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Final Farewell to Konrad Bajer

Konrad graduated from the Physics Faculty at the University of Warsaw in 1980.
His Master’s thesis was concerned with exact solutions of the Einstein equations.
He then became interested in fluid dynamics and started to work at the Institute of
Geophysics, which was then run by Prof. Krzysztof Haman.

Konrad’s personality and his scientific attitude were fully formed during his stay
at Trinity College, Cambridge, where he worked on his Ph.D. thesis in the years
1984–1988 under the supervision of the distinguished mathematician Prof. Keith
Moffatt. Their collaboration turned into a lifelong friendship, which also resulted in
a number of joint papers of high scientific quality in magnetohydrodynamics and
the fundamentals of fluid dynamics. One of these, concerned with Stokes flows, has
been widely cited and recognized and is considered by the co-author Prof. Moffatt
as one of his best papers.

In both environments, at Trinity College, Cambridge, and at the Physics
Faculty UW, Warsaw, Konrad created a friendly group of collaborators and stu-
dents, with whom he developed the theory of classical and quantum vortices and of

Konrad Bajer, May 2011. Photo by Victor L’vov
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turbulence. He always listened attentively to young colleagues, who quickly
became his friends, and his interactions were characterized by the great care and
effort that he took to help them in their scientific and social development. He used
without hesitation his scientific contacts all over the world to promote the career
development of those he considered talented and promising.

His continuous efforts over 30 years, developing collaborations, teaching
younger colleagues, helping them in their development, keeping active connections
with numerous scientific institutions, and finally in conference organization, were
recognized by the international community through the election of Konrad to the
Congress Committee of the International Union of Theoretical and Applied
Mechanics (IUTAM). This was a recognition not only of his scientific achievements
(with over 40 papers in renowned scientific journals), but also of the great success
of the 13th European Turbulence Conference, which he organized in 2011 in the
wonderful setting of the Old Library of the University of Warsaw, which attracted
over 400 participants, and which was followed by a series of historical lectures by
distinguished scientists in the field of turbulence from all over the world.

Recently, Konrad has once again demonstrated his openness to new scientific
areas, through his work on the application of physics to the theory and practice of
combustion and gasification of biomass. His inter-institutional seminar on this
subject has been very popular over recent years and has gathered together students
of physics, mathematics, and several faculties of the Warsaw University of
Technology, working on different aspects of combustion and gasification. His work
in this field, which was new for him and the entire scientific community in Warsaw,
was also recognized at international level.

Konrad always attached great importance to popularization of science both
through very carefully prepared lectures for students and through elucidating sci-
entific problems for non-specialists. He often took part in programs popularizing
science in radio and television. He actively promoted the idea of the Copernicus
Science Centre from the moment of its foundation, and until the end he worked on
its Programme Council. His death has cast a shadow on the development of many
new ideas and projects, one of these being the proposed Programme on Physics of
Growth and Form in 2017 at the Isaac Newton Institute in Cambridge, for which he
was a member of the International Advisory Committee.

Konrad has always been a very friendly person, helpful, warm, and open in the
way he treated his colleagues at work and all the people he had discussions with.
We will keep him like that in our memories forever.

Marek Dudyński
Marek Trippenbach
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Preface

The iTi has become an established biannual conference taking place in the years
between the ETC—(European Turbulence Conference) and TSFP—(Turbulence
and Shear Flow Phenomena) conferences. With 50–100 participants, the iTi con-
ference places value on the discussions and personal contacts in the location of the
beautiful town of Bertinoro in nothern Italy. The size of the conference allows to
have no parallel sessions and to give time to focus on special topics. The
content-related focus areas of the conference are the interdisciplinary aspects of
turbulence, defining our abbreviation iTi—interdisciplinary turbulence initiative.

In the 6th iTi conference 96 scientists from 19 different countries came together.
In total there were 86 contributions, from which 53 were presented as talks, with
5 invited talks, covering a wide range of aspects of current turbulence research.
Advances in the basics of understanding and modeling turbulence as well as
practical implications like the control of turbulence were addressed.

Furthermore, it is a tradition of the iTi to organize a one day workshop before the
conference. The special topic of this edition is turbulent flows generated by
multi-scale excitations.

The content of the 6th iTi conference is documented in this volume by 54
contributions of participants. All contributions were thoroughly reviewed by
external reviewers, to whom we want to express our thanks for their valuable and
important work.

The present volume is dedicated to the memory of Prof. Konrad Bajer who
passed away in Warsaw on August 29, 2014.

Oldenburg, Germany Joachim Peinke
Oldenburg, Germany Gerrit Kampers
Darmstadt, Germany Martin Oberlack
Darmstadt, Germany Marta Wacławczyk
Forl�ı, Italy Alessandro Talamelli
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Uncertainties in Turbulence

Arkady Tsinober

Abstract We argue that in order to reduce the inherent uncertainties caused by
low-dimensional approaches (LES etc.) to treat turbulent flows at high Re, not acces-
sible to DNS of NSE, it is necessary to study the inherent nonlocal (Tsinober, An
informal conceptual introduction to turbulence, 2009 [6], Tsinober, The essence of
turbulence, with emphasis on issues of paradigmatic nature, 2013 [7]) properties
and relations, manifested in rich direct and bidirectional coupling of large/resolved
and small/unresolved scales via non-trivial experiments at high Re. We show this by
evidence from those with pointwise access to the full tensor of velocity derivatives.

1 Introduction

Uncertainty and its quantificationn is a generic issue in science, technology and
applications and is a central concern in modeling of all complex, highly-dimensional
systems [2], including systems governed by deterministic laws, as classical NSE
turbulence. The apparently random behavior of turbulence in incompressible media
is a manifestation of deterministic law of nature, adequately described by NSE. Nev-
ertheless, turbulence is considered traditionally as containing inherent uncertainty,
being chaotic. An important point is that complex (chaotic) behavior makes the law
neither probabilistic nor indeterminate. The lack of predictability (and uncertainty) in
chaotic deterministic systems is related towhatwe, humanbeings, are able to observe,
analyze and compute, i.e., it is in a sense subjective, independently of whether this
lack of predictability is due to sensitive dependence on initial conditions, or not. In
other words, the common blame of these to be uncertain because they are chaotic [5]
is a misinterpretation of chaotic behavior—“chaotic” and “uncertain” are far from
being synonymous.

As concerns modeling, the origin of uncertainty is not in the behavior of real
systems, such as described by NSE, but in their simplified, low dimensional models,
due to finite computing resources, and underestimation of the role of unresolved
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4 A. Tsinober

scales: the belief that the unresolved scales and processes associated with them can
be adequately represented by relatively simple (e.g., diffusive-like) deterministic
formulae [4] or other “parameterizations”, representing key processes in climate
models without resolving them [3]. In such an approach the small/unresolved scales
are essentially abused assuming that they are ‘slaved’ to the explicitly treated part of
the flow and servingmostly as a passive sink of energy. This is amajormisconception
and oversimplification due to neglecting the inherently-nonlocal nature of turbulence.
This is themain issue in the sequel.We bring several examples, concerning nontrivial
impact of dissipative processes on the conventionally-defined inertial range (CDIR),
based on field experiments at large Re in atmospheric surface layer.

2 On What Is Nonlocality and a Few Words on Locality

Nonlocality is a broad, but much neglected issue. It is a generic property of turbulent
flows independently of mean shear or other external factors.

In the context ofmodeling the nonlocality ismanifested in a rich direct and bidirec-
tional coupling between large/resolved and small/unresolved scales and comprises
an essential part of the complex interaction between the multitude of the degrees
of freedom in turbulent flows. On other aspects see [6, 7]. There is some conflict
between the common view on dominance of local effects, though there are no rigor-
ous grounds for it, and the fact that turbulence ismore than suspect of being inherently
nonlocal, and continuing attempts to single out “locality” and related “simpler” prop-
erties by some hypotheses, etc. The main rationale for such attempts becomes clear
because nonlocality is among the main reasons of the absence of a sound theory of
turbulence, based on first principles, see [6, 7] for references.

There are other reasons why non-locality is bad. With nonlocality it is far from
trivial, if not impossible, to use the experimental data—all limited in space and
time—for “validation” of theoretical developments for, e.g., homogeneous flows,
i.e., in “infinite” domains. Also, locality is necessary for the “physical foundation”
of LES modeling of turbulence, etc. Though even just looking at the equations for
the small/unresolved scales it is straightforward to realize that these scales depend on
the large/resolved scales via nonlinear space and history-dependent functionals, i.e.,
essentially non-local both spatially and temporally and also bidirectionally, which
makes low-dimensional description pretty problematic. So it is unlikely—and there is
accumulating evidence for this—that relations between them (such as “energy flux”)
would be approximately local in contradiction to K41 hypotheses and surprisingly
numerous (but futile) efforts to support their validity.
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3 Is the Kolomogorov 4/5 Law a Pure Inertial Relation
and Is the Inertial Range a Well-Defined Concept

We start with the above as an outstanding example of interpretational abuse. One of
the popular arguments for the existence of the CDIR at large Re is the Kolmogorov
4/5 law, which is the consequence of the NSE, for a review of theoretical results
see [6]:

S3 = −(4/5)〈ε〉r + 6νd S2/dr; Sn = 〈(Δu)n〉, (1)

and in which the last term is negligible at large Re. There is an experimental confir-
mation that at Re up to Reλ ≈ 104 the term 6νd S2/dr is negligible, and the relation
S3 = −(4/5)〈ε〉r does hold in a broad range of scales exceeding three decades at
Reλ ≈ 104, [6]. Thus one gets an impression that the 4/5 is a purely inertial relation
at large Re. However, this would be true if the S3, or more precisely, just velocity
increments Δu ≡ [u(x + r) − u(x)] · r/r , would not contain non-negligible contri-
butions from dissipative events, i.e., in reality what is called IR is assumed to be
purely inertial and having no contribution from viscous events. Indeed, comput-
ingΔu one encounters also large and even very large instantaneous dissipation at the
ends (x, x + r). In other words, the second Kolmogorov hypothesis involves a strong
assumption that the dissipative events, such that at least at one of the ends (x, x + r)
the instantaneous dissipation ε > q〈ε〉 with q > 1 do not matter for the statistics of
velocity increments. To (dis)prove this one needs access to instantaneous dissipation
at large Re. Indeed, looking at Fig. 1 it is seen that there exists a substantial number

Fig. 1 Histograms of the increments of the longitudinal velocity component for the full data and the
same data, in which the strong dissipative events (see text) were removed. r/η = 400 and threshold
q = 3; field experiment, Reλ ≈ 104; the lower edge of the inertial range is about r/η = 40. Note
that the PDFs with removed strong dissipative events (dark blue curve) are not close to the Gaussian
curve. An important feature is that dissipative events literally live within the CDIR in turbulence at
high Reynolds numbers, i.e., nonlocality is a broader issue and does not necessarily involve scale
separation, such as in long-range interactions, see [6, 7] for references
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of dissipative (!) events (DE), living in the conventionally-defined dissipative range
(CDDR) with essential contribution to the PDF of velocity increments in the CDIR
at high Reynolds numbers, Reλ ≈ 104. The key feature is that this contribution is
largest to the tails of the PDF of velocity increments, i.e., removal of the strong dis-
sipative events results in narrowing of the tails in the PDFs of Δu. Thus the CDIR is
an ill-defined concept. In particular, this means that the neglected viscous term in the
Kolmogorov 4/5 law does not contain all the viscous contributions. Those, present
in the structure function S3 itself, remain and keep the 4/5 law precise: without the
dissipative events, just mentioned, the 4/5 law does not hold! In this sense the 4/5
law is not a pure inertial law even at Reλ ≈ 104.

Indeed, strong dissipative events do contribute to the 4/5 law, and removing them
leads to an increase of the scaling exponent above unity. It is noteworthy that the
contribution of the dissipative events in the 4/5 law at large Reynolds numbers is not
small in spite of considerable cancellation between negative and positive events.

Thus—contrary to commonview—the4/5 law is not a pure inertial relation at large
Re. The important implication of more general nature is that nonlinear interactions
(NI) are not synonymous to purely inertial ones. NI consist of purely inertial ones
with an essential contribution from the viscous and cross-interactions. In case of the
third order functions and energy fluxes these interactions are constrained by the 4/5
law. The consequence is that the purely inertial and dissipative events are adjusting
to keep some quantities, as the total dissipation or the energy flux, approximately
constant at large Re. The constraint, responsible for this adjustment, is just the 4/5
law or, more generally, the NSE. For more on this issue see Sect. 10.2 in [6].

As concerns structure functions of higher order, p > 3, there is no simple con-
straint as the 4/5 law for S3. The consequence is that the mentioned above dissipative
events are responsible for what is called anomalous scaling for Sp, p > 3. This is
clearly seen from Fig. 2. Thus the anomalous scaling is not an attribute of the CDIR,
and the latter is not a well-defined concept, just like “cascade” and the CDDR.

Fig. 2 Scaling exponents of
structure functions at
Reλ ≈ 104 for the
longitudinal velocity
component corresponding to
the full data and the same
data, in which the strong
dissipative events with
various thresholds q were
removed. With q = 3 the
higher order structure
functions (p > 3) exhibit
Kolmogorov scaling p/3.
See [6, 7] for references
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It is noteworthy that handling the issue with strong dissipative events makes
sense not only due to their dissipative nature, but also because these events represent
strong strain and all observed nonlinearities appear to be much stronger in the strain-
dominated regions, rather than in regions with concentrated vorticity [6, 7]. Finally
we would like to mention that the data used were somewhat spatially underresolved.
For quantitative improvement one needs a probe with sub-Kolmogorov resolution.
Such a probe was recently successfully tested in laboratory, [1].

4 Concluding Remarks

Among more general contexts nonlocality leads to nontrivial paradigmatic conse-
quences, such as illposedness of the concepts of cascade and local equilibrium,
conventional inertial and dissipative ranges, the anomalous scaling being not the
attribute of the (nonexistent) conventional inertial range, the 4/5 law as not a purely
inertial relation, and importance of the nature of dissipation on the processes in the
CDIR, [6, 7]. In the context of interest it is manifested in direct and bidirectional
coupling/interaction of large/resolved and small/unresolved scales.

Consequently, low-dimensional approaches are inherently uncertain and generi-
cally deficient as, e.g., abusing andmissing an essential part of physics and dynamics
resided mostly with small/unresolved scales associated with, e.g., such fundamental
properties of turbulence as being an essentially rotational and dissipative rather than
purely inertial phenomenon.
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Complete Description of Turbulence
in Terms of Hopf Functional and LMN
Hierarchy: New Symmetries and Invariant
Solutions

Marta Wacławczyk

Abstract This paper deals with two methods for the full statistical description of
turbulent field, namely the Lundgren–Monin–Novikov hierarchy (Lundgren, Phys
Fluids, 10:969–975 1967, [5]) for themultipoint probability density functions (PDFs)
of velocity and Hopf functional equation for turbulence (Hopf, J Ration Mech Anal,
1:87–122 1952, [2]). These equations are invariant under certain transformations
of dependent and independent variables, so called symmetry transformation. The
importance of these symmetries for the turbulence theory andmodelling is discussed.

1 Introduction

Although the phenomenon of turbulence is described by deterministic Navier–Stokes
equations, due to its sensitivity to small variations in the initial and boundary condi-
tion the turbulent field may be treated as a stochastic field. For its full description, all
multipoint statistics of arbitrary order should be known. With respect to turbulence
research three complete descriptions of turbulence are known, namely the infinite
hierarchy of the multi-point correlation equations (so-called Friedmann–Keller (FK)
hierarchy, [3]), the infinite hierarchy of the multipoint PDF equations (Lundgren–
Monin–Novikov (LMN) equations, [5]) and finally the Hopf functional approach,
[2]. The two latter approaches will be discussed below.

The n-point velocity PDF fn = fn(v(1), . . . , v(n); x(1), . . . , x(n), t) carries infor-
mation about all statistics up to n-point statistics of infinite order which can be cal-
culated from the PDF by integration over the sample space variables v(1), . . . , v(n),
for example

〈Ui(1) (x(1), t) · · · Ui(n)
(x(n), t)〉 =

∫
vi(1) . . . vi(n)

fndv(1) . . . dv(n). (1)
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E. Hopf introduced another very general approach to the description of turbu-
lence. He considered the case where the number of points in PDF goes to infinity,
so that the probability density function becomes a probability density functional
F([v(x)]; t) where instead of the vector of sample space variables v(1), . . . , v(n) at
points x(1), . . . , x(n) one deals with a continuous set of sample space variables v(x).
It is more convenient to consider a functional Fourier transform of the probability
density functional, called the characteristic functional than F([v(x)]; t) itself

Φ([y(x)]; t) =
∫

ei(y,v) F([v(x)]; t)Dv(x) = 〈ei(y,U)〉 (2)

where the integration is performedwith respect to theprobabilitymeasure F([v(x)];t)
Dv(x) and (y, v) = ∫

G yi vidx is a scalar product of two vector fields. With this def-
inition moments of the velocity can be calculated as the functional derivatives of the
characteristic functional at the origin [2]

δnΦ([y(x)], t)

δyi(1) (x(1)) · · · δyi(n)
(x(n))

∣∣∣∣
y=0

= i n〈Ui(1) (x(1), t) · · · Ui(n)
(x(n), t)〉. (3)

Hence, Φ may be treated as a functional analogue of the characteristic function Φn

for n → ∞, defined, in the probability theory, as the inverse Fourier transform of
fn . E. Hopf derived evolution equation for the characteristic functional, cf. [2]. It is
only one equation (not a hierarchy) which embodies the statistical properties of the
fluid flow in a very concise form.

The objectives of the present work is to discuss the classical and new statistical
Lie symmetries that were first found for the FK hierarchy [6] and are also present
in the LMN hierarchy [9] and find corresponding symmetries for the Hopf equation.
Lie one-point symmetry transformation is such transformation of the independent
and dependent variables, x and y, respectively, which does not change the functional
form of a considered equation [1]

F(x, y, y
1
, y
2
, . . . , y

p
) = 0 ⇔ F(x∗, y∗, y∗

1
, y∗

2
, . . . , y∗

p
) = 0 (4)

where the transformed variables x∗ = g(x, y; ε) and y∗ = h(x, y; ε) are functions of
x and y and depend on a group parameter ε. The transformations can also bewritten in
infinitesimal forms after a Taylor series expansion about ε = 0: x∗ = x + ξ(x, y)ε +
O(ε2) and y∗ = y + η(x, y)ε + O(ε2). It follows from the Lie’s first theorem that
knowing the infinitesimal forms ξ and η uniquely determines the global form of
the group transformation g(x, y; ε) and h(x, y; ε). With the use of infinitesimals
invariant solutions of the considered Eq. (4) may be derived [1]. In fluid mechanics
these solutions often represent attractors of the instantaneous fluctuating solutions
of the Navier–Stokes equations, i.e. the characteristic turbulent scaling laws.
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From the Lie symmetry analysis of the LMN hierarchy it followed that, surpris-
ingly, the new symmetries are connected with intermittent laminar/turbulent flows
[9]. The outcome of the symmetry analysis are invariant solutions for turbulence
statistics and new possibilities to improve turbulence closures, such that invariance
under the whole set of symmetries is accounted for.

2 Symmetries of the LMN Hierarchy

TheLMNhierarchy, derived inRef. [5] is an infinite set of equations for themultipoint
PDFs where in the nth equation the n + 1-point PDF is present

∂ fn

∂t
+

n∑
k=1

vi(k)

∂ fn

∂xi(k)

= − 1

4π

n∑
k=1

∂

∂vi(k)

∫ ∫ (
∂

∂xi(k)

1∣∣x(k) − x(n+1)
∣∣
) (

v j(n+1)

∂

∂x j(n+1)

)2

fn+1dv(n+1)dx(n+1)

−
n∑

k=1

∂

∂vi(k)

[
lim|x(n+1)−x(k)|→0

ν
∂2

∂x j(n+1) ∂x j(n+1)

∫
vi(n+1) fn+1dv(n+1)

]
. (5)

Symmetries of the LMN hierarchy were investigated in Ref. [9]. Therein, it was
shown that the hierarchy is invariant under the classical symmetries of the Navier–
Stokes, equations, in particular, time and space translations, Galilean invariance and,
for ν = 0 two scaling groups

T̄2 : t∗ = t, x∗
(l) = ea2x(l), v∗

(l) = ea2v(l), f ∗
n = e−3na2 fn, (6)

T̄3 : t∗ = ea3 t, x(l) = x(l), v∗
(l) = e−a3v(l), f ∗

n = e3na3 fn. (7)

with l = 1, . . . , n, which for ν �= 0 reduce to one scaling group. Moreover, it was
shown that the LMN hierarchy is invariant under new statistical symmetry groups
observed in the Friedrich–Keller hierarchy as the scaling and translations of multi-
point velocity correlations cf. Ref. [6]. In the LMN approach the symmetries have
the following forms

f ∗
n = δ(v(1)) · · · δ(v(n)) + eas ( fn − δ(v(1)) · · · δ(v(n))). (8)

for the scaling and

f ∗
n = fn + ψ(v(1))δ(v(1) − v(2)) · · · δ(v(1) − v(n)). (9)

for the translation symmetry, where ψ is a function such that
∫

ψ(v)dv = 0 and δ is
the Dirac delta function.
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In Ref. [9] the particular case of a plane Poiseuille channel flow was considered.
Both the scaling (8) and the translation symmetry (9) were taken into account. For the
channel flow the symmetries have slightly different form. First, the scaling symmetry
(8) transforms a PDF fn of a turbulent signal into the PDF with delta function at
v = 0. Next, the translation symmetry with the function ψ defined as ψ = (1 −
eas )[δ(v(1) − UL(x(1))) − δ(v(1))] where UL(x(k)) = [U0(1 − x2

2(k)
/H 2), 0, 0], U0 is

the velocity at the centerline and H is the channel half-width, transforms PDF into

f ∗
n = eas fn + (1 − eas )δ(v(1) − UL(x(1))) . . . δ(v(n) − UL(x(n))). (10)

To sum up, both symmetries, scaling and translation transform a PDF of a turbulent
signal into the PDF of an intermittent laminar-turbulent flow. This would correspond
to a situation where the flow in a channel is induced by a certain pressure difference
ΔP , such that the resulting Reynolds number Re = Ub H/ν where Ub is the bulk
velocity, is close to the critical value Recr . For certain range of Re both, laminar or
turbulent solutions are possible with certain probability, leading to the PDF of the
form given in Eq. (10). As discussed in Ref. [9] such interpretation of the symme-
tries has important consequences. First, it leads to certain conditions on the group
parameter eas . As this parameter is present in invariant solutions for turbulent sta-
tistics derived in [6] it may provide restrictions on the scaling parameters in these
laws, such as e.g. the von Karman constant. Second, to properly describe physics,
turbulence models should be invariant under the same set of symmetries as the exact
equations for statistics (e.g. the FK hierarchy), hence, new symmetries should be
included in these models. It may be expected that this is especially important in the
case of models describing laminar-turbulent transition.

With the use of new symmetries series of invariant solutions for turbulence statis-
tics canbederived [6]. InRef. [9] three particular symmetrieswere taken into account:
classical scaling of the Navier–Stokes equations, cf. (5), y∗ = ek2 y, 〈U 〉∗ = e−k2〈U 〉
where k2 is an arbitrary constant, new scaling and translation symmetries of the mean
velocity 〈U 〉∗ = eas 〈U 〉 + C1(1 − y2/H 2), which follows from Eq. (10). Invariant
solution can be found from the solution of the characteristic equation [6]

d〈U 〉
(as − k2)〈U 〉 + C1(1 − y2/H 2)

= dy

k2y
(11)

which for as = k2 gives

〈U 〉 = C1

k2
ln(y) + C1

2k2

(
1 − y2

H 2

)
+ C (12)

where C is a constant. The formula above is, apparently, a sum of the turbulent and
laminar velocity in the plane channel flow.
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3 Symmetries of the Hopf Equation

Based on the Navier–Stokes equations, E. Hopf derived evolution equation for the
characteristic functional [2]. It is only one equation (not a hierarchy) and all turbu-
lence statistics can formally be calculated from the solution of the Hopf equation.
The Hopf equation for velocity in the physical space reads [2]

∂Φ

∂t
=

∫
R
dx ỹk(x)

[
i

∂

∂xl

δ2Φ

δyl(x)δyk(x)
+ ν∇2

x

δΦ

δyk(x)

]
. (13)

where, in order to eliminate pressure functional Π from the equation, vector field
ỹ such that y(x) = ỹ(x) + ∇φ was introduced. The scalar φ is chosen such that
ỹ = 0 at the boundary B and the continuity equation is satisfied ∇ · ỹ = 0. In order
to check the invariance of the Hopf functional equation under the scaling groups
we first consider transformations of n + 1-point characteristic functions. From the
relation

Φ∗
n+1 =

∫
eiv∗

(0)·y∗
(0) · · · eiv∗

(n)·y∗
(n) f ∗

n+1dv∗
(0) . . . dv∗

(n) (14)

we find that the scaling symmetries (6) and (7) will hold if y∗
(i) = e−k2y(i) and

y∗
(i) = ek3y(i) for each i , as in such a case the exponent v∗

(i) · y∗
(i) = v(i) · y(i) remain

unchanged and using (6) we obtain Φ∗
n = Φn . The same holds for the second scaling

group (7), i.e. the n-point characteristic function is not transformed Φ∗
n = Φn . We

expect that the same should hold for the limit n → ∞ and the characteristic func-
tional. In this case instead of the discrete kth variable yi(k)

we deal with yi (x)dx. The
sums are replaced by integrals in the continuum limit and hence yidx should scale
as yi(k)

in the discrete case, i.e. y∗
i dx∗ = e−k2 yidx. Because dx scales as dx∗ = xe3k2

it follows that y∗
i = e−4k2 yi .

To sum up, it can be shown that the Hopf functional equation (13) for ν = 0 is
invariant under the following transformation of variables

T̄2 : Φ∗ = Φ, x∗ = ek2x, t∗ = t, y∗
i dx∗ = e−k2 yidx, y∗ = e−4k2y, (15)

T̄3 : Φ∗ = Φ, x∗ = x, t∗ = ek3 t, y∗
i dx∗ = ek3 yidx, y∗ = ek3y. (16)

For ν �= 0 instead of two scaling groups we obtain one scaling.
The difficulty is connected with the Galilei invariance which is broken. The func-

tional Φ transforms under the Galilean invariance as follows [4]

Φ∗ = 〈ei
∫

U∗(x,t)·y∗(x)dx∗ 〉 = 〈ei
∫

U(x,t)·y(x)dx〉ei
∫

y(x)·U0dx. (17)

Hence, the transformationofΦ maybewritten asΦ∗ = C([y(x)])Φ,whereC([y(x)])
is a functional

C([y(x)], t) = ei
∫

y(x)·U0dx (18)
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The nth derivative of the transformed functional Φ∗ at y = 0 gives

δnΦ∗

δyi(0) (x) · · · δyi(n−1) (x)

∣∣∣
y=0

= i n(Ui(0) (x, t) + U0i(0) ) · · · (Ui(n−1) (x, t) + U0i(n−1) )

(19)

as expected for Galilean invariance. In the Galilean transformation, the space
derivatives in Eq. (13) transform as ∂/∂x∗

i = ∂/∂xi and the integral over infinite
space

∫
dx∗ = ∫

dx. As the variables y∗ = y, also the functional derivative remains
unchanged δ/δ(yi (x))∗ = δ/δyi (x). The derivative ∂/∂t can be presented as

∂

∂t
= ∂t∗

∂t

∂

∂t∗ + ∂x∗
i

∂t

∂

∂x∗
i

+
∫

∂y∗dx∗

∂t

δ

δy(x)∗
= ∂

∂t∗ + U0i
∂

∂xi
, (20)

The transformed functional equation (13) reads

C([y(x)])∂Φ

∂t
=

∫
yk(x)

[
i

∂

∂xl

δ2C([y(x)])Φ
δyl(x)δyk(x)

+ ν∇2
x

δC([y(x)])Φ
δyk(x)

− ∂Π

∂xk

]
dx .

(21)

The functional derivative of Φ∗ in (21) reads CδΦ/δyk(x) + ΦδC/δyk(x) and
we note that Laplacian ∇2

x of the second term is zero as this term is not a func-
tion of x. Hence, the last RHS term of equation (21) inside the integral reads
C([y(x)])ν∇2

x δΦ/δyk(x). Further, the second functional derivative of Φ∗ reads

C
δ2Φ

δyk(x)δyl(x)
+ δΦ

δyk(x)

δC

δyl(x)
+ δΦ

δyl(x)

δC

δyk(x)
+ Φ

δ2C

δyk(x)δyl(x)
. (22)

Again, the derivative ∂/∂xl of the last term is zero, as it does not depend on x. In
addition we also have

∂

∂xk

[
δΦ

δyl(x)

δC

δyk(x)

]
= δC

δyk(x)

∂

∂xl

δΦ

δyl(x)
= 0, (23)

where the first equality follows from the fact that the derivative of C does not depend
explicitly on x and the second, from the continuity condition. It can be seen from
the definition of the Hopf functional (2) that its derivative with respect to yl(x) reads
〈iUl(x, t) exp[i ∫

U(x, t) · y(x)dx]〉, hence differentiating once again with respect to
xl is zero as ∂Ul/∂xl = 0. Finally, the transformed Hopf equation reads

C([y(x)])∂Φ

∂t
= C([y(x)])

∫
ỹk(x)

[
i

∂

∂xl

δ2Φ

δyl(x)δyk(x)
+ ν∇2

x

δΦ

δyk(x)

]
dx

+ δC

δyl(x)

∫
yk(x)

[
i

∂

∂xl

δΦ

δyk(x)

]
dx (24)
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As it is seen the last RHS term does not cancel. Hence, in the integral formulation
of the Hopf equation the Galilei invariance is broken.

We will next consider the transformation of the Hopf functional under the statis-
tical symmetries, formulated for the PDF’s in Eqs. (8) and (9). E. Hopf proposed to
present the solution of the Hopf functional as the infinite series expansion [2]

Φ = 1 + C1 + C2 + · · · , (25)

where

Cn =
∫

Ki(1)...i(n)
(x(1), . . . , x(n), t)yi(1) (x(1)) · · · yi(n)

(x(n))dx(1) · · · dx(n) (26)

with functions

Ki(1)...i(n)
(x(1), . . . , x(n), t) = i n

n! 〈Ui(1) (x(1), t) · · · Ui(n)
(x(n), t)〉. (27)

If we substitute the statistical symmetries of moments into the above equations we
find that the scaling symmetry of multipoint velocity correlations, cf. Ref. [6] and
Eq. (8), transforms the kernel functions as

K ∗
i(1)...i(n)

= eks Ki(1)...i(n)
, (28)

hence the series expansion reads

Φ∗ = 1 + eks
(
Φ1 + Φ2 + · · · ) , (29)

or
Φ∗ = 1 + eks (Φ − 1) . (30)

The translation symmetry of multipoint correlations, cf. Ref. [6] and Eq. (9),
translates the kernel functions by a constant which leads to the following translation
of the nth term in the Taylor series expansion

Φ∗
n = Φn +

∫
Ci(1)...i(n)

yi(1) (x(1)) · · · yi(n)
(x(n))dx(1) · · · dx(n). (31)

Hence, the translation symmetry of the characteristic functional Φ can be written in
the following form

Φ∗ = Φ + Ψ ([y(x)]), (32)
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where Ψ is a functional such that its nth functional derivative at the origin equals
n!Ci(1)...i(n)

and its functional derivatives does not depend explicitly on x or t which
makes the Eq. (13) invariant under the transformation (32).

4 Conclusions

To sum up, it was argued that all methods for the full statistical description of turbu-
lence, namely FK hierarchy, LMN hierarchy for PDFs and the Hopf characteristic
functional equations are invariant under classical scaling symmetries of Navier–
Stokes equations and additionally under the set of statistical symmetries: translation
and scaling. Deriving transformations of the Hopf equation equivalent to the FK
symmetries is a new contribution of the present work. Through the analysis of PDF
equations the statistical translation and scaling were identified in Ref. [9] as con-
nected with the (external) intermittency. Hence, the statistical symmetries indicate
the fact that solutions of Navier–Stokes equations may have different character. Such
transformation could only be observed in the statistical approach, hence the statistical
symmetries were not found in the Lie group analysis of the Navier–Stokes equations.
With the use of statistical symmetries series of invariant solutions for turbulence sta-
tistics were obtained in Ref. [6]. It can be expected that similar, new results could be
obtained for PDFs based on the symmetries of LMN hierarchy. Moreover, the invari-
ance under new statistical symmetries could be introduced into turbulence models
to improve their predictions.

The Lie group analysis of infinite hierarchies of equations, such as LMN or FK
cannot be performed with the use of common computer algebra systems. Hence,
the symmetries of FK equations were rather guessed than calculated and their set
may not be complete. A possibility would be to apply the Lie group method to one,
Hopf functional equation in order to find possibly new statistical symmetries and
next derive corresponding transformations in the LMN and FK hierarchy. For this
purpose, the extended Lie group method, introduced in Refs. [7, 8] could be used.
This issue is the subject of the current study.
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Application of an Integral Fluctuation
Theorem to Turbulent Flows

N. Reinke, D. Nickelsen, A. Engel and J. Peinke

1 Introduction

There is a long lasting discussion on universal properties of turbulence. The following
questions arise: do turbulent properties change with the Reynolds number, or are they
even dependent on the large scale properties of turbulence? An important feature
would be that turbulence could be taken as universal below some scales. In this case,
even for turbulent flows which are generated on a large scale by different processes,
the same subgrid models can be used, an important aspect for numerical simulations.
For large eddy simulations, it is essential to know the connections between larger
scales and the unresolved subgrid turbulence. From this aspect it is important to get
a profound understanding of the turbulent cascade, relating turbulent structures on
different scales. Rigorous results on the turbulent cascade are still missing.

In the last decades there have been many works to achieve a better understand-
ing of the turbulent cascade. Interesting new methods have been developed. Often
these works are based on two-point correlations, although it was shown that three-
point correlations are elementary fundamental for the description of the turbulent
cascade [1, 2]. Such a three-point closure allows also to achieve a stochastic descrip-
tion of the cascade by Fokker–Planck equations, which finally enables a general
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N -point characterization of turbulence [3]. This stochastic approach to a more gen-
eral description of turbulence has recently been related to new developments in
non-equilibrium thermodynamics. Prominent among these developments are fluc-
tuation theorems [4, 5], of which an integral fluctuation theorem (IFT) has been
shown to hold for the stochastic approach to the turbulent cascade [6]. It provides
a characterization of entropy fluctuations along the turbulent cascade in form of a
generalized second law of thermodynamics.

In this paper we use the IFT to analyze different turbulent flows. Measurements
of a free jet flow and wake flows behind a fractal grid for two different Reynolds
numbers are presented in the next chapter. Afterwards, these data is analyzed and
compared on the background of the above mentioned questions of universal features
of turbulence.

2 Experimental Data

We analyzed velocity time series (a)–(c) based on different turbulent flows, namely,
a free jet flow [2] and two fractal grid flows [7]. Data-sets have been selected with
respect to two aspects. On the one hand, two data-sets of one flow with different
Reynolds numbers and, on the other hand, data from two different flows with similar
Reynolds numbers have been chosen. The velocity time series were measured in
an air stream with single-wire probes. The data-sets consists of 3 × 106–1.25 ×
107 samples. Flow characteristics, namely the Taylor Reynolds number Reλ, the
longitudinal integral length L , the Taylor length λ, the Einstein–Markov length lE M ,
and the length of inertial range L/λ, are summarized in Table1. The procedure
proposed by Aronson and Löfdahl [8] is used to estimate λ and Reλ; L is estimated
by integrating the autocorrelation function [9] and lE M is determined by using the
relation lE M = 0.9λ proposed by Lück [10].

Figure1 presents the energy density spectrum. Instead of using E(k) we plot the
spectral energy density as a function of the scale r = 1/k normalized by λ. Note that
we present and discuss all scales in units of λ. As usual, Taylor’s hypothesis of frozen
turbulence is used to transfer the measurements in time to those in space. The three
data-sets show the common scaling behavior of homogeneous isotropic turbulence,
E(r) ∝ r5/3.

Table 1 Flow characteristics of the measurements from three turbulent flows

Data-set Reλ (−) L (mm) λ (mm) lE M (mm) L/λ (−)

(a) Free jet 166 63.1 6.56 5.90 9.6

(b) Fractal grid 153 53.5 7.32 6.59 7.3

(c) Fractal grid 740 51.2 8.15 7.34 6.3
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Fig. 1 Energy spectrum of
fractal grid wake flows with
Reλ = 153; 740 and free jet
flow with Reλ = 166
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3 Theoretical Framework

3.1 N-Scale Statistics

The turbulent cascade can be described by the statistics of velocity increments ur =
u(x + r) − u(x). A general approach is the N -scale characterization of the turbulent
cascade. It is given by the joint probability p(ur ; ur+Δ; ...; ur+NΔ) over N scales r
[1, 3].

For Δ ≥ lE M the stochastic process can be expressed as a Markov-chain [1, 10].
The joint probability factorizes and derives from the conditional PDFs p(ur |ur+Δ)

[2, 11], reducing the N -scale statistics to three-point or two-scale statistics. The
transition probability p(u|u′) can be described by a Kramers–Moyal expansion. (We
abbreviate (ur ) with u and (ur+Δ) with u′). Due to the fact that the first two terms of
the Kramers–Moyal expansion strongly dominate the expansion [1, 2], the evolution
of the velocity increments for decreasing r can be expressed by the following Fokker-
Planck equation

− ∂r p(u|ũ) = −∂u
[
D(1)(u, r)p(u|ũ)

] + ∂uu
[
D(2)(u, r)p(u|ũ)

]
. (1)

where ũ denotes an increment at some fixed large scale r̃ > r .
The remaining two Kramers–Moyal coefficients D(1)(u, r) and D(2)(u, r) are

also called drift and diffusion coefficient, respectively. (We abbreviate D(1)(u, r)

and D(2)(u, r) with D(1,2)). These coefficients, together with the initial distribution
p(uL , L), contain the complete stochastic information about the cascade.

D(1,2) are estimated by the moments

M (κ)(u,Δ, r) =
∫ +∞

−∞
(u − u′)κ p(u|u′) du′ ,

D(κ)(u, r) = lim
Δ→0

r

κ!Δ M (κ)(u,Δ, r) . (2)



22 N. Reinke et al.

Due to a subsequent optimization of D(1,2), small uncertainties in Eq. (2) (e.g. esti-
mating limit) can be overcome.The optimization cost function is based on conditional
PDFs, which are deduced on the one hand from experimental data and on the other
hand from Kramers–Moyal coefficients [12, 13].

3.2 Integral Fluctuation Theorem as Criterion for D(1,2)

The two Kramers–Moyal coefficients D(1,2) define the Markov cascade process.
Markov processes are central in the emerging field of stochastic thermodynamics
[4]. A typical example is the motion of colloidal particles subject to an external
force [14]. In this non-equilibrium setting, the particles produce entropy as they
move through the fluid. The entropy production ΔS can be defined for individual
fluctuating trajectories by which it becomes a fluctuating quantity itself. Due to the
nanoscopic setting, also negative values of ΔS are possible. The balance between
fluctuations that produce or consume entropy is expressed by the IFT [5]

〈e−ΔS〉 = 1 , (3)

where 〈. . . 〉 is the expectation value over many fluctuating trajectories. Note that
Eq. (3) implies that on average 〈ΔS〉 > 0, in agreement with the second law of
thermodynamics.

For any Markov process an IFT for ΔS in the form Eq. (3) is known to hold.
Thus, the IFT can be used to test the validity of the approximation defined by the
Kramers–Moyal coefficients D(1,2) and the initial distribution p(uL , L) for the tur-
bulent cascade. The entropy production for a single realization u(·) can be calculated
from the functional

ΔS[u(·)] = −
∫ λ

L
∂r u(r) ∂uϕ

(
u(r), r

)
dr − ln

p(uλ, λ)

p(uL , L)
(4)

with the non-equilibrium potential. Here (·) denotes the evolution of r from L to λ .

ϕ(u) = ln D(2)(u, r) −
∫ u

−∞
D(1)(u′, r)

D(2)(u′, r)
du′ . (5)

To see if the IFT, Eq. (3), holds for our experimental data, we use Eq. (4) to determine
ΔS(i) = ΔS[u(i)(·)] from the estimated coefficients D(1,2) for different measured
realizations u(i)(·). The probability densities p(uL , L), p(uλ, λ) are taken directly
from the measured data. Averaging over different realizations, we test

〈e−ΔS〉n = 1

n

n∑
i=1

e−ΔS(i) 	 1 . (6)
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This relation holds only if, firstly, D(1,2) correctly capture the three-point statistics
of the flow field and, secondly, if the number n of measured u(·) is large enough to
include rare fluctuations with negative values for ΔS sufficiently often.

In [6], Nickelsen andEngel showed that Eq. (6) indeed holds for a free jet flowwith
D(1,2) estimated from the experimental data. Moreover, they found that fluctuations
of u on integral scales result in positive values for ΔS, whereas negative ΔS arise
from intermittent small-scale fluctuations. The IFT hence probes the estimation of
D(1,2) particularly with regard to the appropriate balance between typical large-scale
fluctuations and intermittent small-scale fluctuations, that is, it checks the correct
modeling of the cascade features that cause small-scale intermittency.

4 Result

We estimate the Kramers–Moyal coefficients D(1,2) for all three above mentioned
turbulent flows using the functional forms

r D(1)(u, r) = a1(r) u , r D(2)(u, r) = b0(r) + b1(r) u + b2(r) u2 . (7)

The results of the optimized estimation of D(1,2) are shown in Table2.
With these estimates of D(1,2), we compute from Eq. (4) the entropy production

ΔS[u(·)] for different realizations of the three flows. Firstly, the validity of the IFT,
Eq. (6), is confirmed for the turbulent flows considered here, as shown exemplarily
in Fig. 2a, b. With increasing number n of samples a clear convergence to the value
1 can bee seen. Secondly, we can test the universality of turbulent features of our
chosen flows. An universal turbulent cascade implies universal coefficients D(1,2).

To check this assumption, we combine realizations u(·) and probability densities
p(uL , L), p(uλ, λ) from one flow with coefficients D(1,2) of another one. In par-
ticular, we find for the fractal grid that the IFT even holds if D(1,2) for flow (b) is
combined with u(·) and p(uL , L), p(uλ, λ) from the measurement for another Re
number (flow (c)), see Fig. 2c.

In a similar way, we analyze data for the flows shown in Fig. 2a, b which have been
generated in a different way but are of similar Reλ. In this case 〈e−ΔS〉 converges to a
value clearly higher than one, as shown in Fig. 2d. This suggests that the three-point
statistics of the free jet flow is not transferable to the statistics of the fractal grid flow,
or expressing this in other terms, both flows have clear different statistical features.

Table 2 Coefficients a1(r) and bi (r) of the drift and diffusion terms for the experimental data-sets
(a)–(c)

Data-set a1 b0 b1 b2

(a) Free jet −0.043r − 0.97 0.058r − 0.034 −0.0028r − 0.035 −0.0015r + 0.069

(b) Fractal grid −0.047r − 0.86 0.075r − 0.035 −0.0039r − 0.037 −0.0018r + 0.057

(c) Fractal grid −0.030r − 0.94 0.096r − 0.048 −0.0048r − 0.038 −0.0036r + 0.044
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Fig. 2 Application of the IFT, Eq. (6), for increasing number of samples n to a the free jet flowwith
Reλ = 166, b the fractal grid flow with Reλ = 153, c u(·), p(uL ) and p(uλ) from the fractal grid
flow with Reλ = 740 and D(1,2) from the fractal grid flow with Reλ = 153, and d u(·), p(uL ) and
p(uλ) from the free jet flow with Reλ = 166 and D(1,2) from the fractal grid flow with Reλ = 153

To conclude,we established that the IFT is fulfilled for our three different turbulent
flows. The crosswise checking of the IFT suggests that the stochastic cascade of
fractal grid turbulence is universal in terms of being independent of Reλ. Comparing
the free jetwith the fractal cascade at approximately the similar Reλ, no universality is
found. Establishing the link to small-scale intermittency, the statement is that within
the class of fractal generated turbulence the signature of small-scale intermittency is
universal, but is fundamentally different for the free jet flow.
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A Marker for Studying the Turbulent Energy
Cascade in Real Space

J.I. Cardesa and J. Jiménez

Abstract The equation for the kinetic energy based on the residual (sub-filter)
velocity is written in several ways in which each term in the equation is Galilean
invariant. A different expression for the inter-scale energy transfer term arises from
each equation. The statistics of these different terms are studied, together with those
of the subgrid-scale (SGS) dissipation.We report on the expression yielding the vari-
ance which best matches that of the SGS dissipation, and which is most negatively
correlated with it. We argue why the term exhibiting these features is preferred over
the others based on its physical meaning. Our study used direct numerical simulation
data of homogeneous isotropic turbulence, and our conclusions were observed to be
valid with both Gaussian and sharp spectral (low-pass) filters.

1 Introduction and Governing Equations

The subgrid-scale (SGS) dissipation is an example of a real-space quantity which
means transfer of kinetic energy between resolved (large) and unresolved (small)
scales. We define the large-scale velocity as a spacially low-pass filtered quantity as
follows

ui

(
x j

) =
∫

ui

(
x j − r j

)
G

(
r j

)
dr j , (1)

so that the total velocity is decomposed into large- and small-scale components as

ui = ui + u′
i
. (2)
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The evolution of the kinetic energy in the filtered velocity field is then given by

(
∂

∂t
+ u j

∂

∂x j

)
1

2
ui ui = − ∂

∂x j

(
u j p + ui τi j − 2νui Si j

) − 2νSi j Si j + Si j τi j , (3)

where τi j is the SGS stress tensor ui u j − ui u j and Si j τi j is the SGS dissipation.
Its statistics have been studied extensively [1, 3]. Here, we focus on an alternative
equation, which is that of the kinetic energy contained in the residual scales. The
reason behind this is that some terms within Eq. (3) are not, by themselves, Galilean
invariant. Another reason is that Si j τi j contains the triple product ui u j Si j which
features interactions between large scales only. We are looking for an inter-scale
transfer term arising uniquely from interactions between filtered and residual terms.
Among the ways of writing the evolution equation for the kinetic energy of the
residual (small-scale) velocities, we report on the following four:

(
∂t + u j ∂ j

) 1

2
u′

i
u′

i
= −∂ j

(
u′

j
p′ − 2νu′

i
S′

i j

)
− 2νS′

i j
S′

i j
+ u′

i
∂ j

(
τi j

) − u′
i
u′

j
Si j − u′

i
u′

j
S′

i j︸ ︷︷ ︸ (4)

TA(
∂t + u j ∂ j

) 1

2
u′

i
u′

i
= −∂ j

(
u′

j
p′ − 2νu′

i
S′

i j
− u′

i
τi j

)
− 2νS′

i j
S′

i j
− S′

i j
τi j − u′

i
u′

j
Si j − u′

i
u′

j
S′

i j︸ ︷︷ ︸ (5)

TB(
∂t + u j ∂ j

) 1

2
u′

i
u′

i
= −∂ j

(
u′

j
p′ − 2νu′

i
S′

i j
+ 1

2 u′
i
u′

i
u′

j

)
− 2νS′

i j
S′

i j
+ u′

i
∂ j

(
τi j

) − u′
i
u′

j
Si j︸ ︷︷ ︸ (6)

TC(
∂t + u j ∂ j

) 1

2
u′

i
u′

i
= −∂ j

(
u′

j
p′ − 2νu′

i
S′

i j
− u′

i
τi j + 1

2 u′
i
u′

i
u′

j

)
− 2νS′

i j
S′

i j
− S′

i j
τi j − u′

i
u′

j
Si j︸ ︷︷ ︸ . (7)

TD

There are additional ways of writing the right-hand side, but they lead to terms
which are not, by themselves, Galilean invariant. These four equations give rise to
four different inter-scale energy transfer terms outside of the divergence, which we
label TA→D . They should be the small-scale counterparts of τi j Si j . Our task will be to
compare some simple statistics of these four resulting terms, with the aim of choosing
the most suitable one for our needs.

2 Results and Conclusions

Wecomputed the inter-scale transfer terms TA→D from the direct numerical simulation
of forced homogeneous isotropic turbulence found in the databases of the Johns
Hopkins University [2]. Three 10243 velocity fields were used, separated by half a
large-eddy turnover time between them. The Reλ reported is 433. Entire fields of
the three velocity components were downloaded and Fourier transformed, in order
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to filter and differentiate in wave-number space—thus taking full advantage of the
simulation’s spectral accuracy. We used a Gaussian and a sharp spectral filter. The
filter widths were [20, 28, 40, 57, 80, 113, 160, 226, 320, 453, 640, 905]η/π ,
with η being the Kolmogorov length scale.

The dependence of the mean and standard deviation of terms TA→D as well as
that of −τi j Si j on the filter width is shown in Fig. 1a, c for the Gaussian filter, and
in Fig. 1b, d for the sharp spectral filter. The mean values of TA→D for a given filter
type are equal to each other. This is consistent with the fact that they all differ by
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Fig. 1 Statistics of the transfer terms TA→D obtained with a Gaussian filter (left) and a sharp
spectral filter (right), as a function of filter width Δ. The horizontal axis is Δ/η on all figures.
Symbol legend: � TA , × TB , � TC , • TD , � − Si j τi j . a, b Mean of the transfer terms normalised
by the mean total viscous dissipation. c, d Standard deviation of the transfer terms normalised by
the mean total viscous dissipation. e, f Spatial correlation between τi j Si j and TA→D
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a divergence term which vanishes on average in homogeneous flows. However, the
mean that the terms converge to changes depending on the filter type. For both filter
types, it remains of the same order as themean total viscous dissipation. A significant
effect of the filter type is the fact that

〈−τi j Si j

〉
is different from the mean of terms

TA→D for the Gaussian filter. Yet these are all equal for the sharp spectral filter, which
is a projection contrary to the Gaussian filter. From Fig. 1c, d we conclude that the
standard deviation of TC is the most similar to that of τi j Si j , whereas those of TA , TB

and TD are larger. This lead us to investigate the spatial correlation between quantities
TA→D with τi j Si j found with the same filter width and type. It seemed reasonable to
expect, at least on average, that there exists a negative correlation between τi j Si j and
the quantities TA→D . Such a negative correlation would imply that when τi j Si j acts as
a sink in the equation for the kinetic energy of the large-scale velocity field, terms
TA→D behave as sources in the kinetic energy of the small-scale velocity field—and
vice-versa. These correlations are shown on Fig. 1e, f. It is clear from them that the
most negative correlation is given by TC , indicating that τi j Si j and TC behave more
like “communicating vessels” than the combination of τi j Si j with TA , TB or TD .

From the results outlined so far, we are left with the conclusion that TC features the
best-behaved statistics in the sense that they are themost consistent with the observed
statistics of τi j Si j . Our conclusion so far is based solely on the data. We now try to get
to the same conclusion by looking back at the equations where terms TA→D appear.
TA and TB are found to be the same as TC and TD with the additional u′

i
u′

j
S′

i j
product.

This product can be written entirely as part of the divergence—using continuity,
and so it contributes nothing to the mean but affects only the standard deviation.
As seen on Fig. 1c, d, u′

i
u′

j
S′

i j
increases the standard deviation. Furthermore, this

triple product is a coupling of small-scale quantities interacting with each other,
and hence cannot convey the meaning of an energy transfer resulting from large-
and small-scale interaction. So TA and TB could be discarded based on that criterion
alone. In order to chose the best expression—for our purpose—between TC and TD ,
we see that the equation with TD includes the term u′

i
τi j inside the divergence. The

latter term contains a coupling between filtered (large) and residual (small) quantities
which is outside of TD . Such coupling terms within the equation with TC have been
entirely confined to the inter-scale transfer term, so that all large- and small-scale
interactions lie inside TC . To summarise, all the products coupling large and small
scales in Eq. (6) are inside TC , while no additional term within TC is the result of
small-scale quantities interacting with each other. It is the only expression out of
Eqs. (4)→(7) which achieves this, and for this reason we chose it as our preferred
way of writing the evolution equation of the small-scale kinetic energy.
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Scale Energy of Turbulence Based
on Two-Point Velocity Correlation

Fujihiro Hamba

Abstract The energy density in the scale space was introduced on the basis of the
two-point velocity correlation toward better understanding inhomogeneous turbu-
lence and improving turbulence models. The transport equation for the energy den-
sity was derived for inhomogeneous turbulence. Using the DNS of homogeneous
isotropic turbulence, the transport equation in the scale space was evaluated and
compared with that in the wavenumber space. It was shown that the energy density
can be used to examine the energy transfer in the scale space.

