a2 denominator. However, expanding the
result around a = 0, we get the approximate form

g(a) =
(

1

9
− ln(a)

3

)
a +

(
ln(a)

4
− 1

16

)
a2 +

(
1

25
− ln(a)

5

)
a3 + O

(
a4

)
,

(6.22)
which vanishes obviously in the limit a → 0. This result reflects the decoupling
property of the heavy virtual particle φ in the large mφ limit.

The change of coefficient aqR affects two experimental observables. One is Rl ≡
�h/�l , where �h and �l are the widths of Z boson decaying into hadrons and leptons,
respectively. The correction to Rl is given by
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δRl = �h − �SM
h

�SM
l

= 2(�1�
SM
dR + �2�

SM
sR + �3�

SM
bR )

�SM
l

, (6.23)

where �SM
qR , q = d, s, b denote the widths of Z boson decaying into only right-

handed q quarks in the SM. The other is Rb ≡ �b/�h with �b the width into bb̄.
Explicitly, we can write the corrected Rb as

Rb = �b

�h

=
1 + 2�3

�SM
bR

�SM
b

1 + 2�1
�SM
dR

�SM
h

+ 2�2
�SM
sR

�SM
h

+ 2�3
�SM
bR

�SM
h

�SM
b

�SM
h

. (6.24)

Thus, the correction to Rb is given by

δRb ≈ 2

[
�3

�SM
bR

�SM
b

(
1 − �SM

b

�SM
h

)
− �1

�SM
dR

�SM
d

�SM
d

�SM
h

− �2
�SM
sR

�SM
s

�SM
s

�SM
h

]
RSM
b . (6.25)

These experimental observables are measured to be Re = 20.804 ± 0.050, Rμ =
20.785 ± 0.033, Rτ = 20.764 ± 0.045 and Rb = 0.2163 ± 0.0007, respectively,
while the corresponding SM values are RSM

e = RSM
μ = 20.735, RSM

τ = 20.780 and
RSM
b = 0.2158 [29]. The requirement that the corrected Re,μ,τ ,b agree with the mea-

sured values in the 1σ range imposes constraints on the parameters

(λ2
1 + λ2

2 + λ2
3)

g(a)

4π2 < 0.829, 0.578, 0.202 for Re, Rμ, Rτ , respectively, (6.26)

and

− 0.0289 < [0.78λ2
3 − 0.22(λ2

1 + λ2
2)]

g(a)

4π2
< 0.173 for Rb. (6.27)

In order to illustrate these constraints in more obvious way, we choose the cou-
plings as λ12

S = λS,λ
13
S = λ23

S = 0 since λ13,23
S are constrained by the neutral kaon

mixing, and show the allowed region by the constraints from Rτ and Rb in Fig. 6.5.
We see that the variable Rb imposes more stringent constraint than Rτ . However, this
constraint on the parameter is very weak. This is due to the fact that only right-handed
couplings of the Z boson are affected, and the widths of the Z boson decaying into
right-handed quarks are much less than into left-handed quarks.
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Fig. 6.5 The allowed region
by Z boson hadronic decay
branching fraction. The blue
and red regions are excluded
by the limits from Rb and Rτ

respectively. We have chosen
λ12
S = λS,λ

13
S = λ23

S = 0

allowed region
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6.2.3 Dijet Production at the LHC

The process of dijet production is the most dominant process at the LHC. New
resonances, such as excited quarks, axigluons, Randall–Sundrum gravitons, diquarks
and string resonances that are predicted in many extensions of the SM, would decay
into dijet and manifest themselves in the dijet invariant mass distribution. It is of high
priority to probe the new resonance at the LHC. The events of dijet production have
been analyzed at the early stage [31–35] or the complete Run-I stage [36, 37]. The
negative discovery of any new resonance has set upper limits on the product of cross
section (σ j j ) and signal acceptance (A). Since the new particle φ would induce the
dijet production, as illustrated in Fig. 6.6, the parameters in the effective Lagrange
in Eq. (6.1) are necessarily constrained by the limits.

d̄

s̄

φ

d̄

s̄

d

s

φ∗

d

s

Fig. 6.6 Feynman diagrams for the dijet production at the LHC
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The cross section of the resonance φ production and decay depends on the total
width of φ, which is given by

�φ = �φ→d̄ s̄ + �φ→ui χ̄, (6.28)

where

�φ→d̄ s̄ = (λ12
S )2

2π
mφ,

�φ→ui χ̄ = |aiS|2
16πm3

φ

(m2
φ − m2

ui − m2
χ)λ1/2(m2

φ,m
2
ui ,m

2
χ) (6.29)

with
λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca. (6.30)

The effect of these widths is included in our numerical calculation below. Since the
width of φ is very small compared to its mass, we do not consider the interference
between the diagrams in Fig. 6.6 and those in the SM. We use MadGraph5v1.3.3
[38] to calculate the cross section with the effective Lagrangian implemented by
FeynRules [39]. For comparison with the experiments at the LHC, we have calculated
the dijet production at both the 7 and 8 TeV collisions. The CTEQ6L1 PDF set [40]
is chosen and the factorization (renormalization) scales are set at mφ. We fixed the
couplings at λ12

S = a3
S = 0.2, a1

S = a2
S = 0 and the mass mχ = 50 GeV. The mass

of φ is changed from 500 to 2500 GeV with a step of 100 GeV. We choose the same
kinematic cuts as in the experiments [31, 34]:

|η j | < 2.5, |η j1 − η j2 | < 1.3. (6.31)

