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Foreword

In the past decade the field of Complexity Science has moved into a new stage of its
life. The big data and information technology revolutions are finally providing the
necessary data, numerical experiments and validation tests to the many conceptual
and theoretical advances that complex systems science has already provided to a
large number of scientific disciplines. These fast paced developments are aug-
menting complex systems science with an “applied” dimension. Our increasing
capability to solve many open problems, in a large diversity of scientific fields, has
made it possible that Complex Systems Science becomes one of the conceptual and
methodological keys to understand and deal with important real-world challenges
that range from epidemics and traffic congestions, to systemic risks and cultural
evolution, to cite a few.

In this framework, it is no wonder that the Complex Systems Society, gathering
all researchers engaged in complex systems research has grown and developed
along the same lines. The general Society conference is annually gathering about
1,000 scientists from all disciplines and it is a meeting point where every scientist
interested in complex systems research can network the collective with a vibrant
research community.

The annual conference on Complex Systems of 2014, organized at the IMT
School for advanced studies in Lucca, was a smashing success, breaking many
records for attendance, number of presentations—more than 200—and parallel
workshops. The Lucca conference is certainly a milestone in the life of the field and
the Complex Systems Society. We are extremely glad to see that the chairmen
of the conference Guido Caldarelli and Stefano Battiston—Chairmen of the Lucca’s
conference—have teamed up with Francesco De Pellegrini and Emanuela Merelli to
edit a book that collects a selection of 27 papers presented at the conference. The
final result is a proceedings volume that is truly representative of the wide range of
problems addressed by the community and the depth of the technical approaches
used to tackle them. It speaks loudly for itself and we are sure that it will also
become a reference for those that want to grasp what the community is doing
nowadays.
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On behalf of the Complex Systems Society and its members we thank the
organizers of the conference and the editors of this Proceedings of ECCS 2014 for
all their work, the exemplary engagement and their service to Complex Systems
Science.

Alessandro Vespignani
President of the Complex Systems Society 2012–2015

Boston, MA, USA

Yamir Moreno
President of the Complex Systems Society 2016–2019

Zaragoza, Spain
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Preface

This volume collects a series ofmultidisciplinary contributions in the field of complex
systems science. Several works presented in this collection pivot on the theory and
applications of formal and computational approaches. These methods are suitable to
construct and simulate models of complex systems so as to analyse their properties.
This is indeed an emerging research area encompassing a broad range of fields
including—but not limited to—physics, computer science and mathematics, eco-
nomics, business, political science, biology, sociology, neuroscience and medicine.
The collection is thus addressed to the newgeneration of transdisciplinary researchers.

The work contains contributions which have been initially discussed in the
European Conference on Complex Systems (ECCS’14) held at IMT, Lucca from 22
to 26 September 2014, under the sponsorship of the Complex Systems Society.
ECCS’14 is a major international conference in the area of Complex Systems and
interdisciplinary science in general. The main aim is to offer unique opportunities to
study novel foundational approaches in a multitude of application areas. Thus, it
spans from Complexity in ICT and Social Systems, to Complexity in
Infrastructures, Complexity in Environment and Cities, Complexity in Natural
Sciences, Complexity in Humanities, Linguistics and Society Complexity in
Economics and Finance.

The project had an internal call for papers presented at the ECCS14 Conference.
It contains a selection of 27 papers which originated from the conference oral
presentations and poster sessions. All the manuscripts are extended versions of the
contributions presented there and went through an independent review process.

The editors express their thanks to all authors of the articles submitted to this
special issue. They also acknowledge the efforts of our many reviewers for their
help in selecting the papers published in this special issue.

Zürich, Switzerland Stefano Battiston
Trento, Italy Francesco De Pellegrini
Lucca, Italy Guido Caldarelli
Camerino, Italy Emanuela Merelli
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Chapter 1
Detection of Non-self-correcting Nature
of Information Cascade

Shintaro Mori, Masafumi Hino, Masato Hisakado
and Taiki Takahashi

Abstract We propose a method of detecting non-self-correcting information
cascades in experiments in which subjects choose an option sequentially by observ-
ing the choices of previous subjects. The method uses the correlation function C(t)
between the first and the t + 1th subject’s choices. C(t) measures the strength of the
domino effect, and the limit value c ≡ limt→∞ C(t) determines whether the domino
effect lasts forever (c > 0) or not (c = 0). The condition c > 0 is an adequate con-
dition for a non-self-correcting system, and the probability that the majority’s choice
remains wrong in the limit t → ∞ is positive. We apply the method to data from two
experiments in which T subjects answered two-choice questions: (i) general knowl-
edge questions (Tavg = 60) and (ii) urn-choice questions (T = 63).We find c > 0 for
difficult questions in (i) and all cases in (ii), and the systems are not self-correcting.

1.1 Introduction

Herding phenomena are ubiquitous in human and animal behavior [1, 2]. An example
is an information cascade, in which a person observes others’ choices and chooses
the majority’s choice even though the person’s private signal contradicts it [3, 4]. It
is a rational behavior for people who are uncertain about choosing. If an information
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cascade occurs, the samemechanism applies to later decision-makers, and themajor-
ity’s choice tends to prevail. In some cases, the successive choices are wrong, and
the cascade leads to irrational herding behavior [5].

An experimental setup demonstrates a situation in which an information cascade
occurs [6]. There are two urns, A and B, and urn A (B) contains two a (b) balls and
one b (a) ball. In each run of the experiment, an urn is randomly chosen initially and
called X. Then, the subjects guess whether urn X is A or B and choose sequentially.
They get a reward for the correct choice. In the course of the experiment, each subject
draws a ball from X, which is his private signal. If the ball is a (b), urn X is more
likely to be A (B). He also observes the choices of the previous subjects. If the
difference between the numbers of subjects who choose each urn exceeds two, the
private signal cannot overcome the majority’s choice. An information cascade starts
if someone chooses the majority’s choice although his private signal suggests the
minority’s one. As the probability that the first two persons both choose the wrong
option is non-zero, the probability for the onset of a cascade where the majority’s
choice is wrong is positive.

We now consider whether the wrong cascade continues [5]. If it continues forever,
the majority’s choice converges to the wrong option. Information cascades were
initially considered to be fragile phenomena. As the trigger of the cascade is a small
imbalance, people can be dissuaded from following the majority’s choice [3]. In
addition, an agent model with a Bayesian update of the private belief showed that
the information cascade is self-correcting [8]. As the number of agents tends toward
infinity, the wrong cascade disappears, and the majority’s choice converges to the
optimal option.

Using an information cascade experiment with a general knowledge two-choice
quiz, we have shown that a phase transition occurs between a one-peak phase and a
two-peak phase [9]. If the questions are easy, the ratio z(t) of the correct choices of t
subjects converges to a value z+ > 1/2 in the limit t → ∞. As there is only one peak
in the probability distribution function of z(t), we call the corresponding phase the
one-peak phase [10, 11]. If the questions are difficult and most people do not know
the answers, z(t) converges to z+ > 1/2 or z− < 1/2. One cannot predict the value
in {z+, z−} to which z(t) converges. We call the corresponding phase the two-peak
phase. In the two-peak phase, the wrong cascade does not necessarily disappear, and
the system is not self-correcting.

It was recently shown that the limit value of the normalized correlation function is
the order parameter of the phase transition [14]. The normalized correlation function
shows how the first subject’s choice propagates to later subjects. It provides ameasure
of the domino effect. In addition, the positiveness of the limit value is a sufficient
condition for a non-self-correcting system. By extrapolating the results for a finite
system to infinity, we can determine whether the system is self-correcting. We report
on the application of the method to data from two types of information cascade
experiments. In Sect. 1.2, we define the normalized correlation function. We also
explain the behavior of the function in each phase and the extrapolation method used
to estimate its limit.We present the results of the data analysis in Sect. 1.3. Section1.4
summarizes the results.
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1.2 Correlation Function and Asymptotic Behaviors

We consider a typical information cascade experiment. T subjects answer a two-
choice question sequentially in each run. We denote the order of the subjects as
t , where t = 1, 2, . . . , T . We denote the choice of subject t by X (t) ∈ {0, 1}, t =
1, 2, . . . , T . If the choice is true (false), X (t) takes 1 (0).

The correlation function C(t) is defined as the covariance between X (1) and
X (t + 1) divided by the variance of X (1):

C(t) ≡ Cov(X (1), X (t + 1))/Var(X (1)).

C(t) can be expressed as the difference of two conditional probabilities.

C(t) = Pr(X (t + 1) = 1|X (1) = 1) − Pr(X (t + 1) = 1|X (1) = 0). (1.1)

C(t) shows the degree to which the first subject’s choice is transmitted to later
subjects. It is a measure of the domino effect in an information cascade.

C(t) is generally positive, and its asymptotic behavior depends on the phase of
the system and the shape of the response function q(z). Here q(z) represents the
dependence of the probability of the correct choice by subject t + 1 on the ratio z(t)
of the correct choices of the previous t subjects.

q(z) ≡ Pr(X (t + 1) = 1|z(t) = z), z(t) = 1

t

t∑

s=1

X (s).

With the definition of q(z), the stochastic process {X (t)}, t = 1, 2 . . . becomes a
generalized Pólya urn process [12]. If there is one solution for z = q(z) at z+ (left
panel in Fig. 1.1), z(t) converges to z+. C(t) shows power-law decay for large t with
two constants, c′ and l, as

Fig. 1.1 Response function q(z) versus z. Left panel shows the one-peak phase, in which there
is one solution, z+, for z = q(z). Right panel shows the two-peak phase, in which there are three
solutions, z− < zu < z+, for z = q(z)
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C(t) � c′ · t l−1 l < 1.

Here, l is the exponent for the power-law decay and is less than 1. The value of l is
given by g′(z+) [11, 13]. If there are three solutions for z = q(z) at z− < zu < z+
(right panel in Fig. 1.1), the system is in the two-peak phase; limt→∞ z(t) =
z+ or z− [12]. The limit value c ≡ limt→∞ C(t) is positive, and the first subject’s
choice propagates to an infinite number of later subjects [14]. C(t) behaves asymp-
totically as

C(t) ∼ c + c′ · t l−1. (1.2)

Here c′ · t l−1 is the subleading term of C(t), and l is given by the larger value among
{g′(z+), g′(z−)}. Further, c acts as an order parameter of the phase transition, and
(1.2) is the general asymptotic behavior of C(t) [15].

As it is difficult to estimate c using c ≡ limt→∞ C(t) with empirical data, where
the system size and number of samples are strictly limited, we introduce two quan-
tities for the estimation. First, we define the nth moment mn(t) for C(t) as mn(t) ≡∑t−1

s=0 C(s)(s/t)n . We define the integrated correlation time τ(t) as τ(t) = m0(t).
We also define the secondmoment correlation time ξ(t) as ξ(t) ≡ t · √m2(t)/m0(t).
Using the asymptotic behavior ofC(t), we estimate the subsequent asymptotic behav-
ior of τ(t)/t and ξ(t)/t .

τ(t)/t � c + c′

l
· t l−1 (1.3)

ξ(t)/t →
{√

l/ l + 2 c = 0√
1/3 c > 0

(1.4)

As τ(t)/t is defined as the summation of C(s) over 0 ≤ s < t divided by t , the
standard error becomes smaller than that of C(t). The asymptotic behavior of τ(t)/t
in (1.3) provides a more reliable estimate of c and l than the fitting of C(t) to (1.2).
ξ(t)/t also provides a reliable estimate for l [15]. If c > 0, the leading term of C(t)
is the constant c, and l should be interpreted as l = 1.

We define whether the system is self-correcting according to whether z(t)
always converges to z+. In the one-peak (two-peak) phase, the system is (non-)self-
correcting. If c > 0, the system is in the two-peak phase and is non-self-correcting.
However, c = 0 does not necessarily mean that the system is self-correcting. For the
system to be self-correcting, q(z) = z has to have only one solution, z+.

1.3 Domino Effect and Detection of Non-self-correcting
Nature

We study the domino effect and non-self-correction in information cascades. We
discuss two types of information cascade experiments.
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In experiment 1 (EXP-I), subjects answered a general knowledge two-choice quiz.
First, the subjects answered using only their own knowledge. Then, they observed the
choices of previous subjects and answered the question again. The average length of
the sequence of subjects is T = 60, and the number of choice sequences is 240. The
choice sequences are classified into four bins according to the ratio of correct choices
z0(T ) of the first answers without observation as z0(T ) = 50 ± 5, 60 ± 5, 70 ± 5,
and 80 ± 5%, and the number of samples in each bin is 38(50 ± 5%), 52(60 ±
5%), 38(70 ± 5%), and 38(80 ± 5%), respectively [16].

Experiment 2 (EXP-II) is similar to the situation explained in the Introduction.
There are two urns, A and B, which contain a and b balls in different configurations.
We use two configuration patterns: (i) two a balls and one b ball in urn A versus
one a ball and two b balls in urn B and (ii) five a balls and four b balls in urn A
versus four a balls and five b balls in urn B. Urn X ∈ {A,B} is chosen at random at
the beginning of each run, and subjects are asked to choose between A or B. Each
subject draws one ball from X and checks whether it is a or b. The ball corresponds
to the type of urn X with probability q = 2/3(5/9) for (i) [(ii)]. In addition, the
subject also observes the choices of previous subjects. Our results, unlike those of
previous experiments [6–8], show the summary statistics of the number of subjects
who have chosen each urn. The length T and number of questions I are 63 and 200,
respectively, for q ∈ {2/3, 5/9} [17].

We denote the choice sequences in each bin as {X (i, t)}, i = 1, . . . , I, t =
1, . . . , T (i). Here, the length of the sequence depends on question i in EXP-I;
we denote it as T (i). The number of samples I also depends on the bins. In
EXP-II, T (i) = 63, and I = 200. First, we estimate C(t) and its standard error
ΔC(t) using (1.1). We denote the estimate and standard error of the probabilities
as qx (t + 1) = Pr(X (t + 1) = 1|X (1) = x) and Δqx (t + 1), respectively. They are
estimated from experimental data {X (i, t)} as

qx (t + 1) = 1 + ∑I
i=1 X (i, t + 1)δX (i,1),x

Nx + 2
,

Nx =
I∑

i=1

δX (i,1),x ,

Δqx (t + 1) =
√
q(x, t + 1)(1 − qx (t + 1))

Nx + 3
.

Here, we use the expectation value and standard deviation obtained from the posterior
probability distribution for the probabilities. C(t) is then estimated as

C(t) = q1(t + 1) − q0(t + 1).

The error bars of C(t) are given as

ΔC(t) =
√

Δq1(t + 1)2 + Δq0(t + 1)2. (1.5)
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Using C(t) and ΔC(t), we estimate the error bars of mn(t) as

Δmn(t) =
√√√√

t−1∑

s=1

ΔC(s)2(s/t)2n.

Here we assume that ΔC(s) and ΔC(s ′) are independent of each other if s �= s ′. We
estimate the error bars of τt (t) and ξt (t) as

Δτt = 1

t
Δm0(t),

Δξt = √
ξt (Δm2(t)/2m2(t) + Δm0(t)/2m0(t)). (1.6)

In the estimation ofΔξt , we assume thatΔm2(t) andΔm0 are completely correlated.

1.3.1 EXP-I: General Knowledge Quiz Case

Figure1.2 plots C(t) versus t . The value of C(t) generally decreases from its initial
value of 1 with increasing t . Because the sample number is restricted,ΔC(t) is large.
We see that for difficult questionswith z0(T ) = 50 ± 5 and 60 ± 5%,C(t) is positive
for large values of t . On the other hand, for easy questions with z0(T ) = 70 ± 5
and 80 ± 5%, C(t) decreases to zero with increasing t . These results suggest that
the system is in the two-peak phase for difficult questions. For z0(T ) = 70 ± 5 and
80 ± 5%, an analysis of q(z) showed that the systemwas in the one-peak phase [16].

Fig. 1.2 C(t) versus t for
EXP-I. The sample choice
sequences are classified
according to the value of
z0(T ) as z0(T ) =
50 ± 5% (filled quare), 60 ±
5% (opened circle), 70 ±
5% (opened triangle), and
80 ± 5%(opened down
triangle). We plot only data
with the interval Δt = 5. To
see the behavior clearly, we
slightly shift the data
horizontally
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Fig. 1.3 ξ(t)/t and τ(t)/t
versus t for EXP-I with the
interval Δt = 5. We also plot
the fitted results for τ(t)/t
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Figure1.3 shows plots of ξ(t)/t and τ(t)/t versus t . The standard errors for
ξ(t)/t are larger than those for τ(t)/t because ξ(t) is calculated with the second
moment m2(t). For large values of t , ξ(t)/t takes

√
1/3 for difficult questions with

z0(T ) = 50 ± 5 and 60 ± 5%. The results suggest that the system is in the two-peak
phase. For easy questions with z0(T ) = 70 ± 5 and 80 ± 5%, ξ(t)/t � 0.5 for large
values of t . As ξ(t)/t � √

l/ l + 2, l � 0.7 for easy questions. As l is smaller than
1, the system is in the one-peak phase.

As the system is considered to be in the two-peak phase for z0(T ) = 50 ± 5
and 60 ± 5%, we assume τ(t)/t = c + d · t l−1 and estimate c, l, d using the least
square fit. We find that c = 0.297(2) for z0(T ) = 50 ± 5% and c = 0.26(1) for
z0(T ) = 60 ± 5%. For z0(T ) = 70 ± 5 and 80 ± 5%, we assume τ(t)/t = d · t l−1

and estimate l and d. We find that l = 0.43(1) for z0(T ) = 70 ± 5% and l = 0.35(1)
for z0(T ) = 80 ± 5%, which differ slightly from the value of l � 0.7 estimated from
ξ(t)/t .



8 S. Mori et al.

1.3.2 EXP-II: Urn Choice Case

Figure1.4 shows plots of C(t), ξ(t)/t , and τ(t)/t versus t for q ∈ {2/3, 5/9}. As
the number of samples is larger than that in EXP-I, the standard errors are smaller
than the symbols’ size for τ(t)/t and large t . We see that C(t) is positive for large
values of t for both cases of q, where q ∈ {2/3, 5/9}. In addition, ξ(t)/t for large
values of t converges to

√
1/3, and the exponent l for C(t) ∼ t l−1 is almost one.

These results suggest that the system is in the two-peak phase for both values of q.
We assume τ(t)/t = c + d · t l−1 and estimate c, l, d using the least square fit. We
find that c = 0.261(1) for q = 2/3 and c = 0.207(1) for q = 5/9.
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Fig. 1.4 C(t), ξ(t)/t , and τ(t)/t versus t for EXP-II. We use the symbol opened square (opened
circle) for q = 2/3(5/9). We plot only data with the interval Δt = 4. To see the behavior clearly,
we slightly shift the data horizontally
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1.4 Conclusion

Westudied the self-correcting nature of information cascades.Weproposed the use of
the normalized correlation function C(t), which shows how the first subject’s choice
is propagated to later subjects and measures the strength of the domino effect in
information cascades. c ≡ limt→∞ C(t) > 0 is a sufficient condition for a non-self-
correcting information cascade. In this case, the domino effect continues infinitely.
The system is in the two-peak phase, and the probability that z(t) converges to z− <

1/2 is positive. We used data from two types of information cascade experiment:
EXP-I, which used a general knowledge quiz, and EXP-II, which used urns. The
accuracy q of the private signal is q ∈ {2/3, 5/9} in EXP-II. We estimate C(t) and
its integrated quantities τ(t) and ξ(t). In EXP-I, when the questions were difficult,
c > 0. In EXP-II, c > 0 for both cases of q where q ∈ {2/3, 5/9}. In these cases, the
system is non-self-correcting.

We focus on the study of the non-self-correcting nature of information cascades.
Although c > 0 is a sufficient condition for a non-self-correcting cascade, c = 0 is
not a sufficient condition for a self-correcting cascade. To verify this, one should
study the response function q(z) and count the number of solutions for z = q(z).
Alternatively, it is necessary to study the limit value of the variance of z(t). If there is
only one solution, z+ > 1/2, or the limit value is zero, the system is self-correcting.
In EXP-I, we studied these points and concluded that the system is self-correcting
for z0(T ) = 70 ± 5 and 80 ± 5% [16]. Our experiment for EXP-II and its analysis
are under way [17].

Acknowledgments This work was supported by Grant-in-Aid for Challenging Exploratory
Research 25610109.
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Chapter 2
Fitting Planar Proximity Graphs
on Real Street Networks

Dimitris Maniadakis and Dimitris Varoutas

Abstract Due to the rising progress of sustainable urban infrastructures, modeling
realistic street networks is a fundamental challenge. This study contributes to this
modeling direction, by suggesting the utilization of planar proximity graphs, and
specifically the β-skeleton graphs. Their goodness of fit on producing real-like urban
street networks is verified by comparison to real data. In particular, the basic topo-
logical and geometrical properties derived from synthetic β-skeleton planar graphs
are compared to the properties of five urban street network datasets, all represented
using the Primal approach. A good agreement with empirical patterns is found and
a possible explanation is discussed.

2.1 Introduction

There are broad agreements that the street patterns shape overlay infrastructure
deployment since they define a basic template which strongly constrains the further
development of other webs (e.g., power grid or communication networks). Due to
the rising progress of sustainable urban infrastructures, understanding and modeling
the structure of street networks is an elementary challenge. Despite a large num-
ber of studies on street networks, the existing modeling methodologies are mostly
long, random-based and simulation-based, which require several assumptions for
generating a realistic street layout, e.g., [1].

On the other hand, the construction of planar proximity graphs can be straightfor-
ward by using analytical or simulation methods. Planar proximity graphs are planar
graphs (edges intersect only in the points/nodes) where two points in Euclidean
plane are connected by an edge if they are close in some sense. Each pair of points
is assigned a certain neighborhood, and the points of the pair are connected by an
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edge if their neighborhood is empty. The Delaunay Triangulation (DT), the Relative
Neighborhood Graph (RNG), the Gabriel Graph (GG) and the Minimum Spanning
Tree (MST) are well known examples of proximity graphs. These are constructed
by parameter-less algorithms, given the nodes positions. Specifically, the DT for a
set of points in a plane is a triangulation such that no point is inside the circumcircle
of any triangle; the RNG is defined by connecting two points whenever there does
not exist a third point closer to both points; the GG is a graph where two points have
an edge between them if no other point exists in the circumball containing the two
points; last, theMST is a tree consisting of all points while having the minimum total
weight (length). Though, the β-skeleton graphs [2] constitute a parameterized family
of planar proximity graphs where different β values give rise to different graphs.

This study contributes to the urban streetmodeling, examining the fitness of planar
proximity graphs, particularly the β-skeleton graphs, on real street networks with
complex characteristics. Additionally, a possible explanation is discussed concerning
the findings of the analysis.

The rest of this paper is structured as follows. Section2.2, contains some pre-
liminaries on the β-skeleton concept. The datasets and the methodology used are
described in Sect. 2.3, while the results of applying the methodology are presented
in Sect. 2.4. Section2.5 discusses a possible explanation of the findings and finally
Sect. 2.6 concludes the study.

2.2 The β-Skeleton Graphs

In the lune-based neighborhoods approach [2], given a spatial distribution of points
S in two-dimensional space, two points u and v are connected by an edge whenever
the intersection of the two disks of radius r , centered at the points c1 and c2, contains
no points of S (see Fig. 2.1).

The case β = 0 corresponds to the DT, β = 1 corresponds to the GG and β = 2
corresponds to the RNG. For 1 ≤ β < ∞, the radius and the disk centers are defined
as follows:

Fig. 2.1 Definition of
β-skeleton in the lune-based
variant for 1 ≤ β < ∞
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while for 0 < β < 1 the two disks pass through both u and v, with radius given by:

r = D(u, v)

2 · β
(2.4)

The parameter β determines the size and shape of the lune-based neighbourhood.
With the increase of β, the number of edges in the β-skeleton decreases (see Fig. 2.2).

A β-skeleton of a random planar set usually becomes a disconnected graph for
β > 2 and continues losing its edges with further increase of β [3]. On the other
hand, as β approaches zero, more and more edges are added to the β-skeleton until
it eventually forms the complete geometric graph. For 1 ≤ β ≤ 2, the following
relationships among the different proximity graphs hold for any finite set of points
S in the plane:

DT (S) ⊇ GG(S) ⊇ β − skeleton(S, β) ⊇ RNG(S) ⊇ MST (S) (2.5)

Since urban street networks are usually connected networks neither DT-like,
nor MST-like [4], it is thus of interest to answer to the following questions; (a) is
there sufficient accuracy when using β-skeletons with 1 ≤ β ≤ 2 to reproduce urban
street networks? (b) is there a particular β value or subrange of values for which the
accuracy is better? (c) what is the possible mechanism that leads real street networks
to be associated with particular β values?

Fig. 2.2 Graph visualizations for the same set of 100 points: a delaunay triangulation (β = 0),
b Gabriel graph (β = 1), c β-skeleton (here β = 1.4), d relative neighborhood graph (β = 2),
e minimum spanning tree
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Table 2.1 The datasets used for the goodness of fit verification

Dataset Number of samples Area

Cardillo et al. [5] 20 World

Peponis et al. [6] 118 USA

Strano et al. [7] 10 Europe

Chan et al. [8] 21 Germany

Maniadakis et al. [9] 100 Greece

2.3 Dataset and Methodology

2.3.1 Data

Five literature datasets of street networks [5–9] are used in order to compare their
properties to those derived from the β-skeleton graphs. The properties of the 269
dataset samples in total (Table2.1) are here normalized to correspond to 1km2

surface.

2.3.2 Methodology

The Primal approach [10] is used in studies [5–9] in order to turn Geographic Infor-
mation System (GIS) data into spatial, weighted, undirected graphs G(V, E, L) by
associating nodes, V , to street intersections and edges, E , to streets (see Fig. 2.3),
with length, L , as a weight.

For every sample,1 obtained using the Primal approach, beyond the number of
nodes |V | (graph order), the basic statistical metrics are calculated (see Fig. 2.4); the
number of edges |E | (graph size), the density, the average node degree, the diameter,
the average shortest path length and the cost (total wiring length).

Then, β-skeleton graphs are produced by simulations, tuning only the number
of nodes (10 ≤ |V | ≤ 1000) and the β parameter (1 ≤ β ≤ 2). The same set of
properties is computed for the β-skeleton graphs as well, and the resulting goodness
of fit,with respect to the properties of the samples, is evaluated. In particular, theMean
Absolute Percentage Error (MAPE) measure is used for evaluating the comparison
of the derived β-skeleton properties with the actual properties.

1 In the samples where the entire set of these properties is not available, only the available properties
are kept.
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Fig. 2.3 A sample from the dataset of [9]. a The conventional street map, b the corresponding
Primal graph

Fig. 2.4 Four of the properties as derived from real street datasets and from synthetic β-skeletons
with β = 1.4 (the rest of the properties are not presented here due to lack of space)
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2.4 Results

What the results of this study indicate is the sufficient ability of the β-skeleton graphs
on the reproduction of the real urban street networks properties. TheMAPE variance
is observed in Fig. 2.5 per β value and per dataset. The β-skeletons with 1 ≤ β ≤ 2
can lead to fitting errors of less than 10% for certain β values. Specifically, the
values of β yielding the highest averaged goodness of fit (lower MAPE), for the
entire set of the examined statistical properties and for all five datasets, are found to
span between 1.2 and 1.4 with β = 1.4 having the less errors (Fig. 2.6). Especially,
for parameter β = 1.4 the average of MAPE of all properties and all datasets is as
low as 8%. A recent study by Osaragi and Hiraga [11] has concluded to similar β

values too. In particular, they found that β lying between 1.15 and 1.45 corresponds
to a maximum “agreement rate” between synthetic β-skeletons and streets of the
Tokyo metropolitan region. Even though their study was geographically restricted
and limited in the “agreement rate” index without investigating global topological
and geometrical properties, however this matching of β values is remarkable.

Fig. 2.5 The average of
MAPE for each of the five
datasets

Fig. 2.6 The average of
MAPE of all five datasets



2 Fitting Planar Proximity Graphs on Real Street Networks 17

Fig. 2.7 The average of
MAPE of all five datasets for
the set of the basic statistical
properties

The GGs (β = 1) and the RNGs (β = 2) can exhibit large errors when fitting real
street properties. For instance, for the same planar set of nodes, the GGs produce
higher number of edges and the RNGs generate graphs of quite less length compared
to actual street networks. More specifically, as observed in Fig. 2.7, the diameter,
the average shortest path length and the cost, all have the same behavior in terms
of MAPE minimization with corresponding β values varying between 1.2 and 1.4.
Regarding the rest of the basic properties, i.e., edges, density and average node
degree, theMAPEminimization is shifted to slightly higher β values, approximately
between 1.4 and 1.7. This implies that β-skeletons for 1.2 ≤ β ≤ 1.4 may have
almost identical properties with real street networks; however this arises with slightly
increased number of edges compared to real street networks of the same order.

2.5 Discussion

Following the findings presented in the previous section, an intriguing question
emerges. What is the mechanism that leads the majority of real street networks
to have β-skeletons as equivalent graphs with β ranging between 1.2 and 1.4? Since
it is natural for one to expect lower β values, as this would imply larger efficiency,
is there a mechanism that restricts the network size and structure from going toward
the DT characteristics (β = 0)? In this section, a possible explanation is attempted.

The hypothesis assumed here about the mechanism behind deriving the particular
β values is that it may be a consequence of the percentage of land occupied by streets.

In their book [12] Meyer and Gómez-Ibáñez used data from the 1960s to exam-
ine the relationship between population density and land area in streets for 15 large
cities in the United States. The majority of the investigated cities had a share of
land in streets between 20 and 30%. In addition, the results of a more recent study
[13] indicate similar percentages of land for street space. It is likely to believe that
this proportion is bounded at a certain level in urban areas, since the remaining land
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is needed for buildings, parks, plazas, parking, etc., and according to the above-
mentioned empirical data this is around 30%. Starting from this share of land used
in streets, i.e., 20–30%, and then constructing β-skeleton as street network, it is
expected that particular β values will derive, as this percentage would limit the street
network size and thereafter affect its structure.

More specifically, it is found that specific shares of land in streets correspond
to specific values of normalized street network cost. Normalized cost (costrel) is a
cost measure defined in [5, 9] with the introduction of two auxiliary graphs for each
sample, which serve as two extreme cases; the respective MST (minimum cost) and
the respective DT (maximum cost):

costrel = Lgraph − LMST

LDT − LMST
(2.6)

Let s be the share of land in streets, e be the surface and w be the width of the street.
Then, Lgraph is defined as:

Lgraph = s · e + |V | · <k> · w2

w
(2.7)

where the term <k> stands for the average node degree, therefore |V | · <k> · w2

is added in order to take into account the multiple counting of the land at street
intersections. Even though Lgraph can vary with the number of nodes, the costrel
only slightly varies with the number of nodes, since it is normalized between the
MST and the DT values. Thus, the figures that follow depict an average of values,
whereas no large deviation is observed when testing 10–1000 nodes/km2.

The derived normalized cost2 values are similar to those actually observed in real
street networks, e.g., [5]. The street width obviously can vary by city and by country.
Here, the indicative values w = 10 m, w = 15 m, w = 20 m are set, with more
realistic the case of w = 15m. Actually, a large width w implies less total wiring
and thus lower normalized cost. It is observed that 20–30% share of land in streets
corresponds to 20–30% normalized street network cost (see Fig. 2.8a).

Then, it is possible to associate the normalized cost values with β values, since
each β-skeleton corresponds to a cost between the respective MST and the respec-
tive DT costs. By running simulations, synthetic β-skeletons are produced and the
relationship between normalized cost and β values is found (see Fig. 2.8b). This
relationship is used for mapping the normalized cost to specific β values. Indeed,
for 20–30% normalized cost, the corresponding β values belong to the subrange
between 1.2 and 1.4 (see Fig. 2.8b). As expected, these are the values of β associ-
ated with real urban street networks. This is more clearly seen in Fig. 2.9, where the
overall relationship between parameter β and the share of land in streets is drawn,
depicting the sensitivity of street width as well. In short, a certain level of structural

2 It should be noted that the normalized cost is not a measure of construction cost, but only an index
of how long the wiring of the graph is, compared to the respective extreme planar graphs (MST and
DT).
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Fig. 2.8 a The relationship between normalized cost and share of land in streets, b the relationship
between normalized cost and parameter β

Fig. 2.9 The relationship
between parameter β and the
share of land in streets

similarities across urban areas as well as some differences may be well captured by
the different shares of land in streets, and thus the different β values. Though, for
realistic values of street width and reasonable shares of land used in streets, the urban
street networks are found to be associated with a specific range of β values; the same
range that was empirically observed.

2.6 Conclusion

Planar proximity graphs based on β-skeletons, which change as a response to vari-
ations in parameter β, were employed in the present study. Particularly, they were
considered from the viewpoint of the topological and geometrical structure and were
compared to real street networks.
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The good agreement with empirical street data that was found to characterize the
β-skeleton graphs induces their utilization—particularly for β values between 1.2
and 1.4—in modeling complex urban street networks and assisting various appli-
cations, more essentially those concerning street-constrained processes. Besides,
the reasoning behind associating real street networks with the particular β values
was discussed and a possible mechanism based on the share of land in streets was
sketched.
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Chapter 3
Qualitative Methods for the Exploration
of Complexity in Human Social Systems:
Applications in Family Psychology

Ana Teixeira de Melo and Madalena Alarcão

Abstract The studyofComplexSystemshas expression in themanyfields dedicated
to human social systems. However, Family Psychology has been slow in integrat-
ing contributions from complexity science, although the interaction could open new
research avenues towards a deeper understanding of the processes underlying fam-
ily emergence, development, change and adaptation. The mathematics of complex
systems are appealing and many authors have applied them in psychological studies.
However, there are many aspects of the family, as a human social systems, which are
not amenable to quantitative analyses, at least without significant loss of the same
features of complexity that need to be understood. In this paper, we discuss the use
of qualitative methods in complexity research and present an integrative view of
a Complexity-Informed, Qualitative, Case-Based Discovery-Oriented Family Psy-
chology, oriented by a General Complexity Thinking approach where Abduction,
along with induction and deduction, drives the enlargement of our understanding of
complexity.

3.1 Introduction

Family science, in general, and family psychology, in particular, have, at their core, a
systemic orientation [1].Nevertheless, the systemic thinking easily vanisheswhen the
methods chosen or the research designs oversimplify or fail to attend to the complex-
ity of the family as a multidimensional collective entity, with particular properties.
As a complex system, the family emerges from multiple and complex interactions
among different, also quite complex, elements and by a close and mutually deter-
mined relationship with other social systems and ecological conditions.
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Family Psychology has been slow in incorporating contributions from Complex-
ity science in order to deepen its knowledge about the collective properties of the
family, and the processes sustaining it and leading it through transformations in time,
which affect and are affected by its individual elements. There are some success-
ful examples of integration of a complex dynamical systems perspectives in both
quantitative and qualitative or mixed methods research in the field of psychology
and developmental research [2]. Nevertheless, a lot of the research to date presents a
very specific, relatively narrow focus or strategic orientations (e.g. aiming to under-
stand the dynamics of a very particular dimension of a family relationship) that are
insufficient to address fundamental questions regarding how the families emerge,
what sustains them and how they change [3].

Complexity may inspire the raise of (re)new(ed) research questions and open new
fields for exploration. It also offers a great variety of methodological and analytic
tools that can be used, adapted and combined with other methods and even inspire
the development of new ones [4], more suited to address core questions [3]. Complex
systems perspectives have informed a revision of methods in psychology, particu-
larly concerning quantitative methods and the number of [5]. In the absence of an
integrative complex thinking perspective, research outcomes in psychology, in gen-
eral, and family psychology in particular, will continue to appear too limited for a
true expansion of our understanding.

Family psychology suffers from many of the fragilities affecting psychology in
general. Among them is an excessive reliance on quantitative methods, research pro-
grams which are mostly variable-oriented and inspired by the search for nomothetic
laws, the reliance on the study of groups, at the cost of learning from what is unique
for individual cases [6, 7]. In fact, as other authors have noticed for psychology in
general, family psychology has made its course more focused on building isolated
pieces of evidence than in developing integrated theories and on studying isolated
parts (even if they are sub-systems) more than the whole [7]. Although there are
exceptions, it is more frequent for family studies to consider sub-systems or dyads
(e.g. parent-child subsystem) rather triads or the family functioning as a whole, and,
oftentimes those sub-system are studied in isolation from the larger one [8]. On
the other hand, albeit exemplary exceptions [9], the investigation of the dynamics
of families as complex systems does not take a leading role in fundamental and
applied/intervention family psychology research.

Under the influence of Complexity Science, Family Psychology could re-connect
with its systemic heritage in order to expand its outlook and find novel and potentially
more useful ways to understand how families emerge and develop into such diverse
forms. Under the scope of Complexity, Family Psychology could better understand
the diversity of experiences among families and learn more about what connects the
individual and the whole, as well as their mutual influence and change processes.
It could also, more thoroughly, explore family formation, development and change
as well as the multiple forms and pathways of causality associated with different
developmental outcomes.

However, the field of Complex Systems is quite diverse, holding different “Com-
plexities”. A great deal of research is “simplistic” and “restricted” [10], aimed at
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universal, one-size-fits-all laws, driven by an urge to predict and control and to por-
trait a very “clean”, deterministic and straightforward view of a world that seems
sometimes pretty clean, sometimes not so clean and, sometimes, really messy [11,
12]. It is a Complexity still grounded in split metatheories of the world [7], which
neglect, or even reject, many important aspects of how we participate, both indi-
vidually and collectively, in the world. It is, therefore, a complexity science that
fails to fully embrace the complexity thinking that needs to be present in a general
complexity [10].

It is probably in the realm of human existence that we may find the most intrigu-
ing and fascinating features of complex systems, and the most complex forms of
causality.

Many aspects of family systems are not amenable to quantitative analysis, nor
suited for a strict application of mathematical or computational approaches, at least
if one aims at embracing and understanding family complexity without forcing the
results or losing sight of the uniqueness of these systems [13]. On the other hand,
exploration of family complexity should be respectful of the time-bound and context-
specific nature of the complex configurations of features and processes determining
a family’s trajectory [14–16].

We join others who advocate for the development of Complexity-Informed Social
Sciences [17] to defend a Complexity-Informed Family Psychology, capable of
accepting and respecting the uniqueness of the systems under attention, and of inves-
tigating human dynamics with methods whose features are congruent with those sys-
tems. We defend a Science that is not afraid to pay tribute to the rich heritages and
traditions of qualitative and case-based research coming from the Social Sciences.
We believe this integrative Family Psychology should be able to use traditional meth-
ods creatively, with a “complexity twist”, both alone or in combination with other
methods and analytic tools.

In this paper, we present an integrative view of a Complexity-Informed, Quali-
tative and Discovery-Oriented Family Psychology that, without denying the value
of quantitative research calls for a complementary qualitative focus. We reflect on
some of the synergies emerging from the interactions of Complexity Sciences, Com-
plexity Thinking, Qualitative and Case-based methods and Abduction for the field
of family psychology. We briefly discuss how these contributions may enrich Family
Psychology and what emphasis and caution should be used in their integration.

3.2 Investigations of Family (Through) Complexity

3.2.1 Complexity Science and Family Psychology

TheAmerican Psychological Association defines Family Psychology as “a broad and
general specialty in professional psychology founded on principles of systems theory
with the interpersonal system of the family the focus of assessment, intervention and
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research” [18]. Family psychologists are expected to be able to understand human
behavior through the application of systemic concepts [18].

Traditional themes of family psychology research include the investigation of
family functioning and interpersonal relationships within the family, but also the
relationship between the individual and the family relational context, with consider-
ation of a diversity of factors from the biological to intra or interpersonal as well as
social and cultural ones [19]. Family psychology researchers have sought to under-
stand processes implicated in the formation and transformation of relational bonds
exploring their relation to individual and family development, positive, adaptation
and resilience [20].

However, the dominant research paradigms are mostly hypothetical-deductive
and, therefore, limited to testing existing theories. The research process tends to focus
on variables and on measuring the extent their variation is associated with variations
in some outcome of interest, mostly relying on assumptions of linear causality [7].
Evenwhen interactions are considered, the analyses remain quite limited in capturing
that which is truly complex about the family and in seeing the family as a whole, or
its unique collective emergent properties beyond isolated variables.

Dominant research programs tend to overlook more wholesome configurations of
traces [21] characterizing the family as a complex system, and both distinguishing
and classifying the families as belonging to the same type of system.

Developmental dynamic systems theorists brought complexity closer to family
psychology, by importing, adapting and even creating newmethods inspired in Com-
plex andDynamical Systems Sciences to study different aspects of development [22].
However, they are not the majority.

Complexity science and its core concepts [23] invite family psychology to look at
the family in new ways and with new methods. New research questions or different
research focus may be established around topics such as:

• What are the specific properties that allow the identification of a systemas a family?
• What processes constitute a family and underlie its systemic emergence and col-
lective properties?

• What is the nature and properties of the information associated with coupling and
(similar and different) family bonds?

• What changes and how does it change in family through time? What processes of
change are associated with positive development, adaptation and resilience?

• What bottom-up and top-downprocesses are implicated in the relationship between
the individual and the whole and what role do they play?

• What are relevant order parameters or coordination variables to understand dif-
ferent phase transitions? What relevant states and transitions can be investigated
regarding relevant developmental and adaptation outcomes?

• What different type of dynamics and (non linear) processes are associated with
family functioning, change and development? How can they be described?

• What features and properties define the networks or configurations of family bonds
and how do they relate to developmental outcomes?
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While inspiration from Complexity Science is welcomed, importation should
be cautious and empirically grounded and influenced by a General Complexity
approach.

3.2.2 Family Psychology and General Complexity Thinking

Traditional research often fails to incorporate a general complexity thinking, reduc-
ing the family to simple elements or testing some interactions, without being able to
capture and articulate the special emergent properties of the whole and the relation
between levels or boundary conditions. In the lack of a general complexity orienta-
tion, even studies assuming a complex or dynamical systems approachmay be narrow
in focus. In principle, any given aspect of family functioning or its sub-systems can
be assessed through time. However, this alone, even if relying of dynamical systems
mathematics gives us limited information of the properties of the family as a singular
complex eco-self-organized [10] entity or its special features such as its autonomy
or potential for adaptation and change.

As Morin [10] suggested, complexity thinking needs to be able to separate and
distinguish but also to relate and connect. Zooming in may be necessary but it is
fundamental to reflexively integrate the research results back into a whole.

The majority of studies assume, a priori, some properties of the system and test
hypotheses deducted from theories. This has prevented the field frommoving forward
into understanding that which is specific and unique in the organization and dynamics
of the system we call a family [3].

When approaching the family or other human social systems, it is important to
make use of complex tools in order to embrace the naturally occurring complex-
ity. Our methods often oversimplify and we lose touch with what really constitutes
a foundation of our humanity: relationships embedded in other relationships. We
must consider that relationships involve contradictions and dualities or complemen-
tary aspects. Family complexity research should attend to the complementary nature
of many complex systems in order to systematically explore the utility of some
complementary pairs and their dynamics [23] in understanding family bonds and
inter-level influences. Exploratory research should look into identifying relevant
complementary aspects of family functioning some, which may include aggregation
∼ segregation, synchronization ∼ uncoordination, closeness ∼ distance; indepen-
dence∼ influence; conflict∼ agreement; order∼ disorder; health∼ pathology [23].
If information emerges from differences, then it is likely that the analyses of differ-
ences, between families and within families, within and between studies, regarding
the polarities of family relations and their complementary dynamics gives us new
insight into the processes or information that matter the most to understand family
functioning and inform family interventions. A general and complementary view of
family complexity should also include an integrated complementary view of the bio-
logical, the psychological and the social and cultural aspects of family life. Biology
must be understood in the context of the psychological and the psychological in the
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context of the social, and vice-versa [24]. Sub-systems must be understood consid-
ering lower and upper-levels of family functioning [23] and each level in relation
to between level processes. The study of the relationship and the processes operat-
ing between levels may be of special relevance to understand natural occurring and
therapeutic change.

There is a considerable terrain for exploration pertaining the relationship between
the family boundary conditions and external coupling with the properties of internal
coupling in the family.

Coupling is a central concept to understand a complex system, particularly living
systems, but the study of information and communication in the family is still quite
restrictive and focused on simple feedback cycles.Webelieve there aremanydomains
and sources of information implied in the coupling holding familymembers together,
and contributing to particular types of bonds, that are still not recognized or duly
understood.

A Complexity-Informed Family Psychology must embrace the principles of gen-
eral complexity. The acts of making/analyzing distinctions must join an ability to
accommodate apparent contradiction and explore their complementarity. Differences
and distinctions must be integrated in higher levels of analyses, where their relation-
ships are easier to describe, comprehend and explain.

Family Psychology must be able to understand how the family exists in an inte-
gratedway in amultidimensional space and how it is able to simultaneously construct
and be constructed by that space and the ones surrounding it. It must build, from the
ground-up, specific and tailored concepts models, collected from and close to “real”
family life. On the other hand, it must use to a top-down approach to explore family
life through the lenses of the concepts applied to other systems, test their fitness
and need for adaptations. The same families should be studied under diverse condi-
tions. Likewise, similar conditions should be explored for different types of families
in order to identify configurations of processes and features implicated in different
family forms and developmental outcomes.

The methods chosen should also be able to capture or respect the core of the
experiences associated to being a family or participating in a family. Researchers
should ask: Do the descriptions allowed/informed by a complex systems approach
respects or retain a sense of what we, in common sense, “feel” families to be like?
Do they allow us to stay close to what is like for people to be a part of a family? Is
the knowledge we are producing useful? How may it be used to benefit families?

Complexity thinking reminds us that the study of parts is just as important as the
study of whole, and the relationship between the two. Nevertheless, whenever the
researcher zooms in on the family, he/she should attempt to frame and make sense of
the results in the context of the immediate/adjacent parts and the whole. During this
process, the researcher must explore, explain and hypothesize about the results and
possible variations regarding their implications for understanding family structural,
functional and dynamical complexity. Research programs should mimic the nested
and integrative nature of complex system by conducting related series of single and
multiple intensive case studies and integrating the results.
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3.3 Discovery-Oriented Research and Abduction

Family psychology should not over rely on hypothetical-deductive research designs.
Under the scope of complexity, it should embrace the modes of thinking and the kind
of research where novelty is more likely to emerge and be reasoned in depth. Family
psychology needs to explore new insights in a data-driven but reflexive, flexible and
creative way. This is more likely to happen through methods where the researchers’
control is only partial (and therefore not limited to what he/she already knows), and
where the families can guide him/her into discovering new features of family life. A
discovery-oriented approach is essential for new hypothesis, new concepts, contents,
forms and descriptions as well as explanations to emerge and enrich the field with
greater comprehensiveness. Complexity Science and Complexity Thinking play an
important role in guiding and inspiring the family researcher. Family psychology
needs to fully embrace research programs where both induction and deduction have
a place but also where abduction is likely to be needed and propel the research
process. As a form of reasoning aimed at finding the best possible explanations
for otherwise, poorly understood empirical facts, abduction is a form of reasoning
many authors have considered to be at the heart of true science [25]. We will not
explore the specificities of abduction here, inviting the reader to consult other sources
[26]. Nevertheless, we would like to stress that abduction is about taking a cognitive
leap beyond the data to explore novel explanations. It is about making comparisons
and exploring differences and similarities in observations in order to find alternative
explanations which can then be further tested in research cycles involving abduction,
induction and deduction [26].

Complexity-Informed Family Psychology may confront the researcher with new
waysof looking into existing empirical data or new facts or experiences and invite new
explanations. For this, the researcher needs to have access to different types of data but
also make a reflective use of the resonances emerging from the interaction between
his/hers experiential and academic knowledge, and the information produced during
research and when contacting with the families. He needs to be able to use the
theory and the techniques as much as him/herself, as a complex tool, into building
“informed” grounded theories [27]. The researcher’s knowledge about other systems
may be helpful if he/she can use that information to raise relevant questions to the data
and construct new pathways for empirical and reflexive cognitive exploration [27].
He/she must be able to assume its own complexity by recognizing and combining
multiple reasoning abilities, exercising an open mind and maintaining a reflexive
stance. In sum, he/she should be able to recognize, experience, “feel” and purposively
deal with the complexities under and of the investigations.
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3.4 Complexity-Informed Qualitative Based Research

The research methods used to investigate complexity should be congruent with the
nature of the system under investigation. Human systems are immensely different
from physical or other biological systems. Time and context, meaning, history and
culture are also of extreme importance to understand human systems and the research
methods used must attend to them. The methods should be flexible enough to allow
the researcher to revise his/hers assumptions while collecting or analyzing the data
in order to adjust them to emergent results [28], particularly in early stages.

As other social systems, families can be studied as cases, or complex configura-
tions of features [11, 29, 30], to systematically explore the multiple, complex and
contingent forms of causality [21, 31] implied in family functioning while guaran-
teeing the necessary “thickness” to ground their interpretations and guard against
oversimplification [32]. Case-based research is suited to capture the rich qualities of
the family.

Qualitative methods have long proven their value. Other authors have used and
proposed qualitative analysis for the study of complex social systems [32, 33].

For our current purpose, we will assume a pragmatic stance and avoid discussing
the epistemological or ontological implications of the choice of the researchmethods,
in order to focus their pragmatic possibilities.

In many ways, both isolated and in combination with quantitative methods, qual-
itative research fulfills the needs of a Complexity-Informed Family Psychology, as
discussed in this paper. It serves both a logic of justification and discovery/exploration
[26] and can accommodate different epistemological and ontological views. They
can stand alone or in combination with quantitative methods and be applied both to
qualities/texts/descriptions and quantities/numbers/measurements.

Qualitative research affords multiple and flexible ways of sampling [32] and may
retrieve contextualized and contingent information regarding many aspects of the
family functioning. Its methods give the researcher the possibility of collecting time-
bounded, historical, sequential (e.g. in life narratives) and multi-level information.

Qualitative analyses can deal with “messy” andmultiple types of data (oral/visual;
self/hetero-reported; retrospective/prospective; in vivo vs processed data, etc.) and
methods for data visualization. They can be structured and organized and still guar-
antee room for the researcher’s intuitions and subjective perceptions to propel the
analyses. They can attend to thewhat’s, the how’s and thewhy’s of family functioning
and look into both spatial/contextual and dynamic/time information.

Qualitative methods allows the researcher to be immersed in the data and put
information in context, attending to multiple and concurrent potential causes [34].
They have the potential to integrate multiple aspects of reality as experienced, per-
ceived and constructed by family members and can accommodate and integrate the
contradictions and complementary/apparently aspects associated with family life.
They also help the researcher to stay close to “real life complexity”, namely how
people experience their lives and the complex features of being a part of a family.



3 Qualitative Methods for the Exploration of Complexity… 29

Different categorizing and connecting strategies may contribute to explore dif-
ferent aspects of the family system at both a descriptive and explanatory level [34].
Qualitative descriptions may be constructed regarding general or specific properties
of the family [7]. Exploratory, discovery-oriented inspections of the qualities of the
families and its bonds may lead the researcher to the identification and description of
particular features of the information associated to different forms and consequences
of internal and external coupling. Specific dynamics can also be portrayed in quali-
tative terms [35] with the advantage that the researcher may not only use imported
concepts but also adapt them as suited and build new ones [27]. Qualitative meth-
ods support the identification of concepts, categories, themes, contents, patterns and
profiles that may compose a map of the family’s structural and dynamical complex-
ity providing conditions for the emergence of a tailored language for the emergent
theoretical constructions.

The researcher may develop qualitative coding schemes to explore specific struc-
tural and dynamical aspects of family functioning, from a complex systems perspec-
tive. The codes may be built after emergent conceptual categories and properties,
as theories are constructed from the ground up [36, 37], or after established theo-
ries. This sort of coding schemes can be converted into valid input for other sort of
analyses, including mathematical.

The exploration of complexity within human systems can rely on qualitative com-
parative methods [30, 38], including case-based comparative studies [30] in order to
elucidate how different and similar dimensions and variables, processes and mech-
anism lead to similar or different outcomes, for example, regarding the family’s
positive adaptation. These methods can help the researcher discern patterns and
make sense of such differences and similarities from which to construct theoretical
building blocks.

Comparative methods have been at the core of approaches such as Grounded The-
ory aimed at unraveling the complexity of social phenomena [36, 37]. The devel-
opment of grounded theory implies the intensive elaboration of the properties of
categories emerging from the data, describing and explaining the phenomena under
study, after thorough, initial coding. Grounded theory is an example of a qualitative
approach suited to answers some of the core questions of a Complexity-Informed
Family Psychology.

Comparative practices help us construct more complex pictures of our human
world, and may assist us in the exploration of the innumerous dimensions and prop-
erties of family life. They may provide us with concrete clues about the specific type
of structural and dynamical traces associated with family complexity and different
types of outcomes and construct a more solid theoretical base to choose appropriate
mathematical methods for further explorations.

Qualitative methods can inspire researchers to respect the human nature of family
systems by including information from particular viewpoints internal to the family.
Information collected from various sources may be rich enough for the researcher
to develop an understanding the multidimensionality of family functioning and the
differences and similarities of the organization at different levels.
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Finally, qualitative analyses afford unique explorations of causality, through con-
tiguity analyses [34] in ways that are flexible and not so much dependent on the
controllability of the sampling conditions and data collection. Systematic inspec-
tions of the data can aim at the identification of connections between its building
blocks. The qualitative community has explored methods such as matrixes and dis-
plays to explore causal relationships, often supported by intensive memoing [39].
Qualitative Comparative Analysis is also a powerful tool to analyze matrixes of vari-
ables, and compare configurations of features, while considering the fuzziness of the
social world [30]. This potential of this sort of method has been underexplored in
family psychology but may be useful in a Complexity-Informed Family Psychology.

The meanings of the parts in the context of the wholes and vice-versa have long
been the subject of hermeneutics. Juarrero [15] pinpointed hermeneutics as a priv-
ileged interpretative strategy to work on the reconstitution and the elaboration of
narrative and historical explanations for the course of human action. The author high-
lights how hermeneutics resembles the dynamics of self-organization. She identifies
its comprehensive potential in the extent that life events gain unique meanings and
may illuminate points of decision and transformation in human trajectories as well
as the conditions contributing to them. This sort of reasoning is not very strange to
family therapists used to elaborate clinical hypotheses from perspectives that recog-
nize the importance of time and place. Rennie presents hermeneutic analysis as an
essential component of a general framework of qualitative analysis in psychology
[40]. But family research has still to fully explore the contributions of case-based,
hermeneutical, interpretative narrative and historical hypotheses, for the explanation
of the family outcomes of interest. These explorations of part-whole are facilitated
by the diversity of data and data collection methods that can be used.

3.5 Conclusion

In this paper, we have discussed how Family Psychology may integrate Complex-
ity Science to deepen the study of the family as a complex system. We have also
stated that to shed light into that which is truly complex in a family, as a system,
and that, which is truly unique in the system we call a family, the influence of Com-
plexity Science should occur under the scope of General Complexity. We have high-
lighted (re)new(ed) research questions emerging from these interaction and stated
that the methods used to investigate them should be congruent and suited to the
specific features of families as particular forms of human social systems. These are
probably among the most complex of complex systems. They are not only multi-
determined and multidimensional as they exist in a complex network of influence
effects between individual and collective realms of existence. We considered how a
Complexity-Informed Family Psychology should build its own pathways of research
and its own body of knowledge by combining the influence of Complexity Sci-
ence and Complexity Thinking, and the specific research questions emerging from
these interactions, with a rich tradition of qualitative research methods in the social
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sciences. We have proposed that the field should be driven by exploratory intentions
andmethods that are somehowcongruentwith the hypothesized nature and properties
of human social systems, such as the family. We, therefore, advocated for a creative
use of qualitative methods in flexible research designs, encompassed by integrative
and multi-methods research programs. In order to progress and explore new research
questions, studies must adopt an exploratory, discovery-oriented stance, where new
types, new arrangements, or interpretations of data can call for novel explanations
and new ways of thinking about the family as a complex system. Abduction, and the
researchers’ own experiences, knowledge and intuitions are, therefore, prone to play
a pivotal role in the unfolding of a Complexity-Informed Family Psychology.
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Chapter 4
Tangible Networks: A Toolkit for Exploring
Network Science

Espen Knoop, Edmund Barter, Alonso Espinosa Mireles de Villafranca,
Antoni Matyjaszkiewicz, Christopher McWilliams and Lewis Roberts

Abstract We present Tangible Networks (TN), a novel electronic toolkit for com-
municating and explaining concepts and models in complexity sciences to a variety
of audiences. TN is an interactive hands-on platform for visualising the real-time
behaviour of mathematical and computational models on complex networks. Com-
pared to models running on a computer, the physical interface encourages playful
exploration. We discuss the design of the toolkit, the implementation of different
mathematical models and how TN has been received to date.

4.1 Introduction

Our work focuses on communicating ideas from complexity science to a non-
specialist audience.Academics are frequently required to communicate their research
to funding bodies. Since theWolfendale committee [26], there has been an increasing
drive to communicate research to the public and promote dialogue [5, 27].We believe
that public engagement is of particular importance to complex systems research
because of its relevance to a wide range of systems in nature, engineering and social
sciences. Drawing on our experience of public engagement [3], we have developed
Tangible Networks (TN) for communicating key concepts from complexity science,
and more generally facilitating learning.
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Complexity scientists make extensive use of tools which can be unfamiliar to non-
specialists, including advanced mathematical techniques and computer algorithms.
From our experience it can be a challenge to effectively communicate concepts in
complex systems without referring to these tools. Furthermore, mathematical and
algorithmic models are becoming increasingly pervasive in today’s society. There-
fore, making these models more accessible and engaging is an important task.

One effectiveway of communicating such concepts is by using interactivemodels,
where users can perturb the simulation and observe how the dynamics are affected.
For example, NetLogo1 is an interactive visualisation software package developed
for exploring agent-based systems in real time. Danceroom Spectroscopy [12, 19] is
an interactive model of molecular dynamics where the visualisation of the moving
molecules is projected on a screen and the bodies of users become “energy land-
scapes” that directly affect the forces on the molecules. Danceroom Spectroscopy
has been used as an art installation, in dance performances, for education and also
for research. As well as teaching, these platforms are useful for raising awareness of
mathematical modelling.

Mathematical models are generally presented on a computer. The idea of Tangible
Interfaces [15] is to interact with the digital world by manipulating physical objects.
It has been argued that Tangible Interfaces encourage playful learning and creative
exploration, are more accessible and are well suited for collaboration [18]. There
are a number of educational toolkits for teaching electronics (e.g. LittleBits [4]) and
robotics (e.g. cubelets, previously roBlocks [24]). A tangible interface for teaching
mathematics is Smart Blocks [11] where shapes can be constructed by snapping
blocks together, and the volume and surface area of the shape is computed. Horn
[14] presents a tangible tool-kit for teaching programming through interaction with
physical blocks.

Taking inspiration from interactive models and tangible interfaces, we have cre-
ated a tangible interactive network model. Tangible Networks makes the exploration
of science and complex systems more approachable and inviting to a wider range
of audiences. TN is a physical platform for network simulations that makes the key
components (nodes and links, [21]) physical building blocks that can be manipu-
lated while simulations are running, as illustrated in Fig. 4.1. The platform has been
designed to make the network topology clearly visible and reconfigurable, so that
users can get an understanding of how network topology affects behaviour.

There are several examples of robotic swarms being used to demonstrate complex
network behaviour (e.g. [23]), where typically robots will communicate wirelessly
with other neighbouring robots and the swarm exhibits a global behaviour from the
local interactions. Although these platforms are excellent for demonstrating concepts
such as swarming and emergence, it is more difficult to build a fundamental under-
standing of ideas such as network topology and how topology affects behaviour. We
believe TN is well suited for teaching such concepts.

1Available online at https://ccl.northwestern.edu/netlogo/.

https://ccl.northwestern.edu/netlogo/
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Fig. 4.1 We want to create a
hands-on interactive
visualisation of complex
network models

4.2 The Toolkit

Many complex systems are modelled as interactions between simple agents con-
nected in a network where collective behaviour emerges from localised interactions.
With TN, we have created a physical network, where nodes and links are represented
by electronic units and connecting wires respectively. Each node runs a mathemat-
ical model of the local dynamics. Users can interact with the network and observe
how the behaviour changes. The TN toolkit is shown in Fig. 4.2, with key features
labelled.

A central objective in the development of TN was to create a simple and robust
platform allowing for playful interaction. We wanted users to be able to change the
network topology and add or remove nodes from the network with the simulation
running.

In many real-world systems, agents only have local information. In keeping with
this, we have implemented a distributed simulation where each node runs a model of
the local dynamics. This implementation also improves robustness. Two nodes can
only exchange information if there is a link between them. This makes the behaviour
of the model more transparent—there is a very close link between the physical and
mathematical structures. There are some disadvantages of distributed simulations,
e.g. computing a global state of the system is difficult. However, for many systems
a distributed model is highly appropriate.

In our implementation, links are directed (Fig. 4.2d). This is a more general case,
as undirected links can be made by combining two directed links (Fig. 4.2e). The
maximum degree of each node is determined by the number of physical connectors
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(d)

(e)

(h)

(f)

(a)
(b)

(c)
(g)

Fig. 4.2 The Tangible Networks toolkit. Labelled are a pushbutton switch; b glowing dome; c
potentiometer; d directed link; e undirected link; f master controller; g piezo speaker; h power
supply. Online version in colour

it has. In TN, nodes have a maximal in- and out-degree of three. This is the simplest
case where non-trivial undirected networks can be built—with a degree of two only
lines and rings would be possible.

Users can interact with the running network simulation. The topology of the
network can be changed by reconfiguring the wires, and nodes can be added or
removed from the network. Each node can be perturbed with a pushbutton switch
(Fig. 4.2a), and local parameters can be changed with a potentiometer (Fig. 4.2c).
The pushbutton and potentiometer can be programmed to have any function.

Aswell as local control, users can control global properties by connecting amaster
controller to any one node. A master dial (Fig. 4.2f) can be used to adjust a global
parameter, such as the coupling parameter in models of coupled dynamical systems.
This sends a continuous value to all of the nodes in the network that can be read by
each node. Alternatively, a master pushbutton switch can be used for digital input
such as to reset the simulation.

We require nodes to output their current state. The output must be in a form such
that the collective behaviour of a large network can be easily observed. For this
reason, nodes produce visual output by means of a glowing dome (Fig. 4.2b). The
state of each node can be visualised with the brightness and colour of the dome or
by changing the frequency of brightness oscillations. Nodes can also produce sound
by means of a piezo speaker (Fig. 4.2g).
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4.2.1 Technical Description

4.2.1.1 Processor

An Atmel ATMega 328p microcontroller, as used in the widespread open-source
Arduino platform [1], runs the local model on each node. The Arduino programming
language is essentially C++, with low-level hardware control hidden in wrapper
functions but still being available if required. Arduino is designed to be easy to
use and is very well supported on-line, requiring no experience in microcontroller
programming. We have written a library for interfacing with the TN hardware. Pro-
grams are uploaded to the TN nodes with an In-System Programming (ISP) hardware
programmer.