1 Introduction

In order to better understand inhomogeneous turbulence, it must be useful to examine
the energy transport not only in the physical space but also in the wavenumber space.
Instead of the energy spectrum in the wavenumber space, the second-order velocity
structure function 〈(u′

i (x + r) − u′
i (x))2〉 was treated as the scale energy and its

transport in the r space was discussed [1–4]. However, its meaning in the limit of
r → ∞ for inhomogeneous turbulence is not clear because it corresponds to the sum
of the energies at very distant two points as 〈u′2

i (x + r)〉 + 〈u′2
i (x)〉.

In this work, we propose another definition of the scale energy based on the two-
point velocity correlation 〈u′

i (x)u′
i (x + r)〉. In the limit of r → 0 it corresponds to

the turbulent energy at a single point x. We expect that the energy density based on
the two-point velocity correlation is suitable in discussing the energy transfer in the
scale space. We derive the transport equation for the energy density in inhomoge-
neous turbulence. As a first step we examine the transport equation using the direct
numerical simulation (DNS) data of homogeneous isotropic turbulence. Analysis of
inhomogeneous turbulence such as channel flow will be done in future work.
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2 Energy Density in Scale Space

The transport equation for the energy spectrum E(k) for homogeneous isotropic
turbulence is given by

∂

∂t
E(k) = T (k) − ε(k), (1)

T (k) = 2πk2
∫∫

dpdqS(k, p, q), ε(k) = 2νk2E(k). (2)

The energy transfer can be discussed partly because the energy spectrum is the energy
density in the wavenumber space and satisfies K = ∫ ∞

0 dk E(k).
For inhomogeneous turbulence, it is not always possible to apply Fourier

transform. Instead, we can treat the two-point velocity correlation Qii(x, r) =〈
u′

i (x)u′
i (x + r)

〉
to examine the energy transfer in the scale space like the Kármán-

Howarth equation. The correlation Qii(x, r)/2 can be considered the energy whose
scale is larger than r and it does not exactly represent the energy density in the scale
space. Instead of Qii(x, r)/2, we introduce the following quantity as the scale energy:

E(x, r) = −1

2

∂

∂r
Qii(x, r) = −1

2

∂

∂r
〈u′

i (x)u′
i (x + r)〉, (3)

where r = |r|. Since this energy satisfies K = ∫ ∞
0 dr E(x, r), it represents the energy

density in r space.
The transport equation for E(x, r) can be written as

D

Dt
E(x, r) = 1

2

∂

∂r
〈u′

k(x)u′
i (x + r)〉

(
∂

∂xk
Ui (x) + ∂

∂xi
Uk(x)

)

+1

2

∂

∂r

[
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i (x)〉 ∂

∂xk
(Ui (x + r) − Ui (x))

]

+ν
∂
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〈
∂

∂xk
u′

i (x)
∂

∂xk
u′
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〉
+ ∂

∂xk

(
1

2

∂
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〈u′

k(x)u′
i (x)u′
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+ ∂

∂xi

(
1

2
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〈p′(x)u′

i (x + r) + p′(x + r)u′
i (x)〉

)
+ ν

∂2

∂xk∂xk
E(x, r)

+1

2

∂

∂r

∂

∂rk
[(Uk(x + r) − Uk(x))〈u′

i (x)u′
i (x + r)〉]

+1

2

∂

∂r

∂

∂rk
〈(u′

k(x + r) − u′
k(x))u′

i (x)u′
i (x + r)〉. (4)

By integrating each term from r = 0 to∞, Eq. (4) is reduced to the transport equation
for the turbulent energy K . On the right-hand side of Eq. (4) the first and second terms
correspond to the energy production, the third term to the dissipation, and the fourth
to sixth terms to the diffusion in the K equation. The remaining seventh and eighth
terms represent the energy transfer in the r space. By evaluating these terms we
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could examine in which scale the processes of energy production, dissipation, etc.
occur in wall bounded flows. This transport equation is expected to give an insight
into improving turbulence models. For homogeneous isotropic turbulence the above
transport equation is rewritten as

∂

∂t
E(r) = TE (r) − εE (r), (5)

TE (r) = 1

2

∂

∂r

∂

∂rk
〈(u′

k(x + r) − u′
k(x))u′

i (x)u′
i (x + r)〉, (6)

εE (r) = −ν
∂

∂r

〈
∂

∂xk
u′

i (x)
∂

∂xk
u′

i (x + r)
〉
. (7)

3 Analysis Using Homogeneous Isotropic Turbulence DNS

In this work, we examine the energy transfer in the scale space for homogeneous
isotropic turbulence as a first step to investigating the transport equation given by
Eq. (4). We carry out DNS of decaying homogeneous isotropic turbulence using
5123 grid points. The initial spectrum is set to E(k) ∝ k4 exp(−2(k/kp)

2) where
kp = 3.5. We will show data at t = 3 where the Reynolds number Rλ is 75. At t = 3
the spectrum is as broad as that in the case of forced isotropic turbulence and the
dependence on the initial condition has been almost forgotten.

Figure1a shows the energy spectrum E(k) as a function of k. Since the Reynolds
number is not very high, the inertial range where E(k) ∝ k−5/3 is narrow and is
located at k ∼ 20. Figure1b shows the energy density E(r) as a function of r . The
inertial range given by E(r) ∝ r−1/3 is located at r ∼ 0.15.

Next we compare the energy transfer between the wavenumber and scale spaces.
Figure2a shows terms in the transport equation in the wavenumber space given
by Eq. (1). The transfer term T (k) is negative in the low wavenumber region and

Fig. 1 Profiles of a energy spectrum E(k) and b energy density in the scale space E(r)
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Fig. 2 Profiles of a terms in the transport equation for E(k) given by Eq. (1) and b terms in the
transport equation for E(r) given by Eq. (5)

positive in the high wavenumber region, representing the forward energy cascade.
At the dissipation range the transfer and dissipation terms are balanced to each other.
Figure2b shows terms in the transport equation in the scale space given by Eq. (5)
as functions of r . The small (large) scale region in Fig. 2b corresponds to the high
(low) wavenumber region in Fig. 2a. The transfer term TE (r) is negative in the large
scale region and positive in the small scale region, representing the energy transfer
from the large scale to the small scale. Although the amplitude of terms is different
between Fig. 2a, b, the tendency of the energy transfer is the same. The profiles shown
in Fig. 2 suggest that the energy density defined as Eq. (3) can be used to examine
the energy transfer in the scale space.

4 Conclusions

The energy density in the scale space was introduced on the basis of the two-point
velocity correlation. The transport equation for the energy density was derived for
inhomogeneous turbulence. The energy transfer in the scale space was evaluated
using the DNS of homogeneous isotropic turbulence. It was shown that the energy
density is useful for examining the energy transfer in the scale space.
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A Numerical Study of the Shear-Less
Turbulent/Non-turbulent Interface

G. Cocconi, A. Cimarelli, B. Frohnapfel and E. De Angelis

Abstract A DNS simulation of an interface between a decaying turbulent flow
without mean shear and a quiescent non-turbulent region is presented here. The
analysis of the instantaneous fields highlight a complex multi-scale behaviour at
the turbulent/non-turbulent interface. According to previous results in the literature,
by analysing the enstrophy budgets it is possible to observe that enstrophy propa-
gate from the turbulent region mainly by inviscid process while viscous diffusion is
relevant only at the interface.

1 Introduction

Turbulent/non-turbulent interfaces (TNTI) can be found in a number of flows of
engineering interest where they are responsible for some of the key features of the
flow [1]. One of the still debated points on the propagation of turbulent fronts is
the relevant mechanism of entrainment of irrotational flow at the interface. Several
evidences based on local scaling of turbulent properties at the TNTI seems to suggest
that vorticity is initiated via small-scale viscous interactions along the convoluted
surface of the interface [1, 2, 4]. Here we try to asses the problem by analysing
propagation mechanics of enstrophy.
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2 DNS Simulation and Results

First a DNS simulation of homogeneous isotropic turbulence is generated by using a
pseudo-spectral code with a discretization of 2563 Fourier modes. Then two identical
fields are put one next to each other in order to obtain a continuous field with twice
the original size in the x direction. In such field, velocity fluctuations are multiplied
by a continuous function p(x) ∈ [1, 0], which damps the velocity to 0 in half the
domain (in a similar way as seen in [3] for a shear-less mixing), generating the initial
TNTI. The function p(x) had been defined as

p(x) = 1

2

[
1 + tanh

(
a

x

L

)
tanh

(
a

x − L/2

L

)
tanh

(
a

x − L

L

)]
, (1)

where L is the domain length while a is a parameter affecting the steepness of the
mean velocity gradient generated by the function. After the introduction of the TNTI
the flow is let freely decay while the turbulent front propagates in the irrotational
region. In order to asses the effect of the choice of the parameter a three different
values for it were used corresponding to a = 12π , a = 20π and a = 40π , corre-
sponding to three different steepnesses of the initial enstrophy profile. For each of
these three parameters 20 independent decay runs where performed which constitute
the statistical data-set for the present study. The average initial Reynolds number
based on the Taylor microscale is Reλ = 50 and the initial ratio between the dis-
cretization step and the Kolmogorov scale η is Δx/η = 1.44. The interface detection
is performed using an enstrophy threshold [1] with the threshold set to be 2 % of the
mean enstrophy in the turbulent core at a given time. A sample of the resulting TNTI
is shown in Fig. 1 for the case a = 40π at t/t0 ≈ 4 where t0 is defined as the integral
time scale of the flow at the beginning of the decay, here the cut-out of the color map
represent the enstrophy threshold used to determine the mean interface position.

Fig. 1 Instantaneous enstrophy field for a = 40π and t/t0 ≈ 4
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The decay rate of the kinetic energy in the turbulent core for all the three cases
simulated tends to the same power-law decay E ∝ t−7/6, implying that the turbulent
region is only marginally affected by the differences in the imposed initial conditions.
The location of the turbulent front is proportional to

√
t , highlighting a possible

relevance of the viscous diffusion mechanisms on the propagation of the interface.
Also from the point of view of the propagation rates of the interface the qualitative
behaviour of the TNTI was not affected by the choice of the initial condition. The
same is true for other statistics. The balance equation of enstrophy Ω = ωiωi/2 is
given by

∂〈Ω〉
∂t

= 〈ωiω j si j 〉 − ν

〈
∂ωi

∂x j

∂ωi

∂x j

〉
− ∂〈Ωu〉

∂x
+ ν

∂2〈Ω〉
∂x2

, (2)

where the first right-hand side term represent the vortex stretching, the second the
viscous dissipation, the third term is the advection of enstrophy and the last is the
viscous diffusion. Such budget of enstrophy is depicted in Fig. 2 where it is shown
how the bulk of the flow is dominated by the dissipation of enstrophy, partially
counteracted only by the vortex stretching while the others contributes are almost
negligible. As result enstrophy decays everywhere except at the interface, where the
small increment in enstrophy is mainly sustained by the inviscid advection of enstro-
phy. In the right panel of Fig. 2 is depicted the ensemble average of the advection,
together with some of its instantaneous samples at t/t0 ≈ 4. From this result, it can
be observed that the growth of enstrophy at the interface is mainly determined by an
inertial transfer of enstrophy, which is drawn by the advection in the turbulent region
between −90η and −30η and then it is released close to the interface. Despite the
scatter in the dataset, such behaviour is observable for all the single realisations. The
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Fig. 2 Left enstrophy budget as a function of the distance from the average interface position X I
at t/t0 ≈ 4; inset magnification of the interface region. Right ensemble average of the advection
from the entire data set (black line) and advection for some of the single realisations composing the
data-set (grey line), at t/t0 ≈ 4
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budget also shows that the viscous diffusion of enstrophy is negligible in most part
of the flow. Only at the interface, in the region between −15η and −10η, it becomes
positive and contributes in the spreading of enstrophy in the irrotational region.

3 Conclusions

A simulation of a shear-less turbulent non-turbulent interface was performed by
introducing an interface in a decaying homogeneous isotropic turbulent flow. The
analysis of the enstrophy budget in such flow showed how the bulk of the turbulent
region is dominated mainly by the viscous dissipation of enstrophy followed by the
vortex stretching. The viscous diffusion is non-negligible only in the region between
−15η and −10η, while is practically zero everywhere else in the flow. The advection
of enstrophy appears to be the feeding mechanism for the propagation of the turbulent
front. Inviscid mechanisms draw enstrophy from the turbulent region between 30η

and 90η behind the interface, and release it at the interface leading to a positive
temporal variation and hence to the propagation of the turbulent front.
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The Imbalance Between Enstrophy
Production and Destruction in Homogeneous
Isotropic Unsteady Turbulence

P.C. Valente, R. Onishi and C.B. da Silva

Abstract We show in direct numerical simulations of homogeneous isotropic
non-stationary turbulence that there is a systematic and significant imbalance between
enstrophy production and its destruction which is concomitant with the previously
observed imbalance between the non-linear energy cascade to fine scales and its dis-
sipation (Valente, Onishi, da Silva, Phys Rev E 90(023003), 2014, [12]). However,
contrary to the former, the imbalance between enstrophy production and destruction
is affected by the ‘cascade time-lag’, i.e. the time it takes for the energy injected on
the large-scales to reach the fine-scales.

1 Introduction

One of the great challenges in turbulence modelling has been the prediction of the
rate of turbulent kinetic energy dissipation in statistically unsteady turbulent flows
[7]. Perhaps the main underlying cause for this difficulty is the breakdown of Kol-
mogorov’s postulate of local equilibrium [4, 5], at least for the range of Reynolds
numbers typical of industrial and geophysical flows [12]. Local equilibrium, i.e. Kol-
mogorov’s notion that “within short time intervals this regime [that of small-scale
fluctuations that are approximately spatially isotropic] can be regarded as being sta-
tionary, even when the flow as a whole is non-stationary” [4], is essential to relate the
small-scale dissipation with the inertial-range non-linear energy flux. In particular
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it can be shown that it leads to a balance between the energy cascade in the inertial-
range and the kinetic energy dissipation. This balance, commonly known as Kol-
mogorov’s ‘four-fifth’s law’ (due to the pre-factor appearing in the isotropic form
of the balance first derived by Kolmogorov) is quintessential in many turbulence
models and underlies many theoretical developments in the field.

There are two main viewpoints to explain the origin of the imbalance between
energy cascade and dissipation. One viewpoint is that of ‘finite Reynolds number
effects’whereby any observed departures fromabalance between energy cascade and
dissipation are due to an insufficient separation between large and small scales which
is required for the onset of a true inertial range [1, 10]. An alternative viewpoint put
forth by Kraichnan [6] and subsequently developed by Lumley [7] and Yoshizawa
[3, 16] is that of a non-negligible time for the energy to ‘cascade’ from the large-
scales to the small-scales where it is dissipated. Note that the two viewpoints of
‘finite Reynolds number’ and ‘cascade time-lag’ are fundamentally incompatible
since for largeReynolds numbers the increasingly large separation between large- and
small-scales would imply an increasing energy cascade delay leading to a growing
imbalance between the energy cascade and the dissipation [2, 7] whereas in the
case of the imbalance being a ‘finite Reynolds number effect’ it would, in contrast,
become negligible at high Reynolds numbers [10].

2 Results

We present further results from our direct numerical simulations (DNS) of homoge-
neous isotropic turbulence driven by a periodic forcing following a square-wave
protocol [12]. Previously we have shown that these statistically unsteady DNSs
manifest a systematic and significant imbalance between the maximum non-linear
energy cascade flux to fine scales, Π , and the kinetic energy dissipation rate, ε

(see Figs. 1 and 2). Our data also indicated that the maximum energy cascade
flux (Π ) remains approximately proportional to the kinetic energy, ∼u2, over the
turnover time, �/u (� is an integral scale and u the root-mean-square velocity), i.e.
CΠ ≡ Π�/u3 ≈ constant, whereas the normalised dissipation followed a power-law
of the local (Taylor-microscale) Reynolds number, Cε ≡ ε�/u3 ∼ Re−α

λ (see Fig. 1),
which bears resemblance to the non-equilibrium behaviour found in the near-field of
grid-generated decaying turbulence [13–15].

Here we use our data to investigate the balance between vortex stretching,ωiωjsij,
and enstrophy destruction, 2ν∇ωi∇ωi (ωi is the vorticity, sij the strain rate tensor and
ωiωi is the enstrophy; the overbars indicate averages over the whole computational
domain) when there is a significant imbalance between Π and ε. These are the two
quantities appearing in the evolution equation for the dissipation in a homogeneous
flow.

dε

dt
= νωiωjsij − 2ν2∇ωi∇ωi (1)
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Fig. 1 Normalisedmaximum energy cascade fluxCΠ ≡ Π�/u3 and normalised energy dissipation
Cε ≡ ε�/u3 as functions of the local Reynolds number, Reλ, throughout the transients caused by
the periodic forcing (N is the number of collocation points in the DNSs)

(recall that in a homogeneous incompressible flow ε = νωiωi). In Fig. 2 we plot the
evolution of ωiωjsij − 2ν∇ωi∇ωi together withΠ − ε for one power input cycle out
of the three cycles computed. It can be readily seen that the plotted quantities follow
each other indicating that they may be physically related. This is perhaps not sur-
prising since ωiωjsij = ∫ ∞

0 k2T(k) dk and 2ν∇ωi∇ωi = 2ν
∫ ∞
0 k4E(k) dk, whereas

Π = ∫ ∞
kc

T(k) dk and ε = 2ν
∫ ∞
0 k2E(k) dk (kc is the wavenumber of the zero cross-

ing of the transfer function, i.e. T(k = kc) = 0). Therefore this would lead one to
expect that ωiωjsij ∼ Π and ν∇ωi∇ωi ∼ ε. One can go one step further and directly
relate ωiωjsij with Π and ∇ωi∇ωi with ε by introducing two assumptions. First, one
could assume that the energy and transfer spectra are self-similar for wavenumbers
larger than kc with the appropriate choice of normalising variables. In particular one
could keep Kolmogorov’s choice of ε and ν as the normalising variables for E(k),
but choose theΠ and ν as the normalising variables for T(k) since the data show that
Π �= ε throughout most of the transients and Π is directly obtained from T(k). Sec-
ond, one could assume that the contribution of the wavenumbers smaller than kc to
the integrals leading to ωiωjsij and 2ν∇ωi∇ωi is negligible. Introducing the ansätze
E(k) ∼ ε2/3k−5/3f (kη) and T(k) ∼ Πηg(kη) and evaluating the integrals for k > kc

(effectively neglecting the remaining infrared contribution) leads to
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dε

dt
∼ Π

√
ε/ν

∫ ∞

kcη

(kη)2g(kη) dkη

︸ ︷︷ ︸
Cε1

−ε
√

ε/ν

∫ ∞

kcη

2(kη)4f (kη) dkη

︸ ︷︷ ︸
Cε2

, (2)

where the integrals denoted as Cε1 and Cε2 would be invariant in time due to the
hypothesised self-similarity. Thismodel can be directly comparedwith theK-εmodel
where dε/dt = C�

ε1
P ε/K − C�

ε2
ε2/K [8] which differs in twomain things, (i) the rate

of change of dissipation is proportional to P − ε rather thanΠ − ε and (ii) the choice
of time scale is ε/K (which is proportional to the turnover time within Kolmogorov’s
phenomenology) rather than

√
ε/ν. We do not wish to make a case for preferring the

model equation (2) to the standard equation in the K-ε model. However, our DNS
data do indicate that ωiωjsij − 2ν∇ωi∇ωi seems to be more closely related toΠ − ε

rather than to P − ε, regardless of the particular choice of time-scale. It would be
interesting to test this finding in other unsteady turbulent flows.

Concerning the choice of time-scale, we note that the use of
√

ε/ν introduces
a Reynolds number dependence in the dissipation (or enstrophy) equation, which
disagrees with the phenomenological argument by Tennekes and Lumley [11], the
so-calledTennekes andLumleybalance.We refer the readers toRefs. [8, 9]where this
issue is thoroughly discussed. Nevertheless, what our data also show is that through-
out the transients the transfer spectra deform (see Fig. 4 in Ref. [12]), hindering
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the possibility of a self-similar shape which is required to arrive to Eq. (2). The
deformation of the transfer spectra, which we showed not to cause the imbalance
between Π and ε [12], do seem to strongly influence the imbalance between ωiωjsij

and 2ν∇ωi∇ωi. It is likely that these deformations of the spectra are a manifestation
of the cascade time-lag and therefore it may be possible to model their effect using
the ideas put forth by Lumley [2, 7] and Yoshizawa [3, 16].

3 Conclusions

In summary, we revisited the balance between vortex stretching and enstrophy
destruction in statistically unsteady homogeneous turbulence and found that their
imbalance follows closely the imbalance between the maximum energy cascade flux
and the dissipation. A simple model for the evolution equation of the kinetic energy
dissipation illustrated that the maximum cascade flux may be a better surrogate for
the vortex stretching than the turbulence production (or external power input) and
highlights the importance of revisiting the debate of the appropriate time-scale for
the dissipation equation as well as considering the effect of the cascade time-lag. Fur-
ther efforts in obtaining higher Reynolds number experimental and numerical data
in different unsteady flows are needed together with reinforced efforts in modelling
the dissipation equation.
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From Time to Space and Back: Convection
and Wave Velocities in Turbulent
Shear Flows

B. Ganapathisubramani and R. de Kat

Abstract To obtain spatial spectra, experimentalists map temporal spectra using
Taylor’s hypothesis [18]. This transfer function relates wavenumber to frequency
using a convection velocity, a velocity that proves difficult to define and use. Adding
to this difficulty, convection and wave velocities have been treated the same, despite
the obvious difference between them. Convection velocities are velocities at which
a specific structure moves—group velocity—and wave velocities are velocities at
which a single wave moves—phase velocity. The ideal mapping function to go
between wavenumber and frequency is the wavenumber-frequency spectrum that
shows a range of wave velocities can contribute to a single wavenumber or a single
frequency, and this range can differ significantly between them. To try to capture the
influence of this range, experimentalists have applied various peak or average wave
velocities with varying success. However, none account for the spread in wave veloc-
ities directly. In this paper we propose a two-point cross-spectral approach that uses a
distribution of wave velocities to reconstruct the wavenumber-frequency plane. This
plane can then be integrated to obtain the spatial spectrum. We verify the technique
on particle image velocimetry data set of a turbulent boundary layer, and we obtain
a transfer function from this data set. The transfer function is applied to hot-wire
data at a comparable Reynolds, and comparison of the newly proposed technique
with the classic Taylor’s hypothesis approach shows that Taylor’s hypothesis hold
for larger frequencies and wavenumbers the smaller frequencies and wavenumbers
(long temporal and spatial scales) there are significant differences.

1 Introduction

To infer spatial characteristics from temporal signals, experimentalists have long used
a time-space mapping that originates from Taylor’s hypothesis of frozen turbulence
[18]. Taylor assumes that—at a point—the change of turbulent velocity fluctuations
in time can be directly related to their spatial change—via the mean [convection]
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velocity. Lin [15] shows that, while the hypothesis holds in isotropic homogenous
convective turbulence, for (wall-bounded) shear flows the hypothesis breaks down
and is restricted to a limited range of wavenumbers (or frequencies).

In order to still be able to use Taylor’s hypothesis to map temporal spectra in to
space, experimentalists focus on finding an appropriate convection velocity (or veloc-
ities) to replace the mean velocity. They use two-point (cross-)correlation of time
signals and apply (time-)filtering to get frequency dependent convection velocities
[3, 4, 8, 9, 12, 19]. An alternative method is to use a cross-spectral approach where
the convection velocity is determined by the phase angle between two-point cross-
spectra [2, 10, 17], which is similar to the spectral filtering techniques, where both
are intended to overcome the dependancy of the convection velocity on the time
delay and separation distance.

Usingparticle imagevelocimetry (PIV), large regions of flowcanbe sampled at the
same time and these large fields-of-view (FOVs) combined with high-repetition-rate
cameras and lasers allows to directly investigate Taylor’s hypothesis and convection
velocities [6, 7].

Because experimentalists are keen to compare data with computations (and
vice versa) and find the appropriate mapping from time-spectra to space-spectra,
they shifted their focus from correlation based techniques to spectral approaches
[5, 13, 14, 16].

Most of these studies find that the convection of specific frequencies (waves)
is frequency dependent and their results suggest that there exists a range of these
‘convection’ velocities, which they try to account for using averages or peaks of this
distribution. Adding to the confusion is the difference between convection velocities
(group velocities) of turbulent velocity fluctuations and the wave velocity (phase
velocity) of thewaves that form the turbulent velocity fluctuations, and this difference
has become blurred. As a result, the efforts of finding a fix for Taylor’s hypothesis
by applying different ‘convection’ velocities are problematic.

Therefore, we determine a subset of the ideal mapping—the wavenumber-
frequency spectrum—for a turbulent boundary layer using PIV data and show that
wave velocities have a range of values that need to be taken into account.Wewill also
propose a newway of estimating the wavenumber-frequency spectrum using a cross-
spectral approach, which allows us to map spectra fromwavenumber to frequency or
vice versa without the issues related to defining and determining convection veloci-
ties. This new approach is verified on the same data that is used to obtain the subset
of the ideal mapping. Finally, a complete transfer is determined from our PIV data
and this transfer function is applied to a hot-wire data set at a comparable Reynolds
number to show the new approach and the classic Taylor’s hypothesis approach differ.

2 Experimental Setup and Methodology

A time resolved PIV experiment is performed in a streamwise wall-normal plane in
a turbulent boundary layer in the water tunnel at Cambridge University Engineering
Department. The test section of the water tunnel is 0.4m deep and 0.8m wide and
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8m long. The flow is tripped with a glass rod at the beginning of the test-section
and particle image velocimetry measurements are performed 4.5m downstream of
this trip. At this location, nominal flow conditions are the following, the free-stream
velocity is U∞ = 0.67m s−1, the boundary layer thickness is δ = 0.1m, the friction
velocity based on aClauser plot isUτ = 0.027ms−1, and the correspondingReynolds
number is Reτ = 2.7 × 103.

Particle image pairs are captured and processed using LaVision software DaVis
7.2. The field of view (FOV) of the measurements that covered an area of 17 ×
4.5cm (1.7δ × 0.45δ) with a spatial resolution of h+ = 10 (l+ = 20) and a temporal
resolution of Δt+ = 0.7. A total of 25,000 velocity fields were acquired spanning a
time interval of more than 300 δ/U∞.

3 Wave Velocities

Particle image velocimetry data is—as is experimental data in general—limited in
domain length and resolution. To minimise effects of truncation and account for
differences in resolution, we determine power spectral density by taking the fol-
lowing windowed and truncated two-dimensional Fourier transform of the velocity
fluctuations:

û(ξx , f ) = 1√
XT

∫ X
0

∫ T
0 w(x, t)2dtdx

∫ X

0

∫ T

0
w(x, t)u′(x, t)e−i2π( f t+ξx x)dtdx

(1)

where X is the domain length, T the sample time interval length, w the weighting
function. After which, the power spectral density is estimated by:

Φuu(ξx , f ) = û∗û (2)

where û∗ is the conjugate of û.
Figure1 shows power spectral densities with wavenumber and frequency of

streamwise and wall-normal velocity fluctuations at y/δ = 0.1. Wavenumber is
shown in the horizontal direction and frequency in the vertical direction. This
wavenumber-frequency mapping is what is required in order to obtain either the
wavenumber or frequency spectrum by integrating this plane along one direction.
The figure clearly shows the inclined nature of the spectrum suggesting a convecting
flow. There are several ways to determine this wave velocity. The inclination of the
contours provides a wave velocity that we can use to map time to space. At this
wall-normal location, it can be shown that a best fit regression line would infact have
a slope that is equal to the mean streamwise velocity at this plane. Other solutions to
define a single wave velocity linking frequency to wavenumber have been proposed
(for example, [13] traced the ridge). All these wave velocity definitions assume that
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Fig. 1 Wavenumber frequency power spectral density of streamwise and wall-normal velocity
fluctuations, Φuu and Φvv at y/δ = 0.1. The inset shows the PDF of phase velocity (red) at a single
frequency at this wall-normal location. Also shown in the inset is the PDF of instantaneous velocity
fluctuations (black)

the peak of the power (or energy) spectral density is the best representative of the
phase velocity. However, the actual spectra show a distribution around this peak and,
therefore, [5] proposed a weighted average of the energy spectrum to define average
wave velocities and as such take into account the whole distribution of energy over
all frequencies f for a given wavenumber ξx or the whole distribution of energy over
all wave numbers for a given frequency.

The above-mentioned methods still only takes a single wave velocity to capture
a range of wave velocities. The inset in Fig. 1a shows a PDF of wave velocities at a
single frequency at y/δ = 0.1. The figure clearly shows that there is wide distribution
of these wave velocities even at a single frequency. The figure also shows the PDF of
streamwise velocity fluctuations and it can be seen that the range of wave velocities is
larger than the range of instantaneous velocity fluctuations.Moreover, the distribution
of wave velocities is in fact skewed to the positive side. Therefore, any averaging
(weighted or otherwise) or peak tracing methods will not really capture the true
extent of wave velocities. Therefore, it is necessary to capture this range entirely in
order to map the frequencies to wavenumbers accurately.

4 Estimating the Wavenumber-Frequency Spectrum

A mapping from wavenumber to frequency (and vice versa) can be determined
by using a cross-spectral approach and it requires two-point temporal measure-
ments. Spatial spectra are determined for two different time instances and the dif-
ference in spatial phase between the two spectra is a measure for the distance a
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wave has traveled during the time in between the two instances [1]. Here we use a
cross-spectral approach to determine this phase difference by using temporal data.
We start with the one-dimensional truncated weighted Fourier transform and deter-
mine the auto-spectral power density in terms of frequency from a time series of data.
We then calculate the cross-spectrum between two different spatial locations sepa-
rated by a small distance (Δx), from which the phase spectrum is obtained. Fourier
transforms describe pure sinusoidal waves for a specific wavenumber or frequency,
therefore, the resulting phase shift can be used to estimate a corresponding fre-
quency or wavenumber, which we will refer to as the pseudo-wavenumber, ξ̃x . Using
this pseudo-frequency or pseudo-wavenumber and the corresponding cross-spectral
power density, a transfer function can be created by unfolding multiple cross-spectra
in pseudo-wavenumber or pseudo-frequency direction, binning them, and normalis-
ing them into a probability density distributions in the unfolding direction (integral
equal to one for each unfolding line). The wavenumber-frequency spectrum is then
obtained by multiplying these probability density distributions with the respective
auto-spectral power density of the wavenumber or frequency that is being unfolded.
Finally, integration in frequency direction results in the wavenumber spectrum.

The estimated wavenumber-frequency spectra based on the above mentioned
approach is shown in Fig. 2. Comparison of this figure with Fig. 1 (which shows
the true spectra) reveals some differences. Most notably, the spectra appear to have a
waist near zero frequency/wavenumber and this can be related to the truncation of the
PIV data. A larger sampling windowwill eliminate this truncation effect. The spectra
at higher frequency/wavenumber appears to have more noise compared to the true
spectra. This again is a limitation of the technique where the velocity fluctuations at
those small spatial and temporal scales become comparable to measurement noise.
Despite these two sources of uncertainty, it is clear that the estimated frequency-
wavenumber spectrum has a remarkbale similarity the true spectrum. This similarity
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Fig. 3 Premultiplied mapped power density spectra of hot-wire data at a Reynolds number of
Reτ = 2820 from [11] with wall-normal location, y/δ. Dashed white lines demarcate the region
wheremapping data is directly available. Outside this regionwe correct the closest available transfer
function to conform to the local mean velocity. a Classic Taylor’s hypothesis mapping using the
local mean velocity. b Our proposed mapping based on cross-sectra. c Difference between Taylor’s
hypothesis and the mapped spectra with the line showing ξx U = dU/dy

is even higher in the spectra of the wall-normal velocity fluctuations where the trun-
cation effects are minimal (i.e. the PIV FOV as well as the time-series captures all the
energetic spatial and temporal scales). This estimated frequency-wavenumber spectra
cannowbe integrated across all frequencies to obtain thewavenumber spectrum.Sim-
ilar mapping functions can be obtained across different locations (i.e. wall-normal
or cross stream directions) in a shear flow to obtain the variation of the wavenumber
spectrum across the flow.
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Since the PIV data is limited in resolution and length, we apply the mapping
function we obtained from our current PIV data to hot-wire data at a comparable
Reynolds number [11]. Figure3a shows the spectrogram (i.e. wavenumber spectra
across wall-normal locations) of streamwise velocity from hotwire measurements.
The wavenumber (or the length scale) is obtained by applying Taylor’s hypothe-
sis. The same hotwire data is used in conjunction with the mapping generated for
different wall-normal locations using our method to calculate the new wavenumber
spectrum. Figure3b shows the resulting spectrogram. The white lines show the wall-
normal extent over which we have the data for the mapping function and hence any
comparison between the two spectrograms should only be made over this range of
wall-normal locations. It can clearly be seen from the two figures that the spectro-
gram that uses Taylor’s hypothesis is significantly different from the one obtained
using the mapping.

To examine the differences in detail, the difference between Taylor’s hypothesis
mapping and our proposed mapping is shown in Fig. 3c. It can be seen that there
are large difference between the spectra (up to 40%) at low wavenumbers. This is
consistent with the prediction of [15], who indicated that Taylor’s hypothesis is really
only applicable for wavenumbers for which ξxU � dU/dy (where U is the local
mean streamwise velocity). Figure3c shows a line that represents Lin’s prediction,
ξxU = dU/dy. We see that his prediction demarcates the region where themappings
differ significantly.

5 Conclusions

We proposed a two-point cross-spectral approach that uses a distribution of wave
velocities (or the distribution of cross-spectral phase difference) to reconstruct the
entire wavenumber-frequency plane. This plane can then be integrated to obtain the
spatial or temporal spectrum depending on the input data. We verified this technique
on particle image velocimetry data set of a turbulent boundary layer, and obtained a
transfer function from this data set. The transfer function is applied to hot-wire data
at a comparable Reynolds number. A comparison of the newly proposed technique
with the classical Taylor’s hypothesis approach shows that Taylor’s hypothesis hold
for larger wavenumbers (small spatial scales), for smaller wavenumbers (large spatial
scales) there are significant differences. It is hoped that this technique can now be
employed in other shear-flows as well as in wall-bounded flows at higher Reynolds
numbers in order to examine the energy content in spatial scales without invoking
Taylor’s hypothesis.
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Concurrent Scale Interactions
in the Far-Field of a Turbulent
Mixing Layer

O.R.H. Buxton and B. Ganapathisubramani

Abstract The interaction between large- and small-scale fluctuations in turbulent
flow is not only of great fundamental interest but an understanding of these interac-
tions is fundamental to the modelling of the sub-grid scale (SGS) stresses in a large
eddy simulation (LES). Particle image velocimetry (PIV) data is acquired with two
different spatial resolutions, simultaneously, in the self-similar region of a turbulent
planar mixing layer. The SGS activity is observed to be amplified by concurrent
large-scale low momentum fluctuations and attenuated by high momentum fluctu-
ations with both the sign and magnitude of the large-scale fluctuations being of
significance. Further, regions in which the orientation of the large-scale Reynolds
stress tensor is aligned perpendicularly to the direction of the mean shear of the flow
are shown to lead to an increased level of small-scale activity.

1 Introduction

Turbulence is known to be a multi-scale problem, in which energy is transferred
from the mean flow into turbulent kinetic energy at large-scales and dissipated into
heat at the small-scales via a mean cascade of energy from the large to the small-
scales [3, 6]. According to the phenomenology of Kolmogorov [3] the small-scales
of turbulent flows are universal, but recently a distinct interaction between the large
and small-scales has been observed. These results have primarily been driven by
research in wall bounded flows, in particular the modulation of the near wall events
by large-scale outer fluctuations [4, 5].

The study of [1] was the first (and perhaps the only) that examined the inter-
action between large and small scales in various different shear flows, including
wall-bounded and free shear flows. Correlations were made between the low pass
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filtered time series data with the envelope of the high frequency component and a
significant degree of coupling between the scales across all shear flowswas observed.
This coupling between the scales is maximised when the high frequency and low
frequency signals are concurrent.

Here we examine the interactions between large- and small-scale velocity fluc-
tuations in the self-similar region of a turbulent mixing layer. PIV experiments are
performed at two different spatial resolutions, one that captures the range from inte-
gral scale (L) to Taylor microscale (λ) and the other that captures the range from
Taylor microscale to the Kolmogorov scale (η), simultaneously.

2 Experimental Methods

A planar mixing layer was produced by placement of a perforated metal sheet,
50% open area ratio, on one side of a splitter plate of length 1.25m and thick-
ness, h = 20mm, in a recirculating water tunnel facility. A customised PIV setup
was constructed in order to capture data at two different spatial resolutions simulta-
neously consisting of four 2048 × 2048 pixel resolution CCD cameras. Three of the
cameras were mounted below the floor of the water tunnel facility and were fitted
with 105mm lenses and the final camera was mounted above the water channel and
fitted with a 50mm lens, all imaging a light sheet in the streamwise—cross-stream
plane.

The spatial resolution for the large-scale field of view (FOV) is 0.4λ × 0.4λ,
with adjacent vectors separated by 0.2λ due to a 50% overlap. The resolution for
the small-scale fields of view is 1.2η × 1.2η (which is comparable to the thickness
of the laser sheet), with adjacent vectors separated by 0.62η. Figure1a illustrates
simultaneous velocity fields from both the large- and small-scale FOVs. It should be

(a)
x2

x1

ΔL

(i + 1, j)

ΔS

(i − 1, j)

(i, j − 1)

(i, j + 1)

(b)

Fig. 1 a PIV FOVs. The inset shows a region of space from the perspective of the large- and
small-scale FOVs. b Schematic of concurrent large-scale and small-scale FOV stencils
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noted that the small-scale FOV is located close to the centreline but just to the high
speed side (x2 � 0) of the cross-stream location of the peak Reynolds stresses and
is situated within the self-similar region of the flow. The Reynolds number based
on the Taylor length scale was Reλ = 260 and mean velocity on the centre-line was
0.29ms−1 at this location. A full description of the experimental methods, including
an uncertainty quantification and schematic figure is presented in [2].

3 Discussion and Statistical Methodology

At the measurement location it was observed that the Taylor microscale, defined as

λ2 = 2u′2/
〈(

∂u1
∂x1

)2
〉
, was the length scale that divided the dissipation spectrum into

two sectors that each accounted for≈50%of the total dissipation rate. The large-scale
FOVwas thus filtered (runningmean filter) to remove all components at length scales
less than λ, leaving uLλ

1 , and the small-scale FOVs were similarly filtered to remove
all components at length scales greater than λ, leaving uSλ

1 . In this manuscript the
superscript L denotes that a quantity is taken from the large-scale FOV, superscript
S denotes a quantity that is taken from one of the small-scale FOVs, velocities are
decomposed into a mean component (upper case letter) and fluctuating component
(lower case) and subscript 1 denotes the streamwise direction.

Figure1b illustrates the overlap of the small-scale and large-scale FOV stencils. A
“conditional window” is defined extending ±ΔL/2 in both the x1 and x2 directions
from the (i, j)th node of the large-scale stencil and encompasses N ≈ 100 samples
from the small-scale FOV. First and second order moments of the small-scale veloc-
ity fluctuations within this “conditional window” are then computed and statistics
of these moments conditioned on the concurrent large-scale fluctuation, uLλ

1 , are
produced.
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Fig. 2 a Joint pd f between the variance of the small-scale velocity fluctuations, uSλ
1 , and uLλ

1 . b
Joint pd f between the variance of the small-scale velocity fluctuations and the “Reynolds stress
angle” relative to the mean velocity gradient
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Figure2a shows the joint probability density function (pd f ) between the variance
of the small-scale fluctuations, σuSλ

1
, and uLλ

1 . It can be seen that there is a clear slope
of the contours from high magnitude positive uLλ

1 fluctuations concurrent with a low
variance of the small-sale fluctuations towards high magnitude negative uLλ

1 fluctua-
tions and a concurrent high variance of the small-scale fluctuations. The dependence
of the “roughness” of the small-scale fluctuations on uLλ

1 can be explainedwith a con-
vective argument. The location of the small-scale FOV to the high speed side of the
peakReynolds stressesmeans that, statistically, positive uLλ

2 fluctuationswill convect
with them “rougher” small-scale turbulence. Since we are in a self preserving free
shear flow uLλ

1 is negatively correlated with uLλ
2 (ρu1u2 = −0.581) due to the positiv-

ity of the turbulent kinetic energy production term, P = −〈u1u2〉∂〈U1〉/∂x2, thus
we might expect to see negative uLλ

1 fluctuations concurrent to “rougher” small-scale
turbulence. However, the dependence of σuSλ

1
on the magnitude of uLλ

1 in addition to
the sign confuses this picture and is suggestive of a true scale modulation effect.

Furthermore, Fig. 2b shows the effect of the orientation of the large-scale velocity
fluctuation on the concurrent small-scale activity. A “Reynolds stress angle”, θuv, is
defined as the arctangent of uLλ

2 /uLλ
1 . Additionally a “mean strain angle” is defined

as the arctangent of the non-dimensionalised mean velocity gradient ∂〈U1〉/∂x2. The
figure shows the joint pd f between the difference between the mean strain angle
and the modified Reynolds stress angle (such that θ ∂〈U1〉

∂x2

− θuv
′ ∈ {−π, π}) and the

variance of the small-scale fluctuations. It can be seen that the small-scale activity is
significantly amplified when the large-scale fluctuation is perpendicular to the mean
strain, i.e. θ ∂〈U1〉

∂x2

− θuv
′ = ±π/2. The highest small-scale activity is observed for a

positive value of θuv which would be described as an “ejection” in wall bounded
terminology. This is further evidence that the amplification of the small-scale activ-
ity cannot be explained by a convective argument alone and that a genuine scale
interaction is present in self-similar free shear flows.
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Euler Angle and Axis—“Fingerprints”
of a Subgrid-Scale Stress Model

Zixuan Yang and Bing-Chen Wang

Abstract The concepts of Euler angle and axis are utilized to investigate the relative
rotation between the eigenframes of the deviatoric subgrid-scale (SGS) stress tensor
−τ d

i j and the resolved strain rate tensor S̄i j . Both Euler angle and axis are “natural
invariants” of fluid tensors, which uniquely describe the relative rotation between
eigenframes of two tensors. TheEuler angle and axis can be regarded as “fingerprints”
of a SGS stress model and have a profound implication for structural modeling of the
SGS stress tensor. As an application, three SGS models are tested in the context of
turbulent channel flows. The proposed Euler angle and axis are proven to be effective
for demonstrating geometrical properties of a SGS stress model.

1 Introduction

The rotational dynamics between two orthonormal triads are essential for studying
the relative attitude between two or more rigid bodies. The methodology of attitude
dynamics can be introduced into SGS stress modeling to provide an interesting alter-
native approach for investigating the local geometrical property of the constitutive
relationship. In order to study the attitude of the eigenframe of −τ d

i j with respect to

that of S̄i j , Tao et al. [1] adopted the so-called axis-azimuth representation, which
however, is not uniquely defined, but rather depends on the specific method for
decomposing the relative rotation between two eigenframes.

Based on Euler’s theorem (1775), Wang et al. [2] suggested that the relative
rotation of the eigenframeof−τ d

i j with respect to that of S̄i j can be uniquely quantified
using the Euler angle χ about the Euler axis q (see Fig. 1). They further tested several
SGS models using their proposed representation. However, their results were not
compared against any direct numerical simulation (DNS) or experimental results,
and as such, their findings on model performances were not conclusive. In view of
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Fig. 1 Sketch of Euler angle
and axis between
eigenframes of −τ d

i j and S̄i j .
The colatitude and longitude
with respect to the
eigenframe of S̄i j are
denoted by θ and φ,
respectively
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this, we test the Euler angle and axis of different SGS stress models in the context
of turbulent channel flows using the a posteriori approach and validate the results
predicted by large eddy simulations (LES) against the DNS results.

2 Definitions of Euler Angle and Axis

To study the geometrical property of SGS stress models, we use ES = [eS
1 , eS

2 , eS
3 ]

(eigenframe of S̄i j ) as the observer-referenced (or absolute) frame, and treat E−τ =
[e−τ

1 , e−τ
2 , e−τ

3 ] (eigenframe of −τ d
i j ) as the object-referenced (or relative) frame.

Here, e−τ
i and eS

i are eigenvectors corresponding to eigenvalues λ−τ
i and λS

i , respec-
tively, and the eigenvalues are sorted in the descending order of their absolute values,
i.e. |λ−τ

1 | ≥ |λ−τ
2 | ≥ |λ−τ

3 | and |λS
1 | ≥ |λS

2 | ≥ |λS
3 |.

The Euler angle and axis are natural invariants of the rotation matrix R, which can
be calculated as R = E−τ (ES)T . The Euler angle χ is related to the trace of R as
χ = arccos[(tr(R) − 1)/2], and the Euler axis q = [q1, q2, q3]T can be determined
as qi = εi jk R jk/(2 sin χ), where εi jk represents the Levi-Civita symbol.

3 Numerical Algorithm and Test Cases

In order to test the proposed method, DNS and LES of turbulent channel flows are
conducted using a pseudo-spectral method code. Variables are expanded into Fourier
series in x–z planes and into Chebyshev polynomial series in the y direction, where
x , y and z represent streamwise, wall-normal and spanwise directions, respectively.
Time advancement is achieved by using a 3rd order time-splitting method.

DNSandLESof turbulent channel flowshave been conducted for Reτ = uτ h/ν =
595, where uτ , h and ν represent wall frictional velocity, half channel height and
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kinematic viscosity of the fluid, respectively. The computational domain size is Lx ×
L y × Lz = 2πh × 2h × πh. The number of grid points is Nx × Ny × Nz = 384 ×
256 × 384 for DNS, and is 64 × 96 × 64 for LES. We have tested three SGS stress
models, which include the dynamic Smagorinskymodel (DSM) of Lilly [3], dynamic
mixed model (DMM) of Morinishi and Vasilyev [4] and dynamic nonlinear model
(DNM) of Wang et al. [5]

4 Results Analysis

Figure2 compares the profiles of mean Euler angle 〈χ〉 of different SGS stress mod-
els. As shown by the DNS results, the mean Euler angle reaches 45◦ asymptotically
as the wall is approached. In the far-wall region for y+ > 100, the value of 〈χ〉
predicted by DNS keeps approximately constant around 72◦.

In sharp contrast to the DNS results, the value of 〈χ〉 predicted by the DSM is
0◦ identically. The reason 〈χ〉 ≡ 0◦ holds strictly for the DSM is that this model
assumes a linear constitutive relationship between −τ d

i j and S̄i j , characterized by the
unique condition R ≡ I and χ ≡ 0◦. As a result, the equation for determining the
Euler axis q becomes singular as the denominator becomes zero and the Euler axis
of the DSM is undefined. Both DMM and DNM correctly predict the wall value of
the Euler angle, i.e. 〈χ〉w = 45◦. In the far-wall region, the DMM under-predicts 〈χ〉
as 57◦, while the DNM makes a better prediction in comparison with DNS results.

Figure3 compares the PDF of Euler angle P(χ) in the viscous sublayer (y+ = 1),
buffer layer (y+ = 11) and logarithmic layer (y+ = 500). The DNS results on P(χ)

is approximately a delta function at χ = 45◦ in the viscous sublayer, such that the
mean value of χ is also 45◦. As the distance from the wall increases, the probability
of χ = 90◦ increases. In the logarithmic layer, mode χ = 90◦ becomes predominant.
Both DMM and DNM predict P(χ) as a delta function at χ = 45◦ in the viscous
sublayer, which is consistent with the DNS result. In the logarithmic layer, the DMM
fails to capture the peak at χ = 45◦ and significantly over-predicts the probability

Fig. 2 Profiles of plane- and
time-averaged Euler angle
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Fig. 3 PDFof Euler angle P(χ) in different layers of the turbulent channel flow: a viscous sublayer,
y+ = 1, b buffer layer, y+ = 11 and c logarithmic layer, y+ = 500

Fig. 4 Contours of pre-multiplied JPDF (θ, φ) sin θ related to the orientation of Euler axis predicted
by a DNS, b DMM and c DNM. Contours corresponding to low probability (P(θ, φ) sin θ < 0.5)
are clipped

of modes for χ ≤ 30◦. The PDF of Euler angle predicted by the DNM agrees well
with the DNS results in all three layers. As a result, the mean Euler angle predicted
by the DNM shown in Fig. 2 is also close to DNS results.

Figure4 compares the DNS and LES results on the pre-multiplied JPDF of (θ, φ)

that quantifies the orientation of the Euler axis. As shown in Fig. 4a, themost probable
mode predicted by DNS in the viscous sublayer is located at θ = 0◦ with φ being an
arbitrary angle. Themost probablemodes obtained fromDNSare (θ, φ) = (41◦, 23◦)
and (62◦, 15◦) in the buffer layer and logarithmic layer, respectively.

As shown in Fig. 4b, the DMM predicts a mode for (θ, φ) = (70◦, 23◦) in the vis-
cous sublayer, which however, is not shown in the contours of P(θ, φ) sin θ obtained
from DNS. In the buffer layer and logarithmic layer, the most probable modes pre-
dicted by theDMMare (θ, φ) = (52◦, 29◦) and (88◦, 2◦), respectively, which deviate
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from the DNS results. From Fig. 4c, it is observed that the colatitude θ of the most
probable mode predicted by the DNM is 0◦ in the viscous sublayer, which is consis-
tent with the DNS results. However, in the buffer layer, the predominant colatitude
value is still 0◦, indicating that the DNM over-estimates the wall effect on the Euler
axis. In the logarithmic layer, the most probable Euler axis predicted by the DNM
corresponds to (θ, φ) = (70◦, 2◦), which does not agree well with the DNS results.
The above results on Euler axis indicate that as SGS models, the ability of both
DMM and DNM is still limited in terms of their prediction of advanced geometrical
properties of the SGS stress tensor.

5 Conclusions

As natural invariants of the SGS stress and resolved strain rate tensors, the proposed
Euler angle and axis are proven to be effective for demonstrating the geometrical
properties of a SGS stress model and for evaluating its capability of predicting the
near-wall anisotropic effects. The mean Euler angle based on the DNS results is
45◦ in the viscous sublayer, and reaches 72◦ in the center of the channel. The mean
Euler angle predicted by the DSM is 0◦ identically, indicating that the DSM fails to
mimic the near-wall effect on the geometrical property of the SGS stress tensor. The
Euler angle predicted by the DNM agrees well with the DNS results. In contrast, the
Euler angle predicted by the DMMdeviates from the DNS results significantly in the
logarithmic layer. The colatitude of the most probable Euler axis predicted by DNS
is 0◦ in the viscous sublayer, which is correctly captured by the DNM, but in the
buffer layer and logarithmic layer, the capability of both DMM and DNM is limited
in terms of their prediction of the orientation of the Euler axis.
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Low-Cost Energy-Preserving RK Schemes
for Turbulent Simulations

Francesco Capuano, Gennaro Coppola and Luigi de Luca

Abstract A low-cost numerical strategy is presented for energy-preserving simu-
lations of incompressible flows. This method consists in an explicit Runge–Kutta
scheme in which the divergence and advective forms of the convective term are suit-
ably alternated within the sub-steps. As a result, the conservation properties of the
skew-symmetric form are recovered at a reduced computational cost. The perfor-
mances and the accuracy of the method are proved by numerical simulations.

1 Introduction

Global kinetic energy e = ∫
Ω

u2
i /2 dV is a well-known invariant of the incompress-

ible Navier-Stokes equations, in the limit of vanishing viscosity and on a periodic
domainΩ . Numerical methods that aim to reproduce this property on a discrete level
are highly desirable in Direct and Large-Eddy Simulation of turbulent flows, and can
be obtained by adopting suitable spatial and temporal discretization operators [1].
For the former, semi-discrete conservation is often achieved by using the so-called
skew-symmetric splitting of the convective term

(Skew.)i ≡ 1

2

∂u j ui

∂x j
+ 1

2
u j

∂ui

∂x j
, (1)

which is defined as a suitable average of the divergence and advective formulations,
whose errors on energy conservation are equal and of opposite sign [2]. This choice,
however, has the drawback of being roughly twice as expensive as standard diver-
gence or advective forms alone. Moreover, exact conservation of spatial discretiza-
tions is lost when a non-conservative time-integration method is used. In this regard,
implicit schemes are required [3], with an additional charge on the cost of a single
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time step. A compromise between computational cost and energy-conservation is
thus attractive. In this work, a novel explicit time-advancement strategy that retains
the conservation properties of skew-symmetric-based schemes at a reduced compu-
tational cost is proposed and tested numerically.

