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Preface

These notes grew out of a 2-week workshop on The Functional Analysis of Quantum
Information Theory that was held at the Institute of Mathematical Sciences, Chennai
during 26/12/2011 to 06/01/2012. This was initially the brain-child of Ed Effros,
who was to have been one of the four principal speakers; but as things unfolded,
he had to pull out at the eleventh hour due to unforeseen and unavoidable
circumstances. But he mentored us through the teething stages with suggestions
on possible and desirable substitutes. After a few hiccups, we arrived at a perfectly
respectable cast of characters, largely owing to Prof. K.R. Parthasarathy agreeing
to fill the breach to the extent that his somewhat frail health would permit. While
everybody else had been asked to give five 90-min lectures each, he agreed gamely
to give three 60-min lectures, which were each as delightful as one has expected his
lectures to be.

The three other speakers were Gilles Pisier, Vern Paulsen, and Andreas Winter.
Given the impeccable clarity in their lectures, it was not surprising that the
workshop had a substantial audience (a mixed bag of mathematicians, physicists,
and theoretical computer scientists) for the entire 2 weeks, and several people
wanted to know if the proceedings of the workshop could be published. Given the
wide scope of the problems discussed here, we hope these notes will prove useful to
students and research scholars across all three disciplines.

The quite non-trivial and ambitious task of trying to put together a readable
account of the lectures was taken upon by the three of us, with periodic assistance
from Madhushree Basu and Issan Patri. When we finally finished a first draft some
28 months later and solicited permission from the speakers for us to publicize this
account, they responded quite promptly and positively, with Vern even offering to
slightly edit and expand “his” part and Gilles uncomplainingly agreeing to edit the
last few pages of “his” part.

As even a casual reading of these notes will show, different parts have been
written by different people, and some material has been repeated (the Kraus
decomposition for instance). Further the schism in the notational conventions of
physicists and mathematicians (e.g., in which of its two arguments the inner
product is (conjugate) linear) reflects which convention which speaker followed!
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vi Preface

This schism was partly because we did not want to introduce new errors by trying
to adopt a convention other than in the notes taken from the lectures.Thus, this
must be viewed not as a textbook in a polished and complete form, but rather as
a transcription of notes derived from lectures, reflecting the spontaneity of live
classroom interactions and conveying the enthusiasm and intuition for the subject.
It goes without saying that any shortcomings in these notes are to be attributed to
the scribes, while anything positive should be credited to the speakers.

New Delhi, India Ved Prakash Gupta
Chennai, India Prabha Mandayam
Chennai, India V.S. Sunder
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Chapter 1
Operator Spaces

Abstract Starting from the definitions of operator spaces and operator systems (the
natural ambience to discuss the notions of complete boundedness and complete pos-
itivity, respectively) this chapter, which is based on lectures by Gilles Pisier, quickly
gets to the heart of the matter by discussing several closely related theorems—
Stinespring’s theorem on dilation of completely positive maps, Arveson’s extension
theorems (for completely bounded as well as completely positive maps), related
results by Haagerup and Paulsen, Nachbin’s Hahn-Banach theorem—as more or
less different perspectives of the same result; we also see the power/use of the clever
matrix trick relating positivity of self-adjoint 2�2 block matrices and operator norm
relations between its entries. After discussing the classical row (R) and column
(C) Hilbert spaces, Schur multipliers etc., we proceed with Ruan’s axioms for
an “abstract” operator space, applications of the formalism to highlight analogy
with classical Banach space theory (e.g.: R� Š C ), min and max operator space
structures, tensor products of C �-algebras, nuclear pairs (whose tensor products
have a unique “C �-cross-norm”), and the chapter concludes with Kirchberg’s
theorem on (C �.Fn/; B.H/) being a nuclear pair.

1.1 Operator Spaces

Definition 1.1.1 A closed subspaceE � B.H/ for some Hilbert spaceH is called
an operator space.

The requirement of “closed”-ness is imposed because we want to think of operator
spaces as “quantised (or non-commutative) Banach spaces”. This assumption
ensures that operator spaces are indeed Banach spaces with respect to the CB-norm
(see Definition 1.1.2 and the subsequent remarks). Conversely every Banach space
can be seen to admit such an embedding.
(Reason: IfE is a Banach space, then the unit ball of E�, equipped with the weak�-
topology is a compact Hausdorff space (by Alaoglu’s theorem), call it X ; and the
Hahn-Banach theorem shows that E embeds isometrically into C.X/. Finally, we
may use an isometric representation of the C �-algebra C.X/ on some Hilbert space
H ; and we would finally have our isometric embedding of E into B.H/.)

© Springer International Publishing Switzerland 2015
V.P. Gupta et al., The Functional Analysis of Quantum Information Theory,
Lecture Notes in Physics 902, DOI 10.1007/978-3-319-16718-3_1
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2 1 Operator Spaces

Note that, for each Hilbert space H , there is a natural identification between
Mn.B.H// and B.H.n//, where H.n/ WD H ˚ � � � ˚H

„ ƒ‚ …

n�copies

. For each operator space

E � B.H/, and n � 1, let

Mn.E/ D fŒaij� W aij 2 E; 1 � i; j � ng � Mn.B.H//:

Then, each Mn.E/ inherits a norm, given by

jjajjn WD jjajjB.H.n// D sup

8

<

:

�
n
X

iD1

�

�

�

n
X

jD1
aij.hj /

�

�

�

2�1=2 W hj 2 H;
n
X

jD1
jjhj jj2 � 1

9

=

;

for all a D Œaij� 2 Mn.E/. In particular, each operator space E � B.H/ comes
equipped with a sequence of norms .jj � jjn on Mn.N/; n � 1/.

1.1.1 Completely Bounded and Completely Positive Maps

For a linear map u W E ! F between two operator spaces, for each n � 1, let
un W Mn.E/ ! Mn.F / be defined by un.Œai;j �/ D Œu.ai;j /� for all Œaij� 2 Mn.E/.

Definition 1.1.2 A linear map u W E ! F is called completely bounded (CB) if

jjujjcb WD supn�1 jjunjj < 1. Write CB.E; F / D fu W E CB�! F g and equip it with
the CB norm k � kcb.

Note that jjujj D jjujj1 � jjujjcb; so, any Cauchy sequence in CB.E; F / is also
a Cauchy sequence in B.E;F / and hence one deduces that CB.E; F / is a Banach
space (as B.E;F / is a Banach space). Complete boundedness has many properties
similar to boundedness, for example: jjvujjcb � jjvjjcbjjujjcb. We shall see latter that
CB.E; F / also inherits an appropriate operator space structure.

1.1.2 Operator Systems

Definition 1.1.3 A (closed) subspace S � B.H/ for some Hilbert space H is
called an operator system, if

• 1 2 S
• x 2 S ) x� 2 S .

Note that if S � B.H/ is an operator system, then SC WD S \ B.H/C linearly
spans S since if a 2 Sh D fx 2 S W x D x�g, then a D jjajj1� .jjajj1 � a/. Also,
if S is an operator system, so also is Mn.S/ .� B.H.n///.



1.1 Operator Spaces 3

Definition 1.1.4 If S is an operator system, a linear mapping u W S ! B.K/ is said
to be:

• positive if x 2 SC ) u.x/ 2 B.K/C.
• n-positive if un W Mn.S/ ! Mn.B.K// is positive.
• completely positive (CP) if it is n-positive for all n 2 N.
• completely contractive if kunk � 18n 2 N

1.1.3 Fundamental Factorisation of CB Maps

Our goal, in this section, is to prove the following fundamental factorisation
theorem:

Theorem 1.1.5 (Fundamental Factorisation) Given an operator space E con-
tained in a unital C �-algebra A, the following conditions on a linear map u W E !
B.K/ are equivalent:

1. u 2 CB.E;B.K// and jjujjcb � 1;
2. there is a Hilbert space OH , a unital �-representation � W A ! B. OH/ and linear

maps V;W W K ! OH with jjV jj; jjW jj � 1 such that u.a/ D V ��.a/W for all
a 2 E .

Moreover if E is an operator system then u is CP if and only if it admits such a
factorisation with V D W .

There are many names and a long history associated with this fact. Initially,
Stinespring established his version of this in 1955 as a factorisation of CP maps
defined on C �-algebras, making it appear as an operator analogue of the classic
GNS construction associated to a state on a C �-algebra. Then Arveson proved his
extension theorem in 1969—to the effect that a CP map on an operator system
can be extended to a CP map on a C �-algebra containing it (thereby generalizing
Stinespring’s theorem so as to be valid for CP maps on operator systems). The
final full generalization to CB maps on operator spaces, which may be attributed to
several authors—Wittstock, Haagerup, Paulsen—came around 1981. We shall give
a proof of the theorem which exhibits it as an extension theorem. But first, some
examples:

Example 1.1.6 The “transpose” mapping Mn

T�! Mn, given by T .a/ D at , is CB
with jjT jj D 1 but jjT jjcb D n.

Proof Let ei;j be the matrix units of Mn. Consider the matrix a 2 Mn.Mn/ with
.i; j /th entry given by ej;i . It is not hard to see that a is a permutation matrix, hence
unitary and jjajj D 1.

Also, Tn.a/

n
is seen to be the projection in Mn.Mn/ onto the one-dimensional

subspace spanned by the vector v D e1 C enC2 C e2nC3 C � � � C en2 in `n
2

2 , where
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feig is the standard orthonormal basis of `n
2

2 . Hence jjTn.a/jj D n. In particular,

jjT jjcb � jjTnjj � jjTn.a/jj
jjajj D n:

Conversely, consider the subalgebra �n � Mn of n � n diagonal matrices. Let
E W Mn ! �n be the conditional expectation defined by E.a/ D E.Œai;j �/ D
diag.a1;1; : : : ; an;n/—which is easily verified to satisfy E.dad0/ D dE.a/d 0 for all
d; d 0 2 �n and a 2 Mn. Consider the permutation matrix

u D

0

B

B

B

B

B

@

0 0 � � � 0 1
1 0 � � � 0 0
0 1 � � � 0 0
:::
:::
: : :

:::
:::

0 0 � � � 1 0

1

C

C

C

C

C

A

:

A little calculation shows that E.auk/ D diag.a1;kC1; a2;kC2; : : : ; an;n/, and hence
E.auk/u�k has ai;kCi at .i; k C i/th position for each 1 � k � n; 1 � i � n,
(indices are modulo n) as its only non-zero entries. Thus a D Pn

kD1 E.auk/u�k
and at D Pn

kD1 ukE.auk/.
Define ul ; ur W Mn ! Mn by ul .a/ D ua and ur .a/ D au, respectively. Then

ukl and ukr are isometries for all k. As .ul /n (resp., .ur /n) is seen to be the map of
Mn.Mn/ given by left- (resp., right-) multiplication by the block-diagonal unitary
matrix with all diagonal blocks being given by u, we conclude that ul ; ur are CB
maps. (They are in fact complete isometries.)

Moreover, a conditional expectation is a CB map (since E W Mn ! �n being a
conditional expectation implies that, for all k 2 N, Ek W Mk.Mn/ ! Mk.�n/ is
also a conditional expectation whence a projection and jjEkjj � 1 for all k).

Hence the equation T D Pn
kD1 ukr ıE ı ukl expresses T as the sum of n complete

contractions thereby showing that also kT kcb � n, whereby kT kcb D n. ut
Example 1.1.7 It follows from the previous example that the transpose mapping,
when thought of as a self-map T W K.`2/ ! K.`2/ of the space of compact
operators on `2, is isometric but not CB [since all finite rank matrices are inK.`2/].

Theorem 1.1.8 (Stinespring) Given a unital C*-algebra A, a Hilbert space K ,
and a unital CP map u W A ! B.K/, there exist a Hilbert space H , a �-
representation � W A ! B.H/ and an isometric embedding V W K ,! H such
that u.a/ D V ��.a/V for all a in A. Equivalently, if we identify K via V as a
subspace of H , then u.a/ D PK�.a/jK .

Proof Let ˛ D P

i2I ai ˝ ki ; ˇ D P

j2J bj ˝ kj 2 A ˝ K . The fact that
u is CP implies that the equation h˛; ˇi D P

i2I;j2J hu.b�
i aj /kj ; ki iK defines a

positive semi-definite sesquilinear form on A ˝ K . (Reason: un is positive and if
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I D f1; � � � ; ng, then

0

B

B

B

@

a�
1 0 � � � 0
a�
2 0 � � � 0
:::
:::
: : :

:::

a�
n 0 � � � 0

1

C

C

C

A

0

B

B

B

@

a1 a2 � � � an
0 0 � � � 0
:::
:::
: : :

:::

0 0 � � � 0

1

C

C

C

A

� 0 ) h˛; ˛i � 0:/

Define H to be the result of “separation and completion of this semi-inner-product
space”; i.e., H is the completion of the quotient of A˝ K by the radical N of the
form h�; �i. And it is fairly painless to verify that the equations

�.a/.b ˝ k CN/ D ab ˝ k CN and V.k/ D .1˝ k/CN

define a �-representation � W A ! B.H/ and an isometry V W K ! H which
achieve the desired results. ut

Before we get to a CB version of Arveson’s extension theorem, which may be
viewed as a non-commutative Hahn-Banach theorem, we shall pause to discuss
a parallel precursor, i.e., a (commutative) Banach space version due to Nachbin,
namely:

Proposition 1.1.9 (Nachbin’s Hahn-Banach Theorem) Given an inclusion
E � B of Banach spaces, any u 2 B.E;L1.�//1 admits an extension
Qu 2 B.B;L1.�// such that jjQujj D jjujj.
The proof of Nachbin’s theorem relies on the following observation.

Observation 1.1.10 For Banach spaces E and F , we have isometric identifica-
tions:

B.E;F �/ WD fall bounded linear maps from E to F �g
' Bil.E � F / WD fall bounded bilinear forms on E � F g
' .E Ő F /�;

where Ő is the projective tensor product, i.e., the completion of the linear span of the
elementary tensor products with respect to the norm jjt jj^ WD inffPi jjai jj � jjbi jj W
t D P

i ai ˝ bi g.

1When we write symbols such as L1.�/ or L1.�/, it will be tacitly assumed that we are talking
about (equivalence classes of almost everywhere agreeing) complex-valued functions on some
underlying measure space .�; �/; when we wish to allow vector-valued functions, we will write
L1.�IX/, etc.
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The first isomorphism follows from the identification B.E;F �/ 3 T 7!  T 2
Bil.E � F / given by  T .a; b/ D T .a/.b/ for a 2 E; b 2 F , since

jjT jj D supfjjT .a/jj W jjajj � 1g
D supfjT .a/.b/j W jjajj; jjbjj � 1g
D jj T jj;

while the second isomorphism follows from the identification Bil.E � F / 3 S 7!
�S 2 .E Ő F /� given by �S.a˝ b/ D S.a; b/. On one hand, jj�S jj D supfj�S.t/j W
jjt jjE Ő F � 1g. On the other hand, for each representation t D P

i ai ˝bi 2 E˝F ,

j�S.t/j D j
X

i

S.ai ; bi /j

�
X

i

jS.ai ; bi /j

� jjS jj
X

i

jjai jj � jjbi jj:

Taking infimum over all such representations of t , we obtain j�S.t/j � jjS jj jjt jj^
implying jj�S jj � jjS jj. Conversely, since ka ˝ bkE Ő F D kak � kbk (as is easily
verified),

jj�S jj � supfj�S.a ˝ b/j W jjajj � jjbjj � 1g
D supfjS.a; b/j W jjajj � jjbjj � 1g
D jjS jj:

Proof of Theorem 1.1.9 Deduce from the above observation that

B.E;L1.�// Š .E Ő L1.�//�

Š L1.�;E/�

	 L1.�;B/�

Š B.B;L1.�// ;

where the first and last isomorphisms follow from the Observation 1.1.10, the
inclusion is an isometric imbedding as a consequence of the classical Hahn-Banach
theorem, and the second isomorphism is justified in two steps as follows:

Step I: If X Ő Y denotes the projective tensor product of Banach spaces X and Y ,
if DX (resp. DY ) is a dense subspace of X (resp., Y ), and if � is any map
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from the algebraic tensor product DX ˝ DY to any Banach space Z such that
k�.x ˝ y/kZ D kxkkyk 8x 2 DX; y 2 DY , then � extends uniquely to an
element Q� 2 B..X Ő Y /;Z/.
Reason: If

P

i xi ˝ yi D P

j uj ˝ vj , then, observe that

k�.
X

i

xi ˝ yi /k D k
X

j

�.uj ˝ vj /k

�
X

j

k�.uj ˝ vj /k

D
X

j

kujkkvj k :

Taking the infimum over all such choices of uj ; vj , we find that

k�.
X

i

xi ˝ yi /kZ � k
X

i

xi ˝ yik^;

and the desired conclusion is seen to easily follow..
Step II: The assignment

L1.�/˝ Y 3 f ˝ y
�7! f .:/y 2 L1.�IY /

extends to an isometric isomorphism Q� of L1.�/ Ő Y onto L1.�IY / for any
Banach space Y .
Reason: Let X D L1.�;�/, and let DX denote the subspace of measurable
functions with finite range, and letDY D Y . Note that any element ofDX admits
an essentially unique expression of the form

P

i ci 1Ei , for some Borel partition
� D `

i Ei . It follows that any element of DX ˝ Y has an essentially unique
expression of the form

P

i 1Ei ˝ yi , for some Borel partition � D `

i Ei and
some yi 2 Y . It follows from Step I that there exists a contractive operator
Q� 2 B.L1.�/ Ő Y;L1.�IY / such that Q�.1� ˝ y/ D 1�.:/y. Observe that if
P

i 1Ei ˝ yi 2 DX ˝ Y , then

k Q�.
X

i

1Ei ˝ yi /k D
Z

k
X

i

1Ei .:/yik

D
X

i

�.Ei/kyik

D
X

i

k1Ei kkyik

� k
X

i

1Ei ˝ yi /kL1.�/ Ő Y ;



8 1 Operator Spaces

thereby showing that Q� is isometric on the dense subspace DX ˝ Y and hence
completing the proof.

Theorem 1.1.11 (Arveson’s Extension Theorem) Given an inclusion E � A of
an operator space into a unital C*-algebra, and any CB map u W E ! B.K/

for some Hilbert space K , there exists Qu W A CB�! B.K/ extending u such that
jjQujjcb D jjujjcb.

Proof Our strategy will involve proving that:

1. If, for t 2 K ˝ E ˝H , we define

�.t/ WD inf
n�X

jjki jj2
�1=2jjŒai;j �jjMn.E/

�X

jjhj jj2
�1=2 W t

D
n
X

i;jD1
ki ˝ ai;j ˝ hj

o

;

then � is a norm;
2. there is a natural isometric identification CB.E;B.H;K// Š .K ˝ E ˝ H/�,

with .K ˝ E ˝H/� being given the norm dual to � ; and
3. if B is an “intermediate” operator space, meaning E � B � A, then .K ˝ E ˝
H; �/ � .K ˝ B ˝H; �/ is an isometric embedding; i.e.,

k � kK˝E˝H D .k � kK˝B˝H/jK˝E˝H
:

It is obvious that saying �.t/ � 0 amounts to showing that t admits an expression
of the form t D Pn

i;jD1 ki ˝ ai;j ˝ hj . In fact, there is such an expression with

the matrix Œai;j � being diagonal: indeed, if t D Pn
jD1 kj ˝ ej ˝ hj , we can set

aij D ıijei . For t D Pn
i;jD1 ki ˝ ai;j ˝ hj , let us use the suggestive notation

t D �

k
�˝ a ˝ �

h
�

.
We may assume that the infimum defining � may be taken only over collections

. Nk/˝ .a/˝ .h/ which satisfy

k.a/kMn.E/ D 1 and k. Nk/k D
s

X

i

k Nkik2 D k.h/k:

(Reason: This may be achieved by “spreading scalars over the tensor factors”.
More precisely, if C2 D k. Nk/k � kak � k.h/k and if we define

. Nk0/ D C

k. Nk/k .
Nk/; .a0/ D 1

k.a/k .a/; .h
0/ D C

k.h/k .h/ ;

then . Nk0/˝.a0/˝.h0/ D . Nk/˝.a/˝.h/ and k.a0/kMn.E/ D 1 and k. Nk0/k D k.h0/k.)
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For any other t 0 D
�

k
0�˝a0˝�h0�, we find that tCt 0 D �

k k0�˝
�

a 0

0 a0
�

˝
�

h

h0
�

.

Thus,

�.t C t 0/ �
�
X

jjki jj2 C
X

jjk0
pjj2

�1=2�X jjhj jj2 C
X

jjh0
qjj2

�1=2

:

(Note the crucial use of the fact that the operator norm of a direct sum of operators
is the maximum of the norms of the summands—this is one of the identifying
features of these matrix norms, as will be shown when we get to Ruan’s theorem.)

For now, let us make the useful observation that:

�.t/ < 1 iff there exists a decomposition t D .k/˝ .a/˝ .h/ with jjajjMn.E/ D 1

and k.k/k D k.h/k2 < 1. (	)

Now conclude from remark (	) that the above decompositions may be chosen
to satisfy kakMn.E/ D 1 and k. Nk/k D k.h/k 
 p

�.t/ and k.a0/kMn.E/ D 1 and
k. Nk0/k D k.h0/k 
 p

�.t 0/; here 
 denotes approximate equality. (We are being
slightly sloppy here in the interest of sparing ourselves the agony of performing
calisthenics with epsilons.)

Thus, �.t C t 0/ � .�.t/C �.t 0//1=2.�.t/C �.t 0//1=2 D �.t/C �.t 0/. Hence the
triangle inequality holds for � . It remains only to prove that �.t/ D 0 ) t D 0.

So, suppose �.t/ D 0. Fix an arbitrary .�; 
;  / 2 .K/� � E� � H� and � >
0. By assumption, there exists a decomposition t D Pn

i;jD1 ki ˝ ai;j ˝ hj , with

kŒaij�kB.H.n/ D 1 and k.k/k
K
.n/ D k.h/kH.n/ < �. Hence,

j.� ˝ 
˝  /.t/j D j
X

�.kj /
.aij/ .hj /j

D h
n.a/

0

B

@

 .h1/
:::

 .hn/

1

C

A

0

B

@

�. Nk1/
:::

�. Nkn/

1

C

A

� k
n.a/k.
n
X

jD1
j .hj /j2/ 12 .

n
X

iD1
j�. Nki /j2/ 12

� k
n/kkakk�kk. Nk/kk kk.h/k
� k
knk�kk k�2:

Hence,

.� ˝ 
˝  /.t/ D 0 8 � 2 .K/�; 
 2 E�;  2 H�:

But this is seen to imply that t D 0, thereby proving (1).
As for (2), first note that B.H;K/ has a natural operator space structure,

by viewing it as the (2,1)-corner of B.H ˚ K/ or equivalently by identifying
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Mn.B.H;K// with B.H.n/;K.n//. Consider the mapping

CB.E;B.H;K// 3 u 7! ˆu 2 .K ˝ E ˝H/�

defined by ˆu.t/ D P

i;j hu.ai;j /hj ; ki i, if t D P

i;j ki ˝ ai;j ˝ hj . Note that

jjˆujj�� � 1 , sup
�.t/<1

jˆu.t/j � 1

, sup

8

<

:

j
X

i;j

hu.ai;j /hj ; ki ij W
X

j

jjhj jj2

D
X

i

jjki jj2 < 1; jjŒai;j �jjMn.E/ D 1

)

� 1

, sup
˚jjŒu.ai;j /�jjMn.B.H;K// W Œai;j � 2 Mn.E/; jjŒai;j �jjMn.E/

D 1; n � 1g � 1

, jjujjcb � 1

Hence jjˆujj� D jjujjcb and the map u
ˆ7! ˆu is isometric.

We only need to verify now that ˆ is surjective. Suppose ‰ 2 . NK ˝ E ˝ H/�.
Fix a 2 E . If h 2 H; k 2 K and k 7! Nk is an antiunitary map, then consider
the clearly sesquilinear form defined on H � K by Œh; k� D ‰. Nk ˝ a ˝ h/. By
definition of � , we have jŒh; k�j � k‰k � �. Nk ˝ a ˝ h/ � k‰k � kakEkhkkkk, and
hence Œ�; �� is a bounded sesquilinear form and there exists u 2 B.H;K/ such that
‰. Nk ˝ a ˝ h/ D huh; ki. It is a routine application of the definition of � to verify
that u 2 CB.H;K/, thus completing the proof of (2).

As for .3/, it is clear that if t 2 K ˝ E ˝ H , it follows that jjt jjB � jjt jjE—
where we write k � kC D k � k. OK˝C˝H;�/—since the infimum over a larger collection
is smaller. In order to prove the reverse inequality, we shall assume that jjt jjB < 1,
and show that jjt jjE < 1. The assumption ktkB < 1 implies that there exists a
decomposition

t D
m
X

iD1

n
X

jD1
ki ˝ ai;j ˝ hj D .k1; : : : ; km/˝ Œai;j �m�n ˝

0

B

@

h1
:::

hn

1

C

A

with ai;j 2 B such that

�
m
X

iD1
kkik2

� 1
2 � kŒai;j �kMm�n.B/ �

�
n
X

jD1
khj k2

� 1
2
< 1 :
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It follows from the linear algebraic Observation 1.1.12 (discussed at the end of
this proof) that there exist r � m, a linearly independent set fk0

p W 1 � p �
rg of vectors, and a matrix C 2 Mm�r (resp., s � n, a linearly independent set
fhq W 1 � q � sg of vectors, and a matrix D 2 Mn�s) such that kCk � 1, ki D
Pr

pD1 cip k0
p , and

Pm
iD1 kkik2 D Pr

pD1 kk0
pk2 (resp., kDk � 1, hj D Ps

qD1 djqh
0
q ,

and
Pn

jD1 khj k2 D Ps
qD1 kh0

qk2).
Then, note that

t D
m
X

iD1

n
X

jD1
Nki ˝ aij ˝ hj

D
m
X

iD1

n
X

jD1
.

r
X

pD1
Ncip

Nkp/˝ aij ˝ .

s
X

qD1
Ndjqh

0
q/

D
r
X

pD1

s
X

qD1
Nk0
p ˝ a0

pq ˝ h0
q ;

where a0
pq D Pm

iD1
Pn

jD1 Ncipaij
Ndjq, i.e., A0 DW Œa0

pq� D C �AD and hence kA0k �
kAk D 1.

Observe that since fk0
p W 1 � p � rg and f.h0

q W 1 � q � sg are linearly

independent sets, then a0
pq for all p; q are forced to be in E , as t 2 K ˝ E ˝ H !

(Reason: For each p; q take fp 2 .K/� such that fi .k0
i 0/ D ıi;i 0 and gq 2 H� such

that gq.h0
q0/ D ıq;q0 . Then fp ˝ IdE ˝ gq W K ˝ E ˝H ! E and maps t to a0

pq.)

Thus we find—since
Pn

iD1 kkik2 D Pn
jD1 kk0

j k2,Pn
jD1 khjk2 D Pn

jD1 kh0
j k2,

A0 2 Mr�s.E/ and kA0k D kC �ADk � kAk—that

ktkE � .

r
X

pD1
k Nk0

pk2/ 12 � kA0k � .
s
X

qD1
kh0

qk2/
1
2

� .

m
X

iD1
k Nkik2/ 12 � kAk � .

n
X

jD1
khj k2/ 12

< 1 ;

thus establishing that ktkB < 1 ) ktkE � 1; hence, indeed ktkB D ktkE .
To complete the proof of the theorem, note that if u 2 CB.E;B.K//, and if

ˆu 2 . NK˝E˝K/� corresponds to u as in the proof of (2), then it is a consequence
of (3) and the classical Hahn-Banach theorem that there exists a Q̂ 2 . NK˝A˝K/�
which extends, and has the same norm, as ˆu. Again, by (2), there exists a unique
Qu 2 CB.A;B.K// such that Q̂ D ˆQu. It follows from the definitions that Qu extends,
and has the same CB-norm as, u. ut

Now for the “linear algebraic” observation used in the above proof:
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Observation 1.1.12 If h1; � � � ; hn are elements of a Hillbert space H , then there
exist r � n, vectors fh0

j W 1 � j � rg in H and a rectangular matrix C D Œcij� 2
Mn�r such that

1. CC� is an orthogonal projection, and in particular, kŒC �kMn�r � 1;
2. hi D Pr

jD1 Ncijh
0
j for 1 � i � n;

3.
Pn

iD1 khik2 D Pr
jD1 kh0

j k2; and
4. fh0

j W 1 � j � rg is a linearly independent basis for the linear span of fhi W 1 �
i � ng.

Proof Consider the linear operator T W `2n ! H defined by Tei D hi for each
1 � i � n, where of course fei W 1 � i � ng is the standard orthonormal basis for
`2n. Let ffj W 1 � j � rg denote any orthonormal basis forM D ker?.T / and let P
denote the orthogonal projection of `2n ontoM . Set h0

j D Tf j for 1 � j � r . Define
cij D hfj ; eii for 1 � i � n; 1 � j � r and note that the matrix C D Œcij� 2 Mn�r
satisfies

.CC�/ii0 D
r
X

jD1
cij Nci 0j

D
r
X

jD1
hfj ; eiihei 0; fj i

D h
r
X

jD1
hei 0; fj ifj ;

r
X

jD1
hei ; fj ifj i

D hPei 0 ;Pei i
D hPei 0 ; eii

and so, CC� denotes the projection P . Now observe that

hi D Tei D TPei D
X

j

hei ; fj iTf j D
X

j

Ncijh
0
j :

Finally observe that if ffj W r < j � ng is an orthonormal basis for ker.T /,
then,

r
X

jD1
kh0

j k2 D
r
X

jD1
kTf j k2 D kTPk2HS D kT k2HS D

n
X

iD1
kTeik2 D

n
X

iD1
khik2 ;

thereby completing the proof of the observation. ut
Now we discuss completely positive (CP) maps. We begin with a key lemma

relating positivity to norm bounds:
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Lemma 1.1.13 For Hilbert spaces H and K , let a 2 B.H/C, b 2 B.K/C and
x 2 B.K;H/. Then,

1.

�

1 x

x� 1

�

2 B.H ˚K/C , jjxjj � 1; and,

2. more generally

�

a x

x� b

�

2 B.H ˚ K/C , jhxk; hij � phah; hihbk; ki 8 h 2
H; k 2 K .

Proof First note that .2/ ) jjxjj � pjjajj � jjbjj ) .1/
As for (2),

�

a x

x� b

�

� 0 , h
�

a x

x� b

��

h

k

�

;

�

h

k

�

i � 0 8h 2 H; k 2 K

, hah; hi C hbk; ki C 2Rehxk; hi � 0 8h 2 H;k 2 K

, jhxk; hij � hah; hi C hbk; ki
2

8h 2 H; k 2 K

, 8t > 0; jhxk; hij � 1

2
.thah; hi C 1

t
hbk; ki/ 8h 2 H;k 2 K:

.on replacing h by
p
th and k by

kp
t
/

Hence,

jhxk; hij � inf
t>0

1

2

�

thah; hi C 1

t
hbk; ki

�

D
p

hah; hihbk; ki

(using the fact that aCb
2

� p
ab and that aCb

2
D p

ab , a D b). ut
Proposition 1.1.14 Let A be a unital C �-algebra, S � A be an operator system
andK be any Hilbert space. Then

1. 8u 2 CP.S; B.K//; jjujj D jjujjcb D jju.1/jj.
2. If u W S ! B.K/ is linear with u.1/ D 1, then jjujjcb � 1 , u is CP.

Proof (1) u is CP ) u.SC/ � B.K/C ) u.Sh/ � B.K/h ) u.x�/ D
u.x/�8x 2 S (by Cartesian decomposition). Hence by Lemma 1.1.13(1), we see
that

jjxjj � 1 )
�

1 x

x� 1

�

� 0 )
�

u.1/ u.x/
u.x�/ u.1/

�

� 0:
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Then, by Lemma 1.1.13(2),we find that jju.x/jj � jju.1/jj and hence jjujj D
jju.1/jj. Similarly, x 2 Mn.S/ with jjxjj � 1 implies

�

1 x

x� 1

�

� 0 and hence

jjun.x/jj � jjun.1/jj D jjdiagn.u.1/; : : : ; u.1//jj D jju.1/jj:

Hence, jjujjcb D supn kunk � jju.1/jj, i.e., jjujjcb D jju.1/jj, as desired.
(2) The proof of .(/ is an immediate consequence of part (1) of this proposition

and the assumed unitality of u.
We shall prove .)/ using the fact that if � 2 C � for a commutative unital C �-

algebra C (i.e., we may assume C D C.�/ for some compact�), and if �.1/ D 1,
then jj�jj � 1 , � � 0. (It is a fact, which we shall not go into here, that fact is a
special case of (2)!)

We first prove positivity of u, i.e., we need to verify that hu.x/h; hi � 0; 8 x 2
SC; h 2 K . We may assume, without loss of generality that jjhjj D 1. Consider
the commutative unital C �-subalgebraA0 D C �.f1; xg/ of A. The linear functional
�0 defined on S \ A0 by �0.a/ WD hu.a/h; hi is seen to be bounded with k�0k D
�0.1/ D 1. Let � 2 A�

0 be a Hahn-Banach extension of �0. Since k�k D 1 D
�.1/, it follows from the fact cited in the previous paragraph that � � 0. Hence
hu.x/h; hi D �.x/ � 0, and the arbitrariness of h yields the positivity of u.x/.
Thus, indeed u is a positive map.

To prove positivity of un, n > 1, we need to verify that hun.x/h; hi � 0; 8x 2
Mn.S/C; h 2 K.n/. First deduce from the positivity of u that u.a�/ D u.a/� 8a 2
S , from which it follows that un.Sh/ � Mn.B.K//h. Also, note that u.1/ D 1 )
un.1/ D 1. The assumption that kunk D 1 now permits us, exactly as in the case
n D 1, (by now considering the commutative C �-subalgebra An WD C �.f1; xg/ of
Mn.A/) that un is also positive. Thus, indeed u is CP. ut
Corollary 1.1.15 (Arveson’s Extension Theorem—CP Version) If S is an
operator system contained in a C �-algebra A, then any CP map u W S ! B.K/

extends to a CP map Qu W A ! B.K/.

Proof Normalise and assume ku.1/k � 1, whence it follows from the positivity of
u that 0 � u.1/ � 1. Pick any state on A, i.e., a positive (=positivity-preserving
element) of A� such that �.1/ D 1. (The existence of an abundance of states is one
of the very useful consequences of the classical Hahn-Banach Theorem.)

Now, consider the map U W S ˚ S .� A˚ A/ ! B.K/ defined by

U
�
�

x 0

0 y

�
�

D u.x/C �.y/.1 � u.1//

and note that U is unital and completely positive, in view of Lemma 1.1.14(2); and
hence [by Proposition 1.1.14(1)] kU kcb D 1. Appeal to Theorem 1.1.11 to find an
extension QU 2 CB.A ˚ A;B.K// with k QU kcb D 1. As QU inherits the property of
being unital from U , it follows by an application of Proposition 1.1.14(2) that QU is
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CP. Finally, if we define Qu.x/ D QU
�
�

x 0

0 0

�
�

for x 2 A, it is clear that Qu is a CP

extension to A of u. ut
Lemma 1.1.16 Let A be a unital C �-algebra. Then, � 2 A�C ) � 2 CP.A;C/.

Proof We need to show that if Œai;j � 2 Mn.A/C, then we have
P

i;j �.ai;j /hj
Nhi �

0 8h 2 C
n. But that follows since � is positive and

P

i;j hj
Nhiai;j D

0

B

@

h1
:::

hn

1

C

A

�

Œai;j �

0

B

@

h1
:::

hn

1

C

A 2 AC. ut

We now discuss yet another useful 2 � 2 matrix trick; this one also serves as a
conduit from operator spaces to operator systems.

