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Preface

Nanoworld is the world seen at the size of 10�9 m; searching matter at this depth

started since 1970 when Eiji Osawa had enounced the conjecture that the truncated

icosahedron could be a molecule, later called C60. Then, in 1985, Kroto, Curl, and

Smalley got spectral evidence that C60, which shows a single peak in
13C-NMR, is a

real molecule. They were awarded the Nobel Prize in 1995 for this historical

discovery. Macroscopic synthesis of C60 came later, in 1990, by the work of

Kraetschmer and collaborators. Iijima reported in 1991 the synthesis of nanotubes;

the period after these pioneering discoveries is commonly called the “Nanoera.”

Development of computers and technology enabled researchers and industry to go

further in research and applications, promoting an explosive development of elec-

tronics, optoelectronics, telecommunications, education, etc. Thereafter, the most

important event (for the actual book) was the recognition of quasi-crystals as

ordered, nonperiodic matter, the class to which the multi-shell clusters belong.

Dan Shehtman was the Noble Prize winner for these results in 2011. . .then the book
was started to be written. . .

Topology is the mathematical study of shapes; the multi-shell clusters concerned

herein are referred to as sets of shapes, arranged, in an abstract space, in increasing

rank (as Egon Schulte proposed in 1980), rather than in the geometrical higher

dimensional space. Cluster models representing primary atomic arrangement are

needed to understand the actual structure and then the undergoing transformations,

both in concept and experimental realization and in the computational treatment.

However, there is little reference to crystallographic entities, e.g., real crystal

networks and quasi-crystals. Also, this book does not provide all possible structures

of a given set of restrictive conditions; it rather gives chosen, representative

examples. This book about multi-shell clusters could be more inspiring for archi-

tects or visual artists in making monumental, artistic works, by its aesthetic

message.
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The structure of this book is as follows:

An introduction to the Chemical Graph Theory is made in the first chapter. It is a

description through the eye of a chemist of the basic notions of Graph Theory:

definitions, topological matrices and indices, counting polynomials, etc.

Chapter 2 describes some of the most important operations on maps that enabled

the design of the multi-shell clusters, as is shown in the following chapters.

In Chap. 3, rigorous definitions in polyhedra and polytopes of higher rank are

given with a view to helping in the effort of counting structural elements and

naming and extracting mathematical and physicochemical properties of multi-

shell clusters. Some examples of polytope realization are given at the end of this

chapter.

Chapter 4 deals with the complexity and methods of investigation and charac-

terization of multi-shell clusters, such as centrality index counted on layer matrices

and the ring signature index, calculated on rings around each vertex/atom of the

cluster. Theory about these descriptors is given as well as case studies providing

data on topology, defined on connectivity rather than geometry.

From Chaps. 5–9, the topological study is directed to multi-shell clusters clas-

sified according to the point group symmetry of the parent Platonic clusters, used as

seeds in the design of more complex clusters with the aid of map operations.

Chapter 10 speaks about chiral multi-tori, spongy structures, the complexity of

which is given by the high genus surface in which they are embedded.

Chapter 11 opens a gate to the spongy hypercubes, developed on the Platonic

solids. The designed structures were characterized by topological (figure) counting

and by Omega and Cluj counting polynomials.

Finally, Chap. 12 provides a bound to the real world by energy computation, in

an attempt to find multi-shell cluster (or corresponding networks) candidates to the

status of real chemical/mineral clusters.

Chapters 2, 5–10, and 12 have Atlas sections that detail the discussed structures;

the number of these figures is listed in separate files, in each chapter, while the

figure number is associated with the name of clusters within all the text, tables, and

figures included, for an easier identification.

The book includes personal research results of the author, in connection with his

activity within the Topo Group Cluj, Romania. It is addressed to students and

researchers in the interdisciplinary field of Chemistry, Physics, and Mathematics

as well as to architects and visual artists. Hin-files of the structures illustrated in this

book are deposed online, at www.esmc.ro, available on request.

I was aided in this effort by my younger colleagues, Dr. Csaba L. Nagy and

Dr. Atena Pirvan-Moldovan, Faculty of Chemistry and Chemical Engineering,

“Babes-Bolyai” University, Cluj, Romania, with quantum chemical and symmetry

calculation, figure design, and error checking, while writing the book, which I

highly appreciate. Many thanks are addressed to Dr. Attila Bende (Molecular and

Biomolecular Physics Department, National Institute for R&D of Isotopic and

Molecular Technologies, Cluj, Romania), Dr. Beata Szefler (Department of Phys-

ical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus

University, Bydgoszcz, Poland), Dr. Zahra Khalaj (Department of Physics,
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Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran), and Dr. Igor

Baburin (Technische Universität Dresden, Theoretische Chemie, Germany) for a

fruitful collaboration.

Cluj-Napoca, Romania Mircea Vasile Diudea

January 22, 2017
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Chapter 1

Basic Chemical Graph Theory

Graph Theory applied in Chemistry is called Chemical Graph Theory. This inter-

disciplinary science takes problems (like isomer enumeration, structure elucidation,

etc.) from Chemistry and solve them by Mathematics (using tools from Graph

Theory, Set Theory or Combinatorics), thus influencing both Chemistry and Math-

ematics. Partitioning of a molecular property and reconstructing it from fragmental

contributions is one of the main tasks of this theory. For further discussion, some

basic definitions in Graph Theory are needed.

1.1 Basic Definitions in Graphs

A graph G(V,E) is a pair of two sets, V and E, V¼ V(G) being a finite nonempty set

and E ¼ E(G) a binary relation defined on V (Harary 1969). A graph can be

visualized by representing the elements of V by points/vertices and joining pairs

of vertices (i, j) by an edge/bond if and only if (i, j) 2 E(G). The number of vertices

in G equals the cardinality n¼ jV(G)j of this set. The term graph was introduced by
Sylvester (1874). There is a variety of graphs, some of them being mentioned

below.

A path graph is a non-branched chain. A tree is a branched structure. A star is a
set of vertices joined in a common vertex. A cycle is a chain which starts and ends in
one and the same vertex (Fig. 1.1).

A complete graph Kn is the graph of with any two vertices are adjacent. The

number of edges in such a graph is n(n� 1)/2. Fig. 1.2 illustrates the complete

graphs with n ¼ 1–5.

In a bipartite graph, the vertex set V can be partitioned in two disjoint subsets:

V1[V2¼V(G); V1\V2¼∅ such that any edge (i, j)2E(G) joins V1 with V2

(Harary 1969; Trinajstić 1983; Diudea 2010). A graph is bipartite if and only if

all its cycles are even (Ionescu 1973). If any vertex i2V1 is adjacent to any vertex

j2V2 then G is a complete bipartite graph, Km,n, with m¼ |V1| and n¼ |V2| and the

© Springer International Publishing AG 2018
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number of edges being m � n. A star is a complete bipartite graph K1,n. Fig. 1.3

illustrates some complete bipartite graphs.

A planar graph is a graph that can be drawn in the plane with no edge

intersections (Harary 1969). The regions defined by a plane graph are called faces
f, the infinite region being the exterior face (see the face f4 in Fig. 1.4). For any

spherical polyhedron with v ¼ |V| vertices, e ¼ |E| edges and f ¼ |F| faces, the Euler
(1752–1753) formula is true: v�e + f ¼ 2. A graph is planar if and only if it has no

subgraphs homeomorphic to K5 or K3,3 (Kuratowski 1930).

A subgraph of a graph G is a graph G1 ¼ (V1, E1) having V1 � V and E1 � E
(Fig. 1.5).

A homeomorph of a graph G is a graph resulted by inserting vertices of degree

2 (Fig. 1.6).

A graph G is labeled, G(Lb), when its points are distinguished (e.g. by their

numbers) from those of the corresponding abstract graph. There are n! possibilities
of numbering a graph of order n.

Path Tree Star Cycle

Fig. 1.1 A variety of graphs

K1 K2 K3 K4 K5

Fig. 1.2 Complete graphs Kn; n ¼ 1–5

K1,3 K2,3 K3,3

Fig. 1.3 Complete bipartite graphs

f1

f2

f3
f4

Fig. 1.4 A planar graph and its faces
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Two graphs G ¼ (V, E) and G1 ¼ (V1, E1) are isomorphic (written G ffi G1) if

there exists a function f :V!V1 which is a bijection (one-to-one and onto) and for

any vertices i , j2V(G) (i, j)2E(G)$ ( f(i), f( j))2E1(G1). The function f is called
an isomorphism. If f is the permutation operation, then there exists a permutation

for which G(Lb) and G1(Lb) coincide and then f is an automorphism.
A walk wn is an alternating sequence of vertices and edges v1, e1,..,vn�1, en�1, vn in

which any two subsequent vertices are adjacent: (vi, viþ 1)2E(G). Revisiting of

vertices and edges of G is allowed. Set, in a walk wn, the vertices V(wn) and the

traversed edges E(wn); the length of the walk is defined as the cardinality of its edge

set: l(wn)¼ |E(wn)|. If the walk starts and ends in one and the same vertex (i.e., v1¼ vn)
the walk is a closed (or a self-returning) walk, otherwise it is an open walk. If no other

conditions are imposed, thewalk is called a randomwalk (Harary 1969; Diudea 2010).

A path pn (or a self-avoiding walk) is the walk whose vertices are visited once. Its
vertices v1, v2, . . ., vn are all-distinct and no branching is allowed. The length of the
path is l( pn)¼ |E( pn)|. If the path joining i and j is minimal, it is called a topological
distance or a geodesic; if the path is maximal, it is called a detour.

A circuit/cycle is a closed path, thus being both self-returning and self-

avoiding walk.

A trail (i.e., Eulerian walk) is a walk with all its edges distinct. Revisiting of

vertices is allowed.

A path is Hamiltonian if it visits once all the vertices in G. If such a path is a

closed one, then it is a Hamiltonian circuit. Fig. 1.7 illustrates the above discussed

walks.

When l( pij) is expressed in number of edges, the distance is called topological
distance; when it is measured in meters or submultiples (nm, pm) it is a metric
distance. Vertex degree d(i) is the number of edges incident in that vertex. If all the

Fig. 1.5 A graph and one of its subgraphs

Fig. 1.6 Homeomorphs of the tetrahedron
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vertices in G have the same degree, the graph is called a d-regular graph; otherwise
it is irregular.

An invariant of a graph is a graph theoretical property, which is preserved up to

isomorphism; it remains unchanged, irrespective of the numbering or pictorial

representation of G.
A chemical graph is a model of a chemical system, used to characterize the

interactions among its components: atoms, bonds, groups of atoms or molecules. It

is also called a reaction graph (Diudea et al. 2002, 2006).

A structural formula of a chemical compound can be represented by a molecular
graph, its vertices being atoms and edges corresponding to covalent bonds. Usually

hydrogen atoms are not depicted in which case we speak of hydrogen depleted
molecular graphs (Fig. 1.8).

A graph is said connected if any two vertices i and j are the endpoints of a path;
otherwise it is disconnected.

The distance dij between two vertices i and j is the length of a shortest path
joining them, if any: dij ¼ min l( pij); otherwise dij ¼ 1. A shortest path is often

called a geodesic (Harary 1969).

The eccentricity of a vertex i, ecci, is the maximum topological distance between

i and any vertex j of G : ecci¼max dij. The radius of a graph, r(G), is the minimum

eccentricity among all vertices i in G: r(G) ¼ min ecci ¼ min max dij. Conversely,
the diameter of a graph, d(G), is the maximum eccentricity in G: d(G) ¼ max

ecci ¼ max max dij.
The detour δij between two vertices i and j is the length of a longest path joining

these vertices, if any: δij ¼ max l( pij); otherwise δij ¼ 1.

Closed walk Path Trail Cycle Hamiltonian
path

Hamiltonian
circuit

Fig. 1.7 A variety of walks

C

C C

C

C

C

C

H

H

H

H

H

H H

H
H

H

H

H

H

H

Fig. 1.8 A molecular graph and its hydrogen depleted representation
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In a connected, non-directed graph, the distance and the detour are metrics, that
is, for any vertices i, j and k, the following equivalence relations are true

m i; jð Þ � 0; m i; jð Þ ¼ 0 $ i ¼ j

m i; jð Þ ¼ m j; ið Þ
m i; jð Þ þ m i; kð Þ � m j; kð Þ

Within this book, only molecular graphs will be considered.

1.2 Topological Matrices and Indices

A molecular graph can be represented by a sequence of numbers, a polynomial, a

single number or a matrix. These representations are aimed to be unique, for a given

structure. Topological matrices can be accepted as a rational basis for designing

topological indices (Randić 1991).

1.2.1 Adjacency Matrix

Since early nineteenth century, a matrix A(G) has been associated to an organic

molecule to show its atomic adjacency/connectivity (Sylvester 1874). This is a

square table, of dimensions n � n, whose entries are

A Gð Þ½ �ij ¼
1 if i 6¼ j and i; jð Þ 2 E Gð Þ
0 if i ¼ j or i; jð Þ =2 E Gð Þ

�

A(G) characterizes a graph up to isomorphism. It allows the reconstruction of the

graph. A(G) is symmetric vs. its main diagonal, so that the transpose AT(G) leaves A

(G) unchanged: AT(G)¼ A(G) (Trinajstić 1983). Figure 1.9 illustrates the adjacency

matrix. If instead 1, the bond order is used, the corresponding matrix is called the

connectivitymatrix C(G), with information identical to a connection table. Raising at

a power e, of a square matrix, can be eluded by applying the algorithm of Diudea

et al. (1994). It evaluates a (topological) property of a vertex I by iterative summation

of the first neighbors contributions. The algorithm, called eWM, is defined as

Mþ I ¼ 0WM

eþ1WM

� �
ii
¼

X
j

M½ �ij eWM½ �jj
� �

eþ1WM

� �
ij
¼ eWM½ �ij ¼ M½ �ij
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where M is any square matrix; the diagonal elements [eWM]ii equal the row sum

RSi of M
e and are walk degrees ewM , i (weighted by the property collected in M—

Diudea et al. 2002)

eWM½ �ii ¼
X
j

Me½ �ij ¼ ewM, i

The half sum of the local invariants ewM,i in G is a global invariant, called the

walk number eWM.

eWM¼eWM Gð Þ ¼ 1

2

X
i

e
WM, i

When M ¼ A, the quantity eWM (or simply eW ) represents the so called

molecular walk count.
The sumof diagonal elements in a squarematrix is called the trace Tr(Me)¼∑i[M

e]ii
(Trinajstić 1983). The half sum of diagonal elements provides the global invariant e

SRWM (Self Returning Walk) eSRWM¼ (1/2)∑i[M
e]ii¼MOM(Me) which equals the

moment of order e of the matrixM,MOM(Me). WhenM¼A, the elements [Ae]ii count

both self-returning walks and circuits of length e. (Diudea et al. 2002) MOM(Ae) is

related to the spectral properties of molecular graphs (e.g., the energy of molecular

orbitals—Graovac and Babić 1990). Figure 1.10 shows the graphical evaluation of ewi

and eW numbers.

1.2.2 Distance Matrix

Distance matrix D(G) was introduced by Harary (1969). It is a square symmetric

table, of dimensions n � n, whose entries are defined as

4

2 3

1

G1.2.1

A
1wi A

2 2wi A
3 3wi

1 0 0 0 1 1 1 1 1 0 3 0 1 1 3 5

2 0 0 1 1 2 1 2 1 1 5 1 2 3 4 10

3 0 1 0 1 2 1 1 2 1 5 1 3 2 4 10

4 1 1 1 0 3 0 1 1 3 5 3 4 4 2 13

Fig. 1.9 Adjacency matrices An; n ¼ 1–3, for the graph G1.2.1
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D Gð Þ½ �ij ¼ min l pi, j
� �

, if i 6¼ j
0 if i ¼ j

�

The non-diagonal entries of this matrix are just the topological distance between

i and j. Figure 1.11 illustrates the distance matrix.

The half sum of all entries in D(G) provides the well-known Wiener W topo-

logical index

W ¼ W Gð Þ ¼ 1=2ð Þ
X

i

X
j
D½ �ij

When one considers the genuine distances between atoms (i.e., the distances

measured through space), the 3D geometric matrix is obtained (Crippen 1977).

1.2.3 Detour Matrix

In cycle-containing graphs, when the shortest path (i.e., geodesic) is replaced by the

longest path between two vertices i and j, the Detour matrix Δ(G) can be

2
3

2
2

1
3

3
2

11

6
6

5
3

2
7

8
4

23

1 2
17

9
7

3
19

18
10

47

eW

5

11

24

e

1

2

3

eW

5

12

29

Fig. 1.10 Graphical evaluation of ewi and
eW: e ¼ 1–3

1
2

3
4

5
6

7

8

G1.2.2

1 2 3 4 5 6 7 8

1 0 1 2 3 4 5 2 3 20

2 1 0 1 2 3 4 1 2 14

3 2 1 0 1 2 3 2 1 12

4 3 2 1 0 1 2 3 2 14

5 4 3 2 1 0 1 4 3 18

6 5 4 3 2 1 0 5 4 24

7 2 1 2 3 4 5 0 3 20

8 3 2 1 2 3 4 3 0 18

iRS

Fig. 1.11 Distance matrix D(G1.2.4)
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constructed (Harary 1969; Diudea et al. 2002; Lukovits 1996; Amić and Trinajstić

1995)

Δ Gð Þ½ �ij ¼ maxl pi, j
� �

, if i 6¼ j
0 if i ¼ j

�

Figure 1.12 shows a Detour matrix.

1.2.4 Combinatorial Matrices

Two path-calculated matrices have been proposed (Diudea 1996; Diudea et al.

1998): the distance-path Dp (Fig. 1.13) and the detour-path Δp (Fig. 1.14), whose

elements are combinatorially calculated from the classical matrices, distance D

(or distance-edge) and detour Δ (or detour-edge)

Dp

� �
ij
¼ np i; jð Þ, i; jð Þ 2 D Gð Þ , if i 6¼ j

0 if i ¼ j

�
ð1:1Þ

Δp

� �
ij
¼ np i; jð Þ, i; jð Þ 2 Δ Gð Þ , if i 6¼ j

0 if i ¼ j

�
ð1:2Þ

np i; jð Þ ¼ M½ �ij þ 1

2

	 

¼ 1=2ð Þ M½ �i, j

� �2

þ M½ �i, j
� �

;M ¼ D;Δ

In the above, np(i, j) is the number of internal paths (Klein et al. 1995) of length
1� | p|� |(i, j )| included in the path p(i, j).

Half-sum of entries in these matrices provide the Hyper-Wiener and Hyper-

Detour indices (Lukovits 1996; Diudea et al. 1998).

1.2.5 Wiener Matrices

Randić proposed the so-called Wiener matrix, W, and exploited it as a source of

structural invariants, useful in QSPR/QSAR (Randić et al. 1993, 1994).

2

3 4

1

5
6

G1.2.3

0 1 2 3 4 5 6

1 0 1 3 3 4 5 16

2 1 0 2 2 3 4 12

3 3 2 0 2 3 4 14

4 3 2 2 0 1 2 10

5 4 3 3 1 0 1 12

6 5 4 4 2 1 0 16

iRSFig. 1.12 Detour matrix

Δ(G1.2.3)
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In trees, the non-diagonal entries in such a matrix are defined as:

We=p

� �
i, j

¼ ni,e=p � nj,e=p

where ni and nj denote the number of vertices lying on the two sides of the edge/

path, e/p (having i and j as endpoints); when defined on edge, the half-sum of entries

give the Wiener index while defined on path, the hyper-Wiener index is calculated.

We is calculated fromWp by relation We¼Wp • A, where the symbol • indicates the

Hadamard (Horn and Johnson 1985) pair-wise matrix product:

[Ma •Mb]ij¼ [Ma]ij [Mb]ij. In fact,We is an adjacencymatrixweighted by the number

of external paths which include a given edge e. Fig. 1.15 illustrates this matrix.

1.2.6 Cluj Matrices

Cluj matrices CJ(G) have been proposed by Diudea (Diudea 1997a; Diudea et al.

1997a, b; Janežič et al. 2007); they are defined on Cluj fragments CJi , j , p which

1
2

3
4

5
6

7

8

G1.2.2

1 2 3 4 5 6 7 8

1 0 1 3 6 10 15 3 6 44

2 1 0 1 3 6 10 1 3 25

3 3 1 0 1 3 6 3 1 18

4 6 3 1 0 1 3 6 3 23

5 10 6 3 1 0 1 10 6 37

6 15 10 6 3 1 0 15 10 60

7 3 1 3 6 10 15 0 6 44

8 6 3 1 3 6 10 6 0 35

iRS

Fig. 1.13 Distance-path matrix Dp(G1.2.2)

6

5

4

3

2

1

7
9

8

10

G1.2.4

1 2 3 4 5 6 7 8 9 10

1 0 15 21 6 10 15 21 28 28 1

2 15 0 15 10 6 10 15 21 21 21

3 21 15 0 15 21 15 21 28 28 28

4 6 10 15 0 15 10 15 21 21 10

5 10 6 21 15 0 15 21 28 28 15

6 15 10 15 10 15 0 15 21 21 21

7 21 15 21 15 21 15 0 1 1 28

8 28 21 28 21 28 21 1 0 3 36

9 28 21 28 21 28 21 1 3 0 36

10 1 21 28 10 15 21 28 36 36 0

Fig. 1.14 Detour-path matrix Δp(G1.2.4)
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collect vertices v lying closer to i than to j, the endpoints of a path p(i, j). These
fragments represent the vertex proximities (see also Gutman 1994) of i vs. any
vertex j, joined by the path p, with the distances measured in the subgraph G \ p:

CJi, j,p ¼ v v 2 V Gð Þ;D G\ pð Þ
�
i; v

�
< D G\ pð Þ

�
j; v

��� �
The entries in CJ matrices are taken, by definition, as the maximum cardinality

among all such fragments: UCJ½ �i, j ¼ max
p

CJi, j,p
�� �� ; it is because, in graphs

containing rings, more than one path can join the pair (i, j), thus resulting more

than one fragment related to i (with respect to j and path p). Cluj matrices are

defined by using either distance or detour concepts: when path p belongs to the set

of distances DI(G), the suffix DI is added to the name of matrix; when path

p belongs to the set of detours DE(G), the suffix is DE; when the matrix symbol

is not followed by a suffix, it is by default DI.

Cluj matrices are defined in any graph and, except for some symmetric graphs,

are unsymmetric: UCJDI, UCJDE. Symmetric Cluj matrix SCJ can be obtained by

the Hadamard multiplication of UCJ with its transpose: SCJ¼UCJ •UCJT. The

edge-based symmetric matrix is calculable from the path-based one:

SCJe¼ SCJp • A. Fig. 1.16 illustrates the Cluj matrices in a ring-containing graph.

In trees, the path joining any two vertices is unique, then CJi , j , p represents the
set of external paths passing through i to j. Fig. 1.17 illustrates the Cluj matrix in a

tree graph. In calculating CJ matrix, the path p(i, j) is characterized by a single

endpoint, however, the information is twice: the row-sum is identical to that

provided by We matrix while the column-sum equals that in the distance D matrix.

Indices derived from topological matrices (see above) are calculated as half sum

of matrix entries

I Gð Þ ¼ 1=2ð Þ
X

i

X
j
M½ �ij ¼

X
i>j

M½ �ij ¼ 1=2ð Þ uMuT

1
2

3
4

5
6

7

8

G1.2.2

1 2 3 4 5 6 7 8 RSi

1 0 7 5 3 2 1 1 1 20

2 7 0 15 9 6 3 7 3 50

3 5 15 0 15 10 5 5 7 62

4 3 9 15 0 12 6 3 3 51

5 2 6 10 12 0 7 2 2 41

6 1 3 5 6 7 0 1 1 24

7 1 7 5 3 2 1 0 1 20

8 1 3 7 3 2 1 1 0 18

Fig. 1.15 Wiener matrix We/p(G1.2.2): the italicized entries represent We matrix
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where u and uT are the unit vector (of order n) and its transpose (Estrada and

Rodriguez 1997; Estrada et al. 1997). In trees, the following equalities hold:

SCJp¼Wp; SCJe¼We. The half-sum in the symmetric Cluj matrices provides

the Wiener W and hyper-Wiener WW indices, from SCJe and SCJp, respectively.

Relation with Cluj polynomial CJS(x) (calculated as the first derivative in x¼ 1, see

Chap. 11) is as follows: ∑i∑j[UCJe]ij¼CJS(1)

1.2.7 Distance-Extended Matrices

Diudea (1997a, b) has performed the Hadamard product on the unsymmetric Cluj

matrix: [D •UCJ]i , j¼ [D]i , j • [UCJ]i , j to provide a new matrix, that shows in trees,

the equalities: CS(D •UCJ)¼CS(Dp) and RS(D •UCJ)¼RS(Wp). This matrix

(illustrated in Fig. 1.18) is a direct proof of the theorem of Klein et al. (1995): in

trees, the sum of all internal paths (given by Dp) equals the sum of all external paths
(given by Wp) with respect to all pairs (i, j). Thus, the half-sum of entries in

D •UCJ equals the hyper-Wiener WW index (Diudea and Gutman 1998).

UCJDI UCJDE

2

3

4

5

6

7

81

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 4 2 2 2 2 3 5 0 1 1 1 1 2 1 2

2 3 0 2 2 2 3 2 4 1 0 1 1 1 1 2 1

3 5 4 0 4 4 4 3 6 2 2 0 3 4 2 2 2

4 3 5 3 0 3 3 4 5 2 2 2 0 4 2 2 3

5 5 5 2 2 0 4 4 5 1 1 1 1 0 1 1 1

6 3 4 3 3 3 0 4 7 3 2 2 2 2 0 2 7

7 3 3 2 3 3 3 0 6 1 3 1 1 1 1 0 1

8 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

Fig. 1.16 Cluj matrices in a ring-containing graph G1.2.5

1
2

3
4

5
6

7

8

G1.2.2

1 2 3 4 5 6 7 8 RS(We)

1 0 1 1 1 1 1 1 1 7

2 7 0 3 3 3 3 7 3 29

3 5 5 0 5 5 5 5 7 37

4 3 3 3 0 6 6 3 3 27

5 2 2 2 2 0 7 2 2 19

6 1 1 1 1 1 0 1 1 7

7 1 1 1 1 1 1 0 1 7

8 1 1 1 1 1 1 1 0 7

CS(D) 20 14 12 14 18 24 20 18

Fig. 1.17 Cluj matrix UCJe/p (G1.2.4); the italicized entries represent UCJe matrix
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1.2.8 Walk Matrices

Diudea (1996, 1999) has proposed the walk matrix, W(M1M2M3), defined by the

principle of a single endpoint characterization of a path

WM1M2M3
½ �ij ¼ ½M2�ijWM1i M3½ �ij ¼ RS M1ð Þ M2½ �ij

� �h i
i
M3½ �ij

where WM1i is the walk degree of the vertex i, of extent [M2]ij, weighted by the

property collected in M1 and M3 (i.e., the ith row-sum of the matrix M1, raised to

power [M2]ij and multiplied by the entries of M3); the diagonal entries are zero. It is

a square, (in general) non-symmetric matrix that mixes three square matrices, in

fact being a true matrix operator (see below).

Let first (M1 M2 M3) be (M1 1 1), where 1 is the matrix with “1” off-diagonal

elements. The entries of matrix W(M1 1 1) will be

W M111ð Þ
� �

ij
¼ RS M1ð Þ½ �i ¼ WM1, i

Next, consider the combination (M1 1 M3); the corresponding walk matrix can

be written as the Hadamard product

W M11M3ð Þ ¼ W M111ð Þ •M3

Examples in Fig. 1.19 are for the case: M1 ¼ A and M3 ¼ D.

The sum of all entries in W M11M3ð Þ can be calculated by

uW M11M3ð ÞuT ¼
X

i
RS W M11M3ð Þ

� �� �
i
¼ u M1M3ð ÞuT

where u and uT are the unit vector (of order n) and its transpose. The above

equation represents a joint of Cramer and Hadamard matrix algebra, by means of

1
2

3
4

5
6

7

8

G1.2.2

1 2 3 4 5 6 7 8 RS(Wp)

1 0 1 2 3 4 5 2 3 20

2 7 0 3 6 9 12 7 6 50

3 10 5 0 5 10 15 10 7 62

4 9 6 3 0 6 12 9 6 51

5 8 6 4 2 0 7 8 6 41

6 5 4 3 2 1 0 5 4 24

7 2 1 2 3 4 5 0 3 20

8 3 2 1 2 3 4 3 0 18

CS(Dp) 44 25 18 23 37 60 44 35

Fig. 1.18 Distance-extended Cluj matrix D •UCJ(G1.2.2)
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W(M11M3). The row-sum vector in W(M11M3) can be achieved by the pair-wise

product of the row-sums in M1 and M3, respectively

RS W M11M3ð Þ
� �� �

i
¼ RS M1ð Þ½ �i • RS M3ð Þ½ �i

1
2

3
4

5

6

7 G1.2.6

15

10
9

12
17

15

14

A (G) D (G;RS(Di)

1 2 3 4 5 6 7 RSi 1 2 3 4 5 6 7 RSi

1 0 1 0 0 0 0 0 1 1 0 1 2 3 4 2 3 15

2 1 0 1 0 0 1 0 3 2 1 0 1 2 3 1 2 10

3 0 1 0 1 0 0 1 3 3 2 1 0 1 2 2 1 9

4 0 0 1 0 1 0 0 2 4 3 2 1 0 1 3 2 12

5 0 0 0 1 0 0 0 1 5 4 3 2 1 0 4 3 17

6 0 1 0 0 0 0 0 1 6 2 1 2 3 4 0 3 15

7 0 0 1 0 0 0 0 1 7 3 2 1 2 3 3 0 14

W(A11) (G) W(D11) (G)

1 2 3 4 5 6 7 RSi 1 2 3 4 5 6 7 RSi

1 0 1 1 1 1 1 1 6 1 0 15 15 15 15 15 15 90

2 3 0 3 3 3 3 3 18 2 10 0 10 10 10 10 10 60

3 3 3 0 3 3 3 3 18 3 9 9 0 9 9 9 9 54

4 2 2 2 0 2 2 2 12 4 12 12 12 0 12 12 12 72

5 1 1 1 1 0 1 1 6 5 17 17 17 17 0 17 17 102

6 1 1 1 1 1 0 1 6 6 15 15 15 15 15 0 15 90

7 1 1 1 1 1 1 0 6 7 14 14 14 14 14 14 0 84

(A1D) = W(A11) D W(D1A) = W(D11)  A

1 2 3 4 5 6 7 diSDi 1 2 3 4 5 6 7 diSDi

1 0 1 2 3 4 2 3 15 1 0 15 0 0 0 0 0 15

2 3 0 3 6 9 3 6 30 2 10 0 10 0 0 10 0 30

3 6 3 0 3 6 6 3 27 3 0 9 0 9 0 0 9 27

4 6 4 2 0 2 6 4 24 4 0 0 12 0 12 0 0 24

5 4 3 2 1 0 4 3 17 5 0 0 0 17 0 0 0 17

6 2 1 2 3 4 0 3 15 6 0 15 0 0 0 0 0 15

7 3 2 1 2 3 3 0 14 7 0 0 14 0 0 0 0 14

ADj 24 14 12 18 28 24 22 142 ADi 10 39 36 26 12 10 9 142

Fig. 1.19 W(M1M2M3) algebra; diSDi are local contributions to the degree-distance index

(Dobrynin and Kochetova 1994)
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This vector represents a collection of pair-wise products of local (topological)

properties (encoded as row-sums in M1 and M3). When M1 ¼ M3 ¼ M, then the

sum of entries can be written as

uW MnMð ÞuT ¼ u Mð ÞnMð ÞuT ¼ u Mnþ1
� �

uT

thus proving that W(M1M2M3) is a true matrix operator.

A particular case of the walk matrix, RW(AD1) (i.e., the reciprocal of W(AD1)) is

identical to the restricted random walkmatrix proposed by Randić (1995), (see also

Diudea and Randić 1997).

1.2.9 Reciprocal Matrices

In Chemical Graph Theory, the distance matrix accounts for through bond interac-

tions of atoms in molecules. However, these interactions decrease as the distance

between atoms increases. This reason led to the introduction, by the QSAR Group

of Timisoara (Ciubotariu 1987; Ciubotariu et al. 2004) and next by the groups of

Balaban (Ivanciuc et al. 1993) and Trinajstić (Plavšić et al. 1993), of the reciprocal
distance matrix, RD. The entries in this matrix are defined by

RD½ �ij¼1= D½ �ij

RD matrix allows the calculation of a Wiener analogue number, called the

Harary index (Plavšić et al. 1993), in the honor of Frank Harary. Several matrices

having entries as reciprocal (topological) property: [RM]i , j¼ 1/[M]i , j ;M¼We/p ,

Dp, and UCJ have been proposed by Diudea (1997c).

1.2.10 Layer and Shell Matrices

1.2.10.1 Layer Matrices

Layer matrices (Skorobogatov and Dobrynin 1988) have been proposed in connec-

tion with sequences of walks (Halberstam and Quintas 1982; Bonchev et al. 1989;

Dobrynin 1993); they are built up on the layer partitions in a graph.

Let G(v)k be the kth layer of vertices v lying at distance k, in the partition G(i)

G vð Þk ¼ vjdi,v ¼ kf g
G ið Þ ¼ G vð Þk; k 2

�
0; 1; . . . ; ecci

� �
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with ecci being the eccentricity of i. The entries in the layer matrix (of vertex

property) LM (Diudea 1994, 2010; Diudea et al. 1994; Diudea and Ursu 2003) are

defined as

LM½ �i,k ¼
X

v di,v¼kj
pv

Layer matrix is a collection of the above defined entries:

LM Gð Þ ¼ LM½ �i,k; i 2 V Gð Þ; k 2 �
0; 1; ::; d Gð Þ�n o

with d(G) being the diameter of the graph (i.e., the largest distance in G). The

zero column is just the column of vertex properties, [LM]i , 0¼ pi. When pi ¼ 1 (i.e.,

the counting property), LM matrix is named LC (i.e., Layer matrix of Counting—

Fig. 1.20). Any atomic/vertex property can be considered as pi. Moreover, any

square matrix M can be taken as info matrix, i.e., the matrix supplying local/vertex

properties, as row-sum RS, column-sum CS or diagonal entries, as implemented in

TopoCluj software (Ursu and Diudea 2005).

1.2.10.2 Shell Matrices

Entries in the shell matrix ShM (of vertex pair property, Diudea and Ursu 2003) are

defined as

ShM½ �i,k ¼
X

v di,v¼kj
M½ �i,v

The shell matrix is a collection of the above defined entries:

ShM Gð Þ ¼ ShM½ �i,k; i 2 V Gð Þ; k 2 �
0; 1; ::; d Gð Þ�n o

1

2

3

4

5

6

7 G1.2.6

i\k 0 1 2 3 4 RS
1 1 1 2 2 1 7

2 1 3 2 1 0 7

3 1 3 3 0 0 7

4 1 2 2 2 0 7

5 1 1 1 2 2 7

6 1 1 2 2 1 7

7 1 1 2 3 0 7

CS 7 12 14 12 4

kCS 12 28 36 16 92
a

Fig. 1.20 Layer matrix of counting LC(G1.2.6);
a2 � Wiener index
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A shell matrix, ShM(G), will partition the entries of a square matrix according to

the vertex-distance partitions in the graph. The zero column entries [ShM]i , 0 can be

the diagonal entries of the info matrix. Tables 1.1, 1.2 and 1.3 exemplify the Shell

matrix of Cluj matrices for G1.2.6

Let now consider the behavior of the edge-calculated matrices: adjacency A, We

and UCJe matrices. These are sparse matrices, with non-zero entries only at k ¼ 1,

the other columns in the shell matrix being null (see Table 1.4). In case of UCJe
matrix, the column-sum equals the first derivative (in x ¼ 1) of Cluj polynomial

CJ-Sum(x) (see Sect. 11.6.2).

Table 1.1 Shell matrix of UCJ

ShUCJ(G1.2.6) UCJ(G1.2.6)

i \ k 0 1 2 3 4 RS 1 2 3 4 5 6 7 RS

1 0 1 2 2 1 6 0 1 1 1 1 1 1 6

2 0 15 6 3 0 24 6 0 3 3 3 6 3 24

3 0 15 13 0 0 28 4 4 0 5 5 4 6 28

4 0 8 4 4 0 16 2 2 2 0 6 2 2 16

5 0 1 1 2 2 6 1 1 1 1 0 1 1 6

6 0 1 2 2 1 6 1 1 1 1 1 0 1 6

7 0 1 2 3 0 6 1 1 1 1 1 1 0 6

CS 0 42 30 16 4 92a CS 15 10 9 12 17 15 14 92

CS	k 42 60 48 16 166b

a2 � Wiener index W
b2 � hyper-Wiener index WW (Wiener 1947; Randić 1993)

Shell matrix of UCJ (the bold values indicate entries in UCJe matrix)

Table 1.2 Shell matrix of UCJT

ShUCJT( G1.2.6) UCJT (G1.2.6)

i \ k 0 1 2 3 4 RS 1 2 3 4 5 6 7 RS

1 0 6 5 3 1 15 0 6 4 2 1 1 1 15

2 0 6 3 1 0 10 1 0 4 2 1 1 1 10

3 0 6 3 0 0 9 1 3 0 2 1 1 1 9

4 0 6 4 2 0 12 1 3 5 0 1 1 1 12

5 0 6 5 4 2 17 1 3 5 6 0 1 1 17

6 0 6 5 3 1 15 1 6 4 2 1 0 1 15

7 0 6 5 3 0 14 1 3 6 2 1 1 0 14

CS 0 42 30 16 4 92a CS 6 24 28 16 6 6 6 92a

CS	k 42 60 48 16 166b

a2 � Wiener index W
b2 � hyper-Wiener index WW
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1.2.10.3 Centrality Index

On the above layer/shell matrices, a centrality index (Diudea and Ursu 2003; Ursu

and Diudea 2005) is calculated as

C LM\ ShMð Þi ¼
Xecci
k¼1

LM\ ShM½ �2kik
� �1= eccið Þ2

" #�1

C LM\ ShMð Þ ¼
X
i

C LM\ ShMð Þi

This index allows the finding of the graph center (e.g. the vertex having the

largest Ci value) and provides an ordering of graph vertices according to their

centrality.

Table 1.3 Shell matrix of the symmetric Cluj matrix SCJ

ShSCJ(G1.2.6) SCJ(G1.2.6)

i \ k 0 1 2 3 4 RS 1 2 3 4 5 6 7 RS

1 0 6 5 3 1 15 0 6 4 2 1 1 1 15

2 0 24 9 3 0 36 6 0 12 6 3 6 3 36

3 0 28 13 0 0 41 4 12 0 10 5 4 6 41

4 0 16 8 4 0 28 2 6 10 0 6 2 2 28

5 0 6 5 4 2 17 1 3 5 6 0 1 1 17

6 0 6 5 3 1 15 1 6 4 2 1 0 1 15

7 0 6 5 3 0 14 1 3 6 2 1 1 0 14

CS 0 92 50 20 4 166a CS 15 36 41 28 17 15 14 166

CS	k 92 100 60 16 268b

a2 � hyper Wiener index
b2 � Tratch index (Tratch et al. 1990)

Table 1.4 Shell matrices of edge-defined info matrices

ShA(G1.2.6) ShWe(G1.2.6) ShUCJe(G1.2.6)

i \ k 0 1 2 3 4 RS 0 1 2 3 4 RS 0 1 2 3 4 RS

1 0 1 0 0 0 1 0 6 0 0 0 6 0 1 0 0 0 1

2 0 3 0 0 0 3 0 24 0 0 0 24 0 15 0 0 0 15

3 0 3 0 0 0 3 0 28 0 0 0 28 0 15 0 0 0 15

4 0 2 0 0 0 2 0 16 0 0 0 16 0 8 0 0 0 8

5 0 1 0 0 0 1 0 6 0 0 0 6 0 1 0 0 0 1

6 0 1 0 0 0 1 0 6 0 0 0 6 0 1 0 0 0 1

7 0 1 0 0 0 1 0 6 0 0 0 6 0 1 0 0 0 1

CS 0 12 12a 0 92 92b 0 42 42c

a2 � e
b2 � W
cCJS(x ¼ 1) ¼ v � e
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1.3 Topological Symmetry

Molecular geometry and their crystals is completely described by the 230 symmetry

groups of the space (Hargittai and Hargittai 2010; Petitjean 2007). Symmetry of

molecules is reflected in several properties, such as dipole moments, IR vibrations,
13C-NMR signals etc., that are dependent on the spatial structure of molecules.

