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To my mother, Barbara, in loving memory.

“You were a presence full of light upon this Earth
and I am a witness to your life and to its worth.”

—John Darnielle, Matthew 25:21



Foreword

Acentral insight of modern quantum physics is that randomness in
the quantum regime has a different nature than in the classical

world. In classical theories such as statistical mechanics randomness
is explained by missing knowledge on the initial conditions or physical
processes. In the quantum regime, however, this view can become
problematic. If randomness is caused by ignorance, one assumes that
there are additional parameters which determine the process and the
randomness disappears for observers knowing these parameters. John
Bell, however, showed in 1964 that models with hidden parameters
must be non-local, if they should reproduce the predictions of quantum
mechanics. The corresponding violation of Bell’s inequalities has been
observed experimentally, ruling out certain types of hidden variable
models.

There is a second no-go theorem for hidden variable models, which
is known as the Kochen Specker theorem. In short, it states that
quantum mechanics cannot be reconciled with classical models that
are noncontextual for compatible observables. Here, compatible ob-
servables are observables that can be measured simultaneously or in
any order without disturbance, and noncontextuality means that the
value of an observable does not depend on which other compatible
observable is measured jointly with it. The phenomenon that quan-
tum theory goes beyond noncontextual theories is called quantum
contextuality and it also has been recently observed with trapped
ions, polarized photons or nuclear magnetic resonance.

When testing quantum contextuality in experiments, a sequence
of several measurements is carried out on a single quantum system.
Here, a problem arises: the observables should not disturb each other,
but due to experimental imperfections this will not be the case. So
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one has to analyze the effects of this errors on the conclusions drawn
from the experimental data and this is exactly what the current thesis
from Jochen Szangolies is about. In this thesis, several types of noise
models for experiments are discussed. In principle, already small
amounts of noise can nullify the conclusions about a contextuality
experiment. But, as shown in this thesis, with the help of modified
Kochen Specker inequalities one can still rule out large classes of
hidden variable models. The proposed modification can easily be im-
plemented, as it only requires measuring permutations of the quantum
observables. Therefore, the thesis of Jochen Szangolies represents a
valuable contribution to current discussions and I am happy that it
appears in the Springer BestMasters book series.

Otfried Gühne
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The Department of Physics at the University of Siegen focuses
its research on particle physics, quantum optics and solid state

physics. The research of the Theoretical Quantum Optics group deals
with three topics: First, the group works on the characterization of
quantum entanglement. This concerns the detection and quantification
of entanglement, mainly in the multiparticle setting. Second, the group
is doing research on the foundations of quantum mechanics. Here,
mainly quantum contextuality and the theory of sequential quantum
measurements are considered. Finally, the group analyses statistical
aspects of quantum experiments. This includes direct collaborations
with experimental groups on the analysis and interpretation of their
data.



Preface

Quantum theory, as formulated in the first three decades of the
last century, has long since developed an almost proverbial repu-

tation for being weird, counterintuitive, or even flat-out impossible to
understand. The source of this is certainly to be found in the ways
in which it differs from classical physics, which until the advent of
quantum theory seemed to carry the promise of bringing the world
within our grasp—that is, providing a clear and intelligible picture
of the mechanisms according to which planets and atoms alike trace
their orbits. It is the upset of such intuitions, honed by our intimate
familiarity with the macroscopic, that lends its mysterious air to
quantum theory.

This book constitutes neither an attempt at dispelling the mysteries,
nor does it try to reconcile them with pre-quantum expectations.
Rather, its aim is to contribute to the more modest programme
of making precise where and how quantum physics diverges from
classical expectations. The—albeit reluctant—founding fathers of said
programme are Albert Einstein, Boris Podolsky, and Nathan Rosen,
who in their seminal article “Can Quantum-Mechanical Description
of Physical Reality be Considered Complete?” [2] were the first to
raise the issue of the completeness of quantum theory, that is, the
question of whether it provides a full account of the underlying physics,
or whether it has to be augmented by additional quantities (which
have since become known as ‘hidden variables’) to furnish such a
description.

Their intent was, with an ingenious argument, to establish that
there indeed are quantities that quantum mechanics in its standard
form does not account for, and thus, to show that there must be
some deeper theory capable of describing this more fundamental layer.
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They could not have anticipated that their argument would ultimately,
via the mediation of John Bell, lead to very stringent constraints on
the possibility of such a more fundamental description: as Bell showed
[7], if we are to entertain the possibility of definite quantities left
unaccounted for by the quantum formalism, then these quantities
must be able to instantaneously influence one another across arbitrary
distances, if the resulting theory is to be capable of duplicating all
quantum mechanical predictions. The experimental confirmation of
these predictions then was what cemented the importance of Bell’s
theorem in the corpus of scientific knowledge.

The present work is concerned mainly with a related, though sub-
stantially different theoretical result, typically known as the Kochen-
Specker theorem after Simon Kochen and Ernst Specker [23]. Like
Bell’s, the theorem by Kochen and Specker considers the completabil-
ity of quantum mechanics with additional quantities, and derives
constraints on the nature of these quantities. Unlike Bell’s theorem, ex-
perimental assessment of its consequences is less straightforward. The
problem is, in a nutshell, that the relevant notion of noncontextuality—
roughly, the persistence of physical quantities independently of the
experimental setting—is well defined only for ideal measurements, and
ceases to apply in a more realistic setting. The resulting obstruction
to the experimental testability of the Kochen-Specker theorem is the
main topic of this monograph.

The work contained herein was accepted as a diploma thesis at
the University of Siegen, and was completed under the tutelage of
Prof. Dr. Otfried Gühne, for whose guidance, experience, and not least
for the opportunity of working within his group on this fascinating
topic I could not be more grateful. An equal measure of thanks is
due to Dr. Matthias Kleinmann, who took me under his wing as my
immediate supervisor, and as such, proved to be an invaluable source
of insightful ideas, as well as a formidable foe for the sillier ones.

I have also benefitted greatly from discussions with and the accu-
mulated knowledge of the other members of the Theoretical Quantum
Optics Group at Siegen, among them my three office mates Dr. Mazhar
Ali, whose passion for knowledge and insight served as a reminder



Preface XIII

of why I had myself chosen this path in times when going forward
got difficult, Marcel Bergmann, whose interests extend far beyond his
area of specialization and with whom I fondly remember watching
the announcement of the Higgs boson’s discovery, and Dr. Costantino
Budroni, whose expertise on the topic of quantum contextuality, and
whose rare gift to see directly through to the core of an idea, and
identify the misconception it rests upon, I have greatly admired. I
am furthermore thankful for having had the opportunity of working
with Dr. Martin Hofmann, even beyond my time at Siegen, Dr. To-
bias Moroder, not just for having the good grace to let me win the
occasional game of billards, and Dr. Sabine Wölk.

Additionally, I would be remiss not to express my thanks towards
Prof. Dr. Dagmar Bruß, for giving me a new academic home at the
Quantum Information Group at the university of Düsseldorf, and who
graciously allowed me to take some time to polish this manuscript up
for publication. Finally, for comments on this manuscript, I warmly
thank Michael Epping.