Theorem 1.1.17 SupposeE � B.H/ is a subspace and w W E ! B.K/ is a linear

map. Define S D
	�

�1 x

y� �1

�

W x; y 2 E , �;� 2 Cg � M2.B.H// and W W S !

M2.B.K// byW
�
�

�1 x

y� �1

�
�

D
�

�1 w.x/
w.y/� �1

�

. ThenE is an operator space and

kwkcb � 1 , S is an operator system andW is CP.
(Here the operator space/system structure on E=S is the natural one induced

from the other.)

Proof .(/ First note that if S is an operator system andW is linear and necessarily
unital, then E (identified as the (1,2)-corner of S ) is an operator space, while it
follows from two applications of Lemma 1.1.13(1) that if x 2 E , then jjxjjE �
1 ) X D

�

1 x

x� 1

�

2 SC and so W positive ) W.X/ D
�

1 w.x/
w.x/� 1

�

2
M2.B.K//C ) jjw.x/jjB.K/ � 1.

Now suppose x.n/ 2 Mn.E/ and kx.n/kMn.E/ � 1: Define X.n/ 2 Mn.S/ by

X.n/ij D
�

ıij x.n/ij

.x.n/�/ij ıij

�

, where the Kronecker symbol ıij denotes the ij entry

of the identity matrix. It is not hard to see that there exists a permutation matrix

P 2 M2n—independent of x.n/—such that PX.n/P � D
�

1 x.n/

.x.n//� 1

�

.

Similarly, define y.n/ D wn.x.n// 2 Mn.B.K// and Y.n/ 2 Mn.S/ by

Y.n/ij D
�

ıij y.n/ij
.y.n/�/ij ıij

�

and deduce that withP as above, we have PY.n/P � D
�

1 y.n/

.y.n//� 1

�

.

It follows from the definitions that

.y.n/�/ij D .wn.x.n//
�/ij



16 1 Operator Spaces

D .w.x.n/ji/
�

D .wn.x.n/
�//ij

and hence, Wn.X.n// D Y.n/. Now,

kx.n/k � 1 ) PX.n/P � � 0

) X.n/ � 0

) Y.n/ D Wn.X.n// � 0

) PY.n/P � � 0

) kynk � 1

so kwnk � 1.
.)/ It is clear that S is naturally an operator system if E is an operator space.

We first prove positivity of W . (That of the Wn’s is proved similarly.)

We need to show that A D
�

� b

c� �

�

2 SC ) W.A/ � 0. Since A � 0, we have

b D c 2 E and �;� � 0. Also, A C �1 � 0 and since, by the definition of W , it
is seen that W.A/ D lim�#0 W.AC �1/, we may assume without loss of generality
that �;� > 0.

Then, A D
�

�1 b

b� �1

�

D
�p

� 0

0
p
�

��

1 x

x� 1

��p
� 0

0
p
�

�

, where x D b=
p

��.

Hence

�

�1 b

b� �1

�

� 0 ,
�

1 x

x� 1

�

� 0

, jjxjj � 1

) kw.x/k � 1

)
�

1 w.x/
w.x�/ 1

�

� 0

) W.A/ D
�p

� 0

0
p
�

��

1 w.x/
w.x�/ 1

��p
� 0

0
p
�

�

� 0:

Arguing with the permutation as in the proof of the reverse implication, and
proceeding as above (in the n D 1 case), we find that kwnk � 1 ) Wn is positive.

ut
Now we are ready to prove the Fundamental Factorisation Theorem 1.1.5.

Proof Normalise and assume kukcb � 1. Let the operator system S and U W S !
M2.B.K// D B.K.2// be the (unital) CP map associated to the operator space
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E and the completely contractive map u W E ! B.K/ (like the w $ W ) as in
Theorem 1.1.17. As E is a subset of the C �-algebra A by assumption, we find that
S � M2.A/

Then by the CP version (Corollary 1.1.15) of Arveson’s extension theorem, we
can extend U to a CP map QU W M2.A/ ! B.K.2// .

As M2.A/ is a unital C �-algebra and QU is a unital CP map, we may conclude
from Stinespring’s theorem that there exists a representation  W M2.A/ ! B.H/

and an isometry T W K ˚K ! H such that QU . Qx/ D T �. Qx/T for all Qx 2 M2.A/.
Hence,

�

0 u.x/
0 0

�

D U

�

0 x

0 0

�

D QU
�

0 x

0 0

�

D T �
�
�

0 x

0 0

�
�

T

D T �
�
�

x 0

0 0

��

0 1

0 0

�
�

T D T ��.x/T 0;

where T 0 D 
�
�

0 1

0 0

�
�

T and �.x/ D 
�
�

x 0

0 0

�
�

. Now, consider the pro-

jection P WD 
�
�

1 0

0 0

�
�

and define OH D P.H/;Vk D PT.k; 0/;Wk D


�
�

0 1

0 0

�
�

T .k; 0/, and note that P commutes with 
�
�

x 0

0 0

�
�

for each x 2 A,

so that the equation �.x/ D 
�
�

x 0

0 0

�
�

OH

does define a (unital) representation of

A on OH ; and we finally see that V;W W K ! OH and indeed

u.x/ D V ��.x/W for all x 2 E ; (1.1)

with kV k; kW k � 1, as desired.
In the converse direction, if u admits the factorisation (1.1), then it is seen that

also

un.Œaij�/ D

0

B

@

V �
:::

V �

1

C

A�n.Œaij�/.W; : : : ;W /

and as �n is as much of a representation (and hence contractive) as � , it is seen that
kukcb � 1.

The non-trivial implication in the final assertion of the theorem is a consequence
of Arveson’s extension Theorem 1.1.15 and Stinespring’s theorem. ut
Remark 1.1.18 For V D W; u.x/ D V ��.x/V ) u is CP (since a representation
is obviously CP).
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Corollary 1.1.19 Any u 2 CB.S; B.K// can be decomposed as u D u1 � u2 C
i.u3 � u4/, with uj 2 CP.S; B.K//; j D 1; 2; 3; 4.

Proof The proof is a consequence of the fundamental factorisation, the polarisation
identity and Remark 1.1.18. ut

1.2 More on CB and CP Maps

Theorem 1.2.1 (Kraus Decomposition) A linear map u W Mn ! Mm is CP if and
only if there exists a

family fVp W 1 � p � N g � Mn�m with N � nm
such that u.a/ D PN

pD1 V �
p aVp for all a 2 Mn.

Proof Suppose u is CP. Then, by the fundamental factorization Theorem 1.1.5, there
is a Hilbert space OH , a �-representation � W Mn ! B. OH/ and a map V W `m2 ! OH
such that u.a/ D V ��.a/V . It is a basic fact that for any representation of Mn, as
above, there exists a Hilbert spaceH such that OH D .Š/`n2 ˝H and �.a/ D a˝1.

Further, it is also true that there exists a subspace H1 � H with dimH1 � mn
such that V.`m2 / � `n2 ˝H1.

(Reason: If fej W 1 � j � mg and fei W 1 � i � ng are orthonormal bases for `m2
and `n2 , respectively, we see that there must exist operators Ti W `m2 ! H such that

Vej D
n
X

iD1
ei ˝ Tiej 81 � j � n :

Clearly, then, if H1 D spanfTiej W 1 � j � m; 1 � i � ng, then dim H1 � nm and
V.`m2 / � `n2 ˝H1.)

Therefore, it follows that if fep; 1 � p � N g is an orthonormal basis for H1,
then N � nm and there exist Vp W `m2 ! `n2; 1 � p � N such that V.�/ D
P

p Vp.�/˝ ep for all � 2 `m2 .
Finally, it is seen that for all a 2 Mn, �; � 2 `m2 , we have

hu.a/�; �i D h.a˝ 1/
�
X

p

Vp.�/˝ ep

�

;
X

q

Vq.�/˝ eqi

D
X

p

haVp.�/; Vp.�/i

D h
X

p

V �
p aVp.�/; �i

Conversely, it is not hard to see that any map admitting a decomposition of the
given form is necessarily CP. ut
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The above result may be regarded as one of the first links between Operator
Space Theory and Quantum Information Theory.

Definition 1.2.2 If a linear map u W Mn ! Mm is CP and preserves the trace, then
it is called a quantum channel.

Remark 1.2.3 In the set up of Theorem 1.2.1, u preserves the trace if and only if
P

p VpV
�
p D I ; while it is identity-preserving if and only if

P

p V
�
p Vp D I .

Theorem 1.2.4 (Choi) The following conditions on a linear map u W Mn ! B.K/

are equivalent:

1. u is CP.
2. u is n-positive.
3. Œu.eij/� 2 Mn.B.K//C, where feij W 1 � i; j � ng is the canonical system of

matrix units for Mn.

Proof .3/ H) .1/. Œu.eij/� � 0 ) Œu.eij/� D X�X for some X D Œxij� 2
Mn.B.K//. So, u.eij/ D P

k x
�
kixkj. In particular,

u.a/ D
X

ij

aiju.eij/ D
X

i;j;k

x�
kiaijxkj D

X

k

.
X

ij

x�
kiaijxkj/

for all a D Œaij� 2 Mn.
Define uk.a/ to be the element of Mn.B.K// with .i; j /th entry equal to

P

ij x
�
kiaijxkj. Then, clearly,

uk.a/ D �

x�
k1 x

�
k2 � � � x�

kn

�

0

B

B

@

a11 a12 � � � a1n
a21 a22 � � � a2n
� � �
an1 an2 � � � ann

1

C

C

A

0

B

B

@

xk1
xk2
� � �
xkn

1

C

C

A

Hence u has the form u.a/ D Pn
kD1 V �

k aVk , where Vk W K ! `n2 ˝K is given
by Vk.�/ D P

j ej ˝xkj.�/ with feig denoting the standard o.n.b. of `n2 . The desired
implication follows now from Theorem 1.2.1.

The implication .1/ H) .2/ is trivial while .2/ H) .3/ is a consequence of
the fact that Œeij� 2 .Mn/C. ut
Lemma 1.2.5 (Roger Smith) Fix N � 1 (resp., a compact Hausdorff space �)
and an operator space E . Then every bounded linear map u W E ! MN (resp.,
u W E ! C.�;MN/) is CB with jjujjcb D jjuN W Mn.E/ ! MN.MN/jj (resp.,
jjujjcb D jjuN W Mn.E/ ! MN.C.�;MN//jj). In particular, every bounded linear
map u W E ! C.�/ is CB with jjujjcb D jjujj.
Proof Suppose first that u 2 B.E;Mn.C//. To prove that kukcb D kuN k, it clearly
suffices to verify that kunk � kuN k 8n � N . We need to verify that if a D Œaij� 2
Mn.E/ and x1; � � � ; xn; y1; � � � ; yn 2 C

N satisfy kakMn.E/ � 1 and
Pn

iD1 kxik2 D
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Pn
iD1 kyik2 D 1, then

j
n
X

i;jD1
hu.aij/yj ; xi ij � kuN k :

For this, appeal first to Observation 1.1.12 to find ˛; ˇ 2 Mn�N .C/ and
x0
1; � � � ; x0

N ; y
0
1; � � � ; y0

N 2 C
N such that

1.
PN

lD1 kx0
lk2 D PN

jD1 ky0
j k2 D 1;

2. xi D PN
lD1 ˛ilx

0
l and yj D PN

kD1 ˇjky
0
k for 1 � i; j � n, and

3. k˛kMn�N .C/; kˇkMn�N .C/ � 1

Deduce, then, that

j
n
X

i;jD1
hu.aij/yj ; xi ij D j

n
X

i;jD1

N
X

k;lD1
hu.aij/ˇjky

0
k; ˛ilx

0
l ij

D j
N
X

k;lD1
hu.˛�aˇ/lky0

k; x
0
l ij

� kuN .˛
�aˇ/k

� kuN k � k˛�aˇk
� kuN k ;

as desired.
Next, suppose u 2 B.E;C.�IMN.C//. Let us introduce the notation� 3 ! 7!

�! 2 E� where �!.x/ D u.x/.!/, and note that

k�!k D supfj�!.x/j W kxk � 1g
D supfju.x/.!/j W kxk � 1g
� supfku.x/k W kxk � 1g
D kuk :

Now conclude that if Œaij� 2 Mn.E/ and u.aij/ D fij, then

kun.Œaij�/k D sup
!2�

kŒfij.!/�k

D sup
!2�

kŒ�!.aij/�k

D sup
!2�

k.�!/n.Œaij�/k
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� sup
!2�

k.�!/nk � kŒaij�kMn.E/

D sup
!2�

k�!k � kŒaij�kMn.E/

� kuk � kŒaij�kMn.E/ ;

where we have used the fact that k�!kcb D k�!k as �! 2 B.E;C/, and we hence
find that kukcb � kuk. ut
Proposition 1.2.6 Let E � B.H/ and F � B.K/ be operator spaces and u 2
B.E;F /. Then jjujjcb D jjujj in the following cases:

1. Rank .u/ � 1.
2. C �.F / is commutative.
3. E D F D R or E D F D C .

Proof 1. If 0 ¤ f 2 u.E/, then, clearly there exists � 2 E� such that u.e/ D
�.e/f 8e 2 E . Deduce from the caseN D 1 of Roger Smith’s Lemma 1.2.5 that
k�kcb D k�k, and hence if a D Œaij� 2 Mn.E/, then kun.a/k D kŒ�.aij/f �k �
k�n.a/k � kf k � k�k � kak � kf k D kuk � kak and hence indeed kukcb D kuk.

2. This is an immediate consequence of Roger Smith’s Lemma 1.2.5.
3. Let us discuss the case of C WD spanfei1 W i � 1g � B.`2/ which clearly admits

the identification C Š `2 Š B.C; `2/ thus:

C.�/ D
1
X

iD1
�iei1 $ � D

1
X

iD1
�i ei $ ��.˛/ D ˛�:

Observe now that if u 2 B.C / corresponds as above to u0 2 B.`2/ and to
u00 2 B.B.C; `2//, then

u.C.�// D C.u0�/ and u00.��/ D �u0� ;

and hence it follows that kukcb D ku00kcb D ku0k D kuk, where we have used
the obvious fact that

ku00
n.Œ��ij �k D kŒ�u0�ij �k D k

2

6

6

6

4

u00 0 � � � 0
0 u00 � � � 0
:::
:::
: : :

:::

0 0 � � � u00

3

7

7

7

5

Œ��ij �k � ku00k � kŒ��ij �k :

The case of R is proved similarly.
Note that R and C also have Hilbert space structures with o.n.b.’s fe1j g and

fei1g respectively. ut
Proposition 1.2.7 For all u 2 CB.R; C / (resp., u 2 CB.C;R/, jjujjcb D jjujjHS.
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Proof First consider u 2 CB.R; C /. (The case of u 2 CB.C;R/ is treated
analogously.) Notice that if

xn D

0

B

B

B

@

e11 0 � � � 0
e12 0 � � � 0
:::
:::
:::
:::

e1n 0 � � � 0

1

C

C

C

A

2 Mn.R/ ;

then kxnk D 1, and hence kun.xn/kMn � kukcb.
Hence,

kukcb � kun.xn/k D k

0

B

B

B

@

u.e11/ 0 � � � 0
u.e12/ 0 � � � 0
:::

:::
:::
:::

u.e1n/ 0 � � � 0

1

C

C

C

A

k D k
n
X

jD1
u.e�

1j /u.e1j /k
1
2 :

So, if u.e1j / D P1
iD1 uijei1, then

k
n
X

jD1
u.e�

1j /u.e1j /k
1
2 D k

n
X

jD1

1
X

i;kD1
.uijei1/

�.ukjek1/k 1
2

D k
n
X

jD1

1
X

i;kD1
uijukje1iek1k 1

2

D k
n
X

jD1

1
X

i;kD1
uijukjıike11k 1

2

D .

n
X

jD1

1
X

kD1
jukjj2/ 12 :

Letting n ! 1, we see that kukHS � kukcb.
For the reverse inequality, since the linear span of the e1j ’s is dense in R, deduce

that fPm
jD1 xj ˝ e1j W m 2 N; x1; � � � ; xm 2 Mn.C/g is dense in Mn.C/ ˝ R D

Mn.R/, so it suffices to verify that

k
m
X

jD1
xj ˝ u.e1j /kMn.C/ � kukHS � k

m
X

jD1
xj ˝ e1jkMn.R/

AsR and C are both isometric to Hilbert space, u is in particular a bounded oper-
ator between Hilbert spaces, and its matrix with respect to the natural orthonormal



1.2 More on CB and CP Maps 23

bases for domain and range is ..uij// as above. And we see that

k
m
X

jD1
xj ˝ u.e1j /kMn.C/

D k
m
X

jD1

 

xj ˝
1
X

iD1
uijei1

!

kMn.C/

D k
1
X

iD1

0

@

m
X

jD1
uijxj

1

A˝ ei1kMn.C/

D k
0

@

1
X

iD1

0

@

m
X

jD1
uijxj ˝ ei1

1

A

1

A

�0

@

1
X

kD1

0

@

m
X

jD1
ukjxj

1

A˝ ek1

1

A k 1
2

Mn.C /

D k
0

@

1
X

iD1

0

@

m
X

jD1
uijx

�
j

1

A˝ e1i

1

A

0

@

1
X

kD1

0

@

m
X

jD1
ukjxj

1

A˝ ek1

1

A k 1
2

Mn.C /

D k
1
X

iD1

0

@

m
X

jD1
uijx

�
j

1

A

0

@

m
X

jD1
uijxj

1

A k 1
2

Mn.C/

�
0

@

1
X

iD1
k

m
X

jD1
uijxj k2

1

A

1
2

:

On the other hand,

k
m
X

jD1
uijxj k D k

2

6

6

6

4

x1 � � � xm
0 � � � 0
:::
:::
:::

0 � � � 0

3

7

7

7

5

2

6

6

6

4

ui1 0 � � � 0
ui2 0 � � � 0
:::
:::
:::
:::

ui2 0 � � � 0

3

7

7

7

5

k

� k

2

6

6

6

4

x1 � � � xm
0 � � � 0
:::
:::
:::

0 � � � 0

3

7

7

7

5

k � k

2

6

6

6

4

ui1 0 � � � 0
ui2 0 � � � 0
:::
:::
:::
:::

ui2 0 � � � 0

3

7

7

7

5

k

D k
m
X

jD1
xj x

�
j k 1

2

0

@

m
X

jD1
juijj2

1

A

1
2

;
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and hence we see that

k
m
X

jD1
xj ˝ u.e1j /kMn.C/ �

0

@

1
X

iD1
k

m
X

jD1
xj x

�
j k

m
X

jD1
juijj2

1

A

1
2

�
0

@k
m
X

jD1
xj x

�
j k

1
X

i;jD1
juijj2

1

A

1
2

D k
m
X

jD1
xj ˝ e1j kMn.R/kukHS :

ut
Definition 1.2.8 Let E and F be operator spaces. A linear map u W E ! F is said
to be a

1. complete isomorphism if u is a linear isomorphism such that u and u�1 are both
CB.

2. complete contraction if u is CB with jjujjcb � 1.
3. complete isometry if un is an isometry for all n � 1.

Corollary 1.2.9 R and C are not isomorphic to each other as operator spaces.

Proof Suppose u W R ! C and u�1 W C ! R are both CB maps. Then u and u�1
are Hilbert Schmidt and hence compact on an infinite dimensional Hilbert space, a
contradiction. ut

It is a fact that even for n-dimensional row and column spaces Rn and Cn, we
have

inffjjujjcbjju�1jjcb W u 2 CB.Rn; Cn/ invertibleg D n:

This is “worst possible” in view of the fact that for any two n-dimensional operator
spaces E and F ,

inffjjujjcbjju�1jjcb W u 2 CB.F; F / invertibleg � n:

Proposition 1.2.10 Let A be a commutative C �-algebra and u 2 B.A;B.K//. If u
is positive, then u is completely positive.

Proof We first indicate the proof for finite-dimensionalA.
Thus, suppose dimA D n. Then

A ' `1
n D

8

ˆ
<

ˆ
:

0

B

@

�1 � � � 0
:::
: : :

:::

0 � � � �n

1

C

A W �i 2 C

9

>
=

>
;

:
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Now u W `1
n ! B.K/ is positive if and only if aj WD u.ej / � 0;8 j . Finally, we

get

u.x/ D u.
X

j

xj ej / 
 V �xV 8x 2 `1
n ;

where V D

2

6

6

4

a
1
2

1
:::

a
1
2
n

3

7

7

5

and hence u is CP.

We now give a sketch of the proof in the general case. It suffices to show that ifX
is a compact Hausdorff space, and � W C.X/ ! B is a positive map into a unitalC �-
algebra B , then � is n-positive for an arbitrarily fixed n. The first thing to observe
is that there exist natural identifications of Mn.C.X// Š C.X IMn.C// with C �-
completions of the algebraic tensor productC.X/˝Mn.C/ whereby the elementary
tensor f ˝ T corresponding to f .�/T ; and further �n D � ˝ IMn.C/ which maps
elementary tensors f ˝ T , with f; T � 0 to the element �.f /˝ T of B ˝Mn.C/

which is positive, being the product of two commuting positive elements. Finally,
an easy partition of identity argument shows that if P.�/ 2 C.X IMn.C/ is positive,
thenP is approximable by elements of the form

P

i fi˝Ti , with fi 2 C.X/C; Ti 2
Mn.C/C, so we may conclude that indeed �n.P / � 0. ut

The corresponding fact for CB maps is false: i.e., if u W `1
n ! B.K/ and

u.ej / D aj (with fej W 1 � j � ng denoting the standard basis of `1
n ), then

jjujj.D supfjjPk zj aj jj W jzj j � 1; zj 2 Cg ¤ jjujjcb—it turns out that

jjujjcb D inffjj
X

j

xj x
�
j jj1=2jj

X

j

y�
j yj jj1=2 W aj D xj yj ; xj ; yj 2 B.K/g:

Proposition 1.2.11 (Schur Multipliers)

1. Let 'ij 2 C; 1 � i; j � n and consider u' W Mn ! Mn given by Œaij� 7! Œaij'ij�.
Then,

jju' jjcb D inffsup
i

jjxi jjH sup
j

jjyj jjH W 'ij D hxi ; yj iH ; xi ; yj 2 H g

where the infimum runs over all such possible Hilbert spaces H and vectors
xi ; yj . Also, u' is CP if and only if Œ'ij� � 0.

2. Let G be a discrete group and C �
� .G/ denote the norm-closure in B.`2.G// of

f�g W g 2 Gg, its “reduced group C �-algebra” where � W G ! B.`2.G// is the
left regular representation ofG given by �g.�h/ D �gh, where f�g W g 2 Gg is the
canonical orthonormal basis of `2.G/. Let ' W G ! C be any function. Consider
T' W spanf�g W g 2 Gg ! B.`2.G// given by T'.

P

g cg�g/ D P

g cg'.g/�g .



26 1 Operator Spaces

Then,

jjT'jjcb D inffjjxjj1jjyjj1 W x; y 2 `1.G;H/ such that hx.t/; y.s/iH
D '.st�1/;8 s; t 2 Gg

Proof (1) Suppose �ij D hxi ; yj iH ; xi ; yj 2 H . If .aij/ 2 .Mn/, we can—
by polar decomposition and diagonalisation of positive operators—find vectors
ui ; vj in some Hilbert space K such that aij D hui ; vj iK and k.aij/k D
.maxi kuik/.maxj kvj k/. Then it follows that

�ijaij D hxi ˝ ui ; yj ˝ vj iH˝K

and hence,

k.�ijaij//k D .max
i

kxik/.max
j

kyj k/.max
i

kuik/.max
j

kvjk/

and we see that

jju'jjcb � inffsup
i

jjxi jjH sup
j

jjyj jjH W 'ij D hxi ; yj iH; xi ; yj 2 H g

Conversely, by the fundamental factorisation Theorem 1.1.5, we may find a
representation � W Mn ! B.K/ and operators V;W 2 B.`2n;K/ for some Hilbert
space K , with kV k � kW k D ku'kcb, such that

u'.x/ D V ��.x/W :

Then,

j�ijj D jhu�.eij/ej ; ei ij
D jh�.eij/Wej ;Vei ij
D jh�.ei1/�.e1j /Wej ;Vei ij
D jh�.e1j /Wej ; �.e1i /Vei ij
� ku'kcb :

(2) See Theorem 8.3 in [4]. ut
It is true, although a bit non-trivial, that jju' jjcb D jju' jj, while, however,

jjT'jjcb ¤ jjT' jj.
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1.3 Ruan’s Theorem and Its Applications

1.3.1 Ruan’s Theorem

Let us call a complex vector space E an abstract operator space if it comes
equipped with a family of norms jj � jjn on Mn.E/; n � 1,which satisfy the
properties:

1.

�

�

�

�




x 0

0 y

��

�

�

�

mCn
D max .jjxjjn; jjyjjm/ for all x 2 Mn.E/, y 2 Mm.E/;

2. jjaxbjjn � jjajjMn�mjjxjjmjjbjjMm�n for all a; b� 2 Mn�m, x 2 Mm.E/.

In contrast, any vector subspace of a B.H/ is called a concrete operator space
(with respect to the norms k � � � kn D k � kMn.B.H//).

The equivalence of these two notions is the content of Ruan’s theorem
established in his PhD Thesis [5].

Theorem 1.3.1 (Ruan) Any abstract operator space is completely isometrically
isomorphic to a concrete operator space; i.e., for any abstract operator space
.E; fk � kn W n � 1g/, there is a Hilbert space H and a linear map J W E ! B.H/

such that, for each n � 1 and x D Œxij� 2 Mn.E/, jjxjjn D kŒJ.xij/�kMn.B.H//.

The proof of Ruan’s theorem bears a strong similarity to the proof of Gelfand
Naimark’s Theorem that an abstract C �-algebra is isomorphic to a norm-closed
(concrete) �-subalgebra of B.H/ for some Hilbert space H .

Proof ((Ruan’s) Theorem 1.3.1) The proof of this theorem mainly depends on
proving the following:

Claim For each n � 1 and x 2 Mn.E/ with jjxjjn D 1, there is a Hilbert space
Hn;x and an operator Jn;x W E ! B.Hn;x/ satisfying

1. jjŒJn;x.xij/�jjn D 1

2. 8m, 8y D Œyij� 2 Mm.E/, jjŒJn;x.yij/�kjm � jjyjjm.

Indeed, once we have the above, taking H WD ˚n;xHn;x and J WD ˚n;xJn;x W
E ! B.H/ we observe that J satisfies the properties stated in the theorem.

To prove the claim, fix n � 1 and an x 2 Mn.E/ with kxkn D 1. Observe first
that .Mk.E/; jj � jjk/ embeds (as the north-east corner, with 0’s on the .n C 1/th
row and column) isometrically in .MkC1.E/; jj � jjkC1/ for all k � 1 (thanks to
condition (2) in the requirements for an abstract operator space). Thus, there exists
a ' 2 .[k�1Mk.E//

� satisfying jj'jj D 1 and '.x/ D 1. Then, 8 y 2 Mm.E/ with
jjyjjm � 1 and 8 a; b 2 Mm�n; n � 1, we have j'.a�yb/j � jjajjMm�njjbjjMm�n.

We see, in particular that for each m;N; n � 1, we have 8 aj ; bj 2 Mm�n,
8 yj 2 Mm.E/ with jjyj jjm � 1, 1 � j � N , we have

j
X

j

'.a�
j yj bj /j � k

X

j

a�
j aj k1=2 k

X

j

b�
j bjk1=2: (1.2)
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This is true because taking a D

2

6

4

a1
:::

aN

3

7

5, y to be the diagonal matrix

y D y1 ˚ � � � ˚ yN 2 MN.Mm.E// and b D

2

6

4

b1
:::

bN

3

7

5, we clearly have

j'.a�yb/j � jjajjMmN�n jjyjjN jjbjjMmN�n , which is precisely the above inequality
since jjŒb1; : : : ; bN �T jjMmN�n D jjPj b

�
j bj jj1=2.

In fact, by some suitable convexity and Hahn Banach separation arguments, the
inequality in (1.2) can be improved (see [5]) to: There exist states f1; f2 on B.`2/
such that

j
X

j

'.a�
j yj bj /j � .

X

j

f1.a
�
j aj //

1=2.
X

j

f2.b
�
j bj //

1=2 (1.3)

for all N , aj ; bj , yj as above.
In particular, 8 a; b 2 M1�n; e 2 E with kek � 1, we have

j'.a�Œe�b/j � f1.a
�a/1=2f2.b�b/1=2 D jj OajjH1 jj ObjjH2;

where Hi WD L2.B.`2/; fi /; i D 1; 2 and Oa represents a as an element of H1 and
likewise Ob.

Consider v W E ! B.H2;H1/ given by hv.e/. Ob/; OaiH1 D '.a�Œe�b/. Clearly
jjv.e/jj � jjejj for all e 2 E and hence jjvjj � 1. Also, for y D Œyij� 2 Mm.E/,

jjvm.y/jj D supfj
X

j

hv.yij/ Obj ; Oaj ji W
X

j

jj Obj jj2 � 1;
X

j

jj Oaj jj2 � j1g

D supfj'
0

@Œa�
1 ; : : : ; a

�
m� y

2

4

b1
: : :

bm

3

5

1

A j W
X

j

jj Obj jj2 � 1;
X

j

jj Oaj jj2j � 1g

� jjyjjm:

LetHn;x D H1˚H2 and Jn;x W E ! B.Hn;x/ be given by Jn;x.e/ D



0 v.e/

0 0

�

.

We find that

1 D '.x/ D '.Œxij�/ D
X

ij

hv.xij/ce1j ;ce1ii D hvn.x/
2

4

ce11
: : :

ce1n

3

5 ;

2

4

ce11
: : :

ce1n

3

5i;
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where feij g is the system of matrix units inMn. Since
P

j kce1jk2Hi D P

j fi .ejj / �
fi .1/ D 1, we find that

1 D j'.x/j � kvn.x/k �
0

@

X

j

kce1j k2H1

1

A

1=2

�
0

@

X

j

kce1jk2H2

1

A

1=2

� kvn.x/k:

Thus, kŒJn;x.xij /�k D 1 and the proof is complete. ut

1.3.2 Some Applications and Some Basic Facts

• CB.E; F /. LetE and F be operator spaces andG WD CB.E; F /. For Œxij� D x 2
Mn.G/, let jjxjjn WD jj Qx W E ! Mn.F /jjCB.E;Mn.F //, where Qx.e/ WD Œxij.e/�,
e 2 E . Routine checking shows that the above sequence of norms satisfies
Ruan’s axioms and, hence, by Theorem 1.3.1, CB.E; F / admits an operator
space structure.

• Dual operator space. In particular, the dual space E� D CB.E;C/ D B.E;C/

also inherits an operator space structure. We now see that this operator space
structure on E� is the appropriate one, in the sense that many properties of
Banach dual space structure carry over to this theory.

• Adjoint operator. For u 2 CB.E; F /, its usual adjoint u� is also a CB map from
F � ! E� with jju�jjcb D jjujjcb.

• Quotient spaces. Let E2 � E1 � B.H/ be operator spaces. For x D Œxij� 2
Mn.E1=E2/, set jjxjjn D jjqn. Ox/jjMn.E1/=Mn.E2/, where xij D q Oxij for Oxij 2 E1
and Ox D Œ Oxij� and q W E1 ! E1=E2 is the canonical quotient map.

The above sequence of norms are seen to be well-defined and to satisfy Ruan’s
axioms and thus equip the quotient space E1=E2 with the structure of an operator
space.

Note there is also an obvious operator space structure on E1=E2 via the
embeddingE1=E2 � B.H/=E2; but this is not consistent with other properties.

Analogy with Banach Space Properties

• With E1 and E2 as above,

.E1=E2/
� ' E?

2 and E�
2 ' E�

1 =E
?
2

as operator spaces, where of course E?
2 � E�

1 is defined as E?
2 D ff 2 E�

1 W
E2 � ker.f /g.

• The row and column operator spaces are dual to each other, i.e., R� ' C and
C � ' R as operator spaces.

• The canonical embeddingE � E�� is a complete isometry—see [2].
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1.3.3 min and max Operator Space Structures on a Banach
Space

Given a Banach space X , two operator space structures attract special attention,
which are described by the adjectives max and min. These structures are charac-
terised as follows.

Proposition 1.3.2 There exist operator space structures max.X/ and min.X/ on a
Banach space X such that max.X/ and min.X/ are isometric to X and for every
operator space Z,

1. CB.max.X/; Z/ D B.X;Z/.
2. CB.Z; min.X// D B.Z;X/.

Moreover, .1/ and .2/ characterise max.X/ and min.X/, respectively.

Proof We discuss only the existence of max.X/ and its property .1/. For x 2
Mn.X/, set

jjxjjMn.max.X// D inffjjajjMn�N sup
j�N

jjDj jjX jjbjjMN�n W a�; b 2 MN�n;

Dj 2 X;N � 1g

where the infimum runs over all possible decompositionsxD a

2

6

6

6

4

D1 0 � � � 0

0 D2 � � � 0
:::

:::
: : :

:::

0 0 � � � DN

3

7

7

7

5

b.

This sequence of norms satisfies Ruan’s axioms and hence we have an oper-
ator space structure max.X/ on X . Now, let u 2 B.X;Z/ for an operator
space Z and x 2 Mn.max.X//. Assume that jjxjjMn.max.X// < 1. Then there
exists N � 1, a�; b 2 MN�n;Dj 2 X , 1 � j � N such that x D

a

2

6

6

6

4

D1 0 � � � 0

0 D2 � � � 0
:::

:::
: : :

:::

0 0 � � � DN

3

7

7

7

5

b and jjajjMn�N supj�N jjDj jjX jjbjjMN�n < 1. Then note that

un.x/ D a

2

6

6

6

4

u.D1/ 0 � � � 0

0 .D2/ � � � 0
:::

:::
: : :

:::

0 0 � � � u.DN /

3

7

7

7

5

b� and that

jjun.x/jjMn.max.X// � jjujj jjajjMn�N sup
j�N

jjDj jjX jjbjjMN�n � jjujj:

ut
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• .min.X//� ' max.X�/ and .max.X//� ' min.X�/ as operator spaces—see
[1, 2].

1.4 Tensor Products of Operator Spaces

We will be mainly interested in the injective and projective tensor products of
operator spaces.

1.4.1 Injective Tensor Product

Let Ei � B.Hi /, i D 1; 2 be operator spaces. Then we have a natural embedding
E1 ˝ E2 � B.H1 ˝H2/ and the minimal tensor product of E1 and E2 is the space
E1 ˝min E2 WD E1 ˝ E2 � B.H1 ˝H2/.

The min tensor product is independent of the embeddings Ei � B.Hi /, i D
1; 2; it depends only upon the sequence of norms on Ei , i D 1; 2. We see this as
follows: For simplicity, assume H1 D H2 D `2 and let t D Pr

kD1 ak ˝ bk 2
E1 ˝ E2. Consider the natural embeddings `2n � `2, n � 1—with respect to some
choice f�n W n � 1g of orthonormal basis for `2 and the corresponding orthogonal
projections Pn W H1 ˝ H2 ! `2n ˝ H2. Then [n`2n ˝H2 D H1 ˝ H2 and so
kxk D supn kPnxPnk 8x 2 B.H1 ˝H2/; and hence,

jjt jjmin D sup
n

jjPn tj
`2n˝H2

jjB.`2n˝H2/:

Suppose hak�j ; �i i D ak.i; j /. Then it is not hard to see that Pn tj
`2n˝H2

may

be identified with the matrix tn 2 Mn.E2/ given by tn.i; j / D P

k.ak/ijbk . This
shows that jjt jjmin D supnjjtnjjMn.E2/, and hence that the operator space structure
of E1 ˝min E2 depends only on the operator space structure of E2 and not on the
embedding E2 � B.H2/. In an entirely similar manner, it can be seen that the
operator space structure of E1˝minE2 depends only on the operator space structure
of E1 and not on the embeddingE1 � B.H1/.