4.2.1.2 Electronics

The state of each node is shown with a glowing dome, lit up using a high-brightness
Red-Green-Blue (RGB) Light Emitting Diode (LED) behind a diffuser. LEDs are
controlled with Pulse Width Modulation (PWM). Power is distributed through the
network, and the power supply can be connected to any node (Fig. 4.2h). Neighbour-
ing nodes communicate via analogue signals, so each connection transmits a single
real number in a limited range. This is very robust, and forces models to be simpler
andmore intuitive. Themaster controller sends an analogue voltage to all the nodes in
the network. The nodes have a tactile momentary pushbutton switch; a potentiometer
connected to an analogue input pin and three DIP configuration switches. Insulation
Displacement Connectors (IDCs) and ribbon cables are used for the links.

4.2.1.3 Mechanical

The nodes are designed to be simple to fabricate with limited facilities. Each unit
has a single Printed Circuit Board (PCB); a diffusor fabricated from a bisected table
tennis ball and an enclosure comprised of two pieces of laser cut acrylic. A CAD
drawing of a TN node is shown in Fig. 4.3.

The nodes are hexagonal, with one connector along each edge of the hexagon
and a centred glowing dome. The hexagonal shape gives the units a visual identity
and the symmetry lends itself well to different network topologies. Input and output
connectors are alternated, so a bidirectional connection is achieved by having links
to two adjacent connectors. Each node is 90mm across, which is sufficiently small so
that it can be picked up by a child and yet large enough that the unit can be supported
with the other hand when plugging in cables.
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Fig. 4.3 CAD drawing of a TN node, in assembled and exploded states

4.2.1.4 Additional Functionality

For future expansion, each node also features an auxiliary input and auxiliary output
as well as a serial connection. The serial connection could be interfaced to other
hardware, or to a computer for plotting real-time graphs of the network dynamics.
A further use of the serial port would be to combine Tangible Networks with a
computer-simulated network so that the physical nodes could be connected to a large
virtual network running on the computer. This would allow for much larger network
simulations, where a small part of the network can be interacted with. The aux out
port is connected to a general purpose pin on the microcontroller that can generate
PWM signals. We have used the aux out to drive a RC servo for mechanical output,
and also a piezo speaker. The auxiliary in port is connected to a general purpose
pin on the microcontroller that can function as an analogue input. We have used the
auxiliary input to connect a light sensor and also a single-axis accelerometer, but
these are only examples of what is possible. There are a large number of examples
and code snippets online for interfacing the Arduino with a range of sensors and
other hardware.2

4.3 Implemented Models

Here we present some of the network models we have implemented on Tangible
Networks, based on our research in complexity science. These demonstrate some

2See for example https://forum.arduino.cc.

https://forum.arduino.cc
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key concepts from ongoing research in our group in an approachable way. We have
also developed a network based game, which demonstrates the potential for TN as a
tool for teaching pure mathematics through problem solving. The following model
descriptions are brief, but are intended as examples of what is possible with the TN
toolkit. They include discrete-time models and dynamical systems, different types
of local and global interaction, and possible ways of presenting the model output.

4.3.1 Excitable Neurons

The Fitzhugh-Nagumo (FHN) model [10, 20] is widely used to describe the spiking
patterns of excitable cells such as neurons or muscle cells. Excitable cells generate a
spiking electric current (an action potential) when stimulated. In our implementation,
each TN node is an excitable cell. The action potential is visualised with the colour
and brightness of the dome, and nodes emit sound when they spike. The pushbutton
gives the cell an instantaneous stimulus, and the potentiometer sets a level of contin-
uous stimulation. Cells also receive stimulus from their neighbours, and the global
couplingparameter is setwith themaster dial. This introduces the idea that the specific
environment that cells are in, such as the presence or absence of different substances
can affect the overall dynamics. The pattern of spiking is dependent on the topology,
and on the type and strength of coupling. Excitatory (positive) coupling can lead to
travelling waves or synchronous oscillations, with increased coupling increasing the
wave speed of propagating spiking patterns. Inhibitory (negative) coupling leads to a
range of asynchronous oscillations due to post-inhibitory rebound spiking, including
sustained oscillations with neighbouring nodes in antiphase for some topologies.

4.3.2 Synchronising Oscillators

The Kuramoto model [17] describes a wide variety of synchronisation phenomena
[2]. Examples include flashing fireflies [6], power grid systems [8, 9] or a conductor
keeping an orchestra in time. Each TN node is an independent first order oscilla-
tor with a natural frequency that is adjusted with the potentiometer. Neighbouring
nodes are coupled, and the global coupling parameter is controlled with the master
dial. Stronger positive coupling increases the level of synchronisation, while nega-
tive coupling causes neighbouring nodes to oscillate in antiphase. The phase of each
oscillator is shown with variations in brightness. The colour represents the local
degree of synchronisation, computed as the mean phase difference with its neigh-
bours. Oscillators can be stopped and held at a constant phase by holding down the
pushbutton. Users can explore how the level of synchronisation is affected by the
topology and natural frequencies.
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4.3.3 Opinion Dynamics

The majority-vote model produces qualitative results similar to the patterns of opin-
ions in networks [7]. Each node is a person who holds one of two opinions and is
influenced by their neighbours. Stubborn nodes change their opinion if more than
half of their neighbours disagree with them. Fickle nodes change their opinion if at
least half of the neighbours disagree with them. Nodes update their opinion in dis-
crete timesteps. Users can set the initial opinions and stubbornness of each node, with
the potentiometer. Opinions are shown as green and blue, with fickle nodes being
more pale. Pressing the pushbutton toggles the opinion of that node, and the user
can then observe whether this causes any further nodes to change their opinion. The
simulation is reset with the master switch. The network simulation can demonstrate
consensus and clustering of opinions, along with ideas such as group influence. It
can also show how some nodes are more influential than others, and that the most
influential nodes are not necessarily the most central or most connected nodes.

4.3.4 Predator-Prey Dynamics

The Lotka-Volterra equations describe predator-prey dynamics in ecological systems
of two or more species. In our implementation, each node is a species. The brightness
indicates the current population, and the colour indicates the trophic level (red: top
predator, yellow: intermediate predator, green: primary producer). The trophic level
is set with the DIP switches. The potentiometer sets the intrinsic growth rate of the
species. Pressing the pushbutton increases the population of that species. We can
demonstrate simple interactions between a single predator and a single prey that lead
to oscillating populations, as well as more complex food webs. The model can be
used to demonstrate meaningful ecological concepts such as competitive exclusion,
apparent competition and biological pest control.

4.3.5 Hamiltonian Paths

A Hamiltonian path is a route through the network that visits each node exactly
once. In our implementation, we introduce this concept through a problem-solving
exercise: Pressing themaster switch resets the game, making all nodes cyan. Pressing
the pushbutton on one node selects the starting node and starts the game. The current
node is green, visited nodes are yellow and unvisited nodes are blue. Pressing the
pushbutton on an unvisited node adjacent to the current node moves the player to
that node. The game ends when there are no more possible moves, at which point
visited nodes turn green and unvisited nodes turn red.
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The Hamiltonian path problem is simple to solve heuristically on a small network,
however the exercise can be scaffolded to ask for deeper understanding and problem
solving. The game has been developed in tandem with a structured worksheet, and
has been given a storyline to motivate younger children to solve the problem.

4.4 Discussion

We have presented Tangible Networks, a toolkit for interacting with mathematical
models and communicating ideas from complex systems. A TN user can explore and
learn about these systems and models even if they are unfamiliar with the underlying
mathematics. TN presents the models in a more engaging and approachable way by
allowing for direct hands-on interaction. From interacting with TN, users can explore
how local interactions lead to global phenomena; one of the fundamental concepts
of complex systems.

TN has been demonstrated at a range of events including science festivals, uni-
versity open days, school lessons, summer schools, undergraduate courses and aca-
demic conferences (Fig. 4.4). The attractive visualisation and interactive aspect has

Fig. 4.4 We have demonstrated tangible networks at a number of events, and reception has been
overwhelmingly positive
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captured the interest of a wide range of audiences ranging from young children to
senior academics. Through displaying multiple models at events, we demonstrated
the adaptability of network science to explain a variety of different systems, and
people have been impressed by the breadth of systems studied with networks. We
have used TN for demonstrating particular system behaviours, as well as letting users
freely explore and interact with the models and facilitating further discussion.

We believe that TN is well suited for educational use. Alternative learning activ-
ities are used to vary teaching styles in order to address different ways of learning
[13, 16, 22]. TN offers a way to open the ‘black box’ of in-silico simulations in
order to facilitate the understanding of concepts in mathematical modelling, net-
work science and graph theory. These models can be discussed in as much technical
detail as required, making it suitable from primary schools to universities. The TN
toolkit could also be used to teach programming and electronics; making a device or
program that ‘does something useful’ is motivating and rewarding.

We would like to encourage others to use the platform as it is, or develop it further
for their own work. The necessary files to make the TN hardware and software are all
open source. Designs are available online, along with information about the project
[25]. We have written an Arduino library for the TN hardware which facilitates
further software development.

Communication of scientific ideas is of utmost importance, be it to funding bod-
ies, schoolchildren, undergraduate students, fellow academics and members of the
general public. We hope that TN will be useful in this regard.
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Chapter 5
The Geometric Origins of Complex Cities

Ruiqi Li, Lei Dong, Xinran Wang and Jiang Zhang

Abstract Due to the rapid urbanization, cities have become a hot topic. Extensive
complex phenomena, such as scaling laws with respect to population, morphology,
spatial distribution within cities have been revealed and validated by the empirical
studies. Yet there’s still no clear answer to the question that what’s the underlying
mechanism responsible for these observed complex phenomena. Most of previous
studies only focus on one aspect of the city. However, focusing on only one aspect
may lose the whole picture of it. Based on a very simple “matching growth” rule
and two more simple assumptions, which are all performed locally, we propose a
simple model which can derive most of observed macro scaling relations and spatial
distribution. All these theoretical deductions can be well supported by empirical
data. And the consistency between the exponents of different cumulative spatial
distribution may indicates that the city really follows the rules we assumed.

5.1 Introduction

The urbanization rate of the world was more than 50% at the end of 2008, and
for developed countries is about 80%. And according to urbanization experience in
developed countries, urban population of the developing countries will keep accu-
mulating rapidly for certain decades [1]. This rapid pace of urbanization is one of the
crucial problems with which the world is faced now and will be in the future. Urban-
ization seems to be a double-edged sword. The bright side is that economic variables
like total income, GDP and innovation related variables such as the total number
of new patents, R&D, etc. have a super-linear scaling relation with population (that

R. Li · J. Zhang (B)
School of Systems Science, Beijing Normal University, Beijing 100875, China
e-mail: zhangjiang@bnu.edu.cn

L. Dong
School of Architecture, Tsinghua University, Beijing 100084, China

X. Wang
College of Resources Science and Technology, Beijing Normal University,
Beijing 100875, China

© Springer International Publishing Switzerland 2016
S. Battiston et al. (eds.), Proceedings of ECCS 2014, Springer Proceedings
in Complexity, DOI 10.1007/978-3-319-29228-1_5

45



46 R. Li et al.

means GDP grows faster as population agglomerates); meanwhile, some variables
related with infrastructure like total road (and cable) length and urban area are sub-
linear. These phenomena mean that in larger cities, we can get more outcome with
a relatively low input at a relatively higher efficiency. However, the dark side is that
rate of serious crimes, disease (such as new AIDS cases) [2–5] are also super-linear.
Besides, there are also many other issues such as heavy congestion, social conflicts,
environmental degradation in large cities (especially for some Chinese cities).

So, quite different from agglomeration of particles, during the agglomeration of
people, there are bunch of nonlinear interactions, whichmight be the origin of scaling
laws. This agglomeration not only brings more innovations, wealth and economic
growth, but alsomore pollution, traffic congestions, diseases, crimes and social issues
[6]. But what’s the underlying mechanism(s) responsible for these complex phenom-
ena? Furthermore, is the city can be simple enough to be understood?

People argued for a long time about the evolutionmechanism of cities [7–9].More
and more researchers tend to believe that cities are self-organized complex systems
whose infrastructural, economic and social components are strongly interrelated [4].
In its wake, some remarkable ubiquitous empirical laws have been observed when
we focus on the global properties of city systems [10]. For example, early studies
pointed out that Zipf law is a significant feature for city systems, which states that
the population distribution of different cities are long tails [11, 12]. Furthermore, the
growth rate of a city is proportional to its size which is known as Gibrat’s law [13].
This empirical law is tightly connected to the Zipf law [14].

Zipf law and Gibrat law only describe one variable, the size of cities which is
usually measured by population, other studies focused on the relationships between
two variables of cities. For example, the earliest studied relationship is between
urban area and population. Nordback [15] found that area scales with population,
and the exponent is 2/3. However, more empirical studies found that the exponents
are depended on the definition of city areas [16, 17].

Compare to the fast development of empirical work of city scaling, the devel-
opment of theoretical understanding of cities is slow. Batty et al. found the fractal
nature of cities, and introduced the diffusion limited aggregation model (DLA) to
simulate the growth of a city [18]. Makse et al. pointed out that this model can only
generate one cluster and is less compact than the real cities. So they built a newmodel
by correlated percolation [19]. This model can only generate population density and
Zipf law but the scaling relationships were never considered. In [13], the authors
devised an economic geographic model to reproduce the patterns of Zipf law and
allometric scaling between area and population.

After the empirical super-linear scaling law between socioeconomic output and
population was discovered and highlighted, Pan et al. gave another network model
to show the relationship between super-linear scaling with population density in
cities, however, their work didn’t focus on reproducing the spatial distribution of
variables within the city [20]. Recently, Bettencourt proposed a model to reproduce
various scaling relationships successfully by taking several assumptions [21]. But
this model is a little complex and the spatial distribution of population and wealth is
not considered.
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So far, there’s still no integrated theory to tie those important factors (spatial
distributions, morphology, scaling laws) mentioned above together to give a more
comprehensive insight. Most researchers only focus on one or two aspects of the city.
To overcome the known shortcomings of the previous models and make up the gap
between the micro-spatial distribution and macro-scaling laws, this paper, inspired
by the realistic evolution of the city [22] presents a new model based on a simple
evolving mechanism which is called “matching growth” (new node can only grow if
it is close enough to the existing nodes).

5.2 The Model

In our model, a planar network will be grown in a L × L 2-d Euclidean space.
The planar network can be used to simulate the minor roads and main streets. So
each node on the network stands for a community with a constant population, then
it’s natural to regard the links between communities as roads (actually the word
connection is more appropriate and we will explain it later). The network is grown
as the nodes (communities) added sequentially based on an important rule called
“matching growth”. That is, the new coming node can be added successfully only if
it is matched with existing nodes.

Concretely, suppose our network is grown from an initial seed node locating at
the center of the free space at the beginning. At each time step, one node is generated
with a random position evenly distributed within the space. However, a new node
can be added into the network only if it is close enough to any existing node in the
network (the Euclidean distance is smaller than a given threshold r ), otherwise it
will be removed. In this way, new nodes join the network unceasingly only if they
matched with existing nodes, the network is growing. This matching growth process
is illustrated in Fig. 5.1. The process of new nodes joining the network models the
building of new community. Although it is hard to imagine that the new nodes
randomly generating mechanism is true, our model generate an accelerating growth
phenomenon, which means the time interval between any two nodes joining the
network is shorter and shorter. This is comparable with our observations. We can
define Pt as the total number of nodes in the current network and At as the total
area that covered by the disks. They represent the population and urban area of the
modeled city.

Next, we will show how the road network is built. The simplest way is minimum
spanning tree(MST): i.e. roads are built by linking several nearest nodes. Because
the road links are always space filling, the total length of road links, Lt = ∑

li (li is
the total length of road links built by i), can be understood as the total road volume
in a city, since in real cities, the variance of road width is not very big).

However, for a closer look, especially on urban scale, the roads are not directly
linking building blocks but surrounding them and there are roads pointing outside at
the edge of city, which means the method above just mimics the connection between
community but not the real situation of roads between them.We assume a better way
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Fig. 5.1 A sketch of
“matching growth” process
and “road network”. The
numbers in nodes are the
orders they joining the
network. The large disks
surrounding nodes are their
range of interaction with
radius r . The nodes can only
survive if it locates in the
shaded area. Therefore node
10 cannot exist. The links
between nodes represent the
roads. In this sketch, each
node can build only k = 1
link to the nearest existing
node.

to generate the ideal road network within the city is the idea of Voronoi diagram,
which can guarantee the fairness for two building blocks besides a road, i.e. the
distance for both of them to get access to the road are the same, as roads are public
infrastructure. And the corresponding Delaunay triangulations can mimic the minor
roads which allow the community to reach the road networks as quick as possible,
which is exactly the dual graph of Voronoi diagram.

Furthermore, we assume that all interactions among people are taking place sur-
rounding the road areas. This assumption is in accordance with our observation that
all the markets, companies and shops are built around road sides. For people in
node i , it is able to interact with all the people within its interaction range along the
road links. Therefore, the total interactions generated by i can be approximated as
gi ∝ li |Nr (i)|, which is the number of neighbors, more specifically, gi is proportional
to the product of li and the node density. Thus, the total interactions of the whole
system is Gt = ∑

i gi . Furthermore, according to Bettencourt [21], the total output,
incomes, crimes are all proportional to the total interactions Gt . We will show that
all the variables, At , Lt and Gt , scale with Pt .

5.3 Theoretical Analysis of Scaling Laws

According to the two rules introduced in the previous section, we can simulate
the growth of the network. However, instead of reporting the numeric results, we
derive the theoretical computation of scaling exponents asymptotically (namely, let
t, L → ∞).
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The shape of the network is irregular and anisotropic when simulation time steps
are limited. However, it will transit to a symmetric disk with a rough perimeter when
t is very large.Wewill show, in the mean field approximation, the radius of the whole
disk denoted as Rt grows with time linearly,

Rt ∼ t. (5.1)

Actually, each lattice of the 2-d space has an equivalent probability to accept a new
generated node at each time step. Therefore, the probability that a new coming node
locates on the boundary of the disk is proportional to its perimeter and independent
of time. Then, the average time span between two nodes are added on the perimeter
of the disk is proportional to 1/Rt . However, to increase the radius of the disk one
unit, we need more and more nodes (the number of nodes increase with ∼Rt ) to fill
its perimeter. Therefore, the average time that the radius of the disk increase one
unit is almost a constant (∼Rt (1/Rt )). That means, the speed of radius growth is a
constant which leads to (5.1).

Following this equation, we know the total area of the disk increases with time
square,

At ∼ t2 ∼ R2
t . (5.2)

To derive the total number of nodes, we need to calculate the node densityρt (R, θ)

at any spatial location with radial coordinate (R, θ) and time t as:

ρt (R, θ) =
t∫

τR

1

L2
ds ∼ (t − τR) ∼ (Rt − R) (5.3)

where ds is the infinitesimal time, τR is the time when the disk’s radius is R. Because
the probability that the infinitesimal area dσ accepts a new node is a constant (1/L2),
the average density of population at this infinitesimal area is the accumulation of
nodes born in between time step τR and t . Therefore, the total population can be
computed by integrating (5.3):

Pt =
Rt∫

0

2π∫

0

ρt (r, θ)rdrdθ ∼ R3
t (5.4)

According to (5.4) and (5.2), we obtain the scaling relationship between area and
population:

At ∼ P2/3
t (5.5)

Next, we analyze the total road volume. Suppose the road volume density per
capita is lt (R, θ) at time t . We know that this density will decrease with time as
the population density increases according to the rules that all roads segments are
linked to the nearest nodes. In a 2-d space, the minimum distance between any two
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points evenly distributed in the infinitesimal dσ decays in a square root of the density.
Therefore, lt (R, θ) ∼ ρ

−1/2
t (R, θ)

Thus, the road volume in an infinitesimal area dσ is ρt (R, θ)lt ∼ ρ
1/2
t . Therefore,

the total road volume of the whole network is:

Lt =
∫

ρt lt dσ ∼
Rt∫

0

2π∫

0

(r − R)1/2rdrdθ ∼ R5/2
t (5.6)

Insert (5.4) into (5.6), we obtain the scaling relationship:

Lt ∼ P5/6
t (5.7)

Finally, suppose the density of local interaction per capita is gt(R, θ), it is
proportional to the local population density times the local road volume accord-
ing to the assumption that local interaction takes place along the road, therefore,
gt(R, θ) = ρt (R, θ)lt (R, θ) ∼ ρ

1/2
t .Then, the total number of interactions happened

in the whole system is:

Gt =
∫

ρt gtdσ =
Rt∫

0

2π∫

0

(r − R)3/2rdrdθ ∼ R7/2
t . (5.8)

So, Gt and Pt has the following scaling relationship:

Gt ∼ P7/6
t . (5.9)

We know the total output in the system is proportional to the total number of
interactions, therefore, the socioeconomic output in the system scaleswith population
in a 7/6 power.

5.3.1 Model Extension and Spatial Distributions

Our model cannot only reproduce the scaling laws of any variable with respect to
population, but also generate the spatial distribution of population, roads, andwealth.
To make comparable results with the empirical data, we need to extend our basic
model and introduce a new parameter. In the real life, people always prefer some
particular places due to the heterogeneity of resource distribution on the geographic
space. In our extended model, we assume that the spatial preference of a new node
follows a power law:

P(R, θ) = R−β

Z
, (5.10)
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where R is the distance to city center and β ∈ [0, 1) is a parameter called hetero-
geneity exponent. β < 1 is required to make sure that the total road volume and
GDP be finite. R is the distance of any point from the center of the city with a range
[R0,∞), where R0 is the minimum radius that guarantees (5.10) being a well defined
probability distribution. In the following calculations we always let R0 → 0. Z is
the normalization coefficient, Z = ∫ 2π

0

∫ L
R0

R · R−βdRdθ. With this modified rule,

we can get Rt ∼ t
1

1+β . Then, we can write down the population density of any given
spatial point as,

ρt (R, θ) = 1

Z

t∫

τR

R−βds ∼ R−β(R1+β
t − R1+β), (5.11)

After that, the same method as in Sect. 5.5 can be applied to calculate the relations
between At , Lt ,Gt and Rt . Due to the following identity:

Yt =
Rt∫

0

2π∫

0

ρs
t (R, θ)rdθdRr ∼ R2+s

t ,

where s is a positive exponent. Let Yt stands for At , Pt , Lt and Gt , and set s =
0, 1, 1/2 and 3/2 respectively, the exactly same relations as (5.2), (5.4), (5.6), (5.8)
proposed can be derived. Then, all the scaling relations (5.5), (5.7), (5.9) are invariant
and independent of the exponent β.

Besides the scaling relations, the improved model allows us to analyze the spatial
distributions of population, roads and wealth. First, we have derived how the popu-
lation density decays as the distance from the city center in (5.11). In the downtown
area, which means R/Rt → 0, (5.11) is approximated by a power law: ρ ∼ R−β.

This equation is consistentwith the empirical observation bySmeed [23] andBatty
[24]. However, because population density measurement is inaccurate, we always
use the cumulative population along the distance from the city center to validate
our model by the empirical data. By integrating (5.11) on the radius, we obtain how
population accumulate along the radius:

Pt (R) =
R∫

0

2π∫

0

ρ(r, θ)rdrdθ ∼ R2−β

(
R1+β
t

2 − β
− R1+β

3

)
, (5.12)

where Pt (R) stands for the cumulative population until the distance R. It turns out
to be a power law if we only focus on the downtown area (R/Rt → 0):

P(R) ∼ R2−β. (5.13)
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Equation (5.13) is consistent with the fractal city hypothesis [18]. According to the
ball covering method, the fractal dimension of population distribution is 2 − β. If we
assume that the distribution of buildings is similar with the distribution of population,
then the fractal dimension of our city model is also 2 − β.

We then can calculate the cumulative road volume along the radius from the city
center in a similar way,

Lt (R) =
R∫

0

2π∫

0

ρ(r, θ)l(r, θ)rdrdθ ∼ R2−β/2. (5.14)

Therefore, the fractal dimension of road network is predicted as 2 − β/2. Compare
this equation with (5.13), we suppose that the fractal dimension of road network is
slightly larger than the one for population. This is a testable prediction.

Additionally, we can also derive how wealth accumulates along the radius from
the city center if we assume that the personal wealth is proportional to the individual
output which is proportional to the interactions per capita,

Gt (R) =
R∫

0

2π∫

0

ρ(r, θ)g(r, θ)rdrdθ ∼ R2−3β/2. (5.15)

Therefore, wealth accumulate slower than population. This is another testable pre-
diction of our model.

Finally, if we assume that the rent price of a place is also proportional to the
local output per capita [21], then we can derive how the rent price decreases with the
distance:

p(R, θ, t) ∝ g(R, θ, t) ∼ R−β/2(R1+β
t − R1+β)1/2 ∼ R−β/2 (5.16)

Hence, the rent price decays at a slower rate than the population. This is also a
prediction.

5.4 Results

In this section, we will show the computer simulation results and compare it with
both the theoretical results and empirical works. According to the rules introduced
in Sect. 5.2, we can grow a spatial network which resembles the road network in city
(Fig. 5.4).

From Fig. 5.2a, b, we observe that the density of population and road links are
denser in the center area than the peripheries. Several important roads with large traf-
fic flux (betweeness) naturally emerge. All these results are coherent with empirical
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(a) (b)

Fig. 5.2 a A connection network grown by the rules. In this simulation, we adopt the basic rules
(i.e., β = 0), the number of newly added links is k = 2, and the total number of nodes is 105. Colors
correspond to betweeness of links. b A road network generated by the rules. In this simulation, we
adopt the basic rules (i.e., β = 0), the total number of nodes is 103

Table 5.1 Exponents of scaling relationships with respect to population for theoretical predictions
and observations

Variables Obs, mean Obs. range Theoretical

Area 0.67 [0.56, 1.04] 2/3 ≈ 0.667

Network volume 0.75 [0.74, 0.92] 5/6 ≈ 0.833

Socioeconomic rates 1.17 [1.01, 1.33] 7/6 ≈ 1.167

observations. Besides, ourmodel can generateminor roadswhich can not be depicted
by previous models.

Next,we test the scaling relations in simulation. Fromprevious researches [21],we
know the relationships between the total output, total road volume, area and popula-
tion are power laws. the lower boundary of population for a city varies from hundreds
to thousands in different countries. For completeness, we didn’t set a threshold. And
the exponents are approaching the theoretical predictions.

These exponents are also consistent with our empirical observations in the real
cities. Table5.1 [21] shows the exponents both for theoretical predictions and empir-
ical observations.

In Fig. 5.3a, we show how the normalized population density (normalized by the
total population) decays with the distance from the city center. The curves change
with parameter β, and it can be compared with the empirical observations. Clark [25]
suggested that population density decay with the distance from city center exponen-
tially. However, Smeed [23] proposed that this relationship is a power law if we
consider longer distance. In paper [24], the authors claimed that this relationship
should be a power law so that the allometric scaling relationship between area and
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Fig. 5.3 a Normalized population density decays with distance from the center. In the simulation,
we compare the results of different settings (β = 0, 0.3, 0.8). The inset shows the semi-log (log y)
plot of the same relation. b Normalized cumulative population along the radial distance. The inset
shows the same curve with log-log plot

population and the fractal city hypothesis are satisfied. As claimed in [24], since
the power law exponent is very small in the real observations, it is very hard to
discriminate with an exponential function. In our model, the power law relationship
is derived. Besides, we also plot the population density with distance in a semi-log
plot and take a short range along x-axis shown in the inset of Fig. 5.3a. It looks
like a straight line when β is small. Thus, our model can generate similar results as
observations.

Another way to study how population density decays with radius is to show the
cumulative population along the distance so that fluctuations in population density
can be reduced. The empirical studies shows that the cumulative population curve
is S-shaped [24]. If we plot our modeled cumulative population curve, an S-shaped
curve can be also obtained as shown in Fig. 5.3b.

Due to the cut-off term in (5.12), our model can generate a similar S-shaped curve
as observed in real city. If we plot the curve on a log-log coordinate (shown in the
inset of Fig. 5.3b, we find that the head part of the figure becomes a straight linewhich
means it can be approximated by a power law, the exponent can be understood as
the fractal dimension of population.

Besides the population,we can also studyhow theother variables like roadvolume,
interaction cumulated with the distance from the center. All of these cumulative
variables can be fitted by power laws with different exponents as (5.13), (5.14) and
(5.15) predicts shown in Fig. 5.4a.

Our theory in Sect. 5.3 predicts the dimensions are 2 − β = 1.7, 2 − β/2 = 1.85
and 2 − 3β/2 = 1.55 respectively which are close to the simulation dimensions.

Because a set of fractal dimensions for each time step can be obtained, we then
systematically study how the dimensions change with population (Fig. 5.4b). Previ-
ous studies pointed out that the fractal dimension of cities can change with city size.
This phenomenon can also be observed by our simulation.
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Fig. 5.5 Empirical scaling results for a Beijing and b London with respect to the distance to the
center of city

5.4.1 Empirical Results

We study two representative cities, Beijing and London. As Fig. 5.5 shows, all of the
scaling laws can bewell fitted by an estimatedβ = 0.36 for bothBeijing andLondon.
We use a residence population distribution with Lower Super Output Area (LSOA)
resolution, which may differ from (mainly more decentralized) the assumption in
this article.

In this article, all the data sets used for analysis are publicly available. We
obtain the employed population data from Beijing Census Bureau and http://
data.gov.uk/, respectively. The statistics of GDP are reflected by city lights from
NOAA/NGDC (http://ngdc.noaa.gov/eog/viirs/download_monthly.html). The data
of road networks are accessible in http://metro.teczno.com/.

http://data.gov.uk/
http://data.gov.uk/
http://ngdc.noaa.gov/eog/viirs/download_monthly.html
http://metro.teczno.com/
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5.5 Conclusions

Our model is based on few simple rules, but some complex behaviors that may
resemble the real cities can be generated. We can not only obtain all the scaling
exponents but also give some insight into the urban dynamics by the basic model.
Therefore, this simplemodel allows to generate complex city.With a slight extension,
our model is able to make predictions on both micro and macro parameters and
behaviors.
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Chapter 6
Revealing the Relation Between Structure
of Chloroplast Genomes and Host Taxonomy

Michael Sadovsky and Anna Chernyshova

Abstract The distribution of chloroplast genomes in 63-dimensional space of triplet
frequencies was studied, in connection to the taxonomy correlation to the clusters
observed in the distribution. That latter was developed through K -means implemen-
tation, for the number of classes varying from 2 to 8. The clade composition of those
clusters has been analyzed. Unexpectedly high regularity in clades occupation of
different clusters has been found thus proving very high synchrony in evolution of
two physically independent genetic entities (chloroplasts vs. nuclear genomes): the
proximity in frequency space was determined over the organelle genomes, while the
proximity in taxonomy was determined morphologically.

6.1 Introduction

DNA sequences are essentially complex object; a number of various structures are
found and described in these latter being defined in different ways. Moreover, the
list of structures is not completed yet: new ones could be found. The structures may
exhibit a connection to function encoded in DNAmoleculae. A relation of a structure
and the relevant function is a core issue of the up-to-date system biology. Structures
found in DNA sequences are numerous and various; thus, one must carefully fix the
type of that former for further consideration. The variety of structures observed in
DNA sequences could hardly be outlined here, even in brief; some surveys could be
found in [1–6], see also very interesting works [7, 8].

In connection to DNA sequences, three issues make a kind of triad: these are
structure, function and taxonomy of the bearer of sequence. A variety of sequences
is tremendous, but frequency dictionary brings very simple structure entity to
be identified in DNA (and in symbol sequences of any nature). Thus, it is the
most universal and basic one in nucleotide sequences [9–18]. Further, we shall
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concentrate on the study of the frequency dictionaries of the thickness q = 3 (i.e. the
triplet composition).

Here we concentrate on the study of the relation between structure of DNA
sequences and the taxonomy of their bearers. Both structure and taxonomy could be
a matter of discussion; indeed, one may identify a number structures in a sequences,
and taxonomy is revised quite often, as new data are incorporated into analysis.
Nonetheless, we shall consider the taxonomy rank to be identified as it is shown in
official site http://www.itis.gov.

A frequency dictionary W3 converts a nucleotide sequence into a point in metric
space; this allows to define a distance between two (or several) dictionaries. The
basic idea of the paper is to figure out whether the clusters of genomes in this metric
space could be found, and if yes then check whether the genomes occupying a cluster
belong to a relatively close group of species, or not. Let now introduce the problem
more exactly and rigidly.

Further, we shall consider continuous symbol sequences from four-letter alphabet
ℵ = {A,C,G,T}. Number of symbols N in that former is the length of the sequence.
No other symbols or gaps in a sequence are stipulated to take place. Any coherent
string ω = ν1ν2ν3 of the length 3 makes a triplet. A set of all the triplets occurred
within a sequence yields the support of that latter. Counting the numbers of copies nω

of the triplets, one gets a finite dictionary; changing the numbers nω for the frequency

fω = nω

N

one gets the frequency dictionary W3 of the thickness 3. This is the main object of
our study.

Thus, any genome is mapped into a 64-dimensional metric space, with coordi-
nates corresponding to tripletsω j = ν1ν2ν3, j = AAA,AAC,AAG, . . . ,TTG,TTT.
There is a linear constraint ∑

j

ω j = 1 . (6.1)

This constraint actually forces to change the 64-dimensional space for
63-dimensional one. Obviously, two genomes with identical frequency dictionar-
iesW (1)

3 andW (2)
3 are occupy the same point in the space. Nonetheless, a congruency

of two frequency dictionaries W (1)
3 and W (2)

3 does not guarantee a complete coin-
cidence of the original sequences, while these two sequences are indistinguishable
from the point of view of their triplet composition.

Definitely, some genomes may have very proximal frequencies of all the triplets,
and others may not. The inequality of triplet frequencies makes a distribution of the
genomes in the 63-dimensional space inhomogeneous. The key question of our study
is the inhomogeneity in the distribution mentioned above. Previously, this approach
has been used to study the family of bacterial genes, with respect to taxonomy
[19, 20]. To address the questions, here we made an unsupervised classification

http://www.itis.gov
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of organelle genomes, and matched the taxa composition of the classes observed
through the classification.

Here we studied the relation between the structure and the taxonomy for chloro-
plast genomes. An unsupervised classification could be done for a various number
of classes, and we had developed a series of classifications for different number of
classes varied from two to eight. The key issue of the study is the transformation
of classes when the number of these latter is changed: we investigated the fusion a
classes when change the classification for K classes for K − 1 classes. The distri-
bution of genera and species over the clusters, as well as the fusion of the clusters
observed for various number of classes to be developed due to K -means proves
unambiguously the high level of synchrony in evolution of two genetic systems: the
former is organelle one, and the latter is nuclear one. The synchrony manifests in
very tight and non-random distribution of species over the clusters. The proximity in
structure space (i.e. triplet frequency composition) was determined over chloroplast
genomes; the proximity in taxonomy was determined morphologically, i.e. through
the nuclear genomes.

6.2 Materials and Methods

6.2.1 Genetic Sequences

All genomes have been retrieved from EMBL–bank. There were ∼650 chloroplast
genomes,while the final database used in our study enlisted 246 chloroplast genomes.
The reasons to eliminate some entities from the dataset are provided below. Some
entries contain the “junk” symbols (those that fall beyond ℵ), then all such symbols
have been omitted, and the subsequences appeared due to the elimination of the junk
symbols have been concatenated into a bounded entity.

Raw set of chloroplast genomes deposited in EMBL–bank is very inhomoge-
neous, in terms of the species and clades representation. A number of highly ranked
clades are presented with a single species. Such solitariness results in a noticeable
bias in classification: the pattern of genomes distribution is hidden in the cloud of
signals provided by the isolated genomes. Thus, we eliminated the entries repre-
senting highly ranked clades solely, or with a few species. The cut-off level of 3
species and more has been established for database development. Table6.1 shows
the species structure of the database used in the study: it contains 36 genera. Evi-
dently, the species composition is far from a balanced one. Moreover, the database
contains both species, and strains belonging to the same genus (e.g., Ginkgo spp.
and the strains, indeed, as well as the family of genomes of Olea; that latter consists
of eight strains of O.europaea and only one species O.woodiana). Same is true for
Ostreococcus tauri species.
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Table 6.1 The species composition of the database of chloroplast genomes; M is the genus abun-
dance in the database

Clade M Clade M Clade M

Camellia spp. 9 Ginkgo spp. 5 Orobancheae spp. 4

Chrysanthemum spp. 3 Glycine spp. 9 Oryza spp. 12

Chrysobalanaceae spp. 6 Gossypium spp. 24 Ostreococcus spp. 14

Corymbia spp. 4 Hordeum spp. 3 Phyllostachys spp. 3

Cucumis spp. 4 Liliaceae spp. 3 Picea spp. 4

Cupressaceae spp. 4 Magnolia spp. 10 Pinus spp. 11

Cuscuta spp. 4 Monodopsidaceae spp. 3 Pyropia spp. 3

Cymbidium spp. 8 Nannochloropsis spp. 8 Silene spp. 7

Eucalyptus spp. 32 Nelumbo spp. 3 Solanum spp. 7

Euglena spp. 3 Nicotiana spp. 4 Taxus spp. 3

Eupatorieae spp. 3 Oenothera spp. 5 Triticum spp. 4

Fragaria spp. 4 Olea spp. 9 Vitis spp. 4

6.2.2 Clusterization Methods

Unsupervised K -means classification has been used to develop the classes. As it is
said above, we had to reduce the data space dimension to 63: the reduction comes
from the constraint (6.1). Formally speaking, any triplet could be excluded from
the data set; practically, we excluded the triplet yielding the least standard deviation,
determined over the set of genomes under consideration. This choice is evident: such
triplet makes the least contribution into the separation of the entities, in the space
of frequencies. Thus, the triplet GAC was eliminated; it has the standard deviation
σGAC = 0.000540.

One may use various distances to implement K -means; we used Euclidean one.
Another essential point in K -mean analysis is the stability of clusterization: since a
development of that latter starts de novo from a random (and homogeneous) distribu-
tion of the points into M classes, then there is no guarantee that the final distribution
would be the same. Practically, one meets a situation with few different final distribu-
tions. Besides, some genomes may (almost randomly) change their class attribution,
in different realizations of the procedure [21].

This point requires to check a stability of the final distribution obtained through
K -means implementation. We supposed a final distribution to be stable, if there was
not less than 75 identical final distribution patterns, in a series of a hundred of runs.
An advanced K -mean implementation also includes a separability of classes check-
out, with merging the classes that do not meet a criterion of separability. We checked
no class separability, in our study. All the results were obtained with ViDaExpert
software by A. Zinovyev.1

1http://bioinfo-out.curie.fr/projects/vidaexpert/.

http://bioinfo-out.curie.fr/projects/vidaexpert/
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6.2.3 “Downward” Versus “Upward” Classification

Apart from the distribution stability, K -means also poses another question towards
the optimal number of classes to be developed. The most advanced version of K -
means allows to get the maximal number of distinguishable classes, starting from
the high enough set of these latter. Here we did not check the separability of the
developed classes, hence the number of classes becomes an important parameter, in
the classification implementation.

Two alternative approaches could be pursued in this situation;we call them“down-
ward” and “upward” one, respectively. They both are based on a standard K -means
technique, but differ in the definition of clusters implementation.

6.2.3.1 “Downward” Classification

This kind of classification resembles classical morphology based pattern. It starts
from the clusterization of the entire set of genomes (frequency dictionaries) into the
minimal number Mc of clusters with the given stability of the clusterization. That
latter is understood as the given number of volatile genomes, i.e. genomes that may
change their cluster attribution with any new clustering realization. Then each of
the clusters is to be separated into the similar (i.e. minimal stable subclusters) set of
subclusters, etc. The procedure is to be trunked at the given “depth” of the cluster
implementation, usually determined by the volatility of a significant part of genomes.

Thus, a “downward” classification yields the tree-like graph structure, so making
it close to a standard morphological classification.

6.2.3.2 “Upward” Classification

On the contrary, the upward classification consists in the separation of the entire set
of genomes, sequentially, into the series of clusters

C2,C3,C4, . . . , CK−1,CK .

Here we assume that the clusterization C2 is stable. Again, the series is to be trunked
at the given number K ; we put K = 8.

The key question here is the mutual relation between the members of a cluster
C(l) j from {C(i) j } (1 � i � j) clusterization with the clusters from {C(m) j−1} (1 �
m � j − 1) clusterization (see Fig. 6.1). Here the index l enlists the clusters at the
{C(i) j } clusterization. There could be (roughly) three options:

• A cluster C(n) j is entirely embedded into the cluster C(l) j−1, with some l and j ;
• The greater part of the members of a cluster C(n) j is embedded into the cluster
C(l) j−1, but the minor part is embedded into the other cluster C(m) j−1;
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Fig. 6.1 Pattern of the “upward” embedment of various clades of plants in the stable upward
classification, developed over chloroplast genomes; the case of two to, four clusters

• A cluster C(n) j is almost randomly spread between the set of clusters C(l) j−1,
l = 1, 2, . . . , l∗.

Thus, an upward classification yields a pattern that is a graph with cycles. The graph
maybe fully connected, at theworst case, thus no essential structuredness is observed.
If the graph has rather small number of cycles, then it reveals the relations between the
clusters (determined through the proximity in frequency space), and the taxonomy
(determined over the nuclear genome).

6.3 Results

Wedeveloped theupward classification through the K -means clusterizations obtained
for two, three, four, …, eight clusters, and studied the composition of each cluster,
at the each classification level. The key questions were:

(1) whether the species (and higher clades) tend to keep together, when the number
of clusters in a clusterization goes down from 8 to 2, and

(2) whether the “younger” classes tend to merge an “elder” one, or not.

Here “elder” classmeans a class observed for the clusterization over L clusters, while
the “younger” one is that former obtained for L + 1 clusters.

Speaking on the upward classification, one has to keep in mind the problem of
a stability of that latter. Indeed, volatile genomes must not be too numerous. We
checked the stability of the distribution of genomes into the classes; a distribution
was stable, if more than a half of the realizations in a series yield the same pattern.
Of course, this definition is quite sensitive to the number of realizations. A good
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Fig. 6.2 Pattern of the “upward” embedment of various clades of plants in the stable upward
classification, developed over chloroplast genomes; the case of five to eight clusters

estimation for the series length is provided by the evaluation
√
N � L � N , where L

is a series length, but N is the number of genomes under consideration. This, we
used a series of a hundred of realizations of K -means, in our work, and present here
only stable subset of genomes. That latter enlists 196 entries.

Figures6.1 and 6.2 answer distinctly and apparently the question. These figures
present the clusterization mentioned above. For technical reasons, the entire graph is
divided into two parts: Fig. 6.1 shows the clusterization for 2–4 classes, while Fig. 6.2
shows further classification (for five to eight classes). The numbers in circles in these
figures show a conjunction edges connecting two figures in an entity. The clades in
the boxes correspond to genera, while the species (not shown in the figure) always
make a solid group, when changing the number of clusters. Thus, boxes having two
upright arrows showing the transfer of entities from Cl clusterization to Cl−1 one
contain two groups of species belonging the same genus (or family).

First of all, the is not fully connected. This fact makes a strong evidence of a
valuable non-randomness in the clades distribution over the classes as the number of
these latter grows up. Moreover, the list of clades occupying the classes (see Figs. 6.1
and 6.2) also is very far from a random one.

Careful examination of Fig. 6.2 shows that the “youngest” level of classification
(that is for eight classes) actually bears seven classes, only. This is not a mistake:
the stable clusterization of the given set of chloroplast genomes yields an empty
class, when making the K -means clusterization for eight classes. On the contrary,
the subset of genomes comprising an unstably clustering body of the genomes (that
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is not considered in detail in this paper) shows a reasonable separation of the entries
into eight classes.

Both Figures show the existence of rather isolated clades; the point is that this
isolation seems be quite unstable, in terms of a number of clusters to be implemented
due to K -means. In simple words, some clades may organize a tight cluster observed
for some specific number L∗ of classes, while theymaymerge another group for L =
L∗ − 1 or L = L∗ + 1.

6.4 Discussion

All chloroplasts have the same function; thus, the impact of a function divergence
was eliminated, in our study. Evidently, a database structure is crucial in this kind
of studies. We have used an unsupervised classification technique to develop a dis-
tribution of genomes into few groups. The results of such classification are usually
quite sensitive to an original database composition [21]. Luckily, the genetic banks
are rapidly enriched with newly deciphered genomes of organelles, so the stable and
comprehensive results showing the reliable relation between structure and taxonomy
could be obtained pretty soon. Moreover, a growth of genetic database may provide
a comprehensive implementation of a “downward” classification.

The data provided in this paper unambiguously prove the strong synchrony of the
evolution of two genetic systems: the host one, and the organelle genome. Still further
studies are needed to extend and clarify some results. First of all, the clusterization
provided by K -means (or K -line) is quite sensitive to the database under consider-
ation. Secondly, a slight bias may take place due to the significant disproportion of
the species included into the database; probably, the most numerous genera should
be hashed, in addition to the removal of the single-species clades.

A study presented in this paper is done within the scope of population genomics
methodology. The most intriguing result of the study is the very high correlation
between the statistically identified clusters of genomes, and their taxonomy reference.
The key point is that we used organelle genomes to derive the clusterization, while
the taxonomywas determined traditionally, throughmorphology, which is ultimately
defined by a nuclear genomes. There is no immediate interaction between the nuclear
and organelle genomes. The study has been carried out for both main organelles:
chloroplasts and mitochondria.

The approach presented above looks very fruitful and powerful. One can expand
the approach for the following problems to be solved:

• To study the clusterizations as described above for the database consisting of
the genomes of mitochondria, and chloroplasts, of the same species. This study
would unambiguously address the question on the relation between structure and
function: since the organelle genomes under consideration would belong the same
organisms, one may expect an elimination of the taxonomy impact, on the results.
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Meanwhile, this point should be carefully checked, since the results might be
sensitive to the list of species involved into the study;

• To study the clusterization of the frequency dictionaries corresponding to the
individual genes (or genes combinations) retrieved from the raw genomes of
organelles. The clusterization of such genetic entities would address the question
on the mutual interaction in a triadic pattern structure–function–taxonomy.

6.5 Conclusion

We explored the relation between structure of DNA sequences and the taxonomy of
their bearers. Very high correlation between these two issues has been observed, over
the study of a set of chloroplast genomes. The correlation means that taxonomically
proximal species tend to occupy the same cluster together. The key issue here is
that the proximity of clades has been determined morphologically (i.e. over nuclear
genomes), while the proximity of structures has been determined over the organelle
genomes (the chloroplasts, to be exact). These two genetic systems are physically
disconnected, and exhibit very low level of physical interaction. The observed corre-
lation proves the fact of the high synchrony in evolution of these two genetic systems.
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Chapter 7
Complex Synchronization Patterns
in the Human Connectome Network

Pablo Villegas, Jorge Hidalgo, Paolo Moretti
and Miguel A. Muñoz

Abstract A major challenge in neuroscience is posed by the need for relating the
emerging dynamical features of brain activity with the underlying modular structure
of neural connections, hierarchically organized throughout several scales. The spon-
taneous emergence of coherence and synchronization across such scales is crucial to
neural function, while its anomalies often relate to pathological conditions. Here we
provide a numerical study of synchronization dynamics in the human connectome
network. Our purpose is to provide a detailed characterization of the recently uncov-
ered broad dynamic regime, interposed betweenorder and disorder,which stems from
the hierarchical modular organization of the human connectome. In this regime—
similar in essence to a Griffiths phase—synchronization dynamics are trapped within
metastable attractors of local coherence.Herewe explore the role of noise, as an effec-
tive description of external perturbations, and discuss how its presence accounts for
the ability of the system to escape intermittently from such attractors and explore
complex dynamic repertoires of locally coherent states, in analogy with experimen-
tally recorded patterns of cerebral activity.

7.1 Introduction

The current mapping of neural connectivity patterns relies on advanced neuro-
imaging techniques, which have recently allowed for the reconstruction of struc-
tural human brain networks, establishing at an individual-based level which brain
regions are mutually connected, as well as the strength of pairwise connections.
The resulting “human connectome network” [1, 2] has been found to be struc-
tured in moduli or compartments—characterized by a much larger intra than inter
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connectivity—organized in a hierarchical fractal-like fashion across diverse scales
[3–8]. On the other hand, functional connections between different brain regions can
be inferred e.g. from correlations in neural activity as detected in EEG or fMRI time
series. Unveiling the relation between structural and functional networks is a current
challenge in modern neuroscience. In this context, a few pioneering works found
that the hierarchical-modular organization of structural brain networks has remark-
able implications for neural dynamics [7, 9–11]. As opposed to the case of simpler
network structures, neural activity propagates in hierarchical networks in a peculiar
way. For example, models of neural activity propagation usually exhibit two familiar
phases; percolating and non-percolating, respectively; but it has been recently found
[12] that when such models operate on top of the “human connectome” structural
network a novel intermediate regime, named a “Griffiths phase” [13, 14] emerges.
This novel phase originates from the highly-diverse and relatively isolated structural
moduli where dynamical activity may remain mostly localized for long time periods
[12, 14].

Given that the correct brain functioning requires coherent neural activity at a wide
range of scales [15, 16], the study of synchronization among neural populations is
one of the central ideas in computational neuroscience [17, 18].

In a recent work [19], some of us scrutinized the special features of synchroniza-
tion dynamics [20] using the canonical Kuramoto model for phase synchronization
[21–23], in the actual human connectome (HC) network [1, 2, 24]. In analogy to
what described above for activity propagation, we uncovered the existence of a novel
intermediate phase for synchronization dynamics, stemming from the hierarchical
modular organization of the HC. Furthermore, we found that the dynamics in such a
region presented a plethora of complex and interesting dynamical features [19].

Our goal here is to describe in more detail the complex behavior within such
an intermediate regime, both in individual moduli and at a global brain level. We
measure the fluctuations of the global order parameter as a function of the overall
coupling strength, and we show that there is a broad region (rather than a unique
“critical” point) with huge variability and response. Finally, we assess the role of
noise and perturbations in the robustness of the metastable stated arising in the
intermediate regime, and we show that adding intrinsic fluctuations to the picture of
synchronization dynamics in hierarchical modular networks accounts for the ability
of the brain to explore different attractors, giving access to the varied functional
configurations recorded in experiments [25–27].

7.2 Kuramoto Model in the Human-Connectome Network

The HC network we employ consists of a set of N = 998 nodes, each of them
representing a population of neurons producing self-sustained oscillations [28], con-
nected pairwise through a precise pattern of symmetric weighted edges, altogether
determining a connectivity matrixW [1, 2].
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On top of such a HC network, we implement a noisy Kuramoto dynamics, defined
by the set of differential equations [21–23]:

θ̇i (t) = ωi + αηi (t) + k
N∑

j=1

Wi j sin
[
θ j (t) − θi (t)

]
(7.1)

where θi (t) is the phase at node i at time t , the intrinsic frequencies ωi—accounting
for region heterogeneity—are extracted from some probability distribution function
g(w), Wi j are the elements of the N × N weighted connectivity matrix W, k is an
overall coupling parameter and ηi (t) is a zero-mean delta-correlated Gaussian noise,
tuned by the real-valued amplitude α.

The Kuramoto complex order parameter is defined by Z(t) = R(t)eiψ(t) =
〈eiθk (t)〉k , where 0 ≤ R ≤ 1 gauges the overall coherence and ψ(t) is the average
phase. It is common wisdom that for an (infinitely) large population of oscillators
interacting in a fully connected network, the model exhibits a phase transition at
some value of k, separating a coherent steady state (R > 0) from an incoherent one
(R = 0, plus 1/

√
N finite-size corrections) [21–23].On the other hand, in the absence

of frequency heterogeneity the system always reaches a coherent state. Thus, fre-
quency heterogeneity is responsible for frustrating synchronization if the coupling
strength is weak. Similarly, in our recent work [19] we argued that the combined
effect of frequency heterogeneity and network heterogeneity (in particular, a hierar-
chical modular structure) can lead to much richer and interesting ways of ordering
frustration. Here we explore that phenomenology in much deeper detail, introduc-
ing external stochastic fluctuations (i.e. noise) as the mechanism accounting for the
ability of the system to explore metastable configurations.

7.3 Results

We considered the HC network [1, 2] and employed standard community detection
algorithms [8, 29] to identify the underlyingmodular structure. The optimal partition
into communities—i.e. the one maximizing the modularity parameter [30]—turns
out to correspond to a division in 12 moduli [19]. At a higher hierarchical level, a
separation into just 2 moduli (roughly corresponding to the 2 cerebral hemispheres)
also gives a quite high modularity value. As illustrated in Fig. 7.1, 4 (out of the 12)
moduli belong to one of the two hemispheres, 5 to the other, while 3 moduli (cyan,
blue and red) overlap with both hemispheres. We label these two hierarchical levels
as l = 2 (2 large moduli) and l = 1 (12 smaller moduli), respectively.

We have conducted computational analyses of the noisy Kuramoto model on
top of the HC network and performed a number of new computational experiments
complementing the analyses in our previous work [19].

As illustrated in Fig. 7.2, beside the aforementioned coherent and incoherent
phases (usually encountered in synchronizing systems) there is an intermediate
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Fig. 7.1 Adjacencymatrix of theHCnetworkwith nodes ordered to emphasize itsmodular structure
as highlighted by a community detection algorithm (see main text), showing also the partition into
the 2 hemispheres (dashed lines). 12 moduli can be distinguished (each plotted with a different
color); 4 of them correspond to one of the two hemispheres, 5 to the other, and only 3 moduli
overlap with both hemispheres (cyan, blue and red moduli). Inter-modular connections (grey) are
limited to small subsets, acting as interfaces or connectors between moduli

regime between them exhibiting a large variability. Individual trajectories are
depicted in the inset, for different values of the coupling strength k; observe in
particular the irregular oscillations obtained for intermediate values of k.

The reported values of 〈R〉t in the main plot of Fig. 7.2 correspond to the time-
averaged value for a single realization in its steady state, considering up to a fixed
maximum time T . The observed variability in the central region means either that
(i) larger time windows would be required for the system to self-average or (ii) that
ergodicity is broken and for each parameter value the realization ends up in a different
type of (stable or metastable) steady state, depending on the initial condition. This
last possibility implies that the systemmay remain trapped in some sort of metastable
states, from which it can escape away only after very rare and large fluctuations.

These observations are robust against changes in the frequency distribution, con-
nectivity matrix normalization, and other details, whereas the location and width of
the intermediate phase are not universal. For example, Fig. 7.2 has been obtained
for a Gaussian frequency distribution but similar curves are obtained for, usually
employed, Lorentzian or uniform distributions.
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Fig. 7.2 (Main) Time-averaged value of the order parameter for the noisy Kuramoto dynamics run-
ning upon theHumanConnectome network (998 nodes) with aGaussian distribution of frequencies.
Three different regimes emerge: an incoherent phase (k < 1.6), a synchronous one (k > 3.3), and
an intermediate irregular one. In this last, much larger averaging times would be required to obtain
reliable mean values and these would depend upon initial conditions, reflecting metastability. We
have chosen not so large measuring times (t = 100 for all values of k) to illustrate the variability
in the intermediate region. (Inset) Time-series for 4 different k values, indicated by arrows in the
x-axis (from left to right: k = 0.5, 2.7, 3.0 and 4.0)

As this robust intermediate regime is reminiscent ofGriffiths phases in networks—
posed in between order and disorder and emerging from rare-region effects [12–14]—
it is natural to wonder how the structural network modularity affects synchronization
dynamics in general. As a matter of fact, it is straightforward to convince oneself
that any network consisting of perfectly isolated moduli, each of them synchronized
at different intrinsic frequencies and phases, should exhibit oscillations of the col-
lective order parameter, R, and these oscillations are preserved when the moduli are
weakly interconnected [19]. Thus, in large networks without delays or other addi-
tional ingredients, time oscillations in the global coherence are the trademark of an
underlying modular structure.

To illustrate the role played by internal network modularity on global synchro-
nization, Fig. 7.3 portraits the trajectories of the parameter Z(t) in the complex plane
for different values of the control parameter k, measured at different hierarchical
levels: two (out of the existing 12) different small moduli (violet and orange curves),
the two hemispheres (red and green), and the overall brain (blue). In the incoherent
phase (panel a), the real and imaginary parts of Z fluctuate around zero at all scales
in the hierarchy. On the other hand, in the coherent phase (panel d), all nodes are
synchronized, and trajectories are circles with radii close to unity at all hierarchical
levels

Amuch richer behavior is found in the intermediate region: panel b (left) illustrates
a situation in which onemodulus (orange) is mostly coherent, while the other (violet)
is not; however, hemispheres and global dynamics remain mostly unsynchronized
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Fig. 7.3 Phase portraits of the complex order parameter Z(t), measured at different scales in the
hierarchy for a Gaussian g(w) (different realizations from those in Fig. 7.2): two of the existing
moduli are plotted in violet and orange, respectively, the two hemispheres in red and green, and the
global scale in blue. Panels (a)–(d) correspond to values of the control parameter k = 1, 3, 5 and
8, respectively (panels (b) and (c) have been split into two to enhance clarity). a In the non-ordered
phase, the real and imaginary components of Z fluctuate around zero, not exhibiting synchronization
at any scale. b In the early region of the intermediate phase, a fewmoduli are coherent (as the one in
orange) butmost of them remain unsynchronized (violet), and the systemdoes not present coherence
for upper scales in the hierarchy. c Increasing k, more heterogeneity of synchronization among
moduli is found, and the system exhibits complex trajectories for the intermediate (hemispheres)
and global scale.d In the coherent phase, all moduli are synchronized, and trajectories are concentric
circles

(panel b (right)). In panel c (left), we have slightly increased the control parameter
with respect to panel b,with a subsequent increase of the coherence for all hierarchical
levels. Interestingly, as not allmoduli exhibit the same state of coherence, chaotic-like
oscillations of the order parameter are observed at the global scale.

We are interested in quantifying the observed variability of R in the interme-
diate phase. To this end, we take a particular realization of frequencies (extracted
from aGaussian g(w)) and, starting from an initial—uniformly distributed—random
configuration of individual phases, {θi (t = 0)}Ni=1, wemeasure the temporal standard
deviation of the global coherence parameter R (after the transient) up to a maximum
time T =10,000,

σ = (〈(R − 〈R〉t )2〉t
)1/2

(7.2)
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Fig. 7.4 Time-averaged order parameter R = 〈R(t)〉 and standard deviation of time-series, aver-
aged over realizations with different—uniformly distributed—initial conditions. Maximal variabil-
ity is found in the intermediate phase, where the system is neither too unsynchronized nor too coher-
ent. Several peaks in the variability can be distinguished (dashed lines), which appear at values of
the control parameter k for which the system experiments a fast increase in global synchronization.
Statistical sampling of different realizations indicate that error bars are larger in the intermediate
region, suggesting the existence of several attractors depending on the initial conditions. We have
averaged 100 different realizations, each one integrated for 10,000 time steps

as a function of the coupling strength k.1

As ergodicity may be broken, different initial conditions may lead to different
attractors of the dynamics, thereforewe also averageσ over 100 different independent
realizations of the dynamical process. Results are illustrated in Fig. 7.4, in which we
also have plotted the diagram of the order parameter obtained for this particular
realization of g(ω) averaged over the 100 realizations. Let us stress the following
salient aspects: (i) averaged time variabilities are small in the non-coherent (k � 1)
as well as in the coherent (k � 5) phases, whereas much larger variabilities are found
in the intermediate region (1 � k � 5); (ii) the curve of time variabilities presents
several peaks for the intermediate region, lying in the vicinity of values of the control
parameter at which the system experiences a change in its level of coherence (see the
corresponding jumps in the derivative of the order parameter); and finally, (iii) error
bars are also larger in the intermediate phase; this variability of time variabilities
means that different initial conditions can lead to different types of time-series,
suggesting a large degree of metastability in the intermediate regime.

1Notice that this definition of σ , that we call, “time variability” is closely related to the chimera
index introduced by Shanahan [31].While chimera indices are averaged between individual network
moduli and measure the onset of local coherence, σ is defined at the global level and records
fluctuations of the global order parameter.
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7.3.1 Metastability in HMNs

Our previous results vividly illustrate the existence of an intermediate region in
which the HC exhibits maximal dynamical variability at the global scale, suggesting
metastable behavior. In order to explore more directly whether metastable states
exist, we now assess if the dynamics may present different attractors and, for some
values of the control parameter k and noise amplitudes, if the system may switch
between different global attractors with different levels of coherence.

Figure7.5a shows a time series of the global parameter, for a fixed realization of
internal frequencies and initial phases. It clearly illustrates how theHCspontaneously
switches between two different attractors. These type of events, however, are not easy
to observe in the HC network. Due to the coarse-grained nature of the HC mapping,
different attractors may actually have comparable average values of the coherence
R, which makes their discrimination especially difficult at the global scale.

Instead, such events are easier to spot in synthetic hierarchical modular networks
(HMN), such as proposed to model brain networks in an efficient way (see [12]
and references therein). In such hierarchical networks, the effects of modularity and
hierarchy are much enhanced, as they develop across a larger number of hierarchical
levels than the one allowed by current imaging techniques for empirically obtained
connectomes.

All the previously reported phenomenology is still present in such HMNs (see
[19]); in particular, the phase diagramof the synchronization order parameter exhibits
a phase transition with an intermediate region, where variability is much enhanced
[19]. Figure7.5b illustrates the bi-stable nature of the global parameter in the inter-
mediate phase for a HMN, in which metastability can be very well appreciated. This
switching behavior closely resembles “up and down” states, which are well known
to appear in certain phases of sleep or under anaesthesia (see [32] and refs. therein).

We hypothesize that hierarchical modular networks in general (and the HC in
particular) enable the possibility of a large repertoire of attractors, with different
degrees of coherence and stability. Such metastability can be made evident and
quantified by performing the following type of numerical test. Starting from a fixed
random initial condition and considering a vanishing noise amplitude (i.e. α = 0),
the system might deterministically fall into a number of different attractors, each
of them with an associated value of the global coherence depending on the initial
conditions, the network structure, and the choice of natural frequencies. Once this
attractor A is reached, the system is perturbed by switching on a non-vanishing noise
amplitude (α > 0) during a finite time window. The system may remain stable in the
same attractor A if the noise is weak enough (α � 1). However, if larger values of
the noise amplitude are chosen, the systemmay jump into another close, more stable,
attractor. If the noise amplitude is very large (α � 1), the system can in principle
jump to any attractor, but, very likely, will also escape from it, wandering around a
large fraction of the configuration space. After the perturbation time-window is over,
we let the system relax once again, and check if the new resulting steady state B has
changed with respect to A. In that case, we can conclude that the systems was in
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(a) (b)

Fig. 7.5 Time series exhibit metastability of the global synchronization in the Human Connectome
and in HMNs, in the intermediate region. a Times series of the noisy Kuramoto dynamics in the
HC with Gaussian g(w) in the intermediate region: for low noise amplitudes (α = 0 and 0.1), the
system stays stable in the same attractor. But, for sufficiently large values, such as α = 0.2, the
system is able to “jump” to another more coherent attractor, where it settles. b In HMNs (size
N = 1024, 9 hierarchical levels), we observe the same phenomenology, but much enhanced: when
noise is very low (α ≤ 0.45), the system tends to remain stable in a certain attractor (with a few
exceptions after very large waiting times). Choosing a higher α (α ≥ 0.5), the system exhibits
bi-stable behavior, switching intermittently between two different attractors. For large enough α

(α ≥ 0.55), the dynamics becomes too erratic to appreciate metastability. Here, frequencies were
extracted from a Lorentz distribution

a metastable state A before the perturbation, and has reached another state B after
it—potentially a metastable state itself.