Molecular topology reveals a different type of symmetry: the topological symmetry
(i.e., constitutional symmetry). It is defined in terms of connectivity, as a constitu-
tive principle of molecules and expresses equivalence relationships among ele-

ments of graph: vertices, bonds, faces or larger subgraphs. It makes use of Group

Theory formalism while the geometrical aspects are disregarded.

Let G1¼ (V1, E1) and G2¼ (V2, E2) be two graphs and a function f, mapping the
vertices of V1 onto the vertices belonging to the set V2, f: V1 ! V2. That is, the

function f makes a one-to-one correspondence between the vertices of the two sets.

The two graphs are called isomorphic, G1 
 G2, if there exists a mapping f that
preserves adjacency (i.e., if (i, j) 2 E1, then ( f(i), f( j)) 2 E2).

Using notions of the Group action (Hungerford 1974; Mirman 1999), in which

every element of the group acts like as a one-to-one mapping, the group G is said to

act on a set X if there is a function ϕ such that ϕ:G � ! X and for any element

x 2 X, there exists the relation ϕ(g,ϕ(h, x)) ¼ ϕ(gh, x), for all g, h 2 G, with ϕ(e,
x) ¼ x, e being the identity element of G. The mapping ϕ is called a group action

while the set {ϕ(gx)|g 2G} is called the orbit of x. For a permutation σ on n objects,
the permutation matrix is an n � n matrix Pσ, with elements xij ¼ 1 if i ¼ σ( j) and
0 otherwise. For any permutation σ and τ on n objects, PσPτ ¼ Pστ, while the set of

all permutation matrices is a group isomorphic to the symmetry group Sn on

n symbols. A permutation σ of the vertices of a graph H(V, E) (V being the set of

vertices and E the set of edges in H ) belongs to an automorphism group G if one

satisfies the relation Pσ
TAPσ¼A, where A is the adjacency matrix of the graph H.

Given Aut(H )¼ {σ1, . . . , σm}, the matrix SG ¼ [sij], where sij ¼ σi( j), is called a

solution matrix for H and its calculation will provide the automorphism group of H.
Given a graphH(V, E) and the automorphism group Aut(H ), two vertices, i, j 2 V

are called equivalent if {ϕ(ij)|i, j 2 Aut(H )}, in other words, they belong to the same

orbit of automorphisms. Suppose v1, v2,...,vm are m disjoint automorphic partitions
of the set of vertices V(H ), then: V¼Vv1[Vv2[ . . . [Vvm and Vvi \ Vvj ¼ ∅. All

the automorphisms of a graph form a group (Gutman and Polanski 1986; Razinger

et al. 1993; Balasubramanian 1994, 1995a, b, c).

Let now consider a vertex invariant (i.e., a topological index), In ¼ In1, In2, . . .,
Inm, which assigns a value Ini to the vertex i. Two vertices i and j of a molecular

graph (with vertices meaning the atoms and edges the bonds in the molecule)

belong to the same invariant class if Ini ¼ Inj. The partitioning in classes of

vertices/atoms leads to m classes, with v1, v2, . . . vm atoms in each class; such a

partitioning may differ from the orbits of automorphism i.e. classes of equivalence,
since no vertex invariant is known so far to always discriminate two non-equivalent

vertices in any graph. The classes of vertices are eventually ordered according to

18 1 Basic Chemical Graph Theory



some rules. Note that topological symmetry equals the maximum geometrical

symmetry a molecular graph can have. Also note that topological symmetry, arising

from graph automorphisms, can be defined the same way as the Euclidean symme-

try (Petitjean 2007).

In Chemistry, such a study could answer to the question if two molecular graphs

represent or not one and the same chemical compound.

Within this book, topological symmetry/equivalence classes will be evaluated

by means of Centrality index (see Sect. 1.2.10.3) and checked by adjacency matrix

permutations.
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Timisoara, Romania

Ciubotariu D, Medeleanu M, Vlaia V, Olariu T, Ciubotariu C, Dragos D, Seiman C (2004)

Molecular van der Waals space and topological indices from the distance matrix. Molecules

9:1053–1078

Crippen GM (1977) A novel approach to calculation of conformation: distance geometry. J

Comput Phys 24:96–107

Diudea MV (1994) Layer matrices in molecular graphs. J Chem Inf Comput Sci 34:1064–1071

Diudea MV (1996) Walk numbers eWM: Wiener-type numbers of higher rank. J Chem Inf Comput

Sci 36:535–540

Diudea MV (1997a) Cluj matrix invariants. J Chem Inf Comput Sci 37:300–305

Diudea MV (1997b) Cluj matrix, CJu: source of various graph descriptors. MATCH Commun

Math Comput Chem 35:169–183

Diudea MV (1997c) Indices of reciprocal property or Harary indices. J Chem Inf Comput Sci

37:292–299

Diudea MV (1999) Valencies of property. Croat Chem Acta 72:835–851

Diudea MV (2010) Nanomolecules and nanostructures—polynomials and indices, MCM, No. 10.

University Kragujevac, Serbia

Diudea MV, Gutman I (1998) Wiener-type topological indices. Croat Chem Acta 71:21–51
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Chapter 2

Operations on Maps

Structures discussed in this book are represented by simple, non-directed (molec-

ular) graphs. Their design is based on “operations on maps”, merely applied on the

Platonic solids: tetrahedron (T), cube (C), octahedron (O), dodecahedron (D) and

icosahedron (I). A map M is a discretized surface domain while the operations on

maps are topological modifications of a parent map. All the parameters herein

presented refer to regular maps (i.e., having all vertices and faces of the same

degree/size). The symmetry of parents is preserved by running these operations.

Several operations are known (under various names/symbols) and currently used to

decorate/transform a given mathematical object. The reader is invited to consult

some publications in this respect (Johnson 1966; Pisanski and Randić 2000; Diudea

2010, Conway et al. 2008; Hart 2015; Grünbaum and Shephard 1987). In the

following, only the most important operations will be detailed.

2.1 Dual d

Dual d(P) is obtained by setting a point in the center of each face of a polyhedron P,
then joining two such points if their corresponding faces share a common edge. It is

the Poincaré dual; vertices of d(P) represent faces in the parent polyhedron and

vice-versa. If the starting polyhedron (i.e., the seed) is a three-connected one (e.g.,

the Platonic solids), of figure sequence {v, e, f} (i.e., vertices, edges and faces), one
obtains {f, e, v} in the dual polyhedron; dual of the dual returns the original

polyhedron (or an isomorphic of it): d(d(P)) ¼ P. Tetrahedron is self-dual while

the other Platonics form pairs: d(C) ¼ O; d(D) ¼ I (see Fig. 2.1).

Dualization is an operation in any dimension and can be written, with the

Schläfli (1901) symbols, as the reverted polytope figure sequence (see Chap. 3):

{a, b, c,..., y, z} becomes {z, y,. . .,c, b, a} in the dual polytope; however, its

realization complicates with the increase of polytope dimension. Within this

book, only the cell-dual cd will be illustrated in some interesting cases.

© Springer International Publishing AG 2018
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A Petrie dual (or Petrial) is also known (Coxeter 1973, 1974); it is a map having

vertices and edges of the original polyhedron and whose faces are the set of Petrie

polygons. The Petrie polygon of a polyhedron is a skew polygon of which every two

consecutive edges (but not three) belong to one of the faces of the parent polygon.

For the Platonic polyhedra (T, C, O, D and I), the Petrie polygons are: three squares,

four hexagons, four hexagons, six decagons and six decagons, respectively.

Figure 2.2 illustrates the Petrie polygons in case of cube and octahedron, respectively.

Petrie polygon for a regular polytope of n dimensions is a skew polygon such

that every (n � 1) consecutive sides (but not n) belong to one of the facets of the

Fig. 2.1 Platonic solids as dual-pairs

Fig. 2.2 Petrie (skew) hexagons (in yellow) of the cube C and octahedron O (top); embedding of

the cube petrial in the torus (resulted by identifying the red edges of four hexagons—left, bottom—
to form a tube and then by identifying the squares at the two ends of the tube—right, bottom)
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parent polytope. For every regular polytope there exists an orthogonal projection

onto a plane (i.e., the Coxeter plane of the symmetry group of the polygon) such that

one Petrie polygon becomes a regular polygon while the reminder of the projection

appear interior to it.

Petrials are useful in visualizing the symmetric structure of higher-dimensional

regular polytopes.

2.2 Medial m

Medial m(P) is obtained by pairwise joining the midpoints of parent edges if pair

edges span an angle. Medial is always a 4-valent graph, symmetric between the

parent polyhedron and its dual, that is m(P) ¼ m(d(P)). The figure sequence of the
truncated polyhedron is: {e, 2e, e+2}, e being the number of edges in the parent

(three-connected) polyhedron. This operation rotates the parent s-gonal faces by π/
s. By medial, edges of the parent polyhedron are reduced to a point; this property

can be used in topological analysis of edges. This operation (illustrated in Fig. 2.3)

is also known as rectification or even ambo (Conway notation). Applying twice mm
(medial of a medial) is the same as expansion operation of Conway (Conway et al.

2008) or Johnson’s cantellation operation (Johnson 1966).

Rectification is a complete vertex-truncation; the resulting polytope is bounded

by vertex figure facets and the rectified facets of the parent polytope. If an n-
polytope is (n � 1)-rectified, its facets become points and the polytope becomes its

dual. However, a rectified 4-polytope {p, q, r} is not the same as the rectified {r, q,
p}; a further truncation (namely a bitruncation) is needed to make it symmetric

between a 4-polytope and its dual.

Fig. 2.3 Medial m operation (synonimes: ambo; rectification) provides a graph symmetric

between a polyhedron and its dual
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2.3 Truncation t

Truncation t(P) cuts off the neighborhood of each vertex by a plane, such that it

intersects each edge incident in that vertex. The truncated polyhedron has the figure

sequence: {2e, 3e, e+2}; it is always a three-connected graph. Truncation is an

operation in any dimension that cuts polytope vertices, creating a new facet instead

of each vertex (Pisanski and Randić 2000). This was the main operation used by

Archimedes in building its well-known 13 solids while the term originates from

Kepler.

A bitruncation is a deeper truncation that removes all the original edges but

leaves an interior part of the original faces. The bitruncated cube: 2t{4, 3} is the

truncated octahedron, as an example.

In higher dimensions, truncations has various names, as runcination

(4-polytopes) or sterication (5-polytopes). Omnitruncation is a truncation of a

rectification (see Sect. 2.3).

Edge-truncation is a chamfering or a quadrupling (see below) for polyhedra; it

retains original vertices while edges are replaced by hexagons. In 4-polytopes, an

edge-truncation replaces edges with bipyramids. Fig. 2.4 illustrates the truncation

operation in 3-polytopes.

2.4 Polygonal Mapping pn

Polygonal pn(P) operation is achieved by adding a new vertex in the center of each

face of a polyhedral graph, next put n � 3 points on the boundary edges. Connect

the central point with one vertex on each edge (the endpoints included): the parent

face will be covered by triangles (n ¼ 3), squares (n ¼ 4) and pentagons (n ¼ 5),

respectively. The transformed polyhedron figure sequence is: {(n � 2)e + 2, ne, 2e}.
Fig. 2.5 gives examples of the pn operations realization (Diudea and Nagy 2007).

Other names are used for these operations:

p3—stellation st, or triangulation, or also kiss k (Conway notation);

dual of stellation dp3 is a bitruncation (or leapfrog, see Sect. 2.6)

Fig. 2.4 Truncation of

cube (left) and octahedron

(right)
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p4—ortho o (Conway notation)

p5—gyro g (Conway notation)

2.5 Snub s

Snub operation is the dual of p5 operation: sM ¼ dp5M. Similar to the medial

operation, sM ¼ sdM. The transformed polyhedron figure sequence is: {2e, 5e,
3e + χ}. For M ¼ T, the transformed map is the icosahedron: sT ¼ I (see the

examples in Fig. 2.6).

Snub is the dual of p5 operation: s(P) ¼ d( p5(P)) and s(P) ¼ s(d(P)).

2.6 Leapfrog l

Leapfrog l(P) (or tripling or also dual of kiss) is a composite operation (Eberhard

1891; Fowler 1986) that can be written as: l(P) ¼ t(d(P)) ¼ d(stP)); it rotates the
parent s-gonal faces by π/s. The transformed polyhedron has the figure sequence:

{2e, 3e, e + 2}; the vertices of l(P) are always of degree 3, since this operation

involves a truncation (see above). A bounding polygon, of size 2d, is formed around

Fig. 2.5 Polygonal pn operations on dodecahedron

Fig. 2.6 Snub of three-connected platonic solids
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each parent vertex. In the most frequent cases, of 4- and 3-valent maps, the

bounding polygon is an octagon and a hexagon, respectively. Leapfrog operation

is illustrated, on a pentagonal face, in Fig. 2.7.

If P is a d-regular graph (d being the vertex degree) the following theorem holds

(Diudea and John 2001):

Theorem 2.1 The number of vertices in lP is dv, irrespective of the parent
tessellation.

Demonstration follows from the observation that, for each vertex of P, d vertices
will newly appear in lP, that gives a multiplication ratio of dv/v¼ d. A nice example

of using leapfrog operation is: lD ¼ C60; 5.6
2.

2.7 Quadrupling q

Quadrupling (Eberhard 1891; Diudea and John 2001), also named chamfering c
(Conway notation) can be written as: qP ¼ tsel(stP), where tsel is the selective

truncation of the central point added by stellation st; it is in fact an edge truncation
that retains the parent vertices and the face orientation, as well (Fig. 2.8).

The name comes from the vertex multiplication ratio when operates on three-

connected polyhedra, according to the following

Theorem 2.2 The number of vertices in qP is (d + 1)v, irrespective of the parent
tessellation.

With the observation that, for each vertex of P, d new vertices appear in qPwhile

the old vertex is preserved, the multiplication ratio is (d + 1)v/v¼ d + 1; in case of a

three-connected polyhedron, the transformed figure sequence is: {v + 2e, 4e, f + e}.
This operation insulates the parent faces always by hexagons; it involves two π/s
rotations, so that the initial orientation of the polygonal faces is preserved. Only

applied on a 3-valent map it results in a 3-regular graph (which is not the case in

4-valent maps). An example of this operation is: qD ¼ C80.

Fig. 2.7 The leapfrog l operation on a pentagonal face f5
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2.8 Septupling sn

Two septupling operations are known to multiply seven times the vertices of a

three-connected polyhedron: s1 and s2 (Diudea 2004, 2005a, b; Diudea et al. 2006;
Diudea and Nagy 2007). The s1 operation is also called (Diudea 2003) capra—the

(Romanian) goat, or whirl operation (Conway notation). It is achieved by truncation
of vertices centered on the parent faces in p5: s1P ¼ tsel(p5P). S1 insulates any face

of M by its own hexagons, which are not shared with any old face. It is an intrinsic

chiral operation (it rotates the parent edges by π/(3/2)s.
The multiplication ratio comes from the Goldberg (1937) polynomial:

m ¼ a2 þ abþ b2
� �

; a � b; aþ b > 0

In a 3-valent map, l(1, 1); m ¼ 3; q(2, 0); m ¼ 4 and s1(2,1); m ¼ 7. This is

supported by the following

Theorem 2.3 The vertex multiplication ratio in an s1-transformed map is 2d + 1

irrespective of the original map tiling.
For demonstration, observe that, for each old vertex, 2d new vertices appear

(Fig. 2.9) and the old vertex is preserved in the transformed map. Thus, (2d + 1)v/
v ¼ 2d + 1. The figure sequence of the transformed by s1 operation is: {v + 4e, 7e,
f + 2e}.

Since p5 operation can be done either clockwise or counter-clockwise, it results

in an enantiomeric pair of objects: s1SP and s1RP, the subscript letter referring to

sinister/rectus stereochemical isomers. An example of s1 realization is: s1D¼ C140.

S1 can continue with the open o operation: onsiM, where n represents the number

of points added on the boundary of a parent face to become a window (i.e., an open
face). The resulting open objects have all the polygons of the same (6 + n) size. The
above operation sequence enables the construction of negatively curved networks.

Fig. 2.8 gives the steps of its realization on a square face in a trivalent lattice, up to

the open structure.

The s2 operation (Diudea 2005a) (Fig. 2.10) can be achieved by putting four

vertices on each edge of the parent polyhedron P (e4 operation) and next join these

new vertices in order (�1, +3): s2 ¼ j(�1, +3)e4P.

Fig. 2.8 The quadrupling Q operation on a pentagonal face f5
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It insulates the double sized parent faces by pentagons and parent vertices by

pentagon n-multiples; the transformed objects are non-chiral. The transformed

figure sequence is the same as for s1.
Chirality in s2 can be induced by the operation o2a, achieved by adding two

points on alternative edges of the double sized boundary (Fig. 2.8). An example of

this operation realization is: s2T ¼ C28.

Peter John (Diudea et al. 2006) has proposed a generalization of operations on

maps, inspired from the work of Goldberg (1937) and the representation of poly-

hedra in the (a, b) “inclined coordinates” (60� between axes).

TOPO GROUP CLUJ has developed several software programs dedicated to

polyhedral tessellation and embedment in surfaces of various genera, either as finite

or infinite structures: Torus, CageVersatile_CVNET, JSCHEM, and NANO-Studio

(Diudea et al. 2003; Stefu and Diudea 2005; Nagy and Diudea 2005, 2009).

There are known different operations that enable the design/decoration of

polyhedral structures, such as inflation–deflation operation, matching rules, the

grid method, strip projection, cut projection or generalized dual method

(de Bruijn 1981; Kramer 1982; Bak 1986; Socolar et al. 1986).

In the following, the most frequent small cages, encountered as cells/shapes

within multi-shell clusters, are illustrated.

Fig. 2.9 Septupling s1 operation on a square face, up to the open structure

Fig. 2.10 Septupling s2 operation on a square face, up to the open structure
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Chapter 2 Atlas: Single Shell Clusters

T.4 C.8 O.6 D.20 I.12

mT.6¼O.6 mC.12¼mO.12¼CO.12 mD.30¼mI.30¼ID.30

m2(D).60 m3(D).120 m4(D).240

RCO.24 RID.60 TCO.48 TID.120

Rh12
dmC.14

Rh24
dRCO.26

Rh30
dmD.32

Rh60
dRID.62

Rh90
d(m(C60)).92

(continued)
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lT.12
tT.12
TT.12

lC.24
tO.24
TO.24

lO.24
tC.24
TC.24

lD.60
tI.60
C60

lI.60
tD.60
3.102

sT.12¼I.12 sC.24¼ sO.24 sI.60¼ sD.60

stT.8 stC.14 stO.14 stD.32 stI.32

mP3.9 mP4.12 mP5.15 mP6.18

Rh9
d(mP3).11

Rh15
d(mP5).17

Rh18
d(mP6).20

A3.6¼O.6 A4.8 A5.10

dA5.12 mA5.20 tA5.40

(continued)
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m(mP3X9).16
m(dmP4).16

J28

mA4.16

J29

mA5.20

J31

t(D).60 m(D).30 m(tD).90

Py3.4¼T.4 Py4.5 Py5.6

tPy3.12¼TT.12 tPy4.16 tPy5.20

C12 C16 C20

6(3.5^2);6(5^3) 8(4.5^2);8(5^3) 53

(continued)
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tsel( p4T).22 tsel(P4(C)).44 tsel( p4(D)).110

d(C60).32 mC60.90 tC60.180

l(C60).180 st(dC60).92 tsel( p4(C60)).330
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Chapter 3

Definitions in Polytopes

Multi-shell clusters represent complex structures, the study of which needs appro-

priate theoretical information. In this respect, rigorous definitions in graph theory,

geometry, set theory and others are claimed in the effort of counting structural

elements, naming and properties description of such entities.

3.1 Polyhedra

A regular polyhedron is a polyhedron with congruent regular polygons as faces,

arranged in the same way around identical vertices. Also, it is a polyhedron whose

symmetry group acts transitively on its flags; a regular polyhedron is a highly sym-

metric structure, being vertex-transitive, edge-transitive and face-transitive

(Coxeter 1973; Schulte 2014).

The property of having a similar arrangement of faces around each vertex is

equivalent with the following conditions: the vertices of the polyhedron all lie on a

sphere; all the dihedral angles of the polyhedron are equal; all its vertex figures are

regular polygons; all the solid angles are congruent (Cromwell 1997).

The regular polyhedra have the highest symmetry of all the polyhedra. They

show three symmetry groups: tetrahedral; octahedral (or cubic) and icosahedral
(or dodecahedral). Any shapes with icosahedral or octahedral symmetry will also

include the tetrahedral symmetry.

There are five regular polyhedra, known as Platonic polyhedral solids (Fig. 3.1):

tetrahedron, cube, octahedron, dodecahedron and icosahedron can be written as

{3,3}; {4,3}; {3,4}; {5,3} and {3,5} by using the basic Schläfli (1901) symbols

{p,q} where p is the number of vertices in a given face while q is the number of

faces containing a given vertex. Their pair duals are (cube & octahedron) and

(dodecahedron & icosahedron) while the tetrahedron is selfdual.

The ancient Greeks had good knowledge on the Platonic solids. Theaetetus, an

Athenian contemporary of Plato, gave a mathematical description of all the five

© Springer International Publishing AG 2018
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regular solids and may be the first known proof that no other convex regular poly-

hedra exist. Plato wrote about the five regular solids in the dialogue Timaeus, about

360 B.C. Euclid gave a complete mathematical description of the Platonic solids in

his Elements (Heath 1981).

Any convex polyhedron can be represented in the plane (or on the sphere

surface) by a 3-connected planar graph (also called a polyhedral graph). The

number of vertices v, edges e, and faces f of a convex polyhedron are related by

the polyhedral formula (Euler 1752–1753).

v� eþ f ¼ χ ¼ 2 1� gð Þ ð3:1Þ

where χ is the Euler characteristic and g is the genus (i.e., the number of tori in a

connected sum decomposition of an orientable surface on which the polyhedral

graph is embedded, or the number of holes performed in a plastic sphere to make it

homeomorphic to that surface). A surface is orientable, when it has two sides, or it

is non-orientable, when it has only one side, like the M€obius strip.
Euler characteristic is a topological invariant that describes the shape of a

structure regardless of the way it is bent. Positive/negative χ values indicate

positive/negative curvature of the polyhedral structure.

A topological proof, showing that no other (out of the five Platonic) convex

regular polyhedra exist, can be derived from the Euler (1736, 1752–1753) relations

pf ¼ qv ¼ 2e ð3:2Þ
v� eþ f ¼ 2 ð3:3Þ

Combining these equations one obtains: 2e/q� eþ 2e/p¼ 2. Then, 1/qþ 1/p¼
1/eþ 1/2 and, since e is strictly positive, the following condition comes out:

1=qþ 1=p > 1=2 ð3:4Þ

Because p and q must be at least three, then (3.4) accepts only five solutions for

the pair {p, q}: {3, 3}, {4, 3}, {3, 4}, {5, 3}, {3, 5}.
The five Platonics can be drawn by using operations on maps (see Chap. 2),

starting from the tetrahedron T

Fig. 3.1 The Platonic solids, their symbol, vertex configuration and point group
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Dodecahedron: p5T ¼ dI
Icosahedron: dp5T ¼ sT
Cube: dO ¼ dmT
Octahedron: mT
Tetrahedron: T

Geometrically, a convex polyhedron can be defined as a polyhedron for which a

line, connecting any two non-coplanar points on the surface, always lies in the

interior of the polyhedron. There are 92 convex polyhedra, called the Johnson solids

(Johnson 1966), having only regular polygons as faces; they include the Platonic

solids and Archimedean solids.

Archimedean solids are highly symmetric, semi-regular convex polyhedra,

showing two (or more) types of regular polygons meeting in identical vertices.

They differ from the Platonic solids, which have only one type of polygon meeting

in identical vertices, and from the Johnson’s solids, whose regular polygonal faces
do not meet in identical vertices. Since there were some inconsistences in consider-

ing or not as Archimedean the Johnson’s solid pseudo-rhombicuboctahedron,

Grünbaum (2009) has suggested that an Archimedean solid must have the same

vertex figure at each vertex. The 13 Archimedeans, of two type polygonal faces

(de La Vaissière et al. 2001) and their design from the Platonic solids, by operations

on maps, are listed in Table 3.1.

A Catalan solid (Catalan 1865) is a dual polyhedron of an Archimedean solid.

The Catalan solids are all face-transitive but not vertex-transitive (because their

duals are vertex-transitive but not face-transitive). Their faces are not regular poly-

gons, however their vertex figures are regular and have constant dihedral angles

(Wenninger 1983).

A uniform polyhedron is a polyhedron of which faces are regular polygons and is
vertex-transitive, meaning all the vertices are congruent and the polyhedron has a

high degree of reflectional and rotational symmetry. Uniform polyhedra may be

Table 3.1 Archimedean solids as related by operations on maps

Symbol Archimedean Map operation relation

1 TT Truncated tetrahedron tT

2 TO Truncated octahedron tO ¼ tmT

3 TC Truncated cube tC ¼ tdmT

4 TI Truncated icosahedron tI ¼ tdp5T

5 TD Truncated dodecahedron tD ¼ tp5T

6 CO Cuboctahedron mC ¼ mO ¼ mmT

7 ID Icosidodecahedron mI ¼ mD ¼ msT

8 RCO Rhombicuboctahedron mCO ¼ mmC ¼ dp4C

9 RID Rhombicosidodecahedron mID ¼ mmI ¼ dp4I

10 TCO Truncated cuboctahedron tCO ¼ tmmT

11 TID Truncated icosidodecahedron tID ¼ tmsT

12 SC Snub cube sC ¼ dp5C

13 SD Snub dodecahedron sD ¼ dp5D
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regular (if is also edge- and face- transitive), quasi-regular (if is edge-transitive but
not face-transitive) or semi-regular (if is neither edge- and face-transitive). The

faces and vertices need not be convex, so that many of the uniform polyhedra are

star polyhedra (Coxeter and Miller 1954; Sopov 1970; Wenninger 1974).

There are 75 finite uniform polyhedra (or 76 if edges are allowed to coincide):

5 Platonic solids (regular convex polyhedra), 13 Archimedean solids (2 quasi-

regular and 11 semi-regular convex polyhedra), and 58 star polyhedra (4 Kepler-

Poinsot polyhedra, which are regular nonconvex polyhedra, 53 uniform star poly-

hedra—5 quasi-regular and 48 semi-regular and 1 star polyhedron—the Skilling’s
(1975) object, of which pairs of edges coincide). There are also two infinite sets of

uniform prisms and antiprisms, including convex and star forms.

Dual polyhedra to uniform polyhedra are face-transitive and have regular vertex

figures; the dual of a regular polyhedron is regular, while the dual of an Archi-

medean solid is a Catalan solid. A polyhedron which is vertex-transitive is also

called isogonal, which is edge-transitive is also called isotoxal and is isohedral if it

is face-transitive. A noble polyhedron is both isohedral and isogonal.

The concept of uniform polyhedron is a special case of the concept of uniform

polytope, which also applies to shapes in higher-dimensional space.

In polyhedral combinatorics, according to the Steinitz theorem (Steinitz 1922;

Ziegler 1995), to every convex polyhedron a 3-connected planar graph (i.e., a

polyhedral graph) can be associated, and every 3-connected planar graph can be

represented as the graph of a convex polyhedron. Generalization of this theorem, by

Balinski (1961), states that the graph of any k-dimensional convex polytope is

k-connected (see Sect. 3.2)

3.2 n-Dimensional Structures

Generalization of a polyhedron to n-dimensions is called a polytope (Grünbaum
and Shephard 1988; Grünbaum 2003; Coxeter 1973, 1974). Let us introduce the

most important n-dimensional structures.

Regular 4-polytopes, written as {p,q,r}, have cells of the type {p,q}, faces {p},
edge figures {r} and vertex figures {q,r}. It can also be red as: r-polyhedra (of the
type {p,q}) meet at any edge of the polytope. In case of a 4-polytope, the vertex

figure is a polyhedron formed by the neighboring vertices around a given vertex; the

edge figure is a polygon.

A 3-polytope is convex if any of its edges shares no more than two polygons;

next, a 4-polytope is convex if any polygon shares no more than two cells. Each

convex 4-polytope is bounded by a set of 3-faces (i.e., cells). If its cells are all

regular, of the same type and size, the 4-polytope is called regular.

The existence of a regular 4-polytope {p,q,r} is constrained by the existence of

regular polyhedra {p,q} and {q,r}, which are its cells; if p,q,r, are integers, the

following relation is obeyed (Coxeter 1974)
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pþ 2qþ r � 4=p� 4=r < 12 ð3:5Þ

The six regular 4-polytopes, also called polychora, are: 5-Cell {3,3,3}; 8-Cell

{4,3,3}; 16-Cell {3,3,4}; 24-Cell {3,4,3}; 120-Cell {5,3,3} and 600-Cell {3,3,5}.

Five of them can be associated to the Platonic solids but the sixth, the 24-Cell has no

close 3D equivalent. Among them, 5-Cell and 24-Cell are selfduals while the other

are pairs: (8-Cell & 16-Cell); (120-Cell & 600-Cell). The symmetry groups of these

4-polytopes are all finite Coxeter groups (Coxeter 1934, 1940, 1973; Davis 2007).

In five dimensions, a regular 5-polytope is written as {p,q,r,s}, where {p,q,r} is a
4-face type, {p,q} is the cell type, {p} is the face type; {s} is the face figure, {r,s} is
the edge figure and {q,r,s} is the vertex figure. The vertex figure is a 4-polytope

(arrangement of neighboring vertices to each vertex), the edge figure is a poly-

hedron (seen as the arrangements of faces around each edge) while the face figure is

a polygon (seen by the arrangements of cells around each face).

A regular 5-polytope {p,q,r,s} exists within the conditions: {p,q,r} and {q,r,s}
are regular 4-polytopes and the space in which a 5-space polytope exists is

constrained by the expression

cos2
π

q

� �

sin2
π

p

� �þ
cos2

π

r

� �

sin2
π

s

� � < 1 :Spherical 4� space tessellation or 5�polytope

¼ 1 :Euclidean 4� space tessellation

> 1 : hyperbolic 4� space tessellation

ð3:6Þ

Enumeration of these constraints provides three convex polytopes, zero

non-convex polytopes, three 4-space tessellations and five hyperbolic 4-space

tessellations. There are no non-convex regular polytopes in five dimensions or

higher. The three types of convex regular polytopes in dimensions five and higher,

are as follows.

The n-simplex (Coxeter 1973; Buekenhout and Parker 1998), with the Schläfli

symbol {3n�1}, and the number of its k-faces nþ1
kþ1

� �
, is a generalization of the

triangle or tetrahedron to n-dimensions. For example, a 0-simplex is a point, a

1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron,

and a 4-simplex is a 5-cell. The simplex represents the simplest possible polytope in

any given space. A simplex may be defined as the smallest convex set containing

the given vertices.

A regular n-simplex may be constructed from a regular (n � 1)-simplex by

connecting a new vertex to all original vertices by the common edge length. The

simplex is so-named because it represents the simplest possible polytope in any

given space. The convex hull of any nonempty subset of k þ 1 points that define an

n-simplex is called a face of the simplex; faces are simplexes themselves. In

particular, the convex hull of a subset of size k þ 1 (of the n þ 1 defining points)

is a k-simplex and is called a k-face of the n-simplex. The 0-faces (i.e., the points

themselves) are called the vertices, the 1-faces are called the edges, the (n�1)-faces

are called the k-faces (or facets), and the unique n-face is the whole n-simplex itself.
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The hypercube is a generalization of the 3-cube to n-dimensions; it is also called

an n-cube and commonly denoted Qn. It is a regular polytope with mutually per-

pendicular sides, thus being an orthotope. It has the Schläfli symbol {4,3n � 2} and

k-faces given by 2n�k n
k

� �
. The hypercube can be constructed by the Cartesian

product graph of n edges: (P2)
□n¼Qn. Figure 3.2 illustrates the 4-Cube, i.e.,

8-Cell or Tesseract, as painted by the Italian painter Juseppe Zaccuri, Milano.

The n-orthoplex or cross-polytope (Coxeter 1973) has the Schläfli symbol

{3n � 2,4} and k-faces 2kþ1 n
kþ1

� �
; it exists in any number of dimensions and is the

dual of n-cube. The cross-polytope is the convex hall of its vertices; its facets are

simplexes of the previous dimensions, while its vertex figures are other cross-

polytopes of lower dimensions.

A convex hull (envelope) (Coxeter 1973; Grünbaum 2003) of a set X of points in

the Euclidean space is the smallest convex set that contains X. A set of points is

called convex if it contains all the line segments connecting each pair of its points.

The convex hull of a finite set S of points is the set of all its convex combinations; in

a convex combination, each point xi is weighted by a coefficient αi such that the

coefficients are all non-negative and their sum is one. For each choice of coeffi-

cients, the resulting convex combination is a point in the convex hull, and the

whole convex hull can be generated by choosing coefficients in all possible ways.

One can write the convex hull as the set:

XjSj
i¼1

αixij 8i : αi � 0ð Þ ^
XjSj
i¼1

αi ¼ 1

( )
ð3:7Þ

Fig. 3.2 HyperCube by Giuseppe Zaccuri, Milano
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The convex hull of a finite point set S2ℝn forms a convex polytope; for n ¼ 2, it is

a convex polygon. Every convex polytope in ℝn is the convex hull of its vertices

Lyusternik 1963).

Polyhedra are associated into pairs called duals, the vertices of one being the

faces of the other; the dual of its dual is the original polyhedron (see Chap. 2). The

concept of duality is closely related to the duality in the projective geometry

(Grünbaum and Shephard 1988; Wenninger 1983).

Duality can be generalized to n-dimensional space and dual polytopes. The

vertices of one polytope correspond to the (n � 1)-dimensional elements, or facets,

of the other, and the j points that define a ( j � 1)-dimensional element will

correspond to j hyperplanes that intersect to give an (n � j)-dimensional element.

In general, the facets of a polytope’s dual will be the topological duals of the

polytope’s vertex figures. For regular and uniform polytopes, the dual facets will be

the polar reciprocals of the original’s vertex figure. For example, in four dimen-

sions, the vertex figure of the 600-Cell is the icosahedron; the dual of the 600-Cell is

the 120-Cell, whose facet is a dodecahedron, which is the dual of the icosahedron.

For general surfaces, Euler characteristic χ can be calculated as an alternating

sum of figures of rank k (Euler 1752–1753; Schläfli 1901; Schulte 1985, 2014)

χ Sð Þ ¼ f 0 � f 1 þ f 2 � f 3 þ . . . , ð3:8Þ

Euler characteristic is a dimensionless quantity associated with an object, in

essence, a generalization of cardinality (Leinster 2008).

Structures herein discussed are represented by simple, non-directed graphs.

Their design is based on “operations on maps”, merely applied on the Platonic

solids.

3.3 Abstract Structures

An abstract polytope is a structure which considers only the combinatorial proper-

ties of a traditional polytope: properties like angles, edge lengths, etc. are

disregarded. No space, such as Euclidean space, is required to contain an abstract

polytope. Its combinatorial properties are expressed as a partially ordered set or a

“poset”. The poset theory originates in the PhD thesis of Schulte (1980, 1983a, b, c,

1985), based on the early results of Grünbaum (Grünbaum and Shephard 1988),

Coxeter (1973, 1974, 1982, 1984); Petri or Tits (Tits 1964; Tits and Weiss 2002)

and next developed by McMullen and Schulte (2002).
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3.3.1 Posets

Polytopes have a dimensional hierarchy of their structural elements, also called

figures, or facets or simply faces, of dimension 0 (vertices), 1 (edges) 2 (faces), etc.

In the posets theory, the dimension concept is replaced by that of rank. An element

of rank k is called a k-face.
Every polytope has a least face (also called a null face, since it has no vertices or

any other faces) and a greatest face, of which all the others are subfaces. The least

and greatest faces are called improper faces while all the others are proper faces.
The order relation< is defined as set of pairs and it induces the rank of the poset

and its subfaces

F�1 < F0 < F1, . . . ,Fn�1 < Fn:

The rank of a face F is defined as the integer (m � 2), where m is the maximum

number of faces in the hierchical string F0 < F00 < . . . < F.
The rank of a poset P is the maximum rankn of any face, i.e., that of the greatest

face (if required). It follows that the least face has the rank �1 while the greatest

face has the rank n; the two faces are often denoted as F�1 and Fn respectively. The

rank of a face or a polytope usually corresponds to the dimension in traditional

theory, but not always.

A flag φ is a maximal string of faces, a set totally ordered, such that each face is a

subface of the successor (if any) and φ is not a subset of any larger string. If F and

G are any two distinct faces in a flag, either F < G or F > G.
Order relations are transitive, i.e., F<G andG<H implies F<H. Therefore, to

specify the hierarchy of faces, only the order of pairs (the actual face and its

successor) suffices.

A polytope is often represented by its graph G(V,E) but the higher rank faces

cannot be deduced from the graph. A Hasse diagram fully describes a poset, in

particular, a polytope; all the substructures/faces of the polytope are captured in

such a diagram, where the faces of equal rank are placed on the same horisontal

level, starting from �1 up to n, on the vertical. Isomorphic polytopes provide

isomorphic Hässe diagrams, and vice versa. Figure 3.3 shows a triangle and its

Hasse diagram.

Any subset P0 of a poset P is a poset. Given any two faces F, H of P with F � H,
the set {G|F� G � H} is called a “section” of P, and is denoted H/F. A k-section is
a section of rank k.

A polytope that is the subset of another polytope is not necessarily a section. The

square abcd is a subset of the tetrahedron abcd, but is not a section of it. The

concept is different from that in traditional geometry.

A poset P is connected if any two successive faces Fk and Fk+1 are incident to

each other; it is strongly connected if every section of P (including P itself) is

connected. It is equivalent to saying that any flag can be changed into any other by

changing just one face at a time.
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3.3.2 Vertex Figure

The vertex figure at a given vertex V is the (n�1)-section Fn/V, where Fn is the

greatest face. Formal definitions of vertex figure can vary, according to circum-

stances. In one of the most simple procedure, one makes a slice through the corner

of the polyhedron, cutting through all the edges connected to the vertex. The cut

surface is the vertex figure. Different authors make the slice in different places: at

the unit distance from the given vertex, at the midpoints of the connected edges or at

the other end of each edge.

In an abstract n-polytope, the vertex figure at a given vertex is an (n�1)-polytope

(Schulte 1985, 2004); it includes all the elements incident to the vertex; edges,

faces, etc. For example, the vertex figure of the cube is a triangle; for the tesseract, it

is a tetrahedron.

By considering the neighborhood connectivity in an (n�1)-polytope, the vertex

figure can be constructed for each vertex of a polytope, so that: (i) each vertex of the

vertex figure coincides with a vertex of the original polytope and (ii) each fk face of
the vertex figure exists on or inside of an fk þ 1 face of the original n-polytope (for
n > kþ1). Thus, the vertex figure encodes the structure of entire polytope. In

polyhedra, the vertex figure can be represented by the vertex configuration, that

lists the sequence of faces around that vertex. In uniform polyhedra, there is only

one vertex type and therefore the vertex configuration fully defines the polyhedron.