More generally, the same holds for jjŒtij�jjMn.B.H1˝H2/ and hence jj � jjMn.E1˝E2/
depends only on the operator space structures of theEj ’s and not on the embeddings
Ej � B.Hj /.

Proposition 1.4.1 Let u W E ! F be a CB map between two operator spaces and
G be any operator space. Let uG W G ˝min E ! G ˝min F be the extension of the
map idG ˝ u. Then jjujjcb D supG jjuGjj.
Proof For this, first observe that if G D Mn, then Mn D B.`2n/ ) Mn ˝min E D
Mn.E/ and that kukMn D kunk. (In fact the identification Mn ˝min E D Mn.E/ is
not only isometric, it is even completely isometric.) It follows—by allowing G to
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range over fMn W n 2 Ng—that

supfkuGk W G an operator space g � kukcb :

The same argument that yielded the conclusionMn˝minE D Mn.E/ is also seen
to show that if E � B.K/, then B.H/ ˝min E D .B.H/˝ E/ � B.H ˝K/ (as
a Banach space); assuming, as before, that H D `2, and choosing the projections
Pn D P`2n ˝K , we may easily deduce from the strong convergence of Pn to IH˝K
that kuB.H/k D kukcb. Finally, we may conclude that if G � B.H/, then,G˝minE

sits isometrically as a subspace of B.H/˝min E , and that

kuGk D kuB.H/jG˝minEk
� kuB.H/k
D kukcb ;

thereby establishing the desired equality,G was arbitrary. ut
Remark 1.4.2 1. For two operator spacesE and F with F being finite dimensional,

we have CB.E; F / ' E� ˝min F as operator spaces. This is analogous to the
fact that B.E;F / ' E� ˝_ F isometrically for two Banach spaces E and F .

2. min tensor product is an associative and commutative tensor product.
3. For operator spaces Ei , Fi , i D 1; 2 and uj 2 CB.Ej ; Fj /, the map u1 ˝ u2

extends to a CB map u1˝u2 W E1˝minE2 ! F1˝minF2 such that jju1˝u2jjcb D
jju1jjcbjju2jjcb. Indeed, one easily shows that the composition of the extensions
idE1 ˝u2 2 CB.E1˝minE2;E1˝minF2/ and u1˝idF2 2 CB.E1˝minF2;E2˝min

F2/ give us a CB map u1˝ u2 D .u1˝ idF2/.idE1 ˝ u2/ with required properties.
4. Another nice consequence of Proposition 1.4.1 and above observation about

tensor products of CB maps is that the min tensor product is injective, i.e., if
E2 � E1 is an inclusion of operator spaces and G is any operator space, then the
inclusion E2 ˝min G � E1 ˝min G is a completely isometry.

1.4.2 Projective Tensor Product

Let Ei � B.Hi / be operator spaces. For t D Œtij� 2 Mn.E1 ˝E2/, set

jjt jjn D inffjjajjM
n�N2

jjx1jjMN .E1/jjx2jjMN .E2/jjbjjM
N2�n

W a�; b 2 MN2�n;

xi 2 Mn.Ei/; i D 1; 2g

where the infimum runs over all possible decompositions of the form t D a.x1 ˝
x2/b. This sequence of norms satisfies Ruan’s axioms and we obtain an operator

space structure on E1 ˝ E2, which after completion is denoted E1 ˝bE2 and is
called the projective tensor product of the operator spaces E1 and E2.
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• For operator spaces E1 and E2, we have operator space isomorphisms

.E1 ˝bE2/� ' CB.E1;E
�
2 / ' CB.E2;E

�
1 /:

Remark 1.4.3 1. Projective tensor product of operator spaces is not injective.
2. Injective tensor product of operator spaces is not projective, in the sense defined

below.

Definition 1.4.4 Let E and F be operator spaces and u 2 CB.E; F /. Then u
induces a canonical map Qu W E=ker u ! F . Then u is said to be a complete metric
surjection if u is surjective and Qu is completely isometric.

Exercise 1.4.5 u 2 CB.E; F / is a complete metric surjection if and only if u� W
F � ! E� is a completely isometric embedding.

• ˝bis “projective” in the following sense. For any two complete metric surjections

uj W Ej ! Fj , j D 1; 2, the tensor map u1 ˝ u2 W E1 ˝bE2 ! F1 ˝bF2 is also a
complete metric surjection.

Note that for any two Hilbert spaces H and K , B.H;K/ has a canonical

operator space structure via the embedding B.H;K/ 3 x 7!
�

0 0

x 0

�

2 B.H ˚
K/.

• Thus, given any Hilbert space H , we have two new operator spaces, namely,

Hc WD B.C;H/ andHr WD B.H;C/:

• .Hc/
� ' Hr as operator spaces.

• If H D `2, thenHc D C and Hr D R.
• For any two Hilbert spaces H and K , we have the following operator space

isomorphisms:

.K ŐH/� ' B.H;K/ ' CB.Hc;Kc/ ' .K�
c ˝bHc/

�

where Ő is the Banach space projective tensor product. Note that K Ő H as well

as K�
c ˝bHc are isometrically isomorphic to the space S1.H;K/ of trace class

operators.

1.4.3 General Remarks

• Recall the � -norm in the proof of Fundamental Factorization Theorem. In fact,
we have an isometric isomorphism

.K ˝ E ˝H/� ' S1.K;H/˝bE:
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• For any measure space .X;�/ (unlike in the next remark) the Banach space
projective tensor product is injective, at least, if one of the tensor factors is
L1.X;�/ and the other is an operator space. This is true because for any inclusion
of operator spaces E � E1, we have

L1.X;�/ Ő E D L1.�;E/ � L1.�;E1/ D L1.X;�/ Ő E1:

• For a von Neumann algebraM , its predualM�, usually called a non-commutative
L1-space, has a natural operator space structure via the embeddingM� � M �.D
.M�/��/. For an inclusion of operator spacesE � E1, only whenM is injective,

there is an isometric embeddingM� ˝bE � M� ˝bE1.

1.4.4 A Passing Remark on the Haagerup Tensor Product

Apart from the above two tensor products of operator spaces, there is another
extremely important tensor product of operator spaces, namely, the Haagerup tensor
product, usually detoned E ˝h F . Unlike the above two tensor products, the
Haagerup tensor product has no analogy in Banach space theory. It is known that the
Haagerup tensor product of operator spaces is associative, injective and projective
but it is not commutative. Also, Kr ˝h E ˝h Hc ' .K ˝ E ˝ H/� as Banach
spaces. We will not get into the details in these notes.

1.5 Tensor Products of C �-Algebras

1.5.1 min and max Tensor Products of C �-Algebras

Let A and B be unital C �-algebras. Then A ˝min B is canonically a C �-algebra.
For each t D P

k ak ˝ bk 2 A˝ B , define

jjt jjmax D supfjj
X

k

�.ak/.bk/jj W � W A ! B.H/;  W B ! B.H/g

where the infimum runs over all representations � and  with commuting ranges.
Then the completion A˝max B of A˝ B with respect to this norm makes it into a
C �-algebra. In general, we have jjt jjmin � jjt jjmax for all t 2 A˝ B .

Definition 1.5.1 For C �-algebrasA and B , the pair .A;B/ is called a nuclear pair
if jjt jjmin D jjt jjmax for all t 2 A˝ B .

Definition 1.5.2 A C �-algebra A is said to be nuclear if .A;B/ is a nuclear pair
for all C �-algebras B .
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1.5.2 Kirchberg’s Theorem

Theorem 1.5.3 ([3]) Let 1 � n � 1. If A D An D C �.Fn/, the full C �-algebra
on the free group with n-generators and B D B.H/, then .A;B/ is a nuclear pair.

The above result has great significance as both C �.Fn/ and B.H/ are universal
objects in the sense that every C �-algebra is a quotient of C �.Fn/ and a �-
subalgebra of B.H/ for suitable choices of n and H .

A proof of this remarkable theorem involves a fair bit of analysis.

Lemma 1.5.4 Let A � B.H/ be a C �-algebra and fUi W i 2 I g � U.H/ be
a family of unitary operators on H such that 1 2 E WD spanfUi W i 2 I g and
A D C �.E/. Let u W E ! B.K/ be a unital c.b map satisfying u.Ui/ 2 U.K/ for
all i 2 I . If jjujjcb � 1, then there exists a �-representation  W A ! B.K/ such
that jE D u.

Proof Since u is unital and CB with jjujjcb � 1, there is a Hilbert space OH , a �-
representation � W A ! B. OH/, a subspace K � OH such that u.a/ D PK�.a/jK for
all a 2 E , where PK W OH ! K is the orthogonal projection.

Suppose �.Ui/ D
�

ai bi
ci di

�

with respect to OH D K ˚K?, so that u.Ui/ D ai .

Unitarity of Ui implies that a�
i ai C b�

i bi D aia
�
i C ci c

�
i D 1; while the assumed

unitarity of ai is seen to imply that bi D ci D 0. Therefore, �.Ui/ D
�

ai 0

0 di

�

, and

we see that K is an invariant subspace for �.Ui / as well as for �.U �
i / for all i 2 I .

Thus,K is invariant under C �.f�.Ui/ W i 2 I g/. Finally  W A ! B.K/ defined by
.a/ D �.a/jK , a 2 A is seen to be a �-representation which extends u. ut
Lemma 1.5.5 Let U0 D 1; U1; : : : ; Un be unitary generators of An WD C �.Fn/.
If faj W 0 � j � ng � B.H/ is such that ˛ WD jjPn

0 Uj ˝ aj jjAn˝minB.H/ �
1, then there exist bj ; cj 2 B.H/ such that aj D b�

j cj and jjPj b
�
j bj jj � 1 ,

jjPj c
�
j cj jj � 1.

Proof Consider u W `1
nC1 ! B.H/ given by u.ej / D aj , 0 � j � n, where

fej W 0 � j � ng is the standard basis of `1
nC1.

Assertion: u is CB with jjujjcb � ˛.
Under the identificationMm.A/ 3 Œaij� 7! P

ij eij ˝aij 2 Mm˝A for any algebra
A, we see that um W Mm.`

1
nC1/ ! Mm.B.H// is given by um.

Pn
jD0 xj ˝ ej / D

Pm
jD0 xj ˝ aj for xj 2 Mm.
It follows that

jjumjj D supfjj
n
X

jD0
xj ˝ aj jjMm˝minB.H/ W max

j
jjxj jjMm � 1g

� supfjj
n
X

jD0
Vj ˝ aj jj W Vj 2 Mm is unitaryg ;
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where the first equality is because kPj xj ˝ ejk
Mm.`

nC1
1

/
D maxj jjxj jjMm , and

the second equality is the consequence of the fact that the extreme points of the unit
ball of Mm.C/ are precisely the unitary matrices.

By definition of the full free group C �-algebra, there exists a �-homomorphism
 W An ! Mm such that .Uj / D Vj ;80 � j � n. Since any �-homomorphism is
a complete contraction, it follows from Remark 1.4.2 (3) that  ˝ idB.H/ W An ˝min

B.H/ ! Mn ˝min B.H/ is also a complete contraction, and consequently, we
find that indeed jjujjcb D sup jjumjj � ˛ � 1. Thus u is a complete contraction,
and we may deduce from the fundamental factorisation theorem that there exists
a representation � W `1

nC1 ! B.K/ and contractions V;W W H ! K such that
.aj D/u.ej / D V ��.ej /W 8j . Pick some isometry S W K ! H and define
bj D S�.ej /V; cj D S�.ej /W .

Then, notice that indeed b�
j cj D V ��.ej /S�S�.ej /W D aj , and as V and W

are contractions, we find that

X

j

b�
j bj D V �

0

@

X

j

�.ej /

1

AV D V �V � 1

and

X

j

cj c
�
j D

X

j

S�.ej /W
�W�.ej /S� �

X

j

S�.ej /S
� D SS� � 1 ;

thereby completing the proof of the Lemma. ut
We shall need the following version of the Cauchy-Schwarz inequality. We say

nothing about its proof but it is easy and may be found, for instance, in any treatment
of Hilbert C �-algebras.

Lemma 1.5.6 For elements bj ; cj of any C �-algebra, we have

k
X

j

b�
j cj k2 � k

X

j

b�
j bjk � k

X

j

c�
j cj k

Proof of Theorem 1.5.3 We have A D C �.Fn/ and B D B.H/. We need to show
jjA ˝min B ! A ˝max Bjj � 1. Let E D spanfUj ˝ B.H/ W 0 � j � ng D
spanfUj ˝ V W V 2 U.H/g � A˝min B . Note that 1˝ 1 2 E . Consider u D idE W
E ! E � A˝max B .

We shall be done if we show that jjujj � 1. Suppose t D P

j Uj ˝ aj 2 E with
jjt jjmin � 1. Then, pick bj ; cj 2 B.H/ as in Lemma 1.5.5 such that aj D b�

j cj .
For any two representations � W A ! B.K/ and  W B ! B.K/ with commuting
ranges, consider � �  W E ! B.K/ given by .� � /.t/ D P

j �.Uj /.aj / D
P

j .b
�
j /�.Uj /.cj /.
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Then, by Lemma 1.5.6, we find that jj.� � /.t/jj � jjPj .b
�
j /.bj /jj1=2

jjPj .c
�
j /.cj /jj1=2 � 1. As � and  were arbitrary, we find thus that jjt jjmax � 1.

So, we indeed have jjujj � 1, thus completing the proof of Kirchberg’s theorem. ut
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Chapter 2
Entanglement in Bipartite Quantum States

Abstract Entanglement is a central feature of quantum mechanical systems that
lies at the heart of most quantum information processing tasks. In this chapter, based
on lectures by K.R. Parthasarathy, we examine the important question of quantifying
entanglement in bipartite quantum systems. We begin with a brief review of the
mathematical framework of quantum states and probabilities and formally define
the notion of entanglement in composite Hilbert spaces via the Schmidt number
and Schmidt rank. For pure bipartite states in a finite-dimensional Hilbert space,
we study the question of how many subspaces exist in which all unit vectors are
of a certain minimal Schmidt number k. For mixed states, we describe the role of
k-positive maps in identifying states whose Schmidt rank exceeds k. Finally, we
compute the Schmidt rank of an interesting class of states called generalized Werner
states.

2.1 Quantum States, Observables and Probabilities

We begin with a few introductory remarks on notation. We consider finite-level
quantum systems labeled by A;B;C etcetera. Let HA;HB;HC , denote the finite-
dimensional Hilbert spaces associated with them. The elements of H are called
ket vectors denoted as jui; jvi, while the elements of the dual H� are called bra
vectors denoted by huj; hvj. The bra-ket hujvi denotes the sesquilinear form, which
is linear in jvi and anti-linear in jui. If H is a n-dimensional Hilbert space, jui can
be represented as a column vector and huj as a row vector, with complex entries.

jui D

2

6

6

6

4

z1
z2
:::

zn

3

7

7

7

5

I huj D � Nz1 Nz2 : : : Nzn


The bra vector huj � jui	 is thus the adjoint of the ket vector. The adjoint of any
operator X is denoted as X	. Also note that for vectors jui; jvi and operator X ,
hvjXui D hvjX jui D hX	vjui. If jui 2 H1 and jvi 2 H2 are vectors in two

© Springer International Publishing Switzerland 2015
V.P. Gupta et al., The Functional Analysis of Quantum Information Theory,
Lecture Notes in Physics 902, DOI 10.1007/978-3-319-16718-3_2

39



40 2 Entanglement in Bipartite Quantum States

different Hilbert spaces H1 and H2 respectively, juihvj is an operator from H2 !
H1. That is, for any jwi 2 H2, .juihvj/jwi D hvjwijui.

Given a Hilbert space H associated with some physical system, let P.H/ denote
the set of all orthogonal projectors in H, B.H/ denote the set of all bounded linear
operators in H, O.H/ be the set of self-adjoint operators in H and S.H/ denote the
set of positive operators of unit trace in H. The elements of S.H/ are the allowed
states of the system, the elements of O.H/ are the observables, and, the elements
of P.H/ are events.

In classical probability theory, recall that a probability distribution p over a finite
set � is defined by assigning a probability p.w/ � 0 to each w 2 � such that
P

w p.w/ D 1.

Definition 2.1.1 (Expectation Value of a Classical Random Variable) The
expectation value of any real-valued random variable f .w/ under the distribution p
is evaluated as EŒf � D P

w f .w/p.w/.

The sample space � is simply the finite set of all possible outcomes, and an event
is any subset E � �. The probability of event E is then given by P.E/ D
P

w2E p.w/.
In quantum probability theory, an event E is a projection. For any � 2 S.H/,

TrŒE�� gives the probability of E in the state �. The states � thus plays the role of
the probability distribution in the quantum setting. Just as the set of all probability
distributions form a convex set, the set of all states S.H/ is a convex set. The
extreme points of S.H/ are one-dimensional projections, which are called pure
states. For any unit vector jvi, the operator jvihvj is a one-dimensional projection.
It is, in fact, the projection on the subspace (one-dimensional ray) generated by jvi.
Up to multiplication by a scalar of unit modulus, the unit vector jvi is uniquely
determined by the pure state jvihvj and hence we often refer to jvi itself as the
pure state. Note that jvihvj is an operator of unit trace,1 usually called the density
operator corresponding to the state jvi.

Just as quantum states are the analogues of classical probability distributions,
observables correspond to random variables. We next define the concept of expec-
tation value of an observable. Since observables are self-adjoint operators, by
the spectral theorem, every observable X has a spectrum .X/ and a spectral
decomposition:

X D
X

�2.X/
�E�;

where,E� is the spectral projection for �.E� is the event that the observableX takes
the value �. The values of any observable are simply the points of its spectrum. The
probability that the observable X assumes the value � in state � is TrŒ�E��. This
naturally leads to the following definition.

1In the bra-ket notation, TrŒjuihvj� � hvjui.
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Definition 2.1.2 (Expectation Value of an Observable) The expectation value of
observableX in state � is given by

E�.X/ D
X

�2.X/
�TrŒ�E�� D TrŒ�X�: (2.1)

The set of projections fE�g constitutes a resolution of identity, that is,
P

� E� D I .
In a similar fashion, we can compute expectation of any real-valued function

of observableX . If f is a real-valued function, f .X/ is also a self-adjoint operator
and it follows from the spectral theorem that, f .X/ D P

�2.X/ f .�/E�. Therefore,
E�.f .X// D TrŒ�f .X/�. In particular, the variance of an observableX in state � is
given by

Var�X D TrŒ�X2� � .TrŒ�X�/2:

If m D TrŒ�X� denotes the mean value of observable X , the variance can also be
written as Var�X D TrŒ�.X � mI/2�. It is then easy to see that the variance of
X vanishes in state � iff � is supported on the eigenspace of X corresponding to
eigenvaluem.

Now, consider the variance of X in a pure state j i.

Varj iX D TrŒj ih j.X � mI/2�

D h j.X � mI/2j i Dk .X � mI/j i k2 : (2.2)

Thus, in any pure state j i, there will always exist an observable X such that
the variance of X in j i is non-zero! Contrast this with the situation in classical
probability theory. The classical analogues of the pure states are extreme points of
the convex set of probability measures on X , namely, the point measures. And the
variance of any classical random variable vanishes at these extreme points. We thus
have an important point of departure between classical and quantum probabilities.
In the quantum case, corresponding to the extreme points, namely the pure states,
we can always find an observable with non-vanishing variance. The indeterminacy
is thus much stronger in the case of quantum probabilities. In fact, examining the
variances of pairs of observables leads to a formulation of Heisenberg’s uncertainty
principle. For a more detailed study of finite-level quantum probability theory,
see [9].

We conclude this section with a brief discussion on the concept of measure-
ment in quantum theory. Let the eigenvalues of the observable X be labeled as
f�1; �2; : : : ; �kg, with associated projections fE�i g. Then, the measurement process
associated with an observable X D P

�i2.X/ �iE�i essentially specifies which
value �i is realized for a given state �. The probability that label i is observed is
TrŒ�E�i �. Furthermore, the measurement process transforms the state in a non-trivial
fashion. The von Neumann collapse postulate states that the measurement process
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collapses the state � to a state �0 D P

i E�i �E�i . Note that �0 is also positive and
has unit trace.

Associated with every observable X is thus a projection-valued measurement
characterized by the set of spectral projections fE�i g. More generally, quantum
measurement theory also considers generalized measurements.

Definition 2.1.3 (Generalized Measurements) A generalized quantum measure-
ment L for a finite-level system is characterized by a finite family of operators
fLj g with the property that

Pk
jD1 L

	
jLj D I . In state �, the label j is observed

with probability TrŒ�L	j Lj � and the post measurement state is given by �0 D
Pk

jD1 Lj �L
	
j .

The transformation � ! �0 effected by a generalized measurement is indeed a
completely positive trace-preserving (CPTP) map.

2.2 Entanglement

Given two quantum systems HA and HB , the Hilbert space associated with the
composite system AB is denoted as HAB. In classical probability theory, if�1 and�2

are the sample spaces for two experiments, the sample space for the joint experiment
is given by the Cartesian product�1��2. The analogue of that in the quantum case
is the tensor product of the two Hilbert spaces, that is, HAB D HA ˝ HB . In other
words, if jui 2 HA and jvi 2 HB , then, jui ˝ jvi 2 HAB. The tensor symbol is
often omitted and the elements of HAB are simply denoted as linear combinations of
juijvi.

If dim.HA/ D dA and dim.HB/ D dB , then, dim.HAB/ D dAdB . Furthermore,
if the vectors fjeA1 i; jeA2 i; : : : ; jeAmig constitute an orthonormal basis for HA and
fjf B1 i; jf B

2 i; : : : ; jf B
n ig form an orthonormal basis for HB , then the vectors fjeAi i˝

jf B
j ig constitute an orthonormal basis for HAB. Once such a basis is fixed, the

vectors are often simply denoted as jeAi ijf Bj i � jiji. Similarly, we can denote the
composite system corresponding to several such Hilbert spaces HA1;HA2; : : : ;HAN

as HA1A2:::AN D HA1 ˝ HA2 ˝ : : : ˝ HAN . The basis vectors of such a composite
system are simply denoted as jijk : : :i � jeA1i i ˝ jf A2j i ˝ jgA3k i ˝ : : :.

For example, consider the two-dimensional complex Hilbert space C
2. This

corresponds to a one-qubit system in quantum information theory. The two basis
vectors of C2 are commonly denoted as

j0i D



0

1

�

; j1i D



1

0

�

:

The n-fold tensor product space .C2/˝n is the n-qubit Hilbert space. The basis
vectors of .C2/˝n can thus be written in terms of binary strings, as jx1x2 : : : xni,
where xi 2 f0; 1g.
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Classically, the extreme points of the joint probability distributions over�1��2

are Dirac measures on the joint sample space, of the form, ı.!1;!2/ D ı!1 ˝ ı!2 , for
points !1 2 �1 and !2 2 �2. The extreme points of the set of joint distributions are
in fact products of Dirac measures on the individual sample spaces. The situation is
however drastically different for composite Hilbert spaces: there exist pure states of
a bipartite Hilbert space which are not product states, but are sums of product states.
Such states are said to be entangled. We will formalize this notion in the following
section.

2.2.1 Schmidt Decomposition

We first state and prove an important property of pure states in a bipartite Hilbert
space HAB.

Theorem 2.2.1 (Schmidt Decomposition) Every pure state j i 2 HAB can be
written in terms of non-negative real numbers f�k .k � r/g, and two orthonormal
sets fj�Ak ig � HA and fj Bk ig � HB , as,

j i D
r
X

kD1
�kj�Ak ij Bk i; (2.3)

where, �k satisfy
Pr

kD1 �2k D 1.

Proof Consider a pure state j i 2 HAB. Let HA be of dimension dA and HB of
dimension dB . In terms of the orthonormal bases for HA and HB , the state j i can
be written as

j i D
dA
X

iD1

dB
X

jD1
aijjiAijjBi:

The matrix of coefficients ŒA�ij D aij completely characterizes the pure state j i.
Let r D rank.A/. A can be represented via singular value decomposition, as A D
UDV	, where U; V are unitaries of order dA, dB respectively, and D is a diagonal
matrix of rank r , whose entries are the singular values (�k) of A. Thus,

j i D
X

i;j;k

uik�kvkjjiAijjBi

D
r
X

kD1
�kj�Ak ij Bk i; (2.4)
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where, the vectors fj�Ak ig constitute an orthonormal set in HA and fj Bj ig constitute
an orthonormal set in HB , since U and V are unitary matrices.

Since the state j i 2 HAB is normalized, the corresponding coefficient matrix A
is such that

P

i;j jaijj2 D 1. This is turn implies that
Pr

kD1 �2k D 1. ut
Given any density operator (state) �AB 2 HAB, the reduced state on HA, denoted

as �A, is obtained by tracing out over an orthonormal basis in HB : �A D TrBŒ�AB�.
Thus, �A is the operator on HA which satisfies, for all jui; jvi 2 HA, the condition

hvj�Ajui D
X

j

hvjhfj j�ABjuijfj i;

for some (and in fact any) orthonormal basis fjfj ig of HB . Similarly, the reduced
state �B on HB , is obtained by tracing out over an orthonormal basis in HA: �B D
TrAŒ�AB�. The states �A; �B are also called marginal states, since they are analogues
of the marginal distributions of a joint distribution in classical probability theory.

Now, consider the marginals of a pure state j i 2 HAB. It is a simple exercise to
show that the marginals of j i are not pure in general, they are mixed states.

Exercise 2.2.2 Show that the reduced states of the density operator j ih j corre-
sponding to the pure state j i D Pr

kD1 �kj�Ak ij Bk i, are given by

�A D
r
X

kD1
�2kj�Ak ih�Ak jI �B D

r
X

kD1
�2kj Bk ih Bk j (2.5)

Thus, the marginals of a pure state j i 2 HAB are no longer pure, they are
mixed states, of rank equal to the rank of the coefficient matrix A. Contrast this
with the classical case, where the marginals of the extreme points of the set of joint
distributions are in fact extreme points of the set of distributions over the individual
sample spaces. This important departure from classical probability theory, leads
naturally to the notion of entanglement.

We can associate with any pure state j i 2 HAB a probability distribution
f�21; �22; : : : ; �2kg, via the Schmidt decomposition proved in Theorem 2.2.1. Recall
that the Shannon entropy of a probability distribution fp1; p2; : : : ; pkg is defined
as H.p/ D �Pi pi logpi . Correspondingly, the von Neumann entropy of a
quantum state is defined as S.�/ D �Tr� log �. We will study the properties of
this and other quantum entropies in greater detail in Sect. 4.2. For now, it suffices to
note that for a pure state j i 2 HAB of a joint system, S.j ih j/ D 0, whereas for
the marginals �A; �B in Eq. (2.5),

S.�A/ D S.�B/ D �
r
X

kD1
.�2k/ log.�2k/:
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Again, note the quantitative departure from classical probability theory: given a
joint distribution over two sample spaces A;B , the Shannon entropy of the joint
distribution is always greater than the Shannon entropy of the marginals, that is,
H.AB/ � H.A/. But in quantum systems, while the pure states of a joint system
will always have zero entropy, their reduced states will have non-zero entropy in
general.

For a bipartite pure state j i, the Schmidt decomposition provides a way of
quantifying the deviation of j i away from a product pure state. The number of
product states in the Schmidt decomposition and the relative weights assigned to
the different product states, quantify the entanglement of state j i.

Definition 2.2.3 (Schmidt Rank) Given a bipartite pure state j i 2 HAB with a
Schmidt decomposition j i D Pr

kD1 �kj�Ak ij Bk i,

(i) The number r of non-zero coefficients �k is defined to be the Schmidt rank
of the state j i.

(ii) A bipartite pure state j i is said to be entangled if it has Schmidt rank greater
than one.

(iii) S.�A/ D S.�B/ is a measure of the entanglement of the pure state j i, where
�A D TrBŒj ih j�.

For a d -level system, the von Neumann entropy of any state is bounded from
above by logd . Therefore, the maximum entanglement of a bipartite pure state
j i 2 HAB is log min.dA; dB/.

Exercise 2.2.4 If min.dA; dB/ D m, the maximally entangled state in HAB is

j i D 1p
m

m
X

iD1
jiAijiBi; (2.6)

where fjiAig and fjiBig are orthonormal bases in HA and HB .

We have thus far restricted our discussion to pure bipartite states. We can
formally define product and entangled states in general as follows: a state � 2
S.HAB/ is called a product state if it is of the form � D �A˝�B , where �A 2 S.HA/

and �B 2 S.HB/; if not, � is said to be entangled. There are several interesting
questions that arise in this context. For example, given a pair of states �A 2 S.HA/,
�B 2 S.HB/, consider the following convex set.

C.�A; �B/ D f� 2 S.HAB/ j TrBŒ�� D �A;TrAŒ�� D �Bg: (2.7)

Then, what is the least value minfS.�/j� 2 C.�A; �B/g of the von Neumann
entropy of states � that belong to this convex set? The maximum value is attained
when the systems A and B are unentangled, that is, � D �A ˝ �B , so that
S.�/ D S.�A/ C S.�B/. We know this is indeed the maximum possible value
because the von Neumann entropy satisfies the strong subadditivity property:
S.�/ � S.�A/ C S.�B/ for any � 2 HAB. The strong subadditivity of the von
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Neumann entropy is discussed in greater detail in Sect. 4.2. Estimating the minimum
value minfS.�/j� 2 C.�A; �B/g is in general a hard problem, though some estimates
have been obtained for special cases [7]. Interestingly, the analogous problem in
classical probability theory also remains an open!

2.2.2 Unitary Bases, EPR States and Dense Coding

For a finite-dimensional Hilbert space H of dimension d , consider B.H/, the set
of all bounded linear operators on H. B.H/ is also a Hilbert space with the inner
product between any two operators X; Y 2 B.H/ defined as hX jY i D TrŒX	Y �.
B.H/ has a unitary orthogonal basis, that is, it admits a family of unitary operators
fW˛; ˛ D 1; 2; 3; : : : ; d 2g, such that TrŒW 	

˛ Wˇ� D dı˛ˇ . In coding theory, such a
basis is called a unitary error basis.

Consider the bipartite system H ˝ H composed of two copies of H. Let j i
denote a maximally entangled pure state in H ˝ H, which is written as per
Eq. (2.6) as,

j i D 1p
d

X

i

jiijii:

Such a maximally entangled state is often referred to as an Einstein-Podolosky-
Rosen (EPR) state, after the famous trio—Einstein, Podolosky and Rosen—who
were the first to note that states like these exhibit strange properties which are
uniquely quantum. We now show how a unitary orthogonal basis for B.H/ can in
fact be used to construct a basis of EPR states, which lie at the heart of several
quantum communication and cryptographic tasks.

Consider the states j ˛i generated by applying the unitaries fW˛g to one half of
the maximally entangled state j i, as follows:

j ˛i D 1p
d

d
X

iD1
.W˛jii/jii; ˛ D 1; 2; : : : ; d 2: (2.8)

In other words, the state j i is being acted upon by the operators fW˛ ˝ I g. It
is then a simple exercise to show that the states j ˛i are mutually orthogonal and
maximally entangled.

Exercise 2.2.5 (Basis of EPR States) The states fj ˛i; ˛ D 1; 2; : : : ; d 2g defined
in Eq. (2.8) constitute an orthonormal basis—called the basis of EPR states—for
H ˝ H. Furthermore, each j ˛i is maximally entangled, that is,

Tr1;2 Œj ˛ih ˛j� D I

d
; 8˛;

whether the partial trace is taken over the first or the second Hilbert space.
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A remark on uniqueness and existence of unitary orthogonal bases: note that a
given unitary orthogonal basis is invariant under scalar multiplication (with a scalar
of unit modulus), permutation, and conjugation by a fixed operator (W˛ ! �W˛�

	).
It is an interesting question to classify the distinct unitary orthogonal bases upto this
equivalence. A simple construction of such a unitary error basis in any dimension d
is as follows. Consider the group Zd and identify H � `2.Zd /. Then, consider the
translation and rotation operators Ua; Vb (a; b 2 Zd ), namely,

Uaıx D ıxCaI Vbıx D b.x/ıx;

where fıx j 8x 2 Zd g is the standard orthonormal basis for H and b is a character
of the group Zd . The products fUaVbj a; b 2 Zd g, which are the Weyl operators of
the abelian group Zd , form a unitary error basis.

Superdense coding is a simple yet important example of a quantum communi-
cation task that is made possible using EPR states. The goal of the task is for one
party A (Alice) to communicate d2 classical messages to another party B (Bob),
by physically sending across just one quantum state. Say HA is the d -dimensional
Hilbert space associated with Alice’s system and HB the d -dimensional Hilbert
space corresponding to Bob’s system. We assume that Alice and Bob share a
bipartite EPR state, namely, j ABi D 1p

d

Pd
iD1 jiAijiBi. In other words, the joint

system HAB is in state j ABi. Now, if Alice wants to send the message ˛ 2
f1; 2; : : : ; d 2g, she simply applies the unitary gate2 W˛ on her half of the state.
The joint state of HAB is then transformed to j ˛i.

Alice then sends across her half of the state to Bob. To decode the message,
Bob has to perform a measurement and obtain a classical output. As discussed
in Sect. 2.1, corresponding to the orthonormal basis fj ˛ig, we have a projec-
tive measurement characterized by the collection of one-dimensional projections
fj ˛ih ˛jg. When Bob performs this measurement on any state �, the probability of
obtaining outcome ˛ is TrŒ�j ˛ih ˛j�. Thus, given the state j ˛i, Bob will correctly
decode the message ˛ with probability one. The idea of dense coding was first
proposed in [1]; for recent pedagogical discussions, see [6, 8].

As an aside, another interesting application of the unitary group is in proving
universality of a set of quantum gates. For a composite system made up of k finite-
dimensional Hilbert spaces H1˝H2˝: : :˝Hk , consider the unitary group U.H1˝
H2˝ : : :˝Hk/. Let Ui;j be the set of unitary operators fUijg that act only on Hilbert
spaces Hi ˝ Hj , leaving the other Hilbert spaces unaffected. Ui;j is a subgroup
of U . The universality theorem states that every unitary operator U 2 U can be
decomposed as a product U D U1U2 : : : UN , where each Um is an element of Ui;j
for some i; j 2 1; : : : ; k. That is, any unitary operator acting on the composite
system of k Hilbert spaces can be written as a product of unitaries that act non-
trivially only on two of the k Hilbert spaces.

2Since deterministic state changes are effected by unitary operators in quantum theory, unitaries
are often referred to as quantum gates in the quantum computing literature.
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2.3 Schmidt Rank of Bipartite Entangled States

Using the concepts defined in Sect. 2.2.1, we will now explore a few interesting
problems relating to the Schmidt rank of bipartite entangled states.

2.3.1 Subspaces of Minimal Schmidt Rank

Given a pair of finite-dimensional Hilbert spaces H1 ˝ H2, a question of interest is
to construct subspaces S � H1˝H2 such that every pure state j i 2 S has Schmidt
rank � k. In particular, what is the maximum dimension of a subspaceS whose pure
states are all of Schmidt rank greater than or equal to k? Note that any state that has
support on such a subspace S will necessarily be a highly entangled state. Since
entangled states are communication resources (as seen in the case of dense coding,
for example), this question assumes importance in quantum information theory.