We have carried out this type of test using an artificial HMN (see Fig. 7.6) for
a specific value of the control parameter k, belonging in the intermediate region.
Natural frequencies are sampled from the a Lorentzian distribution g(ω) (as above,
our main results are not sensible to this choice). Starting from a random initial
configuration of phases, we integrate Eq. (7.1) up to time 500 with α = 0. After
this, we introduce the external perturbation by switching the noise coefficient α to
a certain non-zero value during a time window of duration 100. Finally we revert
to α = 0 and continue the integration up to time t = 1000. The last steady state
value is averaged over 104 realizations of initial conditions, networks, and intrinsic
frequencies.

As illustrated in Fig. 7.6, for low as well as for high values of the noise amplitude,
the system has the same average order parameter close to 〈R〉t,runs 	 0.2, as could
have been anticipated. However, a resonant peak emerges for intermediate values
of the noise, where the system switches to states with different levels of coherence.
This plot explicitly illustrates the existence of metastability and noise-induced jumps
between attractors. As noise is enhanced, progressively more stable states are found,
but above some noise threshold, the system does not remain trapped in a single
attractor but jumps among many, resulting in a progressive decrease of the overall
coherence.
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(b)(a)

Fig. 7.6 Perturbations can lead the system to more coherent attractors in the intermediate non-
coherent phase. a Order parameter R averaged in time over 104 realizations. A noise pulse of
amplitude α is applied during the green interval. This same protocol is repeated for different values
of α. b Average order parameter in the final steady state (after the noise pulse) as a function of α.
For intermediate values of α, a resonant peak emerges for 1 < α < 10, illustrating that the system
can jump to a close, more coherent on-average attractor. Simulations are run on HMN networks of
size N = 1024, with 9 hierarchical levels

7.4 Discussion

It is well established that in the absence of frequency dispersion, the Kuramoto
dynamics leads to a perfectly coherent state, which is progressively achieved in time
by following a bottom-up ordering dynamics in which increasingly larger commu-
nities become synchronized [33].

If a hierarchical modular networks is loosely connected, this type of “matryovska-
doll” synchronization process is constrained at all levels by structural bottlenecks,
bringing about anomalously-slow synchronization dynamics as recently reported
[19].

In the presence of intrinsic frequency dispersion the above slow ordering process
is further frustrated [19]. For small values of k the system may remain trapped
into metastable states in which the loose connectivity between some moduli does
not allow them to overcome intrinsic-frequency differences and achieve coherence.
While persistence inmetastable statesmayextend indefinitely, experimental evidence
suggests that the brain is able to switch between a rich repertoire of attractors [25–
27]. We have shown that a simple description of neural coherence dynamics based
on the noisy Kuramoto model may suffice to reproduce a very rich phenomenology,
in hierarchical modular networks and in particular in the human connectome. The
introduction of small fluctuations (exemplifying external perturbations, stimuli, or
intrinsic stochasticity) allow the system to escape from metastable states and sample
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the configuration space, proving a paradigmaticmodeling tool for the attractor surfing
behavior suggested by experiments. Additional ingredients, such as explicit phase
frustration [31] or time delays [28, 34], should only add complexity to the structural
frustration effect reported here, providing a finer description of brain activity.
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Chapter 8
Structure of a Media Co-occurrence Network

V.A. Traag, R. Reinanda and G. van Klinken

Abstract Social networks have been of much interest in recent years. We here
focus on a network structure derived from co-occurrences of people in traditional
newspaper media. We find three clear deviations from what can be expected in a
random graph. First, the average degree in the empirical network is much lower than
expected, and the average weight of a link much higher than expected. Secondly,
high degree nodes attract disproportionately much weight. Thirdly, relatively much
of the weight seems to concentrate between high degree nodes. We believe this
can be explained by the fact that most people tend to co-occur repeatedly with the
same people.We create a model that replicates these observations qualitatively based
on two self-reinforcing processes: (1) more frequently occurring persons are more
likely to occur again; and (2) if two people co-occur frequently, they are more likely
to co-occur again. This suggest that the media tends to focus on people that are
already in the news, and that they reinforce existing co-occurrences.

8.1 Introduction

Complex networks have been a prominent research topic for the past decade. One of
the reasons is that complex networks appear in a multitude of scientific disciplines,
varying from neurology [6, 18], ecology [13, 16] to international relations [9, 14, 22]
and human mobility [15, 30] providing a unified theoretical framework for analysis.
Although many properties seem to be (nearly) universal (e.g. degree distribution,
clustering) [2], there are also some noteworthy differences between different types
of networks (e.g. assortativity, weak links) [1, 17, 28].
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Social networks can nowadays be relatively easily scraped from online services
such as Facebook or Twitter [8, 11, 33]. In addition, traditional media (i.e. newspa-
pers) are also increasingly being digitised. Whereas online social media are open to
the general public, and the large masses use them intensively, traditional media are
biased towards the more influential members of society. Therefore, we might learn
something about the elite of a society by studying how they appear in the newspa-
pers. In this study, we focus on who co-occurs with whom. We aim to understand
the structure of the co-occurrences. Do frequently occurring people co-occur mostly
with each other, or not? How strongly do frequently occurring people connect to
each other?

Given the possibilities of using media co-occurrence reports for constructing
social networks, there have been surprisingly few earlier studies of media co-
occurrence networks [19, 27, 29, 31]. The analyses were relatively succinct, and
showed that such networks were both scale-free and a small world, properties we
also find here. However, the scale-free and small world nature of these co-occurrence
networks can be expected, and also show up in a randomised graph. In fact, various
common properties are quite close to what can be expected in a randomised graph.
Nonetheless, three deviations from the random graph stand out. First of all, the aver-
age degree is much lower than expected, while the average weight is much higher
than expected. Secondly, high degree nodes attract disproportionately much weight.
Thirdly, much of the weight is concentrated in between high degree nodes.

These observations suggest that people repeatedly occur with the same people,
or at least more so than expected at random. To explain this, we create a model
that concentrates more of the co-occurrences in fewer people, thus explaining this
deviation. The model consists of only two simple ingredients: (1) more frequently
occurring people tend to occur more frequently in the future; and (2) people that
co-occur more frequently tend to co-occur more frequently in the future. In addition,
high degree nodes are more likely to occur with already existing neighbours.

8.2 Data and Network

We use newspaper articles to construct a social network. The idea is that people
are linked if they co-occur in the same sentence. We use two corpora in our current
study: (1) a corpus from an Indonesian news service called Joyo1; and (2) a corpus
from the New York Times2 (NYT). The Joyo dataset covers roughly 2004–2012 and
contains 140,263 articles, while the NYT dataset covers 1987–1988 and contains
210,645 articles. The Joyo dataset is a selection of political news (in English) from
both domestic and foreign sources that is relevant to the politics of Indonesia, while

1http://www.joyonews.org.
2See https://catalog.ldc.upenn.edu/LDC2008T19 for the corpus. We only used the first two years
of the dataset.

http://www.joyonews.org
https://catalog.ldc.upenn.edu/LDC2008T19
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the NYT is a complete corpus of all the articles of that newspaper. We scan the whole
text and automatically identify entities by using a technique known as named entity
recognition (NER) [12]. The technique automatically identifies different entities, and
classifies them into three distinct categories: persons, organisations and locations.
Although it is not perfect, the error rate tends to be relatively low [12].

We have only included persons in our media co-occurrence network, and only
people that occurred in more articles than on average. We thereby exclude people
that only appear quite infrequently, which are presumably less influential, and thus
less of interest. Although this skews the results more towards people that appear
more prominently in the media, it still includes many less prominent people. Once
all persons have been identified, we have to disambiguate them. There are generally
two types of errors that can be made with names [23]: (1) a single name corresponds
to two different persons (e.g. “Bush” can refer to the 43rd or 41st US president);
and (2) two different names refer to the same person (“President Clinton” or “Bill
Clinton” both refer to the 42nd US president). The second problem appears much
more prominent than the first problem in our corpus, as people are generally referred
to in many different ways in journalistic prose (including or not positions, titles,
initials, maiden names, etc…).

We disambiguated these names by using a combination of similarity measures
based onWikipediamatching, string similarity and network similarity (using Jaccard
similarity). The more prominent people often have a Wikipedia page, and various
spelling variants are redirected to the same entity (e.g. “President Clinton” and “Bill
Clinton” both redirect to the sameWikipedia page). Each similarity is normalised to
fall between 0 and 1 (with 1 being identical), which we threshold at 0.75, such that
we only take it into account if the similarity is at least 0.75. We then take the average
of the similarities that are higher than 0.75 (which is then also at least 0.75). We
then find clusters of names such that each cluster has an average internal similarity
of 0.85 (all similarity measures are between 0 and 1), using a technique called the
Constant Potts Model [32].

Once the names have been disambiguated,we create a link for all the unique names
in a sentence (i.e. repeated names have no effect). We do this for every sentence, and
simply count in how many sentences such a co-occurrence was observed. We take
only the largest connected component of the network, and this constitutes the media
co-occurrence network we analyse in this paper.

Of course, what co-occurrence exactly implies is not always clear: two people
might be mentioned together for example because they collaborate, or because they
are contestants in an election. A co-occurrence might not coincide with any one
single definition of a “relationship” in the sociological sense [20]. Hence, we cannot
say if two people that co-occur have any more significant relationship: do they know
each other? Have they ever communicated? Have they met face to face? Are they
close friends? Sworn enemies? We simply cannot tell. This is essential to bear in
mind when drawing any conclusions: the network is based on co-occurrence, not on
“actual relationships”.
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8.3 Results

We denote the undirected network by G = (V, E)where V = {1, . . . , n} is the node
set, representing the people, and E ⊆ V × V constitutes the edge set with m = |E |
edges, representing the co-occurrences between people. Hence, if node i ∈ V and
node j ∈ V co-occurred in some sentence, then there is an edge (i j) ∈ E . Each edge
has a weight associated to it, which represents the number of times the two nodes
i and j have co-occurred, which we denote by wi j . Finally, the adjacency matrix is
denoted by A, such that Ai j = 1 if there is an edge between node i and j and zero
otherwise. Since the network is undirected, we have that Ai j = A ji and wi j = w j i .
Notice that this network is a projection of a bipartite network of people and sentences.
Let us denote by B the bipartite adjacency matrix, so that Bis = 1 if person i occurs
in sentence s. Thenwi j = ∑

s Bis B js and Ai j = 1 ifwi j > 0 and Ai j = 0 otherwise.
In other words, w = BBT . We denote the degree of node i by ki = ∑

j Ai j and the
strength by si = ∑

j Ai jwi j .
We compare our results to a bipartite randomisation of the network. Formally,

let P be a list of persons and S a list of sentences, such that (PeSe) is a bipartite
edge, so that the length of the list equals the number of bipartite edges. If σ is a
random permutation, then (Pσe Se) for all e are the randomized edges. Simply put,
this randomisation takes the list of occurrences of people in sentences and shuffles
the complete edge list, so that people occur in a random sentence. This preserves the
number of times somebody occurs in a sentence, and preserves the number of people
that occur in a sentence. We then take a projection of this network as we did for
the empirical observations. In other words, ŵ = B̂ B̂T and Âi j = 1 if ŵi j > 0, where
B̂Pσe Se = 1 for all e and zero otherwise. We create a 100 different randomisations
and use it to compare to our empirical observations.

The Joyo network has n = 9,467 nodes, an average degree of 〈ki 〉 ≈ 12.22 and
with an average weight per edge of 〈wi j 〉 ≈ 2.95 the average strength is 〈si 〉 =
〈ki 〉〈wi j 〉 ≈ 36.07. So, in Joyo, a person co-occurs on average about 3 times with
12 other people, so in total about 36 times. Based on the randomisation, we would
expect roughly 22 people to occur about 1.2 times, giving a total strength of around
28. Hence, people co-occur roughly 2.5 times more often with the same people as
expected, and co-occur with almost 2 times less people. The NYT corpus contains
n = 31,093 nodes and has an average degree of about 〈ki 〉 ≈ 22.35. The average
weight 〈wi j 〉 ≈ 2.01, which gives an average strength of about 〈si 〉 ≈ 44.91. In sum-
mary, a person in the NYT co-occurs about 2 times with about 22 different people.
Similar as for Joyo, based on the randomisation, we would expect around 45 people
to occur about 1.1 times, giving a total strength of about 50. So, in NYT people
co-occur almost 2 times more frequently with the same people, with roughly 2 times
fewer people. We provide an overview of some of the key statistics in Table8.1.

The degree, strength and weight are all heterogeneously distributed, as frequently
observed in complex networks. They follow approximately powerlaws [7] in both
networks, where we use MLE techniques for estimating the powerlaws. The degree
and strength in the Joyo corpus is more broadly distributed compared to the NYT
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Table 8.1 Summary overview

Empirical Random Model

Joyo

Nodes 9567 9114 ± 418.0 9481 ± 93.5

Avg. Degree 12.4 22.1 ± 8.0 12.3 ± 8.8 × 10−2

Avg. Weight 2.9 1.2 ± 0.050 3.0 ± 8.9 × 10−3

Avg. Strength 36.5 27.7 ± 11.0 36.4 ± 0.36

Assortativity −0.067 −0.13 ± 8.3 × 10−3 −0.094 ± 1.3 × 10−3

Clustering 0.29 0.32 ± 2.2 × 10−4 0.25 ± 8.2 × 10−4

W. Clustering 0.33 0.34 ± 2.3 × 10−4 0.26 ± 6.9 × 10−4

Path Length 3.45 2.51 ± 4.3 × 10−4 3.34 ± 1.5 × 10−3

Diameter 10 5.7 ± 4.9 × 10−2 8 ± 5.8 × 10−2

Radius 6 3 4.5

Exponents

Degree 2.46 ± 1.5 × 10−2 2.29 ± 1.4 × 10−2 2.03 ± 1.1 × 10−2

Weight 2.21 ± 1.2 × 10−2 2.56 ± 1.6 × 10−2 2.45 ± 6.0 × 10−3

Strength 2.06 ± 1.1 × 10−2 2.17 ± 1.2 × 10−2 1.89 ± 9.1 × 10−3

Degree-Strength 1.30 ± 2.6 × 10−3 1.42 ± 1.4 × 10−3 1.39 ± 1.8 × 10−3

NYT

Nodes 31093 30860 ± 69 31015 ± 11

Avg. Degree 22.3 45.2 ± 0.19 22.1 ± 0.14

Avg. Weight 2.01 1.11 ± 6.6 × 10−4 1.94 ± 0.025

Avg. Strength 44.9 50.1 ± 0.24 43.1 ± 0.27

Assortativity 0.062 −0.090 ± 6.4 × 10−4 −0.17 ± 2.4 × 10−3

Clustering 0.32 0.26 ± 4.2 × 10−4 0.36 ± 7.7 × 10−3

W. Clustering 0.35 0.26 ± 4.6 × 10−4 0.36 ± 7.7 × 10−3

Path Length 3.7 2.7 ± 5.9 × 10−3 3.2 ± 4.6 × 10−3

Diameter 10 6 9

Radius 5 3 4.5

Exponents

Degree 3.99 ± 1.7 × 10−2 2.63 ± 9.3 × 10−3 1.77 ± 4.4 × 10−3

Weight 2.42 ± 8.1 × 10−3 2.90 ± 1.1 × 10−2 2.71 ± 2.9 × 10−3

Strength 2.95 ± 1.1 × 10−2 2.51 ± 8.6 × 10−3 1.72 ± 4.1 × 10−3

Degree-Strength 1.48 ± 3.5 × 10−3 1.22 ± 4.8 × 10−4 1.48 ± 1.1 × 10−3

We report various properties for both datasets and the randomisations and model. Refer to the main
text for details about the randomisation procedures and the model

corpus, but the weight is distributed similarly. However, these distributions are also
expected to be heterogeneous based on the randomisation. Although there are some
deviations, they seem mainly due to the lower average empirical degree and the
higher average empirical weight.
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The network shows signs of a small world network. The average path length
is relatively low, while the clustering is relatively high. Again, this does not deviate
much fromwhat is expected at random. The (weighted) clustering is almost the same,
and the path length is even slightly longer than expected at random. The longer path
length is probably due to the lower average degree.With fewer neighbours on average,
there are fewer possibilities for paths, thus leading to somewhat longer paths.

We find that the strength scales superlinearly with the degree as si ∼ kβ

i , with
an exponent of β ≈ 1.30 for Joyo and β ≈ 1.48 for NYT. This means that high
degree nodes attract more weight and low degree nodes less weight. In this context,
people that co-occur with many other people, also tend to co-occur more often. A
similar superlinear scaling was found in transportation and technological networks
[5, 26, 34]. This contrasts with for example mobile phones where there is a sublinear
growth [25], suggesting that people who call many people, do so less frequently
than people who call few people. This is quite different from what is expected at
random, especially when looking at this from the perspective of the average weight
si/ki , which increases for large degree ki empirically, but which increases only very
slightly in the randomisation. We have plotted the behaviour of the average weight
and the strength in Fig. 8.1.

The average weighted neighbour degree [4] increases with larger degree. This
implies that high degree nodes connect relatively stronger to other high degree nodes.
For the NYT the weighted neighbour degree starts to increases more clearly for a
degree larger than about 200. This suggest that relatively much weight is in between
high degree nodes. See Fig. 8.1 for plots of the weighted neighbour degree. The
ordinary neighbour degree decreases for Joyo, as evidenced by the negative assor-
tativity [24], whereas this increases for NYT (Table8.1), pointing out a difference
between the two datasets.

8.3.1 Model

Three phenomena deviate fromwhat can be expected from a random graph. First, the
degree is higher than expected and the weight is lower than expected. Secondly, high
degree nodes attract disproportionately much weight. Thirdly, much of the weight is
between the hubs. These observations suggest that people tend to co-occur repeatedly
with the same people. We therefore introduce a very simple stylistic model that is
able to reproduce most of the observations in the empirical network qualitatively.
The model consists of two key ingredients: (1) more frequently occurring people
have a higher probability of occurring; and (2) two more frequently co-occurring
people have a higher probability of co-occurring.

More specifically, we employ the following procedure.We start out with an empty
graph. Each time step, we draw a random sentence s, with degree ks (i.e. the number
of people occurring in a sentence) drawn from the empirical sentence degree distrib-
ution.We then choose ks nodes in the followingway.With probability q we introduce
a new person into the graph, which is chosen so that the expected number of nodes
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Fig. 8.1 Properties. The first column shows the properties for Joyo, the second for NYT. This
clearly shows that the strength increases faster than expected (first row), which is even more clear
when looking at the average strength (second row). The model however, captures quite well this
increase, especially for Joyo. Theweighted neighbour degree increases, whereas this remains nearly
constant for the randomisation. The model again, shows a relatively similar increase, especially for
Joyo

equals the number of nodes n in the empirical graph. That is, if pk is the probability
a sentence has degree k, then the total expected number of nodes occurring in sen-
tences will be ns

∑
k kpk , with ns the number of sentences. So, if q = n

ns
∑

k kpk
we

generate on average about n nodes.
If we don’t introduce a new node, we pick a random node i in the sentence.

Then with probability (ki + 1)−β we choose an already existing node, where ki is
the degree of node i and β a tunable parameter. The probability a node is selected
is proportional to its degree, so that Pr(choose j) = k j/

∑
l kl . If we don’t pick an

existing node, we choose a random neighbour of i with probability proportional to
the weight, so that Pr(choose j |i) = wi j/

∑
k wik . After we picked all ks nodes, we
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create an edge for all combinations of persons in the sentence. If an edge already
exists, we increase its weight.

The node sampling is very similar to the preferential attachment model from
Barabási and Albert [3] and similar models [10], as nodes that have more links are
more likely to receive additional links. However, our model differs in several impor-
tant ways from the model by Barabási and Albert [3]. First of all, it tends to generate
a superlinear scaling of the strength with the degree. Secondly, it generates a much
higher clustering coefficient. This latter effect is mainly a result of sampling neigh-
bours, which relates to triadic closure, which has also been used in other models [21].

Besides preferential attachment, our model also has a counter tendency. Higher
degree nodes are increasingly more likely to co-occur with already existing neigh-
bours. The idea behind the scaling (ki + 1)−β is based on the idea that higher degree
nodes have a higher than linear strength. In other words, hubs are more likely to
repeatedly co-occur with their neighbours, more so than on average.

A crude argument shows that indeed thismodel should result in superlinear scaling
of the strength. Consider ki (si ), the degree of node i as a function of the strength si ,
and suppose that all sentences have only degree 2. Every timewe add a co-occurrence
for i , si increases, although ki does not necessarily increase. Now if i was the first
node to be chosen, it will get a new neighbour with probability (ki + 1)−β . If i was
the second node to be chosen, it implies it is chosen by another node. The probability
that this node selected a new neighbour (which by definition then is node i , since
we already know it was chosen) is then (k j + 1)−β given that node j was chosen
first. But the probability that node j was chosen first is proportional to k j . Then the
probability i gets a new neighbour if si increases is

(ki + 1)−β +
∑

j

k j∑
l kl

(k j + 1)−β. (8.1)

Taking a mean-field approach, we approximate ki ≈ 〈k〉, and simply write k = 〈k〉
for ease of writing, we obtain that

Δk = (k + 1)−β +
∑

j

k∑
l k

(k + 1)−β = 2(k + 1)−β. (8.2)

Taking then the approximation that ∂k/∂s ≈ Δk,weobtain the solution that s ∼ k1+β

so that the strength increases superlinearly with k. This is of course a rather crude
argument, but it nonetheless shows that using this approach we should indeed expect
a superlinear scaling of the strength with the degree.

This contrasts with using a constant probability for choosing a new neighbour. In
that case, essentially each time that the strength increases, the probability that the
degree increases is a fixed probability ρ. This then results in k ∼ ρs, showing only
linear scaling.

Additionally, this model has the tendency to create a relatively high clustering
coefficient. Every time that a new sentence is introduced with ks persons, all these
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ks persons will be connected amongst each other, creating small cliques. In addition,
these cliques are also reinforced by themechanismof adding neighbours to sentences.
Interestingly, despite such reinforcement, the model still generates a dissortative
structure [24]. Although this is congruent with Joyo, it contrasts with the assortative
structure for NYT.

In order to estimate the parameter β, we compare the average degree and average
weight to the empirically observed values. That is, for each parameter value β, we
compare the average degree 〈k̂i 〉 and average weight 〈ŵi j 〉 of the model, and compare
that to the average degree 〈ki 〉 and average weight 〈wi j 〉 of the empirical network.
We use a simple squared error for the fitting,

E(β) = (〈k̂i 〉 − 〈ki 〉)2 + (〈ŵi j 〉 − 〈wi j 〉)2. (8.3)

Weused 100 replications for each parameter value. The best parameter fit differs quite
a bit between Joyo and NYT. For Joyo we find an optimal parameter of β ≈ 0.46,
while for NYT we find β ≈ 0.22. See Fig. 8.2 for the fitting of the parameter.

As expected, we can fit the empirically observed average degree and weight
very well. Additionally, we indeed observe a very similar increase in the average
weight for high degree nodes, as was already argued above. Finally, the model also
shows an increase in the average weighted neighbour degree, similar as empirically.
Nonetheless, although the average degree is quite well fit for NYT, the distribution
of the degree is more broader, leading to a higher average weighted neighour degree.
Nonetheless, both the model and the empirical network show an increase. The fit of
the model for Joyo is especially striking in Fig. 8.1. Perhaps this is because Joyo has
a more particular focus on politics, while the NYT includes also other subjects such
as culture, arts and sports.

Fig. 8.2 Model fit. The fit of
the parameter β in the model.
The error E(β) it taken with
respect to the average degree
and the average weight
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8.4 Conclusion

In this paper we analysed two networks based on the co-occurrence of people in
newspapers. We have analysed various properties of this network, and whereas many
properties are in linewithwhat could be expected from such a co-occurrence network,
a few deviations stand out. First, people occur with fewer people than expected and
more often with those people than expected. Secondly, high degree nodes attract
disproportionately much weight, so that the hubs co-occur much more often than
their degree justifies. Third, much of the weight concentrates between these hubs.

This suggests that people repeatedly co-occur with the same people. We con-
structed a model that tries to reproduce these observations. It is based on two simple
processes: (1) people that occur in the media are more likely to occur again; (2) two
people that co-occur are more likely to co-occur again. Moreover, people with a
higher degree co-occur more often with people with whom they already co-occur.
This seems to explain the observations quite well, although some deviations remain.

There are some clear differences between the Joyo and the NYT corpus. Whether
this is reflective of differences between Indonesia and the US, or the more politically
oriented corpus of Joyo, or a difference in time periods, is difficult to ascertain.
Further analysis and comparison of these networks should provide more insight.
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Chapter 9
Spatial Effects of Delay-Induced Stochastic
Oscillations in a Multi-scale Cellular System

Dmitry Bratsun and Andrey Zakharov

Abstract The combined spatial effect of time delay and intrinsic noise on gene
regulation is studied numerically. It is based on the multi-scale chemo-mechanical
model of the epithelium. The protein fluctuations in each cell are described by a
single-gene auto-repressor model with constant delay. It is found that time delay,
noise and spatial signaling can result in the protein pattern formation even when
deterministic description exhibits no patterns.

9.1 Introduction

Variance is increased, if the number of elements in the set is reduced. A large variance
indicates that numbers in the set are far from the mean and each other, while a small
variance indicates the opposite. This is why the small number of reactant molecules
involved in gene regulation can lead to significant fluctuations in mRNA and protein
concentrations, and there have been numerous studies devoted to the consequences
of such noise at the regulatory level [1–4].

In fact, the transcriptional and translational processes are compound multistage
reactions involving the sequential assembly of long molecules. It can provoke a time
lag in gene regulation processes. The combined effect of time delay and intrinsic
noise on the temporal dynamics have been explored in [5, 6]. It was found that quasi-
regular oscillations can arise in such a stochastic system even when its deterministic
counterpart exhibits no oscillations. Several years ago, it was declared that “space is
the final frontier in stochastic simulations of biological systems” [7, 8]. If the spatial
stochastic simulations of Markovian processes then has made considerable progress
[4, 8–10], examples of stochastic simulation of non-Markovian processes in space
are almost absent in the literature.

Generally, many biological processes, ranging from gene expression, cell prolifer-
ation to higher-order processes such as vision, memory, and learning, necessitate that
a cell be aware of its environment. These processes involve transmission of signals
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across the plasma membrane. It is well-established that the exchange of such signals
is a necessary condition for a self-organization at the cellular level. Early epithelial
models (for example, the model of epidermal wound healing [11]) were based on
reaction-diffusion equations describing cell motion and proliferation in response to a
diffusive chemical signal. This approach turned out to be inadequate for the descrip-
tion of spreading epithelia, as it could not explain proliferation in the absence of
external injury of tissue and many other features observed in later experiments [12].
The same situation was observed in multiscale modelling of tumour growth [13].
It became clear that a more realistic approach should involve the modeling of the
forces transmitted by adjoining cells. One of such new kind models was proposed
in [14]. Authors have constructed a minimal phenomenological model taking into
account the effect of both chemical and mechanical factors on collective cell motion
and compatible with available observations. A very recent two-dimensional chemo-
mechanical model [15] was suggested to describe a growth of cancer tumour induced
by circadian rhythm disruption in epithelial tissue. In all these works however it was
supposed that cells exchange signals within the deterministic description.

In this paper, we explore the spatial effects of time delay and intrinsic noise on
gene regulation in amilticellular system. This approach helps to avoid the problem of
the lack of a reliable algorithm for spatial stochastic processes of the non-Markovian
nature. The cellular system is constructed within the multiscale chemo-mechanical
model of the epithelium tissue suggested primarily in [14] and then applied to repro-
duce the carcinoma growth in [15]. At a single cell level, we use a single-gene
auto-repressor model with constant delay which is relatively simple yet but still
maintains a high degree of biological relevance. The numerical simulation of these
stochastic fluctuations in each cell is performed using the modified Gillespie algo-
rithm proposed in [5].

9.2 Mechanics of Epithelial Tissue

Epithelial tissue is a layer of cells covering the surface of an organ or body. The
cells always remain attached to each other forming a continuous two-dimensional
epithelial surface (Fig. 9.1). The curvature of the layer (presumed small compared to
the cell size) and thickness inhomogeneities are neglected. The model includes the
calculation of separate cells dynamics, which are presented in the form of polygons.

Fig. 9.1 Elements of the
chemo-mechanical model of
an epithelial tissue
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The initial configuration is a regular hexagonal lattice. But in the course of evolution,
the structure is distorted, and the polygons with different number of vertices appear.

The mechanical model is based on the elastic potential energy U of the tissue,
defined by summing up the contributions of the perimeter L and the area A of each
cell [14–16]:

U = 1

2

∑

cells

(
κL2 + η(A − A0)

2
)
, (9.1)

where κ is attributed to the action of active contractile forces, η is the elastic constant
and A0 is the reference cell area.

The tissue evolves by moving the cell nodes (indicated by blue points in Fig. 9.1).
The mechanical force acting on any j th node is defined as

F j = − ∂U

∂R j
, (9.2)

where R j stands for radius vector of j th node.
Since themotion is strongly overdamped [14], the appropriate equation governing

the displacement velocities Vi should have the form similar to the Darcy law with
the mobility coefficient K :

Vi = dRi

dt
= KFi H (|Fi | − F0) , (9.3)

where H is the Heaviside function and F0 is the threshold below which the node
remains immobile. Altogether, (9.1–9.3) define the mechanics of the tissue.

9.3 Single-Gene Auto-Repressor Model with Dimerization

Let us consider a single gene protein synthesis with negative auto-regulation. This
is a popular motif in genetic regulatory circuits, and its temporal dynamics has been
analyzed both deterministic and stochastic framework [1]. The generalized version
of this system taking into account that transcription of auto-repressor protein takes
a finite amount of time τ has been studied in [5, 6].

Suppose that protein can exist both in the formof isolatedmonomers X and dimers
XD . Both forms actively interact with each other via the reactions dimerization and
undimerization:

X + X
k2−→ XD, XD

k−2−→ X + X, (9.4)

where k2, k−2 stand for reaction rates.
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We denote the unoccupied and occupied state of the promoter site of the gene as
D0 and D1 respectively. Let us postulate that the chemical state of the operator sites
D ∈ {D0, D1} determines the production of corresponding protein at time t + τ . If
the operator at time t is unoccupied (D0) then the protein may be produced at time
t + τ . Otherwise, if the operator is occupied (D1), the production at time t + τ is
blocked. The transitions between operator states for each protein occur with rates
k±1, when some dimer binds to the promoter or unbinds from it respectively:

D0 + XD
k1−→ D1, D1

k−1−→ D0 + XD. (9.5)

An important role in this model comes from the delay in the synthesis reaction:

Dt
0

A−→ Dt+τ
0 + X t+τ , (9.6)

where A is the rate of a time-delayed production of protein monomer.
Finally, the system should be supplemented by the effect of protein degradation

with rate B:

X
B−→ ∅. (9.7)

Thus, (9.4–9.7) define the kinetics of a gene regulation in each cell.

9.4 Deterministic Description for a Single Cell

Let us assume that D0(t) and D1(t) are continuous variables of time standing for the
average number of unoccupied and occupied operator sites at time t with obvious
relation between them:

D0 + D1 = 1. (9.8)

The main approximation we make here is an assumption that the reactions of
dimerization (9.4) and binding/unbinding (9.5) are fast in comparison with produc-
tion/degradation of protein (9.6, 9.7), i.e. ki � A, B [5, 6]. Thus, we can suppose
that dynamics of operator-site and dimers quickly enters into a local equilibrium,
where concentrations of reagents become

XD = εX2, D1 = εδD0X
2, (9.9)

where ε ≡ k1/k−1, δ ≡ k2/k−2.
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By taking into account (9.8) and (9.9), delay differential equations derived from
(9.4–9.7) can be reduced to a single equation for the slow variable:

(1 + 4εX (t))
dX (t)

dt
= A

1 + εδX2(t − τ)
− BX (t). (9.10)

The equation (9.10) has a unique positive stationary solution:

X∗ = − B

2Aεδ
+

√
B2

4A2ε2δ2
+ 1

εδ
. (9.11)

By linearizing (9.10) near (9.11), and looking for a solution of the form X ∼ eλt ,
where λ = χ + iω, we obtain the explicit formulas for the eigenvalue:

χ = 1

τ
Re(W (−2τ AεδX∗eτ B)) − B, (9.12)

ω = 1

τ
Im(W (−2τ AεδX∗eτ B)), (9.13)

where W (z) stands for the Lambert function defined as W (z)eW (z) = z.
The condition for Hopf bifurcation then can be found by solving (9.12), (9.13)

for χ = 0 and ω 	= 0. The neutral curve derived in this way is plotted in Fig. 9.2
in the plane of dimensionless parameters of the production τ A and degradation
τ B. The instability domain in the figure is above the curve. Numerical solution of
(9.10) reveals quite a common picture for dynamics near the Hopf bifurcation: all
trajectories are attracted to the steady state and limit cycle below and above the
bifurcation point respectively. The black squares in Fig. 9.2 indicate the parameter
values for which the results of nonlinear numerical simulations will be presented
below.

Fig. 9.2 Deterministic Hopf
bifurcation curve for
ε = 0.1, δ = 0.2
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9.5 Deterministic Description of Intercellular Signaling

In order to describe the effect of intercellular signaling, we introduce the signaling
species T positively regulated by the of dimers XD . Let the chemical state of the
operator site DT ∈ {DT

0 , DT
1 } determines the production of T . If the operator is

occupied (DT
1 ) then the transport proteinmay be produced immediatelywith a certain

probability AT in a unit time. Otherwise if the operator is unoccupied (DT
0 ), the

production of signaling protein T is blocked. The transitions between operator states
with rates k3, k−3 are

DT
0 + XD

k3−→ DT
1 , DT

1
k−3−→ D0 + XD. (9.14)

The production reaction with rate AT then can be written as

∅ AT DT (t)−−−−→ T . (9.15)

We assume also that once a signal has come in a certain cell, it is converted into X
protein:

T
BT−→ X. (9.16)

The chemical interactions here include the activation linear in the signal concentration
with the constant BT and the linear decay with the constant B (9.7). The activation is
assumed to be linear because this is the simplest activation form commonly accepted
within phenomenological models (see, for example, [14]).

Thus, the reactions (9.15–9.16) have positive feedback with (9.14) through the
reaction rate in (9.15). We assume also that

DT
0 + DT

1 = NT , (9.17)

where the integer constant NT stands for the copy number of the signaling species.
The protein copy number indicates how many copies of the protein monomer is
synthesized in a single act of transcription/translation.

Taking into account that binding/unbinding reactions (9.14) are fast in comparison
with production/degradation (9.15, 9.16), we arrive to

dX j

dt
= 1(

1 + 4εX j
)

(
BT Tj + A

1 + εδX2
j (t − τ)

− BX j (t)

)
, (9.18)

dTj

dt
= NT ATσ X j

D

1 + σ X j
D

− BT Tj +
∑

i∈ad j ( j)
αLi j (Ti − Tj ), (9.19)
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where the subscripts refer to i th and j th cells,α is the transfer coefficient,σ = k3/k−3

and ad j ( j) stands for “adjacent to j-cell”.
It is assumed that the signaling species T is transported diffusively from one cell

to the other, whereas its flux does not depend on the distance between the two cells i
and j but is proportional to the boundary length Li j (see Fig. 9.1). This implies that
the transport is limited by the transfer though cell membranes.

The initial configuration of the system is a regular hexagonal lattice comprising
1560 cells. The shape and location of each cell is defined by its nodes. The tissue as a
whole has the formof a stripewith two free borderswith periodic boundary conditions
applied there. The typical values of the parameters governing the mechanics of the
tissue are as follows: κ = 1.0, η = 1.0, A0 = 3

√
3/2, K = 1.0, F0 = 0.02 [15]. In

all calculations presented below, the cell division was turned off since it generates
the extrinsic noise.

The set of delay differential equations (9.18–9.19) have been solved using the
explicit Euler method, whose stability was warranted by a sufficiently small time
step Δtchem = 0.005. The time step for the calculation of the molecular processes in
cells was synchronized with the step Δtmech = 0.01 of calculating the mechanical
evolution of the tissue governed by (9.1–9.3).

Figure9.3 presents the results of numerical simulation of (9.18–9.19) for para-
meter values from the balloon of instability in Fig. 9.2: A = 500, B = 5, τ = 6.
The evolution of the system starts from random phase distribution. Then the nonlin-
ear dynamics demonstrates a spiral traveling wave pattern which arises against the
background a synchronized oscillation field. The oscillation period is approximately
equal to the double delay time, i.e. ω∗ = 0.524, which corresponds to the result of
the linear stability analysis (9.13).

Fig. 9.3 Typical pattern formed by the protein X in the epithelial tissue consisting of more than
1500 cells based on the deterministic description at t = 310. A = 500, B = 5, τ = 6, ε = 0.1,
δ = 0.2, NT = 1, σ = 0.1, AT = 500, α = 0.05
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9.6 Stochastic Description

In order to describe the spatial stochastic effects, we use a hybrid model, which is
constructed as follows. The dynamics of the protein X in a single cell is obtained by
performing direct Gillespie simulations of single-gene auto-repressor model given
by the reactions (9.4–9.7). The modified version of the Gillespie algorithm which
accounts for the non-Markovian properties of random biochemical events with delay
was developed in [5].

The signaling between cells is still organized as diffusive transport from one cell
to the other. For simplicity, we assume that monomers of the basic protein X seep
through cell membranes according to finite-difference formula:

Xt+�t
j = Xt

j +
⎡

⎢⎢⎢
�tdi f f NT

∑

i∈ad j ( j)
αLi j (X

t
i − Xt

j )

⎤

⎥⎥⎥
, (9.20)

where �... stands for the ceiling function which maps the smallest integer not less
than the function argument.

The approximation (9.20) is justified if the protein X regulates the relatively
rapid synthesis of a transport protein with the copy number NT . The latter parameter
evidently plays an important role in increasing the possible fluctuations in the system.

Generally speaking, systems containing a time delay can be highly sensitive to
fluctuations, and the effect of noise should be explored in detail. It has been shown
previously that time delay in gene expression coupling with noise can cause a system
to be oscillatory even when its deterministic counterpart exhibits no oscillations
[5, 6].

Let us consider two examples of spatial stochastic simulations according to the
aforementioned algorithm. Figure9.4 presents the typical pattern formed by the
monomers of the X protein at the parameter values chosen so that the same system

Fig. 9.4 Typical pattern
formed by the protein X in
the epithelial tissue based on
the stochastic description at
t = 310. A = 500, B = 5,
τ = 6, k1 = 100,
k−1 = 1000, k2 = 200,
k−2 = 1000, NT = 5,
α = 0.05
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Fig. 9.5 Typical pattern formed by the protein X in the epithelial tissue consisting ofmore than 1500
cells based on the stochastic description t = 800. A = 20, B = 5, τ = 6, k1 = 100, k−1 = 1000,
k2 = 200, k−2 = 1000, NT = 8, α = 0.05

demonstrates the oscillatory behavior under deterministic description (it is indicated
by the upper black square in Figs. 9.2 and 9.3). We found that nonlinear dynamics of
spatially extended system consists of two distinct oscillatory modes. One is a quasi-
standing wave pattern oscillating withω∗. The second oscillatory mode is a traveling
wave which arise from some selected cells (Fig. 9.4). In fact, stochastic pattern looks
very similar to its deterministic counterpart obtained for the same parameter values
(compare with Fig. 9.3).

Consider now the case when the deterministic description of the system predicts
the stationary behavior (it is indicated by the lower black square in Fig. 9.2). Starting
with random initial conditions, the system fairly quickly falls into a fully synchro-
nized mode oscillations with a common frequency ω ≈ ω∗.

We found also that depending on the copy number NT one can observe the effect
of clustering when the cells form two approximately equal communities, which
collectively oscillate in anti-phase (Fig. 9.5). For example, the numerical simulation
of the system for copy number NT = 4 has showed that the clustering is not observed
within reasonably long integration times. In contrast to that, at NT = 8 this effect
gradually manifests itself after a sufficiently long integration (about 150–200 periods
of basic oscillations).

In fact, the clustering in the system with a large amount of elements exchanging
chemical signals has become at the center of attention ofmany scientists recently. For
example, the group of synthetic genetic oscillators has been studied in [17]. Tissue
clustering has been found to be divided into two types of oscillating cells in time.
It is believed that the clustering is likely to be the most important characteristic of
most communities and could be the reason of further cells differentiation in organs.
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9.7 Conclusions

It is known that the noise during gene expression comes about in two ways. The
inherent stochasticity of biochemical processes such as transcription and translation
generates intrinsic noise. On the other hand, extrinsic noise refers to variation in
identically-regulated quantities between different cells. Since in this paper all cells
are considered to be identical, we have focused on intrinsic noise.

An important result of the present work is the demonstration of how the excitation
of quasi-regular subcritical fluctuations found in [5], manifests itself in space. We
show that there may be observed both a spatial synchronization of oscillations and
clustering of cell community. In the supercritical range of parameters it is observed
the formation of the stochastic pattern which is quite similar to the pattern obtained
within a deterministic description of the system.

Acknowledgments The research has been supported by the Ministry of Education and Sci-
ence of Perm Region (grant C-26/004.4) and grant of Russian Fund for Basic Research (14-01-
96022r_ural_a).
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Chapter 10
An Agent-Based Modelling Approach
to Biological Invasion by Macroalgae
in European Coastal Environments

James T. Murphy, Mark P. Johnson and Frédérique Viard

Abstract Introductions of species to new continents and oceans by human activities
cause fundamental and irreversible changes to natural communities and ecosystems
worldwide, resulting in systematic homogenization of biota at regional and global
scales and substantial changes in ecosystem functioning. Seaweeds aremajor primary
producers in coastal areas, and large-scale substitution of dominant native seaweeds
with non-native species can consequently alter coastal productivity and food web
structure, and therefore impact ecosystem services. In this study, an agent-based
modelling approach is taken, in association with data already gathered by the host
institution from field studies, ecological experiments and molecular work, to study
the impact of the Asian kelp seaweed Undaria pinnatifida, introduced to Europe
in the 1970s, on native biodiversity under variable climatic conditions. Our model
framework can be used to explicitly represent complex spatial and temporal patterns
of invasion in order to be able to predict quantitatively the impact of these factors
on the invasion dynamics of U. pinnatifida. This would be a useful tool for making
accurate risk assessments of invasion potential under different environmental con-
ditions and for choosing optimal management strategies in order to minimise future
control costs.
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10.1 Introduction

Biological invasion refers to the introduction by human activities of non-native
species of plants or animals which adversely affect local ecosystems and transform
their structure and species composition. It has been identified in the Millennium
Ecosystem Assessment as one of the principal environmental problems influenc-
ing future economic and social development in the world [1]. Invasive seaweeds
represent one of the largest groups of introduced marine species in Europe, and con-
stitute between 20 and 29% of all non-native marine species [2]. Seaweeds are major
primary producers in coastal areas, and large-scale substitution of dominant native
seaweeds with introduced species can consequently alter coastal productivity and
food web structure, and impact on biodiversity [3].

In this study, an agent-based modelling approach is taken, in association with data
already gathered by the host institution from field studies, ecological experiments
and molecular work, to study the impact of the Asian kelp seaweed Undaria pin-
natifida (an emblematic invader in European waters) on native biodiversity under
variable climatic conditions [4]. One of the advantages of the agent-based modelling
approach is that it allows us to trace back the system behaviour to that of its individual
components [5]. For example, to understand the underlying factors that lead to the
observed population growth rate. This approach was taken in order to understand
how the basic physiological interactions between the U. pinnatifida individuals and
their environment contribute to their ability to adapt to and invade new habitats.

U. pinnatifida has a characteristic life cycle consisting of two generations: a
microscopic haploid gametophyte stage and a macroscopic diploid sporophyte stage
(Fig. 10.1). Each life cycle stage has specific environmental requirements for growth
and reproduction, with particular sensitivity to changes in water temperature, light
intensity and photo-period (light:dark ratio) noted in the literature [6]. However, there
is only limited understanding about how the combined effects of these environmental
parameters affect its potential expansion into non-native habitats such as northern
European coastal waters.

In order to integrate the basic knowledge on the physiological responses of
U. pinnatifida to changing environmental conditions (collected from many years
of observations of both natural and cultivated populations in the literature) a compu-
tational modelling approach was taken. The theory of autonomous agents is a useful
approach for the modelling of algal populations as it allows large-scale population
models to be derived from simple rules dictating the growth and interactions of the
individual life stages (gametophytes and sporophytes) of the population. We inte-
grated quantitative data from the literature on the responses of these individual stages
to environmental factors such as light and temperate in order to build up a model
of the overall population growth. This can then be used to explore the effects of
changing environmental conditions on growth dynamics and make predictions about
potential expansion into new habitat ranges.
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Fig. 10.1 Diagrammatic representation of the U. pinnatifida annual life cycle consisting of inde-
pendent macroscopic sporophyte and microscopic gametophyte stages. Haploid gametophytes
reproduce sexually to form a new spore-producing diploid sporophyte generation. Photos Daphné
Grulois-Station Biologique Roscoff

10.2 Model and Simulation Overview

We have developed a novel agent-based model of Undaria pinnatifida to simulate
population spread in coastal habitats. This is based upon an underlying generic agent-
based modelling framework developed in C++ to represent biological agents in a
discrete, two-dimensional environment [7, 8]. The advantages of this framework are
that it is fully parallelisable to take advantage of distributed computing architectures
and it represents a robust and adaptable tool to simulate spatially and temporally
heterogeneous phenomena [7]. A detailed individual-based model of the life his-
tory of U. pinnatifida (including distinct microscopic gametophyte and macroscopic
sporophyte stages) was then built upon this basic framework.

There are two principal types of agents in themodel, corresponding to the gameto-
phyte and sporophyte stages in the life cycle ofU. pinnatifida respectively (Fig. 10.1).
These differ in their response to environmental cues and have distinct growth para-
meters. The growth rate and maturation of the gametophyte and sporophyte agents
are functions of local environmental parameters such as irradiance, day length and
temperature. In order to quantify this relationship, a review of the literature was
carried out to gather quantitative data and build mathematical descriptions of these
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interactions at the individual level. The overall population dynamics is therefore an
emergent property of the interactions between these components and the environ-
mental parameters.

10.2.1 Gametophyte/Sporophyte Agents

The growth andmaturation of the gametophyte agents is a function of irradiance, day
length (hours of sunlight) and temperature [9, 10]. In a study by Choi et al. [9] the
growth rates of gametophytes were measured under various levels of irradiance and
day length.Wefitted a hyperbolic photosynthesis-irradiance curve to this data by least
squares regression (R2 > 0.99) in order to determine the growth rate of gametophyte
agents in the model under different irradiance levels and day lengths [11].

The effect of temperature on the relative growth rate of gametophyte agents was
calculated using experimental results from Morita et al. [10] and a thermal perfor-
mance curve, based on the non-linear equation of Stevenson et al. [12], was fitted to
this data (R2 > 0.99) [12]. The fitted parameter values for the Stevenson equation
are listed in Table10.1. This curve determines the temperature range in which the
gametophyte agents can survive and its effect on their relative growth rate.

The sporophyte stage of the U. pinnatifida life cycle is represented as a distinct
agent with its own independent growth parameters. Pang and Wu [13] carried out
detailedmeasurements of the growth of juvenile sporophytes in culture [13]. A power
law function was fitted to this data (R2 = 0.99) to determine the base growth rate of
sporophyte agents as a function of their length.

Similar to the gametophyte agents, thermal performance and photosynthesis-
irradiance curves were calculated for the sporophyte stage by fitting to empirical
data from the literature [10, 14, 15]. The parameter values estimated using least
squares regression are listed in Table10.1.

The principal means of spatial expansion of the population is by the release of
spores in the water column from mature sporophytes. In the model, spores are repre-
sented as particles subject to a discretized implementation of Fick’s first law of dif-
fusion [16]. When a spore comes into contact with a suitable substrate (represented
by a flag in the model) then it may form a new gametophyte agent at that location
according to a pre-determined probability of attachment/germination (Table10.1).

Experimental studies have shown that the maturation of gametophyte agents and
the release of gametes (in order to sexually reproduce and form a new sporophyte
generation) are a function of day length and water temperature. This empirical data
was used to calculate the probability of maturation of the gametophyte agents. In
order to achieve this a logistic sigmoidal function was fitted to the temperature
data (R2 = 0.97) and a Weibull curve to the day length data (R2 > 0.99) from the
literature [9, 10].
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Table 10.1 Input parameters for CoastGEN simulations ofUndaria pinnatifida in simulated coastal
environment

Input parameter Value

Length of simulation loop (h) 1

Grid size (No. of cells) 514 × 482

Cell size (m2) 0.25

Depth in water (m) 1.0
1kdP AR 0.6

Sporophytes

Initial size (µm) 20

Base growth rate (loop−1) 3.615 × 1−0.407

Day length response (hyperbolic curve):

Pmax 1.56

α 0.13

Ic 0.0

Thermal performance curve [12]: Gameto Sporo

K1 35.67 21.09

K2 0.158 0.213

K3 0.015 0.006

CTmin 4.45 1.62

CTmax 28.24 28.28

Scale 10.63 3031

Photosynthesis-irradiance curve [11]: Gameto Sporo

Pmax 0.29e0.11d 0.4 ln(l) − 0.596

α 0.029d − 0.2 0.5l−0.33

Ic 0.0 2.5 ln(l) − 19.9

Maturation of gametophytes

Prob. fertilisation (loop−1) 0.0002

Temperature response (log curve):

x0 17.6

k 0.82

Day length response (Weibull):

α 4.5

β 10.96

Spores

Half-life (hours) 24

Rate of release (agent−1 loop−1) 2.0 × 107

Total spore stock (agent−1) 1010

Diffusion coefficient (fick) 0.15

Prob. of germination 10−9

Input values were estimated by fitting to data from the literature. l = plant length (µm), d=day light
hours, Gameto = Gametophyte, Sporo = Sporophyte.
1kdP AR = diffuse attenuation coefficient for photosynthetically available solar radiation [17]
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10.2.2 Program Structure

The coastal environment is represented by a discrete, two-dimensional grid with each
grid element corresponding to 0.25m2 of surface area. This allows for heterogeneity
in the environmental conditions and spatial distribution of organisms, as opposed
to assuming a completely homogeneous, mixed environment. The model structure
is constructed using the object-oriented programing paradigm of C++, and more
information on the basic framework can be found in previous publications [7, 8].

The initial phase of the program involves the creation and initialisation of an
array of U. pinnatifida agents which are stored in an array data structure. The input
parameters for the simulation are entered via a text input file (Table10.1). These
specify physical parameters such as the size and scale of the environment as well as
parameters for the U. pinnatifida agents such as the initial number of seedlings and
their responses to environmental cues.

The main program loop consists of a series of steps representing the main biotic
and abiotic functions of the system (Fig. 10.2). Each loop represents a discrete hour of
real-time during which all alive agents are updated and interact with the environment
concurrently according to their defined behavioural rules.

The first step of the loop is to implement a diffusion algorithm for spore dispersal
according to Fick’s first law of diffusion. The second step in the loop is to update
the energy reserves of each U. pinnatifida agent by subtracting a survival cost that
represents energy expended during normal metabolic processes such as respiration.
Agent reproduction involves the germination of spores to form new gametophyte
agents. Steps 4 and 5 are optional steps: movement refers to the possible movement
of agents, e.g. via passive dispersal in the water. Control strategies refer to potential
human intervention/removal of U. pinnatifida agents. Finally, the production phase
refers to new growth of the agents, which is a function of the local environmental
parameters.

10.3 Results and Discussion

Simulations have been carried out using environmental parameters (light, tempera-
ture and day length) representative of Brittany, France in order to validate the model
against real-world data collected by researchers at the Station Biologique de Roscoff,
France. Initial results are promising and indicate that the model can accurately pre-
dict the growth dynamics ofU. pinnatifida populations under different environmental
conditions.

Figure10.3 shows model predictions for the overall population recruitment of an
U. pinnatifida invasion in a harbour setting. The model shows an annual pattern of
growth and decay characteristic ofU. pinnatifida populations in nature, in response to
seasonal variations in light and temperature levels. For validation purposes, this was
compared to real-world field results from the port of Brest in France during the years
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Fig. 10.2 Program flow structure for agent-based model ofUndaria pinnatifida population dynam-
ics coded in C++ programming language. One program loop = 1 hour real-time

2003–2006 [18]. Themodel exhibits the same annual pattern of recruitment observed
in the real-world population found in Brest: with annual peaks inMarch/April (along
with a secondary peak in November), and minimum recruitment in July/August.

As a test case, a comparison was made to see how closely the model fits the
data from a population growing in Brest harbour in the 12months between August
2005 and July 2006 (Fig. 10.4). The R2 value was 0.84 when comparing the model
predictions and the real-worldmeasurements of population growth over the course of
the 12months. This indicates that the model closely matches the real-world patterns
of growth at the population level using only data on the basic physiological processes
of the individual algae. Some variation from the real-world results is to be expected
since factors such as competition and the physical configuration of Brest harbour
were not taken into account. Future work will involve extending the base model to
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Fig. 10.3 Predicted development of population of U. pinnatifida after initial “seeding” of 4000
gametophytes at random locations in the simulated harbour. Environmental conditions (i.e. seasonal
changes in light, temperature, and day length) representative of Brest harbour, Brittany were used
as input. a and c show the total population size of sporophytes plotted on a monthly basis versus
temperature and solar radiation respectively. b and d show monthly recruitment of new juvenile
sporophytes (>5cm in length) plotted against temperature and solar radiation respectively

incorporate competition for light/spacewith other species to explore how this impacts
the results.

Figure10.5 shows the relationship between the maturation of the microscopic
gametophyte stage and the formation of new sporophytes. There is a seasonal peak
in the numbers of fertile gametophyte agents in Nov/Dec each year. This marks
the beginning of a recruitment phase for new sporophyte agents which lasts several
months into the Spring. However, due to differences in the rate of growth of the
sporophytes, depending on the environmental conditions at the time of recruitment,
there will be different survival rates for each individual agent, which results in the
characteristic growth dynamics observed in Fig. 10.4
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Fig. 10.5 The relationship between the predicted density of fertile gametophytes and the appearance
of new juvenile sporophyte agents. Bar plots represent the numbers of new sporophytes (<5cm
length) per month. Line plot represents the relative probability of fertilisation of the gametophytes
(calculated as the total number of gametophytes × probability of maturation)

Voisin [18] investigated the relationship between water temperature and the
recruitment of new sporophytes [18]. To test this relationship we compared model
predictions with the field-work results of Voisin (Fig. 10.6). Sporophyte recruit-
ment was expressed in terms of water temperature 2months prior to their
appearance, which corresponds with the expected time delay between gamete fertil-
isation and the appearance of the new sporophyte recruit. The model predicts peak



114 J.T. Murphy et al.

Fig. 10.6 Predicted
relationship between
temperature and growth
dynamics of simulated U.
pinnatifida population using
seasonal temperature values
representative of Brest
harbour, France (8–18 ◦C).
Number of new recruits
(length >5cm) versus the
temperature of the water
2months before their
appearance (i.e. when
fertilisation of the gametes
occurred)
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recruitment occurs at lower temperatures, which agrees with empirical data from the
literature indicating significantly higher recruitment of sporophytes at temperatures
<15 ◦C [19].

These initial results show the potential for this type of modelling approach to
understand how the population dynamics of an invasion play a key role in the rate and
pattern of spread of invasive species. The problemof biological invasion and resulting
biodiversity loss in coastal habitats is a complex question that cannot be answered by
either purely theoretical or empirical means. It requires a tightly integrated combined
approach whereby theoretical studies inform experimental design and vice-versa.

Future work will include using this model framework to explicitly represent com-
plex spatial and temporal patterns of invasion in order to be able to understand the
impact of these factors on invasion dynamics. This would be a useful tool for making
accurate risk assessments and designing optimal control solutions on a case by case
basis in order to be able to minimise the negative impacts on ecosystem services.
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Chapter 11
Characterisation of the Idiotypic Immune
Network Through Persistent Entropy

Matteo Rucco, Filippo Castiglione, Emanuela Merelli
and Marco Pettini

Abstract In the present work we intend to investigate how to detect the behaviour of
the immune system reaction to an external stimulus in terms of phase transitions. The
immune model considered follows Jerne’s idiotypic network theory. We considered
two graph complexity measures—the connectivity entropy and the approximate von
Neumann entropy—and one entropy for topological spaces, the so-called persistent
entropy. The simplicial complex is obtained enriching the graph structure of the
weighted idiotypic network, and it is formally analyzed by persistent homology and
persistent entropy. We obtained numerical evidences that approximate von Neumann
entropy andpersistent entropy detect the activationof the immune system. In addition,
persistent entropy allows also to identify the antibodies involved in the immune
memory.

11.1 Introduction

Complex systems are system typically characterised by a number of not identical
agents whose aggregate activity is nonlinear and often exhibits hierarchical self-
organisation under selective pressures. Although complex systems science is a rel-
atively young research area, it attracts lots of interest from researchers mainly due
to the emerging of new techniques in several fields, e.g., physics, mathematics, data
analysis and computer sciences [12, 22]. Classical data analysis (both descriptive
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and exploratory) can not be sufficient for analyzing the huge amount of data that
usually characterize a complex system. Persistent homology, a branch of computa-
tional topology, is nowadays largely applied for the study of complex systems [5].
Ibekwe et al., used Topological Data Analysis (TDA) for reconstructing the rela-
tionship structure of E. coli O157, they also prove that the non-O157 is in 32 soils
(16 organic and 16 conventionally managed soils) [11]. De Silva used TDA for the
analysis of sensor network [4]. TDA has been successfully applied for the study of
viral evolution in biological complex systems [2]. Rucco et al., used a set of topo-
logical data analysis techniques for improving the pulmonary embolism detection in
[21]. Petri et al., used an homological approach for studying the characteristics of
functional brain networks at the mesoscopic level [18].

In this paper we intend to study the behaviour of a biological complex system:
the idiotypic network of the mammal immune system from an information-theoretic
viewpoint. In order to accomplish our aim we used both a classical approach graph-
based and an innovative approach topology-based. The rest of this paper is organised
as follows. Section11.2 reports the explanation the theory of our case study and the
theoretical background related to our work. In Sect. 11.3 we summarised the analysis
of our in silico experiment. Section11.4 provides concluding remarks.

11.2 Background

11.2.1 Case Study: The Immune Network Theory

In 1974 Niels Jerne suggested the idiotypic network theory to explain the phenomena
of antigenic recognition by the immune cells in terms of a network of interacting cells
and antibodies. Jerne’s model introduced several features of immune system (I.S.),
briefly when the antigen is presented to the organism, the I.S. reacts following two
possible pathway: suppression or immunity. The class Ab1 of antibodies, elicited
directly by the antigen, elicits the production of new antibodies Ab2 which in turn
induces Ab3 and so on. This phenomenon is known as the idiotypic cascade. During
the onto-genesis the I.S. learns which antibodies should be produced and the system
remembers this decisions for a long time. This phenomena, called immunological
memory is a property of the network of cells as a whole, rather than of the individual
cells [9].

11.2.2 Graph Entropy Measures

Given a dynamical system and its graph representation there are several measures for
its characterization as suggested by Reidys [15]. Even if one needs a global measure
for culling the dramatic leap in the dynamics of the system, some classical measures
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are not sufficient for detecting whenever the system reacts to a stimulus: e.g., the
density of a graph and defined as the ratio between the present links and the number
of all possible links in the graph can not significantly change during the stimulus.
For this reason we argue that entropies are more meaningful. In this study we report
on the application of connectivity entropy and approximate von Neumann entropy
[16, 17]. Both measures can be interpreted as a complexity measure of a graph, in
fact both are depending by the number and the degree of the vertices.

Connectivity entropy has been used by Ortiz et al., for analyzing the structural
properties of a social network and then for identifying the set of key players in the
network.We repeated the experiment using the idiotypic network instead of the social
network [16].

Approximate von Neumann entropy has been used by Han and collaborators on a
graph classification and characterization tasks. In our approach we used this entropy
measures for distinguish graphs corresponding to the same system but in different
conditions, namely before, during and after a stimulus [8].

Consider now the following definitions.

11.2.2.1 Connectivity Entropy

Let G = (V, E) be a graph, with V = {v1, v2, . . . , vn} the set of vertices and E the
edges. We can define [16]:
Connectivity of a node vi ∈ V in a graph such as:

χ(vi ) = deg(vi )

2N
, N > 0 (11.1)

where deg(vi ) isthe number of incident edges to vertex vi and N the total number
of edges in the graph. Because, 0 ≤ χ(vi ) ≤ 1, and ΣN

i=1χ(vi ) = 1, χ(vi ) is known
as connectivity probability distribution of the graph.
The Connectivity entropy Hco of a graph G is:

Hco(G) = −Σχ(vi )log2χ(vi ) (11.2)

11.2.2.2 Approximated von Neumann Entropy

Let G = (V, E) be a graph, with V = {v1, v2, . . . , vn} the set of vertices and E the
edges. Let deg(u) the degree for the vertex u and defined as the sum of the weight
of its incident edges. The approximate von Neumann entropy is defined as [8]:

HU
T = ln|V | − 1

2|V |
∑

(u,v)∈E

1

deg(u)deg(v)
(11.3)
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11.2.3 Topological Data Analysis

Topological data analysis (TDA) is based on the concept of computational homology,
a tool that transforms local data into global algebraic structure. Roughly speaking,
the idea is to infer a “shape of the data”, building the so-called simplicial complexes.
A simplicial complexes is a nested collection of simplices (vertices, line segment,
triangle, etc. …). Then, homology associates to the simplicial complexes a sequence
of abelian groups Hk(X), k ∈ X. The vector containing the ranks of each groups is a
topological invariant, the so-called Betti numbers. Betti numbers are the numbers
of holes in a space with different dimensions. Persistent homology is one of the most
used techniques for computing the topological invariants of a topological space. It
returns a parametrized version of the Betti numbers: the Betti barcodes (see for exam-
ple Fig. 11.1) [5]. The barcodes are equipped with the generators of the topological
feature (connected components, holes, voids, etc.). Generators are the set of nested
simplices forming the topological features.

11.2.4 Simplicial Complexes from Graph

Given a graph directed or undirected, it is possible to construct a simplicial complex
from it following several approaches [10, 13]. In this paperwe apply the cliqueweight
rank persistent homology (CWRPH) [19]. This innovative techniques is based on the
concept of a flag complex: given a graphG, the simplices of a clique complexC(G) are
the complete subgraphs of G and the 0-simplices of C(G) are the vertices of G, (i.e.,
the complete subgraph complex). The maximal simplices are given by the collection
of vertices that make up the cliques of G. In the literature, a clique complex is also
referred to as a flag complex. CWRPH describes a formal procedure for building a
C(G) but taking into account the weights of the links of G.