The cross sections of the dijet signal after the cuts are listed in Table. 6.1.
It is required that theoretical prediction of the dijet production σ j j · A is not

larger than the observed 95 % C.L. upper limit in the dijet experiment [31, 34, 36].
Therefore, the parameter regions of λS(= λ12

S ) as a function of mφ are constrained,
as shown in Fig. 6.7. We have chosen the acceptance A = 0.6 as in Ref. [34]. The
bump of the curve in the region of 500 GeV < mφ < 1000 GeV is due to the fact
that we use the data in this region and the other regions corresponding to different
integrated luminosities collected by the CMS experiment at the LHC. We see that
the upper limit on λS is about 0.2 for 1200 GeV < mφ < 1500 GeV, and larger than
0.2 in other regions.
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Table 6.1 The cross sections of dijet production induced by the resonance of φ, assuming λ12
S =

a3
S = 0.2, a1

S = a2
S = 0

mφ (GeV) σ j j (pb) Upper limit (pb)

500 16.2 118

600 7.13 182

700 3.52 90.7

800 1.84 70.8

900 0.998 52.7

1000 0.566 1.098

1100 0.322 0.777

1200 0.320 0.23

1300 0.201 0.18

1400 0.129 0.1

1500 8.43 × 10−2 0.06

1600 5.57 × 10−2 0.074

1700 3.64 × 10−2 0.13

1800 2.41 × 10−2 0.14

1900 1.64 × 10−2 0.1

2000 1.11 × 10−2 0.06

2100 7.45 × 10−3 0.035

2200 4.98 × 10−3 0.026

2300 3.37 × 10−3 0.025

2400 2.33 × 10−3 0.023

2500 1.60 × 10−3 0.02

Also shown is the upper limits at the 95 % CL on σ j j · A. The limits for mφ < 1200 GeV are taken
from Refs. [31, 34] at the 7 TeV LHC while the others are from Ref. [36] at the 8 TeV LHC

allowed region

500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0
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S

Fig. 6.7 The allowed region of λS(= λ12
S ) by dijet experiments at the LHC as a function of mφ
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6.3 Signals and Backgrounds

The signals of the monotop production have different final states depending on the
decay mode of the top quark. If the top quark decays hadronically, then the signal is

pp → t + χ̄ → b + W+ + χ̄ → b + j + j + E/T , (6.32)

called the hadronic mode. While the top quark decays semileptonically, the signal is

pp → t + χ̄ → b + W+ + χ̄ → b + l̄ + E/T , (6.33)

called the semileptonic mode. The Feynman diagrams are both shown in Fig. 6.8. The
symbol b and j denote a b-tagged jet and light quark or gluon jet, respectively, and l
represents the first two generation charged leptons, i.e., e and μ. The two modes have
different final states, and thus different backgrounds in the SM. We would discuss
them separately in the following part. The hadronic mode has been studied in Ref.
[11] where the branching fraction R(φ → tχ̄) is assumed to be equal to one. In fact,
this assumption is over optimistic. From Eq. (6.29) we can get the branching fraction
R(φ → tχ̄),

R(φ → tχ̄) = �φ→tχ̄

�φ→tχ̄ + �φ→d̄ s̄
= 1

1 + z
, (6.34)

with

z = 8(λ12
S )2

|a3
S|2

m4
φ

(m2
φ − m2

t − m2
χ)λ1/2(m2

φ,m
2
t ,m2

χ)
. (6.35)

In the case of λ12
S = a3

S = 0.2,mt = 173.1 GeV,mφ = 500 GeV and mχ = 50 GeV,
we obtain �φ→tχ̄ = 0.300 GeV, �φ→d̄ s̄ = 3.183 GeV, and thus the branching frac-
tion of φ → tχ̄ is just about 0.1. Here we have neglected the decay widths �φ→uχ̄ and
�φ→cχ̄ because they depend on different parameters. If they are taken into account,

d̄

s̄

φ

t

χ̄

b

W+

ν

l̄

(b)
d̄

s̄

φ

t

χ̄

b

W+

j

j

(a)

Fig. 6.8 Feynman diagrams for the monotop production at the LHC. a is the hadronic decay mode
while, b is the semileptonic decay mode
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then the branching fraction of φ → tχ̄ would be even smaller. Therefore, we include
the effects of both φ decay channels in our discussion.

Before discussing the signal and backgrounds in detail, we first have to choose
the parameter mχ. Some implications can be obtained from the search for the lightest
neutralino. In SUSY without the assumption of gaugino mass unification, there is no
general constraints on the mass of the lightest neutralino at e+e− colliders [29]. The
indirect constraints from the experiments such as (g − 2)μ, b → sγ and B → μ+μ−
indicate that the lightest neutralino mass may be as low as about 6 GeV [41]. In our
calculation, we choose the default value mχ = 50 GeV and vary mχ in the range
5–100 GeV when discussing the discovery significance.