For example, 5.62 is a vertex in the fullerene C60. Order is important, so that 3.5.3.5.

is different from 3.3.5.5.

If the polytope is vertex-transitive, the vertex figure (an (n�1)-polytope) will

exist in a hyperplane surface of the n-space. In general, the vertex figure not needs

to be planar. In case of a uniform polyhedron, the face of the dual polyhedron may

be found from the vertex figure of the original polyhedron.

If a polytope is regular, with the Schläfli symbol {a,b,c, . . . ,y,z}, its vertex figure
will be {b,c, . . . ,y,z}.

An edge figure is the vertex figure of a vertex figure; in case of an n-polytope, it

will be an (n�2)-polytope, representing the arrangement of facets around a given

edge. Regular polytopes, with the symbol {a,b,c, . . . ,y,z} have a single edge figure
{c, . . . ,y,z} which is also regular.

Fig. 3.3 A triangle (left) and its Hässe diagram (right)
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3.3.3 Abstract Polytope

An abstract polytope is a partially ordered set (poset) whose faces satisfy the

following four axioms: (1) It has a least face and a greatest face; (2) All the flags

contain the same number of faces; (3) It is strongly connected; (4) Every 1-section

is a line segment. Axiom 2 is equivalent to saying that the poset is a graded poset

(see below). Axiom 3 is equivalent to strong flag-connectedness, (see above).

Axiom 4 is known as the “diamond property”, since the Hasse diagram of a line

segment is diamond-shaped. From these axioms it results that every section is a

polytope, and that rank k(G/F) ¼ k(G) � k(F) � 1. Finally, an n-polytope is a

polytope of rank n; it can be fully described using vertex notation if every face has a
unique set of vertices (such a polytope is called atomistic). In case of the null

polytope, the least and greatest faces are the same single element.

A graded poset is a poset P with a rank function ρ satisfying the following two

properties: (i) The rank function is compatible with the ordering, meaning that for

every x and y, with x< y, implies ρ(x)< ρ(y) and (ii) The rank is consistent with the
covering relation of the ordering, meaning that for every x and y for which y covers
x, it implies ρ(y) ¼ ρ(x) þ 1. The value of the rank function for an element of the

poset is called its rank.

A poset is “bounded” if it has smallest and largest elements, called 0 and 1. The

Euler characteristic of such a poset is defined as the integer μ(0,1), where μ is the

Mӧbius function in the poset incidence algebra (Leinster 2008).

Every polytope has a dual, a polytope in which the partial order is reversed: the

Hässe diagram of the dual is that of the original turned upside-down. In an n-
polytope, each of the original k-faces maps to an (n� k� 1)-face in the dual; the n-
face maps to the (�1)-face. The dual of a dual is isomorphic to the original.

A polytope is self-dual if it is the same as (i.e., isomorphic to) its dual. Hence, the

Hässe diagram of a self-dual polytope must be symmetrical about the horizontal

axis half-way between the top and bottom. The vertex figure at a vertex V is the

dual of the facet to which V maps in the dual polytope.

An abstract polytope is regular if its automorphism group acts transitively on the

set of its flags. In particular, any two k-faces F, G of an n-polytope are “the same”,

since there is an automorphism which maps F to G. All abstract polytopes of rank
�2 are regular. This condition implies that any regular abstract polytope has

isomorphic regular (n � 1)-faces and isomorphic regular vertex figures. This is a

weaker condition than the regularity for traditional polytopes, since the (combi-

natorial) automorphism group is achieved easier than the (geometric) symmetry

group. For example, any abstract polygon is regular, since angles, edge-lengths,

edge curvature, skewness etc. don’t exist for abstract polytopes.
Any abstract polytope may be realized as a geometrical polytope having the

same topological structure. This structure has at least the same symmetry as the

original abstract polytope, meaning that all the combinatorial automorphisms of

the abstract polytope have been realized by geometric symmetries.
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Note that the regular abstract polytopes are just special cases in the multitude of

irregular polytopes. An irregular polyhedron has at most one automorphism,

namely that provided by the identity permutation.

3.4 Polytope Realization

3.4.1 P-Centered Clusters

Body centered clusters derived from the Platonic solids are easily drawn, as shown

in Fig. 3.4; their figure count is given in Table 3.2 (Parvan-Moldovan and Diudea

2015). These small clusters, excepting DP.21, were next transformed, by

operations on maps (see Chap. 2), in 2-face-dual, medial and truncated derivatives

(Figs. 3.5, 3.6, 3.7, and 3.8). P-centered clusters represent cell-duals of polyhedra

with the same number of cells around a central one; they are objects of Euclidean

4D-space, as shown by the figure count (Tables 3.3, 3.4, 3.5, and 3.6) cf. (3.8). This

idea can be extended to objects other than Platonics.

The name of clusters can be made in at least three ways, as shown in the bottom

of figures and tables; the “endohedral” @ symbol was used, starting from the core

and going radially, to the exterior; the suffix number counts the points/atoms in the

whole structure.

Table 3.2 Figure count for clusters in Fig. 3.4

v e f3 f5 f6 f c1 c2 c3 M c χ k cn; (M)

TP 5 10 10 0 0 10 4 0 0 1 5 0 4 T; 0; 0 (T)

OP 7 18 20 0 0 20 8 0 0 1 9 0 4 T;0;0 (O)

CP 9 20 12 6 0 18 0 6 0 1 7 0 4 0;Py4; 0 (C)

DP 21 50 30 0 12 42 0 12 0 1 13 0 4 0;Py5;0 (D)

IP 13 42 50 0 0 50 20 0 0 1 21 0 4 T; 0; 0 (I)

Fig. 3.4 Body centered clusters derived from the Platonic solids
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Fig. 3.5 TP-derived structures

Fig. 3.6 OP-derived structures

Fig. 3.7 CP-derived structures

Fig. 3.8 IP-derived structures
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3.4.2 Cell-in-Cell Clusters

Let now make the selective truncation of the central point in the P-clusters (see

Chap. 2): it leaves unchanged the non-marked points/atoms. In this simple way,

cell-in-cell clusters (Parvan-Moldovan and Diudea 2015) can be designed

(Fig. 3.9); the figure count for these structures is listed in Table 3.7. More examples

are given in Fig 3.10.

It is the time to show a lower bound for the existence of clusters in dimensions/

ranks higher than three:

Theorem 3.1 A cluster of points/atoms with at least two (concentric) shells

belongs to n-spaces (i.e., has a rank) of n > 3.

Table 3.3 Figure count for clusters derived from TP cluster

T-structure v e f c1 c2 c3 M c χ k ck; (M)

TP.5 5 10 10 4 0 0 1 5 0 4 T; 0; 0 (P;T)

dTP.10 10 30 30 4 4 0 2 10 0 4 T; O ¼ A3; 0;(T;O)

mTP.10 10 30 30 4 4 0 2 10 0 4 T; O ¼ A3; 0 (T;O)

tTP.20 20 40 30 4 4 0 2 10 0 4 T;TT; 0; (T;TT)

Table 3.4 Figure count for clusters derived from OP cluster

O-structure v e f c1 c2 c3 M c χ k cn; (M)

OP.7 7 18 20 8 0 0 1 9 0 4 T;0;0 (P;O)

dOP.20 20 60 56 8 6 0 2 16 0 4 T;A4;0 (CO;C)

mOP.18 18 60 58 8 6 0 2 16 0 4 O; Py4 (O;CO)

tOP.36 36 78 58 8 6 0 2 16 0 4 TT;Py4;0 (O;TO)

Table 3.5 Figure count for clusters derived from CP cluster

C-structure v e f c1 c2 c3 M c χ k cn; (M)

CP.9 9 20 18 0 6 0 1 7 0 4 0;Py4; 0 (P;C)

dCP.18 18 60 58 8 6 0 2 16 0 4 O; Py4 (O;CO)

mCP.20 20 60 56 8 6 0 2 16 0 4 T;A4;0 (C;CO)

tCP.40 40 80 56 8 6 0 2 16 0 4 T; tPy4;0 (C;TC)

Table 3.6 Figure count for clusters derived from IP cluster

I-structure v e f c1 c2 c3 M c χ k ck; (M)

IP.13 13 42 50 20 0 0 1 21 0 4 T; 0; 0 (P; I)

dIP.50 50 150 134 20 12 0 2 34 0 4 T;A5;0 (ID.30;D.20)

mIP.42 42 150 142 20 12 0 2 34 0 4 O; Py5;0 (I;ID.30)

tIP.84 84 192 142 20 12 0 2 34 0 4 TT; Py5; 0 (I;C60)
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Proof A polytope is convex if any of its k-facets is shared by at least two k þ 1-

facets. In particular, for n ¼ 4, k ¼ 2 while k þ 1 is a 3-facet, i.e., a cell. In other

words, any 2-facet must share at least two 3-facets: the actual cell and the whole

envelope. Next, the cluster is bound by 3-facets, thus the polytope is of dimension/

rank 3 þ 1 ¼ 4. This condition is already reached in P-centered clusters (Fig. 3.4;

Table 3.2), as much as in the “cell-in-cell” double-shell clusters (Fig. 3.9;

Table 3.7). This is a lower bound condition and the theorem is demonstrated.

At the end, two pairs of clusters are presented:mCP.20 & dOP.20 (Fig. 3.11, left)
and mDP.50 & dIP.50 (Fig. 3.11, right); they illustrate the “sphere inversion” event
that is equivalent to tesseract moving on the fourth dimension (i.e., the time).

Fig. 3.9 Selectively truncated body centered clusters of the Platonic solids

Table 3.7 Figure count for selectively truncated body centered clusters t(P@M); M ¼ Platonic

solids

t(P@M) v e f ck M c χ k Sym cn; (M)

T@T.8 8 16 14 4 2 6 0 4 3 P3 (T;T)

O@O.12 12 30 28 8 2 10 0 4 4 P3 (O;O)

C@C.16 16 32 24 6 2 8 0 4 4 P4 (C;C)

D@D.40 40 80 54 12 2 14 0 4 5 P5 (D;D)

I@I.24 24 72 70 20 2 22 0 4 5 P3 (I;I)

Fig. 3.10 Other “cell-in-cell” structures
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3.4.3 24-Cell and Its Derivatives

The regular 24-Cell 4-polytope, also known as the hyperdiamond or octaplex,

consists of 24 octahedral cells, six cells meeting at each vertex; it is self-dual and

has no analogue among the five Platonic solids of 3D-space.

Keeping in mind that 24-Cell has only octahedral cells and that, by operations on

maps, the octahedron O may be obtained from the cube C by dualization dC while

from the tetrahedron by the medial operation mT, this polychoron was realized

starting from 8-Cell; {4,3,3}, and from 16-Cell; {3,3,4}, respectively: d(8-Cell).24
and m(16-Cell).24 (Fig. 3.12);

The 4-polytope 24-Cell is a three-colored graph and thus has a chromatic

number 3 (Fig. 3.13). Its 2-face-dual (see Chap. 2): d(24-Cell).96 ¼ d(d(8-Cell)
24).96 ¼ (C@(6CO;8C))2@(12CO;6C).96 is identical to the medial transform m
(24-Cell).96 ¼ m(d(8-Cell)24).96 ¼ (CO@(6C;8CO))2@(12C;6CO).96 acting on

the edges of 24-Cell, but showing a different projection (Fig. 3.14). C96 is a uniform

4-polytope, vertex-transitive and edge-transitive (but not faces-transitive); also it is

a four-colored graph (with the chromatic number 4—Fig. 3.14). The figure count in

these 4-polytopes is given in Table 3.8.

Fig. 3.11 Sphere inversion by 4D-clusters: moving on the fourth dimension

Fig. 3.12 24-Cell, realized by d(8-Cell).24 (left) and m(16-Cell).24 (right)
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Fig. 3.13 Coloring C24, a 4-polyhedral three-colored graph (left) and its single red-color repre-

sentations (right)

Fig. 3.14 Coloring C96, a 5-polyhedral four-colored graph in two of its projections: d(d(8-Cell)
24).96 ¼ (C@(6CO;8C))2@(12CO;6C).96 (top). m(d(8-Cell)24).96 ¼ (CO@(6C;8CO))2@

(12C;6CO).96 (bottom) and their single red-color representations (right column)

Table 3.8 Figure count for

clusters in Figs. 3.12 and 3.14

and their vertex classes

Structure v e f2 f3 χ k Class

m(16-Cell).24 24 96 96 24a 0 4 1{24}

d(8-Cell).24 24 96 96 24a 0 4 1{24}

m(24-Cell).96 96 288 240 48b 0 4 1{96}

d(24-Cell).96 96 288 240 48b 0 4 1{96}
aO
b24Cþ24CO
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Chapter 4

Symmetry and Complexity

Symmetry (from Greek συμμετρία symmetria “agreement in dimensions, due

proportion, arrangement”) commonly refers to harmony of proportions in realiza-

tion of a composition (Hargittai and Hargittai 2010). The simplest symmetry is the

mirror symmetry. In Mathematics, symmetry refers to some operations acting on

geometric or other regularities of a mathematical object that leave the object

invariant.

While the classical, geometric symmetry is involved/reflected in several molec-

ular properties, such as dipole moments, IR vibrations, 13C-NMR signals etc.,

topological symmetry, defined in terms of connectivity, is addressed to constitutive

aspects of a molecule and is involved in its synthesis and/or its structure elucidation.

Complexity refers to the state or quality of being complex/intricate/complicated,

or being the union/organization of some interacting (by some rules) parts/organs.

There is no unique definition of complexity, the notion being conveyed rather by

using particular examples. It is popular the computational complexity, looked on

the ground of working time, memory or other resources involved in solving a given

problem. Time and space are two of the most important criteria when problems of

complexity are analyzed.

A hierarchical complexity is also considered; it is orthogonal to the usual forms

of complexity, which may be called horizontal complexity.

Structural complexity is addressed to the organization of matter. It is studied by

the aid of graphs associated to molecules/ions/crystals, on which basis several

descriptors are calculated. Among these, entropy, information measures and topo-

logical indices are the most popular (Dehmer et al. 2011, 2013; Dehmer and

Mowshowitz 2011; Dehmer and Grabner 2013; Diudea et al. 2010).

Topological symmetry speaks about structural complexity by considering the

type of atoms/vertices and their reciprocal distribution. Other characteristics,

including metrics, posets, packing, etc. may give information about the complexity

of matter (or abstract graphs, in general).

Genus and rank (or space dimension) of a structure are parameters of complexity

acting by means of Euler characteristic of the embedding surface.
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This chapter gives a summary introduction to: (i) Euler characteristic;

(ii) Topological symmetry; (iii) Centrality index; (iv) Ring signature index and

(v) Euler characteristic, as reflected in pairs of map operations.

4.1 Euler Characteristic

An embedding is a representation of a graph on a surface such that no edge-crossing

occurs (Harary 1969). A polyhedral graph, embedded in an orientable surface

S obeys the Euler’s formula (Euler 1752–1753)

v� eþ f ¼ χ Sð Þ ð4:1Þ

where χ(S) is the Euler characteristic. It can be calculated from the genus g (i.e., the
number of simple tori composing that surface) by Poincaré formula

v� eþ f ¼ χ Sð Þ ¼ 2 1� gð Þ ð4:2Þ

The Euler characteristic of a closed non-orientable surface can be calculated

from its non-orientable genus n (the number of real projective planes in a connected

sum decomposition of the surface or the number of cross-caps needed to be attached

to the sphere to make it homeomorphic to that surface) as

χ ¼ 2� n ð4:3Þ

A surface is orientable, when it has two sides, or it is non-orientable, when it has

only one side, like the M€obius strip. Positive/negative χ-values indicate positive/

negative curvature of that embedding. Curvature (see Diudea and Nagy 2007) is the

amount by which a geometric object deviates from the planarity; it is usually

measured as the Gaussian curvature K (Gauss–Bonnet theorem—Bonnet 1853)ð
S

KdS ¼ 2πχ ð4:4Þ

A combinatorial curvature was also proposed (Higuchi 2001; Klein 2002; Devos

and Mohar 2007).

A discrete analog of the Gauss–Bonnet theorem is due to Descartes; it shows that

the overall angular defects (i.e., disclinations), measured in full circles, equals the

Euler characteristic of the polyhedron PX
p
φp ¼ 2πχ ð4:5Þ

Euler characteristic is a topological invariant, a single number that describes the

shape of a structure regardless of its tiling; it is denoted by χ (small Greek “chi”)
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and makes the subject of study in algebraic topology, polyhedral combinatorics,

crystallography and many other mathematical fields (Epstein 2016).

Euler characteristic, named after Leonhard Euler, was originally defined for

polyhedra and used to check the consistency of a proposed structure. Any convex

polyhedron can be represented in the plane by a 3-connected planar graph (also

called a polyhedral graph). The number of vertices v, edges e, and faces f of a
convex polyhedron are related by the Euler’s polyhedron formula (4.1) in which

case χ¼ 2 (Euler characteristic of the sphere). The surface of nonconvex polyhedra

may have various χ-values.
Euler characteristic can be calculated for general surfaces as the alternating sum

of figures of dimension/rank k (Schulte 1985, 2014)

χ Sð Þ ¼ f 0 � f 1 þ f 2 � f 3 þ . . . , ð4:6Þ

by finding a polygonization of the surface; in (4.6) f0 is a vertex, f1 is an edge, f2 is a
face, f3 is a cell . . . fk being a facet of rank k; a structure will have the rank k if it is
closed by substructures/facets of rank k � 1 and obey relation (4.6); in case

S ¼ sphere, 2 and 0 alternates for odd and even ranks, respectively.

4.2 Topological Symmetry

Let G ¼ (V, E) and G‵ ¼ (V‵, E‵) be two graphs and a function f, mapping the

vertices of V onto the vertices belonging to the set V‵, f : V ! V‵. That is, the
function f makes a one-to-one correspondence between the vertices of the two sets.

The two graphs are called isomorphic, G � G‵, if there exists a mapping f that
preserves the graph adjacency (i.e., if (i,j)2E, then ( f(i), f( j))2E‵). An isomorphism

of a graph with itself is called an automorphism.

Let the mapping be a permutation P; the permutation that leaves the graph

unchanged is called the permutation identity. There exists at least one automor-

phism, namely that provided by the permutation identity.

An isomorphism can be expressed as A(G)¼P�1A(G‵)P; since P is orthogonal,

one can write the transpose instead of the inverse matrix A(G)¼ PTA(G‵)P; in case
of an automorphism, relation becomes: A(G)¼ PTA(G)P. The all automorphisms

of a graph form a group Aut(G) (Razinger et al. 1993; Balasubramanian 1994).

Given a graph G ¼ (V, E) and a group Aut(G), two vertices, i, j2V are called

equivalent if there is a group element, aut(vi)2Aut(G), such that j aut(vi) i (in other

words, there exists an automorphic permutation that transforms one vertex to the

other). The set of all vertices j obeying the equivalence relation is called the orbit of
vertex i, Vi (or automorphic partition, or also, class of equivalence). Vertices

belonging to the same equivalence class cannot be differentiated by graph-

theoretical parameters. If V1, V2,. . . Vm are the m disjoint automorphic partitions
of the vertex set jV(G)j ¼ v1 + v2+ . . . +vm , then: V¼V1[V2[ . . . [Vm and

Vi\Vj¼∅.
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Consider a vertex invariant, In ¼ In1, In2,. . . which assigns a value Inu to vertex

u. Two vertices, u and v, with Inu ¼ Inv, belong to the same invariant class IC.
However, the invariant classes may differ to the orbits of automorphism since no

vertex invariant is known so far to discriminate any two non-equivalent vertices in

any graph. The classes of vertices are eventually ordered according to some rules

(e.g., according to their centrality).

4.3 Centrality Index

A layer matrix (Diudea 1994) is built up on layer (H(i)j) partition of a vertex i in the
graph H(V,E):

H ið Þ ¼ H ið Þj; j 2 0; 1; . . . ; ecci½ � and v 2 H ið Þj , div ¼ j
n o

where ecci is the eccentricity of i (i.e., the largest distance from i to the other

vertices of the graph).

The entries in a layer matrix, LM, collect the vertex property pv (a topological,
chemical, or physical property) for all the vertices v belonging to the layer H(i)j,
located at distance j from vertex i.

LM½ �ij ¼
X

v2H ið Þj
pv

The matrix LM is defined as a collection of these entries, over the diameter of the

graph d(H ):

LM Hð Þ ¼ LM½ �ij; i 2 V Hð Þ; j 2 �
0; 1; ::; d Hð Þ�n o

The dimensions of the matrix are n� (d(H ) + 1); the zero-distance column is just

the column of vertex properties. The most simple property collected in a layer

matrix is the vertex counting. Other topological properties, like distances in the

graph or the number of rings around each vertex are more informative.

Similarly, the entries in the shell matrix, ShM, collect the property of a vertex

pair (e.g., that given by the square info matrix M ):

ShM½ �ij ¼
X

v2H ið Þj
M½ �i,v

The shell matrix is the collection of the above defined entries:

ShM Hð Þ ¼ ShM½ �ij; i 2 V Hð Þ; j 2 �
0; 1; ::; d Hð Þ�n o
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A shell matrix ShMwill partition the entries of the square matrix according to the

vertex (distance) partitions in the graph. The zero column entries [ShM]i,0 may be

the diagonal entries in the info matrix.

Layer (and Shell) matrices are used to derive the indices of centrality C(LM),

that quantify the centrality of vertices (Diudea and Ursu 2003).

ci LMð Þ ¼
Xecci
k¼1

LM½ �2kik
� �1= eccið Þ2

" #�1

ð4:7Þ

4.4 Ring Signature Index

Ring Signature Index RSI collects the rings around the vertices of a network, and is
defined (Nagy and Diudea 2017) as follows:

P xð Þi ¼
X

s
s � xks ð4:8Þ

RSi ¼ P‵i 1ð Þ=Pi 1ð Þ ð4:9Þ
RSI ¼ 1=qvð Þ

X
i
RSi ð4:10Þ

In the above Eq. (4.8), P xð Þi ¼
P

ss � xks is the polynomial of “ring occurrence”

or the ring signature, with s being the size of a “strong” ring (Blatov et al. 2010)

occurring ks-times around each vertex i. Then, RSi calculates a “mean ring signa-

ture” as the ratio (in x ¼ 1) of the first derivative to the “zero” derivative of the ring

occurrence polynomial [see (4.9)]. The summation of RSi over all vertices i is
further mediated (4.10) to the number of vertices and to the number of vertex

equivalence classes q of the whole structure. A descriptor involving vertex equiv-

alence classes was earlier proposed by Graovac and Pisanski (1991).

The ring notion may be extended to “circuit” notion, to get a “zoom” on the

topology of the network.

Proposition 4.1 At the same occurrence k, the mean ring signature RSi is an integer
number, irrespective of the ring size.

The proof comes from the RSi definition, as follows: denote by ks1 and ks2 the
(integer number) occurrence of two rings around a vertex, of size s1 and s2; since
ks1 ¼ ks2 ¼ k (same occurrence), then:

RSi ¼ s1 � ks1 þ s2ks2ð Þ= s1 þ s2ð Þ ¼ k s1 þ s2ð Þ= s1 þ s2ð Þ ¼ k ð4:11Þ

Proposition 4.2 Isohedral graphs show integer RSi since they have a single ring

type (i.e., are face transitive) and a single occurrence number:
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RSi ¼ sk=s ¼ k ð4:12Þ
Proposition 4.3 There exist graphs that show different occurrence for the same

ring size; in such a case, RSi may be non-integer, according to the parity of

occurrence numbers sum:

RSi ¼ s � k1 þ s � k2ð Þ=2s ¼ s k1 þ k2ð Þ=2s ¼ k1 þ k2ð Þ=2 ð4:13Þ

The statements (4.11, 4.12, and 4.13) were formulated for isohedral (and

isogonal, i.e., vertex transitive) graphs, where q ¼ 1 and RSi ¼ RSI. However,
isohedral graphs are not always isogonal: the Catalan solid graphs (which are duals

to Archimedeans) are all face-transitive but not vertex-transitive. In vertex

non-transitive structures, q > 1 and the global index RSI may be a non-integer

number, according to the numbers parity.

Theorem 4.4 The upper bound of ring signature index RSI can be combinatorially

calculated from the vertex degree by
Deg
2

� �
; this is reached in isohedral and

isogonal graphs with no self-intersection of strong rings.
Demonstration comes from the above propositions, basically from proposition

4.2. It is well-known that the maximum number of rings around a vertex equals

the combination of the number of its connections (i.e., degrees, Deg- Harary

1969; Diudea et al. 2002) taken two. This is the case described by Eq. (4.12):

RSi,max ¼ kmax ¼ Deg
2

� �
. However, some isohedral graphs can be seen as

“networks” (i.e., with rings that intersect to each other), like Icosahedron I,

Octahedron O, 16-Cell, 24-Cell, etc.; in such cases, the set of connections is

split, at least in two subsets (for which, e.g., Deg ¼ Deg1 + Deg2) and, because
Deg
2

� �
>

Deg1
2

� �
+

Deg2
2

� �
, the maximum value of RSi is less than kmax (see

Table 4.1, e.g., 24-Cell_net). The case Deg1¼ Deg2 recovers the case of Eq. (4.11),
with RSi¼ k< kmax. Since the isogonal graphs have only one vertex orbit (q¼ 1), it

means that RSi ¼ RSI and the theorem is demonstrated. Maximal RSI values are
found in Dodecahedron D, Tetrahedron T or the Hypercube Qn. The case (4.13) is

found in the “spongy-hypercube” (Sect. 11.4): since here k1 + k2 ¼ kmax, then

RSi ¼ Deg
2

� �
/2, in words, RSi equals the half of the upper bound value. Data in

Table 4.1 and in the following ones support the above theorem.
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4.4.1 Ring Signature in a Translational Network

Structure elucidation in Chemistry in general, and particularly in Crystallography,

makes appeal of instrumental techniques but also of theoretical tools. In this

respect, RSI would be of real interest in classification of networks, both radial

and translational and in an accurate description of complex molecular/ionic

structures.

The network focused on hereafter was built starting from the Octahedron by

stellation st, followed by truncation t, operations resulted in the cluster

C72A ¼ 24@TT.222.72, of which shapes are detailed as TO@(8TT;6HCO).72

(see Fig. 4.1). (For map operations, the reader is invited to consult Chap. 2, this

book). The name of clusters is written in a “shell-in-shell” manner (Diudea 2013;

Diudea et al. 2014), starting with the core (symbolized either by the shortened

names of the consisting shape: TT ¼ truncated Tetrahedron; TO ¼ truncated

Octahedron; CO ¼ Cuboctahedron, or by the number of atoms of that shape)

endohedrallly @ included into the next (outer) shell(s), then suffixed by the number

of atoms in the whole structure. The net is made by self-assembly of TT (by “face-

to-face” gluing/identification), which is reflected in the name we gave to this net:

C72@TT, delimited as a cubic domain, e.g., C72@TT.222.72, where “222” means

2 � TT along the directions of translation. According to the map operations used to

draw this network, it is named: t(st(O))72@TT. The letter “A” in the name specifies

the “net” while “B” denotes the “co-net”, net/co-net being interchangeable; the

letter “H” in the front of shape symbols means “half”, used to avoid fractional

numbers in the name of clusters.

The network C72@TT (crystallographic synonyms: UB12, sqc7309, 5/3/c4;

Tiling: 2TT + CO + TO; Space Group: Fm–3m (http://rcsr.net/nets/ubt), is a

Table 4.1 Ring signature index RSI in some cells and nets

Structure v vi q Deg Ring signature RSI

Deg
2

� �
D 20 20 1 3 5^3 3 3

I 12 12 1 5 3^5 5 10

C 8 8 1 3 4^3 3 3

O 6 6 1 4 3^4 4 6

T 4 4 1 3 3^3 3 3

I_net 12 12 1 5 3^5.5^5 5 10

O_net 6 6 1 4 3^4.4^2 2.857 6

16-Cell 8 8 1 6 3^12 12 15

16-Cell_net 8 8 1 6 3^12.4^3 6.857 15

24-Cell 24 24 1 8 3^12 12 28

24_Cell_net 24 24 1 8 3^12.4^12 12 28

C60 60 60 1 3 5^1.6^2 1.546 3
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Fig. 4.1 Network C72@TT with a selection C216@TT.555.900 and its substructures (bottom). Its
three shapes are: TT (truncated Tetrahedron)¼ [3^4.6^4]; TO (truncated Octahedron)¼ [4^6.6^8]

and CO (Cuboctahedron)¼ [3^8.4^6]; “H” means “half”. Tiling signature: TT@(4TO;4CO;6TT);

TO@(6CO;8TT); CO@(6TO;8TT)
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uninodal one, of degree five, with the topology (ring signature): 3^2.4^2.6^6; we

added the value of RSI corresponding to this vertex symbol (RSI ¼ 3.846, see

Table 4.2), that reflects its high topological symmetry (e.g., a single vertex/atom

equivalence class—Nagy and Diudea 2017; Diudea et al. 2013; Ștefu et al. 2015).

The ring signature was obtained by selecting the C72@TT.333.216 (that contains

the three shapes of the net: TT, TO and CO) within a larger domain, e.g.,

C216@TT.555.900.

4.4.2 Ring Signature in Spongy Structures of Higher Rank

In describing the network C72@TT (i.e., sqc7309, http://rcsr.net/nets/ubt) assumed

E2 for the two classes of edges and no specification about faces/rings. To verify this

result, we applied to C72@TT the “medial” m operation thus resulting the net m
(C72)132@mTT (Fig. 4.2, left). A ”spongy” version m(C72)132X@mTTX (Fig. 4.2,

right) was obtained by the “Open” op map operation applied to the initial medial.

The both nets show two classes of vertices, corresponding to the parent edges; RSI

data and the tiling signatures are given in Fig. 4.2.

Then, the face-dual operation applied to C72@TT resulted in d(C72)70@dTT net

(Fig. 4.3). This new net consists in three classes of vertices with the populations:

{36}; {108} and {108}, in the selection dC216.252@ dTT.555.1240, the same as the

faces in the parent cluster C216 (squares, triangles and hexagons, respectively).

Table 4.2 Ring signature index RSI in C72A ¼ 24@TT.222.72 and C72B ¼ 12@TT.222.72

clusters

Structure v vi q Deg Ring signature RSI

1 TOsel@TT.444.480 24 24 1 5 3^2.4^2.6^6 3.846

2 C72Asel@TT.444.480 72 72 1 5 3^2.4^2.6^6 3.846

3 C72A 72 24

48

2 5

3

3^2.4.6^4

3.6^2

0.992

4 C72A@TT.480 480 24

168

96

192

4 5

5

5

3

3^2.6^4

3^2.4^2.6^6

3^2.4.6^4

3.6^2

0.676

5 COsel@TT.444.480 12 12 1 5 3^2.4^2.6^6 3.846

6 C72Bsel@TT.444.480 72 72 1 5 3^2.4^2.6^6 3.846

7 C72B 72 12

12

48

3 5

5

3

3^2.6^4

3^2.4^2.6^6

3.6^2

0.769

8 C72B@TT.480 480 12

156

120

192

4 5

5

5

3

3^2.6^4

3^2.4^2.6^6

3^2.4.6^4

3.6^2

0.664
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Figure count in the clusters C216 and C432 (and their substructures) confirmed

their assigned structure and the rank k ¼ 4 (Tables 4.3 and 4.4). Interestingly, the

cluster C432X accounts for the rank k ¼ 5, being bound by eight subunits of k ¼ 4

(Table 4.5).

Fig. 4.2 Medial nets m(C72)132@mTT of the parent C72@TT net, with their selections

C432X@mTTT.555.1950 (X ¼ op, for the spongy medial net) and their substructures (bottom)
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Fig. 4.3 Network d(C72)70@dTT with a selection C252@dTT.555.1240 and its substructures

(bottom)
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4.4.3 Ring Signature in Spongy Hypercubes

Hypercube Qn is an n-dimensional analogue of the Cube C (n ¼ 3), also called an

n-cube. It is a regular graph of degree n, according to Balinski (1961) theorem. The

graph of Hypercube may be drawn by the Cartesian product of n edges:(P2)
□n¼Qn.

The n-cube is written by the Schläfli (1901) symbols as {4,3n � 2}.

Let now take a graph G(v) of a 3-connected polyhedron on v-vertices and make

n-times the Cartesian product with an edge; the operation results in a “spongy

hypercube” G(v,Qn)¼G(v)□nP2. On each edge of the original polyhedral graph, a

local hypercubeQnwill evolve; it means that, in a spongy hypercube, the original 2-
faces will not be counted. Figure 4.4 illustrates such spongy hypercubes, embedded

in the Cube and Dodecahedron, respectively. More precisely, the “spongy hyper-

cube” is the union of the original polyhedron and the hypercubes developed on each

edge of the parent polyhedral graph G(v).
The RSI descriptor can be calculated both in hypercube Qn and in spongy-

hypercube C(Qn), as shown in Table 4.6. For spongy hypercubes, embedded in

Platonic polyhedral and in C60, the values of this index are given in Table 4.7.

4.4.4 Truncation Operation

Let H ¼ (V, E) be a simple graph with the vertex set V and edge set E. A perfect

matchingM of a simple graph H having an even number of vertices |V(H)|¼ 2h is a

Table 4.3 Figure count in C216 and its relatives

Structure v e 3(2) 4(2) 6(2) 2 3 χ k

C216 216 432 108 36 108 252 36 0 4

C72A 72 132 32 6 32 70 10 0 4

C72B 72 132 32 6 32 70 10 0 4

Table 4.4 Figure count in mC216 ¼ C432 and its relatives

Structure v e 3(2) 4(2) 6(2) 2 3 χ k

mC216 432 1188 648 144 108 900 144 0 4

C132A 132 336 176 30 32 238 34 0 4

C132B 132 336 176 30 32 238 34 0 4

Table 4.5 Figure count in mC216X and its spongy relatives

Structure v e 3(2) 6(2) 2 3 4 χ g k

mC216X 432 972 432 108 540 28 8 �20 11 5

C132A 132 288 128 32 160 8 0 �4 3 4

C132B 132 288 128 32 160 8 0 �4 3 4
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subset E(M )�E(H ) of its h pairwise nonincident edges covering all vertices of H.
Similarly, a cycle cover C is a set of disjoint cycles covering all vertices of H, E
(C)�E(H ). Note that, in general, not every graph hasM and/or C. In a simple cubic

graph, the two subsets of edges are disjoint and complementary: E(M )\E(C)¼
0 and E(M )[E(C)¼E(H ), meaning their union contains all the edges of H. These
notions are illustrated in Fig. 4.5.

There is a result (Diudea and Rosenfeld 2017), stating that: a necessary and

sufficient condition for a simple cubic graph G to be isomorphic to the truncation t
(H ) of a simple cubic graph H is that G to have a cyclic cover C of which all

components are triangles (Fig. 4.5). The above result may be extended to a simple

graph with all the vertices of degree d: the cyclic cover will consist of disjoint d-fold
cycles. If the graph has vertices of different degree dk, the cyclic cover will be the
union of dk-fold cycles.

In a multi-shell polyhedral graph, the internal vertices of degree four are

transformed by truncation in tetrahedra. When applied on hypercubes Qn, trunca-

tion replaces any parent vertex in Qn by a simplex Sn � 1 (Coxeter 1973, 1974;

Buekenhout and Parker 1998) and these all trigonal substructures are disjoint while

Fig. 4.4 Spongy hypercubes: cubic C(Q6) (top, left) and dodecahedral D(Q6) (top right) and their
parents (bottom)

Table 4.6 Ring signature index RSI in Hypercube Qn and its spongy view C(Qn)

v Deg n

Qn C(Qn)

Ring signature RSI

Deg
2

� �
Ring signature RSI

8 3 3 4^3 3 3 4^3 3

16 4 4 4^6 6 6 4^3.4^3 3

32 5 5 4^10 10 10 4^7.4^3 5

64 6 6 4^15 15 15 4^12.4^3 7.5

128 7 7 4^21 21 21 4^18.4^3 10.5

256 8 8 4^28 28 28 4^25.4^3 14
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Table 4.7 Ring signature RSI in Platonic polyhedral and C60 spongy hypercube

Structure; [n] v Deg Ring signature RSI

Deg
2

� �
D(Qn); 20 3 5^3 3 3

[2] 40 4 4^3.5^3 3 6

[3] 80 5 4^7.5^3 4.777778 10

[4] 160 6 4^12.5^3 7 15

[5] 320 7 4^18.5^3 9.666667 21

I(Qn); 12 5 3^5 5 10

[2] 24 6 3^5.4^5 5 15

[3] 48 7 3^5.4^11 8.428571 21

[4] 96 8 3^5.4^18 12.428571 28

[5] 192 9 3^5.4^26 17 36

C(Qn); 8 3 4^3 3 3

[2] 16 4 4^3.4^3 3 6

[3] 32 5 4^7.4^3 5 10

[4] 64 6 4^12.4^3 7.5 15

[5] 128 7 4^18.4^3 10.5 21

O(Qn); 6 4 3^4 4 6

[2] 12 5 3^4.4^4 4 10

[3] 24 6 3^4.4^9 6.857143 15

[4] 48 7 3^4.4^15 10.285714 21

[5] 96 8 3^4.4^22 14.285714 28

T(Qn) 4 3 3^3 3 3

[2] 8 4 3^3.4^3 3 6

[3] 16 5 3^3.4^7 5.28571 10

[4] 32 6 3^3.4^12 8.14286 15

[5] 64 7 3^3.4^18 11.57143 21

C60(Qn); 60 3 5.6^2 1.545455 3

[2] 120 4 4^3.5.6^2 1.933333 6

[3] 240 5 4^7.5.6^2 3 10

[4] 480 6 4^12.5.6^2 4.333331 15

[5] 960 7 4^18.5.6^2 5.933338 21

Fig. 4.5 Truncation of the dodecahedron D
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their union covers all the vertices in the truncated transform t(Qn) (see Chap. 10,

Sect. 10.5).

Truncation may be seen as a defect occurring in a crystal network, like that

envisaged in Fig. 4.6. While the full realization of truncation leads to a uninodal

(i.e., singe atom type) net, the defects induce a variety of atom types (Fig. 4.6,

right). RSI was calculated by embedding the 8-unit structures in a larger

corresponding net.

RSI was created to investigate translational networks; since the centrality index

C(LM) gives vertex “topological” classes function of the “sample” size, RSI pro-

vides “chemical”-vertex classes, not influenced by the sample size. A structural

sample is embedded in a large network, such as the external vertices will take the

connectivity of the bulk vertices; then RSI is calculated as in the infinite network.

This could be useful for a network synthesis and also in theoretical

Crystallography.

4.5 Pairs of Map Operation

Euler charasteristic χ is calculated as the alternating sum of figures of rank k of an
n-polytope, as shown in (4.6). Also, it is related to the genus g by Poincaré formula

(4.2); in case of the sphere, χ ¼ 2 and g ¼ 0; for the torus, χ ¼ 0 and g ¼ 1 while in

case χ < 0, the surface shows a negative curvature.

Theorem 4.5 Let {v, e, f } and {n1e + δ, n2e, n3e} be types of a parent polyhedron
and its derivative polyhedron o(P) (obtained by a map operation o). Also, let both P
and o(P) have the same Euler characteristic χ. Then, δ ¼ χ if and only if
(n1 + n3) ¼ n2.