11.2.4.1 Improved jHoles

jHoles is the first Java high-performance implementation of the CWRPH algorithm
[1]. The first release of jHoles implemented the following standard clique weight
rank descending persistent homology:

1. Extract the descending (ascending) listW of all weightswt indexed by the discrete
parameter t ;

2. List all maximal cliques of each connected component in G with the Bron-
Kerbosch algorithm [23];
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Fig. 11.1 jHoles application example. Construction of a topological space from an undirected
weighted graph G (up). The Betti barcode representing the evolution of topological invariants
(down). Where W is the set of weights for the graph G, and F denotes the set of filter values used
during the computation of persistent homology for the simplicial complex. The resulting simplicial
complex is characterized by the tuple β0 = 1, and β1 = 1. β0 = 1 indicates that there is only 1
connected components formed by the four 2-simplices (filled triangles), while β1 = 1 indicates
that the simplices are arranged in a circular motif that corresponds to a persistent homological loop
of dimension 1

3. Find all the combinations of each clique: a n − clique, with n ≥ 3 must be tes-
sellated with a set of 3 − cliques, because a simplex is just the generalization of
a n-dimensional triangle;

4. For each combination and clique, rank it according to the index t of the minimum
(maximum) weight of the face;

5. The resulting structure is a clique simplicial complex overwhich persistent homol-
ogy can be computed; output barcodes, intervals and generators.

Here we propose an improved version of jHoles that implements the following
algorithm:

1. Extract the descending (ascending) listW of all weightswt indexed by the discrete
parameter t ;



122 M. Rucco et al.

2. (Parallel) List all maximal cliques of each connected component in G with the
Bron-Kerbosch algorithm [23];

3. (Parallel) Find recursively all permutations of each clique (clique tessellation with
a set of 3-cliques);

4. (Parallel) For each permutation and clique, rank it according to the index t of the
minimum (maximum) weight of the face;

5. The resulting structure is a clique simplicial complex overwhich persistent homol-
ogy can be computed; output barcodes, intervals and generators.

Each permutation is a simplex belonging to the complex, while each maximal clique
is a largest simplex. Steps from 2 to 4 are tasks that can be executed in parallel
respectively on each connected component or face and are the core of the filtration.
Step 4 ranks each face according to the index of the minimum (maximum) weight of
its edges for the standard descending (ascending) filtration. The use of permutations
instead of combinations in step 3 significantly improves algorithm performances
and memory usage (the number of permutations of a set is strictly smaller than the
number of its combinations).

Roughly speaking, the persistent homology algorithm, spans over the set F of filter
values and at each iteration it introduces the simplex rankedwith the actual filter value
and then computes the homology of the new topological space (see Fig. 11.1) [6].

11.2.5 Persistent Entropy

Diaz et al., defined an entropy based on the persistent barcode (Definition3 of [3]).
The aim of their paper is an algorithm entropy-driven for finding the best filtration
of a set of simplices. We argue that when the filtration is given their entropy can be
easly extended without loosing the interpretation à la Shannon. Here we propose to
use the maximum of the filtration value of a persistent barcode plus one as upper
bound, let call this quantity m.

Definition 1 (Persistent entropy) Given a filtered topological space equipped with
an ascending filtration algorithm, the set of filtration value F and the correspond-
ing persistence barcode B = [a j ; b j ] : j ∈ J . A persistence line in a barcode is
conventionally represented as [a j ; ∞) here it is substitute with [a j ;m) where
m = (max{F} + 1).

E(F) = −
∑

j∈J

p j log(p j ) (11.4)

where p j = l j/L , l j = b j − a j , and L = ∑
j∈J l j
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11.3 Analysis of the Idiotypic Network

11.3.1 Simulation Results

In this section, we provide a detailed study of the simulation of the idiotypic network
obtained with C-ImmSim that is the agent-based simulator simulation of the immune
system [20]. The computational ABM employed is discrete in mathematical terms
because it represents biological entities as individuals in a heterogeneous popula-
tion of cells and molecules. In particular, the major classes of cells of the lymphoid
lineage and some of the myeloid lineage. Moreover the model accounts for various
interleukins and messengers. This “discreteness” confers the model the character of
being “easily scalable” in terms of introducing new biological complexity, at vari-
ance with corresponding equation based models. The model is stochastic, meaning it
can naturally display biological “controlled” variability: for example, it is possible to
separate the sorting of repertoire specificities from the random occurrences (encoun-
ters, binding, cell death, cell replacement, diffusion, cell division) during the running
of the response. In other words, each repertoire expresses a private specificity, and by
repeating runs with random events, the impact of different repertoires can be com-
pared and their variations statistically determined, at the same time increasing the
significance of results. TheABMmodel, is a polyclonalmodel, since all lymphocytes
are equipped with a receptor represented as a binary string. This allows for a num-
ber of immunological features such as expressed and potential repertoire definition,
specific recognition/binding, antigens peptides presentation, specific clonal memory,
hypermutation, etc. In our configuration a simulation has a lifespan of 2190 ticks,
where a tick = 8h, and a repertoire of at most 1012 antibodies and antigen volume
equal to V = 10µL. The results are the average over 100 runs. In the simulator each
idiotype (both antigens and antibodies) is represented with a bit-string, in our case
of 12 bit length. An idiotype interacts with each other if and only if their Hamming
distance is 11 ≤ d(A j , Ak) ≤ 12. The pair-wise distances are stored in a matrix, the
so-calledAffinity matrix: Ji,k .We defined aweight function for the idiotypic network,
the coexistence function between antibodies (see 11.5):

CAbj,k (t) = d(Ab j (t), Abk(t)) ∗ [Ab j (t)] ∗ [Abk(t)]∑n
l=1[Abl(t)]

(11.5)

where [Abl(t)] is the concentration of the lth antibody Abl at tick t . The meaning of
(11.5) is that for lower values of affinity the concentration must be more significant
because the match between antibodies is less probable (Fig. 11.2).

For each simulation we computed the coexistence function (see 11.5) and we used
theweighted idiotypic network to calculate the graph entropies (see 11.2, and 11.3) as
input for the persistent homology computation. In thisworkwe used the cliqueweight
rank persistent homology (CWRPH) algorithm implemented in the new version of
jHoles, and described in par.: Sect. 11.2.4. The output of the persistent homology has
been used for computing both the persistent entropy (see 11.4) and for identifying
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Fig. 11.2 Example of immune network at the end of the simulation (tick = 2190). The nodes
represent the antibodies, a link exists if and only if two antibodies are affine. The node color
represents the antibodies classes

Fig. 11.3 Antibodies frequency

the persistent holes and their generators, namely the persistent antibodies that govern
the evolution of the idiotypic network during the virgin state, the activation and the
immune memory (see Fig. 11.3).
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11.4 Concluding Remarks

The charts for each simulations highlight interesting emerging features. In all cases
the peak corresponding to the activation of the immune response has been identified.
However the connectivity entropy (see Fig. 11.4) does not distinguish between the
activation and the immune memory states. The connectivity entropy highlighted that
after time step 199 some new higher-degree antibodies are involved in the dynamics
of the system. While, both the approximated von Neumann entropy (see Fig. 11.5)
and the persistent entropy (see Fig. 11.6) are able to recognize the activation of the
immune system: the peaks in the charts point out the immune activation that is follow-
ing by a transient that represents the immune response. During the immune response
the antibodies play a dual role: they can simultaneously elicit and suppress each
other. After this transient there is a plateau that represents the persistent immune net-
work activation corresponding to the immune memory. Persistent entropy is directly
computed from the result of persistent homology: the Betti numbers. The analysis
of the generators of the homological classes allows to identify the real number of
antibodies that have been used: 203 instead of 4096 (see Fig. 11.3). The analysis of
the persistent Betti numbers reveals that there is a subset of antibodies arranged in a
1-dimensional hole that is present both in the activation state and in thememory state.
This 1-dimensional hole is formed by the antibodies: Ab1, Ab2, Ab7, Ab13. This hole
is formed by the most active antibodies, see the histogram in Fig. 11.3. The removal
of this 1-dimensional hole from the barcodes will flatten the entropy, that means
this cycle is formed by the most specialized antibodies for the antigen that has been
injected. Both the approximated von Neumann entropy and the persistent entropy
can be thought as complexity measures for graphs or for simplicial complexes. The
reason is evident in their mathematical definitions: von Neumann entropy depends
on the total number of vertices and the degree of linked vertices, while persistent
entropy depends by the topological noise and by the persistent topological features.

To conclude, we suggest that persistent entropy and in general topological data
analysis are useful tools for the analysis of dynamical complex systems. Topologi-
cal data analysis and persistent entropy can be used for discovering hidden patterns
among antibodies. The transformation of a graph into a simplicial complex of dimen-
sion greater than 1 allows to discover new patterns and than it allows to extract new
knowledge that otherwise can not be captured. The dimension of these patterns is
equivalent to the dimension of the relation among antibodies. A relation of dimen-
sion 2, typically expressed by a graph, represents a classical 2-bodies problem while
a n-ary relation represents a n-(anti)bodies problem that makes sense if and only if
all the (anti)bodies are communicating simultaneously. Generally, a n-ary relation
can not be decomposed in a set of 2-bodies problems: e.g. a filled triangle, that is
a simplicial complex of dimension 2, represents a 3-body problems, it exists if and
only if simultaneously are present the three vertices and three edges, otherwise it is
represented as an empty triangle (Fig. 11.1).
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Fig. 11.4 Connectivity entropy. The maximum is reached at tick = 199

Fig. 11.5 Approximate von Neumann entropy. The minimum is reached at tick = 199
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Fig. 11.6 Persistent entropy. The maximum is reached at tick = 199

Future investigation will be focusing on the use of the persistent entropy for
characterising the S[B] systems [14], and on the use of other entropy measures, like
the ones proposed by Felice [7].
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Chapter 12
Interests Propagation in Computer Science
Research Community

Gregorio D’Agostino and Antonio De Nicola

Abstract This work proposes a framework to study the propagation of individual
interests in scientific social networks.Weanalyze the domain of computer science and
weprofilemembers of the social network bymeans of semantic techniques.Wemodel
the evolution of interests as a diffusion process and we measure individual features,
such as members’ susceptibilities and authorities. The DBLP (Digital Bibliography
and Library Project) dataset has been selected as main source since it provides an
extensive list of scientific publications in this field.

12.1 Introduction

This paper proposes to model the fundamental mechanisms underlying the evolution
of interests in scientific social networks. We assumed the process to be driven by
diffusion. We propose a method to estimate some individual features characterizing
social network (SN) members such as susceptibility and authority. This means we
can measure the tendency of members to be influenced by their connections and their
capability to influence others.

A social network consists of a community of “members” linked together with
some kind of relationships (e.g., friendship, coauthorship, co-working). A SN is a
human organization reflecting people common activities.We study the temporal evo-
lution of human interests as a dynamic phenomenon arising in an anthropic system.
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Our hypothesis is that this phenomenon results from the combined action of several
factors: people connections, general trends, pre-existing interests and both the atti-
tudes of people to be influenced by or to influence others. Furthermore, we assume
that the temporal evolution of interests depends on the topics, since people can be
susceptible to some specific information more than to others.

We treat the SN as a physical system and we model interests dynamics as a
diffusion process. Like a thermic system, a thermodynamic equilibrium is reached
after a certain time period when no heat source is applied. Similarly in SNs, arising
of new topics can be considered as a heat source that prevents the equilibrium, thus
allowing diversity of views among people.

We introduced a general Markov process and we tested it against a co-authorships
network in computer science.

This work proposes a framework consisting of the following building blocks: a
modelling approach for social networks, to give an explicit specification of SNknowl-
edge concerning people, their relationships and their interests; a diffusion theory, to
describe the interest propagation phenomena and to make predictions about them;
a method and a software application to assess the theory and to measure individual
features (i.e., people susceptibility and authority).

In the following the above-mentioned building blocks are briefly presented along
with themain outcomes of the analysis of theDBLP dataset. Section12.2 presents the
relatedwork in the field. Themodelling approach to represent the implicit knowledge
of social networks is described in Sect. 12.3. Section12.4 briefly presents the interest
propagation theory. Section12.5 describes the case study and Sect. 12.6 provides
conclusions.

12.2 Related Work

The interest propagation phenomenon in social networks has been already studied
by different disciplines [24] by different means: data mining, complexity science,
semantic, and social science.

In [21], the authors propose a datamining approach to study the chain propagation
of events (e.g. threads) and to identify leading influentialmembers.Most of the efforts
in the data mining community have been devoted to define progressive models. In
such models, once a member becomes active (i.e. interested in a topic), it remains
active. The most important propagation models are the Independent Cascade Model
(ICM) and theLinear ThresholdModel (LTM). Both of the previousmodelswere first
introduced in [12]. The key characteristic of ICM is that diffusion events along every
arc in the social network are mutually independent; while the key characteristic of
LTM is that members adapt their behaviour upon exposition to multiple independent
sources.Another datamining approach is presented in [11]where the authors propose
models and algorithms to extract influence probabilities parameters from a “social
graph” and a log of actions by the users.

Complexity science includes the study of complex networks [3]. Among the phe-
nomena treated by this discipline, epidemics [17, 24] studies the spread of viral
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processes in networks. The complexity science is mainly focusing on human infec-
tious diseases and software malware spread. However there is a growing interest in
studying topics diffusion in social networks [26], social dynamics [5, 9] or even non
consensus dynamics [22].

Merging the topological and semantic analysis of social networks represents a
new and potentially fruitful research field which is providing promising results [4,
6, 14]. Our work shares the use of a semantic conceptual representation of a Domain
of Interest in the social network context with the formers.

A social science approach is presented in [2] where an experiment on Facebook
allows to estimate influential and susceptiblemembers of social networkswith respect
to some social features, such as age and sex. Another interesting issue considered
by the social science community is homophily (i.e., the tendency for individuals to
choose friends with similar tastes and preferences) [1, 13]. Present work does not
deal with such issues.

12.3 Knoweldge Representation

Social networking platforms (SNPs) are one of the most important substrates to
support the activities of a real social network (SN) in modern society. Here we
introduce a “semantic social network” (SSN) consisting of a social network (SN), a
semantic network (SeN) [23], and a weighted interest graph (WIG) connecting them.

A SN can be represented by a directed graph SoN = (H, F), where the set H of
nodes {hi } represents the members of the social community H = {h1, h2, . . . , h|H |}
and the set F of links fi,k represents relationships between members as ordered pairs
F = { f1,1, f1,2, . . . , f|F |}.

Expressions of interest are events (e.g., publishing a paper) demonstrating a pos-
itive attention by a member to a product. All possible products form the Domain of
Interest (DoI). It is worth mentioning that the term product here is employed in its
broad sense, referring not only to goods, but also to cultural events and scientific
products such as articles, books, etc.

Conceptual images of products can be expressed in terms of a finite number of
concepts belonging to a semantic network representing the DoI. A semantic network
can be seen as a graph SeN = (Λ, R) where the set Λ = {λ1, λ2, . . . , λ|Λ|} of
nodes are concepts (logos) and R = {r1, r2, . . . , r|R|} are the links that represent
semantic relationships of different types as subsumption, meronymy and similarity
[20] between the different concepts.

Given the semantics structure, we further assume that there exists a set of ele-
mentary concepts, that we name “topics” C = {c1, c2, . . . , c|C |}, such that one can
associate a subset of topics to each product (or its abstraction). The identification of
this set of basic topics plays a fundamental role and is a critical issue dealt with by
the ontology engineering discipline [8]; the latter involves both automatic procedures
(such as natural language processing) and human validation.
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A Interest Graph (IG) represents an abstraction of a community of people
together with their interests. It can be represented as a bipartite graph consist-
ing of two sets of nodes, one representing people and the other representing the
topics, together with a set of relationships I representing the interests of peo-
ple in topics. Consequently, IG = (H,C, I ), where I = {i1, i2, . . . , i|I |}, and
ii = (h j , ck)with h j ∈ H and ck ∈ C.

A Weighted Interest Graph W IG is an IG with weights assigned to the links
between people and topics. Such links may be viewed as either the probabil-
ity to be interested or the degree of interest in a topic. Consequently, W IG =
(H,C, I,W (I )), where w(I ) is a mapping from the set of relationships I to the
[0, 1] range (w(I ) : I → [0, 1]).

We define semantic profiling the process of associating interests to the members
of the SN, that is, inferring links and their relative weights of the WIG. The set of
interests characterizing a member hi is defined as her/his semantic profile. Since the
semantic profile of a member is not static, one needs to account also for its temporal
evolution:

Shi (t) = {ck : (hi , ck) ∈ I (t)} (12.1)

where ck ∈ C(t), k ∈ (0, |C |), hi ∈ H(t) and wk(t) = w((hi , ck)).
Given the basic set of interests ck , one possible choice to provide a member hi

with a semantic profile is to attribute a likelihood Lhi (ck).
A semantic social network SSN represents the relationships between members,

the semantics of the Domain of Interest and the actual interests of the community of
members with their weights. From the mathematical point of view it can be formally
written as a set of six entities: SSN = (H, F,Λ, R, I,WI ) where H represents
the set of members (humans); F represents the relationships between members;
Λ represents the set of concepts; R represents the set of semantic relationships; I
represents the interest of people on topics; and WI represents the degree of interests
in topics of people.

Semantic social networks are dynamic entities: they are born, grow, shrink and,
finally, die (close). Appearance of new nodes may describe both inclusion of new
members or emergence of novel topics. Similarly, disappearances of nodes may
represent the cease of participation of people to the community or the obsolescence
of topics. Moreover interests of members on topics may change their intensity during
the time. To model the dynamics of the latter entities, we define a dynamic semantic
social network SSNt = (H(t), F(t),Λ(t), R(t), I (t),WI (t)).

12.4 Interest Propagation Dynamics

In this Section we assess a model of interest propagation to predict the evolution of
the interests in a semantic social network. It accounts for the structure of the social
network and its evolution [16] without predicting it. Consequently, it has the aim to
estimate the probability for a person hi to be interested in a topic ck at a given time.
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Our model is based on the following four assumptions:

• As a person, each member tends to keep her/his own beliefs.
• Each member is partly influenced by others interacting with her/him (one to one
interaction).

• Each member is partly influenced by trends (one to all interaction).
• The evolution mechanism is markovian.

The evolution equations resulting from the above assumptions can be approxi-
mated for short time increments:

Lhi (ck, t + Δt) = [1 − xi (ck) − xis(ck)] · Lhi (ck, t) + 1

|Nhi |
·

∑

h j∈Nhi

xi j (ck)·

(12.2)

Lh j (ck, t) + xis(ck) · Ls(ck, t)

The three terms at the right hand side model three different features: the personal
tendency of a person to keep interest in a topic ck , the influence of the neighbours,
and that of the environment. In particular, Lhi (ck, t + Δt) represents the probability
of person hi to be interested in the topic ck at time t + Δt . Lhi (ck, t) represents
the probability of person hi to be interested in the topic ck at time t. Ls(ck, t) is the
probability for the environment to provide some information on topic ck at time t . We
refer to this quantity as the “source term”. xi (ck) and xi j (ck) are parameters (to be
experimentally determined) characterizing the different individuals. We assume that
when all neighbours share the same interests (i.e. their profiles) the interest profile
should not experience any variation, therefore:

xi (ck) = 1

|Nhi |
∑

h j∈Nhi

xi j (ck) (12.3)

and similarly, when the single member profile equals the trends source, no influence
is expected.

Key concepts in the interest propagation theory are the individual features, i.e.,
susceptibility and authority, characterizing a person within a specific Domain of
Interest. According to Merriam-Webster,1 susceptibility is defined as the “state of
being easily affected, influenced, or harmed by something”. Here, in particular, there
are three different parameters related to it: xi j (ck), xi (ck), and xis(ck). xi j (ck) is
a positive number representing the attitude of a member hi to be influenced by
each of her or his neighbours h j with respect to the topic ck . The xi (ck) parameter
measures the susceptibility of a member hi to her/his neighbours’ total solicitation
with respect to the topic ck . It is given by the average of xi j over all j’s (as in 12.3).
Finally, xis(ck) represents the attitude of a member to be influenced by the general
trends (i.e., environment or trends susceptibility). According to Merriam-Webster,

1http://www.merriam-webster.com/.

http://www.merriam-webster.com/
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the authority is the “power to influence or command thought, opinion, or behavior”.
We may introduce ai that measures individual authority as following:

ai
de f=

∑

h j∈Nhi

x ji (ck) (12.4)

12.5 The Computer Science Case Study

The analysis of DBLP publications is a representative application of our general
framework. In this context, according to our knowledge representation approach,
we identify the members of the social network with the authors connected by the
co-author relationships (representing the edges). Other types of relationships, such
as working for the same institution and participating to shared projects, can also be
considered [10, 19].

The expressions of interest can be of different types. We account for the most
significant that is publication of new scientific products (e.g., paper, book); however
there are others such as the citation of a work, the invitations to conferences, atten-
dance to talks, seminars, conferences and other presentations, etc. that we do not
take into account.

The DBLP dataset is our main source of information. It provides a list of scientific
papers in journals, conferences and workshops in the field of computer science. In
order to perform the analysis, we need to acquire the information about the topics
defining the scope of the domain and the evolution dynamics of both the social
relationships and the interests of the authors. The above information, in principle,
should be derived from different sources, however we can extract from the DBLP
dataset both of them.

Results presented in this work refer to theDBLP dataset as published by november
2013. The observation period has been limited to years from 1950 to 2012. In this
period there are 2.246.098 papers and 1.337.195 authors. However, in order to study
the evolution of authors’ interests it is necessary to observe some change in their
semantic profile during time; therefore only authors that have published papers in,
at least, two different years can be analysed. We named those authors “treatable”.
Only 519.886 authors out of 1.337.195 are treatable in the considered time period.

A first analysis was performed by natural language processing techniques [15].
By that means a preliminary set of 7632 topics was identified.Within the observation
period, we indexed papers and in turn we assigned a semantic profile to each member
by means of the relative frequencies of “expressions of interest” (publications):

ξhi (ck, t) = νhi (ck, t)∑
ck

νhi (ck, t)
, (12.5)
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where νhi (ck, t) represents how many papers, written before the considered year,
are indexed by the topic ck . This function, by definition, spans the [0, 1] range; the
unitary value represents a total interest in the subject while a null value means no
interest at all. These semantic profiles represent our estimates of the probabilities
Lhi (ck, t) evolving according to (12.2); that is, one can estimate the likelihood of an
author hi to publish on a topic ck through its share of interest (Lhi (ck, t) ∼ ξhi (ck, t)).

The popularity of a topic ξs was estimated by its relative frequency over all pub-
lished papers:

ξs(ck, t) = ν(ck, t)∑
ck

ν(ck, t)
(12.6)

where ν(ck, t) is the frequency of the topic ck at time t . It can be regarded as the
likelihood of a random person to be interested in the concept ck at time t .

We assumed that interests propagate according to a diffusion-like process (12.2).
The model contains free parameters (xi j ) that need to be specified. We formulated
three different hypotheses on susceptibility with increasing level of complexity that
we tested against the DBLP dataset. The parameters were fit by the maximum like-
lihood outcomes.

For the sake of simplicity (and to prevent possible overfitting), we assumed that
xi , xi j , and xis do not depend on the specific topic ck . This means that a member
influences her/his neighbours with the same intensity regardless of the subject.

In general, to estimate the susceptibility parameters, we constructed the mean
square differences χ2 between the predicted L ′s and the observed ones:

χ2 =
∑

t,hi ,ck

[
Lth
hi (ck .t + Δt) − Lhi (ck, t) − δξhi (ck .t)

]2; (12.7)

where the symbol δ indicates the variation of a quantity from one year to the next
(δξ(ck, t) = ξ(ck, t + Δt) − ξ(ck, t)).

One performs the optimization using the χ2 as an object function, that is mini-
mizing the deviation of prediction from observed values.

Since the L’s represent likelihoods, they must be confined to the [0, 1] range. This
implies that also the xi j and xis belong to the same interval. Therefore the feasible
solutions of the optimization process must respect these constraints:

⎧
⎨

⎩

xis ≥ 0
xi j ≥ 0∑

j xi j + xis ≤ 1
(12.8)

The optimum values of the parameters are achieved analytically if the point at which
the gradient of the χ2 vanishes corresponds to a feasible solution:

∂

∂θ
χ2 = 0 (12.9)
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Table 12.1 A Summary overview of the different hypotheses

Hypothesis Free parameters Estimated values χ2/dof

H P1
xi j = 0

xis = xs0

xi j = 0

xis = xs0 = 0.084
4.606 × 10−6

HP2
xi j = x̄

xis = x̄s

xi j = x̄ = 0.051

xis = x̄s = 0.053
4.576 × 10−6

HP3
xi j = xi

xis

x̄=0.087
x̄s = 0.059

3.780 × 10−6

HP3α
xi j = xi > 0

xis > 0

x̄=0.093
x̄s = 0.071

3.920 × 10−6

HP1 All people have the same susceptibility to trends and are not influenced by friends
HP2 All people have the same susceptibility to trends and to neighbours
HP3 People have individual susceptibility to trends and to neighbours
HP3α People have individual susceptibility to trends and to neighbours. In case of negative values
of xi and xis they are considered null
The χ2 are normalized by the degrees of freedom (dof ) for comparison

On the other side, when the analytical solution is unfeasible, we attribute to the
parameters the closest value at boundary.

We considered the following three hypothesis. The first hypothesis (HP1), that
we took into account, states that all members have the same susceptibility to trends
(xis = xs0) and are not influenced by neighbours (xi j = 0). The second hypothesis
(HP2), that we took into account, states that all people have the same susceptibility
to trends (xis = x̄s) and to the neighbours (xi j = x̄). The third hypothesis (HP3),
that we took into account, states that people have both individual susceptibility to
trends (xis) and neighbours (xi, j = xi ).

Table12.1 presents a summary of the testing hypotheses of the interest propaga-
tion theory and the main numerical results.

The results presented inTable12.1 show that the fitness of the hypothesis improves
with the complexity of the model behind the interest propagation theory. In fact,
taking into account the number of degrees of freedom (dof ) and the value of the
χ2/dof function (representing a good index for the method), HP3 fits the dataset
better than HP2 and HP1.

Optimizing χ2 resulted in some negative values of xi and xis . In such cases, they
were considered null (case α in Table12.1). Even if the χ2/dof increases, it is still
less than that of HP2.

The hierarchical ranking of hypotheses supports the validity of the interest prop-
agation theory.

The HP3 hypothesis is more complex than the others and deserves some further
discussion. The analysis of the determinant of the best fit equations (12.9) shows that
there are 420290 cases where detA �= 0 and 11627 cases where detA = 0. Hereby
x̂i and x̂is indicate the solutions of those equations when they exist. Unfortunately
in some cases those solutions are not feasible.

The average susceptibility under the HP3α hypothesis due to neighbours is 9.3%,
whereas the contribution due to trends is 7.1% for a total average susceptibility of
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Fig. 12.1 Histogram of
neighbours’ susceptibilities:
feasible solutions and
solutions as fit (in the inset)
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16.4%. Roughly speaking, this means that about 85% of the subjects of publications
are along the line of the previous works while some 15% do exhibit new topics due
to the influence of collaborators and trends. The distribution profile of neighbours
susceptibilities is presented in the Fig. 12.1. This shows a very pronounced peak at
null susceptibility, while being smooth for other values. The existence of such peak
may be an artifact of an insufficient semantic analysis. As a matter of fact, there is a
large set of papers (1,215,200 out of 2,246,098) that can not be indexed by means of
our selected set of topics. This is expected to result into spurious null susceptibilities.
Similar considerations apply to trends susceptibilities.

The authority coefficients (authorities, shortly) spans the [0,52] range; their mean
value is ā = 0.44 and its standard deviation is about twice that value (0.89).
Figure12.2 shows the distribution of authorities. As can be seen, there is a very long
queue of few authors at high values. It is known that there exist different authors with
the same full name; those people are very often treated as a single author in several

Fig. 12.2 Histogram of the
authority coefficients
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Fig. 12.3 Scatter plot of the
authority of different
treatable authors versus their
success index
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Table 12.2 Notorious authors in computer science

Name x̂i x̂is Authority ai

Wil M. P. van der Aalst +0.111 +0.058 +12.809

Jack Dongarra −0.019 +0.028 +10.259

John Mylopoulos +0.021 +0.037 +8.852

Georg Gottlob +0.055 +0.009 +5.081

Ian Horrocks +0.198 −0.080 +4.835

datasets. This problem is known as “ambiguity” of the papers indexing; it results in
gathering different authors into a single member of our social network.

We also tried to relate the success of an author with its authority. We employed
the number of published papers as an index of success, however a more appropriate
index should be the total number of citations [18, 25] which were not available. As
shown in Fig. 12.3, the higher is the success index the higher is the authority.

Finally, Table12.2 presents some individual features of some famous authors. As
expected they all exhibit high levels of authority.

12.6 Conclusions and Future Work

This paper combines knownmethods in complexity science with the semantic analy-
sis of natural language to provide insights in the propagation of people interests in
social networks. We assumed that interests propagate according to a diffusion mech-
anism, while being continuously created. The human behaviour was described by
means of two basic attitudinal characteristics (the susceptibility and the authority)
that quantify the tendency to influence and to be influenced by “friends” and the
environment.
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We presented a very general model that we tested against the DBLP database.
However the theory applies also to a broader set of social networks (including popular
ones such as Facebook or Twitter). Application to those types of social networks will
possible lead to member-tailored services and/or commercial exploitations. A wider
treatment of the subject is available at [7].
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Chapter 13
Nonparametric Estimation of the Preferential
Attachment Function in Complex Networks:
Evidence of Deviations from Log Linearity

Thong Pham, Paul Sheridan and Hidetoshi Shimodaira

Abstract We introduce a statistically sound method called PAFit for the joint esti-
mation of preferential attachment and node fitness in temporal complex networks.
Together these mechanisms play a crucial role in shaping network topology by gov-
erning the way in which nodes acquire new edges over time. PAFit is an advance
over previous methods in so far as it does not make any assumptions on the func-
tional form of the preferential attachment function. We found that the application of
PAFit to a publicly available Flickr social network dataset turned up clear evidence
for a deviation of the preferential attachment function from the popularly assumed
log-linear form. What is more, we were surprised to find that hubs are not always
the nodes with the highest node fitnesses. PAFit is implemented in an R package of
the same name.

13.1 Introduction

By the turn of the 20th century, complex networks in diverse domains were found to
share some universal characteristics, such as thewell-known scale-free property [21].
These intriguing universalities have prompted researchers to hypothesize common
mechanisms that can explain the observed network properties. Preferential attach-
ment (PA) [1, 26] and node fitness [2, 3] combined with growth have been advanced
as plausible mechanisms underlying the scale-free property in real-world networks.
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Temporal networks are closely connected to the concept of growth. Real-world
networks are rarely static, in the sense that they gradually grow in both number of
nodes and edges. Let Gt denote the network at time t . The growth of real-world
temporal networks is often modelled as follows. Starting from some initial network
G0, at each time-step t , new edges and nodes are added to Gt−1 to form Gt . A
temporal network is in fact a time series of static networks observed at each time-step:
G0,G1, . . .. How new edges at a time-step t connect to nodes in Gt−1 is determined
by preferential attachment and fitness mechanisms.

The PAmechanism [1, 26] basically states that the probability a node vi of degree
k acquires a new edge is proportional to some function Ak :

Pr(vi acquires a new edge) ∝ Ak . (13.1)

Ak is often called the attachment kernel. The so-called preferential attachment then
corresponds to the case when Ak is an increasing function on average. In this case,
a node with high degree tends to acquire new edges more readily than a low degree
node. This rich get richer phenomenon [29] has been observed in complex networks
across heterogeneous domains. In social networks, for example, a person with many
acquaintances tends tomakemore new acquaintance than does a less sociable person.
Or in citation networks of research papers, to take another example, a paperwithmany
citations may pick up new citations more readily than a comparatively lesser known
paper. Similar examples abound in other domains. The true form of Ak underpins
underlying network properties.

On the other hand, in the node fitness mechanism [2, 3], the probability node vi
receives a new edge is proportional to its fitness fi :

Pr(viacquires a new edge) ∝ fi . (13.2)

The fitness of a node can be interpreted as its intrinsic quality [12].
Taken in tandem, the PA and fitness mechanisms yield

Pr(vi acquires a new edge) ∝ fi Ak . (13.3)

This important equation encompasses a large number of well-known network mod-
els [1–3]. This equation underlies the temporal network model in our paper.

The inverse problem of estimating Ak and fi from observed data ought to be one
of great importance to the working network scientist. Besides practical applications
in link prediction algorithms [17], its solution gives valuable insights into the global
characteristics of networks. There are several fundamental questions surrounding PA
and node fitness in real-world temporal networks. For starters, does the signature of
PA persist even after having accounted for the contribution of node fitness? If so, then
what, if any, simple functional form does it take? For example, the log-linear form
Ak = kα has been shown to affect greatly the topology of the network. When α = 1,
the network is scale-free. On the other hand, an asymptotically sub-linear Ak (α <

1) gives rise to a stretch-exponential degree distribution, while an asymptotically
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super-linear Ak (α > 1) leads to a “winner take all” situation when a finite number
of nodes takes all the edges [14]. The limiting case α = 0 corresponds to the Erdös-
Rényi model [7], in which the network is also not scale-free. The question then
arises as to whether this widely accepted log-linear form true, or does the attachment
kernel take other forms?Conversely, dowefindnon-uniformnodefitnesses exist after
having taken the effect of PA into account? At present answers to these fundamental
questions remain obscure on account that no method has been proposed to jointly
estimate both Ak and fi .

The problem of estimating Ak while fixing fi = 1 for all i has attracted the
attentionofmany researchers and there are a number of estimationmethods [8, 11, 18,
20, 28]. The primary drawback ofmost of thesemethods is that they explicitly assume
the log-linear form Ak = kα and focus only on estimating the attachment exponent
α [8, 15, 18, 28].Massen et al. [18] used a fixed point iterative algorithm, Sheridan et
al. [28] aMarkovChainMonteCarlomethod, Gomez et al. [8] amaximum likelihood
estimation to estimate the value of α.

While the remaining attachment kernel estimationmethods [11, 20] do not assume
a functional form for Ak , they are not founded on any rigorous statistical framework.
Firstly, Newman’s method [20] estimates Ak by building a histogram of Ak over
multiple time-steps. It has been used to estimate the attachment kernel a number
of times [4, 9]. In simulated examples, Newman’s method appears to work well in
estimating Ak when k is small, but systematically underestimates Ak for large k [22].
This is thought to be an artifact of the method [9].

The method of Jeong et al. [11], by contrast, estimates Ak by observing the rates
at which degree k nodes acquire new edges in a small time window. Jeong’ s method
chooses a small time window and create a histogram of the degrees of nodes to which
new edges appeared in this time window connect. Note that the time windowmust be
small enough so that all changes in the degrees of nodes can be ignored. Normalizing
the histogram value of the degree k by the number of nodes with degree k at the on-
start of the timewindowwill give us the estimated value of Ak . Its simplicity makes it
is the most frequently used method in practice [6, 13, 27]. One problemwith Jeong’s
method, however, is that the time window should be kept small in comparison with
the size of the network, leading to a lack of robust estimation of the attachment
kernel.

Lastly, the Growth method of Kong et al. [12] is the only method we are aware of
that estimates node fitness, albeit under the assumption that Ak = k. Their method
estimates fi by using an asymptotic formula related to the degree of a node with its
fitness. This method is also ad hoc from a statistical point of view.

In contrast to the existing methods, we propose a maximum likelihood estimation
(MLE) method called PAFit for estimating both Ak and fi . PAFit is nonparametric
in the sense that it does not assume any particular functional form for either Ak or
fi . The algorithm underlying PAFit is known as a Minorize-Maximization (MM)
algorithm [10, 16]. We can prove that our algorithm increases the log-likelihood
function monotonically, and that it moreover converges to a global maximizer of this
function. We also calculate confidence intervals for the estimated values of Ak and
fi using standard statistical theory.
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By using PAFit to analyze a publicly available Flickr social network dataset [19],
we found that the estimated attachment kernel differed considerably from the func-
tional form Ak = kα. This result suggests that it is important to look beyond the
classical log-linear hypothesis in modelling the attachment kernel. With regard to
node fitness, we found that hubs are not always the nodes with the greatest fitnesses.

In summary, PAFit is a statistically soundmethod for the joint estimation of PAand
nodefitness nonparametrically in temporal complexnetworks.Wehavedemonstrated
its potential in this paper to uncover interesting findings about real-world complex
networks. This method is implemented in the R package PAFit [24].

13.2 The Network Model

The statistical estimationmethodwe present in this paper is tailored for the following
temporal model for directed networks. Note, however, that our methodology can be
easily adapted to work for undirected networks. Starting from a seed network at time
t0 = 0, we grow the network by adding n(t) nodes andm(t) edges at every time-step
t , for t = 1, . . . , T . Our method allows m(t) to be consisted of both new edges that
emanate from the n(t) new nodes and emergent edges between existing nodes. This
is important since in a large portion of real-world complex networks, new edges do
emerge between existing nodes. At time-step t , the probability that an existed node
vi with in-degree dvi (t) acquires a new edge is

Pr(vi acquires a new edge) ∝ fi Advi (t)
(13.4)

where Ak is the attachment value of degree k and fi is the fitness of node vi .
The temporal model defined by (13.4) includes a number of important network

models as special cases.When Ak = k, it reduces to theBianconi-Barabásimodel [2].
When Ak = 1 for all k, the model corresponds to the model in [3]. When fi = 1 for
all i and Ak = kα, it corresponds to Price’s model [25, 26] or Barabási-Albert (BA)
model in the undirected case [1].Note, however, that the original Price andBAmodels
only focused on the case α = 1. Furthermore, when fi = 1 for all i and Ak = 1 for
all k, then the model reduces to the classical Erdös-Rényi random networkmodel [7].

Here we note an important remark regarding an assumption about the distrib-
ution of m(t) and n(t). Let θ(t) denote the parameter vector governs the distri-
bution of m(t) and n(t). The likelihood of the data at time-step t is the product
of P(m(t), n(t)|Gt−1,θ(t)) and P(Gt |Gt−1,m(t), n(t), Ak, fi ). In this paper, we
assume that θ(t) does not involve Ak and fi . With just only this assumption, the
term P(m(t), n(t)|Gt−1,θ(t)) can be safely ignored when calculating the maximum
likelihood estimation for Ak and fi . This very mild assumption still allows broad
and realistic models for m(t) and n(t). For example, m(t) and n(t) can be random
variables whose means depend on Gt−1.
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13.3 Illustrative Examples

In this section we present simulated examples for the case of estimating (1) the
attachment kernel when fi = 1 for all i , and (2) the joint estimation of the attachment
kernel and node fitness. The purpose being to demonstrate the workings of our
proposed method, PAFit.

13.3.1 Attachment Kernel Estimation

In this first example, the network generative process follows (13.4) with fi = 1 for
all i and Ak = 3 (logmax (k, 1))2 + 1. Starting from a seed network of 20 nodes,
we add m(t) = 5 new edges and n(t) = 1 new node at each time-step t until a total
of N = 5000 nodes is reached. For a quantitative assessment, we also measure the

average relative error eA = 1
K

∑K−1
k=0

(
Ak − Âk

)2

A2
k

. Here K denotes themaximumdegree
in the observed data.

We first apply Jeong’s method [11] to estimate Ak . Here we choose the time win-
dow between when the 4500th node and the 5000th node are added. From Fig. 13.1a,
one can see that Jeong’s method captured the shape of the attachment kernel, but
the estimated function was sparse and fluctuated considerably. These are inherent
drawbacks of the method that arise from using only a small time window to estimate
the attachment kernel. In this case, eA is 0.20.

Second, we apply Newman’s method. In Fig. 13.1b, the estimated attachment
kernel follows the true values very closely, but the estimated value of Ak starts to fall
off when the degree k becomes large. This phenomenon has been observed by other
researchers, and is thought to be an artifact of Newman’s method [9]. In this case,
eA is 0.14.
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Fig. 13.1 Estimation of the attachment kernel Ak = 3 (logmax (k, 1))2 + 1 in a simulated network
of 5000 nodes. The solid line corresponds to the true Ak . In PAFit, the vertical lines correspond to
confidence intervals of the estimated values of Ak . a Jeong’s method. bNewman’s method. d PAFit
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Unlike the methods of Jeong and Newman, PAFit estimates the attachment ker-
nel by maximum likelihood estimation using all the available data. It is clear from
visual inspection alone of Fig. 13.1c that PAFit outperformed these two methods.
The estimated attachment kernel follows the true values comparatively well, even in
the high degree region. In this case, eA is 0.01, which is the smallest error among
three methods.

13.3.2 Joint Attachment Kernel and Node Fitness Estimation

Turning our attention to the case of estimating node fitness, we compare PAFit with
the Growth method. The generative process follows (13.4) with true node fitnesses
sampled from a gamma distribution with shape and scale parameters are both 5.
As in the previous example a total of m(t) = 5 new edges and n(t) = 1 new node
are added at each time-step t until the total number of nodes reached is N = 5000.
Regarding the true attachment kernel, we consider two cases: Ak = max (k, 1) and
Ak = 3 (logmax (k, 1))2 + 1. As in the previous example, we also measure the per-
formance of the two methods quantitatively. We use three numbers: average relative
error eA, correlation coefficient r between estimated fitnesses and true fitnesses, and

finally the average relative error e f , defined as e f = 1
N

∑N
i=1

(
fi − f̂i

)2

f 2i
.

Figures13.2a and 13.3a show the estimated fitnesses of the nodes that acquired
at least five edges by the Growth method when the true attachment kernels are Ak =
max(k, 1) and Ak = 3 (logmax (k, 1))2 + 1, respectively. The correlation coeffi-
cients in Figs. 13.2a and 13.3a are 0.51 and 0.55, respectively. For the two cases,
the average relative error e f are 0.93 and 0.94. One can say that the Growth method
performed acceptably well in both cases.

PAFit simultaneously estimates the attachment kernel and node fitnesses by max-
imum likelihood estimation. When Ak = max (k, 1), the correlation coefficient r
in Fig. 13.2b and the average relative error e f are r = 0.63 and e f = 0.34, while
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Fig. 13.2 Joint estimation of attachment kernel andnodefitnesswhen Ak = max (k, 1).aEstimated
node fitnesses by Growth method. b Estimated node fitnesses by PAFit. c Estimated attachment
kernel by PAFit
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Fig. 13.3 Joint estimation of attachment kernel and node fitness when Ak=3 (logmax (k, 1))2 + 1.
a Estimated node fitnesses by Growth method. b Estimated node fitnesses by PAFit. c Estimated
attachment kernel by PAFit

when Ak = 3 log2 max (k, 1) + 1, these number are 0.78 and 0.38, respectively. In
both cases, PAFit outperformed the Growth method. Not only did PAFit estimate
the node fitnesses comparatively well, but it also succeeded in recovering the attach-
ment kernel, as can be seen in Figs. 13.2c and 13.3c (the average relative error eA are
0.004 and 0.009, respectively). To conclude, these two examples demonstrated that
attachment kernel and node fitness can indeed be estimated simultaneously.

13.4 The PAFit Estimation Method

13.4.1 Attachment Kernel Estimation

It is instructive to first consider the simple yet important case of estimating the
attachment kernel in isolation. In this case, we assume fi = 1 for all i . Let mk(t)
and nk(t) denote the number of new edges connect to nodes with degree k at time
t , the number of existing nodes with degree k, respectively. Recall that K is the
maximum degree in the observed data. The key observation is that given m(t), the
quantities m0(t),m1(t), . . . ,mK (t) follow a multinomial distribution with parame-
ters p0(t), p1(t), . . . , pK (t), where pk(t), the probability that a newly added edge at
time t will link to a node with degree k, is

pk(t) = nk(t)Ak∑K
j=1 n j (t)A j

. (13.5)

This enables us to write down the log-likelihood function in this case:

l(A) =
T∑

t=1

K∑

k=1

mk(t) log Ak −
T∑

t=1

m(t) log

⎛

⎝
K∑

j=1

n j (t)A j

⎞

⎠ (13.6)
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where A = [A0, A1, . . .] are parameters we want to estimate. Note that the Ak are
only identifiable up to a multiplicative constant, as can be seen from (13.5).

We can maximize (13.6) by the following iterative algorithm. Define A(i) =
[A(i)

0 · · · A(i)
K ] as the estimated parameter vector at iteration i . Starting from some

initial value A(0), we can update A(i+1)
k , the value of Ak at iteration i + 1, in parallel

by

A(i+1)
k =

∑
t mk(t)

∑
t

m(t)
∑

j n j (t)A
(i)
j

nk(t)
(13.7)

until convergence. We can show that this algorithm is in fact a MM algorithm [23]. It
follows from the theory of MM algorithms that the log-likelihood function is guar-
anteed to increase with number of iterations. It can also be shown that the algorithm
converges to a global maximizer of (13.6) [23].

13.4.2 Joint Attachment Kernel and Node Fitness Estimation

In this section we proceed to the general case of jointly estimating Ak and fi . Let
z j (t) and N be the number of new edges that connect to node v j at time t and the
number of nodes in the final network, respectively. The log-likelihood function is
then

l(A, f) =
T∑

t=1

∑

j

z j (t) log
(
f j Ad j (t)

) −
T∑

t=1

m(t) log
∑

l

fl Adl (t) (13.8)

where A = [A0, A1, . . .] and f = [ f1, f2, . . .] are parameters we want to estimate.
In order tomaximize (13.8), we start from some initial valueA(0) = [A(0)

0 · · · A(0)
K ]

and f (0) = [ f (0)
0 · · · f (0)

N ] for A and f at step i = 0 and then iteratively update:

A(i+1)
k ←

∑
t mk(t)

∑
t

m(t)
∑

l f
(i)
l A(i)

dl (t)

∑
j :d j (t)=k f (i)

j

, (13.9)

f (i+1)
j ←

∑
t z j (t)

∑
t

m(t)
∑

l f
(i)
l A(i+1)

dl (t)

A(i+1)
d j (t)

. (13.10)

We can show that this algorithm is also a MM algorithm by a similar argument as
in [23]. Thus the log-likelihood in this case is also guaranteed to increase with the
number of iterations.
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13.4.3 Confidence Intervals and Regularization

Here we make some remarks about the PAFit methodology. First, we can calculate
confidence intervals for the estimated values Âk and f̂i using standard statistical
theory. Second, binning may be employed to achieve more robust estimation of the
attachment kernel. In this paper, we use logarithmic binning. Together with binning,
we may add regularization terms to (13.6) or (13.8) for more stable estimation when
the data is sparse. For the attachment kernel, we can use the following regularization
term:

− λ∑
k wk

∑

k

wk(log Ak+1 + log Ak−1 − 2 log Ak)
2 (13.11)

with wk = ∑
t mk(t). This regularization term will be approximately 0 if Ak = kα.

Estimating Ak with small λ is then equivalent to making almost no assumptions on
the functional form of Ak . When λ is large, we then estimate Ak with the assumption
that its functional form is kα. This is reasonable since Ak = kα is the most frequently
assumed functional form in the literature. For each fitness f j , we can add the fol-
lowing regularization term that has the same effect as placing a gamma distribution
prior on f j :

(s − 1)
∑

j

log f j − s
∑

j

f j . (13.12)

The larger s is, the more fi concentrates around 1. This will reduce the degree of
freedom of the parameters, which in turn will help the estimation in the case of
sparse data. We can still maximize the penalized log-likelihood functions using MM
algorithms [23].

13.5 The Flickr Social Network

In this section we present the results from our analysis of a publicly available Flickr
social network dataset [19]. It consists of a simple directed network of friendship
relations between Flickr users. Table13.1 shows some important summary statistics
of the dataset.

Table 13.1 Summary statistics for the Flickr social network dataset

Dataset Type |V | |E | T Δ|V | Δ|E | γ̂

Flickr [19] Directed
simple

2,302,925 33,140,018 134 815,867 16,105,211 2.15

The numbers |V | and |E | are the total number of nodes and edges in the final network, respectively.
Meanwhile, T is the number of observed time-steps, while Δ|V | and Δ|E | are the increments of
nodes and edges after time t = 0, respectively. The value γ̂ is the scaling exponent of the degree
distribution of the final network [5]
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Fig. 13.4 Estimation of the attachment kernel in the Flickr social network dataset without regard
to node fitness. The solid line corresponding to Ak = k is plotted as a visual guide. a Newman’s
method. b Jeong’s method. c PAFit

13.5.1 Flickr Attachment Kernel Estimation

First we estimate only the attachment kernel while fixing fi = 1 for all i . For Jeong’s
method, we chose the time window from T = 1 to T = 133, i.e., using all available
data.

In the estimated result of Newman’s method (Fig. 13.4a), we once again spotted
the falling off the estimated Ak when k is high. We note that when k is small, the
estimated Ak of Newman’s method are almost identical with those of the proposed
PAFit. In this region of small k up to about 1000, while Jeong’s method gave a
sub-linear function (Fig. 13.4b), PAFit gave a super-linear function (Fig. 13.4c). It is
worth noting that we spotted a clear signal of deviation from the log-linear model
Ak = kα (Fig. 13.4c).

13.5.2 Flickr Joint Attachment Kernel and Node Fitness
Estimation

Here we use PAFit to estimate jointly the attachment kernel and node fitnesses.
For more insights to the estimated fitnesses, we plot the estimated fitness of a node
versus the number of new edges that node acquired during the growth of the network.
The result is shown in Fig. 13.5. Regarding the attachment kernel, except for the high
degree region, the estimated function appears to follow the log-linear model Ak = kα

well with the attachment exponentα is estimated to be 0.89. Regarding the estimated
fitnesses, we notice a trend here: a node with high number of acquired edges tends
to have high fitness value. This trend is expected since fitness of a node directly
contributes to the probability that node will acquire new edges. But we also noticed
that some hubs whose the number of acquired edges is large can have much lower
fitness than that of a non-hub node. This intriguing fact suggests that in order to
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Fig. 13.5 Joint estimation of attachment kernel and node fitness in the Flickr social network dataset.
a Estimated attachment kernel. b Estimated fitnesses

measure the attraction of a node, one must take into account the PA mechanism and
the growth process.

13.6 Conclusion

We propose a statistically soundmethod, called PAFit, for estimating both the attach-
ment kernel (Ak) and node fitnesses ( fi ) in temporal networks by maximizing their
joint log-likelihood function. Our methodology is nonparametric in the sense that
it does not assume any particular functional form for either Ak or fi , so that it is
able to detect different types of functional forms. We report clear evidence for the
presence of PA and fitness in the Flickr social network. We also found that the func-
tional form of the attachment kernel differs from the classically assumed log-linear
form, Ak = kα. What is more, we also observed that hubs do not necessarily have
the highest node fitness values, and that even some low degree nodes can have high
fitness. Given these interesting discoveries, we expect that PAFit will prove to be a
useful tool in the analysis of temporal complex networks.
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Chapter 14
N-gram Events for Analysis of Financial
Time Series

Igor Borovikov and Michael Sadovsky

Abstract Discretization of time series and encoding it as a string in a finite alpha-
bet allows application of information theory methods developed for discrete signals.
Computing information values of n-grams extracted from such string leads to intro-
duction of events as occurrences of n-grams that possess specific properties, e.g.
abnormally high (or low) information value. We define information value of an
n-gram via maximum entropy lifts over frequency dictionaries. We also look for
correlation between market events and n-gram events. The paper shows that the pro-
posed method of time series analysis when applied to events study may provide new
insightful perspective.

14.1 Introduction

An analysis of string in finite alphabet produced from financial time series may offer
additional benefits enhancing traditional analysis (e. g. [1]) on the original real-valued
time series. The methods we discuss here targeted to apply to financial time series
were inspired by pioneeringworks in analysis of genetic texts [2–4]. Themethods are
based on maximum entropy principle. Generality of the underlying principle allows
to extend thesemethods to any strings (texts) fromfinite alphabets. Genetic texts from
four letter alphabet ℵ = {A,C,G, T } or natural texts with the usual alphabet(s) are
the examples of those sequences. In finance, such alphabet can consist of up A and
down a tick: ℵ = {A, a}.

In this paper, following several previous works [5–7], we obtain string from
adjusted close time series by quantizing returns. Next we extract n-grams from the
text to build a frequency dictionary (a probability distribution over the n-grams
encountered for the given value of n). This step is followed by calculating relative
information of particular n-grams and cumulative relative information. It is done
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by introducing max entropy lift (intuitively it corresponds to “extrapolation”) of a
dictionary of n-grams of length n to a dictionary of (n + 1)-grams. The difference
(as Kullback-Leibler divergence) between the actual dictionary of (n + 1)-grams
extracted from the text and the lifted dictionary is treated as the cumulative relative
information. Computing difference between original and lifted frequencies (again
as relative information) for individual (n + 1)-grams gives their information value
(information capacity).

There are some challenges to address when using such approach in finance. The
most notable one is noise, which is always present in the data and is part of the
reality. The simplest model of time series for returns is Bernoulli process, which is
pure noise with single parameter p—the probability of up tick against down tick. Yet
it gives quite reasonable representation of reality and was used in historical works
by Bachelier [8]. As such, we used Bernoulli process with equivalent parameter p
to normalize the data we obtain for information value and cumulative divergence.
The memory-less nature of Bernoulli process eliminates any related bias from nor-
malization. Additionally, we aggregated information values for head n-grams (head
n-gram is the one found at the end of the string in sliding window) within the limits
of so called “noise limit” [5, 6].

The results obtained using thesemethods appear to be novel and quite insightful at
least in the cases we studied. The n-grams techniques are widely used in text mining;
in bio-informatics they are proven tool of analysis (references are too numerous to
list here). But in the context of the time series, particularly financial ones, the authors
couldn’t point at directly comparable published works. Specifically, n-grams relative
information derived from maximum entropy lifts, normalized and de-noised using
aggregation offers new tool for the analysis of time series.

14.2 N-grams Dictionaries from Time Series

To avoid ambiguity we shall use the ‘ticker’ term when talking about securities like
company shares, ETFs or indexes (e. g. GOOG or ˆDJI). We reserve the terms ‘letter’
and ‘symbols’, which we use interchangeable, for the elements of the alphabets we
are going to construct.

We consider the simplest case of a financial time series, namely Adjusted Close
daily price on a ticker denoted by z(t),1 fromwhich we calculate either log- or simple
returns p(t):

p(t) = log(z(t)/z(t − 1)) ≈ z(t)

z(t − 1)
− 1.

1The source of the data used throughout this work is the publicly available financial data from
Yahoo!Finance unless indicated otherwise.
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Here Adjusted Close price z(t) is a real number and t is (trading) day treated as an
integer index. The choice of simple returns over log-returns is not critical for this
work so we will not distinguish them.

14.2.1 Constructing Texts from Time Series

To apply the n-grams-based methods, we will represent the time series p = p(t) as
a string in an alphabet ℵ. We will call this string input text. The terms string and text
will be used interchangeably. The letters of the alphabet encode quantized values of
p(t).

Definition 1 A finite alphabet ℵN of size 2N > 0 is called an output alphabet
if it is ordered by bijective mapping to the set of integers ZN = {−N ,−(N −
1), . . . ,−2,−1, 1, 2, . . . , N − 1, N } (note the absence of 0). This mapping
X : ZN → ℵN will be called indexing.

The choice of mapping R → ℵ and the choice of the alphabet ℵ are parameters of
the method. Our main practical choice will be binary quantization (i. e. strings rep-
resenting only up- and down-ticks) that produces strings in alphabet {A, a}. Here A
corresponds to positive price change on the certain day and a to non-increasing price
(i.e. no change or down tick). For the discussion of other alphabets and quantization
mappings see [5, 6].

14.2.2 Dictionaries from the Input Text

Given an input text T of a finite length we build natural frequency dictionary D(n)

by first counting all n-grams occurrences Cw for each n-gram w in the text T. This
results in a set of pairs (w,Cw). Let’s denote by C∗ the total number of n-grams in
T. Obviously, C∗ = |T| − n, where |T| is the text length. Normalization by C∗ gives
the frequency of the n-gram w: fw = Cw/C∗.

Definition 2 The (natural) frequency dictionary D(n) of the text T is the set of all
pairs {(w, fw)} where w are unique n-grams and fw are the corresponding frequen-
cies constructed as described above. The parameter n is called the thickness of the
dictionary.

The set Ω = {w} is called the support of the dictionary.
A dictionary D(n) of thickness n can be naturally projected to the frequency

dictionary D1(n) of thickness n − 1 consisting of (n − 1)-grams and their induced
frequencies. More generally, we can compute Dk(n) that is the dictionary of (n − k)-
grams with their induced frequencies. It is a straightforward procedure that calcu-
lates all (n − k)-grams and their frequencies not from the original text T but rather
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from D(n) with proper counting of the corresponding frequencies. This procedure
uniquely defines projection operator Pk : D(n) → Dk(n) for k in the range 0, . . . , n.

The inverse lifting operator Lk : D(n) → Dk(n) reconstructs a frequency dictio-
nary Dk(n) of the thickness n + k from the dictionary D(n). It is easy to see that it is
not uniquely defined. We can address this by using the maximum entropy principle,
see [2–4, 9] for the details and proofs. A brief outline of these results follows in the
Sect. 14.2.3.

Note that the original works [2–4, 9] considered circularly looped input texts for
the dictionaries generation. Here we can not require any periodicity of the input text
because it will create artificial connection between otherwise disconnected trading
days at the beginning and at the end of the analyzed time interval. The absence of
the loop will create a complication that we will discuss later but for now we will
just ignore it. The approximation by the results from the looped texts improves as
|T | → ∞. We leave discussion of practical choice of text length outside of this
article.

14.2.3 Reconstructed Dictionary and the Information
Valued n-grams

Again consider an input text T defined over a finite alphabet ℵ. We can construct a
sequence of dictionaries Dj of increasing thickness j :

D1 ↔ D2 ↔ · · · ↔ Dj ↔ Dj+1 ↔ · · · ↔ DL . (14.1)

As we already pointed out, the projection operator (arrows pointing left in (14.1)),
i. e., the transition Dj �→ Dj−1 is unique. On the contrary, the lift is not a unique
transformation generally because an n-gramwmay havemultiple valid continuations
(not more than the cardinality of the alphabet |ℵ|).

A valid 1-lift is a transformation L1: Dj �→ Wj+1 such that Wj+1 is a dictionary
of thickness n + 1 and P1(Wj+1) = Dj . So, by definition, a valid 1-lift L1 satisfies
P1 ◦ L1 = I where I is the identity mapping of Dj . Thus, a lifted (“reconstructed”)
dictionary consists of n-grams w ∈ Dj extended by adding prefix or suffix of length
1 and such a way that it projection yields the original frequency dictionary. Note
that adding an infix to the original n-grams may not lead to a valid lift. In other
words, each combined set f ∗

ν1ν2ν3...νq−1νqνq+1
of the extended n-grams must satisfy the

constraint

∑

νq+1

f ∗
ν1ν2ν3 ... νq−1νqνq+1

=
∑

νq+1

f ∗
νq+1ν1ν2ν3 ... νq−1νq

= fν1ν2ν3 ... νq−1νq , (14.2)
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where fν1ν2ν3...νq−1νq is the frequency of an n-gram w ∈ Dj in the original frequency
dictionary Dj . Linear constraints (14.2) eliminate some of the possible extensions
for the original n-grams, but still do not define the lift uniquely.

As the final step to define the lift uniquely, we can use the maximum entropy
requirement:

max
j

{
−

∑

w∗
f ( j)
w∗ ln f ( j)

w∗

}
(14.3)

Here w∗ = ν1ν2ν3 . . . νq−1νqνq+1 denotes an n-gram satisfying the linear constraint
(14.2). The maximum-entropy dictionary D̃q+1 satisfying both (14.2) and (14.3)
exists always, since the set of the dictionaries which could be constructed from the
given one is finite.

The frequencyof then-grams in themax-entropy lift w̃ ∈ D̃q+1 could be computed
explicitly using Lagrange multipliers method [2–4, 9]. Frequency of an n-gram
w̃ ∈ D̃q+1 is determined by the expression

f̃ν1ν2ν3 ... νq−1νqνq+1 = fν1ν2ν3 ... νq−1νq fν2ν3 ... νq−1νqνq+1

fν2ν3 ... νq−1νq

. (14.4)

The 1-lift to a thicker dictionary via (14.4) yields the dictionary that contains no
“additional” information, external with respect to the one contained in the original
dictionary. It consists of the n-grams of the length q + 1 that are the most probable
continuations of the strings of the length q. The lifted dictionary D̃q+1 contains all
the strings that occur in the original dictionary Dq+1 and, possibly, some other ones.
For any q ≥ 1 the following inequality of the entropy:

S
[
D̃q+1

] ≥ S
[
Dq+1

]

holds true. This approach may be generalized for l-lifts with l > 1 also yielding
a unique solution. In this paper we focus on 1-lifts. Also in the following we will
consider only max-entropy lifts.

14.2.4 Information Capacity as KL Divergence

Here we outline the idea of the information valuable n-grams (see Sect. 14.2.3).
Consider two sequences of the frequency dictionaries: the one of the dictionaries
constructed directly from the input text (14.1), i.e. the natural dictionaries, and the
the sequence

D̃2 ↔ D̃3 ↔ · · · ↔ D̃ j ↔ D̃ j+1 ↔ · · · ↔ D̃L

of lifted dictionaries. Here we assume that D̃ j is lift of Dj−1, j = 2, . . . , L .
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Definition 3 Information capacity S j of a natural dictionary Dj is the mutual
entropy

S j =
∑

w∈Ω

fw ln

(
fw
f̃w

)
(14.5)

of the natural dictionary Dj−1 calculated against its lift D̃ j from the dictionary Dj−1.

The expression (14.5) is also knownasKullback-Leibler divergence, or divergence
for short. This definition is applicable to any valid lifts. For the case of (14.4) (max-
entropy lift), the information capacity could be easily determined:

S j = 2Sj−1 − Sj − Sj−2 and S2 = 2S1 − S2, (14.6)

where Sj is absolute entropy of the natural dictionary Dj .

14.2.5 Information Valuable (Divergent) n-Grams

Consider again the information capacity (14.5). Sufficiently close values of natural
frequencies fw and lifted frequencies f̃w of the same n-gram w make smaller contri-
bution (per n-gram) to the overall value of the sum. And the n-gramswith the greatest
deviation provide greater-than-average contribution. This observation motivates the
following:

Definition 4 Information valuablen-gram ŵ (an element of the frequency dictionary
Dj ) is an n-gram satisfying the inequality

∣∣log fŵ − log f̃ŵ
∣∣ > | logα| ,

where 1 ≥ α > 0 is the information value threshold.

We will also call such n-grams α-divergent n-grams, or divergent n-grams when
parameter α is obvious from the context or its specific value is not important.

The subset of the divergent n-grams is complemented with the subset of α-
ordinary n-grams (or just ordinary n-grams). The Definition (4) depends on the
parameter α and its practical choice depends on the application. We connect infor-
mation valuable n-grams with market behavior in Sect. 14.4.

14.2.6 Normalization of the Information Capacity
for Finite Input Texts

There are several issues stemming from the finite length of the input texts. The first
issue we have to deal with is that some of the formulas derived for looped or infinite
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input text will hold for finite texts only approximately. In particular, (14.6) would
not be a valid formula for information capacity. It is easy to see from its derivation
as it relies on the exact match of the frequencies of the n-grams of different length.
This assumption holds only for looped or infinite input text. Hence for practical
calculations we should use direct formula (14.5).

Another issue is related to the noise resulted from the finite length of the input text
affecting the value of the information capacity. Consider for simplicity the binary
alphabet with close probabilities for both letters. The total number of different n-
grams of length n is 2n . There are total L − n + 1 of all n-grams of the length n in
the input text of the length L . For L � n we can take the number of n-grams ≈ L .
If L = 2n then each occurrence of each n-gram is “critical” in a sense that every
difference of lifted dictionary from the natural one will “amplify” the random nature
of the input text. When dictionary thickness exceeds log2 L , some of the n-grams
will not be present at all (go “extinct”). This leads to degeneration of the information
capacity as many of the longer n-grams will be lifted from the shorter ones uniquely
and other will not be present. The number of uniquely reconstructed n-grams will
growas the ratioL/n gets smaller. This results in the bell curve of information capacity
discussed earlier. Its peak is located at the value of n close to jmax ≈ log2 L .