As mentioned in the introduction of this chapter, the particle χ can be taken as
missing energy at hadron colliders. This is not guaranteed by a new quantum number
of χ, for example −1 under a Z2 symmetry, since we do not consider χ as a dark
matter candidate. Instead, it is caused by the small width of χ. Actually, χ is not
stable and can decay into SM particles, as shown in Fig. 6.9. We show the calculation
of the width in the decay channel

χ(p1) → d(p2)s(p3)b(p4)ν(p5)l
+(p6). (6.36)

The decay width of χ is estimated by

�χ = 1

2mχ

∫
|M|2d�5, (6.37)

where |M|2 is the matrix element squared for the decay process with the initial- and
final-state spins and colors averaged and summed. When the masses of all the final-
state particles are neglected, the five-body phase space integration can be written
as

∫
d�5 = 1

32768π7

1

m2
χ

∫ m2
χ

0
ds23

∫ (mχ−√
s23)

2

0
ds456

∫ s456

0
ds45

λ1/2(m2
χ, s23, s456)

(
1 − s45

s456

)
, (6.38)

Fig. 6.9 Feynman diagram
for χ decay

χ
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with si j = (pi + p j )
2 and si jk = (pi + p j + pk)2. In the mass range of χ we are

interested in, the momenta of the decay products of the W boson are too small
compared with the mass of the W boson so that we neglect them in the matrix
element. Moreover, we assume that the charged lepton l+ carries about one-fifth of
the energy of χ on average. Then, the matrix element squared is simply given by

|M|2 ≈ 96

5
g4
W (λ12

S )2(a3
S)

2
m2

χ

m4
φm

2
t M

4
W

s23s45. (6.39)

where gW is the coupling of the W boson with left-handed fermions. Now performing
the integration in Eq. (6.37), we obtain

�χ ≈ 1.82 × 10−19GeV

(
λ12
S

0.2

)2 (
a3
S

0.2

)2
(mχ/50GeV)11

(mφ/500GeV)4(mt/173.1GeV)2(MW /80.4GeV)4 ,

(6.40)
where we have included the contribution from the other decay channels.

The ATLAS collaboration has searched for displaced vertices arising from decays
of new heavy particles and found that the efficiency for detecting displaced vertices
almost vanishes for a distance between the primary and the displaced vertex larger
than 0.35 m [43]. The produced χ̄ at hadron colliders, as a decay product of a massive
particle, usually has such a large energy that it moves nearly in the speed of light.
The decay width can be translated to the the distance traveled before its decay, as
shown in Fig. 6.10. We can see that the distance sensitively depends on the mass
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Fig. 6.10 The distance traveled by the particle χ̄ before its decay as a function of its mass [42].
The solid line is obtained from Eq. (6.40) while the dots denote the results of MadGraph. The
relevant parameters are chosen as λ12

S = a3
S = 0.2,mt = 173.1 GeV, MW = 80.4 GeV, and mφ =

500 GeV
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of χ and decreases with the increasing of mχ. We also calculate the decay width
numerically by the MadGraph in some parameter points. The results of MadGraph
are well approximated by those obtained from Eq. (6.40) in the largemχ region. In the
low mass region, there are obvious difference since the mass of final-state particle
in Eq. (6.40) can not be neglected. But this discrepancy between them in the low
mass region is not important because they are both much larger than the size of the
detector at the LHC. In the region mχ ≤ 100 GeV, the distance traveled by χ̄ before
its decay is larger than 0.35 m. Therefore, it is reasonable to consider the particle χ
with mχ ≤ 100 GeV as missing energy at the LHC.

6.3.1 Hadronic Decay Mode

In the hadronic decay mode, the signal consists of a b-jet, two light jets and missing
energy. The main backgrounds arise from pp → j j j Z(→ νν̄), with a jet misiden-
tified as a b-jet, and pp → bb̄ j Z(→ νν̄) with a b-jet not tagged. The pp → t t̄ and
pp → t (t̄) j processes with hadronic top quark decay may also contribute to the
backgrounds if some jets are not detected. The signal and backgrounds are simulated
by MadGraph5v1.3.3 [38] and ALPGEN [44] interfaced with PYTHIA [45, 46] to
perform the parton shower and hadronization.

In the following numerical calculation, the default values of relevant parame-
ters are chosen as λ12

S = a3
S = 0.2,λ13

S = λ23
S = 0, a1

S = a2
S = 0,mt = 173.1 GeV,

mφ = 500 GeV and mχ = 50 GeV. The CTEQ6L1 PDF [40] is used, and the renor-
malization and factorization scales are set at mφ. We apply the following basic selec-
tion cuts

pb, jT > 30 GeV, |ηb, j | < 2.4, �Rbb,bj, j j > 0.5. (6.41)

Moreover, we choose a b-tagging efficiency of 50 % while the misidentification rates
for a ligth jet faking a b-jet are 8 % for charm quark and 0.2 % for gluon and other
light quarks [47].

To determine the missing transverse energy cut, we investigate the normalized
spectrum of the missing transverse energy for the signal and backgrounds [42].
Because the missing transverse energy of the background comes from either an
invisible decayed Z boson or non-detected jets, which are produced mainly via t-
channel, the backgrounds concentrate in the region E/T < 100 GeV In contrast, the
missing transverse energy of the signal origins from the decay of a heavy resonance
so that it can be large. Therefore we choose the missing transverse energy cut

E/T > 100 GeV. (6.42)

Meanwhile, the missing transverse energy of the signal is similar to the distribution

E/T /

√
E/max
T

2 − E/2
T with an edge at E/max

T = λ1/2(m2
φ,m

2
t ,m

2
χ)/2mφ due to the heavy
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resonance mass. This feature may help to specify the masses of the resonance and
the missing particle.