My trajectory up to this point has not always been a smooth one,
and thus, a very special thanks is also due to my family, starting with
my father, Bernhard, for never losing faith in me and supporting me
through difficult times, no matter what, and to my mother, Barbara,
who in many more ways than I am probably aware of provides both
the origin of my frame of reference and the initial conditions that
serve to define my path in life, and whose too early loss I still deeply
mourn. My sisters, Inka and Gisa, I first and foremost wish to thank
for, through their lives, giving me an example showing that it can be
done after all. You have had much more of an impact on my life than
you might know, and I genuinely look up to you.

Last, but by no means least, I want to thank my fiancé, Constance
Bartz. Her commitment, love, and support are, more than anything
else, what made this work possible—but her bravery in accepting my
marriage proposal is what has made me a happy man.

Jochen Szangolies
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Chapter 1

Introduction and Motivation

Noncontextuality may be understood as the idea that proper-
ties—of an object, a physical system, or even a theory—should

stand on their own, i.e. be independently fixed; that for every given
property, one can in principle uniquely and definitely determine
whether some object has that property.

Take, for instance, the property of having a certain color: of any
object in our everyday experience, we can definitely say whether or
not it has the property of, say, being blue. Indeed, this ability is to a
large extent what defines the usual notion of objecthood: any object
can in principle be uniquely identified via a list of all its properties.
If that list were sufficiently detailed, the object could be recreated
anytime, anywhere, from nothing but that list, and a supply of the
necessary raw materials. Let us concretely imagine that list as simply
containing the answers to the question ‘does the object have property
x?’ for all possible properties, which may be represented as simply a
string of 1s and 0s (up to any arbitrary, but finite, degree of accuracy
if we take into account continuously-valued quantities). In this sense,
the list contains all of the object’s information.

That in the quantum world, there are no such lists, is one way
of expressing the content of the Kochen-Specker theorem. Basically,
it asserts that, if quantum mechanics—which famously only gives
probabilistic predictions for any observation—were to be completed
with so-called hidden variables in order to explain its inherent indeter-
minism as merely a lack of information about the true fundamental
parameters, these hidden variables would have to be contextual: if

J. Szangolies, Testing Quantum Contextuality, BestMasters,
DOI 10.1007/978-3-658-09200-9_1, © Springer Fachmedien Wiesbaden 2015



2 Chapter 1 Introduction and Motivation

each property of a quantum system is to be made definite, then this
can only be done in a way such that the assignment of values to every
property depends on the context, i.e. the experimental arrangement—
for instance, which other properties are investigated simultaneously.

To understand this, one must first recall that, according to quantum
mechanics, no list of properties can be complete, since not all can be
observed simultaneously up to arbitrary precision. This is essentially
the content of Heisenberg’s uncertainty theorem. However, the same
property—the same observable—may be co-measurable with different
sets of observables, i.e. may be observable in different contexts.

For a macroscopic analogy, consider a ball drawn from a set of balls
which differ along certain characteristics, for instance size: they can
be either small or large, mass: they can be either heavy or light, and
color: they can be either green or red. Let us stipulate the following
correlations between the properties:

• whenever color and size are measured together, the outcome is
either that the ball is green and small, or that it is red and large,
with equal probability;

• whenever size and mass are measured together, we find a ball that
is either small and heavy, or large and light, where both results are
again equiprobable; and

• whenever mass and color are measured together, each ball is heavy
and red, or light and green, again with the same probability.

Clearly, these assignments are consistent in the sense that whenever
a random ball is chosen, it will have a probability of 1

2 to be green
(or red), small (or large), and heavy (or light). However, if we try to
observe all three possible properties at the same time, a contradiction
arises: the property ‘being green’ is perfectly correlated with ‘being
small’, which is perfectly correlated with ‘being heavy’; however,
‘being heavy’ is perfectly correlated, in turn, with ‘being red’ !

This means that there exists no joint probability distribution for
all the properties of the balls that marginalizes to the distributions
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for sets of two properties as defined in 1.-3.; even though those distri-
butions marginalize to perfectly consistent single-property probability
distributions, such that looking only at those properties by themselves,
one would never have noticed anything strange!

The problem discussed above is known as the marginal problem,
the question of whether or not it is possible to find, for a given
set of probability distributions, a common joint distribution that
marginializes to these distributions, and our example is a variant of
the simplest setting in which its answer is negative [1].

In the setup we have presented, any two properties are simulta-
neously observable, i.e. compatible. However, as we have seen, it
is something very different to observe a ball’s color in one context
with its mass, than it is to observe it in one context with its size:
the context of observation matters! It is now the main lesson of the
Kochen-Specker theorem that if quantum system are to have definite
properties at all, then they are like the properties of our hypothetical
balls, rather than like the classical macroscopic properties that one
can collect in lists.

But does the Kochen-Specker theorem apply to nature? That is, can
we actually perform an experiment demonstrating the noncontextual
nature of reality—is there actually an appropriate urn from which to
draw the balls, so to speak—, and if so, will the quantum mechanical
predictions, or classical expectations be supported by this experiment?

These questions and related ones have recently attracted much
attention (e.g. [24, 25, 26, 28, 32, 38, 39, 44]), as well as caused a
certain amount of controversy [47, 48, 49, 53, 54, 56, 61]. However,
great strides have already been made on the experimental front,
using photons [41, 34] and neutron interferometry [42, 43] to exhibit
quantum violations for specific quantum states, and even in a state-
independent way using sequential measurements on trapped ions [45].

Nevertheless, important open questions still remain. In this book,
we will be specifically concerned with the so-called problem of com-
patibility [44, 66]: roughly, measurements in the real world are never
perfect; but perfect compatibility requires perfect measurements (oth-
erwise, noise effects and accidental couplings to the environment may
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spoil compatibility), and thus, the notion of contextuality as intro-
duced above does not directly apply. We will attempt to take a step
towards resolving this issue.

First, after having provided a brief overview of the theory and history
of the subject in chapter 2, in chapter 3 we discuss the behaviour of
Kochen-Specker tests under various models of quantum-mechanical
noise. This provides bounds on the minimum experimental quality
needed in order to theoretically expect to be able to observe the
quantum-mechanical violation of noncontextuality inequalities, and
thus, the results obtained therein may be used to gauge the likelihood
with which an observation of the violation of noncontextuality is
genuinely quantum mechanical in nature.

Then, in chapter 4, we attack the problem from the other side,
concentrating on finding explicit models of hidden-variable dynamics
that are capable of inducing violations of noncontextuality inequalities
by randomly changing the hidden-variable state after measurement.
The randomness of this change means that it is independent of the
measurement context, and in this sense, such models may be con-
sidered ‘noncontextual’. These models are inspired by considering
the actual measurement process: every measurement necessitates an
interaction with the measured system; this interaction may introduce
arbitrary disturbances on the hidden variable level, over which we
have no control. In real experiments, this would show up in the
form of measurement errors, i.e. deviations from the ideal quantum
mechanical predictions.