Let M.m; n/ denote the set of m � n complex matrices. For elements X; Y 2
M.m; n/, the inner product is defined as hX jY i D TrŒX	Y �. Suppose the Hilbert
spaces H1 and H2 are of dimensions m and n respectively, there is a natural
identification between H1 ˝ H2 and M.m; n/. To see the explicit correspondence
between elements of H1 ˝ H2 and M.m; n/, define a conjugation J on H2. For
product vectors juijvi 2 H1 ˝ H2, the conjugation acts as follows:

�.J / W juijvi ! juihJvj: (2.9)

Since the product vectors juijvi are total in H1 ˝ H2, �.J / defines the cor-
respondence H1 ˝ H2 ! M.m; n/. The corresponding operators juihJvj span
M.m; n/. Furthermore, �.J / is inner product preserving, and is therefore a unitary
isomorphism between H1 ˝ H2 and M.m; n/. The following exercise is a simple
consequence of this isomorphism.

Exercise 2.3.1 Show that the Schmidt rank of any pure state j i 2 H1 ˝ H2 is
equal to the rank of �.J /.j i/.

The problem of finding subspaces for which every vector has a Schmidt rank
greater than or equal to k, thus reduces to the following matrix-theoretic problem:
Construct subspaces S � M.m; n/, with the property that every non-zero element
of these subspaces is of rank greater than or equal to k. In particular, the problem
is to find the maximum dimension of the subspace S � M.m; n/, whose non-zero
elements are all of rank greater than or equal to k. While the problem remains open
for a general k, we will present an example of such a construction for k D 2.

Let fW˛; ˛ D 1; : : : ; n2g denote a unitary orthogonal basis for the space of square
matrices Mn � M.n; n/. Consider a positive, self-adjoint matrix ˆ 2 Mn with the
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spectral resolution,

ˆ D
n2
X

˛D1
p˛jW˛ihW˛j;

with distinct eigenvalues p˛ > 0. Now, we can construct a subspace S � M2n, of
square matrices in M2n � M.2n; 2n/, whose non-zero elements are of rank k � 2.

Theorem 2.3.2 Consider S � M.2n; 2n/ defined as follows:

S D
(

X �
 

A ˆ.B/

B A

!

; A;B 2 Mn

)

: (2.10)

The elements X 2 S satisfy rank.X/ � 2, for arbitrary A;B 2 Mn.

Proof Suppose B D 0 and A ¤ 0. Then, the off-diagonal blocks are zero, but the
diagonal blocks are non-zero and rank.X/ D 2 for allA 2 Mn. IfA D 0 butB ¤ 0,
then, since ˆ is non-singular,ˆ.B/ ¤ 0. Therefore, rank.X/ � 2, 8B 2 Mn.

Now, it remains to show that rank.X/ � 2, for all A;B ¤ 0 in Mn. Suppose
rank.X.A;B// D 1. Such a matrix X is of the form


 jui
jvi
�

� ju0ijv0i  D
� juihuj juihv0j

jvihu0j jvihv0j
�

;

where, jui; jvi are column vectors of length n. Comparing with the definition of X
in Eq. (2.10), we see that,

juihu0j D jvihv0j D A; ˆ.jvihu0j/ D juihv0j: (2.11)

The first equality implies that there exists scalars c; c0 ¤ 0 such that jvi D cjui and
jv0i D c0ju0i. The second equality in Eq. (2.11) thus becomes

ˆ.jvihu0j/ D c0c�1jvihu0j:

This implies that jvihu0j an eigenvector ofˆ. However, the eigenvectors ofˆ belong
to the unitary error basis, and thus ˆ cannot have such a rank-one matrix as its
eigenvector. Thus, the assumption that X.A;B/ as defined in Eq. (2.10) if of rank
one leads to a contradiction. This proves the claim. ut

The above construction in fact leads to a more interesting property of the set of
matrices in M2n.

Theorem 2.3.3 The space of 2n � 2n matrices M2n is a direct sum of the form
M2n D S ˚ S?, where, rank.X/ � 2, for every 0 ¤ X 2 S [ S?.
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Proof Consider an element of S?, the orthogonal complement of S, written in block
matrix form as:

Y D
 

K L

M N

!

:

Since TrŒY 	X� D 0 for any X 2 S and Y 2 S?, we have,

Tr

" 

K	 M	

L	 N 	

! 

A ˆ.B/

B A

!#

D 0

) TrŒK	ACM	B CL	ˆ.B/CN	A� D 0; 8 A;B: (2.12)

Setting B D 0, we have,

TrŒ.K	 CN	/A� D 0; 8 A ) K CN D 0:

Similarly, setting A D 0, we have,

TrŒ.M Cˆ.L//	B� D 0; 8B ) M Cˆ.L/ D 0:

Thus, every element of the orthogonal complement of S is of the form,

Y D
 

K L

�ˆ.L/ �K

!

:

By the same argument as in the proof of Theorem 2.3.2, rank.Y / � 2, for all Y 2
S?. ut

The above result for M2n naturally leads to the following problem for the more
general matrix spaces M.m; n/.

Question 2.3.4 Identify the quadruples .m; n; r; s/ for which it is possible to find
a direct sum decomposition M.m; n/ D S ˚ S? of M.m; n/, into a direct sum of
subspace S and its orthogonal complement S?, such that,

rank.X/ � r; 8 0 ¤ X 2 S; rank.Y / � s; 8 0 ¤ Y 2 S?:

Finally, we return to the question of the maximum dimension of the subspace S
whose elements have Schmidt rank greater than or equal to k.

Theorem 2.3.5 Let L � M.m; n/ be such that 8 0 ¤ X 2 L, rank.X/ � k C 1.
Then, dim.L/ � .m � k/.n � k/.

Proof Let Sk denote the variety of matrices of rank less than or equal to k in
M.m; n/. Then, it is known [3] that dim.Sk/ D k.mC n� k/. Let L be a subspace
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(L � M.m; n/) such that for all 0 ¤ X 2 L, rank.X/ � k C 1. Note that,
Sk \ L D 0. Using a generalization of Azoff’s Theorem in algebraic geometry [2],
we have,

dim.Sk/C dim.L/ � mn:

The dimension of any such subspace L is therefore given by

dim.L/ � .m � k/.n � k/: (2.13)

ut
Furthermore, we can in fact explicitly construct a subspace L0 whose dimension

is exactly equal to the maximum value .m � k/.n � k/. Consider polynomials P
such that deg.P / � p � k � 1. Construct diagonal matrices of order p � p with
entriesD D diag.P.z1; P.z2/; : : : ; P.zp//, where z1; z2; : : : ; zp are all distinct. The
linear space of such diagonal matrices, denoted by Dp;k is of dimension p � k.
At most p � k � 1 entries of such a diagonal matrix D can be zero. Therefore,
rank.D/ � k C 1; 8 D 2 Dp;k . The diagonal complementary space D?

p;k is of
dimension k.

Now the construction proceeds as follows. Any matrix X 2 L0 has m C n � 1

diagonals. Fill all diagonals of length less than or equal to k with zeros. Let the
least length of a non-vanishing diagonal be p. Choose the entries of this diagonal
of length p from some matrix D 2 Dp;k . Consider the p � p minor of such an X .
This is either a lower triangular or an upper triangular matrix. The diagonal of this
p�p minor has the property that at most p�k�1 entries are zero. Therefore, rank
of such a p � p minor is greater than or equal to k C 1. By this construction, every
non-zero elementX 2 L0 is of rank at least k C 1. Therefore,

dim.L0/ D mn � k.k C 1/� .mC n� 1 � 2k/k D .m � k/.n � k/;

where the second term enumerates the zero entries of the diagonals of length k and
the final term enumerates the zero entries of the non-vanishing diagonals.

This construction and the result of Theorem 2.3.5 thus imply the following
result for the quantum information theoretic problem of finding subspaces of high
entanglement.

Theorem 2.3.6 Given a composite system H1 ˝ H2 with dim.H1/ D m and
dim.H2/ D n and subspaces S � H1 ˝ H2,

max fdim.S/ j Schmidt rank.j i/ � k; 8  2 Sg D .m � k/.n � k/: (2.14)



52 2 Entanglement in Bipartite Quantum States

2.4 Schmidt Number of Mixed States

We now move beyond pure states and study entanglement in mixed states. Recall
that pure states are the extreme points of the set S.H/ of positive operators of unit-
trace. A general state � 2 S.H/ is thus a mixture of pure states; it is a mixed state,
with � � 0 and TrŒ�� D 1. For the composite system H1 ˝ H2, with dim.H1/ D m

and dim.H2/ D n, consider the sets

Sk D fj ih j 2 S.H1 ˝ H2/ j Schmidt No:.j i/ � kg ; (2.15)

QSk D
	Z

Schmidt No:. /�k
j ih j � d. /

�

; (2.16)

where � is a probability distribution. QSk is thus the set of all mixed states that
are convex combinations of the pure states in Sk . We know from the Schmidt
decomposition that for j i 2 H1 ˝ H2, 1 � k � min.m; n/. Note that QSk is a
compact convex set in the real linear space of Hermitian operators on H1 ˝ H2, of
dimension m2n2. It then follows from Carathéodory’s Theorem that every � 2 QSk
can be expressed as

� D
m2n2C1
X

jD1
pj j j ih j j;

with j j i 2 Sk , pj � 0, and
P

j pj D 1. It is therefore enough to consider finite

convex combinations of pure states to represent the elements of QSk .

Definition 2.4.1 (Schmidt Number) A state � is defined to have Schmidt number
k if � 2 QSkC1 n QSk .

Estimating the Schmidt number for arbitrary mixed states is in general a hard
problem. A related question of interest is whether it is possible to construct a test
to identify states � … QSk . Such a test would be a special case of the class of
entanglement witnesses [4] which are well-studied in the quantum information
literature (see [5] for a recent review).

In the following Section, we prove the Horodecki-Terhal criterion [11] which
shows that k-positive maps can act as entanglement witnesses for states with
Schmidt number exceeding k. Such a result was first proved for k D 1 [4] and
later extended to general k.
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2.4.1 Test for Schmidt Number k Using k-Positive Maps

By the geometric Hahn-Banach Theorem, in the real linear space of Hermitian
operators we can construct a linear functionalƒ such that there exists a hyperplane
corresponding toƒ.:/ D c (for some constant c) that separates � and the convex set
QSk . In other words, there exists a linear functionalƒ such that,

ƒ.�/ < c � ƒ./; 8  2 QSk : (2.17)

Any linear functionalƒ on the Banach space of Hermitian operators can be written
as ƒ.X/ D TrŒXA�, where A is a Hermitian operator. Therefore Eq. (2.17) implies,
for any � … QSk ,

TrŒ�A� < c � TrŒA� ) TrŒ�H� < 0 � TrŒH�; 8  2 QSk; (2.18)

where, H D A � cI, is a Hermitian operator on H1 ˝ H2. Defining the map �H W
B.H1/ ! B.H2/ such that,

�H.X/ D TrH1 ŒH.X ˝ IH2 /�; 8 X 2 B.H1/;

we can rewrite H as follows [4].

Proposition 2.4.2 Given an orthonormal basis of rank-1 operators fE˛g in B.H1/,
H can be written as,

H D
X

˛

E˛ ˝ �H.E
	
˛/: (2.19)

Proof Choose orthonormal bases fE˛g 2 B.H1/ and fFˇg 2 B.H2/. Then, fE˛ ˝
Fˇg constitutes an orthonormal basis for B.H1 ˝ H2/. Therefore, the operator H
can be written as,

H D
X

˛;ˇ

Tr
h

H.E	
˛ ˝ F

	

ˇ /
i

.E˛ ˝ Fˇ/

D
X

˛;ˇ

TrH2

h

TrH1 ŒH.E
	
˛ ˝ IH2 /�F

	

ˇ

i

.E˛ ˝ Fˇ/ D
X

˛

E˛ ˝ �H.E
	
˛/:

ut
We now show (following [11]) that the separation in Eq. (2.18) between the set

QSk and states � … QSk can be realized using a k-positive map from B.H1/ ! B.H2/.
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Theorem 2.4.3 There exists a k-positive map ƒ0 W B.H1/ ! B.H2/ such that 3

Tr

"

.I ˝ƒ0/.
X

˛

E˛ ˝ E	
˛/�

#

< 0; � … QSk; (2.20)

Tr

"

.I ˝ƒ0/.
X

˛

E˛ ˝ E	
˛/

#

� 0; 8  2 QSk; (2.21)

where fE˛g is an orthonormal basis of rank-1 operators in B.H1/.

Proof First we show that the operator H that defines the separation in Eq. (2.18)
can be written in terms of an operatorƒ0 W B.H1/ ! B.H2/.

Lemma 2.4.4 If H is an operator with the property

TrŒ�H� < 0 � TrŒH�; 8  2 QSk; (2.22)

then H is of the form

H D .I ˝ƒ0/.
X

˛

E˛ ˝ E	
˛/ D .I ˝ƒ0/.mP/; (2.23)

for some operatorƒ0 W B.H1/ ! B.H2/, and a projection P .

Proof Suppose we consider an orthonormal basis fjeiig for H1 and choose the
rank-1 operators E˛ to be E˛ D jeiihej j. Then, E	

˛ D jej ihei j. Let T denote the

transpose operation with respect to the fjeiig basis, then, E	
˛ D T .E˛/. Therefore,

for this specific choice of basis, Eq. (2.19) implies,

H D
X

˛

E˛ ˝ .�H ı T /.E˛/ D .I ˝ƒH/.
X

˛

E˛ ˝E	
˛/; (2.24)

where we have defined ƒ0.:/ � .�H ı T /.:/. It is now a simple exercise to check
that

P

˛ E˛ ˝ E
	
˛ D mP, where P is a projection operator.

Exercise 2.4.5 Define the rank-1 operators E˛ D jeiihej j 2 B.H1/, where fjeiig
is an orthonormal basis for the space H1. Then, the operator

P D 1

m

X

˛

E˛ ˝ E˛

is a projection (P	 D P D P2). ut

3A remark on notation: we use I to denote the identity map I W B.H/ ! B.H/, with I.�/ D � for
any � 2 B.H/.
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The theorem is proved once we show that the operator ƒ0 defined above is indeed
k-positive.

Lemma 2.4.6 The operator ƒ0 defined in Eq. (2.23) corresponding to a H that
satisfies Eq. (2.22), is k-positive on B.H1/ ! B.H2/.

Proof Lemma 2.4.4 implies that for a chosen basis fjeiig 2 H1, any state  2 QSk
satisfies,

Tr

2

4.I ˝ƒ0/

0

@

X

i;j

jei ihej j ˝ jeiihej j
1

A 

3

5 � 0:

If we choose  to be a pure state  � j ih j, the corresponding vector has the
Schmidt decomposition j i D Pk

rD1 jurijvri. Then, the above condition becomes,

X

i;j

Tr

"

jei ihej j ˝ƒ0.jeiihej j/
 

k
X

r;sD1
jurihusj ˝ jvrihvsj

!#

D
X

i;j

X

r;s

hej jurihusjeii hvsjƒ0.jeiihej j/jvri � 0: (2.25)

Now, note that
P

i husjei ijeii D P

i jeiihei jJ usi, where J is a conjugation. Then,
since fjeiig is an orthonormal basis,

P

i husjei ijeii D jJ usi. Defining ju0
si D

jJ usi, the inequality in Eq. (2.25) becomes

k
X

r;sD1
hvsj.ƒ0ju0

sihu0
r j/jvri � 0; (2.26)

for all such sets of vectors fjurig; fjvrig. Recalling the definition of k-positivity (see
Definition 1.1.4), this is true if and only if ƒ0 is k-positive. ut

ut
Finally, Theorem 2.4.3 implies the existence of a k-positive map that can act as

an entanglement witness for Schmidt number k in the following sense [11].

Theorem 2.4.7 (Schmidt Number Witness)

• If ƒ W B.H2/ ! B.H1/ is a k-positive operator, then for any  2 QSk ,

.IH1 ˝ƒ/./ � 0: (2.27)

• If � … QSk , there exists a k-positive map ƒ W B.H2/ ! B.H1/, such that,

.IH1 ˝ƒ/.�/ � 0: (2.28)

Such a mapƒ is an entanglement witness for Schmidt number k.
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Proof The first statement of the theorem is easily proved, and is left as an exercise.
To prove the second statement, we note that if a map ƒ is k-positive, then so is its
adjoint.

Exercise 2.4.8 If ƒ W B.H1/ ! B.H2/ is k-positive, then, ƒ	 W B.H2/ ! B.H1/

is also k-positive.

Since we know from Lemma 2.4.6 that the map ƒ0 defined in Eq. (2.23) is k-
positive, the above exercise implies that the map ƒ	

0 W B.H2/ ! B.H1/ is also
k-positive. Then, it follows that

.IH1 ˝ƒ
	
0/./ � 0; 8  2 QSk: (2.29)

Going back to Eq. (2.20) and taking the adjoint of the operator in the trace, we have,

Tr

"

.I ˝ƒ
	
0/.�/

 

X

˛

E˛ ˝ E	
˛

!#

< 0:

This implies, .I ˝ƒ
	
0/.�/ � 0: We have thus constructed a k-positive map ƒ	

0 with
the desired property. ut

In order to check if a given state � is of Schmidt number strictly greater than k,
we need a k-positive map that satisfies Eq. (2.28). Finding such k-positive maps is
indeed a hard problem. There is however a vast body of work on positive but not
completely positive maps, which can act as entanglement witnesses in the quantum
information literature [5]. The classical example of such a test for entanglement is
using the transpose operation which is positive, but not completely positive [10].

2.4.2 Schmidt Number of Generalized Werner States

Given a d -dimensional Hilbert space H, consider the bipartite system H˝H formed
using two copies of H. The Werner states [12] which we define below, are an
interesting single parameter family of bipartite states in H ˝ H.

For any unitary operator U in H, let ….U / W U ! U ˝ NU be a representation of
the unitary group U.H/.

Proposition 2.4.9 Any state � commuting with every U ˝ NU has the form

� D �F � F j 0ih 0j C .1 � F /
.I � j 0ih 0j/

d 2 � 1
; (2.30)

where j 0i D 1p
d

Pd
iD1 jiii is the maximally entangled state in H ˝ H.
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Proof This follows from the isomorphism between H˝H and B.H/. Let J denote
conjugation with respect to a chosen basis fjiig 2 H. Defining the map,

�.J / W juijvi ! juihJ vj;

we see that,

�.J /….U /�.J /�1.:/ D U.:/U 	:

Thus the action of the U ˝ NU corresponds to the unitary action X ! UXU	 for all
X 2 B.H/. We denote this representation of the unitary group as Q….U /.

Now note that the commutant f Q….U /; U 2 U.H/g0 is of dimension two, and is
spanned by I and X ! Tr.X/I D hI jXijI i. In turn, the commutant f….U /; U 2
U.H/g0 is spanned by IH˝H and j oih 0j, where j 0i D 1p

d

Pd
iD1 jiii, is the

maximally entangled pure state in the canonical basis. This in turn implies that a
state � that commutes with all the unitaries….U / must be a convex combination as
given in Eq. (2.30). ut

The state �F is the generalized Werner State. WhenF � 1
d2

, �F can be rewritten
as

�F D pj 0ih 0j C .1 � p/ I
d2
;

where I is the identity operator on H ˝ H. Note that while the Schmidt rank of
the maximally entangled state is d , the Schmidt rank of the maximally mixed state
I=d2 is 1. Such a mixture of j 0ih 0j and I=d2 can be realized by the averaging
the action of the unitary group….U / on state �, that is, by performing the following
operation:

Z

dU.U ˝ NU/�.U ˝ NU /	:

Our goal is to now evaluate the Schmidt number of �F . We first note that when
F D 1, �F has Schmidt number d . Furthermore, for any state j i 2 H ˝ H,

h j�F j i D 1

d2 � 1

�

.d 2F � 1/jh 0j ij2 C 1 � F


: (2.31)

It is then an easy exercise to evaluate the maximum value of h j�F j i.

Exercise 2.4.10 If F � 1
d2

,

max
j i2H˝H

h j�F j i D F;
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which is attained when j i D j 0i. If F � 1
d2

,

max
j i2H˝H

h j�F j i D 1 � F

d2 � 1
;

and this value is attained when j i is orthogonal to j 0i.

The central result we prove in this section is the following result due to Terhal-
Horodecki [11].

Theorem 2.4.11 Let k�1
d

� F � k
d

, with F � 1
d2

. Then, the Schmidt number of �F
is equal to k.

Thus, even though the parameter F changes continuously, the Schmidt number of
�F changes at discrete values of F , remaining constant for the intermediate values.

Before venturing to prove Theorem 2.4.11, we first note the following general
result which proves a lower bound on the Schmidt number of a general state � 2
H ˝ H, given a bound on its expectation value with a maximally entangled state.

Proposition 2.4.12 Suppose for a state � 2 H ˝ H and a maximally entangled
state j i 2 H ˝ H, h j�j i > k

d
. Then,

Schmidt number.�/ � k C 1: (2.32)

The proof follows from the following Lemma and its corollary discussed below.

Lemma 2.4.13 Let j i D Pd
jD1 �j jxj ijyj i be a state in Schmidt form. Then,

maxfjh j 0ij; j 0i W max: entangled stateg D 1p
d

X

j

�j : (2.33)

Proof Choose j 0i D 1p
d

Pd
jD1 j�j ij�j i, where, fj�j ig and fj�j ig are any two

orthonormal bases. Then,

h j 0i D 1p
d

X

j;l

�j hxj j�l ihyj j�l i:

Choose unitaries U; V , such that U j�li D jli, V j�li D jli. Let C denote
conjugation with respect to the standard basis fjlig. Then,

h j 0i D 1p
d

X

j;l

�j hU xj jlihV yj jli

D 1p
d

X

j;l

�j hU xj jlihl jCV yj i

D 1p
d

X

j

�j hU xj jCV yj i: (2.34)
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Note that, since jU xj i; jCV yj i are unit vectors and �j � 0, jh j 0ij �
1p
d

P

j �j .

Now, let j�l i D jli, for all l D 1; : : : ; d , so that U � I . We choose the unitary
V that satisfies VCjyj i D jxj i, for all j D 1; : : : ; d . Then, we have,

h j 0i D 1p
d

X

j;l

�j hxj jlihC �l jC yj i

D 1p
d

X

j;l

�j hxj jlihVC �l jVC yj i

D 1p
d

X

j;l

�j hxj jlihl jxj i D 1p
d

d
X

jD1
�j ; (2.35)

where we have used, C j�li D V 	jli, so that, j�li D CV	jli. ut
We now have the following Corollary to Lemma 2.4.13

Corollary 2.4.14 Let Schmidt Number.j i/ D k. Then,

maxfjh j 0ij; j 0i W max: entangled stateg �
r

k

d
: (2.36)

Proof j i D Pk
jD1 �j juj ijvj i, in Schmidt form, with �j D 0, if j � k C 1. By

Lemma 2.4.13,

maxfjh j 0ij; j 0i W max: entangled stateg � 1p
d
.�1 C �2 C : : :C �k/

� 1p
d
k1=2

�

�21 C �22 C : : :C �2k
�1=2

D
r

k

d
: (2.37)

ut
It is now easy to prove Proposition 2.4.12.

Proof Assume, to the contrary, that the Schmidt number of � is less than k. Recall
that such a state � can be written as a convex combination of pure states j�ih�j 2 Sk ,
where the convex set Sk was defined in Eq. (2.15), as follows:

� D
Z

Sk
j�ih�j�d.�/ :
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If j i is maximally entangled, then, Corollary 2.4.14 implies

h j�j i D
Z

Sk
jh�j ij2�d� � k

d
: (2.38)

Therefore, if � has the property that h j�j i � k
d

for any maximally entangled
state j i,

Schmidt number.�/ � k:

ut
Now, consider the Werner state �F with F D k

d
for some k � d . It is left as an

exercise for the reader to check that such a state can be obtained by averaging the
action of the unitary group….U / on an entangled state of Schmidt rank k.

Exercise 2.4.15 Show that for j ki D 1p
k

Pk
iD1 jiii,

Z

.U ˝ NU /j kih kj.U ˝ NU /	 D �k=d ; (2.39)

where �k=d is the Werner state with F D k
d

.

Clearly, Schmidt Number.�k=d / � k. We will now prove that the Schmidt number
of �k=d is in fact exactly equal to k.

Proposition 2.4.16 The state �k=d defined in Eq. (2.39) has Schmidt number equal
to k.

Proof We know from Exercise 2.4.10, that the state �k=d satisfies

maxf h j�k=d j i; j i W max: entangled stateg D k

d
� k � 1

d
:

Then, it is a direct consequence of Proposition 2.4.12 that,

Schmidt number.�/ � k:

But we already know that Schmidt number.�/ � k, thus proving that
Schmidt number.�/ D k: ut

The final ingredient in proving Theorem 2.4.11 is the following property of
Werner states with 1

d2
� F � k

d
.

Proposition 2.4.17 For 1
d2

� F � k
d

, the Werner state �F is a convex combination
of I

d2
(I being the identity operator on H ˝ H) and �k=d .
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Proof Let,

�F D .1� �/
I

d2
C ��k=d :

Recall that �k=d is itself a convex combination of the maximally entangled state
j 0ih 0j and the state orthogonal to it, as stated in Eq. (2.30). Therefore,

�F D .1 � �/ I
d2

C �


�

1 � k

d

�

I � j 0ih 0j
d2 � 1

C k

d
j 0ih 0j

�

D



1 � �

d2
C �

1 � k=d

d2 � 1
�

.I � j 0ih 0j/C



1 � �
d2

C �
k

d

�

j 0ih 0j:

(2.40)

Comparing with the canonical form of the Werner state given in Eq. (2.30), we see
that the parameter F corresponding to �F is,

F D 1 � �

d2
C �

k

d
:

In other words, the parameter � satisfies

� D F � 1
d2

k
d

� 1
d2

:

Clearly, 0 � � � 1 iff

1

d2
� F � k

d
:

ut
Finally, we note an important corollary of Proposition 2.4.17.

Corollary 2.4.18 Schmidt number.�F / � k if 1
d2

� F � k
d

.

The proof of Theorem 2.4.11 now follows easily. Recall that the Werner state �F
for k�1

d
� F � k

d
satisfies (Exercise 2.4.10)

h j�F j i � k � 1

d
:

Then, Proposition 2.4.12 implies

Schmidt number.�F / � k:
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However, Proposition 2.4.17 and Corollary 2.4.18 imply that

Schmidt number.�F / � k;

thus proving Theorem 2.4.11.
An interesting open question is to estimate the Schmidt number of the Werner

state �F for the parameter range 0 � F � 1
d2

.
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Chapter 3
Operator Systems

Abstract In the first two sections of this chapter, which is based on lectures by
Vern Paulsen, we will take a closer look at the results of Choi and how they explain
some results on quantum error correction. In particular, we will look at the Knill-
Laflamme result and Shor’s code. One novel aspect of our approach, is that we
will introduce Douglas’ Factorization Theorem, which can be used to replace many
calculations.

A quantum channel is always defined as a completely positive, trace preserving
mapping. The natural setting to discuss completely positive mappings is an operator
system. So our last three sections will be an introduction to some topics in the theory
of operator systems that we believe are important for anyone interested in quantum
information theory. The chapter concludes with some remarks on the equivalence
of the Connes Embedding Problem, Kirchberg’s conjecture on C �.F1/ having
the Weak Expectation Property, and other statements, including even a nuclearity
assertion about some finite dimensional operator systems.

3.1 Theorems of Choi

Notations and Conventions

Vectors v 2 C
n will be treated as column vectors v D

2

6

4

˛1
:::

˛n

3

7

5. In short,

C
n � Mn�1. And for such a column vector v, its adjoint gives a row vector

v� WD Œ˛1; : : : ; vn�.
Bra and Ket Notations: For v;w 2 C

n, we shall, following the physicists, write

jvi WD v and hwj WD w�. Thus, if v D

2

6

4

˛1
:::

˛n

3

7

5 and w D

2

6

4

ˇ1
:::

ˇn

3

7

5, then v�w D
P

j ˛iˇi D hvjwi and wv� D Œˇi˛j � DW jwihvj: (In particular, our inner products
will be linear in the second variable and conjugate linear in first.)

© Springer International Publishing Switzerland 2015
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3.1.1 Douglas Factorization

We know by the spectral theorem that for positive semidefinite matrix P 2 MC
n , if

u1; � � � ; ur are non-zero eigenvectors (r D rank.P /) with eigenvalues p1; � � � ; pr
and if vi D p

piui , then P D Pr
iD1 viv�

i . This is known as the spectral
decomposition, but there are many ways to decompose a positive semi definite
matrix as a sum of rank-1 matrices. Let P D Pm

iD1 wiw�
i be another such. To find a

relation between the vi ’s and wi ’s, we need the following proposition:

Proposition 3.1.1 (Douglas’ Factorization Theorem) Let A;B be two bounded
operators on a Hilbert space H such that B�B � A�A. Then there exists a unique
C 2 B.R.A/;R.B// such that jjC jj � 1 and CA D B (where R.A/ is range of A).

Observe that the conclusion in the above proposition of Douglas says loosely that
B�B � A�A implies A “divides” B (in the above sense).

Proof Define C.Ah/ D Bh for h 2 H . Then well-definedness of the map C and the
other assertions of the proposition follow from the inequality in the hypothesis. ut
Proposition 3.1.2 Let P 2 MC

n with rank.P / D r and representations P D
Pr

iD1 viv�
i D Pm

iD1 wiw�
i . Then:

1. there is an isometric ‘change of basis’, that is, there exists a unique isometry
U D Œui;j �m�r , i.e., U �U D 1r , such that wi D Pr

iD1 ui;j vj for all 1 � i � m.
2. spanfv1; � � � ; vrg D spanfw1; � � � ;wmg D R.P /.

Proof (1) Let V D Œv1
::: v2

::: � � � ::: vr � and W D Œw1
::: w2

::: � � � ::: wm�. Note that each
vector vi (or wi ) is an n � 1 column vector, thus V 2 Mn�r andW 2 Mn�m.

The set fvi W i D 1; � � � ; rg is linearly independent since rank.P / D r ; in
particular, V W Cr ! C

n is injective and V � W Cn ! C
r is thus surjective.

Also P D VV� D WW�; so, by Douglas’ factorization, there exists a contraction
U1 W R.V �/ D C

r ! R.W �/ � C
m such that W � D U1V

�. For the same reason,
there also exists a contraction C W R.W �/ ! R.V �/ D C

r such that V � D CW�.
Hence .CU1/V

� D V �. As V � is surjective, this shows that CU1 D 1r everywhere.
Hence C and U1 must be partial isometries and CU1 D 1r implies the injectivity

ofU1; we, therefore, see thatU1 must be an isometry. The complex conjugate matrix
U D NU1 is seen to satisfy the requirements of the proposition.

(2) follows from the fact that U as above is an isometry. ut

3.1.2 Choi-Kraus Representation and Choi Rank

Theorem 3.1.3 (Choi’s First Theorem) Let ˆ W Mn ! Md be linear. The
following conditions on ˆ are equivalent:
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1. ˆ is completely positive.
2. ˆ is n-positive.
3. Pˆ D .ˆ.Ei;j // 2 Mn.Md/

C where Ei;j are the standard matrix units of Mn.
4. ˆ.X/ D Pr

iD1 AiXA�
i for some r; d and Ai 2 Md�n (Choi-Kraus representa-

tion).

Proof It is easy to see that .1/ ) .2/ ) .3/ and .4/ ) .1/. So we will only prove
.3/ ) .4/.

Let r D rank.Pˆ/. Since, Pˆ 2 Mn.Md/
C D MC

nd , as above, there exist vectors

vi 2 C
nd; 1 � i � r such that Pˆ D Pr

iD1 viv�
i . Suppose vi D

0

B

@

˛i1
:::

˛in

1

C

A 2 C
nd,

where each ˛ij D

0

B

@

˛ij .1/
:::

˛ij .d/

1

C

A 2 C
d .

Let Ai D Œ˛i1
::: � � � ::: ˛in�d�n. It is now easy to check that ˆ.Ei;j / D

P

l ˛
l
i .˛

l
j /

� D Pr
lD1 AlEi;jA�

l for all 1 � i; j � n. Hence (4) holds. ut

Remark 3.1.4 If we write Pˆ as
Pm

iD1 wiw�
i , where wi D

0

B

@

ˇi1
:::

ˇin

1

C

A 2 C
nd, with ˇij 2

C
d , then ˆ.X/ D Pm

iD1 BiXB�
i , where Bi WD Œˇi1

::: � � � ::: ˇin�d�n. Conversely, if

ˆ.X/ D Pm
iD1 BiXB�

i for some Bi D Œˇi1
::: � � � ::: ˇin�d�n, and if we let wi D

0

B

@

ˇi1
:::

ˇin

1

C

A,

then Pˆ D Pm
iD1 wiw�

i .

We now apply the Choi-Kraus result to characterize quantum channels.

Proposition 3.1.5 Let E W Mn ! Mn be CPTP (i.e., CP and trace preserving).
Then there exist Ei 2 Mn, 1 � i � r satisfying

Pr
iD1 E�

i Ei D 1n such that
E.X/ D Pr

iD1 EiXE�
i for all X 2 Mn.

Proof Since E is CP, from Theorem 3.1.3, we know of the existence of matrices
Ei 2 Mn such that E is decomposed as a sum as above. However, E is trace
preserving ) tr.E.X// D tr.X/ 8 X ) tr.

Pr
iD1 EiXE�

i / D tr.X/ 8 X )
tr.
Pr

iD1 E�
i EiX/ D tr.X/ 8 X ) hPr

iD1 E�
i Ei ; X

�i D h1n;X�i;8X and hence
Pr

iD1 E�
i Ei D 1n. ut

Remark 3.1.6 It is easy to see that conversely,
Pr

iD1 E�
i Ei D 1n ) E is trace

preserving.
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Definition 3.1.7 (Choi Rank of a CP Map) Let ˆ W Mn ! Md be CP. Then, by
the above theorem,ˆ.X/ D Pq

iD1 BiXB�
i for some matricesBi 2 Md;n, 1 � i � q.

The Choi rank of ˆ is given by cr.ˆ/ WD minfq W ˆ.X/ D Pq
iD1 BiXB�

i g.

Proposition 3.1.8 (Choi) In the above set up, cr.ˆ/ D rank.Pˆ/.

Proof This follows from Theorem 3.1.3, Remark 3.1.4 and Proposition 3.1.2. ut
Theorem 3.1.9 (Choi’s Second Theorem) Letˆ 2 CP.Mn;Md/ with cr.ˆ/ D r .
Suppose ˆ.X/ D Pr

iD1 AiXA�
i D Pm

iD1 BiXB�
i are two Choi-Kraus represen-

tations of ˆ. Then there exists a unique matrix U D .ui;j / 2 Mm�r such that
U �U D 1r ; Bi D Pr

jD1 ui;j Aj and spanfA1; � � � ; Arg D spanfB1; � � � ; Bmg.

Proof This follows from Proposition 3.1.2, Theorem 3.1.3 and Remark 3.1.4. ut

Example: Binary Case Quantum Error Detection/Correction

This is an introductory binary example to motivate the quantum error correc-
tion/detection of the next section. Let us take a binary string of 0s and 1s of length,
say 5, e.g. s D .0; 1; 0; 1; 1/ 2 Z

5
2. We want to transmit this. Some errors may occur

in transmission. We want to detect/correct that error.
One way to detect/correct error is to encode the given string into a larger vector.

One famous binary error correcting codes is the Majority Rule Code.
We start with our original vector s of length r (here r D 5) and encode it

within a vector of length nr for some odd n, where each digit gets repeated n times
consecutively.