In this mode, the momentum of three jets, and therefore momentum of theW boson
and top quark, can be reconstructed, which leads to efficient event selection. We also
study the reconstructed top quark mass distribution for the signal and backgrounds
processes using the three leading jets [42]. We do not consider all the combinations
of three jets in the final state to reconstruct the top quark. This kind of reconstruction
can efficiently suppress the t t̄ and t (t̄) j backgrounds. We find that there is a peak
around 173 GeV for the signal while the distributions of backgrounds have no obvious
bumps. So we impose the invariant mass cut

120 GeV < mt,r < 200 GeV. (6.43)

The cross sections of the signal and backgrounds after a series of cuts at the LHC
(
√
s = 7 TeV) are listed in Table 6.2. It can be seen that the backgrounds decrease

dramatically when the invariant mass cuts are imposed, The t t̄ and t (t̄) j processes
are mainly suppressed by the missing transverse energy cut. We also notice that the
cross section of bb̄ j Z(νν̄) is not less than that of j j j Z(νν̄) after all cuts imposed.

We also estimate the signal after all the above cuts as a function of the parameters
mχ and mφ in Fig. 6.11. The cross section is not sensitive to mχ, but decreases very
fast with the increasing of mφ.

We present the parameter region for a discovery of the monotop signal in Fig. 6.12.
The coupling λ12

S = a3
S = λS needs to be larger than 0.06 and 0.034 atmφ = 500 GeV

in order to discover the signal at 5σ level at the LHC with the integrated luminosity
of 1 fb−1 and 10 fb−1, respectively. And it increases vary fast as mφ increases. The
needed λS with 10 fb−1 data is larger than 1 if mφ > 1500 GeV. We also show the
parameter regions for a discovery at the 3σ level. These regions can be compared with
the constraint imposed by the dijet experiment. We see that the regions at mφ > 1200
GeV have been excluded by the dijet experiment, while regions at mφ < 1200 GeV
are still allowed. However, we notice that λS = λ12

S in the dijet constraint. If a larger
value of a3

S is chosen, then there would be more parameter regions allowed by the
dijet experiment.

Table 6.2 The cross sections of the signal and backgrounds after various cuts in the hadronic mode
at the LHC (

√
s = 7 TeV) [42]

σ (fb) Basic E/T mt,r b-tagging εcut

Signal 902 811 502 251 27.1 %

j j j Z(νν̄) 7.03 × 104 7.87 × 103 944 9.35 0.013 %

bb̄ j Z(νν̄) 1.70 × 103 143 19.4 9.67 0.57 %

t t̄ 2.80 × 104 34.6 0.28 0.14 5 ×10−6

t (t̄) j 2.35 × 104 10.9 0.24 0.12 5 ×10−6

The cut acceptance εcut is also listed. The entries after the mt,r cut for t t̄ and t (t̄) j processes are
estimated by considering that one out of the total events we have generated for analysis can survive
various kinematic cuts
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Fig. 6.11 The cross section
of the signal in the hadronic
mode at the LHC (

√
s = 7

TeV) as a function of mχ and
mφ. The black band consists
of twenty solid lines from
the bottom up corresponding
to the value of mχ varying
from 5 to 100 GeV with a
step of 5 GeV
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Fig. 6.12 The parameter
region for a discovery of the
monotop signal in the
hadronic mode at the LHC
(
√
s = 7 TeV). Each colorful

band consists of twenty solid
lines from the bottom up
corresponding to the value of
mχ varying from
5 to 100 GeV with a step of 5
GeV. We have taken
λS = λ12

S = a3
S
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In this mode, the full kinematic information of the top quark can be reconstructed
from its decay products, so the mass of the resonance φ can be obtained by

mφ =
√

�p2
t + m2

χ +
√

�p2
t + m2

t (6.44)

≈
√

�p2
t +

√
�p2
t + m2

t if m2
χ  �p2

t (6.45)

with
�p2
t = p2

t,x + p2
t,y + p2

t,z, (6.46)

in which pt,x , pt,y, pt,z are the three-vector momentum of the top quark. This infor-
mation, combined with the missing transverse energy distribution, may help to spec-
ify the masses of the resonance and the missing particle.
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6.3.2 Semileptonic Decay Mode

In the semileptonic decay mode, the signal is a b-jet, a charged lepton and miss-
ing energy. The dominant backgrounds include pp → W+(→ l+ν) j with the jet
misidentified as a b-jet and pp → t j with semileptonic top quark decay. The W+ j
background is very large because there are only two final-state particles, compared
with four final-state particles in the pp → j j j Z and pp → bb̄ j Z backgrounds in
the hadronic mode. Besides, the final state of the signal contains two missing parti-
cles, i.e., χ̄ and ν, which makes the reconstruction of the mass of the top quark very
challenging. Nevertheless, the semileptonic mode is still promising if appropriate
cuts are imposed. The signal and backgrounds are simulated by MadGraph5v1.3.3
[38] interfaced with PYTHIA [45]. We choose the same default parameters as in the
hadronic mode, and the basic cuts are

pbT > 30 GeV, plT > 20 GeV, |ηb,l | < 2.4, �Rbl > 0.5. (6.47)

We investigate the normalized spectrum of the missing transverse energy in the
semileptonic mode at the LHC with

√
s = 7 TeV [42]. The signal increases while

the backgrounds decrease in the range 30 GeV < E/T < 150 GeV. The reason is that
the missing particles of the signal originate from a resonance of a large mass, and
thus could be produced with large transverse momentum. In contrast, the missing
particle of the backgrounds is ν, coming from the W boson. Meanwhile the W+ j
and single top production are t-channel processes, in which the momentum of final-
state particles tend to be collinear to those of the initial-state particles. Therefore, we
impose the missing transverse energy cut