2 The Novel Runge–Kutta Strategy

The proposed strategy consists in integrating the semi-discretized Navier-Stokes
equations in time by means of a modified, s-stage explicit Runge–Kutta method:

un+1 = un − Δt
s∑

i=1

bi Ci (ui )ui + ΔtGpn+1, (2)

ui = un − Δt
i−1∑
j=1

ai j
(
C j (u j )u j − Gp j

)
, (3)

where u and p are the discrete velocity and pressure vectors, G ∈ RNu×Np and C ∈
RNu×Nu are the discrete gradient and convective operators, respectively, and ai j and
bi are the Runge–Kutta coefficients. Pressure is to be solved from a Poisson equation.
The operator C in Eqs. (2–3) is indexed by a suffix, meaning that can be expressed in
either divergence (D) or advective (A) form within the stages, in any of the possible
sequences available (e.g., for a four-stage scheme, ADDA, DADA, …). Centered
finite-difference discretizations on a periodic, equally spaced grid will be considered
here. The velocity components u and pressure p are stored at the same points.

New schemes with different order of accuracy on solution (S) and energy (E) can
be obtained by coupling the classical order conditions to a set of special equations
[4]. The latter can be derived by nullifying the first- and second-order terms in the
expression of the energy-conservation error arising from Eqs. (2–3)

ΔE

Δt
= −

1st order term︷ ︸︸ ︷
uT

[∑
i

bi C̃i

]
u + Δt

2
uT

⎡
⎣∑

i j

2bi ai j

(
C̃i C̃ j + C̃i j

)
+ gi j C̃T

i C̃ j

⎤
⎦ u

︸ ︷︷ ︸
2nd order term

+O
(
Δt2

)
,

(4)

where u = un , gi j = bi ai j + b j a ji − bi b j , C̃i j = C̃i

(
C̃ j (un) un

)
. In Eq. (4), the

operator C̃ is assumed to be evaluated at un and projected with the pressure gradient
to yield a divergence-free velocity field. The total discrete energy E = ‖u‖2/2 and
its error ΔE = En+1 − En have also been defined. It can be shown that first- and
second-order conditions on energy conservation lead to one and three additional
constraints, respectively. In four-stage methods, 10 degrees of freedom are available,
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hence either 4S1E(4) or 3S2E(4) schemes can be derived. The number in brackets
is a cost-coefficient which is proportional to the total number of derivatives to be
evaluated. In this notation, a four-stage RK scheme in skew-symmetric form would
be indicated as 4S4E(8). The following are Butcher arrays of two RK schemes with
good conservation properties:

ADAD/DADA − 4S1E(4) ADDA/DAAD − 3S2E(4)

0
1
2 0
0 1

2 0
0 0 1 0
1
6

1
3

1
3

1
6

0
1
3 0
0 1 0
1
3 0 1

3 0
1
8

3
8

1
8

3
8

.

The 4S1E(4) scheme is the classical RK4. It can be shown that, when the sequences
ADAD/DADA are used, this scheme satisfies the first-order condition on energy,
while remaining fourth-order accurate on solution. The 3S2E(4) scheme is novel
and has been obtained by solving the nonlinear system constituted by the four order
conditions for third-order accuracy on solution, together with four conditions for
second-order accuracy on energy conservation. The resulting two-parameter family
has been optimized to yield as many null coefficients as possible.

3 Numerical Results

As a first test, an order of accuracy analysis is carried out to confirm the theoreti-
cal results obtained in the previous sections. The inviscid Navier-Stokes equations
are integrated in a square region of size 2π × 2π , discretized with 16 × 16 mesh
points. A centered second-order finite-difference scheme is used for convection; for
time-advancement, the various Runge–Kutta schemes developed in Sect. 2 are used.
Figure1 (left) shows the time-step convergence of the energy error for three Runge–
Kuttamethodsmeasured at t f = 10,where the errormeasure ε(t) = (E(t) − E0)/E0

has been defined. The predicted orders of accuracy for the new schemes are confirmed
numerically, proving the consistency of the theoretical framework.

As a turbulent test-case, direct numerical simulation of a temporal plane jet is
performed. A standard pseudo-spectral code is used, with the diffusive term being
computed exactly. Second-order finite-difference schemes are mimicked by using
modified wavenumbers. The Navier-Stokes equations are discretized using 2563 grid
points on a cubic domain of length 4H , where H is the plane jet thickness. The initial
condition is based on a hyperbolic tangent profile with a velocity differenceΔU . The
time step is computed from the CFL condition, with a maximum CFL number of
0.9. The Reynolds number Re = HΔU/ν is equal to 3200. The time-evolution of
energy is shown in Fig. 1 (right). Both divergence and advective forms lead to early
blow-up, due to violation of energy conservation, while the new schemes perform
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Fig. 1 (Left) Time-step convergence of the relative error on energy conservation for the inviscid
random flow case. (Right)Time evolution of energy and spectra at t = 5 (inset plot) for the turbulent
plane jet for five methods. (Skew.), � (Adv.), � (Div.), � (4S1E), � (3S2E)

remarakably well. The beneficial properties are retained also in wavenumber space,
as shown by the energy spectrum within the inset plot.

In both tests, the novel procedure allowed to roughly halve the CPU time spent
for the computation of the nonlinear term.

4 Conclusions

A novel time-advancing strategy for the incompressible Navier-Stokes equations
has been proposed. The RK-based technique has proved to reproduce the energy-
conserving properties of the skew-symmetric form while halving the CPU time
requested for the computation of the nonlinear term.

The authors gratefully acknowledge Dr. Guillaume Balarac for performing the
plane jet simulations with the alternating procedure.
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Assessment of Subfilter Scalar Dissipation
Rate and Mixture Fraction Variance Models

J. Ventosa-Molina, O. Lehmkuhl, C.D. Pérez-Segarra and A. Oliva

Abstract The Flamelet/Progress-Variable (FPV)model is able to describe diffusion
flames in the flamelet regime by parametrising the chemical problem as a function
of a limited number of variables, namely the mixture fraction Z and the progress-
variable c. The aim of the present paper is to study the effect of different mixture
fraction variance Zv and subgrid scalar dissipation rate χsgs models in the prediction
of turbulent combustion phenomena, particularly for diffusion flames. Both parame-
ters model scalar mixing at the subgrid level, which in turn controls the combustion
process. Four different models are compared: an Equilibrium model, a mixture frac-
tion Variance Transport Equation (VTE) model, a Transport Equation for the Second
moment of the mixture fraction (STE), and a Scalar Dissipation Rate transport equa-
tion (SDR-TE).

1 Introduction and Mathematical Formulation

Evaluation of subgrid mixture fraction variance and subfilter scalar dissipation rate
is a critical issue in flamelet and Conditional Moment Closure (CMC) models. Both
parameters model scalar mixing at the subgrid level, which in turn controls the
combustion process. A scale similarity model [8] was proposed, which assumes
local equilibrium between production and dissipation of the variance at the small
scales. However, this model presented accuracy limitations when applied to techni-
cally relevant flow configurations [3]. Non-equilibrium modelling can be achieved
by constructing a variance transport equation (VTE). Alternatively, through the
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definition of a second moment of any statistical value, the variance can be com-
puted as Zv = Z̃2 − Z̃2, which requires a transport equation for Z̃2 (STE). However,
both equations require a closure for the subfilter dissipation rate. Either through
an algebraic expression using a turbulent time scale [2, 3] or by using a transport
equation for the scalar dissipation rate [4].

In the flamelet regime thermochemical changes occur normal to the flame front.
The FPV model in its steady form (SFPV) allows tabulating chemical kinet-
ics and thermodynamical properties through an equation of state (EoS), ψ =
{ρ, ẇc, α, . . .} = Γψ(Z, c), where Z represents themixing process and c accounts for
the evolution of the combustion process. However, in LES simulations solution vari-
ables are Favre filtered quantities. Consequently, turbulence chemistry interactions
are characterised through a presumed joint PDF. Hence, a β-pdf for the statistical
distribution of the mixture fraction and a δ-pdf for the progress-variable have been
assumed, P̃(Z, c|st) = β(Z; Z̃, Zv)δ(c|st − c|∗st). Thus, the EoS for LES simulations
becomes ψ̃ = Γ̃ψ(Z̃, Zv, c̃).

Besides from computing the transport equations for the Favre filtered mixture
fraction Z̃ and progress-variable c̃, the description of the turbulent combustion state
in these models requires modelling the subfilter variance Zv and the filtered scalar
dissipation rate χ̃Z . To model Zv, it may be transported (VTE) or computed through
its definition using Z̃2 (STE). On the one hand, the VTE can be constructed as

ρ
DZv

Dt
= ∂

∂xi

(
ρ(̃αZ + αt,Z)

∂Zv

∂xi

)
+ 2ρ(̃αZ + αt,Z)

∂Z̃

∂xi

∂Z̃

∂xi
− ρχ̃Z (1)

χ̃Z = 2α̃Z

˜∂Z

∂xi

∂Z

∂xi
= 2α̃Z

∂Z̃

∂xi

∂Z̃

∂xi
+ εZ (2)

where εZ is the subfilter dissipation rate. On the other hand, the STE reads

ρ
DZ̃2

Dt
= ∂

∂xi

(
ρ(̃αZ + αt,Z)

∂Z̃2

∂xi

)
− ρχ̃Z (3)

The subfilter scalar dissipation rate can be closed through a turbulent mixing
timescale τ [2, 3] and a model constant CZ = 4

εZ = CZ

τ
Zv = CZ

νt

Δ2
Zv (4)

Assuming equilibrium of production and destruction of Zv at the small scales, the
last two terms in Eq. (1) cancel out. Thus, εZ becomes

εZ = 2αt,Z
∂Z̃

∂xi

∂Z̃

∂xi
(5)
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With the local equilibrium assumption (LEA) Zv cannot be computed from Eq. (1).
Therefore, a scale similarity model was proposed [8]

ρZv = CvarΔ
2ρ|∇Z̃| (6)

where Cvar is calculated using the Leonard term Expansion Dynamic model [1].
A last approach is to consider a transport equation, see Eq. (7), for the filtered

scalar dissipation rate χ̃Z (SDR-TE) [4], together with Eq. (3). This approach comes
at the cost of having to model several unclosed terms and evaluating several compu-
tationally expensive terms.

ρ
D

Dt
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˜|∇Z|2
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= ∂
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(7)

2 Numerical Simulation and Discussion

Numerical computations are performed using the general purpose unstructured and
parallel object-oriented CFD code TermoFluids [5]. Turbulent fluxes are modelled
using a standard eddy diffusivity model, specifically the WALE model [7]. A jet

Fig. 1 Radial distribution of the mixture fraction and its rms. Top y/D = 5, middle y/D = 20,
bottom y/D = 40. The fuel jet diameter is D = 8mm
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Fig. 2 Time averaged progress-variable reaction rate [kg/m3s] for the different models

diffusion flame with a Reynolds number of 15,200, namely the DLR Flame A [6],
is used as a test case. A mesh of 1.8M CV has been used. The SFPV model [9] is
used to model chemistry-turbulence interactions. The GRI 3.0 mechanism is used to
generate the database, and differential diffusion effects are considered. The progress
variable is here defined as c = YCO + YCO2 + YH2O + YH2 .

As it can be seen in Fig. 1, the radial distribution of the mixture fraction, both
mean and rms values, are in good agreement with the experimental data [6], without
significant differences between the four different models. For other quantities such
as the progress-variable and velocities, there are also good agreement. Nonetheless,
the four models predict flame stabilisation, and onset of reactions, at different axial
position as depicted in Fig. 2. In the experiment, the flame is anchored to the fuel
jet nozzle rim. Although good agreement downstream is observed, the stabilisation
of the flame is not correctly captured. VTE and SDR-TE models show a better
agreement, which indicates a better description of subgrid mixing. The Equilibrium
model, having the longest stabilisation distance, clearly indicates that there is an
imbalance between production and destruction of variance at the subgrid level.

Acknowledgments The author thankfully acknowledges the computer resources, technical exper-
tise and assistance provided by the Barcelona Supercomputing Center—Centro Nacional de Super-
computación.
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Backward Energy Transfer and Subgrid
Modeling Approaches in Wall-Turbulence

A. Cimarelli and E. De Angelis

Abstract We report here results from a Large Eddy Simulation (LES) of a turbulent
channel flow at a friction Reynolds numberReτ = 550 performedwith a new subgrid
modeling approach proposed by the same authors in Cimarelli et al., Phys. Fluids,
26, 055103 (2014), [1]. This subgrid scale model aims at reproducing the double
feature of energy sink and source of the small scales of wall flows which become
relevant when large filter lengths are adopted. Here we report a further analysis of the
model by considering the instantaneous behavior of events of backward and forward
energy transfer.

1 Introduction

One of the most important features of subgrid models in Large Eddy Simulation
(LES) should be their ability to accurately reproduce the energy transfer between
resolved and unresolved scales. In wall-turbulent flows, this physical process has
been found to behave very differently depending on the amount of scales removed
by the filter and on the wall-distances considered, see e.g. Härtel et al. [2]. In partic-
ular, for large filter lengths, in the production region a net energy flux takes origin
in the subgrid scales to feed the resolved motion. As recently shown in Cimarelli
et al. [3], this reverse energy transfer is a crucial mechanism characterizing wall-
turbulence since is responsible for the formation of the commonly observed very long
streaks of velocity fluctuations. The presence of an up-scale energy transfer leads to
overwhelming difficulties for LES, since energy should emerge from the unknown
subgrid scales to drive the quasi-coherent dynamics of the resolved motion. Several
attempts to account for backscatter have been proposed by using random forcing
or deterministic approach, see e.g. Carati et al. [4] and references therein. Here we
show the results obtained by an alternative approach based on the coupling of the
classical linear formulation of eddy viscosity with the nonlinear anisotropic features
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of the velocity increment tensor. This modeling approach, proposed in Cimarelli and
De Angelis [1], has been found to properly account for backscatter and to reproduce
the complex features of energy transfer in wall-flows.

2 The Subgrid Scale Model

From the classical picture of turbulence, the continuous spectrum of fluctuations
is divided into three main ranges: large production scales, inertial energy transfer
scales and small dissipative scales. This spectral view of turbulence is based on the
energy cascade concept where the rate of energy transfer in the so-called inertial
sub-range, is constant and proportional to the viscous dissipation 〈ε〉. This result,
when homogeneous isotropic turbulence is considered, is one of the very few exact
theories on turbulence and for this reason many LES models take inspiration from
it. Unfortunately, when dealing with wall-turbulent flows the overall picture is dras-
tically modified. As shown in Cimarelli et al. [3], a reverse energy flux from the
small scales of the near-wall region systematically takes place driving the formation
of large coherent structures further away from the wall. Again in Cimarelli et al. [3],
a new simple equation for the energy transfer has been also developed and shown
able to capture the switch between source-like and sink-like scales which induces
both forward and reverse energy cascade. This equation differs from the Kolmogorov
one on the energy cascade since takes into account the scale-dependent nonlinear
dynamics of turbulent production beside the linear isotropic behavior of turbulent
dissipation. By taking into account this double linear/nonlinear feature, the subgrid
stress model proposed in Cimarelli and De Angelis [1] reads,

τij(xs, t) = CΔδūiδūj − 2νT S̄ij. (1)

Hence, the subgrid stress tensor τij is written as a function of the nonlinear veloc-
ity increment tensor, δūiδūj, where δui = ui(xs + Δs) − ui(xs − Δs) is the velocity
increment at position xs and separation Δs given by the grid resolution and CΔ is
a coefficient dynamically determined. In addition to the increment tensor an eddy
viscosity term is used, 2νT S̄ij, where S̄ij = 1/2(∂ ūi/∂xj + ∂ ūj/∂xi) is the resolved
strain rate tensor and νT is the eddy viscosity computed with the dynamic procedure
proposed by Germano et al. [5] and refined by Lilly [6].

3 Results

TheLESof a turbulent channel flowhas been performed by solving theNavier-Stokes
equations written in terms of wall-normal velocity and vorticity discretized using a
spectral method, Fourier in the homogeneous x and z directions and Chebyshev
in the wall-normal y direction. Time advancement is carried out with a partially
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implicit, fourth-order Crank–Nicholson/Runge–Kutta scheme. The nominal friction
Reynolds number of the simulation is Reτ = 550 and the resolution adopted is very
low corresponding to Δx+ = 108 and Δz+ = 54 in the homogeneous directions.
In Cimarelli and De Angelis [1], the subgrid stress model (1) has been tested for
different Reynolds numbers, grid resolutions and filter type. From a statistical point
of view the proposed subgrid scale model has been found able to reproduce with a
good accuracy the main features of the flow. Here we want to extend this analysis by
considering the instantaneous realizations of the LES flow. In particular, since the
goal of the present model is the correct description of the energetics of the flow we
consider the topology of backward energy transfer events.

In LES, the net energy exchange between large resolved and small subgrid scales
is quantified by the so-called subgrid dissipation, εsgs(xs, t) = τ ′

ij S̄
′
ij, where

′ denotes
fluctuating quantities. Positive values of εsgs represent a forward energy cascade from
large resolved to small subgrid scales.On the contrary, negative values of εsgs describe
events of reverse energy cascade from small subgrid to large resolved scales. In Fig. 1,
the probability density function of εsgs for two distances from the wall, y+ = 13 and
y+ = 130 respectively, is shown. Strong backscatter events appear to be significant
near the wall leading to a net contribution that overcomes the one due to forward
events. Interestingly, also in the putative overlap layer where the net contribution
of the small subgrid scales is of energy draining, backscatter events are still present
but weaker. Indeed, the distribution is narrower and skewed toward forward energy
transfer events. Let us now consider the topological distribution of the forward and
backward events. Indeed, it is generally thought that the occurrence of large energy
transfer between the resolved and unresolved scales is strongly correlated with some
of the common turbulent structures that characterize wall-bounded flows [7]. In
Fig. 2, the isosurfaces of forward and backward energy transfer events are shown.
The main feature of these phenomena is that occur at relatively small scales. This
is one of the main source of problem for modelling. In particular, we measure that
the events of forward and backscatter form structures whose lengths are of the order

Fig. 1 Probability density
function of εsgs at y+ = 13
(red line) and y+ = 130
(black line)

sgs

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

0.05

0.1

0.15

0.2

0.25



78 A. Cimarelli and E. De Angelis

Fig. 2 Isosurfaces of forward (yellow) and backward (light blue) energy transfer events, εsgs = 0.02
and εsgs = −0.02 respectively

Δx+ ∼ 200, Δy+ ∼ 20 and Δz+ ∼ 50. Furthermore, it appears that backward and
forward scatter usually occur in close proximity of each other, the backscatter event
being generally surrounded by a region of significant forward scatter. Accordingly
to Piomelli et al. [7], this close proximity indicates that the separation into resolved
scales and subgrid scales is not isolating physically distinct structures. In other terms,
it appears that forward and backscatter events arise from different parts of the same
coherent motion.
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Building Proper Invariants
for Eddy-Viscosity Models

F.X. Trias, A. Gorobets and A. Oliva

Abstract Direct numerical simulations of the incompressible Navier-Stokes equa-
tions are limited to relatively low-Reynolds numbers. Therefore, dynamically less
complexmathematical formulations are necessary for coarse-grain simulations. Reg-
ularization and eddy-viscosity models for LES are examples thereof. They rely on
differential operators that should capture well different flow configurations (laminar
and 2D flows, near-wall behavior, transitional regime…). Most of them are based on
the combination of invariants of a symmetric second-order tensor that is derived from
the gradient of the resolved velocity field. In the present work, they are presented in
a framework where the models are represented as a combination of elements of a 5D
phase space of invariants. In this way, new models can be constructed by imposing
appropriate restrictions in this space.

1 Theory: A 5D Phase Space for Eddy-Viscosity Models

The essence of turbulence are the smallest scales of motion. They result from a subtle
balance between convective transport and diffusive dissipation. Numerically, if the
grid is not fine enough, this balance needs to be restored by a turbulence model. The
success of a turbulencemodel depends on the ability to capture well this (im)balance.
In this regard, many eddy-viscosity models for LES have been proposed in the last
decades. In order to be frame invariant,most of them rely on differential operators that
are based on the combination of invariants of a symmetric second-order tensor (with
the proper scaling factors). To make them locally dependent such tensors are derived
from the gradient of the resolved velocity field, G ≡ ∇u. This is a second-order
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traceless tensor, tr(G) = ∇ · u = 0. Therefore, it contains 8 independent elements
and it can be characterized by 5 invariants (3 scalars are required to specify the
orientation in 3D). This set of five invariants can be defined as follows

{QG, RG, QS, RS, V 2}, (1)

where QG = −1/2tr(G2), RG = det (G) and QS = −1/2tr(S2), RS = det (S) are
the second and third invariants of G and S, respectively. In this case, first invari-
ants are zero, i.e. PG = tr(G) = ∇ · u = 0 and PS = tr(S) = ∇ · u = 0. Finally,
V 2 = tr(S2Ω2), where S = 1/2(G + GT ) andΩ = 1/2(G − GT ) are the symmet-
ric and the skew-symmetric parts of the gradient tensor, G. Starting from the classical
Smagorinsky model [3] that reads

νSmag
e = (CSΔ)2|S(u)| = 2(CSΔ)2(−QS)

1/2, (2)

most of the eddy-viscosity models for LES are based on invariants of second-order
tensors that are derived from the gradient tensor, G. Therefore, it seems natural to re-
write them in terms of the 5D phase space defined in (1). For instance, theWALE [4]
and the Vreman’s model [5] read

νW
e = (CW Δ)2

(2/3Q2
G + Z2)3/2

(−2QS)5/2 + (2/3Q2
G + Z2)5/4

, νV r
e = (CV rΔ)2

√
Q2

G + 4Z2

2(QΩ − QS)

(3)

respectively,where QΩ = QG − QS and Z2 = V 2 − 2QS QΩ . Other eddy-viscosity
models that can be re-written in terms of the above-defined invariants are the RS-
basedmodel proposed byVerstappen [1] and the σ -model proposed in [2]. Themajor
drawback of the Smagorinsky model is that the differential operator it is based on
does not vanish in near-wall regions (see Table1). It is possible to build models based
on invariants that do not have this limitation. Examples thereof are the WALE, the
Vreman’s, the RS-based and the σ -model (see also Table1).

Table 1 Top: near-wall behavior and units of the five basic invariants in the 5D phase space given
in (1) together with the invariants QΩ = QG − QS and Z2 = V 2 − 2QS QΩ . Bottom: near-wall
behavior of the Smagorinsky, the WALE, the Vreman’s, the RS-based and the σ -models

Invariants

QG RG QS RS V 2 QΩ Z2

Wall-behavior O(y2) O(y3) O(y0) O(y1) O(y0) O(y0) O(y2)

Units [T −2] [T −3] [T −2] [T −3] [T −4] [T −2] [T −4]
Models

Smagorinsky
Eq. (2)

WALE
Eq. (3)

Vreman’s
Eq. (3)

RS-based
Ref. [1]

σ -model Ref. [2]

Wall-behavior O(y0) O(y3) O(y1) O(y1) O(y3)
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2 Building New Proper Invariants for LES Models

At this point, it is interesting to observe that new models can be derived by imposing
restrictions on the differential operators they are basedon. For instance, let us consider
models that are based on the invariants of the tensor GGT

νe = (CMΔ)2P p
GGT Qq

GGT Rr
GGT , where − 6r − 4q − 2p = −1; 6r + 2q = s,

(4)

and PGGT = 2(QΩ − QS), QGGT = Q2
G + 4Z2 and RGGT = R2

G , respectively. This
tensor is proportional to the gradient model given by the leading term of the Tay-
lor series expansion of the subgrid stress tensor τ(u) = (Δ2/12)GGT + O(Δ4).
The above-defined restrictions on the exponents follow by imposing the [T −1] units
of the differential operator and the slope, s, for the asymptotic near-wall behav-
ior (see Table1), i.e. O(ys). Solutions for q(p, s) = (1 − s)/2 − p and r(p, s) =
(2s − 1)/6 + p/3 are displayed in Fig. 1. The Vreman’s model given in Eq. (3) cor-
responds to the solution with s = 1 (see Table1) and r = 0. However, it seems more
appropriate to look for solutions with the proper near-wall behavior, i.e. s = 3 (solid
lines in Fig. 1). Restricting ourselves to solutions involving only two invariants of
GGT we find three new models (also represented in Fig. 1),

νS3Q P
e = (Cs3qpΔ)2P−5/2

GGT Q3/2
GGT , (5)

νS3R P
e = (Cs3rpΔ)2P−1

GGT R1/2
GGT , (6)

νS3RQ
e = (Cs3rqΔ)2Q−1

GGT R5/6
GGT , (7)

where the model constants, Cs3xx , can be related with the Vreman’s constant, CV r ,
with the following inequality (see details in [6])

Fig. 1 Solutions for the
linear system of Eq. (4) for
s = 1 (dashed line) and
s = 3 (solid line). Each
(r, q, p) solution represents
an eddy-viscosity model of
the form given in Eq. (4)
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Fig. 2 Results for a turbulent channel flow at Reτ = 395 obtained with a 323 mesh for LES and a
963 mesh without model, i.e. νe = 0. Solid line correspond to the DNS results by Moser et al. [7]

0 ≤ (CV r )
2

(Cs3xx )2

νS3xx
e

νV r
e

≤ 1

3
. (8)

Hence, imposing Cs3qp = Cs3rp = Cs3rq = √
3CV r guarantees both numerical sta-

bility and that the models have less or equal dissipation than Vreman’s model,
i.e. 0 ≤ νS3xx

e ≤ νV r
e . Figure2 shows the performance of the proposed models for

a turbulent channel flow in conjunction with the discretization methods for eddy-
viscosity models proposed in [8]. The code is based on a fourth-order symmetry-
preserving discretization finite volume discretization. Compared with the Vreman’s
model, they improve the results near the wall.
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Analysis of a Hybrid RANS/LES Model
Using RANS Reconstruction

M. Nini, A. Abbà, M. Germano and M. Restelli

Abstract The Hybrid RANS/LES method proposed is based on the hybrid filter
approach introduced by Germano in 2004. In this work, instead of using two explicit
models respectively for LES and RANS, we use only a model for LES and we recon-
struct the RANS field exploiting the properties of hybrid filter. The reconstruction
is obtained from the resolved velocity and the LES subgrid stress tensor. The model
has been implemented using a variational approach in a DG-FEM framework and
tested for the turbulent channel flow test case. Different configurations for hybrid
terms have been compared with DNS data and with pure LES results.

1 Model and Methodology

In the hybridRANS/LESmethods,RANSandLESare combined in order to achieve a
detailed description of turbulent flow without incurring in unfeasible computational
effort. A detailed review about hybrid RANS/LES method can be found in [1].
Starting from Detached Eddy Simulation [2], several methods were presented and
successfully tested. Nevertheless, problems, especially in transition between RANS
and LES, still remain.

The approach followed in this paper uses the hybrid filter proposed by Germano
[3]. The main strength of this filter approach relies on the possibility of overcome
the lack of energy and momentum transfer between RANS and LES area, through
additional terms related to the characteristic of the hybrid filter. Therefore, no further
artificial terms are needed. Rajamani and Kim [4] and Sanchez-Rocha and Menon
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[5, 6] studied and tested this approach, respectively for incompressible and com-
pressible flow, showing promising results.

The hybrid filter is given by

H = kF + (k − 1)E , (1)

where k is a blending factor and F and E are respectively the LES filter and the
statistical RANSoperator. The blending factor k, can be imposed a priori or computed
dynamically [7], and in principle could vary from 1 (pure LES), where the grid
resolution is high enough to resolve an adequate amount of turbulent scales, to 0
(pure RANS) where the grid become coarser. As shown by [5], the application of
the hybrid filter to the compressible Navier-Stokes equations leads to several terms
in the subgrid stress tensor τH . Nevertheless, in this work we will consider only
low Mach number. Therefore, in the hypothesis of near incompressible flow, we
assume that: τH ≈ 〈ρ〉H τH

inc , where τH
inc represents the subgrid stress tensor in

the incompressible case. According to that, in the following, we will refer to the
incompressible case; then τH for hybrid RANS/LES equations can be written as

τH (ui , u j ) = kτF (ui , u j ) + (1 − k)τE (ui , u j )

+ 1 − k

k
(〈ui 〉H − 〈ui 〉E )(〈u j 〉H − 〈u j 〉E ), (2)

where τE is the Reynolds stress tensor, τF is the LES subgrid stress tensor and 〈〉
are used to represent quantities filtered F , averaged E or hybrid-filtered H .

Our work is focused on the Reynolds stress tensor τE . There are different pos-
sibilities to determine this term, for example using any explicit RANS model or
reconstructing it by means of DNS data, experimental results or previous simula-
tions. Here τE is reconstructed from the LES model and from the resolved velocity
field. We start from the definition of τE ,

τE (ui , u j ) = 〈ui u j 〉E − 〈ui 〉E 〈u j 〉E
= 〈τH (ui , u j )〉E + τE (〈ui 〉H , 〈u j 〉H ). (3)

The velocity can be split into average and fluctuating part, 〈u〉H = 〈〈u〉H 〉E +
〈u〉′H , so the latter term becomes:

τE (〈ui 〉H , 〈u j 〉H ) = 〈(〈ui 〉H − 〈ui 〉E )(〈u j 〉H − 〈u j 〉E )〉E . (4)

Inserting the hybrid stress tensor definition (2) in (3)

τE (ui , u j ) = k〈τF (ui , u j )〉E + (1 − k)τE (ui , u j )

+ 1 − k

k
〈(〈ui 〉H − 〈ui 〉E )(〈u j 〉H − 〈u j 〉E )〉E + τE (〈ui 〉H , 〈u j 〉H )

(5)
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Fig. 1 Stress profiles, from left to right streamwise component τuu , normal component τvv, right
spanwise component τww and shear stress −τuv

and using relation (4), Reynolds stress tensor becomes:

τE (ui , u j ) = 〈τF (ui , u j )〉E + 1

k2
τE (〈ui 〉H , 〈u j 〉H ). (6)

Finally, substituting the relation (6) in (2), we obtain τH (ui , u j )

τH (ui , u j ) = kτF (ui , u j ) + (1 − k)〈τF (ui , u j )〉E + 1 − k

k2
τE (〈ui 〉H , 〈u j 〉H )

+ 1 − k

k
(〈ui 〉H − 〈ui 〉E )(〈u j 〉H − 〈u j 〉E ). (7)

Therefore, we need only a model for LES. One of the most relevant drawback for
this approach is that RANS reconstruction introduces a term 1/k2. The presence
of this term limits the lower value for the blending factor. In fact, although setting
k = 0 would not have been possible also using an explicit RANSmodel, as shown by
(2), with RANS reconstruction the minimum k allowed increases, according to our
tests the value should be ∼0.3 ÷ 0.4. As a consequence we have to adjust the grid
to compute LES with the adequate resolution. Nevertheless, in terms of numerical
cost, this problem is balanced by the absence of additional equations related to the
RANS model.
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2 Results

Considering that the main purpose of the work is to evaluate applicability and per-
spectives RANS reconstruction procedure, we have tested only the constant blending
factor case, in which no extra terms related to non-commutativity between hybrid fil-
ter and derivatives incur. Simulations refer to a turbulent channel flow at Ma = 0.2.
The grid resolution in wall unit is: ∼23x+ for streamwise direction, ∼10y+ for
spanwise direction for and ∼0.65/7.9y+ in the normal direction.

Results for stress profiles Fig. 1 show a good agreement with respect to incom-
pressible DNS data obtained by Moser et al. [8]. Moreover, hybrid method, in par-
ticular for k = 0.50 where the hybrid terms are more relevant, improve the pure LES
results, obtained with the same dynamic anisotropic model used as LES model for
hybrid method.

3 Conclusion

A new methodology for hybrid filter RANS/LES method has been studied. The
novelty introduced is represented by the reconstruction of RANS term, which allows
to avoid the usage of explicit RANS models. The results, for constant value of
blending factor and low Mach number, are promising and show that the hybrid
method can integrate LES computing where the grid resolution is not enough to
solve an appropriate number of turbulent scale.
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On the Coupling of Direct Numerical
Simulation and Resolvent Analysis

F. Gómez, H.M. Blackburn, M. Rudman, A.S. Sharma
and B.J. McKeon

Abstract The present contribution explores the relationship between response and
forcing via amplification mechanisms in the Navier–Stokes equations applied to a
turbulent pipe flow. A novel numerical method coupling direct numerical simulation
with the resolvent model [J. Fluid Mech. 658, 336-382 (2010)] is developed in order
to reveal the exact distribution of the nonlinear forcing terms, originally unknown
in the model. The obtained results highlight the major role of the nonlinear terms in
the energy spectra.

1 Introduction

The recent theory of coherent structures in wall turbulence developed by McKeon &
Sharma [1, 2] permits the prediction of different organizedmotion in turbulent flows.
Modelizations of the interaction of streaks associated with near-wall cycle, hairpin
vortices, hairpin packets, and very-large scale motions (VLMs) can be all directly
extracted from the Navier–Stokes equations, under the assumption/restriction of a
turbulent mean flow, via a singular value decomposition (SVD) of the resolvent oper-
ator that relates velocity fluctuations with nonlinear forcing terms, responsible for
sustaining the turbulence [1, 2]. The core of this model lays in the high selectiv-
ity shown by the SVD of the resolvent operator, indicating that certain resolvent
modes are more energetically and/or dynamically relevant than others. However, the
distribution of the nonlinear forcing is unknown in this model and assumptions must
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be taken with respect to this. Examples of this are the work of Sharma and McKeon
[2], who successfully assigned weightings to the modes according to their relative
importance based on observation in the existing literature in order to model hairpin
packets, and the work of Luhar et al. [3], in which a broad unit forcing is assumed
across all wavenumbers for the prediction of the effectiveness of opposition control
in pipe flow. Additional efforts to unveil the distribution of nonlinear forcing have
been carried out by Moarref et al. [4], who applied optimization methods to weight
resolvent modes in order to reconstruct a given turbulent spectra, and by Gómez et
al. [5] who compared the most amplified resolvent modes with the most energetic
modes arising from a dynamical mode decomposition (DMD) of direct numerical
simulation (DNS) data. Here, we derive a new methodology to extract the exact
contribution of the nonlinear terms.

2 Numerical Method

A spectral element–Fourier numerical discretization in cylindrical coordinates [6] is
employed to solve the non-dimensional incompressible Navier–Stokes equations

∇ · û = 0 ,
∂û
∂t

+ û · ∇û = −∇p + Re−1∇2û, (1)

where Re is the Reynolds number based on the bulk velocity and pipe diameter D =
2R, û = (u, v, w) is the velocity vector expressed in cylindrical coordinates (x, r, θ)

and p is the modified pressure. A (x, r)-domain of length L = 2πD is employed and
a Fourier discretization is applied in the periodic azimuthal direction. This permits
writing the velocity obtained from the DNS as a sum of azimuthal Fourier modes
v̂n(x, r, t)

û(x, r, θ, t) =
∑
±n

v̂n(x, r, t)einθ . (2)

A manipulation of the Navier–Stokes equation (1) in which both fluctuating velocity
u = û − u0 and nonlinear terms f are Fourier-decomposed in azimuthal wavenum-
bers n and frequency ω yields the linear relation

un,ω(x, r) = Hn,ωfn,ω(x, r), (3)

for each (n, ω) combination. The resolvent operatorHn,ω acts as a transfer function
between the fluctuating velocity and the nonlinear terms. A singular value decom-
position (SVD) of this resolvent operator

Hn,ω =
∑

m

ψn,ω,mσn,ω,mφ∗
n,ω,m, (4)
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provides an amplification relationship between two sets of orthonormal singular
vectors ψn,ω,m and φn,ω,m via the magnitude of the corresponding singular value
σn,ω,m, with m denoting the SVD order. Next, the nonlinear terms are projected onto
the singular vectors φn,ω,m

fn,ω =
∑

m

χn,ω,mφn,ω,m, (5)

where the unknown forcing coefficients χn,ω,n represent the nonlinear interactions
which act as the forcing that drives the turbulent fluctuations. The fluctuating velocity
field is then reconstructed as a weighted sum of singular response modes

u(x, r, θ, t) =
∑

ω

∑
n

∑
m

an,ω,mψn,ω,m(x, r)ei(nθ−ωt), (6)

in which the unknown complex amplitudes an,ω,m

an,ω,me−iωt =
∫ ω+Δω/2

ω−Δω/2
χn,ω′,mσn,ω′,me−iω′tdω′, (7)

are defined as the product of the non-linear forcing and the resolvent amplifications
integrated in frequency over a frequency bin Δω with the purpose of discretizing the
integral in frequency. Equivalently, these amplitudes can be approximated by

an,ω,m � χn,ω,mσn,ω,mΔω. (8)

The complex amplitudes an,ω,m are obtained by coupling the DNS solution in (2) and
the resolvent model in (6), which reads

v̂n(x, r, t) =
∑
±ω

∑
m

an,ω,mψn,ω,m(x, r)e−iωt, (9)

for each azimuthal wavenumber n. Equation (9) is premultiplied by the complex
conjugate of the mode corresponding to frequency η and SVD index q and integrated
over the (x, r)-domain Ω

∫
Ω

ψ∗
n,η,q(x, r) · v̂n(x, r, t)dΩ =

∫
Ω

∑
ω

∑
m

an,ω,mψ∗
n,η,q(x, r) · ψn,ω,m(x, r)e−iωtdΩ, (10)

where dΩ = rdrdx. Making use of the orthonormality of the resolvent modes in Ω ,
the following scalar equation is obtained

Pn,η,q(t) = an,η,qe−iηt +
∫
Ω

∑
ω �=η

∑
m �=q

an,ω,mψ∗
n,η,q(x, r) · ψn,ω,m(x, r)e−iωtdΩ (11)
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where Pn,ω,m(t) is denoted as the temporal projection coefficients and correspond to
the evolution in time of the projection of response modes onto DNS snapshots. The
amplitude coefficients an,ω,m are obtained by estimating the power spectral density
(PSD) of the temporal projection coefficients Pn,ω,w(t) at the corresponding fre-
quency bin Δω. Welch’s method is employed for this purpose, which in a simplified
manner reads

a∗
n,ω,man,ω,m ≈

∫ ω+Δω/2

ω−Δω/2
PSD

(
Pn,ω,w(t)

)
dω. (12)

3 Results and Discussion

Figure1 shows the distribution in frequency of the amplitude per frequency
|a5,ω,1| Δω obtained via projections, the amplification σ5,ω,1 emerging from the
SVD of the resolvent operator, and the nonlinear forcing |χ5,ω,1| of the first singular
value m = 1 corresponding to the azimuthal wavenumber n = 5. A characteristic
sparsity is observed in all three distributions, as consequences of the finite length
domain employed in the DNS [5]. We observe that the frequencies of the resolvent
modes with higher amplitude (blue line) matches the most energetic frequencies
obtained via DMD analysis of DNS data, indicated by bars in Fig. 1, implying the
importance of the first singular vector. In addition, for this particular case at n = 5
we observe a significant shift of the nonlinear terms (green line) with respect to the
amplification (red line), which is translated into a displacement of the amplitude
peaks locations (blue line) with respect to the amplification peaks. This effect high-
lights the major role of the nonlinear terms in the location of the energy peaks in
frequency. Understanding the distribution of nonlinear forcing remains as a future
challenge.
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Fig. 1 Distribution of amplitude a5,ω,1 (blue), amplification σ5,ω,1 (red) and nonlinear forcing
χ5,ω,1 (green) in frequency of the first singular value m = 1 corresponding to the azimuthal
wavenumber n = 5. Bars indicate most energetic frequencies computed via DMD of DNS data
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Modeling Helicity Dissipation-Rate Equation

Nobumitsu Yokoi

Abstract Transport equation of the dissipation rate of turbulent helicity is derived
with the aid of a statistical analytical closure theory of inhomogeneous turbulence.
It is shown that an assumption on the helicity scaling with an algebraic relationship
between the helicity and its dissipation rate leads to the transport equation of the
turbulent helicity dissipation rate without resorting to a heuristic modeling.

1 Introduction

The helicity defined by
∫

V u · ω dV , as well as the kinetic energy, is an inviscid
invariant of the Navier–Stokes equation [V : fluid volume, u: velocity, ω(= ∇ × u):
vorticity]. Unlike the local turbulent energy density 〈u′2〉/2, the local turbulent helic-
ity density 〈u′ · ω′〉 is non-positive-definite and a pseudoscalar that changes its sign
under the inversion or reflection (u′: velocity fluctuation, ω′: vorticity fluctuation).
Since any pseudoscalar should vanish in a mirror symmetric system, a non-zero
pseudoscalar represents the breakage of mirror symmetry. In non-mirror symmetric
turbulence, a finite helicity density is spatially distributed to affect the local trans-
port. The dynamic evolution of turbulent helicity is subject to the balance among
the helicity production (from the large-scale inhomogeneities), its dissipation and
transport rates.

Effects of helicity (hereafterwe drop “density”) have been examined in the context
of turbulent transports. In the dynamos, the turbulent helicity is directly connected
to the so-called α effect, and plays an important role in magnetic field generation [3,
5]. Also in the non-mirrorsymmetric hydrodynamic turbulence such as a turbulent
swirling flow, the turbulent helicity is expected to counterbalance the eddy viscos-
ity [6]. The evaluation of the helicity dissipation rate is of crucial importance in
determining the magnitude of effective transport.
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2 Helicity in Inhomogeneous Turbulence

The turbulent helicity H ≡ 〈u′ · ω′〉 obeys an exact transport equation:

DH/Dt ≡ (∂/∂t + U · ∇) H = PH − εH + ∇ · TH (1)

(U: mean velocity). Here, PH and TH are the production and transport rates of H ,
whose expressions are suppressed. The helicity dissipation rate εH is defined by

εH ≡ 2ν

〈
∂u′

b

∂xa

∂ω′
b

∂xa

〉
. (2)

Evaluation of εH is of crucial importance to estimate the turbulent helicity evolution.
In order to derive the dynamic equation of εH , we have to express H in inhomoge-

neous turbulence. We follow the formal procedure of the two-scale direct-interaction
approximation (TSDIA) [5–7], a combination of the multiple-scale analysis with a
propagator renormalization closure theory of turbulence. In the TSDIA framework,
the lowest-order velocity field is equivalent to the homogeneous isotropic turbulence,
and the effects of themean-field inhomogeneities, rotation, etc. are taken into account
in a perturbation manner in the first- and higher-order velocity fields. If we introduce
the Green’s function of the lowest-order velocity field, G ′

Bαβ(k; τ, τ ′), the first-order
velocity field u′

1 can be expressed in terms of this Green’s function. For the lowest
order velocity field u′

0 and the Green’s function, we assume the generic form for the
homogeneous isotropic turbulence as

〈u′
0α (k;τ) u′

0β

(
k′;τ ′)〉

δ (k + k′)
= Dαβ (k) QB

(
k;τ, τ ′) + i

2

ka

k2
εαβa HB

(
k;τ, τ ′) , (3)

〈G ′
Bαβ

(
k; τ, τ ′)〉 = Dαβ (k) GB

(
k; τ, τ ′) , (4)

where Dαβ(k) = δαβ − kαkβ/k2 is the projection operator. Here, QB and HB are the
spectral functions of the kinetic energy and helicity of the lowest-order fields, respec-
tively. The second term in Eq. (3) represents the non-mirror symmetry of turbulence
with H being a pseudoscalar.

The turbulent helicity is expanded as

H(x; t) = 〈
u′ · ω′〉 = 〈

u′
0 · ω′

0

〉 + 〈
u′
0 · ω′

1

〉 + 〈
u′
1 · ω′

0

〉 + · · · . (5)

Substituting u′
0 and u′

1 (ω
′
n = ∇ × u′

n with n = 0, 1) into Eq. (5), with a renormal-
ization procedure (QB → Q, HB → H , GB → G), we obtain

H(x; t) = I0{H} − 1

3
I0

{
G,

DH

Dt

}
+ 8

27
(Ω + 2ωF) · I0 {G,∇Q} , (6)
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whereΩ(= ∇ × U) is themeanvorticity,ωF the angular velocity, and the abbreviated
forms of integral are defined by In {A} = ∫

k2n A(k, x; τ, τ, t)dk and In {A, B} =∫
k2ndk

∫ τ

−∞ dτ1 A(k, x; τ, τ1, t)B(k, x; τ, τ1, t).
In order to evaluate integrals in Eq. (6), we assume the propagators (correlation

and response functions) in the inertial range such as Q(k, x; τ, τ ′, t) = σK (k, x; t) ×
exp

[−ωK (k, x; t)|τ − τ ′|], etc., where the spectra in the inertial range are assumed
as

σK (k, x; t) = σK0ε
2/3k−11/3, σH (k, x; t) = σH0ε

−1/3εH (x; t)k−11/3, (7)

with the time scalesωK (k, x; t) = ωK0ε
1/3k2/3 = τ−1

K ,ωH (k, x; t) = ωH0ε
1/3
H k2/3 =

τ−1
H , ω(k, x; t) = ω0ε

1/3k2/3 = τ−1. The helicity spectrum σH in Eq. (7) arises from
the assumption that the spectrum of the helicity is determined by the scale (k), energy
and helicity transfer rates (ε and εH ). This has been confirmed by DNS’s [1, 2].

Using Eq. (7), H [Eq. (6)] can be estimated up to the first-order as

H(x; t) = 3 · (2π)1/3σH0ε
−1/3εH �

2/3
C + 1

6 · (2π)1/3

σH0

ω0 + ωH0

(
�Cε−1/3)2 εH

×
[(

1 + ωH0

ω0 + ωH0

)
1

ε

Dε

Dt
− 1

εH

DεH

Dt
−

(
11 + 2

ωH0

ω0 + ωH0

)
1

�C

D�C

Dt

]
, (8)

where �C is the size of the largest energy-containing eddies.

3 Modeling the Helicity Dissipation-Rate Equation

In constructing a system of model equations, we can choose any three of four tur-
bulence statistical quantities (H, ε, εH , �C). In order that any choice among the
four quantities should be equivalent (model transferability), some algebraic relation
should be held among them [4, 8].

We solve Eq. (8) concerning �C in a perturbation manner. Up to the lowest-order
analysis, we have

�C = 3−3/2(2π)−1/2σ
−3/2
H0 ε1/2ε

−3/2
H H 3/2, (9)

or equivalently,

εH = CH H/τ, τ = �
2/3
C ε−1/3, CH = 1/[3(2π)1/3σH0]. (10)

As the lowest-order analysis of the turbulent helicity expression, we obtained an
algebraic model for the turbulent dissipation rate as the first of Eq. (10) with the usual
eddy turn-over time scale [the second of Eq. (10)]. This corresponds to the estimate
of the turbulent helicity dissipation rate in homogeneous isotropic turbulence.
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If we proceed to the first-order analysis, under the requirement of model trans-
ferability, the second term of Eq. (8) should be balanced in itself. Using Eq. (9), we
change expression given in Eq. (8) based on ε, εH , and �C into the one based on ε,
εH , and H . As this result, we have

DεH

Dt
= CH1(ω0, ωH0)

εH

ε

Dε

Dt
+ CH2(ω0, ωH0)

εH

H

DH

Dt
, (11)

where CH1(ω0, ωH0) and CH2(ω0, ωH0) are coefficients determined by the time
scales of turbulence. If we assume τ 	 τK 	 τH (ω0 	 ωK0 	 ωH0), we have
CH1(ω0, ωH0) 	 0.26 and CH2(ω0, ωH0) 	 1.1. Finally, we obtain

DεH

Dt
= CεH1

εH

K
PK − CεH2

εH

K
ε + CεH3

εH

H
PH − CεH 4

εH

H
εH , (12)

where the model constants are theoretically estimated as

CεH 1 = 0.36, CεH2 = 0.49, CεH3 = CεH4 = 1.1. (13)

Conclusion. From the lowest-order analysis, the helicity dissipation rate is estimated
by an algebraic form [Eq. (10)]. Up to the first-order analysis, the εH equation is
derived as Eq. (12) with the theoretically-determined model constants. Reflecting
the spectral form [Eq. (7)], it depends on both the energy and helicity equations.
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Analysis of the Bivariate EMD Behavior
for Separating Coherent Structures
from Interference Fluctuations in Isotropic
Homogeneous Turbulence

Mehdi Sadeghi, Fabrice Foucher, Karim Abed-Meraim
and Christine Mounaïm-Rousselle

1 Introduction

In general, turbulent flow is undergoing the influence of coherent structures. The
existence of these structureswas recognizedmany years ago (Brown andRoshko) [1],
but their exact definition is still open to debate. Hussain and Reynolds [5] introduced
the so-called triple decomposition such that a physical variable of the turbulent
flow is a superimposition of a coherent (i.e., phase averaged), a mean (i.e., time-
averaged) and a random fluctuation. Fourier transform can be used to separate large-
scale structures from small-scales but the choice of cut-off frequency is a great
drawback of this approach. Lumley [7] proposed proper orthogonal decomposition
(POD) to extract coherent structures from turbulent flows. This approach is associated
with the statistical description of flow that restricts its interest to non-stationary
dynamics. Using orthogonal wavelet analysis, Farge et al. [6] separated large scale
from turbulent flow; however, the performance of the analysis is closely tied to how
well the morphology of the signals under study is represented by the selected basis
function.

For the analysis of nonlinear, non-stationary and noisy data, Huang et al. [3]
introduced the so-called Empirical Mode Decomposition (EMD). This method is
intuitive, direct and adaptive, with an posteriori-defined decomposition basis driven
entirely from the data themselves. Huang et al. [4] investigated the intermittency of
fully developed turbulent flows by means of EMD and Hilbert spectral analysis. The
present work seeks to assess the efficiency of Bivariate EMD to extract coherent
structures from synthetic interference fluctuations in isotropic homogeneous turbu-
lence.
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2 State of the Art

2.1 Empirical Mode Decomposition

EMD represents an arbitrary signal via a number of Intrinsic Mode Functions (IMF),
and the residual. By design, an IMF is a function for which the number of extrema
and the number of zero crossings are either equal or differ at most by one, together
with the mean value of two envelopes associated with the local maxima and minima
being zero.Generally, the finest component of the shortest period at each instant
will be identified and decomposed into the first IMF. The components of longer
periods will be identified and decomposed into the following IMFs in sequence [3].
The basic idea of bivariate EMD considers a bivariate signal, complex valued time
series, as a fast rotation superimposed on slower ones [9]. In order to separate the
more rapidly rotating component from slower ones, the idea is to define the slowly
rotating component as the mean of some 3-dimensional tube,envelope, that tightly
encloses the signal. Since the presentation of Bivariate EMD and its algorithm are
not subjects of this paper, the reader is refered to [9] for more information.

2.2 Methodology

An experimental homogeneous isotropic turbulent flow field representing the turbu-
lence field inside an engine was used as the original signal ui (t). It was generated by
six fans in a spherical combustion chamber with a mean velocity inside the chamber
equal to zero. The turbulence fieldwas characterized by using high rate particle image
velocimetry and Integral length-scale, Integral time-scale and energy spectra were
determined Galmiche et al. [2]. This flow field is perturbed by a mono-tone signal
as a synthetic fluctuation p(t) = Asin(2π f.t), that mimics coherent structures. The
perturbed signal under analysis is therefore u p(t) = ui (t) + pi (t). The EMD sorts
the different IMFs of a velocity signal from high frequency to the lowest one. The
first IMF is the representation of the high-frequency part (small scale) of the flow
and depending on the decomposition level the IMF is increasingly representative of
the tendencies of the velocity (large scale). The EMD analysis of a reference signal
and a perturbed signal at one point is illustrated in Fig. 1.

To discriminate between the perturbation and original signal Mazellier et al. [8]
introduced the resemblance criterion based on the statistical dependence between
the reconstructed signals resulting from two successive steps.

i f 1 < n ≤ N : R(n) = 〈un(t)un−1(t)〉√〈un(t)2〉
√〈un−1(t)2〉

, i f n = 1 : R(n) = 0 (1)
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Fig. 1 a Initial signal, b Perturbated signal

where the reconstructed signal un(t) defined as follows:

i f n ≤ N : un(t) =
n∑

k=1

I M Fk(t), i f n = N : un(t) =
n∑

k=1

I M Fk(t) + rN

(2)

Fig. 2 Evaluation of the
resemblance criterion R(n)
as a function of
reconstruction number n
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The evolution of the resemblance criterion R(n) as a function of the reconstruction
number n for the perturbation signal is shown in Fig. 2, sudden drop in IMF9 indicates
that this IMF represents a perturbation that has to be removed from the signal.