Chapter 5 then considers a way out of these troubles by introducing
a novel notion of noncontextuality, applicable not to the state, but
rather, to the evolution of a system as a whole. This notion is
independent of the compatibility of observables, and thus, defined even
in the presence of violations of compatibility, i.e. in real experiments.
As we explicitly demonstrate, inequalities obeyed by noncontextually
evolving systems are violated by quantum mechanics, yet obeyed by
the models that were found to violate Kochen-Specker inequalities in
chapter 4. Since furthermore, violation of noncontextual evolution
implies a violation of Kochen-Specker noncontextuality, because the



Chapter 1 Introduction and Motivation 5

Kochen-Specker notion of noncontextuality is a special case of the
notion of noncontextual evolution. Thus, experimental verification of
such a violation directly implies the validity of the Kochen-Specker
theorem.

Finally, in chapter 6, we give a brief summary of the results, consider
their implications and point to possible future applications.



Chapter 2

Theory and Background

Since its inception in the beginning of the 20th century, quantum
mechanics has been subject to continuous discussion and contro-

versy. In this chapter, we will give both a historical and technical
overview of some particular aspect of this controversy, namely, the
possibility of completing quantum mechanics with so-called hidden
variables. In particular, we will focus on ‘no-go’ theorems, which may
be used to put empirical limits on any possible completions. We will
gradually work our way towards the Kochen-Specker theorem and
examine the question of its experimental testability.

2.1 The Completeness of Quantum Theory

In contrast to classical theories, quantum mechanics provides funda-
mentally probabilistic predictions. Thus, the question of the complete-
ness of quantum theory arises: in analogy to classical theories, one
might suppose that probabilities only enter into the theory because
of our ignorance of the true, fundamental kinematics and/or dynam-
ics. This may be called the ignorance interpretation of quantum
probability. In order to yield a complete description of reality, quan-
tum mechanics would then have to be supplemented by additional
parameters, so-called hidden variables.

This question has been raised most famously by Einstein, Podolsky
and Rosen (abbreviated EPR) in 1935 [2] (brought into the form
most familiar today, referring to spin-entangled electrons, by Bohm

J. Szangolies, Testing Quantum Contextuality, BestMasters,
DOI 10.1007/978-3-658-09200-9_2, © Springer Fachmedien Wiesbaden 2015



8 Chapter 2 Theory and Background

and Aharonov in 1957 [3]). EPR define the following condition of
completeness:

Every element of the physical reality must have a counterpart
in the physical theory. ([2], p. 777)

Thus, their conception of completeness rests on the notion of ele-
ments of reality. On these, they say the following:

If, without in any way disturbing a system, we can predict
with certainty [...] the value of a physical quantity, then
there exists an element of physical reality corresponding to
this physical quantity. (Ibid.)

Their argument then is simple, yet striking: according to Heisen-
berg’s uncertainty principle, if the observables corresponding to two
physical quantities A and B do not commute, i.e. [A, B] �= 0, both
quantities cannot simultaneously be measured to arbitrary accuracy.
However, they set up an example of two physical systems which,
having interacted in the past, must be described by a simultaneous,
entangled wave function. They then explain that by measurements
on one of the systems, i, the other, ii, may be left in an eigenstate of
either of two observables, even if they fail to commute. Hence, by their
criterion, since system ii is not disturbed during the measurement,
both observables must correspond to an element of physical reality—
while naively, the uncertainty principle seems to allow definite reality
for at most one of the observables. Thus, they conclude, quantum
mechanics must be incomplete1. EPR end their discussion with the
words:

While we have thus shown that the wave function does not
provide a complete description of the physical reality, we left

1Actually, they discuss another option: assigning simultaneous reality to two quan-
tities only when both can be simultaneously measured or predicted. However,
this would make the reality of a quantity dependent on the measurement, which
they discard on the basis that this could not be permitted by any ‘reasonable’
definition of reality.
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open the question of whether or not such a description exists.
We believe, however, that such a theory is possible. (Ibid., p.
780)

This further question had, in fact, already been tackled by von
Neumann in 1932 [4], in his seminal work on the mathematical foun-
dations of quantum mechanics. In it von Neumann purported to
answer this question in general, and in the negative: no completion
of quantum mechanics through the introduction of hidden variables
is possible. However, in 1966, Bell pointed to a critical shortcoming
of the argument [5]. It is instructive to briefly review his version of
von Neumann’s theorem in order to build a foundation for different
‘no-go’-theorems to be discussed later.

Consider two observables A and B of a system, represented in QM
by self-adjoint operators (which we will not notationally distinguish
from the observables themselves). Then, there exists an observable C
such that C = αA + βB, and if 〈A〉 and 〈B〉 denote the expectation
values of A and B respectively, then 〈C〉 = α〈A〉 + β〈B〉 is the
expectation value of C. A hidden-variable theory now is committed
to the simultaneous existence of definite values v(A), v(B) and v(C)
for all three observables (an assumption often referred to as value
definiteness). Then, one would expect (and von Neumann requires)
that v(C) = αv(A) + βv(B). But this is generally impossible: let
A = σx, B = σy, and C = 1√

2
(σx + σy), with σi denoting the familiar

Pauli matrices. Then, v(A), v(B) and v(C) may all be either of ±1.
But ±1 �= 1√

2
(±1 + ±1).

However, as Bell explicitly shows, it is possible after all to construct
a hidden-variable description of a two-level quantum system. Thus,
von Neumann’s argument must be in error. In fact, the problem lies
with the assumption of the additivity of expectation values for all
observables. While this is a property of quantum mechanics, there
is no reason to require it of the hidden-variable theory, and Bell’s
explicit model possesses it only for commuting observables. Bell levels
the same criticism at a variant of von Neumann’s theorem proposed
by Jauch and Piron in [6].
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The question of the possibility for a completion of quantum me-
chanics received its most famous (partial) answer in 1964 by, again,
Bell [7]. He proved what today is known simply as Bell’s theorem,
to wit, that if such a more complete description exists, it cannot be
local, i.e. dependent only on the events in a system’s past lightcone,
and agree with quantum mechanics in all instances. To this day, this
result forms the paradigm example of a ‘no-go’ theorem.

Bell’s argument proceeds from the Bohm-Aharonov version [3] of
the EPR paradox. Consider two two-level quantum systems, for
concreteness to be thought of as two spin-1

2 particles whose spin σ
is measured along some direction n. If the system is prepared in
the singlet state |Ψ−〉 = 1√

2
(|↑I ↓II〉 − |↓I ↑II〉, then, if the spin of

particle i is measured along the direction n, measurement of ii along
the same direction will yield the opposite value, i.e. measurement of
σI · n yielding 1 implies measurement of σII · n yielding −1. This
corresponds to the framework of EPR’s original argument [2].