E/T > 120 GeV (6.48)

to suppress the backgrounds.
In the process containing a leptonic decayed W boson, the transverse mass is a

useful variable, defined as [29]

MT =
√

(E/T + El
T )2 − (�p/T + �plT )2, (6.49)

where E/T and �p/T are the missing transverse energy and missing transverse momen-
tum, respectively. If the missing particle and the lepton are both decay products of
a W boson, then the upper limit of the distribution of MT is the W boson mass.
This is just the case of the backgrounds here. However the signal contains additional
missing particle so that MT can be very large. Therefore, we impose the transverse
mass cut

MT > 120 GeV (6.50)

to suppress the backgrounds.
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Table 6.3 The cross sections of the signal and backgrounds after various cuts in the semileptonic
mode at the LHC (

√
s = 7 TeV) [42]

σ (fb) Basic plT E/T MT b-tagging εcut

Signal 399 376 231 218 109 27.3 %

W (lν) j 1.83 × 106 1.53 × 106 3.45 × 104 1.83 0.003 2×10−9

t (t̄) j 9.09 × 103 7.33 × 103 185 2.15 1.08 0.012 %

The cut acceptance εcut is also listed. The entries after the MT cut for W (lν) j process are estimated
by considering that one out of the total events we have generated for analysis can survive various
kinematic cuts

The cross sections of the signal and backgrounds after a series of cuts at the LHC
(
√
s = 7 TeV) are listed in Table 6.3. We find that the backgrounds nearly vanish

after the transverse mass cut is imposed. This indicates that it is very promising to
detect the signal of monotops in the semileptonic mode.

We also calculate the signal after all the above cuts as a function of the parameters
mχ and mφ in Fig. 6.13. Same as in the hadronic mode, the cross section is not
sensitive to mχ, but decreases very fast with the increasing of mφ. The cross point
when the cross section of the signal is equal to that of the backgrounds is about
1350 GeV, higher than that in the hadronic mode. This implies that the discovery
potential in the semileptonic mode would be better than in the hadronic mode.

We present the parameter region for a discovery of the monotop signal in Fig. 6.14.
The coupling λ12

S = a3
S = λS needs to be larger than 0.043 and 0.024 at mφ = 500

GeV in order to discover the signal at 5σ level at the LHC with the integrated
luminosity of 1 fb−1 and 10 fb−1, respectively. And it increases vary fast as mφ

increases. The needed λS with 10 fb−1 data is larger than 0.4 if mφ > 1500 GeV.
We also show the parameter regions for a discovery at the 3σ level. These regions
can be compared with the constraint imposed by the dijet experiment. We see that
the regions at mφ > 1400 GeV have been excluded by the dijet experiment while
regions atmφ < 1400 GeV are still allowed. However, we notice that λS = λ12

S in the
dijet constraint. If a larger value of a3

S is chosen, then there would be more parameter
regions allowed by the dijet experiment.

Fig. 6.13 The cross section
of the signal in the
semileptonic mode at the
LHC (

√
s = 7 TeV) as a

function of mχ and mφ. The
black band consists of
twenty solid lines from the
bottom up corresponding to
the value of mχ varying from
5 to 100 GeV with a step of 5
GeV

SM backgrounds
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Fig. 6.14 The parameter
region for a discovery of the
monotop signal in the
semileptonic mode at the
LHC (

√
s = 7 TeV). Each

colorful band consists of
twenty solid lines from the
bottom up corresponding to
the value of mχ varying from
5 to 100 GeV with a step of
5 GeV. We have taken
λS = λ12

S = a3
S
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6.4 Conclusions and Comments

The monotop signal is predicted in many extensions of the SM and has a feature
easy to be discovered. In this chapter, we propose a gauge invariant Lagrangian
to describe the production of monotop signal. And we study the allowed regions
of the parameters in the Lagrangian by the present data of K 0 − K̄ 0 mixing, Z
boson hadronic decay branching ratio and dijet production at the LHC. After that,
we investigate the potential of the early LHC to discover the signal of monotop
production in both the hadronic and semileptonic modes. We present the parameters
that corresponds to a discovery at the 5σ or 3σ level with an integrated luminosity
of 1 or 10 fb−1. We also find that in the hadronic mode the information from the
missing transverse energy and reconstructed resonance mass distributions can be
used to specify the masses of the resonance and the missing particle. Moreover, from
our estimation, the semileptonic mode is more promising to discover the signal. This
signature has attracted the interest of the ATLAS collaboration and an analysis has
been presented where a similar limit on the coupling to that predicted by us is set [48].

The analysis has jut made use of the monotop production at the LHC. Actually, the
mono-antitop production at the LHC is also interesting and should be investigated
in detail. It has the same final state with monotop production in the hadronic decay
mode, while the lepton in the semileptonic mode has a different sign. Moreover, it
is expected the cross section of mono-antitop production is significantly larger than
monotop production due to the enhancement of PDFs of initial-state quarks.