3 Results

To assess the quality of the recovering algorithm, the mean of the correlation coeffi-
cient between the recovered signal and the initial one in the case of different pertur-
bations as a function of coupled (a, f), amplitude and frequency, is plotted in Fig. 3,
One can see that the recovering procedure is onlyweakly sensitive to the amplitude of
the perturbation but it decreases significantly when the perturbation signal frequency
is increased. Also in each case of perturbation, the power spectral density of both
recovered and initial flow field have been computed and the averaged values of the
similarity measure as in Eq. (1) between them is illustrated in Fig. 4. This illustration
also demonstrates in low frequency perturbations, an impressive agreement between
the Fourier spectrum of the recovered turbulent velocity field and the initial one. To
compare the large-scale features of the recovered turbulent flow field and the initial
one, the integral time and length-scales of two fields are computed. As an exam-
ple, the mean autocorrelation coefficient and the mean two-point correlation coeffi-
cient, in the case where the maximum perturbation amplitude is 10m/s with different

Fig. 3 Contour plot of the
recovering quality indicator
with respect to the
parameters of the signal tone
perturbation
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Fig. 4 Contour plot of the
similarity between the mean
power spectral density of
recovered and initial flow
field with respect to the
parameters of the signal tone
perturbation
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Fig. 5 Temporal correlation
as cfunction of different
recovered signal

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

Temporal shift τ [ms]

T
em

po
ra

l c
or

ee
la

tio
n 

co
ef

fic
ie

nt
s 

 R
U
t (

τ )

Initial signal
Recovered signal, f

p
 = 15 HZ

Recovered signal, f
p
 = 5 HZ

Recovered signal, f
p
 = 1 HZ

Recovered signal, f
p
 = 0.1 HZ

perturbation frequencies, are illustrated in Figs. 5 and 6. As shown in these figures
in the base frequency perturbation there is a good agreement between the large-scale
behavior in the recovered velocity field and the initial one.
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Fig. 6 Typical evolution of
correlation coefficients

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Spatial shift ξ [mm]

co
re

el
at

io
n 

co
ef

fic
ie

nt
s 

 R
U
x (

ξ)

Initial signal
Recovered signal, f

p
 = 15 HZ

Recovered signal, f
p
 = 5 HZ

Recovered signal, f
p
 = 1 HZ

Recovered signal, f
p
 = 0.1 HZ

4 Conclusion

The bivariate EMD for the first time was applied on perturbed 2D turbulent field to
recover the reference signal. The influence of amplitude and frequency of perturba-
tion on the recovering procedure have been studied. This study justified in the case
the perturbation frequency is established in a much lower range than the integral
scale frequency, the original signal can be perfectly recovered.
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Turbulent Shear Flows Described
by the Algebraic Difference-Quotient
Turbulence Model

Peter W. Egolf and Kolumban Hutter

Abstract It is shown that Newton’s shear law for laminar flow and the Difference-
Quotient Turbulence Model (DQTM) for turbulent flow are the analog constitutive
laws describing the relations between shear strain rate and shear stress. Whereas the
laminar case is fully linear and local, the turbulent counterpart is nonlinear and nonlo-
cal. In this brief article the capacity of the newmodel is outlined by quoting references
and related articles which contain results of convincing simplicity and accuracy and
a presentation and discussion of the resulting analytical solutions of plane turbulent
Couette flow. Newton’s linear velocity profile between sheared plates for laminar
flow is embedded in this solution as a special case. The solution of the corresponding
nonlinear differential equation also reveals a cooperative phenomenon.

1 Introduction

Since the early zero-equation turbulencemodels appeared (see e.g. Taylor [1], Prandtl
[2], etc.), it became clear that a strong analogy exists between momentum exchange
by molecules in the laminar case and the turbulent momentum exchange by eddies in
turbulent flow. However, the molecules with small diameters compared to their mean
free path length lead to Newton’s linear gradient shear law, whereas an analog law
developed for turbulent shear flows, describing multi-size eddies (which even may
interpenetrate), cannot be linear. Thus, the basic law of turbulent flow calculations,
based on a too close analogy with Newton’s shear law, which is at present still the
well-accepted constitutive equation of Boussinesq [3], is only a crude approximation
to describe the occurring phenomena in turbulent flows.

Different authors already dedicated their efforts to develop new constitutive equa-
tions as a replacement of Boussinesq’s equation. Pope [4] proposed a more general
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effective viscosity hypothesis; Bernard and Handler [5] investigated the fluid mech-
anisms related to non-locality by numerical simulations. Important work has been
published by Huang [6], who proposed a fading memory effect as main ingredient to
improve the situation. Also Hamba [7] proposed a nonlocal model of the Reynolds
stress in turbulent shear flows. Note that memory and non-locality effects are analog
features in time and space. An alternative new algebraic closure model, namely the
Difference-Quotient Turbulence Model (DQTM), was developed and published in
1991 [8]. Applying this closure, analytical solutions of numerous fundamental flow
problems have been derived [9–13].

2 Deformation of a Laminar and Turbulent Flowing Fluid

The mean deformation of a turbulent flowing fluid with mean shear is analogous to
that of laminar flows [14]. However, still some important deviations shall be outlined.
From Fig. 1 it is concluded that

dγT ,21

dt
= −dδT ,21

dt
= lim

Δt→0

arctan
(

Δx1
Δx2

)

Δt
. (1a,b)

At first, because the fluid fluctuates, also the deformation is a fluctuating quantity.
Therefore, time-averaged increments are considered and the angles are denoted by
the index T (turbulent). Furthermore, the velocities are also replaced by their mean
values and the vertical displacement δx2 is ignored.

Admitting that a linear gradient law in the x2-direction is wrong, the limitΔx2→ 0
is not taken. This is the main idea and subtlety that opens the door for the derivation
of a new description of the shearing processes in turbulent flows. Now, the time
derivative of the mean complementary angle takes the form

Δx1

x2
x2

n2

2xδ

γ21 

1xΔ

x3

x1

x3

δF1 )( 21 xu

δΤ,21(t) 
δΤ,21(t+Δt) 

δA2

Δx2

11 ,ux

(a) (b)

Fig. 1 The static deformation of a solid body is shown in (a) and the dynamic mean deformation
of a fluid element of a turbulent flowing fluid between the times t and t+Δt in (b)
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dδT ,21

dt
= − lim

Δt→0

arctan
(
[ū1(x2+Δx2)−ū1(x2)]Δt

Δx2

)

Δt

= − ū1(x2 + Δx2) − ū1(x2)

Δx2
= −Δū1

Δx2
. (2a-c)

However, here, different from the laminar case, the spatial difference Δx2 and the
velocity differenceΔū1 are large-scale quantities! The limitΔt → 0 causesΔx1 also
to be small even for largeΔū1. It is demanded that this velocity difference is bounded,
which is indeed the case. Because an effect of large-scale eddies in turbulent flows,
which by scaling represents the entire cascade of eddies of different sizes, is a well-
established fact, it is now decided to let Δx2 tend to its maximum value—rather than
toward its minimum (zero). In the studied example of shear flow this position is at the
top boundary, denoted by x2max, where the maximum velocity, ū1max, occurs. These
considerations imply

dδT ,21

dt
= − ū1(x2max) − ū1(x2)

x2max − x2
= − ū1max − ū1(x2)

x2max − x2
,

(3a-b)

It can be seen that x2max is defined as the position where ū1 is at its maximum ū1max.
The turbulent dynamic viscosity is the ratio of the turbulent shear stress to the rate
of turbulent shear strain,

μT = τT ,21
dγT ,21

dt

= − τT ,21
dδT ,21

dt

= τT ,21
ū1max−ū1(x2)

x2max−x2

, νT = μT

ρ
, (4a-d)

where νT denotes the effective (turbulent) kinematic viscosity. Now, it follows that

τT ,21

ρ
= −u′

2u′
1 = σ (x2max − x2) (ū1 − ū1min)

ū1max − ū1
x2max − x2

, σ = const

3
, (5a-c)

where in analogy to statistical mechanics for molecular dynamics an expression for
the turbulent viscosity has been derived (see also Table1). Instead of molecules of
a single size, this modeling takes into consideration a cascade of eddies of different
sizes. Equation (5a-c) define the algebraicDQTM,which has been derived in this arti-
cle in a different manner than in earlier work, where, for example, a nonlocal integral
presentation with a kernel consisting of Heaviside distributions was introduced [11].

The full solutionof turbulentCouette flow, calculatedwith theDQTM, is presented
in [10]. Table1 shows results in [10] and of this article, in comparison with analog
quantities of the laminar case.
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Table 1 Comparison of numerous quantities of laminar and turbulent flows based on the DQTM

Laminar flow Turbulent flow

Characteristic length λ 
T ,2 = x2max − x2
Characteristic velocity umol ū1 − ū1min

Shear stress τ21 = μ
du1
dx2

τT ,21 = μT
ū1max−ū1(x2)

x2max−x2

(Effective) dynamic viscosity μ = σρλumol μT = σρ
T ,2 (ū1 − ū1min)

Dimensionless variable η = x2/x2max η = x2/x2max

Dimensionless function g1 = u1(η)/U g1 = ū1(η)/U

Differential equation g′′
1 = 0 2Rec/Re · g′

1 + 4X ·
g1 (1 − g1) − 1 = 0

Order parameter (see Fig. 2) X (Re < Rec) = 0a Rec/Re(X) =√
X (1 − X)/ arctan[√
X/ (1 − X)

]
Boundary conditions g1(−1) = 0, g1(1) = 1 g1(−1) = 0, g1(1) = 1

Mean downstream velocity g1 = 1/2 (1 + η) g1 = 1/2{
1 + √

(1 − X) /X ·
tan

[
arctan

(√
X/ (1 − X)

)
η
]}

Dimensionless mean shear
stress

g21 = g′
1 = 1/2 g21 = −4Xg1 (1 − g1)

aX is related to the mean shear S (see Ref. [10], Eq. (16)). With S = −2ω̄3 = −2ω̄ X is directly
related to the mean vorticity ω̄

3 Turbulence, a Cooperative Phenomenon
in Analogy to Magnetism

The DQTM reveals a critical phenomenon. Such also occur in systems of other
physical domains, e.g. in structural phase transitions of solid crystals, solid/fluid and
fluid/gas systems, fluid mixtures (e.g. water/phenol), magnetism, superconductivity,
super-fluidity, etc. In an open system a (constant) flux of energy into and out of it,
by self-organization, may also create two phases with different entropy densities.
In turbulence, vortices are occurring in well-defined patches or spots (low entropy
phase) separated from laminar streaks (belonging to the high entropy phase). In a
magnetic system the phase regions with oriented spins (low entropy) are calledWeiss
domains (seewhite patches in Fig. 2, first panel on the left), and it is themagnetization
M (order parameter) as a function of temperature T (stress parameter), that describes
how large these patterns are (second panel). In analogy, we call the white vorticity-
rich domains turbulent domains (third panel) and notice that our analytical theory
also delivers the order parameter X(Re) [10] (fourth panel), as e.g. a spin-wave theory
does for the magnetic system. The critical value of the magnetic system is its Curie
temperature, Tc, and of plane turbulent Couette flow the critical Reynolds number,
Rec. By setting the derivatives (zero entropies) of these curves with respect to the
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Fig. 2 Analogy between the magnetic and the turbulent system is shown with a picture of two
phases each and figures showing magnetisation (Ref. [13] and ref. therein) and vortisation*.
* Denotes preliminary new name, + In analogy to ‘Weiss’ a scientists name could eventually
be more accurate

stress parameters equal to zero, these follows in both cases the validity of Nernst’s
theorem for (non-degenerate) systems.
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Lyapunov Stability Criteria for Reacting
Ionic Fluid Flows

Martina Costa Reis and Adalberto Bono Maurizio Sacchi Bassi

Abstract In this work, the stability of reacting ionic fluid flows is studied by using
the Lyapunov direct method. For this purpose, one considers the flow of a reacting
ionic fluid inside a bounded domain under the action of external sources. The Lya-
punov candidate function characteristic for this kind of fluid depends on the barycen-
tric velocity of the fluid, mass concentration, temperature, pressure, and electromag-
netic fields. Nevertheless, whenever more strict physical conditions are imposed to
the reacting ionic fluid flow, the obtained Lyapunov candidate function is identical
to a well-known thermodynamic potential of classical thermodynamics.

1 Introduction

Among the variationalmethods reported in the literature, the Lyapunov directmethod
is of great relevance because its wide scope allows to study the stability of linear
and non-linear autonomous systems even without knowing their equilibrium states
[1]. Thus, in this work, the Lyapunov direct method is employed to investigate the
stability of reacting ionic fluid flows.

Section2 shows some basic ideas about the Lyapunov stability criteria. In turn, in
Sect. 3 a proper Lyapunov candidate function is constructed to a reacting ionic fluid
flow, and the thermodynamic conditions that characterize the stability of equilibrium
states of this fluid are investigated. The aim of this work is to discuss how the
Lyapunov direct method can be used to predict the evolution of a reacting ionic fluid
flow toward the stability.
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2 Basic Notions of Lyapunov Stability Criteria

Consider a continuous bodyS . A thermodynamic state χ(t) = (Γ1 (t) , . . . , Γn (t))
of a continuous body is a n-tuple of time-dependent functions locally defined over
S . Moreover, a thermodynamic equilibrium state χ(t∗) = χ∗ ofS is a state where
the continuous body is at rest in relation to an inertial reference frame κ , and the
functions Γ (t) are uniform and time-independent fields over S .

It is worthmentioning that thermodynamic equilibrium states are never rigorously
reached. From the practical point of view, in continuum thermodynamics one says
that a system reaches the equilibrium state when changes in macroscopic parameters
can no longer be observed by the available measuring devices.

Definition 1 Suppose that a continuous body possesses an equilibrium state χ∗. A
scalar-valued functionL (t) is a Lyapunov candidate function, if for every attainable
process it holds the following properties:

1. L (t) is a non-increasing function of time in a neighborhood of χ∗;
2. L (t) is a continuous function at χ∗;
3. L (t) has a strong local minimum at χ∗. In other terms, χ∗ is a strong local

minimum ofL (t), if

L
(
t∗) < L (t) ∀χ (t) ∈ N

(
χ

(
t∗) , δ

)
,

whereN (χ (t∗) , δ) is the set of feasible points contained within the δ-neighbor-
hood of χ∗.1

As a consequence of the above properties, in a neighborhood of χ∗ the Lyapunov
candidate functions obey the inequality,

d

dt
L (t) ≤ 0. (1)

In fact, Lyapunov candidate functions are of great relevance to stability problems
because from L (t) one can test the stability of an equilibrium state by using the
Lyapunov theorem [1]. Furthermore, Lyapunov candidate functions may be used to
exclude those constitutive functions that are not coherent with the physical conditions
that characterize the thermodynamic equilibrium states.

According to the Lyapunov theorem, an equilibrium state is said to be stable, if the
time derivative ofL (t) is negative semi-definite. On the other hand, an equilibrium
state is said to be asymptotically stable, if the time derivative of L (t) is negative
definite. Of course, in view of this condition, an asymptotically equilibrium state is

1The δ-neighborhood of the state χ∗ is defined as the region that contains the current states of the
continuous body S as soon as the initial external conditions of S are restored.
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also a stable equilibrium state. Example of a stable χ∗ is the equilibrium state of an
idealized gravity pendulum subject to no air friction and drag. In turn, the equilibrium
state of a real gravity pendulum subject to air friction and drag can be considered an
example of an asymptotically stable χ∗.

3 An Example of Lyapunov Stability Criteria Application:
Reacting Ionic fluid Flows

Consider a flow of a reacting ionic fluid inside a bounded domain under action of
external sources. Besides, assume that this fluid is governed by the same equations
of a heat conducting mixture of fluids with diffusion and chemical reactions subject
to the influence of electromagnetic fields [2]. By supposing that (i) the fluid is a
non-polar continuum, (ii) the mixture is so diluted that its dynamics is given by the
solvent dynamics, (iii) the motion of the fluid is incompressible, and (iv) the entropy
production is a non-negative quantity for any physically admissible process of the
fluid (second law of thermodynamics), then one obtains from the balance laws in
their integral forms the following expression

d

dt

∫
V

ρ

(
ε + 1

2
v · v − θη +

n−1∑
a=1

ξaμa + p

ρ
+ D

ρ
· E

)
dv −

∫
V

R∑
r=1

ΩrΥr dv ≤ 0,

(2)

where V is a part of the material domain of the whole continuous mixture, dv and da
are the volume and surface area elements of themixture, respectively, ρ is themixture
mass density, ρε is the mixture internal energy density, v is the mixture barycentric
velocity, θ is the absolute temperature, ρη is the mixture entropy density, ξa is the
mass concentration of the ath mixture constituent,μa is the chemical potential of the
ath constituent, p is the hydrostatic pressure, D is the electric displacement vector,
E is the electric field vector, Ωr is symmetric to the chemical affinity of a chemical
reaction r , andΥr is the rate of conversion of r by supposing R independent chemical
reactions.

In obtaining Eq. (2), it was considered that the entropy source is a linear combi-
nation of the linear momentum and energy sources, and the ionic fluid is a linear
dielectric. Furthermore, it was considered that the entropy flux vector of the whole
continuous mixture includes contributions from the heat flux vector h, temperature,

diffusive flux ja , and chemical potential, viz. Φ = h/θ −
n−1∑
a=1

μaja/θ . This expres-

sion, whose deduction can be found in reference [3], is widely used in the constitutive
modeling of multiconstituent continuous bodies.
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The discussion about the stability of a reacting ionic fluid flowproceeds by placing
the first physical restriction: although chemical reactions continue to occur in the
continuous mixture, the chemical equilibrium of each reaction r has been reached.
Hence, one has

d

dt
L1 (t) ≤ 0 L1 (t) =

∫
V

ρ

(
ε + 1

2
v · v − θη +

n−1∑
a=1

ξaμa + p

ρ
+ D

ρ
· E

)
dv,

(3)

whereL1 (t) is the Lyapunov candidate function for a reacting ionic fluid flowwhose
chemical reactions are at chemical equilibrium. In this case, L1 (t) includes contri-
butions arising from the barycentric velocity of the mixture, mass concentration,
temperature, pressure, and electromagnetic fields. Moreover, this Lyapunov candi-
date function is also valid for the case of a heat conducting mixture of fluids with
diffusion, but non-reactive.

If one imposes more strict physical constrains to the fluid, namely absence of
diffusive fluxes, chemical equilibrium, and the fluid is at mechanical rest in relation
to an inertial reference frame, then it follows that

d

dt
L2 (t) ≤ 0 L2 (t) =

∫
V

ρ

(
ε − θη + p

ρ
+ D

ρ
· E

)
dv. (4)

In fact, the restrictions imposed to thefluid are the very familiar physical and chemical
conditions that classical thermodynamics uses to study the stability of chemical
systems. Briefly, in this case the Lyapunov candidate function is the Gibbs energy,
also referred to as free enthalpy, including electromagnetic fields.

4 Final Remarks

In this work, the basic notions about Lyapunov stability criteria are provided. As an
example of the Lyapunov direct method exploitation, the stability of a reacting ionic
fluid flow is considered. For this purpose, the balance laws of mass concentration,
linear momentum, energy, and entropy of a reacting mixture subject to the influence
of electromagnetic fields were used to construct a Lyapunov candidate function
L (t), a scalar-valued function that characterizes the changes of a proper system
energy toward the stable equilibrium state. From this function, it was shown that as
the reacting ionic fluid flow approaches to its stable equilibrium state,L (t) cannot
increase.

Acknowledgments The first author acknowledges financial support from the São Paulo Research
Foundation (grant 2013/20872-2).
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DNS and LES of Viscoplastic-Type
Non-Newtonian Fluid Flows

A. Carmona, O. Lehmkuhl, C.D. Pérez-Segarra and A. Oliva

Abstract The aim of this work is to delve into the turbulent flow of viscoplastic-
type non-Newtonian fluids through specific and essential numerical aspects for them.
Specifically, the numerical problems introducedby the transpose diffusive termwhich
are associated with the velocity field discontinuity and the artificial viscous diffusion
will be addressed from the beginning. The objective is to gain insight into the under-
lying physics of this class of non-Newtonian fluid flows.

1 Introduction

In the specialised literature on the topic of viscoplastic-type non-Newtonian fluid
flows many researchers use the generalised Newtonian model together with a spe-
cific rheological law in order to analyse non-Newtonian fluid flows which exhibit
viscoplastic stresses (see, for instant, Refs. [1–4]). Nevertheless, from our point of
view, specific numerical techniques for this class of non-Newtonian fluid flows are
not being taken into account in the corresponding numerical simulations.

2 Mathematical Formulation

The transport equations describing the non-Newtonian behaviour for an incompress-
ible fluid are:

∇ · v = 0 (1)
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ρ
∂v
∂t

+ ρ∇ · (vv) = −∇ p + ∇ · (η∇v) + ∇ · (
η(∇v)T

) + ρg (2)

The finite volume discretisation and the collocated variable arrangement have
been used to obtain the discrete form of these equations:

Mv f = 0 (3)

ρc
∂vc

∂t
+ Cvc = −Gpc + Dvc + ∇h · (

η(∇hv)T
) + Bg (4)

In the numerical analysis of viscoplastic-type non-Newtonian fluid flows certain
key aspectsmust be taken into account from the beginning to overcome the numerical
problems introduced by the transpose diffusive term and associated with the velocity
field discontinuity, the artificial viscous diffusion and the transpose viscous coupling.
For these reason, the transpose diffusive term, symbolically written here, will be
numerically analysed in more detail.

3 Numerical Analysis

Concerning the velocity field discontinuity, the discretised transpose diffusive term
should be composed of contiguous values of the collocated discrete variable in order
to reproduce faithfully the non-Newtonian behaviour. Consequently, an expression
for the transpose diffusive term based on the divergence theorem and an arithmetic
mean (this one for approaching the corresponding staggered velocity gradients) is
proposed:

∇h · (η(∇hv)T ) = 1

ΩP

(
1

2ΩP

∑
P F

AP F
vF

2

)
·
∑

f

η f A f

+ 1

ΩP

∑
f

(
η f

2ΩF

∑
F2F

AF2F
v2F

2

)
· A f ⇒ ∃ vP

However, artificial viscous diffusion can be introduced by this staggered discrete
operator:

AVDAM = η

ΩP

∑
f

(
1

2ΩF

∑
F2F

v2F

2
· AF2F

)
A f ⇒ �= 0
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As for the artificial viscous dissipation, the aforementioned term should be can-
celled when the non-Newtonian viscosity takes the value of the Newtonian viscos-
ity under the hypothesis of incompressible fluid, this time with the objective of
reproducing accurately the Newtonian behaviour. Accordingly, another expression
for the transpose diffusive term based on the Green’s first identity is proposed:

AVDC O = 1

ΩP

⎡
⎣

(
1

ΩP

∑
P F

AP F
vF

2

)
·
⎛
⎝η

�
�

���
0∑

f

A f

⎞
⎠

⎤
⎦ ⇒ = 0

Although, a velocity field discontinuity can be allowed by this collocated discrete
operator:

∇h · (η(∇hv)T ) = 1

ΩP

⎡
⎣

(
1

ΩP

∑
P F

AP F
vF

2

)
·
⎛
⎝∑

f

η f A f

⎞
⎠

⎤
⎦ ⇒ � vP

4 Numerical Simulations

Taylor-Green vortex [G. I. Taylor and A. E. Green (1937)]

ψ = 1

k2
sin(kx − x0)sin(kz − z0)

Constricted rigid pipe (CRP, see Refs. [1–4])

Fig. 1 Truncation error of
the velocity gradient
components, the shear rate
and the non-Newtonian
viscosity. The divergence
theorem for the volume
integrals and the midpoint
rule for the surface integrals
have been used
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Fig. 2 Preliminary LES instantaneous snapshots of the velocity field, Re = 1000 a Pseudoplastic
fluid (n = 0.75). b Newtonian fluid (n = 1.00). c Dilatant fluid (n = 1.50)

5 Conclusions

The numerical problems introduced by the transpose diffusive term which are asso-
ciated with the velocity field discontinuity and the artificial viscous diffusion have
been highlighted (Figs. 1 and 2). A specific evaluation for the non-Newtonian vis-
cosity at the control face, in order to avoid the velocity field discontinuity in the
collocated discrete operator, and a unique definition for the velocity at the control
face, in order to eliminate the artificial viscous diffusion in the staggered discrete
operator, are being analysed. Thus, specific numerical techniques for viscoplastic-
type non-Newtonian fluid flows must be taken into account in the corresponding
numerical simulations with the objective of reproducing faithfully and accurately
the non-Newtonian behaviour.
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Flow Features in Three-Dimensional
Turbulent Duct Flows with Different
Aspect Ratios

Ricardo Vinuesa, Philipp Schlatter and Hassan M. Nagib

Abstract Direct numerical simulations of turbulent duct flows with width-to-height
ratios 1, 3, 5, 7 and 10, at a friction Reynolds number Reτ,c � 180, are carried out
with the spectral element code Nek5000. The aim of these simulations is to gain
insight into the kinematics and dynamics of Prandtl’s secondary flow of second kind,
and its impact on the flow physics of wall-bounded turbulence. The secondary flow
is characterized in terms of the cross-plane mean kinetic energy K = (

V 2 + W 2
)
/2,

and its variation in the spanwise direction of the flow. Our results show that averaging
times of at least 3,000 time units are required to reach a converged state of the
secondary flow, which extends up to z∗ � 5h from the side walls. We also show that
if the duct is notwide enough to accommodate thewhole extent of the secondary flow,
then its structure is modified by means of a different spanwise distribution of energy.
Future proposed work includes coherent structure eduction, quadrant analysis at the
corner, and comparisons with spanwise-periodic channels at comparable Reynolds
numbers.

1 Introduction

Turbulent duct flows of different aspect ratios AR (defined as the duct width W
divided by its total height H ) are of great importance for a number of technological
applications. The most remarkable characteristic of ducts is the formation of the
so-called Prandtl’s secondary flow of second kind at the duct corners, which arises
fromReynolds stress difference v2 − w2 and the deviatoric Reynolds shear stress vw.
Due to the Reynolds-stress-induced nature of this kind of secondary flow, currently
available Reynolds Averaged Navier Stokes (RANS) models widely used in industry
in general fail to predict its effect on the flow.
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The studies byHuser andBiringen [1] andPinelli et al. [2] have shown the potential
of using numerical simulations to study turbulent duct flows. They performed direct
numerical simulations (DNSs) of square ducts at lowReynolds numbers below Reτ =
300. The velocity and length scales are the friction velocity uτ = √

τw/ρ (where τw

is the mean shear stress at the wall and ρ is the fluid density) and the duct half-
height h respectively, whereas Reτ is the friction Reynolds number. On the other
hand, the impact of the secondary flow on the mean velocity profile and the turbulent
fluctuations for increasing aspect ratios has not been characterized in detail before,
and this is the aim of the present study.

2 Numerical Simulations

Turbulent duct flows with aspect ratios 1, 3, 5, 7 and 10 at Reτ,c � 180 (where uτ,c is
the friction velocity at the duct centerplane in the spanwise direction) are simulated
by means of DNS. The database was initially presented by Vinuesa et al. [3], and has
been extended as a part of the present study. The simulations were performed with
the code Nek5000, developed by Fischer et al. [4], and based on the spectral element
method (SEM). In the SEM the computational domain is decomposed into elements,
and the solution is expanded in terms of Lagrange polynomials of order N inside
those elements. The location of the nodes within elements is fixed, and follows the
Guass–Lobatto–Legendre distribution, whereas there are no restrictions regarding
the position of the elements in the domain. In the present study we considered the
PN − PN−2 formulation with N = 11.

With respect to the flow setup, periodicity is assumed in the streamwise direction
x in all the cases, and no-slip conditions are imposed at the walls along the vertical
(y) and spanwise (z) directions. All the ducts have a streamwise length of Lx = 25h,
and the same Reynolds number Reb,c � 2,800 is maintained the centerplane in all
the aspect ratio cases (Reb,c is based on centerplane bulk velocity and h). All the
simulations are started from a laminar solution, and transition to turbulence is tripped
bymeans of a localized volume force acting in y. Its parameters are designed to create
strong, instationary streaks that lead to rapid turbulent breakdown as described by
Schlatter and Örlü [5].

Figure1 shows an instantaneous streamwise velocity field obtained from the duct
with AR = 10. Near-wall streaks can be easily identified in this figure, with the well
documented spacing in the spanwise directionΔz+ � 100. It is interesting to observe
how near-wall streaks are also formed on the side walls, also with an approximate
spacing of Δy+ � 100, and how at the corner the effect of the two walls inhibits the
formation of such structures. Instead, the flow field in Fig. 1 shows how the bursting
events from horizontal and vertical walls interact at the corner. These interactions
are reported by Huser and Biringen [1] to result in a redistribution of energy from v2

to w2 in square ducts, which eventually leads to the formation of the mean secondary
flow.
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Fig. 1 Instantaneous
streamwise velocity from the
aspect ratio 10 case at 2,000
convective time units from
the beginning of the
simulation. Green and
orange represent minimum
and maximum velocities in
the field respectively. Flow is
from left to right, and walls
have been removed for
clarity

3 Results and Conclusions

The secondary flow is characterized in terms of its kinetic energy K = (V 2 + W 2)/2
at different spanwise locations z. Convergence analyses show that the spatially aver-
aged kinetic energy 〈K 〉yz at the duct corner, i.e., averaged from y/h = −1 to 1 and
from the corner up to a spanwise distance of h, converges to an asymptotic value for
averaging times of around TA � 3,000 convective time units (where bulk velocity
and h are used to nondimensionalize the time). Based on this, K can be evaluated by
analyzing velocity fields averaged in the homogeneous streamwise direction, and in
time for at least 3,000 time units.

The spanwise variation of the kinetic energy integrated in the wall-normal direc-
tion 〈K 〉y is shown in Fig. 2 for all the ducts under consideration in this study. This
figure shows that the secondary flow is stronger close to the corner, and becomes
gradually attenuated as the core of the duct is approached. It is also interesting to note
that although all the aspect ratios show a similar structure, with two local maxima
and one local minimum in between, their actual values are strongly influenced by
the aspect ratio. Thus, AR determines the structure of the secondary flow, where
for instance it is clear that the square duct exhibits a higher concentration of energy
close to the corner and has a steeper decay of kinetic energy as the centerplane is
approached. It is also interesting to observe that the AR = 3 and 5 cases show larger
peak values at distances z∗ � 0.4h from the corner than the cases with AR = 7 and
10. This is due to the fact that the secondary flow extends up to z∗ � 5h from the
corner, and therefore if the duct is not wide enough to accommodate the whole extent
of the secondary flow, then its structure is modified by means of a different spanwise
distribution of energy.

The presented databasewill be further analyzed to characterize the kinematics and
dynamics of the secondary flow, as well as its interaction with the mean flow. Results
with aspects ratios of up to 10 indicate that only the long-time average statistics of
the duct are in agreement with those obtained from the spanwise-periodic channels.
However, the dynamics of the turbulence and short-time averages of the vortical
flow have revealed differences in the core region between the channel and ducts
with aspect ratios up to 10 [6]. This suggests that experimental facilities intended to
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Fig. 2 Spanwise variation of
the wall-normal integrated
kinetic energy of the
secondary flow 〈K 〉y , for all
the duct cases under
consideration. Results
obtained from the
streamwise-averaged fields,
with averaging times of at
least 3,000 time units. Note
that z∗ is measured from the
corner to allow easier
comparison between the
various cases
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represent the canonical channel flow and to compare the turbulence structures and
dynamics and vortical flow details may require aspect ratios larger than facilities
with highest ratios used so far of 12 and may need to be as large as 18, as in [7].
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DNS of the Turbulent Flow Evolving
in a Plane Channel from the Entry
to the Fully Developed State

M. Capuano, A. Cadiou, M. Buffat and L. Le Penven

Abstract Direct numerical simulation of the turbulent flow spatially developing
in a plane channel is performed. The channel is long enough for the turbulence
to achieve the statistically invariant state in space and time. Spatial evolution of
statistical quantities andReynolds stress budgets are calculated.Results are compared
to the canonical flows consisting of the zero-pressure gradient turbulent boundary
layer and of the periodical channel flow.

1 Introduction

Developing entrance flows are of interest in a large number of application areas.
For sufficiently large Reynolds numbers, from the entrance section, the flow evolves
towards a turbulent state which is statistically steady and invariant in the downstream
direction.Many aspects of these flows have not been completely described, for exam-
ple, the entrance length Le after which the flow reaches a developed state, the lowest
Reynolds number corresponding to the fully developed turbulent flow, and charac-
teritics of the turbulence in its spatial development. The laminar entry length is a
linear function of the Reynolds number Reh (based on the bulk velocity U0 and the
channel half-width h) [2] for Reh values larger than 100, thus locating the asymptotic
state at a distance hundreds of time the channel height from the entry. In the turbulent
régime, Le appears to be substantially smaller than in the laminar case, but with a
weaker dependance with the Reynolds number. The Cole–Fernholtz scaling of the
boundary layer thickness yields to Le/h ∼ (ln Reh)

2 [5], whereas Le/h ∼ Re1/4h
[12] is obtained with a 1

7−law of the mean velocity. Recent experimental study [7]
however did not report any particular trend for Le but proposed instead Le/h = 260
as a reasonable estimation of the development length. There exists an extensive lit-
erature about the fully-developed turbulent flow in a periodic plane channel (since
[4, 10]), disregarding the aspects of the flow evolution. The behaviour of the turbu-
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lence in this canonical flow has been studied since then (see e.g. [3]) for increasing
Reynolds numbers. The analysis of zero-pressure-gradient (ZPG) turbulent boundary
layers (TBL) has followed the same evolution since [11] with recent simulations at
larger Reynolds number (see e.g. [6, 13]). Their characteritics differ in confinement
and pressure-gradient effect in the channel flow and because of intermittency in the
boundary layer flow. In near-wall region, statistics of both canonical flows are known
to be nearly identical with respect to the inner scale. Differences have been identified
in the large-scale structures away from the wall [9]. In order to get more insight into
the spatial evolution of the turbulent flow that enters a plane channel and reaches
the statistical fully developed state, direct numerical simulations are performed and
Reynolds stress budgets are calculated.

2 Flow Configuration and Numerical Method

DNS of spatially developing channel flows are performed with a spectral Galerkin
method [1, 8] for several Reynolds numbers Reh ranging from 1250 to 20,000. The
computational domain starts at a small distance downstream from the origin of the
boundary layers (at a location corresponding to a fixed Rex0 = 40,000) and extends
hundreds of time the channel half-width. Laminar-turbulent transition is triggered
near the channel entrance, by a perturbation imposed at the inlet of the computational
domain. As the flow evolves from a fixed Rex0 , which corresponds to an increasing
x0/h, with decaying Reynolds number, the turbulent length evolves as given in
Fig. 1. It seems to follow a Le/h ∼ Re2/5h power law in this Reynolds number range.
The correlations are fitted on the entrance length obtained for the largest Reynolds
number, multiplying the constant of [12] by a factor 2. We will focus here on the
Reh = 10,000 case, where the boundary layers are well separated in the entry section

Fig. 1 Turbulence entrance
length
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(at x/h = 4). The laminar entrance length extends to Le/h ∼ 1800 and is consistent
with [2]. In the DNS, the turbulence entrance length is Le/h ∼ 110.

The computational domain (280h × 2h × 6.4) has about 1.5 billions of modes
(23040 × 128 × 512). The transition occurs in the boundary layers (at x/h ∼ 10)
whose thickness grow, accelerating the flow until turbulence occupies all the channel
width (at x/h = 50). After x/h = 110, the turbulent intensity in the channel mid-
plane becomes constant as well as the friction velocity. In the region located here
between x/h = 50 and x/h = 110, the flow evolves from a boundary-layer type
flow (with weak favorable pressure gradient, corresponding to a Clauser parameter
of β = −0.007) to a periodic-channel type flow (with Reτ = 567).

3 Spatial Evolution of Statistical Quantities and Budgets

The flow evolution and the region described in the previous section can be seen on
the skin friction evolution (Fig. 2). Between x/h = 10 and x/h = 50 the turbulent
boundary layers grow from Reθ = 633 to Reθ = 1045. As the pressure gradient is
very weak, the statistics compare well to recent simulations of zero-pressure gradient
boundary layer on a flat plate [6] (between Reθ = 670 and Reθ = 1,000). After
x/h = 110, the skin friction reaches a constant value, which corresponds to the
periodic channel flow of Reτ = 567. Results are in close agreement to the of DNS
of the periodic channel flow of Reτ = 590 [10].

The turbulence is found to be in equilibriumonce the boundary layers havemerged
(after x/h = 110), as indicated by the ratio of the wall-normal integrated turbulent
kinetic energy production P and dissipation ε within the boundary layers, which
is quasi-constant (and equal to 1). Wall turbulence statistics are quite similar in all
sections, as shown by the Reynolds stress components (Fig. 3) for y+ < 30. Inner

Fig. 2 Skin friction
coefficient
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Fig. 3 Reynolds stresses

Fig. 4 Kinetic energy
budgets

scaled kinetic energy budgets are identical (Fig. 4). As expected, differences occurs
on the edge of the boundary layers. To enhance the balance in the boundary layer,
the budget terms are multiplied with y/δ0.99 and scaled in outer units u3

τ /δ0.99 [6].
Convergence of the high order correlations (turbulent diffusion, velocity-pressure
correlation) should be improved by accumulating more samples in order to evaluate
scaling laws. The shear stress follows a linear evolution in the middle of the channel
showing that the fully developed turbulent flow is reached.
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4 Conclusion

DNS of the flow evolving in a plane channel from the entry region to the fully
developed state is discussed. Results are consistent with the literature, the turbulence
evolving gradually from a slighly accelerated boundary layer to a fully periodic
channel flow [6, 10]. Turbulence is found in equilibrium once the turbulent entry
length is reached,which is supposed to be locatedwhere the time-averaged velocity in
the channel mid-plane becomes constant. The asymptotic state, where the turbulence
could be considered as statistical invariant in longitudinal space direction and time,
as in a periodical channel flow, is reached further downstream. This corresponds to
sections where the Reynolds shear stress becomes linear in themiddle of the channel.
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Downstream Evolution of Perturbations
in a Zero Pressure Gradient Turbulent
Boundary Layer

E. Rodriguez-Lopez, P.J.K. Bruce and O.R.H. Buxton

Abstract This paper examines the evolution of perturbations generated by various
trips in a zero pressure gradient turbulent boundary layer. Measurements taken using
hot-wire anemometry show that the evolution of the boundary layer towards the nat-
ural state is strongly dependent on the trip geometry. In particular the mechanisms
creating the boundary layer appear to depend primarily on the wall normal distribu-
tion of blockage ratio, recovering the natural properties more rapidly for a uniform
distribution of blockage (wall normal cylinders) than for non-uniform blockage (saw-
tooth fence). The relative size of the trip with respect to the boundary layer is shown
to be a second order effect. Standard behaviour (characterized by the skin friction
coefficient, C f , the wake component, Π , and the shape factor, H ) is recovered suc-
cessfully 500D ∼ 75h downstream, presenting 175% higher momentum thickness,
θ , than the natural case for the same downstream distance.

1 Introduction

Upstream perturbations modify the development of a boundary layer, making it fully
turbulent [3], or thicker than its natural size [2]. These perturbations will evolve with
downstream distance (x) towards the natural state of the turbulent boundary layer
(TBL), described in [1]. Obtaining a thick TBL in a short distance is of primary
importance to the study of high Reynolds number flows in short wind tunnels only if
asymptotic properties are fully recovered and the trip effects have disappeared. The
present objective is to study the influence of various trips (divided into uniform and
non-uniform wall normal distributions of blockage) located at different downstream
positions, on the TBL properties (thickness, log-law, friction coefficient, wake com-
ponent [1], turbulence intensity, shape factor and spectra) and the effect of the TBL
formation mechanism on the recovery distance of natural properties.
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2 Experimental Set-Up

Experiments are conducted at Imperial College London in a wind tunnel of 0.91 ×
0.91m2 section and 4.8m length with Ue = 10ms−1. A wooden flat plate pro-
vided with a flap is mounted vertically spanning the whole height of the tunnel
ensuring zero pressure gradient. Measurements are taken using constant temperature
anemometry. Sampling at 100 kHz for 30 s and low-pass filtering at 30 kHz allow
resolution of 0.2 < t+ = tu2

τ /ν < 0.5. The different trips described in Table1 are
located at x = {160, 890}mm where δ99 = {2.3, 15.7}mm, θ = {0.35, 2.11}mm
and δγ = {2.4, 20.4}mm corresponding to h/δγ � 1 and h/δγ � 1 respectively;
δγ is defined as the first point without turbulence intermittency and for fully tur-
bulent boundary layers it is approximately δγ ∼ 1.3δ99. Velocity profiles are taken
for 0.9m < x < 3.9m ⇔ 0.57 × 106 < Rex = Uex/ν < 2.42 × 106 (far field), and
{2, 4, 6, 10, 20, 40} diameters downstream of the trips (near field). The wall shear
stress and the wall location are extrapolated from the velocity profile [4] with accu-
racies Δuτ < ±1%, Δy+ = ±0.5. Where y+ = yuτ /ν and u+ = u/uτ .

3 Results

Experiments measuring the far field created by all the trips from Table1 located
such that h/δγ � 1 show that: (i) Different arrays of cylinders generate a thicker
TBL than the natural case (Fig. 1a) and with the same properties (Fig. 1b, c). (ii) The

Table 1 Trips description. Z = 10mm for cylinders [2] and Z = 20mm for Saw. h =
max{H1, H2}
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Fig. 1 a Momentum thickness (θ) evolution. b Shape factor (H ) evolution. c Relative magnitude
of spectra at y/θ = 19 (y � δγ ) for St	. Symbols are given in Table1
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thickness of the TBL created is a function of the height of the highest cylinder, not
of the number of rows nor their order. (iii) The sawtooth fences generate an even
thicker TBL (Fig. 1a) but with a different shape factor (Fig. 1b). (iv) It also generates
an acoustic perturbation in the freestream (y/θ = 19) up to 20 times stronger than the
natural case at a fixed Strouhal number St	 = f 	θ/Ue ∼ 0.019 which persists for
more than 2m (Fig. 1c). These observations suggest different formation mechanisms
for the TBL using cylinders or sawtooth. Both are exhaustively studied henceforth.

As seen inFig. 3a, b cylinders generate a spanwise periodic combination of jets and
wakeswhich becomes uniform after 40D. This lowmomentum, highly turbulent flow
is seen as the outer flow by the TBL growing underneath and it is entrained increasing
TBL thickness by augmenting its wake region. This generates a development region
(until 500D ∼ 75h) where the wake component (Π ) [1], friction coefficient, (C f )
and shape factor (H ), present non standard behaviour (Fig. 2). It also shows that the
effect of h/δγ is secondary compared with the distance from the trips.

On the other hand, the sawtooth, due to its non uniform blockage ratio in the
wall normal direction, generates a velocity profile downstream of the gaps (z = 0)
which resembles a boundary layer but does not reflect its properties (Fig. 3e).
Downstream of the obstacle (z = Z/2) a recirculation and a strong tip vortex are
seen. Although these two spanwise periodic regions become uniform after 8h, the
turbulence intensity is artificially high until 70h, where the inner peak starts to
appear (Fig. 3f). Spectral data (not included for brevity) shows a shedding from
the cylinders at St = f D/Ue = 0.19 disappearing before 20D. The broadband tur-
bulence generated by the recirculation and the tip eddies in the sawtooth covers
0.1 < St = f h/Ue < 0.5 and persists for more than 40h. Downstream of the loca-
tionwhere the inner peak (at y+ = 15) is developed no extraordinary spectral features
are seen. Note that the turbulence intensity in the case of cylinders increases with x ;
whereas in the sawtooth case it initially decreases from a high value near the trips,
before increasing again with x after a longer development region.

Fig. 2 a Friction coefficient (C f ) evolution. Dashed line is 1/5th correlation. b Wake component
(Π ) evolution. Dashed line by [1]. c Shape factor (H ) evolution. Dashed line by [1]. Symbols are
given in Table1. Filled symbols are h/δγ � 1 and white symbols are h/δγ � 1
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Fig. 3 Velocity profiles for Near (z = {0, Z/2}) and Far Field using 2row20 and Saw trips.
a, b→[◦ ∗ 	��·]→x̂ = [2D, 4D, 6D, 10D, 20D, 40D] from the trip (2row20 Near field).
d, e→[∗ 	 ��·]→x̂ = [0.8h, 1.2h, 2h, 4h, 8h] from the trip (Saw Near field). c, f→[◦ ∗ 	�
� × ·]→x = [0.46, 0.6, 0.9, 1.3, 1.6, 2.2, 2.9]m from leading edge (Far field). Dashed line
marks the non-dimensionalized height of the obstacle, h+ = huτ /ν

4 Conclusions

Different arrays of spanwise distributed trips generate perturbations which evolve
downstream of them. This study shows that the standard properties of the TBL can
be recovered at a distance downstream of the obstacle which depends on the trip
geometry. In particular, the wall normal distribution of blockage has been demon-
strated to play the main role while the relative size h/δγ seems to be secondary. The
recovery of standard TBL properties is shown to be faster and more effective when
using arrays of cylinders than when using the sawtooth due to the different formation
mechanisms. The use of these trips can increase the TBL thickness by up to 175%;
thus generating a high Reynolds number TBL in a shorter distance than the natural
case while maintaining the same properties.
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Scale Dependent Stochastic Self-energy
Model of the Energy Transfers in Turbulent
Channel Flows

V. Kitsios, J.A. Sillero, J.S. Frederiksen and J. Soria

1 Introduction

The forward and inverse energy cascades in turbulent channel flow are studied by
extracting flow specific subgrid coefficients. The effect that subgrid scales of motion
have on the resolved scales is quantified by developing subgrid models from the
statistics of the differences between a reference direct numerical simulations (DNS)
and a truncated DNS using the method of [1]. This approach is inherently linked
to large eddy simulation (LES), where the large eddies are explicitly resolved on
a computational grid and the unresolved subgrid-scale interactions are modelled.
Here LES is used as a means of validating the subgrid model coefficients, from
which physical interpretations are subsequently made. This is in contrast to typical
approaches where one starts with a physical hypothesis leading to a subgrid model.
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2 Direct Numerical Simulation

The incompressible isothermal Navier–Stokes equations are solved in a channel
of periodic streamwise direction x, inhomogeneous wall-normal direction y, and
periodic spanwise direction z, with associated velocity components u, v and w. The
system is nondimensionalised by the centreline velocity (u0) and channel half height
(h). A collocated Chebyshev method of polynomial index j is used in y, and Fourier
discretisation is used in the x and z directions of respective wavenumber indices α

and β [2]. The associated pseudo wavenumber vector is defined as k ≡ (α, j, β). The
DNS is solved over the wavenumber set

T = C(T , N) = [ k′, k′′ | 0 ≤ α′ ≤ T , 0 ≤ j′ ≤ N , −T ≤ β ′ ≤ T

0 ≤ α′′ ≤ T , 0 ≤ j′′ ≤ N , −T ≤ β ′′ ≤ T ], (1)

where T is the maximum wavenumber, and N the maximum Chebyshev polynomial
index. The case simulated here has a Reynolds number Reτ ≡ uτ h/ν = 950, where
ν is the kinematic viscosity, uτ = √

τwall/ρ the friction velocity, with τwall the mag-
nitude of the wall shear stress. The flow is simulated in a doubly periodic box of
extent Lx = π , Ly = 2, and Lz = π/2, with T = 127 and N = 385.

3 Stochastic Self-energy Subgrid Model

We study the energy transfers by decomposing the scales of motion into a resolved
wavenumber set R = C(TR, N), where TR is the LES truncation wavenumber
(TR < T ), and a subgrid wavenumber set S = T − R. To facilitate the discussion
we introduce the state vector u(k) ≡ (u, v, w), of fluctuating component û. The time
derivative of u is decomposed such that ut(t) = uR

t (t) + uS
t (t). The tendency of the

resolved scales is uR
t , where all triadic interactions involve wavenumbers within the

resolved set R. The remainder is the subgrid tendency, uS
t , which has at least one

wavenumber within the subgrid set S involved in the triadic interactions. The latter
is further decomposed into its fluctuating (ûS

t (t)) and time averaged (f) components.
The former is parameterised by the matrix equation

ûS
t (k, t) = −Dd(k) û(k, t) + f̂(k, t). (2)

The drain dissipation is determined by post-multiplying (2) by û†(t0), integrating
over the decorrelation period τ , ensemble averaging, and rearranging to produce

Dd = −
〈∫ t

t0

ûS
t (σ )û†(t0)dσ

〉 〈∫ t

t0

û(σ )û†(t0)dσ

〉−1

, (3)
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where † denotes the Hermitian conjugate for vectors and matrices [1]. The model for
f̂ is determined by calculating the noise covariance matrix F b = Fb + Fb

†, where
Fb = 〈f̂(t) û†(t)〉. Post-multiplying both sides of (2) by û†(t), and adding the con-
jugate transpose of (2) pre-multiplied by û(t) yields the balance equation

〈
ûS

t (t)û
†(t)

〉 + 〈
û(t)ûS†

t (t)
〉 = −Dd

〈
û(t)û†(t)

〉 − 〈
û(t)û†(t)

〉
Dd

† + F b. (4)

Given that Dd is known, F b can now be calculated. For the implementation of
the stochastic subgrid parameterisation, f̂ is represented as a white noise process
such that 〈f̂(t) f̂†(t′)〉 = F b δ(t − t′). One can approximate ûS

t by the deterministic
model ûS

t (k, t) = −Dnet(k) û(k, t), where the net dissipation Dnet = Dd + Db and

the backscatter dissipation Db = −Fb
〈
û(t) û†(t)

〉−1
.

The drain, backscatter and net upper diagonal coefficients for wall normal
scales of λ+

y = λyuτ /ν = 2 are illustrated in Fig. 1a–c respectively, where we define
λy = 1 − cos(2π/j). These coefficients are plotted in the horizontal wavenumber
index half plane (α, β > 0), as they are symmetric about the α axis. The drain dissi-
pation is positive indicating that the parameterisation deterministically sends energy
from the resolved (large) to the subgrid (small) scales. The backscatter dissipation is
negative indicating energy is stochastically injected into the resolved scales. The net
dissipation is positive indicating that the net effect of the drain and backscatter is such
that energy is being transferred out of the large scales and into the small scales repre-
sentative of a forward energy cascade. The dissipations are also scale selective with
the magnitude of the coefficients increasing as they approach the truncation bound-
aries. This implies that the small resolved vortices near the truncation boundary have
more significant interactions with the subgrid than the larger resolved structures.
Coefficients with wall normal scales λ+

y > 2 have qualitatively the same proper-
ties. The associated coefficients for wall normal scales of λ+

y = 0.4 are illustrated in
Fig. 1d–f. Here at certain wavenumber pairs the stochastic backscatter overwhelms
the drain dissipation, indicating that these small vertical and small horizontal scales
receive a net injection of energy from the subgrid scales, which is representative of
an inverse energy cascade. Further details on the coefficients can also be found in
[3].

The subgrid coefficients are validated by comparing a LES where these coeffi-
cients have been adopted to the original DNS. The equations governing the LES
are the same as for the DNS, but solved over the wavenumber set R instead of T,
with either the deterministic or stochastic models used to represent uS

t (k). Com-
parisons are made on the basis of the time-averaged kinetic energy spectra. The
spectrum at y+ = yuτ /ν = 133 is plotted against the streamwise (α) and spanwise
(β) wavenumbers for the no subgrid model case in Fig. 2a. This figure illustrates a
clear accumulation of energy at the smallest resolved scales of motion, which dis-
torts the entire spectrum. The subgrid interactions would have drained this excess
energy out of the resolved scales and into the subgrid, to be eventually damped by
viscous dissipation. The spectrum is correctedwhen adopting either the deterministic
or stochastic subgrid models as illustrated in Fig. 2b, c.
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(b) backscatter (c) net

(d) drain (e) backscatter (f) net

(a) drain

Fig. 1 The upper diagonal component of the subgrid dissipation matrices illustrated in the hori-
zontal wavenumber index half-plane (α, β ≥ 0). a–c λ+

y ≡ λyuτ /ν = 2; d–f λ+
y = 0.4

(a) no subgrid model (b) deterministic (c) stochastic

Fig. 2 Comparison of the DNS (dotted line) and LES (solid line) time-averaged kinetic energy
spectra: a no subgrid model, where ûS

t = 0; b deterministic, where ûS
t = −Dnetû; and c stochastic,

where ûS
t = −Ddû + f̂
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4 Concluding Remarks

Deterministic and stochastic self-energy subgrid models have been calculated from
the DNS statistics of turbulent channel flow. LES incorporating these subgrid models
have been shown to successfully reproduce the DNS within the resolved scales. The
coefficients of the subgrid models indicate the presence of both forward and inverse
cascades in wall bounded turbulence.
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Effect of Irregular Surface in a Turbulent
Channel

David Sassun and Paolo Orlandi

Abstract The effect of highly irregular surfaces in a turbulent channel is studied
through DNS through the use of the immersed boundary method to reproduce com-
plex surfaces. The height of the surfaces analyzed is proportional to the streamwise
velocity component u or the pressure p in a wall parallel plane of a smooth channel
at y+ = 12. The surface with height proportional to u is drag reducing, that pro-
portional to p is drag increasing. The relative magnitude of the friction components
allows to identify the type of roughness as k-type, since the form drag is larger than
the viscous drag. An additional surface has been obtained by smoothing a regular
geometry made of staggered cubes. In this case, the resistance is doubled, and the
form drag is much larger than the viscous drag.