Say n D 3 and s D .0; 1; 0; 1; 1/ then this vector gets encoded into

s1 D .0; 0; 0I 1; 1; 1I 0; 0; 0I 1; 1; 1I 1; 1; 1/

(note that the encoded vectors form a five-dimensional subspace of a 15-dimensional
space).

After transmission, suppose the output vector turns out to be, say

s2 D .1; 0; 0I 1; 1; 1I 0; 0; 1I 0; 0; 1I 1; 1; 0/:

We decode/recover the string by choosing the digit (0 or 1) that appears as a
majority among each block of n.D 3/ consecutive digits. Thus, in each block of
three consecutive digits, the majority rules. Here the recovered string will be s3 D
.0; 1; 0; 0; 1/.

Schematically: s
encode����! s1

transmit����! : : :
receive����! s2

decode����! s3.
Note that there is one error and in fact to have one error in the output there has to

be at least two (i.e., more than n/2) errors within some block of n digits. Knowing
probabilities of those errors will help to understand how effective a code is.
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Alternatively, instead of encoding cleverly, one could pick a clever five-
dimensional subspace of the 15-dimensional space and then any embedding of
Z
5
2 onto that subspace would be the encoding..

Note that this code requires that we “clone” each digit three times. Thus, it
violates the “no cloning” rule and could not be implemented on a quantum machine.

In the next section, we will present Shor’s code, which is a quantum code that is
robust to many types of errors.

3.2 Quantum Error Correction

If we assume that any errors that occur must also be the result of some quantum
event, then it is natural to assume that errors are also the result of the action of a
CPTP map acting on the states. Thus, an error operator will be a CPTP map E . The
usual strategy/protocol in quantum error correction is the following:

As in the above example, we don’t expect to be able to correct all errors that
occur. If v 2 V is a state in a ‘protected’ subspace V , we want to correct E.jvihvj/,
which is the error that has happened to the state. To do this, we seek a recovery

operator R W Mn

CPTP���! Mn such that R.E.jvihvj// D jvihvj;8v 2 V .
The approach appears somewhat naive since it appears that it assumes that we

know the error explicitly. However using Choi’s theorem it turns out, that correcting
V against one assumed error leads to its correction against a whole family of errors.
I believe that this is the key element of Knill-Laflamme error correction.

3.2.1 Applications of Choi’s Theorems to Error Correction

Theorem 3.2.1 (Knill-Laflamme) Let V � C
n be a subspace and P W Cn ! V

be its orthogonal projection. Let E W Mn ! Mn be CPTP (an error map) given
by E.X/ D Pm

iD1 EiXE�
i for all X 2 Mn. Then there exists a (recovery) CPTP

map R W Mn ! Mn such that R.E.PXP// D PXP; 8 X 2 Mn if, and only if,
PE�

i EjP D ˛i;j P for some ˛i;j 2 C, 1 � i; j � m.

Proof .)/ Suppose a recovery map R has a representation R.W / D
Pq

lD1 AlWA�
l for all W 2 Mn with

P

A�
l Al D 1. Since R and E are both

CPTP, so is R ı E . Further, the equality .R ı E/.PXP/ D R.E.PXP// D
Pm

iD1
Pq

lD1.AlEiP /X.PE�
i A

�
l / D PXP, gives two Choi-Kraus representations

for R ı E , and PXP is of minimal length.Hence, by Theorem 3.1.9, there
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exists a unique isometry U D Œˇij�mq�1 such that AlEiP D ˇliP . Since

U D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

ˇ11
:::

ˇ1m
ˇ21
:::

ˇ2m
:::

ˇq1
:::

ˇqm

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

is an isometry, we have
P

l;i jˇlij2 D U �U D 1. In particular,

.PE�
i A

�
l /.AlEjP / D . Ň

liP/.ˇljP/ D Ň
liˇljP and, using

P

l A
�
l Al D 1n, we have

q
X

lD1
Ň
liˇljP D

q
X

lD1
PE�

i .A
�
l Al /EjP D PE�

i EjP:

Simply take ˛i;j D P

l
Ň
liˇlj for the conclusion.

.(/ We may clearly assume P ¤ 0 so tr.P / > 0, as the Theorem is vacuously
true in the contrary case! Suppose there exist ˛i;j 2 C, 1 � i; j � m such
that PE�

i EjP D ˛i;j P for all 1 � i; j � m. Then .˛i;j P / D .PE�
i EjP / D

0

B

@

PE�
1
:::

PE�
m

1

C

A

�

E1P; : : : ; EmP
� � 0. This implies .˛i;j / 2 MC

m (since Œ˛i;j � D

1
trn.P /

.id ˝ trn/.Œ˛i;j � ˝ P/); also,
P

i ˛i;iP D P

i PE�
i EiP D P2 D P )

trm..˛i;j // D P

i ˛i;i D 1, i.e., Œ˛ij� is a density matrix.
Thus, .˛i;j / is unitarily diagonalizable, i.e., there exists a unitary U D .ui;j / 2

Mm such that U.˛i;j /U � D D D diag.d11; � � � ; dmm/, with dii � 0 8i and
Pm

iD1 dii D 1. Set Fi D Pm
jD1 Nui;jEj , 1 � i � m. Hence, by Choi (or by direct

calculation),
Pm

iD1 FiXF�
i D E.X/ for all X 2 Mn. Also, note that

PF�
i FjP D P.

X

k;l

ui;kE
�
k Nuj;lEl /P

D
X

k;l

ui;k Nuj;lPE�
kElP

D
X

k;l

ui;k˛k;l Nuj;lP

D dijP :
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So we see that if we define

Vi D
(

0 if dii D 0
1p
dii
FiP otherwise

;

we find that the Vi ’s are partial isometries with V �
i Vj D ıijP 8i; j (i.e., all non-

zero ones among them having initial space equal to V ) and with ViV �
i D Fi .V /

(i.e., with pairwise orthogonal final spaces). Hence we see that R D P

i ViV
�
i D

P
1
dii
FiPF�

i is an orthogonal projection. Let Q D 1 � R.
Define R W Mn ! Mn by R.X/ D P

V �
i XVi C QXQ. Clearly, R is a unital

CPTP map.
We want to show that R.E.PXP// D PXP 8 X 2 Mn. To see this, it is enough

to show that for v 2 V;R.E.vv�// D vv� (since fPXP W X 2 Mng D all matrices
living on V while fvv� W v 2 V g D all rank-1 projections living on V ). For this,
compute thus:

R.E.vv�// D R.E.Pvv�P//

D
X

i

V �
i

0

@

X

j

FjPvv�PF �
j

1

AVi CQ

0

@

X

j

FjPvv�PF�
j

1

AQ

D
X

i;j

V �
i FjPvv�PF�

j V
�
i C

X

j

QFjPvv�PFjQ

D
X

i;j

djjV
�
i Vj vv�V �

i Vj C
X

j

djjQVjPvv�PVjQ

D
X

j

djjPvv�P C 0

D vv� ;

as desired. ut
Theorem 3.2.2 Let R be the recovery operator constructed as in Theorem 3.2.1
and QE W Mn ! Mn be another error operator admitting a representation QE.X/ D
Pp

iD1 QEiX QE�
i with QEi 2 spanfE1; : : : ; Emg, 1 � i � p. Then, also R QE.PXP/ D

PXP; 8X 2 Mn.

Proof We havefEi 2 spanfE1; � � � ; Emg, 1 � i � p and since QE is CPTP, they must
satisfy

P

fEi
�fEi D 1. Recall that—with the Fi as in the proof of Theorem 3.2.1—

we may deduce from Theorem 3.1.9 that spanfE1; � � � ; Emg D spanfF1; � � � ; Fmg
and PF �

i Fj P D ıi;j diiP , 1 � i; j � m; so,

V �
i FjP D ıi;j

p

diiP: (3.1)
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Write QEi D Pm
lD1 ˇi;lFl . Then, 1 D P

k
QE�
k

QEk D P

k.
Pm

lD1 Ň
k;lF

�
l /

.
Pm

jD1 ˇk;j Fj /. So,

P D P1P D P.
X

k

.

m
X

lD1
ˇk;lF

�
l /.

m
X

jD1
ˇk;j Fj //P

D
X

k

X

l;j

Nˇk;lˇk;jPF�
l Fj P

D
X

k

m
X

jD1
jˇk;j j2djjP:

Hence,

X

k

m
X

jD1
jˇk;j j2djj D 1: (3.2)

Hence,

R. QE.PXP// D
X

i;j

V �
i

QEjPXP QE�
j Vi

D
X

i;j;k;l

ˇljˇkjV
�
i FlPXPF�

kVi

D
X

i;j

jˇijj2diiPXP .by Eq. (3.1)

D PXP 8X 2 Mn .by Eq. (3.2):

ut

3.2.2 Shor’s Code: An Example

We consider the ‘protected subspace’ V � C
2˝� � �˝C

2 (9 copies) with dim.V / D
2 given by

V D spanfj0Li; j1Lig;

where 0L D 1

2
p
2
..j000i C j111i/˝ .j000i C j111i/˝ .j000i C j111i// and 1L D

1

2
p
2
..j000i � j111i/˝ ..j000i � j111i/˝ .j000i � j111i//. (Notation: Fixing an

orthonormal basis fj0i; j1ig for C2, we write j000i for j0i ˝ j0i ˝ j0i and so on.)
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We consider the Pauli basis of C2 ˝ � � � ˝ C
2 (9 copies) constructed as follows:

Take the basis ofM2 (which is orthonormal with respect to the normalised trace-

inner-product) consisting of X D
�

0 1

1 0

�

; Y D
�

0 i

�i 0
�

; Z D
�

1 0

0 �1
�

and 12.

(These are regarded as maps on C
2 with respect to the orthonormal basis fj0i; j1ig.

1-Pauli elements: For i D 1; � � � ; 9, these are the 29 � 29 unitary self-adjoint
matrices defined by

1 D 12 ˝ 12 ˝ � � � ˝ 12

Xi D 12 ˝ 12 ˝ � � � ˝X ˝ � � � ˝ 12 .X at i thposition/

Yi D 12 ˝ 12 ˝ � � � ˝ Y ˝ � � � ˝ 12 .Y at i thposition/

Zi D 12 ˝ 12 ˝ � � � ˝Z ˝ � � � ˝ 12 .Z at i thposition/:

Let us list the above 1-Paulis as U1; : : : ; U28. Define E W M29 ! M29 by E.X/ D
1
28

P28
iD1 UiXU�

i . Then, it is easily seen that E is a CPTP map (being an average of
�-automorphisms).

Proposition 3.2.3 With this notation, we have that

V;X1V; : : : ; X9V; Y1V; : : : ; Y9V;Z1V

are all mutually orthogonal and Z
3kCi

ˇ

ˇ

V

D Z
3kCj

ˇ

ˇ

V

for k D 0; 1; 2, and 0 �
i; j < 3.

Proof Exercise. ut
• Notice that PU �

i UjP 2 f0; P g 81 � i; j � 28 and hence Theorem 3.2.1
ensures the existence of a recovery operator R satisfying R ı E.PXP/ D
PXP 8X 2 Mn.

By Theorem 3.2.2 above, for this protected space V and error map E , we
have R. QE.PXP// D PXP for any error map QE W Mn ! Mn given by QE.X/ D
P QEiX QE�

i , where QEi 2 spanf1-Pauli basisg.
• The 1-Paulis contain in their span any operator of the form 1 ˝ � � � ˝ 1 ˝ A ˝
1 � � � ˝ 1. So while the Shor code may not fix all errors, it does fix all errors in
spanf1-Paulisg. Thus, if each term in the error operator acts on only one of the
qubits, then this subspace will be protected from this error and the decoding map
will recover the original encoded qubit.

Remark 3.2.4 See the work of David Kribs, et al. for various generalizations of the
Knill-Laflamme theory, including infinite dimensional versions of this theory.

A more refined version of the Knill-Laflamme theory than we have stated is to
consider protected operator subsystems of the matrices and encodings of states into
such subsystems.

In the next lecture we will introduce this concept.
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3.3 Matrix Ordered Systems and Operator Systems

Recall that a typical quantum channel on Mn looks like E.X/ D Pr
iD1 EiXE�

i

for some matrices Ei 2 Mn, which are not unique. However, given any such
representation of E , the space S WD span fEj W 1 � j � rg remains the same.
Moreover, the space S contains 1 and is closed under taking adjoints.

Duan, Severini and Winter have argued that various concepts of quantum
capacities of the channel E really only depend on this subspace S, i.e., if two
channels generate the same subspace then their capacities should be the same. Thus,
capacities are naturally functions of such subspaces.

Moreover, in the extensions of the Knill-Laflamme theory, it is exactly such
subspace that are the protected subspaces, i.e., the subspaces that one wants to
encode states into so that they can be recovered after the actions of some error
operators.

A subspace of Mn(or more generally, B.H/) that contains 1 and is closed under
the taking of adjoints is called an operator system. These are also the natural
domains and ranges of completely positive maps.

Thus, the concept of an operator system plays an important role in the study
of completely positive maps and, in particular, in QIT. For this reason we want to
introduce their general theory and axiomatic definitions.

Finally, when we study Mn D B.Cn/ we know that the positive operators of
rank one, represent the states of the underlying space and that positive operators of
trace one represent the mixed states. But when we focus on a more general operator
system, what exactly is it the states of? One viewpoint is to just regard it as a
restricted family of states of the underlying space. But this is very problematical
since many operator subsystems of Mn have no rank one positives and others that
have plenty of rank one positives, still have trace one positives that cannot be written
as sums of rank ones! The correct answer to what is an operator system the states of
involves introducing the concept of (ordered) duals.

Motivated by these issues and some structural properties of Mn, we introduce a
bunch of abstract definitions.

Definition 3.3.1 A �-vector space is a complex vector space V with a map � W V !
V satisfying

1. .v C w/� D v� C w�;
2. .�v/� D N�v�; and
3. .v�/� D v

for all v;w 2 V , � 2 C. The self adjoint elements of such a space is denoted by

Vh D fv 2 V W v D v�g:

• As usual, we have a Cartesian decomposition in a �-vector space V given by
v D vCv�

2
C i v�v�

2i
for all v 2 V and we call these the real and imaginary parts

of v.
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• Given a �-vector space V and n � 1, its nth-amplification Mn.V/, which is just
the set of n � n matrices with entries from V inherits a canonical �-vector space
structure and is naturally identified with Mn ˝ V .

Definition 3.3.2 A matrix ordering on a �-vector space V is a collection Cn �
Mn.V/h, n � 1 satisfying:

1. Cn is a cone for all n � 1;
2. Cn \ .�Cn/ D .0/ for all n � 1; and
3. APA� 2 Ck for all A 2 Mk;n; P 2 Cn, k; n � 1.

A �-vector space V with a matrix ordering as above is called a matrix ordered space.

Remark 3.3.3 Some authors also add the following axiom in the definition of a
matrix ordering:

.Q4/ Cn � Cn D Mn.V /h:

However, we will abstain from its use because of reasons that will get clear while
discussing ‘dual of an operator system’.

Exercise 3.3.4 Let P 2 Cn andQ 2 Ck. Then




P 0

0 Q

�

2 CnCk.

Example 3.3.5 1. V D B.H/ with usual adjoint structure and Cn WD
Mn.B.H//

C D B.H ˝ C
n/C, n � 1 is matrix ordered.

2. Any subspace V � B.H/ such that V is closed under taking adjoints provides V
with the natural induced matrix ordering Cn WD Mn.B.H//

C \Mn.V/, n � 1.

Definition 3.3.6 An operator system is a subspace S � B.H/ that is closed under
taking adjoints and contains the unit eS WD idH , for some Hilbert spaceH , together
with the matrix ordering given in Example 3.3.5(2).

• Usually, whenever the matrix ordering is clear from the context, we simply write
Mn.V/C for Cn, n � 1.

Definition 3.3.7 Given matrix ordered spaces V andW , a linear map ' W V ! W is
said to be n-positive if its nth-application '.n/ W Mn.V/ ! Mn.W/, Œvij� 7! Œ'.vij/�

is positive, i.e., '.n/.Mn.V/C/ � Mn.W/C. ' is said to be completely positive (in
short, CP) if ' is n-positive for all n � 1.

• Clearly, if we include Axiom .Q4/ in the axioms of matrix ordering, then every CP
map is �-preserving.

Definition 3.3.8 Two matrix ordered spaces V and W are said to be completely
order isomorphic if there is a completely positive linear isomorphism ' W V ! W
such that '�1 is also completely positive.
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Given two operator systems S1;S2 on possibly different Hilbert spaces, we
identify them as the “same” operator system when they are completely order
isomorphic via a unital complete order isomorphism.

3.3.1 Duals of Matrix Ordered Spaces

Let V be a matrix ordered space. Let Vd be the space of linear functionals on the
vector space V .

�-structure: For each f 2 Vd define f � 2 Vd by f �.v/ D f .v�/; v 2 V . This
makes Vd into a �-vector space.

Matrix ordering: Given a matrix of linear functionals Œfij� 2 Mn.Vd /, identify it
with the map ˆ W V ! Mn given by ˆ.v/ D Œfij.v/�, v 2 V . Let

Cn D fŒfij� 2 Mn.Vd / W ˆ W V ! Mn is CPg:

Then, Vd together with above cones forms a matrix ordered space.
This matrix ordered space is what is meant by the matrix-ordered dual of V .

• There are many other ways of making Vd into a matrix ordered space. However,
the above structure has better compatibility with respect to some important
operations on matrix ordered spaces.

Remark 3.3.9 In general, if we require V to also satisfy axiom .Q4/ in the definition
of a matrix ordering, then it can still be the case that Vd does not satisfy .Q4/.

An immediate compatibility of the above dual structure is seen in the following:

Proposition 3.3.10 Let ' W V ! W be a CP map between two matrix ordered
spaces. Then the usual dual map 'd W Wd ! Vd is also CP.

Proof Let n � 1 and Œfij� 2 Mn.Wd /C. Then .'d /.n/.Œfij�/ D Œfij ı '�. Now,
Œfij ı '� W V ! Mn is given by v 7! Œfij ı '.v/�, which being a composite of the CP

maps V
'! W

Œfij�! Mn is again CP. Thus, .'d /.n/.Œfij�/ 2 Mn.Vd /C. In particular,
'd is CP. ut

Consider the matrix algebra operator system V D Mp D L.Cp/. Let fEij W
1 � i; j � pg be the system of matrix units for V . Via this basis, we can infact
identify Vd with V itself. Formally, let fıijg � Vd be the dual basis for fEijg. Given
A D Œaij� 2 V , define fA 2 Vd by fA D P

ij aijıij. Thus, aij D fA.Eij/ and we
see that A is the usual “density” matrix of the linear functional fA: Note that, for
B D Œbij� 2 V , we have fA.B/ D P

ij aijbij D trp.AtB/. Clearly, fA.B/ � 0 for all
B � 0 if and only if A � 0. Define � W V ! Vd by �.A/ D fA. Then, we have the
following:
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Theorem 3.3.11 ([14, Theorem 6.2]) The map � W Mp.C/ ! Mp.C/
d as

constructed above is a complete order isomorphism.

A natural question to ask at this stage would be whether any other basis for Mp

works equally well or not? And, quite surprisingly, the answer is not very clear!
Let B D fBrs W 1 � r; s � pg be any other basis for Mp and f�rs W 1 � r; s � pg

its dual basis. Define �B W Mp ! .Mp/
d by �B.A/ D P

rs ars�rs, where A D
P

rs arsBrs. Then, it is not difficult to find a basis B such that �B is not a complete
order isomorphism. However, it will be interesting to answer the following:

Question 3.3.12 1. What are the necessary and sufficient conditions on the basis
B such that the map �B as above is a complete order isomorphism?

2. If the map �B is positive, then is it automatically completely positive?

See [13] for some work on this problem.
Note that, under the above complete order isomorphism � , we have �.1/ D trp .

We will soon see that 1 and trp have some interesting significance on the structures
of Mp and .Mp/

d , respectively.

3.3.2 Choi-Effros Theorem

Arveson introduced the concept of an operator system in 1969. Choi-Effros were
the first to formally axiomatize the theory. Their axiomatic characterization follows.

Theorem 3.3.13 ([1, Theorem 4.4]) Let V be a matrix ordered space with an
element e 2 Vh satisfying:

1. For each n � 1 and H 2 Mn.V/h, there exists an r > 0 such that
r diag.e; e; : : : ; e/n�n CH 2 Mn.V/C. (Such an e is called a matrix order unit.)

2. If H 2 Mn.V/h satisfies r diag.e; e; : : : ; e/n�n C H 2 Mn.V/C for all r > 0,
then H 2 Mn.V/C. (Such a matrix order unit is called an Archimedean matrix
order unit.)

Then there exists a Hilbert space H and a CP map ' W V ! B.H/ such that
'.e/ D idH and ' is a complete order isomorphism onto its range.

• The converse of this theorem is clear: Every operator system clearly is matrix
ordered with eS as an Archimedean matrix order unit. And, the above theorem
of Choi and Effros allows us to realize every Archimedean matrix ordered space
with an operator system. We will thus use the terminology operator system for
an Archimedean matrix ordered space and vice versa.

Theorem 3.3.14 ([1, §4]) Let S � B.H/ be a finite dimensional operator system.
Then,

1. there exists an f 2 .Sd /C such that f .p/ > 0 for all p 2 SC n f0g; and
2. any such f is an Archimedean matrix order unit for the matrix ordered space Sd .
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Remark 3.3.15 1. When S � Mp is an operator system for some p � 1, then
trp also works as an Archimedean matrix order unit for the matrix ordering on
Sd ; thus, .Sd ; trp/ is an operator system. However, the above theorem becomes
important as, quite surprisingly, there exist finite dimensional operator systems
([1, §7]) that cannot be embedded in matrix algebras as operator sub-systems.

2. In general, for an infinite dimensional operator system S, it is not clear whether
Sd admits an Archimedean matrix order unit or not.

For a finite dimensional operator system S, it is easily checked that .Sd /d D S.
Thus, returning to our motivating question: if we start with an operator system, then
the object that it is naturally the set of states on is Sd .

3.4 Tensor Products of Operator Systems

In the usual axioms for quantum mechanics, if Alice has a quantum system
represented as the states on a (finite dimensional) Hilbert space HA and Bob has
a quantum system represented as the states on a Hilbert space HB then when we
wish to consider the combined system it has states represented by the Hilbert space
HA˝2 HB where we’ve introduced the subscript 2 to indicate that this is the unique
Hilbert space with inner product satisfying,

hhA ˝ hB jkA ˝ kB i D hhAjkAi � hhB ˝ kBi:

As vector spaces we have that

B.HA ˝2 HB/ D B.HA/˝ B.HB/;

and since the left hand side is an operator system, this tells us exactly how to make
an operator system out of the two operator systems appearing on the right hand side.

If P 2 B.HA/
C and Q 2 B.HB/

C then P ˝ Q 2 B.HA ˝2 HB/
C. But there

are many positive operators in B.HA ˝2 HB/
C, even of rank one, i.e., vector states,

that can not be expressed in such a simple fashion and this is what leads to the
important phenomenon known as entanglement which you’ve undoubtedly heard
about in other lectures.

Now suppose that we are in one of the scenarios, such as in coding theory or
capacity theory, where Alice and Bob do not both have all the operators on their
respective Hilbert spaces but instead are constrained to certain operator subsystems,
SA 	 B.HA/ and SB 	 B.HB/. When we wish to consider the bivariate system that
includes them both then as a vector space it should be SA ˝SB , but which elements
should be the states? More importantly, since we want to study quantum channels on
this bivariate system, we need to ask: What should be the operator system structure
on this bivariate system?
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There is an easy answer, one could identify

SA ˝ SB 	 B.HA ˝2 HB/;

and when one does this we see that it is an operator subsystem, i.e., it contains the
identity operator and is closed under the taking of adjoint. This operator system is
denoted by SA ˝sp SB and is called their spatial tensor product.

Unfortunately, in general,

�

SA ˝sp SB
�d ¤ SdA ˝sp SdB ;

so we need at least one other tensor product to explain what are the states on a tensor
product.

Attempts by researchers such as Tsirelson [15, 16] to determine the sets of
density matrices that are the outcomes of various multipartite quantum settings, and
various works in operator algebras, argue for several other ways to form the tensor
product of operator systems.

Thus, we are lead to consider more general ways that we can form an operator
system out of a bivariate system.

Given operator systems .S; eS/ and .T ; eT /, we wish to take the vector space
tensor product S ˝ T , endow it with a matrix ordering fCn � Mn.S ˝ T / W n � 1g
such that S ˝ T together with these cones and eS ˝ eT forms an operator system.

Definition 3.4.1 Given operator systems .S; eS/ and .T ; eT /, by an operator
system tensor product � we mean a family of cones C�n � Mn.S ˝ T /, n � 1

such that .S ˝ T ; fC�ng; eS ˝ eT / is an operator system satisfying:

1. P ˝Q D Œpij ˝ qkl� 2 C�nm for all P D Œpij� 2 Mn.T /C, Q D Œqkl� 2 Mm.T /C,
n;m � 1.

2. ' ˝  2 CP.S ˝� T ; Mn ˝ Mm D Mnm/ for all ' 2 CP.S;Mn/,  2
CP.T ;Mm/, n;m � 1.

Remark 3.4.2 Condition (2) in the above definition is analogous to the reasonable-
ness axiom of Grothendieck for Banach space tensor products.

Definition 3.4.3 A tensor product � of operator systems is said to be

1. functorial if

(a) it is defined for any two operator systems; and
(b) ' ˝  2 CP.S1 ˝� S2; T1 ˝� T2/ for all ' 2 CP.S1; T1/,  2 CP.S2; T2/.

2. associative if .S1 ˝� S2/ ˝� S3 is canonically completely order isomorphic to
S1 ˝� .S2 ˝� S3/ for any three operator systems Si , i D 1; 2; 3.

3. symmetric if the flip map gives a complete order isomorphism S ˝� T ' T ˝� S
for any two operator systems S and T .
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• Suppose a �-vector space W has two matrix orderings fCng and fC 0
ng; then

.W ; fCng/ is thought of as to be “bigger” than .W ; fC 0
ng/ if the identity map

idW W .W ; fCng/ ! .W ; fC 0
ng/ is CP; or, equivalently, if Cn � C 0

n for all n � 1.

Note that this notion is parallel to the fact that if jj � jj1 and jj � jj2 are two norms
on a complex vector space X , then jj � jj1 � jj � jj2 if and only if the (closed) unit
balls with respect to these norms satisfy B1.X; jj � jj2/ � B1.X; jj � jj1/.

3.4.1 Minimal Tensor Product of Operator Systems

Let .S; eS/ and .T ; eT / be two operator systems. For each p � 1, set

Cmin
p D

n

Œuij� 2 Mp.S ˝ T / W Œ.' ˝  /.uij/� 2 MC
nmp; 8' 2 CP.S;Mn/;

 2 CP.T ;Mm/; n;m � 1
o

:

Theorem 3.4.4 ([8]) With above setup,

1. fCmin
p g is an operator system tensor product on S ˝ T and we denote the

consequent operator system by S ˝min T .
2. ˝min is the smallest operator system tensor product in the sense that, if fC�pg is

any other operator system tensor product on S˝T , then C�p � Cmin
p for all p � 1.

3. if S � B.H/ and T � B.K/ for some Hilbert spacesH andK , then the spatial
tensor product S ˝sp T � B.H ˝ K/ is completely order isomorphic to the
minimal tensor product S ˝min T .

4. ˝min is functorial, associative and symmetric.
5. ifA andB are unitalC �-algebras, then their minimal tensor product as operator

systems is completely order isomorphic to the image of A˝ B in A˝C�- min B .

3.4.2 Maximal Tensor Product of Operator Systems

Let .S; eS/ and .T ; eT / be two operator systems. For each n � 1, consider

Dmax
n D

n

X�.Œpij�˝ Œqkl�/X W Œpij� 2 Mr.S/C; Œqkl� 2 Ms.T /C;

X 2 Mrs;n.C/; r; s � 1
o

:

It can be seen that fDmax
n g gives a matrix ordering on S ˝ T and that eS ˝ eT is a

matrix order unit for this ordering. However, there exist examples where eS ˝ eT
fails to be an Archimedean matrix order unit. We, therefore, Archimedeanize the
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above ordering, by considering:

Cmax
n D

n

Œuij� 2 Mn.S ˝ T / W ı diag.eS ˝ eT ; eS ˝ eT ; : : : ; eS ˝ eT /

CŒuij� 2 Dmax
n ; 8ı > 0

o

:

Theorem 3.4.5 ([8]) With above set up,

1. fCmax
n g is an operator system tensor product on S ˝ T and we denote the

consequent operator system by S ˝max T .
2. ˝max is the largest operator system tensor product in the sense that if fC�ng is any

other operator system tensor product on S ˝ T , then Cmax
n � C�n for all n � 1,

i.e. max tensor product is the largest operator system tensor product.
3. ˝max is functorial, associative and symmetric.
4. ifA andB are unitalC �-algebras, then their maximal tensor product as operator

systems is completely order isomorphic to the image of A˝ B in A˝C�- max B .

Remark 3.4.6 For any C �-algebra A � B.H/, the matrix ordering that it inherits
does not depend (upto complete order isomorphism) upon the embedding or the
Hilbert space H .

• At this point, we must mention that there is a big difference between the operator
space maximal tensor product and the operator system maximal tensor product.
This can be illustrated by an example:

For n;m � 1, the operator system maximal tensor product ofMn andMm equals
their C �-maximal tensor product, whereas their operator space maximal tensor
product does not.

Theorem 3.4.7 (CP Factorisation Property [6]) Let S � B.H/ be an operator
system. Then S ˝min T D S ˝max T for all operator systems T if and only if there
exist nets of UCP maps '� W S ! Mn� and  � W Mn� ! S, � 2 ƒ such that

jj � ı '�.s/� sjj ! 0; 8 s 2 S:

Remark 3.4.8 One can even avoid the above embedding S � B.H/, and give a
characterization for CPFP, alternately, by considering the norm

jjsjj WD inf
n

r > 0 W
�

re s

s� re

�

2 M2.S/C
o

; s 2 S:

• We had remarked earlier that there exist finite dimensional operator systems
which can not be embedded in matrix algebras. The surprise continues as, unlike
C �-algebras, not all finite dimensional operator systems are .min;max/-nuclear
in the sense of Sect. 3.6.3—[8, Theorem 5.18]. However, we have the following
useful fact.
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Lemma 3.4.9 ([6, 8]) Matrix algebras are .min;max/-nuclear as operator sys-
tems, i.e.,Mn ˝min S D Mn ˝max T for any operator system T .

Proof (Sketch!) One basically identifies Mk.Mn ˝ S/ naturally with Mkn ˝ S and
then with some serious calculation shows that Dmax

k .Mn ˝ S/ D Mkn.S/C D
Cmin
k .Mn ˝ S/. ut

Remark 3.4.10 ([6]) In fact, the only finite dimensional .min;max/-nuclear opera-
tor systems are the matrix algebras and their direct sums.

Remark 3.4.11 For a finite dimensional operator system S, the canonical isomor-
phism S 3 x 7! Ox 2 .Sd /d , where Ox.f / WD f .x/ for all f 2 Sd , is a complete
order isomorphism and OeS is an Archimedean matrix order unit for .Sd /d .

The requirement for the complete order isomorphism of the above map is that Œxij� 2
Mn.S/C if and only if Œ Oxij� 2 Mn..Sd /d /C; and this can be deduced readily from
the following fact:

Lemma 3.4.12 ([8, Lemma 4.1]) For any operator system S and P 2 Mn.S/,
P 2 Mn.S/C if and only if '.n/.P / 2 MC

nm for all ' 2 UCP.S;Mm/ andm � 1.

For vector spaces S and T with S finite dimensional, we have an identification
between S ˝ T and the space of all linear maps from Sd into T by identifying the

element u D P

i si ˝ ti 2 S ˝ T with the map Sd 3 f Lu7! P

i f .si /ti 2 T .

Lemma 3.4.13 ([8, Lemma 8.4]) Let S and T be operator systems with S finite
dimensional and let Œuij� 2 Mn.S ˝ T /. Then Œuij� 2 Mn.S ˝min T /C if and only if
the map Sd 3 f 7! ŒLuij.f /� 2 Mn.T / is CP.

Proof ()) Let Œuij� 2 Mn.S ˝min T /C, k � 1 and Œfrs� 2 Mk.Sd /C. Suppose
uij D P

p s
ij
p ˝ t

ij
p . We need to show that X WD ŒLuij �

.k/.Œfrs�/ 2 Mk.Mn.T //
C. We

will again appeal to Lemma 3.4.12. Let m � 1 and ' 2 UCP.T ;Mm/. Then, for
each 1 � k; l � m, there exists a unique 'kl 2 T d such that '.t/ D Œ'kl.t/� for all
t 2 T ; and, thus

'.kn/.X/ D �

Œ' ı Luij.frs/�ij


rs

D
h
�

Œ'kl ı Luij.frs/�kl


ij

i

rs

D
2

4

2

4

"

'kl.
X

p

frs.s
ij
p/t

ij
p/

#

kl

3

5

ij

3

5

rs

D
2

4

"

Œfrs.
X

p

sij
p'kl.t

ij
p//�kl

#

ij

3

5

rs

D �

0

@Œfrs�
.nm/

0

@

2

4

"

X

p

sij
p'kl.t

ij
p/

#

kl

3

5

ij

1

A

1

A ;
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where Œfrs�
.nm/ denotes the nm-amplification of the CP map S 3 s 7! Œfrs.s/� 2 Mk

and � is the canonical flip �-isomorphismMnmk ' Mn ˝Mm ˝Mk ' Mk ˝Mn ˝
Mm ' Mknm. Next, since ˝min is functorial, id ˝ ' W S ˝min T ! Mm.S/ is
UCP, and, note that under the complete order isomorphism � W Mn ˝ Mm ˝min

S ' Mn ˝min S ˝ Mm, �.
hh
P

p s
ij
p'kl.t

ij
p/
i

kl

i

ij
/ D .id ˝ '/.n/.Œuij�/. Thus,

hh
P

p s
ij
p'kl.t

ij
p/
i

kl

i

ij
2 Mnm.S/C and we conclude that '.kn/.X/ � 0. In particular,

Sd 3 f 7! ŒLuij.f /� 2 Mn.T / is CP.
(() Conversely, suppose the map Sd 3 f 7! ŒLuij .f /� 2 Mn.T / is CP. Let

k;m � 1, ' 2 UCP.S;Mk/ and  2 UCP.T ;Mm/. We need to show that .' ˝
 /.n/.Œuij�/ 2 MC

nkm. As above, there exist 'rs 2 Sd ,  uv 2 T d for 1 � r; s � k and
1 � u; v � m such that '.s/ D Œ'rs.s/� and  .t/ D Œ uv.t/� for all s 2 S; t 2 T .
Also, since ' and  are UCP, we have Œ'rs� 2 Mk.Sd /C and Œ uv� 2 Mm.T d /C.
Suppose uij D P

p s
ij
p ˝ t

ij
p . Then

.' ˝  /.n/.Œuij�/ D
"

X

p

'.sij
p/˝  .t ijp/

#

ij

D
2

4

2

4

"

X

p

'rs.s
ij
p/ uv.t

ij
p/

#

uv

3

5

rs

3

5

ij

D
2

4

2

4

"

 uv.
X

p

'rs.s
ij
p/t

ij
p/

#

uv

3

5

rs

3

5

ij

D
h
��

 uv.Luij.'rs//


uv



rs

i

ij

D ��

Œ uv�.Luij.'rs//


rs



ij

D Œ uv�
.kn/

��

.Luij.'rs//


rs



ij

D Œ uv�
.kn/ ı � �ŒLuij �

.k/.Œ'rs�/
�

;

where � is the canonical complete order isomorphism � W Mk ˝ Mn ˝min T '
Mn ˝Mk ˝min T .