The pattern of the monotop production studied in this chapter is the resonant pro-
duction mode. There are several other production modes that have been investigated
so far. One of them is the top quark and a vector boson associated production via
flavor-changing neutral interaction and the vector boson decays into invisible parti-
cles, as shown in Fig. 6.15. It is possible that this vector is just the Z boson in the
SM. However, the flavor-changing neutral current Zqt (q = u, c) has been tightly
constrained by the top quark decay at the LHC. The branching fraction of t → Zq
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Fig. 6.15 Feynman diagrams for gq → tV production at the LHC

greater than 0.05 % has been excluded at a confidence level of 95 % [49]. The vector
can also be a new particle in a hidden sector which is heavier than the top quark. Then
the present constraint on the Zqt is not applicable, and the process of gq → tV may
be detectable at the LHC. The relevant Lagrangian is given by

LFCNC = aFCNCVμq̄γμ(aL PL + aR PR)t + h.c., (6.51)

where PL and PR are the projector operators to select the left- and right-handed
components of the quarks, respectively. The prospect to discover such a signal has
been analyzed in Ref. [50]. Both the ATLAS and CMS collaborations have searched
for the monotop signature induced by this FCNC interaction, and an upper limit
on the coupling or a lower limit on the mass of the invisible particle have been
set [48, 51].
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Chapter 7
Summary and Outlook

The desire to understand the fundamental constituents of the world and ourselves has
lead to the standard model (SM) of the particle physics today after a huge number
of efforts of both theorists and experimentalists over several centuries. The theory
has proven very beautiful and successful, which accurately describes three kinds of
interactions, i.e., the electromagnet, weak, and strong interactions, in a unified way.
The idea of symmetries, especially gauge symmetries, is the core of the theory, and
has been reflected by a lot of predictions and confirmations of experiments, such
as the discovery of the W+, W−, and Z particles. The inner structure of protons
or neutrons can be fortunately described by the perturbation-theory of QCD at high
energy collisions. The problem of particles’ masses is elegantly solved by the Higgs
mechanism and the predicted Higgs boson has been finally found in 2012 at CERN
after searched for about half a century. However, the model is very far from being
the final theory; there are still many puzzles in our understanding.

The LHC has collected data with the integrated luminosity of about 20 fb−1 at the
center-of-mass energy of 7 and 8 TeV, and started running with the collisions at 13
TeV, which explores a new region of energy scale. It provides opportunities to make
a detailed study of the Higgs boson and search for new physics. In order to give more
stable and precise predictions for the processes at the hadron collider, it is essential
to consider the QCD high-order effects, including fixed order corrections and soft
gluon resummations.

The existence of the dark matter is one of the strongest indications for physics
beyond the standard model, because no known particle can be attributed to dark
matter. Though the dark matter outnumbers the ordinary matter by a factor of about
4, the particles constituting the dark matter remain unclear so far. A lot of candidates
of dark matter are predicted by many theories beyond the standard model with a
largely unconstrained mass range from O(GeV) to O(TeV). It is of high priority
to obtain the information and determine the quantum numbers of the dark matter.
The way to achieve these aims includes direct detection, indirect detection, and
collider experiments. They are complementary to each other and sensitive to different
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132 7 Summary and Outlook

parameter regions. The signal of dark matter at the LHC appears as missing energy
associated with some visible particles. In this thesis, we investigate the dark matter
and a photon-associated production at the LHC in the frame of effective operators,
including the QCD NLO corrections. After comparing the signal and backgrounds,
we find that the kinematic distributions of the photon can help to select the events in
experiments. In the end, we present the region of new physics scale for a discovery
or a exclusion at the LHC.

The top quark is the heaviest particle discovered so far and has a close relationwith
many extensions of the standard model. There are millions of top quarks produced
every year at the LHC, providing a good place to study its properties. The single top
quark production is sensitive to the electroweak interactions and related new physics.
Therefore, it is necessary to consider the precision prediction for the kinematic
distributions of the top quark. We have studied the renormalization group improved
prediction for the transverse momentum spectrum at large pT region with the
soft-collinear effective theory. We discuss the factorization of the cross section into
hard, jet and soft functions, and calculate the soft function in detail. The resummed
cross section is increased by a few percent at the LHC, compared to the NLO result.
This prediction can be used in searching for heavy bosons which decay into top quark
and a jet.

The signal of monotop production has a very simple final state, which does not
exist in the SM. It is easy to be identified and distinguished and thus has a potential
to be discovered at the LHC. We study this signal induced by the general model-
independent renormalizable operators with the SM gauge symmetries, though there
are somemodels predicting it. After checking the constraints from the present experi-
ment data, including the neutralmesonmixing, Z boson decay, and dijet experiments,
we simulate the signal and backgrounds in both hadronic and semileptonic decay
modes at the LHC. The final discovery potential is presented as a function of the
parameters in the operators. This signal has attracted the interest of the ATLAS and
CMS collaborations and a lower limit on the mass of the invisible particle or an upper
limit on the couplings of the operators have been set.

The topics studied above can be further extended. For example, given that the dark
matter may couple with the SM particles in different structures, is it possible to find
some observables to distinguish them? If there is a new gauge bosonW ′ which could
induce the single top production but have a differentmass and coupling structure from
the W boson, what is the most precise prediction for the kinematical distributions
of the signal? For the current analysis in monotop productions, only LO predictions
are used. What is the effect of QCD NLO corrections and soft gluon resummations?
Besides, after the discovery of the Higgs boson, it is of significant importance to
narrow the uncertainties of its couplings, which requires not only more accumulated
data but also accurate theoretical predictions on various production channels. Last, to
search and determine new physics with the LHC, the world’s most powerful particle
accelerator, the backgrounds should be precisely understood before any meaningful
discovery.
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Appendix A
Phase Space Integration

The phase space in a collision is an indispensable component of the cross section. In
practice, it causes a lot of complexities in the calculations. As a consequence, numer-
ical integration is usually implemented. However, in some special phase spaces, the
corresponding scattering amplitudes approach analytical poles, making the numeri-
cal results converge very slowly. Therefore, it is highly demanded that the numerical
integration near the special phase spaces be optimized. In this Appendix, we present
our method in performing the phase space integration in the dark matter and photon
associated productions.