1 Introduction

The effect of surface roughness on a flow is of practical interest in many disciplines.
Examples include flows over cities or vegetation, physiological flows and turbo-
machinery. The main practical focus of the studies on surface roughness is the effect
on drag and on heat transfer. From the theoretical side, the interest is to try to relate
the slope of the surface to the boundary conditions at the plane of the crests and, as
a consequence, to the production of turbulent kinetic energy near the wall.

Perry et al. [6] categorized the turbulent flows past rough surfaces in two classes:
k- and d-type flows. In k-type, the form drag produced by the surface is large, and
vortices of the same size as the roughness are shed into the main flow. On the other
hand, the viscous drag is predominant in d-type roughness, and the vortices are con-
fined within the roughness elements, and weak interaction with the overlying flow
was depicted by Leonardi et al. [4]. It has been shown that 3D and bidimensional
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transverse roughness with large w/k are drag increasing, while longitudinal geome-
tries, under some conditions, can be drag reducing [2]. The reduction of the drag may
be related to ordered structures that are more anisotropic, while the structures that
are linked to a drag increase are more isotropic. The effect of irregular rough surface
was studied experimentally, providing only an incomplete picture of the flow near
the wall. To have a better understanding of the complex physics the present DNS
may help.

2 Simulation Details

The details of the numerics and of the simulation parameters are similar to those
in Orlandi [5], therefore they are not repeated. Instead the numerical procedure to
evaluate the metrics for the Immersed Boundary technique is briefly described. The
height of the surface is given at every point of the domain. The metric is evaluated
at the first point outside the surface with a subtraction (in y) or a linear interpolation
between adjacent points (in x and z). This method allows us to have a surface defined
in every point of the computational grid. Methods based on ray-tracing algorithms
are slower when the number of points of the surface increases.

From the DNS field of the smooth channel, we take a plane parallel to the wall at
y+ = 12, where the production of turbulent kinetic energy is maximum. The values
of the streamwise velocity and the pressure are used to get the height of the surface,
generating a periodic surface in the streamwise and spanwise directions. The distrib-
ution of these variables can produce very narrowvalleys, that could not be reproduced
well by the immersed boundary technique. Therefore, a smoothing procedure, with
an accurate choice of the number of iterations and of neighbouring points, leads to the
surfaces with the ka and krms given in Table1. Although the surfaces Us and Ps have
comparable ka and krms, the surface shapes are different (Fig. 1a, b). In fact, the low
speed streaks have been transformed into elongated valleys, similar to the grooves
between regular bars, while in Ps the roughness is homogeneously distributed. The
surface Cs, obtained from a regular 3D geometry made of staggered cubes with the
smoothing procedure, leads to a wavy surface (Fig. 1c).

Table 1 Reτ is evaluated separately for the rough (R) and smooth (S) walls; TD, VD and FD are
the total, viscous and form drag of the lower wall; hR is the distance from the rough wall of the
maximum of velocity, used as reference length for Reτ,R

Case k+
max ka krms Reτ,R Reτ,S TD VD FD hR ṽ+

R ΔU+

Ps 37.6 −1.106 0.030 188 165 1.090 0.287 0.807 1.042 0.721 11.5

Us 33.0 −1.107 0.041 165 172 0.954 0.343 0.611 0.992 0.585 10.3

Cs 78.8 −1.149 0.061 394 123 2.260 0.358 1.900 1.361 0.920 13.2
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Fig. 1 Surfaces a Us, b Ps, c Cs. Only a quarter of the domain is shown for Cs

3 Results

The setup with the rough surfaces in one side and a smooth wall on the opposite
produces an asymmetry in the channel, therefore the reference lengths to evaluate
the friction Reynolds number is the distance of the plane of the crests from the
point of the maximum of the velocity profile. The distance from the rough wall hR

(hS = 2 − hR), together with the values of Reτ in the two sides, are listed in Table1.
The total drag TD on the rough surface has been scaled with that on the smooth
surface. The value of hR for Cs, together with the high uτ,R, produces the highest
Reτ,R. Consequently, the corresponding value of hS reduces the Reτ,S . This surface
yields also the highest drag on the rough wall. The Reτ,R and drag of Ps are also
increased with respect to the smooth channel. The surface of Us is the only case that
allows instead to achieve a reduction of uτ,R and of the drag.

It is necessary to evaluate the viscous VD = ν∂〈U〉/∂y|R and the formFD = 〈uv〉R

drag components to understand the variation of the total drag caused by the different
shape of the surfaces. These values are computed at the plane of the crests. The
integration of the streamwise Navier–Stokes equation inside the roughness allows us
to express the pressure drag as a function of theReynolds stress 〈uv〉 at the plane of the
crests, as done in Leonardi et al. [3]. For the geometries in Table1, the viscous drag
is comparable and the main difference to the total drag is caused by the form drag.
Therefore, to increase the drag, FD should increase, and this can be achieved with
3D roughness elements (Cs), which generate strong ejections of fluid from between
the roughness elements into the overlying flow. The same occurs for Ps, Although
with a smaller effect. It is difficult to achieve drag reduction because it is necessary
to decrease VD while not letting FD increase. The surface of Us is characterized by
elongated valleys, which do not differ too much from the largely studied triangular
riblets [2, 5]. Both these surfaces are drag-reducing, but the components balance
differently. In the riblets, VD is large and FD is low. Us, instead, has FD larger than
VD. The large form drag is due to the irregularity of the surface in x that produce
strong ejections. Therefore, it seems that the drag is linked to the structures elongated
in the x direction.

The turbulent viscosity at the wall νT ,R/ν is defined as FD/VD, and its variation
with thewall normal stress ṽ+

R is shown in Fig. 2a. For these plots, several surface have
been used, and in particular those used by Orlandi [5] to parametrize the roughness
function ΔU+ with ṽ+

R . νT ,R/ν allows to distinguish between flows dominated by
viscous or formdrag, in fact if νT ,R/ν is greater than 1, thenFD > VD. Figure2a shows
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Fig. 2 : Ps, : Us, : Cs, +: [5]; a Normalized turbulent viscosity at the plane of the crests
as a function of ṽ+

R ; solid line: fit with νT /ν = A(ṽ+
R )4; b Roughness function as a function of ṽ+

R ;
solid line: ΔU+ = Bκ−1ṽ+

R

that νT ,R/ν increases proportionally to (ṽ+
R )4. Orlandi [5] found thatΔU+ = Bκ−1ṽ+

R
(shown in Fig. 2b). These simple relationships imply that the normal stress at the wall
is an important quantity to parametrize the roughness, and the one for the turbulent
viscosity might be useful for an extension of the Spalart-Allmaras model over rough
walls. In fact this model uses the turbulent viscosity, and Aupoix and Spalart [1]
imposed a nonzero ν+

T at the boundary to account for the roughness. With our results,
this constant is related to a flow property. What is missing is a connection between
ṽ+

R and the geometrical parameters of the surface.
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On the Effects of Surface Morphology
on the Structure of Wall-Turbulence

Marco Placidi and Bharathram Ganapathisubramani

Abstract Experiments were conducted in the fully-rough regime on surfaces with
large relative roughness (h/δ ≈ 0.1) generated by regularly distributed LEGO™
bricks of uniform height, arranged in different configurations. Measurements were
made with high resolution PIV on six different frontal solidities, λF , at fixed plan
solidity, λP . Results indicate that the spatial underlying structure of the turbulence
across the different surfacemorphologies is universal in both its shape and orientation
in relation to the flow velocity. Harpin packets inclination with respect of the wall is
also found to be consistent not only across the different wall surfaces but also when
compared to previous studies on smooth walls. Slices of two-point correlations for
both streamwise and wall-normal velocity fluctuations and Reynolds shear stresses
present a good collapse across the entire y/δ range for all wall morphologies.

1 Motivations and Background

Surface roughness is commonly encountered in nature and it represents a challenge
in numerous engineering applications. Nevertheless, very little is understood about
rough walls compared to their smooth wall counterpart [10]. Luckily, smooth and
roughwalls present similaritieswhich are commonly employed in the study of bound-
ary layers [16]. Among these, it is well documented that hairpin-like vortical struc-
tures populate smooth wall turbulent boundary layers at low and moderate Reynolds
numbers and tend to align coherently to form larger-scale structures termed hairpin
vortex packets [1, 7]. Therefore, given that vortex organisation in the outer region is
commonly observed in instantaneous snapshots of wall turbulence, these structures
are bound to leave their imprint upon the statistics of the flow [5]. The main feature
ascribed to harpin packets is a series of vortices aligned in the streamwise direc-
tion forming a large-scale forward-leaning alternation of high and low momentum

M. Placidi (B) · B. Ganapathisubramani
University of Southampton, Southampton SO17 1BJ, UK
e-mail: m.placidi@soton.ac.uk

B. Ganapathisubramani
e-mail: G.Bharath@soton.ac.uk

© Springer International Publishing Switzerland 2016
J. Peinke et al. (eds.), Progress in Turbulence VI,
Springer Proceedings in Physics 165, DOI 10.1007/978-3-319-29130-7_27

149



150 M. Placidi and B. Ganapathisubramani

regions. Few studies have also supported the presence of similar harpin-like structures
in the outer layer of roughwall boundary layers, providing that the roughness is small
compared to the boundary layer thickness (h/δ < 0.05). The morphology of these
rough surfaces were either irregular, based on damaged turbine blades [19], or reg-
ular woven mesh [17]. However, it is still unclear if and to what extent the same
vortical structure signature would persist in flows over large surface roughness. PIV
measurements were therefore acquired in the (x, y) plane of fully turbulent flows
over different high relative roughness morphologies (h/δ ≈ 0.1). The aim was to
explore the effect of these severe wall conditions on the different types of structures
in the outer region of turbulent boundary layers.

2 Experimental Facility and Details

Experiments were carried out in the suction wind tunnel at the University of
Southampton. The tunnel has a working section of 4.5m in length, with a 0.9m ×
0.6m cross section. The free-stream turbulence intensity is homogenous and less
than 0.3%. The same facility has been used for previous studies on rough walls
[2–4, 14, amongst others]. The streamwise, wall-normal and spanwise directions
are here given along the x–y–z directions and u–v–w are the corresponding veloc-
ities. Fluctuating velocities are denoted with a ′. Experiments were conducted in
nominally zero-pressure-gradient (K = (ν/U 2

e )[dUe/dx] ≈ 5 × 10−8) at 11.5m/s.
For rough surfaces, this study used a LEGO™ baseboard onto which rectangular
LEGO™ bricks (or blocks), uniformly distributed in staggered array, were securely
fixed. These bricks presented a uniform height (h = 11.4mm). Six different patterns
at fixed plan coverage were adopted to examine the effects of frontal solidity on the
structure of the turbulence (λF = 0.09, 0.12, 0.15, 0.18, 0.21, 0.24). The different
cases were designed on the basis of previous studies’ predictions for the peak in
drag, D = D(λF ) [10]. A fetch length of about 20δ was covered with brick elements
to guarantee the fully rough regime [3]. Measurements were acquired using planar
Particle Image Velocimetry (PIV). Some of the main parameters characterising the
different surfaces are given in Table1. The reader is referred to [13] for further details
on the surface morphology and the experimental setup.

Table 1 Relevant experimental parameters

Dataset λF λP δ (mm) h/δ Uτ (m/s) Reτ δ∗ (mm) h+ αu′u′
(0.4)

αu′u′
(0.5)

LF1 0.09 0.27 111 0.102 0.60 4600 17 463 13◦ 12◦

LF2 0.12 0.27 122 0.090 0.66 5500 22 518 11◦ 10◦

LF3 0.15 0.27 121 0.093 0.69 5700 22 541 13◦ 13◦

LF4 0.18 0.27 122 0.093 0.75 6300 24 588 11◦ 10◦

LF5 0.21 0.27 129 0.088 0.81 7200 27 635 14◦ 11◦

LF6 0.24 0.27 127 0.090 0.80 7000 27 628 13◦ 11◦
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3 Results

As [1] and [15] pointed out, one looks at the streamwise velocity correlations to
infer information about the structure of the turbulence (i.e. vortex packets). Figure1a
shows contours of the two-point correlations of the streamwise fluctuating velocity,
Ru′u′ . A forward-leading structure of positive correlation is shown revealing a large-
scale structure coherency consistent with imprint of packets [1]. The correlations
are inclined toward the flow direction. Here an example is shown for the LF4 case
with the correlation centred at yre f = 0.4δ. However, this is representative of all
the other cases and similar conclusions can be drawn when alternative wall-normal
locations are considered. The inclination angle of these structures can be inferred,
following [6], by a least-square fit procedure along the points further away from the
auto-correlation peak at y = yre f , along different contour lines. The results of this
procedure are reported in Table1. Inclination angles were found in the range of 10–
13◦ and a slight sensitivity to the change in surfacemorphologywas noticed, although
a clear trend is difficult to infer. The current results are in line with previous findings
on both smooth and rough walls investigations, which suggested similar values for
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the characteristic inclination of the packets [1, 5, 6, 8, 9, 12, 15, 17, 18]. On the
contrary, the current results do not seem to suggest that the surface morphology can
have a significant influence on the vortex packets inclination, certainly not to the
extend some researchers have previously documented [11].

Also reported in Fig. 1b are correlations of the wall-normal fluctuations, Rv′v′ .
These correlation structures are found to be compact in both streamwise and wall-
normal directions with an extent that is much lower than for Ru′u′ . This is consistent
with previous findings [8, 17, 18, amongstothers]. Finally, two-point correlations
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of the Reynolds shear fluctuations, Ru′v′ , are presented in Fig. 1c. These are charac-
terised by a backward leaning structure of strong negative correlation, the extent of
which is larger than the wall-normal correlation but considerably smaller than the
streamwise coherency, as previously reported [17].

The effect of the considered surface morphologies on the turbulent structure can
be further explored taking a slice through the auto-correlation points of Ru′u′ Rv′v′ and
Ru′v′ in both streamwise and wall-normal directions, as highlighted by the dashed
and solid lines in Fig. 1 respectively. These are presented in Fig. 2a–e. A very good
collapse in both the streamwise and wall-normal cuts is found across all the dif-
ferent cases although this becomes poorer in Ru′v′ due to the higher experimental
uncertainty in the determination of this quantity. To conclude, both the consistency
in the inclination of the vortex packets and the collapse of all the main correlation
cuts across different roughness topologies seem to offer a clear indication that the
underlying spatial structures of the turbulence (i.e. vortex packets and their charac-
teristics) are largely unaffected by changes in surface morphology—hence universal.
This universality also extend to the smooth wall cases.
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Contradictions in the Large-Wavelength
Approximation of Turbulent Flow Past
a Wavy Bottom

Paolo Luchini

1 A Classical Problem: The Formation of Ripples
and Dunes

As described, for instance, by Charru et al. [3], the steady or oscillatory motion of a
liquid above a granular bed leads to the formation of ripples. The sand ripples one
observes on a beach at low tide are an example: these ripples were formed by the
oscillations induced by the surface waves when the beach was covered with shallow
water. The mechanism of their formation, related to fluid inertia, sits in the relative
phase of bottom shear stress oscillations with respect to oscillations of the bottom
itself, with positive phase advance of the shear stress dragging the particles toward
crests during each half-period (Fig. 1).

Classically the response of the bottom shear stress to a small wall undulation has
been studied in limiting cases. The short-wave limit, corresponding to a boundary-
layer approximation,was introducedbyBenjamin [2] for laminar flowandby Jackson
and Hunt [4] for turbulent flow. The long-wave limit, corresponding to a shallow-
water approximation, was adopted by Benjamin [1] andYih [11] for laminar flow and
by Shkadov [10] and many others for turbulent flow. Recently, Luchini and Charru
[6, 7] introduced a consistent viscous form of the shallow-water approximation and
applied it to this problem.

All of these studies predict a negative quadrature component of the bottom shear
stress (an unstable erodible bottom). Several experiments by Hanratty et al. in the
1980s confirm the presence of a negative quadrature component.

All of these authors use an eddy-viscosity model to represent turbulence.
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unstable

wall shear stress

u
z= 1

z= ε(1+ coskx)

δτ
ε

= τ(0) + τ(1)c coskx+ τ(1)s sinkx

τ(1)s < 0: unstable.

Fig. 1 Effect of the bottom shear stress and its phase lead on the stability of a sandy bed

2 The Failure of Eddy Viscosity

Luchini and Russo [8, 9] observed that in Luchini and Charru’s long-wave expansion
the steady-streaming effect of the wall becomes equivalent to an inertia-force term
proportional to the x-derivative of the mean velocity, just as in the corresponding
laminar-flow analysis of [1]. Therefore, an equivalent problem could be formulated in
which turbulent flow in a straight channel is driven by an externally imposed, steady
volume force. This problem can be readily solved by direct numerical simulation
(DNS), thus leading to a rare head-to-head comparison between eddy viscosity and
DNS.

The main outcome of the comparison, reported in Fig. 4 of [9], uncovered a pro-
found disagreement between the results of eddy viscosity and DNS, to the point
that the flow rate induced by a given volume-force profile is of opposite signs in
one and the other. This conclusion turns out to be independent of the details of the
eddy-viscosity model, as long as viscosity is positive.

3 A Contradiction

Luchini and Russo’s conclusion, while on one hand it provides a severe warning
against the use of eddy-viscositymodels in stability calculations, on the other encoun-
ters a contradiction with all the previous results (including experimental ones) con-
cerning a sandy bed; for, as a consequence of the sign change, the phase of the bottom
shear stress is now predicted to be positive, that is, the sandy bottom is predicted to
be stable and the formation of ripples not to happen.
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4 Immersed-Boundary Numerical Simulations of Flow
in a Wavy Channel

A new set of direct numerical simulations, which are the main object of this pre-
sentation, allows this contradiction to be reconciled. The code used is based on
second-order finite differences in all directions, with a stretched coordinate along
the wall-normal z coordinate only, is fully parallel, and adopts an explicit time
advancement for all but the pressure-correction equation. Its immersed-boundary
implementation in staggered variables uses internal (to the fluid) points only, is con-
tinuous with respect to boundary crossing and stable in iteration at all distances from
the boundary. It already proved its usefulness in a previous Stokes-flow application
[5]. Most attention was paid to evaluating the shear stress at the wall precisely. The
common expedient of summing virtual forces is not sufficient: the contribution of
pressure gradient over fractional cell boundaries is of the same order as the effect
under investigation. In addition, the amplitude ε of the wall oscillation has to strike
a compromise between linearity and statistical fluctuation of the time averaging. An
algorithm was developed to estimate the expected value of this statistical error.

After a confirmation test on laminar flow, the code was applied to the DNS of
turbulent flow in wavy channels of various wavelengths, spanning the short-wave,
long-wave and intermediate regimes. Already the laminar test showed that special
care must be applied in even identifying these regimes: the governing parameter is
not just the wavenumber k of the wall’s wavyness (made dimensionless with the
channel’s depth) but its product with the Reynolds number, kRe. It follows that, in
order for the flow to behave in the shallow-water regime, it is not enough for k to be
small compared to 1, but it must be small compared to 1/Re as well.

Figure2 shows the real and imaginary part (in-phase and quadrature Fourier com-
ponent) of the wall-shear-stress response to a wall undulation of wavenumber k, in
the long-wave (shallow-water) range of wavenumbers. There are several surprises
in this figure. First, the wavelength involved is much larger than the typical compu-
tational box adopted in DNS of a straight channel (4π long, usually deemed to be
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Fig. 2 Bottom shear stress of turbulent flow in a wavy channel versus wavenumber k, at Re = 1450
(Reτ = 100). a In-phase Fourier component; b quadrature Fourier component
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sufficient for the longitudinal correlation of velocity fluctuations to become negligi-
ble); in order to draw this plot we had to adopt computational boxes as large as 256π .
Second, the in-phase response sharply drops to near zero for a wavelength of 32π
(roughly a hundred times the channel depth), in striking contrast to the laminar (and
eddy-viscosity) response which increasesmonotonically from its value at k = 0, thus
exposing an unforeseen (as far as we know) resonance. Third, what is most relevant
to the sand-ripple problem, the quadrature component of the response changes sign
for a similarly low wavenumber.

5 Conclusion

The solution to the potential contradiction of Sect. 3 is in that the mathematical long-
wave limit of the quadrature shear stress, confirmed to be of the same sign as in the
previous DNS of Luchini and Russo [8, 9] and corresponding to a stable sand ripple,
is only achieved at a much longer wavelength than tested in all experiments.Whereas
both turbulent numerical simulations, with an equivalent volume force and with an
actual wavy wall, invalidate eddy-viscosity models (and all the classical calculations
based on them) in the long-wave limit, for most practical wavelengths the sign of the
wall shear stress corresponds to an unstable ripple, as it must since sand ripples do
self-produce in reality.

Simulations at higher Reynolds number, whichwe do not have the space to display
here, confirm this behaviour. A dip, if becoming rounded, in the in-phase response
and a sign change in the quadrature response continue to be present. Both move
towards higher k.
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Wall Oscillation Induced Drag Reduction
of Turbulent Boundary Layers

Martin Skote, Maneesh Mishra, Prabal Singh Negi, Yanhua Wu,
Hsiao Mun Lee and Philipp Schlatter

Abstract Spanwise oscillation applied on the wall under a turbulent boundary layer
flow is investigated using direct numerical simulation. The temporal wall-forcing
produces considerable drag reduction over the region where oscillation occurs. The
turbulence fluctuations downstream of the oscillations are presented for the first time.
Simulations with identical oscillation parameters have been performed at different
Reynolds numbers to investigate the effect on the drag reduction. One of the simula-
tions replicates an earlier experiment to test the fidelity of the current simulations. In
addition, we present the future work in this area with an integrated experimental and
computational investigation to explore the possibility of applying travelling waves
(oscillations in both time and space) as the mode of wall motion for active control
of near-wall turbulence.

1 Introduction

Turbulent drag reduction (DR) is one of the active areas of research in fluidmechanics
especially due to its global impact on sustainability challenges we are facing today.

The first observations of wall oscillation as means for DR was made by Jung
et al. [2] through direct numerical simulations (DNS) of a channel flow. Since then,
a lot of research efforts have been made in this direction for internal flow such in
a channel or pipe flow. The boundary layer flows have only recently started to be
investigated [3, 6–10]. The most commonly form of control studied is realized with
temporal wall oscillations, which is specified as w(t) = Wm sin(ωt), where w(t) is
the spanwisewall velocity,Wm is the amplitude andω is the frequency of the imposed
oscillations, which is related to the period (T ) through ω = 2π/T .
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Table 1 Numerical parameters

Case Lx Ly Lz Nx Ny Nz Δx+ Δy+
min Δz+ ReΘ start

1 600 30 34 800 201 144 16 0.04 5.1 375

2 600 30 34 800 201 144 16 0.04 5.1 505

3 2400 75 34 3200 301 144 20 0.04 5.1 1400

4 2400 75 34 3200 301 144 20 0.04 5.1 963

L and N refer to the size (measured in displacement thickness at x = 0) and the number of modes,
respectively

The aim of the present study is to compare our results with the boundary layer
experiments byRicco andWu [5], who obtained theDRbymeasuring the streamwise
velocity component in the viscous sublayer, to test the fidelity of the current simu-
lations. Furthermore, the behaviour of the turbulence downstream of the oscillating
region are presented for the first time.

All four simulations presented here were performed with identical oscillation
parameters of T+ = 67 and W+

m = 11.3 (wall scaling with the friction velocity taken
from the starting point of the oscillations). The parameters pertaining to the numerical
set-up is given in Table1, where ReΘ start denotes the starting point of the oscillations.
The spectral code (SIMSON) used for the turbulent boundary layer simulations in
this work was developed at KTH, Stockholm.

2 Results

Figure1 (left) shows the degradation of DR performance with Reynolds number
(Re). If we extrapolate the DR based on the lower-Re data alone (cases 1 and 2), we
would conclude that the decay of DR is severe and there would be no substantial
energy saving at higher Re as shown by the solid arrow. However, in simulations
performed at higher Re (case 3), we observe a DR of much higher degree which
indicates a Re dependence illustrated by the dashed arrow. This brings us to the
question of which route the DR takes as we go to higher Re. The answer to this
question lies in performing new simulations with larger domains to examine the
complete development as a function of streamwise location. The (preliminary) result
is shown in Fig. 1 (right) as the red curve (case 4). Clearly, the development of the DR
downstream indicates that the dashed arrow in the left figure illustrates the correct
behaviour. In addition, the excellent agreement between case 3 and the experimental
results (indicated with rings), at an identical Re, is revealed in Fig. 1.

In order to investigate the stresses independent of the choice of scaling, we show
the ratio between the peak values from the oscillating and reference cases in Fig. 2.
While urms and u′v′ have reached their peak values within the zone of oscillation,
vrms is the only quantity which is still decreasing at the point where oscillation stops
for case 3. Even after the termination of oscillation, vrms continues to decrease for
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short distance downstream. However, for case 4, the vrms has reached its equilibrium
but continues nevertheless to remain affected for the same extent as for case 3.

3 Future Work

Travelling waves were used by Quadrio et al. [4] as wall forcing in DNS studies
of channel flow, and the DR variation with the wavenumber and angular frequency
was investigated. The only experimental data to date for this type of wall forcing are
provided by [1], who applied the streamwise travelling wave on the pipe flow. To
our knowledge, the current work constitutes the first attempt to experimentally study
wall forcing by travelling waves in the boundary layer. The wind tunnel facility
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Fig. 3 Top-view of the
experimental setup

to be used is an open-loop type in the Fluid Mechanics Lab at NTU, Singapore.
After considering several points on the normalized DR map in [4] and checking the
dimensional values of the system with the physical constraints, a final parameter set
was determined which corresponds to a travelling wave with a frequency of 4.6Hz
and wavelength of 79.3mm.

The design consists of four linear guides, each supporting 4 discretized segments
of the travellingwave. Eight linear motors are required to control themotion of the 16
segments forming twowavelengths. A linear encoder is used for the feedback control
for each of the controlling motors. The top view of the entire setup is shown in Fig. 3
with an overlapping part of the wind tunnel test section (made translucent). The
wall shear stress will be directly measured using advanced oil-film-interferometry
technique. High resolution volumetric three-dimensional tomographic PIVmeasure-
ments will be performed to quantify in great details the evolution of the turbulent
boundary layer affected by the travelling waves.

The corresponding DNS of an identical set-up will be conducted using 1024 cores
at high performance computing facilities in NTU and KTH.

Acknowledgments Supported by Singapore MOE Tier-2 Grant No. MOE2012-T2-1-030.
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Wall-Turbulence Structure with Pressure
Gradient Around 2D Hump

Aiko Yakeno, Soshi Kawai, Taku Nonomura and Kozo Fujii

Abstract Direct numerical simulation around a two-dimensional hump shape is
conducted at the Reynolds number Reh = 16, 000, based on the hump height. We
investigate wall-turbulence structures around the hump in order to predict and con-
trol them to suppress separation. At this Reynolds number, specific striped wall-
turbulence structure appears at the leading-edge near the wall surface. Its spanwise
length-scale is close to that of the streak in a fully-developed turbulent channel flow.
That is λy = 0.08 scaled with the hump height, which corresponds to λ+

y = 150 in
the local viscous unit. We identify two more different spanwise-correlated scales,
λy = 0.40 and 0.13 around the hump. Spanwise length-scale of λy = 0.40 is around
λ+

y = 600. On the other hand, the other scale λy = 0.13 is not dependent on the local
viscous scale.

1 Introduction

Flow-separation around fluidic devices is a serious problem that it decreases their
performance. The separation is known to be suppressed by applying a periodic exci-
tation control at the leading edge [1]. It is considered because the excitation promotes
the two-dimensional roll vortex due to hydrodynamic instability and enhances tur-
bulent momentum-transfer in the downstream. At the higher Reynolds number, flow
characteristics such like wall-turbulence motion drastically change. In the present
study, we investigate cases at Reh = 16, 000 based on the hump height, which the
separation occurs in a turbulent flow state. At the leading edge, wall-turbulence struc-
tures appear. One of them looks like the low-speed streak that is usually observed in
the turbulent channel flow or in the bypass transition of a boundary layer. This
is propagated linearly with temporal energy growth due to nonmodality of the
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linear system [2]. In the present study, we investigate turbulence structures appearing
around a two-dimensional hump, in order to predict and control them to suppress
separation at higher Reynolds number.

2 Computational Procedures

The hump geometry is analytically-defined semicircular column with Bessel func-
tions, which is joined smoothly with the wall. Schematic of the hump geometry,
computational domain and boundary conditions are shown in Fig. 1. All variables in
the report are normalized by outflow density ρ∗∞, velocity u∗∞ and height of the two-
dimensional hump h∗. The Reynolds number Reh based on the outflow velocity and
the hump height is set at 16, 000. Constant Blasius profile is employed at the input
boundary with the thickness of δin = 0.25, which is normalized by the hump height.
Flow becomes turbulent around the top of the hump at the present Reynolds number.
At the out flow boundary, variables are extrapolated from the adjacent nodes, and the
second order filtering is applied in the streamwise direction. Computational grids are
set concentrated around the hump to resolve turbulent structures near the wall. The
governing equations are three-dimensional compressible Navier-Stokes equations.
An in-house solver is employed. The spatial derivatives of the convective and viscous
terms, symmetric conservative metrics and Jacobian [3] are evaluated by a sixth-order
compact difference scheme [4]. Compact-difference-scheme-related subroutines in
the code is well tuned for the K supercomputer [5]. The present computation scheme
and grid are based on verification studies.

3 Wall-Turbulence Structure

The pressure coefficient Cp and its gradient in the streamwise direction ∂Cp/∂x
are plotted in Fig. 2a, b, respectively. It is calculated with a static pressure p̄ at the
surface as Cp = (p̄ − p∞)/(1/2ρ∞u2∞). The favorable pressure gradient is around at
the leading-edge, where the pressure gradient becomes negative as shown in Fig. 2b.
The magnitude of the pressure gradient is decreasing (∂2p̄/∂x2 > 0) at around
x = −0.6 ∼ −0.25. This region is described as a rectangle of dotted line in the
figure.

Fig. 1 Schematic of the
computation domain and
boundary conditions
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Fig. 2 a Pressure coefficient Cp, and b the gradient ∂Cp/∂x at Reh = 16, 000. A rectangle of
dotted line in (b) represents where the magnitude of pressure gradient decreases (∂2p̄/∂x2 > 0)

Side and top visualizations of the instantaneous flow field with iso-surfaces of the
second invariant of deformation tensor Q(=Q∗h∗2/u∗2∞) = 0.28 and contours of u
are shown in Fig. 3. The flow is separated at around x = −0.07 in a turbulent state.
Near the wall, a striped turbulence-structure appears at around x = −0.6 ∼ −0.25
as shown red-colored contours of u at z = 0.005 in Fig. 3b.

The maximum value of root mean square of tangential velocity u′
t rms and its

distance from the wall ζpeak are plotted in Fig. 4a. The value of u′
t rms has two peaks

in the wall-normal direction. Those amplitudes exchange at around x = −0.7 shown
as discontinuous lines in the figure. Correlations of wall-normal fluctuation w′ in the
spanwise direction at each ζpeak are calculated as shown in Fig. 4b. We identified three
spanwise correlated scales from the plot. First is the near-wall structure scale around
λy = 0.08 as the first negative peak, I., λy/2 = 0.04, which is distributed at around
x = −0.50 ∼ −0.30. Spanwise width of the striped structure in Fig. 3b corresponds
to this. Second is the larger structure scale around λy = 0.40 shown as the second
negative peak, II. λy/2 = 0.2, which is found in the upstream at around x = −1.0.
Third is λy = 0.13, which is widely distributed at around x = −0.50 ∼ 0.0 as shown
as the positive peak, III. in the figure.

Correlations are replotted in the viscous unit as shown in Fig. 5a, b. Two of span-
wise structure scales λy = 0.08, 0.40 are converted to λ+

y = 150, 600 in the local
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deformation tensor, Q(=Q∗h∗2/u∗2∞) = 0.28, and contour of u
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Fig. 4 a The maximum value of root mean square of tangential velocity u′
t rms (right axis) and its

distance from the wall, ζpeak (left axis). b Correlations of w′ in the spanwise direction at ζpeak
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Fig. 5 Correlations of w′ in the spanwise direction at ζpeak in the viscous unit; a at x =
0.0,−0.1,−0.2,−0.3 and −0.5, b at x = −0.7,−1.0 and −2.0

viscous unit, respectively. The spanwise length scale of λ+
y = 150 is close to that of

the streak observed in a fully-developed turbulent channel flow. On the other hand,
it is noted that peaks of the third scale λy = 0.13 are not apparent in the rescaling
plot, Fig. 5a. From the result, the third structure seems to be independent on the local
viscous scale.
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Turbulent Asymptotic Suction Boundary
Layers: Effect of Domain Size
and Development Time

Alexandra Bobke, Ramis Örlü and Philipp Schlatter

1 Introduction and Motivation

Boundary layers (BLs) are prevalent in many technical applications and need there-
fore to be considered in the design of fluid machineries. In order to find a suitable
design to e.g. reduce the drag and thereby the fuel consumption, a sufficient knowl-
edge about the physical phenomena has to be at hand. More than a century ago,
Ludwig Prandtl suggested a way to stabilise the BL by applying suction through a
porous surface or a series of slots. By applying suction, the low momentum fluid is
removed and the resulting BL becomes thinner than in the case without suction and
thereby more stable, which in turn delays transition and separation.

Hereafter several experiments were carried out to control laminar and turbulent
BLs with suction [1, 4]. On the other hand, Mariani et al. [5] performed the first direct
numerical simulation (DNS) of a true turbulent asymptotic suction BL (TASBL) and
documented the turbulence statistics. They could confirm the results from previous
studies [1] of a lower fluctuation level in presence of suction. The dependence on
the size of the computational domain in TASBL studies was recently investigated in
Ref. [8]. Despite low Reynolds numbers (Re = U∞/V0 = 333, 400, 500, with V0

and U∞ denoting the suction rate and free-stream velocity, respectively) they could
achieve large friction Reynolds numbers with a clear scale separation.

The boundary layer develops in time, indicating a homogenous character in both
streamwise and spanwise direction. Contrary to spatially developing, temporally
developing BLs are easier to realise and demand less computational resources. Once
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an asymptotic state is reached, the BL thickness e.g. measured in δ99 remains statisti-
cally constant. In the present work, additionally to the box-size dependency (thereby
repeating the study in Ref. [8]), also the temporal development of the TASBL is
investigated, and different scaling laws are assessed.

2 Numerical Method and Simulation Cases

Large eddy simulations (LES) were carried out for the flow over a flat plate. Uniform
suction was applied in wall normal direction to counteract the momentum loss and
the Reynolds number was thereby set through V0 and U∞.

The laminar solution can directly be obtained from the Navier-Stokes equation
for a constant suction rate and free-stream velocity, i.e. u = U∞(1 − exp(−yV0/ν)),
where ν is the kinematic viscosity. In the asymptotic state, the integral momentum
conservation gives a fixed value for the skin friction coefficient through the Reynolds
number, viz. c f = 2(U+∞)−2 = 2/Re. To catch the large(st) length scales occuring
in wall-bounded turbulent flows, big box sizes are required, which makes the sim-
ulations computationally expensive. Hence the simulations were performed as LES
applying a subgrid-scale (SGS) model, specifically the ADM-RT model based on
high-order relaxation of the velocity field, for the unresolved scales utilising the
fully spectral method code SIMSON [3] for the computations. The wall-normal
directions are discretized with Chebyshev polynomials, while the streamwise and
spanwise directions with Fourier compositions. The LES including the SGS model
was verified against DNS data (with Δx+ = 14 and Δz+ = 7) and it was checked that
the chosen SGS model describes the flow with good accuracy (not shown here). The
grid resolution in inner units for the considered LES with Re = 333 is Δx+ = 57 and
Δz+ = 28.5. Local perturbations were applied on the initial, laminar profile with the
characteristic displacement thickness δ∗

0 used for non-dimensionalisation together
with U∞. Different box sizes (Table 1) were chosen to elucidate the influence on the

Table 1 Performed simulations of the TASBL with constant suction rate (Re = 333) for different
domain sizes (scaled by the laminar displacement thickness δ∗

0 ) and resolutions, yielding the given
friction Reynolds numbers Reτ and boundary-layer thicknesses δ99 (normalised by δ∗

0 )

Case Domain size Resolution Reτ δ99

LES333e 1600 × 450 × 800 512 × 301 × 512 2000 109

LES333d 800 × 300 × 400 256 × 201 × 256 2000 111

LES333c 400 × 300 × 200 128 × 201 × 128 1960 107

LES333b 200 × 300 × 100 64 × 201 × 64 1520 83

LES333a 100 × 300 × 50 32 × 201 × 32 1120 61

DNS333b 200 × 300 × 100 256 × 301 × 256 1680 92
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large structures and the simulations were run over long time periods to study the time
evolution.

3 Results and Discussions

In this study both the dependence on the size of the computational domain and
the temporal development towards the asymptotic state are studied, while classical
scaling laws [6, 7, 9] are tested on the data from the asymptotic state. The mean
streamwise velocity profile in Fig. 1a shows a strong influence of the box sizes on
the statistics, while the inner layer exhibits universality irrespective of the box size
Lz . The wake region, however, reveals a clear dependence on the box size: the wake
strength reduces with increasing Lz and ultimately disappears. Additional simula-
tions were performed to affirm Lz (not Lx ) as the influencing factor. This phenom-
enon cannot be seen in channel flows or turbulent boundary layers, consequently it
is essential to choose large boxes and study this case in detail.

A considerably long time is required to reach the asymptotic state: the large
structures and the correct (i.e. asymptotic) BL thickness can only be obtained after
a long BL development. As apparent from the inner-scaled mean velocity profile in
Fig. 1b, the flow quickly adheres to a law of the wall description, while the asymptotic
state is only slowly approached in the outer region.

The performance of different scaling laws were tested in order to describe U+ in
the presence of wall transpiration. It is found that the linear law [10],
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Fig. 1 a Viscous-scaled mean streamwise velocity U+ for increasing box size Lz . b Viscous-scaled
mean velocity profile for case LES333d at different development times as indicated through vertical
dashed lines in the time development of the boundary layer thickness, δ99. Dashed lines in a and b
represent the modified linear and log law (with modified parameters) [9]
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Fig. 2 Scaling laws for U+.
LES333d (solid black),
empiric log law [9] with
modified parameters
κ∗ = 0.82, B∗ = 9.2
(dashed blue), modified log
law [6] (solid red),
application of the Prandtl
mixing length incl. a
damping function [7] (solid
green)

y+

U+

100 101 102 103 104
0

5

10

15

20

U+ = (1/V +
0 )(eV +

0 y+ − 1), (1)

represent the mean velocity well in the viscous sublayer. Figure 2 shows that the
empirical log law with modified parameters is able to describe the overlap region,
while the proposed scaling laws in Refs. [6, 7] fail to describe the overlap and wake
region.

4 Conclusions

The investigation of a TASBL at Re = 333 emphasised the importance of both a
large box size and sufficient development time. With both an increasing box size and
development time, the mean profiles exhibit a similar trend, viz. a diminishing wake
region. However, profiles in the viscous sublayer and inner layer collapse irrespective
of development time and box size, respectively. Once an asymptotic state is reached,
large structures can be observed and the separation between small and large struc-
tures becomes apparent, yielding high friction Reynolds numbers. Moreover, obser-
vations from earlier studies (such as lower fluctuation level when suction is present
[5]) could be confirmed. Finally, a more appropriate scaling law needs to be found in
order to describe the mean profile of TASBLs. The present conclusions have impor-
tant ramifications for experiments, viz. a true TASBL requires very large facilities
(a rough estimate yields a wind tunnel length of 350 m) in order to reach an asymptotic
state.

Disclaimer: Parallel to the present paper, a largely extended and more detailed study based on the

present work has been published by Bobke et al. [2].
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Heat Transfer in a Shallow Cavity

Fatima Madi Arous

Abstract This numerical study is about the heat transfer in a turbulent flow over a
shallow cavity. Two different incoming flows are considered: a boundary layer flow
and a plane wall jet flow. The latter is characterized by the presence of an outer
layer, an additional turbulence source. In the boundary layer case, the Reynolds
number and the turbulence intensity were investigated, while in the wall jet case, the
ratio of the cavity depth to the jet nozzle height was examined. The results of this
study reveal that the cavity flow is very sensitive to the incoming flow characteristics;
an increase of the turbulence intensity accelerates the shear layer reattachment and
enhances the heat transfer. The Reynolds number increase also improves the heat
transfer. In addition, a heat transfer enhancement was observed in the wall jet case.

1 Introduction

Flows characterized by the separation and recirculation phenomena, as flow over
cavities and steps or around obstacles, promote mixing fluid and can play an impor-
tant role in heat transfer. This kind of flows is of a great interest as it is related to
various engineering applications such as cooling systems for electronic components,
combustion chambers, heat exchangers and solar energy collectors. Turbulators ribs
are widely used in several engineering applications such as serpentine cooling air
and gas turbine. However, the flow field between two roughness elements is similar
to a cavity flow Oka [1]. In the present study, the cavities aspect ratio is AR = 10.
The cavities walls temperature was fixed at Tw = 320K and that of the inlet flow at
300K. The case studied experimentally by Estve et al. [2] and numerically by Madi
Arous et al. [3] has been used for the turbulence model validation.
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Fig. 1 Incoming flow calculation domaines (left boundary layer case—right wall jet case)

2 Turbulence modelling and Numerical Procedure

The fluid considered in the present study is incompressible and the flow is assumed
two-dimensional and statistically steady. The numerical approach is realized by the
standard k-ω model of Wilcox [4]. The Numerical method is based on the finite
volumemethod. The calculation domains are given by Fig. 1. The grids are Cartesian,
non-uniform and sufficiently refined near the cavity walls where very high gradients
prevail in the viscous sub-layer.

The boundary conditions imposed at the calculation domain frontiers are: uniform
profiles at the inlet frontier, constant pressure at the outlet boundary and the upper
frontier in the wall jet case, and the no-slip condition at the wall boundaries. The
turbulent quantities correspond to the wall function approach. The cavity walls are
maintained at a constant temperature T = 320K and the other ones are adiabatic.

3 Results and Discussions

For the validation of the numerical results, we have considered the same incoming
flow conditions of [3]. the Reynolds number based on the cavity depth is 67000, the
boundary layer thickness is about 20mm and the turbulence intensity of the external
flow is about 2%. Figure2a compares computed and measured pressure coefficient
at the cavity floor. This figure shows that the numerical results are in good agreement
with the experimental ones.

The flow structure is characterized by the presence of an important recirculation
zone and two vortices at the cavity corners. We also note the presence of a small
vortex above the downstream step (Fig. 2b). The present study shows that the flow
structure is less affected by the Reynolds number variation while the turbulence
intensity increase causes an important diminution of the principal recirculation zone
size leading to the acceleration of the reattachment phenomenon.
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Fig. 2 a Pressure coefficient along the cavity floor (Re = 67000, I = 0.02). b The mean flow
structure (boundary layer incoming flow case—Re = 67000, I = 0.02)

Fig. 3 a Evolution of the reattachment length (boundary layer case). b Evolution of the maximum
Nusselt number (boundary layer case)

Figure3a shows that the reattachment length decreases with the turbulence inten-
sity increase and it is less effected by the variation of the Reynolds number.

Figure3b shows that the Numax increases linearly with the turbulence intensity.
The increase of the Reynolds number and that of the turbulence intensity improve
the heat transfer.

Computations of the wall jet upstream flow cases have been carried out for the
same inlet flow conditions of the boundary layer case. Thus, at x = −H, the Re =
67000, the boundary layer thickness is about 20mm and the turbulence intensity is
about 5%. The height of the outlet jet nozzle is maintained constant b = 50mm
whereas the cavity depth was varied while keeping an aspect ratio AR = L/H = 10.
Different cavity depths to nozzle height ratios are considered in this study. Figure4a
regroups the Nusselt number profiles along the cavity floor of the two different
incoming flows. This Figure shows a considerable heat transfer enhancement in
the wall jet case compared to that of the boundary layer. Figure4b regroups the
Nusselt number profiles along the cavity floor of different H/b ratios. We note that
the augmentation of H/b ratio enhances the heat transfer. This same result was found
by Abu-Mulaweh et al. [5] where their experimental study has shown that the step
height increase enhances the heat transfer in the turbulent flowover a backward facing
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Fig. 4 a Evolution of the local Nusselt number along the cavity floor. b Evolution of the local
Nusselt number along the cavity floor for different H/b ratios. c Evolution of the maximum Nusselt
number for different H/b ratio

step. Apparently, the earlier reattachment phenomenon leads to an enhancement in a
heat transfer. It is very interesting to note a linear increase of the maximum Nusselt
number with the cavity depth Fig. 4c.

3.1 Concluding Remarks

The comparison of the numerical results with the experimental ones shows that the
k-ω model predicts fairly well this flow pattern. It was found that the flow structure is
very sensitive to the upstream flow characteristics. The turbulence intensity increase
accelerates the shear layer reattachment to the cavity floor and improves the heat
transfer. The reattachment phenomenon seems to be less affected by the Reynolds
number. However, the increase of this latter enhances the heat transfer in the cavity.
The wall jet incoming flow case is characterized by an earlier reattachment phenom-
enon and an enhancement of the heat transfer as compared to that of the boundary
layer. The augmentation of the cavity depth to nozzle height ratio improves even
more the heat transfer.The maximum Nusselt number is reached upstream of the
reattachment locations, in the principal recirculation region. This study reveals a
linear evolution of the maximum Nusselt number with the turbulence intensity. The
interesting result of this study is a linear evolution of the maximum Nusselt number
with the cavity depth to the height of the jet exit nozzle.
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Temperature Effects in Hot-Wire
Measurements on Higher-Order Moments
in Wall Turbulence

Alessandro Talamelli, Fabio Malizia, Ramis Örlü,
Andrea Cimarelli and Philipp Schlatter

1 Introduction and Approach

Measuring turbulent fluctuations using hot-wire anemometry is still the method that
provides the highest degree of accuracy, in particular when it comes to temporal and
spatial resolution. The question of spatial resolution of hot-wires has been treated
in the past in a number of publications [1], and corresponding correction schemes,
both heuristic [2] and data-driven [3], have been suggested. Nonetheless, there are
still unresolved open questions in wall turbulence, such as the proper scaling of the
near-wall and secondary peak (or even its existence) in the variance profile of the
streamwise velocity component or the scaling behaviour of its higher-order moments
[4]. While the effect of temporal and spatial resolution on these quantities has been
investigated in a number of studies it was only very recently that the effect of tem-
perature fluctuations—as they are e.g. encountered in non-isothermal flows—on the
mean, variance and spectra in wall-bounded turbulent flows when utilising hot-wire
anemometry has been documented and corrections were proposed [5].

The aim of the present investigation is to extend the aforementioned efforts on
the effect of temperature fluctuations on the skewness and flatness factors as well
as to assess the performance of commonly employed temperature compensations.
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For this purpose, the response of a hot-wire is simulated through the use of velocity
and temperature (i.e. passive scalar) data from a turbulent channel flow generated
by means of direct numerical simulations (DNS) at a friction Reynolds number of
Reτ = 590 as done in Örlü et al. [5] to which the reader is referred for details.
In particular, the effect of a 2, 4, and 6K temperature gradient across the channel
height will be simulated and the performance of temperature compensations of the
instantaneous velocity signals will be demonstrated utilising common techniques,
i.e. the mean centreline (or external) temperature 〈TCL〉, the mean local temperature〈
T(y+)

〉
, and the newly proposed synthetic instantaneous temperature by Örlü et al.

[5], henceforth denoted Tsynt(t; y+) given through

Tsynt(t; y+) = 〈T〉(y+) + u(t)Tτ

uτ

( 〈uu〉
〈uu〉max

)
, (1)

where uτ and Tτ is the friction velocity and temperature, while 〈·〉 and + denote
the time-average operator and wall units, respectively. In all these exercises uτ is
taken from the simulation and is therefore unaffected by the temperature gradient.
This procedure is comparable to an experimental where uτ is obtained independently
from velocity measurements, as e.g. from the pressure drop in internal flows.

2 Results and Discussions

In situations where 〈TCL〉 is monitored throughout an experiment, it is common to
employ this temperature for the compensation of the instantaneous hot-wire (voltage)
readings. The effect on the mean velocity profile for temperature gradients of 2, 4,
and 6K is depicted in Fig. 1 together with their relative errors. Although not directly
apparent from themean velocity profile, the relative errors are considerable. Utilising
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Fig. 2 Inner-scaled variance profile of the streamwise velocity component 〈uu〉+ obtained when
utilising

〈
T(y+)

〉
for the compensation as well as the relative errors when using

〈
T(y+)

〉
and 〈TCL〉

instead
〈
T(y+)

〉
, as is common practise (if one is aware of possible temperature

gradients), one is able to recover the correct mean velocity profile.
Based on this result, one would assume that

〈
T(y+)

〉
is superior to 〈TCL〉 when

it comes to the variance profile. Although this is the case as shown in Fig. 2, the
obtained variance profile is significantly attenuated around the near-wall peak when
utilising

〈
T(y+)

〉
, while it is nearly fully recovered when 〈TCL〉 is used, which makes

it interesting for practical purposes, since it is the near-wall peak that is effected the
most in absolute terms. Consequently, there is no clear favourite between the two
temperatures when it comes to corrections beyond the mean velocity and hence the
correction scheme suggested in Ref. [5], i.e. Eq. (1), is compared to the previous ones
in the following for the higher-order moments.

Contrary to the previous figures, where relative errors were presented, Fig. 3 doc-
uments the absolute errors for higher-order moments, since relative errors become
problematic for odd moments due to zero-crossings and values close to zero. As
apparent, the utilisation of 〈TCL〉 is not recommended although it might yield (only)
the correct amplitude of the variance near-wall peak; errors (obviously) amplify in
the limit of y+ → 0. This becomes in particular important when assessing the limit-
ing behaviour of the variance, i.e. amplitude of the wall shear stress fluctuations, and
skewness or flatness factors. While both

〈
T(y+)

〉
and Tsynt(t; y+) yield the correct

mean velocity profile, the advantage of utilising Tsynt(t; y+) becomes apparent when
inspecting the absolute errors for the higher-order moments. Consequently, in the
absence of simultaneous, spatially and temporally resolved, temperature and (hot-
wire) velocity measurements, the correction scheme proposed in Örlü et al. [5] is
recommended whenever temperature gradients are unavoidable, be it for the purpose
of correcting or assessing errors due to temperature fluctuations.
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Quantification of Global Intermittency
in Stably Stratified Ekman Flow

Cedrick Ansorge and Juan Pedro Mellado

1 Introduction

Cessation of turbulence is a well-recognized feature of the stably stratified boundary
layer [1, 2]. In stratified channels, it has been shown that this cessation does not
occur as an on–off process but is rather a complex transition from a turbulent to a
laminar state [3, 4].When stratification increases gradually, this transitionbeginswith
the localized absence of turbulent eddies in an otherwise turbulent flow. Recently,
[5] showed that a very similar transition occurs in stably stratified Ekman flow.
This localized absence of turbulence bears a striking resemblance to the absence of
turbulence on some or all scales, even close to the surface, which is observed in the
atmosphere and termed Global Intermittency (GI) by [6].

To the authors’ knowledge, the recognition of the occurrence of GI is not reflected
in a separate study of the turbulent and laminar patches in such a rotating and stratified
flow yet. The challenge is twofold: First, sufficiently resolved data in space and time
became available just recently ([5] calculated the intermittency factor from DNS
data); Second, while the enstrophy-based classical method developed by [7] is well-
suited to detect external intermittency in neutrally stratified flows, there are problems
with GI because of large gradients in the mean-flow close to the surface [5]. To
overcome this issue, we propose here a method combining the intermittency factor
with a high-pass filter operation.