To separate the virtual signal from the noise in the information capacity Sn of
the input text T we need to compare it to the expectation E(S′

n) of the information
capacity S′

n calculated from the randomly generated texts T ′. Random texts T ′ must
have the same length and generated by the source with the same probabilities for
the alphabet letters as T . The absolute difference of the values Sn and S′

n will not be
as useful as the one normalized by the standard deviation σ(S′

n) of the information
capacity of the corresponding random input texts T ′. Such normalization will give
σ -distance from the purely random signal. For the binary alphabet the model of
purely random signal is Bernoulli process (random walk) with parameter equal to
the frequency of up-ticks versus down-ticks.More complicated statistical models can
be introduced as the normalization basis: simple auto-regressive models, GARCH
(Generalised Autoregressive Conditional Heteroscedasticity) and other [1]. Fixing a
model for normalization basis leads to the following:

Definition 5 The normalized information capacity of the input text T is defined by
the formula:

S∗
n = Sn − E(S′

n)

σ (S′
n)

. (14.7)

where Sn is the information capacity of the original input text; E(S′
n) and σ(S′

n)

are the expectation and the standard deviation correspondingly of the information
capacity of the random input text T ′ such that E(D1(T ′)) = D1(T ).

The last condition means that the letters in the source of the random texts T ′ are
distributed in the same way as for the original text T . In practice the estimates for
the values of E(S′

n) and σ(S′
n) can be computed using Monte-Carlo method.
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14.2.7 Sliding Window

Analysis of a single static text information properties obtained from financial data is
limited in ability to discover interesting connections between abnormal divergence
and information values with market events. In particular, n-grams with high informa-
tion value did not show any correlation with market events in the case studies in [5].
One of the problems with that approach was exactly use the static nature of the text
and the investigated n-grams were located (mostly) in the middle it. Such n-grams
can be of interest in analysis of genetic texts but in application to time series they
represent “old news”, i. e. correspond to the events which market already reacted to
and their information properties are not directly related to the current market. The
most meaningful n-gram for such analysis is the one at the very end of the text and
corresponds to the most recent dates. We call it head n-gram.

From that perspective, consideration of texts obtained form a sliding window
seems more appropriate. It may discover connections between information proper-
ties of the text in sliding window and head n-gram in particular with the market
events. For sliding window, we found that normalization defined in the previous
section becomes more important for an obvious reason. The random walk parameter
(or parameters of other normalization basis model) will inevitably change between
sliding window locations. Unnormalized information properties may not be directly
comparable between two neighboring window locations because of that. Normaliza-
tion using plain Bernoulli model for the head n-gram will be called “naïve” and we
will usually drop this adjective.

Thus, we follow the framework: the complete input text T is traversed by smaller
sliding window of length m and normalized information value of the head n-gram
is denoted as h = h(t) = h(t; n,m) for the position t of the window; and the nor-
malized divergence for the text in the window H = H(t) = Hm(t; n,m), where
parameters n and m will be dropped unless it brings an ambiguity.

Introduction of normalized values opens possibility to apply a trick motivated by
processing datawith very low signal-to-noise ratio (SNR), and intuitivelymarkets are
source of such low SNR signals. Under assumption of i.i.d. noise multiple instances
of the input data can be averaged, which improves SNR logarithmically in the number
of averaged instances. In finance, we have no luxury of running same experiment
multiple times, but we may extract same quantities from the unique instance of the
data using different parameters (e. g. n-gram length, number k days used to calculate
returns, see below) and average their normalized values. The averaged quantities
obtain using such approach will be called “aggregated”.

14.3 Aggregated Divergence and Information Value

Normalization introduced earlier removes only somepart of the inherent noise present
in the computed divergence and information values. It also places the values into a
common scale well defined by the mean and variance of the normalization base
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model. This opens possibility to combine values of h(t; n,m) and H(t; n,m) over
some range of n. The range of aggregation is naturally defined by lower limit of
n0 = 3 and the noise limit being the upper limit n∗ � log(m). The following averages
will be called an aggregated value of head h-gram:

h(t;m) = 1

n∗ − n0 + 1

n∗∑

n=n0

h(t; n,m). (14.8)

The aggregated value for divergence H(t; n,m) is defined similarly.
Wemay take the idea of aggregation a step further: we can use returns for multiple

days. Multiple k days returns are defined similarly:

pk(t) = log(z(t)/z(t − k)).

The resulting text is parameterized by k. Instead of single quantity h(t;m) we get
parameterized family h(t;m, k) with k covering some “reasonable” range. We may
consider averaging over parameter k as well, but for the purpose of this paper we
leave this discussion out, see [7].

14.4 Extreme Divergence and Information Value n-Gram
Events as Market Indicator

Recall the hinted earlier intuitive interpretation of the information value of n-gram.
It tells how far probability to find it in the text diverges from the probability induced
by the dictionary of thickness n − 1. In Markov model approach information value
is a measure of how far is the prediction produced by n − 1 model from the n-order
model constructed directly from the text. Note that appealing to Markovian nature of
the financial time series is not really necessary as it was not used as an assumption
anywhere in any of the derivations. Its only purpose is to illustrate the intuitive
meaning of the notions we introduces. By stretching interpretations, aggregation
described in the previous section is a cumulative measure of how unexpected is the
current market behavior. For head n-gram this corresponds to how far the current
moment from following the patterns expected by the participants. Unlike head n-
gram information value, divergence is not local and characterizes of the entire text
in sliding window.

Aggregated values computed in sliding window may display some notable local
maxima andminima, whichmay provide an insight into inner workings of themarket
not accessible via conventional methods. They may indicate extreme processes hap-
pening in the market. Of course, the exact nature of such processes can’t be induced
from the quantities we calculate.
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14.5 Case Studies

The following case studies use sliding window m = 256, that is close to the conven-
tional length of the trading year (250days). On the figures below the upper plot is
adjusted close price of GSPC index (S&P 500), the middle one is aggregate 256days
divergence for 5days returns, and the lower plot is aggregate head n gram informa-
tion value with same parameters (window size 256 for 5days returns). The value
k = 5 is picked to avoid possible influence of day of the week (regular trading week
lasts five day).

14.5.1 Case Study: Russian Financial Crisis of 1998

The Russian financial crisis of 1998 significantly affectedmarkets worldwide and the
USmarket in particular. Here we investigate how the USmarket reflects the events of
1998. We focus on the preceding events and consider only few that happened in the
aftermath of Russian default. The key observation is that some, but not all, important
events preceding the official default announcement on August 17, 1998 coincide
with abnormally high information value head n-grams. The events (in the numbered
list, following below) selected for the plot Fig. 14.1 are pulled from the Wikipedia
page [10]. It remains to find what were the events that created other noticeable peaks
in information value between labels 2 and 4 on the Fig. 14.1; these events are not
necessarily tied to the unfolding crisis in Russia and hence are not covered by the
cited Wikipedia article [10].
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Fig. 14.1 Solid vertical line marks the official date of GKO default. Dashed lines mark other
important events. See text below for details
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Some of the Events of Russian GKO Crisis of 1998 cited by [10]:

(1) 1998-03-23 event: B. Yeltsin suddenly dismissed Prime Minister V. Cher-
nomyrdin and his entire cabinet. Comment: Aggregate head information value
starts uptrend, which may be viewed as increase of market breaking previous
behavior patterns.

(2) 1998-03-29 event: Yeltsin appointed Boris Fyodorov as Head of the State Tax
Service.Comment: An anticipated or not too important event? There is no obvi-
ous connection between several following peaks and any significant political
or economical events.

(3) 1998-05-12 event: Coal miners went on strike over unpaid wages, blocking
the Trans-Siberian Railway. Comment: A prominent peak in information value
suggests that the event was considered to be both significant and unanticipated.

(4) 1998-06-01 event:KiriyenkohikedGKOinterest rates to 150%.Comment: Pos-
sibly this action was either anticipated or, less likely, not treated as an important
news.

(5) 1998-07-13 event: A $22.6 billion International Monetary Fund and World
Bankfinancial packagewas approved to stabilize theRussianmarket.Comment:
Apparently this was an anticipated event with only details being in flux.

(6) 1998-07-15 event: The State Duma dominated by left-wing parties refused to
adopt most of the government anti-crisis plan. Comment: A zero-surprise event
given political situation in Russia?

(7) 1998-07-29 event:Yeltsin interruptedhis vacation andflew toMoscow; replaced
Federal Security Service Chief N. Kovalyov with V. Putin Comment: Was it not
anticipated or not deemed important? The following peak probably reflects
post-factum digestion of Yeltsin’s actions by market participants.

(8) 1998-08-17 event: The official date of Russian default crisis (solid vertical
line in Fig. 14.1). Note, the previous date is Sunday, making the change in
information value abrupt. Comment: An obvious peak suggests the event was
not anticipated while very important. The market didn’t move just yet.

(9) 1998-09-02 event: The Central Bank of the Russian Federation decided to aban-
don the “floating peg” policy and float the ruble freely. Comment: Probably not
a very surprising event given the circumstance?

(10) 1998-09-28 event: Boris Fyodorov was discharged from the position of the
Head of the State Tax Service. Comment: A minor event given the scale of the
crisis?

14.5.2 Case Study: 9–11 Terrorist Act

We used the same methodology as in Sect. 14.5.1 to probe into the market behavior
before 9–11 terrorist act. There are no obvious preceding events that could be revealed
by high information value or cumulative divergence, but there is a steady growth
of head n-grams information value and even less disputable growth of aggregate
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Fig. 14.2 Solid vertical line marks the date of 9–11 terrorist act. An approximate date of the peak
of the US business activity marking the beginning of the recession is marked as dashed line 1 [11].
Note steady growth of aggregate divergence and head information value in the preceding days

divergence in the days preceding the terrorist act, see Fig. 14.2. These observations
suggest that some market participants were either aware of or were affected by the
trades placed by fully informed of the upcoming events traders. Since the number
of informed participants was unlikely large it suggests that the fully or partially
informed participants were sufficiently influential ones and acting with high caution
(i. e. avoiding direct price shift). The absence of abnormally high information value
of head n-gram also suggest that the event was not a total surprise, at least in terms
of market behavior of some of its participants. Of course, all observed effects were
amplified by the recession on which background 9–11 occurred. These proposed
interpretations are not intended to support any of the popular conspiracy theories
built around 9–11. However they offer a circumstantial evidence that the tragic event
didn’t occur in total information vacuum.

14.6 Discussion and Conclusion

One of the challenges of the proposed approach is the choice of meaningful nor-
malization. It may be argued that Bernoulli process, while being attractive for its
simplicity, provides only very crude model of the background noise. As better alter-
native, we may contemplate using boundary conditions for the bootstrapped series to
enforce the same leading n-gram, or use Markov process instead, or both. We leave
investigation of these options to future publications.
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Additional applications of the approach could be in the area of general change
(or fault) detection in various time series. One specific practical example that we
consider is EEG analysis for early detection of onsetting epileptic seizure.

The goal of this research (which is still work in progress) is to evaluate if n-
grams information theory offers new insights into market behavior. We described
the developed methodology and some of the preliminary results. In the presented
case study we found some correlation between market events and abnormal behavior
of computed information values. One possible interpretation is the following: the
abnormal values observed before an event correspond to the market participants
processing the event in its anticipation; the events corresponding to the abnormal
information values in the immediate wake of the event suggest that the event was not
anticipated and was unexpected.
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Chapter 15
Human Mobility and the Dynamics
of Measles in Large Geographical Areas

Ramona Marguta and Andrea Parisi

Abstract In recent years the global nature of epidemic spread has become a well
established fact, however there have been limited studies on the detailed propagation
of infectious diseases on regional scales. We have recently introduced a simulation
program that explores disease propagation on such scales: the model uses a gridded
geographical description of human settlements on top of which mobility is imple-
mented using the Radiation Model. Parallel computation permits unlimited com-
plexity. Both individual and equation based simulations of epidemiological models
can be performed, thus permitting the exploration of the effects of mobility locally
and globally. Using a SIR model parametrized for measles, we perform simulations
for the area of British Isles, which we assume isolated. Exploring how the dynamics
is influenced by human mobility, we show that mobility influences the dynamics
globally and locally. In particular, the interplay of mobility and city size, enhances
or reduces the contribution of the different mechanisms involved.

15.1 Introduction

Several publications in recent years have been devoted to the study of the geograph-
ical spread of infectious diseases: contact networks are used at many levels of the
description of several epidemic models [1–4]; for instance Colizza et al. use a sophis-
ticated geographical model in which they use the airline transportation network to
make prediction on the worldwide spread of flu epidemics [4–6]. Simulations on
regional level however require data on mobility at lower scales, and have been devel-
oped more recently thanks to data coming from mobile phone operators [7]. Here we
describe a simulation model [8] that is based on a recently developed description of
human mobility [9] and uses it on a regional scale to analyze the spread of measles.
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Measles is a well studied disease: several publications have been devoted to its
dynamics and the mechanisms that control its periodic outbreaks [10–13], but the
human mobility factor has not been thoroughly explored so far. However, some
key mechanisms depend on mobility: for instance mobility is a key ingredient in
explaining the recurrent outbreaks occurring in low populated areas [14, 15]. By
considering a detailed geographical description of human settlements as well as
human mobility, we have been able to uncover the link between human mobility,
the frequency of measles outbreaks and the mechanisms that control its dynamics.
Specifically we see that different mechanisms are at work depending of the intensity
of human mobility and the size of the local population. We also see that, when we
consider the whole British Isles, the resulting sequence of outbreaks might have
characteristics that differ from what is observed locally: in other words, what is
observed at the global level has a complex relation with what occurs in the multiplicity
of cities and low populated areas that constitute the British Isles.

15.2 The SIR Epidemiological Model

The basic compartmental models used to describe disease dynamics divide the popu-
lation into different classes according to their epidemiological status. The SIR model,
describes many infectious diseases including measles, rubella and mumps. It uses
three classes: susceptible to the disease (S), infected (I) and recovered (R). Infected
individuals can transmit the disease to other susceptibles, whereas recovered indi-
viduals have a lifelong immunity to the disease. Three processes alter the status of an
individual: transmission of the disease from an infective to a susceptible individual,
recovery of an infected individual and demography that acts by replacing individu-
als regardless of their epidemic status with new susceptible individuals. The three
processes are thus:

SI
β→ II transmission

I
γ→ R recovery

{S, I,R} μ→ S demographic death/birth

where the three parameters β, γ and μ are the rates at which these events occur. The
analytic description of these models, known as deterministic description, is provided
by a set of coupled differential equations describing the time evolution of the average
number of individuals that belong to each class and can be formally derived as the
mean field limit of the master equation describing the above processes [16]. In this
case the SIR model has the form:

{
Ṡ = −βSI/N + μ(N − S)
İ = βSI/N − (γ + μ)I
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where S, I , R represent the number of individuals in the corresponding class: the
population size N = S + I + R is constant, and the equation for R is hence easily
obtained. This formulation uses a single infective class: this corresponds to a distri-
bution of recovery times that is exponential. Instead of a single infective class, it is
possible to use L > 1 infective classes: this has the effect of altering the distribution
of recovery times making it gamma distributed [17], which provides a more realistic
description of recovery from a disease. Seasonal effects, including climate signals or
school opening and closing, are simulated using a time dependent transmission rate.

15.3 A Model for Geographical Spread

The underlying geographical description uses a gridded map of the human geograph-
ical distribution based on the Gridded Population of the World database (GPW) [18]
which provides estimates of resident population with a resolution of 2.5 arc-minutes.
The world is described as a collection of cells, each corresponding to a square in
which an estimate of the resident population is provided. When a cell has a fractional
number of individuals, we assign to the cell a number of individuals corresponding
to the integer part, plus one individual with probability equal to the fractional part.
This means that if four cells have an estimated number of individuals equal to 1.25
each, we assign 1 individual per cell plus one individual in each cell with probability
0.25. This insures that on average the four cells will have 5 individuals.

Individuals are moved among cells according to the fluxes predicted by the radi-
ation model [9]. This model gives the flux of commuters between two cells i and j
with populations mi and nj as:

Tij = Ti
minj

(mi + sij)(mi + nj + sij)

where sij is the number of individuals living in an area of radius rij (the distance
between the i and j cells) with the exclusion of ni and mj, and Ti is the total flux of
commuters leaving location i and is given by:

Ti = mi
Nc

N

with Nc/N being the fraction of the total number of commuters with respect to the
total population. This ratio is the only parameter of the mobility description and can
be tuned to simulate different levels of mobility.

Finally, each cell is described as a well mixed population and a standard epidemi-
ological SIR model is implemented. Its specific implementation depends on whether
we wish to perform individual based or equation based simulations.
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15.3.1 Individual Based Implementation

In the individual based implementation [8], the population of each cell is described
as a set of distinct individuals, each storing information on its epidemiological status,
current location and home location. Each individual is able to move from its home
location to other locations, and the probability of moving depends on the fluxes
between cells. Each individual has a set of preferred locations which is built by
sampling the probability distribution of moving to different cells according to the
fluxes predicted by the radiation model. The sampling procedure also determines the
probability of visit to each preferred location.

Each day, each individual chooses one of his preferred locations and, if this pre-
ferred location is not his home cell, he is moved there. There he participates to the
local dynamics. At the end of the day he is moved back to his home location and a
new day elapses. Given that in each cell individuals leave for other locations and new
individuals arrive from other locations, all individuals ending up in the same location
will participate to the dynamics of the cell for that day. The dynamics follows the
SIR model and is implemented using a Gillespie algorithm for one day [19].

15.3.2 Equation Based Model

The equation based version of the simulation model uses the same geographical
description, with the difference that in each cell we do not generate a set of distinct
individuals. Rather, in each cell we use a compartmental description of the resident
population by storing the number of resident individuals belonging to each epidemi-
ological class. Each individual is supposed to have his own set of preferred locations,
however since in this version the notion of distinct individuals is lost, we build a com-
mon set of preferred location for the individuals of each cell following the observation
that most individuals in a cell will have similar preferred locations. The set is built
as follows: for each cell we produce a set of preferred locations for each individual
following the same procedure implemented for the individual based implementation.
These locations are then merged into a single set with corresponding probability of
visit which is supposed to be valid at the level of the cell. It is this set that will be
used to move fractions of the population belonging to each epidemiological class to
different cells.

Mobility occurs once per day. Movement of individuals is simulated by moving
fractions of the number of individuals among cells according to the probabilities of
visit of the various preferred locations. When individuals move to a new cell they do
not fully mix: the idea here is that the same group of individual will be moved back to
their home cell, therefore in the new cell we keep track of where the various fractions
came from. The result of this mobility phase is that in each cell, the population will be
composed of individuals belonging to different epidemiological classes and coming
from different cells.
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Let us consider a SIR model and a specific cell i. Each individual of the cell belongs
to a specific epidemiological class Ki ∈ {Si, Ii,Ri}. We call pij the probability of an
individual to move to cell j, with pii the probability of remaining in cell i. Thus
the number of individuals Kij in class K moving from cell i to cell j is given by
Kij = Kipij. Thus the number of individuals in class K in cell i during the mobility
phase will be given by the population of the cell that did not move to other cells,
augmented by individuals coming from other cells:

Ni =
∑

j

∑

K∈{S,I,R}
Kji

Using this formulation, individuals of each class will interact with all other individ-
uals within the cell; hence the SIR model takes the form:

Sji = −βSji
Ii
Ni

+ μ(Ni − Sji)

Iji = βSji
Ii
Ni

− (γ + μ)Iji

where Ii = ∑
j Iji. The equations are integrated for one day using a fourth order

Runge-Kutta algorithm, and then individuals are moved and mixed back to their
home locations.

15.4 Parallelization

The parallelization of the simulation program allows unlimited complexity to be
included in the simulation in the form of large geographical areas or complex epi-
demiological modelling. Parallelization of the simulation program is based on the
observation that individuals move mostly to nearby locations, while long-distance
trips are rare: the radiation model reflects this characteristic of the mobility of indi-
viduals. As a result, to parallelize the simulation it is sufficient to find an efficient
partitioning of the gridded map into regions that can be fed to different computing
units. The algorithm that performs this partitioning procedure is based on simulated
annealing [20] but uses a coarsening technique that permits high efficiency [8]. In
practice, the original map is coarsed by merging neighbouring grid cells in groups
of four into larger square grid cells. This coarsening is repeated multiple times until
a coarsed version of the original map consisting only of a few hundred coarsed cells
is obtained. The map is partitioned into a set of connected regions and a simulated
annealing algorithm modifies the position of the frontier between regions in order to
find the optimal partition. Since the map consists only of a few hundred grid cells, the
optimal partition is rapidly found. At this point, the map is decoarsened one level, by
recovering the constituting four grid cells and the final part of a simulated annealing
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is repeated to adapt the optimal solution to the new map resolution. This cycle is
repeated several times, until the original map is recovered.

The constraints under which simulated annealing is performed depend on the
specific implementation: for individual based simulations, an optimal solution that
partitions the map into regions with similar population size and compact shape is
sought. For equation based simulations, the optimal solution must support a similar
number of populated cells (i.e. with non-zero population) and must be compact
in shape. The difference is due to the fact that for equation based simulations we
integrate a set of differential equations only in populated cells, and this integration
does not depend on the number of individuals.

The two algorithms are not optimal because they do not directly minimize trans-
mission between neighbouring regions, however they provide a good approximation
of an optimal partitioning.

15.5 Results

We consider the seasonal forced SIR epidemiological model, with multiple infective
classes (L = 2). Our analysis is limited to individual based simulations: we have
not at the moment exploited the equation based description, except for verification
of the endemic equilibria. Seasonality is included using a term time forcing [10],
β(t) = β0 [1 + β1 Term(t)], where Term(t) takes value +1 during school opening
and −1 during school vacations. Parameters for measles are taken from literature
[11] and shown in Table 15.1.

In Fig. 15.1 we show the global behavior for the British Isles, for different values
of Nc/N . For a mobility ratio of Nc/N = 0.001 the outbreaks are multi-annual, with
an interval of several years between the major peaks. As we increase the fraction
of commuters, the dynamics change to annual cycles for Nc/N = 0.05 and shows
biennial cycles for Nc/N = 0.2. These results point out that the global behavior is
strongly influenced by the mobility of individuals.

At the level of cities, the dynamics is different for high populated and low pop-
ulated areas. For the city of London the mobility of individuals has less impact on
the dynamics as shown in Fig. 15.2 for (a) Nc/N = 0.05 and (b) Nc/N = 0.2: in
both cases we observe biennial cycles. In the case of a non-seasonal simulation (c)
the resulting time series presents a substantially different behaviour from the typical
time series observed for London [10]: this shows that seasonality is a key factor for
the dynamics of high populated areas.

Table 15.1 Parameters for SIR model

β0 γ μ β1

1.175 days−1 1/13 days−1 5.5 × 10−5 days−1 0.25
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Fig. 15.1 Infective incidence for the whole British Isles as a function of time. From top to bottom:
a Nc/N = 0.001, b Nc/N = 0.05 and c Nc/N = 0.2
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Fig. 15.2 Infective incidence as a function of time for the city of London, for different mobility
ratios: a Nc/N = 0.05; b Nc/N = 0.2. c Non-seasonal (β1 = 0) simulation for Nc/N = 0.2

For low populated areas, like in the case of Chester, mobility of individuals influ-
ences the dynamics due to extinction and reinfection as shown in Fig. 15.3: the top
plot (a) corresponding to Nc/N = 0.05 shows outbreaks roughly triennial, while the
periodicity is slightly reduced to 2.5 years for Nc/N = 0.1 (b). The last plot shows
non-seasonal (β1 = 0) simulations for Nc/N = 0.05: these simulations are very sim-
ilar to case (a) in term of behaviour and frequency of outbreaks: this suggests that
seasonality here has essentially no effect.
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Fig. 15.3 Infective incidence as a function of time for the city of Chester: a Nc/N = 0.05; b
Nc/N = 0.1. c Non-seasonal (β1 = 0) simulation for Nc/N = 0.1
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Fig. 15.4 Infective incidence as a function of time for the city of York: a Nc/N = 0.05; b Nc/N =
0.1. c Non-seasonal (β1 = 0) simulation for Nc/N = 0.1

Intermediate sized cities are subjected to the amplification of stochastic fluctua-
tions: in Fig. 15.4 we show the time series for the seasonal case for two values of
mobility: (a) Nc/N = 0.05 and (b) Nc/N = 0.1. Non-seasonal (β1 = 0) time series
are shown in (c) for Nc/N = 0.1: the two time series in (b) and (c) show similar
periodicity. An analysis using power spectra shows that indeed the location of the
stochastic peak is not influenced by the seasonal forcing (Fig. 15.5).
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Fig. 15.5 Power spectrum
averaged over 100
simulations for the time
series of the city of York, for
Nc/N = 0.05
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Fig. 15.6 The interplay
between human mobility and
population size

The results discussed can be summed up into a schematic representation of the
interplay of population size and mobility ratio on the mechanisms involved in the
propagation of measles (Fig. 15.6). For a given mobility level the three mechanisms
can be found at work, with seasonality being the major mechanism in highly popu-
lated locations, and mobility mediated reinfection, after extinction, in low populated
areas. In between these two regimes, stochastic amplification is found for locations
with populations of intermediate sizes. Mobility however changes the importance
of the mechanism by shifting the population sizes at which these mechanisms are
predominant.

15.6 Conclusions

Our computer model describes the geographical distribution of human population
using gridded maps, with each grid element representing a well mixed population:
the disease evolves according to a given epidemiological model. The simulations
can be individual based or equation based: in both cases individuals commute to
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different grid elements where they can eventually be infected or transmit the disease,
thus participating in the long-range transmission of the disease.

We have analyzed individual based simulations of measles spread on the British
Isles in conditions corresponding to those of the pre-vaccination period. Our results
show that the dynamics of the disease is influenced by the intensity of human mobility
both globally and locally. In particular, different mechanisms are at work depending
on the level of human mobility and the local population size.
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Chapter 16
Does Training Lead to the Formation
of Modules in Threshold Networks?

D. Nicolay, A. Roli and T. Carletti

Abstract This paper addresses the question to determine the necessary conditions
for the emergence of modules in the framework of artificial evolution. In particular,
threshold networks are trained as controllers for robots able to perform two different
tasks at the same time. It is shown that modules do not emerge under a wide set of
conditions in our experimental framework. This finding supports the hypothesis that
the emergence of modularity indeed depends upon the algorithm used for artificial
evolution and the characteristics of the tasks.

16.1 Introduction

Modularity is a widespread feature of biological and artificial networks such as
animal brains, protein interactions and robot controllers. This featuremakes networks
more easily evolvable, i.e. capable of rapidly adapting to new environments and
offers computational advantages. Indeed, an intuitive idea is that it is easier and less
costly to rewire functional subunits in modular networks. Despite its advantages,
modularity remains a controversial issue, with disagreement concerning the nature
of themodules that exist aswell as over the reason of their appearance in real networks
[16]. Moreover, there is no consensus concerning the conditions for their emergence.

Whereas most hypotheses assume indirect selection for evolvability, Bullinaria
[3] suggests that the emergence of modularity might depend on different external
factors such as the learning algorithm, the effect of physical constraints and the
tasks to learn. Clune et al. [4] also claimed that the pressure to reduce the cost of
connections between network nodes causes the emergence of modular networks. On
their side, Kashtan and Alon [8] found that switching between several goals leads to
the spontaneous evolution of modular networks.
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In this work, we study the emergence of modularity in the field of evolutionary
robotics. First of all we remark that there is not a uniquely accepted definition ofmod-
ularity; moreover, the existence of many different definitions, each one appropriate
for different levels of abstraction [6, 13], makes this question even more intricated.
We thus decided to analyse our results by considering two kinds of modularity,
namely topological modularity, which is a measure of the density of links inside
modules as compared to links between modules, and functional modularity, which
groups together neurons that have similar dynamic behaviours.

The case under study consists in learning conflicting taskswhere robots controllers
are realised as neural networks. The learning phase is performed using a genetic
algorithm that optimises both network structure and weights. Our starting working
assumption is that only two conditions are needed for the emergence of modularity.
Firstly, at least two tasks should be learnt. Secondly, the learningmust be incremental,
i.e. the modifications in both topology, weights and activation thresholds must be
gradual and the structure of the networks can not be too strongly modified in one
step. Let us also remark that the outcome of the learning process is path dependent
as the learning algorithm is heuristic. Because the results obtained from the first
assumption were unsatisfactory we decided to improve our working assumption by
considering: switching between the tasks learning, cost of the connections and cost
of the nodes, and thus to study their impact on the networks evolution.

Because we were not able to detect any kind of modules in all the performed
experiments, our findings support the hypothesis that the emergence of modularity
is not exclusively conditioned by the learning conditions but also depends upon the
algorithm used for artificial evolution and the characteristics of the tasks. Further-
more, we conjecture that the computational nature of the tasks, namely combinatorial
or sequential—i.e. requiring memory to be accomplished—may also play a role in
the emergence of modularity.

The paper is organised as follows. In Sect. 16.2, we present our experimental
settings, namely our model of networks, the tasks the robot has to perform and our
learning algorithm. Experiments and results are described in Sect. 16.3. Section16.4
concludes the contribution with a summary of our results.

16.2 Model and Tasks Description

The abstract application we focussed on is based on the experimental framework
introduced by Beaumont in [1]. Virtual robots are trained to achieve two different
tasks in a virtual arena. This arena is a discretised grid with a 2 dimensional torus
topology on which robots are allowed to move into any neighbouring cell at distance
1 at each displacement. Assuming the arena possesses one global maximum, the
aim of the first task, task A in the following, is to reach and to stay on this global
maximum. The second task, task B, consists inmoving incessantly by avoiding zones
where robots lose energy, called “dangerous zones”. Let us observe that such tasks
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are conflicting, because the first task will imply the robot to reach the peak and stay
there, while the second would rather make the robot to wander around the arena.

The robots we considered have 17 sensors and 4 motors. The 9 first sensors check
the local slope, that is the heights of the cell on which the robot is located and the
cells around it. The 8 others are used to detect the presence of “dangerous zones” on
the cells surrounding the robots. The 4 motors control the movements of robots, i.e.
moving to the north-south-east and west and their combinations.

We used neural networks [11, 12] as robot controllers. They are made of 43
nodes: 17 inputs, 4 outputs and 22 hidden neurons. This number is large enough to
let sufficient possibilities of connections to achieve the tasks, but it is still low to use
reasonably level of CPU resources. The topology of these networks is completely
unconstrained, except for self-loops that are prohibited. The weights and thresholds
are real values between−1 and 1. The states of the neurons are binary and the updates
are performed following the perceptron rule:

∀ j ∈ {1, . . . , N } : xt+1
j =

⎧
⎪⎨

⎪⎩
1 if

kinj∑
i=1

wt
j i x

t
i − θ ≥ 0

0 otherwise

where kinj is the number of incoming links in the jth neuron, θ the threshold of the
neuron, and wt

j i is the weight, at time t , of the synapse linking i to j .
The robot controllers, i.e., the neural networks, are trained to achieve both tasks.

This training consists in finding the suitable topology and the appropriate weights
and thresholds to obtain neural networks responsible for good robot’s behaviour.
We resort to genetic algorithm [5, 7], for short GA in the following, to perform
this optimisation heuristically. Let us observe that we can not use here a standard
backpropagation algorithm, looking at the computed output and the required one,
to fix the weights to minimise such difference. In fact the behaviour we wish to
optimise depends on the full path followed by the robot, so act on the weights aimed
at minimising the right solution—that we yet don’t know—with the followed path
would result in an optimisation problem per se. This GA is real-valued, as genotypes
encode weights and thresholds of the networks. The selection is performed by a
roulette wheel selection. The operators are the classical 1-point crossover and 1-
inversion mutation. Their respective rates are 0.9 and 0.005, while the population
size is 100 and the maximum number of generations is 50,000. To ensure the legacy
of best individuals, the population of parents and offsprings are compared at each
generation before keeping the best individuals among both populations. New random
individuals (one-tenth of the population size) are also introduced at each generation
by replacing worst individuals to avoid premature convergence.

Further details on the application and the model have already been presented in
previous works [9, 10].
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16.3 Experiments and Results

At the first stage of the experimental set up, we designed experiments that respect
the two conditions that we assumed to be necessary for the emergence of modularity.
These conditions are to learnmore than one task and tomodify the networks gradually
during the training. As our optimisation process is stochastic, we performed 10
independent replicas of each experiment and in the rest of the paper we report results
in terms of such averages.

For each experiment, we analysed two kinds of modularity. The first one is topo-
logical modularity, a measure of the density of links inside modules as compared to
links between modules. We use the Louvain method [2] to study this modularity. The
second one is functional modularity, which groups together neurons that have similar
dynamic behaviours. The functional modularity is analysed by using the dynamical
cluster index [14, 15], which makes it possible to identify subsets of variables that
are integrated among themselves and segregated with the rest of the system. The
analysis is made by collecting the multidimensional time series composed of net-
work’s variables values during the execution of the task. For details on this method,
we refer the interested reader to [15].

16.3.1 Initial Conditions

We originally considered three ways to train the robot. First, it is trained on the two
tasks at the same time (i). In this case, the fitness is obtained by averaging the fitness
of each task using equal weights. Second, the robot is trained first on one task and
then on both (ii). The GA is first applied with one fitness function—the one related
to the task under scrutiny—and then once again with the weighted sum of the two.
The third possibility consists in training two smaller networks so as to accomplish
each task separately, then combine the networks by adding a small extra network and
train the new larger network (called juxtaposition in the following), using as fitness
once again the weighted sum of the fitness for each task, as in case (i). In terms of
robot’s performance, these three learning ways are equivalent with final fitness value
around 0.75 (observe that we work with a normalised fitness in [0, 1]).

To study the topologicalmodularity in case (i) and (ii), we analysed themodularity
and the number of modules got by the Louvain method when we kept strong enough
connections, i.e. connections whose absolute values of the weights are superior to a
fixed threshold value. The method thus returns a modularity value in [0, 1], where
0 means that there are no modules and 1 that there are no interactions between
modules. We compared the results of our evolved networks with those of random
networks used as null hypothesis. These random networks have the same features of
our networks, i.e. the same number of nodes, the same density of connections and
the same distribution of weights. Figure16.1 presents this comparison in case (i) for
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Fig. 16.1 Comparison of the topological modularity between evolved networks in case (i) and
random networks. Blue (on line) circles represent the evolved networks, while red (on line) squares
represent the random networks used as comparison. Left panel Modularity. Right panel Number of
modules. In both cases, the modularity is computed on networks whose weights have been set equal
to 0 if their absolute value is below a given threshold. Results are similar for evolved and random
networks, which leads to the conclusion that the evolved networks are not topologically modular

different threshold values.We can observe that evolved and random networks behave
similarly and hence we can conclude that the evolved networks are not modular. We
obtained analogous results in case (ii) (data not shown).

The case juxtaposition is analysed in a different way. Indeed, initial networks are
modular as they consist in the combination of two smaller networks, each trained to
accomplish one task, and a small extra network. Thus, we decided to observe the evo-
lution of topological modularity as a function of the increase of robot’s performance.
The evolution of trained networks is presented in Fig. 16.2 for the modularity (left
panel) and for the number of modules (right panel). Results are also compared with
those of random networks with the same features as previously. We can notice that
the results obtained for evolved and random networks are significantly different. We
also found that, in 9 simulations out of 10, the number of modules doesn’t change
during the optimisation (data not shown). Each module is made by one initial small
network (able to perform a given task), while the nodes of the extra small network
are shared between the two main modules. The size of these modules is sometimes
slightly modified when one node of the extra network jumps from one module to the
other. Although the number of modules is almost constant, we can observe a strong
decrease of modularity along the optimisation process.

Following these results, we concluded that none of the training schemes leads to
topologically modular networks. In the case juxtaposition, it even seems to make
disappear the initial modularity, as long as the modularity score is considered.

Regarding functional modularity, no clear modules are found in all the analysed
cases. The search for functional modules returned either a subset composed of all
but a few nodes—i.e. almost all nodes are involved in the processing—or few small
subsets with no statistical significance. For this reason we decided not to show data.
When the robot is trained according to scheme (ii), i.e. sequential learning, naive
modules form in the first phase of the training, as only one part of the sensors is stim-
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Fig. 16.2 Evolution of the topological modularity as a function of the fitness increase for the
evolved networks in the case juxtaposition and for random networks. Blue circles represent the
evolved networks while red squares represent the random networks. Left panel Modularity. Right
panel Number of modules. We clearly observe that modularity decreases along the training process
even if the number of modules is almost steady

ulated. Nevertheless, thesemodules disappear when the robot is subsequently trained
to accomplish both the tasks. Furthermore, the same results as for the topological
analysis are observed in the case juxtaposition, showing that the initial modules tend
to be blended together in the final training phase.

The results returned by the analysis of functional modularity strengthen those on
the topology, as they show that not only the networks have no apparent modules, but
that they do not even show clusters of nodes which work in coordinated way and
corresponding to either of the two tasks.

16.3.2 Improving the Experimental Setting

Results presented in the previous section do not support the presence of modules. To
check if this is due to our main assumptions, we consider additional conditions that
could be important for their emergence according to the literature. These conditions
are the alternance between different goals, the penalty on the number of connections
and the decrease of the number of hidden nodes.

Switching Between Goals

Wefirst followed the suggestionofKashtan andAlon that switchingbetweendifferent
goals is important for the emergence of modules. We considered a fourth training
scheme (iv) inwhich the target task is alternated every 100 generations. In preliminary
tests, we also considered to alternate every 20 or 50 generations but the simulations
with 100 gave us the best robot performance. Even if one particular task is trained
in each epoch, all sensors are stimulated. Otherwise, robots can accomplish both
tasks but not simultaneously. The results obtained by the simulations of this fourth
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schemeare similar to those of previous schemes. Indeed, the robot performance is also
around 0.75 and the analysis of the topological modularity leads us to similar results
to those presented in Fig. 16.1. The same also holds true for functional modularity,
with analogous results to the previous cases.

Cost of Connections

Bullinaria [3] as well as Clune et al. [4] claimed that the penalty on the number of
connections is essential for the formation of modules. So, we added this penalty for
each of the four training schemes considered previously. The penalty contributes to
3/10 of the average fitness in each experiment. In case (i), the weight of each task is
reduced to 0.35 instead of 0.5. For the second scheme, robot is trained first on one
task with the penalty on the number of connections. Then robot is trained on both
tasks with the penalty as described for scheme (i). For the juxtaposition scheme, the
penalty is only added for the last phase of learning because if the penalty is also used
while training the two smaller networks, the resulting fitness is too low (0.35 which
is smaller than the half fitness of other experiments). For the case (iv), the penalty
on the number of connections is considered during the training of the two alternated
task. Let us observe that the fitness described in this paragraph are only used for the
training phase. Results are then analysed using robot’s performance corresponding to
the fitness of the two tasks summed using equal weights, in this way we can compare
them with the former ones.

Whenwe analysed topological modularity, we obtained similar results for scheme
(i), scheme (ii) if the learning procedure starts with task B (avoid dangerous zones)
and scheme (iv). Indeed, in these cases, the fitness is nearly the same than without
the penalty on the number of connections. Moreover, the modularity is low (close to
0.1) while random networks with the same density of links and the same distribution
of weights have comparable values ∼0.15. The difference appears in the number
of modules that is slightly higher in evolved networks as shown in the left panel of
Fig. 16.3, which shows the distribution of modules according to their size. Indeed,
in trained networks, some modules consist of isolated nodes, i.e. nodes without any
link with the rest of the network. Let us observe that this never happens in random
networks.

As the cost on the number of connections did not lead to the emergence ofmodules,
we might suspect that the penalty that we had fixed was not strong enough to involve
modularity. Nevertheless, we obtained similar results with a larger penalty of 0.5,
which is a quite high value representing half of the fitness during the optimisation
process.

If we consider scheme (ii) when the first trained task is task A (reach the peak),
the value of the fitness decreases slightly with an average value of 0.67. Moreover
if we compare the modularity between these networks and random networks with
the same features by keeping connections whose absolute values of weights are
larger than a given threshold value (see Fig. 16.4), we can observe a significantly
different behaviour. The value of the topological modularity is lower for evolved
networks while their number of modules is higher. If we consider evolved networks
without eliminating any connections (threshold of 0), we observe that the number
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Fig. 16.3 Comparison of the distribution of modules according to their size between evolved
networks with penalty and random networks with the same density of links and distribution of
weights. Blue bars represent the results for evolved networks while green bars represent those for
the random networks. Left panel Scheme (i). Right panel Scheme (ii) when training starts with task
A. The number of isolated nodes is significantly higher in evolved networks

Fig. 16.4 Comparison of topological modularity between evolved networks in case (ii), when the
training starts with task A and random networks with the same features. Blue (on line) circles
represent the evolved networks and red (on line) squares the random networks used as comparison.
Left panel Modularity. Right panel Number of modules. Evolved networks have a slower rate of
modularity than random networks but they contain more modules

of modules is ∼21, out of which ∼17 are isolated nodes for evolved networks, for
random networks we got respectively ∼15 and ∼7. This high frequency of isolated
nodes is also clearly apparent in the right panel of Fig. 16.3. We can explain such
results by the simplicity of task A, which indeed requires few connections to be
accomplished. When this task is trained alone with the penalty on the number of
connections, we got networks with a high level of modularity and a high number of
modules, most of which are isolated nodes, comprising non-stimulated inputs. As the
penalty cost is always active in the second phase of learning, useless hidden nodes
remain isolated, which leads to a higher modularity than for previously analysed
training schemes.
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Fig. 16.5 Evolution of the topological modularity as a function of the fitness increase in the case
juxtaposition with penalty. Blue circles represent the evolved networks while red squares represent
the random networks. Left panel Modularity. Right panel Number of modules. The decrease of
modularity is less important than in the case without penalty. Contrarily, the number of modules
rises with the appearance of isolated nodes

Once we eliminated these isolated nodes, the analysis of evolved networks gives
us similar results to those of our initial assumption.

In the case juxtaposition, the mean fitness of simulations is 0.44, which is con-
siderably smaller than for other experiments. Figure16.5 shows the evolution of
modularity according to the increase in robot’s performance. The decrease of mod-
ularity seems to be less important than without the penalty but the final fitness is
lower. The difference that exists between the modularity of evolved networks and
random networks significantly decreases during the learning process.

Following this experiment, we conclude that the penalty on the number of links
allows to keep a level of modularity close to the initial one. Indeed, the decline in the
number of connections leads to the emergence of isolated nodes that increases the
modularity but to the detriment of robot’s performance. As for functional modularity,
no significant groups of nodes are identified with coordinated behaviour.

Number of Hidden Nodes

Another argument by Bullinaria [3] is that the number of hidden nodes plays a role
in the emergence of modules. Indeed, modularity has more possibilities to appear
if the number of hidden nodes is small. Thus, our last experimental settings con-
sisted in decreasing the number of hidden nodes and testing if this can lead to the
formation of modules in evolved networks. This case can be considered as a very
strong implementation of the previous analysis where, instead of removing one link
we remove several links, i.e. all the ones connected to a given node. With this aim,
we only considered the first training scheme (i).

We checked the dependence on the number of hidden nodes on robot performance
and modularity. One would expect the performance to be very poor for very small
number of hidden nodes—i.e. not enough to perform the required computation—then
the performance should increase as long as the number of hidden nodes increases
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Fig. 16.6 Evolution of robot’s performance and modularity according to the number of hidden
nodes. Left panel Modularity compared to the one of random networks with the same features.
Modularity decreases when the number of hidden nodes rises. Right panel Robot’s performance on
the training set and on three validation sets. Blue (on line) circles represent the performance on the
training set while red squares and green diamonds show respectively the performance on an arena
whose the shape of the surface and the zones where robots lose energy have been modified. The
magenta triangles represent the fitness when both modifications are performed. We can not observe
significant differences of performance

up to some number, beyond which no improvement is found. The robot performance
is tested on the training set and on three different validation sets, i.e. scenarios robots
never seen before. In the first two cases, we modify respectively the location of loss
of energy zones and the shape of the surface to climb (position of the peak and slope
of the surface). The last third case takes into account both modifications.

Results are presented in Fig. 16.6. The left and right panel respectively present
the modularity and the robot performance according to the number of hidden nodes.
Modularity decreases when the number of hidden nodes increases and no functional
modules have been detected. Regarding robot performance, we cannot observe sig-
nificant decrease when the number of hidden nodes is small. Even more, the perfor-
mance seems to be better in the validation phase for networks without any hidden
node. This result may be explained by the fact that memory is not needed to solve
the problem and thus hidden nodes, responsible for information storage, are not rel-
evant to accomplish the task. Observations are the same if we add the penality on
the number of connections to the learning process.

In conclusion, also in this experiment no topological modularity is observed.
Likewise, the analysis of functional modularity does not support the emergence of
modules in these smaller networks.

16.4 Conclusion

Modularity is a major factor of evolvability in biological and artificial networks.
Nevertheless, it remains a controversial issue with disagreement over the sufficient
conditions for the appearance of modules. This paper analyses the emergence of
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modularity in the context of evolutionary robotics by taking into account some of
the most frequently used conditions in the literature. With this aim, two kinds of
modularity are considered, namely the topological modularity and the functional
modularity.

We assume that robot controllers, made of neural networks, are trained to fulfil
two conflicting tasks. The learning process is a GA that modifies both structure and
weights of the controllers. Our initial working assumption is that the emergence of
modularity only requires two conditions, namely the learning of at least two tasks
and an incremental optimisation process. Facedwith the unsatisfying results obtained
by this first assumption, we considered supplementary conditions such as switching
between the tasks learning, penalising the cost of connections and decreasing the
number of hidden nodes. However, contrary to results obtained in previous studies,
we can not observe the emergence of topological and functional modularity whatever
the conditions that we consider.

Even more, under our initial assumptions, it seems that the learning phase leads
to the disappearance of the initial modules. Our results suggest that tasks switching
doesn’t modify our former ones. When we introduce a penalisation to the density of
connections, the level of modularity is higher, but associated to the appearance of
isolated nodes in the evolved networks. The reduction of the number of hidden nodes
doesn’t lead to the emergence of modularity but brings us interesting results. Indeed,
we can observe that hidden nodes do not seem to be needed to learn the tasks.

This fact suggests us a possible explanation of the absence of modularity and even
a reduction of modularity as learning proceeds. In fact, neural networks composed of
only input and output nodes cannot bemodular. Indeed, outputs are shared among the
tasks and not splitted as in the experiments of Clune. Thus, modular networks would
imply that some inputs are disconnected from some outputs and this assumption
seems hard to be satisfied because input signals are not correlated. Therefore, once
we initialise the neural network with hidden nodes and links, we are adding an
“unnecessary” structure resulting in somedetectablemodularity,whichwill be slowly
removed by the learning phase (creating isolated nodes or making all the nodes to
work together) and so finally decrease the network modularity. As a consequence, a
possible clue to have modular structures to emerge because of a learning phase with
(at least) two tasks is that they require memory to be accomplished.

Even if it provides more questions than answers, the conclusion of this study is
promising as it extends the study of the emergence of modularity to another context.
Modularity has already been studied in the field of evolutionary robotics but our
research differs from previous studies in the choice of the learning algorithm and
of the application. Indeed, we trained both structure and weights by a GA whereas
weights are usually trained by a backpropagation algorithm. Likewise, our conflicting
tasks are computationally more complex than tasks generally considered in other
studies (classification tasks or what-where tasks). The absence of modularity in our
case strengthens the claim of Bullinaria [3] that the emergence of modularity might
depend on external factors such as the learning algorithm and the tasks to learn.
Further work will address this issue in more depth.
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Chapter 17
Understanding Financial News
with Multi-layer Network Analysis

Borut Sluban, Jasmina Smailović and Igor Mozetič

Abstract What is in the news? We address this question by constructing and com-
paring multi-layer networks from different sources. The layers consist of the same
nodes (hence multiplex networks), but links are constructed from textual news on
one hand, and empirical data on the other hand. Nodes represent entities of inter-
est, recognized in the news. From the news, links are extracted from significant
co-occurrences of entities, and from strong positive and negative sentiment associ-
ated with the co-occurrences. In a case study, the observed entities are 50 countries,
extracted frommore than 1.3million financial news acquired over a period of 2years.
The empirical network layers are constructed from the geographical proximity, the
trade connections, and from correlations between financial indicators of the same
countries. Different network comparison metrics are used to explore the similar-
ity between the news and the empirical networks. We examine the overlap of the
most important links in the constructed networks, and compare their structural sim-
ilarity by node centrality and main k-cores. The comparative analysis reveals that
the co-occurrences of countries in the news most closely match their geographical
proximity, while positive sentiment links most closely match the trade connections
between the countries. Correlations between financial indicators have the lowest
similarity to financial news.

17.1 Introduction

Methods developed in the fields of mathematics, computer science and statistical
physics have contributed to the emergence of the theory of complex networks. The
theory mathematically characterizes systems in the form of entities (nodes) con-
nected by some interactions (links) [2]. The analyses of complex networks strongly
influenced and advanced research in social media, biology, and economics [4, 10].
A special type of networks extracted from the data are co-occurrence networks, used
in diverse fields, such as linguistics [7], bioinformatics [6, 18, 22], ecology [8],
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Fig. 17.1 Comparison of multiplex networks representing different types of relations between
the same entities: significant co-occurrences and sentiment extracted from news (at left), versus
geographical proximity, high trade, and high correlation of financial indicators (at right, top to
bottom)

scientometry [12, 19], and socio-technological networks [5, 9, 23]. Co-occurrence
networks are loosely defined as networks in which nodes represent some entities
(for example persons, companies, genes, etc.), and links represent the fact that these
entities exist together in some collection (for example database, article, etc.). For
textual sources, it is of high importance to extract the links between the entities that
represent a real relationship and are not created by chance [15].

In this paper we investigate the relation between the networks extracted from
online texts and the networks drawn from empirical data. Both networks, the news
network and the empirical network, are multi-layer, but with the same nodes, hence
multiplex networks. In our case study, we analyze 2years of financial news from 170
major English-language web sites. The nodes in all network layers are 50 countries
recognized in the news. The news network has a co-occurrence layer and the senti-
ment (positive or negative) layer (associatedwith the co-occurrence links between the
countries). The empirical network has three layers: a geo layer (corresponds to geo-
graphical proximity between the countries), a trade layer (volume of trade between
the countries), and a financial layer (correlations between theCredit Default Swaps of
the countries). See Fig. 17.1. Most of the layers, except geo and trade, vary in time.
For the period of 2years, we constructed monthly snapshots of the time-varying
layers.

The goal of this research is to shed some light on the contents of online news.
The research question we attempt to answer is: What are the similarities between the
news and the empirical network layers? The results indicate that the co-occurrences
of countries in financial newsmost closelymatch their geographical proximity.When
we take the news sentiment into account, the positive sentiment layer is most similar
to the trade layer. Somehow surprisingly for financial news, the financial layer of the
empirical network has the lowest similarity to any news layer.

The chapter is organized as follows. In Sect. 17.2 we describe entity recognition
in news, and the construction of the news network layers in terms of co-occurrences,
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and by sentiment analysis. The empirical network layers are constructed from the
geographical proximity, the trade volumes, and the correlations between financial
indicators.We then propose several metrics to compare layers of multiplex networks.
In Sect. 17.3, we first describe the acquisition and processing of textual data used in
our case study. We then present the most interesting results of comparison between
the news and empirical network layers. We conclude in Sect. 17.4.

17.2 Methods

In general, when processing financial news, one first has to identify different entities,
such as financial institutions, countries, or persons. Then one can construct layers of
the news network, consisting of significant entity co-occurrences and their associated
sentiment. We compare the news network to the empirical network, in order to
discover connections between entity relations in different layers of both networks.

17.2.1 Entity Recognition

Financial news are about events related to companies, stocks, countries or persons,
whichwe call financial entities. The process of identifying financial entities in textual
documents requires three components: an ontology of financial entities and terms,
gazetteers of the possible appearances of entities in the text, and a semantic annotation
procedure that finds and labels the entities. We describe the entity identification
approach as implemented in our NewsStream portal [11].1

The ontology we use for information extraction constitutes of three main cate-
gories: financial entities, financial terms, and geographical entities. The ontology
also includes a dictionary of positive and negative words for dictionary-based sen-
timent analysis.2 Most of the ontology is automatically induced from various data
sources. The geographical entities (continents, countries, cities, organizations) were
extracted from GeoNames.3 The IDMS database and MSN Money4 were used to
organize stock indices and link them to the companies that issue these stocks. The
hierarchy of financial terms related to the financial crisis was developed in collabo-
ration with experts in economics. It includes the main European politicians, Central
banks and other financial institutions, rating agencies, fiscal and monetary policy
terms.

1http://newsstream.ijs.si/.
2Harvard-IV-4 sentiment dictionary [20, 21].
3GeoNames: http://www.geonames.org/.
4MSN Money: http://money.msn.com/.

http://newsstream.ijs.si/
http://www.geonames.org/
http://money.msn.com/
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Each entity in the ontology has associated gazetteers, which are sets of rules that
specify the lexicographic information about the possible appearances of entities in
text. For example, ‘The United States of America’ can appear in text as ‘USA’, ‘US’,
‘the United States’, etc. The rules include capitalization, lemmatization, POS tag
constraints, must-contain constraints (i.e., another gazetteer must be detected in the
document or in the sentence) and followed-by constraints.

Finally, the so-called semantic annotation procedure annotates the entities of inter-
est. It traverses each document and searches for entities from the financial ontology.
The gazetteers of the entities in the ontology provide information required for the
disambiguation of different appearances of the observed entities, resulting in the
correct uniform annotation of entities.

17.2.2 Network Construction

For a particular set of entities E = {e1, . . . , en} we construct networks that are
obtained from different data sources. We distinguish two networks: News network—
constructed from entities and relations appearing in financial news, and Empirical
network—with the same entities, but linked by relations extracted from other infor-
mation sources or databases. Each network consists of several layers, and each layer
is constructed for a particular time period, resulting in a series of snapshots for each
network.

17.2.2.1 News Network

Financial entities identified in a single news document can be connected with various
types of relations. One of the simplest is their common appearance in the document,
referred to as the co-occurrence of entities. Hence, for a selected set of entities E =
{e1, . . . , en} we construct a layer of entity co-occurrences within a particular time
frame—theCo-occurrence layer. Each link in such a layer represents a significant co-
occurrence relation between two entities.Weuse the Significance algorithmproposed
in [15] to assess whether the co-occurrence of two entities is significant.

The number of all documents with at least two entities from E is N . Let A and
B be two entities that occurred with at least one other entity from E in NA and
NB documents, respectively. Let NAB denote the number of actual A and B co-
occurrences. Then the expected number of co-occurrences is given by

E(NAB) = NANB

N
. (17.1)

According to [15], the standard deviation is

σAB =
√

NANB

N

(
N 2 − N (NA + NB) + NANB

N (N − 1)

)
(17.2)
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and hence the standard significance score of the co-occurrence NAB from the data is

ZAB = NAB − E(NAB)

σAB
. (17.3)

For a selected threshold Z0, one can distinguish significant ZAB > Z0 and non-
significant ZAB < Z0 co-occurrence relations between the two entities.

A set of entities can be linked also by other types of relations, e.g., based on
expressed sentiment in documents which discuss the entities. We construct a Senti-
ment layer of the news network by detecting sentiment orientation and strength of
financial news articles which mention pairs of entities in a specific time period. A
sentiment link between two entities in the layer exists if its sentiment value is higher
than a predefined threshold.

In order to calculate sentiment between entities, we use the sentiment analysis
implementation of theNewsStreamportal. The implementation is dictionary-based,
meaning that sentiment polarity of a document is based on the count of predefined
sentiment terms (positive and negative) in the document. The implementation relies
on the Harvard-IV-4 sentiment dictionary [20, 21]. For each document it calculates
the overall sentiment polarity by applying the following formula:

polari t y = pos − neg

pos + neg
(17.4)

where pos is the number of positive and neg is the number of negative dictionary
terms found in the document.

Using the NewsStream portal we obtain the sentiment results calculated on the
level of a document and aggregated by summing the results for each day. Moreover,
since we are interested in making a snapshot of a network over a longer time period
of T days, we further aggregate the obtained results for T days. Based on the analysis
of the sentiment distribution, we determine the thresholds p0 and n0 for the creation
of positive and negative sentiment links.

17.2.2.2 Empirical Network

We observe the same set of entities E as in the ‘News network’, but the information
regarding their mutual interactions is not acquired from the news. In particular, we
explore three data sources to construct the empirical network layers: the geographical
proximity of the financial entities, correlations between their financial indicators, and
their direct interaction in terms of mutual trade.We use these layers as the underlying
empirical representation of the complex relations between financial entities, from
which we try to understand the dynamics of entity appearance in financial news.

The simplest among the ‘empirical network’ layers is the geographical proxim-
ity, or short the Geo layer. Each financial entity has a predominant geographical
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location, place of residence, headquarters address, area, country, continent of trade
or market influence. A financial entity is assigned a geographical entity and hence
a link between two entities is established if a certain proximity measures is above
a given geographically feasible threshold. Examples of proximity measures include
geographical distance d(A, B), inverse distance 1

d(A,B) , or inverse squared distance
1

d(A,B)2 .

Constructing a layer from trade interaction data is also fairly straightforward.
Consider the interaction between financial entities as the amount of mutual trade.
Each entity ei ∈ E engages in c(ei ) of trade with all other entities, therefore

c(ei ) =
∑

e j∈E\{ei }
c(ei , e j ) (17.5)

where c(ei , e j ) is how much ei trades to e j . Notice the implied direction of the
trade. In our experiment we use an undirected Trade layer, and therefore define
t (ei , e j ) = c(ei , e j ) + c(e j , ei ) as the cumulative trade exchange between ei and e j .
A trade link between two entities ei and e j is established if any of the relative amounts
t (ei ,e j )
c(ei )

or t (ei ,e j )
c(e j )

is above a given threshold t0.

Important financial entities have also an associated time-varying financial indica-
tor (e.g., price, trade volume, confidence index), which is represented as a time series.
A basic approach to measure similar trends in the movement of financial indicators
is the Pearson correlation [14] between time series si and s j of the entities ei and e j ,
over a period of K time points:

ρi, j =
∑K

k=1 (si,k − s̄i )(s j,k − s̄ j )√∑K
k=1 (si,k − s̄i )2

∑K
k=1 (s j,k − s̄ j )2

, (17.6)

where s̄i and s̄ j stand for the average (arithmetic mean) value of the respective
series. A Financial layer can hence be constructed using a threshold value c0, which
determineswhether the indicator time-series of two entities are sufficiently correlated
(ρi, j > c0) to form a link between them.

17.2.3 Network Comparison

We described the construction of the two-layer News network and the three-layer
Empirical network. Both networks share the same set of nodes, i.e., entities E =
{e1, . . . en}, which are in each layer connected by a different type of relation. As a
whole, we are considering a multi-layer network of the same nodes, also called a
multiplex network.
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We try to understand the ‘newsnetwork’ by comparison to the ‘empirical network’.
In the ‘empirical network’ we construct a link between two entities when there is
a ‘strong’ empirical relation between the entities. Although all layers contain the
same entities, in the comparison isolated nodes are not considered. The layers that
we compare are constructed from the sets of strongest links for a particular relation
type.

The most straightforward comparison of the network layers L = {L1, . . . , Lm} is
done by measuring the size of link overlap between the layers. Let l(Li ) and l(L j )

be the sets of links in layers Li and L j , where a link is defined as a pair of nodes it
connects, e.g., (eu, ev), then

o(Li , L j ) = |l(Li ) ∩ l(L j )|
|l(L j )| (17.7)

is the size of their link overlap relative to layer L j .
Considering for each layer not only the links that indicate the strength of a rela-

tion above a certain threshold, but also their weight–strength of the relation, then a
comparison of top strongest links in each layer can be performed. Let sl(Li ) and
sl(L j ) be lists of links from layers Li and L j , ordered descending by their weights,
and let slk(L) denote the list of first k element of list sl(L), then precision-at-k [16]
is defined as:

rk(Li , L j ) = |slk(Li ) ∩ slk(L j )|
k

. (17.8)

If for all pairs of layers Li and L j , i, j ∈ {1, . . . ,m}, the same k is selected, then a
meta-network can be constructed with nodes representing layers Li , i ∈ {1, . . . ,m}
and links representing the relation between layers, where rk(Li , L j ) values are
weights of the links, indicating the magnitude of the relationship.

Other comparisons of the network layers induced on the ‘strongest’ links for a
particular relation type, are based on the most important nodes in each layer. In
one approach, we measure the importance of nodes in terms of their centrality, as
denoted by the eigenvector centrality measure [3]. Let A be the adjacency matrix
of nodes e1, . . . , en in the network, then the components of the eigenvector of the
largest eigenvalue λ solving the equation Ax = λx hold the centrality values of
the corresponding nodes. Nodes connected to better-connected nodes get higher
centrality values. This measure is used to compare which are the most central nodes
between pairs of layers.

Another approach to identify the most important nodes of a network is the k-core
decomposition [17]. This is an iterative process pruning all nodes with degree smaller
than k, and the remaining part of the network which holds only nodes with degree
greater or equal to k is called the k-core. The core with the largest k is called the
main core of the network. Comparing the main cores of different network layers will
be used to assess the similarity between layers.
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17.3 Experiments

Financial news cover a wide range of topics, they include numerous entities of inter-
est, and are influenced by different factors. We describe the data we use to show the
presence and interaction of entities in the news, and the empirical data to model the
real-world context that may shape the news. Next, we present the comparison results
between the network layers.

17.3.1 Data

We acquire news articles and blogs from 2,503 RSS feeds from 170 English language
web sites (14,567 domains), covering the majority of web news in English and focus-
ing on financial news and blog sources.We collect data from themain news providers
and aggregators (like yahoo.com, dailymail.co.uk, nytimes.com, bbc.co.uk,wsj.com)
and also from the main financial blogs (like zerohedge.com). The fifty most produc-
tive web sites account for 80% of the collected documents.

The documents used in our experiment cover the period fromNovember 1st, 2011
until December 31st 2013. A total of 18 million documents were filtered for strictly
financial news, resulting in 1.3 million documents. From these documents we extract
relevant entities, and construct the ‘news network’ layers in monthly time windows.
For our analyses, we select 50 countries as entities of interest. Snapshots of the
resulting co-occurrence layer, positive sentiment layer, and negative sentiment layer
are shown in Figs. 17.2, 17.3 and 17.4, respectively.

Fig. 17.2 Snapshot of the country co-occurrence network layer (October 2012)
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Fig. 17.3 Positive sentiment network layer (Jan 2012)

On the other hand, the construction of the empirical network, which should reflect
the real-world context of the news, was done using data from different sources. For
the ‘Geo layer’ we simply used the is-a-neighbour-of relation to link the selected
countries. To the links representing common terrestrial borders we added also a few
links between countries that are considered relatively adjacent in the local geograph-
ical context, such as Australia and New Zealand, South Korea and Japan, or Italy
and Malta.