Any more complete description, provided by hidden variables col-
lectively denoted λ ∈ Λ, must then match this behaviour. Take two
observers, A and B, each in possession of one of the two particles
comprising the EPR pair. Each measures the spin of their particle
along some direction, denoted a and b. Thus, the outcome of each
experiment must then be determined by a and λ, respectively b and
λ, i.e. A = A(a, λ) ∈ [−1, 1] and B = B(b, λ) ∈ [−1, 1]. If now p(λ)
is the probability distribution of the hidden variables, we can write
the expectation value of their product as

〈AB〉 HV=
∫

Λ
dλp(λ)A(a, λ)B(b, λ), (2.1)

which must equal the quantum prediction

〈AB〉 QM
= −a · b. (2.2)

From these preliminary considerations, Bell then derives an inequal-
ity that all models of this kind (collectively denoted local realistic)
have to obey. This original ‘Bell inequality’ is

1 + 〈BC〉 ≥ |〈AB〉 − 〈AC〉| (2.3)
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The great importance of Bell’s theorem then derives from the fact
that utilizing such an inequality, the question of the completion of
quantum mechanics by (local) hidden variables becomes accessible
to experiment: local realism necessitates a deviation from quantum
mechanical predictions in certain situations.

However, Bell’s original inequality is not well suited to experiment,
since it does not apply in the presence of possible non-detections (i.e.
measurements which yield neither +1 nor −1). To this end, Clauser,
Horne, Shimony and Holt in 1969 proposed an alternative version,
known after their initials as the CHSH-inequality [8]:

〈χCHSH〉 = 〈AB〉 + 〈BC〉 + 〈CD〉 − 〈DA〉 ≤ 2 (2.4)

This inequality, like Bell’s original one, holds for all local realistic
models. But if the EPR pair is in the state

|Φ+〉 =
1√
2
(|00〉 + |11〉), (2.5)

then, choosing the observables A = σx ⊗ 1, B = − 1√
2
1⊗ (σz + σx),

C = σz ⊗ 1 and D = 1√
2
1 ⊗ (σz − σx)) (where 1 is the 2 × 2 unit

matrix) yields 〈χCHSH〉 = 2
√

2 (which value is indeed the maximum
attainable for quantum mechanics, known as Tsirelson’s bound [9]).

With this framework in hand, the first experimental test of a
Bell inequality was carried out by Freedman and Clauser in 1972
[10]. Today, the quantum mechanical violation of Bell inequalities
is widely accepted, thanks to experiments performed by Aspect and
collaborators in 1981-82 [11, 12, 13], and to the 1998 experiment by
the group of Zeilinger [14], thus establishing the consensus that local
realistic completions of quantum mechanics are indeed ruled out.

2.2 The Kochen-Specker Theorem

It is instructive to inquire into the reason why quantum mechanics
violates Bell inequalities. A necessary requirement for Bell-inequality
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violation is entanglement : only states that cannot be written as a
tensor product of (pure) subsystem states, i.e. |ψent〉 �= |ψ1〉 ⊗ |ψ2〉,
may exceed classical bounds. But this is not sufficient: there exist
entangled states2 which nevertheless do not violate any Bell inequal-
ity [15, 16]. Thus, non-locality is a property of certain states only.
But entanglement is a phenomenon seemingly remote from everyday
existence, and therefore one might be tempted to ‘shrug off’ the im-
plication of Bell’s theorem, maintaining that it is of little consequence
for most practical purposes. Hence, it would be interesting to investi-
gate whether quantum mechanics as a whole, rather than just some
quantum-mechanical states, deviates from classical predictions.

The first step towards just such a result was established by Gleason
in 1957 [19]. He proved that on any Hilbert space of dimension greater
than three, the only suitable probability measures are given by the
density matrices, i.e. that if Πi is some projector onto a subspace
corresponding to the i-th eigenvalue of some observable O, μρ(Πi),
the probability that measurement of O returns i for the state ρ, must
be Tr(Πiρ), where Tr denotes the trace operation. This is of course
nothing else but Born’s rule. That in this work lies the germ of an
exceptionally strong no-go theorem was first realized by Bell in 1966
[5], who proposed it as a stronger replacement of von Neumann’s
result consequent on his critique thereof. Earlier, in 1960, Specker
had considered similar ideas [20].

As Bell argues, the important feature of Gleason’s work with re-
spect to the hidden-variable program is that, since the probability
measure provided by density matrices is continuous, any assignment
of probabilities to properties of some quantum system (represented by
projection operators Πi) must be continuous. However, in a hidden-
variable description, only two distinct values, corresponding to the
projectors’ eigenvalues 0 and 1, which may be interpreted as truth
values indicating whether a system possesses a certain property, can
occur. Thus, the hidden-variable mapping necessarily contains discon-

2However, these states have to be mixed—all pure entangled states violate a Bell
inequality [17, 18].
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tinuities (cf. [21]), and as Bell showed, this entails that two states
receiving different values cannot be arbitrarily close together. More
explicitly, together with the nonexistence of dispersion-free states3,
Gleason’s theorem may be used to demonstrate the nonexistence of
a lattice homomorphism between P(H), the lattice of closed linear
subspaces of Hilbert space, and the two-element Boolean algebra B2

[22]—that is, the nonexistence of a mapping that for every property a
quantum system may have uniquely decides whether it does or does
not have that property.

Bell then proceeds to subject his theorem to the same sort of
criticism he had previously levelled at von Neumann’s and Piron and
Jauch’s argument. His crucial conclusion:

It was tacitly assumed that measurement of an observable
must yield the same value independently of what other mea-
surements may be made simultaneously. ([5], p. 451)

The same spirit is present in [20], where Specker considers ‘non-
simultaneously decidable propositions’. This assumption is nowadays
generally referred to as non-contextuality : the requirement that the
question of whether a system has a certain property can objectively
be decided without taking into account what other questions are
asked (i.e. measurements are performed) simultaneously. Like locality,
which it supplants in the present formulation, this seems a sensible
requirement, and it is certainly fulfilled for all familiar, macroscopic
objects.

The theorem Bell considered in his 1966 paper was given an in-
dependent and more definite formulation in 1967 by Kochen and
Specker [23]. Their presentation relies on the same crucial insight as
Bell’s: that rays in Hilbert space having different assignments of the
truth values 0 and 1 for some property cannot be arbitrarily close
to each other. However, the virtue of their argumentation lies in the
explicit construction of a set of rays which, if arranged into a graph

3A dispersion-free state is a state ρ such that the dispersion σ(O) = 〈O2〉 − 〈O〉2
vanishes for all operators O.
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such that vertexes corresponding to orthogonal rays are joined by an
edge, is not true-false colorable, i.e. for which there does not exist a
consistent simultaneous assignment of truth values. Basically, while
Bell shows that the quantum-mechanical relation S2

x +S2
y +S2

z = 2 ·1,
where the Si are the spin observables of a spin-1 particle and 1 is
the identity operator, cannot always be satisfied using non-contextual
hidden variables, Kochen and Specker exhibit an explicit—and most
importantly, finite—set of vectors, such that not all of them can fulfill
this relation simultaneously.