Proof Assuming that the transformed polyhedron o(P) has the same χ-character-
istic as the parent polyhedron P, the Euler formula (4.1) can be re-written, in case of

o(P) (Pirvan-Moldovan and Diudea 2016) as:

Fig. 4.6 Truncation of the cubic net (left): fully truncated (middle) and with defects (right)
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Table 4.8 Operations on maps and pair of operations providing the Euler characteristic

Operation o(P) d(o(P))

leapfrog (l ) {2e, 3e, e + χ} {e + χ, 3e, 2e}

medial (m) {e; 2e; e + χ} {e + χ; 2e; e }

medial^k ¼ 1,2,. . .(m^k) {2^(k � 1)e, 2(2^(k � 1))e, 2^
(k � 1)e + χ}

–

p4 ¼ dm^2 {2e + χ, 4e, 2e} {2e, 4e,
2e + χ} ¼ m^2

truncation (t) {2e, 3e, e + χ} {e + χ, 3e, 2e}

|V(o1(P))| � |V(o2(P))| ¼ χ o1 o2
dm m

dl m

dt m

p4 d( p4) ¼ mm

p4 l

p4 t

|V(t(P))| ¼ |V(l(P))| ¼ |V(mm
(P))| ¼ 2|V(m(P))|

(Different edges and faces)

|V( p4(P))| ¼ |V(dmm(P))| (Identical edges and faces)

Fig. 4.7 Operations: o1¼ p4 (left); o2¼ t (truncation,middle); and o2¼ l (leapfrog, right), applied
on Cube C (top) and Dodecahedron D (bottom); vertex number difference: χ ¼ 2, the Euler

characteristic of the sphere
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n1eþ δð Þ � n2eð Þ þ n3eð Þ ¼ χ ð4:14Þ

and rearrange it as:

e n1 � n2 þ n3ð Þ þ δ ¼ χ ð4:15Þ

It is clear that equality δ ¼ χ holds only if

Fig. 4.8 Operations acting on a square-tiled torus (left): o1 ¼ dm (dual of medial, middle) and
o2 ¼ m (right); vertex number difference: χ ¼ 0; g ¼ 1 (Euler characteristic of the torus)

Fig. 4.9 Operations acting on a polyhex torus (left): o1 ¼ dm (dual of medial, middle) and o2 ¼ m
(right); vertex number difference: χ ¼ 0; g ¼ 1 (Euler characteristic of the torus)

Fig. 4.10 Operations acting on a triple torus (left): o1 ¼ dm (dual of medial, middle) and o2 ¼ m
(right); vertex number difference: χ ¼ �4; g ¼ 3

4.5 Pairs of Map Operation 71



Fig. 4.11 Operations acting on a triple torus (left): o1 ¼ dm (dual of medial, middle) and o2 ¼ m
(right); vertex number difference: χ ¼ �4; g ¼ 3

Fig. 4.12 Operation sequence dm acting on a dodecahedron-shaped torus; χ ¼ �20; g ¼ 11
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n1 þ n3ð Þ ¼ n2 ð4:16Þ

Thus, (4.16) is both a necessary and sufficient condition for Theorem 4.5 to

be true.

Corollary 4.5 (6) The dual of the generalized transform d(o(P)) will have the type:
{n3e, n2e, n1e + χ}. This comes out from the property of Schläfli symbol that its

reversal gives the symbol of the dual polyhedron.

Corollary 4.5 (7) Difference in the number of vertices of the transformed poly-

hedral graphs by selected pairs of map operations, o1 and o2, equals the Euler

characteristic of the embedding surface (Table 4.8): |V(o1(P))| � |V(o2(P))| ¼ χ.

Difference may also be done with respect to the polyhedron faces but the

counting of faces is more expensive. Such pairs of map operations will be illustrated

in the following (Figs. 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12). The figure count data for

the structures in Figs. 4.8, 4.9, 4.10, 4.11, and 4.12 are given in Table 4.9. Note that

the number of points/atoms suffixes the name of structures.

Table 4.9 Figure count for the objects in Figs. 4.8, 4.9, 4.10, 4.11, and 4.12

Structure v e f3 f4 f5 f6 f7 f χ g Diff

H6.8R4 48 96 0 48 0 0 0 48 0 1 –

m(H6.8R4) 96 192 0 96 0 0 0 96 0 1 –

dm(H6.8R4) 96 192 0 96 0 0 0 96 0 1 0

H8.16R6 128 192 0 0 0 64 0 64 0 1 –

m(H8.16R6) 192 384 128 0 0 64 0 192 0 1 –

dm(H8.16R6) 192 384 0 192 0 0 0 192 0 1 0

H320 320 480 0 0 0 132 24 156 �4 3 –

m(H320) 480 960 320 0 0 132 24 476 �4 3 –

dm(H320) 476 960 0 480 0 0 0 480 �4 3 �4

H340 340 510 0 0 12 118 36 166 �4 3 –

dm(H340) 506 1020 0 510 0 0 0 510 �4 3 –

m(H340) 510 1020 340 0 12 118 36 506 �4 3 �4

H1220 1220 1830 0 0 0 470 120 590 �20 11 –

m(H1220) 1830 3660 1220 0 0 470 120 1810 �20 11 –

dm(H1220) 1810 3660 0 1830 0 0 0 1830 �20 11 �20

Table 4.10 Topological data for the Petrials of Platonic polyhedra

Platonic

Petrial

type v e f χ
Skew

polygon Embedding Tiling

Tetrahedron {3,3}π 4 6 3 1 Square Hemi-cube {4,3}/2

Cube {4,3}π 8 12 4 0 Hexagon Toroidal {6,3}(2,0)

Octahedron {3,4}π 6 12 4 �2 Hexagon Hyperbolic {6,4}3

Dodecahedron {5,3}π 20 30 6 �4 Decagon Hyperbolic {10,3}5

Icosahedron {3,5}π 12 30 6 �12 Decagon Hyperbolic {10,5}3
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Euler characteristic can also be calculated for Petrie duals of polyhedral.

Table 4.10 gives data about the Petrials of Platonic polyhedra and their embedding

surfaces.

Figures were designed and computed by CVNET (Stefu and Diudea 2005) and

Nano Studio (Nagy and Diudea 2009).

References

Balasubramanian K (1994) Computer generation of automorphism graphs of weighted graphs.

J Chem Inf Comput Sci 34:1146–1150

Balinski ML (1961) On the graph structure of convex polyhedra in n-space. Pac J Math

11:431–434

Blatov VA, O’Keeffe M, Proserpio DM (2010) Vertex-, face-, point-, Schläfli-, and Delaney-
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Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich (Reprinted in:
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Chapter 5

Small Icosahedral Clusters

Dodecahedron (Greek δωδεκάεδρoυ), the fifth Platonic solid, has been associated

to the ether (or the universe) by ancient Greeks, as described by Platon in its

Timaeus dialogue (Papacostea 1930–1935; Taylor 1928); the remaining Platonics

have been used as symbols for the four other elements: tetrahedron—fire; icosahe-

dron—water; octahedron—air and cube—earth. In geometry, any polyhedron with

12 faces can be named a dodecahedron, among which only one is the regular

dodecahedron (i.e., the Platonic solid), composed of 12 regular pentagonal faces,

three of which meeting at each vertex; it has the symbol {5,3} (Schläfli 1901) and

icosahedral (point group) symmetry, Ih. The dual of a dodecahedron is an icosahe-

dron, referring to shapes (with the disregard of angles and bond length—Schulte

1985) rather than to regular polyhedra.

5.1 Small Cages: Source of Complex Clusters

In the introductory chapters of this book (Chaps. 2 and 3) there were mentioned

“point centered polyhedra”, symbolized MP (Parvan-Moldovan and Diudea 2015);

these represent the most simple structures of rank four (k ¼ 4) and, as will be

shown, a source for deriving a plethora of complex structures/clusters. As starting

structures for the operations on maps, “cell-in-cell” clusters, with the same or

different units, were also used.

The pair dual polyhedral graphs (both of icosahedral symmetry—Fig. 5.1):

Dodecahedron and Icosahedron often coexist in these complex structures. The

symbol for hyper-structures is either DY (i.e., C20Y) or IY (i.e., C12Y) depending

which topology is aimed to be evidenced.

Figure count of the herein studied clusters are included in the following tables;

data are used for checking the consistency of attributed structures; along with the

topological structural parameters (vertices, edges, facets of various rank), Euler

© Springer International Publishing AG 2018
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characteristic χ, the rank k and the genus g represent the main results of this kind of

calculation, also helpful in the classification of clusters.

Figures 5.1 and 5.2 illustrate some small cages useful in the generation of more

complex clusters by means of map operations; they will be detailed in the Atlas of

this chapter. Their figure count is given in Table 5.1.

5.2 Truncated MP Icosahedral Clusters

Truncation t cuts off the neighborhood of each vertex by a plane, such that it

intersects each edge incident in that vertex. The truncated polyhedron has the

figures (vertices, edges and faces, respectively): {2e, 3e, e + 2}, with e being the

number of edges in the parent polyhedron; the truncated transform is always a

three-connected graph (Diudea et al. 2006; Pisanski and Randić 2000; Diudea and

Nagy 2007), (see Fig. 5.3).

Fig. 5.1 Platonic dual pair: dodecahedron (left) and icosahedron (right), as “point centered

polyhedra”

Fig. 5.2 Small clusters used as starting structures in the design of more complex clusters
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Truncation of the smallest icosahedral MP (M ¼ D; I) clusters results in two

structures: C100 ¼ tDP ¼ D@(12tPy5;20Py3).100 and C84 ¼ tIP ¼ I@(20tPy3;
12Py5).84, detailed in the Atlas 5A (5A1.1 and 5A2.1, respectively). These clusters

have the rank 4, as shown in Table 5.2. Vertex configuration for truncated pyramids

is: tPyk ¼ k{k.6.6.};k{3.6.6};2k{3.6.2k}; |V(tPyk)| ¼ 4k; k ¼ 3,4, . . . ; in case k ¼ 3,

one recovers the tetrahedron T and its truncated object TT.

The cluster C84 was further transformed (or exists as a subgraph) in: 5A2.1.1;

5A2.1.2; 5A4.2; 5A6.3; 6A6.2.

5.3 Clusters by Medial Operation

Medial m is achieved by marking the midpoints of parent edges and next joining

two such points if the edges span an angle; the parent vertices are cut off. Medial is

a 4-connected graph, symmetric between the parent and its dual, that ismdM¼mM.

Table 5.1 Figure count in the smallest clusters of icosahedral symmetry

Cluster v e 3(2) 5(2) 2 1(3) 2(3) 3(3) (M) 3 4 χ k n(3);(M)

DP 21 50 30 12 42 0 12 0 1 13 0 0 4 T;Py5(P;D)

IP 13 42 50 0 50 20 0 0 1 21 0 0 4 T;Py5(P;I)

I@D 32 120 140 12 152 50 12 0 2 64 0 0 4 T;Py5(I;D)

IP@D 33 132 170 12 182 70 12 0 1 83 2 2 5 T;Py5(P;D)

dDP 42 150 130 12 142 0 12 20 2 34 0 0 4 Py5;O(I;ID)

IP@ID 43 162 160 12 172 20 12 20 1 53 2 2 5 T; Py5;O(P;ID)

Fig. 5.3 Truncated clusters derived from the smallest icosahedral MP clusters

Table 5.2 Figure count in the truncated smallest clusters of icosahedral symmetry

Cluster v e 3(2) 5(2) 6(2) 2 3(T/TT) 3(A5) 3(Pyk) (M) 3 4 χ k

tIP (5A2.1) 84 192 80 12 50 142 20 0 12 2 34 0 0 4

tDP (5A1.1) 100 230 96 12 62 170 24 0 14 2 40 0 0 4
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By medial, edges of the parent polyhedron are reduced to a point (Diudea and Nagy

2007).

If medial is succeeded by dual d operation, the transformed structure will have

all 4-rings, and are called “rhombic figures”. Dual is made by setting a point in the

center of each face of a map and then joining two such points if their corresponding

faces share a common edge. In a polyhedral graph, the points of the dual represent

faces in the parent graph; dual of the dual returns the original map: dd(M )¼M. For

the medial and dual of medial of the small structures herein discussed, the figure

count is shown in Table 5.3; structures are detailed in the Atlas of this chapter.

Note that, the rhombic clusters have only 4(2) faces (last row in Table 5.3). Also

note that in case of spongy structures (with the name suffixed by the subscript “sp”)
the windows faces (e.g., 2(5) faces) and M (the core and hull, respectively) are

counted empty (i.e., zero, Table 5.3)

There is an interesting case: rhombic icosahedron Rh20 is assumed (Wikipedia

2016) to have as dual the pentagonal gyrobicupola (the Johnson solid J31—Johnson

1966) that is not true. We bring proofs here about the correct dual of Rh20, that is

d(Rh20).20 (Fig. 5.4). The structure Rh20 was drawn by cutting the equatorial ten

rhombi of the rhombic triacontahedron Rh30 ¼ d(mD30).32 (5A8) designed as the

dual of icosidodecahedron ID ¼ mD.30. Retro-medial rm operation was applied to

both d(Rh20).20 and J31.20; the data in Table 5.4 (particularly, the vertex centrality

signature c(LR)—Nagy and Diudea 2017) clearly demonstrate that the two columns in

Fig. 5.4 represent two different series and J31 (i.e., mA5.20, by map operations) is not

the dual of Rh20. In the name of structures, the last number counts all their vertices.

5.4 Clusters of Higher Rank

Let apply a map operation on a small cluster, e.g., o(M1@M2) and then make

o(M1P@M2), on the point-centered map M1P; the transformed map in the second

case will include the product of the first case identified on a common facet with the

product of o(M1P) operation. Then, one can write a complex operation as:

o M1Pð Þ@o M1@M2ð Þ ¼ o M1P@M2ð Þ

The shared facet, in case of 4-polytopes (Coxeter 1973), is a 3-facet (a cell or a

polyhedron). It means that o(M1P@M2) is a cluster bonded by two 4-facets while such

a cluster is a 5-polytope. It is the lower bound for the existence of a 5-polytope

(cf. Euler (1752–1753) formula). Not any 4-polytope can be split by the above rule

(e.g., M1P, the simplest 4-polytope—Parvan-Moldovan and Diudea 2015), that is the

rule is not trivial. The “core” o(M1P) can vary, i.e., it is not necessary to start fromM1P.

Structures of rank 5 (Schulte 2014) and their substructures are listed in

Tables 5.5, 5.6 and 5.7 and detailed in the Atlas. Equivalence classes for the vertices

of the studied clusters were calculated by Nano Studio software program (Nagy and

Diudea 2009) and confirmed by Mathematica (Wolfram 2016).
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Fig. 5.4 Structures related to the rhombic icosahedron Rh20

Table 5.4 Vertex classes of rhombic icosahedron related structures

Structure v/e/f-class v-Signature (c(LR)) No Deg Rings

Rh20.22 3/3/2 0.112882

0.110588

0.108795

10

10

2

3

4

5

4^3

4^4

4^5

d(J31.20).22 3/3/2 0.109819

0.095588

0.091812

2

10

10

5

4

3

4^5

4^4

4^3

d(Rh20).20 2/3/3 0.115289

0.112052

10

10

4

4

3.4.3.5

3.4.4.4

J31.20 2/3/3 0.116139

0.099553

10

10

4

4

3.4.5.4

3.4.3.4
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Chapter 5 Atlas: Small Icosahedral Clusters

I.20 Py5.6 P@D.21
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D.20 T.4 IP.13

P@T20@I.13
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I@D.32_2 I@D.32_3 I@D.32_5
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IP@D.33_2 IP@D.33_3 I@D.32_5
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I.12 ID.30 ¼ mI.30 mIP.42_5
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IP.13 ID.30 I@ID.42
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D@ID.50_2 D@ID.50_3 ID@D.50_5
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D.20 I.12 mD.30 ¼ ID.30 ¼ d(Rh30).30
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D.20 tPy5.20 DP.21
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I.12 tPy3.12 ¼ TT.12 IP.13

Chapter 5 Atlas: Small Icosahedral Clusters 95



D@ID.50 ID@C80.110 C50@C110.130_5

d(C84).130
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cd(C84).21&C84_2 cd(C84).21&C84_3 cd(C84).21&C84_5
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ID@C80.110_2 ID@C80.110_3 T@3T.7
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l(IP).150_2 l(IP).150_3 IP.13

P@T20@I.13
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D@tD.80

D@(12hmA5;20T)@tD.80

C60@tD.120

C60@(12hmA5;20hCO;30T)

@tD.120

d(I@D32).140_5
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A5.10 ID.30 I@D.32

Chapter 5 Atlas: Small Icosahedral Clusters 101



I.12 ID.30 m(I@D32).120

102 5 Small Icosahedral Clusters



A5.10 TT.12 I@D.32
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TT@3TT.39 TT.12 ¼ tT.12 I@D.32
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I@ID.42 m(IaD32).120 P12@I@D.33
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I.12 m(IP@D33)132 ID@20CO.150
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I.12 m(IP@D33)132 ID@20CO.150
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I.12 m(IP@D33)132 ID@20CO.150
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d(510).870_2 d(510).870_3 dCO.14 ¼ Rh12.14
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t(IP@D33).264 TT.12 I@D.33
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TT@3TT.39 TT.12 ¼ tT.12 IP@D.33
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C mP5.15 I@ID.42
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ID.30 CO.12 I@ID.42

Chapter 5 Atlas: Small Icosahedral Clusters 113



ID.30 CO.12 I@ID.42
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m2(C).24 I@ID.42 m(I@ID42).150
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P5.10 TO.24 mIP.42
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P5.10 C24 ¼ TO C60
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d(IP@ID).160_2 d(IP@ID).160_3 IP@ID.43
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ID@20CO.150 I@ID.42 IP@ID.43

120 5 Small Icosahedral Clusters



C84 C300 IP@ID.43
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C114

I@(12(Rh10);20mP3).114
C122

(Rh30)@(20T;30mP3).122
d(D@ID50).134_5
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m(D@ID50).150_5a m(D@ID50).150_5b mA5
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Verlag Birkhäuser, Basel, 1950)

Schulte E (1985) Regular incidence-polytopes with Euclidean or toroidal faces and vertex-figures.

J Combin Theory Ser A 40(2):305–330

Schulte E (2014) Polyhedra, complexes, nets and symmetry. Acta Cryst A 70:203–216

Taylor AE (1928) A commentary on Plato’s Timaeus. Clarendon, Oxford

Wikipedia (2016) https://en.wikipedia.org/wiki/Pentagonal_gyrobicupola. Accessed 12 Dec 2016

Wolfram Research, Inc. (2016) Mathematica, Version 10.4. Champaign, IL

124 5 Small Icosahedral Clusters

https://en.wikipedia.org/wiki/Pentagonal_gyrobicupola


Chapter 6

Large Icosahedral Clusters

Dodecahedron, the fifth Platonic “element”, has been thought as the “quintessence”

of universe (“God used this solid for the whole universe, embroidering figures on

it”—Plato, Timaeus dialogue —Papacostea 1930–1935; Taylor 1928).

Together with the four others: Tetrahedron—fire; Icosahedron—water; Octa-

hedron—air, and Cube—earth, the five shapes based the Plato’s “theory of

everything”.

Dodecahedron is composed of twelve regular pentagonal faces, three of which

meeting at each vertex (symbol {5,3}, Schläfli 1901), within the icosahedral

symmetry; however, at the Plato’s time, it was not clear that its faces are all regular,

that later was demonstrated by Euclid (“Elements”, Book XIII—Heath 1981).

The dual polyhedron of the Dodecahedron is the Icosahedron. Recall that, within

this book, only the shapes of polyhedra are considered while the angles and bonds

length are disregarded.

6.1 Small Complex Clusters

In the introductory Chap. 3 of this book, there were mentioned “point centered

polyhedra”, symbolized MP or P@M (see Fig. 6.1); these represent the most simple

structures of rank k ¼ 4 and a source for deriving a plethora of complex structures/

clusters by means of operations on maps. Also, the MP clusters represent “cell-

dual” of some important complex structures (e.g., C60P.61 & C750, Sect. 9.3). The

number of connections of the central vertex is written as an exponent number P^n@

while the “endo” symbol is used to recall that the point/atom P lies inside the cage.

The last number in the name of a cluster represents the total number of points/

atoms.

P-centered polyhedra, as real structures, are found in endohedral fullerenes

(Saunders et al. 1993; Koltover 2007; Popov et al. 2013). P@M are models for

© Springer International Publishing AG 2018

M.V. Diudea, Multi-shell Polyhedral Clusters, Carbon Materials: Chemistry

and Physics 10, DOI 10.1007/978-3-319-64123-2_6
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metallic clusters M@M12, with M ¼ Ru, Rh, Pd, Fe; such clusters have been

predicted to exhibit outstanding magnetic properties (Reddy et al. 1993).

Here, two new MP clusters are introduced: Bergman’s cluster C45 (Bergman

et al. 1952; Duneau and Gratias 2002) and C125, a cluster inspired from C45

(Fig. 6.2). Figure count of the two clusters and additional IP.13 is given in

Table 6.1; all these clusters have the rank k ¼ 4.

Dodecahedron and Icosahedron, as a dual pair, often coexist within a same

complex structure. The symbol for hyper-structures is either DY (i.e., C20Y) or

IY (i.e., C12Y) depending which topology is aimed to be evidenced. The number,

variety and size of clusters with icosahedral symmetry being higher than to be

included in only two chapters (Chaps. 5 and 6), a new chapter was needed to discuss

the relatives of C60 Ih fullerene; that is why several structures are treated both here

and in the following Chap. 9.

Fig. 6.1 P-centered cluster graphs

Fig. 6.2 P@M clusters: Bergman’s cluster C45 (left) and C125 (right)

Table 6.1 Figure count in C45 and IP structures

Cluster v e 3(2) 5(2) 6(2) 2 T(3) U(3) M 3 χ k

IP (6A2) 13 42 50 0 0 50 20 0 1 21 0 4

C45 (6A3) 45 204 290 0 0 290 130 0 1 131 0 4

C125(9A1.3.1) 125 604 870 12 20 902 390 32 1 423 0 4
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6.2 Icosahedral Clusters Derived from the C45 Seed

The above small clusters can be used as seeds in two operation sequences:

(a) medial: (1)m(IP13).42; d(C42).130a; (2) m(C45).204(6A3.1); d(C204).810a

(6A3.1.1).

(b) truncation: (1) t(IP13).84; d(C84).130b; (2) t(C45).408(6A3.2); d(C408).810b

(6A3.2.1); (3) t(C125).1208; d(C1208).2430.

Figure 6.3 illustrates the clusters obtained from IP@12IP.45 (6A3) (Bergman’s
cluster) by medial and truncation, respectively, while their duals are shown in

Fig. 6.4. Figure count for these structures is listed in Tables 6.2, 6.3, and 6.4.

By using the Y-symbol for a hyper-structure, the names of the above clusters are:

IP ¼ P12@I.13 (6A2); (IP)Y(13IP).45 (6A3); (IP)Y(13C42).204 (6A3.1); (IP)Y

(13C84).408(6A3.2); (IP)Y(13C130a).810a (6A3.1.1) and (IP)Y(13C130b).810b

(6A3.2.1). From these names, it is clear that all these clusters preserve the

Icosahedralsymmetry group (C2 � A5; order 120) of the parent IP cluster.

Fig. 6.4 Icosahedral clusters derived by dual operation

Fig. 6.3 Clusters designed by medial and truncation
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Cluster tIP.84 (5A2.1) is related to the Samson cluster, that consists of 20 trun-

cated tetrahedra TT (i.e., Friauf polyhedra), icosahedrally arranged, with a central

atom inside each TT, all together counting 104 points/atoms (de Boisieu et al. 1991;

Samson 1965, 1972); the central shell forms an icosahedron. It was found in Al-Cu-

Li intermetallics, which represent compounds involving two or more metals, such

as Frank and Kasper (1958) phases, etc. They can display desirable magnetic,

superconducting and chemical properties, due to their strong internal order and

mixed (metallic and covalent/ionic bonding, respectively).

Note that any cluster may be decomposed in several ways, some

key-substructures being illustrated, in the Atlas, at the bottom of figures; accord-

ingly, several names are used for a same structure, with the aim of a better detailing

its composition. However, the fragment union (i.e., re-construction) finally will

provide a single structure, the figures/substructures of which are counted to find its

rank. Here, the term “rank” (Schulte 1985, 2014) is preferred to “(space) dimen-

sion” since our description is a topological one, the geometric aspects (angles and

bond length) being disregarded.

By truncating C45 (6A3) one obtains the cluster t(C45).408 (Figs. 6.2 and 6A3.2)

of which (all face) dual is d(t(C45)408).810b¼ C130b@12C130b.810 (Figs. 6.4, right

and 6A3.2.1), a cluster of rank 6 (Table 6.3). As shown in Sect. 5.4, if there is a

3-facet within a cluster that is shared by two 4-facets, the cluster is of rank k ¼ 5; it

is the case of C130b (6A3.2.1, bottom) (Coxeter 1973; Euler (1752–1753), which is,

in turn, a 5-facet (among the 13 ones) of C810b, this being thus of rank k ¼ 6. In

addition, Table 6.5 provides data about its topological symmetry (Nagy and Diudea

2017).

Searching for the atom classes by face/ring count provides the “chemical vertex

type” if the rings around each vertex/atom (counted by RSI) are „strong rings”

(Blatov et al. 2010); however, by enlarging the rings to “circuits” of various length

(the upper bound involves the counting of circuits of length 2d þ 1, d being the

diameter of the graph), then “topological vertex type” is obtained [finally correctly

discriminating all the classes of a graph, as proved by performing the permutations

within the adjacency matrix, by Mathematica and GAP software (Groups, Algo

rithms and Programming, http://www.gap-system.org)]. If the “ring signature” is

collected in a layer matrix (Diudea 1994; Diudea and Ursu 2003), the centrality

index calculated on it (see Chap. 4), will distinguish all the distinct vertices, at the

early level of strong rings (see Table 6.5). The same vertex classes are obtained with

Table 6.4 Figure count in C408 (6A3.2) relatives

v e 3(2) 5(2) 6(2) 2 U TT Py5 C60(3) 3 4 χ k U

1 408 1074 520 12 290 822 12 130 12 13 167 13 2 5 I

2 143 490 390 114 0 504 12 0 156 0 168 13 2 5 D

3 84 192 80 12 50 142 1 20 12 1 34 0 0 4 I

4 21 50 30 12 0 42 1 0 12 0 13 0 0 4 –

5 13 42 50 0 0 50 1 20 0 0 21 0 0 4 –

1 ¼ t(C45).408 (6A3.2); 2 ¼ cd(C408).143 (6A3.3); 3 ¼ t(IP).84 (5A2.1); 4 ¼ DP.21 (6A1);

5 ¼ IP (6A2)
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the layer matrix of topological distances, an even faster procedure, compared to the

ring counting. These theoretical tools, implemented in the Nano Studio software

(Nagy and Diudea 2009), developed at TOPO GROUP, “Babes-Bolyai” University,

Cluj, Romania, enable the study of topological symmetry of rather complex

structures.

Resuming to C408, its cell dual (realized by changing a cell by a point/vertex) cd
(C408) ¼ (IP)Y(13DP;f5).143 ¼ 13(P20@D21).143 consists of 13 DP.21 units; it is

illustrated in Fig. 6A3.3 and figure count listed in Table 6.4. Further, cd
(C84) ¼ DP.21 (5A2.1.1a) and cd(D@12D.130) ¼ IP.13 (6A6.3).

Table 6.5 Topological symmetry by ring count and centrality C-index (see Chap. 4), in

non-increasing order of centrality, in C810b (6A3.2.1) and its relatives

(RSI) Rmin Rmax Deg

Signature (Cmin;

Cmax) Classes {elements}

2 C84 (5A2.1) 3 6 6 3^5.5^5.6^25 3: {12};

(1.377551) 6 3^5.6^5 {12};

4 3^2.5.6^3 {60}

LM(C84) 3 6 6 (0.149447) 3: {12};

6 (0.118464) {12};

4 (0.097012) {60}

4 C408(6A3.2) 3 6 6 3^5.5^5.6^25 6: {156};

(1.246499) 6 3^5.5^2.6^6 {60};

5 3^3.5^2.6^8 {60};

6 3^5.6^5 {12};

4 3^2.5.6^6 {60};

4 3^2.5.6^3 {60}

LM(C408) 3 6 4; 5; 6 (0.095120) 10:4 � {12};

(0.057074) 6 � {60}

5 C810b ¼ d

(C408)

3 6 12 3^21.5^3.6^60 7: {110};

(8.116238) 12 3^21.5^2.6^41 {60};

(6A3.2.1) 12 3^21.5^2.6^40 {60};

6 3^6.5^3.6^33 {280};

6 3^6.5^2.6^24 {60};

6 3^9.6^3 {60};

5 3^5.5.6^13 {180}

LM(C810b) 3 6 (5;6;12) (0.104546)

(0.065660)

15: 3 � {20};

{30};10 � {60}

{120}
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6.3 Clusters of Dodecahedral Topology

Structures decorated with dodecahedral shapes D (i.e., C20) can be designed by the

following sequence of operations (Diudea 2013): tsel( p4(P)); s2(P); tsel( p4(P))
@s2(P), where tsel stands for the selected vertices truncation while the “endo”

symbol @ means “inside”. Formally, every point in the parent polyhedron P was

changed by a C20 cell; the resulted structure PY(nD;f5) is a “hyper” and a “spongy”
structure, with the central hollow of exact topology of tsel( p4(P). If this hollow is

filled, by connecting inside the parent P, a double-shell cluster will result, which is

no more a spongy structure.

In case P ¼ D, the topology of both parent polyhedron and decoration is

dodecahedral: DY(20M), M being D or o(D) transforms; the structures are shown

in the Atlas (Figs. 6A4n and 6A5n) while the figure count is given in Table 6.6.

The cluster DY(20D;f5).250 (6A4), consisting of 20 dodecahedral shapes, is a

spongy hyper-dodecahedron, of genus g¼ 11, its core being the 110-keplerate. The

packing fraction ϕ¼ 20/33� 0.6060 is calculated with respect to the 33 dodeca-

hedra needed for the radial space filling, as is the case of cluster D@12D@20D.270

(6A5). Compared with the spheres maximum fraction [0.7405, see Ulam conjecture

(Gardner 2001, Hales 1992, 2005)] clearly it is a spongy, non-convex structure. Its

five-fold symmetry (C2 � A5; order 120) is also clear, even pentagons show some

distortion (and strain) to the regular pentagon.

In structures of the type PY(nD); P:n ¼ D:20, C:8, T:4, decorated with dodeca-

hedral shapes D, the number of faces is counted as follows (P ¼ D; Table 6.6):

|2-faces| ¼ 5(2) þ w(s) if s 6¼ 5

|2-faces| ¼ 5(2) if s ¼ 5

|3-faces| ¼ U(3) þ M

The number of 3-faces (i.e., cells) equals the number of U-shapes plus M

(includeing the “core” (i.e., the central hollow seen as a “cell”) and the “envelope”

(or 4-embedding), thus its maximum value being 2). The column heads in tables of

“figure count” (such as Table 6.6) are to be red as “cardinality of x-type sets”.
In spongy spa the number of 2-faces equals the sum of pentagons 5(2); thus w

(5) ¼ 0; M ¼ 0; g ¼ w/2, with w being the window-faces. The cells U(3) are only

dodecahedra D while the “core” is seen “empty” (and the envelope, as well).

Spongy spb represents a (discretized) continuous surface, forming the envelope

(of rank k ¼ 3 and genus g equals the number of windows minus one: g ¼ w � 1).

Table 6.6 Figure count in hyper-dodecahedra DY decorated with dodecahedral shapes D

Structure v e 5(2) w(s) 2 U(3) M 3 χ k(g)

DY(20D) (6A4) 250 450 222 12(5) 222 20 2 22 0 4(0)

DY(20D)spa 250 450 222 12(5) 210 20 0 20 �10 4(6)

DY(20D)spb 250 450 180 12(5) 180 0 0 0 �20 3(11)

D@DY(20D) (6A5) 270 500 264 24(5) 264 32 2 34 0 4(0)
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Filled structures are basic structures with the core same as the parent polyhedron

P (of which points were replaced by D-shapes) while U(3) includes, besides

D-units, some shapes with 2-faces pentagons and two non-pentagonal faces (com-

ing from P); the number of such shapes equals the number of 2-faces in P; the

number of windows in filled clusters is twice that in the basic spongy ones.

When C250 or C270 clusters were taken as seeds for map operations, the resulting

objects were decorated with the C60 cluster (6A4.3.1; 6A4.3.2; 6A4.6) or its trans-

forms; structures are illustrated in the Atlas; the figure count is listed in Table 6.7.

Some of these clusters show higher genus g, being spongy structures (6A4.3;

6A4.4.1; 6A4.4.2). The structures could be used to build monumental constructions.

6.4 Clusters of Icosahedral Topology

When a hyper-structure has the topology of icosahedron, either 13 cells, of formula

(IP)Y(13M) or 12 cells, of formula IY(12M) can be seen, M being D or o
(D) transforms; this is because the 13 cells are in fact 12 cells with the hollow

inside of the same topology as the other 12 cells; it is clear that “spongy” structures

will have the formula IY(12M).

Starting from the cluster D@12D.130 ¼ C20@12C20.130 (6A6), a series of new

clusters can be derived by map operations; these derivatives are illustrated in the

Atlas (Figs. 6A6n) while their figure count is listed in Table 6.8. Note that

sequences t(d(C130) and l(C130) lead to C60-decorated structures (6A6.1.1;

6A61.2; 6A6.1.3; 6A6.6).

Table 6.7 Figure count in clusters of dodecahedral topology

v e 3(2) 4(2) 5;10(2) 6(2) 2 U(3) cn(3) M 3 χ k(g)

1 210 600 400 0 0 0 400 20 0 0 20 �10 4(6)

2 400 750 0 150 240 0 390 20 30 0 50 �10 4(6)

3 450 1110 520 0 222 0 742 20 60 2 82 0 4(0)

3sp 450 1050 400 0 210 0 610 20 0 0 20 �10 4(6)

4 610 1200 0 600 0 0 600 20 0 0 20 �10 4(6)

5 500 1320 720 0 264 0 984 32 130 2 164 0 4(0)

6 900 1650 700 0 222 0 922 20 150 2 172 0 4(0)

6sp 900 1650 700 0 210 0 910 20 150 0 170 �10 4(6)

7 1050 1650 0 0 210 400 610 20 0 0 20 �10 4(6)

8 1200 1950 0 150 240 400 790 20 30 0 50 �10 4(6)

9 1200 1860 0 30 240 400 670 20 0 0 20 �10 4(6)

1 ¼ d(C250).210sp (6A4.3); 2 ¼ d(d(C250)J.400sp (6A4.3.3); 3 ¼ m(C250).450 (6A4.4);

3sp ¼ (6A4.4.1); 4 ¼ d(m(C250)).610 sp (6A4.4.2); 5 ¼ m(C270).500 (6A5.1); 6 ¼ t250.900
(6A4.5); 6sp (6A4.5); 7 ¼ l(C250).1050 (6A4.6); 8 ¼ DY(20C60;P5).1200 (6A4.3.1); 9 ¼ DY

(20C60;hh[2 þ 2].1200 (6A4.3.2)
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6.5 Rhomb Decorated Clusters

Rhombic prototiles have been used in the aperiodic Penrose tessellation (Penrose

1974; Ammann et al. 1992; Grünbaum ans Shephard 1987). A prototile is one of the

shapes of a tile in a tiling/tessellation. A tiling is a covering of the plane by tiles,

with no overlaps or gaps.

Rhombic tiling may be realized by performing the medial operation followed by

the dualization: dm(M ). Medial may be repeated iteratively, as in the sequence

dm^k(M ). The rhombic tiling may also be realized by the p4(M ) operation (see

Chap. 2).

Within this chapter, attention is focused only on the cluster Rh30@ 12Rh30.374

(or d(m(D@12D.130)230).374) (6A6.4.1); it was built up by applying the sequence

dm to the cluster D@12D.130, representing 12 dodecahedra surrounding a hollow

with the same shape of the dodecahedron. All the 13 dodecahedra are recovered in

C374 transformed in the rhombic triacontahedron shape Rh30. The envelope E is

considered as the “embedding cell” into the fourth dimension space or as an abstract

4-rank figure. The alternating sum of all figures, cf. Euler (1752–1753) formula

equals zero, thus the structure has the rank 4. Table 6.9 lists the figure count for

some related clusters of C374; its spongy version C354 (6A6.4.2 and Table 6.9, #2) is

a hyper-structure IY(12Rh30;P), a multi-torus of genus g ¼ 10, equaling half the

number of windows w(6). Another rhombic spongy cluster, d(m(DY(20D;f5)
250)).610, of genus g ¼ 6; its structure is detailed in Fig. 6A4.4.2 and Table 6.7

(#4).

A special attention needs the cluster C152 (6A6.4.3 and Table 6.9, #3), a relative

of C374; it includes the smallest rhombic Rh3.5 substructure, which is not a

polyhedron cf. Steinitz (1922) theorem but a tile (Blatov et al. 2010); Rh3 is the

skeleton of a molecule, named [1,1,1]-propellane. C152 was designed by identifying

(32 points of) Rh60 (6A7.1) inside of Rh120 ¼ dm^3D.122 (6A7.2), see Fig. 6.5.

The vertices of C152 form five classes; there is no conection within the vertices of

a same class, the cluster being a five-partite graph and consequently its chromatic

Table 6.9 Figure count for some clusters related to C374 (6A6.4.1)

v e 3(2) 4(2) 5(2) 2 3i 3ii 3iii 3iv M 3 χ(g) k

1 374 960 280 390 0 670 20 0 50 12 2 84 0 4

2 354 720 0 360 0 360 0 0 0 12 0 12 18(10) 4

3 152 360 0 300 0 300 60 0 0 30 2 92 0 4

4 122 240 0 180 0 180 60 0 0 0 2 62 0 4

5 360 1020 400 360 24 784 60 12 30 20 2 124 0 4

6 610 1200 0 600 0 600 0 0 0 20 0 20 �10(6) 4

1¼ C374; d(m(D@12D).130); (6A6.4.1); 3i(T); 3iii(mP3X); 3iv(Rh30.32); M(Rh30.32; E); 2¼ C354

(C374sp); (6A6.4.2); 3iv (Rh30.32); 3 ¼ C152 (6A6.4.3); 3i(Rh3.5); 3iv(Rh8.10); M(Rh60.62;

dm^3D.122); 4 ¼ C122 (6A6.4.4); 3i(Rh3.5); M(Rh60.62; E); 5 ¼ mC152.360 (6A6.4.5); 3i(P3);
3ii(A5); 3iii(mA4.16); 3iv(O); M(m^3D.120; E); 6 ¼ d(m(DY(20D;f5)250)).610 sp (6A4.4.2). 3iv
(Rh30.32)
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number is five. If the vertices inside each class are connected, the following shapes

are obtained: icosahedron (class {12}); dodecahedron (class {20}|; icosi-

dodecahedron mD.30 (two classes {30}) and rhombicosidodecaherdon m^2D.60
(class {60}), all of icosahedral symmetry. Superposition of these substructures,

each distinctly colored, is suggested in Fig. 6.5 (right). Note that atom-vertex

classes superimpose over topological/central-vertex classes (a consequence of

vertex five-partity); vertex ring signature, centrality index and RSI are given in

Table 6.10. Further, all the 300 4(2) faces of C152 are rhombic (Table 6.9; #3); they

are distributed in four equivalence classes, of composition: {60^3;120}.

If the 30 external points in C152 are deleted, the remaining structure is still a

cluster, of rank k ¼ 4 (and a four-partite graph), the only “cell” of which being the

propellane; again the atom-vertex classes superimpose over topological/central-

vertex classes. It was named ppl(C152).122 (6A6.4.4 and Table 6.9, #4); a new class

of structures, called propellanes, was thus discovered.

A relative of C152, made by the medial operation, is the cluster C360; its main

substructure is the square gyrobicupola ¼ J29 (see the discussion in Sect. 5.3) along
with antiprism A5 (see 6A6.4.5 and Table 6.9, #5), prism P3 and octahedron O.