Trading relations between the countries were obtained from the UNCTAD web-
site,5 the United Nations statistics data center, providing yearly aggregations of trade
data. Our ‘Trade layer’ was constructed from trade links that present relatively impor-
tant trade relations (greater that 10%, i.e. t0 = 0.1) for at least one of the connected
countries.

In our experiments we consider 50 countries that issue sovereign bonds, and
which are insured by Credit Default Swaps (CDS), i.e., an insurance for the case
when the bond issuer ‘defaults’ and is unable to repay the debt. To construct the
‘financial layer’ we used the time series of the countries’ CDS prices, which are

5http://unctadstat.unctad.org.

http://unctadstat.unctad.org
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Fig. 17.4 Negative sentiment network layer (May 2012)

often considered a good proxy for the risk of default of a financial institution issuing
bonds [1, 13]. We create links between countries whose correlation between their
CDS time series is above 0.9 (c0 = 0.9). In order to ensure enough data for reliable
correlation results, we use a 3-months time window for each snapshot, which is
assigned to the last month (e.g., Nov-Dec-Jan for the ‘Jan’ snapshot). A snapshot of
the ‘Financial/CDS layer’ and the ‘Trade layer’ are presented in Figs. 17.5 and 17.6,
whereas the presentation of the ‘Geo layer’ is well known and therefore omitted.

17.3.2 Results

The results are presented for a multiplex network with 50 country nodes for the
time period of 2years in monthly steps. The Geo layer is static, as well as the Trade
layer—we used the yearly aggregated trade data from 2012 also for 2013.

First, we present the analysis of overlapping links between the network lay-
ers LCO , LGeo, LTr , and LCDS . We are interested in the number of links from the
‘empirical network’ that appear in the financial news as country co-occurrences over
time. The relative overlaps o(LCO , L∗) for L∗ ∈ {LGeo, LTr, LCDS} are presented
in Fig. 17.7. We see that most of the Geo layer links coincide with the country co-
occurrences in the news, whereas on average less than half of the links between the
countries in the Trade and CDS layers also appear in the co-occurrence layer.
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Fig. 17.5 Trade layer (2012–2013)

Fig. 17.6 Financial/CDS layer (October 2012)
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Fig. 17.7 Relative size of the empirical layer links present in the co-occurrence layer

Fig. 17.8 Relative size of the empirical layers’ links present in the positive sentiment layer

Next, we investigate how is the sentiment associated with the country co-
occurrences related to the empirical network. Using the sentiment analysis approach
presented in Sect. 17.2.2.1 we find that there is a strong bias towards positive senti-
ment in the financial news. We set thresholds n0 and p0 to two standard deviations
apart from the average sentiment polarity in the documents, thus selecting only links
that reflect the most negative and most positive sentiment in the context of two coun-
tries. The negative sentiment layer turns out to be predominantly small, even for a
slightly less restrictive threshold n0 (at 90% st. dev. from the average) and therefore
has mostly low overlap with the empirical layers. On the other hand, the comparison
of the positive sentiment layer LP with the empirical layers results in a larger number
of common links, as shown in Fig. 17.8. Positive sentiment between the countries
has the largest overlap with the trade relations, followed by geographical proximity
and to the smallest extent by the correlation between the CDS time series.
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Fig. 17.9 A meta network
between the news and
empirical network layers

Comparison of the most important nodes in each layer shows similar results. The
comparison of main k-cores results in the largest overlap between the co-occurrence
and Geo layer cores, and positive sentiment and the Trade layer cores. The co-
occurrence layer cores overlapwith theGeo layer cores in central European countries,
and with the Trade layer cores in western European countries. The overlaps between
the co-occurrence and CDS layers show common presence of some eastern European
countries in 2012, but no regular presence in 2013. Several countries regularly appear
in the core overlap between the positive sentiment and the Trade layers (CN, DE, US,
UK, JP, BR, FR, and AU). Germany is also almost all the time (23months) in the core
overlap of the positive sentiment and Geo layers.

Most central nodes of the co-occurrence layer coincide with the Geo layer in
central European countries (AT, CZ, HU, SK, SI), with the CDS layer in few eastern
European countries, and with the Trade layer only Finland appears often among the
top tenmost central nodes. For the positive sentiment layer, the commonmost central
nodes are Germany and Russia for the Geo layer, and some of the largest economies
(CN, DE, FR, JP, RU, US) for the Trade layer.

Finally, we use the precision-at-k method to measure the link overlap of the
strongest relations in each layer. Limited by the number of links in the Geo layer,
k was set to 69. Figure17.9 illustrates the relations between layers weighted by the
precision-at-‘69’ values.

17.4 Conclusions

In the chapter we present methods to extract nodes and layers of multiplex networks.
The emphasis is on the network construction from large textual streams, where entity
recognition, co-occurrence extraction, and sentiment analysis are performed.Wepro-
pose several metrics to compare different layers of the same network. In the case
study, we compare the news layers to the empirical layers, and conclude that finan-
cial news mostly reflect geographical proximity and trade relations, and much less
financial relations. These results provide the background, long-term characterization
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of the news. We speculate that the underlying reason is the method to calculate
the significant co-occurrences, which computes the expected co-occurrences from
individual frequencies. Alternatively, one could compare actual co-occurrences in
a short time window to a longer time window, and so detect potentially interesting
deviations. In our future work, we intend to investigate this alternative approach
and evaluate how the news layers constructed in such a way compare to different
empirical layers.
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Chapter 18
Channel-Specific Daily Patterns in Mobile
Phone Communication
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Abstract Humans follow circadian rhythms, visible in their activity levels as well as
physiological and psychological factors. Such rhythms are also visible in electronic
communication records, where the aggregated activity levels of e.g.mobile telephone
calls or Wikipedia edits are known to follow their own daily patterns. Here, we study
the daily communication patterns of 24 individuals over 18months, and show each
individual has a different, persistent communication pattern. These patterns may
differ for calls and text messages, which points towards calls and texts serving a
different role in communication. For both calls and texts, evenings play a special
role. There are also differences in the daily patterns of males and females both for
calls and texts, both in how they communicate with individuals of the same gender
versus opposite gender, and also in how communication is allocated at social ties
of different nature (kin ties vs. non-kin ties). Taken together, our results show that
there is an unexpected richness to the daily communication patterns, from different
types of ties being activated at different times of day to different roles of channels
and gender differences.
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18.1 Introduction

The human body is equipped with a circadian pacemaker that gives rise to 24-h
rhythms in biological processes within the body, as well as in behavioural patterns
[1–3]. Studies of human circadian rhythms have traditionally been small-scale studies
that involve direct monitoring of human subjects. However, for more than a decade
now, automated electronic records of human behaviour have given researchers the
ability to study human dynamics and behavioural patterns in unprecedented ways.
Circadian rhythms are clearly visible e.g. in records ofWikipedia andOpenStreetMap
editing [4, 5], mobile telephone calls [6, 7] and on Twitter [8].While it is well-known
that there is a lot of individual variation in circadian rhythms, these and most other
studies of electronic records have focused on aggregate-level phenomena. In [9],
the authors of the present work studied the daily mobile telephone call patterns of
individuals and the persistence of such patterns. Here, we expand on this work and
also consider another communication channel: text messages.

In [9], we showed that individuals have their own distinct daily call patterns, and
that these patterns are persistent for each individual even when their social networks
undergo turnover. Further, these patternswere seen to have a social dimension: calls at
late hours were often associated with close relationships. Because text messages may
serve a different purpose in maintaining social relationships than calls (see, e.g., [10,
11]), we address the question of whether the daily patterns of text messaging are
similar to those of calls, and whether individuals have their distinct, persistent text
messaging patterns. Also, because significant differences were seen in call patterns
to the same versus the opposite gender, as well as kin versus friendship ties, we study
the daily text messaging patterns from this point of view.

Weuse the same longitudinal data set of time-stamped text communication records
of 24 individuals as in [9] (for details, see Sect. 18.2). Our results are summarised as
follows: first, each individual’s text messaging frequency is seen to exhibit distinct
daily patterns that are persistent over time, similarly to calls. However, the text
messaging and call patterns may differ significantly for a given individual, and on
average, text messages are sent more frequently at later hours of the day. Since there
is a high level of social network turnover in the studied data set, the persistence of
daily patterns for both communication channels indicates that these patterns are not
explained in terms of preferred communication timings or channels with specific
alters, but rather they contain a component intrinsic to each individual. Further, the
difference between the channels is exemplified by daily entropy patterns: even though
both calls and texts are targeted at a less diverse set of alters at the late hours, the
clear correlation between calls to closest alters and the least diverse times of day is
missing for text messages.

Regarding gender differences, we observed that the total number of text messages
is about 1.5 times higher for females thanmales (for calls, the numbers are practically
the same). At the same time, both genders have similar daily trends, sending out the
largest numbers of texts in the evening. Calls to kin and family are overall much
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less frequent than to calls to friends and acquaintances, and text messages to kin are
even more infrequent. However, females communicate with their kin by text around
3 times more frequently than males do.

18.2 Data

For this study, we have used a longitudinal data set of 18months of auto-recorded,
time-stamped phone calls and text communication records of 24 individuals (“egos”
in the following). This data set has been used earlier in [9, 12, 13]. Altogether, this
data set consists of 74,124 calls and 273,501 text messages, with time stamps at a
resolution of one second. The large number of texts compared to calls may have to
do with the young age of participants (∼18years at the beginning of the study), as
well as with conversations via text messages generating a large number of messages,
whereas a conversation via a phone call leaves one record only. As the original pur-
pose of collecting this data was to study turnover in social networks of individuals,
the setting was chosen such that all participants were in their last year of high school
at the beginning of the study, and later went either to work or university (often in
another city), after about 6months of data collection. The participants also took part
in 3 surveys, separated by 9months, designed to provide complementary information
about members of their communication network (“alters” in the following). Infor-
mation on gender and kinship as well as data on how emotionally close egos felt to
their alters were collected with these surveys. For further details, please see [12].

18.3 Results

18.3.1 Channel-Specific Daily Patterns and Their Persistence

In order to compute the daily patterns of texting for each individual, we begin by
segmenting our data temporally. We make two temporal divisions: first, at the level
of days, we divide each day to 24 one-hour bins and compute the number of calls
and text messages inside each bin. In order to address the persistence of the observed
patterns, we divide the 18-month time span of our data into three 6-month intervals,
I1, I2, and I3. The end of the first time interval I1 coincides with early autumn, where
the participants move on in their lives and begin work or studies at university. The
second time interval, I2, then spans a time range where a major change has taken
place in the participants’ lives and they are settling in a new environment with major
turnover in their social networks.

For each ego, we aggregate all events (calls or texts) within each time interval
(I1, I2 or I3) to the hourly bins. To arrive at the daily text or call patterns measur-
ing frequency as function of time, we then sum up and normalise the numbers of
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Fig. 18.1 a–d The daily text patterns of 4 individuals, e–h the daily call patterns of the same
individuals. The average fraction of calls/texts at each hour of day is denoted by red lines. These
have been computed for each of the three 6-month intervals, I1, I2, and I3. The average call and text
patterns, averaged over the patterns of all 24 individuals, are shown as black lines. Green shading
indicates where an individual’s call/text fraction is above average, whereas red shading indicates the
opposite. Note The persistence of individual patterns (overlap of green/red areas for an individual)
as well as the differences between call and text patterns

respective events at each hour of day. This is repeated separately for each 6-month
interval, and each ego. Daily text and call patterns calculated in this manner are
displayed in Fig. 18.1 for four different individuals, together with averages over all
24 individuals. It can be seen that each individual has their own distinct text and call
pattern, and both patterns appear fairly persistent over time. It is also evident that the
call and text patterns may significantly differ for a given ego. Likewise, there is a
clear difference between the average daily patterns of calls and texts: the frequency
of text messaging peaks at later hours of the day, whereas the majority of calls are
made in the afternoon. This supports the notion of calls and text messages serving
different social and communication functions.

For quantifying the persistence of each individual’s daily text patterns, we use the
Jensen-Shannon Divergence (JSD) as a measure of distance between two patterns,
similarly to previous works [9, 13]. The JSD is a measure of the dissimilarity of
two probability distributions. It is an extension of the Kullback-Leibler divergence
(KLD), with the important difference that it can be used for discrete probability
distributions with zero-valued elements. For two discrete probability distributions
P1 and P2, the JSD is defined as

JSD(P1, P2) = H

(
1

2
P1 + 1

2
P2

)
− 1

2
[H(P1) − H(P2)], (18.1)
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Fig. 18.2 Distributions of
the values of the
Jensen-Shannon divergence,
measured between each
individual ego’s daily text
patterns in different 6-month
intervals (dself ) and between
patterns of different egos
(dref ). Self-distances dself are
mostly lower than the
reference distances,
indicating that each
individual’s daily text
patterns preserve their shape
through the 6-month
intervals
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where H is the Shannon entropy, H(P) = −∑
p(t) log p(t). Here, we set Pi =

{pi (t)}, where t indicates the (binned) time of day, and i = 1, 2 denotes the two
distributions to be compared (e.g. the two distributions corresponding to I1 and I2
for one ego). We calculate the self-distance dself for each ego as the average of the
JSDs between daily patterns for intervals I1 and I2 and for intervals I2 and I3. For
a reference distance dref with which to compare these values, we calculate the JSD
between the daily patterns of each ego and each of the other egos (within the same
time interval), repeating this for all pairs of individuals and all time intervals. The
result can be seen in Fig. 18.2. It is evident that on average the self-distances dself
are smaller than the reference distances dref , indicating that each individual’s daily
patterns are fairly persistent. The same was observed for calls in [9], but here the
differences between self and reference distances are even more evident, i.e. daily text
patterns appear to retain their shape even better than call patterns.

18.3.2 Specifity in Communication: Who Is Contacted
and When?

Studies of call records with the data set at hand have revealed a social dimension
within the daily patterns: for calls, the diversity of called individuals is on average
lower in the evenings and especially at night [9].When the called alters are ranked on
the basis of the number of calls, it is seen that the fraction of calls to top-ranked alters
is often high when the diversity is low; typically, evenings and nights are “reserved”
for top-ranked alters.
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Fig. 18.3 The relative entropies for the same 4 individuals as in Fig. 18.1. a–dRelative entropies for
textmessages, e–h relative entropies for calls. The black line denotes average over all 24 individuals;
the coloured lines correspond to the different 6-month intervals for each individual. Time periods
are 6–12AM (Morning), 12AM–6PM (Afternoon), 6–12PM (Evening) and 12PM–6AM (Night)

Here,we set out to studywhether similar effects can be detectedwith textmessages
(note that as seen in Fig. 18.1, calls and texts may follow different daily cycles).
We approach the problem using relative entropies as in [9]: first, we measure the
diversity of called/texted alters in the 6-h bins (6–12AM (morning), 12AM–6PM
(afternoon), 6–12PM (evening) and 12PM–6AM (night)), by computing bin-wise
call/text entropies for each ego and interval. These are then normalised by the average
entropies computed with a null model, where all called alters are randomly shuffled
among calls for one ego (see Methods for details). This null model corresponds to
the hypothesis that given the cumulative numbers of calls/texts to each alter and the
overall daily pattern, there are no preferred times of calling/texting.

As seen in Fig. 18.3, the average relative entropies for texting follow a similar
pattern as the call entropies, the only difference being that the pattern is slightly
more flat. Thus, similarly to calls, text messages in the afternoon are targeted at a
more diverse subset of alters—the relative entropy close to unity indicates that there
are no specific preferences. To the contrary, at night and to a smaller extent in the
evening, text messages are frequently sent to a specific subset of alters. Note that
there is a lot of variation in the individual entropy patterns.

In [9], it was seen that low entropy is often associated with calls to top-ranked
alters.We computed the correlation coefficients between relative entropy and fraction
of texts to top3 alters separately for each ego (to avoid the ecological fallacyproblem).
Unlike for calls, only 7 out of 24 correlation coefficients had a p-value less than
0.05, and out of those, 6 coefficients displayed negative correlations. Hence, unlike
for calls, communication focused at top-ranked alters do not necessarily explain the
low-entropy time ranges. This may have to do with text messages serving a different
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role in communication, as also seen in the daily frequency patterns. However, 6
out of 7 statistically significant correlation coefficients were still clearly negative,
averaging at r ≈ −0.75, so for certain individuals, a high level of communication to
top-ranked alters at certain hours explains the entropy variation.

18.3.3 Gender Differences in Communication Patterns

Next, we turn to gender differences in the daily communication patterns. Overall,
when comparing the total numbers of calls and texts, we observe that there is a
considerably higher total number of texts than calls, both for males and females.
This may have to do with the study participants being about 18years of age, as heavy
users of text messaging are often found in the younger age groups. Further, carrying
out a single conversation via text messages may involve a large number of texts.

We also see that calls and texts have a different average daily pattern, with calls
peaking in the afternoon and texts in the evening (see Fig. 18.4). Frequent texts in
the evening may be related to youth culture and communication conventions, and
may also have to do with the intrusiveness of the channel; as seen in [9], calls
at late hours are often targeted at a small subset of closest alters. Comparing the
communication patterns of males and females, we see that the total numbers of calls
made by males and females during the 18months of data collection are almost equal,
whereas females tend to text much more frequently than males. This difference is
largest in the evening (see Fig. 18.4). Overall, the total number of text messages is
about 1.5 times higher for females than males.

Focusing on different types of social ties, we see that even though the number
of calls to friends and kin are similar, for texts they are very different.1 This shows
that calling is the dominant channel for communicating with kin. Despite the low
numbers of texts to kin both by male and female egos, females in this study have
texted their kin about 3 times more often than males, which agrees with other studies
that males and females indeed make use of mobile telephones differently [14–16].

18.4 Summary and Conclusions

We have studied patterns of communication via mobile telephone calls and text
messages, and have shown that like many other types of human activity, these pat-
terns follow daily rhythms. Interestingly, the daily patterns of texts and calls appear

1Note that in reality the total numbers of calls to friends might be much higher, because for the
majority of alters it is unknown whether they are friends, acquaintances, or social ties of some
different type. Here, we call those alters for whom an emotional closeness score is available in the
surveys “friends”. However, we can still compare the ratio of calls to friends versus kin with texts
to friends versus kin, because the set identified as friends is the same both for texts and calls.



216 T. Aledavood et al.

Fig. 18.4 Distribution of the total number of calls and texts (top and bottom panels, respectively)
at different times of day, for calls/texts by female and male egos to alters of different types. The
“Female to all” and “Male to all” categories contain those unknown alters who have not been
recalled in surveys, and for whom no personal data is available

different and persistent for each individual. Furthermore, the two patterns may sig-
nificantly differ for a given individual, pointing out that calls and texts may serve
different functions.

One way of interpreting the observed patterns is that they are a superposition of
common and unique patterns. First, humans naturally follow the day-night cycle,
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which is reflected in communication frequency. Second, on top, there may be social
conventions and age-group-related effects that individuals typically follow: e.g. it is
OK to text someone late in the evening, but calls can be made only to one’s closest
alters. Third, we have individual differences in personality, communication habits
and social habits that give rise to each individual’s distinct pattern: note that because
of the high level of social network turnover in our data, these cannot be explained
by communication conventions with specific alters.

Returning to the differences between calls and texts, our results point out thatwhen
studying social networks, data comprising communication along one channel only
does not provide a full picture of the network, especially when using the temporal
networks framework [17]: different channels play different roles, at different times
of day.
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Chapter 19
Investigating the Phonetic Organisation
of the English Language via Phonological
Networks, Percolation and Markov Models

Massimo Stella and Markus Brede

Abstract Applying tools from network science and statistical mechanics, this paper
represents an interdisciplinary analysis of the phonetic organisation of the English
language. By using open datasets, we build phonological networks, where nodes are
the phonetic pronunciations of words and edges connect words differing by the addi-
tion, deletion, or substitution of exactly one phoneme. We present an investigation
of whether the topological features of this phonological network reflect only lower
or also higher order correlations in phoneme organisation. We address this question
by exploring artificially constructed repertoires of words, constructing phonological
networks for these repertoires, and comparing them to the network constructed from
the real data. Artificial repertoires of words are built to reflect increasingly higher
order statistics of the English corpus. Hence, we start with percolation-type experi-
ments in which phonemes are sampled uniformly at random to construct words, then
sample from the real phoneme frequency distribution, and finally we consider reper-
toires resulting from Markov processes of first, second, and third order. As expected,
we find that percolation-type experiments constitute a poor null model for the real
data. However, some network features, such as the relatively high assortative mix-
ing by degree and the clustering coefficient of the English PN, can be retrieved by
Markov models for word construction. Nevertheless, even Markov processes up to
third order cannot fully reproduce other patterns of the empirical network, such as
link densities and component sizes. We conjecture that this difference is related to the
combinatorial space the real and the artificial phonological networks are embedded
into and that the connectivity properties of phonological networks reflect additional
patterns in word organisation in the English language which cannot be captured by
lower order phoneme correlations.
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19.1 Introduction

Human language relies on a hierarchical, multi-level combination of relatively sim-
ple meaningful components (i.e. graphemes, phonemes, words, periods) engaging in
phonological, semantic, lexical and ortographic sophisticated interactions that ulti-
mately allow for human communication [1–3]. An educated adult English speaker
can retain up to Nw ∼ 50,000 different words [4] composed of a small number of
roughly 36 distinct phonological elements (i.e. phonemes).

Recently, complex networks have been applied to the investigation of human lan-
guage in cognitive science, with nodes representing words and links indicating the
presence of certain semantic, morphologic, orthographical or phonological relation-
ships [1, 2, 5–13]. More in detail, at a high representation level, the cognitive process
behind human language organisation can be analysed in terms of the so-calledmental
lexicon (ML) [4, 6, 14, 15]. This idealisation abstracts the details of the mental repos-
itory of words, that are stored and correlated according to multi-layered relationships
(i.e. grammatical, semantic, phonological, syntactic, orthographical, etc.).

One area of psycholinguistics where complex networks have been successfully
applied is phonology [8, 10–12, 16]. In [12], Vitevitch built a phonological net-
work (PN), based on the Merriam Webster Pocket Dictionary, with nodes represent-
ing phonetic word transcriptions and with links connecting phonologically similar
words (i.e. words differing in the addition, deletion or substitution of one phoneme
[17]). For instance, the two words “cat” and “rat” would be connected in such a lin-
guistic network. This operational definition of phonological similarity was based on
empirical findings of spoken word production and recognition [17, 18]. Furthermore,
adopting such metric for the network construction led to a convenient equivalence
between node degree and the so-called phonological neighbourhood density (PND)
of a given word, i.e. the number of its phonologically similar words [12, 17, 18].
Empirical studies indicate that a high PND/degree promotes speech errors such as
malapropism1 in high frequency words [18, 19].

This paper aims to add to this research by investigating phonetic correlations in the
English language. We build a larger phonological network, which reveals interesting
properties, quite uncommon in other real-world social, biological or technologi-
cal networks, such as a very high assortative mixing by degree and global clustering
coefficient and a dense giant component, surrounded by many smaller size connected
components called linguistic islands. A theoretical framework for the understanding
of these topological features has been recently suggested in [20]. Within the same
context, the main research question of this work focuses on the extent up to which
patterns in network organisation can be attributed to short or long range correla-
tions between phonemes in words. We explore this issue by developing percolation-
or Markov process-based models for word assembly. We test the validity of these
processes as suitable models for investigating the structural patterns regarding the
organisation of the English language that are reflected in the English PN.

1A malapropism is a type of word speech error where a target word is erroneously substituted by a
phonologically similar word but from a different semantic context.
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All in all, the work implements five different null models of randomly generated
word repertoires that satisfy some constraints of the empirical data (i.e. phoneme
frequency, word length distribution, phoneme correlations). These models are used
to build “artificial” phonological networks which are then analysed and compared to
the English PN. We conclude with a discussion of the results of the comparisons.

19.2 Structural Analysis of the Phonological Network
in English

We based our construction on the English database WordData from Wolfram
Research, a curated repository developed by the Princeton University Cognitive Sci-
ence Laboratory “WordNet 3.0.” (2006) and by the Oxford University Computing
Service, British National Corpus, version 3 (2007).

The English corpus we used was composed of 29,750 phonological transcriptions
of words, containing 36 different phonetic symbols and constituting a reasonable
approximation of the mental lexicon at the phonological level. The network statistics
are reported in Table 19.1. The English phonological network (PN) is disconnected
and it exhibits relatively high values of the global clustering coefficient and assor-
tativity coefficient, as defined in [21]. Our results are compatible with the previous
analysis of Vitevitch [12], which was performed on a smaller dataset.

19.3 Five Null Models for One Hypothesis

Our null network models are based on artificial pseudolexica composed of:

1. random uncorrelated sequences of phonemes drawn uniformly at random by using
the empirical word length distribution as the only constraint (UR ensemble);

2. random uncorrelated sequences of phonemes drawn at random by using the empir-
ical word length distribution and the empirical phoneme frequency (FR ensem-
ble);

3. random correlated sequences of phonemes drawn according to a Markov chain
or a 2nd or a 3rd Order Markov processes trained on the empirical data, with no
additional external constraint (MC, 2MP, 3MP ensembles, respectively).

All of our network ensembles are composed of 10 artificial network realisations. The
random experiments UR and FR incorporate different constraints (i.e. word length
distribution and empirical phoneme frequency) and they loosely relate to the WLO
ensemble from [22]. These models constitute refined percolation experiments on the
original discrete space phonological networks are embedded into [20]. The Markov
process-based ensembles represent a different approach, since MC, 2MP and 3MP
approximate the short range correlations present among phonemes.
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In the following, we are going to explain each process, before analysing and
comparing the results against the real data of the English phonological network.
Correlation Level 0—Sampling phonemes uniformly at random (UR) We sample
the same number of words in the real data according to the empirical word length
distribution L. Subsequently, we structure each word of length l as a collection of l
phonemes, drawn uniformly at random from the empirical alphabet of 36 phonemes.

Correlation Level 0—Sampling phonemes with empirical phoneme frequencies (FR)
This ensemble is equivalent to the UR one, except for the fact that phonemes are
drawn according to their relative frequencies in the empirical data.

Correlation Level 1—Markov Chain (MC) Different to Gruenenfelder and Pisoni’s
approach [22], we did not mimic consonant-vowel patterns but rather tried to infer
the full bivariate correlation structures of phonemes in English. For this purpose, we
adopted discrete time homogenous Markov chains [23] trained on the empirical data.
Using this approach, we interpreted each word of the pseudolexicon wl = (si , ..., s j )
as a random walk among |A| = 36 plus 2 states (including a “START” = 0 and
“END” = 1 fictitious symbols). All the random walks emanate from the original state
“START”, then at each time step a state was visited and the relative phoneme added
to the generated word, until the random walk reached the absorbing “END” state.
Independent of the time step, the transition probability of going from state/phoneme
si to state/phoneme s j corresponds to the entry Wi j = P(phont+1 = si |phont =
s j ) of a transition matrix W, obtained from the real data. Any time homogenous
finite state Markov chain can be represented as a weighted graph [23]. For this
end, one can represent states as nodes and associate the transition probabilities Wi j

between them with weighted directed links. Figure 19.1 illustrates the structure of
the transition matrix we calculated from the phonetic transcriptions in the English
PN and a modularity based [21] graph community plot on the Markov chain. In the
latter, phonemes are states and arrows represent accessible couples of phonemes.
The fictitious starting phoneme 0 is clustered together with the most frequent first
position phonemes in our database. Self-loops represent the possibility for phoneme
repetitions. The final state 1 is an absorbing state, i.e. there is no way to transition
to other states once it is reached. Interestingly, in the matrix plot of the transition
matrix W a few preferential patterns are evident for given couples of phonemes. For
instance, the all white entries in the row corresponding to 1 imply that it is impossible
to transition away from 1 once it is reached. Simply put, all the generated artificial
words never have 1 followed by another phoneme. Similarly, the phoneme “e” (as in
“dress”) is followed only by phoneme “I” (as in “kit”) and so on.

Correlation Levels 2 and 3—2nd and 3rd Order Markov Processes (2MP and 3MP)
Sequences of phonemes representing real words contain higher than first order cor-
relations and therefore the process of real word formation cannot be memoryless [4].
Hence, we generalised our approach to second and third order Markov processes. A
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Fig. 19.1 Left Modularity based graph community plot on the Markov chain. Right Matrix plot of
the transition matrix W. Colors range from the case Wi j = 0 (white color) to Wi j = 1 (red color)

discrete Markov process of order m ∈ N is a stochastic process where the transition
probability to the next future state depends also on the m previous states. However,
every Markov process of order m can be mapped into a first order Markov Chain,
by expanding the state space [23]. Let EX = {si }i=1,...,N be the expanded state space
obtained by considering all the dispositions of the states (i.e. phonemes) in the orig-
inal Markov chain in groups of m. In our case, for a Markov process of order m, EX

has size N = 38m and it contains all the phonetic m-tuples s1, s2, ..., sN . Using these
m-tuples as new starting states allows for the construction of an expanded transition
matrix WX , with rows being labelled by the ei and columns being labelled by the si .
Therefore, WX is a rectangular matrix of dimension 38m × 38.

Markov processes of a given orderm partially reproduce the so-called phonotactic
probabilities (i.e. the probability with which phonemes and phonemem−tuples occur
in words in a given language [17, 19]). Extensive research indicates that words having
high phonotactic probability (i.e. more frequent) tuples are actually recognised more
quickly [4, 16–18] in speech experiments. Contrary to the percolation experiments
UR and FR, the pseudolexicons obtained via Markov processes (MC, 2MP and
3MP) do not incorporate any a-priori hard constraint on the word length distribution.
Any artificial word of length more than 24 (the maximum in the empirical word
length distribution) is discarded from the pseudolexica. A comparison of the word
length distributions of MC, 2MP and the empirical data is displayed in Fig. 19.2.
Without hard constraints, it is evident that the Markov processes oversample longer
words compared to the empirical frequency distribution. This finding points out the
presence of constraints different from local phoneme correlations that act specifically
on longer words.
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Fig. 19.2 Word length
frequency distribution for the
MC (×), 2MP (�), 3MP (�)
and real data (⊕)

19.4 Network Analysis of Artificial PNs

There is a fundamental point that has to be underlined before proceeding with the
comparison of our percolation and Markov null models with the English PN. The
36 English phonetic symbols constitute a finite alphabet A = {si }36

i=1 and, as in
the Markov processes, sequences of these elements make up phonetic word-forms.
Furthermore, all the sequences (i.e. words) of a given length constitute a labelling
of a regular graph Rl that has |V | = |A|l vertices, each one having Nl = l(|A| − 1)

first neighbours. In [20], we introduced the concept of phonological network layer
as the subgraph of Rl induced by the vertex labellings composed of all the words in
the English PN of a given length. Therefore, a phonological network is a collection
of interconnected subgraphs (i.e. layers) of regular graphs, where inter-layer and
intra-layer connections represent phonological similarity. The numerical experiments
presented in [20] strongly suggest that some network features such as the clustering
and the assortativity coefficients of the real PN are inherited by the (percolating)
layers of shorter word length: therefore they are not suitable indicators for testing
the meaningfulness of null models in reproducing the topology of the empirical data,
contrary to previous suggestions [22].

We adopted the phonological similarity metrics to produce artificial phonological
networks (APN) from our artificial pseudolexica. A snapshot with some network
statistics is reported in Table 19.1.

The performances of percolation null models are quite poor. The UR sampling
retrieved networks with relatively small giant component sizes (620 ± 80 nodes).
Inspired by the concept of percolating PN layers, we tested whether the size of the
giant component (GC) was critically sensitive to the external constraints, namely the
word length distribution. By using a maximum likelihood procedure, we fitted the
empirical word length distribution to a generalised gamma distribution [23], obtain-
ing parameters (α, β, γ, μ) = (1.4, 5.1, 1.9, 1.5). These parameters correspond to
an estimated mean word length

〈Lgam
〉 � 7.1 phonemes and to a standard deviation

σgam � 2.5 phonemes. Our choice of a gamma distribution was motivated by the
need of having a function whose mean and variance could be easily tuned. The fitting
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procedure was not statistically significant but the artificial networks generated with
the resulting gamma distribution showed an average giant component size of 610±80,
a value compatible with the percolation experiments with the empirical word length
distribution. With the new parameters (α

′
, β

′
, γ

′
, μ

′
) = (1.2, 2, 1.84, 2.65), we

obtained another word length distribution, L∗, having far smaller mean (〈L∗〉 � 4.7
phonemes) and variance (σ ∗ � 1 phoneme) when compared to the empirical distri-
bution. The artificial networks generated with L∗showed a significantly larger GC
average size of 19900±200. This finding highlights a critical dependence of the GC
size on the sampling of word lengths. In fact, shorter words live in combinatorics
spaces of smaller size |A|l with l being the word length. Sampling more words from
these smaller spaces (this is what happened by using L∗), without repetitions, means
building layers that inherit some features of the original regular graph structure, i.e.
clustering and assortative mixing by degree. In other words, varying the number of
random words in layers is equivalent to a percolation experiment in which a giant
component arises when the occupation density is large enough.

However, in spite of the appearance of a giant component, the networks generated
from percolation (UR) have far less links than found in the English PN. The stark
contrast in connectivity between artificial PNs and the real PN hints at peculiar
properties of word organisation. Improving the null model by sampling phonemes
at random according to their occurrence frequencies in the real data (experiment
FR) only leads to minor changes in comparison to UR. In fact, including phoneme
frequencies slightly boosts the likelihood for words to be phonologically similar and
we can give an analytic explanation of this empirical finding.

Let us start from the remark that connections in the PN among words of the same
length are formed between words differing for one phoneme only, independently on
the phoneme itself. Let us compute the probability of finding words satisfying this
instance. Let pi (l) be the probability for two words of length l, wl = (s1, ..., sl)
and w

′
l = (s

′
1, ..., s

′
l ) respectively, to have any given shared phoneme si = s

′
i at any

position. On the one hand, because of the Bernoulli sampling, in UR phonemes are
sampled independently on each other. Also, in the UR ensemble any phoneme si is
sampled with uniform probability f U R

i = 1/ |A|. As a consequence then pUR
i (l) =∑l

ϕ=1( f
U R
i )2 = l/ |A|2 and it is uniform over different phonemes, i.e. pUR

i (l) =
pUR(l). In order to quantify the probability of phonological similarity, let us denote
with P1,i (l) the probability for two words of length l to differ on one given phoneme
only. In both UR and FR, phonemes are sampled independently on each position,
so that in both these ensembles phonemes have to be equal in l − 1 positions and to
differ on one position only. Therefore, in theUR ensemble P1,i (l) follows a Bernoulli
distribution and summing over all the alphabet phonemes provides the probability
P1(l) that two words of same length l are phonologically similar. In formulas:

PUR
1,i (l) ∝ (pUR)l−1(1 − pUR) = ll

|A|2l
( |A|2

l
− 1

)
(19.1)
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PUR
1 (l) ∝ |A| PUR

1,i = |A| (pUR)l
(

1

pUR
− 1

)
.

On the other hand, in the FR ensemble pi (l) depends on the specific shared
phoneme si . Hence, in FR the probability for two words to share a given phoneme
at any position is pFR

i (l) = ∑l
ϕ=1( f

FR
i )2, where f FR

i is the occurrence proba-
bility of phoneme si ∈ A. From the empirical data, we approximate phoneme
occurrences with a frequency-ranked power-law distribution, then f FR

i = Ar−a
i

for i ∈ {1, 2, ..., |A|}, where ri is the frequency rank of phoneme si and a, A ∈ R.
A power-law fitting of the empirical data corroborates this conjecture by retrieving
a statistically significant power-law exponent a = 1.10 ± 0.08 (Pearson χ2 p-value
� 0.021). Therefore, we have that:

p(FR)
i (l) =

l∑

ϕ=1

( f FR
i )2 � A2

l∑

ϕ=1

1

r2α
i

= A2 l

r2α
i

, (19.2)

Inserting p(FR)
i (l) in P (FR)

1,i (l), then the probability for two words of the same length
in the FR ensemble to be phonologically similar is analytically given by:

P (FR)
1,i (l) ∝ (A2l)l−1

r2α(l−1)
i

− (A2l)l

r2αl
i

(19.3)

P (FR)
1 (l) =

|A|∑

i=1

P (FR)
1,i (l) ∝ (A2l)l−1

[
H [2α(l−1)]

|A| − A2lH [2αl)]
|A|

]
,

where H [m]
n = ∑n

k=1 k
−m is the generalised harmonic number [23]. Numerically, it

can be checked that the estimated P (FR)
1 is higher than P (UR)

1 (their normalisation
constant being the same) for words with length l ∈ [3, 7]. This means that a power-
law like behaviour in the individual phoneme sampling frequencies actually boosts
phonological similarity in artificial repositories but mainly for words of intermediate
lengths. This finding is compatible with the increased GC size in the FR ensemble
when compared to the UR one.

Furthermore, in the MC ensemble constraining local correlations with Markov
processes changes the situation dramatically. Using up to first-, second- and third-
neighbour correlations, respectively, increments the sizes of the giant component and
of the lexical islands, which gets closer to the empirical ones. Also the clustering and
the assortativity coefficients are already retrieved by the first order Markov chain in
MC. Increasing the order of the Markov process in 2MP and 3MP retrieves average
node degrees, mean geodesic path length and link densities, that are similar to the
empirical phonological network but not quite compatible. Also the empirical size of
lexical hermits (i.e. unconnected words) is not matched by the Markov ensembles.
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All these features constitute a qualitative indication that there are long range corre-
lations in language, not fully approximated by the Markov processes, that influence
the network structure of our given phonological similarities.

19.5 Conclusions and Future Directions

Phonological networks (PNs) can be used to analyse the phonological level of the
human mental lexicon, which is an intricate repository of word-forms, relationships
and correlations.

Within the idealisation of words acting as labels of subgraphs of a given collection
of regular graphs, we discussed the concept of word layers, as in sets of words of
a given length participating in pairwise interactions within and outside the layer
itself. We proceeded with our analysis by proposing five different null models of
phonological networks, using percolation-like experiments and Markov processes.
Our artificial phonological networks indicate that the combinatorial structure of the
PN layers can be retrieved also in the phonological networks, but always together with
additional organisation patterns that represent the phonotactic constraints of human
language. In fact, random percolation experiments and Markov chains are able to
reproduce some network features such as the global clustering coefficient or the
assortativity coefficient of the empirical data (as in [22]). However, percolation-like
experiments are not able to reproduce other connectivity patterns such as the mean
degree, the giant component size or the link density of the English PN. Even higher
order Markov processes fail at this task, implying the importance of additional long
range correlations in determining the topology of the English phonological network.

Interestingly, the analysis of the network structure at a microscopic level reveals
that the majority of substitutions/additions/deletions of single phonemes happen in
the first and in the last position of a given word, being the case for both intra-
and inter-layer similarities. This feature is not reproduced by random null models
but it is in good agreement with some linguistic conjectures according to which
words sharing the same rhyming recognised preferentially as phonologically similar
[16, 19].

Having successfully adopted the network paradigm for studying phonological
similarities, there are still many open questions that are worth further investigation.
In fact, it would be interesting to build and analyse phonological networks of different
languages, in order to assess the universality of the network features or rather use
network theoretic measures to quantify and distinguish between different languages.
Also generalising the phonological similarity measure might lead to new insights
about the outlay of real words in the underlying discrete word space.
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Chapter 20
An Agent-Based Model for Agricultural
Supply Chains: The Case of Uganda

F. Caravelli and F. Medda

Abstract Uganda is a landlocked country in East Africa with a population estimated
at 35 million. 85% of the population still lives in rural areas and survives mainly
on subsistence farming by growing crops such as matooke, beans, sweet potatoes,
coffee (for export), cassava, maize, millet, groundnuts, sorghum, and sesame. There
are many obstacles to moving towards sustainable, market oriented crop production.
In this research study, we focus on the effect of logistics costs on crop prices from
the farm gate through to markets.

20.1 Introduction

Against this background, in our study we develop an agent-based system [1–5] to
simulate the supply chain of agricultural produce from farm gate to regional and
export markets. A supply chain is a network of facilities that enable in our context the
flow of goods from farmers to markets, and the flow of information from markets to
farmers. It is a decentralized systemwith no designated command and control and the
efficiency of the system depends on both the coordination between the actors/agents
in the system and the robustness of the network. The supply chain can be described
by identifying its actors, activities, interdependencies, and objectives. Agent based
modelling provides a natural way to model such systems, and in particular allows
for the clear identification of the effects due to different policies.
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We focused our study on 7 regions based on the proximity of the locations to
Kampala and Entebbe, and the location of large farmers and exporting firms in
the region [6]. The districts we considered were: Luwero, Mpigi, Masaka, Iganga,
Mitiyana, Kamuli and Mukono. We additionally only considered the movement of
5 kinds of crops in the supply chain: hot pepper, matooke, okra, chillies and sweet
potato.

The hypotheses we aim to test are the following. In the first instance, we test
whether travel costs (comprised of transport costs and logistics/storage handling
costs) are a major discriminant in the dynamics and ability of farmers to export,
and if the quality of the infrastructures are, in the current conditions, a minor dis-
criminant [7]. In addition to this, in our second hypothesis to test is that small scale
farmers/outgrowers in the districts under consideration can considerably decrease
bankruptcy by sharing risks, and by implementing coordination in the production
and export processes. Our last hypothesis tests whether the implementation of GAP
or standardization and control procedures leads to increased export and lower stress
upon farmers. In this paper we describe the overall setting of the agent-based model
and the main results obtained; the structure is organized as follows. In Sect. 20.2 we
describe the data we had and how this was used in the model; in Sect. 20.3 we intro-
duce themain agents beingmodelled; in Sect. 20.4 we study the relationship between
the agents, and how this is encoded in a social network approach; in Sect. 20.5 we
introduce our microscopic description of trading in terms of micromotives and risk
adversity, meanwhile results and conclusion follow in Sects. 20.6 and 20.7 respec-
tively.

20.2 Collected Data

Given the complexity of the model, one has to constrain the many parameters using
realistic data. In order to anchor the model to reality, we have conducted a survey and
collected data regarding various parameters which were considered in the model.

20.2.1 GPS and Road Data

In the first place, we have obtained GPS from theWorld Bank on the road infrastruc-
ture (paved vs. gravel), and used it to model a coarse grained version of the country
roads (in between cities). Since we also modelled transportation means, through the
survey we were able to obtain the data on the cost of transportation, measured in
Ugsh/km for various transportation vectors used in the country Figs. 20.1 and 20.2.
Among these, boda-boda, lorries, pickups and bikes.
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Fig. 20.1 Macroscopic model of the road infrastructure in Uganda. Green roads are paved, blue
are gravel, meanwhile red spots are towns and villages

Fig. 20.2 Distribution of farmers considered in the model
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20.2.2 Agents Behavior and Costs

Wehave conducted a survey among farmers and traders in cooperationwith theWorld
Bank. This survey was tailored to understand the behavior of the various agents in
the model. We have obtained thus data on farmers’ risk adversity, on the behavior of
itinerant traders, exporters, and producers.

20.2.3 Products

Through the survey, we were able to identify the products which all farmers produce
and sell. These are hot peppers, chillies, matooke, okra and sweet potatoes. We were
then able to estimate few parameters connected to the spoilage and growing rates. In
fact, to each product there is a quality parameter. For each product we have estimated
a quality parameter which depends on time through:

Q(t) = q0e
−d(T )t (20.1)

where T is the temperature and d(T ) = a0 + a1T , and ai are estimated from tables
of decay for different products. As an assumption, whenever Q(t) < 0.2, the product
is considered spoiled and removed from the market [8]; Q(t0) = 1, where t0 is the
time at which the product is harvested. From the survey, wewere also able to estimate
the average price, for each of these products, at which traders and exporters buy the
product. Also, through the survey, we were able to estimate the selling price at local
markets.

20.3 Modelling Agents and the Environment

20.3.1 Farmers and Production

A farmer agent has a certain amount of land and wealth that is assigned by using
probability distributions. We assume that farmers are distributed at random in the
ares of interest for this study. The probability distribution is parameterized using
data about farmers in the region. We assume that all farmers adopt multi-cropping
(Fig. 20.3).

The assets of a farmer agent are thus his bank balance, the value of his land and
the value of his harvested crops.

Given the favouring weather of Uganda, cropping is ongoing at every time of the
year; when a product is harvested, seeds are planted and harvesting reoccur after a
certain number of months which is product dependent. They divide their land in a
uniform manner to cultivate the five crops that were chosen for our study.
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Fig. 20.3 Lognormal
distribution of land in acres

While a farmer agent is busy in the cultivation of his crop, he is also engaged
in other marketing activities, namely forming agreements. One can identify two
typologies of farmers: large farmers (own more than a 5 acres of land) and the most
frequently occurring small farmers, whom own on average about 4 acres of land. The
activities of large farmers are production, solicit agreements with small farmers (in
their social network) wherein they offer to buy produce at a fixed price, selling (using
decision tree), and they use the market power and wealth to act as a trader and as a
farmer. The activities of large farmers are production, solicit agreements with small
farmers in their social network wherein they offer to buy products at a fixed price,
selling and trade. The activities of small farmers are production, receive proposals
for agreements from large farmers as well from traders, and selling. Some farmers
are too poor to market their produce as they only produce enough for subsistence
(here considered as bankruptcy). Once the production cycle is complete a farmer
agent makes a decision on the sale of his produce using a decision tree process.

We build a social network of farmers that know each other and will go into the
detail of its construction in Sect. 20.4. The utility of the social network is to get an
idea of the average price, weighted by the quality, of the products to be sold on the
market. The difference in price between the average price obtained through the social
network and the one proposed by a trader is perceived as a cost.

The decision tree process involves evaluating multiple options based on logistic
and processing costs, the expectedmarket price (ascertained fromhis social network),
and the risk-aversion utility function that is a function of the wealth of the farmer.
The details of this process are described in Sect. 20.5.
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20.3.2 Traders

At the beginning of the simulation, trader agents have a certain amount of wealth that
is assigned by using probability distributions with gaussian distribution centered on
themean price obtained through the survey. Traders buy their goods from farmers and
other traders. Each trader has a minimum volume to be traded, as well a minimum
quality criterium. This ensures that produce moves upward in the supply chain, as
once aggregated this can be sold only to a larger trader, eventually reaching the
exporters.

Itinerant traders instead do not have any of the above selection criteria, and on
top of this, they are travelling and buying at the farmer gate; this has the advantage
for them to reduce the transaction cost to the farmers, by reducing the logistic costs
and thus giving them an advantage. These are modelled as self-avoiding random
walkers starting at a particular area (node), and where the assumption is that these
will go around 10 villages in their trip (this fixes the loop length parameter of the
self-avoiding random walk).

Trader agents are engaged in three kinds of activities: negotiating agreements
(similarly to large farmers) buying and selling (using decision tree). Traders set their
prices based on supply and demand as we will describe more in detail in Sect. 20.5.

An important aspect which has to be considered is the act of aggregation of
produce which the traders perform. Whenever a trader agent (whether this is a large
farmer or an actual trader) holds two similar products, we assume that the product
are aggregated and sold together. This will allow the trader to move the product up in
the supply chain. We assume the following rule for the aggregation of two products
of the same time for volume and quality change:

V = V1 + V2 (20.2)

Q = Q1V1 + Q2V2

V1 + V2
(20.3)

where we assume V and Q are the new quality of the product and Vi and Qi are the
volume and quality coefficient before aggregation.

Other important aspects of traders is that these can propose to buy a product and
ship it to a warehouse.

20.3.3 Exporters

The role of exporters is to buy products which need to satisfy a minimum volume
and a minimum quality to be exported from the country. We assume these are located
in the nearby of Kampala and Entebbe, i.e. close to the airport. Their price is fixed
and estimated from the survey, and it can be thought as a sink of the products, which
once reached the exporters leave the market. This is the highest price in the model,
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and agents will have a price lower than this, as otherwise they would be making a
loss on each transaction.

20.3.4 Logistic Service Provider

The logistics service provider (LSP) agent moves products between two locations. In
the current situation of agricultural markets in Uganda, the logistic price is paid by
the farmer if these do not possess transportation means. The transport costs incurred
are proportional to distance, with a proportionality factor that was estimated from
the survey. We assume the LSP has two types of service, one with refrigerators (for a
higher price and a higher reliability, thereby implying a lower probability of failure)
and one without. The difference between the two is in the spoilage rate of the produce
which is temperature dependent, which is being simulated. In fact, we assume that
agents can predict the spoilage rate of the transportation; the decrease in quality is
considered as a cost and inserted in the utility function.

Also, we assume the path taken is always the shortest path between two points, and
the simulation considers realistic movements of the transport mean on the road net-
work, based on the speed of the carrier; the cost of the transport is carrier-dependent.
The decision of choosing one carrier rather than another is based on the decision tree
of Sect. 20.5.

The time taken to deliver the product depends on path taken, whether it is trans-
ported on gravel or paved roads. The quality of the transported goods depends on
weather conditions (temperature), which is being simulated.

20.3.5 Local Markets

Domestic markets are located in each village.We assume that local markets are sinks
for products (i.e. prices fixed and no demand restrictions). Farmers can, thus, sell at
zero-kilometers; this price is however usually lower than the production costs, which
gives an incentive to the farmers to sell elsewhere.

20.4 Social Network

One of the fundamental ingredients of this agent-based model, is the simulation of
every detail regarding the interaction between farmers and traders. In the first place,
we construct the network on which interaction will take place, as a Barabasi-Albert
model [9] with an exponential smoothing dependent on the distance. We insert a
farmer j at random at each step of the algorithm, and then the probability for two
farmers i of being connected, is of the form:
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Pji = 1

Z
Die

− di j
K (20.4)

where K is a constant set to 30km, di j is the distance between the farmers and Di

is the degree of the farmer i ; Z is a normalization constant which is updated at each
step. A similar process is performed between traders and farmers, with traders being
inserted after. A social network is thus a graph consisting of nodes, representing the
agents, and links between nodes that represent the connections between the agents.

We now discuss the spreading of information. At each time step T, we assume
that each agent has knowledge of the price and quality of all the products owned
by all other agents in his social network. Therefore agent has an attribute that is a
price vector indexed by all trading agent, all products owned by, and quality of the
product. The graph then is dynamical. In fact, we assume that new connections are
formed dynamically.

Information spreads in the following manner [10]. Let us assume that for instance
a farmer i knows agent j and agent k, but agent j and k do know each other. With
probability p a link between j and k is formed. The probability p is chosen such
that this information is transmitted on average in 1month. This process, due to
competition is asymmetrical between farmers and traders, which is that traders do
not connect farmer to other traders they know, but farmers can connect other farmers
to traders.

The importance of the social network is twofold. In the first place, the assumption
is that farmers have access to the information of other farmers on their selling price
and quality. Once fixed the product to be sold, where Pi is the price of trader i and
Qi its quality, we use the following formula for the expected price:

EPi =
∑

j= f armer Ai j
Pj

Q j∑
j= f armer Ai j

Qi (20.5)

where Ai j is the adjacency matrix of the social network. Also, when one product
is ready to be sold, farmers can choose between various offers and can propose to
product to traders in their social network.

20.5 Trading and Decision Trees

At each time step in the trade process, price of crop that trader trades, is adjusted to
reflect the imbalance of supply and demand. The price varies according to theWalras
Law:

d

dt
P j
i = ξ(D − S) (20.6)

where ξ is a constant to incorporate the action of theWalras Law and are the demand
(D)and supply (S) of crop from traders. The demand is accounted from the volume
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of produce sold, meanwhile the supply is accounted from the amount of crop which
is proposed and sold to the trader. This price will define the price at which the trader
will buy products.

Decision trees form the core of the trading strategy. Whenever an agent has a
product, he will try to sell it among the connections in the social network.

We now describe the decision making process in detail using Fig. 20.6. At the first
stage, the trader must decide if he is going to sell his produce or store it to sell later.
If he decides to store it, there are two options available to him: he can either store his
produce for a week in a warehouse or on his farm. The former option incurs storage
costs while the latter incurs costs in the loss of quality of the product, and hence a
reduced expected price.

If he decides to trade, he checks his contract agreement, and either decides to
honour it (the outcome is the fixed price agreed in the contract) or incur a fee to
break the agreement.

If he breaks the contract, he then evaluates the other trading options available to
him, based on logistics costs, the risks involved with trade, and his own propensity
to risk his wealth. The decision at the end of each branch can be described using the
following function:

D = (1 −U (C ′))(R − C)F, (20.7)

where F is the feasibility of the trade, C is the total cost of the transaction, R is
the reward, U is the wealth utility function and C ′ is the implied cost. Feasibility
In our simulation environment, any two traders can in theory trade with each other.
A trader agent considers a trade with another trader agent provided he considers it
a ?feasible? option. We incorporate this notion of feasibility using a function. Cost.
This function can be broken into several pieces:

C = D ∗ Plog + S + AG + Q (20.8)

where D is the weighted Dijkstra distance on the infrastructure graph in kilometers,
Plog is the transport cost in per unit of distance travelled for the mode of transport, S
is the storage costs, which depends on whether the transaction involves sending the
produce to a warehouse, and AG is the fee incurred for breaking the agreement with
other traders. Reward. When a trader agent initiates a trade with trader agent, is the
expected value of the product at the expected time of delivery. Implied costs. These
are the costs which are effectively involved in the transaction plus those perceived
by the agent. We can write the equation:

C ′ = C + Q + M (20.9)

where C are the actual costs paid by the trader before receiving a payment. Q is the
spoilage cost. One can evaluate how long the trip will take and the reduced quality
Q′. The traders and exporters apply a reduction of the price due to the quality of the
product at destination, and this cost can be perceived as δQPV , where δQ = Q − Q′
and V is the volume of the shipping. M is instead the market cost, i.e. the cost
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Fig. 20.4 Utility function
based on wealth considered
in the present model

perceived by the agent as the difference between the expected price EP , evaluated
from the social network, and the selling price for this branch of the decision tree,
M = (EP − P) ∗ V . This term is an incentive for the agent to sell at market price.

Utility function. We associate a utility curve for each trading agent.
The utility curve represents the risk averseness of a trader to pay for logistic costs

relative to his private wealth. He is less risk averse when the costs are low and is
increasingly more risk averse as the logistic costs equal his total wealth.

We use a utility function of the following form:

UB(x) = log(1 + sx)

log(1 + sB)
, 0 ≤ x ≤ B (20.10)

where s is a parameter controlling the convexity of the function (risk-adversity) and
B is the wealth of the agent, and is represented in Fig. 20.4.

20.6 Results

We now discuss the results obtained through this agent based model.
In the first place, all the results were obtained by averaging over various simu-

lations, i.e. performing a Monte Carlo. Few parameters were not fixed through the
survey, as for instance the wealth of the farmers and the reactivity constant in the
Walras law. We averaged over various realizations of these by assuming these are
distributed as gaussian around the mean that we were able to estimate by an inde-
pendent reasoning. For the details on this construction we invite to read the original
report [11]. We simulate the course of time at 6 hours interval, meaning that 4 time
steps in the model correspond to one day.
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As an order parameter to see the effects of the various policies, we use the number
of bankrupt agents. These are defined as agents which, over the time of a simulated
month, have a negative bank account. The result is that these agent then exit the
market and are not considered anymore as active agents. We consider 400 hundred
farming agents and 100 trading agents, of which 50 actual traders and 50 itinerant
trades. Each curve is averaged over 100 simulations.

Our methodology is the following: we study the evolution of the bankrupt agents
a function of time without any shocks and consider this as the closest to current
situation inUganda.We observed that the number of bankrupt agent in our simulation
increases with time, which is a faithful representation of the current situation in the
agricultural market. Thus, statements are made relatively to the current situation.

20.6.1 Transport

As a first shock, we consider a reduced transport cost of 10%, and monitor the
number of bankrupt agents as function of time. The time window is 1year, and the
results are shown in Fig. 20.5. The result is that in the long run, roughly 10% less
bankrupt agents are observed. This stresses the importance of current transport cost
on the market.

As a second test, we gauge the importance of the road infrastructure through an
improvement policy. The policies are shown in Fig. 20.6.

The infrastructure on the left is the one of the current road infrastructure, mean-
while the one at the center is our Policy 1 improvement, where we improve from
gravel to paved roads (blue to green) only roads in the nearby of Kampala and
Entebbe, meanwhile in the right figure we also includes the roads in the areas where

Fig. 20.5 Effect of the
reduction of transport cost.
The green curve represents
the current situation,
meanwhile the blue curve the
effect of the reduced
transport costs
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Fig. 20.6 Left current condition of road infrastructure in Uganda. Blue roads represent gravel roads
meanwhile green are paved roads. Center A plausible infrastructure improvement policy for the
road infrastructures around the cities of Kampala and Entebbe; each shipment has to pass through
this area in order to reach exporters and the airport. Right A more substantial policy, where the
improvement is extended also to the farming area where the agents of the model are located

Fig. 20.7 Number of
bankrupt agents for the
infrastructure improvement
shown in Fig. 20.6

farmers cultivate. The results are shown in Fig. 20.7. It is shown that the improvement
of infrastructure does have a strong short term effect. Meanwhile the blue curve is
the current situation, the green represents the case of Policy 1, meanwhile the red
represents Policy 2. For both the cases of infrastructure Policy 1 and 2, in the short
term the number of bankrupted agents is far lower than the current situation case,
showing the importance of the infrastructure quality. In fact, for better infrastructure
the speed of delivery is higher. This implies a better quality of the product, which
thus can be exported. However, in the long run these policies does not change the
number of bankrupt agents. In our opinion this shows that in order to improve the
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condition of Ugandan farmers one has to apply other policies rather than infrastruc-
ture interventions.

20.6.2 Cooperation

As a second set of policies, we consider the introduction of cooperation among farm-
ers. In the current situation in the agricultural market there is little cooperation among
farmers; these in fact produce and sell on their own to traders and itinerant traders.
One of the main differences between itinerant and regular traders is in the logistic
costs. Meanwhile regular traders have a higher price than itinerant traders, these
require that the farmer ships at his own cost the produce. This cost affects dramat-
ically the farmer, which then is inclined to get a lower pay, rather than anticipating
the costs.

We consider, then, the case in which farmers cooperate in order to overcome the
logistic costs. We consider the following policy: farmers within a radius of 30kms
aggregate the produce in loco, and share the cost logistic costs. Technically, this is
achieved by aggregating the various farmer’s production and wealth into a single,
larger farmer.

The results for this policy are shown in Fig. 20.8. It is easy to see that the imple-
mentation of this policy result in a dramatic improvement in the short and log run of
the number of bankrupt agents.

Fig. 20.8 Number of
bankrupt agents the current
situation (green curve)
versus case of cooperation
(blue curve)
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Our interpretation of this result is that implementing policies in order to facilitate
the cooperation among farmer agents could possibly result in less stress among
Ugandan farmers.

20.6.3 GAP Policies

As a last policy test, we consider the case of GAP policies. GAP is a standard
for farming in which, once exported, every single product can be tracked back to
the farm gate. This is for instance a requirement in the European Union, and is a
standard for exporters in african countries. At the moment, GAP policies in Uganda
are implemented only by larger farmers, meanwhile itinerant traders do not use these
policies and loose the trackability of the product by aggregating all the produce.
We thus implement the policy of enforcing the GAP requirements at the level of
the exporters. This implies that in the supply chain the itinerant traders have the
disadvantage of not being able to sell to other traders, as the products do not fulfil
the GAP standards. We show the result of this analysis in Fig. 20.9. Similarly to the
case of cooperation, enforcing GAP standards does provide a possible solution to a
long-term improvement of the Ugandan agricultural market, as itinerant traders are
not favoured by these policy implementation. However, in the case of GAP itinerant
traders could adapt and bypass this policy, unlike the case of cooperation.

Fig. 20.9 Bankrupt agents in current situation (green curve) versus implementation ofGAPpolicies
(blue curve)
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20.7 Conclusions

In this paper we have discussed how an agent based model can analyse policy alter-
natives in relation to the logistics of the agriculture trade supply chain, together with
other agricultural and social policies. We have modelled at the microscopic level
the interaction between farmers and traders, the production of fresh produce in the
specific case of the Ugandan system, and we have tried to anchor the model as much
as possible to the available data. In particular, we have modelled the road infrastruc-
ture system, at the macro level, keeping however the distinction between paved and
gravel road, and tried to simulate logistic providers at the microlevel, by consider-
ing the product moving on the road infrastructure at realistic speed. In addition, we
have considered the spoilage of the product due to weather conditions. Although
we have not simulated rainfalls, we used a realistic model of temperatures based on
the average seasonal minimum and maximum temperatures. This has allowed has to
consider targeted policies aimed at improving the condition of farmers, which in the
current situation are the weakest actors in the agricultural Ugandan market.

Specifically, we have considered three types of policy implementation. The first
regards the reduction of the logistic costs, and second the improvement of the cur-
rent road infrastructures. In the first case have observed that a reduction of logistic
costs linearly affects the number of bankrupt agents in the long run. In addition, we
have observed that the improvement of the infrastructures does provide a short term
improvement of the number of bankrupt agents, but in the long run leads to a similar
number of agents leaving the market.

We have however observed that cooperation among farmers and/or GAP policies
can lead to a substantial improvement in the short and long-run. These results can
be used as a test-base for policy recommendation to the Ugandan government.
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Chapter 21
Chimera States in Neuronal Systems
of Excitability Type-I

Philipp Hövel, Andrea Vüllings, Iryna Omelchenko
and Johanne Hizanidis

Abstract Chimera states is a fascinating phenomenon of coexisting synchronized
and desynchronized behavior discovered in networks of nonlocally coupled identi-
cal phase oscillators. In this work, we consider a generic model for a saddle-node
bifurcation on a limit cycle representative for neuron excitability type-I. It is given
by N nonlocally coupled SNIPER oscillators in the oscillatory regime arranged on
a ring. Depending on the system parameters we obtain chimera states with multiple
coherent regions (clustered chimeras), coexisting traveling waves, and we observe a
flip in the mean phase velocities of the coherent and incoherent regions.

21.1 Introduction

Among the many types of synchronization, chimera states have received much atten-
tion since their discovery a decade ago. These peculiar states, which are found for
identical systems with strong symmetry in the coupling, exhibit a coexistence of
spatially coherent (synchronized) and incoherent (desynchronized) domains. They
were first reported by Kuramoto and Battogtokh in a model of densely and uni-
formly distributed oscillators, described by the complex Ginzburg-Landau equation,
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with nonlocal coupling of exponential form [1]. This seminal work was followed by
the work of Abrams and Strogatz [2], who observed this phenomenon in a 1D ring
continuum of phase oscillators assuming nonlocal coupling with a cosine kernel and
coined the word “chimera” (after the creature of Greek mythology) for it. From the
perspective of nonlinear dynamics, this surprising breaking of symmetry is observed
through the coexistence of incongruent states of spatial coherence and disorder [3].

Experimental evidence of chimera states were first found in populations of coupled
chemical oscillators and in optical coupled-map lattices realized by liquid-crystal
spatial light modulators [4, 5]. Chimera states have also been reported in a mechan-
ical experiment involving two subpopulations of identical metronomes coupled in
a hierarchical network [6] and in experiments involving electrochemical oscilla-
tors [7] as well as electronic nonlinear delay oscillators [8]. Chimeras have also
been observed in many other systems, including coupled chaotic logistic maps and
Rössler models [9, 10], Van der Pol oscillators [11] or networks with time-varying
topologies [12]. Together with numerical simulations, theoretical studies of chimera
states have been recently provided, such as general bifurcation analysis for chimeras
with one and multiple incoherent domains in the system of nonlocally coupled phase
oscillators [13].