Weusedirect numerical simulationof stably stratifiedEkmanflow.The set-upused
here is—along physical aspects of the turbulence collapse in the flow—described in
[5]. External parameters of this particular set-up are the free-stream geostrophic
wind velocity G, the fluid viscosity ν, the Coriolis parameter f and the buoyancy
difference B0 between the surface and free stream. These parameters combine into
two dimensionless groups, a Reynolds and Richardson number, Reδ = Gδ/ν and
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Riδ = B0δ/G2 respectively. Here, δ = u�,neutral/ f is a measure of the boundary layer
height in neutral conditions with the corresponding friction velocity u�,neutral of the
neutrally stratified case.

2 Intermittency Calculation Based on Filtered Fields

When partitioning a flow to turbulent and non-turbulent patches, vorticity has
proven useful as it is one defining property of turbulence: Since the seminal
works by [7], vorticity is used systematically in the study of external intermit-
tency and the turbulent/non-turbulent interface ([9] and references therein). We
also base our partitioning method on vorticity, and use the intermittency function
γ (z) = 〈H(ω − ωthreshold)〉,where H is the Heaviside function, ω is the local vortic-
ity magnitude, and 〈·〉 denotes a horizontal average. As a threshold we use 6ωrms(δ),
where ωrms(δ) is the root mean square (rms) of the vorticity at z = δ. Given the self-
similarity of vorticity profiles within the boundary layer when the Reynolds number
increases, this threshold may also be expressed in terms of a constant fraction of the
vorticity inside the buffer layer or at the surface. Ansorge and Mellado [5] showed
that the expression of the enstrophy threshold in terms of ωrms leads to intermittency
profiles which are independent of the Reynolds number. As demonstrated by a com-
prehensive body of work following [7], this approach is well-suited to detect external
intermittency [8]. The detection of GI based on this method is, however, difficult:
The contribution of the mean velocity gradient dominates the turbulent contribution
to the enstrophy close to the surface [5].

To overcome the problem of partitioning the flow close to the surface, we consider
a horizontally filtered velocity field retaining only small-scale fluctuations. The filter
transfer function is

Fδ(kx) = 1

2

{
erf

[
log

( |kx |
kδ

)]
+ 1

}
, (1)

where kx is a wavenumber in the horizontal direction and kδ is the wavenumber
corresponding to a wavelength δ. In this work, we consider two filters: First, F+

δ

defined through the filter response Fδ(kx ). The residual field is equal to the orig-
inal field filtered with the low-pass filter F−

δ defined through the complementary
filter response 1 − Fδ(kx ). That is, we first consider the fields uhi = F+

δ {u} and
ulo = F−

δ {u} = u − uhi. The second filter we consider corresponds to theReynolds
decomposition.

We analyze here twoparticular realizations of turbulent Ekmanflowobtained from
the set-up described in [5] with Reδ = 26,450. First, a neutrally stratified case in a
domain approximately the size of the Rossby radius, labelled as ri00. Second, two
stably stratified case atRichardson numbers Riδ = 0.62, Riδ = 0.31 and Riδ = 0.15
in the same domain are used and labelled as ri62, ri31 and ri15 respectively.
While the neutral case is in its statistically steady state, the stratified ones are in
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the phase of recovery after a complete, respectively partial cessation of turbulence.
(The cases ri15 and ri31 use a neutrally stratified turbulent field with a buoyancy
profile as described in [5] as reference. The case ri62 is spun off the case ri15
after t f/2π ≈ 1/6 and integrated forward through about 1.5 inertial periods.)

A comparison of the statistics between filtered and unfiltered fields unveils that in
the neutrally stratified flow, and also in case ri31 where the turbulence is sustained
in a large are fraction (not shown), the rms of turbulent vorticity ωrms is dominated
by contributions from the high-pass-filtered field uhi at all heights (thin and thick
solid lines in Fig. 1a). Conversely, the vorticity rms residing in the large-scale modes
ulo (dashed lines in Fig. 1) is less than one third of that contained in the small-scale
modes. This result qualifies vorticity of the unfiltered field as a reasonable indicator
for the intensity of small-scale processes under neutral stratification.

When the flow is exposed to very strong stable stratification, the above picture
changes. Now, in particular close to the surface (z− < 0.2), the vorticity rms is largely
explained by the low-pass-filter contribution (orange, solid line in Fig. 1) due to a
high level of large-scale background enstrophy. A large portion of this low-pass-filter
enstrophy is due to mean shear increasing under stable stratification. Large-scale
coherent motions seem to contribute to the high level of vorticity rms at large scales
too. Conversely, the small-scale contribution to vorticity rms in the surface layer is

Fig. 1 a Vorticity-rms of the unfiltered (solid, thin), high-pass-filtered (solid, thick) and low-
pass-filtered (dashed, thick) fields for case ri00 (black), ri31 (cyan) and ri62 (orange).
b Intermittency factor γ with a threshold vorticity 6ωrms(δ) calculated from a filtered (solid, thick—
F+

δ , dash-dotted—Reynolds’ decomposition) and solid, thin—unfiltered field. Color coding is as
in panel a; case ri15 is shown in blue
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(a) (b) (c)

Fig. 2 Logarithm of enstrophy at a level z− = 0.04 normalized by 1/ f for case ri00 (a) and case
ri62 (b, c). a and b show the enstrophy of the field u, c plots the enstrophy of the field uhi. Axes
are normalized by δ and about 1

3 × 1
3 of the total domain is shown

much smaller and vorticity of the unfiltered field u is no longer a good indicator of
small-scale activity in the flow.

The significant increase in background large-scale shear under stable stratification
is the reason why most of the flow is turbulent with respect to the flow-partitioning
method based on unfiltered fields (thin, solid orange line in Fig. 1b). The classical
method of measuring external intermittency not only fails to detect the localized
absence of turbulence close to the surface that is evident in Fig. 2b, c, but also gives
a higher turbulent area fraction close to the surface (up to z− = 0.1 in Fig. 1b) when
compared to the neutral reference. When, instead of the full field, high-pass-filtered
fields are used to partition the flow, the absence of turbulent motion in the lower
surface layer and the buffer layer is well detected (red versus black solid lines in
Fig. 1b). This is also seen comparing Fig. 2b, c: While in panel (b) the enstrophy
reaches values around 10/ f throughout the domain, even in regions where there
seems to be no mixing activity, the filtering of large-scale motions removes these
contributions, and the enstrophy is significantly reduced in regions with less mixing.
At the same time, for the neutrally stratified case, the consideration of filtered fields
has no impact on γ (z).

3 Conclusions

In the inner region of boundary layers, a partitioning of the flow into turbulent
and non-turbulent patches based on full instantaneous velocity fields is problematic
since the enstrophy may be dominated by the gradient of the mean flow or large-
scale structures. Our results indicate that, in neutrally stratified boundary layers, this
approach is efficient, while it is not so under strong stable stratification. This problem
can be overcome if the large-scale contribution to the enstrophy is removed. We
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have introduced here a possible method—based on filtered fields of the full flow—to
differentiate between turbulent and non-turbulent patches of strongly stably stratified
Ekman flow. This approach is sufficient to distinguish turbulent and non-turbulent
patches in the inner layer of stably as well as neutrally stratified Ekman flow.
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A Comparison Between DBD and Corona
Actuators with Non-Straight Electrodes

Federico Messanelli and Marco Belan

Abstract An experiment about plasma actuators, both corona and DBD (Dielectric
Barrier Discharge) types, is performed, in order to maximize their performance as
flow control devices on aerodynamic airfoils at high angles of attack by acting on the
electrodes shape. In particular, an innovative serrated geometry for the electrodes
is investigated. Lift measurements on a NACA0015 are taken in the wind tunnel
at 3 different Reynolds numbers (Re ≈ 35,000, 50,000, 70,000). Results indicate
that the new geometry may induce better performance than traditional straight edge
configurations, both for corona andDBD.Furthermore, power considerations suggest
that serrated geometry corona actuators are more efficient than DBD. Finally, the
serrated geometry seems to increase the stability of corona discharge.

1 Introduction

The main objective of our experimental research is to perform a geometrical opti-
mization of plasma actuators [1], both corona and DBD (dielectric barrier discharge)
types, in order to maximize their performance as flow control devices on aerody-
namic airfoils at high angles of attack by acting on the electrodes shape. For this
purpose, an innovative serrated geometry for the electrodes is studied (Fig. 1). A
detailed analysis of the effectiveness of this geometrical configuration for corona
plasma actuators, and in particular the optimization of the serrated geometry, has
never been performed before this work. On the other hand, the serrated geometry
has already been investigated for DBD in some previous works, as those of Thomas
et al. [2], Berendt et al. [3] and Joussot et al. [4], even though a proper optimiza-
tion of this geometry has never been accomplished. In particular [3] and [4] deal
with the description of the three-dimensional flow field induced by these innovative
electrodes.
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Fig. 1 Schematic view of the actuators with serrated geometry (not to scale for clarity)

2 Experimental Set-Up

The experiments take place in an open circuit wind tunnel with a 300 × 300mm2

test section. Lift measurements are taken on a NACA0015 (c = 100mm, b =
292mm) by a 3 components aerodynamic balance at 3 Reynolds numbers (Re ≈
35,000, 50,000, 70,000), corresponding to freestreamvelocities of 5, 7.5 and10m/s.
End plates are mounted on the airfoil in order to minimize end effects. Turbulators
are also located near the leading edge, in order to prevent the formation of laminar
separation bubbles. The effect of the turbulators has been checked confronting the
CL − α curves with and without them and comparing these curves with the litera-
ture about model airplanes with artificially turbulent boundary layers [5]. Electrical
measurements are performed by means of a 60MHz–25ks oscilloscope in order to
evaluate the power consumption of the actuators. Different parametric tests have
been performed, changing the tips length while keeping a constant number of tips
and changing the tips number while keeping a constant tips length (Fig. 2). For the
sake of comparison, two reference actuators have been used in the tests: a straight
wire-to-plate for the corona and a straight plate-to-plate for the DBD. All the actu-
ators are 200mm wide. The electrodes are made of aluminium tape, 0.12mm thick.
The dielectric is Kapton, 0.075mm thick. The anode–cathode gap in corona actua-
tors is 15mm; the gap between the upper and the lower electrodes for the DBD is
0mm. The lower electrode is insulated by a silicone spray, in order to prevent the
discharge on the lower side of the actuator. All the actuators are located at 10% of the
chord. The actuators effectiveness is evaluated by means of the percentage increase
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Fig. 2 Space of the investigated parameters
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of maximum lift coefficient ΔCLmax and by a non-dimensional efficiency parameter
ε = U ·ΔL

W , which takes into account their power consumption W .

3 Experimental Results

The new corona actuators show higher discharge stability: the serrated geometry
helps avoiding glow-to-arc transition and favours the ignition of the discharge, even
in unfavourable conditions of high relative humidity and non optimal actuators clean-
liness. Furthermore, the results indicate a performance improvement increasing the
length (Fig. 3) as well as the number (Fig. 5) of tips. The behaviour is asymptotic
beyond a certain length at the lowest Reynolds. Probably the same asymptotic behav-
iour could be registered at higher Reynolds, but beyond the lengths tested. This will
be investigated in further works. We believe that beyond a certain tips length the
electric field is no longer affected by the boundary conditions imposed by the geom-
etry upstream of the tips. About the tips number, we remark that corona discharge
originates locally from the anode tips and expands like a fan towards the cathode.
Thus, increasing the tips number gives an improvement, because there are more start-
ing points for the corona and finally a wider discharge area. For DBD, the serrated
geometry introduces also an induced transversal velocity, giving rise to a pair of
counter-rotating vortices in each zone between adjacent tips. The actuator starts to
work as a vortex generator only beyond a certain tips length (Fig. 4). On the other
hand, in Fig. 5 an optimal geometry within those tested as function of the tips number
has been identified: in this case, it is likely that the tip dimensions create vortices of
the best size with respect to the boundary layer thickness.

If we compare the most performing corona and DBD within those tested, we may
notice that, while lift improvements are substantially the same (Fig. 6), the efficiency
expressed by the non-dimensional parameter ε is much better for the corona than for
the DBD (Fig. 7). In fact, power consumption is in the order of 3W for the corona
and 10W for the DBD.

Fig. 3 ΔCLmax versus tips
length L at different
Reynolds number for corona
actuators
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Fig. 4 ΔCLmax versus tips
length L for corona and DBD
actuators at Re ≈ 35,000
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Fig. 5 ΔCLmax versus tips
number N for corona and
DBD actuators at
Re ≈ 35,000
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Fig. 6 ΔCLmax versus
Reynolds for the most
performing actuators having
the same span and tips length
(tips length = 20mm, tips
number is 10 for DBD and
40 for corona, the tips width
decreases as 1/N)
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Fig. 7 Parameter ε versus
Reynolds for the most
performing actuators having
the same span and tips length
(tips length = 20mm, tips
number is 10 for DBD and
40 for corona, the tips width
decreases as 1/N)
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4 Conclusions

In conclusion, an optimized serrated geometry may induce better performance than
traditional configurations, both for corona and DBD actuators. In particular, the main
advantage for corona actuators could be the increased stability and ease of ignition,
with respect to the standard straight geometry. Furthermore, corona actuators require
less power than DBD to obtain similar lift improvements. Future research will inves-
tigate more geometries, aiming to prove the effectiveness of serrated geometry at
higher freestream velocities.
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The Final Design of the Long Pipe
in CICLOPE

G. Bellani and A. Talamelli

Abstract One of the fundamental characteristics of turbulent flows is that the ratio
of large to small scales increases drastically with increasing Reynolds number. In
standard laboratory apparatus, the fine structure of turbulence becomes exceedingly
small, as compared to the size of standard probes, leading to large experimental
uncertainties. Therefore an accurate description of the mutual interactions becomes
complicate and many questions remains unanswered. The Center for International
Cooperation for Long Pipe Experiment (CICLOPE)was established to design a pipe-
flow facility (Long Pipe) that, thanks to its large size, has the potential to eliminate
these uncertainties. Here we present the final design of the Long Pipe, which is now
complete and operative.

1 Background

One of the fundamental characteristics of turbulent flows is that the ratio of large
to small scales increases drastically with increasing Reynolds number. Furthermore,
the interactions between large and small scales are strong and complex [1, 2]. Thus,
in order to design efficient predictive models, it is important to provide an accurate
qualitative and quantitative description of these complex interactions, especially in
the near-wall region, where shear is generated. At present, this description is incom-
plete because the fine structure of turbulence becomes exceedingly small in standard
laboratory flow-loops, as compared to the size of standard probes, leading to large
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experimental uncertainties [3]. Consequently, many questions are still unanswered
[4, 5].

The Center for International Cooperation for Long Pipe Experiment (CICLOPE)
was established to design a pipe-flow facility that eliminates these uncertainties [6].
The unique characteristic of this pipe-flow loop (the Long Pipe) is its large size (D =
0.9m, L = 110.8 m). This size is such that the smallest turbulent eddies (�∗) that
are generated when the facility operates at high-speed (i.e. high-Reynolds number),
are larger than the spatial-resolution capabilities of standard hot-wire probes. Hence
statistics of the turbulent velocity field can bemeasuredwith unprecedented accuracy
in a wide range of (high) Reynolds numbers. The design guidelines and potential
impact of this new infrastructure has been discussed in several research papers [6–8].
In this paper we present the final design of the Long Pipe, which is now complete
and operative. The Long Pipe is located in Predappio (Italy), and belongs to the
University of Bologna. Funding opportunity to access the facility is provided by the
European network EuHIT (www.euhit.org).

2 The Facility

The facility is a 110.8m long pipe embedded in a closed-loop circuit. The design
of the aerodynamic components is inspired by some of the best existing research
wind-tunnels, such as the MTL and BL at KTH, Stockholm [9, 10] and the NDF
at IIT, Chicago [11]. A closed loop design is chosen in order to ensure stability of
the flow conditions, and low turbulence level. The loop includes a heat exchanger to
control temperature within the range of±0.1 ◦C, an axial fan and a flow-conditioning
assembly (settling chamber, honeycombs, screens and contraction, see Fig. 1).

The Pipe. The core of the flow-loop is a long pipe of constant cross-section. The
pipe is 110.8m long (see Fig. 2d), with an inner diameter of 900mm, resulting in a
L/D of about 123. The pipe is made of twenty-two 5m long carbon fiber modules,
plus one 1.5m long element, produced using the technology of filament-winding.
This technology produced a surface roughness of krms < 0.1µm (krms/�∗ < 0.01),
and a diameter precision of 900 ± 0.2mm. These values are well below the required

3

2 1

4 5

6

Fig. 1 Overview of the Long Pipe (LP) facility: 1 The carbon-fiber pipe. 2 Rectangular expand-
ing corners. 3 Heat exchanger. 4 Fan assembly. 5 Round corners. 6 Settling chamber/Convergent
assembly
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Fig. 2 a The axial fan. b Heat exchanger with fast diffuser and expanding corners. c Pipe inlet,
convergent and settling chamber. d The Long Pipe

specifications [6]. Extremely precise alignment is obtained thanks to 3-degrees of
freedom supporting elements, combined with a high-precision optical measurement
system (Leica TS50). All pipe elements are equipped with seven pressure ports and
four access holes of diameter of 150mm distributed radially to provide access for
measurement instruments. Equalization with ambient pressure is provided at the
1.5m main test section (see Fig. 2c) at the end of the pipe, but it can be moved
upstream thanks to a flexible design of the junctions. A 300 mm wide connection
ring is used to connect the first element of the LP with the contraction. This space
can be used to insert grids or other devices to manipulate the inlet conditions.

Corners and diffusers. The return duct includes a series of shape converters, diffusers
and corners. It first runs under the floor of the main laboratory to allow access to the
laboratory, and then rises above the floor of themain tunnel trough an “S”-shapemade
of two expanding corners (see layout in Fig. 1). The circuit includes four rectangular
expanding corners and two non-expanding circular ones positioned after the fan and
before the settling chamber. The expanding corners have been designed using the
optimal parameters found in the BL wind tunnel at KTH [9], with an expansion ratio
of: 1.08, 1.16, 1.34, 1.26 from the first to the fourth corner, respectively.
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Part of the expansion occurs in two main diffusers. The first two-dimensional
diffuser is located after the first shape converter, it is 3m long and has an expansion
ratio of 1.39. The second main vertical diffuser is located between corner 1 and 2.
It achieves an expansion rate of 1.54 in a length of 3.44m. To minimize the risk of
separation, this diffuser includes one horizontal and three vertical guide vanes. A
third, fast diffuser is used to further slow-down the flow before the heat-exchanger
(see Fig. 2b).

Heat exchanger. The heat exchanger, located downstream of the “S”-shape corners,
is designed to control the temperature of the flow with a target accuracy of ±0.1 ◦C.
The heat exchanger has a cross section of 6.2m2 (2.3 × 2.7m), which is the largest
dimensions that could be fitted along the return duct to reduce the velocity as much as
possible, and minimize the pressure drop across it. It is connected to the return duct
using a large split diffuser and a contraction. The heat exchanger produces pressure
losses of only 230Pa at 38m3/s for a total capacity of 340kW, which corresponds
to the maximum power allowed for the fan. This heat exchanger allows to keep the
flow at the exit of the heat exchanger at a temperature of 15 ◦C at full speed. The
electro-valve can be controlled remotely by any type of control system. The shape
of the return duct is converted downstream of the heat exchanger from rectangular
to circular and remains the same for the rest of the circuit.

The fan. A four-stages axial fan provides a maximum volume flow rate of 38m3/s (at
1100 RPM), corresponding to a velocity of 60m/s in the test section. At this speed,
the fan is able to provide a total pressure head of 6500 Pa (2350 Pa of which in
the pipe section), which corresponds to the total estimated pressure drop in the flow
loop computed assuming a complete loss of dynamic pressure in the expansions. The
fan is made of two counter-rotating parts mounted in series. Each part includes two
propellers mounted on a common motor powered by a dedicated inverter. The fan
has a diameter of 1.8 m, and a total length of 4.2m. Each propeller has 11 blades
made of extruded aluminum (see Fig. 2a). The power system is composed of two
200 kW inverters from Rockwell Automation able to synchronize both motors and
to regulate RPM with an accuracy of 0.001% using encoders mounted on the motor
shafts. To minimize electromagnetic noise, connections, shielding and grounding
solutions were designed with great care when developing the electricity distribu-
tor. The inverters are enclosed in a Faraday cage. Furthermore, the shielded cables
connecting them to the motors are enclosed in 3mm thick steel conduits.

Settling chamber. The settling chamber assembly is composed of the turbulence
manipulators, the settling chamber and the contraction. The turbulence manipulators
include: 1 honeycomb section and 5 screens with decreasing mesh size. The contrac-
tion has a contraction ratio of 4:1, which is the maximum allowed by geometrical
constrains of the installation site. The design of these elements are based on theMTL
wind tunnel at KTH, Stockholm [10].
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A New High-Order Method for Simulating
Turbulent Pipe Flow

Peter Lenaers, Philipp Schlatter, Geert Brethouwer
and Arne V. Johansson

1 Introduction and Problem Formulation

Fully developed incompressible turbulent flow in a smooth pipe is an important, but
yet canonical problem in fluid mechanics. During recent years, large experimental
[1] and numerical [2] interest has shown a number of open questions, in particular
related to the scaling of mean and fluctuating quantities, but also to explain similarities
and differences to the other canonical wall flows (channels, boundary layers). Most
previous numerical efforts towards simulating pipe flows were based on low-order
discretisation schemes, motivated by the potential difficulties in the pipe centre, and
the need to resolve the numerical singularity. Nevertheless, also a number of high-
order methods, based on either radial Chebyshev discretisation, or spectral elements,
have been proposed, and used successfully.

In the present work, we describe a new method that solves the incompressible
Navier–Stokes equations on a polar grid, with axial and azimuthal Fourier (periodic)
discretisation, and high-order finite-difference derivatives in the radial direction. As
opposed to most other methods, the pressure nodes are collocated with the velocity
points, thus not requiring any inter- and extrapolation between two meshes. As will
be described in the following, the equations are formulated in primitive-variable
form, and the arising pressure-poisson equation is solved with consistent boundary
conditions derived using an influence-matrix method [3]. The method is an adaptation
of the recent scheme by Lenaers et al. [4], and further details about the present method
can be found in the corresponding thesis [5].

The formulation is in cylindrical (z, r, θ) coordinates with assumed periodic-
ity in z, leading to the two homogeneous directions z and θ . The governing equa-
tions thus contain three velocities (u, v, w) and the pressure p. No-slip conditions
at the walls at r = R are imposed, however, the method can also deal with other
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conditions [4]. Using a Fourier ansatz and high-order compact finite differences, a
semi-discretisation can be obtained, which is further discretised in time using an
explicit Runge–Kutta scheme.

Regarding the formulation of the derivatives close to the pipe axis, two specific
issues appear: Firstly, the grid lines converge to a single point, which requires spe-
cial prescription of axis conditions, and secondly, the azimuthal grid is becoming
very fine leading to severe time-step limitations of the explicit integration. Two
somewhat standard approaches have been chosen; to obtain consistent derivatives
at the centre, parity conditions are formulated for each quantity (velocity compo-
nents, pressure, divergence) and Fourier mode. These allow then the formulation of
new derivative matrices. Special care has to be taken of terms multiplied by 1/r
and 1/r2 as described in Ref. [5]. Alleviating the strict time-step limitations was
achieved by reducing gradually the number of azimuthal Fourier modes as the centre
is approached. This method appears unproblematic as the physical spanwise grid
spacing is approximately retained, and thus spurious reflections are neither expected
nor observed a posteriori.

The treatment of the pressure follows the principle outlined in Refs. [3, 4]. A
pressure-Poisson equation is derived, which replaces the continuity equation in the
interiour of the domain. The in principle unknown pressure boundary conditions are
obtained by observing a linear relation between the wall pressure and the velocity
(for which the boundary conditions are known). The system can then be solved
as a superposition of particular and homogeneous solutions, together with a few
specific adaptations necessary to deal with discretisation and commutation errors as
outlined in Ref. [4]. So far, the method is general for all radial derivative matrices.
In order to achieve an efficient method, compact finite differences are chosen, which
lead to banded instead of full matrices. Whereas for the momentum equations no
problems appear, the Poisson equation in cylindrical equations cannot be written
exactly in banded form, as opposed to the channel [4]. However, using an iteration
by regrouping some of the terms, an efficient solution still retaining time complexity
Nr (i.e. scaling with the wall-normal resolution) could be found.

2 Results

The above method has been implemented, and a number of validation runs have
been performed to check the accuracy and efficiency; in particular, the growth rates
of instability waves have been carefully checked. For the current paper, only results
pertaining to standard turbulent pipe flow at Reτ = 180 are presented. The results
are compared to the literature data by El Khoury et al. [2]. In the meantime we have
also computed higher Reynolds numbers, for which the agreement is equally good.

Figures 1 and 2 show standard statistics of wall turbulence. No difference to the
literature data can be observed, even in higher-order statistics (not shown). In par-
ticular, the behaviour at the centre of the pipe clearly shows that no attenuation of
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Fig. 1 Mean axial velocity
with the full line representing
results from the present
method, and circles the
results by El Khoury
et al. [2]. The log law is
indicated by the black
dashed lines
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Fig. 2 Turbulent
fluctuations throughout the
pipe. The present method is
indicated by the full line, and
the circles correspond to data
by El Khoury et al. [2]
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the fluctuations due to the axis conditions is taking place; similarly, the reduction of
Fourier modes as the axis is approached cannot be seen in the statistics.

Further insight into the adequacy of the method is given by Fig. 3, and the cor-
responding enlargements in Figs. 4 and 5. The near-wall region clearly shows the
appearance of the well-known velocity streaks, and the corresponding streamwise
vortices involved in the turbulence re-generation. In the present method, the wall
boundary conditions are fulfilled exactly at r = R. On the other hand, in the centre
r = 0, shown in Fig. 5, shows no special distortions of the velocity field. This indi-
cates that the formulation of the discretisation using the parity conditions over the
pipe axis, indeed lead to a smooth field. Note that the in-plane velocity in the axis
position is clearly non-zero.

To summarise, the proposed computational method for incompressible flow in a
pipe geometry allows the solution of the coupled continuity and momentum equa-
tions on a collocated mesh in primitive variables. Due to the influence matrix method,
both the boundary conditions as well as the (discrete) divergence-free conditions are
fulfilled up to machine precision in the whole velocity field. The operators for all
radial derivatives, including the Poisson equation, are compact high-order schemes.
To retain time complexity Nr (instead of N 2

r for full matrices), the Poisson equation
is formulated as a sequence of two first-order equations, with a few iterations. The
present method is unique in the sense that it allows exact fulfillment of boundary
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Fig. 3 Colours of the axial
velocity with superimposed
vector field of the in-plane
velocities, at an arbitrary
axial position and time, for
Reτ = 180

Fig. 4 Enlargement of Fig. 3
in the near-wall region. The
typical velocity deformations
(streaks) close to the wall
can be seen, together with
the corresponding
streamwise vortices

Fig. 5 Enlargement of Fig. 3
in the centre region. Note
that the mesh in physical
space does not show the
reduction in azimuthal
Fourier modes. The in-plane
velocity close to the centre is
varying smoothly over the
axis due to the imposed
parity conditions

conditions and continuity on non-staggered meshes, alleviating the need for interpo-
lations and other filtering operations. In particular for high-Reynolds number cases,
these properties are believed to be crucial for a faithful representation of both the
small and large-scale flow simultaneously.
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Structure Investigation in Pipe Flow
at High Reynolds Numbers

Emir Öngüner, El-Sayed Zanoun, Franziska König
and Christoph Egbers

Abstract For linear stable shear flows, turbulent pipe flow has been investigated for
differentRe-numbers. Turbulence can be achieved in natural or artificialmethods. For
transitions some perturbations are needed to trigger turbulence and some structures
as puffs and slugs can be observed. In last decades the so called large-scale motions
(LSM), which are composed of detached eddies with wide range of azimuthal scales
in the outer layer, are identified. Advanced versions of LSMs, the very large-scale
motions (VLSM), have radial scales. The VLSMs are concentrated around a single
azimuthal mode andmake a smaller angle with the wall compared to the LSM. These
above mentioned phenomena will be investigated at high Reynolds numbers in the
pipe facility Cottbus-Large Pipe at BTU Cottbus-Senftenberg (CoLa-Pipe) which
provides a bulk Reynolds number of Rem ≤ 1, 5 × 106. Zimmer et al. [1] and König
et al. [2] provide an outline for conditions of fully developed turbulent flow state
with natural as well as artificial transition. Considering these fully developed flow
conditions at CoLa-Pipe, next investigations will be primarily focused on the struc-
tures in boundary layer in terms of LSM and VLSM by using hot wire anemometry
and PIV. The main aim of this work will be analysing the lengths of structures at
high Re-numbers in terms of their wavelengths and comparing with those of low
Re-numbers regions.
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1 Introduction to CoLa-Pipe Turbulence Facility

The unique pipe facility CoLa-Pipe (Cottbus Large Pipe) at the Department of Aero-
dynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-
Senftenberg, is designed and built to investigate fully developed pipe flow at high
Reynolds numbers (Rem ≤ 1, 5 × 106). The type of this facility is closed-return
with two available test sections providing a length-to-diameter ratio of L/D ≈ 148
(Di = 190 ± 0.23) and L/D ≈ 79 (Di = 342 ± 0.32mm) (Fig. 1). The power unit
of CoLa-Pipe facility is working with a nominal power of 45kW contains a powerful
radial blower connected to the pipe on its suction side, a three-phase motor, and a
frequency converter which provides a flow rate of 0.05–2.5m3/s and can be con-
trolled by changing the frequency of the radial blower blades utilizing the frequency
converter unit. With these properties and in conjunction with the inner diameter of
0.19m of the lower test section the power assembly provides a maximum velocity
of 80m/s at the contraction exit.

2 Turbulent Structures in Pipe Flow

In order to understand the structures of wall bounded flows and the behavior of these
structures the enery distribution according to their wavenumber domain should be
observed. These structures in the turbulent wall region and outer flow have been

Fig. 1 Cottbus-large pipe at BTU Cottbus-Senftenberg (CoLa-Pipe)
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observed in pipes by many authors, Kim and Adrian [3], Guala et al. [4], Monty et al.
[5], Bailey and Smits [6] and Rosenberg et al. [7], where the structures are extending
up to 20R (R considered as pipe radius), in the streamwise direction and as well as in
turbulent wall region of boundary layers (Hutchins and Marusic [8], Balakumar and
Adrian [9]) extending up to 20δ (δ considered as boundary layer thickness), in length.
They are usually characterized as large-scale motions (LSM). Kim and Adrian [3]
gives also the first assumption in literature about possible sizes of these structures; if
the streamwise length of the structure is 2R-3R the turbulent structure is called LSM
and if its size between 8R-16R it is mentioned as very large-scale motion VLSM.
These interpretations remained until today as an unclear assumption.

3 Methods and Results

The main investigation method of these structures mentioned previously is based
on observing energy spectra of fluid on specific radial locations. As explained in
Guala et al. [4] the very large-scale motions are energetic, typically containing half
of the turbulent kinetic energy of the streamwise component, and they are unex-
pectedly active, typically containing more than half of the Reynolds shear stress.
Previous research show us that Townsend [10] and Grant [11] inferred that large-
scale motions existed, even close to the wall and that they contribute to the frac-
tion of the turbulent kinetic energy. Literature survey shows us that very large-scale
motions have been almost neglected. There is still no commonly accepted definition
for the sizes of these structures. Therefore a quantitative evaluation of the energy
and the Reynolds stress associated with each scale has not been clearly established.
Vallikivi [12] uses the whole pre-multiplied spectrum and the observable peaks are
obtained to determine the wavenumbers for each radial location. For the CoLa-
Pipe investigation same method is used and the results can be shown in Fig. 2. It is
also clearly observable that the growing character of these structures can be inter-
preted as almost linear. The shear Reynolds numbers for this experimental study
are following: Reτ = 2036, 2749, 3483, 4184, 4912, 5629, 6340, 7059. At highest
Re-Number there is a turbulent motion identified with a non-dimensionalized
streamwise length of λmax/R = 47. Considering the pipe radius at this facility as
R = 9.5cm, this structure has an streamwise extension of nearly 4.5m.
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Fig. 2 Non-dimensionalized wavelengths of turbulent structures by R in CoLa-Pipe at different
high re-numbers
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Heat Transfer in Turbulent Boundary
Layers of Pipe Flow: A Wavelet
Transforms Approach

Makrand A. Khanwale, C.S. Sona and Channamillkarjun S. Mathpati

Abstract Transport of energy in turbulent boundary layers of pipe is characterised
by two simulatneous, complimentary processes vis-a-vis turbulent advection and
conduction. Both the aforementioned processes are manifestations of passive scalar
transport in the turbulent boundary layer. Since passive scalar transport is intimately
related to flow structure evolution, a wavelet based method is used to characterise
flow structure evolution. This work deals with the calculation of turbulent advective
and conductive heat fluxes for a high temperature heat transfer molten salt FLiNaK.

Heat transfer of a molten fluoride salt, FLiNaK with a eutectic composition of
46.5%LiF-11.5%NaF-42%KF (mol %) in the turbulent boundary layer of pipe is
characterised by the transport of passive scalar (Temperature). Energy coupled large
eddy simulation (LES) were carried out to obtain transient velocity and tempera-
ture (passive scalar) data in the domain. Two complimentary fluxes namely turbulent
advective and conductive are amanifestation of this passive scalar distribution.Calcu-
lation of conductive flux from the aforementioned transient velocity and temperature
data is relatively straightforward which involves knowledge of thermal conductivity
(k), whose temperature dependence is well documented [1]. But, the calculation of
turbulent advective flux involves knowledge of local heat transfer coefficient (HTC),
which has a extremely complex dependence on evolution of local turbulent flow
structures. We deal with this issue using multi-scale wavelet methodology namely
Wavelet transformmodulus maxima (WTMM) [2, 3], to disseminates the flow struc-
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ture time-scale information which can be used along with a more realistic version of
the formalism known as small eddy model given in [4, 5] to calculate local HTC.

To compare the obtained results with experiment, experimental measurements
of local HTCs are needed. But the literature reports only overall HTCs calculated
experimentally [6–9], the reason being the impracticability of measurement at tem-
peratures exceeding 650◦C, which is the temperature range in which FLiNaK oper-
ates. Therefore, a representative local HTC has to be selected to be compared with
the experimental data. The local HTC at a spatial location (y+), where conductive
flux completely decays to a negligible value, is used as a representative HTC to be
compared with the experimental HTC. To reaffirm the accuracy of calculation energy
balance is verified at every spatial location, at which the fluxes are calculated.

Many studies reported the thermo-physical properties of FLiNaK, which account
for their temperature dependency. The thermo-physical properties of FLiNaK used
in the simulation are given in Table1. A more detailed description of the previous
work focusing on the Thermo-physical properties of FLiNaK can be found in [10].

We carried out energy coupled large eddy simulations in a round pipe for Reynolds
number of 25500. The computational domain was divided into 0.7, 1.1 and 1.2
million grid points to check the grid independence. The results found similar for
1.1 and 1.2 million grid points. Hence, 1.1 grid points were selected for further
simulations. In order to resolve viscous sub-layer accurately, 5 grid points were
placed below y+ of 1 and 15 grid points below y+ of 5. The turbulent kinetic energy
goes through a maximum below y+ of 20 and hence, 27 grid points were placed
in this region in order to properly resolve this behaviour. The energy coupled large
eddy simulationswere validated usingDNSdata of Fukagata et al. [13]. One equation
dynamic sub-grid kinetic energy model was used as sub-grid scale model given by
[14]. This model has better accuracy compared to Smagorinsky model (1963). Since
the thermo-physical properties of the FLiNaK are strong function of temperature,
those variations were incorporated in the simulation. Figure1 shows the comparison
of non-dimensionalized mean axial velocity profile. The variation from DNS data is
less than 5%. High quality transient velocity and temperature data was recorded for
further analysis. Further, the continuous wavelet transform of the raw velocity data
can be calculated as

T (a,b)(t) =
∫

u(t)ψ(t)dt (1)

where T (a,b)(t) are the continuous wavelet coefficients and u(t) is the fluctuating
velocity time-series and ψ is the continuous wavelet kernel function. The wavelet
function ψ may be selected as the nth derivative of a Gaussian (DOG) function so
that the local polynomial trends up to (n − 1)th order are eliminated.

The residual was studied for extracting the masked singularities. The maxima
of the absolute values of the wavelet coefficients are found out at each scale a.
These local maxima of |T (a,b)| are grouped to formmaxima lines across the scales a,
which represent the singularity locations. The observed maxima lines delineate the
structures. In WTMM plot, the maxima lines depict loci of local discontinuities due
to the flow structures occurring at various scales. These lines show the singularity
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Fig. 1 Comparison of mean axial velocity profile with DNS data

Fig. 2 Trends of turbulent advective and conductive flux for Re = 25,500, and comparison of their
summation with input flux

behaviour, scale-wise at each location and bring out the presence of small structures
within larger ones. The nature of their evolution and interaction in time domain is
also seen. Themultiple branching of singularity loci lines towards higher scales show
the complex break-up phenomena. Age of these flow structures has been calculated
as the difference between the singularity start and end times. Calculated ages are
further used with the small eddy formalism to yield advective flux at each y+. The
conductive fluxes at each y+ can be calculated using Fourier’s law. For more details
on calculation please see [10].

The turbulent advective flux obtained from the transient velocity data and the
conductive fluxes obtained from the temperature data at various spatial locations in
the inertial boundary layer are illustrated in Fig. 2. From Fig. 2 it can be noticed that
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Fig. 3 Normalised Heat transfer ratio for Re = 25,500 (•), in comparison with experimental data
of Vriesema et al. [8] (�); Grele and Gedeon [6] (�); Hoffman and Lones [7] ([])

the sum of the conductive and the turbulent advective flux at every spatial location
in the inertial Sub layer have less than 5% error when compared to the input wall
flux of 1000W/m2.

TheNusselt number to Prandtl number ratio based on the heat transfer coefficients
(HTC), calculated using small eddy formalism coupled with WTMM at a y+, where
conductive flux decays to negligible value is called as Non-dimensional Heat transfer
ratio (NHTR). Figure3 shows the comparison of NHTR with experimental data. A
very goodmatchwith a error of 3% is seen and confirms the accuracy of the calculated
HTCs.
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and Technology, India and DAE-ICT centre for chemical engineering and research.
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Part IV
Free Flows



Influence of an Extended Non-equilibrium
Region on the Far-Field of Grid Turbulence

R.J. Hearst and P. Lavoie

Abstract The turbulence produced by two regular square mesh grids is compared to
that produced by a square-fractal-element grid composed of an array of small square
fractals. All three grids have approximately the same blockage. One of the regular
grids is designed to have the same mesh length, M , as the fractal element grid, while
the other matches the maximum bar thickness of the fractal. The transition of the
turbulence from a non-equilibrium to a near equilibrium regime is assessed through
the scale-by-scale kinetic energy budget and the velocity derivative skewness. It is
found that the turbulence produced by all three grids agrees with many of the pre-
dictions for equilibrium phenomenology after approximately 20M, with the regular
grids reaching quasi-equilibrium earlier than the fractal. In the far-field, the fractal
grid produces comparable or lower Reλ than the regular grids in both dimensional
and non-dimensional measurements of the streamwise position. This is attributed to
an extended rapidly decaying non-equilibrium region in the wake of the fractal grid
relative to the regular grids.

1 Introduction

Recent grid turbulence experiments have focussed on the ‘non-equilibrium’ region
that is produced immediately downstream of the grid. Interest in this area was gar-
nered by the studies of Vassilicos and co-workers in the wake of space-filling square
fractal grids, e.g., [5, 10, 15, 18]. A space-filling square fractal is a single square frac-
tal pattern that occupies the entire wind tunnel cross-section. Recently, observations
of non-equilibrium turbulence have also been reported in the wake of an array of dif-
ferent grids, including: multi-scale cross grids [13], fractal element grids [7, 8, 20],
and regular grids [11, 19]. It has also been demonstrated that for all these grid
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geometries the non-equilibrium turbulence evolves into one that better approximates
equilibrium turbulence1 sufficiently far downstream [7, 8, 11–13, 22].

Observations of quasi-equilibrium turbulence in the wake of grids has been
characterized by a homogeneous field with an energy decay rate in the range
−1 � n � −1.4, for a power-law decay of the form

〈
u2

〉 ∼ (x − x0)n , and constant
normalized dissipation scaling, Cε ∼ εL/u′3, where ε is the dissipation rate of tur-
bulent kinetic energy and L is the integral length scale. Non-equilibrium turbulence
contrasts on all three of these points. The transverse flow fields experience non-zero
transverse transport of turbulent kinetic energy and production, the energy decays at
an accelerated rate, n � −2, and Cε grows rapidly [7, 8, 16, 18, 20].

The transition between these regions has been characterized in several ways. Isaza
et al. [11] recalled from Batchelor [1] that for equilibrium turbulence, the velocity
derivative skewness,

S(∂u/∂x) =
〈
(∂u/∂x)3

〉
〈
(∂u/∂x)2

〉3/2 , (1)

should be constant, and hence areas where S(∂u/∂x) varied were associated with
non-equilibrium turbulence. Hearst andLavoie [7] discriminated between the regions
by identifying where the flow became homogeneous in transverse planes and noting
this coincided with a change in the decay rate, n. Later, these same authors used the
scale-by-scale kinetic energy budget to determine the difference between the flow
regions [8]. The scale-by-scale kinetic energy budget for grid turbulence is given
by [4],

− 〈(δu)(δq)2〉 + 2ν
d

dr
〈(δq)2〉 − U

r2

∫ r

0
s

∂

∂x
〈(δq)2〉 ds = 4

3
〈ε〉 r, (2)

where δα = α(x + r) − α(x), 〈(δq)2〉 = 〈(δu)2〉+ 〈(δv)2〉+ 〈(δw)2〉, 〈(δu)(δq)2〉=
〈(δu)3〉 + 〈(δu)(δv)2〉 + 〈(δu)(δw)2〉, and s is a dummy integration variable. Equa-
tion (2) may be represented simply as G + D + I = C . G represents energy transfer
through advection. D represents the energy transfer through molecular diffusion. I
accounts for the influence of longitudinal inhomogeneity resulting from the decay
of turbulence behind the grid. Finally, C represents dissipation. Equation (2) is sat-
isfied for equilibrium turbulence but not for non-equilibrium turbulence due to the
presence of production and transverse transport [8]. Hence, assessing the validity
of (2) at each location in the flow can distinguish regions that approximate the two
phenomenologies.

It would appear that one of the primary benefits of the fractal geometry is that it
creates a physically large region of non-equilibrium turbulence relative to other grid
geometries [7]. As such, the characteristically high Reλ = 〈

u2
〉1/2

λ/ν region close
to the grid extends over a significant downstream range. However, there has not

1One of the most cited distinctions between true Richardson-Kolmogorov equilibrium phenom-
enology and the ‘quasi-equilibrium’ turbulence measured in the far-field of regular grids has been
a lack of a k−5/3 velocity spectrum.
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been a detailed investigation of the far-field repercussions of extending the near-grid
non-equilibrium region. Here, we first investigate the scale-by-scale energy budget
and S(∂u/∂x) to discriminate the non-equilibrium and quasi-equilibrium regions.
We then compare two regular grids with a fractal element grid at the same ReM =
U0M/ν, where U0 is the velocity immediately upstream of the grid, to identify how
extending the non-equilibrium region influences the relative magnitude of Reλ in the
far-field.

2 Experimental Details

Three different passive grids were investigated for the present study. The first was
the square-fractal-element grid used in [7, 8], which is referred to here as Fs39.
This grid consists of a 12 × 8 array of 3 fractal iteration square fractal elements
mounted to a backgroundmeshwith M = 100mm, and thickness τ0 = 6.7mm. Fs39
has σ = 0.39 blockage, and is described in more detail in [7, 8]. A regular square
mesh grid, Sq39, with M = 100mm, τ0 = 22.0mm, and σ = 0.39, was deliberately
designed to match M and σ to Fs39. A second regular grid, Rd38, with M =
32mm, τ0 = 6.8mm, and σ = 0.38 was designed to approximately match τ0 and σ

of Fs39. As such, all three grids represent comparable initial conditions in one or
more parameters. The grids are shown in Fig. 1.

Measurements were conducted downstream of the grids in a 1.2m × 0.8m ×
5.0m wind tunnel using constant temperature hot-wire anemometry. To compare the
three grids, measurements were conducted with a nano-scale thermal anemometry
probe (NSTAP) [21] at ReM = 28,500 with a 1.23:1 secondary contraction installed
0.57m downstream of the grids. A secondary contraction has been used to decrease

Fig. 1 Photographs of a nominally 260 × 340mm area of each of the 1200 × 800mm grids;
a Fs39, b Sq39, c Rd38
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anisotropy in the flow [3, 14], and was used here to collapse the anisotropy levels for
all grids in the far-field to u′/v′ = 1.10 ± 0.05. Measurements were also conducted
in the wake of Fs39 at ReM = 65,000 with a X-wire and without the secondary
contraction in order to investigate the region closer to the grid. Measurements were
limited to the area downstreamof the secondary contractionwhen itwas installed.The
measurements at ReM = 65,000 were conducted at a higher velocity and acquired
for a longer sampling time to converge the peak of 〈(δu)(δq)2〉 to within ±5%
using the 95% confidence interval. The sample time was decreased for the ReM =
28,500 measurements for efficiency. Downstream distance was measured relative to
the advection time of the flow [3], t = ∫ x

0 U (s)−1 ds, where U (x) is the local mean
velocity at a position x . Hence, non-dimensional downstream position is expressed
as U0t/M .

3 Transition to Approximate Equilibrium

The scale-by-scale kinetic energy budget for grid turbulence, (2), was assessed in
normalized form given by G/C + D/C + I/C = G∗ + D∗ + I ∗ = B∗, where B∗
is the ‘balance’ of the energy budget and all variables are a function of the spatial
interval r . When B∗ = 1 for all r , (2) is satisfied. The various terms of the scale-by-
scale energy budget are plotted in Fig. 2 in both the near- and far-field of Fs39 at
ReM = 65,000. It is immediately evident that in the far-field (2) is satisfied, while in
the near-field there are significant departures from B∗ = 1. Contours of B∗ shown in
Fig. 3 clearly identify that byU0t/M = 20, B∗ ≈ 1.Therefore, basedon this analysis,
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Fig. 2 The normalized scale-by-scale kinetic energy budget for grid turbulence given by (2). The
left frame and filled symbols represent data acquired in the non-equilibrium region. The right frame
and empty symbols represent data acquired in the quasi-equilibrium region. ( ) U0t/M = 10.4,
( ) U0t/M = 15.7, (�) U0t/M = 18.8, ( ) U0t/M = 28.6, ( ) U0t/M = 36.3, (�) U0t/M =
46.1
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Fig. 3 Contours of the
balance, B∗, of the
normalized scale-by-scale
kinetic energy budget for
grid turbulence
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the quasi-equilibrium turbulence region is U0t/M ≥ 20, and anything ahead of this
may be considered non-equilibrium turbulence.

This analysis is covered in more detail for this same grid by Hearst and Lavoie [8],
where they also show that there is measurable transverse transport and production
in the non-equilibrium region that becomes negligible in the far-field. To confirm
that the scale-by-scale energy budget results hold away from the primary axis of
measurement, Hearst and Lavoie [8] also showed that the similarity form of (2) held
in transverse planes in the far-field, but not in the non-equilibrium near-field.

The NSTAP measurements with a secondary contraction were designed to com-
pare the wakes of the three grids, and were not sampled for a sufficient time to ade-
quately resolve the terms of (2). The NSTAP measurements are more representative
of the statistical analysis available for typical grid turbulence measurements. Inas-
much as this is the case, we seek a second means of assessing the transition between
non-equilibrium and quasi-equilibrium turbulence that corroborates the scale-by-
scale kinetic energy budget results.

To address this issue, the velocity derivative skewness, S(∂u/∂x), for all four
test cases is plotted in Fig. 4. Recall that for equilibrium turbulence, S(∂u/∂x) is
constant. From the figure, it is clear that the Fs39 results have an evolving S(∂u/∂x)

that becomes constant by U0t/M ≈ 20, in agreement with the scale-by-scale kinetic
energy budget results. Interestingly, within the measurement range, both regular
grids produce approximately constant S(∂u/∂x), suggesting that all regular grid
measurements are within the quasi-equilibrium range.

The magnitude of S(∂u/∂x) shows a dependence on the initial conditions, as the
constant far-field value is different for each test case. Sreenivasan and Antonia [17]
showed that S(∂u/∂x) has a Reλ dependence, likely related to the initial conditions,
which may account for some of the differences in the far-field values. The large step
change between Fs39 with and without the secondary contraction is likely related
to the significant change in ReM between the experiments, and the improvement in
spatial resolution of the NSTAP for the secondary contraction case; accurate gradient
estimation is highly dependent on spatial resolution [2, 6]. When corrections [2] for
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Fig. 4 Evolution of the velocity derivative skewness in the wake of ( ) Fs39, ( ) Sq39, and
( ) Rd38; empty symbols represent measurements with a secondary contraction, and filled symbols
represent data acquired without the secondary contraction

resolution are applied to the measurements without the secondary contraction, then
the far-field value becomes∼ −0.43,which is in better agreementwith contemporary
estimates of S(∂u/∂x) in grid turbulence [9, 11].

4 Reynolds Number in the Far-Field

The evolution of Reλ is shown in Fig. 5 for Fs39, Sq39, and Rd38 at ReM = 28, 500
with a secondary contraction. Immediately apparent is that Sq39 produces the highest
Reλ turbulence for all U0t/M . It also appears that Rd38 produces higher Reλ than
Fs39 for the U0t/M where they overlap. This is perhaps surprising, given that it

0 20 40 60 80 100 120
40

60

80

100

120

140

1 2 3 4 5

Fig. 5 Evolution of the local Reynolds number in the wake of ( ) Fs39, ( ) Sq39, and ( ) Rd38.
All data shown were acquired with the secondary contraction
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Table 1 Power-law decay parameters for all grids

Grid ReM Fit range
[U0t/M]

U0tmin/M U0t0/M n χ [%]

Rd38 28,500 [21.5,
113.2]

27.8 +3.5 −1.23 0.88

Sq39 28,500 [14.2, 40.5] 15.6 +3.0 −1.32 0.29

Fs39 28,500 [6.9, 19.2] 8.6 −8.0 −2.92 0.79

Fs39 28,500 [19.6, 39.8] 19.6 +8.0 −1.25 1.26

The χ criterion is a measure of the rms difference between the measured data and the power-law
fit; see [7] for details

is typically believed that fractals produce higher Reλ than regular grids [10, 19].
The evolution of Reλ is also plotted against dimensional units in Fig. 5, and Reλ is
comparable between Rd38 and Fs39 beyond 3.5m. Hence, regardless of the choice
of normalization, in dimensional units, the Reλ produced by Rd38 and Fs39 is
comparable sufficiently far downstream.

It is likely that the far-field flow of Fs39 has comparable Reλ to Rd38 because
of the extended region of rapid decay experienced by the wake of Fs39. This is due
to the longer non-equilibrium region in its wake relative to the other grids. Evidence
for this hypothesis is provided in Table1 where power-law decay exponents are
estimated based on the methodology proposed in [7]. In the near-field of Fs39,
there is a rapidly decaying region that is absent from the wake of the other two
grids within the investigation range. In this extended rapidly decaying region, most
of the turbulent kinetic energy injected at the turbulence generation by the grid is
dissipated, leaving less energy in the far-field. This results in lower far-field Reλ

than the regular grids, whose rapidly decaying non-equilibrium region is within the
unobserved region closer to the grid.