Before presenting the proof of the theorem, let us first briefly con-
sider its relationship to Bell’s 1964 one. Roughly, the Kochen-Specker
theorem replaces Bell’s assumption of locality with an assumption
of non-contextuality. It is easy to show that in certain instances,
non-contextuality implies locality [24]: if some observable A can be
measured in conjunction with compatible observables B, C, . . . as well
as L, M, . . ., and this can be implemented in such a way that the
system may be partinioned into subsystems such that only local ma-
nipulations are necessary to implement measurement of either context
on either part of the system, then we have the notion of locality
as used in Bell’s theorem. Furthermore, any Bell inequality can be
turned into a Kochen-Specker inequality [25]. Non-contextuality then
may be viewed as being more general, and local realistic theories are
a subset of non-contextual ones [26]. Also, as will be shown, proofs
of the contextuality of quantum theory can be given that do not
rely on any specific state being prepared, and thus, are said to be
‘state-independent’. In particular, no entanglement is necessary to
violate non-contextuality4.

2.2.1 Kochen and Specker’s Original Proof

We will begin by briefly discussing the original proof by Kochen and
Specker of their eponymous theorem. This proof, while more involved
than more recent examples, is instructive in the sense that it is the

4In fact, in their original paper [23], Kochen and Specker consider a single-particle
realization of their argument.
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original example of the ‘coloring game’ type of proof of the Kochen-
Specker theorem. We will here mainly follow the presentation in [27].

Figure 2.1: G1: Ten propositions ai, where simultaneously nonsatisfiable
ones are linked by an edge; the coloring shown is inconsistent
with the orthogonality constraints, showing that they are
incompatible with the requirements g1 = 1 and a1 = 1, but
a10 �= 1.

Consider first the graph G1 in Figure 2.1. For the moment, we will
consider it as simply having at its vertices certain classical propositions
ai, which are linked by an edge {i, j} if ai and aj are mutually exclusive,
i.e. cannot be both true at the same time. Thus, every edge represents
again a proposition:

bi,j = ¬(ai ∧ aj), (2.6)

where ¬ stands for negation, and the wedge ∧ represents the logical
and. Thus, this proposition is true exactly if at least one of ai and
aj is false. Similarly, the three triangles in the graph again represent
new propositions:

cijk = ai ∨ aj ∨ ak, (2.7)

where ∨ denotes the logical or. These propositions are evidently true
whenever at least one of ai, aj , or ak is true. Call E1 the set of all
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pairs {i, j} such that ai and aj are linked by an edge, and similarly
T1 the set of all triples {i, j, k} such that ai, aj and ak form a triangle
in G1. Now observe that the whole graph represents the following
proposition, which is merely the conjunction of all edge and triangle
propositions:

g1 =b1,2 ∧ b1,3 ∧ b1,9 ∧ b2,4 ∧ b2,6 ∧ b3,5 ∧ b3,7 ∧ b4,6 ∧ b4,8 ∧ b5,7

∧ b5,8 ∧ b6,7 ∧ b8,9 ∧ b8,10 ∧ b9,10 ∧ c2,4,6 ∧ c3,5,7 ∧ c8,9,10 (2.8)

≡
∧

{i,j}∈E1

bij ∧
∧

{i,j,k}∈T1

cijk

It is now not difficult to see that the truth of g1, i.e. g1 = 1,
together with the truth of a1, implies the truth of a10: if we assume
to the contrary that g1 = a1 = 1, but a10 = 0, the truth of b1,2, b1,3,
b1,9 and b8,10 imply that a2 = a3 = a9 = 0, and thus, a8 = 1, since
c8,9,10 = 1. But this implies a4 = a5 = 0 (because b4,8 = b5,8 = 1),
and hence, a6 = a7 = 1, since c2,4,6 = c3,5,7 = 1 (and we have shown
that a2 = a3 = a4 = a5 = 0). But this obviously contradicts b6,7 = 1;
see also the coloring in Figure 2.1.

Consider now the graph G2 in Figure 2.2, composed of 15 copies of
G1. From G2, we can construct a proposition g2 analogous to the way
g1 was constructed from G1:

g2 =
∧

{i,j}∈E2

bij ∧
∧

{i,j,k}∈T2

cijk, (2.9)

where E2 and T2 are respectively the edge- and triangle-set of G2. Using
the prior result that a1 = 1 implies a10 = 1 (and similarly, a18 = 1
and so on), it is not hard to show that g2 is always false. Consider
the triangle {a1, a9, a41} in Fig. 2.2. Since c1,9,41 = 1, at least one of
them must be true. Suppose thus a1 = 1. Then, a10 = 1, a18 = 1,
a26 = 1, a34 = 1, and finally, a41 = 1. However, this contradicts
b1,41 = 1. Thus, since we can perform the same construction starting
from a9 or a41, the proposition g2 is never satisfiable; alternatively,
one says that the graph G2 is not true/false colorable, i.e. there is no
consistent attribution of truth values to the vertices.
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Figure 2.2: G2: Graph of 117 propositions, where two propositions are
again linked by an edge if they cannot be simultaneously
satisfied. Note the identifications p = a1, q = a41, and r = a9

The crux of the proof is now this: it is possible to find propositions
referring to the state of some quantum system such that g2 is satis-
fied. Essentially, this means that it is not possible to specify for a
quantum system simultaneously all of its properties: we can read the
propositions ai as ‘has property ai’, and, as was just discussed, no
assignment of truth values to the propositions exists that makes g2

true.
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We will only sketch here how such a set of propositions can be
found. First, consider the spin-observables of a spin-1 system:

Sx =
1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , Sy =

1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , Sz =

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠

(2.10)
The observables built from the squares of these operators, i.e. S2

x,
S2

y and S2
z , pairwise commute and fulfil S2

x + S2
y + S2

z = 2 · 1. Thus,
they are co-measurable for a specific set of directions x, y, z in space,
and exactly two will have eigenvalue 1. Now it is possible to map the
propositions ai to directions in space xi such that g2 = 1; this then
constitues the proof of the Kochen-Specker theorem.

In particular, the directions are chosen such that xi, xj correspond
to an edge of G2 if they are orthogonal directions in space; then, since
only one of S2

xi
and S2

xj
can have eigenvalue zero, it follows that every

bij necessarily is true if we choose our proposition ai to be ‘the spin
in the xi direction is zero’. Similarly, because for two out of three
orthogonal directions, the square of the angular momentum must be
one, every cijk must also be true; but then, g2 is true, despite being
classically false.

The problem of finding such directions can be considered as the
problem of ‘coloring the sphere’: assigning truth values obeying the
rules for the S2

xi
to directions as points on the unit sphere. Using

the orthogonality relations of G1, it can be shown that the maximum
angle between x1 and x10 equals arcsin

(
1
3

)
≈ 19.5◦. This means that

between any two directions separated by an angle of not more than
arcsin

(
1
3

)
, a graph like G2 can be constructed, meaning that two

differently colored rays cannot be arbitrarily close together. We will
briefly sketch the proof.
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Figure 2.3: Ten spatial directors on the unit sphere realizing the orthog-
onality relations of G1, such that the angle α assumes its
maximum value. The orthogonality of x1 and x9, x9 and
x10, x9 and x8, as well as x8 and x10 is explicitly indicated.
As a visual aid, the great circles containing {x4, x5, x9, x10},
{x2, x4, x7},{x3, x5, x6}, and finally, {x1, x8, x10} have been
highlighted (shaded disks). The coloring shown is consistent
with the orthogonality relations of G1, as well as the con-
straints g1 = 1 and a1 = 1, thus showing how they force
a10 = 1.