Thus, with all the data that we have at our disposal, we immediately conclude
that .' ˝  /.n/.Œuij�/ � 0 and hence Œuij� 2 Mn.S ˝min T /C. ut
Lemma 3.4.14 1. Let S and T be operator systems and u 2 Dmax

1 . Then, there
exist n � 1, Œpij� 2 Mn.S/C and Œqij� 2 Mn.T /C such that u D Pn

i;jD1 pij ˝ qij.
2. Let F be a finite dimensional operator system and fv1; : : : ; vng be a basis of F

with a dual basis fı1; : : : ; ıng. Then
P

i ıi ˝ vi 2 .Fd ˝min F/C.
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Proof (1) By definition, there exist n;m � 1, X 2 M1;nm, P D Œpij� 2 Mn.S/C
and Q D Œqrs� 2 Mm.T /C such that u D X.P ˝Q/X�. We first note that, adding
suitable zeros to X and P orQ according as n orm is smaller among them, we can
assume that m D n. Thus, we have X D Œx11; x12; : : : ; x1n; x21; : : : ; xnn� 2 M1;n2 ,
P D Œpij� 2 Mn.S/C and Q D Œqrs� 2 Mn.T /C such that u D X.P ˝ Q/X�.
Consider QP 2 Mn2.S/ and QQ 2 Mn2.T / given by QP.i;r/;.j;s/ D xirpij Nxjs and
QQ.i;r/;.j;s/ D qrs, 1 � i; j; r; s � n. Clearly QP 2 Mn2.S/C and QQ 2 Mn2.T /C

as under the identification Mn2.S/ ' Mn.S/˝Mn, we have QP D QX.P ˝ Jn/ QX�,
where QX D diag.x11; : : : ; x1n; x21; : : : ; xnn/ 2 Mn2 , Jn 2 Mn is the positive
semi-definite matrix with entries .Jn/ij D 1 for all 1 � i; j � n; and, under the
identificationMn2.T / ' Mn ˝Mn.T /, we have QQ D Jn ˝Q. Finally

X

.i;r/;.j;s/

QP.i;r/;.j;s/ ˝ QQ.i;r/;.j;s/ D
X

i;j;r;s;

xirpij Nxjs ˝ qrs D
X

i;j;r;s;

xir.pij ˝ qrs/ Nxjs

D X.P ˝Q/X� D u:

(2) Let u D P

i ıi ˝ vi . By Lemma 3.4.13, we just need to show that the map

.Fd /d 3 Ox 7! Lu. Ox/ D
X

i

Ox.ıi /vi D
X

i

ıi .x/vi D x 2 F

is CP, which is precisely the complete order isomorphism in Remark 3.4.11. ut
Proof of Theorem 3.4.7 ()) By functoriality of the tensor products ˝min and ˝max,
and by nuclearity of matrix algebras, for any operator system T � B.K/, we have
CP maps

S ˝min T
'�˝ idT�! Mn� ˝min T D Mn� ˝max T

 �˝ idT�! S ˝max T :

In particular, their composition . �ı'�/˝idT W S˝minT ! S˝maxT is CP. Then,
by the characterization of the norm on an operator system as given in Remark 3.4.8,
one sees that the norm jj�jjS˝maxT induced on S˝T by the operator system S˝maxT
is a sub-cross norm and thus . � ı'�/˝ idT .z/ converges to z for all z 2 S ˝min T .
In particular, id W S˝minT ! S˝maxT is CP and we obtain S˝minT D S˝maxT .

Conversely, suppose S ˝min T D S ˝max T for all operator systems T . Let
F � S be a finite dimensional operator sub-system (1F D 1S). Using the fact that
the tensor products ˝min and ˝sp coincide, we have

Fd ˝min F � Fd ˝min S D Fd ˝max S:

In particular, for a basis fvi g of F with dual basis fıig, we see, by Lemma 3.4.14(2),
that

P

i ıi ˝ vi 2 .Fd ˝max S/C D Cmax
1 .Fd ˝ S/.

By Theorem 3.3.14, fix an f 2 Fd that plays the role of an Archimedean matrix
order unit for Fd . Since rf is also an Archimedean matrix order unit for any r > 0,



3.4 Tensor Products of Operator Systems 83

we can assume that f .eS/ D 1. So, for all ı > 0,

ı.f ˝ eS/C
X

i

ıi ˝ vi 2 Dmax
1 ;

which implies, by Lemma 3.4.14(1), that for each ı > 0 there exist n � 1, Œfij� 2
Mn.Fd /C and Œpij� 2 Mn.S/C such that

ı.f ˝ eS/C
X

i

ıi ˝ vi D
X

ij

fij ˝ pij:

Recall that Œfij� 2 Mn.Fd /C if and only if the map F 3 v
ˆ7! Œfij.v/� 2 Mn is

CP.

Claim We can choose Œfij� in such way that the corresponding map ˆ is UCP.

Proof of claim Let Q D Œqij� 2 Mn be the support projection of the positive semi-
definite matrix Œfij.eS/� 2 Mn, i.e., Q W Cn ! C

n is the orthogonal projection onto
the subspace Œfij.eS/�C

n � C
n. Note that Y WD Œfij.eS/� is invertible inQMnQ. Let

Y �1 denote the inverse of Œfij.eS/� in QMnQ. Also, if p D rankQ, let U �QU D
diag.Ip;O/ be the diagonalization of Q, where U is a unitary matrix. Let X D
Œx11; x12; : : : ; x1n; x21; : : : ; xnn� 2 M1;n2 , be given by Xij D ıi;j . Then,

X

ij

fij ˝ pij D X.Œfij�˝ Œpij�/X
�

D X

�

Y 1=2U

�

Ip
0

�

˝ In

�

�



.Ip; 0/U
�Y �1=2Œfij�Y

�1=2U

�
�

Ip
0

�

˝ Œpij�

�

�
�

Y 1=2U

�

Ip
0

�

˝ In

��
X�

and

.Ip; 0/U
�Y �1=2Œfij.eS/�Y

�1=2U
�

Ip
0

�

D Ip:

Hence the claim.

So, by Arveson’s extension Theorem, there exists a UCP map Q̂ W S ! Mn such
that Q̂ jS D ˆ.

Now, consider the linear map ‰ W Mn ! S sending Eij 7! pij for all 1 � i; j �
n. By (Choi’s) Theorem 1.2.4, this map is CP. Then, for v 2 F , we have

‰ ıˆ.v/ D ‰.Œfij.v/�/ D
X

ij

fij.v/pij:
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On the other hand, via the canonical identification between Fd ˝S and the space of
linear transformations from Fd into S, we have

P

ij fij.v/pij D .
P

ij fij ˝pij/.v/ D
ı.f ˝ eS/.v/ C .

P

i ıi ˝ vi /.v/ D ıf .v/eS C v for all v 2 F . Also, since f 2
.Fd /C, we have f W F ! C is UCP (by our choice); so, jjf jjcb D 1 and jf .v/j �
jjvjj for all v 2 F . Consider the directed set

ƒ D f.F ; ı/ W F � S; operator sub-system with dimF < 1; ı > 0g

with respect to the partial order � given by

.F1; ı1/ � .F2; ı2/ , F1 	 F2 and ı1 > ı2:

Thus, for each � D .F ; ı/ 2 ƒ, there exist n� � 1, '� 2 UCP.S;Mn�/ and
 0
� 2 CP.Mn�;S/ satisfying jj 0

� ı '�.v/� vjj � ıjjvjj for all v 2 F . In particular,
jj 0

� ı '�.v/� vjj ! 0 for every v 2 S. Since each '� is unital,  0
�.In�/ converges

to eS . Fix a state !� on Mn� and set

 �.A/ D 1

jj 0
�jj
 0
�.A/C !�.A/.eS � 1

jj 0
�jj
 0
�.In�//:

Now,  � 2 UCP.Mn�;S/ for all � 2 ƒ and we still have jj � ı '�.v/ � vjj ! 0

for every v 2 S. ut

An Example of a Nuclear Operator System that is Not a C �-Algebra [6]

Let K0 D spanfEi;j W .i; j / ¤ .1; 1/g � B.`2/, where Ei;j are the standard matrix
units. Consider

S0 WD f�I C T W � 2 C; T 2 K0g � B.`2/;

the operator system spanned by the identity operator and K0. In [6], it has
been proved that S0 is a .min;max/-nuclear operator system and is not unitally
completely order isomorphic to any unital C �-algebra.

3.5 Graph Operator Systems

Graphs, especially the confusability graph, play an important role in Shannon’s
information theory. In the work of [2] on quantum capacity, they associate an
operator system with a graph and show that many of Shannon’s concepts have
quantum interpretations in terms of these graph operator systems. Many concepts
that we wish to deal with become much more transparent in this setting.
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Given a (finite) graphG with vertices V D f1; 2; : : : ; ng and edge set E � V �V
(edges are not ordered; thus, .i; j / 2 E ) .j; i/ 2 E), we have an operator system
SG given by

SG WD span
˚fEij W .i; j / 2 Eg [ fEii W 1 � i � ng� � Mn:

Note that SG does not depend upon the number of bonds between two edges and
the loops, if any. Thus, we assume that the graphs that we consider are simple, i.e.,
they have no loops or parallel edges.

3.5.1 Dual of a Graph Operator System

As a vector space, the operator system dual of a graph operator system SG can be
identified with a vector subspace of .Mn/

d as

SdG D span
˚fıij W .i; j / 2 Eg [ fıii W 1 � i � ng� � .Mn/

d :

But it is not clear what the matrix order should be on this subspace. We will show
that it is not the induced order. That is, while this is a natural vector space inclusion
as operator systems,

SdG 6� Md
n Š

Example 3.5.1 If we consider the graph G with vertex set V D f1; 2; : : : ; ng and
edge set E D f.1; 2/; .2; 3/; .3; 4/; : : : ; .n�1; n/; .n; n�1/; : : : ; .3; 2/; .2; 1/g, then

SG D ftridiagonal matricesg D fŒaij� 2 Mn W aij D 0 for ji � j j > 1g:

Observation For the above graph G, given f D P

1�i;j�n;ji�j j�1 bijıij 2 SdG ,
setting bij D 0 for ji � j j > 1, one would like to know the conditions on the
tridiagonal matrix B D Œbij� such that f 2 .SdG/C. It turns out that f 2 .SdG/C if
and only if the matrix B is partially positive, i.e., we can choose the off-tridiagonal
entries of B to get a positive semi-definite matrix:

Indeed, if f 2 .SdG/C, then f W SG ! C is CP if and only if (by Arveson’s
extension theorem) it extends to a CP map Qf W Mn ! C. Suppose Qf D P

i;j
Qbijıij

for some Qbij 2 C. Then, we have Œ Qbij� D Qf .n/.ŒEij�/ 2 .Mn/
C and, since QfjSG D f ,

we also see that Qbij D bij for all ji � j j � 1.
Conversely, if QB D Œ Qbij� is a positive semi-definite matrix with Qbij D bij for all

ji � j j � 1, then, by Theorem 1.2.4, the Schur multiplication map S QB W Mn 3
Œxij� 7! Œ Qbijxij� 2 Mn is CP. By Theorem 1.2.4 again, the map Mn 3 Œxij� 7!
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P

i;j xij 2 C is also CP; hence, the map Mn 3 Œxij� 7! P

i;j
Qbijxij 2 C is CP, i.e.,

Qf WD P

i;j
Qbijıij 2 .Md

n /
C, and, since QfjSG D f , we have f 2 .SdG/C.

In general, a tridiagonal matrix B can be extended to a positive semi-definite
matrix if and only if each 2 � 2 submatrix of B is positive semi-definite [12]. Thus,
we have a very clear picture in this case of which linear functionals are positive. �

The situation for a general graph is as follows:
Given a graph G then a functional f W SG ! C has the form f D

P

.i;j /2E or iDj bi;j ıi;j . Set B D P

.i;j /2E or iDj bi;jEi;j . Then f 2 .SdG/
C if and

only if there exists an M 2 S?
G such that B CM 2 MC

n .
This result can be put into the language of partially defined matrices. Notice that

when we have f W SG ! C and we try to form the density matrix of this functional,
�

f .Ei;j /
�

; then because only some of the matrix units Ei;j belong to the space SG
we only have some of the entries of our matrix specified. This is what is meant
by a partially defined matrix, i.e., a matrix where only some entries are given and
the rest are viewed as free variables. Choosing the matrix M above is tantamount
to choosing values for the unspecified entries. In the language of partially defined
matrices, this is called completing the matrix.

Thus, what we have shown is that each functional gives rise to a partially defined
density matrix and that the positive functionals on SG are precisely those whose
density matrices can be completed to positive semidefinite matrices.

3.6 Three More Operator System Tensor Products

There are at least three more operator system tensor products that are important
in the operator algebras community and are likely to have some importance for
quantum considerations as well. In particular, the one that we call the commuting
tensor product is important for the study of the Tsirelson conjectures [7, 16].

Moreover, there are many important properties of operator systems that are
equivalent to the behaviour of the operator system with respect to these tensor
products. We give a very condensed summary of this theory below.

3.6.1 The Commuting Tensor Product ˝c.

Let S and T be operator systems and ' W S ! B.H/,  W T ! B.H/ be UCP
maps with commuting ranges, i.e., '.s/ .t/ D  .t/'.s/ for all s 2 S, t 2 T .
Define ' ˇ  W S ˝ T ! B.H/ by .' ˇ  /.s ˝ t/ D '.s/ .t/, Rs 2 S, t 2 T .



3.6 Three More Operator System Tensor Products 87

Consider

Ccn D fŒuij� 2 Mn.S ˝ T / W .' ˇ  /.n/.Œuij�/ 2 B.H.n//C; Hilbert spacesH;

' 2 UCP.S; B.H//;  2 UCP.T ; B.H// with commuting rangesg:

Theorem 3.6.1 With above set up,

1. fCc
ng is an operator tensor on S ˝ T and the consequent operator system is

denoted by S ˝c T .
2. ˝c is functorial and symmetric.

Remark 3.6.2 Explicit examples showing non-associativity of the tensor product
˝c are not known yet.

3.6.2 The Tensor Products ˝el and ˝er.

Let S � B.H/ and T � B.K/ be operator systems. Then the inclusion S ˝ T �
B.H/˝max T induces an operator system on S˝T , which is referred as enveloping
on the left and is denoted by S˝elT . Likewise, the inclusion S˝T � S˝maxB.K/

induces an operator system on S ˝ T called enveloping on the right and is denoted
by S ˝er T .

It requires some work to establish that the operator system tensor products ˝el

and ˝er of S and T do not depend (upto complete order isomorphisms) on the
embeddings S � B.H/ and T � B.K/.

• ˝el and ˝er are both functorial. However, it is not clear whether they are
associative or not?

• S ˝el T ' T ˝er S as operator systems.

3.6.3 Lattice of Operator System Tensor Products

We have the following lattice structure among the above five operator system tensor
products:

min � el, er � c � max :

Given functorial operator system tensor products ˛ and ˇ, an operator system S
is said to be .˛; ˇ/-nuclear provided S ˝˛ T ' S ˝ˇ T as operator spaces for all
operator systems T .

Recall that a C �-algebra is nuclear if and only if it satisfies completely positive
approximation property (CPAP). We saw in Theorem 3.4.7, that this generalizes to
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the context of operator system as well, i.e., an operator system S is .min;max/-
nuclear if and only if it satisfies completely positive factorization property (CPFP).
In general, .˛; ˇ/-nuclearity of operator systems have some further analogous
structural characterizations.

3.7 Some Characterizations of Operator System Tensor
Products

3.7.1 Exact Operator Systems

Analogous to the notion of exactness for C �-algebras and operator systems, there is
a notion of exactness for operator systems as well—see [9].

Theorem 3.7.1 ([9, Theorem 5.7]) An operator system S is 1-exact if and only if
it is .min; el/-nuclear.

For an operator system S, we consider its Banach space dual S� and endow it
with a matrix ordering as we did for Sd above. We repeat the process to endow its
double dual S�� also with a matrix ordering. It is not very difficult to see that the
canonical embedding S � S�� is a complete order isomorphism onto its image.
Also, it is a fact—[9, Proposition 6.2]—that OeS is an Archimedean matrix order unit
for S��.

3.7.2 Weak Expectation Property (WEP)

Lemma 3.7.2 ([9, Lemma 6.3]) Let S be an operator system. Then the following
are equivalent:

1. There exists an inclusion S � B.H/ such that the canonical embedding � W S !
S�� extends to a CP map Q� W B.H/ ! S��.

2. For every operator system inclusion S � T , the map � W S ! S�� extends to a
CP map Q� W T ! S��

3. The canonical embedding � W S � S�� factors through an injective operator
system by UCP maps, i.e., there is an injective operator system T and UCP
maps '1 W S ! T and '2 W T ! S�� such that � D '2 ı '1.

Definition 3.7.3 An operator system S is said to have weak expectation property
(WEP) if it satisfies any of the equivalent conditions above.

Theorem 3.7.4 ([5, 9]) Let S be an operator system. Then S possesses WEP if and
only if it is .el;max/-nuclear.
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Theorem 3.7.5 ([9, Theorem 6.11]) Let S be a finite dimensional operator system.
Then the following are equivalent:

1. S possesses WEP;
2. S is .el;max/-nuclear;
3. S is .min;max/-nuclear;
4. S is completely order isomorphic to a C �-algebra; and
5. S ˝el S� D S ˝max S�.

3.7.3 Operator System Local Lifting Property (OSLLP)

Let H be an infinite dimensional Hilbert space and S an operator system. Let u 2
UCP.S;Q.H//, where Q.H/ is the Calkin algebra Q.H/ D B.H/=K.H/. The
operator system S is said to have OSLLP if, for each such u, every finite dimensional
operator sub-system F � S admits a lifting Qu 2 UCP.F ; B.H// such that � ı Qu D
ujF , where � W B.H/ ! Q.H/ is the canonical quotient map.

Theorem 3.7.6 ([9, Theorems 8.1, 8.5]) Let S be an operator system. Then the
following are equivalent:

1. S possesses OSSLP;
2. S ˝min B.H/ D S ˝max B.H/ for every Hilbert space H ; and
3. S is .min; er/-nuclear.

3.7.4 Double Commutant Expectation Property (DCEP)

An operator system S is said to have DCEP if for every completely order embedding
' W S ! B.H/ there exists a completely positive mapping E W B.H/ ! '.S/00
fixing S, i.e., satisfying E ı ' D '.

Theorem 3.7.7 ([9]) An operator system S possesses DCEP if and only if it is
.el; c/-nuclear.

Remark 3.7.8 In particular, since el � c, an operator system S is 1-exact and
possesses DCEP if and only if it is .min; c/-nuclear. Of course, it will be desirable
to have a better characterization for .min; c/-nuclearity.

Definition 3.7.9 An unordered graph G D .V; E/ is said to be a chordal graph if
every cycle in G of length greater than 3 has a chord, or, equivalently, if G has no
minimal cycle of length � 4.

Theorem 3.7.10 ([8]) If G is a chordal graph, then SG is .min; c/-nuclear.
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Question 3.7.11 1. For which graphs G are the operator systems SG .min; c/-
nuclear?

2. Consider the graph G consisting of a quadrilateral. Clearly G is not chordal. Is
the graph operator system SG .min; c/-nuclear?

3. Is every graph operator system .min; c/-nuclear?
4. For arbitrary operator system tensor products ˛ and ˇ, which graphs give .˛; ˇ/-

nuclear graph operator systems?
5. For a graph G, study the above problems for the dual operator system SdG as

well.
6. Obtain characterizations for .˛; ˇ/-nuclearity of operator systems for the

remaining cases.
7. If a graph operator system SG is .˛; ˇ/-nuclear, identify the tensor products �

and � (if any) such that SdG is .�; �/-nuclear.

3.8 Operator System Tensor Products and the Conjectures
of Kirchberg and Tsirelson

3.8.1 Special Operator Sub-systems of the Free Group
C �-Algebras

Let Fn be the free group on n generators, say, fg1; g2; : : : ; gng. For any Hilbert
space H , any choice of n unitaries fU1; U2; : : : ; Ung in B.H/ gives a (unitary)
representation � W Fn ! B.H/ of Fn sending gi to Ui for all 1 � i � n. Recall, the
full group C �-algebra C �.Fn/ is the closure of the group algebra CŒFn� in the norm
obtained by taking supremum over all (unitary) representations of the group Fn. Let

Sn D spanf1; g1; : : : ; gn; g�
1 ; : : : ; g

�
n g � C �.Fn/:

Clearly, Sn is a .2nC 1/-dimensional operator system.

3.8.2 Kirchberg’s Conjecture

A famous conjecture of Kirchberg states that the full group C �-algebra C �.F1/
has WEP—[11]. It attracts immense importance from its equivalence with some
other important conjectures in the world of Operator Algebras and now thanks to
the work of [7] we now know that Tsirelson’s attempts at determining the possible
sets of density matrices for quantum outcomes is also related.

In fact, it is now known that if Tsirelson’s conjectures are true then necessarily
Kirchberg’s conjecture is true. For a physicists perspective on these issues see [4].
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Theorem 3.8.1 ([11]) The following statements are equivalent:

1. Connes’ Embedding Theorem: Every II1-factor with separable predual can be
embedded as a subfactor in to the free ultraproduct of the hyperfinite II1-factor.

2. C �.Fn/˝sp C
�.Fn/ D C �.Fn/˝C�- max C

�.Fn/ for all n � 1.
3. C �.Fn/ has WEP for all n � 1.
4. C �.F1/ has WEP. (Kirchberg’s conjecture)
5. Every C �-algebra is a quotient of a C �-algebra with WEP.

To the above list, the techniques of operator system tensor products, has
contributed the following (“seemingly simpler”) equivalent statements:

Theorem 3.8.2 ([9]) The following statements are equivalent:

1. C �.F1/ has WEP.
2. Sn is .el; c/-nuclear for all n � 1.
3. Sn ˝min Sn D Sn ˝c Sn for all n � 1.
4. Every .min; er/-nuclear operator system is .el; c/-nuclear.
5. Every operator system possessing OSLLP possesses DCEP.

In the above list of equivalences, the equivalence .1/ $ .2/ in Theorem 3.8.1 is
the deepest link and was proved first by Kirchberg in [10]. An essential part of the
proof of this equivalence involved the following deep theorem due to Kirchberg:

Theorem 3.8.3 ([10]) C �.Fn/˝sp B.H/ D C �.Fn/˝C�- max B.H/ for all n � 1

and for all Hilbert spacesH .

• Quite surprisingly, making use of the notion of quotient of an operator system, a
relatively much easier proof of Kirchberg’s Theorem has been obtained in [3].

3.8.3 Quotient of an Operator System

The idea of quotient of an operator system comes from the requirement that given
operator systems S and T , and a UCP ' W S ! T , we would like to have a quotient
operator system S=ker' such that the canonical quotient map q W S ! S=ker' is
UCP and so is the factor map Q' W S=ker' ! T .

It also gives a way to explain the duals of graph operator systems, they are
actually quotients of the matrix algebra.

Definition 3.8.4 (Quotient Map) Let S and T be operator systems. Then a UCP
map ' W S ! T is said to be a quotient map if ' is surjective and the canonical
factor map Q' W S=ker' ! T is a complete order isomorphism. In other words, T is
a quotient of S.

Example 3.8.5 Let TnC1 D ftridiagonal .nC 1/ � .nC 1/matricesg � MnC1 and

KnC1 D ftrace 0 diagonal .nC 1/ � .nC 1/ matricesg � MnC1:
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Consider ' W TnC1 ! Sn given by '.Eii/ D 1
n
1, '.Ei;iC1/ D 1

n
gi , '.EiC1;i / D

1
n
g�
i . Clearly ' is onto and UCP. Also, ker' D KnC1. It is a fact that ' is a quotient

map in above sense. In particular, Sn is completely order isomorphic to TnC1=KnC1.
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Chapter 4
Quantum Information Theory

Abstract In this chapter, based on the lectures by Andreas Winter, we survey
four different areas in quantum information theory in which ideas from the theory
of operator systems and operator algebras play a natural role. The first is the
problem of zero-error communication over quantum channels, which makes use of
concepts from operator systems and quantum error correction. Second, we study the
strong subadditivity property of quantum entropy and the central role played by the
structure theorem of matrix algebras in understanding its equality case. Next, we
describe different norms on quantum states and the corresponding induced norms
on quantum channels. Finally, we look at matrix-valued random variables, prove
Hoeffding-type tail bounds and describe the applications of such matrix tail bounds
in the quantum information setting.

4.1 Zero-Error Communication Via Quantum Channels

A quantum channel T is a completely positive, trace-preserving (CPTP) map from
the states of one system (A) to another (B). Specifically, T W B.HA/ ! B.HB/ is a
CPTP map from the set of bounded linear operators on Hilbert spaceHA to operators
in HB . In this section we focus on the problem of zero-error communication using
quantum channels. We begin with a brief review of preliminaries including the idea
of purification and the Choi-Jamiolkowski isomorphism.

Definition 4.1.1 (Purification) Given any positive semi-definite operator � � 0

in B.HA/, suppose there exists a vector jvi 2 HA ˝ HA0 , where HA0 is simply an
auxiliary Hilbert space, such that TrA0 Œjvihvj� D �. The vector jvi in the extended
Hilbert space is said to be a purification of the operator �.

When TrŒ�� D 1, that is, when � is a valid quantum state, then the corresponding
vector jvi is a pure state of the extended Hilbert space, satisfying hvjvi D 1.

In order to obtain a purification of a state �, it suffices to have the dimensions
of the auxiliary space H0 to be equal to the rank of �. To see this, suppose � has a

© Springer International Publishing Switzerland 2015
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spectral decomposition � D P

i ri jei ihei j, then a purification of � is simply given by

jvi D
X

i

p
ri jeii ˝ jeii:

The purification of a given state � is not unique. Suppose there exists another purifi-
cation jwi 2 HA ˝ HB , via a different extension of the Hilbert space HA, such that
TrBŒjwihwj� D �. Then, there exists a unique isometry U W HA0 ! HB such that1

jwi D .I ˝ U /jvi:

This isometry can in fact be obtained from the Choi uniqueness theorem
(Theorem 3.1.9).

We next define the Choi-Jamiolkowski matrix corresponding to a quantum
channel T W B.HA/ ! B.HB/. This provides an alternate way to obtain the
Stinespring dilation of the CPTP map T , discussed earlier in Theorem 1.1.8.

Definition 4.1.2 (Choi-Jamiolkowski Matrix) Let fjiig denote an orthonormal
basis for HA. Consider the (non-normalized) maximally entangled state: jˆAA0i D
P

i jiii 2 HA ˝ HA0 , with HA0 chosen to be isomorphic to H. The Choi-
Jamiolkowski matrix corresponding to a CPTP map T W B.HA/ ! B.HB/ is then
defined as

JAB WD .I ˝ T /ˆ; (4.1)

where, the operator ˆ D jˆihˆj 2 B.HA ˝ HA0/ is simply

ˆ WD
X

i;j

jiihj j ˝ jiihj j D
X

i;j

jiiihjjj:

Complete positivity of T implies that J � 0, and the trace-preserving condition on
T implies,

TrBŒJ � D IA D TrA0.ˆ/: (4.2)

Pick a purification jGABCi 2 HA ˝HB ˝HC of the matrix J . Thus, jGABCihGABCj
is a rank-one, positive operator satisfying TrC ŒjGABCihGABCj� D JAB. HC is any
auxiliary Hilbert space whose dimension is dim.HC / � rank.J /. Then, Eq. (4.2)
implies that

TrBCŒjGABCihGABCj� D IA D TrŒˆAA0 �:

1A remark on notation: throughout this chapter we use I to denote the identity operator and I to
denote the identity map, for example, IA W B.HA/ ! B.HA/.
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Therefore, there exists an isometry U W HA0 ! HB ˝ HC such that

jGABCi D .I ˝ U /jˆAA0i:

Since the Choi matrix JAB corresponding to the map T is unique, we have for any
X 2 B.HA/,

T .X/ D TrC ŒUXU	�:

The isometry thus corresponds to the Stinespring dilation of the map T . Further-
more, we also obtain the Choi-Kraus decomposition (Theorem 1.2.1) of the map T
by noting that the isometry can be rewritten as U D P

i Ei ˝ jvii, where fjviig is
an orthonormal basis for HC . Thus,

T .X/ D TrC ŒUXU	� D
X

i

EiXE	i ; 8 X 2 B.HA/:

The non-uniqueness of the Kraus representation is captured by the non-uniqueness
of the choice of basis fjviig.

In physical terms, this approach to the Choi-Kraus decomposition offers an
important insight that CP maps can in fact be used to represent noisy interactions
in physical systems. Examples of such noise processes include sending a photon
through a lossy optic fibre or a spin in a random magnetic field. Any physical noise
affecting a system A is typically thought of as resulting from unwanted interaction
with an environment which is represented by the system C here. The total evolution
of the system C environment is always unitary (a restriction of the isometry U )
and the noise results from the act of performing the partial trace which physically
corresponds to the fact that we do not have access to complete information about
the environment.

4.1.1 Conditions for Zero-Error Quantum Communication

In the context of quantum communication, a quantum channel described by the
CPTP map T W B.HA/ ! B.HB/ represents a process: it takes as input, states
� 2 B.HA/ and produces corresponding states T .�/ 2 B.HB/ as output. It could
model an information transmission process that transmits some set of input signals
from one location to another, or, it could model a data storage scenario in which
some information is input into a noisy memory at one time to be retrieved later.

A classical channel N , in the Shannon formulation, is simply characterized
by a kernel or a probability transition function N.Y jX/. fN.yjx/ � 0g are the
conditional probabilities of obtaining output y 2 Y given input x 2 X , so
that,

P

y N.yjx/ D 1. X and Y are often called the input and output alphabets
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respectively. The probabilities fN.yjx/g thus completely describe the classical
channel N .

The quantum channel formalism includes a description of such classical channels
as well. For example, let fjxig denote an orthonormal basis for HA and fjyig denote
an orthonormal basis for HB , where the labels x and y are drawn form the alphabets
X and Y respectively. Then, corresponding to the channel N � fN.yjx/g, we can
construct the following map on states � 2 B.HA/:

T .�/ D
X

x;y

N.yjx/ jyihxj.�/jxihyj:

It is easy to see that T W B.HA/ ! B.HB/ is a CPTP map with Kraus operators
Exy D p

N.yjx/ jyihxj, which maps diagonal matrices to diagonal matrices. Any
non-diagonal matrix in B.HA/ is also mapped on to a matrix that is diagonal in the
fjyig-basis. Classical channels are thus a special case of quantum channels.

Apart from the action of the CPTP map, a quantum communication protocol also
includes an encoding map at the input side and a decoding map at the output. Given
a set of messages fm D 1; 2; : : : : ; qg, the encoding map assigns a quantum state
�m 2 B.HA/ to each message m. The decoding map has to identify the message m
corresponding to the output T .�m/ of the channel T . In other words, the decoding
process has to extract classical information from the output quantum state; this
is done via a quantum measurement. Recall from the discussion in Sect. 2.1, that
the outcome M of a measurement of state T .�m/ is a random variable distributed
according to some classical probability distribution. Here, we are interested in zero-
error communication, where the outcome M is equal to the original message m
with probability 1.

Zero-error transmission via general quantum channels was originally studied
in [2, 21] and more recently in [5, 6, 8]. In this section we first review some of
this earlier work, highlighting the role of operator systems in the study of zero-error
communication. In the next section, we focus on the recent work of Duan et al. [9]
where a quantum version of the Lovász #-function is introduced in the context of
studying the zero-error capacity of quantum channels.

Firstly, note that the requirement of zero-error communication imposes the
following constraint on the output states fT .�m/g.

Exercise 4.1.3 There exists a quantum measurement M in HB such that the
outcome M corresponding to a measurement of state T .�m/ is equal to m

with probability 1, if and only if the ranges of the states fT .�m/g are mutually
orthogonal.

Since the states fT .�m/g are positive semi-definite operators, the fact their ranges
are mutually orthogonal implies the following condition:

TrŒT .�m/T .�m0/� D 0; 8 m ¤ m0 : (4.3)
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Suppose we choose a particular Kraus representation for T , so that T .�/ D
P

i Ei�E
	
i . It then follows from Eq. (4.3) that,

X

i;j

TrŒEi�mE
	
i Ej �mE

	
j � D 0; 8 m ¤ m0 :

Note that the orthogonality condition on the ranges of the output states further
implies that the input states f�mg can be chosen to be rank-one operators (f�m D
j mih mjg) without loss of generality. Therefore, the condition for zero-error
communication becomes

jh mjE	
i Ej j m0ij2 D 0; 8m ¤ m0 :

) h mjE	
i Ej j m0i D 0; 8m ¤ m0; 8 i; j :

) TrŒj m0ih mjE	
i Ej � D 0; 8m ¤ m0; 8 i; j : (4.4)

We have thus obtained the following condition for zero-error communication using
the quantum channel T .

Lemma 4.1.4 (Condition for Zero-Error Communication) Given a channel T
with a choice of Kraus operators fEig, zero-error communication via T is possible
if and only if the input states fj mi 2 HAg to the channel satisfy the following:
8 m ¤ m0, the operators j m0ih mj 2 B.HA/ must be orthogonal to the span

S WD spanfE	
i Ej ; i; j g; (4.5)

with orthogonality defined in terms of the Hilbert-Schmidt inner product.2

Note that S � B.HA/, and, S D S	. Further, since the channel T is trace-
preserving,

P

i E
	
i Ei D I , so that S 3 I . This implies that S is an Operator

System, as defined in Definition 3.3.6. Since all Kraus representations for T give
rise to the same subset S , the above condition is unaffected by the non-uniqueness
of the Kraus representation.

The Complementary Channel OT and its dual OT � corresponding to a channel T ,
are defined as follows.

Definition 4.1.5 (Complementary Channel) Suppose the channel T is given by
T .�/ D TrC ŒV�V 	�, where V W HA ˝ HB ˝ HC is the Stinespring isometry. Then,
the Complementary Channel OT W B.HA/ ! B.HC / is defined as:

OT .�/ D TrBŒV�V 	�:

2The Hilbert-Schmidt inner product between two operators A;B is simply the inner product
defined by the trace, namely, hA;Bi D TrŒA	B�.
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The dual map OT � is defined via TrŒ� OT �.X/� D TrŒ OT .�/X	�. Then, the following
result was shown in [9].

Observation 4.1.6 Given a channel T with a complementary channel OT ,

S D OT �.B.HC //; OT � W B.HC / ! B.HA/;

where S is the operator system defined in Eq. (4.5), and, OT � is the dual to the map OT .

Furthermore, it turns out that every operator system can be realized in this
manner [5, 8]:

Observation 4.1.7 Given an operator system S � B.HA/, there exists a CPTP map
T with a choice of Kraus operators fEig such that S D spanfE	

i Ej ; i; j g.

4.1.2 Zero-Error Capacity and Lovasz # Function

Using the condition for zero-error communication, we next quantify the maximum
number of messages m that can be transmitted reliably through the channel T . We
begin with the notion of a quantum independence number originally defined in [9].