The importance of chimera states is also very relevant for brain dynamics, since it is
believed that they could potentially explain the so-called “bumps” of neuronal activity
(proposed in mechanisms of visual orientation tuning, the rat head direction system,
and working memory [14]) as well as the phenomenon of unihemispheric sleep [15]
observed in dolphins and other animals which sleep with one eye open, suggesting
that one hemisphere of the brain is synchronous the other being asynchronous. For
this reason, it is particularly interesting that such states were recently observed in
leaky integrate-and-fire neurons with excitatory coupling [16], as well as in networks
of FitzHugh-Nagumo [17, 18] and Hindmarsh-Rose [19] oscillators.

Excitability is an important feature of neuronal dynamics [20] as it determines
the mechanism of the generation of action potentials (spikes) through which neurons
communicate. There are two types of excitability: type I yields a response of finite
amplitude and infinite period through a global bifurcation, and type II gives rise to
zero-amplitude and finite period spikes via a Hopf bifurcation. Type-II excitability
is often modeled by the FitzHugh-Nagumo system for which “multi-chimera” (or
“clustered chimera” [21]) states, which consist of multiple coherent regions, were
recently found slightly above the excitability threshold [17]. The Hindmarsh-Rose
model, which is representative for both type-I and type-II excitability, exhibits very
complex behavior including spiking, regular and chaotic bursting for which chimera
states and other collective dynamics were identified [19].

In this work, we will focus on a generic model for type-I excitability and demon-
strate the universal occurrence of chimera states to this class of models. The system
under consideration is representative for a global bifurcation, namely a saddle-node
bifurcation on a limit cycle also known as Saddle-Node Infinite PERiod (SNIPER)
bifurcation, which is also known as Saddle-Node bifurcation on an Invariant Circle
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Fig. 21.1 SNIPER model in
the oscillatory regime:
numerical solution and
vector field of (21.1) for two
different values of the
bifurcation parameter b: a
b = 1.05, b b = 9
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(SNIC). It studied neuroscience in various contexts [22–25] and is defined by the
following equations:

ẋ = x(1 − x2 − y2) + y(x − b),

ẏ = y(1 − x2 − y2) − x(x − b), (21.1)

with the state variables x(t) and y(t), and b is the bifurcation parameter. For b < 1,
there are three fixed points: an unstable focus at the origin and a pair of a saddle-
point and a stable node on the unit circle with coordinates (b,+√

1 − b2) and
(b,−√

1 − b2), respectively. The latter two collide for bc = 1 at (x∗, y∗) = (1, 0)

and a limit cycle with constant radius ρc = √
x2 + y2 = 1 is born. Above but close to

the bifurcation, the frequency f of this limit cycle obeys a characteristic square-root
scaling law f ∼ √

b2 − 1.
In the following, we choose b > bc so that the system operates in the oscillatory

regime. The system oscillates with constant amplitude ρc = 1 and the period T0

is given by 2π/
√
b2 − 1. In Fig. 21.1 the numerical solution of x and y is shown

for one period. For b = 1.05 Fig. 21.1a, the dense region (the so-called “ghost”)
where the system slows down marks the collision point of the saddle and the node,
i.e. (x∗, y∗) = (1, 0). For this parameter value, the system remembers the collision
point because it is close to the critical value bc. The phase velocity converges to a
constant value as soon as b becomes large enough Fig. 21.1b.

The rest of this paper is organized as follows: In Sect. 21.2, we introduce the
coupling topology and describe the main features of the observed dynamics. In
Sect. 21.3, we scan the parameter plane spanned by the bifurcation parameter and
coupling range. Section 21.4 focuses on coexistence of chimeras and other patterns
and in Sect. 21.5, we address the role of the coupling strength. Finally, we conclude
with a summary in Sect. 21.6.
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21.2 The Model

We consider N nonlocally coupled SNIPER oscillators given by (21.1) arranged on
a ring:

ẋk = xk(1 − x2
k − y2

k ) + yk(xk − b) + σ

2R

∑k+R

j=k−R

[
bxx (x j − xk) + bxy(y j − yk)

]
,

ẏk = yk(1 − x2
k − y2

k ) − xk(xk − b) + σ

2R

∑k+R

j=k−R

[
byx (x j − xk) + byy(y j − yk)

]
,

(21.2)

where k = 1, 2, . . . , N , σ > 0 is the coupling strength, and R ∈ [1, N/2] is the
number of nearest neighbors of each oscillator on either side. The limit cases R = 1
and R = N/2 correspond to nearest-neighbor and all-to-all coupling, respectively.
They can be also understood as local diffusion in one dimension and a fully connected
network, respectively. It is convenient to scale this parameter by the system size,
which defines a coupling radius r = R/N ∈ [1/N , 0.5]. The coefficients blm , where
l,m ∈ {x, y}, are given by the elements of the rotational matrix:

B =
(
bxx bxy
byx byy

)
=

(
cos φ sin φ

− sin φ cos φ

)
, (21.3)

where φ ∈ [−π, π ]. The matrix B allows for direct (xx)- and (yy)-coupling as well
as cross coupling between x and y as in [17, 19].

Figure 21.2a shows a snapshot of the variables xk at a fixed time, providing evi-
dence of a classical chimera state: One group of neighboring oscillators on the ring
is spatially coherent (shaded region) while the remaining elements form a second,
spatially incoherent group (black dots). Note that the snapshot for yk looks qualita-
tively the same. These two domains of coherent and incoherent oscillators can be
distinguished from each other through the mean phase velocity of each oscillator
ωk = 2πMk/ΔT , where Mk is the number of periods of the kth oscillator during a
sufficiently long time interval ΔT [17].

Fig. 21.2 Chimera state of nonlocally coupled SNIPER oscillators given by (21.2): a Snapshot
of states xk and b corresponding mean phase velocities ωk (shaded region coherent, white region
incoherent oscillators). Parameters: b = 9, σ = 0.1, φ = π/2 − 0.1, R = 350, and N = 1000
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Figure 21.2b shows the characteristic profile for the mean phase velocities ωk

corresponding to the chimera state of Fig. 21.2a. The oscillators in the coherent
domain (shaded region) rotate along the unit circle at a constant speed ωcoh, whereas
the incoherent oscillators (black) have different mean phase velocities ωincoh with an
extremum (in this case maximum) value denoted by ωext

incoh. A non-zero difference

Δω = ωext
incoh − ωcoh (21.4)

is a good indicator for the existence of a chimera state. Note that, for the particular
chimera state of Fig. 21.2a, it holds that ωext

incoh > ωcoh.
In the following sections, we will systematically investigate the effect of the

bifurcation parameter b as well as the coupling parameters R and σ on the chimera
state. The initial conditions for xk and yk are randomly distributed on the unit circle
and we discard transients of 1000 time units. For the mean phase velocities ωk , we
average over a time interval ΔT = 10.000.

21.3 Impact of the Bifurcation Parameter
and Coupling Range

A stability diagram for the chimera states is displayed in Fig. 21.3 where the depen-
dence of the modulus of Δω (21.4) is plotted with respect to the bifurcation parameter
b and the coupling radius r = R/N .

Starting from the values b = 9, r = 0.43 and a certain set of initial conditions as
described above, we perform a continuation on the direction of smaller r -values down

Fig. 21.3 Stability diagram in the (b, r)-plane: Modulus of the difference |Δω| between the mean
phase velocities of the coherent and incoherent oscillators (21.4) as a function of the bifurcation
parameter b and the coupling radius r . The numbers in the brackets and braces denote the number of
the (in)coherent domains of the corresponding chimera state. Brackets and braces refer to “normal”
and “flipped” ω-profile, respectively. Parameters: σ = 0.1, φ = π/2 − 0.1, and N = 1000
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Fig. 21.4 Clustered chimera states of Fig. 21.3: snapshots of the states xk at different points in the
(b, r)-plane. Panels a–c and a′, b′ correspond to “flipped” and “normal” ω-profiles, respectively.
a r = 0.35, b = 2, b r = 0.24, b = 2, c r = 0.06, b = 2, a′ r = 0.35, b = 8, b′ r = 0.18, b = 8.
Other parameters: σ = 0.1, φ = π/2 − 0.1, N = 1000

to r = 0.06 and calculate Δω for each coupling radius. For this kind of continuation,
we use the state (xk, yk) at t = ΔT obtained for one parameter set (b, r) as the initial
condition for the next simulation with slightly changed parameters; here, a slightly
reduced coupling radius r . Subsequently, for values of r ∈ [0.04, 0.46] we perform
a continuation in b-direction from b = 9 down to b = 0.1 starting again at r = 0.43.
The coupling strength is fixed at a constant value σ = 0.1.

From Fig. 21.3 it is clear that |Δω| has a non-monotonous behavior in the (b, r)-
plane. Each “bump” in the 3D surface corresponds to a different type of chimera
state associated to a different number of (in)coherent domains, marked in the square
brackets/braces. Some of these states are explicitly shown below in Fig. 21.4 for
certain combinations of b and r .

For large values of the bifurcation parameter (large “bumps” in Figs. 21.3 and
21.4a′) a classical chimera state with one group of (in)coherent oscillators exists. By
decreasing r , which physically means removing more and more long-range connec-
tions, the number of clustered (in)coherent oscillators increases. In the large “bumps”
of Fig. 21.3 these so-called “multi-chimera” states exhibit the characteristic feature
that ωext

incoh > ωcoh (i.e. Δω > 0), shown in the corresponding mean phase velocity
profiles in Fig. 21.4b′. We denote these chimera states, for which Δω > 0, by the
number of their (in)coherent domains in square brackets [1], [2], [4], and [6].

For lower values of b (small “bumps” in Figs. 21.3 and 21.4a–c), we exclu-
sively find multi-chimera states. As in the case of larger b, the number of clustered
(in)coherent oscillators increases with decreasing coupling radius r . However, there
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is a significant difference: The mean phase velocities of the incoherent oscillators
is smaller than the velocity of the coherent ones, i.e. Δω < 0. Hence, there exists
a critical value of the bifurcation parameter (found to be around b = 4), where Δω

changes its sign, resulting in a “flip” in the mean phase velocity profile. The chimera
states with a “flipped” ω-profile are denoted by the number of (in)coherent domains
in braces {4}, {6}, {8}, {10}, …, {24}.

The characteristic form of the average phase velocities profile has been used as a
criterion to distinguish chimera states in the systems of coupled oscillators. In most
systems, the coherent oscillators have smaller average phase frequencies than the
incoherent ones. However, the opposite situation where the coherent oscillators are
faster than the incoherent ones is also possible. In the system of nonlocally delay-
coupled phase oscillators, two types of chimera states were distinguished depending
on whether the effective frequencies of the incoherent oscillators are larger or smaller
than the frequencies of the coherent ones [26, 27]. The regions of stability for these
two types of chimera states depend on the time delay and strength of the coupling.
Moreover, both types of chimera states can coexist.

The “flipped” phase velocities profile was also observed in systems, which do not
consider time delay in the coupling, but has not been explained so far. The Kuramoto
model with repulsive coupling allows for multi-chimera states for which the mean
phase velocity profiles show larger average frequencies for oscillators that belong to
coherent domain [28]. Similar behavior is also observed for chimera states with one
incoherent domain in the complex Ginzburg-Landau equation with nonlocal cou-
pling [29]. In that system, however, chimera states with multiple incoherent domains
possess the usually observed mean phase velocity profiles. A flipped phase veloc-
ities profile was observed experimentally as well, in networks of electrochemical
oscillators with nonlocal coupling, where the frequencies of the oscillators from the
coherent domain are higher than the frequencies of the incoherent ones [7].

In our system, we observe direct dependence of the form of the mean phase
velocity profile on the parameter b defining the frequency of the local uncoupled
unit.

21.4 Multistability: Coexisting Chimeras and Traveling
Waves

The coexistence of different multi-chimeras, traveling waves, and completely syn-
chronized states in the phase space has been observed in many other systems of
nonlocal coupled oscillators [17, 19, 30]. Depending on the initial conditions the
stationary state can vary significantly. Such multistable solutions are also possible in
system (21.2) as demonstrated in Fig. 21.5.

A schematic representation of the identified multi-chimeras in the (b, r)-plane is
shown in Fig. 21.5a. Note that only the r -range for which chimera states are observed
is shown. Each region has a different gray scale associated to a different chimera type
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Fig. 21.5 Coexisting chimera states and traveling waves: a projection to the (b, r)-plane of
Fig. 21.3. b Up and down sweep in b-direction as marked by the dashed white line in Fig. 21.5a for
fixed r = 0.25. [2]- and {6}-chimera states coexist in the shaded area. c Up and down sweep in r -
direction as marked by the solid white line in Fig. 21.5a for fixed b = 6. [1]- and [2]-chimera states
coexist in the shaded area. d Traveling wave solution, which coexists with the {4}-chimera, for r
and b marked by the white star in Fig. 21.5a. The time is scaled by the period T0 of an uncoupled
oscillator. Other Parameters: σ = 0.1, φ = π/2 − 0.1, and N = 1000

as described in the previous section. The black regions correspond to intermittent
states, which are mainly desynchronized. Along the white lines, Fig. 21.5b, c display
the results of a continuation in b (dashed line) and r (solid line), respectively. The
continuation is performed as down sweep in b (or r ) and then repeated in the opposite
direction. In both cases we find a region where different types of chimera states
coexist.

In particular, for intermediate values of the bifurcation parameter b, there is coex-
istence of a [2]- and {6}-chimera state marked by the shaded area of Fig. 21.5b. This
area of coexisting chimera states, moreover, marks the transition between “flipped”
(Δω < 0) and “normal” (Δω > 0) mean phase velocity profile. This transition occurs
at a different and, in particular, lower value of b when the continuation is performed
in the direction of decreasing b (open dots) than when performed in the opposite
direction (filled dots), i.e. our system exhibits, apart from multistability, hysteresis
phenomena as well.

Coexisting chimera states may also be found by varying parameter r , as shown
in Fig. 21.5c: Depending on the choice of initial conditions, one may observe either
a [1]- or a [2]-chimera state (shaded area) both with Δω > 0. In both increasing
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(open dots) and decreasing r (filled dots) directions, there are deviations from the
piecewise linear behavior of Δω(r) which correspond to desynchronized states.

The observed multi-chimera states may also coexist with completely synchronized
states and traveling waves. One example of such a point in parameter space is marked
by the white star in Fig. 21.5a and the corresponding space-time pattern is shown in
Fig. 21.5d. This is a traveling wave solution of wave number 2 coexisting with a
{4}-chimera state. The time in the vertical axis is scaled by the period T0 of the
uncoupled oscillator. Multistability between traveling waves with a smooth profile
and breathing states with a periodic motion of the coherent and incoherent domains
have recently also been reported for chaotic systems with nonlocal coupling [30].

21.5 Role of the Coupling Strength

Again, we perform a parameter continuation and focus on the behavior of Δω as the
coupling strength σ increases for different multi-chimera states. Our findings show
that even at large σ the corresponding multi-chimera state is preserved. However, we
observe that, for certain values of the bifurcation parameter b and the coupling radius
r , the coupling strength may induce a spatial motion of domains of the (in)coherent
oscillators.

Figure 21.6a shows that the difference between the mean phase velocity of the
coherent and incoherent oscillators Δω linearly increases with the coupling strength,
apart for a narrow range of σ ≈ 1 where Δω deviates. In this regime, the correspond-
ing space-time plots of the [2]-chimera state reveal that the (in)coherent domains can
start to move spatially with time (see Fig. 21.6b, c for σ = 1). Note that breathing
chimera states, which are defined by a periodic motion of the coherent and incoherent
domains, coexist with stationary ones due to multistability similar to the coexisting
{4}-chimera state and traveling wave shown in Fig. 21.5. We observed stationary
chimera states for σ ≈ 1 (open dots in Fig. 21.6c). Beyond this regime of moving
patterns, our continuation returns to the [2]-chimera state which is stationary.

In general, chimera states can be stationary or can perform two types of motion
in space, in which the coherent and incoherent domains change their spatial position
in time. The first one is a chaotic motion of the position of the chimera observed in
nonlocally coupled phase oscillators. Such a motion shows a sensitive dependence
on the initial conditions and is a finite-size effect that vanishes in the thermodynamic
limit. It can be described as a Brownian motion and depends on the coupling radius,
the phase lag parameter, and the shape of the coupling function [31]. The second
type is the above described “breathing” chimera state exhibiting a periodic motion
of the coherent and incoherent domains. Breathing chimeras were first observed in
the system of two oscillator populations in which each oscillator is coupled equally
to all the others in its group, and less strongly to those in the other group [32], and
recently in the nonlocal complex Ginzburg-Landau equation in the limit of strong
coupling [29].
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Fig. 21.6 Impact of the coupling strength on the [2]-chimera state: a Δω as a function of the
coupling strength (filled dots continuation, open dots different initial conditions). b, c Space-time
plots of the xk -variables for a fixed σ = 1.0 and two different initial conditions. Other parameters:
b = 6, φ = π/2 − 0.1, R = 190, and N = 1000

Based on our numerical simulations, we conclude that in principle, breathing
chimera states exist for nonlocally coupled SNIPER models for some coupling para-
meters, but the exact parameter range needs to be determined in future studies.

21.6 Conclusions

In this work, we have verified the occurrence of clustered chimera states in a
generic model for a saddle-node bifurcation on a limit cycle representative for neural
excitability type-I. Together with recent reports on multi-chimera states in nonlo-
cally coupled FitzHugh-Nagumo [17, 18] and Hindmarsh-Rose [19] oscillators, our
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findings provide strong, additional evidence that this kind of symmetry breaking is
very relevant for applications in neuroscience.

In particular, we presented a detailed exploration of the parameter space where
chimera states occur and investigated their dependence on the proximity to the
excitability threshold and the range of the nonlocal coupling. We identified chimera
states for which the mean phase velocity has a “flipped” profile. Findings of coex-
isting chimera states and traveling waves in the parameter space verify the existence
of multistability in our model. Finally, it was shown that for increasing coupling
strength the domains of coherent oscillators become bigger and at the same time
spatial motion of the incoherent oscillators is observed.
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Chapter 22
Multiobjective Optimization and Phase
Transitions

Luís F. Seoane and Ricard Solé

Abstract Many complex systems obey to optimality conditions that are usually
not simple. Conflicting traits often interact making a Multi Objective Optimization
(MOO) approach necessary. Recent MOO research on complex systems report about
the Pareto front (optimal designs implementing the best trade-off) in a qualitative
manner. Meanwhile, research on traditional Simple Objective Optimization (SOO)
often finds phase transitions and critical points. We summarize a robust framework
that accounts for phase transitions located through SOO techniques and indicates
what MOO features resolutely lead to phase transitions. These appear determined
by the shape of the Pareto front, which at the same time is deeply related to the
thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO
from where its phase transitions can be parsimoniously derived; suggesting that the
similarities between transitions in MOO-SOO and Statistical Mechanics go beyond
mere coincidence.

22.1 Introduction

Optimization has always been a major topic in complex systems research. Optimal-
ity conditions are relevant for a wealth of biological [1–5] and other natural and
synthetic systems [6–10]. Evolution through natural selection is a main driver of
biological systems towards optimal designs [11, 12] and certain physical princi-
ples (e.g. maximum entropy or optimal diffusion structures) already introduce a bias
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towards functional extrema. Human-made systems are equally constrained through
cost-efficiency calculations—e.g. in transportation networks [9, 10].

Describing these situations requires optimal designs that often cope with inter-
acting constraints. To give a good account of these selective forces, a Pareto or
Multi Objective Optimization (MOO) approach can be useful. Let us introduce
this theory through a recent relevant example [13]. (Technical definitions follow
below.) Consider the set (Γ ) of all connected networks with a fixed number of
nodes (γ ∈ Γ , Fig. 22.1a). Among them we seek those minimizing the average
path length 〈l〉(γ ) and the number of edges ρ(γ ). These are the target functions
(T f (γ ) ≡ {t1 = 〈l〉(γ ), t2 = ρ(γ )}) of our MOO problem. A fully connected clique
minimizes the average path length, but we need to implement all possibles links,
which is costly. The minimum spanning tree has the least number of edges possible
but its average path length is quite large. Take networks γ1 and γ2 trading between
these extremes and such that 〈l〉(γ1) < 〈l〉(γ2) and ρ(γ1) < ρ(γ1). This means
that γ1 implements a better tradeoff than γ2 and we say then that γ1 dominates γ2
(Fig. 22.1c). A network (γπ ∈ Π) ⊂ Γ not dominated by any other γ ∈ Γ is Pareto
optimal. Often we cannot choose between a pair of networks because one is better
than the other with respect to a target and worst with respect to the other—i.e. they
are mutually not dominated. Because this situation is common, MOO solutions are
often not a single global optimizer, but the collection of Pareto optimal (mutually
non-dominated) networks that implement the most optimal tradeoff possible. We
name this Pareto optimal set Π ⊂ Γ .

Target functions map each network γ ∈ Γ into a point ofR
2: (〈l〉(γ ), ρ(γ )). This

plane, with the relevant traits in its axes, constitutes a morphospace in which salient
network topologies are located as a function of their morphology [14] (Fig. 22.1b).
Morphospace of other systems visualize phenotypes or designs with respect to rel-
evant properties. The Pareto optimal set is mapped onto T f (Π) and constitutes a
boundary of the morphospace (Fig. 22.1b, c), also known as the Pareto front.

Some authors are beginning to explore the consequences of Pareto optimality in
biological systems [3–5] or in relevant models such as networks [15, 16] or regula-
tory circuits [5, 17]. While they tackle relevant questions through MOO methods,
the description of these optimal designs is often a qualitative account of the elements
along the Pareto front (as in the study of a restricted morphospace—an interesting
contribution nevertheless). The same qualitative bias appears in classic MOO lit-
erature. Is a more quantitative analysis possible? Are there universal features that
reach through different MOO problems, thus uniting Pareto optimal systems despite
their differences? Through our research [18] (sketched in Sect. 22.2) we have found
a connection between MOO and statistical mechanics. Those universal features we
were looking for are phase transitions and critical points, which leave clear imprints
in the shape of the Pareto front. Some authors had exploredMOOwith Single Objec-
tive Optimization (SOO) methods—e.g. by integrating all targets linearly to define
a global energy function Ω(Λ) = ∑

k λk tk , with Λ = {λ1, . . . , λk} arbitrary para-
meters that introduce a bias towards some of the targets. Such research often finds
phase transitions and other phenomena [8, 10]. A parsimonious theory lacked as to
why some systems would present such transitions and others would not.
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To the best of our knowledge, authors researching MOO do not exploit this con-
nection with thermodynamics which, we believe, much enriches the discussion of
Pareto optimal designs. Two relevant examples from network theory: The efficiency
of different topologies has been researched for the relay of information across a
network using two distinct delivery heuristics [15]. It was made an exhaustive work
in describing network topologies and locating them in a morphospace in which dif-
ferent network features are segregated. In that same morphospace, the Pareto fronts
in [15] strongly indicate the presence of first and second order phase transitions. If
the information theoretical aspect of the diffusion of messages across the network is
considered, those transitions might become thermodynamically relevant. Similarly,
the tradeoff of topological robustness when random or targeted nodes are taken away
results in a Pareto front [16]. Under the light of our findings, second order transitions
show up in that study. Also a first order transition exists that vanishes as the average
degree of the network changes, suggesting a critical point. We further illustrate our
findings with other two examples in Sect. 22.2.1.

A theory about phase transitions must fit within thermodynamics. For us, this is
achieved due to the equivalence between the Pareto front and the Gibbs surface
[18–20], an object known to embody phase transitions in its cavities and non-
analyticities. We discuss thermodynamics in Sect. 22.3.1, not because our theory
modifies previous knowledge about it, of course, but because in showing that phase
transitions arise in thermodynamics precisely in the same way as in MOO, we place
our findings for MOO on very solid ground.

22.2 Theoretical Framework

In this section we expand the loose introduction of MOO above. More details and
methods can be found in the exhaustive literature [21–25]. We assume minimization
unless indicated otherwise.

Consider a set X of possible designs x ∈ X . In the example above, X = Γ is
made of network designs. This will be used again later, along with another example
inwhich X = A stands for all possible languages a ∈ A derived from amathematical
computational model of human communication [8]. Within X we seek those optimal
designs (xπ ∈ Π) ⊂ X that simultaneously minimize a series of target functions
(T f ≡ {t1, . . . , tK }). These tk ∈ T f map each design x ∈ X into target space
(T f (x) = {t1(x), . . . , tK (x)} ∈ R

K ), a morphospace of the system under research.
Pareto dominance is defined in this target space. Take x, z ∈ X . x dominates

z (noted x ≺ z) if tk(x) ≤ tk(z) for all k and tk ′(x) < tk ′(z) for at least one k ′.
This means that x is objectively better than z. If given two designs (x, y ∈ X ) none
dominates the other (x ⊀ y ⊀ x), we cannot chose one of them without introducing
a bias towards some of the target functions. Pareto optimality is solved by putting
choices between mutually non-dominated designs on hold.

The Pareto optimal set Π ⊂ X is such that every element z ∈ X , z /∈ Π is
dominated by some x ∈ Π while any x, y ∈ Π are mutually non-dominated. The
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projection T f (Π) conforms a (D ≤ K−1)-dimensional surface inR
K that embodies

the most optimal tradeoff possible between the targets. Moving along the front it is
impossible to improve all targets at once: an increment in at least one tk is necessary
if we wish to decrease some other tk ′ .

We sketch now the basic situations of our theoretical framework that connects the
Pareto front and thermodynamics. We refer the reader to [18] for a more exhaustive
discussion.

The simplest SOO problem that includes all MOO targets defines a linear global
energy function:

Ω(x,Λ) =
∑

k

λk tk(x), (22.1)

where Λ ≡ {λk; k = 1, ..., K } are parameters that bias the optimization towards
some of the targets. We say that (22.1) has collapsed the MOO into an SOO. A set
Λ with fixed values λk defines one single SOO, thus (22.1) (with free λk) produces
indeed a family of SOOs whose members are parameterized through Λ. We will
study: those SOOs, the constraints that the Pareto front imposes to their solutions,
and the relationships between different SOOs of the same family. The validity of
the results holds for any positive, real set Λ. For convenience, though: (i) We take
K = 2, which simplifies the graphic representations and contains the most relevant
cases. (ii) We require

∑
k λk = 1 without loss of generality. For K = 2 then λ1 = λ,

λ2 = 1 − λ, and Ω = λt1 + (1 − λ)t2. (iii) We impose λk 
= 0 ∀k, thus λ ∈ (0, 1).
Comments about fringe cases can be found in [18].

As said above, for given λk one fixed SOO problem is posed. Then, (22.1) with
fixedΩ defines equifitness surfaces noted τΛ(Ω). Each τΛ(Ω) constitutes a (K −1)-
dimensional hyperplane in target space. For K = 2 these surfaces become straight
lines (Fig. 22.1b):

τλ(Ω) ≡
{
(t1, t2)| t2 = Ω

1 − λ
− λ

1 − λ
t1

}
. (22.2)

The slope of τλ(Ω) along each possible direction t̂k in the target space only depends
on λ (here, dt2/dt1 = −λ/(1 − λ)). Different τλ(Ω) for fixed λ are parallel to each
other. The crossing of τλ(Ω) with each axis is proportional to Ω (from (22.2), the
crossings with the horizontal and vertical axes read: Ω/(1 − λ) and Ω/λ). For a
given SOO (constant λ), minimizing Ω means finding τλ(Ω̃) with Ω̃ the lowest
value possible such that τλ(Ω̃) still intersects the Pareto front (Fig. 22.1d). This is
equivalent to pushing the equifitness surfaces against the Pareto front as much as
possible thus lowering the crossings with the axes.

The SOO optimum xλ ∈ Π usually lays at the point T f (xλ) at which τλ(Ω̃) is
tangent to the front (Fig. 22.1d). The exceptions to this rule are the most interesting
cases. The solutions to different SOOs (defined by different values of λ) are found
in different points along the front. For λ ∈ (0, 1), equifitness surfaces present a
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Fig. 22.1 Phase transitions in Pareto optimal systems. a In a design space of complex networks
a set of weighted target functions defines a global energy (22.1) and renders a potential landscape
(explored in [13, 18]). b Those same targets map the design space into the target space. The set
of Pareto optimal designs is mapped onto a boundary of this morphoscpace: the Pareto front,
which represents the most optimal tradeoff between the targets. c The concept of dominance is
geometrically simple in target space. d Energy minimization for fixed λ returns a single point of the
Pareto front. Changing λ we visit different solutions. Depending on the shape of the Pareto front,
second (e) and first (f) order phase transitions arise as a function of λ

slope −λ/(1 − λ) = d ∈ (−∞, 0) (d decreases as λ increases). Consider now
differentially small modifications of λ. This allows us to drift infinitesimally slow
through the SOO family.We could expect that solutions between different SOOs will
change so gradually as well, but that is not always the case.

The front in Fig. 22.1d is convex (with respect to the optimization direction deter-
mined by λ ∈ (0, 1)). Its slope spans the whole range d ∈ (−∞, 0). This guarantees
that, aswe drift throughλ, each different SOOproblemhas one characteristic solution
laying exactly where the equifitness surface is tangent to the front. We can sample
the front smoothly, thus anything that we measure on the SOO solutions (i.e. any
order parameter) will be a smooth function of λ as well. Convex Pareto fronts whose
slope span the whole range d ∈ (−∞, 0) do not present any accident.
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Consider now the case in Fig. 22.1e. It represents a convex front whose slope spans
d ∈ (−∞, d∗ < 0). For λ ∈ (λ∗ ≡ −d∗/(1 − d∗), 1), we can pose different SOOs
whose solutions lay at different points of the convex part of the front. Varyingλwithin
this interval renders a smooth sample of SOO solutions. However, for λ ∈ (0, λ∗)we
can pose different SOOs whose solution lays exactly at the same place, as indicated
by the gray fan in Fig. 22.1c. If we measure anything about the SOO solutions,
that quantity will be constant as a function of λ for λ ∈ (0, λ∗) because we will
persistently measure a property of the same design. That same property will vary
smoothly over λ ∈ (λ∗, 1). At λ∗ this quantity will be continuous but its derivative
will not (Fig. 22.1e, inset), as in second order phase transitions. In cases like this we
say that the Pareto front ends abruptly at one of its extremes. Second order transitions
also happen if the slope of the front spans d ∈ (d∗ > −∞, 0) (i.e. if the opposite end
of the front terminates abruptly) or if d ∈ (−∞, d∗−)∪ (d∗+, 0) (i.e. the front presents
a sharp edge with an ill-defined derivative).

A cavity in the front leads to first order phase transitions.At either side of the cavity
in Fig. 22.1f we find convex stretches whose points represent different solutions for
different SOO problems posed by different λ ∈ (0, λ∗) or λ ∈ (λ∗, 1). But right at
λ = λ∗ (represented by the thick straight line of Fig. 22.1d) two solutions are SOO
optima at the same time. This is a phase coexistence phenomenon characteristic of
first order transitions. Pareto optimal solutions laying inside the cavity are bypassed
and never get to be SOO optima. If we measure an order parameter of the SOO
solutions as a function of λ (Fig. 22.1f, inset), we find a gap resulting from the abrupt
shift from one convex stretch of the front to the other at λ = λ∗.

22.2.1 Phase Transitions in Pareto Optimal Designs

As examples, we choose two problems that have recently been treated from an opti-
mization perspective. Take Complex Networks first, which are good models of a
series of natural systems such as vascular or nervous circuits [1, 2] that might be
constrained by physical costs (available material) while seeking the efficient imple-
mentation of biological function (e.g. distribution of nutrients). Some human-made
structures, such as transportation networks [9], would also benefit from optimal
design.

In [13] we consider this problem to a greater extent. We take the cost ρ(γ )

of network γ as a function of its edges (number or length) and its efficiency is
accounted for by the average path length 〈l〉(γ ), a naive proxy for how fast mes-
sages can be relayed across the network. These are the targets for minimization
(T f = {t1 ≡ ρ(γ ), t2 ≡ 〈l〉(γ )}) that lead to a Pareto front and, depending on its
shape, to phase transition and other interesting phenomena. In Fig. 22.2a we repre-
sent the front for such an MOO along with some Pareto optimal networks. In this
example the nodes are spaced over a circle and the cost of each link is proportional
to its Euclidean distance. This front ends abruptly (Fig. 22.2a, inset) and a cavity is
present (Fig. 22.2b, see [13] for discussion). This implies, correspondingly, a second
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Fig. 22.2 Pareto optimal networks with nodes spaced over a circle. A genetic algorithm was used
to approximate the Pareto front (blue crosses and thick brown curve) of networks that minimize
the average path length and the cost of their links. a The front implements a tradeoff between the
clique and the minimum spanning tree. (Inset) The clique extreme of the front ends abruptly (see
[18]) indicating a second order phase transition. b A cavity is revealed at the center of the front,
which implies a first order phase transition. c Both transitions are revealed in the plot of any order
parameter (Second order at λ∗

2 � 0.59, first order at λ∗
1 � 0.34)

and a first order transitions at λ∗
2 � 0.59 and at λ∗

1 � 0.34. These transitions can be
noted in the plot of any order parameter (Fig. 22.2c).

Our second example explores the evolutionary constraints of human language,
an unsettled challenge for the scientific community. The optimization of linguistic
structures brings together universal language properties (such as Zipf’s law) and the
presence of ambiguity, likely as a compromise between language economy and a
large ability to talk about the outer world [26]. Such a tension was proposed by Zipf
himself [6] and its mathematical formalization [8] leads to anMOOproblem that was
always treated as an SOO. Accordingly, phase transitions were readily identified but
some debate lasted concerning its nature and meaning [27]. In [8], languages a ∈ A
are modeled through a set of signals S and objects R whose associations are encoded
in a matrix a = {ai j } with ai j = 1 if signal si ∈ S names object r j ∈ R and 0
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otherwise. This binary matrix presents many ones in a row if a signal is polysemous
and many ones in a column if several words name the same object—i.e. if there are
any synonymous. Every object is recalled equally often and, if an object has many
names, a speaker chooses uniformly among themwhen necessary. Two quantities are
relevant (see [8]): (i) one entropy hH (a) associated to the uncertainty of a message
when a hearer has to decode it—i.e. what object it is meant after the speaker has
uttered a signal; and (ii) another entropy hS(a) associated to the speaker choosing
the right word to name an object among those available. A speaker might be allowed
to be vague (as in “it” referring to any object) or she might be requested to be specific
(perhaps finding the precise technicism in a scientific context).

These two entropies represent the effort made by hearers or speakers when using a
language. They act as minimization targets (T f = {t1 ≡ hH (a), t2 ≡ hS(a)}), so that
languages a ∈ A are subjected to a MOO. A subset (aπ ∈ Π) ⊂ A of object-signal
associations implements the Pareto front, the optimal tradeoff between the efforts
of a hearer and a speaker. This front is a straight line in target space (Fig. 22.3a).
Attending to the theory sketched above this is akin to a first order phase transition
(see [18]) with one end of the front being the global optimum for λ < λc and the
other extreme of the front being optimum for λ > λc. Right at λ = λc, a sudden
jump happens between these two, very distinct phases. This can be appreciated in
any order parameter as a sharp discontinuity (Fig. 22.3b, c). The extremes correspond
to (i) a language that minimizes the speaker’s efforts for λ < λc (one single signal
names every object, as in the “it” example before, so that the speaker does not need to

Fig. 22.3 Least effort languages. a Arbitrary Pareto optimal languages (blue crosses) lay on the
straight line t2 = 1 − t1. A straight front is a sign of criticality along a first order phase transition
scenario. Either phase represents respectively the best scenario for the speaker (λ < λc, where
communication is impossible unless through the context) and for the hearer (λ > λc, with high
memory demands). Only at the critical point is a wide complexity available. Any order parameter (b
mutual information between the signals and the external world; c effective vocabulary size) reflects
the phase transition
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think the right association every time) and (ii) a language that minimizes the hearer’s
effort for λ > λc, with perfect pairings between signals and objects so that there is
not any ambiguity when decoding the messages.

Communication is difficult in both extremes, either because the signals convey
little information about the objects (λ < λc, Fig. 22.3b), or because of the memory
needs to browse a vast vocabulary (λ > λc, Fig. 22.3c). Besides, we know that more
complicated structures exist in real languages. These structures can be found right
at λ = λc. A straight Pareto front is an indication of criticality [18, 28]. In such
cases, exactly at the critical value λc, the whole front is also SOO optimal. Note
that in usual first order transitions those solutions laying at the cavity are skipped
altogether, while here a plethora of them becomes available. In [27] the authors
proved that the global SOO minimizers at λ = λc consist of all possible languages
without synonyms, hence these must constitute the Pareto front. More importantly,
among these possible languages it exists one such that the frequency of the signals
obeys Zipf’s law, as in natural human languages.

22.3 Discussion

22.3.1 Thermodynamics as an MOO-SOO Problem

Thermodynamics is one of the best established branches of physics and dates back
to more than two centuries ago. In its modern form—as statistical mechanics—it
allows us to make precise predictions about diverse macroscopic physical phenom-
ena. Its applications extend beyond physics, as complex systems are increasingly
being investigated through maximum entropy models [29, 30]. In [18] we rewrite
thermodynamics as anMOO-SOOproblem, not to suggest that our theoretical frame-
work modifies it in any way. Rather the opposite: By checking that our framework
reproduces a robust physical theory, we strand our findings in a more solid ground.

Phase transitions in complex systems often raise heated debate: being strict, phase
transitions are defined for thermodynamics alone, through partition functions, and
involve fluctuations that compel us to take a thermodynamic limit. Little can be done
against such epistemological stand. This is yet another reason why we undertake the
task of writing thermodynamics as anMOO-SOO. Such a formalization of statistical
mechanics reproduces all the results concerning phase transitions in the exact same
way that transitions arise in other MOO-SOO scenarios. We suggest and support that
the phase transition phenomenology arising in other MOO-SOO systems is more
than a qualitative similarity.

The argument is not repeated here because of space constraints, but the idea is
to show that the independent, simultaneous minimization of internal energy and
maximization of entropy leads to a Pareto front subjected to the phenomenology
found in Sect. 22.2. In thermodynamics we deal with given physical systems that
cannot be modified. We test probabilistic descriptions that tell us how likely it is to
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find the system in each part of its phase space.Wewonder which of these descriptions
present a lower internal energy and larger entropy. Thus our design space X is the
set of all possible probabilistic descriptions of the system under research. From that
optimization we obtain a Pareto front whose shape (through cavities) and differential
geometry (through sharp edges) imply phase transitions if the targets (t1 ≡ U ,
t2 ≡ S) were collapsed into an SOO problem. But that is precisely what happens
in equilibrium thermodynamics through the minimization of the free energy F =
U − T S [20]. We identify Ω ≡ F , λ1 ≡ 1, and λ2 ≡ −T , and the theory exposed
above applies with transitions at singular temperature values.

We insist that the optimization operates upon probabilistic descriptions of the
thermodynamic species—while the shape of the front is determined by the proper-
ties of the physical system. It might be interesting to segregate what thermodynamic
phenomenology happens because thermodynamic systems are probabilistic ensem-
bles (in this regard they are unlike Pareto optimal networks or least effort languages,
as much as networks and languages are unlike each other) and what phenomenol-
ogy arises because of the shape of a Pareto front (that would yield the same phe-
nomenology irrespective of the kind of designs considered—were they networks or
languages—as long as the front had the same shape).

This interpretation of statistical mechanics systems is illustrated with two very
simple examples with first and second order transitions and one critical point in
[18]. As stated above, this is not to prove new thermodynamic results, but to provide
more solid basis for this theory regarding MOO-SOO situations. Indeed, the role of
cavities in first order phase transitions dates back to Gibbs [19, 20], whose Gibbs
surface represented the states of a thermodynamic species. That surface is associated
to the microcanonical ensemble [18] and may be concave or convex. Its convex hull
is associated to the canonical ensemble (hence to equilibrium at given temperature
through free energy minimization), which is always convex. At cavities in the Gibbs
surface, the description of both ensembles must differ (as noted by the theory of
ensemble inequivalence [31]) and first order transitions occur.

22.3.2 Closing Remarks

With our recent findings [18] we close a gap between theMOO literature, research on
SOO tradeoffs, and statistical mechanics. On the one hand, standard MOO analysis
does not take into account phenomena like phase transitions or criticality which,
we believe, add up to our knowledge and enrich the description of Pareto optimal
designs. On the other hand, analyses of the Pareto front are often qualitative or based
on subjective appreciations of its shape. The formalismdeveloped in Sect. 22.2 allows
us to locate quantitatively very relevant details of the systems under research. These
features shall persist under transformations of the targets and, if not, the qualitative
description would tell us how do these phenomena disappear. Furthermore, a solid
connection to thermodynamics has been established. We are pretty confident of the
immutable, lasting nature of thermodynamics; thus we can guess that, through the
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Pareto formalism, we have located broad features that unite the description of diverse
MOO problems.

A prominent field for MOO application is biology [3–5]. Thermodynamic-like
phenomenology is not discussed in these references, but the stage looks great: Is
there a place for true MOO in biology? Against this, natural selection concerns itself
with fitness maximization alone. This feels like an exciting MOO-SOO picture,
but we cannot guarantee linear global functions as in (22.1). Beyond linearity, new
phenomenology might be uncovered.

Finally, an important, though conceptually difficult issue was left aside in [18]
and only incidentally dealt with here. How do critical systems look like under an
MOO perspective? Can we recover the astounding phenomena of criticality? This is
studied in [28]. Other theoretical aspects of MOO remain open to research.
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Chapter 23
Power-Laws as Statistical Mixtures

M. Patriarca, E. Heinsalu, L. Marzola, A. Chakraborti
and K. Kaski

Abstract Many complex systems are characterized by power-law distributions. In
this article, we show that for various examples of power-law distributions, including
the two probably most popular ones, the Pareto law for the wealth distribution and
Zipf’s law for the occurrence frequency of words in a written text, the power-law
tails of the probability distributions can be decomposed into a statistical mixture of
canonical equilibrium probability densities of the subsystems. While the interacting
units or subsystems have canonical distributions at equilibrium, as predicted by
canonical statistical mechanics, the heterogeneity of the shapes of their distributions
leads to the appearance of a power-law.
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23.1 Introduction

Power-laws are characteristic to many complex systems. Due to their scaling prop-
erties, they are signatures of some underlying processes of self-organization. The
first examples of power-law distributions were encountered in fields far from the
targets of traditional physics research, however, nowadays considered standard top-
ics in complex systems theory, e.g., the Pareto law of wealth distribution [9] and
Zipf’s law for the occurrence frequency of words in a written text [15]. The origin
of power-law tails and their microscopic interpretation is still an open question and
various mechanisms responsible for their appearance have been proposed. Some of
them, such as the extensive generalizations of the Boltzmann entropy [24] or alter-
native forms of the Gibbs distribution [23], suggest that the basic assumptions of
statistical mechanics should be reformulated.

The goal of the present contribution is to illustrate how the appearance of power-
law distributions in some specific complex systems can be explained through the
diversity of the components of the system under study within the framework of
canonical statistical mechanics. In such systems, the power-law tail in the equilibrium
distribution f (x) of the relevant variable x is the outcome of the superposition of
different bell-shaped equilibrium distributions of the subsystems. Far from being a
strictly technical mechanism or a phenomenon arising in some rare circumstance, it
is a general effect taking place in many heterogeneous complex systems, recently
identified. Such systems can be characterized by a true equilibrium state which is
usually described by a canonical Boltzmann-Gibbs-type distribution.

The perspective suggested in the present paper simplifies and unifies the under-
standing of the power-law tails appearing in the distributions of many systems as a
diversity-induced phenomenon.

23.2 Statistical Formulation

The aim of this section is to provide a general theoretical framework for describing the
heterogeneity-induced appearance of a power-law tail in the probability distribution.
This is done in a simple and general way relying on well-known concepts of statistics
and statistical mechanics.

In the general problem considered here, one is interested in the probability distri-
bution function f (x) of a random variable x of a system S composed of N different
types of units that can be correspondingly be grouped into N disjoint subsystems Si ,
i = 1, . . . , N , so that S = ∪N

i=1Si .
From an operative point of view, the probability density f (x) can be constructed

by measuring the frequency of occurrence of the value x (independently of the type
i of the subsystem observed) in the limit of a large number of measurements. The
partial probability densities fi (x) can be constructed in a similar way recording in
each measurement both the occurrence frequency x and the subsystem type i . The
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distribution f (x) can be expressed as the weighted sum of the partial distributions
fi (x), i.e., f (x) = ∑

i fi (x) pi , where each partial probability density fi (x) is
assumed to be normalized,

∫
dx f (x) = 1, and the statistical weight pi represents

the fraction of units of type i present in the system, i.e., the probability to pick up in
a measurement a unit of the i-th type.

From the point of view of probability theory, the global probability density f (x)
is interpreted in terms of conditional probabilities, through the law of total probabil-
ity [11], by rewriting it as

f (x) =
∑

i

fi (x) pi ≡
∑

i

P(x |i)P(i) . (23.1)

Here P(i) ≡ pi is the probability to extract a unit belonging to the subpopulation
Si and P(x |i) ≡ fi (x) is the conditional probability that, if the unit belongs to
subpopulation Si , the value x is found for the variable x . For the sake of clarity,
in the examples considered here, the partition of the system S is fixed, i.e., the
populations Ni of each subset Si are constant in time. Therefore, the set of fixed
parameters {pi } defines the heterogeneity of the total system S, i.e., the level and
type of quenched disorder.

Equation (23.1) is the reference formula in the following, since it links directly
the total probability distribution f (x) to the diversity of the system defined by the
{pi }. Notice that in the most general case one cannot make any prediction on the total
distribution f (x) if no further information is available, apart from the relevant fact that
the total equilibrium distribution will have a shape different from the canonical one,
even if the partial distributions of the subsystems fi (x) do. Whether the statistical
mixture in (23.1) will produce a distribution with a power-law or not depends on
the details of the system considered, i.e., on (a) the form of the equilibrium partial
distributions fi (x) and (b) the heterogeneity of the system as defined by the pi ’s.
Section 23.3 on the Pareto law and (23.5) on the heterogeneous gas present two
solvable models in which the partial distributions fi (x) are known and the weight
distribution {pi } are input parameters—in this situation the necessary conditions for
the appearance of a power-law tail can be formulated exactly. Instead, in Sect. 23.4
about the Zipf law, a similar statistical decomposition of a power-law is presented in
a phenomenological way based on data.

The mechanism outlined above, describing how the appearance of a power-law
can be interpreted as a heterogeneity-induced effect, has similarities with the so-
called super-statistics introduced in 2003 by Beck and Cohen in the framework of
non-equilibrium statistical mechanics [1, 2]. In super-statistics, a power-law can arise
from a compound distribution, expressed in a way similar to (23.1) where, however,
the sum represents a randomization procedure [11] of the probability distribution
function of a single system over the values of some system parameter(s) varying
slowly and randomly on a long time scale. In the present paper, we study what can
be considered to be the complementary (noise-less) case in which the appearance of
a power-law is instead due to quenched disorder. This mechanism was proposed in
2005 [9] by various groups [3, 7, 19] in the framework of kinetic wealth-exchange
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models, as a possible explanation of the Pareto power-law in economics. The formal
similarity with super-statistics suggests, as a natural generalization, a mechanism of
power-law formation involving both stochastic fluctuations of some external para-
meters as well as some degree of internal heterogeneity. However, this topic will be
considered elsewhere.

23.3 Kinetic Exchange Models

The Pareto law of wealth distribution is probably the first example of power-law
distributions reported. An experimentally-based interpretation of it as a mixture of
distributions associated to, e.g., categories of companies with different features is still
missing. However, such an interpretation is suggested by some theoretical models
such as the kinetic wealth exchange models (KWEM) [8, 20, 22], which mimic in a
very simplified way the exchanges of wealth in an economy system.

Let us consider a heterogeneous KWEM, in which M agents i = 1, . . . , M are
assigned initially a certain wealth xi and then begin to exchange wealth through
pair-wise interactions. At each time step two agents i, j are extracted randomly and
their wealths xi , x j updated depending on the saving parameters λi , λ j , representing
the minimum fractions of wealth saved (see [21, 22] for details),

x ′
i = λi xi + ε[(1 − λi )xi + (1 − λ j )x j ] ,

x ′
j = λ j x j − (1 − ε)[(1 − λi )xi + (1 − λ j )x j ] . (23.2)

Here x ′
i , x

′
j are the wealths after a trade and ε is a uniform random number in (0, 1).

The total wealth is conserved during each transaction, xi+x j = x ′
i+x ′

j , just as energy
in molecular collisions. This analogy, that was already noticed by Mandelbrot [14],
is in fact quite close. In the homogeneous version of KWEMs, i.e. when λk ≡ λ

[4], the dynamics is equivalent to that of a perfect gas in an effective number N
of dimensions: the equilibrium wealth distribution f (x) is the energy distribution
of a perfect gas in a number of dimensions N (λ)/2 = 1 + 3λ/(1 − λ), i.e., a
Γ -distribution γN/2(x) of order N (λ)/2 [18]. This results has been demonstrated
to be exact for some particular KWEMs by Katriel, see [13] for details. In fact, by
inverting N (λ), one obtains an average fraction of wealth exchanged during one trade
1−λ∝1/N (N �1), similarly to the energy exchanges during molecular collisions of
a N -dimensional gas [5, 21]. Then a heterogeneous system composed of agents with
different λi is analogous to a dimensionally heterogeneous system. The relevance
of the heterogeneous KWEM with λi distributed in the interval (0, 1) is in the fact
that they relax toward realistic wealth distributions f (x) with a Pareto tail, as it was
shown numerically and analytically in [8]. In the case of a uniform distribution for the
saving parameters, φ(λ) = 1 if λ ∈ (0, 1) and φ(λ) = 0 otherwise, setting n = N/2,
the dimension density has a power-law ∼ 1/n2, P(n) = φ(λ)dλ/dn = 3/(n + 2)2

(n≥1).
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Fig. 23.1 The power-law of
the wealth distribution f (x)
for agents with uniformly
distributed λi in the interval
(0,1) is decomposed into
partial distributions fi (x).
Above Decomposition of
f (x) into ten partial
distributions fi (x) of agents
with λ ∈ (0, 0.1), (0.1, 0.2)

. . . (0.9, 1). Bottom The
rightmost distribution with
λ ∈ (0.9, 1) on the upper
plot, still exhibiting a
power-law, is here further
decomposed into ten partial
distributions of agents with
λ ∈ (0.9, 0.91), (0.91, 0.92)

. . . (0.99, 1); again the
power-law only remains in
the rightmost distribution
which could in turn be
further decomposed

The way in which the single Γ -distributions of the subsystems comply to generate
a power-law distribution is illustrated in Fig. 23.1, taken from [16, 19].

23.4 Zipf’s Law

In this section, we consider the other most famous power-law distribution, which is
Zipf’s law of occurrence frequency of the words in a written text. Zipf originally
demonstrated the presence of a power-law in the rank plot of the words appearing in
a text. Since the rank plot is closely related to the cumulative distribution function,
a power-law in the rank plot implies a power-law (with a different exponent) in
the cumulative as well as in the probability distribution function. In the present
study, the probability function or histograms like the ones shown in Fig. 23.2 are
preferable (to rank plots) since they are more suited for a decomposition of the
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Fig. 23.2 Top Histogram of
word occurrence frequencies
(red continuous line) of the
text considered (see
Appendix for details) and
comparison with the
power-law f ∝ x−1.4

(dotted blue line). Bottom
Comparison of the total
probability distribution
function with a few partial
distributions corresponding
to some single words (rank
shown in parentheses, see
text for details)
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power-law distribution into a statistical mixture of localized probability distributions
or histograms, as done in the example discussed in the previous section.

The text considered here was obtained by merging a collection of novels (see
Appendix for details). In Fig. 23.2-top, the histogram of the occurrence frequency of
words through the whole text is depicted. The histogram shown, that is proportional
to the corresponding probability distribution, exhibits a power-law f ∝ x−1.4.

For the sake of simplicity, our starting point is the partition of the text into words,
i.e., words are considered as the basic units of the text, as in Zipf’s approach. We
investigate the behavior of single words and inquiry about the type of their frequency
distribution in the text. That is, we ask what is the probability distribution fi (x)
that the single i-th word has an occurrence frequency x in a text with some given
properties. When trying to do this, however, one immediately realizes that while the
rank plot or the occurrence-frequency distribution of words can also be defined for
a single text, for the definition of the occurrence frequency probability distribution
fi (x) of the single i-th word the counting of the occurrence frequency through many
different texts is needed—for each word a rank plot only provides a single number
equal to the occurrence frequency in that text. In order to make a sensible comparison
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between the single-word distributions fi (x), we have to consider some other text
properties.

First, the word occurrence frequency presents large topical variations when going
from one text to another one [10, 12]. In order to minimize possible issues related
to this variability we analyzed a single text obtained by merging novels of the same
genre (as detailed in the Appendix).

Furthermore, the number of different words NW in a given text depends on
(and rescales with) the text length measured by the total number of words N , i.e.,
Heap’s law holds, stating that NW ∝ Nα , with typical values of α in the range
α ∈ (0.5, 1) [12]. For this reason, in order to construct the occurrence frequency
distributions fi (x), we used texts with the same (fixed) length N constructed by
dividing the total text into parts containing the same number NW of words. There-
fore, the following results do not refer to the original text but to an effective (shorter)
sample text long NW words. We have chosen NW = 3000 which is a good compro-
mise between the length of a single part and the total number of parts. Measuring
the occurrence frequencies of each word i , the corresponding occurrence frequency
distribution fi (x) was computed, providing the (relative) probability to find the i-th
word in one of the text parts.

Results are presented in Fig. 23.2-bottom. While the histograms of the occurrence
frequency of any word (black continuous line) presents a power-law tail, all the
distribution of single words present a localized shape. Many words, especially those
with similar rank, have histograms similar to each other and for reason of clarity only
the distributions of a few words have been plotted (the rank is shown in parentheses).
This shows that a power-law tail in the occurrence-frequency distribution emerges
only as a collective phenomenon due to the interplay of the various (different) words
composing a text, when the histograms of single words are summed up building the
total distribution.

Finally, it is to be noticed that we have not processed the text before the analysis
in order to remove e.g. prepositions, article, and other non-topical words, keeping all
the words for the analysis. In fact, we are interested in the Zipf’s law encountered in
a general text—the aim of the example above was to carry out a statistical analysis
of the original text to show that the properties discussed are general and valid also
for standard written text. The detailed comparison with different types of processed
text will be done elsewhere.

23.5 A Mechanical Model: An Assembly of Heterogeneous
Polymers

As another prototypical example of a system presenting a diversity-induced power-
law distribution, we consider a theoretical model system made up of an assembly of
harmonic polymers. Such a model is simple and exactly solvable, yet it is general in
the sense that the inter-particle harmonic potentials can be thought to describe the
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Fig. 23.3 A prototypical
model of system presenting a
diversity-induced power-law
tail in the (kinetic as well as
potential) energy distribution
is an assembly of harmonic
polymers with different
numbers of monomers, see
text for details

small displacements of the normal modes with respect to the equilibrium configura-
tion of a more general nonlinear system. We assume that polymers consist of different
numbers of monomers, i.e., they have different numbers of degrees of freedom, see
Fig. 23.3, and study the potential energy distribution (similar considerations hold also
for the distribution of kinetic energy or velocity). Notice that such a model can also
be used to study a general system composed of subsystems with different dimensions
or numbers of degrees of freedom. The hypothesis of non-interacting polymers is
made, in the same spirit of the statistical mechanical treatment of a perfect gas, even
if a weak interaction is understood to be present in order to bring the system toward
thermal equilibrium, implying that each polymer undergoes independent statistical
fluctuations.

It is convenient to start from the homogeneous system, composed of identical
subsystems with N harmonic degrees of freedom. Using suitably rescaled coordinates
q = {qi } = {q1, q2, . . . , qN }, the energy function can be written in the form x(q) =
(q2

1 + · · · + q2
N )/2. The equilibrium energy distribution coincides with the standard

Gibbs energy distribution of an N -dimensional harmonic oscillator. After integrating
out the angular variables in the space q, it reduces to a Γ -function of order n =
N/2 [18],

fn(x) = β γn(βx) ≡ β

Γ (n)
(βx)n−1 exp(−βx) , n = N/2 ; (23.3)

β is the inverse temperature. The same result is obtained through a variational princi-
ple from the Boltzmann entropy that after integration of the (N−1) angular variables
becomes

Sn[ fn] =
+∞∫

0

dx fn(x)

{
ln

[
f (x)

σ2n xn−1

]
+ μ + βx

}
. (23.4)

Where σN is the hyper-surface of a unitary N -dimensional sphere; μ, β are Lagrange
multipliers determined by the constraints on the conservation of the total number
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of units and energy, respectively; the power xn−1 comes from the angular inte-
gration. The result of the variation is the Γ -distribution in (23.3), if one defines
β−1 = 2〈x〉/N = 〈x〉/n as the temperature, in agreement with the equipartition
theorem [17].

In the heterogeneous case, the statistical independence of the polymers allows one
to write the total entropy of the heterogeneous system as the sum of the entropies of
the different units,

S[{ fn}]=
∫
dn P(n)

+∞∫

0

dx fn(x)

{
ln

[
fn(x)

σ2n xn−1

]
+μn+βx

}
, (23.5)

where the fractions P(n) of units with dimension N = 2n have been introduced, with∑
n P(n) = 1. Notice that different Lagrange multipliers μn have been used for each

n since the fractions P(n) of polymers with 2n degrees of freedom are conserved
separately, but a single temperature parameter β is present as the total energy is
conserved. The equilibrium probability density obtained is again the Γ -distribution
fn(x) in (23.3), as in the homogeneous case, but the corresponding β is now given
by a generalization of the equipartition theorem to a dimensionally heterogeneous
system,

〈x〉 =
∫

dn

∞∫

0

dx fn(x) x = 〈N 〉
2β

. (23.6)

Here 〈N 〉 = 2〈n〉 = 2
∫
dnP(n)n is the average dimension (a finite value of 〈N 〉 and

of the average energy 〈x〉 are obtained when the dimension density P(n) has a finite
cutoff or decreases faster than 1/n2 for n�1). The probability of measuring a value
x of energy independently of the unit type is given by the statistical mixture [11]

f (x) =
∫
dn P(n) fn(x) =

∫
dn

P(n)β

Γ (n)
(βx)n−1 exp(−βx). (23.7)

While the distributions fn(x) have exponential tails, the asymptotic shape of the
function f (x) can be in general very different. By making a saddle-point approxi-
mation it is possible to show that f (x) coincides with the dimension density P(n)

apart from a scaling factor (needed also for dimensional reasons), i.e.,

f (x�β−1) ≈ βP(βx) , (23.8)

if P(n) decreases fast enough with increasing n. Some examples are shown in
Fig. 23.4, taken from [6]. For a detailed demonstration of (23.8), see [6]. The partic-
ular and relevant result here is that if P(n) has a power-law tail (as a function of n)
then also f (x) have a power-law tail in x (with the same exponent).
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Fig. 23.4 Distribution f (x)
in (23.7) with
P(n) = α/n1+α (n ≥ 1),
P(n) = 0 otherwise, for
α = 1 (red), α = 2 (green).
Continuous lines Numerical
integration of (23.7).
Triangles Saddle point
approximation. Circles
Small-x limit. See text for
details

23.6 Conclusions

We have discussed and tried to justify the hypothesis that the origin of power-law
distributions in many complex systems is in the heterogeneity of their constituent
units, i.e., power-law tails emerge as a collective diversity-induced effect. For con-
straints of space we limited ourselves to two famous examples of power-law tailed
distributions, namely the Pareto law of wealth distributions and Zipf’s law for the
occurrence frequency of words in a written text. We provided theoretical reasons
in the first case and phenomenological ones in the second case that the respective
power-law distribution can be decomposed into a statistical mixture of localized dis-
tributions. As a further theoretical model which may hopefully find new applications,
we have also illustrated an elementary and exactly solvable model of mechanical sys-
tem for which canonical statistical mechanics based on the Gibbs distribution or the
Boltzmann entropy predicts a power-law tail in the energy distribution.

While much remains to be done for confirming and understanding the basis of the
results obtained and their consequences, this exploratory work suggests that diversity
may represent the right track toward a deeper understanding of many instances of
power-law distributions.

The mechanism discussed in this contribution is based on the presence of a
quenched heterogeneity in the system. We noticed how such a mechanism is com-
plementary with respect to the super-statistics introduced by Beck and Cohen [2]
that is mostly based on the random, slow fluctuations in time of some parameters of
a single unit. The relation and possible merging of these different mechanisms will
be discussed in detail elsewhere.
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Appendix: Text analyzed

We constructed the text to be analyzed by merging in a single text file all the crime
stories available on-line from the Gutenberg Project (www.gutenberg.org), mostly
novels, by e.g. Christie, Collins, Davies, etc. The final file was a plain text file with
a size of about 27 MB, containing about 50 millions words of which about 57,000
words were different from each other.

In order to extract the probability distribution of the occurrence frequency, we
constructed a set of texts of equal size by dividing the original file into parts, each
one containing a number NW = 3,000 of words. The last part containing less than
NW words was neglected.
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Chapter 24
A Network-Based Analysis of the European
Emission Market

Andreas Karpf, Antoine Mandel and Stefano Battiston

Abstract This paper analyses the European Emission Trading System (ETS) from
a network perspective. It is shown that the network exhibits a strong core-periphery
structure also reflected in the network formation process. Due to a lack of centralized
market places, operators of installationswhich fall under theEUETS regulations have
to resort to local networks or financial intermediaries if they want to participate in the
market. This undermines the central idea of the ETS to exploit marginal abatement
costs.

24.1 The European Emission Trading System

24.1.1 Background

The Kyoto Protocol (KP) [1] from 1998 extended the United Nations Framework
Convention on Climate Change (UNFFCCC) [2] negotiated in 1992 during the UN
Conference on Environment and Development by defining targets for the reduction
of green house gas (GHG) emissions into the atmosphere. These targets follow the
principle of “common but differentiated responsibilities” as outlined in Article 3 of
the KP [1]. Accommodating the responsibility of industrialized countries for the
contemporary levels of GHG emissions, these targets were determined to be binding
for the group of developed signatory states referred to as the Annex 1 parties. The
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protocol was signed and ratified by 191 parties of which one was the European
Union.1,2

The Annex 1 parties comprise 37 industrialized countries of which 28 are now
members of the European Union. The legally binding commitment of the signatory
countries concerns the most relevant greenhouse gases and gas groups.3 The targets
themselves are however quantified inCO2 equivalents with regard to global warming
potential and as percentages of the emissions in a base year, which, for the majority
of the Annex 1 parties, is 1990. The European Union as a whole committed itself to
collectively reduceCO2 emissions by 8%until 2012 and 20%until 2020with respect
to base year emissions. Under the premise of “common but shared responsibilities”
member state specific reduction goals were defined, which take into account the
different levels of economic development within the union, the respective structures
of the national economies as well as early measures to reduce GHG emissions.

To keep the costs of limiting CO2 emissions as small as possible for the sig-
natory countries the KP allows for so called “flexible mechanisms” which serve as
an alternative to traditional approaches like carbon taxes or compensating measures
as reforestation (Art. 3.3) [1]. These mechanisms comprise International Emission
Trading (IET), Clean Development Mechanisms (CDM) [1, Art.12] and Joint Imple-
mentation (JI) (Art. 6) [1].