First, call α the angle between x1 and x10. Then, observe that,
since x9 is orthogonal to x1 and x10, and x8 is orthogonal to x9 and
x10, this fixes x8 up to an overall sign; we can thus choose the angle
β between x8 and x1 to be equal to π

2 − α, as indicated in Fig. 2.3.
Next, fix an orthonormal triad {ê1, ê2, ê3}. Identifying x6 with ê1 and
x7 with ê3, we can write
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x2 =
ê2 + pê3√

1 + p2

x3 =
ê1 + qê2√

1 + q2
, (2.11)

with arbitrary parameters p, q ∈ R, since x2 is orthogonal to x6 = ê1

and x3 is likewise orthogonal to x7 = ê3. From the fact that x4 is
orthogonal to x6 and x2, and that x5 is orthogonal to x3 and x7, we
get that

x4 =
x6 × x2

|x6 × x2|
=

ê3 − pê2√
1 + p2

x5 =
x3 × x7

|x3 × x7|
=

ê2 − qê1√
1 + q2

. (2.12)

Similarly, with x1 orthogonal to x2 and x3 and x8 orthogonal to x5

and x4, we obtain

x1 =
x2 × x3

|x2 × x3|
=

−ê3 + pê2 − pqê1√
1 + p2 + p2q2

x8 =
x5 × x4

|x5 × x4|
=

−ê1 − pê2 − pqê3√
1 + q2 + p2q2

. (2.13)

We are now able to calculate the angle between x1 and x8, and hence,
between x1 and x10. With

cos(β) = x1 · x8 =
pq√

(1 + p2 + p2q2) · (1 + q2 + p2q2)
(2.14)

we obtain

sin(α) = cos(
π

2
− α) =

pq√
(1 + p2 + p2q2) · (1 + q2 + p2q2)

, (2.15)

which assumes its maximum value at p = q = 1, where sin(α) = 1
3 .

Thus, for any α ≤ arcsin1
3 , a construction realizing the orthogonality
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Figure 2.4: The 15 spatial directions used in the proof of the Kochen-
Specker theorem.

relations of the graph G1 is possible between x1 and x10, showing that
both must receive the same color, or equivalently, that the propositions
a1 and a10 must receive the same truth value.

Let us now consider the sphere octant shown in Figure 2.4. With
the construction as shown, we can prove that a1, a9 and a41 must
be colored the same, as was already discussed above: five copies of
G2 divide each right angle into parts of 18◦. If we thus start at a1,
we find that a10 must receive the same color, as must a18, and so on.
However, since x1, x9 and x41 are orthogonal spatial directions, out
of S2

x1
, S2

x9
and S2

x41
, two must be colored true, while one must be

colored false. This then establishes the contradiction: there exists no
consistent true/false coloring for the 117 directions xi, and thus, no
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consistent assignment of values to the observables S2
xi

. Hence, for a
spin-1 quantum system ρ, not all properties of the form ‘ρ has angular
momentum squared 1 in the direction xi’ can simultaneously be fixed.

2.2.2 The Peres-Mermin Square

Another, conceptually slightly different, proof of the Kochen-Specker
theorem can be given on the basis of the Peres-Mermin square [29, 30].
This is an array of nine observables on a four-level quantum system,
arranged as in Table 2.1.

Table 2.1: The Peres-Mermin square.

A = σx ⊗ 1 B = 1⊗ σx C = σx ⊗ σx

a = 1⊗ σy b = σy ⊗ 1 c = σy ⊗ σy

α = σx ⊗ σy β = σy ⊗ σx γ = σz ⊗ σz

As one readily verifies, the observables in each row and column
commute, and the product of the observables in each row equals 1

(here, the 4 × 4 identity matrix), as do the products of the first two
colums. However, in the last column, Ccγ = −1. Thus, it is not
consistently possible to assign the values ±1 to the observables, as a
non-contextual hidden variable theory would demand: the row prod-
ucts necessitate an even number of −1s, while the column products
require an odd number, thus producing a contradiction similar to
that in the previous section. It is important to note that this proof is
wholly independent of the state of the quantum system: as we have
only ever talked about observables, the conclusion must hold for any
quantum state, even, for instance, the maximally mixed one ρ = 1

Tr(1) .
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An important, but somewhat subtle requirement in this proof is that
of compatibility : in order to be able to make meaningful assertions
about their simultaneous values, the observables in each row and
column must be co-measurable, i.e. it must be possible to obtain
perfect information about all their values simultaneously. Without
this requirement, it would be nonsensical to talk about the value of
the product of observables, since their values would not all be definite
at once.

2.3 Testing the Kochen-Specker Theorem

As we have already discussed, one of the main virtues of Bell’s theorem
is that it makes the question of the completion of quantum mechanics
by hidden variables accessible to experiment5. It would certainly be
desirable to claim the same success for the Kochen-Specker theorem;
however, as will be discussed, its experimental testing faces even
greater challenges and controversies.

Let us first consider Kochen and Specker’s original proposal to
implement their scheme using measurements of a spin-1 particle.
They consider measuring the squared spin components S2

x, S2
y and

S2
z of an orthohelium atom placed in an electric field of appropriate

(rhombic) symmetry. In this context, there exists a single observable,
the perturbation Hamiltonian Hs, measurement of which reveals the
values of S2

x, S2
y and S2

z . Since S2
x +S2

y +S2
z = 2 ·1, two of these values

must be 1, while one is 0.
However, this does not work as a direct test of non-contextuality:

only one orthogonal triplet, i.e. one context, is considered at any
given time, and thus, we cannot say anything about the value of
an observable in distinct contexts. The same reservation applies to
the direct testing of the observables of the Peres-Mermin square:
the observable A cannot be tested in the contexts ABC and Aaα

5As reported in [31], nobel laureate E. M. Purcell, in a lecture delivered at
Harvard University, “expressed his delight at having lived long enough to see a
philosophical problem settled in the laboratory”.



24 Chapter 2 Theory and Background

simultaneously, since non-compatible observables cannot be measured
on the same physical system; a disagreement between these tests
might then reveal nothing more than a difference in the measurement
procedure.

To resolve this difficulty, Cabello and Garćıa-Alcaine [32] proposed
a scheme in which non-contextual theories make predictions contrary
to quantum mechanics for every single system, independently of
its quantum state. In their original formulation, the system was
considered to be two spin-1

2 particles; a version considering spin- and
path-degrees of freedom of a single particle was proposed by Simon
et al. [33], and experimentally realized by Huang et al. in 2002
[34]. The results were in strong agreement with quantum mechanics;
nevertheless, for reasons to be discussed in sections 2.5 and 2.6, there
is to date no unanimous agreement on the decisiveness of this and
similar tests.