5 Conclusions

Measurements were performed in thewakes of three turbulence generating gridswith
approximately the same blockage but different geometries. One grid was a square-
fractal-element grid, Fs39, which featured an array of fractal elements mounted to a
background mesh. The other two grids, Sq39 and Rd38, were regular grids with M
and τ0, respectively, matched to Fs39. The non-equilibrium and quasi-equilibrium
regions of the flow were identified by analysis of the scale-by-scale kinetic energy
budget for grid turbulence and the evolution of the velocity derivative skewness. Both
methodologies suggested that the flow begins to approximate equilibrium turbulence
near U0t/M ≈ 20 for Fs39. In the far-field, it was found that Fs39 produced the
lowest Reλ for constant ReM . This result was verified in both non-dimensional and
dimensional units, andwas thus not a consequence of a chosen formof normalization.
It was determined that the low far-field Reλ for Fs39was a result of an extended rapid
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decay region in the wake of the fractal which is associated with the non-equilibrium
region. It thus appears that while fractals may offer the benefit of high Reλ in the
near-field compared to regular grids, by the time the flow has evolved into quasi-
equilibrium turbulence, it has already depleted the majority of the turbulent kinetic
energy injected by the turbulence generating mechanisms at the grid, resulting in a
less energetic far-field.
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Anisotropy of Multiscale Grid Turbulence

Paolo D’Addio and Paolo Orlandi

Abstract The effect of the shape of the grid on the decay of turbulence is studied
through DNS. We performed simulations of regular, two-scale and fractal grids. The
multi-scale grids are characterized by a strong anisotropy in the near field, and these
achieve isotropy at the large scales much farther with respect to the single-scale grid.
The decay of turbulent kinetic energy (TKE) is affected by the shape of the grid.
In the anisotropic region of the fractal grid the decay exponent m = −2.89 agrees
with the values recently reported in literature. Once the flow achieves isotropy the
decay is no longer influenced by the geometry of the grid, and the exponent recovers
a value in the classical range −1.4 ≤ m ≤ −1.

1 Introduction

The unusual high turbulence intensities and Rλ generated by fractal grids have been
first measured by Hurst and Vassilicos [3]. They asserted that by varying the geome-
try of the grid, it is possible to control the evolution of turbulence. They found that the
TKE decays with a power law, with an exponent m ≈ −2.5, different from that mea-
sured behind regular grids (−1.4 ≤ m ≤ −1). Successively Hearst and Lavoie [2]
argued that the original set-up of [3] does not fully respect the geometrical condition
between the wind tunnel length H and the mesh size M , which only for H/M � 1
should produce reasonable homogeneity. Therefore they designed a grid where the
three iteration square fractal elements used by [3], were repeated several times over
a regular single-scale grid. They found a decay rate with m ≈ −2.79 in the region
where the flow is inhomogeneous, in good agreement with results of [3]. Thanks to
their set-up, they investigated the homogeneous region, measuring a decay exponent
of m ≈ −1.39, in accordance with the values usually measured behind regular grids.
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They thus reconciled fractal-generated turbulence measurements with classical grid-
turbulence measurements, pointing out that the non-classical behaviour of turbulence
is confined in the anisotropic region. The differences between the decay of fractal
and traditional grids have been attributed to the influence of the multi-scale initial
conditions. To understand better how the shape of the grids affects the flow, Direct
Numerical Simulations of the flow generated by regular, two-scale and fractal grids,
are here presented and discussed.

2 Numerical Experiments

The details of the numeric and of the immersed boundary method used to reproduce
the interaction between the flow and the solid grids can be found in Orlandi and
Leonardi [5]. The grid are shown in Fig. 1. G4−4−S1 and G32−8−S1 have a solidity
of S1 = 0.57 and the fractal G F4−S2 has S2 = 0.257. G32−8−S1 is a two scale grid
with a mesh ratio equal to 4, close to that used by Veeravalli and Warhaft [6]. The
fractal grid is composed by four iterations of the basic square shape. Further details
about the geometrical parameters of this grid can be found in Hurst and Vassilicos
[3]. The simulations were performed at Reynolds number ReL0 = U1L0/ν = 18840
in a computational domain L1 × L2 × L3 = 36π × 2π × 2π discretized with n1 ×
n2 × n3 = 2304 × 192 × 192 points (L2 = L3 = L0). Periodicity is assumed in y
and z. To reproduce the thickness of the smallest element of the fractal grid the
number of points is doubled in y and z. In the plots the coordinate is normalized with
L0 starting from the position of the grid xG : x∗ = (x − xG)/L0.

3 Isotropy

To assess the achievement of isotropy at large scales it is worth looking at the ratio of
the turbulent stresses in the stream-wise and in an orthogonal direction to the grid. The
theoretical value for Tu(x)/Tv(x) = 〈

u2
〉1/2

/
〈
v2

〉1/2
for isotropic turbulence should

Fig. 1 Geometry of the grids: a G4−4−S1; b G32−8−S1 and c G F4−S2
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Fig. 2 Turbulence intensity
Tu(x)/Tv(x) =〈
u2

〉1/2
/
〈
v2

〉1/2
as function

of the stream wise
non-dimensional coordinate
x∗. Symbols: (+) G4−4−S1,
(�) G32−8−S1, (•) G F4−S2
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be equal to 1. Tu(x) and Tv(x) are obtained by averaging in the plane of the grid
(y − z) and in time. Figure 2a shows that the shape of the grid strongly influences
the distance where isotropy is achieved. In the near-field the flow is anisotropic
and the value of Tu(x)/Tv(x) strictly depends on the geometry. Grid turbulence
measurements by Comte-Bellot and Corrsin [1] show that the flow can be considered
homogeneous if Tu(x)/Tv(x) ≈ 1.2. The present results in Fig. 2a show that for the
single-scale grid G4−4−S1 this condition is achieved at x∗ ≈ 2, and that G32−8−S1

generates a flow with the highest anisotropy level, with the peak of Tu(x)/Tv(x)

at x∗ ≈ 2. The location of the peak far from the grid, and the high anisotropy, are
due to the formation of two different scales that persist until x∗ ≈ 14. The peak of
Tu(x)/Tv(x) for the fractal grid is located at the grid and the anisotropy persists
much longer than that for the single-scale grid. The ratio Tu(x)/Tv(x) decreases
monotonically, but more gradually than G32−8−S1 and it approaches the value of 1.2
only at the end of the domain.

4 Power-Law

The decay of turbulent kinetic energy decays in x as: 〈q〉 = A
(

x
L0

− x0
L0

)m
, where

x0 is the virtual origin and m the decay exponent. m and x0 are obtained by the least-
squares algorithm and are given in Table 1. The fitting ranges were chosen following
the procedure of Hearst and Lavoie [2], according to which a first power law is
sought in the inhomogeneous region, and a second in the homogeneous region, that
is where the variations of 〈U (y)〉 around the mean value

〈
U

〉
are ±1 % (The over-hat

accounts for the averages in y, z and time). The value of the decay exponent m in the
homogeneous regions of G4−4−S1 is within the range −1.4 ≤ m ≤ −1 found in the
past in many experiments (Mohamed and LaRue [4]). The same values are found for
the multi-scale grids in their range of homogeneity, that are respectively [15 : 18]
for G32−8−S1 and [12 : 18] for G F4−S2. The inhomogeneous field of G32−8−S1 is
formed by two different flows, one is dominated by the large scales and the other by
the small ones. This implies that near the grid these two flows decay independently
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Table 1 Power law fitting parameters

Fit range [x/L0] m x0

G4−4−S1 [4 : 18] −1.41 1.48

G32−8−S1 [15 : 18] −1.17 6.92

G F4−S2 [4 : 12] −2.89 −12.39

G F4−S2 [12 : 18] −1.45 9.45
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Fig. 3 Decay of the turbulent kinetic energy 〈q〉 / 〈q0〉 plotted versus x∗ − x0/L0 in log–log scale.
Only every 2 points is plotted to reduce clutter. a G4−4−S1. b G32−4−S1. c G F4−S2: only the plot
with x0/L0 in the range [4 : 14] is shown

with different values of m and x0. Therefore it has not been possible to find a power-
law, with a single value of m and x0. For the fractal grid, we found a power law in
the inhomogeneous range [4 : 12] with m = −2.89, in agreement with the values
previously reported by [2] and [3]. In the homogeneous range [12 : 18], the decay
exponent recovers a traditional value m = −1.50, close to that of G4−4−S1. The decay
of 〈q〉 for all the grids is shown in Fig. 3a–c.
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Flow Field Topology of Impinging Jets
with Fractal Inserts

Gioacchino Cafiero, Stefano Discetti and Tommaso Astarita

Abstract An experimental investigation of the flow field features of a round air jet
equippedwith a fractal (FG) and a regular (RG) grid insert impinging on a flat surface
is carried out by means of 2D-2C Particle Image Velocimetry (PIV). The results
are compared to those for a round jet without any grid (JWT). The test Reynolds
number is set to 10,000. The average flow fields and the turbulent kinetic energy
distributions are presented. In particular, the effect of the presence of the fractal
grid on the turbulence intensity distribution and on the planar component of the
Reynolds stress is analyzed. Some differences between the location of the maximum
of the turbulence intensity profile and the data reported in the literature are found. A
possible interaction process between the wakes of the grids and the growing shear
layer of the jet might be responsible of this discrepancy. A comparison between the
flow field and the heat transfer results obtained by the authors in a previous work
is also carried out. What is underlined is that both an higher turbulence level and a
much stronger axial velocity cause an increment in the heat transfer rate.

1 Introduction

Even though many turbulence theories relate the vortex cascade process with an
underlying fractal structure (see [1–3]), the interest on the turbulence generated by
fractal elements has grown only in recent years. Queiros-Conde and Vassilicos [4]
and Staicu et al. [5] measured the turbulence statistics in the wake of fractal tree-like
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generators. Though their investigations were not conclusive in distinguishing the
effects of the finite size of the fractal tree and their self-similar structure, they pointed
out how turbulence with a much more elongated production region can be generated
by using a fractal stirrer with respect to the case of traditional “regular grid” tur-
bulators. This stimulated on one side the development of fractal forcing techniques
for numerical simulations [6, 7], while on the other side it led to the first systematic
investigation of the wind tunnel turbulence generated by fractal grids. Hurst and
Vassilicos [8] tested a total of 21 planar fractal grids from 3 different families: fractal
cross grids, fractal I grids and fractal square grids. The interest in the first two fam-
ilies of fractal grids in the following years has been quite limited. Geipel et al. [9]
used fractal cross grids to improve the turbulent mixing in opposed jet flows; Kinzel
et al. [10] applied the same type of grid to increase the turbulence intensity and the
local Re in shear-free turbulence under the influence of system rotation.

Mazellier and Vassilicos [11] proposed a scaling based on the interaction of the
wakes of the different bars. Differently from the case of classical regular grids, the
bars of the grid have different size and spacing.As a consequence, theirwakes interact
at different streamwise locations (see [11] for a more detailed discussion). They
introduced the wake-interaction lenghtscale as x∗ = L2

0/t0. It can be defined also
for regular grids (RGs), where L0 is replaced by the effective meshlength. The data
collected by Jayesh and Warhaft [12] in the region 1 ≤ x/M ≤ 30 (where M is the
gridmeshlength) highlight the existence of a highly inhomogeneous turbulence in the
near-field (x/M < 3, corresponding to approximately x peak/x∗ ≈ 0.55, only slightly
larger than x peak/x∗ ≈ 0.45, typical of square fractal grids SFGs), where production
is dominant, with a peak of turbulence intensity and the subsequent well-known
power law decay. What actually makes the difference between regular and fractal
grids is the value of x∗; for regular grids this value is typically small, thus leading
to a turbulence intensity peak higher than the one which characterizes fractal grids,
but very close to the grid, and consequently more difficult to be exploited. Recently,
Cafiero et al. [13] exploited the feature of the turbulence peak located relatively far
from the grid to enhance the heat transfer of impinging jets injecting turbulent energy
into the jet potential core. The comparison between the heat transfer achieved by the
jet with a fractal turbulator and that obtained by a free flowing jet, or a jet equipped
with an equivalent regular grid, highlights the striking improvement obtained using
fractal configuration under the samepower input.However,whether the enhancement
was related to the wake-interactions, to the local distribution of velocities (due to the
non-uniform blockage ratio) or to the shear layer wakes interaction it was still open
for further investigation.

In this work the comparison of the flow field generated placing both a fractal
and a regular grid in correspondence of the nozzle exit section is investigated and
compared to the one obtained in absence of any grid (JWT). In the next section the
experimental apparatus used for this experiments is briefly introduced; themean flow
field characteristics are analyzed and discussed in the Data analysis section. In the
final section, some conclusions are drawn and the flow field data are compared to
those regarding the heat transfer features of impinging fractal jets, obtained in [13].
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2 Experimental Setup and Data Processing Technique

The experimental apparatus is schematically described in Fig. 1. The air provided by
a fan is conditioned in temperature with a heat exchanger and then the mass flow rate
is measured with a Venturi tube. The air passes through a plenum chamber (in which
the total pressure is measured), a straight pipe, which length is 6d (where d is the exit
diameter, equal to 20mm) and, if present, through the insert and a terminating cap.
The air impinges normally on a glass plate (230mm long, 270mmwide, 4mm thick).
The separation (indicatedwith the symbol h) of the nozzle exit section from the target
plate is adjusted by using a precision translation stage tomove the jet plenumchamber
along its own axis perpendicular to the impinged surface. The flow is seeded with
olive oil particles of 1µm diameter thus ensuring that the Stokes number is much
lower than one. A double cavity Quantel Evergreen EVG00200 laser (wavelength
532nm, pulse intensity 200mJ, maximum frequency 15Hz) is used to illuminate
the flow field. The laser beam is shaped into a planar sheet using an optical lenses
system made of two spherical lenses f = −25.4mm and f = 50mm respectively)
and a cylindrical lens ( f = 50mm). Sequences of tracer particles are collected using
a sCMOS camera, Andor Zyla 5.5 Mpixel equipped with a Vivitar 100mm Macro
objective, f# = 22. The distance of the camera from the investigated plane is set so
that the recorded area dimensions are equal about to 1.8d along the nozzle axis and
2d in the orthogonal direction (i.e. parallel to the impinged plate). The test Reynolds
number based on the nozzle exit section diameter is set to about 10,000 for the three
tested cases.

The acquired images are processed using a final window size equal to 48 × 48
pixel with 75% overlap. The raw images are interpolated using a third order spline
method as described in [14]; the velocity field is then interpolated using a spline
fitting [15]. A Blackmann filtering both of the velocity and of the correlation map
field are then applied [16].

Fig. 1 Experimental apparatus schematic representation



246 G. Cafiero et al.

3 Data Analysis

The mean axial component of the velocity vector over 1,000 realization for the case
of FG, RG and JWT is reported in Fig. 2. The streamwise evolution of the flowfield
in the three cases is quite different. In fact for the FG, due to the uneven blockage
ratio, the jet is issued through the central iteration of the grid and through the gap that
is formed between the grid bar and its edge. On the other side, the presence of the
grid iteration causes a strong recirculation region. The effect of the grid bar is still
evident up to the impingement region, where three separated jets impinge onto the
glass surface. The behaviour in the RG case is quite different. In the vicinity of the
grid, the jet behaves in a multichannel fashion; however, beyond Y/d = 0.6 the axial
velocity is uniform as the effect of the grid is smeared out by turbulent diffusion. In
this region, the flow field results to be practically equivalent to the one of a JWT. In
this last case, the potential core is perturbed by the presence of the impinged plate,
which causes the jet deceleration. Figure3 reports the axial distribution of the tke
(turbulent kinetic energy) normalized with respect to the maximum velocity of the
jet. As already discussed in [11], the presence of the regular grid generates a very

Fig. 2 Mean axial velocity normalized with respect to the maximum velocity in the FG, RG and
JWT cases

Fig. 3 Tubulent kinetic
energy profile along the jet
axis
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Fig. 4 Tubulent kinetic
energy distribution in the FG
and RG cases

strong production but also a very fast decay. The FG, on the other side, presents
an elongated production region, a local maximum (lower than the RG case) and
finally a decay which is much smoother than the former case. The higher turbulence
level, along with the higher axial velocity play a key role in the strong heat transfer
enhancement which can be detected in the FG case (as extensively described in [13]).

The spatial distribution of the turbulent kinetic energy in the FG and RG cases is
reported in Fig. 4; it further underlines the multiscale interaction of the wakes of the
fractal grid in opposition to the single scale of the RG case. In the former case, the
wakes shed from the largest bar iteration meet at ≈ Y/d = 0.8, where the maximum
of the tke can be detected along the nozzle axis. For the RG case, there is a region
of local maximum within 0.2d beyond the grid and then an uniform dissipation as
Y/d increases. It is worth noting that, according to [11], the maximum in the tke
distribution should be located at about Y/d = 2.25. This is not true in the present
case, where, the presence of the impinged plate from one side, and the interaction
with the jet shear layer from the other both act to shift the maximum towards the
nozzle exit section (thus exasperating the production rate).

4 Conclusions

An experimental analysis of the flow field features of impinging jets equipped with
fractal inserts is carried out. As already pointed out by the authors in an another work
[13], this flow field is of particular interest for several engineering applications, such
as the heat transfer and mixing enhancement. Differently from what reported in
the literature in the case of wind tunnel tests, the location of the maximum cannot
be predicted using the correlation proposed by [11]. It is the authors’ opinion that
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this must be related to the strong interaction of the jet growing shear layer with
the wakes shed by the fractal iterations bars. This effect is further enhanced by the
presence of the impinged plate, which exasperates the production rate. Although
not conclusive, this work gives some answers to the questions arisen in a previous
work [13] concerning the better performances of the FG with respect to both RG
and JWT. In fact, the combination of the strong axial velocity in proximity of the
impinged plate and the higher turbulence level which characterize the FG case are
both important in the enhancement which is achieved in this case. However, the role
played by the smaller iterations along with a characterization of what happens in the
wall jet region, will be addressed to future studies.
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Experimental Study on Hot-Wire Spatial
Resolution in Turbulent Round Jet

Tommaso Fiorini, Gabriele Bellani, Andrea Cimarelli
and Alessandro Talamelli

Abstract Hot-wire spatial-resolution effects are investigated in a round jet, using
custom-made probes with Platinumwires of 5 and 2.5µmof diameter. Characteristic
turbulent scales are varied by both moving the probes along the jet centerline (10 <

x/D < 30), and using two different nozzle diameters at a constant Reynolds number
of ReD = 7 × 104. The variance of spatial derivatives shows an attenuation of one
order of magnitude greater than the velocity variance, i.e. 10–30% compared to
1–2%. Power spectra show this attenuation to be located at high frequencies, in
agreement with the hypothesis of spatial-filtering effect.

1 Introduction and Experimental Set-Up

Turbulent jets are recurrent in industrial applications and natural environments. For
this reason they have been the object of a multitude of theoretical, experimental
and numerical studies over the years (see [1] for a complete review). Many of the
experimental studies have been carried out using hot-wires anemometers, because of
their relatively high spatio-temporal resolution. However, when turbulent structures
become smaller than the wire length, an error is introduced in the measurements
due to spatial filtering. This is an extremely common occurrence in high Reynolds
number wall bounded flows, see for instance [3–5]. In free shear flows, such as jets,
there is no influence from the wall, and resolution requirements are not as severe.
Despite this, turbulence statisticsmight still be affected by the phenomena, especially
if velocity gradients are of concern.

We performed the experiments in the Coaxial Aerodynamic Tunnel (CAT) of the
University of Bologna, located in Forlì. A complete description of the facility can be
found in [6, 7]. A centrifugal fan coupled with screens and honeycombs provides a
top-hat velocity profile with 0.3% turbulence intensity from a 50mm round nozzle.
To obtain a different flow case we also use a PVC adapter that provides a 30mm
outlet with the same top-hat velocity profile of the standard nozzle (Fig. 1). We
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Fig. 1 On the left, the normalized mean velocity exit profile of the two nozzles. On the right,
schematic of the two-wire probe; L is the length of the wires and Δr is the distance between them

Table 1 Experimental parameters

Parameter Case 1 Case 2

Nozzle diameter, D 50 mm 30 mm

Exit velocity, U j 22.1 m/s 36.9 m/s

Reynolds number, ReD 70 × 104 70 × 104

Characteristic frequency,
U j /D

442 Hz 1230 Hz

Acquisition frequency, fa 20 kHz 60 kHz

low-pass filter, L P F 10 kHz 30 kHz

Acquisition time, T 120 s 40 s

Measurements’ points, x/D 10, 15, 20, 25, 30 10, 15, 20, 25, 30

L1/λ 0.31, 0.29, 0.25, 0.23, 0.22 0.60, 0.57, 0.54, 0.57, 0.64

L2/λ 0.15, 0.14, 0.13, 0.11, 0.11 0.30, 0.28, 0.27, 0.28, 0.34

L1/η 16.6, 14.3, 11.9, 9.9, 8.5 29.7, 25.3, 20.9, 17.6, 15.6

L2/η 8.3, 7.2, 6.0, 4.9, 4.2 14.8, 12.6, 10.4, 8.8, 7.8

manufacture hot-wire probes with Wollaston Platinum wires of 5 and 2.5 µm of
diameter, aspect ratio is 200 for both wires, resulting in 1mm (L1) and 0.5mm (L2)
long wires, respectively. A special two-wire probe, with parallel wires placed normal
to the flow, (see Fig. 1) allows us tomeasure spatial derivative quantities. The distance
Δr between the wires is ≈750 µm.

We measure on the axis of the jet, where uncertainties due to strong turbulence
fluctuations are low (see [2]). We perform calibration against a Prandtl tube at the
jet exit, both before and after each set of measurements, to check for signal drift.
Mean flow temperature is acquired via a thermocouple placed in the flow and used
to correct the hot-wire signal. We define two flow cases: one corresponding to the
50mm (case 1) and one corresponding to the 30mmoutlet (case 2). Reynolds number
ReD is kept constant by adjusting the jet exit velocity, while turbulent scales (i.e.
Taylor microscale λ or Kolmogorov scale η) vary according to the geometry, see
Table1.
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2 Results and Discussion

The attenuation of the measured velocity variance for the present cases is of the order
of 1–2%. This effect is small and no clear trend can be extrapolated, we therefore
focus on the radial and streamwise derivatives of the streamwise velocity: ∂u/∂x
and ∂u/∂r . The axial derivative is estimated using Taylor hypothesis and the mean
velocity as convective velocity, while the radial derivative is obtained by taking the
difference in instantaneous velocity measured by the two wires and dividing by Δr .
The derivatives’ variance and the ratio between values measured by different wires
are shown in Fig. 2.

Radial derivative variance shows an attenuation of ≈10%, when measured with
the 1mm wire. Even greater is the attenuation of the axial derivative, up to ≈40%.
For both terms, the attenuation is higher for case 2, characterized by higher values
of L/λ. Another observation is that for the axial derivative the attenuation effect
decreases with increasing axial distance, while for the radial derivative it increases.
The estimated uncertainty (due to the unsteady nature of the flow and the finite
acquisition time) of the derivative variance (with 95% confidence interval) amounts
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Fig. 2 On the upper-left the normalized radial derivative term; On the upper-right the ratio between
the term measured by different wires. On the bottom half of the image the same results are reported
for the axial derivative term.Marker size is used as an indicator of uncertainty due tofinite acquisition
time
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Fig. 3 On the left is shown the pre-multiplied PSD of the radial derivative signal and on the right
the pre-multiplied PSD of the axial derivative signal. Both are for x/D = 10

to 1.5% close to the nozzle, and up to 5.9% for the farthest axial position, char-
acterized by longer integral timescales. When measuring the radial derivative term
an additional ±30 µm uncertainty on Δr has to be considered, resulting in a 5.3%
uncertainty on the variance of the radial derivative.

To understand how attenuation is distributed among frequencies, and therefore
scales, we compute the power spectral density (PSD) of ∂u/∂x and ∂u/∂r ; pre-
multiplied PSDs for x/D = 10 are shown in Fig. 3. The spectra obtained show good
agreement at low frequencies, while at higher frequencies the 1mm wire shows an
attenuation with respect to the 500µm one. Furthermore, a strong cut-off is observed
in the spectrum of the 1mm wire past 15 kHz. This effect is likely not caused by
spatial resolution, but rather by frequency resolution limitation of the anemometer
and hot-wire system.

Acknowledgments This research project has been partly supported by the European Community
- Research Infrastructure Action under the FP7-INFRASTRUCTURES-2012-1: “European High-
performance Infrastructures in Turbulence” INFRA-2012-1.1.20.

References

1. Ball, C.G., Fellouah, H., Pollard, A.: The flow field in turbulent round free jets. Prog. Aerosp.
Sci. 50, 1–26 (2012)

2. Hussein, J.H., Capp, S.P., George, W.K.: Velocity measurements in a high-reynolds-number,
momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258 (1994)

3. Hutchins, N., Nickels, T.B., Marusic, I., Chong, M.S.: Hot-wire spatial resolution issues in
wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)

4. Ligrani, P.M., Bradshaw, P.: Spatial resolution and measurement of turbulence in the viscous
sublayer using subminiature hot-wire probes. Exp. Fluids 5, 407–417 (1987)

5. Örlü, R., Alfredsson, H.: On spatial resolution issues related to time averaged quantities. Exp.
Fluids 49, 101–110 (2010)

6. Burattini, P., Talamelli, A.: Acoustic Control of a Coaxial Jet. J. Turbul. 8 (2007)
7. Segalini, A., Talamelli, A.: Experimental analysis of dominant instabilities in coaxial jets. Phys.

Fluids 23 (2011)



Three-Dimensional Instabilities
in the Wake of a Wall-Mounted
Low-Aspect-Ratio Pyramid

Zahra Hosseini and Robert J. Martinuzzi

Abstract The turbulent wake dynamics of a wall-mounted low-aspect ratio square-
based pyramid protruding a nominally thin turbulent boundary layer are investigated
for a moderate Reynolds number of 28000. The three-component velocity data are
measured using planar stereoscopic Particle Image Velocimetry (PIV), from which
the coherent global velocity field dynamics are reconstructed using a surface-pressure
sensor-based estimation. An estimation technique is implemented which improves
on classical EPODby accounting for phase delay information between the sensor and
velocity data. It is shown that the energy exchange between a slow-varying global
and harmonic shedding modes characterise the coherent wake dynamics.

1 Introduction

The flow around wall-mounted tapered bluff bodies protruding a boundary layer
generally gives rise to highly three-dimensional quasi-periodic wakes. For low-
aspect-ratio AR tapered plates [2] and square-based pyramids [6], with apex angles
15◦ ≤ ζ < 75◦ (3.8 ≥ AR > 0.65), the periodicity has been associated with alter-
nate shedding of counter-rotating vortices from the opposing lateral sides of the
obstacle. Unlike the case of mildly-tapered obstacles (ζ < 15◦, AR > 3.8) [2, 6, 7],
the shedding frequency for low-aspect-ratio bodies is constant over the entire height
and scales with the base width rather than local Reynolds number. The inherent
three-dimensionality induced by the taper significantly distorts the shed structures
resulting in strong modulation of the shedding amplitude and increasing phase jit-
ter with increasing height above the plate. The amplitude modulation, however, is
coherent over the entire obstacle height [6] suggesting a strong coupling between a
low-frequency global instability and the higher frequency shedding process.
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Due to the inherently high phase jitter, a traditional phase-averaging approach
based solely on a reference shedding phase cannot capture the amplitude and phase
modulations needed to analyse the dynamic coupling between global low-frequency
and shedding instabilities. Thus, in this work, a modification to the Extended Proper
Orthogonal Decomposition (EPOD) [1] is implemented as a conditional averaging
technique to capture aperiodic modulations and account for local cycle-to-cycle vari-
ations. This approach is then applied to investigate the dynamic coupling between
the most energetic velocity modes.

2 Experimental Set-Up

Time-resolved planar 3C-PIV (LaVision Flow Master) measurements were per-
formed in the wake of a wall-mounted square-based pyramid with aspect ratio
h/d = 0.87 (apex angle ζ = 60◦). Images were processed using the LaVision DaVis
8.2 software. A schematic of the experimental set-up is shown in Fig. 1. The free
stream velocity was U∞ = 10m/s, corresponding to Red = U∞d/ν = 28,000, with
turbulent intensity of 0.8%. The on-coming turbulent boundary layer had a thick-
ness of δ/h ≈ 0.25 and shape factor of 1.46. The velocity vectors (u, v, w) were
measured in several horizontal (x−y) planes with a sampling frequency of 500Hz
(capturing 10 data points per shedding cycle based on the previously measured
mean shedding frequency f ). At least 600 shedding cycles were captured for each
realization. The fluctuating surface pressure on opposing pyramid side faces and
on the flat plate in the wake was recorded, using AllSensors Corp pressure sen-
sors (5INCH-D1-4V-MINI: range ±1.25kPa, sensitivity: ±0.5Pa), simultaneously
with the velocity data. The pressure-system response was flat to 300Hz. A typi-
cal velocity signal and its Power Spectral Density (PSD) function at a spatial point
are shown in Fig. 2 (top). The signal displays a dominant periodic behaviour at

Fig. 1 Schematic of the open-test-section suction type wind tunnel and experimental set-up inside
the working section, where d = 45mm, h = 39mm and ζ = 60◦
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∞

〈 〉

〈 〉

Fig. 2 The velocity (top) and pressure (bottom) fluctuations, and the PSD functions (log–log scale).
Black line indicates slow-drift component

non-dimensional frequency of St = f d/U∞ = 0.231 ± 0.005, and high modula-
tions in both the short-time-average of the signal (black line) and shedding amplitude.
The fluctuating surface pressure data (Fig. 2, bottom), show a similar behaviour.

3 Sensor-Based Flow Estimation

The starting point is classical EPOD. Briefly, the spatio-temporal pressure data
acquired at locations x from Np sensors are expanded onto the POD basis: p(x, t) =∑Np

n=1 a(n)
p (t)φ(n)

p (x), where a(n)
p (t) and φ(n)

p (x) denote the nth temporal coeffi-
cient and spatial eigenvectors, respectively. The extended velocity modes are then
defined:ψ(n)

u (X) = 〈a(n)
p (t)u(X, t)〉/λ(n)

p , where 〈·〉 denotes the time-averaging oper-
ator; λ(n)

p = 〈a(n)
p (t)a(n)

p (t)〉 and X denote the velocity domain. The velocity, then, is
estimated using:

û(X, test ) =
Nmode∑
n=1

a(n)
p (test ) ψ(n)

u (X) (1)

where test denotes the estimation time and Nmode ≤ Np.
Due to inherent limitations in experiments, theEPODapproach does not guarantee

optimality of the estimations. Typically, the data are collected from sensors at a few
discrete locations and the ideal placement is unknown a priori. Consequently, amode-
specific lag will exist between the sensor and velocity field data. Generally, ψ(n)

u (X)

are non-orthogonal such that themode-specific velocity-sensor lag cannot be isolated
and, hence, cannot be accounted for explicitly.

Herein, to optimise the estimation the velocity data are expanded onto the opti-
mum orthogonal subspace φ(X), obtained from a POD of the velocity field in each



256 Z. Hosseini and R.J. Martinuzzi

uncorrelated PIV plane. The spatio-temporal correlations of (1), then, reduce to
temporal correlations according to:

ũ(X, test ) =
Nu∑

k=1

ã(k)
u (test ) φ(k)

u (X) (2a)

ã(k)
u (test ) =

Nmode∑
n=1

a(n)
p (test )

〈
a(n)

p (t) a(k)
u (t)

〉
λ

(n)
p

(2b)

where φ(k)
u (X) and a(k)

u (t) are, respectively, POD eigenmodes and corresponding
temporal coefficients. This simplification enables developing different treatments to
recover the phase information of modes with different characteristics. Optimisation
is then achieved by accounting for the sensor delay tomaximise the pressure–velocity
correlations.

For harmonic modes, a modified multi-time-delay approach [3] is used to opti-
mise the velocity-pressure correlations. Briefly, data from each physical sensor is
augmented by M virtual sensors containing the same data but delayed by mΔτs

(for the mth virtual sensor). This approach ensures the synchronisation of the first
and higher harmonics. For the slow-drift modes (aΔ

u , aΔ
p for velocity and pressure,

respectively), the optimal time delay for synchronisation is the estimated lag of the
first maximum of the aΔ

u -a
Δ
p cross-correlation function. Omitting this step introduces

an artificial and random phase lag between the non-harmonic and harmonic fluctua-
tions; resulting in a misrepresentation of the coherent strain field and the dynamics
of the coherent motion. Further details of the methodology can be found in [4].

4 Results and Concluding Remarks

The proposedmethod offers a systematic way to reconstruct the global field from pla-
nar measurements. The improvement gained with this methodology in the rendering
of the flow topology and coherent motion is illustrated in Fig. 3a. This figure com-

Δ

(a) (b)

Fig. 3 a Sectional streamlines and vortex core regions (λ2 ≤ −0.05) for measured and estimated
velocity vector fields at z/h = 0.23. b Behaviour of a typical cycle in (a(1)

u , a(2)
u , aΔ

u ) space indi-
cating that modified technique captures better the trajectory compared to classical EPOD
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pares the sectional streamlines and the vortex core regions (using the λ2-criterion of
[5]) obtained from the estimated and measured velocity field for a randomly selected
PIV-snapshot for the plane z/h = 0.23. The shed vortex core (marked Vs) is well
estimated using the present methodology, whereas it is incompletely resolved with
previousEPODmethod.The estimation of the location of the saddle point S and form-
ing vortex focus N is also improved with the proposed method. Thus, accounting
for the sensor delay better renders the coherent strain field; improving the estimation
of the vortex core location and the impact of the non-harmonic contributions to the
shedding modulation.

More significantly, the trajectory in the (a(1)
u , a(2)

u , aΔ
u ) space is better captured in

themodified technique (Fig. 3b). This trajectory is critical to the proper representation
of the flow dynamics. Here, the slow-drift coefficient, aΔ

u , is directly correlated with

amplitude of the first-harmonic (
√

(a(1)
u )2 + (a(2)

u )2) and essentially describes the
envelope (i.e. the cycle-to-cycle modulation) associated with the strength of the shed
vortices. Hence, aΔ

u (t) must be correctly synchronised with the shedding phase.
The global dynamic behaviour of the wake is illustrated in the modal space shown

in Fig. 4. Typically, the harmonic oscillation amplitude, a(1)
u , a(2)

u , is largest when the
slow drift mode aΔ

u approaches a maximum and vice-versa (as locally observed in
Fig. 2) indicating an energy exchange betweenmodes.Most notable are events during
which aΔ

u abruptly moves between extrema and the harmonic amplitude remains low,
indicating an interruption or break-down of the shedding process.

These events indicate a global rearrangement of the shedding structure, which is
consistent with earlier observations of a low-frequency global instability [2, 7]. The
present behaviour is consistent with a dual-structure shedding model [6], in which
the tip and base structures are shed at similar frequencies, but have different phase
relations. It is not unreasonable to associate the global behaviour to the interaction
of these structures in the base flow region.

The quality of the estimation is sensitive to the choice of the acquisition para-
meters. For the multi-time-delay implementation, optimum results are obtained by
selecting the number of virtual sensors as M = 4n, where n is the number of har-

Fig. 4 Dynamic wake
behaviour in modal space

Δ
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monics to be resolved, and a time delay of Δτs = 1/M f . Increasing the maximum
delay beyond the period of the first harmonic (i.e. MΔτs > 1/ f ) is generally delete-
rious to the estimation quality. For the synchronisation of the non-harmonic modes,
it is required that the acquisition window is sufficiently long to resolved the first
zero-crossing as determined from the autocorrelation function of the relevant modal
temporal coefficient. Note that, while convenient, the mathematical method does not
require similarity between POD and temporal Fourier modes. Further improvements
to this technique can be achieved by considering the quadratic nature of the relation-
ship between the first pressure (sensor) harmonic and higher velocity harmonics as
detailed in [4].
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The Fine Structure of a Slender Scalar
Plume in Sheared Turbulence

Christina Vanderwel and Stavros Tavoularis

Abstract We present measurements of the fine structure of a passive scalar plume
in uniformly sheared turbulence generated in a water tunnel. We report on the mixed
velocity-scalar statistics of the plume, including the probability density functions of
the velocity, scalar, and scalar derivatives, as well as conditional expectations of the
velocity and the scalar derivatives, conditioned upon the scalar fluctuations. Such
results are particularly relevant to models that are intended to be used for solving
the balance equation of the scalar pdf. Specifically, we address the effect of having a
highly intermittent scalar field, in which case the scalar pdf is highly skewed and non-
Gaussian and the conditional expectations of the velocity components are distinctly
non-linear.

Details on the fine structure of turbulent mixing are particularly relevant for the
modelling of chemical reactions and combustion. A popular approach for analyzing
reactive flows is to consider the balance equation of the scalar probability density
function (pdf) [1–3]. Although these equations have certain advantages over conven-
tional Reynolds-averaged balance equations of velocity and scalar moments, they
are complicated by the appearance of conditional expectations of the velocity and
the scalar dissipation values, conditioned upon the scalar fluctuations. Most previous
studies have focused on flows in which the velocity and scalar are nearly homo-
geneous and jointly-Gaussian, in which case these conditional expectations would
be linear functions of the scalar value [2–4]; however, this would not necessarily
be the case for inhomogeneous scalar fields as they would appear in industrial and
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environmental flows and even in many canonical flows, such as turbulent plumes,
jets, wakes, and mixing layers.

The objective of the present study is to investigate experimentally the fine structure
of a passive scalar plume of a solution of Rhodamine 6G dye (Sc = 2500) injected
isokinetically from a fine tube in uniformly sheared turbulence generated in a water
tunnel (Fig. 1). Measurements of the turbulent velocity and concentration fields in
cross-sections of the plumewere obtained simultaneouslywith the use of stereoscopic
particle image velocimetry (SPIV) and planar laser induced fluorescence (PLIF).
The present results complement previous reports of absolute and relative turbulent
diffusion of the same plume [5–7], which have also documented the measurement
procedure in detail.

The scalar field In the present flow, the turbulence was nearly homogeneous but
strongly anisotropic [8]. The present plume was very slender by comparison to the
dominant eddies of the turbulence; consequently, the scalar field was highly intermit-
tent. A representative instantaneous concentration map, shown in Fig. 2a, illustrates
the sinuous nature of the plume and its extensive meandering. At all points in the
cross-section, the scalar intermittency factor γc, defined as the portion of time dur-
ing which the concentration was non-zero, was lower than 0.4. Maps of the mean
concentration had the shape of a 2D Gaussian function (Fig. 2b, c) and the standard
deviation of the concentration fluctuations exceeded the mean concentration.

Fig. 1 Schematic of the apparatus (L = 25.4mm). Uniformly sheared flow is generated by a shear
generator with linearly-varying porosity inserted at the entrance to the test section

(a) (b) (c)

Fig. 2 a Representative instantaneous concentrationmap at x1/L = 28, normalized by the injected
dye concentration CS . b Mean concentration map at x1/L = 28, with the three regions of inter-
est indicated by squares. c Profiles of the mean concentration and the standard deviation of the
concentration fluctuations; dashed lines represent Gaussian profiles
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Probability density functions In the following, we will present representative mea-
surements at three locations: on the axis of the plume and at two locations on either
side of the axis and along themean velocity gradient direction, near the two inflection
points of the mean concentration profile (Points C, F and S, respectively). Unlike
the pdfs of the velocity fluctuations (Fig. 3a), which were Gaussian, the pdfs of the
scalar fluctuations (Fig. 3b) were highly skewed and were bounded on the low side
by the zero concentration and on the high side by a value that was significantly lower
than the injected dye concentration CS; these observations are consistent with pre-
vious measurements in thin plumes [9, 10]. At all three locations, the scalar pdfs
nearly coincided, although at the off-centre locations (F and S) the pdfs had slightly
higher values in the tails, which can be attributed to the peak generation of scalar
fluctuations at the inflection points of the mean scalar field. For small concentration
fluctuations (c/c′ < 4), the scalar pdf could be described by a gamma distribution,
whereas, the tails (c/c′ > 5) were best described by an exponential distribution.

Conditional expectations The conditional expectations of the velocity components
conditioned upon the scalar value in the present plume were distinctly non-linear
(Fig. 4), unlike those in flows with homogeneous scalar fields in which the joint
velocity-scalar pdfs were nearly Gaussian [2–4]. The variation of u2/u′

2|c/c′ illus-
trates that negative scalar fluctuations (i.e., mostly undyed fluid) are associated with

(a) (b)

Fig. 3 a Pdf of the velocity fluctuations; the dashed line represents a Gaussian distribution. b Pdf of
the concentration fluctuations; the dotted line represents undyed fluid and the dashed and dash-dot
lines represent fitted exponential and gamma distributions, respectively

(a) (b) (c)

Fig. 4 Conditional expectations of the velocity components, conditioned on the concentration
fluctuation value; dotted lines represent undyed fluid
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(a) (b)

Fig. 5 a Pdf of the transverse concentration derivative. b Conditional expectations of the trans-
verse concentration derivative, conditioned on the concentration fluctuation value; the dotted line
represents undyed fluid

motions that originated outside the plume, whereas positive scalar fluctuations are
associatedwithmotions that originated largely in the core of the plume. Furthermore,
the curves have steep vertical asymptotes on the negative side which are attributed
to the fact that the scalar fluctuations are bounded on the negative side by the zero
concentration. The variation of u1/u′

1|c/c′ had the opposite trends, which is consis-
tent with the sign and strong magnitude of the Reynolds stress −u1u2 in this shear
flow [8]. As expected by considering the symmetry of the turbulence and the mean
plume, u3/u′

3|c/c′ was zero at x3 = 0.

Scalar derivatives Measurements of the scalar derivatives are particularly relevant
as surrogates for the scalar dissipation rate [3]. The pdfs of the transverse scalar
derivative (Fig. 5) were highly peakedwith long nearly-exponential tails, comparable
to those measured in flows with less inhomogeneous scalar fields [3, 4, 11]. This is
attributed to the small-scale intermittency of the scalar even in flows with Gaussian
scalar pdfs. The conditional expectations of the transverse scalar derivative at all
measurement locations (Fig. 5b)were also distinctly non-linear functions of the scalar
value, although their signs were consistent with the signs of the corresponding local
mean scalar derivatives [12].

In summary, these results demonstrate that in a highly intermittent scalar field, the
scalar pdf is strongly non-Gaussian and the conditional expectations of the veloc-
ity components and the scalar dissipation, conditioned upon the scalar value, are
distinctly non-linear.
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Wake Dynamics Behind a Normal Thin Flat
Plate at Moderate Reynolds Numbers

Arman Hemmati, David H. Wood and Robert J. Martinuzzi

Abstract The wake behind an infinite span (2D) thin flat plate normal to uniform
flow was examined using Direct Numerical Simulation (DNS) at Re = U0h/ν =
1200 and 2400. Three distinct flow regimes were identified in the wake due to the
interruption of regular anti-symmetric Karman shedding. Disruption of the regular
shedding (Regime M) was followed by a period of delayed roll-up (Regime L) and
a longer duration of high intensity shedding (Regime H) before regular shedding
resumes again. Size of the wake mean recirculation region changed with progres-
sion of the wake patters from a long-term mean length of 2.90–3.60h (L) and then
2.16h (H). Moreover, the wake turbulence characteristics were effected with the
wake evolution. These effects were quantified by variations in the turbulence kinetic
energy (TKE) magnitude, production, dissipation and diffusion. Spanwise instabili-
ties were responsible for appearance of the three flow regimes. A projection of these
instabilities was observed in the pressure field behind the plate.

1 Introduction

The wake of a two-dimensional (2D) flat plate, infinite span, has been studied only
for certain controlled conditions in the past. Experimental studies on the topic [1,
3, 9], however, did not thoroughly examine the wake topology and vortex structure
variations. Numerical evaluation [4, 5] of the wake identified a unique flow behavior
and changes on flow patterns at Re = 250 − 750. Two main flow regimes, H and L,
were introduced from these results along with a number of “short-term mean” flow
characteristics.
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These distinct flow regimes were identified using fluctuations in instantaneous
lift and drag [4]. Periods of low amplitude lift variations coupled with small instan-
taneous drag, compared to the mean drag, was identified as a unique regime (L).
This regime is subsequently replaced with a period of high amplitude lift variations
and large instantaneous drag (H). Categorization of these regimes, however, remains
quantitatively ambiguous. Moreover, long-term lift and drag time series reported [4,
5] indicate that these regimes, as described above, only occupied a small portion of
the total recorded time. Moreover, no evidence was provided on the physical flow
behavior leading to such drastic changes in the wake topology.

The current study used DNS [2] to reconstruct the wake behind a 2D thin flat
plate normal to the uniform incoming flow at Re = U0h/ν = 1200 − 2400, based
on the plate height, h, and uniform inlet velocity,U0. Second-order central difference
and backward Euler methods were used for spatial and temporal discritization of the
flow field, respectively. A non-uniform grid distribution was used with the higher
mesh density in close vicinity of the plate and coarser mesh at the outer borders of
the computational domain [2], based on recommendations from similar studies [4,
6, 8]. The grid quality ratio, Kolmogorov micro-scale to element length, was below
2 in the critical flow region.

Results obtained from the DNS [2] are verified in comparison to known exper-
imental [1, 3, 9] and numerical [4, 5, 7] studies. The shedding Strouhal number
was 0.158, which is comparable to the reported frequencies of 0.16 [1] and 0.161
[4]. Moreover, the mean pressure distribution on the plate surfaces, shown in Fig. 1,
matches with the only reliable experimentally obtained results [1]. The mean drag
calculated using DNS [2] results was 2.13 ± 0.003, which is comparable to the only
reliable reported value of 2.13 [1].

Fig. 1 Span-averaged mean
pressure coefficients, C p ,
along the plate surfaces at
Re = 1.2 × 103 < � >

(Current DNS, Total Mean),
< � > (Current DNS,
Regime H), < ♦ > (Current
DNS, Regime L);
Re = 7.5 × 102 [7] < × >;
Re = 2.5 × 102 [4] < � >;
Re = 1.0 × 103 [5]
< − · − > and
Re = 1.5 × 105 [1] < • >
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2 Results and Discussion

Three distinct flow regimes were identified using the instantaneous force results,
shown in Fig. 2, and their respective phase angles [2]. Regular shedding cycle of
Regime M was interrupted with a period of low intensity shedding, Regime L, iden-
tifiedwith very low-amplitude lift variations and smaller dragwith respect to themean
field. Subsequently, the shedding cycle was intensified during Regime H, where the
high-amplitude lift fluctuations were coupled with larger drag.

Flow topology evolved with interruption of the regular shedding cycles of Regime
M. Organization of streamwise ribs was disrupted with breakdown of the first span-
wise roller immediately behind the plate. This led to a period of intense stretching
and tilting of the ribs, which resulted in a larger recirculation region (by 25%) and
weaker entrainment. This was followed by re-organization of the ribs, aligning them
parallel to each other and to the convective stream. The ribs connected top of the
forming roller to bottom of the first detached roller, which has reappeared following
a short term absence during Regime L. This intensified the vortex shedding process
and increased amplitude of lift fluctuations, which had the same frequency as the
regular shedding cycle. Drag variations, however, had a lower frequency correspond-
ing to streamwise movement of the minimum pressure point in the base region. This
phenomenon had a critical influence on the turbulent kinetic energy production in the
wake and led to negative production spikes in close proximity of the plate. Turbulent
kinetic energy intensified with higher intensity shedding of Regime H and weakened
with lack of organization in the wake during Regime L.

Evidence of a spanwise instability is observed on the pressurefield as it is projected
on distribution ofC p on the plate back surface. There exists a low frequency spatially-
periodic distribution of pressure on the plate back surface during all three regimes.
Intensity of this instability is magnified during Regime H (see Fig. 3) and weakened
during Regime L. Footprint of this periodicity is evident in both the short-term mean
pressure field as well as the total mean field. Changes on intensity of the secondary
instability is suspect to be due to its interaction with the regular wake instability. A

Fig. 2 Plots of instantaneous coefficients of lift, CL , and drag, CD at Re = 1200
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Fig. 3 Normal (Left) and Span (Right) distribution of instantaneous coefficients of pressure, CP ,
on the plate surfaces at Re = 1200: < � > Total Mean, < � > Instance “P” (Max CD), < ♦ >

Instance “T” (Min CD)

similar behavior is also recorded in the vertical direction on the plate back surface.
There exists an anti-symmetric distribution of instantaneous pressure field on the
back surface in prefect correspondence to the high intensity shedding cycles. No
evidence of such behavior is observed on the mean (short and long term) results,
Fig. 1. Thus, vertical instability in the pressure field concludes full cycles with no
interruptions.

3 Conclusion

Wake topology behind a normal thin flat plate positioned normal to incoming flow
evolves in three distinct stages: regular (M), low intensity (L) and high intensity (H)
shedding. Presence of a secondary spanwise instability in the wake with varying
intensity is suspected to be responsible for evolution of the wake. High amplitude
fluctuations of lift is in correspondence to the regular shedding frequency, while the
drag varies at a significantly lower frequency.
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Storm in a Soap Bubble

P. Fischer, C.-H. Bruneau and Y.-L. Xiong

Abstract An original method to implement cartesian computations to solve a spher-
ical problem is introduced in this paper. The problem consists in performing the
numerical simulations of a half soap bubble located on a heated plate. The gradient
of temperature between the base and the top of the bubble generates plumes at the
base that move up. These plumes give rise to eddies that survive for several minutes
eventually creating a two-dimensional turbulent thermal convective flow.Ourmethod
consists in defining an appropriate stereographic projection in order to use classical
numerical scheme defined for two-dimensional Navier–Stokes equations. The results
are then analyzed through spherical harmonics decompositions and compared to data
obtained with soap bubble experiments.

1 Introduction

Two-dimensional equations [4] are often used as a model for describing the turbu-
lence in the atmosphere. Indeed, atmospheric phenomena are confined in a layer of
fluid whose dimensions are only few kilometers in the vertical direction and about
thousands of kilometers in the horizontal directions. This implies that most of the
kinetic energy of large-scale structures is actually embedded in the horizontal veloc-
ities, the vertical component of the velocity being particularly small. Even if this
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modelization cannot completely describe the complexity of the atmosphere, two
dimensional simulations can still be used to mimic large-scale structures motion
in the atmosphere. Quite recently H. Kellay et al. [7, 8] designed a new physical
experiment: a thermal convection cell composed by a half soap bubble heated at the
equator. This device allowed them to study thermal convection and the movement of
vortices on the surface of the bubble. They observed the emergence and persistence
of isolated vortices that emerge randomly from the equator, grow in size rapidly
and persist for relatively long times. They compared the motion of these vortices to
hurricane trajectories on Earth and they could show that their isolated vortices and
the hurricanes displayed very similar power law scaling [5].

2 Mathematical Model and Equations in Stereographic
Coordinates

The present experiment does not correspond to any classical numerical two dimen-
sional turbulence. So our first task was to understand the underneath physics and to
write themathematical equations allowing us to describe our observations. Buoyancy
driven turbulence is observed on a very thin hemispherical fluid, the soap bubble. The
fluid behavior can be described using the equations for the two-dimensional thermal
convection under the Boussinesq approximation as:

DU
Dt

= − 1

ρ
∇ p + ν∇2U − βT g

∇ · U = 0
DT

Dt
= αΔT (1)

where
D.

Dt
≡ ∂.

∂t
+ (U · ∇). is the total time derivative, U denotes the velocity, p the

pressure, ρ the mass density, ν the kinematic viscosity, β the coefficient of thermal
expansion, g the gravity field, T the temperature of the fluid and α the coefficient of
thermal diffusivity. The laws of physics do not depend on the coordinates system,
we consider in this paper 2D orthogonal Cartesian coordinates (x, y) obtained by
a stereographic projection onto the equatorial plane. The stereographic projection
is a particular mapping that allows us to project a sphere onto a plane. The usual
projection is defined on the entire sphere, but we use in this study a version restricted
to the northern hemisphere. The Navier–Stokes equations (2) for a soap bubble of
radius r = 1 can thus be written using stereographic coordinates:
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4
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where u = (u, v) is the velocity field in the 2D (x, y) coordinates system.

3 Numerical Results

Finite differences schemes are used for solving the equations described in the previ-
ous part. The spatial domain is discretized with a staggered uniform Cartesian grid
and the time interval is partitioned with an uniform time steps. A second-order Gear
scheme is used to solve the unsteady term in the governing equations. The linear
terms are solved using second order centered implicit scheme, whereas the convec-
tion terms are solved using a third order up flow explicit one. The discrete values of
the pressure p and the temperature T are located at the center of each cell and the
discrete values of the velocity field are located at the middle of the cell sides. The
results obtained with our numerical simulations can be analyzed using spherical har-
monics decompositions. The results described in this paper have been obtained with

a Rayleigh number Ra = gβδT

να
equal to 108 and a Prandtl number Pr = ν

α
equal

to 7. The time step for the computations has been chosen equal to 0.001 with outputs
every 200 time steps. In the beginning of our simulation, the experiment is similar
to a long two-dimensional toric Bénard cell: the cold fluid is heated from below,
and the plumes are pushed upward. There is no interaction between the plumes and
the center of the domain remains empty. These small structures emerging from the
heated equator can be easily spotted on the vorticity field, and are well localized
with a peak around wavenumber 100 in the enstrophy and energy spectra. Then the
plumes continue to grow and start to interact with each other over time. Power law
scaling can then be observed in the entropy (k−4/5), energy (k−3) and enstrophy (k−1)
spectra. After a while (Fig. 1), we can observe large structures spreading in the vor-
ticity field. These structures are mainly filaments, even if few isolated vortices can
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Fig. 1 Numerical results: curves are obtained by averaging ten time steps data taken after 80,000
time steps. Indicative slopes: −4/5 for the temperature spectrum, −1/5 and −1 for the enstrophy
spectrum and −11/5 and −3 for the energy spectrum

emerge and grow on the surface of the bubble. A new power law scaling seem to take
place at large scales: a−11/5 slope in the energy spectrum. This power law scaling is
confirmed in the enstrophy spectrum by a−1/5 power law scaling. A highly oscillat-
ing behavior is still observed in the entropy spectrum. According to Mishra et al. [6]
the lower branch (composed by the minima of the spectrum) should correspond to a
Kolmogorov [3] or a Bolgiano scaling [1, 2]. However, in our numerical results, the
observed −4/5 slope does not correspond to any scaling described in the literature.