EmissionTradingThe concept of IETplays the central role of flexible emission reduc-
tion instruments. It exploits differing marginal abatement costs (MAC)4 between
countries, firms, industries or even between different branches within a company
[4]. The system bases on a “cap-and-trade” principle in which permitted emission
units, so called allowance units,5 are allocated to emitters of green house gases. These
assigned allowance units (AAU) normally depend on historical yearly green house
gas emission data and are capped with regard to committed emission reduction tar-
gets. Thereby allowance units become a scarce goodwhich participants can exchange
in a market context. Periodically market participants which are legally committed
to reduce their emissions have to surrender the amount of allowance units in their
possession. These are subsequently compared with the realized emissions which are
permanently recorded at the respective installations to check if the emission reduc-
tion targets were met. Installations can be factories, power plants or even aircrafts.
If the available allowance units fall short of the realized emissions the obliged mar-
ket participants have to pay a fine proportional to the allowance units by which the
emission reduction obligations were missed.

Clean Development Mechanism and Joint Implementation The system of emission
trading is complimented by the CDM and the JI mechanism. In contrast to emission

1Council Decision of 15 December 1993 [3].
2Noteworthy exceptions are the United States which signed but never ratified the KP and finally
withdrew in 2001 and Canada which quit the treaty in 2011.
3Carbon dioxide, methane, nitrous oxide, sulphur hexafluoride, hydrofluorocarbons and perfluoro-
carbons.
4This is the marginal cost of reducing green house gas emissions by one unit.
5One emission allowance unit typically corresponds to one metric ton of CO2-equivalent.
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trading thesemechanisms are project based. Predicated on the assumption that actions
which lead to the reduction of GHG eventually have positive effects in slowing down
global warming nomatter where on the planet they are conducted, Annex 1 countries
can engage in GHG emission reducing projects abroad in order to earn emission
reduction units (ERU) which in turn can be traded on the emission market or used
when surrendering one’s allowances at the end of a compliance period. While the JI
mechanism is supposed to foster cooperation between Annex 1 countries6 to meet
their GHG reduction targets, the CDM aims to stimulate GHG reducing investments
and projects in non-Annex 1 countries (mainly developing countries) to promote
sustainable development (Art. 12) [1] and to help Annex 1 countries to meet their
emission reduction commitments with the lowest possible costs.

24.1.2 The Adoption of European Emission Trading System
and Its Functioning

Since Japan rejected all attempts to give the UN the legal instruments to enforce the
emission reduction commitments in the KP and the United States withdrew from the
protocol in 2001 it became soon clear that the EU had to find an internal solution if it
wanted to stick to the GHG reduction targets to which it committed itself in the KP
[6]. After an understanding was found between member states to differentiate the
GHG reduction targets with regard to the level of economic development in the form
of the “burden sharing agreement” (BSA) [7], the initial resistance with regard to
the implementation of a European emission trading scheme (ETS) began to crumble.
The European Union emission trading scheme was finally legally implemented by
directive 2003/87/EC [8]7 and subsequently adopted into national laws.

The ETS covers factories, power stations, and other installations with a net heat
excess of 20MW in emission intensive industries responsible for roughly 50% of the
GHG emissions in the concerned 31 countries (EU plus Switzerland, Norway and
Liechtenstein). With directive 2008/101/EC the aviation industry was also included
into the ETS. The emission allowance units (EUA) are allocated to each of the
approximately 11,000 installations in February each year on a national level in line
with the respective BSA and KP reduction targets and have to be surrendered by the
operator holding accounts (OPA) at latest end ofApril in the subsequent year. The fine
for each EUA after surrendering that falls short of the verified emissions amounts to
EUR 100. Operators are allowed to bank and respectively borrow allowances within
a trading period. It was however not permitted to carry allowances from Pilot Phase I
(2005–2007) to Phase II (2008–2012), and from there to Phase III (2013–2020) [9].

6The majority of currently ongoing Joint Implementation projects are situated in transition
economies with Annex 1 obligations like the Russian Federation and Ukraine [5].
7The directive was later amended by Directive 2004/101/EC, Directive 2008/101/EC, Regulation
(EC) No 219/2009 and Directive 2009/29/EC.
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The ETS is not only open to OHAs, but also private entities which don’t fall under
the ETS regulation are allowed against a fee to trade on the emission market. These
entities are referred to as private holding accounts (PHA). EUAs can be traded bilat-
erally, over the counter (OTC) via a broker or on one of Europe’s climate exchange
markets like the European Climate Exchange (ECX), the European Energy Exchange
AG (EEX) etc. For the time for which the transaction data set is available the most
common form of transactions was OTC.

As prescribed by 2003/87/EC and 2009/29/EC every transaction in the ETS has
to be recorded in some sort of accounting system (registries) and is accessible to
the public with an embargo of three years. At the beginning these registries were
organized on a national level. Since 2008 this function is resumed by a central
Community Independent Transaction Log (CITL) accessible online under http://ec.
europa.eu/environment/ets/. The transaction data from the CITL form the base of
our network-based analysis of the EU ETS.

24.2 The Data Set

The transaction data set containing the exact time stamp of the transaction and its vol-
ume as well as information about the accounts active in the ETS and data with regard
to the allowance allocation, the surrendering of the allowances as well as the verified
emissions were scraped from the CITL. The raw data set contains approximately
520,000 transactions to which we added spot price information downloaded from
Bloomberg as well as data about the ownership structure and the type of companies
in the ETS from the “Ownership Links and Enhanced EUTL Dataset” [10]. In our
analysis we concentrate only on the market movements which are relevant for the
price formation of the EUA certificates (transaction types 3-0, 3-21 and 10-0). Trans-
actions connected to the administration of the ETS as for the allowance issuance,
retirement, cancellation, surrender, allocation, and correction were discarded. The
remaining 364,810 transactions are analyzed in what follows.

24.3 Methodology and Research Questions

A network based analysis of the European Emission market is performed. A network
based on the transaction data set is therefore constructed. Thereby agents active in the
emission market are regarded as vertices. These vertices are connected by directed
edges in the form of transactions from the seller (the source vertex) to the buyer (the
target vertex). The edges are weighted by the volume of EUAs transferred in the
respective transaction. Figure24.1 shows a plot of the resulting network graph.

The aim is to investigate the connection between the network structure and the
functioning of the market. In this context the following research questions are to
be addressed: (1) Is the organization of the market reflected in the structure of the

http://ec.europa.eu/environment/ets/
http://ec.europa.eu/environment/ets/
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Fig. 24.1 The CO2 trading
network (CDM (green),
finance (red), foundation
(yellow), government
(orange), industry (blue))

network? (2)Which factors are relevant for the matching process on the EU ETS? (3)
Is the network structure supporting the idea of emissionmarkets to exploit differences
in marginal abatement costs? (4) Does the position of an agent within the network
have an implication for its ability to create revenues out of a trade?

24.4 The Network Structure of the European Emission
Markets

FollowingLi et al. [11] some testswith regard to themarket structurewere conducted.
Figure24.2 plots the in- and out-degrees8 versus the cliquishness9 of agents. The
downward sloping cloud implies a hierarchy in the market with a strong core of
highly connected nodes and clusters of nodes on the periphery. This phenomenon
can also be observed in the plot of the emission market network in Fig. 24.1.

The core periphery structure of the trading network is also observable when look-
ing at the degree distribution directly (see Fig. 24.3): The distributions of the in-,
out- and total-degrees follow a power law i.e. there are agents whose in-, out- or total

8The in- and out-degrees of each agent: this means the active and passive connectedness of agents.
9Be the k-core of graph a maximal subgraph in which each vertex has at least degree k. The
cliquishness or coreness of a vertex is then k if it belongs to the k-core but not to the (k+1)-core.
[12].



288 A. Karpf et al.

Fig. 24.2 In-/out-degree
versus cliquishness
(in-degree: blue; out-degree:
red)

1 2 5 10 20 50 100 200 500

5e
−

04
5e

−
03

5e
−

02
5e

−
01

Degree

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

degrees strongly exceed the average. The exponents of the power-law distributions
fitted to the in-, out- and total-degree-distribution are 2.25, 2.29 and 2.21 respec-
tively. A conducted Kolmogorov-Smirnov test on the degree distributions resulted in
p-values of 0.76, 0.97 and 0.96 respectively, indicating that the hypothesis that the
original data could have been drawn from the fitted power-law distributions cannot
be rejected in several cases. The observed network thus falls into the category of
scale free networks.

We further computed the density distribution of multiple network statistics (in-,
out-degree as well as eigenvector centrality10) as well as for profits of companies in
the European emission market combined with informations about their type.

In this case the core-periphery structure is observable in thewave-like forms of the
density plots displayed in Fig. 24.4. This structure is also reflected in the network plot
in Fig. 24.1 which has a highly connected center which is dominated by nodes from
the finance sector (red) surrounded by concentric circles of nodes from the industries
(OHA). Going from the inside to the outside the nodes are lesser connected and thus
exhibit a lower degree of centrality. Looking at the plot in the lower right of Fig. 24.4
this, at least for the group of agents which can be attributed to the sector government,
seems to have an influence on the profits these respective agents are able to derive
from trading on the emission market.

10Eigenvector centrality: the first eigenvector of the adjacency matrix giving the centralities for
each vertex. It can be understood as a reciprocal process in which the centrality of a vertex depends
proportionally on the centralities of other vertices to which it is connected.
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Fig. 24.3 In-/out-/total-degree distribution with fitted power law

24.5 Network Position, Trading Volume and Profits

To further investigate the connection between the position of an individual com-
pany within the network and its market participation (trade volume) on the one
hand and its ability to derive profits from the market on the other hand we follow
Boyd et al. [13] in computing more sophisticated individual coreness values than the
k-core (cliquishness) measure which was used above. Boyd et al. [13] show that a
singular value decomposition (SVD) of the adjacency matrix combined with a prior
imputation of missing values on the diagonal represents a fast and reliable method
to compute the out- (u) and in-coreness (v) of individual agents within a large graph.
The coreness of an agent is high, if an agent is well connected with other well con-
nected agents. The SVD is methodologically and in terms of interpretation similar to
the eigenvector centrality discussed above. The so computed coreness values as well
as information about agents profits and volumes traded in the market were then used
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Fig. 24.4 Densities plots for various trade network statistics and company types in the ETS

in combination with interpolation by means of local polynomial regression fitting to
create the elevation plots displayed in Fig. 24.5.

Looking at the plot on the left-hand side in Fig. 24.5 it appears as the ability to
generate profits on the ETS positively depends on the out-coreness of an individual.
The market participation on the other hand depends positively on both the in- and
out-coreness of an agent. As far as the in-coreness is concerned this effect seems to
be slightly weaker.
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Fig. 24.5 Elevation plots of out- (u) and in- (v) coreness values with respect to the generated profits
(left) and market participation (total volume traded) (right) of individual agents

24.6 Network Formation

The results from the last two sections can be interpreted as some kind of informa-
tional asymmetry in the market. OHAs which are legally forced to participate in the
emission market and are seeking to buy and sell emission certificates resort to local
networks (firms from the same parent company, country, industry etc.) or to huge
financial players which form the center of the trading network. This undermines the
central idea of the emission market to take advantage of differentials in abatement
costs. This interpretation is further supported when we take a closer look at the
network formation process.

A basic method within this class of approaches to investigate the formation
process of a network is the Maslov-Sneppen [14] algorithm: comparing the empiri-
cal network with a quantity of random networks with the identical degree sequence
and distribution allows us to generate degree-degree correlation profiles which per-
mit to identify connectivity patterns between nodes of different degrees. The so
called null-model is generated by systematically rewiring the original network. Two
pairs of connected nodes A− > B and C− > D are randomly selected from a net-
work and rewired in the fashion A− > D and C− > B. If the thereby generated
new connections already exist the procedure is aborted and two new pairs of con-
nected nodes are selected and the rewiring attempt is repeated. Doing this suffi-
ciently often, a rule of thumb suggests a number as high as ten times the number
of edges, one obtains a random model with the same degree sequence and distri-
bution as the original graph. This procedure is repeated multiple times. Then the
generated null-models are compared with the original network. More precisely,
we compare the number of edges between two nodes with degrees K1 and K2

in the empirical network N (K1, K2) and the mean in the generated random net-
works N̄r (K1, K2):R(K1, K2) = N (K1, K2)/N̄r (K1, K2). Whether the deviance of
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Fig. 24.6 Degree-degree correlation profiles generated by the Maslov-Sneppen algorithm

the empirical network from the null-model is significant can be assessed by comput-
ing the Z-scores: Z(K1, K2) = (N (K1, K2) − N̄r (K1, K2))/sigma(K1, K2), where
sigma(K1, K2) is the standard deviation of N̄r (K1, K2). This method works for
directed and undirected networks. The results of the Maslov-Sneppen approach for
the emission trading network are presented in Fig. 24.6.

The interpretation of the degree-degree correlation profiles is twofold: (1) When
interpreting the emission trading network as an undirected graph one recognizes a
compared to the null model significantly increased connectedness between highly
connected nodes (the red area in the upper right corner of the LHS plot). (2) In both
the undirected and the directed case (RHS) we note a significantly increased degree
of asymmetric connectedness, i.e. between low- and high-degree nodes (the orange
to red area along the axes). This is in line with the results of a strong core-periphery
structure presented earlier in the paper.
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A bit more involved but based on a similar idea is the class of Exponential Random
Graph models (ERGM). A random graph Y is made up by a set of n nodes and e
edges {Yi j : i = 1, . . . , n; j = 1, . . . , n} where, similar to a binary choice model,
Yi j = 1 if the nodes (i, j) are connected and Yi j = 0 if this is not the case. One can
thus model the given network by

P(Y = y|θ) = exp(θT g(y))

c(θ)

where θ and g(y) are vectors of parameters and network statistics respectively and
c(θ) = ∑

exp{θ t g(y)} is a normalizing constant corresponding to all possible net-
works. Evaluating above expression (as the number of possible outcomes vastly
exceeds the number of constraining parameters this is usually done by Gibbs sam-
pling) allows us to make assertions whether and how certain nodal attributes influ-
ence the network formation process. These nodal attributes can be endogenous to the
network (like the in- and out-degrees of a node) or exogenous as in the context
of the trading network for example the country in which a specific company is
registered [15].

We ran a basic ERGM model over the emission trading network. The results are
presented in Table24.1. The most important features of the results are as follows:
We observe positive log-odds for the closing of triangles (clusters), homophily for
country and general ultimate owner (GUO) respectively. We however remark neg-
ative log-odds for the formation of ties between agents of the same type (i.e. OHA
vs. PHA). We thus see what we already observed graphically earlier in the paper:

Table 24.1 A simple ERGM model applied to the ETS network

Dependent variable

Carbon network

Edges −4.785∗∗∗

(0.172)

Triangle 0.321∗∗∗

(0.026)

Asymmetric −3.711∗∗∗

(0.166)

Nodematch.type −0.099∗∗∗

(0.019)

Nodematch.country 0.392∗∗∗

(0.031)

Nodematch.guo 0.757∗∗∗

(0.285)

Akaike Inf. Crit. 527,052.300

Bayesian Inf. Crit. 527,150.300

Note ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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OHAs who seek to sell or buy EUAs have to address themselves to local networks
(homophily as far as origin [country] and ownership [GUO] is concerned) or to
financial institutions or brokers (heterophily with regard to type).

24.7 Conclusion

The EUETS network is characterized by a significant core-periphery structure which
is also reflected in an asymmetry within the degree-degree correlation profiles com-
puted by the Maslov-Sneppen algorithm. This has effects on the profits agents are
able to derive from the market and their market participation in general. An ERGM
analysis shows that OHAs have to resort to local networks or financial intermediaries
when they want to participate in the market. This might be due to the fact that the
EU ETS is not organized in a central market place but based to a large extent (for the
time the data was available) on OTC transactions. This in our opinion violates the
central idea of exploiting differences in marginal abatement costs, imposes unneces-
sary additional costs on the OHAs who often don’t possess the resources to collect
informations about the market and thus undermines the goal of the EU ETS.
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Chapter 25
Dynamics of Commodity Price Fluctuations
in Japan

Yoshi Fujiwara, Hideaki Aoyama, Hiroshi Iyetomi
and Hiroshi Yoshikawa

Abstract Deflation is a most important economic problem having been faced by
Japan, and also developed countries in Europe, under zero interest rate. How individ-
ual prices influence each other, namely the dynamics of a large number of commodity
prices and fluctuations plays a crucial role there. By using hundreds of individual
commodities and their prices that comprise the import price, corporate goods price
and consumer price indices, we show that price fluctuations have frequencies and
synchronizations specific to space and time. Space means industrial sectors for the
commodities and how they are located in the supplier-customer network. Temporal
structure includes background movement due to deflation, inflation and exogenous
shocks such as VAT (consumption tax) rate changes, the Lehman shock and so forth,
but also endogenous shocks or mutual influences among the commodities.

25.1 Introduction

Japan has suffered deflation more than a decade from the late 1990s under the zero
interest rate. European Union faces low inflation rates recently. See Fig. 25.1 for the
annual inflation of consumer prices in Japan, European countries and USA for the
past 15 years. How prices behave is of primary importance in economics, particu-
larly because real interest rate is nominal interest rate minus inflation rate. Under zero
interest rate, deflation can be a threat to the macro-economy. Many central banks are
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Fig. 25.1 Consumer prices in Japan, European countries and USA, annual inflation from 1990 to
2014. Source OECD Statistics

resorting to quantitative easing and related monetary policy including inflation tar-
gets, but its efficacy under zero interest rate has been much argued among researchers.

Deflation and inflation are changes in the aggregate price index over time, which
is a weighted average of micro prices for individual commodities in consumption. It
is therefore important to understand how individual prices change in an interacting
way. Recent empirical works on micro price dynamics (see [7] for a survey) have
uncovered hitherto little known dynamics of micro prices. See, however, the literature
of dynamic factor models including [1, 5, 9, 10].

In this paper, studying 830 prices of goods and services in Japan for more than
30 years, we demonstrate that the frequency of individual price changes and synchro-
nization are, in fact, not constant but time-varying. The existing literature routinely
assumes that distribution of micro price changes is constant. However, this assump-
tion is not borne out by data. See [7] and references for the literature. Frequency, syn-
chronization, and size of price changes are all time-varying. Moreover, they change
in clusters, not simultaneously in the economy as a whole. In this respect, there
is a significant gap between observed facts and theory because in standard theory,
changes in money, supposedly the most important macro disturbance, affect more or
less uniformly all the prices.

In a separate paper [11], we presented a new method of extracting information
on the systemic changes of aggregate price based on micro price data as a true
“core” price index, and found that they are not significantly correlated with money
supply. The present paper is a study on the spatio-temporal structure of the micro
price dynamics. The absence of significant correlation with money supply is our new
finding in that paper, crucially different from the literature.

In Sect. 25.2, we describe our data of individual prices which constitute the import
price index. corporate goods price index, consumer price index. These prices of
individual commodities range from the upstream to downstream of production. In
Sect. 25.3, we show the spatio-temporal pattern in the fluctuations of these prices. By
“spatio” we mean industrial sectors for the commodities, each of which is located
in the production network. “Temporal” pattern shows that the fluctuations contain
“background” movement due to deflation, inflation, exogenous shocks such as VAT
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(consumption tax) rate changes and so forth, but also endogenous shocks or mutual
influences among commodities, typically from the the upstream to the downstream
of production. We discuss in Sect. 25.5, and summarize in Sect. 25.6.

25.2 Individual Prices and Data

We employ monthly data of the following three categories of individual prices in
Japan for the period from January 1980 to June 2013 (402 months).

IPI Import Price Index, compiled by the Bank of Japan (BoJ) consists of prices of
imports at the stage of entry into Japan. It covers 75 goods [2].

DCGPI Domestic Corporate Goods Price Index, compiled by the BoJ, surveys
on the prices of goods traded among companies, specifically domestically
produced goods for domestic markets, mainly at the stage of shipment from
producers and partly from wholesalers. It covers 420 goods [2].

CPI Consumer Price Index, compiled by the Statistics Bureau of the Ministry
of Internal Affairs and Communications covers 335 consumption goods and
services [8].

We denote the individual price by pα(t), where α = 1, 2, . . . , 830 (:= N ) is the kind
of goods and services, and t = 1, 2, . . . , 402 is the time of month.

Figure 25.2a shows the time-series of monthly price indices from 1980 up to
present (all indices; 2010 base). Note that the IPI is shown in a different scale (right
axis) because it has much greater volatility than those of DCGPI and CPI. While a
considerable part of the import goods of raw materials is highly volatile, it is not
immediately reflected to the downstream commodities corresponding to DCGPI and
CPI. For reference three epochs in which VAT was raised, in Aprils of 1989, 1997
and 2014 (VAT 3 %, 5 %, 8 % respectively) and the epoch of the Lehman shock in
September 2008 are marked by vertical dashed lines in Fig. 25.2.

Figure 25.2b is the plot of annual (year-to-year) changes of the monthly aggregate
price indices. The IPI has a different scale as depicted by the right axis for the reason
explained above. One can observe that Japan suffered from deflation for a more than
a decade from 1999 to 2013 in terms of domestic price indices, namely DCGPI and
CPI.

Now we study the behavior of individual prices, namely monthly changes of them
as defined by

rα(t) := log10

[
pα(t + 1)

pα(t)

]
. (25.1)

Heterogeneity of micro prices found in the existing literature can be easily con-
firmed for the Japanese data we analyze.
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Fig. 25.2 Time-series of monthly price indices (PI) for Import PI (solid line and right-axis),
Domestic Corporate Goods PI (dashed line), and Consumer PI (dotted line) from 1980 up to present
(all indices; 2010 base). Dashed vertical lines correspond to the 3 months in which VAT was raised,
namely April of 1989, 1997 and 2014 (VAT 3, 5, and 8 % respectively), and September 2008 of the
Lehman Brothers failure

Table 25.1 shows classification of sectors, and the mean duration (in months) of
the period during which individual prices remains unchanged, averaged over each
sector.

Denote by λ the monthly frequency or probability that the price changes in a
month. λ is not directly observed, but can be estimated by the mean duration as
follows. Assume that the price changes according to a homogeneous Poisson process
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Table 25.1 List of IDs, classification of sectors, the numbers of goods, the durations and frequencies
of price changes for the commodities of IPI, DCGPI and CPI

ID Classification of sector #Goods Months Freq

IPI—Import PI

01 Foodstuffs and feedstuffs 17 1.04 61.80

02 Textiles 6 1.26 55.25

03 Metals and related products 19 1.06 61.11

04 Wood, lumber and related products 3 1.02 62.66

05 Petroleum, coal and natural gas 8 1.04 61.94

06 Chemicals and related products 9 1.50 53.20

07 General purpose, production and business
oriented machinery

2 1.14 58.47

08 Electric and electronic products 2 1.13 58.84

09 Other primary products and manufactured goods 9 1.09 60.15

– All 75 1.13 59.75

DCGPI—Domestic Corporate Good PI

01 Food, beverages, tobacco and feedstuffs 78 3.29 32.92

02 Textile products 19 8.04 21.35

03 Lumber and wood products 8 3.16 33.45

04 Pulp, paper and related products 20 3.22 30.96

05 Chemicals and related products 55 6.32 24.65

06 Petroleum and coal products 11 2.01 42.88

07 Plastic products 8 3.75 26.94

08 Ceramic, stone and clay products 25 5.12 24.62

09 Iron and steel 26 4.49 27.51

10 Nonferrous metals 19 1.54 51.38

11 Metal products 26 5.21 22.78

12 General purpose machinery 20 6.13 19.24

13 Production machinery 16 4.77 26.90

14 Business oriented machinery 6 10.41 12.01

15 Electronic components and devices 5 2.22 37.59

16 Electrical machinery and equipment 20 4.65 22.79

17 Information and communications equipment 4 2.95 33.57

18 Transportation equipment 11 10.26 10.78

19 Other manufacturing industry products 15 8.87 16.91

20 Agriculture, forestry and fishery products 17 5.18 40.18

21 Minerals 3 10.18 13.67

22 Electric power, gas and water 3 8.31 16.07

23 Scrap and waste 5 1.09 60.27

– All 420 4.95 28.37

(continued)
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Table 25.1 (continued)

ID Classification of sector #Goods Months Freq

CPI—Consumer PI

01 Goods related to Food 132 1.24 57.67

02 Goods of house materials, household utensils
(incl. electronics)

35 1.16 57.88

03 Goods of clothes and footwear 22 1.28 55.06

04 Goods of medical care 11 1.55 48.09

05 Goods of automobiles, car equipments, misc. 6 3.19 36.81

06 Goods related to education, culture, recreation
and misc.

44 6.61 39.55

07 Services in CPI 85 6.85 31.40

– All 335 3.41 47.79

Months is the mean duration of the period during which individual prices remains unchanged,
averaged over each sector. Freq is the constant monthly frequency of price changes or probability
(in percent) that the price changes in a month, calculated under the assumption of homogeneous
Poisson process

with parameter θ , namely a constant probability of change at any instance of time. For
a realization of n changes of the price at times 0 ≡ t0 < t1 < t2 < · · · < tn ≡ T , the
likelihood function is given by L(θ) = θn exp(−θ T ), because the inter-occurrence
times Tk = tk − tk−1 (k = 1, 2, . . . , n) are independent and identically distributed
by an exponential distribution with parameter θ . The maximum likelihood estimate
is then obtained by θ = n/T = 1/d, where d is the average of inter-occurrence
times. On the other hand, the probability that the price changes in a month, λ, is
related to the parameter θ by λ = 1 − e−θ as easily shown. It therefore follows that
d = −1/ ln(1 − λ). See [3, Chap. 6.2] for example.

The mean duration varies from 10 months for business machinery and transporta-
tion equipment to 1 month for food, cloths and most imported goods and materials. In
between is 6 months for chemicals in DCGPI and services in CPI. They are broadly
consistent with the results obtained in previous works.

25.3 Spatio-temporal Dynamics of Price Fluctuations

Micro prices of individual goods and services have different volatilities. They must
reflect differences in industrial organization and the nature of goods and services.
To take into account these differences in volatility, in what follows, we need to
consider the normalized price change. Denoting by 〈rα〉t and σα the sample average
and standard deviation of the time-series rα(t) in (25.1), respectively, we define
normalized time-series by

wα(t) := rα(t) − 〈rα〉t
σα

(25.2)
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We examine “spatio-temporal patterns” of the individual price changes.
Figure 25.3 shows the normalized changes wα(t) defined by (25.2). Figure 25.3
focuses on “significant” changes of prices in the sense that the data for |wα(t)| < w∗,
namely changes smaller than a threshold, are shown as blank space where w∗ = 2.
Blue and red colors of each point indicate significant positive and negative changes,
wα(t) > w∗ and wα(t) < −w∗, respectively.

Figure 25.3 demonstrates that the simultaneous changes of individual prices or the
synchronization occasionally occurwithout any clear periodicity. The April 1989 and
the April 1997 are two examples of significant synchronization as indicated by the
arrows in Fig. 25.3. In Japan, the 3 % value added tax (VAT) called the consumption
tax was introduced in April 1989, and the tax rate was raised from three to 5 % in
April 1997. Almost all the prices were raised then. Note, however, that individual
prices were not mechanically raised by three and 2 %, respectively. Evidently, many
firms found good opportunities to adjust their prices when the VAT rate was changed.

One can quantify the degree of synchronization of micro price changes by exam-
ining the numbers of positive, negative and zero price changes for each month. Let
us denote such numbers by n+(t), n−(t), n0(t), and the sum of them is the total num-
ber of goods and services, N . Figure 25.4a–c show the fractions n+(t)/N , n−(t)/N ,
n0(t)/N , for IPI, DCGPI and CPI (from top to bottom), respectively. Not to mention
volatile IPI, one can observe that DCGPI and CPI prices are also raised or lowered
in time-varying way. The number of prices that are raised is larger than those that
are lowered under (even mild) inflation, while the converse is true under deflation.
For example, in the plot for CPI, the fraction n−(t)/N exceeds n+(t)/N persistently
from 1999 up to 2007 when deflation continued.

25.4 Case Study: The Lehman Shock in 2008

As a case study, let us examine the pre- and post-Lehman Brothers failure during the
period from 2007 to 2009. In the first half of the year 2008, import prices and prices
of intermediate products in DCGPI significantly went up. In CPI, food prices also
rose. Deflation appeared to change into mild inflation during this period.

The bankruptcy of the Lehman Brothers in September 2009 turned the tide. The
fraction of price decline suddenly went up. This sudden change is clearly seen in
Fig. 25.5a, b which enlarges Fig. 25.3 for the period during 2007–09. The figures
show how mild inflation up to the first half of the 2008 abruptly changed to deflation
in the course of the Great Recession triggered by the bankruptcy of the Lehman
Brothers in September 2008. Evidently, changes in price during this period have
little to do with money, because the growth rate of money during May 2008 to March
2009 had hardly changed within narrow limits of 1.9 and 2.4 %. They basically reflect
a fall of real economic activity, namely the Great Recession.
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Fig. 25.3 (Color on-line) Normalized price changes wα(t) calculated from the monthly changes
rα(t) by (25.2). Segments denoted by labels starting from “01” in each PI are classification of sectors.
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25.5 Discussion

First, the fact that the average frequency of price change of individual goods and
service gives only a limited information on the behavior of aggregate price because
price change is not time homogeneous, as shown for the year 2008, rejects the popular
assumption that the firm’s price changes strategy is time-invariant. For example, [4]
assumes that for each firm, and opportunity to change its price arrives at random
with a given probability, while others in the more recent literature assume that the
hazard rate of price is time-invariant. See [7] and references therein. More generally,
the existing literature focuses on cross-sectional distribution of micro prices, and
assumes that it is given and time-invariant. We note that micro optimization exercise
results in a particular pattern of price setting which is time-invariant. This assumption
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Fig. 25.5 (Color on-line) Enlarged view of Fig. 25.3 for the period a 1 year before the Lehman
shock in September 2008 and b 1 year after the shock respectively. The threshold w∗ = 2.0, and
the colors and radius of circles are the same as given in the caption of Fig. 25.3

of time-invariance of price setting is not borne out by the data. Instead, it is important
to explore what macro variables drive individual prices to synchronized actions. See
the separate paper [11] for our recent finding on this point.
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Second, to understand the behavior of aggregate price, we must explicitly consider
subsets or clusters of prices, not just a single macro-group of prices. For example,
as shown in Fig. 25.3 for the period during 1995–2000 vertically. Except for April
1997 when VAT was raised, prices of some goods went up or down in clusters while
others remained unchanged.

This point casts doubt on the existing theories of price setting such as menu cost
and contract models. In most theoretical models, and individual firm is assumed to
strategically set or reset its price considering the behaviors of all the other firms.
It is commonly assumed that firm j is interested in Pj/P where Pj is the firm j’s
price and P is the aggregate price index. In other words, it is routinely assumed that
the universe in which each firm optimizes is the economy as a whole. However, the
behavior of individual prices shown in Fig. 25.3 does not support this presumption;
it shows that there is a significant tendency that a cluster of price changes change
together while at the same time prices which belong to other clusters do not. The
standard theoretical model takes the macro-economy as if it were a single industry or
a group of retailers in a region. Such a model may server for the purpose of industrial
organization, but does not fir the purpose of macroeconomics and monetary policy.

Generally, we can consider how N commodities’ prices are determined by J firms.
A firm changes the prices of goods and services which it produces in response to
the changes in other prices. However, firm is not interested in all prices, but only in
a subset of prices. Obvious examples are prices of intermediate goods and services
used in production, and also prices of close substitutes produced by rival firms. The
response is not usually taken based on the single information of aggregate price P in
a synchronized way, but on a partial information among the N prices that are relevant
to the firm. See [6, pp. 32–33] for the same point.

On the other hand, there exists a large literature on dynamic factor models includ-
ing [1, 5, 9, 10], especially with focus on estimating price inflation and the effects of
monetary policies, in particular, in the Euro area. Comparison with the factor models
would be valuable in future work.

25.6 Summary

We demonstrate the following points in this paper.

1. The average frequency of price change of individual goods or service provides
only a very limited information on the behavior of aggregate price because price
change is not time homogeneous. The year 2008 is a good example. In the first half
of the year, many prices were raised, but the bankruptcy of the Lehman Brothers
turned the tide, and afterwords, many prices declined, some significantly. In other
times, most prices simply remained unchanged for a long time period.

2. In order to fully understand the behavior of aggregate price, we must explicitly
consider subsets or clusters of prices, not just a single macro-group of prices.
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We have directly observed in Fig. 25.3 for the period 1995–2000, during which,
except the raise of VAT, prices of some goods went up or down in clusters while
others remained unchanged.

Micro information set on which firm sets its prices would not contain money
supply, in particular. Rather, prices affect prices with leads and lags. The existing lit-
erature almost completely misses this important lead/lag relationships among micro
prices. Our separate paper [11] shows the importance of such interactions of micro
prices, and how the dynamics is not significantly related to money supply in an
explicit way.

Acknowledgments We would like to thank anonymous referees for improving the paper. We are
also grateful to Y. Ikeda, W. Souma, T. Watanabe and Y. Yajima for comments, and also K. Itoh and
N. Shinozaki (both at NHK—Japan Broadcasting Corporation) for partial help in classification of
the CPI data. We thank participants of seminars at the Bank of Japan, the University of Tokyo, and
the Research Institute of Economy, Trade and Industry for comments.

This work is partially supported by Grant-in-Aid for Scientific Research (KAKENHI) Grant
Numbers 24243027 and 25282094 by JSPS, and also in part by the Kyoto University Support-
ing Program for Interaction-based Initiative Team Studies: SPIRITS, as part of the Program for
Promoting the Enhancement of Research Universities, MEXT, Japan.

References

1. Altissimo, F., Mojon, B., Zaffaroni, P.: Fast micro und slow macro: Can aggregation explain
the persistence of ination? manuscript, fRB of Chicago Working Paper No. 2007-02 (2007)

2. Bank of Japan: Outline of statistics and statistical release schedule. https://www.boj.or.jp/en/
statistics/outline/exp/pi/excgpi02.htm/ (2014)

3. Basawa, I.V., Prakasa Rao, B.L.S.: Statistical Inference for Stochastic Processes. Academic
Press (1980)

4. Calvo, G.A.: Staggered prices in a utility-maximizing framework. J. Monetary Econ. 12(3),
383–398 (1983)

5. Carvalho, C.: Heterogeneity in price stickiness and the real effects of monetary shocks. Front.
Macroecon. 2(1), article 1 (2006)

6. Gordon, R.J.: The history of the Phillips curve: consensus and bifurcation. Economica 78(309),
10–50 (2011)

7. Klenow, P.J., Malin, B.A.: Microeconomic evidence on price-setting. In: Friedman, B.H.,
Woodford, M. (eds.) Handbook of Monetary Economics, vol. 3A, chap. 6. North-Holland
(2011)

8. Statistics Bureau: Consumer price index. http://www.stat.go.jp/english/data/cpi/index.htm
(2014)

9. Stock, J.H., Watson, M.W.: Forecasting inflation. J. Monetary Econ. 44(2), 293–335 (1999)
10. Stock, J.H., Watson, M.W.: Handbook of Macroeconomics, chap. Business Cycle Fluctuations

in U.S. Macroeconomic Time Series, pp. 3–64. Elsevier, Amsterdam, The Netherlands (1999)
11. Yoshikawa, H., Aoyama, H., Fujiwara, Y., Iyetomi, H.: Deflation/Inflation Dynamics: Analysis

Based on Micro Prices. http://ssrn.com/abstract=2565599 (2015)

https://www.boj.or.jp/en/statistics/outline/exp/pi/excgpi02.htm/
https://www.boj.or.jp/en/statistics/outline/exp/pi/excgpi02.htm/
http://www.stat.go.jp/english/data/cpi/index.htm
http://ssrn.com/abstract=2565599


Chapter 26
Understanding the Diffusion of YouTube
Videos

Mattia Zeni, Daniele Miorandi and Francesco De Pellegrini

Abstract In this paper we tackle several questions arising in the context of online
content diffusion. In particular, we analyse the reason why some videos become
viral, how popularity of a tagged video evolves over time and if there exist recurrent
patterns in the dynamics of content popularity. Indeed, while the ultimate question
is if it is even possible to predict the popularity dynamics of a newly published
video, several interwoven factors impact the process of diffusion of online contents.
In this paper we propose a framework able to put all the previous questions into
a complex system science perspective. We first analyse the mechanisms that affect
the popularity growth of a tagged video. We then illustrate why a multi-scale multi-
level model appears the most appropriate to capture the effect of such phenomena.
We finally present an open dataset of YouTube videos’ popularity, which has been
released with the aim to let researchers in the field validate their findings against
real-world data.

26.1 Introduction

The study of how popularity of user-generated contents evolves over time has gen-
erated considerable interest from both the research and the business community in
the past few years.

The connection with modern online marketing strategies comes from the fact
that, having devised the ultimate early-stage prediction technique to identify contents
undergoing popularity bursts [12], it would be possible to optimize for the resources
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allocated, e.g., in a marketing campaign attaching a certain product/business adver-
tisement to an uptaking popular video. Actually, several research papers have
appeared in literature, each providing specific characterizations of the dynamics
of popularity of online media contents.

However, from an abstract perspective, the process by which a certain video
becomes popular has several features which qualify the resulting dynamics as the
output of a complex multi-scale multi-level socio-technical system. In such system,
individuals act as prosumers of content, platform owners set policies that impact how
the content can be accessed and third parties provide services which generate a dis-
tortion of the natural ranking of popular contents by means of content “acceleration”
tools (advertising, marketing, re-ranking, etc.).

Researchers have looked at various aspects related to how popularity (a multi-
dimensional concept that accounts for how much a content spreads) changes over
time. They also have tried to correlate popularity with various factors [1–13]. Busi-
nesses (in particular, marketing and web agencies) have tried to develop methods
for enhancing the popularity of a given content, something that is typically sold to
brands and professional content producers.

In this paper we develop a framework for studying and analysing how online
contents can diffuse and become popular; in our case we focus on videos published
on YouTube. We first analyse the mechanisms that affect the popularity growth
of a video. We then illustrate a multi-scale multi-level model able to justify the
effect of such mechanisms. We finally introduce an open dataset of YouTube videos’
popularity and show how it can be used to validate findings in the field.

The remainder of this paper is organised as follows. In Sect. 26.2 we analyse the
factors that drive the diffusion and popularity growth of contents in online video
sharing platforms. In Sect. 26.3 we analyse the various scales and levels at play
in this framework. In Sect. 26.4 we introduce the YOUStatAnalyzer open database
(including the daily evolution of popularity of 1+ million YouTube videos) and show
how the models developed can be used to purposefully analyse real-world data.
Finally, Sect. 26.5 concludes the paper pointing out directions for future extensions
and enhancements.

26.2 Driving Factors of YouTube Video Diffusion

YouTube videos are organised in channels: Fig. 26.1 shows a webpage providing
access to a certain video channel. On that page, it is possible to visualize several
videos which are featured on the specific channel. Any registered YouTube user can
access any channel’s videos and can create its own channels. Users can also manage
multiple channels. YouTube videos are always published within a channel.

The platform maintains for each video a number of detailed metrics accessible
only to the video’s channel owner: they can be accessed through the YouTube portal
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Fig. 26.1 A sample video channel: the icons on the right of the main window are recommenders
for channels; the central icons should several videos on display

itself (once logged in) or through the YouTube Analytics API.1 At the same time,
daily statistics are typically visible to everyone below each video, unless the channel
owner decides to block their display.

The popularity of a tagged YouTube video is a multidimensional concept: it actu-
ally accounts for a number of key performance indicators:

• Views or viewcount: number of times the URL corresponding to the video was
opened;

• Watchtime: cumulative time spent by users watching the video;
• Likes: the number of preferences which users ascribed to the video;
• Subscriptions: the number of subscription to the channel generated by the tagged
video;

• Comments: tracks the number of comments posted by YouTube users on the video.

Most studies on the popularity of videos focused on the number of views, namely the
viewcount, as single metric of interest. However, there are at least two good reasons
not to forget the other metrics:

• Since 2013, the YouTube recommender uses the watchtime as metric for under-
standing how a video is popular (and not the viewcount);

• The various metrics can be used to build a “conversion funnel”, a commonly used
tool in the marketing sector in order to characterize the impact of advertisement
campaigns.

In Sect. 26.4, we are reporting on specific joint characterization of such performance
indicators.

1See https://developers.google.com/youtube/analytics/.

https://developers.google.com/youtube/analytics/
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Fig. 26.2 Sources of traffic
to a YouTube video URL:
two main streams originate
from exogenous sources,
external to the platform, and
from the inner
recommendation and sharing
mechanisms
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Now, in general terms the study of the popularity of YouTube videos can be
seen as a special case of web traffic analysis/web marketing. Each video is indeed
characterised by a unique ID and a uniform resource locator (URL) of the form
https://www.youtube.com/watch?v=XXXXX where XXXXX is the video ID.

The demand from YouTube platform users with respect to a certain tagged video
can be interpreted as network traffic demand generated by different sources. Such
traffic can be logically decomposed according to the tree represented in Fig. 26.2:

1. Endogeneous traffic: this is the traffic generated from within the YouTube plat-
form itself. We can further classify this into:

(a) YouTube recommender: the traffic generated by means of the YouTube rec-
ommender. Any user watching the YouTube frontend is presented with a
number of ‘Recommended’ videos and with a number of ‘Related Videos’
once she is watching a video.

(b) YouTube search: traffic generated by a user through the search engine
embedded within the YouTube platform.

(c) YouTube Ads: videos can be promote using Google AdWords. In particular,
videos can be promoted through short video teasers, which are displayed
before the content actually requested by the user.

2. Exhogeneous traffic: traffic generated from other web sites/platforms. We can
further classify this into:

(a) Search engines: traffic generated from commonly used search engines when
users search for a given content.

(b) Online social networks: one of the most significant sources of video traffic
is the sharing by users of YouTube videos on social networking platforms,
like Facebook, Twitter, Google+, Sina Weibo etc.

https://www.youtube.com/watch?v=XXXXX
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Fig. 26.3 Funnel
representation of the various
popularity metrics

Consideration

Engagement

Preference

Advocacy

Loyalty

Views

Watchtime

Likes

Shares

Subscription

(c) Advertisements: advertising bought by the publisher (e.g., through
AdWords) to promote a given video content on variousWeb sites (excluding
YouTube itself).

(d) Articles/blogs: online blogs/articles/magazines including an embedded ver-
sion of the YouTube video.

(e) Other: any other source of exhogeneous traffic, e.g., TV or radio broadcasts
referring to the tagged content.

All such possible traffic demands determine the interaction pattern of users with
the tagged YouTube video, namely, how the key cumulative performance indicators
(viewcount, shares, watchtime) increase over time. At a certain moment in time, it
is possible to capture the notion of popularity of a tagged video by considering the
five-stages funnel structure reported in Fig. 26.3:

1. Consideration: the first step in the funnel is the number of users who opened the
video (impressions). This corresponds to the number of views.

2. Engagement: we can measure the interest in the content by considering the (nor-
malized) watchtime.2 If a content is uninteresting or of poor quality, it is likely
that users who start watching it will stop the playback and navigate away within
a very short time.

3. Preference: the number of likes is—at least in principle—a good measure of the
feedback by users, in terms of whether they appreciated the video content.

4. Advocacy: the number of times a given video is shared by users is a good indicator
of the fact that they recommend others (friends, aquaitances, followers) to watch
it as well.

5. Loyalty: the number of subscriptions generated by a video is a good indicator
of the fact that the user expresses a long-term interest in the type of contents
generated by the author.

In Sect. 26.4, we illustrate the outfit of this multidimensional characterization
using a set of videos belonging to sample video categories.

2The normalization over the video’s length is a limitation but is the only way to compare the curves.
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26.3 Scales and Levels in YouTube Video Diffusion

In general, the interwoven traffic paths described in the previous section determine
the growth of key performance indicators of a tagged video at different time scales.
Concerning time-scales, it is possible to identify two “natural” ones over which
videos popularity dynamics takes place.

The first one (called hereafter the “fast” time-scale) account for fast dynamics.
This represents, e.g., the cascading effect due one or more very popular Twitter users
sharing a given video or to daily schedules of users who access the platform during
specific peak daily hours. In order to study the dynamics over such a time-scale it
is necessary to sample popularity indicators with sub-hour granularity. A sampling
time between five and fifteen minutes appears appropriate for capturing most of the
phenomena happening over such a time-scale.

The second type time scale operates over much longer time intervals. This type
of evolution relates to the long-term popularity of a given content. In this case the
dynamics can be observed over a period ofmonths (when not years). A sampling time
of the order of one day is appropriate to measure phenomena over such time-scale.

In terms of levels, we can consider two natural ones as well.
The first level is obviously that of a single video. Here all the factors identified

in the previous section should be considered. The second one relates to the channel.
As the channel aggregates different video contents, its popularity can be understood
by measuring the aggregated popularity indexes of the videos it contains. Examples
include, e.g., the total number of views, the average normalized watchtime or the
average number of viewcounts/day for videos on the channel, or again the average
ratio between shares and views (understood as a good proxy for the ability to generate
advocacy). Another direct indicator of the popularity of a channel is the number of
subscribers, whose evolution over time can also be studied. It is worth remarking that
a specific recommendation list exists at the channel level, as can be seen in Fig. 26.1.

Yet, there is also a feed-forward effect to be considered: indeed channel subscrip-
tions generate traffic, and videos generate channel subscriptions, so that a channel
with a set of very popular videos ismore likely to generate traffic to a newly published
content.

In order to present a comprehensive analysis of the diffusion of YouTube con-
tents, the aforementioned natural scales and levels should be jointly considered.

26.4 A Look into the Wild: The YOUStatAnalyzer Dataset

To characterize the reference framework we are proposing in this paper we have used
a dataset of YouTube videos produced using the YOUStatAnalyzer software.3 This
dataset contains daily samples (from the publication time until early 2015) of the

3see https://github.com/mattiazeni/youstatanalyzer.

https://github.com/mattiazeni/youstatanalyzer
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ID 0ao1UwIYQCg
Category Howto

Description Older project, new uplo...
Title Make A Disk Sander

Author John Heisz
Published Date 2012-07-08T00:09:58.000Z
Access Control [’comment’: [’allowed’], ...]
Comments # 50

Related Videos [4kU2veNhyKI,A4PzyaoRYk0...]
Duration 207

Video Type video/3gpp
Gplus Shares activityID

Popularity Metrics views, watchtime, subscribers, shares

Fig. 26.4 YOUStatAnalyzer dataset: information available for a sample video, namely the video
with ID: uPehlRGMtyw

popularity metrics (views, watchtime, shares, subscribers) of more than 1 million
YouTube videos, for a total of ∼61GB of data. Data is complemented by a set of
additional meta-data information. Figure26.4 describes the information collected
for each video and stored in the YOUStatAnalyzer dataset.

To the best of our knowledge the YOUStatAnalyzer tool is the only one freely
available to the research community that allows to create custom datasets of YouTube
videos’ statistics that allows to collect the daily and cumulative trends of Views,
Watchtime, Shares, Subscribers. In fact, in June 2013 YouTube changed the backend
system, blocking the endpoint that allowed to collect this kind of information as it
was used in a number of papers, e.g., [7]. The authors found an alternative way to
collect such data and decided to release it openly to the community in the form of
an open source tool and an open, reference, dataset. Moreover, in the last version,the
tool allows also collecting the shares (and reshares) of each video on Google Plus.

Using samples of such a dataset we represented a popularity vector in the sense
described in Sect. 26.2. Figure26.5 shows the same trend of the funnel chart proposed
in Sect. 26.2 over the different popularity metrics for the Music and Technology



316 M. Zeni et al.

Fig. 26.5 The
5-dimensional popularity
vector: comparing for the
Music and Technology
categories in the
YOUTubeStatAnalyzer
dataset. The normalization is
done to be able to compare
the metrics over all the
videos

categories. The total number of videos interested in this analysis are 176627 and
66959, respectively. It is interesting to notice that even for two very different cate-
gories, namely Music and Technology, the trend is very similar. In particular, in the
ratio between views, watchtime, shares and subscribers, with a substantial difference
in the number of preferences expressed by the users. It appears that videos belonging
to the Technology category are liked or disliked more than those belonging to the
Music category.

Another interesting aspect to consider is the evolution curve of popularity for the
videos in the dataset. We normalised the cumulative viewcount and run a clustering
(k-means) algorithm to identify “typical” patterns (i.e., the resulting centroids). We
considered the “Music” and “News” categories and used k = 6.4 Results are depicted
in Fig. 26.6a, b: each line represents a reference centroid waveform and its thickness
is proportional to the size of the corresponding cluster.

It is possible to note from Fig. 26.6 that the News category has waveforms which
concentrate around fast growing centroids. In particular, the uppermost centroid is
almost vertical in the very first period after the video release; it becomes flat after
only the 10% of the entire video lifetime. The distribution of weight and the shape of
the centroids indicates that the videos belonging to the News category, compared to
the others, are relevant to the YouTube community for just a very short period of time
after the publication. Thus, we can infer that for such videos it is worth exploiting
this very short period of time in terms of caching or advertisement.

A different behaviour is shown in the Music category: videos belonging to it
are attractive to the users for a longer period of time. This can be understood from
Fig. 26.6a, in which centroids do not present any critical vertical behaviour and
in general they are more flat, thus demonstrating that the on average, views are
distributed over a longer period of time.

4The choice of the parameter k was taken based on the analysis in [11].
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(a) (b)

Fig. 26.6 The centroids over the views calculated using the k-means algorithm (with k = 6) over
a 176K videos of the Music category, b 54+K videos of the News category. They are plotted in
different colours just for the sake of making them distinguishable

Fig. 26.7 A comparison of the trends of the views versus the Google Plus shares for the video ID:
uPehlRGMtyw

With the latest version of YOUStatAnalyzer, we included also the possibility to
collect the shares of a certain video generated on Google+. We used such an infor-
mation to study to which extent this sharing process correlates with the diffusion of
the video. Figure26.7 shows the relationship between the popularity of the video,
expressed by the cumulative viewcount and the shares on Google+. The strong cou-
pling between the two curves can be detected by the fact that a fast change in the
dynamics of the Google+ shares, occurring at fast time scale, is reflected by a cor-
responding jump in the viewcount. We remark that inspecting the shares operated
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directly on YouTube, we could not detect such fast time scale jump: we ascribe
this behaviour to the fact that the re-shares operated on the social networks is what
actually determines such discontinuity at the slow time scale.

26.5 Conclusion

In this paper we have provided a framework for answering a number of questions
related to the diffusion and popularity of videos in online sharing platforms. Several
fundamental questions exist in this field: why some videos do become viral and other
videos do not, what is the definition of popularity able to best capture the way videos
are perceived by the online audience, if there exist recurrent patterns, and whether
videos from different categories behave differently.

Our framework is based on a funnel model that reproduces the behaviour of users
which interact and engage with online video contents.We argue that scales and levels
are a fundamental feature of the online diffusion process. We have shown cases in
which the effect of the natural scales and levels can easily be inspected: the channel
level and scales originating from the coupling of shares and viewcount. Tests for our
general framework have been provided on a large, open database that can be used by
scientists and practitioners in the field to develop new knowledge and test/validate
their models and assumptions.

One limitation that requires additional work relates to the correlation and entan-
gelement among actions carried out on different social networking platforms. We
have provided evidence that the Google+ shares dynamics is indeed impacting the
popularity dynamics in some specific cases. However, whether this sample is rep-
resentative of the general sharing process on different platforms requires further
assessment.

Acknowledgments The work of D. Miorandi and F. De Pellegrini has been partially supported by
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Chapter 27
Free Energy Rate Density
and Self-organization
in Complex Systems

Georgi Yordanov Georgiev, Erin Gombos, Timothy Bates,
Kaitlin Henry, Alexander Casey and Michael Daly

Abstract One of the most important tasks in science is to understand the
self-organization’s arrow of time. To attempt this we utilize the connection between
self-organization and non-equilibrium thermodynamics. Eric Chaisson calculated an
exponential increase of Free Energy Rate Density (FERD) in Cosmic Evolution, from
the Big Bang until now, paralleling the increase of systems’ structure. We term these
studies “Devology”. We connect the exponential growth of FERD to the principle of
least action for complex systems leading to exponential increase of action efficiency.
We study CPUs as a specific system in which the organization, the total amount of
action and FERD are connected in a positive feedback loop, providing exponential
growth of all three and power law relations between them. This is a deep connection,
reaching to the first principles of physics: the least action principle and the second
law of thermodynamics. We propose size-density and complexity-density rules in
addition to the established size-complexity one.
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27.1 Introduction

After many years of study, the processes of self-organization of complex systems still
do not have a satisfactory description. Non-equilibrium thermodynamics is essential
to understand self-organization [1–3]. The driver towards higher levels of structure
and organization in complex systems and in Cosmic Evolution has been recognized as
the density (time and mass) of free energy flowing through a system [4–6]. Energy
differences (gradients) create forces which move flows of matter, doing work to
minimize constraints to motion, thus carving the flow channels along which the
product of time and energy per event is minimized [7–10]. Other aspects of the
principle of least action driving self-organization have been considered [11–14]. In
our research program we set to investigate the entire chain of self-organizing events
in systems spanning from the atoms to the society [7–10]. This is the goal of many
scientists working in the fields of complexity, cosmic evolution, big history and
others. This paper is one of the steps in this process answering the question whether
there are other characteristics than level of organization and size of a system that
are useful in describing the process of self-organization. Is free energy rate density,
used by Chaisson, correlated to action efficiency as a measure of organization? Is the
growth of free energy rate density exponential in time and does it fit in the positive
feedback model between level of organization and size of a complex system? Will
we be able to use those three measures as tools to characterize complex systems
when partial information is available, and deduce them from each other?

Our approach is to study the minimization of average physical action per unit
motion (action efficiency, quality) and the maximization of the total action for all
motions in complex systems (quantity) [7–10]. We defined organization as action
efficiency (α) and size of a system as the total amount of action in it (Q) and used the
principle of least action as a driving force for increase of α [7–10]. We also posited a
maximum action principle, where Q in a self-organizing complex system tends to a
maximum, i.e. for the unit action to decrease, the total action has to increase in order
to minimize the constraints to motion further. We have shown that the quality (α)

depends on quantity (Q) and vice versa (the size-complexity rule) and when one is
increased or decreased the other is affected in the same way, i.e. they are in a positive
feedback loop [10]. This dependence is a major driving force and a mechanism of
progressive development measured as the increase of action efficiency in complex
systems.

Previously we described how in complex systems, elements cannot move along
their least possible action paths that characterize their motion outside of sys-
tems, because of obstacles to the motion (constraints) [7–10]. We used variational
approaches to optimization in complex systems, which are the least and most action
principles mentioned above [7–10]. We extended the principle of least action as: com-
plex systems are attracted toward a state with least average action per one motion
given those constraints [7–10]. This is congruent with the Hertz’s principle that
objects move along paths with least curvature [15] and the Gauss principle that they
move along the paths of least constraint [16]. We extended these principles for com-
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plex systems that the elements do work on the constraints to minimize them, reducing
the curvature and the amount of action spent for unit motion. The tendency to move
along geodesics drives the flows of elements in a system to remove obstructive con-
straints from their paths in order to achieve the state of smallest possible product of
time and energy (action) for the processes. This is what we term self-organization.
For this work the elements need energy, and the higher the free energy rate density,
the more the work can be done, therefore the faster the self-organization. The new
geodesics of the elements in the curved by the constraints to motion space are the
paths with minimum action. The paths of least constraint are the flow paths in the sys-
tem [7–10]. Therefore we defined organization (the action efficiency of the complex
system) as the state of the constraints to motion determining the average action per
one element of the system and one of its motions [10]. We posited a flow network
representation of a complex system, where the flows are necessary to equilibrate
any energy differences, attracted by their final state—that of thermodynamic equi-
librium. Each element in a complex system is the smallest mobile unit in the system
and usually moves in a flow channel along a network of paths (edges) between the
starting and ending points (nodes) which are sources and sinks in the flow network.
In CPUs, one unit of motion (event) is a single computation in which electrons flow
from the start node to the end node [10].

The increase of FERD in complex systems is allowed by the increase of α driven
by the principle of least action and of Q, driven by the principle of most action. In
this paper, we understand the processes of progressive increase of level of organiza-
tion, as a connected system of physics laws, which when put together yield complex
systems that we observe around us. If any of those three principles is taken sepa-
rately: the Least Action Principle (LAP), the Most Action Principle (MAP) and the
principle of increase of Free Energy Rate Density (FERD), they do not lead to a self-
organizing complex system. Only when they are connected in the same system in a
positive feedback loop, acting together, they yield the amazing diversity of complex
systems that we see in the world around us. We can use a new term, Devology ( dev-
from “development”, -evo- from “evolution” and -logia “study of”) for a study of
development of organization in complex systems in Cosmic Evolution, from the Big
Bang to Humankind [4].

27.2 Model

Previously we connected in a positive feedback loop organization (α) and size (Q)
of a complex system, leading to an exponential increase of both and to a power
law relationship between the two, which matched well with data for CPUs [10].
We proposed that this feedback loop is the major mechanism of accelerated rate of
self-organization and evolution of complex systems [10].

Here we show how non-equilibrium thermodynamics connects to this model,
through measurement of what Eric Chaisson terms Free Energy Rate Density (Φ), as
a distance from thermodynamic equilibrium, which he uses as a measure for Cosmic
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Fig. 27.1 A positive
feedback model between α,
Q and Φ. This loop can be
described with a system of
ordinary differential
equations, as in [10], which
solve to an exponential
growth of each of the three
and power law dependences
between each two of them

Evolution [4]. On Fig. 27.1 we include Φ in the model of positive feedback between
α and Q developed earlier [10]. In this expanded model, all three are in a positive
feedback, which as shown in [10] leads to exponential solutions of the differential
equations for the involved quantities for each. When the exponential equations are
combined, they yield a power law relation between them. Therefore for this paper
it is enough to demonstrate with data whether the relationship of Φ to either α or
Q is a power law in order to connect all three in a positive feedback loop with the
mentioned outcomes.

27.3 Data and Methods

CPUs are organized flow systems, where the events are well defined as computations
and precise data for time and energy per event available over the entire period of
their existence. CPUs are a good model system, because they are analogous to all
other complex systems: they perform events, consume energy and increase their time
and energy efficiency over time—evolve. Therefore they are an excellent system to
test our positive feedback model. Free Energy Rate Density, Φ, is measured in MKS
units. Those units are different than those used by Chaisson up to a constant, due to the
proportionality of the area of the CPUs to their mass. We make the assumption that as
a 2D system, the thickness of the silicon wafer is constant, or its change is negligible,
and that there are equal amounts of mass per unit area across all generations of CPUs.
Therefore, we calculate energy rate density in MKS units J/s ·m2, which is analogous
up to a constant to the units J/s·kg used previously for FERD and the trends in our data
will not change if this constant is used. To calculate the mass per unit area constant,
information about the thickness and density of the silicon wafers is necessary. Data
only for processors for desktops or laptops were used for consistency, because some
of the specialized processors, such as for phones or tablets, perform slower in order
to use less energy and fall below this trend line.
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Data were collected from Intel Corporation Datasheets [17]. The Instructions Per
Second (IPS) for each processor was divided by the Thermal Design Power (TDP) as
a measure of the total power consumption by the CPUs at maximum computational
speed, for consistency. The result was multiplied by the table value of the Planck’s
constant, h = 6.626 10−34 Js, as the smallest quantum of action, to solve for, as the
inverse of the average number of quanta of action per instruction per second [10]. To
solve for Q, the TDP was divided by h to find the total number of quanta of action
per second. To measure the FERD (Φ), we divided the TDP as the maximum rate of
energy flowing through the CPUs, by the area (die size) of the CPUs.

27.4 Results

Figure 27.2 shows that Φ is correlated with the size of the system Q by a power law,
which we set to explore with our model. We do not observe large deviations from this
power law relation, such as a system with small Q and a large density Φ or a system
with large Q and small Φ. Therefore the total amount of action in a system Q, or its
size, is connected to the density of free energy Φ, but not just the amount of it. This
is a Size-Density rule: size and density in a complex system are proportional. That
means mathematically, that Φ and α are also in a power law relationship, based on
the positive feedback model on Fig. 27.1 and our previous results for the solutions
of the differential equations describing this model [10]. Using this positive feedback
cycle, the result is that Φ is increasing exponentially in time, which matches with
the observations by Chaisson [4]. CPU systems are not observed to have high action
efficiency α at low Φ and low α at high Φ. This proportionality of α with Φ, leads to
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Fig. 27.2 A log-log plot of the total amount of action Q as a function of Φ. Data are filled circles
and solid line is the fit. The data are from 1982 starting with Intel 286, to 2012, ending with Intel
Core i7 3770k. There is a good agreement between the data and a power law fit. The two orders
of magnitude change on each axis provide enough data to test the power law relationship between
these variables
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another, Complexity-Density rule: complexity (organization, level of development)
α is proportional to the time and matter density of free energy, Φ, in a system. If one
increases or decreases, the other increases or decreases as well.

27.5 Summary and Conclusions

The significance of these calculations is that FERD (Φ) is in a positive feedback loop
with organization (α) and size (Q) of CPUs and all three reinforce each other, are
related with power laws and increase exponentially in time. In order to become better
organized, complex systems need larger energy flows to minimize larger constraints
to motion of their elements. Connecting to non-equilibrium thermodynamics, we
can say that the further a system is from equilibrium, the more work it can do
to minimize constraints to flows, therefore increasing its organization in terms of
action efficiency [4, 10]. Also, better organization means more action efficient flow
channels, therefore higher α provides the necessary efficiency of the flow network to
withstand and transmit larger energy flows. As Eric Chaisson points out, at a certain
level of structure, the FERD level is an optimum [4]. Too low FERD will slow the
system to a stop and too high level will destroy it. That is why we do not find data
points much above or below the power law trend line. In order to move the optimum
level of Φ higher, the system needs to reorganize and grow in size. This correlations
provide observational reason for connecting non-equilibrium thermodynamics with
the principle of least action in order to explain progressive increase of organization
in complex systems. It agrees with Chaisson’s results for Cosmic Evolution, that Φ

grows exponentially in time paralleling the rise in organization [4]. The Least Action
Principle (LAP), the Most Action Principle (MAP) and the principle of increase of
Free Energy Rate Density (FERD) need to operate together in a positive feedback
loop in order to produce an organized complex system.

It remains to be explored if the results are the same for Φ outside this time interval,
for other complex systems and in connection with other characteristics (parameters)
of complex systems. If those dependencies hold in other complex systems, they
can grow to universal Size-Density and Complexity-Density rules, in addition to
the established Size-Complexity rule [10]. We term as “Devology” studies of self-
organization in Cosmic Evolution and Development. Our future goal is to study other
systems (stellar, physical, chemical, biological, social) for which we can obtain data
for α, Q and Φ and to compare with our observations for CPUs. This paper is one step
in the further parametrization of the description of the processes of self-organization
started earlier [10]. In following research, we plan to add other parameters such
as the number of elements, density of elements, number of events and others in the
description of the processes of self-organization, and find out if additional regularities
exist. As shown in the model if one of the quantities α, Q or Φ increases or decreases,
the others increase or decreases predictably and lawfully as well, which is important
to take into account in management of complex systems in ecology, engineering,
economics, cities and elsewhere in society.
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