Definition 4.1.8 (Independence Number of S) Given an operator system S D
spanfE	

i Ej g, the independence number ˛.S/ is defined as the maximum value of
q, such that

9 fj 1i; j 2i; : : : ; j qig W 8 m ¤ m0; j mih m0j ? S: (4.6)

To understand better the motivation for this definition, consider the example of the
classical channel again. If T is classical, the Kraus operators of the channel are
fExy D p

N.yjx/ jyihxjg. The operator system S in this case is given by

S D spanfE	

x0y0Exyg D spanf
p

N.yjx/
p

N.y0jx0/jxihyjy0ihx0jg:

Note that, E	

x0y0Exy ¤ 0 iff x D x0 (so that y D y0) or N.yjx/N.yjx0/ ¤
0, whenever x ¤ x0. The latter condition naturally leads to the notion of the
Confusability Graph associated with a classical channel, and its Independence
Number.

Definition 4.1.9 (Confusability Graph, Independence Number)

(i) The confusability graph of a classical channel N is the graph G with vertices
x 2 X and edges x 
 x0 iff 9 y 2 Y such that N.yjx/N.yjx0/ ¤ 0.

(ii) A set of vertices X0 � X such that no pair of vertices in the set is has an
edge between them is said to be an independent set. The maximum size of an
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independent set of vertices X0 in G is called the Independence Number ˛.G/
of the graph G.

The name comes from the fact that the edges x 
 x0 of the graph correspond
to confusable inputs, that is, inputs x; x0 that map to the same output y. Thus,
the operator system S corresponding to this classical quantum channel T carries
information about the structure of the underlying graph G:

spanfjxihx0j W x D x0 or x 
 x0g (4.7)

More generally, using this definition, every graphG gives rise to an operator system
S . Furthermore, if two such operator systems are isomorphic, then the underlying
graphs are also isomorphic in a combinatorial sense. Thus, for the special case of an
operator system S coming from a classical channel as in Eq. (4.7),

˛.S/ D ˛.G/:

Definition 4.1.8 of the independence number is therefore a generalization of the
notion of the independence number of a graph.

Given a graph G, estimating its independence number ˛.G/ is known to be
an NP-complete problem. Similarly, it was shown that [2] estimating ˛.S/ for an
operator system S arising from a quantum channel T is a QMA-complete problem.
QMA (Quantum Merlin-Arthur) is the class of problems that can be solved by a
quantum polynomial time algorithm given a quantum witness; it is the quantum
generalization of probabilistic version of NP. Rather than estimating ˛.S/, in what
follows we seek to find upper bounds on ˛.S/.

We first rewrite the condition in Eq. (4.6) in terms of positive semi-definite
operators. Note that j mih m0j ? S implies that

M D
X

m¤m0

j mih m0j ? S:

Since S 3 I , the states fj mi; m D 1; 2; : : : ; qg satisfying Eq. (4.6) are mutually
orthogonal. Also, the operatorM CP

m j mih mj is positive semi-definite. There-
fore,

0 � M C
q
X

mD1
j mih mj D M C I;

where the number q is simply q Dk M C P

m j mih mj k. Recalling that ˛.S/ is
simply the maximum value of q, we have,

˛.S/ � max
fM2B.HA/WM?S;

ICM�0g
k M C I kD #.S/: (4.8)
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The quantity on the RHS, defines a quantum #-function, as a straightforward
generalization of a well known classical quantity. If the operator system S arises
from a graph G as in Eq. (4.7), then, #.S/ D #.G/, where, #.G/ is the Lovász
number of the graph G [20]. It was shown by Lovász that #.G/ is an upper bound
for the independence number ˛.G/ and is in fact a semidefinite program [30]. In
other words, for the case that S arises from a graph G, the optimization problem
that evaluates #.S/ has a well behaved objective function and the optimization
constraints are either linear (M ? S ) or semi-definite (I C M � 0). However
for a general operator system S , the optimization problem that evaluates #.S/ is
not a semidefinite program (SDP) in general.

In order to define the zero-error capacity of a channel, we move to the
asymptotic setting, where we consider several copies (n) of the channel in the limit
of n ! 1. The operator system corresponding to the n-fold tensor product of a
channel is simply the n-fold tensor product of the operator systems associated with
the original channel. Then, the capacity is formally defined as follows.

Definition 4.1.10 (Zero-Error Capacity) The zero-error capacity (C0.S/) of a
channel with associated operator system S is the maximum number of bits that
can be transmitted reliably per channel use, in the asymptotic limit.

C0.S/ WD lim
n!1

1

n
˛.S˝n/:

The capacity is even harder to compute than the independence number. In fact, it is
not even known if C0.S/ is in general a computable quantity in the sense of Turing!
For classical channels, where the operator system S arises from the confusability
graphG, Lovász obtained an upper bound onC0.S/. In this case, the Lovász number
satisfies,

#.G1 �G2/ D #.G1/#.G2/;

which immediately implies that C0.S/ � #.G/. Till date, this remains the best
upper bound on the zero-error capacity of a classical channel.

To gain familiarity with the quantum #-function, we evaluate it for two simple
examples of quantum channels.

Example 4.1.11 Consider the channel whose Kraus operators span the entire space
B.HA/. The corresponding operator system is given by S D B.HA/. Then, the only
M � 0 satisfyingM ? S is in factM D 0. Therefore, by the definition in Eq. (4.8),
#.S/ � #.B.HA// D 1.

Next we consider the case where S is a multiple of the identity.

Example 4.1.12 Suppose S D CI . Then, the operators M ? S have to satisfy
TrŒM � D 0. Without loss of generality, we may assume M D diag.�1; : : : ; �n/
with

P

i �i D 1. Suppose the eigenvalues are ordered as follows: �1 � �2 � : : : �n.
Furthermore, the positive semi-definiteness constraint on .ICM/ implies �i � �1.
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Therefore,

k I CM k D 1C �1 � n:

) #.S/ D #.CI / D n D dim.HA/: (4.9)

We note the following interesting property of the #-function.

Lemma 4.1.13 Given two operator systems S1 and S2,

#.S1 ˝ S2/ � #.S1/#.S2/: (4.10)

Proof Suppose the operatorM1 ? S1 achieves #.S1/ andM2 ? S2 achieves #.S2/.
Then, define,

I CM WD .I CM1/˝ .I CM2/:

By definition,M ? S1 ˝ S2. Since the norm is multiplicative under tensor product,

#.S1 ˝ S2/ �k I CM kD .k I CM1 k/.k I CM2 k/ D #.S1/#.S2/:

ut
To see that the inequality in Lemma 4.1.13 can be strict, consider the case where

S D In ˝ B.Cn/. Then, it is a simple exercise to evaluate #.S/.

Exercise 4.1.14 Show that

#.In ˝ B.Cn// D n2:

Hint: Recall dense coding (Sect. 2.2.2)!

The product of the individual #-functions evaluated in Examples 4.1.11 and 4.1.12
is much smaller:

#.In/#.B.Cn// D n < #.In ˝ B.Cn//:

Thus we have a simple example of the non-multiplicativity of the quantum #-
function.

This non-multiplicativity motivates the definition of a modified #-function which
can be thought of as a completion of #.S/.

Definition 4.1.15 (Quantum Lovász #-Function) For any operator system S ,
define the quantum Lovász function as follows.

Q#.S/ D sup
HC

#.S ˝ B.HC //: (4.11)



102 4 Quantum Information Theory

Note how the definition is reminiscent of norm-completion. To clarify the opera-
tional significance of this modified #-function, we define a related independence
number in a modified communication scenario.

Definition 4.1.16 (Entanglement-Assisted Independence Number) For any
operator system S � B.HA/, the quantity Q̨ .S/ is the maximum value of q such
that 9 Hilbert spaces HA0;HC and isometries fV1; V2; : : : Vqg W HA0 ! HA ˝ HC ,
such that,

8 m ¤ m0; Vm�Vm	 ? S ˝ B.HC /; 8 � 2 S.HA0/:

Physically, Q̨ .S/ corresponds to the maximum number of messages that can be
transmitted reliably in an entanglement-assisted communication problem, which
allows for some entanglement to be shared beforehand between the sender and the
receiver.

It is easy to see that ˛.S/ � Q̨ .S/, since the non-multiplicativity of the #-
function implies #.S/ � Q#.S/. Furthermore, Q#.S/ is an upper bound for Q̨ .S/,
just as #.S/ is to ˛.S/.

Exercise 4.1.17 Given an operator system S , the Q#-function is an upper bound for
the entanglement-assisted independence number:

Q̨ .S/ � Q#.S/:

The following simple observations are left as exercises.

Exercise 4.1.18 (Larger Operator Systems Have a Smaller Independence Num-
ber) Given two operator systems S1; S2 such that S1 � S2, ˛.S1/ � ˛.S2/. This
also holds for the Q̨ , # and Q# functions.

Exercise 4.1.19 (Upper Bounds) Show that for an operator system S � B.HA/,
(a) #.S/ � dim.HA/, and, (b) Q#.S/ � .dim.HA//

2. Equality holds in both cases
when S D CIdim.HA/.

In fact, when S D CI2, Q̨ .S/ D .dim.HA//
2, which is easily proved using the idea

of superdense coding (Sect. 2.2.2).

Example 4.1.20 ( Q̨ .S/ for a Qubit) For example, consider the simplest case of a
qubit, for which dim.HA/ D 2 and S D CI2. Since this is the entanglement-assisted
communication scenario, suppose the sender and receiver share the maximally
entangled state

j iAC D 1p
2
.j00i C j11i/:

The sender modifies the part of the state that belongs to her subsystem via
conjugation by a unitary Vm 2 fI2; X; Y;Zg. These four operators constitute a basis
for the space of 2 � 2 matrices, and were discussed earlier in the construction of
Shor’s code. It is easy to check that the states f.Vm ˝ I /j i; m D 1; : : : ; 4g are
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mutually orthogonal. Thus, once the sender sends across these modified states, the
receiver can perfectly distinguish them, implying that Q̨ .CI2/ D 4.

Comparing with Definition 4.1.16, we see that HA0 D HA in this case, so that
the isometries Vm become unitaries and the input state is � D TrC Œj ih j�.

Following [9], we now study the Q#-function in greater detail and show that it
is indeed a true generalization of the classical Lovász number. Note that the non-
multiplicativity of the #-function carries over to the Q#-function. Given two operator
systems S1 and S2,

Q#.S1 ˝ S2/ � Q#.S1/ Q#.S2/:

However, unlike #.S/, Q#.S/ can be computed efficiently via a SDP, analogous to
the classical Lovász number #.G/.

Theorem 4.1.21 For any operator system S , Q#.S/ is a semidefinite program.

Proof We first show that #.S ˝ B.HC // is in fact a semidefinite program. For
S � B.HA/, recall that,

#.S ˝ B.HC // D max
j i2HA˝HC

h jI ˝M j i; (4.12)

subject to k j i kD 1 , I C M � 0 and M ? S ˝ B.HC /. The last constraint
is equivalent to the constraint that M 2 S? ˝ B.HC /. The objective function in
Eq. (4.12) is a multi-linear function and the constraint on the norm of j i is a non-
linear one. To recast this as a SDP, we use the following trick.

Assume dim.HC / D dim.HA/. Then, 9 � 2 S.HC /, such that for jˆi D
P

i jiijii,

j i D .I ˝ p
�/jˆi:

Inserting this in Eq. (4.12), the objective function becomes,

hˆjI ˝ �CM 0jˆi; M 0 D .I ˝ p
�/M.I ˝ p

�/ 2 S ˝ B.HC /; (4.13)

with the constraints I ˝ � C M 0 � 0, � � 0 and TrŒ�� D 1. This defines a
semidefinite program SDP.

Since Q#.S/ involves a further maximization overHC (Eq. (4.11)), we can assume
without loss of generality that dim.HC / � dim.HA/. If dim.HC / > dim.HA/, we
can still identify a subspace of HC where we can construct the state jˆi and set up
the same optimization problem as in Eq. (4.13). Therefore,

Q#.S/ D max
�;M 0

hˆjI ˝ � CM 0jˆi;

such that W I ˝ �CM 0 � 0; M 0 ? S ˝ B.HC /;

� � 0; TrŒ�� D 1: (4.14)
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This is indeed an SDP since the objective function is linear and the constraints are
either semi-definite or linear. ut

It was further shown by Duan et al. [9] that the dual3 to the optimization problem
in Eq. (4.14) is also an SDP of the following form:

min
Y2S˝B.HC /

�;

such that W �I � TrAŒY �; Y � jˆihˆj: (4.15)

Furthermore, strong duality holds here, implying that the two optimization problems
in Eqs. (4.14) and (4.15) are equivalent: maxhˆjI ˝ � CM 0jˆi � min�.

The form of the dual in Eq. (4.15) also implies that

Q#.S1 ˝ S2/ � Q#.S1/ Q#.S2/:

Therefore we see from the SDP formulation that the Q#-function is in fact multiplica-
tive:

Q#.S1 ˝ S2/ D Q#.S1/ Q#.S2/:

We conclude this section with a few open questions. One important question is
regarding the largest dimension of a non-trivial operator system S . Consider for
example S � Mn such that S? D diag.n � 1;�1; : : : ;�1/. It trivially follows that
Q#.S/ D n D #.S/. However, ˛.S/ D 1 since there does not exist a rank-1 operator
in S?. It can be shown that Q̨ .S/ D 2. This example already shows that there
could exist a large gap between the independence numbers ˛.S/; Q̨ .S/ and their
upper bounds #.S/; Q#.S/. An important open question is therefore that of finding
the entanglement-assisted zero-error capacity of the operator system S , which is
defined as follows:

C0E.S/ WD lim
k!1

1

k
log Q̨ .S˝k/:

From the values of Q̨ .S/ and Q#.S/, it is clear that 1 � C0E � logn. However, even
the simple question of whether Q̨ .S ˝ S/ D 4 or Q̨ > 4 remains unanswered for
any value of n. Another line of investigation is to explore further the connection
between graphs and operator systems that emerges naturally in this study of zero-
error quantum communication.

3The dual of a convex program [3, 4] is obtained by introducing a variable for each constraint, and
a constraint for every co-efficient in the objective function. Thus, the objective function and the
constraints get interchanged in the dual problem.
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4.2 Strong Subadditivity and Its Equality Case

The von Neumann entropy of a state � 2 S.HA/ of a finite-dimensional Hilbert
space HA is defined as

S.�/ WD �TrŒ� log �� D �
X

i

�i log�i ; (4.16)

where spec.�/ D f�1; : : : ; �jAjg. It easy to see that S.�/ � 0, with equality iff � D
j ih j, a pure state. By analogy with classical Shannon entropy, it also possible
to define joint and conditional entropies for composite quantum systems. The von
Neumann entropy of a joint state �AB 2 S.HA ˝ HB/ (where HA and HB are
finite-dimensional Hilbert spaces) is thus defined as S.�AB/ D �Tr.�AB log �AB/.

In this section we will focus on some important inequalities regarding the
entropies of states of composite system, and understand the structure of the states
that saturate them.

Definition 4.2.1 (Subadditivity) For any joint state of a bipartite system �AB 2
S.HA ˝HB/ with the reduced states given by the partial traces �A D TrBŒ�AB� and
�B D TrAŒ�AB�,

S.�A/C S.�B/� S.�AB/ � 0: (4.17)

The quantity on the LHS is in fact the Quantum Mutual Information I.A W B/
between systemsA andB , so that the inequality can also be restated as the positivity
of the mutual information.

I.A W B/ WD S.�A/C S.�B/� S.�AB/ � 0 (4.18)

Alternately, the subadditivity inequality can also be expressed in terms of the
Relative Entropy between the joint state �AB and the product state �A ˝ �B .

Definition 4.2.2 (Relative Entropy) The quantum relative entropy between any
two states � and  (�;  2 S.HA/) is defined as

D.� k / WD TrŒ�.log � � log /�; (4.19)

when Range.�/ � Range./, and 1 otherwise [29].

Note that this definition generalizes the Kullback-Liebler divergence [16] of two
probability distributions, just as the von Neumann entropy generalizes the Shannon
entropy.
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Exercise 4.2.3 Show that I.A W B/ D D.�AB k �A ˝ �B/.

Solution

I.A W B/ D S.�A/C S.�B/� S.�AB/

D �TrAŒ�A log �A� � TrBŒ�B log �B�C TrŒ�AB log �AB�

D TrŒ�AB log �AB� � TrŒ�AB.log �A C log �B/�

D TrŒ�AB log �AB� � TrŒ�AB log.�A ˝ �B/�

D D.�AB k �A ˝ �B/; (4.20)

where the last step follows from the observation that log.�A ˝ �B/ D log �A C
log �B . �

Thus, subadditivity is simply the statement that the relative entropy D.�AB k
�A ˝ �B/ � 0 is positive. Positivity of relative entropy is easy to prove, using the
observation thatD.� k / � TrŒ.� � /2�.
Exercise 4.2.4 Show that D.� k / � TrŒ.� � /2� � 0, with equality iff � D  .

Thus the subadditivity inequality becomes an inequality iff �AB D �A ˝ �B ,
in other words, if and only if the joint state �AB of the system is in fact a product
state.

The subadditivity inequality for two quantum systems can be extended to three
systems. This result is often known as Strong Subadditivity, and is one of the most
important and useful results in quantum information theory.

Theorem 4.2.5 (Strong Subadditivity [17]) Any tripartite state �ABC 2 S.HA ˝
HB ˝ HC /, with reduced density operators �AB D TrC Œ�ABC�, �BC D TrAŒ�ABC�,
and �B D TrC Œ�ABC�, satisfies,

S.�AB/C S.�BC/ � S.�B/ � S.�ABC/ � 0 (4.21)

Proof To prove the strong subadditivity property, it will again prove useful to
interpret the LHS as a mutual information, in particular, the Conditional Mutual
Information I.A W C jB/—the mutual information between systemsA and C given
B—which is defined as

I.A W C jB/ D I.A W BC/ � I.A W B/
D S.�A/C S.�BC/� S.�ABC/� S.�A/� S.�B/C S.�AB/

D S.�AB/C S.�BC/� S.�B/� S.�ABC/ (4.22)

Thus strong subadditivity is proved once we establish the positivity of the condi-
tional mutual information. This in turn is proved by first expressing I.A W C jB/ in
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terms of relative entropies.

I.A W C jB/ D D.�ABC k �A ˝ �BC/�D.�AB k �A ˝ �B/

D D.�ABC k �A ˝ �BC/

� D.TrC Œ�ABC� k TrC Œ�A ˝ �BC�/ (4.23)

The final step is to then use Uhlmann’s theorem [28] (proved earlier by Lind-
blad [18] for the finite-dimensional case) on the monotonicity of relative entropy.

Theorem 4.2.6 (Monotonicity of Relative Entropy Under CPTP Maps) For all
states � and  on a space H, and quantum operations T W L.H/ ! L.K/,

D.� k / � D.T .�/ k T .//: (4.24)

To obtain strong subadditivity, one simply has to make the correspondences � �
�ABC,  � �A ˝ �BC, and T � TrC (recall that the partial trace is indeed a CPTP
map). Then, Uhlmann’s theorem implies

D.�ABC k �A ˝ �BC/�D.TrC Œ�ABC� k TrC Œ�A ˝ �BC�/ � 0; (4.25)

which in turn implies strong subadditivity through Eqs. (4.23) and (4.22). In fact,
it was shown by Ruskai [24] that the contractive property of the quantum relative
entropy under CPTP maps and the positivity of conditional mutual information are
equivalent statements. ut

Finally, we note that the corresponding inequalities in the classical setting,
namely, the subadditivity and the strong subadditivity of the Shannon entropy are
easier to prove, since they follow almost directly from the concavity of the log
function.

4.2.1 Monotonicity of Relative Entropy: Petz Theorem

The above discussion on strong subadditivity implies that the question of finding
the conditions under which equality holds for Eq. (4.21), translates to that of finding
the conditions under which Eq. (4.24) describing the monotonicity of the relative
entropy (under the partial trace operation) is saturated. Note that there is a trivial
case of such an equality, namely, if there exists a quantum operation OT which maps
T .�/ to � and T ./ to  . It was shown by Petz [22, 23] that this is in fact the only
case of such an equality.

Theorem 4.2.7 (Saturating Uhlmann’s Theorem) For states �;  2 H, and the
CPTP map T W L.H/ ! L.K/, D.� k / D D.T .�/ k T .// if and only if

. OT ı T /.�/ D �; (4.26)
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for the map OT W L.K/ ! L.H/ given by

X ! p
T 	

�

ŒT ./��1=2XŒT ./��1=2
�p

; 8 X 2 L.H/ (4.27)

where T 	 is the adjoint map4 of T , and the map T is assumed to be such that
T ./ > 0.

Note that . OT ı T /./ D  . In other words, the CPTP map OT is defined to be the
partial inverse of T on the state  . Petz’s theorem states that such a map saturates
monotonicity if and only if OT is also a partial inverse for T on �.

To apply the Petz theorem for strong subadditivity, the relevant map T is the
partial trace over system C . Thus, T � TrC W L.ABC/ ! L.AB/. The adjoint map
is therefore T 	 W L.AB/ ! L.ABC/, with T 	.X/ D X˝IC . The states � and  are
respectively, � D �ABC and  D �A ˝ �BC. Thus the Petz map defined in Eq. (4.27)
is given by

OT � IA ˝ T 00
B!BC (4.28)

with the map T 00 W L.B/ ! L.BC/ given by,

T 00.X/ D p
�BC.�

�1=2
B X�

�1=2
B ˝ IC /

p
�BC; 8 X 2 L.HB/: (4.29)

It is easy to verify that . OT ıT /./ D OT .�A˝�B/ D �A˝�BC . Thus, Petz’s theorem
states that the inequality in Eq. (4.25) is saturated if and only if the joint state �ABC

is such that

. OT ı T /.�ABC/ D �ABC ) OT .�AB/ � .IA ˝ T 00/.�AB/ D �ABC; (4.30)

for the map T 00 defined in Eq. (4.29).
To summarize, Petz’s theorem explicitly gives a condition on the states that

saturate Uhlmann’s theorem on the monotonicity of the quantum relative entropy
under the action of a CPTP map T . This is done by constructing a map OT
corresponding to the map T such that . OT ıT / leaves both the states in the argument
of the relative entropy function invariant. This in turn gives us a handle on states that
saturate strong subadditivity. Specifically, a tripartite state �ABC saturates the strong
subadditivity inequality in Eq. (4.21) if and only if it satisfies Eq. (4.30).

Remark Note that the condition .IA ˝ T 00/.�AB/ D �ABC can in fact be thought
to characterize a short Quantum Markov Chain (see [11] for a more rigorous
definition). Given three classical random variables A;B;C , they form a short
Markov chain A ! B ! C iff PACjB.a; cjb/ D PAjB.ajb/PC jB.cjb/, that is,
the random variable C is independent of A. Analogously, Eq. (4.30) implies that the

4For any CPTP map T in a Kraus representation fTig, the adjoint map is another CPTP map with
Kraus operators fT 	i g.



4.2 Strong Subadditivity and Its Equality Case 109

tripartite state �ABC is such that the state of system C depends only on the state of B
(via the map T 00) and is independent of system A. In fact, the classical conditional
mutual information I.A W C jB/ vanishes iff A ! B ! C form a Markov chain in
the order. Petz’s Theorem is simply a quantum analogue of this statement!

4.2.2 Structure of States that Saturate Strong Subadditivity

The structure of the tripartite states that satisfy Eq. (4.30), can in fact be character-
ized more explicitly as follows.

Theorem 4.2.8 A state �ABC 2 L.HA ˝ HB ˝ HC / satisfies strong subadditivity
(Eq. (4.21)) with equality if and only if there exists a decomposition of subsys-
tem B as

HB D
M

j

HbLj
˝ HbRj

; (4.31)

into a direct sum of tensor products, such that,

�ABC D
M

j

qj �
.j /

AbLj
˝ �

.j /

bRj C
; (4.32)

with states �.j /
AbLj

2 HA˝HbLj
and �.j /

bRj C
2 HbRj

˝HC , and a probability distribution

fqj g.

This result due to Hayden et al. [11] provides an explicit characterization of
tripartite states that form a short quantum Markov chain. Equation (4.32) states that
for a given j in the orthogonal sum decomposition of the Hilbert space HB , the
state on HA is independent of the state in HC .

Proof The sufficiency of the condition is immediately obvious—it is easy to check
that states �ABC of the form given in Eq. (4.32) indeed saturate the inequality in
Eq. (4.21).

To prove that such a structure is necessary, first note that Eq. (4.30), can be
simplified to a condition on �AB alone:

.IA ˝ T 00/.�AB/ D �ABC

) .IA ˝ TrC ı T 00/.�AB/ D �AB: (4.33)

Define ˆ � TrC ı T 00, a quantum operation on S.HB/. Then, states �AB satisfy a
fixed point like equation: .IA ˝ ˆ/�AB D �AB. For any operator M on HA with
0 � M � I , define,

 D 1

p
TrA .�AB.M ˝ I // ; p D Tr .�AB.M ˝ I // : (4.34)
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Then,

.IA ˝ˆ/�AB D �AB ” ˆ./ D : (4.35)

Varying the operatorM thus gives a family of fixed points M D fg for ˆ.
The next step is to make use of the structure theorem for the (finite-dimensional)

matrix algebra of the fixed points. More specialized to the situation on hand, is a
result due to Koashi and Imoto 4.2.11 that makes use of the structure theorem to
characterize the structure of a family of invariant states. See Sect. 4.2.3 for a formal
statement and proof of this result.

As discussed in Theorem 4.2.11 below, the family of invariant states M � fg
induces a decomposition on the Hilbert space HB :

HB D
M

j

HbLj
˝ HbRj

; (4.36)

such that every state  2 M can be written as

 D
M

j

qj ./�j ./˝ !j ; (4.37)

with states �j ./ 2 HbLj
that depend on  and !j 2 HbRj

that are constant for all  .

The equivalence in Eq. (4.35) implies that �AB 2 Spanf� ˝ ; � 2 S.HA/g. This in
turn implies the following structure for �AB:

�AB D
M

j

qj �AbLj
˝ !bRj

: (4.38)

Finally, Theorem 4.2.11 also gives the following decomposition for the map ˆ (see
Eq. (4.47)):

ˆ D
M

j

IH
bLj

˝ˆj : (4.39)

Since ˆ D TrC ı T 00, this implies

�ABC D .IA ˝ T 00/.�AB/

D
M

j

qj �AbLj
˝ T 00.!j /

D
M

j

qj �AbLj
˝ �bRj C

.�bRj C
D T 00.!j //; (4.40)

as desired. ut
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This explicit characterization of the states saturating strong subadditivity offers
an interesting insight into the physical properties of these states. In particular, it
gives a neat condition for the tripartite state �ABC to be separable along theA�C cut.

Corollary 4.2.9 For a state �ABC satisfying strong subadditivity with equality,
that is,

I.A W C jB/ D S.�AB/C S.�BC/� S.�ABC/� S.�B/ D 0; (4.41)

the marginal state �AC is separable. Conversely, for every separable state �AC there
exists an extension �ABC such that I.A W C jB/ D 0.

4.2.3 An Operator Algebraic Proof of the Koashi-Imoto
Theorem

Recall first the structure theorem for matrix algebras which lies at the heart of the
Koashi-Imoto characterization. For notational consistency, we state the theorem for
the finite-dimensional Hilbert space HB .

Lemma 4.2.10 Let A be a �-subalgebra of B.HB/, with a finite dimensional HB .
Then, there exists a direct sum decomposition

H D
M

j

HBj D
M

j

HbLj
˝ HbRj

; (4.42)

such that

A D
M

j

B.HbLj
/˝ IbRj

: (4.43)

ForX 2 B.H/, any completely positive and unital projection P � of B.H/ into A is
of the form

P �.X/ D
M

j

TrbRj .…jX…j .IbLj
˝ !j //˝ IbRj

; (4.44)

with …j being projections onto the subspaces HbLj
˝ HbRj

, and !j being states on

HbRj
.

Proof See [26]. ut
Theorem 4.2.11 (Koashi-Imoto [15]) Given a family of states M D fg on a
finite-dimensional Hilbert space HB , there exists a decomposition of HB as

HB D
M

j

HBj D
M

j

HbLj
˝ HbRj

; (4.45)
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into direct sum of tensor products, such that:

(a) The states fg decompose as

 D
M

j

qj �j ./˝ !j ; (4.46)

where �j are states on HbLj
, !j are states on HbRj

which are constant for all 

and qj is a probability distribution over j .
(b) Every ˆ which leaves the set fg invariant, is of the form

ˆjHBj
D IbLj

˝ˆj ; (4.47)

where the ˆj are CPTP maps on HbRj
such that ˆj .!j / D !j .

Note that Statement (a) of the theorem was first proved by Lindblad [19], and the
proof here closely follows his approach.

Proof First, consider the fixed points of the dual (or adjoint) map ofˆ. Sinceˆ� is a
CP unital map, the fixed points form an algebra, unlike the fixed points of the CPTP
map ˆ which are just a set of states. Furthermore, the following Lemma holds.

Lemma 4.2.12 If ˆ�.X/ D P

i B
�
i XBi , then, Iˆ D fX W ˆ�.X/ D Xg is a

�-subalgebra and is in fact equal to the commutant of the Kraus operators of ˆ�:

Iˆ D fBi; B�
i g0 (4.48)

Proof Using the Kraus representation, it is easy to see thatˆ�.X�/ D .ˆ�.X//� D
X�. For X 2 Iˆ, direct computation gives:

X

i

ŒX;Bi �
� ŒX;Bi � D F�.X�X/ �X�X D 0: (4.49)

The last equality follows from the fact that the family of invariant states M D fg
contains a faithful state. Since the LHS is a sum of positive terms, all of them must be
0, so that ŒX;Bi � D 0 for all i . Similarly,

�

X;B�
i

 D 0 for all i , which immediately
implies IF � fBi; B�

i g0. The converse relation that fBi ; B�
i g0 � IF is trivial. ut

Iterating the map ˆ� asymptotically many times gives a projection of the full
algebra onto the subalgebra of the fixed points.5 That is,

P� D lim
N!1

1

N

N
X

nD1
.ˆ�/n; (4.50)

5This is essentially a mean ergodic theorem for the dual of a quantum operation. See [11] for a
proof.
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is such that P�./ D  , for  defined in Eq. (4.34). And the adjoint of P�,

P D lim
N!1

1

N

N
X

nD1
ˆn; (4.51)

is also a map that leaves the family of states M � fg invariant. Using the
decomposition for P� from the structure theorem above (Eq. (4.44)), the map P
has a similar decomposition, as follows. For all � 2 B.HB/,

P.�/ D
M

j

TrbRj
�

…j�…j

�˝ !j ; (4.52)

where…j are projectors onto the subspaces HBj and !j 2 S.HbRj
/. Since P0./ D

 for all  2 M, we obtain the desired form of the states:

 D P�
0 ./ D

M

j

qj �j ./˝ !j : (4.53)

To characterize the properties of a generalˆ that leaves a set of states M � fg
invariant, we look at the set of such maps ˆ � fˆg that leave M invariant. Taking a
suitable convex combination of the maps fˆg such that the corresponding invariant
algebra I is the smallest gives the most stringent decomposition of HB . Define
I0 D T

F2F IF which is a �-subalgebra itself. Because all dimensions are finite,
this is actually a finite intersection: I0 D IF1 \ : : : \ IFM . Consider for example,

F0 D 1

M

M
X

�D1
F�: (4.54)

From Lemma 4.2.10, there exists the following decomposition of I0:

I0 D B.HbLj
/˝ IbRj

; (4.55)

Since I0 � Iˆ, ˆ�jI0 D II0 . Explicitly, for � 2 S.HbLj
/,

ˆ�.�˝ IH
bRj

/ D �˝ IH
bRj

: (4.56)

Now, consider � 2 B.HbRj
/ such that 0 � � � I . Then,

0 � ˆ�.�˝ �/ � ˆ�.� ˝ IH
bLj

/ D �˝ IH
bRj

D IH
bLj

˝ IH
bRj

(4.57)
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This implies that ˆ� maps B.HbLj
˝ HbRj

/ into itself for all j , and hence the same

applies toˆ. Applying Eq. (4.57) to a rank-one projector j ih j 2 S.HbLj
/, we get,

ˆ�.j ih j ˝ �/ D j ih j ˝ �0; (4.58)

with �0 depending linearly on �, and independent of j ih j. Thus, for states � 2
S.HbLj

/ and  2 S.HbRj
/,

ˆ.� ˝ / D �˝ˆj ./: (4.59)

Applying this to the invariant states  gives the invariance of !j under ˆj . ut

4.3 Norms on Quantum States and Channels

We motivate this section by recalling the mathematical formalism of quantum error
correction discussed in detail in Sect. 3.2. Given a noise channel (a CPTP map)
T W B.HA/ ! B.HB/, the objective of error correction is to (a) identify a subspace
HA0 � HA, which translates into an embedding I0 of matrices on HA0 completing
them as matrices onHA, and, (b) find a CPTP decoding mapD W B.HA/ ! B.HA0/.
Perfect error correction demands that any state � 2 B.HA0/ should therefore
transform as

D.T .I0.�/// D �; 8 � 2 B.HA0/:

Mathematically, this gives rise to a closed, algebraic theory. But in practice, the
condition of perfect error correction is rather hard to achieve. The best we can hope
for is that the overall map on � (including noise and decoding) is something close
to an identity map. In order to describe such an almost perfect error correction,
we need an appropriate choice of norms and metrics on states and channels. In
particular, for some choice of embedding I0 and decoding map D, we should be
able to quantify how close D.T .I0.�/// is to the state �, as well as, the closeness of
the map D ı T ı I0 to the identity map IA0 on HA0 .

We begin with a few standard definitions.

Definition 4.3.1 (Operator Norm) For any operator X on a finite dimensional
Hilbert space, the operator norm is defined as

k X kD largest singular value.X/ Dk X k1 (4.60)

This is a limiting case (p ! 1) of the non-commutativeLp norms:

k X kpD .TrŒjX jp�/1=p; jX j D
p
X	X: (4.61)
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We also recall the following well known inequalities. For any X 2 B.HA/, and
p � q,

k X k1�k X kp�k X kq�k X k1�
p

dim.HA/ k X k2 :

The norm of choice to quantify distance between quantum states is the L1-norm,
which is often referred to as the trace-norm.

Definition 4.3.2 (Distance Between States) The distance between any two states
�;  2 S.HA/ is quantified via the L1-norm (trace-norm) as k � �  k1.
The most compelling reason for this choice of definition is that it captures exactly
how well the states �;  can be distinguished in an experimental setting. To see this
clearly, we briefly discuss the problem of quantum state discrimination.

State discrimination is an information-theoretic game which can be described as
follows. Assume that some experimental procedure prepares, with equal probability,
one of two states � or  . The goal of the game is to minimize the error in guessing
which of these two states was prepared, based on a suitable measurement. Since the
goal is to distinguish between two states, it suffices for the measurement process
to have just two outcomes. Without loss of generality, we can characterize the
measurement apparatus by a pair of positive operators fM; I �M g, with 0 � M �
I . Even if a more complex measuring apparatus were to be used, the outcomes will
have to grouped together so that one set corresponds to � and the other to  . Say,M
corresponds to guessing �. Then, the error probability is given by,

perr D 1

2
TrŒ�.I �M/�C 1

2
TrŒM �: (4.62)

Clearly, perr � 1
2
, where the upper bound corresponds to making a random guess

without really performing a measurement (that is, M D I ). Defining the bias ˇ to
be ˇ D 1 � 2perr, we have,

ˇ D TrŒ.� � /M �: (4.63)

The optimal measurement is the one that maximizes �. It is easy to see that the
optimalM is simply the projection onto the subspace where .��/ � 0. Therefore,

ˇmax D 1

2
k � �  k1 : (4.64)

This proves that the minimum error probability is given by

minŒperr� D 1

2
.1 � 2 k � �  k1/ ; (4.65)
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thus providing an operational meaning to the trace-norm [12]. In mathematical
terms, we have simply realized the fact that the trace-norm is the dual of the operator
norm:

k � k1D max
kXk�1

jTrŒ�X�j: (4.66)

This is easily seen once we can rewrite the bias as follows:

ˇ D 1

2
TrŒ.� � /.2M � I /�: (4.67)

Since .��/ is Hermitian, to maximize ˇ, it suffices to maximize over all Hermitian
operators of norm less than unity.