Fig. 6.5 Building C152 (6A6.4.3): Rh60@Rh120 (left) and superposing the five (inside connected)

classes, distinctly colored (right); for details see text

Table 6.10 Topology of C152 (6A6.4.3) (ppl(C152).122 (6A6.4.4)): vertex classes by centrality

(non-increasing order)

Class Centrality signature Elements Vertex degree Ring signature

1 0.122077 (0.127515) {12} 10 (10) 4^20 (4^15)

2 0.121176 (0.127072) {30} 4 (4) 4^8 (4^8)

3 0.105571 (0.123826) {20} 6 (6) 4^12 (4^9)

4 0.104829 (0.109943) {60} 4 (2) 4^6 (4^2)

5 0.104090 {30} 4 4^4

RSI 1.578947 (1.475410)
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Chapter 6 Atlas: Large Icosahedral Clusters

I.20 Py5.6 P@D.21
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D.20 T.4 IP.13 ¼ P@T20@I.13
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IP@C44.45 st(D).32 I@st(D).44
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I@ID.42 IP@12IP.45 f5(C204) ¼ P@5O.16
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mP5@5C.32 C45

IP@12IP.45

C130 ¼ d(I@ID).130a

d(m(IP)42).130
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m(C45)204 C45 ID@20CO.150
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f5Y870¼P5@5CO.45 ID@20CO.150 m(m(C45)204).870
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f5Y1740 ¼ P5@5TO.90 I@ID.42 DY@(20TO).300

t(I@ID.42).300
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f5Y408 ¼ e@5TT.32 t(C45).408_3 Hull(C408).180 ¼ C180(Ih)
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f5Y810 ¼ 2A5@5(2Py6;5T).35 C810_3 d(C84).130b

d(t(IP)84).130
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C230_2 C230_3 C230_5
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C(810–230).580_2 C(810–230).580_3 M.320_5
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cd(C408).143-2 cd(C408).143-3 C408
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d(cd(C408).143).390_3 cd(C408).143-5 t(C45) ¼ C408
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m(cd(t(45))).370_2 m(cd(t(45))).370_5 cd(C408).143-5
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tsel( p4(D)).110 s2(D).140 tsel( p4(D))@s2(D).250
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tsel( p4(D)).110 s2(D).140 (D@12D)@20D.270
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D.20 tsel( p4(D)).110 DY(20D; f5).250
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d(C250).210_2 d(C250).210_3 DY(20D; f5).250
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td(C250).1200_2 td(C250).1200_3 DY(20D; f5).250
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C20Y(20C60;hh[2 þ 2]).1200 C20Y(20C60;ph[2 þ 2]).1200

l(C400J)X.1200

C20Y(20C20;P5).1200

t(d(C250)).1200
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C20Y(20C20;P5).400_2 C20Y(20C20;P5).400_3 d(C250).210 sp
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D.20 ID.30¼mI.30 DY(20D; f5).250
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m(C250).450 sp m(C250).450 sp DY(20D; f5).250
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d(m(C250)).610_2 sp d(m(C250)).610_3 sp DY(20D; f5).250
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t(C250).900 t(C250).900 DY(20D; f5).250
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l(C250).1050_2 l(C250).1050_3 DY(20D; f5).250
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P^12@I@D.33 D@12D.130 DY(20D; f5).250
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ID_30 m(D@12D130).230 D@(32D).270
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t(C270).1000_2 t(C270).1000_3 D@(32D).270
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D.20 I.12 D@12D.130
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d(D@12D).114_5 I.12 D@12D.130
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t(d(C130)_2 t(d(C130)_3 d(C130).114_5
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t(d(C130).720_2 t(d(C130).720_5 t(d(C130).780_5
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C240-5 C240-5

disjoint polygons

C240-2

disjoint corannulenes
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d(C130).114 sp_2 d(C130).114 sp_3 D@12D.130
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{13D.130&cd(13D.130)}_2 {13D.130&cd(13D.130)}_3 D@12D.130
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ID.30 D@12D.130 ID@12ID.230_5
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D.20 tD.60 t(C130).460_5
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TT.12 D@12D.130 l(D@12D).570
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TT.12 D@12D.130 l(D@12D).570
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Rh30 ¼ d(mD30).32 mP3.9 ID@12ID.230

178 6 Large Icosahedral Clusters



d(m(C130)).354_2 d(m(C130)).354_3 dID.32 ¼ Rh30
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Rh3.5 Rh8.10 d(m^2D60).62
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ppl(C152).122_2 ppl(C152).122_3 Rh3.5

[1,1,1]-Propellane

Chapter 6 Atlas: Large Icosahedral Clusters 181



A5.10 m(A4).16

Square gyrobicupola ¼ J29

m3D.120
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D.20 I.12 mD.30 ¼ ID.30
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D.20 I.12 m2D.60
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m2D.60 Rh60.62

d(m2D.60).62

m3D.120
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Chapter 7

Clusters of Octahedral Symmetry

Cube was associated to the earth, by ancient Greeks and is one of the five Platonic

solids (along with Tetrahedron—fire; Icosahedron—water; Octahedron—air and

Dodecahedron—universe), as Plato exposed in its “theory of everything”

(Papacostea 1930–1935; Taylor 1928). Also called “hexahedron” in geometry, its

six regular square faces follow the direction of rectangle coordinates. Its dual is the

octahedron. Cube and its dual exist in any multi-dimensional space.

In algebra, cube is the third power function; it is associated to the volume

calculation in the Euclidean space.

7.1 Small Clusters as Seeds for Complex Structures

In Sect. 3.4.1, P-centered clusters have been introduced, as the smallest clusters of

rank higher than three and a source of seeds for vary multi-shell clusters (Parvan-

Moldovan and Diudea 2015). In the same idea, we start here with centered clusters

of the Platonic regular polyhedra, namely CP.9 (7A1) and O.7 (7A2) (see also

Fig. 7.1). As hyper-structures, they can be written as OY(6Py4; f3).9 and CY(8T;

f3).7, respectively, thus reminding the duality of their parent objects. They belong to

the symmetry group C2 � S4, of order 48.

Other small clusters used in the same respect (named by the map operation used

in their design) are: mCP.20¼ dOP.20 (7A3), tCP.40 (7A4) and dCP.18¼ mOP.18
(7A5).

A double shell cluster can be designed by joining a polyhedron P in its dual,

P@dP; the two objects can be scaled so that is no matter which one is “endo” or

“exo”, by fullerenes terminology. It is also the case of a polyhedral dual pair,

differently operated but resulting the same cluster, e.g., mCP.20 ¼ dOP.20, as
shown in Fig. 7.2.

These clusters and their derivatives are detailed in the Atlas of the chapter; the

figure count for them is given in Table 7.1.
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7.2 Clusters Decorated by Octahedra

The seeds of the considered clusters decorated by octahedra are CO@dCO.26

(7A6) and its centered pair COP@dCO.27 (7A7); the medial of these clusters

provides m(COP@dCO26).96 (7A6.1) and m(COP@dCO27).108 (7A7.1),

respectively.

Fig. 7.1 The smallest

clusters of octahedral PG

symmetry used as seeds in

map operations

Fig. 7.2 Endo-exo

positioning of components

of the mCP.20 ¼ dOP.20
cluster

Table 7.1 Figure count for derivatives of CP.9 (7A1) and OP.7 (7A2) clusters

v e 3(2) 4(2) 6/8(2) 2 1(3) 2(3) 3(3) M 3 χ k n(3);(M);(4)

1 9 20 12 6 0 18 0 6 0 1 7 0 4 0;Py4;0(C)

2 7 18 20 0 0 20 8 0 0 1 9 0 4 T;0;0(O)

3 20 60 44 12 0 56 8 6 0 2 16 0 4 T;A4;(C;CO)

4 56 180 100 60 0 160 8 20 6 2 36 0 4 T;mP3;Rh8;(Rh12..)

5 60 180 84 72 0 156 20 8 6 2 36 0 4 P3;O;mA4;(CO..)

6 120 240 40 60 56 156 20 6 8 2 36 0 4 P3;C32;TT;(TC..)

7 40 80 32 6 18 56 8 6 0 2 16 0 4 T;TC;(C;TC)

8 18 60 52 6 0 58 8 6 0 2 16 0 4 O;Py4;(O;CO)

9 52 132 36 60 0 96 8 6 0 2 16 0 4 C;CO;(C..)

10 60 156 52 60 0 112 8 6 0 2 16 0 4 CO;C;(CO..)

11 120 216 0 60 52 112 8 6 0 2 16 0 4 TO;C;(TO..)

1 ¼ CP.9 (7A1); 2 ¼ OP.7 (7A2); 3 ¼ mCP.20 (7A3); 4 ¼ d(mCP).56 (7A3.1); 5 ¼ m(mCP).60
(7A3.2); (C32 ¼ 16(4.6.8); 16(4.6^2); 6 ¼ t(mCP).120 (7A3.3); 7 ¼ tCP.40 (7A4); 8 ¼ O@CO.18

(7A5); 9 ¼ d(O@CO).52 (7A5.1); 10 ¼ m(O@CO).60 (7A5.2); 11 ¼ t(O@CO).120 (7A5.3)
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C96 is a hyperstructure, CY(8(O@3O);P).96 (7A6.1) (the repeating substructure

being a triple of octahedral shapes around a forth one, O@3O.15 (7A6.2b)) and, in

the whole, it is a hyper structure, entirely decorated by octahedra.

C108 (7A7.1) is a cluster of rank k ¼ 5, consisting of two sub-clusters of rank

k ¼ 4, namely C96 and C60 (7A7.1b). The figure count of these clusters is given in

Table 7.2. About rank 5 in double shell clusters, see the discussion in Sect. 5.4.

7.3 Clusters Decorated by Dodecahedra

Structures decorated with dodecahedral shapes D (i.e., C20), can be drawn, as

shown in Sect. 6.3, by the sequence of operations (Diudea 2013): tsel( p4(P));
s2(P); tsel( p4(P))@s2(P), where tsel stands for the selected vertices truncation

while the “endo” symbol @ means “inside”. Formally, every point in the parent

polyhedron P was changed by a C20 cell; the resulted structure PY(nD;f5) is a

“hyper” and a “spongy” structure, with a central hollow of tsel( p4(P) topology; if
this hollow is filled, by connecting inside the parent P, a double-shell cluster will

result.

In case P ¼ C, CY(8D).100 (7A8) and the other the structures involved in the

above sequence are illustrated in the Atlas (Figs. 8n and 9n), while the figure count
is given in Table 7.3.

In spongy spa the genus number of 2-faces equals the sum of pentagons 5(2);

thus w(4) ¼ 6; M ¼ 0; g ¼ w/2 ¼ 3, with w being the window-faces. Spongy spb
represents only the envelope (of rank k ¼ 3 and genus g equals the number of

windows minus one: g ¼ w�1 ¼ 5).

Table 7.2 Figure count for clusters decorated by octahedra

v e 3(2) 4(2)

5/6/

8(2) 2 1(3) 2(3) 3(3) M 3 4 χ k(g) n(3);(M);(4)

1 26 96 104 18 0 122 32 18 0 2 52 0 0 4(0) T;Py4;(Rh12;

CO)

2 27 108 128 18 0 146 40 24 0 1 65 0 0 4(0) T;Py4;Rh12;

(P;CO)

3 60 168 88 36 0 124 8 6 0 2 16 0 0 4(0) O;CO;(CO..)

4 96 312 232 18 0 250 32 0 0 2 34 0 0 4(0) O;()

4sp 96 312 232 0 0 232 32 0 0 0 32 0 �16 4(9) O;(); g ¼ w/2

5

(4)

108 384 288 48 0 336 40 6 12 2 60 0 0 4(0) O;CO;mP3;
(CO..)

5

(5)

108 384 288 48 0 336 40 6 12 2 60 2 2 5(0) O;CO;mP3;
(CO..);(C96;

C60)

1 ¼ CO@dCO.26 (7A6); 2 ¼ COP@dCO.27 (7A7); 3 ¼ C108X.60 (7A7.1b); 4 ¼ m
(CO@dCO).96sp (7A6.1); 5 ¼ C60@C96.108 (7A7.1)
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In the filled structure C@CY(8D).108 (7A9) the core is just a cube while U

(3) includes, besides D-units, some shapes with 2-faces pentagons and two squares

(coming from C); the number of such shapes is 6, as the number of C-faces; the

number of windows is twice that in the spongy CY(8D).100.

When C100 or C108 clusters are further subjects of map operations, the resulting

structures are decorated with the C60 cluster (7A8.2.5; 7A9.2) or its transforms;

structures are illustrated in the Atlas; the figure count is listed in Table 7.4.

Some of these clusters show higher genus g, being spongy structures

(7A8.2.1–5). Two clusters: t(C108).400 (7A9.1) and l(C108).528 (7A9.2) are counted

as clusters of rank k ¼ 5 (see the discussion in Sect. 5.4).

7.4 Rhomb Decorated Octahedral Clusters

Applying the pair dm of map operations to the hypercube Q4 resulted in a cluster

named dm(Q4).88 ¼ Rh12@(32mP3;16T;6Rh12)@Rh12.88 (7A10.1), basically dec-

orated by rhombic dodecahedra Rh12 and medial of trigonal prisms mP3, keeping
the octahedral/cubic symmetry of the parent Q4 but raising its rank from 4 to

5 (Table 7.5); there are two identical n � 1 faces of rank k ¼ 4 (actually Rh12@

(12mP3;8T).50 (7A10.1b), thus the whole structure will have the rank k ¼ 5

(Coxeter 1973; Schulte 2014). Analogously was done for the precursor m(Q4).32

(7A10 and Table 7.5). By face-identification, the unit C50a (for “b” see below) can

be translated in the three directions of the Euclidean space to generate a network,

shown in Fig. 7A10.2; its topological symmetry is given in Table 7.7.

Two units were embedded in a large domain (C50a.444.2156) of the network:

C50a.111.50 (7A10.1b) and C50a.222.310 (7A10.2); both of these units show the

same four atom-vertex classes (ring signature is listed in the last column); the

smallest unit showing all the atom-vertex types is C50a.111.50 (7A10.1b), that is the

repeating unit enabling the building (and fully characterizing) of the network,

shortened hereafter as “C50a-net”. Centrality vertex classes differ function of the

size of unit considered; this will be used to discriminate different network-types

within the same size (given here as the number of smallest units along the three

coordinates).

The second network and the series of related clusters are as follows. An isomer

of the 24-cell, O@14O.24 (7A11b) was submitted to the medial and then dual

operations. The resulting structure, d(m(C24)84).166 (7A11), is tessellated by

Table 7.3 Clusters decorated with dodecahedral shape D ¼ C20

Structure v e 5(2) w(s) 2 U(3) M 3 χ k(g)

CY(8D) (7A8) 100 180 84 6(4) 90 8 2 10 0 4(0)

CY(8D)spa 100 180 84 6(4) 84 8 0 8 �4 4(3)

CY(8D)spb 100 180 72 6(4) 72 0 0 0 �8 3(5)

C@CY(8D) (7A9) 108 200 96 12(4) 108 14 2 16 0 4(0)
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rhombic substructures; it can be split into two clusters of k ¼ 4: C152 and C50b,

(inside/outside position being relative), from which the re-combined cluster:

C50b@C152.166 (7A11) has the rank k ¼ 5 (Table 7.6). The unit C50b ¼ R12@

(12mP3;6Py4).50 (7A11.2) can be translated over the three coordinate directions to

generate a “C50b” (7A11.1) network, analogous to “C50a” above discussed; the

co-net unit, Rh24@24mP3.98 (7A11.3), with a larger rhombic cell Rh24 is well

defined. Topological symmetry of the “C50b” network is detailed in Table 7.7. One

can see that atom-vertex types are only three, compared to four, for the “C50a” net;

nevertheless, the spatial distribution of points/atoms is similar: there are 15 classes

(by centrality) vertices in the “444.2156” domain, all of the same number of

elements, only the position with respect to the center of domain being somehow

changed. The close RSI values argue in addition for the similarity of these networks

and their substructures.

Another rhomb-decorated structures is CY(8Rh30;P).244 (7A8.2.3), the vertices

of cube being changed by triacontahedra R30.

Ring signature index RSI and centrality index were computed by the original

Nano Studio software (Nagy and Diudea 2009) developed at TOPO GROUP.

Table 7.5 Figure count in the clusters derived from the hypercube Q4

v e 3(2) 4(2) 2 1(3) 2(3) 3(3) M 3 4 χ k n(3);(M) (4)

1 32 96 64 24 88 6 16 0 2 24 2 2 5 CO;T;(CO;CO) (C20;

C20)

2 20 48 32 6 38 0 8 0 2 10 0 0 4 CO;T;(CO..) –

3 88 288 160 96 256 6 16 32 2 56 2 2 5 Rh12;T;mP3;
(2 � Rh12)

(C50a;

C50a)

4 50 144 80 36 116 0 8 12 2 22 0 0 4 ();T;mP3;(Rh12..) –

1 ¼ m(Q4).32 (7A10); 2 ¼ m(Q4)X.20 (7A10b); 3 ¼ m(Q4).88 (7A10.1); 4 ¼ m(Q4)X.50 ¼ C50a

(7A10.1b)

Table 7.6 Figure count in the clusters derived from O@14O.24 (7A11b)

v e 3(2) 4(2) 2 1(3) 2(3) 3(3) M 3 4 χ k n(3);(M) (4)

1 166 492 204 180 384 6 36 14 2 52 2 8 5 O;mP3;Rh12;
(Rh12..)

(C50b;

C152)

2 152 420 156 150 306 6 24 6 2 38 0 0 4 Py4;mP3;Rh12;
(Rh12..)

–

3 50 144 72 42 114 6 12 0 2 20 0 0 4 Py4;mP3;(Rh12..) –

4 98 288 144 84 228 12 24 0 2 38 0 0 4 Py4;mP3;
(Rh24..)

–

1 ¼ d(m(C24)84).166 (7A11); 2 ¼ C166X.152 (7A11b); 3 ¼ C50b (7A11.2); 4 ¼ C50b (co-net)

(7A11.3)
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7.5 Cubic Net Transforming

A space-filling polyhedron is a polyhedron which can tessellate the 3D space

(Grünbaum and Shephard 1980). The cube is the only Platonic solid showing this

property (Gardner 1984). There are only five space-filling convex polyhedra with

regular faces: triangular prism, hexagonal prism, cube, truncated octahedron

(Steinhaus 1999), and gyrobifastigium, (J26, Johnson 1966). The rhombic dodeca-

hedron Rh12 is also a space-filler (Steinhaus 1999). Combinations of two or more

polyhedra may also fill the space (Goldberg 1979).

Our attention was focused on two space fillers: the cube C and the rhombic

dodecahedron, Rh12.14 (i.e., d(mC).14, or dual of cuboctahedron DCO) (Fig. 7.3)

and to their networks, pcu and flu, respectively. By applying some map operations,

like dual, medial, truncation or leapfrog, directly on networks, a variety of periodic

structures could be drawn; some of the most interesting and aesthetical networks

thus designed are illustrated and characterized in the Atlas, Figs. 7A12n–7A13n.
Centrality topological index (Diudea and Ursu 2003), computed on the layer

matrix of all rings around atoms refers to a given domain cut-off from a network

Table 7.7 Topological symmetry by RSI and centrality index of C50 (a;b) networks

Structure

Centrality classes

{elements} Deg

Atom-vertex classes

{elements}

RSI

signature

1 C50a.111.50

(7A10.1b)

4 6 {8} 3^6.4^3

sel@ {8.6.24.12} 8 {6} 3^4.4^14

C50a.444.2156 10 {24} 3^12.4^9

8 {12} 3^8.4^8

{50} 2.177143

2 C50b.111.50

(7A13.2)

4 8 {30} 3^8.4^6

sel@ {8.6.24.12} 8 {12} 3^4.4^8

C50b.444.2156 6 {8} 3^3.4^6

{50} 2.125714

3 C50a.222.310

(7A10.2)

15 6 {64} 3^6.4^3

sel@ {12.6.8.24.24.24.12. 8 {48} 3^4.4^14

C50a.444.2156 24.24.24.24.48. 10 {144} 3^12.4^9

8.24.24} 8 {54} 3^8.4^8

{310} 2.140092

4 C50b.222.310

(7A11.1)

15 8 {192} 3^8.4^6

sel@ {6.12.24.8.24.12. 8 {54} 3^4.4^8

C50b.444.2156 24.24.24.24.24.48. 6 {64} 3^3.4^6

8.24.24}

{310} 2.105069
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and is dependent of the size and shape of the considered domain, thus being here

less informative. That’s why, in networks characterization, the simple ring signa-

ture (given in the Atlas as the number of vertex types, v, and vertex symbol, vs) is
more useful. The type of tiles characterizes the space filling; it is described focused

on the larger tile, surrounded by smaller ones, according to face homology; face-

tiling of these tiles is given at the bottom of figures.

For a better identification of structural features, both the “net” and “co-net”

appearances of a network were illustrated, keeping the information on their partic-

ular drawing, despite the net/co-net view is interchangeable. Also, a name to remind

the map operation used for drawing was added to the (known) name of networks

(by capitals, e.g., flu ¼ DCO; lta ¼ TMC, etc.). For the crystallographic name and

additional information on these networks, the reader is invited to consult Reticular

Chemistry Structure Resource, http://rcsr.anu.edu.au.

Among the herein discussed networks, pcu (primitive cubic lattice), flu (fluorite)
and sod (sodalite) possess a single tile in filling the 3D space; the others have two or

three tiles (see the Atlas 7). The number of vertex types, expressed as vertex

symbol, is more important in the evaluation of net feasibility by chemical reactions;

in this respect, the uninodal networks could appear more promising.

Fig. 7.3 Basic networks filling the 3D space
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C.8 A4.8 CP.9
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mA4.16 mCP.20 d(mCP).56_4
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mA4.16 mCP.20 m(mCP).60_4
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TC.24 mCP.20 t(mCP).120_4

200 7 Clusters of Octahedral Symmetry



C.8 TO.24 CP.9
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O.6 C.8 CP.9
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C.8 CO.12 O@CO.18
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C8 CO.12 O@CO.18
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O.6 TO.24 O@CO.18¼mOP.18
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O@3O.15 dCO@CO.26 COP@dCO.27
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O@3O.15 CO@dCO.26 m(dCO@CO).96_4
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CO.12 O@3O.15 CO@dCO.26
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O@3O.15 dCO@COP.27 CO@dCO.26
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tsel(P4(C)).44 s2(C).56 tsel(P4(C))@(8D).100
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D.20 tsel(P4(C)).44 tsel(P4(C))@(8D).100
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tsel(P4(C))@(8D).100_2 tsel(P4(C))@(8D).100_3 tsel(P4(C))@(8D).100_4
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d(C100).84_2 d(C100).84_3 tsel(P4(C))@(8D).100_4
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m(C100).180_2 m(C100).180_3 tsel(P4(C))@(8D).100
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t(C100).360_2 t(C100).360_3 t(C100).360_4
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l(C100).420_2 l(C100).420_3 l(C100).420_4
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C16 (8(4.5.5).8(5.5.5)) C.20 tsel(P4(C))@(8D).100_4
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C108 C400 C184
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m(Q4)X.20 m(Q4)X.20 m(Q4).32
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dm(Q4)X.50a (r)

Rh12@(12mP3;8T).50
C2 � S4; Order 48;

|{6};{8};{12};{24}|

dm(Q4)X.50a (b)

Rh12@(12mP3;8T).50
C2 � S4; Order 48;

|{6};{8};{12};{24}|

dm(Q4).88_3
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d(m(Q4)88)X.50

C50a

(d(mQ4)88)X50.222.310

C50a.222.310

d(m(C24)84)166X50.222.310

C50b.222.310
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O@14O.24

C2 � S4
Classes: |2{6};{12}|

d(m(C24)84).166X.50

Rh12@12mP3.50
d(m(C24)84).166
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Rh12@12mP3.50
C50b

d(m(C24)84)166X50.222.310

C50b.222.310

(d(mQ4)88)X50.222.310

C50a.222.310
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Rh24@24mP3.98
C50b co-net

Rh12@12mP3.50_3 Rh12@12mP3.50
C50b net
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Rh12@12mP3.50 Rh24@24mP3.98_3 Rh24@24mP3.98
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C.8 O.6 C.222.27
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C.222.27 O.6 CO.12
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C.222.27 O.6 TC.24
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l(C.222).144 O.6 TO.24
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C.8 CO.12 RCO.24¼ mmC.24
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RCO.24¼ mmC.24 CO.12 C.8
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TCO.48 TO.24 C.8
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TCO.48 TO.24 C.8
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DSCO¼d(stCO).48 TC.24 CP.9
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DSCO¼d(stCO).48 TC.24 CP.222.35
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Rh12@12Rh12.94 Rh12.14 ¼ d(CO).14 [4^12] l((Rh12@12Rh12).480
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RCO.24¼ mmC.24 C.8 T.4
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RCO.24¼ mmC.24 C.8 T.4
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Rh12.14 ¼ p4(T).14
d(mC).14 ¼ d(CO).14

TCO.48 l((DCO).333.324
co-net
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TCO.48 [4^12.6^8.8^6] TC.24 [3^8.8^6] TT.12 [3^4.6^4]
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Chapter 8

Tetrahedral Clusters

Tetrahedron, the first Platonic solid, has been used as a symbol for the fire, in the

ancient Greece, as Platon noted in its Timaeus dialogue (Papacostea 1930–1935;

Taylor 1928); the remaining Platonics have been associated to: icosahedron—

water; octahedron—air, cube—earth and dodecahedron—ether (or the cosmos).

The regular tetrahedron (i.e., the Platonic solid) has its four faces regular triangles,

three of which meeting in each vertex. Tetrahedron is self-dual; recall that within

chapter (also within the whole book) we refer to shapes (with the disregard of

angles and bond length—Schulte 2014) rather than to regular polyhedra.

Higher dimensional analogues are called simplex/simplices (see Chap. 3).

8.1 Small Tetrahedral Clusters

Small tetrahedral clusters, on which this chapter is focused, include the P-centered

cluster TP.5 (Sect. 3.4) and two “cell-in-cell” clusters: T@O.10 and T@TT.16, as

illustrated in Fig. 8.1 and detailed in the Atlas of this chapter. These small clusters

were used as inputs for map operations in developing more complex, multi-shell

clusters. Some clusters, derived from TP.5 by medial (8A1.1; 8A1.1.2), or trunca-

tion (8A1.1.3; 8A1.2) operations, are self-centered graphs, i.e., all the vertices form

a single orbit, being the multi-center of graph; they belong to the symmetry group

S5, of order 120. Self-centered graphs have extensively been studied (Buckely

1979, 1989; Janakiraman and Ramanujan 1992; Negami and Xu 1986; Nazeer

et al. 2016).

Figure count in small tetrahedral clusters is given in Table 8.1.
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8.2 Tetrahedral Clusters of Higher Rank

As described in Sect. 5.4, complex clusters can be decomposed in components of

rank higher than 3; the simplest case is when two components, M1@M2, can be

defined, of rank k¼ 4 and with a common/shared facet, of rank k¼ 3. It follows that

the parent cluster is bonded by two 4-facets while such a cluster is a 5-polytope

(Coxeter 1973; Schulte 2014).

Structures of rank 5 (C22@C26.30 (8A1.1.1) and tTP.20 (8A1.2)) and their

substructures are listed in Tables 8.2 (#1 and #4, respectively) and detailed in the

Atlas. Equivalence classes for the vertices of the studied clusters were calculated by

Nano Studio software program (Nagy and Diudea 2009) and confirmed by

Mathematica (Wolfram 2016).

8.3 Tetrahedral Clusters Derived From Ada20

The so-called “diamond D5” (Diudea 2010; Diudea and Nagy 2012; Szefler and

Diudea 2012; Nagy and Diudea 2013) is a complex hyper-structure, based on

adamantane-like “Ada” and diamantane-like “Dia” substructures; these both can

be identified in the zeolite MTN-type (or ZSM-39—see First et al. 2011; Karttunen

et al. 2011) and may be designed either starting from C20 or from C28. Within this

section, the structures originate in C20, that’s why the name “Ada20”; more details

the reader will find in Chap. 12.

Ada20 (8A2) is a hyper-tetrahedron, a tetrahedron of which points were changed

by four tetrahedral units P@4C20 (where P is the shared/common point) and joined

by a pentagonal face; the central hollow has exactly the topology of small fullerene

C28. Thus its name in the Atlas: TY(4(P@C20);f5).198 (8A2) reflects the state of

hyper-structure (TY—built on the tetrahedron topology) and the main features

Fig. 8.1 Small tetrahedral clusters
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(substructure (P@C20), counted 4�, and the joining manner f5); the number

suffixing the name counts the all points/atoms in a structure.

By performing the dual operation on Ada20 one obtains the spongy structure d
(Ada20).162sp (8A2.1). The icosahedral shapes are joined sharing an octahedral

shape O@4I while two such units share a point P located on the edges of a

tetrahedron; this cluster has a “spongy” structure, as counted in Table 8.3 (entry

7). The same spongy can be seen for Ada20 (8A2) if neglect (i.e., consider “empty”)

the core (Table 8.3, entry 6sp); the genus g equals here half of the number of

window faces of the tetrahedron.

Other operations (medial m, truncation t and leapfrog l ) were applied to Ada20

(8A2) or to its dual, the resulting clusters being detailed in the Atlas; spongy

structures were obtained by cutting off the core of filled structures. Note that

truncation and leapfrog operation provide tetrahedral hyper-structures decorated

by C60 fullerene (Figs. 8A2.11; 8A2.1.2; 8A2.4; 8A2.5; 8A2.6 and 8A2.7) arranged

in tetrahedral substructures, often including some “bonding” cells, with the shape of

pentagonal prisms P5, octahedron, tetrahedron and their truncates; we consider such

clusters as candidates to the C60 aggregation (see Chap. 12).

8.4 Tetrahedral Hyper-structures Decorated with Only

Dodecahedra

As mentioned within this book (Sects. 6.3, 7.4 and 9.3), structures decorated with

dodecahedral shapes D (i.e., C20) can be designed by the following sequence of

operations (Diudea 2013): tsel( p4(P)); s2(P); tsel( p4(P))@s2(P), where tsel stands for
the selected vertices truncation while the “endo” symbol @ means “inside”.

Formally, every point in the parent polyhedron P was changed by a C20 cell; the

resulted structure PY(nC20) is a “hyper” and “spongy” structure, with the central

hollow of exact topology of tsel( p4(P). If this hollow is filled, by connecting inside

the parent P, a double-shell cluster will result, which is no more a spongy structure.

In case P ¼ T, the corresponding structures are shown in Figs. 8A4; 8A4.1;8A4.2

and 8A5 while the figure count is given in Table 8.4 (details and explanations were

given in Sect. 6.3).

Structures TY(4D).50 (8A4) and T@TY(4D).54 (8A5) have been derived by

map operations, as illustrated in the Atlas of this chapter (Figs. 8A4.2.1 to 8A4.2.3

and 8A5.1). Design of higher rank and genusmulti-shell clusters was performed at

TOPO GROUP CLUJ by the original CVNET (Stefu and Diudea 2005) and Nano

Studio (Nagy and Diudea 2009) software programs.
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Chapter 8 Atlas: Tetrahedral Clusters

P@T.5_2 P@T.5_3 T.4

Table 8.4 Figure count in C20 tetrahedral hyper-clusters

Structure v e 5(2) w(s) 2 U(3) M 3 χ k(g)

TY(4D) (8A4) 50 90 42 4(3) 46 4 2 6 0 4(0)

TY(4D)spa 50 90 42 4(3) 42 4 0 4 �2 4(2)

TY(4D)spb 50 90 36 4(3) 36 0 0 0 �4 3(3)

T@TY(4D) (8A5) 54 100 48 8(3) 56 8 2 10 0 4(0)
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T.4 O.6 mTP.10¼T@O.10
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T@(4mP3;4hC)@(mTT).22 C@(4T;4hC;6mP3)@(mTT).26 T@O.10¼mTP.10
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O@(4P3;4hCO)@TT.18 TT@(4O;4hCO;6P3)@CO.24 T@4O@O.10¼mTP.10
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Tr(T)¼TT_12 Tr(Oct)¼TO_24 P3@(3TO;2TO;5TT;9P3).60
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l(T@4O@O).90_2 l(T@4O@O).90_3 T@4O@O.10¼mTP.10
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T.4 TT.12 tTP.20_3
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T.4 TT.12 T@TT.16_3
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m(T@TT16).36_2 m(T@TT16).36_3 mCO.24
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T.4 C20 (Ih) C28 (Td)
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I.12 Ada20.198 d(Ada20.198).162
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C84Td¼lC28 (TO@4TO)@(4C60;6P5).264_3 C960
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TO@(4C60;6P5).240_3 (TO@4TO)@(4C60;6P5).264_3 C1212
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T.4 ID.30 Ada20.198

266 8 Tetrahedral Clusters



t(C20) t(C28) Ada20.198
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C84Td¼lC28 (TT@4TT)@(4C60).210 C810
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Ada20.198 (TT@4TT)@(4C60).210 C834
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C84Td¼lC28 2TT@3C60.165 Ada20.158
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2TT@3C60.165 TTY(4C165);f5).630 C654
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tsel( p4T).22 s2T.28 tsel( p4T)@s2T.50
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D.20 tsel( p4T).22 tsel( p4T)@s2T.50
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C50_2 C50_3 C50_4
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d(C50).42_2 d(C50).42_3 d(C50).42_4
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m(C50).90_2 m(C50).90_3 m(C22).36
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t(C22).72 t(C50).180_3 t(C50).180_4
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T.4 C12 6(3.5.5).6(5.5.5) D.20
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t(C54).200_2 t(C54).200_3 t(T@C22).92
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Chapter 9

C60 Related Clusters

A hyper-structure is a (molecular) construction resulted by replacing, in a “host”

structure M, of all substructures, of the same rankk, by “guest” substructures (i.e.,

monomers/shapes), of rank at least kþ1; it is named MY(∑imiSi; p) . n to indicate

the topology of the parent map/molecule M in the Y- “hyper”-building, the number

m of monomers, the type p of shapes joining facet and the total number n of atoms

in the hyper-structure. More often, there is a single type of substructure and the

above formula simplifies to MY(mS; p) . n. Note that, in the name, the eventual

smaller shapes, needed to fill the space, are omitted.

Design of a hyper-structure may be achieved from “monomers”, e.g., small

shapes with the topology of Platonics, Archimedeans or Catalans, i.e., the duals

of Archimedeans, or even C60 while the host structure is, within this chapter,

C60(Ih). In developing this subject, we kept in mind the outstanding importance

of C60 Buckminster fullerene in promoting the whole Nano-era.

9.1 Structures Derived from the Cluster P32@dC60.33

A point-centered cluster, as those presented in Sect. 3.4.1, is now considered in

view of designing C60 related structures by derivatization, mainly by dual, medial

and truncation, to which leapfrog operation is sometimes added. It is the cluster

C33 ¼ P32@dC60.33(9A1), made by insertion of a point/vertex inside the dual of
C60 graph dC60.32 connected by all 32 vertices.

A second cluster, C92¼dC60@C60.92 (9A2) is made by joining the C60 dual’s
vertices with the boundary vertices of the corresponding parent faces.

Since the basic structure involved in construction of C60 related clusters is the

cluster C92, our investigation needs its P-centered derivative C93 ¼ P32

@dC60@C60.93 (9A3). Cluster C93 is equivalent to the union C33UC92 and also

to P32@(C92).93; it is a filled clusters of rank k ¼ 5 (having two faces/substructures

© Springer International Publishing AG 2018

M.V. Diudea, Multi-shell Polyhedral Clusters, Carbon Materials: Chemistry

and Physics 10, DOI 10.1007/978-3-319-64123-2_9
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of k ¼ 4 (C33 and C92, sharing a same tessellation: dC60.32) that bound the basic

structure; it is also true for its derivatives.

Note that C93 is the cell dual of C810 (C60@(12C20;20C24)@(60C20).810 (9A7))

while the external shell of C810 (i.e., a C60 shape) stands for the cell dual of C750

(9A6), structures detailed in Sect. 9.3.

Derivatization by map operations of the three above clusters is illustrated in the

Atlas of this chapter (Figs. 9A1 to 9A3) and their figure counts are listed in

Tables 9.1, 9.2, 9.3, 9.4 and 9.5. Remark here the involvement of triplets of shapes

around a fourth one, M@3M/2, that can be seen as a derivation of the trigonal sp2

carbon atom, in Chemistry; in the above, “3M/2” means that each shape of the

triplets is shared by two “three-connected hyper-vertices”.

Spongy structures provide negative values of χ and high genusg (Tables 9.2, 9.4
and 9.5, entries marked by a subscript “sp”).

Remark the cluster C244 (9A1.3) derived by truncation of P32@dC60.33; it

represents the core of a more complex C1208 (9A1.3.2), that can be obtained directly

by truncation of C125 (9A1.3.1), a cluster inspired from the Bergman’s cluster (C45,

Bergman et al. 1952); figure count for these structures are listed in Table 9.3. It is

expected that different map operations provide clusters with a same number of

atoms but having different tessellation, as discussed in Sect. 4.5.

A last remark for this section: there are clusters composed by shapes smaller than

C20, e.g., TO (C2520 (9A2.2.2); C900 (9A1.2.4)) or TT (C1260 (9A2.2.1)) and related

structures, made by truncation or leapfrog operations, that have connectivity three

and four; such structures (including those made by C20) may appear in carbon

phases produced at high pressure (and high temperature).

9.2 Stellated Clusters

There are many clusters that can serve as startin structures in map operation

derivatization; it is not the aim of this book to exhaust all possibilities in this

respect, thus only some “other” structures will be discussed.

Stellation of dual of C60 cage, dC60.32, leads to st(dC60).92 (9A4), a cluster that

can be further transformed by dualization, medial and truncation (Figs. 9A4n).
Observe, in the name of hyper-structures, the manner of units binding (e.g., for TT

Table 9.1 Figure count for C60@dC60.92 (9A2) and its derivatives

Structure v e 3(2) 5(2) 6(2) 2 U A5 A6 M 3 4 χ k U; (4)

1 (9A1) 33 122 150 0 0 150 60 0 0 1 61 0 0 4 T

2 (9A2) 92 360 420 12 20 452 150 12 20 2 184 0 0 4 T

3 (9A3) 93 392 510 12 20 542 210 12 20 1 243 0 0 4 T

3 (k¼5) 93 392 510 12 20 542 210 12 20 1 243 2 2 5 T; (C33;C92)

1 ¼ P32@dC60; 2 ¼ dC60@C60; 3 ¼ P32@dC60@C60; 3(k ¼ 5) ¼ P32@dC60@C60

282 9 C60 Related Clusters



T
a
b
le

9.
2

F
ig
u
re

co
u
n
t
fo
r
P
3
2
@
dC

6
0
.3
3
an
d
it
s
d
er
iv
at
iv
es

S
tr
u
ct
u
re

v
e

3
(2
)

4
(2
)

5
(2
)

6
(2
)

2
U

c 1
c 2

M
3

χ
g(
k)

U
;
c n

1
(9
A
1
.2
)

1
2
2

4
5
0

3
9
0

0
1
2

2
0

4
2
2

6
0

1
2

2
0

2
9
4

0
0
(4
)

O
;P
y
5
;P
y
6

2
(9
A
1
.1
)

1
5
0

4
5
0

3
3
0

0
2
4

4
0

3
9
4

6
0

1
2

2
0

2
9
4

0
0
(4
)

T
;
A
5
;A

6

3
(9
A
1
.2
.1
)

3
9
0

9
9
0

2
7
0

3
6
0

2
4

4
0

6
9
4

6
0

1
2

2
0

2
9
4

0
0
(4
)

C
;m

P
5
;m
P
6

3
sp

3
9
0

7
2
0

0
3
6
0

0
0

3
6
0

6
0

0
0

0
6
0

�3
0

1
6
(4
)

C
;
()

4
(9
A
1
.2
.2
)

4
5
0

1
1
7
0

3
9
0

3
6
0

2
4

4
0

8
1
4

6
0

1
2

2
0

2
9
4

0
0
(4
)

C
O
;
P
5
;P

6

4
sp

4
5
0

1
1
7
0

3
9
0

3
6
0

0
0

7
5
0

6
0

0
0

0
6
0

�3
0

1
6
(4
)

C
O
;(
)

5
(9
A
1
.2
.3
)

7
5
0

1
4
4
0

0
7
2
0

0
0

7
2
0

6
0

0
0

0
6
0

�3
0

1
6
(4
)

dm
C
;
()

6
(9
A
1
.2
.5
)

9
0
0

1
6
2
0

0
3
6
0

2
4

4
3
0

8
1
4

6
0

1
2

2
0

2
9
4

0
0
(4
)

T
O
;P

5
;P

6

6
sp

9
0
0

1
6
2
0

0
3
6
0

0
3
9
0

7
5
0

6
0

0
0

0
6
0

�3
0

1
6
(4
)

T
O
;(
)

7
(9
A
1
.2
.4
)

1
1
7
0

2
6
1
0

3
9
0

1
0
8
0

0
0

1
4
7
0

6
0

0
0

0
6
0

�3
0

1
6
(4
)

m
m
C
;(
)

1
¼

m
(P

3
2
@
d
C
6
0
.3
3
).
1
2
2
;
2
¼

d(
P
3
2
@
d
C
6
0
.3
3
).
1
5
0
;
3
¼

dm
(P

3
2
@
d
C
6
0
).
3
9
0
;
3
sp

¼
dm

(P
3
2
@
d
C
6
0
).
3
9
0
sp
;
4
¼

m
(C

1
2
2
).
4
5
0
;
4
sp

¼
m
(C

1
2
2
).
4
5
0
sp
;
5
¼

d
(m

(C
1
2
2
)4
5
0
).
7
5
0
sp
;
6
¼

t(
C
1
2
2
).
9
0
0
;
6
sp

¼
t(
C
1
2
2
).
9
0
0
sp
;
7
¼

m
(m

(C
1
2
2
)4
5
0
).
1
1
7
0
,
“(
)”

m
ea
n
s
n
o
t
d
et
ai
le
d
ce
ll
s
c n

9.2 Stellated Clusters 283



shape, there are: f6 (9A1.3); f3 (9A1.4); e (9A4.3)). Figure count for st(dC60).92 and

its relatives is given in Table 9.6.