The general phase space is defined in Eq. (3.2). We begin with the two-body final
state,

d�2 =
⎛
⎝

4∏
f =3

d3 p f

2E f (2π)3

⎞
⎠ (2π)4δ(4)

⎛
⎝p1 + p2 −

4∑
f =3

p f

⎞
⎠ . (A.1)

Because the phase space is Lorentz invariant, it is better to choose the center-of-mass
frame of the final-state two particles. Then,

d�2 = 1

16π2

| �p3|√
s
sin θdθdφ, (A.2)

where
√
s is the center-of-mass energy of the initial states, and �p3 is the momentum

of the first final-state particle. The polar angle and azimuthal angle are denoted by θ
and φ, respectively. The length of �p3 is given by

| �p3| =
√
s

2
λ1/2(1,m2

3/s,m
2
4/s), (A.3)

with

λ(a, b, c) ≡ a2 + b2 + c2 − 2ab − 2bc − 2ca. (A.4)

The four-momenta pμ
3 and pμ

4 are determined by θ, φ, and s.
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Then we discuss the three-body final state,

d�3 =
⎛
⎝

5∏
f =3

d3 p f

2E f (2π)3

⎞
⎠ (2π)4δ(4)

⎛
⎝p1 + p2 −

5∑
f =3

p f

⎞
⎠ . (A.5)

We consider that the phase space is factorized into two two-body phase spaces. First,
the phase space is divided to be p5 and p34 ≡ p3 + p4. Then the phase space of p34
is divided to be p3 and p4. As a result, we have

d�3 = 1

2π

∫ (
√
s−m5)

2

(m3+m4)2
ds34d�2(s,m

2
5, s34)d�2(s34,m

2
3,m

2
4), (A.6)

where we have written the center-of-mass energy and two masses in two-body phase
spaces explicitly. The four-momenta pμ

3 and pμ
4 are generated in the center-of-mass

frame of p34 and should be boosted and rotated back to the center-of-mass frame of
the initial states in which the four-momentum pμ

5 is generated.
This procedure of recursive division of phase space can be easily extended to the

four-body final state. We would obtain

d�4 = 1

2π

∫ (
√
s−m6)

2

(m3+m4+m5)2
ds345d�2(s,m

2
6, s345)d�3(s345,m

2
3,m

2
4,m

2
5). (A.7)

In our calculation of the real correction to the dark matter and photon associated
productions,

q(p1) + q̄(p2) → χ(p3) + χ̄(p4) + γ(p5) + g(p6), (A.8)

the amplitude becomes divergent in the phase space with t16 ≡ (p1 − p6)2 → 0 or
t26 ≡ (p2 − p6)2 → 0. In practice, we have used two cutoff phase space slicing
methods to separate the divergent regions with |t16| < δcs and |t26| < δcs, which
can be integrated analytically. The remaining parts of phase space integration would
generate the terms like ln2 δc which are numerically large since δc ∼ 10−5. To get
more stable numerical result, we must separate such terms out of the phase space
integration.

Let us define smin
345 = (m3 + m4 + m5)

2 and

t16 = (smin
345 − s)

(
δcs

s − smin
345

)u1

, u1 ∈ [0, 1], (A.9)

t26 = (smin
345 − s)

(
δcs

s − smin
345

)u2

, u2 ∈ [0, 1]. (A.10)
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Then we obtain

ds345d�2(s, 0, s345) = t16t26
16π2s

ln2
δcs

s − smin
345

�[t16 + t26 + s − smin
345 ]�[−δs s − t16 − t26]du1du2dφ,

(A.11)
where the � functions are inserted to ensure that the integration does not include the
soft regions that have been integrated analytically. We have checked that numerical
convergence can be greatly improved after applying the above method.



Appendix B
Calculation of the Soft Functions

In this Appendix, we present the details of the calculation of the two O(αs) soft
functions S(1)

bt (k,μ) and S(1)
t t (k,μ) that appear in Chap.5. We choose to perform the

calculation in the rest frame of the top quark, in which the four-velocity of the top
quark is vμ = (1, 0, 0, 0). In this frame, the denominators are simple but the content
of the delta function is complex. We have also carried out the calculation in the
frame where the content of the delta function is simple but the singularities in the
denominators are hard to isolate, using the method in Ref. [1]. We obtain the same
results, which can be considered as a cross-check of our calculations.

In the rest frame of the top quark, we choose the direction nμ
b = (1, 0, 0, 1). Then,

we have

qμ = q+ n̄μ
b

nbb̄
+ q− nμ

b

nbb̄
+ qμ

⊥, nμ
1 = n+

1

n̄μ
b

nbb̄
+ n−

1

nμ
b

nbb̄
+ nμ

1⊥, (B.1)

and

q · n1 = q+n−
1 + q−n+

1

nbb̄
− |q⊥||n1⊥| cos θ, q · v = q · (nb + nb̄)

2
= (q+ + q−)

2
.