Our numerical results are in good agreement with the experimental results and
lead us to conclude that our model and the numerical algorithms are relevant for
studying this problem. However, the geometry of the experiments does not allow us
to compare our analysis to any well know classical theory.

Acknowledgments This work was funded by an ANR grant Cyclobulle. The simulations were run
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Turbulent Boundary Layer Upstream, Over
and Downstream a Cylindrical 2D Bump

Julie A. Vernet, Ramis Örlü and P. Henrik Alfredsson

1 Introduction

The quest for more fuel-efficient ground vehicles such as trucks, is directly coupled to
reducing the form and/or friction drag without compromising the other. A prototype
of a canonical flow on which our understanding of friction drag has been developed is
the zero-pressure gradient boundary layer for which drag can be reduced if the laminar
boundary layer region can be extended to higher Reynolds numbers (Re). Once
the boundary layer has become turbulent there is little hope to reduce drag, except
keeping the surface smooth or to employ miniature streamwise oriented riblets on
the surface. Most flows of relevance in technical applications are, however, exposed
to surface curvature and related pressure gradients, that lead to other phenomena and
new challenges when it comes to the design of low-drag bodies. For such cases form
drag may be the main contributor to the overall drag and it is especially significant
for bodies which experience large regions of separated flows.

The applicability of knowledge from canonical wall-bounded flows is hence lim-
ited when it comes to these complex flows and geometries [2]. While the effect of
pressure gradient and surface curvature has been the focus of much attention, their
combined effect is not a simple superposition and therefore deserves special attention
[1, 4].

In an attempt to make a general contribution to this field, the turbulent bound-
ary layer (TBL) developing upstream, over, and downstream a wall-mounted cylin-
der section is here studied experimentally within the FRANCE (Flow Research on
Advanced and Novel Control Efficiency) project. The specific aim of the FRANCE
project is to investigate possible methods to control the flow around the front of a
truck in order to reduce form drag due to separation at the A-pillar [3]. A parallel
numerical project aims to model the flow with and without control.
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Fig. 1 a Schematic of used setup, where the flow direction is aligned with the x-axis. b Streamwise
evolution of the pressure coefficient C p = 2(pi − p1)/(ρU 2

0 ) (p1 denoting the pressure measured
at x/L = −3.2 and U0 the velocity at the inlet of the test section) profile for U0 = 8 and 16 m/s.
Grey area represents the position of the bump and the vertical dashed lines the position where
streamwise velocity profiles were measured via hot-wire anemometry

2 Experimental Setup

The experimental setup was designed in such a way that a TBL developing on a flat
plate approaches an obstacle mounted on the wall, accelerates over it and separates
at the downstream side upon which it reattaches again on the flat plate. The setup
consists of a 1.50 m long flat plate with an elliptical leading edge and flap at the
trailing edge that was mounted horizontally and placed at a height of 0.20 m from the
floor of the test-section (0.5 m (height) × 0.4 m (width) cross-sectional area) in the
NT2011, open-loop wind tunnel in the Fluid Physics Laboratory, KTH Mechanics.
A cylinder with a diameter (L) of 0.1 m is mounted 0.5 m downstream the leading
edge of the flat plate such that a 2D bump (with height h = L/2) protrudes out of the
plate as schematically shown in Fig. 1a. In order to establish a two-dimensional flow
over the cylinder it is equipped with end-plates and the initially laminar boundary
layer developing on the test plate is tripped to fix the transition location. The plate,
including the cylinder, is equipped with pressure taps along the streamwise direction
from which the surface static pressure coefficient distribution shown in Fig. 1b was
obtained. Streamwise velocity measurements were performed by means of hot-wire
anemometry using a single hot-wire probe.

3 Results and Discussion

Since a single hot-wire probe is insensitive to the direction of the flow it will give erro-
neous velocity measurements where reverse flow occurs. While several workarounds
are known for laminar separated flows to infer the separated region from hot-wire
data, these are less applicable in turbulent flows. In order to discern the region in
which the hot-wire measurements can be trusted several quantities, compared in
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Fig. 2 a Contour map of the measured velocity pdf (normalized by its local maximum) at x/L = 2
(including a flow separated region) for U0 = 16 m/s, with red dashed lines representing 1 % of the
maximum value, and the white solid one depicting the mean velocity. b First (∗) and second (+)
derivative of the mean streamwise velocity. c Skewness factor (◦) and rms (∗) of the streamwise
velocity. Red symbols indicate extrema (zero-crossing or maximum) of respective quantities

Fig. 2, have been inspected. As apparent from the probability density function (pdf)
map, the instantaneous velocity does not reach zero velocity, due to wall interference
and buoyancy effects, besides the aforementioned directional insensitivity. Signal
rectification causes the measured distribution to be more skewed towards the pos-
itive side than the actual velocity distribution and limits thereby the growth of the
rms. Hence, the region of reverse flow can be discerned through the extrema of the
skewness factor and rms which are related to the inflection point in the measured
mean velocity profile as apparent from the 1st and 2nd derivative. This finding will
henceforth be used as a diagnostic tool to discern measurement points that are within
the separated region.

The mean velocity profiles upstream (x/L = −1.3 and −0.19), on (x/L = 0.5
and 0.85) and downstream (x/L = 2.0 and 3.5) the cylinder at both U0 = 8 and
16 m/s are shown in Fig. 3a. The inflow profiles (i.e. x/L = −2.5) correspond to low
Re TBLs at momentum-loss thickness Reynolds numbers of Reθ ≈ 500 and 1000.
Positions determined to have instantaneous back flow (although not fully separated)
are marked in red. As evident for both Re, there is a back-flow region upstream the
cylinder, the flow reattaches on the front part of the cylinder and separation occurs
again beyond the top of the cylinder. Further downstream there is again reattachment
on the flat plate but with a distinct difference for the two different free-stream veloc-
ities, with the higher velocity having a significantly smaller separated region and
earlier reattachment. Although differences in effective blockage can have an effect
on the separation, such differences in effective blockage are found to be small, since
the velocity at y/h = 3 (normalised with the inlet velocity) did not differ with more
than 1 % for the cases upstream and on top of the cylinder.

As also apparent from the rms profiles, depicted in Fig. 3b, the two Re cases
are nearly identical upstream the cylinder, but differ slightly at the 90◦ position; a
difference that is furthermore pronounced on the downstream side of the cylinder.
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Fig. 3 Overview of the streamwise evolution of the measured streamwise a mean and b
rms velocities at U0 = 8 (*) and (b) 16 m/s (◦) in the vicinity of the bump, i.e. x/L =
−1.3,−0.19, 0.5, 0.85, 2.0 and 3.5. Red measurement points indicate positions detected to have
back flow. Profiles are normalised by the mean velocity at y/h = 3

The agreement upstream the cylinder in both mean and rms values in outer scaling—
despite doubling of Re—indicates that the TBL can be considered both fully devel-
oped and free of changed boundary conditions (e.g. blockage effects). The influence
of the surface curvature and the induced pressure gradient is apparent from the peak
location of the rms of the streamwise velocity component: while the peak location is
related to the turbulence production for the most upstream station, the peak location
is further away from the wall and coincides with the location of the inflection point
(partially due to the directional insensitivity of the hot wire) as apparent from the
color-marked (back flow) measurement points. As apparent, the internal boundary
layer (with the associated knee point in the rms profile [5]) is thinner for the high
speed case. It is also interesting to note that the thickness of the internal boundary
layer is close to the momentum loss thickness of the external boundary layer in
accordance with previous observations [4, 5].

Acknowledgments FRANCE project leader is Prof. Gunilla Efraimsson, KTH (also task leader
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Effects of a Wall on the Dynamics
of Turbulence Teardrops and Fingerprints

Patrick Bechlars and Richard D. Sandberg

Abstract A direct numerical simulation of a compressible turbulent boundary layer
has been carried out to investigate the characteristic distribution of turbulence as
well as its dynamics. The focal point of this work is how the dynamics vary with the
distance to the wall and how this affects the characteristic distribution. It is shown
that the pressure terms are the main culprit for changes in turbulence dynamics.

1 Introduction

Turbulence, inmany regards, is still a poorly understood phenomenon. Variousmeth-
ods exist to investigate its seemingly chaotic behavior. One of these methods is a
characteristic analysis of the velocity gradient which was first introduced as critical
point analysis [1]. This method uses the information about the eigenvalues of the
velocity gradient tensor to draw conclusions about the local flow topology. With the
distinction between different flow topologies one is able to investigate their frequency
of occurrence in turbulent flows. This characteristic distribution is often assumed
as universal [2] feature across many turbulent flows and the respective probability
density function (pdf) has iso-contours that form a well-known teardrop shape in the
QR-phase-space. The mechanism that causes such a characteristic distribution is the
interplay of boundary conditions, dissipation and the cascading process. Studying
this interplay in the same QR-phase-space as the distribution allows to understand
alterations of this mechanism and their consequences to the respective distribution.
For the first time the Lagrangian representation of the first three invariants of the
velocity gradient P, Q, R are presented in a compressible form. The average dynam-
ics are studied conditioned with the respective states in the QR-phase-space. Such an
analysis is carried out and results are compared for different wall-normal locations
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in a compressible zero pressure-gradient flat plate turbulent boundary layer (TBL).
This reveals how the wall affects the dynamics of turbulence in a characteristic sense
in this flow.

2 Characteristic Dynamics of Turbulence and Flow-Case

Based on the characteristic decomposition described in [1, 3] four local flow topolo-
gies can be distinguished. The frequency of occurrence of these topologies and its
governingmechanismswill be investigated. The development and interaction of fluid
particles forming the characteristic topologies can be described by the dynamics of
the invariants of the velocity gradient tensor A := ∇u

dP

dt
= P2 − 2Q − tr(H)

dQ

dt
= QP − 2

3
P tr(H) − 3 R − tr(AH∗) (1)

dR

dt
= −1

3
Q tr(H) + PR + P tr(AH∗) − tr(A2H∗),

where P := −tr(A), Q := 1
2

(
tr(A)2 − tr(A2)

)
and R := −det(A) are the invariants,

H := ∇ ∇·τ−∇p
ρ

, H∗ := H − 1
3 tr(H)I , and τ is the viscous stress tensor, p is pressure

and ρ is density.
To investigate the effect of a wall on the dynamics of turbulence we choose the

canonical case of a TBL at a Mach number of M = 0.5. The simulated domain has a
streamwise extent ofReθ ≈ 670 − 2300. In terms of inflow boundary layer thickness
δ99 the domain spans Lx ≈ 164.6, Ly ≈ 16.7 and Lz = 7 and is discretized on a grid
with 7200 × 260 × 386 points. The grid is stretched in the x-direction to keep a
spacing of �x+ ≈ 5. The first point off the wall (ywall = 0) is at y+|j=2 ≈ 0.5 − 0.7
and it is ensured to have at least 13 points within y+ < 10. The wall has no-slip and
an isothermal condition set to the adiabatic temperature of the freestream. Details
for the discretization scheme can be found in [4].

3 Results

To reveal the effect of the wall on turbulence in a characteristic sense, three wall-
normal locations (L1, L2, L3) are compared for the same streamwise location Reθ ≈
1230 in the TBL. L1 is in the logarithmic layer at y+ ≈ 72, L2 in the buffer layer
at y+ ≈ 17 and L3 in the viscous sublayer at y+ ≈ 6.7. Data for the outer layer
(not shown here) agrees well with the experimental dataset of a turbulent boundary
layer at the same order of Reynolds number [5]. The characteristic distributions of
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Fig. 1 The dashed green lines divide the QR-phase-space into the four sectors, covering a char-
acteristic local flow topology each. The contours show the joint-pdf of Q and R and the %-boxes
state the probability of a fluid particle having a state within the respective sector. The mean phase
development of fluid particles is shown by blue arrows. Left to right L1, L2 and L3

local flow topologies are shown in Fig. 1 in form of joint-pdfs and agree well with
[6]. The shape is changing from the well-known teardrop shape towards an oval
shape when approaching the wall. Further, the probabilities for the occurrence of
the respective topologies are changing with distance to the wall. To understand the
mechanism behind these distributions, the mean dynamics of the invariant dynamics,
see Eq.1, are obtained by averaging dQ

dt and dR
dt conditioned with different states of

the QR-phase-space and are shown via the trajectories in Fig. 1. Similar to the pdfs,
the trajectories tend towards an oval shapewhile approaching the wall. To understand
this variation the contribution of the single terms in Eq.1 are investigated separately.

By neglecting the compressible effects (2–4 orders of magnitude lower than the
remaining physics) the strength of this method becomes obvious: The contribution
of the terms in Eq.1, that are arising from the non-linear terms in the Navier–Stokes
equations is invariant in the QR-phase-space, see Fig. 2 (left). I.e. the trajectories
caused by non-linear effects have the same shape for all locations in the flow. The
contribution of the diffusion to the overall QR-development, see Fig. 2 (right), shows
minor differences for the respective locations. For all location the origin of the QR-
phase-space is an attractor.

Fig. 2 Left QR-phase development caused by non-linear terms of NS only. Right QR-phase devel-
opment caused by diffusion terms of NS only. L1: green/thick; L2: cyan/normal; L3: red/thin
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Fig. 3 QR-phase development caused by pressure terms of NS only. From left to right the plots
are shown for L1, L2 and L3

The contribution of the pressure term, see Fig. 3, is varying strongly with the wall-
normal location. For L1 the trajectories indicate that the pressure terms counteract
the non-linear terms with the exception that they develop a swirl for positive R and Q
that let these plots appear as fingerprints of pressure. Approaching the wall, this swirl
moves away from the origin and unwraps. For L3 two distinct mechanisms, divided
by a bow-shaped repellor, are present. On the left side of this repellor pressure still
counteracts the non-linear terms whereas it supports them on the right.

4 Conclusions

The variation with wall-distance of the characteristic distribution suggests that the
teardrop shape is not a universal feature of turbulence in a global sense. However,
universality might hold if restricted to relatively small scales of motions.

The significant contribution to the variation of the invariant dynamics in the QR-
phase-space is caused by the pressure terms in the Navier–Stokes equations. Uni-
versal models for the invariant dynamics in this phase-space have to capture the
presented effects of pressure to work accurately.
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Numerical Study of the Intermittency Region
in Two-Fluid Turbulent Flow

S.V. Kraheberger, T. Wacławczyk and M. Wacławczyk

Abstract In this work we describe interactions between turbulence and water-air
surface in the ensemble-averaged picture where, instead of a sharp interface between
the phases we deal with a “surface layer”where the probability of the surface position
is nonzero. Changes of the turbulent kinetic energy and the characteristic size eddies
influence the width of the “surface layer”. We present a numerical solution and
convergence tests for the equation for the intermittency function α which describes
the probability of finding the water phase at a given point and time.

1 Introduction

In the present work we investigate stratified turbulent air-water flows where the
phases are separated by a deformable, but non-broken interface. We consider the sta-
tistical approachwhere the ensemble averaging of physical quantities, including these
connected with the fluctuating surface, is performed. After the averaging, instead of
a sharp boundary between the two phases, we receive a layer where the probability of
the surface position is non-zero. We consider an intermittency function α, defined as
an ensemble-average of the sharp-step indicator function α(x, t) = 〈χ(x, t)〉, where
χ(x, t) = 1 if the water phase is present at (x, t) and 0 otherwise. The function α

denotes the probability of finding the water phase at point x and time t.
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The region were 0 < α(x, t) < 1 is called the intermittency region or the surface
layer. The width of the surface layer is determined by the disrupting action of tur-
bulent eddies on one hand and the stabilizing role of gravity and surface tension on
the other hand, cf. Refs. [1, 2]. In our approach these two competing mechanisms
are modelled, respectively, by the diffusion and contraction terms in the evolution
equation for the function α, cf. [6, 7]. In this work we present results of simulations
of a surface layer changing in time due to the changing kinetic energy and the char-
acteristic eddy size. The width of the layer changing in time is compared with results
of a priori tests.

2 Model for the Turbulence-Interface Interactions

If the ensemble averaging is applied to the advection equation of the Heaviside func-
tion χ , an unclosed correlation between the surface and velocity fluctuation

〈
u′ · ∇χ

〉
appears, cf. [5, 7]. As it was proposed in Refs. [5–7], this term can be modelled by
two counter-acting terms: diffusion and contraction leading to the following equation
for the evolution of the surface layer α

∂α

∂t
+ 〈u〉 · ∇α = ∇ · (Dt∇α) + ∇ · [

Ctα (1 − α) n̂
]
, (1)

where coefficients Dt and Ct depend on turbulence statistics in the water phase and
n̂ = −∇α/|∇α| denotes a vector normal to the isosurfaces of α. In the 1D stationary
case and for constant coefficients Dt and Ct , Eq. (1) has an analytical solution

α =
[
1 + exp

(
Ct

Dt

(
y − ŷs

))]−1

, (2)

where ŷs denotes a mean position of the interface. In such a case the difference
between the top and bottom limits of the intermittency layer, defined as the region
where the probability of finding the surface equals 99.6%, reads

t − b = 24√
2π

Dt

Ct
. (3)

It was proposed in Refs. [7, 9] to model the coefficient Dt as the product of the
velocity scale q and the characteristic length scale of the eddy L, Dt = cDqL. The
coefficient Ct = cCq and the ratio cD/cC can be estimated from formula (3) such,
that the proper width of the intermittency region is obtained.
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3 Numerical Methods and Results

The present work aims to validate the above described model for the α-equation.
For this purpose, input data for diffusion and antidiffusion coefficients Dt and Ct

and reference data to compare results are provided by the a priori tests described in
Refs. [7, 9]. Therein, the velocity field of two counter-rotating vorticeswas initialized
in the water phase. Due to this initialized velocity field, the whole structure moves
to the surface and, as soon as it reaches the surface, it splits into two eddies moving
in opposite directions along the surface. The initial flat surface is deformed due to
the eddies’ motions, while the mean flow velocity is zero, 〈u〉 = 0.

In the a priori test described in Ref. [9], α-profiles were calculated at every 0.1 s
from the instantaneous, exact surface position, where the simulation was performed
from t = 0 to t = 25.5s. Hence, in the present work we solve the α-equation pro-
viding input data every 0.1 s for diffusion and antidiffusion coefficients Dt and Ct .
To define Dt and Ct , we use turbulent statistics which were calculated from the a
priori test. Most satisfactory results were obtained when we chose Dt = cD

√
2k/3 L

where the kinetic energy k was averaged within the intermittency zone, while Ct

was considered to be proportional to the mean turbulent intensity in the water side,
Ct = cC 〈q〉. The term 〈q〉 was found to be approximately constant during simu-
lation time, 〈q〉 ≈ 0.1ms−1, see Ref. [7]. As stated above, the eddy’s length scale
L = L(t) is assumed to change in time because the eddy-structure splits when it
reaches the surface, i.e. L(t < 12.5 s) = 2m as long as both eddies rise to the surface
and L(t > 19.9 s) = 1m as soon as the eddies start moving into opposite directions
parallel to the surface. Between 12.5 s ≤ t ≤ 19.9 s, L(t) is defined by a linear inter-
polation. It was found that higher-order interpolation does not profoundly change
results and is not necessary therefore.

For solving Eq. (1) numerically, we use similar methods as were described in
a different context in Ref. [4]. For the discretization of α in time, we use a third-
order total variation diminishing Runge-Kutta scheme cf. Ref. [3]. Results of such
simulations show that the evolution of the intermittency region’s width |t − b| in time
is reproduced very well, see Fig. 1. Since Dt and Ct are constant at each timestep,
and are prescribed from the a priori data, it is possible to calculate the analytical
α-profile from Eq. (2) at each timestep. The corresponding analytical width of the
intermittency layer, (t − b)analyt, is then obtained by substituting α for αtop, αbottom in
(2) and solving it for y. This analytical solution (t − b)analyt is also plotted in Fig. 1,
andwe observe that it is reproducedwell. Although it is not part of the validation tests,
we take advantage of getting quantitative results to test the numerical performance of
our algorithm. Hence, the root-mean-square deviation of the numerical results from
the analytical solution (t − b)analyt is calculated

Lt−b
2 =

√√√√ 1

nt

nt∑
i=1

[
(t − b)analyt,i − (t − b)num,i

]2
, (4)
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Fig. 1 Evolution of the
intermittency layer’s width
|t − b| in time. The diffusion
coefficient Dt(t) =
cDq(t)L(t) is defined using
y-averaged kinetic energy
k(t) calculated from
one-fluid velocity
fluctuations
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where nt denotes the number of timesteps. As can be seen in Fig. 2, Lt−b
2 decreases

with increasing grid resolution.
Although the above described definition of Dt and Ct is very simple, the results

obtained for the width of the intermittency layer were satisfactory.
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Multi-scale Analysis of Turbulent
Rayleigh-Bénard Convection

Riccardo Togni, Andrea Cimarelli and Elisabetta De Angelis

Abstract We report the results from a direct numerical simulation of turbulent
Rayleigh-Bénard convection for Rayleigh number of 105 and Prandtl number of 0.7.
The flow topology is characterized by the presence of coherent structures, the so-
called thermal plumes, consisting of localized portions of fluid having a temperature
contrast with the background. Two distinct events are identified close to the walls
by using the wall-parallel divergence divπ of the velocity field: the impingement
(divπ > 0) and the ejection of thermal plumes (divπ < 0). The impingement leads to
the formation of larger velocity and temperature structures in thewall-parallel planes.
Contrary to the classical picture of turbulence consisting of a direct transfer of energy
from large toward smaller turbulent fluctuations, the impingement is conjectured to
be probably responsible for a reverse transfer from small towards large scales in the
near-wall region.

1 Introduction and Methodology

Thermally driven turbulence plays a major role in several natural and industrial
processes, which range from atmospheric convection to cooling systems in nuclear
power plant [1]. An idealized system for approaching all these cases is the Rayleigh-
Bénard convection (RBC), which consists of a fluid layer heated from below and
cooled from above in a vertically bounded domain. It is well known that the transport
of thermal and kinetic energy across the fluid layer in turbulent RBC is carried out
mainly by the so-called thermal plumes [3], which are commonly defined as localized
portions of fluid having a temperature difference with the background [2]. Hot and
cold plumes detach respectively from the bottom and the upper plate, moving toward
the opposite wall driven by buoyancy forces. As nicely sketched by Kadanoff [4],
thermal plumes carry out a self-sustained life cycle during which their morphology
changes. In particular, the characteristic diameter of each structure enlarges as the
distance from the impinging wall decreases due to the vertical constraint. The latter
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phenomenon, hereafter called impingement, is supposed to be related with a strong
exchange of thermal and kinetic energy between turbulent scales, in particular, a
transfer from small towards large scales. This conjecture can be verified by analyzing
the budgets for the second-order structure functions, which are capable to capture
both the local and the non-local phenomena of turbulence, i.e. the processes occurring
simultaneously in physical space and in the space of turbulent scales, see Marati et
al. [5] for a multi-scale analysis of a turbulent channel flow. An extensive analysis
of the multi-scale energy budgets lies outside the purpose of the present work. Here,
we want to investigate the life-cycle of thermal plumes in turbulent RBC in order
to identify some fundamental events which could impress a clear footprint on the
energy budgets. To that end, a data set coming from a direct numerical simulation
(DNS) is employed. The Boussinesq equations are solved using a pseudospectral
method which discretizes space with Fourier modes in the wall-parallel directions
x and y, and with Chebychev polynomials in the wall-normal direction z. Time
advancement is carried outwith a fourth-orderRunge–Kutta scheme for the nonlinear
terms and a second-order accurate Crank-Nicholson scheme for the linear ones. The
computational domain is a rectangular box of size 8 × 8 × 1 along x, y, z respectively,
where the Cartesian coordinate system is cell-centered, with the z-axis pointing in the
direction opposite to that of gravity acceleration. The temperature of the lower and
the upper walls are fixed at 0.5 and -0.5, respectively; no-slip boundary conditions are
used on both horizontal plates, whereas periodic boundary conditions are imposed
at the lateral sidewalls. The DNS is performed at Pr = 0.7 and Ra = 1.7 · 105 using
1282(horizontal) × 129 (vertical) modes and polynomials.

2 Analysis of the Flow Topology

According to the definition made in Sect. 1, thermal plumes are here displayed by
isosurfaces of temperature. Further ways to extract these structures from the tur-
bulent background consider thresholds of vertical velocity, thermal dissipation or
vertical vorticity-temperature correlation. With respect to the latter, as an example,
Zhou et al. [6] showed that the plumes are associated with a strong vertical vorticity
component, hence the vorticity-temperature correlation is a suitable quantity for the
identification. As can be seen in Fig. 1a, hot and cold plumes detach respectively
from the lower and the upper wall, stretch across the domain and, finally, enlarge
close to the opposite plate. Furthermore these structures have a sheet-like form at
the beginning, whereas they take the appearance of a mushroom sufficiently away
from the starting point. It seems quite evident from Fig. 1b that the sheet-like roots
of thermal plumes create a fine network across the plates and that portions of fluid
are emitted from the intersection spots. By considering the two-dimensional diver-
gence of the velocity field in the xy-plane, it is possible tomeasure both the horizontal
enlargement and narrowing of thermal plumes. It seems reasonable to apply this kind
of analysis to the near-wall region, where both mushroom-like caps and sheet-like
roots coexist, rather than the bulk, where the stalks have almost a constant section.
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Fig. 1 a Isosurfaces of temperature (θ = 0.25 down and θ = −0.25 up) and b top view of the
isosurface at θ = 0.25

(a) (b)

Fig. 2 a Top view of the isosurface at θ = 0.25 coloured by divπ . b Main plot: 〈divπ 〉+ (solid line)
and −〈divπ 〉− (dashed line) versus z∗ = 0.5 − |z|. Inset: R versus r, evaluated at z∗ = 0.07

Figure2a shows an hot isosurface of temperature (θ = 0.25) coloured with the hor-
izontal divergence of the velocity field, divπ = ∂u/∂x + ∂v/∂y. Two distinct events
can be identified in terms of the horizontal divergence: the emission (divπ < 0) and
the impingement of thermal plumes (divπ > 0). As can be seen, concurrent regions
of positive divergence are separated by thin filaments having a negative divergence,
hence it is reasonable that sheet-like roots protrude from the thermal boundary layer
mainly as a consequence of the mechanical action of impinging plumes. Further-
more, the intersection of different sheet-like roots leads to a large concentration of
momentum, which is in turn responsible, together with the buoyancy forces, for the
ejection of new structures.

Clearly, the impingement and the ejection are fundamental events in the self-
sustained life cycle of thermal plumes. In order to locate the maximum of both phe-
nomena, the contributions of impingement are separated from the ones of ejection. In
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themain plot of Fig. 2b the quantities 〈divπ 〉+ and−〈divπ 〉−, where 〈divπ 〉+ = 〈divπ 〉
for divπ > 0 and 〈divπ 〉− = 〈divπ 〉 for divπ < 0, are displayed. These conditional
statistics allow us to display the magnitude of both the impingement (〈divπ 〉+)
and the ejection (〈divπ 〉−) as a function of the distance from the wall. As appar-
ent, the impingement, 〈divπ 〉+, reaches its maximum at a distance from the wall
z∗ = 0.5 − |z| = 0.07, while the ejection, −〈divπ 〉−, is peaked slightly further away
from the wall, at z∗ = 0.10, in accordance to the instantaneous field shown in Fig. 1a.
Furthermore, the characteristic diameter of the impinging plume can be estimated
by analyzing the two-points autocorrelation function in the wall-parallel plane at
z∗ = 0.07, where the impingement dominates the ejection. The two-points autocor-
relation function is R = 〈divπ (π , z)divπ (π + r, z)〉 /

〈
div2π (π , z)

〉
, where π = (x, y)

and r = (rx, ry) are respectively the position and the separation vector in the wall-
parallel planes. Taking into account the statistical homogeneity and isotropy in the
x − y planes, the dependence of R on both the position vector π and the direction of r
vanishes, hence R = R(r, z), where r = |r|. The inset of Fig. 2b displays R as a func-
tion of r evaluated at z∗ = 0.07. As can be seen, R drops to zero at r = 0.5, hence this
separation can be considered as the characteristic diameter of the impinging plumes.

3 Final Remarks

In conclusion, the rich dynamics observed in the near-wall region can be separated
into impingement and emission events by using the planar divergence of the velocity
field. From this topological analysis emerges that these events are related to each
other and control the life cycle of turbulence. Since the impingement is stronger
than the emission, as can be seen in Fig. 2b, a reverse transfer of thermal and kinetic
energy from small towards large fluctuations is conjectured to take place in the near-
wall region. However, given the multi-scale nature of these phenomena, a scale-by-
scale budget is needed (and planned) in order to quantify and possibly verify these
conjectures on the cascade processes occurring near the wall of RBC.
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Numerical Analysis of Frazil Ice Formation
in Turbulent Convection

A. Abbà, P. Olla and L. Valdettaro

Abstract Westudy the first steps of ice formation in freshwater turbulent convection
(frazil ice regime). We explore the sensitivity of the ice formation process to the set
of non-dimensional parameters governing the system. We model the mixture of ice
crystals and water as a two-phase medium composed of water and ice particles of
fixed diameter. We use the Boussinesq approximation and we integrate numerically
the set of equations making use of a numerical code based on second order finite
difference. A dynamic LES model for the subgrid scales is used.

1 Physical and Numerical Model

The first stage of ice formation at the supercooled free surface of oceans, rivers
and lakes is called frazil ice, a suspension of small randomly-oriented crystals
[1, 2].Wemodel the convective motion in the upper oceanmixed-layer as convection
between two parallel plates, with the upper boundary corresponding to the air-ocean
interface and the lower one corresponding to the mixed layer bottom. Assuming
constant salinity, the system of water and frazil ice particles can be modelled as a
two-component mixture, which is treated as a locally homogeneous fluid with aver-
aged properties. In the dilute limit that we are considering, the effective viscosity
of the ice-water mixture differs from that of pure fluid by a value of the same order
of the concentration itself [3] and this viscosity increment can be neglected. The
ice-water mixture density ρ is given by:
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ρ =
(Ci

ρi
+ 1 − Ci

ρw

)−1
(1)

in terms of ice mass concentration Ci, ice density ρi, assumed constant, and water
density ρw related to the temperature by:

ρw = ρw0[1 − α(T − T0)], (2)

ρw0 is the density corresponding to the lower boundary temperature T0 and α is the
thermal expansion coefficient.

We use the Boussinesq approximation: we introduce a hydrostatic equilibrium
without ice and we write the equations for the perturbations to this state. Assuming
small ice concentration we can neglect density variations everywhere except in the
buoyancy term. The resulting equations in nondimensional form are:

∂u′

∂t
+ (u′ · ∇)u′ = −∇p′ + Ra

Pr

[
1 − ρi

ρi
C′

i + T ′
]

ez + ∇2u′, ∇ · u′ = 0, (3)

∂T ′

∂t
+ u′ · ∇T ′ = −w′ + 1

Pr
∇2T ′ + βC′

i f (z
′, T ′), (4)

∂C′
i

∂t
+ u′ · ∇C′

i = 1

Sc
∇2C′

i + wr
∂C′

i

∂z
+ γ C′

i f (z
′, T ′). (5)

where:

z′ = z

L
, u′ = uL

ν
, T ′ = T − T0

ΔT
− z′, C′

i = CiαΔT ,

and z is the vertical coordinate, L is the distance between horizontal plates, ΔT is
the temperature difference maintained between them. Ra, Pr and Sc are respectively
Rayleigh, Prandtl and Schmidt numbers. Moreover

f (z′, T ′) = Ti − T

ΔT
= Ti − T0

ΔT
− z′ − T ′

Here Ti is the water freezing temperature. These equations depend on the nondimen-
sional parameters wr (the rising velocity of ice in water at rest), β and γ .

2 Numerical Results

Equations (3)–(5) were solved numerically using a fractional step approach [4] with
a third order, three steps, explicit Runge-Kutta scheme. For the spatial discretization,
we have employed a second order accurate finite difference scheme on a staggered
grid. The effects of the small unresolved scales on the resolved ones are modelled
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by using the Subgrid Scale Model proposed by [5]. The turbulent viscosity, Prandtl
and Schmidt number coefficients are computed using the dynamic procedure [6].

The domain has an extension of 2π in the horizontal directions and height equal to
one. Results for Rayleigh number 106 and a resolutionwith 51 × 51 × 40 collocation
points are presented. The grid is stretched in the vertical direction in order to resolve
the boundary layers. As usual in LES the resolution should capture themost energetic
structures. For safety we have used a resolution larger than the one used for pure
Rayleigh Bénard convection [7]. We use periodic boundary conditions in the lateral
directions. On the bottom and top surfaces we fix the temperature and impose free-
slip conditions for the velocity. In this series of simulations, we want to focus on the
ice produced in the regions far from the upper layer. To this end we have used the
boundary conditions C′

i = 0 at top and bottom. We assume the freezing temperature
Ti to be the temperature in the middle of the hydrostatic layer (that is Ti−T0

ΔT = 1
2 ).

Due to the uncertainty in the determination of the ice particle rise velocity wr and
the ice concentration source term coefficient γ , we have conducted a sensibility
analysis varying these two parameters. The value of the parameter β is not important
for the linear phase, as it multiplies a term which becomes relevant only in the
nonlinear stage. Typical curves of total ice concentration versus time are shown in
Figs. 1 and 2. In the first figure we clearly distinguish a short transient followed
by an exponential growth, ended by the nonlinear saturation. The production of ice
is fast compared to the large eddies turnover time. As a consequence, during the
linear phase, the velocity and temperature fields are almost constant and we get an
almost pure exponential growth of ice concentration. In the second figure, instead,
the exponential growth phase does not appear very clearly. This is because the time
scale for the ice formation is large compared to the convection turnover time: the
flow changes significantly during ice formation. We observe that the maximum rate
of ice production is obtained when the rise velocity is of the same order of magnitude
of the characteristic velocity of the thermal downwelling plumes (see Fig. 3). This
can be easily understood: if the rise velocity is much larger than the velocity of
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0.0001

0.001

0.01

0.1

C
i

Fig. 1 Ice formation shorter than large convection plumes time scales: exponential growth, ice
(light blue) is localized in cold (grey) downwelling plumes. Ra = 106, γ = 104, wr = 150
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Fig. 2 Ice formation longer than large convection plumes time scales: irregular growth, ice distrib-
uted everywhere. Ra = 106, γ = 103, wr = 10

downwelling plumes, then ice forms almost exclusively at the surface. If on the other
hand the rise velocity is too small, then ice is entrained towards the bottom by the
downwelling plumes and it melts due to the ambient large temperature. If w in the
plumes and wr are comparable, then ice can develop inside the whole extent of the
cold downwelling plume.

We have devised a simple model that is able to capture the trend of the growth rate
as a function of the relevant parameters in the fast regime: we consider the equation
for ice concentration (5) inside the intense vertical plumes; we assume that velocity
and temperature profiles are given and constant and we neglect horizontal velocities
and horizontal derivatives. Eq. (5) reads
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Fig. 3 Left growth rate of ice concentration versus wr for γ = 104; right growth rate of ice con-
centration versus γ , wr = 150. Ra = 106 in both cases. Full line growth rate from LES simulations.
Broken line simplified 1-d model. Dash-dotted line simplified 1-d model applied to the most intense
downwelling plume. Vertical line marks the velocity of the most intense downwelling plume. Def-
inition of growth rate ω is ω = log(< C′(t2) > / < C′(t1) >)/(t2 − t1) where < C′(t1) > and
< C′(t2) > are total ice concentration at the beginning (t1) and end (t2) of the linear phase for ice
concentration



Numerical Analysis of Frazil Ice Formation … 303

∂Ci

∂t
= −W

∂Ci

∂z
+ 1

S

∂2Ci

∂z2
+ Γ Ci, (6)

where:
1

S
= 1

Sc
+ 1

Scturb
, W = w + wr, Γ = γ (Ti − T).

This equation is decomposed into normal modes in time, where the eigenvalue with
largest real part is the growth rate. The eigenvalues to this linear differential equation
(supplemented by the boundary conditions at z = ±1/2) provide the growth rate.
We plot it in Fig. 3. Broken line corresponds to the over simplified case in which u′
and f in (5) are constant. In such case the eigenvalue Eq.6 can be solved analytically
and we get:

ω = Γ − W2S

4
− n2π2

S
|n| ∈ N �= 0

The resulting growth rate is quadratic in wr and linear in γ . A refined version
(dash-dotted line) takes into account the actual vertical profiles for w′ and T ′ by aver-
aging the values obtained by the LES simulation inside themost intense downwelling
plumes. Theoretical models of turbulent convection could provide appropriate pro-
files for temperature and vertical velocity distributions inside most intense plumes.
Taking advantage of these models there would be no need to determine the profiles
from the LES simulation. Such approach will be considered in a future work.

Acknowledgments This activity is in the frame of the PNRA project “PANACEA The role of
frazil and PANcake ice in the mass and energy budgets of the AntarctiC sEA ice cover”.

References

1. Kivisild, H.: Int. Assoc. Hydraul. Res. paper 1.0, 14 pp (1970)
2. Martin, S.: Ann. Rev. Fluid Mech. 13, 379 (1981)
3. de Carolis, G., Olla, P., Pignagnoli, L.: J. Fluid Mech. 86, 369–381 (2005)
4. Le, H., Moin, P.: J. Comp. Phys. 92, 369 (1991)
5. Wong, V., Lilly, D.: Phys. Fluid. 6(2), 1016 (1994)
6. Germano, M., Piomelli, U., Moin, P., Cabot, H.: Phys. Fluid A 3(7), 1760 (1991)
7. Abbà, A., Cercignani, C., Valdettaro, L.: In: Proceedings from the Fourth ECCOMAS Compu-

tational Fluid Dynamics Conference. Greece, Athens (1998)



Large Eddy Simulation of Turbulent Flows:
Benchmarking on a Rectangular Prism

L. Patruno, M. Ricci, A. Cimarelli, S. de Miranda, A. Talamelli
and F. Ubertini

Abstract Preliminary results of aLargeEddySimulation (LES) of rectangular cylin-
der performed with OpenFoam are presented. This is the preliminary part of a longer
research project aimed at systematically study the ability of Computational Fluid
Dynamics (CFD) techniques in reproducing the flow around slender bodies with
sharp edges at high Reynolds numbers. In spite of the simple geometry, the problem
is influenced by a number of parameters which makes its correct solution difficult
to be achieved. The LES approach presented here appears to be a good candidate
for this purpose but further analysis must be performed. Indeed, we highlight the
need to adopt a finer resolution in the spanwise direction in order to capture the very
anisotropic turbulent dynamics. Furthermore, it emerges the need of Direct Numer-
ical Simulation (DNS) data in order to shed light on the compound role played by
the turbulence model, the grid resolution and the inlet conditions.

1 Introduction and Numerical Approach

An accurate description of the unsteady wind loads on fixed structures (like large
roofs, towers and bridge decks) is essential in their design process. Unfortunately,
wind tunnel tests are highly expensive, require specific apparatus and long set-up
operations. Thanks to the increase in computers power, the numerical simulation
has become a valid complementary activity for the assessment of wind loads on
structures and they promise to be an attractive alternative for the future. Numerical
simulations of flows around fixed and vibrating bluff bodies have been extensively
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proposed in the literature (see e.g. [1]). However, if analyzed in detail, their accuracy
is often questionable so that their use in practical applications is not as widely spread
as it could be expected. The main reason is that turbulence plays a fundamental role
in determining the flow dynamic around the body and consequently the wind loads
and its modeling still presents overwhelming difficulties. On the one hand, Unsteady
Reynolds-Averaged Navier Stokes equations (URANS) based simulations are often
not accurate and provide only a very approximated representation of the flow field.
On the other hand, many of the proposed studies based on LES used not adequate
grid resolution for the considered Reynolds numbers, leading to strong dependence
of the results on the adopted turbulencemodel and discretization scheme. The present
research, framed in theBARC (Benchmark on theAerodynamics of aRectangular 5:1
Cylinder) project [2], is aimed at testing LES simulations at high Reynolds numbers
(Re = 104 − 105) around a rectangular prism with aspect ratio 1:5.

Here we report the first simulation of the present research project aiming at repro-
ducing the LES data obtained in [2]. This first step aims at shedding lights on the
strategy to follow in order to study the compromise between turbulence model and
mesh resolution in order to keep the computational costs reasonable and at the same
time increase significantly the accuracy of the results. In spite of the simple geometry,
the problem is of high interest for both fundamental research (see e.g. fluid-structure
interactions and turbulent wakes) and applications, providing useful informations on
the aerodynamic behavior of bluff bodies widely employed in civil engineering (e.g.
long span bridges decks or tall buildings).

The LES simulation here reported has been performed using the open-source code
OpenFoam. The subgrid model is a standard Smagorinsky eddy viscosity model.
PISO (pressure implicit with splitting of operator) pressure-velocity coupling and
LUST (Linear Upwind Stabilized Transport) scheme for convected quantities are
employed. The Reynolds number based on the vertical dimension of the rectangle is
Re = 2 × 105. The dimensions of the rectangular cylinder are 1 × 0.25 × 2 while
the computational domain is 40 × 30 × 2 in the streamwise, vertical and spanwise
directions respectively. In spite of the simple geometry the resolution requirements
leads to a number of finite volumes of the order of 13 millions. The resolution is
such that close to the wall we have 〈Δx〉 = 0.002, 〈Δy〉 = 0.0004 and 〈Δz〉 = 0.01
respectively in the streamwise, vertical and spanwise direction.

2 Results and Final Comments

In principle, in LES, the large scale turbulent fluctuations are directly resolved allow-
ing a better prediction of the flow properties with respect RANS. In the case of flows
around sharp-edged bodies, this quality becomes very important. Indeed, the sensi-
tivity of the problem on the properties of turbulence makes the prediction of relevant
quantities very difficult to be achieved within an acceptable range of uncertainty. One
of the most important quantities to analyse for the applications in civil engineering,
is the pressure distribution. Indeed, such a quantity represents the main contribu-
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Fig. 1 Top plot time averaged distribution of the pressure coefficient, C p , along the top side of the
rectangle. The present LES data are compared with other simulations and experiments by various
authors. Bottom plot streamlines of the time averaged velocity field

tion to the aerodynamic force and determines the aeroelastic properties of the body
[4–6]. In the top plot of Fig. 1, the time averaged distribution of the pressure coeffi-
cient C p is reported along the top side of the rectangle, together with experimental
and LES results by different authors. Acceptable agreement is observed with the
LES simulation performed in [3]. However, Fig. 1 also highlights that the numeri-
cal results significantly deviate from the experimental ones. This is due to the fact
that the behavior of the pressure coefficient is mainly determined by the dimen-
sion and topology of the recirculating bubble taking place along the rectangle. As
shown in the bottom plot of Fig. 1 by means of streamlines of the time averaged
velocity field, the recirculating bubble starts from the separation of the flow at the
sharp edge of the rectangle and ends far away downstream. This reattachment point
determines the pressure recovery shown by C p in the top plot of Fig. 1 and, hence,
it is a very important flow feature that must be predicted. Since the reattachment
point strongly depends on the turbulent properties of the flow, this means that the
results of the numerical simulations are strongly correlated to the turbulence model,
grid resolution, inlet conditions and numerical scheme used, thus explaining the dif-
ferences between numerical and experimental results shown in Fig. 1 and more in
general within the BARC project [2]. Let us consider here the problems related to the
numerical mesh adopted. In LES, the anisotropy of the mesh and the resolution
adopted should allow to compute the most energetic turbulent structures. In Fig. 2,
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Fig. 2 Large Eddy Simulation of a rectangular cylinder at a Reynolds number, Re = 2 × 105. Top
and bottom plots show the flow topology by means of the instantaneous behaviour of isosurfaces
of vorticity colored by pressure

the main turbulent structures populating the flow are shown by means of iso-surface
of vorticity colored by pressure. As expected, turbulent structures are mainly aligned
and elongated along the flow direction. As a consequence, the anisotropy of the
mesh should be such that the spanwise and wall-normal spacings are smaller than
the streamwise one. However, accordingly to the mesh adopted in [3] we use a mean
streamwise grid spacing, 〈Δx〉 = 0.002, five times smaller than the spanwise one
Δz = 0.01. This choice is in contrast with the topology of the flow field shown in
Fig. 2 and could explain, at least partially, the difference between numerical and
experimental results shown in Fig. 1.

In conclusion, we have performed an LES simulation with OpenFoam trying to
reproduce the reference LES data reported in [3]. The preliminary analysis shows an
acceptable agreement with the data set reported within the BARC project but in the
same time highlights a different strategy to follow in order to improve the accuracy
of the data. Accordingly to the present results we plan to adopt meshes with a lower
grid resolution in the streamwise direction with respect the spanwise one in order to
correctly resolve the turbulent field. It also emerges the need for a DNS simulation
at a lower Reynolds number in order to shed light on the compound role played by
the turbulence model, the grid resolution and the inlet conditions.
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Turbulent Flow of a Suspension of Rigid
Spherical Particles in Plane Channels

Luca Brandt, Francesco Picano and Wim-Paul Breugem

Abstract Suspensions of solid particles are frequently found in applications and
environmental flows. Several studies concern the rheological properties of sus-
pensions in laminar flows, but much less is known of turbulent suspensions. The
present work fills this gap providing DNS data on dense suspensions of neutrally-
buoyant rigid sphere in a turbulent channel flow at the bulk Reynolds number of
Re = U0h/ν = 2800. We show that considering volume fractions Φ ≤ 0.1 the tur-
bulent flow is similar to the unladen case with higher turbulence intensities. On the
contrary, the flowbehavior strongly changes atΦ = 0.2where the turbulence appears
to be attenuated.

1 Introduction and Methodology

Fluids with a suspended solid phase frequently occur in environmental processes
and in industrial applications. Sometimes laminar flow conditions may occur as in
magmatic flows, but most often the flow is turbulent as in sediment transport in rivers
or in industrial processes. When the suspended phase is not dilute, its effect on the
fluid property is not negligible. Many studies dealt with the rheological properties of
laminar suspensions from the dilute to the dense case [1]. It is well known that the
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presence of particles induces an increase of the effective viscosity of the suspension
[2]. It has been observed that, at high shear rates and fixed volume fraction, the
viscosity may increase also with the shear rate, so-called shear-thickening [2, 3].

Turbulent and transitional flows are usually characterized by a shear rate that
intermittently fluctuates in space and time. This feature, in combination with the
peculiar rheological features of semi-dilute/dense suspensions, leads to unexplored
physics in these chaotic flow regimes. As an example, the experiments in [4] show
that in pipe flow and for relatively large particles, the critical Reynolds number
at which transition to turbulence occurs cannot be simply rescaled considering the
increase of the effective viscosity due to the presence of the solid phase. Recently,
it has been shown by Lashgari et al. [5] that the flow of a suspension in the volume-
fraction/Reynolds-number parameter space, (Φ − Re), can be divided into three
regimes: viscous, turbulent and inertial shear-thickening. The present study aims
to investigate the property of wall turbulence and related particle behavior in the
dense case and at a Reynolds number at which the flow can be considered turbulent.
The previous DNS study of turbulent channel flow laden with finite-size particles
in [6] investigates volume fractions up to Φ = 0.07. The authors show that particles
interact with the near wall turbulent structures inducing an increase of the turbulent
drag especially at the highest volume fraction they considered, i.e. φ = 0.07. In the
present work we extend the analysis to higher volume fractions, up to Φ = 0.2. We
find an increase of the turbulence activity up to Φ = 0.1, where the flow shows high
level of fluctuations, but a decrease at Φ = 0.2. The attenuation of the turbulent
transverse velocity fluctuations reduces the particle mixing across the channel.

Direct numerical simulations have been performed by using an algorithm that
fully describes the coupling between the solid and fluid phases. The fluid phase
is evolved following the incompressible Navier-Stokes equations by second order
finite differences on a staggered mesh. The finite-size particles are evolved by a
Lagrangian algorithm that solves the linear and angular momentum equations. The
coupling between the twophases is directly achieved byusing an ImmersedBoundary
Method. When the particle gap distance is smaller than the mesh size, lubrication
correction are used to correctly reproduce the close interaction between particles. A
soft-collision model with restitution coefficient of 0.97 is adopted when the particle
collide. The code has been fully validated as shown in [5, 7] for more details.

Simulations of turbulent channel flow are performed in a domain of length 6h, 2h
and 3h in the (x) streamwise, (y) wall-normal and (z) spanwise directions, respec-
tively. Here h denotes the channel half width. Periodic boundary conditions are
enforced in the x and z directions, while no slip is prescribed at the wall. The
bulk velocity is kept constant by adjusting the mean pressure gradient fixing the
bulk Reynolds number, Reh = U0h/ν = 2800 (ν the fluid kinematic viscosity). The
domain is discretized by a cubic mesh of 864 × 288 × 432 points in the x , y and z
directions. Rigid neutrally-buoyant spheres are considered; ratio between the particle
radius and the channel half-width fixed at a/h = 1/18. Three different volume frac-
tions, Φ = 0.05; 0.1; 0.2, are performed changing the particle number up to 10000
at Φ = 0.2.
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2 Results and Discussion

Figure1 reports snapshots of the particle configurations on the streamwise-
wallnormal plane for different volume fractions Φ. The (a) panel reports the par-
ticle positions at the beginning of the statistical stationary state t = 0, (b) the flow
at t = 20 h/U0 with particles color-coded by their initial wall-normal position at
t = 0. The increase of the particle volume fraction is visible for the case Φ = 0.2
that does not exhibit clear void regions in the spanwise extension. At this volume
fraction, the particle configuration seems quite ordered near the wall exhibiting an
evident geometrical layering. The color map used in the panel (b) of Fig. 1 show how
the particle mix in 20 large-eddy turnover times h/U0. While the particles appear
similarly mixed at Φ = 0.05 and Φ = 0.1, the dense case of Φ = 0.2 shows a much
slower mixing rate. This behavior suggests a strong change in the turbulent dynamics
that is at the basis of the dispersion properties of the fluid system.

To quantify how turbulence is modulated by the increase of the particle volume
fraction, we present the fluid phase statistics in Fig. 2. Panel (a) shows the mean
velocity profile normalized by the bulk velocity U/U0 as a function of the wall
normal distance y/h. The mean fluid velocity is quite similar to the unladen case
up to Φ ≤ 0.1, while at Φ = 0.2 the profile appears higher in the bulk flow region
and smaller around y = h/5. It seems that this dense case exhibit a mean velocity
profile between the laminar parabola and the turbulent unladen mean profile, though
still more similar to turbulent case. It should be noted however that the wall shear of
the mean velocity profile is similar for all the cases and actually slightly increases
with the volume fraction, i.e. higher friction coefficient.

Panels (b, c and d) display the root-mean-square (rms) of the fluid velocity fluctu-
ations in the streamwise urms , wall-normal vrms , and spanwisewrms directions versus

(a) (b)

Fig. 1 Instantaneous snapshots of the particle configuration. Particle are coloredby theirwallnormal
(vertical) position at the time t = 0 that corresponds to the first statistically stationary field. a time
t = 0; b time t � 20 h/U0
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Fig. 2 Velocity single-point statistics versus channel height y/h in outer units. Panel a mean fluid
velocityU/U0; Root-mean-square of the fluid velocity fluctuations: panel b urms streamwise, panel
c vrms wall-normal, panel d wrms spanwise component

y/h. The peak of the streamwise velocity fluctuations monotonically decreases with
the volume fractionΦ, while it shows similar levels in the bulk. Conversely, the peaks
of the other two components are not smaller than the unladen cases. For the dense
case,Φ = 0.2, we found smaller fluctuation levels (20 ÷ 30% less) for the spanwise
and wall-normal components than the unladen case in the bulk of the flow. Hence
we find a strong attenuation of the turbulence in the dense case, while cases with
Φ = 0.05 ÷ 0.1 show similar turbulence levels as in the unladen case. The reduced
turbulent activity at Φ = 0.2, especially in the wall-normal direction, explains the
reduced particle mixing.
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