Icosidodecahedron ID ¼ mD ¼ mI can also be stellated to stID.50 and this unit

enables, by a hypothetical self-arranging process, the construction of a hyper-

cluster, C60Y(60(st(ID);f5).1650 (9A5.1); hexagonal and pentagonal hyper-faces

are shown at the bottom of Fig. 9A5.1. Figure count for this cluster, its monomer

and spongy-view is given in Table 9.7 while topological symmetry in Table 9.8.

Ring counting around vertices provides “chemical vertex type” classes (if the

rings are the “strong” ones) or “topological vertex type” classes (if the rings are

circuits long enough), equaling the number of “centrality atom type” classes

(obtained at the early strong rings stage), as shown in Table 9.8. All the vertex

classes counted by C-index (Nagy and Diudea 2009) have been confirmed by

symmetry calculation using the adjacency matrix permutations (Nagy 2016).

9.3 C750 Related Structures

Design of cluster C750 (9A6) was realized by operations on maps, by a procedure

developed by Diudea (2013). For this, the following sequence of operations was used:

tsel(p4(C60)).330; s2(C60).420; tsel(p4(C60))@s2(C60).750, where tsel stands for the

selected (i.e., marked) vertices truncation while the “endo” symbol @ means: the

substructure to the left of symbol is “inside” the substructure lying to the right of this

Table 9.3 Figure count for C244 and its derivatives

Structure v e 3(2) 5(2) 6(2) 2 M TT U 3 χ k

1 (5A2.1) 84 192 80 12 50 142 2 20 12 34 0 4

2 (5A1.1) 100 230 96 12 62 170 2 24 14 40 0 4

3 (9A1.3) 244 572 240 12 170 422 2 60 32 94 0 4

4 (9A1.3.1) 125 604 870 12 20 902 1 390a 32b 423 0 4

5 (9A1.3.2) 1208 3214 1560 12 890 2462 2 390 64 456 0 4

1 ¼ t(IP).84; 2 ¼ t(P@st(A6)).100; 3 ¼ t(P32@dC60.33).244; 4¼ (P32@ dC60.33)@(st(C60)

92).125; 5¼ t(C125).1208;
aT; bPPyk

Table 9.4 Figure count in l(P32@dC60.33).450 and its relatives

Struct v e 3(2) 5(2) 6(2) 2 M TT 3 4 χ g k (4)

1 (9A1.4) 450 810 150 12 260 422 2 60 62 0 0 0 4

1sp 450 810 150 0 240 390 0 60 60 0 �30 16 4

2 (9A2.4) 1260 2160 420 0 600 1020 0 150 150 0 �30 16 4

34 (9A3.2) 1530 2790 510 102 860 1472 2 210 212 0 0 0 4

35 (9A3.2) 1530 2790 510 102 860 1472 2 210 212 2 2 0 5 (C450;C1260)

1 ¼ l(P32@dC60.33).450; 2 ¼ l(dC60@C60.92).1260 sp; 3n ¼ l(P32@dC60@C60.93).1530
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symbol. Formally, every point in the graph of C60(Ih) was changed by a cell C20;

structure C60Y(60C20).750 (9A6) is a “hyper” and “spongy” structure, with the central

hollow of exact topology of tsel(p4(C60).330. If this hollow is “endohedrally”

functionalized (a term taken from nanoscience) by connecting inside the fullerene

graph C60(Ih), a double-shell cluster is thus designed: C60@(C330)¼C60@

(12C20;20C24).390 (9A7a). Then, all these substructures subsequently fit to each

other, providing a filled cluster C390@C750 ¼ C60@C750.810 ¼ C60@(12C20;20C24)

@(60C20).810 (9A7). The structures involved in the design of clusters C750 (9A6) and

C810 (9A7) are illustrated at the bottom of these figures; their figure count is shown in

Table 9.9. The procedure for spongy structures is general, working on any three-

connected cage.

C750 has its cell-dual the point-centered cluster P
60@C60.61¼ C60P.61, (9A6.1a)

with the central point of degree 60 (written as a superscript number), from which

the “spongy” character of C750 immediately comes out. It is also clear when its

figures are counted as in Table 9.9, entry C750sp; 12 pentagons (5(2)) and 20 hexa-

gons (6(2)) are “seen” as “empty” faces or “windows” while the closing (internal/

external) maps M are disregarded. The alternating sum of figures, according to

Euler (1752-1753) formula (Chap. 4; (6)) gives χ ¼ �30 and g ¼ 16, the correct

values for the spongy C60-derivatives.

Table 9.6 Figure count for st(dC60).92 (9A4) and its relatives

Struct v e 3(2) 4(2) 5(2) 6(2) 2 M c1 c2 3 χ cn (M)

1 (9A4) 92 270 240 0 0 0 240 2 60 0 62 0 T (C60)

2 (9A4.1) 240 540 240 90 24 40 394 2 60 32 94 0 T;hmPk (C60)

3 (9A4.2) 270 720 480 0 12 20 512 2 60 0 62 0 O (C60)

4 (9A4.3) 540 990 240 0 12 260 512 2 60 0 62 0 TT (C180)

1 ¼ st(dC60).92; 2 ¼ d(st(dC60)).240; 3 ¼ m(st(dC60)).270; 4 ¼ t(st(dC60)).540

Table 9.7 Figure count for cluster st(ID).50 (9A5) and its derivative

Structure v e 3(2) 5(2) 6(2) 2 T M U50 3 χ g(k)

1 (9A5) 50 120 80 12 0 92 20 2 0 22 0 0(4)

2 (9A5.1) 1650 4500 3000 642 20 3662 750 2 60 812 0 0(4)

2sp 1650 4500 3000 630 0 3630 750 0 60 810 �30 16(4)

1 ¼ st(ID).50; 2 ¼ 60(st(ID)50).1650

Table 9.8 Topological symmetry by RSI and centrality C-index of C1650 (9A5.1) cluster

Structure Rmin Rmax Signature (Cmin; Cmax) Classes {elements} Deg RSI

C1650 (9A5.1) 3 6 3^6.5^3 4:{510} 6 0.881088

– – 3^6.5^2.6 {120} 6 –

– – 3^6.5^2 {720} 6 –

– – 3^3 {300} 3 –

LM(C1650) 3 6 (0.039044)

(0.033227)

21: {30};

13�{60}; 7�{120}

3;6 –
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In the opposite, C810 (9A7) is a filled cluster, as shown by the group of Diudea

(Stefu et al. 2015); if one considers only the cells (i.e., faces/figures of rank k ¼ 3),

the calculated rank is k¼ 4 (as for C750). However, its boundaries are closed by two

faces of rank 4 (namely C750 and C390); thus, C810 can be considered as a cluster of

rank k ¼ 5 (see Table 9.9, entry C810_5). For C60P.61 one counts k ¼ 4, as shown in

the bottom of Table 9.9. In the following, attention is focused on “spongy”

structures, rather to the filled ones.

9.3.1 Duals of C750 and Related Structures

All ring dualization of C750 (9A6) leads to a spongy cluster d(C750) ¼ C60Y

(60dC20)sp, (9A6.1 and Table 9.10) with only icosahedral cells. Similarly, clusters

C60Y(60C60;P5).3600 (9A6.1.1) and C60Y(60C60; f5).3150 (9A6.4) are spongy

hyper-structures of C60, of which atoms were replaced by C60 units.

Recently, the groupof Klein (Bhattacharya et al. 2016) published an isomer on 3600

atoms (denoted here C60Y(60C60;hh[2þ2]).3600 (9A6.1.1a), inwhich the units are joined

by two covalent bonds (coming, in Chemistry, from a 2þ2 cycloaddition); in our 3600-

isomer the units are joined by pentagonal prisms P5, while in the other hyper-C60 on 3150

vertices, the units are joined by identification of pentagonal faces. (In Chap. 12, on

energetics associated to such structures, will be shown that such f5-joining of C60 cells

could have a real chance in Nanotechnology, as a way of C60fullereneaggregation).

Counting the rings around vertices provides “chemical vertex type” classes

(if the rings are the “strong” ones) or the “topological vertex type” classes (if the

rings are circuits long enough), equaling the number of “centrality vertex type”

classes (obtained with layer matrices just from hard rings), as shown in Table 9.11.

It is noticeable that the vertex equivalence classes found by our topological

descriptors are confirmed by permutations performed on the adjacency matrix

associated to such complex graphs (by using Mathematica software—Nagy

2016), as shown at the bottom of the most important figures, in the Atlas. When

the number of classes is rather big (see Table 9.11 and others), only RSI and

extreme values of the centrality index Cmin/max are given.

9.3.2 Medials of C750 and Related Clusters

Medial operation introduces tetrahedral cells to fill the space with the

icosidodecahedra ID ¼ mD ¼ mI, which join pentagonal face identification. The

spongy hyper-structure C60Y(60 ID; f5).1350 (9A6.2) is obtained starting from the

spongy C750 cluster while the filled pair (9A7.1) is made from the filled cluster C810.

A further dualization of the spongy medial cluster led to the hyper-structure C60Y

(60 Rh30.32;P).1830, with the units being the rhomb-tessellated triacontahedron

Rh30 (9A6.2.1). Figure count for these three clusters is included in Table 9.10.
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9.3.3 Truncated C750 and Related Clusters

Truncation enabled us to design two spongy hyper-structures related to C750: C60Y

(60 TD; f10).2700 (9A6.3) and C60Y(60 t(C60); f10).9900 (9A6.4.1), with the units:

truncated dodecahedron TD ¼ t(C20).60 and truncated C60, tC60.180, respectively,

both joined by decagonal faces. Realization by carbon of such spongy structures,

containing only three- and four-connected vertices/atoms, could be possible by an

adequate nanotechnology. Figure count for these structures is included in

Table 9.10 while RSI and centrality data for the structure on 9900 vertices are

given in Table 9.11.

Table 9.11 Topological symmetry by RSI and centrality C-index of C750 (9A6) and its relatives

Structure Rmin Rmax

Signature

(Cmin; Cmax) Classes {elements} Deg RSI

1 C750 5 6 5^6 4:{60}; 4 0.982727

(9A6) – – 5^5.6 {120}; 4 –

– – 5^5 {270}; 4 –

5^3 {300} 3 –

5 12 – 12 3;4 3.461587

LM(C750) 5 6 (0.042611)

(0.036394)

12: {30};

10�{60};

{120}

3;4 –

5 12 (0.036301)

(0.030290)

12: {30};

10�{60};

{120}

3;4 –

2 C3600 4 6 4^2.5.6^2 2: {900} 4 0.787879

(9A6.1.1) 5.6^2 {2700} 3 –

LM

(C3600)

4 6 (0.016690)

(0.015499)

32: 4�{60}

28�{120}

3; 4 –

3 C3150 5 6 5.6^4 2:{450} 4 0.850649

(9A6.4) – – 5.6^2 {2700} 3 –

LM

(C3150)

5 6 (0.019671)

(0.018001)

32: {30};

10�{60};

21�{120}

3; 4 –

4 C9900 3 12 3^2.10.12^2 3:{900} 4 0.448485

(9A6.4.1) – – 3.12^2 {3600} 3 –

– – 3.10.12 {5400} 3 –

LM

(C9900)

3 12 (0.010474)

(0.009631)

92:19�{60};

73�{120}

3;4 –

4a C9900 3 12 3^3.12^2 4:{900}; 4 0.348182

(9A6.4.1) 3^3.10.12^2 {900}; 4 –

3.12^2 {2700}; 3 –

3.10.12 {5400} 3 –

LM

(C9900)

3 12 (0.010472)

(0.009629)

92:19�{60};

73�{120}

3;4 –
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The condition (Diudea and Rosenfeld 2017) for a simple cubic graph G to be

isomorphic to the truncation t(H ) of a simple cubic graph H, namely G to have a

cyclic cover C of which all components are triangles, here is extended to include

also tetrahedra (see 9A6.3), provided by four-connected inner vertices (Table 9.10,

entries 7,8,11 and 12). A filled truncated structure is obtained from C810, namely t
(C810).3000 (9A7.2), of which inner cells are supported by tC60.180 cage.

Chapter 9 Atlas: C60 Related Structures

C60 dC60.32

12(35).20(36)

P^32@dC60.33
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C60 m(C60).90 mC60@C60.150
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dC60.32 mC60.90 P^32@dC60.33
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m(P32@dC60.33).122 C60@(12mP5;20mP6).330_5 C60@

(12mP5;20mP6;60C).390_5
d(C122).390
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CO.12 mC60.90 C122
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Rh12¼dmC.14 C122 m(C122).450
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mmC.24 C122 m(C122).450
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tO.24¼TO.24 l(C60).180 C122
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TT.12 dC60.32¼ st(D).32 P^32@dC60.33
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dC60.32 P32@dC60.33 stC60.92
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C84¼t(IP).84 C100¼t(P@st(A6)).100 C540(Ih)
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TT.12 P32@dC60.33 l(C60).180
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dC60.32 P32@dC60.33 P32@dC60@C60.93
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A5.10 mA6.24 C92¼C60@dC60.92
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d(C60).32 O@3O.15 m(C60).90
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CO@3CO.39 m(C92).360 C60@dC60.92
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TO@3TO.78 m(C92).360 C92¼C60@dC60.92
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TT@3TT.30 l(C60).180 C92¼C60@dC60.92
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TT.12 C60 dC60@C60.92
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dC60.32 P32@dC60.33 dC60@C60.92

310 9 C60 Related Clusters



d(C60).32 m(P32@dC60.33).122 m(C60@d(C60)).360
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C450 C1260 P32@dC60@C60.93
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C60 dC60.32 st(dC60).92
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C60 dC60.32 st(dC60).92
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mC60.90 dC60.32 st(dC60).92
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C180 ¼ l(C60).180 dC60.32 st(dC60).92
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st(ID).50 6(st(ID).50).210 5(st(ID).50).175

Chapter 9 Atlas: C60 Related Structures 317



C1650_2 C1650_3 C1650_5
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(12HC20;20HC24).330

tsel( p4(C60)).330

(H¼half)

s2(C60).420 C60P.61

P@tI.61
P60@C60.61
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C60 s2(C60).420 C810
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d(C750).630sp_2 d(C750).630sp_3 d(C750).630_5
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C60P
60.61_2 C60P

60.61_3 C60Y(60D).750
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d(C750).630_5 C3600_3 C3600/C5040_5
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C60Y(60C60;hh[2þ2]).3600_2 C60Y(60C60;hh[2þ2]).3600_5 C60Y(60C60;ph[2þ2]).3600_3
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t(C60).180 m(C20).30¼ID.30 C24
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dmD.32¼ Rh30.32 C750 C1350
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t(C750).2700_2 t(C750).2700_3 t(C20).60 ¼ TD
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l(C750).3150_2 l(C750).3150_3 C750_5
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C9900_2 C9900_3 t(C60).180
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C60 C24 C60@C330.390
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C20 C24 (12HC20;20HC24).330

tsel( p4(C60)).330
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C1500_2 C1500_3 C1350_5
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t(C810).3000_2 t(C810).3000_3 t(C60).180
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Chapter 10

Chiral Multi-tori

Chirality refers to the dichotomous diversity, as the mirror images of the two human

hands, impossible to superpose to each other by rotation-translation in the plane.

The mirror images of a chiral molecule are called enantiomers. The term chirality
comes from the Greek word for hand, χειρ (kheir); this term was introduced by

Lord Kelvin in 1894 (1904).

Chirality is one of the basic characteristics of biological structures, starting with

aminoacids and glucides, as main constituents of animal body. Chirality is not a

condition for biological activity; however, many biologically active molecules are

chiral, then optical active. Enzymes, which are chiral, may distinguish between the

two enantiomers of a chiral substrate. Chirality is a symmetry property. A chiral

molecule has no improper axis of rotation Sn (which includes planes of symmetry

and an inversion center) and is always dissymmetric but not asymmetric

(no symmetry elements except the identity).

Symmetry (from Greek συμμετρία symmetria “agreement in dimensions, due

proportion, arrangement”) commonly refers to harmony of proportions in real-

ization of a composition (Hargittai and Hargittai 2010). The simplest symmetry is

the mirror symmetry. In Mathematics, symmetry refers to some operations acting

on geometric or other regularities of a mathematical object that leave the object

invariant. While the classical, geometric symmetry is involved/reflected in several

molecular properties, such as dipole moments, IR vibrations, 13C-NMR signals etc.,

topological symmetry, defined in terms of connectivity, is addressed to constitutive
aspects of a molecule and is involved in its synthesis and/or its structure elucidation.

10.1 Design of Chiral Multi-tori

An embedding is a representation of a graph on a surface S such that no edge-

crossing occurs (Harary 1969). A polyhedral graph, embedded in an orientable

surface S obeys the Euler’s formula (Euler 1752–1753):

© Springer International Publishing AG 2018

M.V. Diudea, Multi-shell Polyhedral Clusters, Carbon Materials: Chemistry

and Physics 10, DOI 10.1007/978-3-319-64123-2_10

335



v� eþ f ¼ χ Sð Þ ¼ 2 1� gð Þ

where χ(S) is the Euler characteristic and g the genus (i.e., the number of

consisting simple tori). Positive/negative χ-values indicate positive/negative cur-

vature of a structure embedded in S. A surface is orientable, when it has two sides,

or it is non-orientable, when it has only one side, like the M€obius strip.
Curvature (Diudea and Nagy 2007) is the amount by which a geometric object

deviates from the planarity; it is usually measured as the Gaussian curvature K,Ð
S
KdS¼ 2πχ; a combinatorial curvature was also proposed (Klein and Liu 1994;

Babić et al. 2001; Higuchi 2001; Klein 2002).

Euler characteristic can be calculated as the alternating sum of figures of

dimension/rank k (Schulte 1985, 2014):

χ Sð Þ ¼ f 0 � f 1 þ f 2 � f 3 þ . . . ,

where f0 is a vertex, f1 is an edge, f2 is a face, f3 is a cell . . . fk being a facet of rank
k; a structure will have the rank k if there are substructures/facets up to the rank k�1

and obey relation (4); in case S ¼ sphere, alternates 2 and 0 for odd and even rank,

respectively.

Multi-tori are complex structures consisting of more than one torus, embedded

in negatively curved surfaces (Diudea and Nagy 2007; Mackay and Terrones 1991;

Lenosky et al. 1992; Terrones and Mackay 1997; Lijnen and Ceulemans 2005) they

are supposed to result by self-assembling of some repeat units/monomers, formed

e.g., by opening of cages/fullerenes and appear in natural zeolites (Meier and Olson

1992) or in spongy carbon (Benedek et al. 2003; Barborini et al. 2002).

Design of multi-tori may be achieved by operations on maps. A map is a

combinatorial representation of a (closed) surface, e.g., a polyhedral graph. Several

operations on maps are known and used for various purposes. The most used

operations are: dual d, medial m, truncation t, leapfrog l, snub s, etc.; applying
these operations preserves the symmetry of the parent polyhedron. More about such

operations the reader can find in Chap. 2.

A real building process of multi-tori herein studied may occur as a self-

assembling of monomers; in this case, the monomer is a snub cage, particularly

the snub of Platonic solids. Let’s follow such a way, starting from a polyhedron P.

The snub polyhedron s(P) is achieved by dualizing the p5(P) transform: s(P) ¼ d
( p5(P)); since p5-operation is prochiral, all the consecutive p5 transforms will be

chiral structures. Let now scale s(P) to k(s(P)) by an arbitrary k factor and realize a

“cage-in-cage” dimer, s(P)@k(s(P)), then add a new connection along the diagonal

of quadrilaterals appearing by dimerization on the borders of window faces fw of P,

each vertex thus getting the degree 7, that is specified in the name of actual dimer as

s(P)@k(s(P))7; since this diagonal may be drawn to the right (R) or to the left

(S) (the same is true for the operations p5R and p5S), so that the number of chiral

pair structures will further increase. If the p5-operation is explicitly written in the

name of dimer s(P)@k(s(P))7, the following isomers may result:
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(i) d( p5S)@k(d( p5S))7R; (ii) d( p5R)@k(d( p5R))7S; (iii) d( p5S)@k(d( p5S))7S;
(iv) d( p5R)@k(d( p5R))7R; (v) d( p5S)@k(d( p5R))7R; (vi) d( p5S)@k(d( p5R))7S

Among these isomers, the last two may be differentiated topologically, con-

trarily to the first four ones; the operations p5R/p5S may commute so that the order

is not important. A further dualization of a 7-connected dimer will provide a multi-

torus entirely covered by heptagonal faces. Such an all-7 face multi-torus can also

be done by identifying the windows of an “open” object made by the sequence:

o(s1(P)), P being a Platonic polyhedron, arranged as a “cell-in-cell” dimer (Diudea

and Petitjean 2008, 2016).

Snub dodecahedron is shown, together with the corresponding dimer (Fig. 10.1),

as chiral pairs. Observe the diagonals (to the left and to the right) in the central

pentagonal window.

Design and computations were performed by Nano Studio (Nagy and Diudea

2009) original software developed at TOPO GROUP Cluj. Structures will be

presented grouped according to the main polyhedron (Platonics and C60), with

additional comments and Atlas figures, numbered 10A n.
Structure elucidation of the snub dimers and multi-tori herein studied was done

by: (i) Figure count, (by Euler alternating sum); (ii) Face count (by Ring Signature

Index RSI) and (iii) Centrality count (see Chap. 4). The chiral index, as calculated

by Petitjean’s (2016) QCM software, is close to unity for most of these structures.

Fig. 10.1 Snub dodecahedron and its dimer (as chiral pairs)
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10.2 Dodecahedron Related Structures

Dualization of snub dodecahedron dimers leads to C280 (10A1) all-7 faces multi-

tori, as shown in Fig. 10.2 (chiral pairs). They belong to the symmetry group A5, of

order 60. A similar multi-torus may be designed by identifying the window faces of

the “open” object o(s1(D)).200 (Fig. 10A1.3b, left), arranged face-to-face, as in a

“cage-in-cage” dimer; to relax the strain, several rows of hexagons were added to

the incipient cones, so that an object of 1220 vertices (1830 edges, 470 hexagons

and 120 heptagons) was obtained; further it was transformed by leapfrog operation

to the beautiful object in Fig. 10.3 (right) (Diudea and Nagy 2007; Diudea and

Petitjean 2008, 2016).

Dualization may be imagined as a “complementary synthesis” in the “template”

of its dual pair, the parent being further “solved” to deliver the desired product.

Among several map operations herein described and used, truncation benefits of

a nice theoretical result (Diudea and Rosenfeld 2017) stating that: a necessary and

sufficient condition for a simple cubic graph G, without quadrilaterals, to be

isomorphic to the truncation t(H ) of a simple cubic graph H is possessing by G a

cyclic cover C of which all components are triangles (Fig. 10A1.3b, right).

Fig. 10.2 Snub dodecahedron based multi-tori; chiral pairs
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Multi-tori are graphs embedded in surfaces of high genera; Table 10.1 shows a

negative value for Euler characteristic: χ ¼ �20; g ¼ 11 for C280 (a structure of

Icosahedral symmetry), meaning the embedding surface has a negative curvature.

However, if one considers the multi-torus as being a union of two cells, as in C280C,

the result is: χ ¼ �22; g ¼ 12, according to the 12 connections of the embedding

surface (of each of these halves).

Recall that the snub dimer is the dual of the multi-torus herein studied: C120 ¼ d
(C280) (10A1.2); its 3-facets are detailed at the bottom of Table 10.1. It may be seen as

a “spongy” structure, d(C280)sp, of genus g ¼ 6, with the windows seen as hollows.

The genus and rank (or space dimension) of a structure are parameters of its

complexity, the balance of their importance being in the looking eye; the genus of

these multi-tori equals the number of windows/hollows less 1. Irrespective of the

tessellation (read: map operation transform), the embedding surface has the same

Euler characteristic, as can be seen in Table 10.2, in case of several relatives of C280

(10A1) multi-torus, made by using various map operations. These structures are

illustrated in the Atlas of this chapter.

Searching the atom classes by face count provides the “chemical vertex type” if

the rings around each atom (counted by RSI—Nagy and Diudea 2017)) are “strong

rings” (Blatov et al. 2010); for the majority of snub derivatives a single chemical

Fig. 10.3 An “open” cage with all-7 faces, derived from the dodecahedron, o(s1(D)).200 (left)

used as the core for a multi-torus (g ¼ 11), of which leapfrog transform l(C1220).3660 is shown in

the right part of this figure

Table 10.1 Figure count in snub dodecahedron relatives

Structure v e 3(2) 4(2) 5(2) 7(2) 2 3 χ g k

s(D) 60 150 80 0 12 0 92 0 2 0 3

C280 (10A1) 280 420 0 0 0 120 120 0 �20 11 3

C280C 280 420 0 0 0 120 120 2 �22 12 4

d(C280) (10A1.2) 120 420 280 90 24 0 394 94 0 0 4

d(C280)sp 120 420 280 90 0 0 370 80 �10 6 4

d(C280) (10A1.2) A5 P3 P3* M 3

(for 3) 12 20 60 2 94

P3* is a slightly modified P3
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vertex class was found (Table 10.3). However, by enlarging the counted rings to

“circuits” of various length, then different vertex classes are revealed. If the “ring

signatures” are collected in a layer matrix (Diudea 1994; Diudea and Ursu 2003),

the centrality index (calculated cf. Eq. 4.7) may recognize all the topologically

distinct vertices, even at the early level of hard rings (Table 10.3).

Remark that the dimer d(C280).120 (10A1.2), also those derived from the cube

and tetrahedron, have a single class of all central atoms; such self-centered graphs

have extensively been studied (Buckley 1979, 1989; Janakiraman and Ramanujan

1992; Negami and Xu 1986; Nazeer et al. 2016).

10.3 Cube Related Structures

Snub cube is shown, together with the corresponding dimer (Fig. 10.4) as chiral

pairs. Dualization of dimers leads to C112 all-7 faces multi-tori, as shown in

Fig. 10.5 (steric isomers). They belong to the symmetry group S4, of order 24.

Figure count in snub cube relatives is shown in Table 10.4 while for the

transformed C112 by map operations data are given in Table 10.5. Excepting

symmetry, there is no difference between the structures derived from the cube to

those derived from the dodecahedron.

Searching the atom classes, by face count, providing the “chemical vertex type”

if the rings counted are “strong rings” and by the centrality index, is shown for the

cube derivatives in Tables 10.6 and 10.7.

Here the face count was more detailed, specifying the maximum length ring

needed to correctly solve the topological vertex classes. In case of centrality index,

even the values changed with Rmax changing, the ordering with respect to the center

of the graph remained unchanged. The dimer d(C112).48 has a single class of all

central atoms.

Table 10.2 Figure count in C280 (10A1) relatives

Structure v e 3(2) 4(2) 6(2) 7/14*(2) 2 χ g k

C280 (10A1) 280 420 0 0 0 120 120 �20 11 3

t(C280) (10A1.3) 840 1260 280 0 0 120* 400 �20 11 3

s(C280) (10A1.4) 840 2100 1120 0 0 120 1240 �20 11 3

m(C280) (10A1.5) 420 840 280 0 0 120 400 �20 11 3

d(m(C280))(10A1.5.1) 400 840 0 420 0 0 420 �20 11 3

l(C280) (10A1.6) 840 1260 0 0 280 120 400 �20 11 3

p4(C280) (10A1.7) 820 1680 0 840 0 0 840 �20 11 3

d( p4(C280)) (10A1.7.1) 840 1680 280 420 0 120 820 �20 11 3

Face f¼10 when *
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10.4 Tetrahedron Related Structures

Snub tetrahedron is just the icosahedron, and thus non-chiral. The window faces are

the same as the triangles promoted by snub operation, thus making difficult the

choice. Nevertheless, the window faces proved to be disjoint and problemwas solved.

Table 10.3 Atom classes by face count (left) and centrality (right) for C280 relatives

Structure RSI Class {v} Deg Ring sign. C-sign. (class no.)

C280 (10A1) 3.000 1 280 3 7^3 –

1 20 3 7^3 0.050631

2 20 3 7^3 0.050584

3 60 3 7^3 0.050476

4 60 3 7^3 0.050476

5 60 3 7^3 0.050343

6 60 3 7^3 0.050154

s(D).60 2.125 1 60 5 3^4.5 0.077345

d(C280).120 (10A1.2) 5.917 1 120 7 3^7.4^5.5^6 0.053343

m(C280).420 (10A1.5) 2.000 1 420 4 3^2.7^2 –

1 60 4 3^2.7^2 0.049904

2 60 4 3^2.7^2 0.049858

3 30 4 3^2.7^2 0.049773

4 30 4 3^2.7^2 0.049736

5 60 4 3^2.7^2 0.049632

6 60 4 3^2.7^2 0.049512

7 60 4 3^2.7^2 0.049497

8 60 4 3^2.7^2 0.046636

d(m(C280)).400 2.100 1 120 7 4^7 –

(10A1.5.1) – 2 280 3 4^3 –

1 20 3 4^3 0.051589

2 20 3 4^3 0.051555

3 60 7 4^7 0.048170

4 60 7 4^7 0.048167

5 60 3 4^3 0.048117

6 60 3 4^3 0.048103

7 60 3 4^3 0.048052

8 60 3 4^3 0.048049

l(C280).840 (10A1.6) 1.462 1 840 3 6^2.7 14 � {60}

p4(C280).820 (10A1.7) 1.366 1 120 7 4^7 16: 2 � {20};

2 � {30}; 12 � {60}

2 420 4 4^4 –

3 280 3 4^3 –

d( p4(C280)).840

(10A1.7.1) ((C280)).400

2 1 840 4 4^2 14 � {60}

t(C280).840 (10A1.3) 1.824 1 840 3 3.14^2 14 � {60}
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The dimers (R and S) are shown in Fig. 10.6 (top) while their duals are shown in the

bottom of this figure. They belong to the symmetry group A4, of order 12.

Figure count in snub tetrahedron relatives is shown in Table 10.8 and follows the

same rules as in case of cube and dodecahedron.

10.5 C60 Related Structures

Departing from Platonic solids but keeping the icosahedral symmetry, let us draw

the snub C60; its dimerization leads to s(C60)@s(C60)7.360 (Fig. 10A2b); then it can

be dualized to the multitorus d(C360,7).840 (Fig. 10A2), with all 7-faces and having

32 window faces fw (12 10-faces and 20 12-faces, respectively) to the central hollow
(exactly the number of pentagonal and hexagonal faces of C60).

Figure and genus count for the C60-related structures are given in Tables 10.9 and

10.10. One can see that only the dual of C840 (namely the parent snub 7-dimer C360

(10A2.1)), in “spongy” state, shows χ and g normal values for C60-related clusters:

�30 and 16 (g¼ fw/2¼ 16), respectively. In case of C840 (10A2) and its relatives, the

normal values are: �60 and 31, respectively (g ¼ fw � 1), giving account for their

“dimer”-state. Indeed, if one considers a structure like o(s1(C60)).600 (Fig. 10A2b,

right), by identifying the 32 window faces with its copy, the multi-torus C840 (10A2)

Fig. 10.4 Snub cube and its dimer; chiral pairs
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Fig. 10.5 Dual of snub cube dimers

Table 10.4 Figure count in snub cube relatives

Structure v e 3(2) 4(2) 7(2) 2 3 χ g k

s(C) 24 60 32 6 0 38 0 2 0 3

C112 112 168 0 0 48 48 0 �8 5 3

C112C 112 168 0 0 48 48 2 �10 6 4

d(C112) 48 168 112 48 0 160 40 0 0 4

d(C112)sp 48 168 112 36 0 148 32 �4 3 4

d(C112) A4 P3 P3* M 3

(for 3) 6 8 24 2 40

Face f¼10 when *

Table 10.5 Figure count in C112 relatives (Symmetry group S4; order 24)

Structure v e 3(2) 4(2) 6(2) 7(2) 2 χ g k

C112 112 168 0 0 0 48 48 �8 5 3

p4(C112) 328 672 0 336 0 0 336 �8 5 3

d( p4(C112)) 336 672 112 168 0 48 328 �8 5 3

l(C112) 336 504 0 0 112 48 160 �8 5 3

s(C112) 336 840 448 0 0 48 496 �8 5 3
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is obtained; if the number of cells (3-faces) is 2 (i.e., dimer—see Table 10.9, entry

C840C), the result is χ ¼ �62 and accordingly g¼ 32, in agreement with an idea that

the genus counts the number of connections of a given surface (in this case, exactly

two surfaces close the connections to each other).

Counting the rings around vertices (Nagy and Diudea 2017) provides the

“chemical vertex type” classes (if the rings are the “strong” ones) or the

Table 10.6 Atom classes by face count and centrality count for C112 relatives

Structure Rmin Rmax

Signature

(centrality)

Classes

{elements} Deg RSI

Face count

C112(all) 7 7 7^3 1: {112} 3 3.000

C112(R;RS;SR;S) 7 14 – 6 3 2.655701

C112 ((CP5R@CP5S)

7R)

7 10 7^3.10^2

7^3.10^3

7^3.8.10^2

3: {48}

{16}

{48}

3 0.767395

C112 ((CP5R@CP5S)

7S)

7 8 7^3

7^3.8

7^3.8^2

3: {16}

{48}

{48}

3 0.771429

Centrality count

LM(C112)

(R;RS;SR;S)

7 7 (0.090031)

(0.089815)

(0.089686)

(0.089161)

(0.088863)

(0.088650)

6: {8}

{24}

{8}

{24}

{24}

{24}

3 –

C112 ((CP5R@CP5S)

7R)

7 7 (0.090984)

(0.090292)

(0.090177)

3: {48}

{16}

{48}

3 –

7 10 (0.087529)

(0.086770)

(0.086560)

3: {48}

{16}

{48}

3 –

C112 ((CP5R@CP5S)

7S)

7 7 (0.084265)

(0.084091)

(0.083930)

3: {16}

{48}

{48}

3 –

7 8 (0.082919)

(0.082463)

(0.082076)

3: {16}

{48}

{48}

3 –

Table 10.7 Symmetry of multi-tori C112

Structure Symmetry group Orbit size

d{(s(C)S@s(C)S)7R.48}.112 S4 6: 2{8};4{24}

d{(s(C)R@s(C)R)7S.48}.112 S4 6: 2{8};4{24}

d{(s(C)R@s(C)S)7R.48}.112 S4 6: 2{8};4{24}

d{(s(C)R@s(C)S)7S.48}.112 S4 6: 2{8};4{24}

C112 ((CP5R@CP5S)7R) C2 � S4 3: 1{16};2{48}

C112 ((CP5R@CP5S)7S) C2 � S4 3: 1{16};2{48}

344 10 Chiral Multi-tori



“topological vertex type” classes (if the rings are circuits long enough), equaling the

number of “centrality vertex type” classes (obtained at the early stage of strong

rings), as shown in Table 10.11. Structure C840 (10A2) is a special hyper-C60struc-

ture, as its 14 classes each have exactly 60 vertices/atoms, in agreement with the

symmetry group A5 of order 60. The “chemical” vertices form a single class:

1 � {840}, that could be important in an eventual synthesis. Recall that all the

vertex classes counted by C-index (Nagy and Diudea 2009) have been confirmed by

symmetry calculation using the adjacency matrix permutations.

Fig. 10.6 Snub tetrahedron and its chiral derivatives

Table 10.8 Figure count in snub tetrahedron relatives

Structure v e 3(2) 4(2) 7(2) 2 3 χ g k

s(T) 12 30 20 0 0 20 0 2 0 3

C56 56 84 0 0 24 24 0 �4 3 3

C56C 56 84 0 0 24 24 2 �6 4 4

d(C56) 24 84 64 18 0 82 22 0 0 4

d(C56)sp 24 84 56 18 0 74 16 �2 2 4

d(C56) A4 P3 P3* M 3

(for 3) 4 4 12 2 22
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In Diudea and Rosenfeld (2017) it was stated that: a necessary and sufficient

condition for a simple cubic graph G, to be isomorphic to the truncation t(H ) of a

simple cubic graph H is that G has a cyclic cover C of which all components are

triangles. Such a triangle disjoint covering is illustrated for the truncated structure,

t(C840).2520 (10A2.4b, right).

Structures derived from snub C60 are illustrated in the Atlas of this section.