(B.2)

Inserting these expressions into Eq. (5.56), we get

S(1)
bt (k,μ) = g2s CFμ2ε

(2π)d−1

∫ ∞

0
dq+

∫ ∞

0
dq−

∫
d�d−2

(
2q+q−

nbb̄

)−ε

δ(k − q+n−
1 + q−n+

1

nbb̄
+ |q⊥||n1⊥| cos θ)

nb · v

q+(q+ + q−)
. (B.3)
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Let us redefine the integration variables q+ and q− and take a = n+
1

n−
1
, then

S(1)
bt (k,μ) = g2s CFμ2ε

(2π)d−1

∫ ∞

0
dq+

∫ ∞

0
dq−

∫
d�d−2

(
2nbb̄
n+
1 n

−
1

)−ε

δ(k − q+ − q− + 2
√
q+q− cos θ)

nb · v

q+(aq+ + q−)
. (B.4)

Introducing other two variables x and y satisfying q+ = kyx and q− = ky(1 − x) =
kyx̄ , we obtain

S(1)
bt (k,μ) = g2s CFμ2ε

(2π)d−1

(
2nbb̄
n+
1 n

−
1

)−ε

k−1−2ε
∫

d�d−2

∫ 1

0
dxx−1−ε (1 − 2

√
x x̄ cos θ)2ε x̄−ε

ax + x̄
.

(B.5)

The singularity in the integrand can be isolated by

x−1−ε = −1

ε
δ(x) +

(
1

x

)

+
− ε

(
lnx

x

)

+
+ O(ε2). (B.6)

It is straight to calculate the above three parts separately. After making use of

1

k+

(
μ̃

k+

)2ε

= − 1

2ε
δ(k+) +

[
1

k+

][k+,μ̃]

�

− 2ε

[
1

k+ ln
k+

μ̃

][k+,μ̃]

�

+ O(ε2), (B.7)

we get the divergent and finite parts

S(1)
bt,div(k,μ) = 2CFαs(4πμ2e−γE )ε

4π

{
δ(k)

ε2
− 2

ε

[
1

k

][k,μ̃]

�

}
, (B.8)

S(1)
bt, f in(k,μ) = 2CFαs

4π

{
4

[ ln k
μ̃

k

][k,μ̃]

�

+ δ(k)cSbt

}
, (B.9)

with cSbt = −ln2(1 + 1
a ) − 2Li2( 1

1+a ) + π2

12 .
With the same method, we get

S(1)
t t,div(k,μ) = 2CFαs(4πμ2e−γE )ε

4π

{
δ(k)

ε

}
, (B.10)

S(1)
t t, f in(k,μ) = 2CFαs

4π

{
−

[
2

k

][k,μ̃]

�

+ δ(k)cStt

}
, (B.11)

with cStt = 2ln(1 + 1
a ).

When performing the Laplace transformation from S(k,μ) to s̃(L ,μ), the fol-
lowing replacements prove useful:
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[ ln k
μ

k

][k,μ]

�

→ L2

2
+ π2

12
, (B.12)

[
1

k

][k,μ]

�

→ L . (B.13)



Appendix C
Anomalous Dimensions

The various anomalous dimensions needed in our calculations are available, e.g., in
Refs. [2–4]. We show them below for the convenience of the reader. The QCD β
function is expanded as

β(αs) = −2αs

[
β0

αs

4π
+ β1

( αs

4π

)2 + · · ·
]

, (C.1)

with expansion coefficients

β0 = 11

3
CA − 4

3
TFn f ,

β1 = 34

3
C2
A − 20

3
CATFn f − 4CFTFn f ,

β2 = 2857

54
C3
A +

(
2C2

F − 205

9
CFCA − 1415

27
C2
A

)
TFn f +

(
44

9
CF + 158

27
CA

)
T 2
Fn

2
f ,

(C.2)

where CA = 3, CF = 4/3, TF = 1/2 for QCD, and n f is the number of active quark
flavors.

The cusp anomalous dimension is given as

�cusp(αs) = �0
αs

4π
+ �1

( αs

4π

)2 + · · · , (C.3)

with

�0 = 4CF ,

�1 = 4CF

[(
67

9
− π2

3

)
CA − 20

9
TFn f

]
,
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�2 = 4CF

[
C2

A

(
245

6
− 134

27
π2 + 11

45
π4 + 22

3
ζ3

)
+ CATFn f

(
−418

27
+ 40

27
π2 − 56

3
ζ3

)

+ CFTFn f

(
−55

3
+ 16ζ3

)
− 16

27
T 2
Fn

2
f

]
. (C.4)

The other anomalous dimensions are expanded as Eq. (C.3), and the expansion
coefficients are

γ0
q = −3CF ,

γ1
q = C2

F

(
−3

2
+ 2π2 − 24ζ3

)
+ CFCA

(
−961

54
− 11

6
π2 + 26ζ3

)

+ CFTFn f

(
130

27
+ 2

3
π2

)
,

γ0
Q = −2CF ,

γ1
Q = CFCA

(
2

3
π2 − 98

9
− 4ζ3

)
+ 40

9
CFTFn f ,

γ0
φ = 3CF ,

γ1
φ = C2

F

(
3

2
− 2π2 + 24ζ3

)
+ CFCA

(
17

6
+ 22

9
π2 − 12ζ3

)
− CFTFn f

(
2

3
+ 8

9
π2

)
,

γ0
j = −3CF ,

γ1
j = C2

F

(
−3

2
+ 2π2 − 24ζ3

)
+ CFCA

(
−1769

54
− 11

9
π2 + 40ζ3

)

+ CFTFn f

(
242

27
+ 4

9
π2

)
. (C.5)

In the single top production, γV
up, γ

V
dn and γS can be obtained from the above anom-

alous dimensions by the following equations:

γV
up = 2γq ,

γV
dn = γq + γQ,

γS = −γφ − γV
dn. (C.6)
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