2.4 Non-Contextuality Inequalities

A different route to the testability of the Kochen-Specker theorem is
provided by deriving inequalities, conceptually similar to those used
in Bell tests. Early work on the subject of testing the KS-theorem
using inequalities was performed by Roy and Singh in 1993 [35], who
introduced the notion of ‘stochastic’ non-contextuality in order to
apply an inequality of the CHSH form (2.4); in a similar vein, Basu
et al. in [36] consider applying the CHSH inequality to the spin- and
path-degrees of freedom of a single spin-1

2 particle.
The first inequalities specifically applicable to the Kochen-Specker

theorem were suggested by Simon, Brukner and Zeilinger [37] and
Larsson [38], who independently considered Kochen and Specker’s
original proposal, extending it for the case of imprecisely specified
measurements (s. a. sect. 2.5). Non- contextuality inequalities in full
analogy to Bell inequalities were proposed by Cabello et al. [26], as
well as by Klyachko, Can, Binicioğlu, and Shumovsky [39]. Finally,
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the first state-independent non-contextuality inequalities were derived
by Cabello in 2008 [40].

An important novelty in the inequality-based approach to the Ko-
chen-Specker theorem is the realization that quantum theory gives
predictions different from those of noncontextual hidden-variable theo-
ries even for sequential measurements, as long as they are compatible
[44]; thus, an expression such as 〈ABC〉 can be regarded as simply
an instruction to measure the observables in order on a system, and
form the product of the observed values.

In the following, we will be mainly concerned with two inequali-
ties: one is the already familiar CHSH inequality, interpreted as a
non-contextuality inequality, and the other is a state-independent
inequality first proposed in [40].

2.4.1 The CHSH-Inequality

It is easy to see that the CHSH inequality 2.4 is applicable to non-
contextual as well as local realistic theories [46]. Consider the CHSH-
operator:

χCHSH = AB + BC + CD − DA (2.16)

The CHSH inequality 〈χCHSH〉 ≤ 2 can be violated only if
||χCHSH|| > 2, where || · || denotes the operator norm. Since χCHSH

is a self-adjoint operator, ||χCHSH||2 = ||χ2
CHSH||. Thus, a sufficient

condition for violating the inequality is ||χ2
CHSH|| > 4. The square of

the CHSH-operator evaluates to

χ2
CHSH = 4 + (AC − CA)(BD − DB) = 4 + [A, C][B, D], (2.17)

where we have used the fact that since they are ±1-valued, the observ-
ables square to 1. Clearly, now, if all observables are considered to be
simple random variables, and thus, non-contextual, they necessarily
commute. Hence, the assumption of non-contextuality implies the
CHSH-inequality.
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2.4.2 An Inequality from the Peres-Mermin Square

A drawback of the inequality discussed in the previous section is
its state-dependence: only for certain quantum states is χCHSH in
fact greater than two in quantum mechanics. However, the proof of
the Kochen-Specker theorem presented in subsection 2.2.2 yields a
testable inequality almost directly. Recall that in the Peres-Mermin
square (2.1), it was impossible to simultaneously satisfy the constraints
imposed by the products of the observables along the rows as well as
along the columns. This impossibility may be considered to arise from
the final column, where the product of all measurements necessarily
yields −1. Thus, we can simply collect the rows and columns into a
single expression [40]:

〈χPM 〉 = 〈ABC〉 + 〈abc〉 + 〈αβγ〉 + 〈Aaα〉 + 〈Bbβ〉 − 〈Ccγ〉 (2.18)

For any non-contextual theory, this value is bounded by four:
〈χPM〉 ≤ 4. However, quantum mechanics predicts 〈χPM〉 = 6, irre-
spective of the quantum state.

2.5 The Finite-Precision Problem

The inequalities discussed in the previous section were, at least in
part, proposed to answer a specific criticism levelled at the possibility
of experimentally testing the Kochen-Specker theorem. This criticism
is known as the finite precision problem: basically, since every real
measurement is specified only up to a certain finite precision, it is
impossible to be absolutely certain that the observable one set out to
measure is in fact the observable that is being measured. But if such
an uncertainty exists, it is always possible to find a subset of directions
such that its observables are colourable in the Kochen-Specker sense
[47, 48, 49].
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2.5.1 MKC Models

An early argument proposing that any Kochen-Specker set of un-
colourable vectors may be arbitrarily closely approximated by a co-
lourable set, which thus is not distinguishable from the former by
measurement, is due to Pitowsky [50, 51]. However, his analysis relied
on the axiom of choice and the continuum hypothesis, and may be
considered unconvincing on these grounds. Later on, building on work
by Godsil and Zaks [52], Meyer [47] proposed that a 2-colourable set
of rational unit vectors may be used for such an approximation in the
setting orginally considered by Kochen and Specker; this result was
generalized to arbitrary Hilbert spaces by Kent [48]. Subsequently,
Clifton and Kent constructed an explicit model to reproduce the
quantum-mechanical predictions using non-contextual hidden vari-
ables [49]. Such models have since come to be known MKC-models
after their originators.

2.5.2 Answers to the Finite-Precision Problem

The MKC models have provoked a substantial amount of interesting
discussion, of which only a brief outline can be given here. Roughly,
the proposed rejoinders may be grouped into three different strategies:
(1) denying the physical plausibility of the MKC sets, (2) rejecting
MKC’s conclusion, and (3) extending the Kochen-Specker theorem to
encompass also scenarios with imprecisely specified measurements.

The first strategy is followed by Cabello [53], who argues that
the theorem applies to measured values rather than possessed ones,
and points out that a model taking the rational unit sphere as its
physical state space has the curious property that, for instance, not all
theoretically allowed superpositions of states are physically possible.
Similarly, Havlicek et al. [54] consider the non-closedness of the
rational sphere to be problematic: certain operations, such as for
instance the logical nor, may then in certain cases yield results not
physically allowed.
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Following the second line of argument, Appleby [55] has argued
that the MKC-models themselves are, actually, contextual, but in
a peculiar way: not the value of a given observable depends on the
context, but its very existence. Also, Mermin [56] has argued that
the continuity of probability (see the discussion of Gleason’s theorem
in sect. 2.2) spoils the argumentation of Meyer, Kent, and Clifton:
effects due to the finite precision of measurement simply wash out over
large enough measurement numbers. On the other hand, Cabello [57]
has argued that MKC’s colourable sets in fact lead to predictions that
differ observably from those of quantum mechanics. Finally, Cabello
and Larsson [58] have constructed an explicit example of a set of
rational vectors that violate the inequality derived in [39].

The third route of investigation seems to be the most promising one.
Largely, it consists of attempts to find a version of the Kochen-Specker
theorem that applies to imprecisely specified observables, possibly in
a stochastic sense. One such attempt is made by Breuer [59], who
uses POVMs (positive operator-valued measures [60]) in order to
define finite-precision observables; unfortunately, his proposal does
not apply to the MKC-models directly, since it depends on a rotational
symmetry that those models do not possess. Following a different
approach, Larsson [38] and Simon et al. [37], as has already been
mentioned, derive inequalities whose violation indicates a violation
of non-contextuality. The attractiveness of their scheme is that it is
framed in operational terms: basically, their framework amounts to a
setting in which the experimenter has access to a black box, which
has three knobs, corresponding to the observables S2

x, S2
y and S2

z , that
can be set to various orientations. Based on the setting of these knobs,
the box produces a certain result, in the form of three numbers, each
assigned to one of the knobs. If this result can be understood in such
a way that the outcome for a given knob always only depends on its
position, and is therefore independent of the positions of the other
knobs, the theory is non-contextual; otherwise, non-contextuality is
violated. Note that no reference to either quantum mechanics or
the precision of measurement was made in this definition. A similar
approach is taken by Basu et al. [36], who derive the CHSH inequality
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2.4 from the assumption of non-contextuality alone6. In figure 2.5, an
operational CHSH-setup is depicted.