Table 10.9 Figure count in snub C60 relatives

Structure v e 3(2) 4(2) 5(2) 6(2) 7(2) 2 3 χ g k

s(C60) 180 450 240 0 12 20 0 272 0 2 0 3

C840 (10A2) 840 1260 0 0 0 0 360 360 0 �60 31 3

C840C 840 1260 0 0 0 0 360 360 2 �62 32 4

d(C840) (10A2.1) 360 1260 840 270 24 40 0 1174 274 0 0 4

d(C840)sp 360 1260 840 270 0 0 0 1110 240 �30 16 4

d(C840) (10A2.1) A5 A6 P3 P3* M 3

(for 3) 12 20 60 180 2 274

Table 10.10 Figure count in C840 (10A2) relatives

Structure v e 3(2) 4(2) 6(2) 7/14*(2) 2 χ g k

C840 (10A2) 840 1260 0 0 0 360 360 �60 31 3

m(C840) (10A2.2) 1260 2520 840 0 0 360 1200 �60 31 3

d(m(C840)) (10A2.2.1) 1200 2520 0 1260 0 0 1260 �60 31 3

l(C840) (10A2.3) 2520 3780 0 0 840 360 1200 �60 31 3

t(C840) (10A2.4) 2520 3780 840 0 0 360* 1200 �60 31 3

Face f¼10 when *

Table 10.11 Topologycal symmetry by RSI and centrality C-index of C840 cluster and its

relatives

Structure Rmin Rmax

Signature (Cmin;

Cmax)

Classes

{elements} Deg RSI

1 C840 (10A2) 7 7 7^3 1 � {840} 3 3

7 16 � 14 � {60} 3 1.410419

LM(C840) 7 7 (0.031336)

(0.031245)

14 � {60} 3 �

7 12 (0.028563) 14 � {60} 3 �
� � (0.028473) � � �

2 l(C840).2520

(10A2.3)

6 7 6^2.7 1 � {2520} 3 1.46154

LM(l(C840).2520) 6 7 (0.020287)

(0.019819)

42 � {60} 3 –

3 t(C840).2520

(10A2.4)

3 14 3.14^2 1 � {2520} 3 1.823529

LM(t(C840).2520) 3 14 (0.016973)

(0.016659)

42 � {60} 3 �
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Chapter 10 Atlas: Chiral Multi-tori

Dodecahedron Related Structures

s(D).60 s(D)@s(D)7S.120 op(ca(D)).200
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s(D).60 Op(Ca(D)).200 C280,S
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op(ca(D)).200 C280,S t(C280).840_cyclic cover
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C280,R P5.1(C280,R).1240 s(C280R).840
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Op(Ca(D)).200 d(m(C280)).400 C280,S
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s(D).60_5 m(C280).420 C280,S
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s(D).60_5 op(ca(D)).200 C280,S
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s(D).60_5 Op(Ca(D)).200 d( p4(C280)820).840
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op(ca(D)).200 C280,S p4(C280).820

10.2 C60 related structures
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s(C60).180 s(C60)@s(C60)7R.360

A5; Classes 6: |6{60}|

op(ca(C60)).600
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s(C60).180 op(ca(C60)).600 C840,7R
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op(ca(C60)).600 d(m(C840)).1200_3 C840,7R_3
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op(ca(C60)).600_5 m(C840).1260_3 C840,7R_3
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s(C60).180 op(ca(C60)).600 C840,R_5
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op(ca(C60)).600 C840,R_5 t(C840).2520_cyclic cover

Chapter 10 Atlas: Chiral Multi-tori 361



References
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Chapter 11

Spongy Hypercubes

Hypercube Qn is an n-dimensional analogue of a square (n ¼ 2) or a cube (n ¼ 3),

also called an n-dimensional cube, or simply an n-cube; it is a regular graph of

degree n, according to Balinski (1961) theorem.

The hypercube is a special case of a hyper-rectangle (Coxeter 1973, 1974), a

generalization of a rectangle for n-dimensions; it can be obtained by the Cartesian

product of P2 graph or can be drawn as a H€asse diagram (Baker et al. 1971).

Hypercube is a regular polytope in the space of any number of dimensions

(Coxeter 1973). The n-cube {4, 3n�2} (by Schläfli symbols (Schläfli 1901) has as

its dual the n-orthoplex {3n�2, 4}. The number of k-cubes contained in an n-cube
Qn(k) comes from the coefficients of (2k þ 1)n

Qn kð Þ ¼ 2n�k n
k

� �
; k ¼ 0, . . . , n� 1 ð11:1Þ

Hypercubes have been considered in the computer architecture (Hillis 1982;

Szymanski 1989).

11.1 Simple Toroidal Hypercubes

In the idea of hypercube infinite tessellation (Coxeter 1973), or reminding the

abstract polytopes with toroidal faces (Coxeter 1982; Schulte 1985), we tried the

embedding of n-cube in the torus. A software program, named Torus, developed by

Topo Group Cluj, Romania (Diudea et al. 2003), enables the embedding of n-cube
as a double-shell toroidal structure; families of hypertori T( p,r), (with p being the

number of points on the small circle while r is the number of small circle copies

around the large hollow of the torus) can be generated. The polyhedral hypersurface

may be looked as locally curled back on each of the r cuboids Qn around the large

hollow.
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Figure 11.1 illustrates the 4-cube and the torus T((4,8)Q4).64, where Q4 means

the 4-cube unit while the last number counts the points/atoms of the whole

structure.

Enumeration of the k-faces T((4,r),Qn,k) in the hypertorus T((4,r),Qn) is made by

the formulas (11.2), derived from the relation for the n-cube (11.1), as exemplified

in Table 11.1.

f r ¼ r=2ð Þ=n; f k ¼ r=2ð Þ þ k � f r; k ¼ 0, 1, . . . , n� 1 ð11:2Þ
T 4; rð Þ;Qn; kð Þ ¼ Qn kð Þ � f k;
T 4; rð Þ;Qn; k þ 1ð Þð Þ ¼ r

The number of rings R around any point in the hypertorus is given by the formula

(11.3)

R T 4; rð ÞQnð Þð Þ ¼ 4 n�1ð Þ nþ2ð Þ=2 ð11:3Þ

It is known that the Petrie dual of the cube is a torus (see Lijnen and Ceulemans

2005; Schulte 2014); this can be seen in Table 11.1, where the hypertorus T((4,r)
Qn); r ¼ 8 has the same number of points as the hypercube Qn+2. The vertex degree

Table 11.1 Figure count in the hypertorus T((4,8),Qn) in comparison to the hypercube Qn

Struct.\k 0 1 2 3 4 5 6 7 fr Deg(v) χ
T((4,8),Q3) 32 64 40 8 0 0 0 0 4/3 4 0

T((4,8),Q4) 64 160 144 56 8 0 0 0 4/4 5 0

T((4,8),Q5) 128 384 448 256 72 8 0 0 4/6 6 0

T((4,8),Q6) 256 896 1280 960 400 88 8 0 4/6 7 0

T((4,8),Q7) 512 2048 3456 3200 1760 576 104 8 4/7 8 0

Q3 8 12 6 0 0 0 0 0 0 3 2

Q4 16 32 24 8 0 0 0 0 0 4 0

Q5 32 80 80 40 10 0 0 0 0 5 2

Q6 64 192 240 160 60 12 0 0 0 6 0

Q7 128 448 672 560 280 84 14 0 0 7 2

Fig. 11.1 Tesseract Q4.16 hypercube (left) and the toroidal hypercube T((4,8)Q4).64 (middle and
right)
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in the hypertorus T((4,r),Qn) equals n þ 1, n being the rank/dimension of the inside

hypercube. The toroidal hyperstructure is vertex transitive but its edges and faces

are each split in two equivalence classes.

It is a noticeable difference between the hypercube Qn and hypertorus T((4,r),
Qn): the alternating figure sum (i.e., the Euler characteristic χ—Euler 1753) in Qn

gives either zero or two (for n ¼ even and odd, respectively), cf. relation (3.8),

while it is zero, irrespective of n parity, for the hypertorus, because its genus is

unity.

11.2 Complex Toroidal Hypercubes

When the two ends of a tube are identified, it results in a closed tube or a torus. The

study is focused on hypertori T(4,r) and T(4,r,s) (Fig. 11.2), named according to

Diudea’s discretization procedure (Diudea 2002).

In a more complex hypertorus T((4,r,s),Qn) (Fig. 11.2, right), each unit T((4,r,1),
Qn) is a simple hypertorus T((4,r),Qn) while there are s-units around the central

hollow. The k-rank faces of a hypertorus T((4,r,s),Qn) are counted from the

previous rank faces of the simple hypertorus T((4,r),Qn), by formulas (11.4)

T 4; r; 1ð Þ;Qn; kð Þ ¼ T 4; rð Þ;Qn�1; kð Þ þ T 4; rð Þ;Qn�1; k � 1ð Þð Þ
T 4; r; sð Þ;Qn; kð Þ ¼ s� T 4; r; 1ð Þ;Qn; kð Þ; k ¼ 0, 1, . . . , n� 1; n > 3 ð11:4Þ

Formulas are confirmed by data listed in Table 11.2; they are valid for any

integer n > 3.The vertex degree in T((4,r,s),Qn) is (n þ 2); this torus is vertex

transitive but its edges and faces are each split in three equivalence classes.

Table 11.2 Figure count in the hypertorus T((4,8,16),Q7).4096

Structure\ k 0 1 2 3 4 5 6 7 χ k

T((4,8),Q6) 256 896 1280 960 400 88 8 0 0 7

0 256 896 1280 960 400 88 8 – –

T((4,8,1),Q7) 256 1152 2176 2240 1360 488 96 8 – –

T((4,8,16),Q7) 4096 18,432 34,816 35,840 21,760 7808 1536 128 0 8

Fig. 11.2 A simple double-wall torus T((4,8),Q4).64, of a square section (left) and T((4,9,12),

Q3).216, with an octagonal section and 16 units T((4,9,1),Q3).36 (right)
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The figure sum (i.e., the Euler characteristic χ) in the hypertorus T((4,r,s),Qn) is

again only zero (see Table 11.2), irrespective of n parity, as given by the

Euler formula (3.1) for an object of the genus g ¼ 1.

11.3 Tubular Hypercubes

Hypercube can be embedded in a tube, as shown in Fig. 11.3.

In a simple tubular hypercube TU((4,r),Qn) (Fig. 11.3, left), the k-rank faces are

counted from the hypercube Qn(k) faces by formulas (11.5) (see Table 11.3).

f r ¼ r=2� 1ð Þ=n f k ¼ r=2ð Þ þ k � f r k ¼ 0, 1, . . . , n� 1

TU 4; rð Þ;Qn; kð Þ ¼ Qn kð Þ � f k TU 4; rð Þ;Qn; k þ 1ð Þð Þ ¼ r ð11:5Þ

One can see the alternation of figure count χ: zero and two (for n¼ even and odd,

respectively), cf. relation (3.8). It means that the simple hypertube TU((4,r),Qn) is

like the sphere (i.e., both have the genus g ¼ 0).

In a more complex hypertube (Fig. 11.3, right), each unit in the tube TU((4,r,s),
Qn) is a simple hypertorus T((4,r),Qn) (Fig. 11.2, left) while there are s-units along
the tube.

Fig. 11.3 A simple hypertube TU(4,5),Q4).40 (left) and a complex hypertube TU((4,8,5),Q3).80

(right)

Table 11.3 Figure count in tubular hypercubes TU((4,r),Qn)

Structure\ k 0 1 2 3 4 5 6 χ k

TU((4,5),Q5).80 80 224 248 136 37 5 – 0 6

Q5 32 80 80 40 10 0 – 2 5

fk 2.5 2.8 3.1 3.4 3.7 4 – – –

Q5 � fk &r 80 224 248 136 37 5 – 0 6

TU((4,5),Q6).160 160 528 720 520 210 45 5 2 7

Q6 64 192 240 160 60 12 – 0 6

fk 2.5 2.75 3 3.25 3.5 3.75 4 – –

Q6 � fk &r 160 528 720 520 210 45 5 2 7

366 11 Spongy Hypercubes



The k-faces of a hypertube TU((4,r,s),Qn) are counted from the previous rank

faces of the simple hypertorus T((4,r),Qn), by formulas (11.6) (Parvan-Moldovan

and Diudea 2015), as exemplified in Table 11.4.

TU 4; r; 1ð Þ;Qn; kð Þ� ¼ T 4; rð Þ;Qn-1; kð Þ þ T 4; rð Þ;Qn-1; k � 1ð Þð Þ
TU 4; r; sð Þ;Qn; kð Þ ¼ s� TU 4; r; 1ð Þ;Qn; kð Þ þ T 4; rð Þ;Qn-1; kð Þ ð11:6Þ

Formulas (11.6) work for any integer n > 3.

11.4 Spongy Hypercubes

It is well-known that the Cartesian product of n edges provides the hypercube:

(P2)
□n¼Qn. Next, the Cartesian product of two hypercubes is another hypercube:

Qi□Qj¼Qi+ j.

Let now take the graph G(d,v) of a d-connected polyhedron on v-vertices and
make n-times the Cartesian product with an edge; the operation results in a “spongy

hypercube” G(d, v,Qnþ 1)¼G(d, v)□nP2.On each edge of the original polyhedral

graph, a local hypercube Qn will evolve; these hypercubes are incident in a

hypervertex, according to the original degree, d. It means that, in a spongy hyper-

cube, the original 2-faces will not be counted. Figure 11.4 illustrates such a spongy

hypercube, built on the fullerene C60 (Ih) (Pirvan-Moldovan and Diudea 2016)

Conjecture 11.1 The k-faces of a spongy hypercube G(d, v,Qn), built on a
3-polytope with vertices of degree d, are combinatorially counted from the previous
rank faces; their alternating summation accounts for the genus of the embedded
surface

G d;v;Qn;kð Þ¼ v=nð Þ d �n� d�1ð Þ n�kð Þ½ ��2 n�k�1ð Þ � n
k

� �
;n>1;k¼0,1, ...n ð11:7Þ

Xn
k¼0

�1ð Þkf k ¼ χ Mð Þ ¼ 2 1� gð Þ; n > 1; k ¼ 0, 1, . . . n; g ¼ f 2 Gð Þ=2 ð11:8Þ

Table 11.4 Figure count in the hypertube TU((4,9,7),Q5).504

Structure\ k 0 1 2 3 4 5 χ k

TU((4,9,7),Q5).504 504 1692 2214 1413 441 54 0 6

T((4,9),Q4).72 72 180 162 63 9 – – 5

– – 72 180 162 63 9 – –

TU((4,9,1),Q5).72 72 252 342 225 72 9 – 6

TU((4,9,1),Q5) � 6 432 1512 2052 1350 432 54 – –

þ T((4,9),Q4).72 72 180 162 63 9 0 – –

Sum 504 1692 2214 1413 441 54 0 6
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Formula (11.7) represents the “embedding” of the hypercube on any polyhedron

of vertex degree d (see the factor in the front of the almost classical hypercube

counting), that transforms that cage in a hyper-multi-torus (Pirvan-Moldovan and

Diudea 2016). Formula (11.8) expresses the “spongy” character of these structures,

by the genus g (Harary 1969) of the hypersurface. Genus means the number of

connections of a surface and it equals the half sum of f2 faces of the embedded

polyhedron. Note that (11.8) ignores the (hyper) prisms evolved on each f2 faces of
the original cage. Since f2 faces are not seen, the rank of spongy structures is

counted from the rank of Qn plus two: k ¼ n þ 2. In this respect, the case of full-

hypercube is compared with the case of spongy-one (Table 11.5).

As can be seen, “spongy” hypercubes follows exact combinatorial rules. For-

mulas (11.7) and (11.8) are confirmed by the data in Tables 11.5, 11.6, 11.7, 11.8,

11.9, 11.10 and 11.11.

Fig. 11.4 Spongy C60(Q4).480 (top), its hyperfaces (bottom, left and middle) and a hyperedge

(bottom, right)
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Table 11.5 Figure count for

spongy cubic C8(Qn)

hypercube

C8(Qn)\ k 0 1 2 3 4 5 χ

(Q1)3 8 12 0 0 0 0 �4

(Q2)4 16 32 12 0 0 0 �4

(Q3)5 32 80 56 12 0 0 �4

(Q4)6 64 192 192 80 12 0 �4

(Q5)7 128 448 576 352 104 12 �4

Q3 8 12 6 0 0 0 2

Q4 16 32 24 8 0 0 0

Q5 32 80 80 40 10 0 2

Q6 64 192 240 160 60 12 0

Q7 128 448 672 560 280 84 2

Qn(C8(Qn))

3 0 0 6 0 0 0

4 0 0 12 8 0 0

5 0 0 24 28 10 0

6 0 0 48 80 48 12

7 0 0 96 208 176 72

Table 11.6 Figure count for

spongy dodecahedral C20(Qn)

hypercube

C20(Qn)\ k 0 1 2 3 4 5 χ

(Q1)3 20 30 0 0 0 0 �10

(Q2)4 40 80 30 0 0 0 �10

(Q3)5 80 200 140 30 0 0 �10

(Q4)6 160 480 480 200 30 0 �10

(Q5)7 320 1120 1440 880 260 30 �10

Table 11.7 Figure count for

spongy tetrahedral C4(Qn)

hypercube

C4(Qn)\ k 0 1 2 3 4 5 χ

(Q1)3 4 6 0 0 0 0 �2

(Q2)4 8 16 6 0 0 0 �2

(Q3)5 16 40 28 6 0 0 �2

(Q4)6 32 96 96 40 6 0 �2

(Q5)7 64 224 288 176 52 6 �2

Table 11.8 Figure count for

spongy icosahedral C12(Qn)

hypercube

C12(Qn)\ k 0 1 2 3 4 5 χ

(Q1)3 12 30 0 0 0 0 �18

(Q2)4 24 72 30 0 0 0 �18

(Q3)5 48 168 132 30 0 0 �18

(Q4)6 96 384 432 192 30 0 �18

(Q5)7 192 864 1248 816 252 30 �18

11.4 Spongy Hypercubes 369



11.5 Truncation of Hypercube

Let now focus attention on the hypercube Qn; the truncation replaces any parent

vertex in Qn by a simplex Sn�1 (Coxeter 1973, 1974) and these all trigonal sub-

structures are disjoint while their union will cover all the vertices in the truncated

transform t(Qn). Squares 4(2) are changed by octagonal 8(2) faces while cubes are

changed by truncated cubes (Figs. 11.5 and 11.6).

The number of these simplices equals the number of vertices inQn: |V(Qn)|¼ 2^n;
the number of vertices in each symplex equals n (see Table 11.12). In the above

structures, n denotes the dimension or better the rank (McMullen and Schulte

2002), since we refer here to shapes rather than to geometric polytopes.

Figure count in the hypercube and its truncated transforms is detailed in

Table 11.12. The number of k-facets t(Qk) is counted by adding to Qk (that equals

the number of substructures with 8(2) faces) the number of facets of the

corresponding simplex, as (Pirvan-Moldovan and Diudea 2016).

Qk
n ¼ 2n�k n

k

� �
; Sk

n ¼ nþ1
kþ1

� �
; t Qk

n

� � ¼ Qk
n þ Sk

n�1 ð11:9Þ

Table 11.9 Figure count for

spongy octahedral C6(Qn)

hypercube

C6(Qn)\ k 0 1 2 3 4 5 χ

(Q1)3 6 12 0 0 0 0 �6

(Q2)4 12 30 12 0 0 0 �6

(Q3)5 24 72 54 12 0 0 �6

(Q4)6 48 168 180 78 12 0 �6

(Q5)7 96 384 528 336 102 12 �6

Table 11.10 Figure count for

spongy C60(Qn) hypercube
C60(Qn)\ k 0 1 2 3 4 5 χ

(Q1)3 60 90 0 0 0 0 �30

(Q2)4 120 240 90 0 0 0 �30

(Q3)5 240 600 420 90 0 0 �30

(Q4)6 480 1440 1440 600 90 0 �30

(Q5)7 960 3360 4320 2640 780 90 �30

Table 11.11 Contribution of fk to fk+i figures in C60(Qn) hypercube

n v Formula i 0 1 2 3

2 120 (k � 1)(3k � 4)/2 1 5 12 22

120 600 1440 2640

3 240 (k � 1)(k � 2)(3k � 6)/6 1 6 18 40

240 1440 4320 9600

4 480 (k � 1)(k � 2)(k � 3)(3k � 8)/24 1 7 25 65

480 3360 12,000 31,200

5 960 (k � 1)(k � 2)(k � 3)(k � 4)(3k � 10)/120 1 8 33 98

960 7680 31,680 94,080
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Fig. 11.5 Truncation of the hypercube Qn

Fig. 11.6 Truncation of hypercube Qn: simplices Sn�1 substructures

Table 11.12 Figure count in truncated hypercube Qn

Qn

n v e – – 4(2) 3 4 5 6 χ
3 8 12 – – 6 0 0 0 0 2

4 16 32 – – 24 8 0 0 0 0

5 32 80 – – 80 40 10 0 0 2

6 64 192 – – 240 160 60 12 0 0

7 128 448 – – 672 560 280 84 14 2

t(Qn) n � v(Qn) n � e(Qn)

n v e 3(2) 8(2) 2 3 4 5 6 χ
3 24 36 8 6 14 – – – – 2

4 64 128 64 24 88 24 – – – 0

5 160 400 320 80 400 200 42 – – 2

6 384 1152 1280 240 1520 1120 444 76 – 0

7 896 3136 4480 672 5152 5040 2968 980 142 2
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11.6 Counting Polynomials in Hypercubes

11.6.1 Omega Polynomial

A counting polynomial P(x)¼∑ap(a) � xa is a representation of a graph G(V,E),
with the exponent a showing the extent of partitions p(G), [p(G)¼P(G) of a graph

property P(G) while the coefficient p(a) is related to the number of partitions of

extent a.
Let G be a connected graph, with V(G) and E(G) being the vertex set and edge

set, respectively. Two edges e ¼ (u, v) and f ¼ (x, y) of G are called co-distant
(briefly: e co f) if they obey the relation (John et al. 2007; Diudea and Klavžar 2010)

d v; xð Þ ¼ d v; yð Þ þ 1 ¼ d u; xð Þ þ 1 ¼ d u; yð Þ ð11:10Þ

where d is the shortest-path distance function. The relation co is reflexive (e co e)
and symmetric (e co f ) for any edge e of G but is not necessarily transitive. A graph

is called a co-graph if the relation co is also transitive and thus co is an equivalence
relation.

If C(e)≔ {f2E(G); f co e} is the set of edges in G, co-distant to e2E(G), the

set C(e) is provided by an orthogonal edge-cutting procedure (Gutman and Klavžar
1995; Klavžar 2008a; Diudea 2010b): take a straight line segment, orthogonal to the

edge e, and intersect it and all other edges (of a polygonal plane graph) parallel to e.
The set of these intersections is called an orthogonal cut ofG, with respect to e. If G
is a co-graph then its orthogonal cuts C1 ,C2 , . . . ,Ck form a partition inG: E(G)¼
C1[C2[ . . . [Ck , Ci\Cj¼ ∅ , i 6¼ j.

The relation co is related to the ~ (Djoković 1973) and Θ (Winkler 1984)

relations (Klavžar 2008b).
Two edges e and f of a plane graph G are in relation opposite, e op f, if they are

opposite edges of an inner face of G. Then e co f holds by the assumption that faces

are isometric. The relation co is defined in the whole graph while op is defined only
in faces/rings. Relation op will partition the edges set of G into opposite edge strips
ops, as follows. (i) Any two subsequent edges of an ops are in op relation; (ii) Any

three subsequent edges of such a strip belong to adjacent faces; (iii) In a plane

graph, the inner dual of an ops is a path (however, in 3D networks, the ring/face

interchanging will provide ops which are no more paths); (iv) The ops is taken as

maximum possible, irrespective of the starting edge. The choice about the maxi-

mum size of face/ring, and the face/ring mode counting, will decide the length of

the strip. Note that ops are qoc (quasi orthogonal cuts), meaning the transitivity

relation is, in general, not obeyed (Diudea and Klavžar 2010).
Omega polynomial Ω(x) (Diudea 2006; Diudea et al. 2008, Diudea 2010a) is

defined on the ground of opposite edge strips ops S1 , S2 , . . . , Sk in the graph.

Denoting by m the number of ops of cardinality/length s ¼ |S|, one can write
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Ω xð Þ ¼
X

s
m � xs ð11:11Þ

The first derivative (in x ¼ 1) is used as a graph invariant or a topological index

Ω0 1ð Þ ¼
X

s
m � s ¼ E Gð Þj j ð11:12Þ

An index, called Cluj-Ilmenau CI(G) (John et al. 2007), was defined on Ω(x)

CI Gð Þ ¼ Ω0 1ð Þ½ �2 � Ω0 1ð Þ þ Ω
00
1ð Þ

h in o
ð11:13Þ

In tree graphs, the Omega polynomial counts the non-opposite edges, all being

included in the term of exponent s ¼ 1.

11.6.1.1 Omega Polynomial in Hypercubes

Omega polynomial was thought to describe the covering of polyhedral nano-

structures or the tiling of crystal-like lattices, as a complementary description of

the crystallographic one.

In hypercubes Qn Omega polynomial is counted by formulas given in

Table 11.13, which are exemplified in Table 11.14.

11.6.1.2 Omega Polynomial in Tubular Hypercubes

In tubular (open-ended or closed/toroidal) hypercubes, Omega polynomial accounts

for the structural parameters, r and s; formulas and examples are given in

Tables 11.15, 11.16, 11.17, 11.18, 11.19, 11.20, 11.21 and 11.22.

Table 11.14 Omega polynomial in hypercubes Qn; examples

Vertices Edges C(n) Deg(v) Omega polynomial CI

16 32 4 4 4x8 768

32 80 5 5 5x16 5120

64 192 6 6 6x32 30,720

Table 11.13 Formulas for

Omega polynomial in

hypercubes Qn

1 Ω Qn; xð Þ ¼ n � x2n�1

2 Ω
0
(1)¼ e(Qn)¼ |E(Qn)|¼ n � 2n� 1

3 Ω
00
(1)¼ n � 2n� 1 � (2((n� 1)� 1)

4 CI(Qn)¼ n(n� 1) � 4n� 1
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Table 11.15 Omega

polynomial in simple

hypertori T((4,r),Qn)

1 Ω T 4; rð Þ;Qnð Þ; xð Þ ¼ r � x 2n�1ð Þ þ n� 1ð Þ � x r�2n�2ð Þ
2 Ω

0
(1)¼ e(T((4, r),Qn))¼ r(nþ 1) � 2n� 2

3 v(T((4, r),Qn))¼ r � 2n� 1

4 Ω
00
(1)¼ (�)r � 2n� 4(4n+ r � 2n� 2nþ 2� r � n � 2nþ 4)

5 CI(T((4, r),Qn))¼ r � 4n� 2(r � n2 + r � nþ 2r� 4)

Table 11.16 Omega polynomial in simple hypertori T((4,r),Qn); examples

Vertices Edges n Deg(v) Omega polynomial CI

T(4,8)

32 64 3 4 8x4 þ 2x16 3456

64 160 4 5 8x8 þ 3x32 22,016

128 384 5 6 8x16 þ 4x64 129,024

T(4,9)

288 1008 6 7 9x32 þ 5x144 903,168

576 2304 7 8 9x64 þ 6x288 4,773,888

1152 5184 8 9 9x128 þ 7x576 24,403,968

Table 11.17 Omega polynomial in complex hypertori T((4,r,s),Qn)

1 Ω T 4; r; sð Þ;Qnð Þ; xð Þ ¼ s � xr�2n�2 þ r � xs�2n�2 þ n� 2ð Þ � xrs�2n�3

2 Ω
0
(1)¼ e(T((4, r, s),Qn))¼ rs(nþ 2) � 2n� 3

3 v(T((4, r, s),Qn))¼ rs � 2n� 2

4 Ω
00
(1)¼ (�)2n� 6rs(8n� 2nþ 2r� 2nþ 2sþ 2nþ 1rs� 2nnrsþ 16)

5 CI(T((4, r, s)Qn))¼ 22(n� 3)rs(rsn2þ 3rsn� 4r� 4sþ 6rs)

Table 11.18 Omega polynomial in complex hypertori T((4,r,s),Qn); examples

Vertices Edges n Deg(v) Omega polynomial CI

T(4,5,15)

150 375 3 5 15x10 þ 5x30 þ 1x75 129,000

300 900 4 6 15x20 þ 5x60 þ 2x150 741,000

600 2100 5 7 15x40 þ 5x120 þ 3x300 4,044,000

T(4,8,8)

128 320 3 5 16x16 þ 1x64 94,208

256 768 4 6 16x32 þ 2x128 540,672

512 1792 5 7 16x64 þ 3x256 2,949,120
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11.6.1.3 Omega Polynomial in Spongy Hypercubes

In spongy hypercubes G(v,e,Qn), Omega polynomial is easily counted by a single

general formula (Table 11.23), which is next exemplified in Tables 11.24, 11.25,

11.26, 11.27, 11.28 and 11.29.

In these formulas, v and e refers to the number of vertices and edges, respec-

tively, of the parent polyhedron G(v,e) while n is the actual rank of the local

hypercube Qn (see Sect. 11.4). The opposite, topologically parallel edges are

Table 11.19 Omega polynomial in simple hypertubes TU((4,r),Qn)

1 Ω TU 4; rð Þ;Qnð Þ; xð Þ ¼ r � 1ð Þ � x4�2n�3 þ n� 1ð Þ � x2r�2n�3

2 Ω
0
(1)¼ e(TU((4, r),Qn))¼ 2n� 3 � (2rþ 2rn� 4)

3 v(TU((4, r),Qn))¼ 4r � 2n� 3

4 Ω
00
(1)¼ 2n� 4(4r� 4 � 2n � rþ 4 � 2nþ 2n � r2þ 4nr� 2n � nr2� 8)

5 CI(TU((4, r),Qn))¼ 4n� 2(n2r2 + nr2� 4nrþ 2r2� 8rþ 8)

Table 11.20 Omega

polynomial in simple

hypertubes TU((4,r),Qn);

examples

Structure v e n Omega polynomial CI

TU(4,5) 20 36 3 4x4 þ 2x10 1032

40 92 4 4x8 þ 3x20 7008

80 224 5 4x16 þ 4x40 42,752

TU(4,6) 24 44 3 5x4 þ 2x12 1568

48 112 4 5x8 þ 3x24 10,496

96 272 5 5x16 þ 4x48 63,488

Table 11.21 Omega polynomial in complex hypertubes TU((4,r,s),Qn)

1 Ω TU 4; r; sð Þ;Qnð Þ; xð Þ ¼ r � x2s�2n�3 þ s� 1ð Þ � x2r�2n�3 þ n� 2ð Þ � xrs�2n�3

2 Ω
0
(1)¼ e(TU((4, r, s),Qn))¼ 2n� 3 � (2rs� 2r+ nrs)

3 v(TU((4, r, s),Qn))¼ 2rs � 2n� 3

4 Ω
00
(1)¼ 2n� 6 � r � (16sþ 4 � 2n � r� 4 � 2n � s2þ 8 � n � sþ 2 � 2n � r � s2� 4 � 2n � r � s� 2n � n � r �

s2� 16)

5 CI(TU((4, r, s),Qn))¼ 4n� 3 � r � (8rþ 6r � s2� 4s2� 12r � s + n2 � r � s2� 4n � r � sþ 3n � r � s2)

Table 11.22 Omega polynomial in complex hypertubes TU((4,r,s),Qn); examples

Structure Vertices Edges n Omega polynomial r s CI

TU(5,5) 50 115 3 5x10 þ 4x10 þ 1x25 5 5 11,700

100 280 4 5x20 þ 4x20 þ 2x50 5 5 69,800

200 660 5 5x40 þ 4x40 þ 3x100 5 5 391,200

TU(9,7) 126 297 3 9x14 þ 6x18 þ 1x63 9 7 80,532

252 720 4 9x28 þ 6x36 þ 2x126 9 7 471,816

504 1692 5 9x56 þ 6x72 þ 3x252 9 7 2,613,024
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Table 11.23 Omega

polynomial in spongy

hypercubes G(v,e,Qn)

Formulas

1 Ω e; v; nð Þ ¼ ex2
n�1 þ n� 1ð Þxv�2n�2

2 f 0(1)¼ e2n� 1þ (n� 1)v2n� 2¼ (2n/4)(2e� v + nv)

3 f 00(1)¼ (2n/16)(4v� 8e� 2n � v2� 4nvþ 4 � 2neþ 2n � nv2)
4 CI e; v; nð Þ ¼ 4n n2v2

16
� 3nv2

16
þ env

4
þ v2

8
� ev

4
� e

4
þ e2

4

� �

Table 11.24 Omega

polynomial in spongy cubic

hypercube C8(Qn); examples

n v e Omega polynomial CI

1 8 12 – –

2 16 32 12x2 þ 1x8 912

3 32 80 12x4 þ 2x16 5696

4 64 192 12x8 þ 3x32 33,024

5 128 448 12x16 þ 4x64 181,248

6 256 1024 12x32 þ 5x128 954,368

Table 11.25 Omega

polynomial in spongy

dodecahedral C20(Qn)

hypercube; examples

n v e Omega polynomial CI

1 20 30 – –

2 40 80 30x2 þ 1x20 5880

3 80 200 30x4 þ 2x40 36,320

4 160 480 30x8 þ 3x80 209,280

5 320 1120 30x16 þ 4x160 1,144,320

6 640 2560 30x32 þ 5x320 6,010,880

Table 11.26 Omega

polynomial in spongy

tetrahedral C4(Qn) hypercube;

examples

n v e Omega polynomial CI

1 4 6 – –

2 8 16 6x2 þ 1x4 216

3 16 40 6x4 þ 2x8 1376

4 32 96 6x8 þ 3x16 8064

5 64 224 6x16 þ 4x32 44,544

6 128 512 6x32 þ 5x64 235,520

Table 11.27 Omega

polynomial in spongy

icosahedral C12(Qn)

hypercube; examples

n v e Omega polynomial CI

1 12 30 – –

2 24 72 30x2 þ 1x12 4920

3 48 168 30x4 þ 2x24 26,592

4 96 384 30x8 þ 3x48 138,624

5 192 864 30x16 þ 4x96 701,952

6 384 1920 30x32 þ 5x192 3,471,360
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counted in 2-faces R4 (i.e. squares). Computations have been done by our

original software Nano Studio (Nagy and Diudea 2009)

11.6.2 Cluj Polynomials

In bipartite graphs, the coefficients of CJ polynomial (Diudea 2009) can be calcu-

lated by an orthogonal edge-cut procedure (Diudea 2010a, b). In this respect, a more

theoretical background is needed.

A graph G is a partial cube if it is embeddable in the hypercube Qn. For any edge

e ¼ (u,v) of a connected graph G let nuv denote the set of vertices lying closer to

u than to v: nuv¼ {w2V(G)| d(w, u)< d(w, v)}. It follows that nuv¼ {w2V(G)| d
(w, v)¼ d(w, u)þ 1}. The sets nuv and nvu of these vertices are called semicubes of
G. A graph G is bipartite if and only if, for any edge of G, the opposite semicubes

define a partition of G: nuv + nvu¼ v¼ |V(G)| (Diudea and Klavžar 2010). These
semicubes are just the vertex proximities of (the endpoints of) edge e¼ (u,v), which
CJe polynomial counts.

In partial cubes, the semicubes can be estimated by an orthogonaledge-cutting

procedure. Function of the mathematic operation, the Cluj polynomials can be

written with these semicubes as (Diudea 1997, 2009, 2010a, b)

Cluj-Sum, CJS (obtained by summation)

CJS xð Þ ¼
X

e
xvk þ xv�vkð Þ ð11:14Þ

where vk is the number of vertices lying to the left hand with respect to the

orthogonal cut ck. The first derivative (in x ¼ 1) of Cluj polynomial CJS(x) equals

Table 11.28 Omega

polynomial in spongy

octahedral C6(Qn) hypercube;

examples

n v e Omega polynomial CI

1 6 12

2 12 30 12x2 þ 1x6 816

3 24 72 12x4 þ 2x12 4704

4 48 168 12x8 þ 3x24 25,728

5 96 384 12x16 þ 4x48 135,168

6 192 864 12x32 þ 5x96 688,128

Table 11.29 Omega

polynomial in spongy C60(Qn)

hypercube; examples

n v e Omega polynomial CI

1 60 90 – –

2 120 240 90x2 þ 1x60 53,640

3 240 600 90x4 þ 2x120 329,760

4 480 1440 90x8 þ 3x240 1,895,040

5 960 3360 90x16 þ 4x480 10,344,960

6 1920 7680 90x32 þ 5x960 54,282,240
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the sum of all entries in UCJe matrix, or the column-sum of the shell matrix ShUCJe
or (in bipartite graphs) the product |V(G)| � |E(G)| (see Sect. 1.2.10.2).

Cluj-Product, CJP (obtained by pairwise product). It was also named Szeged
polynomial SZv (Khalifeh et al. 2008; Ashrafi et al. 2008; Mansour and Schork

2009)

CJP xð Þ ¼ SZv xð Þ ¼
X

e
xvk v�vkð Þ ð11:15Þ

However, CJP(x) can be derived from CJS only in bipartite graphs and relation

with SZv (Gutman 1994) is true only there.

11.6.2.1 Cluj Polynomials in Hypercubes

In hypercubes, the formulas for calculating Cluj polynomials and derived topolog-

ical indices (as the first derivative, in x ¼ 1) are given in Table 11.30 while exam-

ples are provided in Table 11.31.

11.6.2.2 Cluj Polynomials in Toroidal Hypercubes

In toroidal hypercubes, the formulas (and examples) for calculating Cluj poly-

nomials and derived topological indices are given in Tables 11.32 and 11.33;

depending of the structural parameters r and s, several cases of calculation have

been considered.

Table 11.31 Cluj

polynomials in hypercubes

Qn; examples

n CJS(x) CJS0(1) CJP(x) CJP0(1)
3 12x4 þ 12x4 96 12x(4�4) 192

4 32x8 þ 32x8 512 32x(8�8) 2048

5 80x16 þ 80x16 2560 80x(16�16) 20,480

6 192x32 þ 192x32 12,288 192x(32�32) 196,608

Table 11.30 Cluj polynomials in hypercubes Qn

Formulas

v(C(n))¼ jV(C(n))j ¼ 2n; e(C(n))¼ jE(C(n))j ¼ n � 2n� 1

CJS C nð Þ; xð Þ ¼ n v=2ð Þxv=2 þ n v=2ð Þxv=2 ¼ n 2n�1
� � � x2n�1 þ n 2n�1

� � � x2n�1 ¼ n � 2n � x2n�1

CJS
0
(1)¼ n � 22n� 1

CJS
00
(1)¼ n � 22(n� 1) � (2n� 2)

CJP C nð Þ; xð Þ ¼ n v=2ð Þx v=2ð Þ v=2ð Þ ¼ n � 2n�1 � x22 n�1ð Þ

CJP
0
(1)¼ n � 2n� 1 � 22(n� 1)¼ SZv
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11.6.2.3 Cluj Polynomials in SpongyHypercubes

Counting of Cluj polynomials in spongy hypercubes differs from bipartite to

non-bipartite graphs, as shown in Table 11.34. To simplify formulas, an additional

parameter m was added; it was derived empirically, as a characteristic of pattern

polyhedra in Cluj polynomial (see Table 11.35). Examples of Cluj polynomial

calculation in spongy hypercubes are given in Tables 11.36, 11.37, 11.38, 11.39,

11.40, 11.41 and 11.42.