Note that k � �  k1 is an upper bound on the Kolmogrov distance (the L1

distance) between the measurement statistics corresponding to a given measurement
on � and  . The optimizing measurement that achieves equality is in fact the one
that minimizes perr in the state discrimination problem.

We move on to distances between channels, or more generally, linear maps L W
B.HA/ ! B.HB/. The trace-norm on states naturally induces the following norm
on maps.

k L k1!1 D max
k�k1

k L.�/ k1 : (4.68)

The so-called diamond norm for quantum channels which is used often in the
quantum information literature is defined as the completion of this induced norm.

sup
C

k L ˝ IC k1!1 WD k L k˘ : (4.69)

It follows from the duality between the trace-norm and the operator norm, the ˘-
norm is the dual of the CB-norm (Definition 1.1.2).

The ˘-norm also has an operational significance similar to that of the trace-norm.
Consider L D T1 � T2, where T1 W B.HA/ ! B.HB/ and T2 W B.HA/ ! B.HB/

are both CPTP maps. We seek to evaluate k L k1!1�k T1 � T2 k1!1. Noting that it
suffices to maximize over operators of unit-trace rather than operators of unit-norm,
we have,

k T1 � T2 k1!1 D max
�2S.HA/

k T1.�/ � T2.�/ k1 : (4.70)

This quantity is simply twice the maximum bias of distinguishing between the
channels T1 and T2, with respect to a restricted set of strategies, namely, the “prepare
and measure the output” strategies.

Similarly, when we consider the ˘-norm k T1 � T2 k˘, it again suffices to
minimize over all states in the extended Hilbert space HA˝HC , including of course
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the entangled states. Therefore,

k T1 � T2 k˘ D max
�2S.HA˝HA0 /

k .T1 ˝ IA0/.�/� .T2 ˝ IA0/.�/ k1 : (4.71)

This is also twice the maximum bias of distinguishing T1 and T2, but allowing for
all possible strategies.

Thus, both the simple induced norm (k : k1) and the ˘-norm have a nice opera-
tional interpretation in the quantum information theoretic setting. The mathematical
properties of these norms have interesting physical consequences in this operational
setting, and vice-versa. For example, if we take Eq. (4.65) as the definition of
the trace-norm, it immediately follows that the norm must be contractive under
CPTP maps. If not, we could always perform the measurement after the action of
a CPTP map and distinguish the states with lesser probability of error. Similarly, it
follows from the operational interpretation that the 1!1-norm or the ˘-norm cannot
increase when the channel is preceded or succeeded by the action of another CPTP
map.

We now present an example where the simple induced norm (k : k1!1) and its
norm completion (the ˘-norm) behave rather differently. Let T1 W Md ! Md and
T2 W Md ! Md be two CPTP maps acting on the space of d � d matrices. We
define these maps by their action on the following state � 2 Md ˝Md :

� D j�ih�j D 1

d

d
X

i;jD1
ji iihjj j:

Note that j�i D 1p
d

P

i ji ii is the maximally entangled state in Md ˝ Md . Under
the action of T1 and T2, � transforms as:

.T1 ˝ I/� WD ˛ D 1 � F
d.d � 1/

;

.T2 ˝ I/� WD  D 1C F

d.d C 1/
; (4.72)

where, F D P

i;j jijihj i j is the so-called SWAP operator—the unitary operator
that interchanges the two Hilbert spaces. F has eigenvalues ˙1, and so, 1 C F

and 1 � F are projections onto two mutually orthogonal subspaces. Thus, upto
suitable normalization, ˛ is the projector onto the antisymmetric subspace and 
is the projector onto the symmetric subspace of Md ˝Md .

It suffices to define the maps T1; T2 via Eq. (4.72), since ˛ and  are simply the
Choi-Jamiolkowski matrices corresponding to T1 and T2 respectively. Since we have
already identified a state � which is mapped onto orthogonal subspaces by T1 ˝ I
and T2 ˝ I, the ˘-norm is easily computed.

k T2 � T1 k˘Dk  � ˛ k1D 2: (4.73)
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This follows from the fact that trace-norm between any two density matrices cannot
be larger than 2, and the maximum value of 2 is attained iff the states are orthogonal.

On the other hand, to compute k T1 � T2 k1!1 we still need to perform a
maximization over states:

k T1 � T2 k1!1D max
�

k .T1 � T2/� k1 :

Since the trace-norm is convex, the maximum will be attained for an extreme
point on the set of states, namely a pure state. In fact, it suffices to evaluate
k .T1 � T2/j0ih0j k1 for some arbitrary fixed state j0ih0j, because of the following
observation. The states ˛;  have the property that they are left invariant under
conjugation by any unitary U ˝ U 2 U.Md ˝Md/:

.U ˝ U /˛.U ˝ U /	 D ˛;

and similarly for  . The action of the map T1 on any state X 2 Md is obtained from
the corresponding Choi-Jamiolkowski matrix ˛ as follows:

T1.X/ D dTr2Œ.I ˝XT /˛�;

where the partial trace is over the second system. Thus, the invariance of ˛ under
conjugation by unitaries translates into a covariance property for the channels, and
so the norm k .T1 � T2/� k1 is the same for � and U�U 	. Therefore, we have,

k T1 � T2 k1!1Dk .T1 � T2/j0ih0j k1D 4

d C 1
: (4.74)

The value of the RHS follows from the fact that the states Ti .j0ih0j/; i D 1; 2 for
some arbitrary rank-1 projector j0ih0j, are close to the maximally mixed state I

d
.

This example clearly highlights that the naive k : k1!1-norm can in fact be
smaller than the ˘-norm by a factor that scales as the dimension of the system.
Operationally, this difference between the two norms has an important consequence.
Equation (4.73) implies that the two channels in this example can in fact be
distinguished perfectly, provided the experimenter has access to the right equipment.
In particular, the experimenter needs to be able to create the maximally entangled
state j�i D 1p

d

P

i jiii, store it and in the end be able to perform measurements
on the composite system. In short, the experimenter needs access to a quantum
computer! On the other hand, if the experimenter is restricted to performing local
measurements, the distinguishability, which is now characterized by k T1�T2 k1!1,
is rather small.

This observation also has significance in a quantum cryptographic setting.
Suppose we consider the problem of distinguishing the states ˛;  2 Md ˝ Md ,
when the experimenter is restricted to performing only local operations and using
classical communication. This restriction defines a set of operations called LOCC,
which is in fact a convex subset of B.H/ whose elements lie between Œ�I; I �. Just
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as the trace-norm quantifies the distinguishability allowing for arbitrary possible
measurements, the distinguishability of the states subject to this restricted set6 can
be characterized by the so-called LOCC-norm. Denoting this norm as k : kLOCC, it
was shown that [7] for the states ˛;  defined in the above example,

k ˛ �  kLOCC D 4

d C 1
:

It is thus possible to encode information in two perfectly distinguishable states ˛ and
 , which are however close to indistinguishable under a restricted set of operations
(like LOCC). This observation leads to a quantum cryptographic scheme called
quantum data-hiding [7].

4.4 Matrix-Valued Random Variables

We begin with a brief introduction to the standard theory of large deviations in clas-
sical probability theory. Recall that for some set fX1;X2; : : : ; Xng of independent,
identically distributed (i.i.d.) random variables taking values in R, the law of large
numbers states that

lim
n!1

1

n

n
X

iD1
Xi D EŒX� � �;

with probability 1. In statistics and other applications, we are often interested in how
significantly the empirical mean on the LHS deviates from the expectation value �.
Here, we focus on large deviations. In particular, for finite n, we are interested in
bounding the probability that the empirical mean is larger than some ˛ > �. All
known bounds of this form require some additional knowledge about the distribution
of the X .

The simplest and most commonly encountered large deviation setting is one
where theXi ’s are bounded, so that all higher moments exist. Specifically, assuming
that Xi 2 Œ0; 1�, the following bound is known to be asymptotically optimal.

Pr

(

1

n

n
X

iD1
Xi > ˛

)

� e�nD.˛k�/; .˛ > �/ (4.75)

6Any convex, centrally symmetric subset M � Œ�I; I� � B.H/ with the property �M D M,
gives rise to a norm, the dual of which is a measure of the distinguishability.
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where,

D.˛ k �/ D ˛ ln
˛

�
C .1 � ˛/ ln

1 � ˛

1 � �
is the relative entropy between two binary variables. Note that D.˛ k �/ � 0 for
˛ > � with equality holding iff ˛ D �. The upper bound in Eq. (4.75) can further
be simplified to

Pr

(

1

n

n
X

iD1
Xi > ˛

)

� e�2n.˛��/2 :

We briefly sketch the proof of the large deviation bound in Eq. (4.75).

Proof Introducing a real parameter t > 0, it is easy to see that,

Pr

(

1

n

n
X

iD1
Xi > ˛

)

D Pr
n

et
P

i Xi > ent˛
o

Note that we could have chosen any monotonic function of the two quantities
1
n

Pn
iD1 Xi and ˛ on the RHS. It turns out that the choice of the exponential function

is indeed asymptotically optimal.
The next step is to use Markov’s inequality which states that the probability that a

positive-valued random variable Y is greater than some positive constant a is upper
bound by EŒY �=a. This implies,

Pr

(

1

n

n
X

iD1
Xi > ˛

)

� EŒet
P

i Xi �

ent˛
D �

EŒetX�t˛�
�n
;

where the second equality follows from the fact that the Xi are independent and
identically distributed.

From the convexity of the exponential function, it follows that for fixed � and
X 2 Œ0; 1�, the expectation on the RHS is maximized whenX is a Bernoulli variable
with Pr.X D 0/ D 1 � �, Pr.X D 1/ D �. Therefore,

Pr

(

1

n

n
X

iD1
Xi > ˛

)

� �

.1 � �/e�t˛ C �et.1�˛/
�n
:

Optimizing the RHS over the parameter t yields the desired bound in Eq. (4.75). ut
The same large deviation bound holds for real-valued vector variables, upto a

dimensional constant that comes from the union bound, when we seek to quantify
the deviation of each co-ordinate from its mean value. We would like to obtain
similar tail bounds for matrices.
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4.4.1 Matrix Tail Bounds

Consider a set of matrices X1;X2; : : : ; Xn; : : : 2 B.H/ that are i.i.d., where each
Xi 2 Œ0; I � andH is a finite dimensional Hilbert space. Note that this setting is rather
different from that of random matrix theory, where the entries of the matrix are
chosen in an i.i.d fashion. Here, we do not care about the distribution over the entries
of the matrices, rather each Xi is chosen independently from the same distribution.
Here again, in the large-n limit, the empirical mean converges to the expectation
value EŒX� D M 2 Œ0; I � with probability 1.

1

n

n
X

iD1
Xi ! EŒX� � M:

The corresponding large deviation problem seeks to bound the following proba-
bility:

Pr

(

1

n

n
X

iD1
Xi — A

)

;

given a positive matrix A > M . In order to obtain such a bound, we first need a
matrix version of Markov’s inequality. The following lemma is left as an exercise;
it simply follows from the proof of the standard (classical) Markov’s inequality.

Lemma 4.4.1 (Matrix Markov Inequality) Let X � 0 be a positive semi-definite
matrix random variable with E.X/ D M . Then, for some positive definite matrix
A > 0,

Pr fX — Ag � TrŒMA�1�: (4.76)

We will henceforth assume that EŒX� D M � �I , for � > 0. This is a natural
assumption to make in sampling problems. If the probability of a certain event is too
small, then we will have to sample a very large number of times to get an estimate
of this probability. Assuming that the expectation value is larger than a certain
minimum value excludes such rare events. In our setting, this assumption implies
that the mean does not have very small eigenvalues. Then, defining the operator
Y D �M�1=2XM�1=2, we see that Y 2 Œ0; I �, and, EŒY � D �I . Further,

Pr fX — Ag D Pr
˚

Y — A0� ; A0 D �M�1=2AM�1=2:

Thus, without loss of generality, we have an operator A0 with the property that it
is strictly larger than the expectation value EŒX�. All of the eigenvalues of A0 are
strictly larger than �, so that, A0 � ˛I > �I .
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In this setting, assuming EŒX� D M D �I , the following large deviation bound
was proved in [1].

Pr

(

1

n

n
X

iD1
Xi — ˛I

)

� de�nD.˛k�/; for ˛ > �; (4.77)

Pr

(

1

n

n
X

iD1
Xi � ˛I

)

� de�nD.˛k�/; for ˛ < �:

Before proceeding to the proof, we note some useful facts about the relative entropy
function.

Remark 4.4.2 The relative entropyD.˛ k �/ satisfies:

• When .˛ � �/ is fixed,

D.˛ k �/ � 2.˛ � �/2:

• When � is small, for ˛ D .1C �/�, a stronger bound holds:

D.˛ k �/ � c��2;

for some constant c.

Proof We closely follow the arguments in [1] where the matrix tail bounds were
originally proved. First, note that,

Pr

(

1

n

n
X

iD1
Xi — ˛I

)

� Pr
n

et
Pn
iD1 Xi — ent˛I

o

: (4.78)

In the simplified setting we consider, these two probabilities are in fact equal.
However, equality does not hold in general, since the function x ! ex is not a
matrix monotone. The inverse function x ! ln x is indeed a matrix monotone.
This follows from two simple facts: first, for matrices X; Y , 0 � X � Y implies
Y �1 � X�1. Using this, along with the well known integral representation of the
log function:

lnx D
Z x

tD1
dt

t
D
Z 1

tD0
dt

�

1

t C 1
� 1

x C t

�

;

it is easy to prove that ln x is a matrix monotone.
Invoking the Markov bound (Eq. (4.76)) in Eq. (4.78), we have,

Pr

(

1

n

n
X

iD1
Xi — ˛I

)

� TrŒEŒet
Pn
iD1 Xi ��e�nt˛:
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Note that we cannot make use of the independence argument at this stage because
the sum on the exponent does not factor into a product of exponents in this case.
The operators Xi could be non-commuting in general. Instead, we use the Golden-
Thompson inequality.

Lemma 4.4.3 (Golden-Thompson Inequality)

TrŒeACB� � TrŒeAeB�: (4.79)

Using this, we have,

Pr

(

1

n

n
X

iD1
Xi — ˛I

)

� TrŒEŒetXn �EŒet
Pn�1
iD1 Xi ��e�nt˛

� k EŒetXn � k TrŒEŒet
Pn�1
iD1 Xi ��e�nt˛; (4.80)

where we have upper bounded the operator etXn by its norm in the final step.
Repeating these steps iteratively, we have,

Pr

(

1

n

n
X

iD1
Xi — ˛I

)

� d
�k EŒetX � k e�t˛�n :

Finally, noting that EŒetX � is maximized whenX is Bernoulli distributed over f0; Ig,
and then optimizing over t , we get,

Pr

(

1

n

n
X

iD1
Xi — ˛I

)

� d
�

Œ1 � �C �et �e�t˛�n � de�nD.˛k�/: (4.81)

ut
A stronger tail bound is obtained by avoiding the Golden-Thompson inequality

and using Lieb concavity instead [27]. In particular, in place of Eq. (4.80), we have,

Pr

(

1

n

n
X

iD1
Xi — ˛I

)

� e�nt˛TrŒ.EŒetX �/n�:

This bound is clearly better than the bound in Eq. (4.81) when the operator etX

has one dominating eigenvalue and the other eigenvalues are quite small. We refer
to [27] for further details of this approach.

Such matrix tail bounds were originally obtained by Ahlswede and Winter in the
context of a specific quantum information theoretic problem [1]. Here we will focus
on two other applications, namely in destroying correlations [10] and in quantum
state merging.
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4.4.2 Destroying Correlations

An important question in quantum information theory as well as statistical physics is
to quantify the amount of correlations in a bipartite quantum system. One approach
to quantifying the correlations in a bipartite state �AB 2 S.HA ˝ HB/, proposed
in [10], is to understand the process by which �AB can be transformed to an
uncorrelated (product) state of the form �A ˝ �B . The fundamental idea is to shift
from characterizing the states to characterizing processes T W �AB ! �A ˝ �B , in
particular, to quantify the amount of randomness that has to be introduced to effect
such a transformation.

For sufficiently large systems HA;HB , there always exists a global unitary
operation, that is, a unitary operator on HA ˝ HB , that maps �AB ! �A ˝ �B
deterministically. On the other hand, if our physical model allows only for local
unitary conjugations of the type UA ˝ IB and mixtures thereof, a natural question
to ask is, how much randomness is required for such a transformation.7 Note that
a single local unitary conjugation cannot change the amount of correlations in a
bipartite state. However, if we insert a finite amount of randomness by constructing
maps involving probabilistic mixtures of local unitaries, a bipartite correlated state
can indeed get mapped to a product state.

We thus consider CP maps of the following type:

T W X !
X

i

pi .Ui ˝ I /X.Ui ˝ I /	;

where fUig are drawn from the set of unitary matrices on HA. To see a concrete
example of such a map, consider the maximally two-qubit state:

�ent D 1

2
.j00i C j11i/.h00j C h11j/:

Then, choosing the unitaries U0 D I , U1 D X , U2 D Y and U3 D Z, where
X; Y;Z are the Pauli matrices defined in Sec 3.2.2., and choosing the probabilities
pi D 1

4
, we get,

T .�ent/ D
X

i

piUi�U
	
i D I

2
˝ I

2
:

We thus have a simple example of transforming a maximally entangled state into a
product state via a probabilistic mixture of unitaries.

In order to quantify the amount of noise or randomness involved in the process,
one approach is to simply use the difference in the (quantum) entropies between

7We could equally well have considered unitaries of the type IA ˝UB , and the same results would
hold.
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the final and initial states. However, it might be more meaningful to consider
the classical entropy of the probability distribution fpig, which really captures
the thermodynamic cost associated with the process. Physically, the erasing of
correlations is in fact a consequence of erasing the knowledge of the probability
distribution fpig associated with the unitaries fUig. Landauer’s principle states that
there is an energy cost associated with erasing information, and in the asymptotic
limit, this cost is proportional to the entropy of the distribution fpig.

Definition 4.4.4 Given n copies of a bipartite state �AB, the family .pi ; Ui /NiD1 of
probabilities pi and unitaries Ui 2 U.HA/ is said to be �-randomizing for �˝n

AB if
the associated map T is such that

k
N
X

iD1
pi .Ui ˝ I /�˝n

AB .U
	
i ˝ I / � Q�A ˝ �˝n

B k� �; (4.82)

where Q�A D P

i piUi�
˝n
A U

	
i 2 H˝n

A .

We are interested in quantifying the size of the smallest such �-randomizing family
.pi ; Ui/ for the state �˝n

AB , which we denote as N.n; �/.

Definition 4.4.5 N.n; �/ is defined to be the smallest N such that 9 an �-
randomizing family .pi ; Ui/NiD1 for �˝n

AB .

Specifically, we are interested in the asymptotic behavior of logN.n;�/
n

in the limit
� ! 0 and n ! 1, as way to quantify the correlation of the bipartite state �AB.
Following the work of Groisman et al. [10], we first prove the following lower
bound.

Theorem 4.4.6 Given n copies of a bipartite state �AB 2 S.HA ˝ HB/, any �-
randomizing set fUigN.n;�/iD1 must have at least N.n; �/ unitaries, where N.n; �/
satisfies,

lim inf
n!1
�!0

1

n
logN.n; �/ � I.A W B/�; (4.83)

where, I.A W B/� D S.�A/CS.�B/�S.�AB/ is the mutual information of the state
�AB (see Eq. (4.18)).

Proof Let .pi ; Ui /
N.n;�/
iD1 be an �-randomizing family for �˝n

AB . The corresponding CP
map T is given by

T .�˝n
AB / D

N
X

iD1
pi .Ui ˝ I /�˝n

AB .U
	
i ˝ I /:
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Then, it can be shown that the von Neumann entropy of the transformed state
satisfies,

S.T .�˝n
AB // � S.�˝n

AB /CH.p1; : : : ; pN /; (4.84)

whereH.p1; : : : ; pN / is the Shannon entropy of the distribution fpig. The inequal-
ity above follows from the concavity of the von Neumann entropy, in particular,

S.
X

i

pi�i / �
X

i

piS.�i /CH.p1; p2; : : : ; pN /:

From the definition in Eq. (4.82), the final state T .�˝n
AB / is close to the product

state Q�A ˝ �˝n
B . This implies, via the Fannes inequality,

S. Q�A ˝ �˝n
B / � S.T .�˝n

AB //C � logŒ.dA/n.dB/n�;

where dA D dim.HA/ and dB D dim.HB/. Further, from the definition of Q�A, we
have,

S. Q�A ˝ �˝n
B / D nS.�A/C nS.�B/:

These observations along with the inequality in Eq. (4.84) imply,

nS.�A/C nS.�B/� n� log.dadB/ � nS.�AB/C logN.n; �/:

Thus we have the following lower bound:

logN.n; �/

n
� I.A W B/� �O.�/; (4.85)

where I.A W B/� D S.�A/C S.�B/� S.�AB/ is the mutual information of the state
�AB. This in turn implies the asymptotic lower bound,

lim inf
n!1
�!0

1

n
logN.n; �/ � I.A W B/: (4.86)

ut
To show that the mutual information is also an upper bound, we make use of the

matrix sampling bound proved in the previous section. We will also need to invoke
the typicality principle, which we recall here.

Definition 4.4.7 (Typicality Principle) Given n copies of a state �AB, for all � and
large enough n, there exists a truncated state �.n/OA OB 2 S. OH˝n

A ˝ OH˝n
B / with the
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following properties:

(i) k �.n/OA OB � �˝n
AB k1� �,

(ii) Range.�.n/OA OB/ � OHA ˝ OHB , where, OHA � H˝n
A and OHB � H˝n

B with the
dimensions of the truncated spaces satisfying,

d OA � dim. OHA/ � 2nS.�A/˙�; d OB � dim. OHB/ � 2nS.�B /˙�:

(iii) Asymptotic Equipartition Property: �.n/AB  2�nS.�AB/˙� on its range. Also,

�
.n/
A  2�nS.�A/˙� I OA; �

.n/
B  2�nS.�B/˙� I OB:

In other words, in the truncated spaces, the reduced states have an almost flat
spectrum. The global state also has a near flat spectrum on its range space.

It now suffices to find a map that can destroy the correlations in the truncated
state �.n/OA OB . We now prove that there always exists such a map which is a probabilistic
mixture of N.n; �/ unitaries, where N.n; �/ satisfies the following upper bound:

lim sup
n!1
�!0

1

n
logN.n; �/ � I.A W B/: (4.87)

Proof The proof is to essentially construct an ensemble from which the random
unitaries that make up the map can be picked. First, choose a probability distribution
� over the set of all unitaries U.H OA/ acting on H OA with the property that

 !
Z

d�.U /UU 	 D I OA
d OA
;8 2 S. OHA/: (4.88)

There are many measures � that satisfy this property. Mathematically, the most
useful measure is the Haar measure, which is the unique unitary invariant prob-
ability measure. This makes the above integral manifestly unitary invariant. The
smallest support of such a measure is .d OA/2. Another choice of measure can be
realized by considering the discrete Weyl-Hiesenberg group. This is the group of
unitaries generated by the cyclic shift operator and the diagonal matrix with the
nth roots of unity along the diagonal. Either choice of measure would work for our
purpose.

Next, we draw unitaries U1; U2; : : : ; UN , independently at random from �.
Define the operators

Yi D .Ui ˝ I /�
.n/
AB .U

	
i ˝ I /:
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Note that the expectation values of these operators satisfy

EŒYi � D 1

d OA
I OA ˝ �

.n/

OB ; 8 i:

The Yi s are not upper bounded by I but by some exponential factor as stated in the
typicality principle. Therefore, we rescale the Yis as follows.

Xi D 2n.S.�AB/��/Yi 2 Œ0; I �:

Then, the expectation values of the Xi s satisfy,

EŒXi � D 2n.S.�AB��// 1
d OA
I OA ˝ �

.n/

OB

� 2�n.I.AWB/�3�/I OA OB � �I OA OB; (4.89)

where the second inequality comes from the typicality principle.
Once we have this lower bound on the expectation values, we can use the matrix

tail bounds in Eq. (4.77) as follows. LetM denote the expectation valueEŒYi �. Then,

Pr

(

1

N

N
X

iD1
Yi — .1C �/M

)

� 2d OAd OBe
�ND..1C�/�k�/

� 2.dA/
n.dB/

ne�c�2�N : (4.90)

We can similarly get a lower bound by using the other tail bound in Eq. (4.77) for
.1 � �/M . If the bound on the RHS is less than one, then, there exist unitaries
U1; U2; : : : ; UN with the property

.1 � �/M � 1

N

N
X

iD1
.Ui ˝ I /�

.n/
AB .U

	
i ˝ I / � .1C �/M: (4.91)

Taking the trace-norm on both sides, we see that the set fU1; U2 : : : ; UN g is indeed
�-randomizing as defined in Eq. (4.82). Note that the statement we have proved in
Eq. (4.91) is infact a stronger one!

Thus, in order to achieve the �-randomizing property, the bound in Eq. (4.90)
shows that it suffices to have

N � 1

c�
2�nI.AWB/C3� logŒ.dA/n.dB/n�  2nI.AWB/Cı;

in the limit of large n. ut
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Finally, we revisit the example of the maximally entangled two-qubit state
�ent discussed earlier. The mutual information of this state is I.A W B/� D 2.
Correspondingly, we provided a set of four unitaries, which when applied with equal
probabilities could transform �ent into a tensor product of maximally mixed states
on each qubit. The upper and lower bounds proved here show that this set is in fact
optimal for destroying correlations in the state �ent.

In the following section, we show that the results discussed here provide an
interesting approach to an important quantum information processing task, namely,
state merging.

4.4.3 State Merging

We first introduce the notion of fidelity between quantum states, which is based
on the overlap between their purifications (see Definition 4.1.1 above). Recall that
for any �;  2 S.HA/, there exist purifications j i; j�i 2 HA ˝ HA0 such that
TrA0 Œj ih j� D � and TrA0 Œj�ih�j� D  . Furthermore, two different purifications of
the same state � are related by an isometry. That is, if there exists j Q i 2 HA ˝ H QA
satisfying Tr QAŒj Q ih Q j� D �, then there exists a partial isometry U W A0 ! QA such
that j Q i D .I ˝ U /j i. This observation gives rise to the following definition of
fidelity between states.

Definition 4.4.8 (Fidelity) Given states �;  2 S.HA/, the fidelity F.�; / is
defined as

F.�; / WD max
j i;j�i

TrŒ.j ih j/.j�ih�j/� D max
j i;j�i

jh j�ij2; (4.92)

where the maximization is over all purifications j i; j�i of � and  respectively.

Note that the optimization over purifications is in fact an optimization over unitaries
acting on the auxiliary space. A particular choice of purification is the state j 0i
defined as

j 0i D .
p
�˝ I /jˆi;

where jˆi D P

i jiii is a purification of the identity. Any other purification j i is
then of the form

j i D .
p
�˝ U /jˆi;

where U is a partial isometry. Therefore the expression for fidelity simplifies as
stated below.
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Exercise 4.4.9 (Properties of Fidelity)

(i) The fidelity between states �;  2 S.HA/ is given by,

F.�; / Dk p
�
p
 k21 : (4.93)

(ii) P.�; / WD p

1 � F.�; / is a metric on S.HA/.
(iii) P.�; / is contractive under CPTP maps.
(iv) Relation between fidelity and trace-distance:

1

2
k � �  k1� P.�; /:

Thus, convergence in the trace-norm metric is equivalent to convergence in the
P -metric.

The above discussion on fidelity thus implies the following. Given a state j i 2
HA ˝ HA0 with � D TrA0 Œj ih j�, and, j�i 2 HA ˝ HA0 with  D TrA0 Œj�ih�j�,
there exists a partial isometry U such that the state j 0i D .I ˝ U /j i is as close
to j�i as the fidelity between �;  . In other words, jh�j ij2 D F.�; /.

We now define an important information theoretic primitive in the quantum
setting.

Definition 4.4.10 (State Merging) Consider �AB D TrRŒj iRABh j�, where
j iRAB is a joint state of HR ˝ HA ˝ HB . System R is simply a reference
system which plays no active role in the protocol; all operations are performed by
the two parties A and B alone. The goal of state merging is to transform the state
j iRAB into j Q R OA OBi which is close in fidelity to the original state, where the systems
OA and OB now correspond to party B . The protocol could use entanglement between

the parties A and B (say, a state of Schmidt rank 2K), local operations and classical
communication which are assumed to be a free resources.

The goal of state merging is to transform a joint state of A and B (along with
the reference) to a state of B alone (and the reference), where system B is now
composed of systems OA and OB . Note that quantum teleportation is in fact a special
case of state merging, where partyA conveys an unknown quantum state to B using
one maximally entangled state (K = 1) and 2 bits of classical communication.

Assuming that A and B share some entanglement initially, the actual initial
state for the protocol is of the form j iRAB ˝ j�KiA0B0 . To incorporate the local
operations and classical communication (which we assume to be one-way, from A

to B), we can break down the protocol into three phases. First, A performs some
local operation which is modeled as a family of CP maps fT˛g on system A alone:

fT˛g˛; T˛ W B.HA ˝ HA0/ ! B.HA ˝ HA0/;
X

˛

T˛ D I:
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This is followed by classical communication from A to B and finally local
operations on system B . The operations on B’s system are CPTP maps fD˛g that
decode the state based on the classical information from A. Therefore,

D˛ W B.HB ˝ HB0/ ! B.H OA ˝ H OB ˝ HB0/:

Thus the final state at the end of this protocol is given by,

X

˛

.IR ˝ T˛ ˝ D˛/j iRAB ˝ j�KiA0B0  j iR OA OB ˝ j�0iB0;

which should be close to the original state in fidelity.
Having formalized the model for state merging, we are interested in the following

question: what is the smallest K.�AB; �/ such that there exists a state merging
protocol that achieves a fidelity greater than 1 � � for the state �AB? As before,
we focus to the asymptotic, multiple copy setting. Taking n copies of �AB, we would

like to study the quantity K.�
˝n
AB ;�/

n
in the asymptotic limit of n ! 1 and � ! 0. This

is simply another way of asking, how much quantum communication is required to
effect this transformation. A special case of this problem is the case where A and
B share no entanglement; only A and R are entangled. This is the same as the
question of quantum data compression originally studied by Schumacher [25]. The
asymptotic bound in the special case turns out to be the entropy of system A.

Here, we prove the following asymptotic bound for state merging, originally
shown in [13, 14].

Theorem 4.4.11 Given n copies of a state �AB, any state merging protocol that
achieves a fidelity larger than .1 � �/ must use an entangled state of Schmidt rank
at least K.n; �/, with K.n; �/ bounded by,

lim inf
n!1
�!0

1

n
K.�˝n

AB ; �/ � S.AjB/�; (4.94)

where S.AjB/� D S.�AB/ � S.�B/ is the conditional entropy of system A given
B . Conversely, there always exists a state merging protocol that achieves fidelity
greater 1 � � for n copies of �AB, with the shared entanglement between A and B
bounded by

lim sup
n!1
�!0

1

n
K.�˝n

AB ; �/ � S.AjB/�; (4.95)

Note that the conditional entropy satisfies S.AjB/ � S.�A/ with equality holding
iff �AB D �A ˝ �B is a product state. Thus, the state merging protocol in general
achieves something beyond teleportation or data compression. It is also worth noting
here that state merging is in some sense a quantum version of the classical Slepian-
Wolf protocol. Loosely speaking, both protocols consider a setting where the second
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party B has some partial information about A, and then ask what is the minimum
amount of information that has to be transmitted by A so that B has complete
knowledge of A. In the classical Slepian-Wolf also, the amount of information that
has to be transmitted from A to B to achieve complete transfer of information is
indeed the conditional entropyH.AjB/.

Here we only prove the converse statement by explicitly constructing the state
merging protocol using the �-randomizing maps defined in the last section.

Proof Assume there exists an �-randomizing family of unitaries fUigNiD1 on
.HA/

˝n, for the state �AR D TrBŒj iRABh j�. Then,

1

N

N
X

iD1
.I ˝ Ui/�

˝n
RA .I ˝ U

	
i /  �˝n

R ˝ �˝n
A ;

where, N 
 2nI.AWR/, and, the closeness to the product state is assumed to be in the
fidelity sense. This holds because of the relation between the trace-distance and the
fidelity stated earlier.

The state merging protocol can now be constructed as follows. Party A first
prepares a uniform superposition of basis states on an auxiliary space HC :

j„i D 1p
N

N
X

iD1
jii 2 HC :

Party A uses this state as the source of randomness and picks the unitaries from the
�-randomizing set as per this superposition. That is, A applies the global unitary,

U D
N
X

iD1
.Ui /An ˝ jiihi jC 2 U.H˝n

A ˝ HC /:

Assuming the systems start with n copies of the state j iRAB, the global state after
the action of this unitary is given by

j�.n/iRnAnCBn D .IRnBn ˝ U /j i˝n
RAB:

Tracing out over system C amounts to an averaging over the unitaries fUig.
Therefore, the reduced state �RnAn is �-close to a product state: �RnAn  �Rn ˝�An .

The next step is for A to teleport system C to party B . This requires A and B to
share an entangled state of Schmidt rankK , given by,

K D jC j D 2nI.AWR/:

Thus, the global state is simply a purification of �RnAn , and party B now holds the
remainder of the state, namely the reduced state on systems C and Bn.
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Consider the product state �Rn ˝ �An , which we know is �-close to �RnAn in
fidelity. This product state can be purified by taking a tensor product of purifications
of �Rn and �An . Since the reference system is unaffected by the protocol, the reduced
state �Rn is still the same as the initial reduced state on the reference system, and is
therefore purified by the original state j i˝n

R OA OB . Further, from the typicality principle,

we can assume without loss of generality that �An D IAn0
dAn0

, which is purified by a

maximally entangled state of rank L D dAn0 D 2nS.�A/. Thus, we have,

�Rn ˝ �An D Tr OAn OBnŒ.j iR OA OBh j/˝n�˝ TrB0 ŒjˆLiA0B0hˆLj�:

Since the reduced states �RnAn and �Rn ˝ �An are �-close in fidelity, there exists
an isometry V W BnC ! OAn OBnB0 such that the corresponding purifications are
�-close in fidelity. Therefore, the final step of the protocol is that B applies the
isometry V , to obtain the final state

.I ˝ V /j�i˝n
RnAnCBn  j i˝n

R OA OB ˝ jˆLiA0B0 ;

whose fidelity with the desired final state is greater than 1 � �. ut
Thus, the protocol achieves state-merging using entangled states of Schmidt rank

I.A W R/, and leaves behind an entangled state between A0 and B0 of rank S.�A/.
The net entanglement used up in the protocol is thus

I.A W R/� � S.�A/ D S.�R/� S.�AR/

D S.�AB/ � S.�B/ � S.AjB/�; (4.96)

where the second equality follows from the total state j iRAB being a pure state.
In situations where I.A W R/� > S.�A/, the conditional entropy S.AjB/� > 0

and there is a net loss of entanglement. However, when I.A W R/� < S.�A/, the
conditional entropy S.AjB/ is negative and there is a net gain in entanglement!
Thus, if we start with a certain amount of entanglement initially, the protocol even-
tually creates some entanglement via local operations and classical communication
only [14].
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