Table 11.32 Cluj polynomials in simple toroidal T((4,r),Qn) hypercubes

T((4,r),Qn) Formulas

v(T((4, r),Qn))¼ 2r � 2n� 2

e(T((4, r),Qn))¼ v(nþ 1)/2¼ r(nþ 1) � 2n� 2

Case: r¼ even CJS(T((4, r),Qn), x)¼ 2e � xv/2
CJS

0
(T((4, r),Qn), 1)¼ 2e � (v/2)¼ e � v

CJP T 4; rð Þ;Qnð Þ; xð Þ ¼ e � x v=2ð Þ2

CJP
0
(T((4, r),Qn), 1)¼ e � (v/2)2

r ¼ 8; n: v e CJS(x) CJS0(1) CJP0(1)
4 64 160 320x32 10,240 163,840

5 128 384 768x64 49,152 1,572,864

6 256 896 1792x128 229,376 14,680,064

r ¼ 10; n:

4 80 200 400x40 16,000 320,000

5 160 480 960x80 76,800 3,072,000

6 320 1120 2240x160 358,400 28,672,000

Case: r ¼ odd CJS T 4; rð Þ;Qnð Þ; xð Þ ¼ n� 1ð Þv � xv=2 þ 2v � x v=2ð Þ�2 n�2ð Þ

CJS
0
(T((4, r),Qn), 1)¼ (n� 1)v � (v/2)þ 2v � ((v/2)� 2n� 2)¼ (v/2)(v� 2n+ nv)

r ¼ 9; n: v e CJS(x) CJS0(1)
4 72 180 216x36 þ 144x32 12,384

5 144 432 576x72 þ 288x64 59,904

6 288 1008 1440x144 þ 576x128 281,088

r ¼ 11; n:

4 88 220 264x44 þ 176x40 18,656

5 176 528 704x88 þ 352x80 90,112

6 352 1232 1760x176 þ 704x160 422,400
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Table 11.33 Cluj polynomials in complex toroidal T((4,r,s),Qn) hypercubes

Formulas

T((4,r,s),Qn) v(T((4, r, s),Qn))¼ 2rs � 2n� 3

e(T((4, r, s),Qn))¼ v(nþ 2)/2¼ rs(nþ 2) � 2n� 3

Case:

(r,s) ¼ even

CJS(T((4, r, s),Qn), x)¼ 2e � xv/2
CJS

0
(T((4, r, s),Qn), 1)¼ 2r2s2 � (nþ 2) � 22(n� 3)¼ e � v

CJP T 4; r; sð Þ;Qnð Þ; xð Þ ¼ e � x v=2ð Þ2

CJP
0
(T((4, r, s),Qn), 1)¼ e � (v/2)2¼ SZv

r ¼ 8; s ¼ 12; n: v e CJS(x) CJS0(1) CJP0(1)
3 192 480 960x96 92,160 4,423,680

4 384 1152 2304x192 442,368 42,467,328

5 768 2688 5376x384 2,064,384 396,361,728

r ¼ 12; s ¼ 16

3 384 960 1920x192 368,640 35,389,440

4 768 2304 4608x384 1,769,472 339,738,624

5 1536 5376 10752x768 8,257,536 3,170,893,824

Case: r ¼ odd;

s ¼ even
CJS T 4; r; sð Þ;Qnð Þ; xð Þ ¼ nv � xv=2 þ 2v � x v=2ð Þ�s�2n�3

CJS
0
(T((4, r, s),Qn), 1)¼ nv � (v/2)þ 2v � ((v/2)� s � 2n� 3)¼ (v/4)

(4v� 2nsþ 2nv)

r ¼ 7; s ¼ 12; n: v e CJS(x) CJS0(1)
3 168 420 504x84 þ 336x72 66,528

4 336 1008 1344x168 þ 672x144 322,560

5 672 2352 3360x336 þ 1344x288 1,516,032

Case: r ¼ even;

s ¼ odd
CJS T 4; r; sð Þ;Qnð Þ; xð Þ ¼ nv � xv=2 þ 2v � x v=2ð Þ�r�2n�3

CJS
0
(T((4, r, s),Qn), 1)¼ nv � (v/2)þ 2v � ((v/2)� r � 2n� 3)¼ (v/4)

(4v� 2nrþ 2nv)

r ¼ 8; s ¼ 11; n: v e CJS(x) CJS0(1)
3 176 440 528x88 þ 352x80 74,624

4 352 1056 1408x176 þ 704x160 360,448

5 704 2464 3520x352 þ 1408x320 1,689,600

Case:

(r,s) ¼ odd
CJS T 4; r; sð Þ;Qnð Þ; xð Þ ¼ n� 2ð Þv � xv=2 þ 2v � x v=2ð Þ�r�2n�3 þ 2v � x v=2ð Þ�s�2n�3

CJS
0
(T((4, r, s),Qn), 1)¼ ((n� 2)/2)v2þ 2v(v� r � 2n� 3� s � 2n� 3)¼ (v/4)

(4v� 2nr� 2nsþ 2nv)

r ¼ 7; s ¼ 13; n: v e CJS(x) CJS0(1)
3 182 455 182x91 þ 364x84 þ 364x78 75,530

4 364 1092 728x182 þ 728x168 þ 728x156 368,368

5 728 2548 2184x364 þ 1456x336 þ 1456x
312

1,738,464
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Table 11.34 Cluj polynomials in spongy G(Qn) hypercubes

Case: non-bipartite graphs

1 CJS d; v; n;mð Þ�� ¼ 2 n� 1ð Þ � v � 2n�2 � xv�2n�2 þ 2d � v � 2n�2 � xm�2n�1

2 CJS
0
(1)¼ (4n/8) � v � (2dm� v + nv);

v, d ¼ vertices of degree d of the parent polyhedron; n ¼ actual Qn rank

m 1 2 4 4 8 12 24

Structure T Oct C Ico Do TO C60

Case: bipartite graphs

3 CJS v; n;mð Þ ¼ e � xm�2n�1 þ e � xm�2n�1 ¼ 2e � xm�2n�1 ¼ 2 2n�2 � v � nþ 2ð Þ � xm�2n�1
� �

4 CJS
0
(1)¼ e �m � 2n¼ 22n� 2 � v � (nþ 2) �m; e¼ 2n� 2 � v � (nþ 2)

5 CJP v; n;mð Þ ¼ e � x m�2n�1ð Þ m�2n�1ð Þ ¼ e � x m�2n�1ð Þ2 ¼ 2n�2 � v � nþ 2ð Þ � x m�2n�1ð Þ2

6 CJP
0
(1)¼ e � (m � 2n� 1)2¼ 23n� 4 � v � (nþ 2) �m2¼ SZ(G) (Gutman 1994)

Table 11.35 Cluj polynomials in some parent polyhedral clusters

v e CJS CJS CJS0(1) m CJP CJP0(1)
T 4 6 12x1 6x1 þ 6x1 12 1 6x(1*1) 6

Oct 6 12 24x2 12x2 þ 12x2 48 2 12x(2*2) 48

C 8 12 24x4 12x4 þ 12x4 96 4 12x(4*4) 192

Ico 12 30 60x4 30x4 þ 30x4 240 4 30x(4*4) 480

Do 20 30 60x8 30x8 þ 30x8 480 8 30x(8*8) 1920

TO 24 36 72x12 36x12 þ 36x12 864 12 36x(12*12) 5184

C60 60 90 180x24 90x24 þ 90x24 4320 24 90x(24*24) 51,840

Table 11.36 CJS polynomial

in spongy tetrahedral T(Qn)

hypercube

n v e CJS CJS0(1)
1 4 6 12x1 12

2 8 16 8x4 þ 24x2 80

3 16 40 32x8 þ 48x4 448

4 32 96 96x16 þ 96x8 2304

5 64 224 256x32 þ 192x16 11,264

Table 11.37 CJS polynomial

in spongy octahedral C6(Qn)

hypercube

n v e CJS CJS0(1)
1 6 12 24x2 48

2 12 30 12x6 þ 48x4 264

3 24 72 48x12 þ 96x8 1344

4 48 168 144x24 þ 192x16 6528

5 96 384 384x48 þ 384x32 30,720

6 192 864 960x96 þ 768x64 141,312
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Table 11.38 Cluj polynomials in bipartite spongy cubic C8(Qn) hypercube

n v e CJS CJS CJS0(1) CJP CJP0(1)
1 8 12 24x4 12x4 þ 12x4 96 12x(4*4) 192

2 16 32 64x8 32x8 þ 32x8 512 32x(8*8) 2048

3 32 80 160x16 80x16 þ 80x16 2560 80x(16*16) 20,480

4 64 192 384x32 192x32 þ 192x32 12,288 192x(32*32) 196,608

5 128 448 896x64 448x64 þ 448x64 57,344 448x(64*64) 1,835,008

6 256 1024 2048x128 1024x128 þ 1024x128 262,144 1024x(128*128) 16,777,216

Table 11.39 CJS polynomial

in spongy icosahedral C12(Qn)

hypercube

n v e CJS CJS0(1)
1 12 30 60x4 240

2 24 72 24x12 þ 120x8 1248

3 48 168 96x24 þ 240x16 6144

4 96 384 288x48 þ 480x32 29,184

5 192 864 768x96 þ 960x64 135,168

6 384 1920 1920x192 þ 1920x128 614,400

Table 11.40 CJS polynomial

in spongy dodecahedral D

(Qn) hypercube

n v e CJS CJS0(1)
1 20 30 60x8 480

2 40 80 40x20 þ 120x16 2720

3 80 200 160x40 þ 240x32 14,080

4 160 480 480x80 þ 480x64 69,120

5 320 1120 1280x160 þ 960x128 327,680

6 640 2560 3200x320 þ 1920x256 1,515,520

Table 11.41 Cluj polynomials in bipartite spongy truncated octahedron TO C24(Qn) hypercube

n v e CJS CJS CJS0(1) CJP CJP0(1)
1 24 36 72x12 36x12 þ 36x12 864 36x(12*12) 5184

2 48 96 192x24 96x24 þ 96x24 4608 96(24*24) 55,296

3 96 240 480x48 240x48 þ 240x48 23,040 240x(48*48) 552,960

4 192 576 1152x96 576x96 þ 575x96 110,592 576x(96*96) 5,308,416

5 384 1344 2688x192 1344x192 þ 1344x192 516,096 1344x(192*192) 49,545,216

6 768 3072 6144x384 3072x384 þ 3072x384 2,359,296 3072x(384*384) 452,984,832

Table 11.42 CJS polynomial

in spongy C60-hypercube

C60(Qn)

n v e CJS CJS0(1)
1 60 90 180x24 4320

2 120 240 120x60 þ 360x48 24,480

3 240 600 480x120 þ 720x96 126,720

4 480 1440 1440x240 þ 1440x192 622,080

5 960 3360 3840x480 þ 2880x384 2,949,120

6 1920 7680 9600x960 þ 5760x768 13,639,680
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VerlagBirkhäuser, Basel, 1950)

Schulte E (1985) Regular incidence-polytopes with euclidean or toroidal faces and vertex-figures.

J Combin Theory Ser A 40(2):305–330

Schulte E (2014) Polyhedra, complexes, nets and symmetry. Acta Cryst A70:203–216

Szymanski TH (1989) On the permutation capability of a circuit-switched hypercube. In: Pro-

ceedings of the international conference on parallel processing 1, IEEE Computer Society

Press, Silver Spring, MD, pp 103–110

Winkler PM (1984) Isometric embedding in products of complete graphs. Discret Appl Math 8:

209–212

384 11 Spongy Hypercubes



Chapter 12

Energetics of Multi-shell Clusters

12.1 Introduction

Nano-era, a period starting since 1985 with the discovery of the C60 fullerene, is

characterized by a huge scientific and technologic effort in finding theoretical basis

able to predict and explain novel applications of nanostructures. Among the carbon

structures, fullerenes (zero-dimensional), nanotubes (one dimensional), graphenes

(two dimensional), diamonds and spongy nanostructures (three dimensional) were

the most studied. Inorganic compounds were also considered. A novel crystallog-

raphy, promoting the idea of topological description and classification of crystal

structures, has been developed (Blatov et al. 2004, 2007, 2009; Delgado-Friedrichs

and O’Keeffe 2005).
Multi-shell clusters discussed in this book may be viewed as molecular realiza-

tions of abstract structures, representing ways of the space filling, either in compact

or spongy manner, by cells (i.e., 3-polytopes/polyhedra) representing shapes of the

geometrical bodies. Homology information is required in this respect; however,

many of the discussed structures consist of interlaced substructures (particularly

appearing in higher ranked structures), envisaged as rational design or even as real

points (i.e., atoms, in Chemistry). If molecular orbitals, computed by DFT or Atoms

in Molecules approaches, are not defined to describe some cases existing in these

multi-shell clusters, such structures may refer rather to crystal/quasi-crystal state

than to molecules, where short-range forces appear to ensure the cohesion of

clusters. The task of finding suitable examples from Crystallography is left to the

interested scientists. We limited here to compute only carbon-consisting clusters, as

shown below.

This chapter brings some computational arguments in the favor of (carbon)

nanostructures described within this book.
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12.2 C20 Aggregation

C20 (12A1) is the smallest and the most reactive fullerene; scientists devoted huge

efforts to prove the existence of all-sp2 C20 free cage (Prinzbach et al. 2006) while

the hydrogenated dodecahedrane (all-sp3 C20) was synthesized in amounts of grams

(Paquette and Vazeux 1981). It may aggregate to form solid phases, e.g., zeolites

(Meier and Olson 1992—see below).

Four allotropes of the yet hypothetical diamond D5 have been designed (Nagy

and Diudea 2013) on the basis of C20: a spongy net, a dense hyper-diamond with an

“anti”-diamantane structure, the corresponding hyper-lonsdaleite and a quasi-dia-

mond which is a fivefold symmetry quasi-crystal with a “syn”-diamantane

structure.

The “anti”-structure of diamond D5 is the well-known clathrate II, or mtn triple

periodic 3-nodal net, with the tiling description: {55.6}12{56}5 and 2[512]; [512.64];

it belongs to the space group: Fd-3 m; this structure exists in the synthetic zeolite

ZSM-39 (Adams et al. 1994; Meier and Olson 1992; B€ohme et al. 2007) and in

germanium allotrope Ge(cF136) (Guloy et al. 2006; Schwarz et al. 2008) real

materials.

Substructures of D5 theoretically emerge from the “seed” C17 (Diudea 2010;

Diudea and Nagy 2012; Szefler and Diudea 2012). It can be dimerized (probably by

a cycloaddition reaction) to C34 dimer (Benedek called this network fcc-C34 (a face-

centered cubic lattice—Benedek and Colombo 1996). The dimer can form more

complex substructures, such as adamantane-like “Ada”, diamantane-like “Dia”,

and fivefold stars (see Fig. 12.1 and the Atlas of Chap. 8) for related structures).

Numbers suffixing the name of structures represent the number of (heavy) atoms.

Energetic data (at DFTB level of theory) for the structures in Fig. 12.1 are listed

in Table 12.1.

The Ada-units can self-arrange in the net of diamond D5 (Fig. 12.1). Domains of

this diamond network were optimized at the DFTB level of theory (Elstner et al.

1998). Hydrogen atoms were added to the external carbon atoms of the network

structures in order to keep the charge neutrality and the sp3 character of C–C bonds

at the network surface. Optimized structure data envisaged a well-defined three-

clinical lattice, with the following parameters: a ¼ b ¼ c ¼ 6.79 Å, and α ¼ 60�,
β ¼ 120�, γ ¼ 120�, even the most symmetrical structure is the fcc-one. Density of

the D5 network was calculated to be around 2.8 g/cm3.

The C–C bond length varies in a very narrow distance domain of 1.50–1.58 Å,
suggesting that all carbon atoms are sp3 hybridized. Considering the one-electron

energy levels of HOMO and LUMO, a large energy gap was observed. For two

different domains, data were as follows: D5(C20).860 (EHOMO ¼ �5.96 eV,

ELUMO ¼ þ2.10 eV, ΔEHOMO-LUMO ¼ 8.06 eV) and D5(C28).1022

(EHOMO ¼ �6.06 eV, ELUMO ¼ þ2.45 eV, ΔEHOMO-LUMO ¼ 8.51 eV), which

indicates an insulating behavior.

Structural stability of D5 diamond substructures was evaluated both in static and

dynamic temperature conditions by molecular dynamics MD (Kyani and Diudea

386 12 Energetics of Multi-shell Clusters



Fig. 12.1 Diamond D5 and some of its substructures/allotropes
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2012; Szefler and Diudea 2012); results shown that D5 seed C17 is the most

temperature resistant fragment.

Topology of D5.anti diamond, in a three-clinical domain (k,k,k) (see Fig. 12.1) is
shown in Table 12.2: formulas to calculate the number of atoms, number of rings R

and the limits (at infinity) for the ratio R5/all Rings are given function of k (i.e., the
number of repeating units in the domain).

The quasi-diamond D5.syn can form a 1-periodic quasicrystal, e.g., D5.syn.52n,
of Amm2 space group, point symbol: {52.6}6{53} 4{54.6.8}5 {55.6}7{56}3;

12-nodal net 3,4-c (Fig. 12.2).

Table 12.1 Energetic data (DFTB) in Diamond D5 substructures (as hydrogenated species);

reference structure was taken the hypothetical C60H60

Structure No C Etot (au) Etot/C (au) GAP (eV)

Ada.158H84 158 �305.340 �1.957 8.812

Ada.198H100 198 �380.717 1.923 8.725

Dia.anti.226H108 226 �432.311 �1.913 8.584

Dia.syn.226H108 226 �432.264 �1.913 8.514

Dia.anti.306H140 306 �583.049 �1.905 8.482

Dia.syn.270H122 270 �513.845 �1.903 8.448

D5.333.860H276 860 �1595.702 �1.855 8.055

D5.531s.1185H510 1185 �2244.77 �1.894 8.051

C60H60 60 �125.584 �2.093 10.412

Table 12.2 Topology of D5.

anti diamond function of

k (k ¼ 1, 2, . . . the number of

Ada20-units along the edge of

a (k,k,k)-domain)

Formulas

v(D5 . anti)¼ � 22� 12kþ 34k3

Atoms(sp3)¼ � 10� 36k2þ 34k3

Ring[5]¼ � 18� 6k� 18k2þ 36k3

Ring[6]¼ � 1þ 6k� 9k2þ 4k3

R[5]þR[6]¼ � 19� 27k2þ 40k3

limk!1
R 5½ �

R 5½ �þR 6½ � ¼ 9=10

Fig. 12.2 D5.syn.524.1330—top view (left) and side view (right)
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12.3 Hyper-graphenes by D5 Substructures

The small fullerenes C20 and C28, filling the space in the frame of D5 can provide,

by “exfoliation”, hyper-graphenes (Diudea 2013).

The corresponding substructures of the hyper-graphenes in Fig. 12.3 are illus-

trated in Fig. 12.4 (top row). Pentagonalhyper-rings appearing in the core of these

stars are illustrated in Fig. 12.4 (bottom row).

Alternating C20/C28 hyper-graphene domains with fivefold symmetry (Fig. 12.5)

can result by sectioning a D5 quasi-crystal (Fig. 12.5, right) by an electron beam

(Diudea 2013).

Data for some small fullerenes and corresponding fivefold and sixfold hyper-

cycles are listed in Table 12.3.

12.4 Hyper-graphenes by C60 Units

C60 fullerene of Ih symmetry (12A2), also called Buckminster fullerene, in honor of

Buckminster Fuller, the architect that used the aesthetic appeal structure of C60 cage

in architecture, is the most synthesized and most studied graphitic structure. It was

discussed in extension in literature so that we limit here only to some aspects

appearing in its aggregation (see below).

A hyper-graphene of which nodes are C60 units may appear when a thin layer of

C60 is deposited on a (plane) surface. The polymerization can start with a [2þ2]

cycloaddition to form dimers (Fig. 12.6) but this could be just the beginning of a

more complex process; addition at bonds hh (hexagon-hexagon) is far more favored

in comparison to that involving ph (pentagon-hexagon) bonds (see below).

Fig. 12.3 Hypothetical diamond D5 hyper-graphene layers: a single fullerene layer

C20Hex.333.506 (left) and a sheet of alternating two fullerenes (C20C28)Hex.331.327 (right)
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It is also conceivable [Onoe et al. 2012; Diudea and Nagy 2007 (Chap. 5, Stone-

Wales isonerization)] that non-closed cages join to each other to form incomplete

dimers or trimmers, by formal identification of homologous faces (pp or hh), as
depicted in Fig. 12.7. Further, these structures can form hyper-pentagons or hyper-

hexagons and finally hyper-coronenes (Fig. 12.8) or more extended 2D-structures.

Energetic data for such structures are given in Table 12.4, at DFTB level of theory.

Fig. 12.5 Hyper-graphene domains: C20-centered (D5.2028.561s.1345 (12A1.1) left); C28-cen-

tered (D5.2820.541.1170 (12A1.2), middle) and a D5-quasicrystal net (D5.2028.533s.5060

(12A1.3), right)

Fig. 12.4 Substructures of C20/C28 hyper-graphenes; Top row: (C20)6.90 (right); (C20C28)3.114

(right). Bottom row: (C20)5.75 (left); (C28)5.110 (left)
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One can see (Table 12.4) that structures with more hexagonal junction (f6),

namely those of entries 2, 6, 8 and 10 are energetically favored.

Computations comparative to DFTB we made on small structures (see

Table 12.5) with additional data at Hartree-Fock HF and DFT(B3LYP) level of

theory. One can see that, in general, the ordering in the three approaches is

preserved, with some exceptions. The main backtracking of DFTB is the underes-

timation of the gap values in case of sp2 carbon-only structures However, DFTB is

useful in ordering series of rather large carbon nanostructures.

In following idea of hyper-graphenes, some three-connected nodes with the C60

units separated by pentagonal prisms P5 (Fig. 12.8) were considered. Constructions

Table 12.3 Energetic data (DFTB) for some small fullerenes (C20; C24 and C28) and their hyper-

cycles

C20_Hyper-graphene C atoms Etot (au) Etot/n (au) Gap (eV)

C60 60 �102.185 �1.703 1.930

C20 20 �33.429 �1.671 0.731

C24 24 �40.142 �1.673 1.667

C28 28 �47.101 �1.682 0.351

(C24)5.90 90 �152.998 �1.700 1.634

(C20C28)3.114 114 �192.488 �1.688 0.166

(C20)5.75H50 75 �146.956 �1.959 9.969

(C24)5.90H60 90 �175.282 �1.948 9.103

(C28)5.110H80 110 �220.185 �2.002 9.270

(C20)6.90H60 90 �178.393 �1.982 8.992

(C20C28)3.114H84 114 �226.346 �1.985 10.278

C60H60 60 �125.584 �2.093 10.412

C20H20 20 �41.659 �2.083 12.295

C24H24 24 �49.752 �2.073 12.247

C28H28 28 �58.301 �2.082 12.384

Fig. 12.6 C60 dimerization by [2þ2] cycloaddition
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with these nodes are illustrated in the chapter Atlas, at 12A2.1–12A2.2 (see

Fig. 12.9).

If carbon atoms populate such structure, their energetics are rather poor, showing

positive binding energy: Ebind ¼ 298.921 kcal/mol (see Table 12.6); Ebind is

calculated as the difference between the total energy of the system and n-times

the total energy of C60 free-fullerene:

Ebind ¼ Etot C60ð Þn � n� Etot C60ð Þ

Additional atoms to form TO ¼ C24 small cage do not improve the stability of

such structures (see the bottom row in Table 12.6).

Fig. 12.7 C60oligomers. Top row: C60n2f5.115 (left) and C60n2f6.114 (right); Middle row:
C60n3f555.165 (left) and C60n3f666.162 (right); Bottom row: C60n3f556.164 (left) and

C60n3f566.163 (right)
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12.5 C60 Aggregates with Tetrahedral and Icosahedral

Symmetry

When three disjoint C60 units join in a hyper-triangle, this may be embedded in the

tetrahedron or in the icosahedron (Fig. 12.10), with a hexagon between each of the

three C60 units. In case of the tetrahedral cluster, the four C60 units arrange over four

Fig. 12.8 Hyper-graphenes. Top row: Hex(C60f5).330 (left); Hex(C60f6).324 (right); Bottom row:
(l(Cor(C20)).1560 (left); Cor(C60).1512 (right)

Table 12.4 Energetic data (DFTB level of theory) for the C60oligomers

Structure n Etot (au) Etot/v Gap (eV)

1 C60 60 �102.185 �1.703 1.930

2 C60n2f6 114 �194.183 �1.703 1.444

3 C60n3f555 165 �280.787 �1.702 0.608

4 C60n3f556 164 �281.658 �1.717 0.333

5 C60n3f566 163 �280.238 �1.719 0.391

6 C60n3f666 162 �278.935 �1.722 1.481

7 HypHex165f5 330 �567.506 �1.710 0.179

8 HypHex162f6 324 �557.737 �1.721 1.255

9 l(Cor(C20))165f5 1560 �2652.462 �1.700 0.021

10 Cor(C60)162f6 1512 �2603.270 �1.722 1.095
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Table 12.5 Comparative data for some small structures involved in hyper-graphenes at Hartree-

Fock HF, DFT (B3LYP) and DFTB levels of theory

Structure n Theory Etot (au) Etot/n (au) Gap (eV)

(C20)5f5 75 HF �2838.062 �37.841 4.158

DFT �2856.161 �38.082 0.6

DFTB �126.324 �1.684 0.113

(C20)6f5 90 HF �3405.751 �37.842 5.99

DFT �3427.462 �38.083 0.9

DFTB �151.694 �1.684 0.195

(C28)5f6 110 HF �4163.361 �37.849 5.533

DFT �4189.837 �38.089 1.072

DFTB �185.928 �1.69 0.006

(C28)6f6 132 HF �4996.056 �37.849 5.421

DFT �5027.845 �38.090 1.059

DFTB �223.166 �1.691 0.035

C60 60 HF �2271.830 �37.864 7.418

DFT �2286.174 �38.103 2.760

DFTB �102.185 �1.703 1.930

C60n2f5 115 HF �4354.333 �37.864 7.597

DFT �4381.797 �38.103 2.907

DFTB �195.708 �1.702 2.044

C60n2f6 114 HF �4316.491 �37.864 6.270

DFT �4343.730 �38.103 1.908

DFTB �194.183 �1.703 1.444

Fig. 12.9 Trimeric nodes made by C60 units (top view)

Table 12.6 QM data for C60 and some of its aggregates; B3LYP/6-31G(d)

Structure n e PG Egap (eV) Ebind (kcal/mol) Etot/v (au)

C60 60 90 Ih 2.763 – �38.1029

3(C60;P5) (12A2.1) 180 285 D3h 1.204 298.921 �38.1003

2TO@3(C60;P5) (12A2.2) 192 309 D3h 0.213 – �37.558
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of the eight hexagonal faces of truncated octahedron TO. The icosahedral structure

is embedded in the C240 fullerene, having 12 disjoint corannulene (5@65) flowers

(see also Bhattacharya et al. 2014). Energetic data for the tetrahedral structure

(12A3) and its congeners with additional TO and P5 cells (12A4 and 12A4.1) are

given in Table 12.7; one can see that the binding energy is still positive.

Details of these structures are given in Chap. 6 (Fig. 6A6.1.3) and in the Atlas

12A (Fig. 12A8). Tetrahedral clusters may join to each other to form “anti”, “syn”

or their combinations, as suggested in Figs. 12A3.1–12A3.4.

Other structures including the C60 cage (sharing a face with another C60 or other

small cages) were considered for energetic stability (Table 12.8). Their total energy

is not far from that of C60 and approaches more when they may be hydrogenated. It

is conceivable that additional atoms may form solid phases surrounding the basic

Fig. 12.10 Embedding of C60-triples in the tetrahedron (left 12A3) and icosahedron (right 12A8)

Table 12.7 QM data for C60 and some of its aggregates; B3LYP/6-31G(d)

Structure v e PG

Egap

(eV)

Ebind (kcal/

mol)

Etot/v
(au)

C60 (12A2) 60 90 Ih 2.763 – �38.1029

C240X(TO@4C60) (12A3) 240 372 Td 1.723 133.363 �38.102

C240(TO@(4C60;6P5)) (12A4) 240 390 Td 1.857 420.148 �38.1001

C264(TO@(4C60;4TO;6P5))

(12A4.1)

264 438 Td 1.790 – �37.559

Table 12.8 QM data for C60 and some of its aggregates; B3LYP/6-31G(d)

Structure v e PG Egap (eV) Etot/v (au)

C60 (12A2) 60 90 Ih 2.763 �38.1029

(C60@(20TT))H60 (5A2.2) 150 270 Ih 6.359 �38.339

C60@(20TO;12P5) (5A5.6) 300 540 Ih 4.512 �38.089

C570 (6A6.6) 570 960 Ih 1.291 �37.561
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tetrahedral or icosahedral clusters and approaching the hydrogenated state in

stability. Embedding of C60 units in the tetrahedron, as spongy structures are

shown in Figs. 12A11 and 12A12.

An interesting cluster with trigonal symmetry and 11 C60 units is envisaged in

Figs. 12A5 and 12A5.1.

12.6 C60 Network by [2þ2] Cycloaddition

Dimerization of C60 by a [2þ2] cycloaddition is favored by hexagon-hexagon hh
(shorter and electron rich) bonds, in comparison to the pentagon-hexagon ph
(longer and electron poor) bonds (see also Sect. 4 and Fig. 12.6); data (computed

at LDA/3–21 G(d) level of theory) are listed in Table 12.9. The hh dimer shows a

negative binding energy, Ebind¼�28.288 kcal/mol per one C–C adduct; the two ph
isomeric dimers (C2v and C2h) do not differ energetically too much and seems to be

less stable than the free fullerene C60. The binding is stronger when the cycloadduct

is part of a cube (�28.689 kcal/mol, of 12 C–C in CY(8C60;hh).480 (12A6.4),

Table 12.9); in an infinite C60 cubic network, the 6-connected C60 unit (denoted CY

(7C60;hh).420 in Table 12.9) gave �27.328 kcal/mol per C–C, as expected for a

smaller remaining sp2 C net in the [2þ2] adduct.

A detailed topological analysis of C60 [2þ2] cycloadduct systems revealed three

topologically distinct cubic nets: 1.(C60.hh); 2.(C60.ph) and 3.(C60.hh-ph(1:2)); the
last one accounts for 30hhþ60 ph of the 90 edges of C60.

C60.hh is the simple cubic lattice, of Pa3� symmetry, as reported by David et al.

(1991); its repeating unit, denoted here C60.hh(d) (12A6.4.1b and Table 12.10), has
the topology 6(ph, hp, ph, hp) and Th point group PG symmetry. The unit topology

is described by the faces spacing the actual C–C bond to its four neighbor C–C

bonds, counted clockwise, in an increasing (smallest faces) order, keeping in mind

that p ¼ 5 and h ¼ 6.

C60.ph may have two arrangements of a same local topology: one is monotonic

(the repeating unit consists of a single C60 cluster—denoted (1) in Table 12.10) and

Table 12.9 Energetic data for C60[2þ2] cycloadducts (LDA/3–21 G(d)); C–C stands for the

square joining two C60 units in the [2þ2] cycloadduct

Structure n e PG Etot/v (au) Egap (eV)

Ebind

(kcal/mol) #C□C
Ebind/C□C
(kcal/mol)

C60 60 90 Ih �37.559 1.824 – – –

2C60.hh 120 92 D2h �37.56 1.541 �28.288 1 �28.288

2C60.hp 120 92 C2v �37.559 0.787 6.211 1 6.211

2C60.hp 120 92 C2h �37.559 0.686 5.815 1 5.815

CY(8C60;hh) 480 744 Th �37.561 1.655 �344.267 12 �28.689

CY(7C60.hh) 420 648 Th �37.56 1.497 �163.969 6 �27.328

CY(8C60;ph) 480 744 D2h �37.559 0.472 29.148 12 2.429
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the other is alternating (the repeating unit consists of a dimer, the second C60 cluster

being rotated 180o); its unit C60.ph(d ) (12A6.4.2b) is intrinsic chiral, of S6 PG

symmetry and topology (3(ph, hp, hh, hh); 3(ph, hh, hh, hp)).
C60.hh-phmay also have two arrangements: its unit C60.hh-ph(d ) (12A6.4.3b) is

not chiral (but the net could be, in the second arrangement); it has the topology (2

(ph, hh, ph, hh); 4(php, hp, hh, hp)) and PG symmetry D2h.

Binding energy is lower in the ph-net (about�22 kcal/mol) than in the hh-ph net
(about �32 kcal/mol) and is maximum in the hh-net (about �56 kcal/mol—see

Table 12.11, PM6 data). However, these molecular systems are far from equilib-

rium and the kinetic aspects will prevail in a crystallization process of C60 fullerene,

favoring the more statistically dominant structures (see Schwerdtfeger et al. 2015);

the real net is expected to be a mixture of the five described nets.

A qualitative explanation may be offered by Kekulé count KC (Diudea and

Vukičević 2007), in supporting the chance of pi-electron conjugation in the [2þ2]

adduct. A detailed analysis of the remaining sp2 C net in the [2þ2] adducts of cubic

C60-333-nets revealed four types of C60 fragments (Fig. 12.11), of 3, 4, 5 and

6 connectivity, respectively (see also Table 12.10); it can be seen that the hh-net
(and its fragments) has the largest pi-system, much more favorable to the

pi-conjugation than the ph-net and the mixt hh-ph net.

Among the solutions of geometric Kekulé count, there are identical topological

isomers, e.g., among 12,500 solutions for C60 only 58.06%, represent distinct

structures, as detected by the super-index Cluj-Niš (Ilić and Diudea 2010; Diudea

et al.2010). It was suggested that KC alone cannot predict the stability of fullerenic

structures (Austin et al. 1994; Vukičević and Klein 2005; Zhang et al. 2010;

Schwerdtfeger et al. 2015).

Strainenergy was calculated by Haddon’s (1987, 1990) POAV1 theory; values of
strain decrease by increasing the fragment connectivity (as the size of remaining sp2

C net decreases). Strain tends to a minimum in the d-fragments representing the

bulk unit of the infinite C60 cubic nets (Table 12.10).

Strain data are also listed in Table 12.11 (PM6 level of theory). In alternating

squares (4C60 units), the strain of ph-net (entries 2–5) is lower than of hh-ph net

(entry 6) and further lower than of hh-net (entry 10). In corresponding cubes (8C60

units—entries 7 and 8), the strain ordering is: hh-ph net (entry 8) < ph-net (entry
7) < hh-net (entry 12). In 27C60.333 blocks, optimized by MMþ force field, the

strain ordering was: ph (2) < hh-ph (2) < ph (1) < hh-ph (1) < hh C60 nets

(Table 12.10, bottom row).

Clearly, the cubic net is more favorable (both by Ebind and Estrain values) in

comparison to an icosahedral structure (see entries 13 and 14, Table 12.11).

Figure count for some of these structures is given in Table 12.12. Excepting the

structure #1 (3(C60;P5).180), which is a torus (g ¼ 1), the other clusters can be

considered as structures (of rank 4) embedded in the sphere (g ¼ 0).

The C60 [2þ2] cycloadducts may be embedded either in the topology of

C20 (12A9) or C60 (12A10) (see Bhattacharya et al. 2016) providing beautiful

hyper-clusters. A remark is worthy here for the leapfrog operation “l” that trans-

forms clusters with units sharing an edge to each other into [2þ2] adducts (see, e.g.,

Figs. 12A6–12A6.4 or 12A7.2–12A7.2.1).
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12.7 Computational Methods

Geometry optimizations were performed at the at SCC-DFTB level of theory

(Elstner et al. 1998) by using the DFTBþ program (DFTBþ; Aradi et al. 2007)

with the numerical conjugated gradient method. We used this method because

many structures have more than 100 atoms (or more than 1500 atoms).

The DFTB method can be combined with the self-consistent charge technique

(SCC-DFTB) to provide more accurate results, comparable with some higher level

theoretical methods.

Computations at a higher level of theory: Hartree-Fock and DFT have been

performed with the HF/6-31G(d,p), B3LYP/6-31G(d), B3LYP/6-31G(d,p) and

LDA/3-21G(d) sets, on Gaussian 09 (Frisch et al. 2009). PM6 computations were

done with the VSTO-6G(5D;7F) set.

POAV1 theory of Haddon (1987, 1990) was applied for strain energy calcula-

tion. Topological data were calculated by our Nano Studio software (Nagy and

Diudea 2009).

Fig. 12.11 Cubic C60 network, with four distinct units (a ¼ grey, b ¼ yellow, c ¼ red and

d ¼ blue—left), as detailed in the reduced graph (right)

Table 12.12 Figure count in some clusters involved in C60aggregation

Structure v e 2(3) 2(4) 2(5) 2(6) 2 C60 P5

TO

(TT) M 3 χ g k

1 (12A2.1) 180 285 0 15 36 60 111 3 3 0 0 6 0 1 4

2 (12A2.2) 192 309 0 21 36 69 126 3 3 2 1 9 0 0 4

3 (12A3) 240 372 0 6 48 84 138 4 0 0 2 6 0 0 4

4 (12A4) 240 390 0 30 48 84 162 4 6 0 2 12 0 0 4

5 (12A4.1) 264 438 0 42 48 100 190 4 6 4 2 16 0 0 4

6 (5A5.6) 300 540 0 120 24 130 274 1 12 20 1 34 0 0 4

7 (5A2.2) 150 270 50 0 12 80 142 1 0 (20) 1 22 0 0 4

8 (6A6.6) 570 960 50 0 114 260 424 12 0 (20) 2 34 0 0 4

1 ¼ 3(C60;P5).180; 2 ¼ 2TO@3(C60;P5).192; 3 ¼ TO@4C60.240X; 4 ¼ TO@(4C60;6P5).240;

5 ¼ TO@(4C60;4TO;6P5).264; 6 ¼ C60@(20TO;12P5).300; 7 ¼ C60@(20TT).150; 8 ¼ l
(D@12D).570
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Kekulé count was done by our original software (Cigher and Diudea 2006) while

the “solutions” were analyzed for isomer discrimination by the super-index Cluj-

Niš program (Ilić and Diudea 2010).

The herein discussed structures were seen as molecules; some of them have been

considered as carbon structures and molecular energy was computed. However,

many others could be models for crystal or quasi-crystal structures. It was not the

aim of this book to think about the presented structures as exclusively material

structures; these could represent subjects for future mathematical, physical or

chemical theoretical and/or practical studies, as well as could inspire architects

and plastic artists.
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C60; sumanene 6:3(5.6) C60; empty sumanene C60; 2(4 sumanene)

402 12 Energetics of Multi-shell Clusters



(C20)5.75 (C28)5.110 (C20C28)3.114
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(C28)5.110 (C20)5.75 (C20C28)3.114
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D5.2028.561s.1345 D5.2820.541.1170 D5.2028.533s.5060
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C60 2TO@3(C60;P5).192 C1800
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3(C60;P5).180 6(3(C60;P5)).720 C1800 (side)
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C60 3(C60;P5).180 C648
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3(C60;P5).180 (top) 2TO@3(C60;P5).192 (top) hY(C192).2.2.1644
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C60 TO@(4C60;6P5).240 TO@(4C60;4TO;6P5).264
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TO.24 C60 TY(4C60).240
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TO.24 C60 TY(4C60).240
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TO.24 C60 TY(4C60).240
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TO.24 C60 C348
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TO@(4C60;6P5).240_2 TO@(4C60;6P5).240_3 TY(4C60;(TO;f6)).240
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TO@(4C60;4TO;6P5).264_2 TO@(4C60;4TO;6P5).264_3 TY(4C60;(TO;f6)).240
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C660 (hyperpentagon view) (3(P5@5TO);2TO).186 3(P5@5TO).186_3
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TO.24 C186 C660
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C20.222.136_2 C20.222.136_3 I.222.e.72_2

Chapter 12 Atlas: Energetics of Multi-shell Clusters 419



I.222.e.72 I.222.e.72 D.222.e.136
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8I.222.90_2 8I.222.90_3 C20.222.136
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m(D.222.e).228 m(D.222.e).228 D.222.e.136
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t(D.222.e).456 t(D.222.e).456 D.222.e.136

Chapter 12 Atlas: Energetics of Multi-shell Clusters 423



C60.hh.222.480 C60.ph.222.480 CY(8D;e).136
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C60.hh.222.480 C60.hh.222.480 C60.hh(d).72; Th
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C60.ph.222.480 (2) C60.ph.222.480 (1) C60.ph(d ).72; S6
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C60.hh-ph.222.480 (2) C60.hh-ph.222.480 (1) C60.hh-ph(d ).72; D2h
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d(I.222.e.72).160 d(I.222.e.72).160 I.222.e.72
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D.333.[2þ2].540 D.333.[2þ2].540 D.333.[2þ2].540 (corner)
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t(I.222.e.72).456 t(I.222.e.72).456 (corner) I.222.e.72
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l(t(I.222.e.72)456).1440 l(t(I.222.e.72)456).1440 t(I.222.e.72).456
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t(d(C130).720X_2 t(d(C130).720X _3 C240

disjoint corannulenes
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t(d(C250)).1200 C20Y(20C60;ph[2þ2]).1200 C20Y(20C60;hh[2þ2]).1200
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C60Y(60C60;hh[2þ2]).3600 C60Y(60C60;ph[2þ2]).3600 C60Y(60C60;P5).3600
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TO@(4C60;6P5).240_3 (TO@4TO)@

(4C60;6P5).264_3

C810
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Ada20.198 (TT@4TT)@(4C60).210 C630
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