Figure 2.5: An operational setup for testing noncontextuality via the
CHSH-inequality: the system, ρ, is fed through the two
measurement apparata. If the outcome of either box is in-
dependent of the setting of the other, its behaviour can be
explained by noncontextual hidden variables; contrariwise,
the impossibility to do so establishes contextuality without
reference to Kochen-Specker colorability.

Against this, in [61], Barrett and Kent have levelled the objection
that

there is nothing specifically non-classical about a black box
that is behaving SBZ-contextually. One could easily con-
struct such a box out of cog-wheels and springs. Thus with
no knowledge of or assumptions about the internal workings
of the box, one could not use it to distinguish classical from
quantum behaviour.

This is certainly true. However, the same objection can be raised
against any quantum experiment, since it is always possible to simulate
local quantum effects classically, if perhaps only at the cost of expo-
nential inefficiency. Furthermore, this does not change the fact that
the behaviour of the black box is contextual; whether this contextual-
ity is implemented quantum-mechanically or by some sophisticated,
but essentially classical machinery is a question of interpretation

6Similarly, the derivation presented above also does not assume any part of the
quantum formalism.
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(and that one can always find an interpretation that is classical in
the sense of assigning definite values to observables is proven by
the example of Bohmian mechanics [62]). Indeed, the above quote
may be paraphrased as “a hidden-variable (‘cog-wheels and springs’)
theory reproducing the behaviour of the SBZ-Larsson box must be
contextual”—which is of course nothing but the Kochen-Specker the-
orem.

Additionally, recent research has shown that there exist sets of
vectors that are not Kochen-Specker sets—i.e. that are true-false
colourable—, and which nevertheless can be used to derive inequalities
that are obeyed by noncontextual theories, yet violated by quantum
mechanics [63, 64, 65].

2.6 The Problem of Compatibility

According to the discussion of the previous section, inequalities such
as 2.4 appear to be the most promising route to a definite test of
the Kochen-Specker theorem. However, there is another problem
which seems to block the way towards such a test that has to be
discussed. This problem is known as the problem of compatibility,
and it has its roots in the fact that contextuality is only defined for
perfectly compatible, and thus, co-measurable, observables [44, 66],
as has already been stressed.

For present purposes, the notion of compatibility is best defined in
operational terms: call a set of observables {A, B,C, . . .} compatible
if, in any sequence of measurements of observables from this set,
the value of every observable remains constant; alternatively, the
value of an observable, say A, is not disturbed if any of the other
observables are measured. More explicitly, two observables A and
B can be called compatible if for any measurement sequence SAB ∈
{A, B, AA,AB, BA, BB, AAA,AAB, ...} the values of A and B agree,
no matter in which position within the sequence the observable is
measured, i.e. v(Ai|SAB) = v(Aj |SAB) and v(Bi|SAB) = v(Bj |SAB)
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for all positions i, j and sequences SAB. Compatibility for multiple
observables is defined in a fully analogous way.

It is now plain to see where the problem of compatibility lies: in
any real experiment, noise introduced either via interactions with
the environment, interactions of separate qubits with each other, or
imperfectly implemented unitary transformations, will typically cause
a violation of compatibility to some small, but non-zero degree, i.e.
it can in general not be guaranteed that in some sequence of mea-
surements ABAC . . . A the first and last measurement of A will agree,
even though all measured observables are in principle compatible.

2.6.1 A Kochen-Specker Test on Separated Qutrits

One reply to the problem of compatibility was proposed by Cabello
and Terra Cunha [66]. They propose to utilize a system of spatially
separated qutrits, on which measurement of a Kochen-Specker inequal-
ity is performed. Measurements within one context are carried out
on different qubits, in order to ensure their compatibility. However,
one could imagine several objections that might be raised against
this scheme. First, even if we assume that the measurements are
perfectly isolated and hence cannot possibly influence one another,
interactions with the environment still might lead to violations of
compatibility, in the sense that measurements of AB and BA do not
necessarily agree. Furthermore, both measurements can, in principle,
influence one another even if both systems are spatially separated,
if the influence is mediated non-locally; so even though the authors
argue that their inequalities should not be viewed as Bell inequalities,
one could maintain that only local realistic theories are excluded by
their proposed experiment—there may in principle exist a non-local
noncontextual theory that accounts for all measurement outcomes.

2.6.2 Extended KS Inequalities

Another approach was taken by Gühne et al. [44]. They propose ex-
tended Kochen-Specker inequalities, in which additional ‘error’ terms
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are introduced to compensate for possible incompatibilities. First, they
show that, for any two observables AB, 〈AB〉 ≤ 〈A1B2〉 + 2pflip[AB],
where pflip[AB] denotes the probability that the measurement of A
disturbs the observable B, i.e. flips it from a predetermined value to
its opposite. Thus,

pflip[AB] = p[(B+
1 |B1) and (B−

2 |A1B2)] + p[(B−
1 |B1) and (B+

2 |A1B2)].
(2.19)

Here, the numerical indices refer to the position of the measure-
ment of some observable within a sequence of such measurements,
which sequence is denoted as the condition, while the signs indicate
the outcome of the measurement. So, for instance, p[(B−

2 |A1B2B3)]
indicates the probability that the outcome of the measurement of the
observable B is −1, given that this measurement was the second in
the sequence ABB (n. b. that in a setting where compatibility is
violated, the probability for obtaining −1 for the third measurement
may well be different!). This makes it possible to obtain an extended
CHSH inequality that is valid even in the presence of compatibility
violations:

〈χCHSH〉 ≤ 2(1 + pflip[AB] + pflip[BC] + pflip[CD] + pflip[DA]) (2.20)

However, the probabilities p[(B+
1 |B1) and (B−

2 |A1B2)] are not exper-
imentally accessible, since one can measure B either first, or second,
but not both. In order to include only measurable quantities, they
then derive an upper bound to the flip-probabilities; to do so, they
make the following assumption:

Assumption 2.1. (Cumulative noise.) Additional measurements
only increase the amount of disturbance suffered by the system. Thus:

p[(B+
1 |B1) and (B−

2 |A1B2)] ≤ p[(B+
1 |B1) and (B+

1 , B−
3 |B1A2B3)]

≡ p[(B+
1 , B−

3 |B1A2B3)] (2.21)

The reasoning behind this assumption is the following: if measuring
one observable, A1, disturbs the state such that measuring B2 produces
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a different outcome than measuring B1 would have, then it stands
to reason that more measurements only increase the disturbance,
such that measuring B3 in the sequence B1A2B3 has an even greater
probability from differing from B1. This assumption will be further
examined, and counterexamples considered, in chapter 4.

This term now is accessible to experiment: one can simply measure
the sequence B1A2B3 enough times to obtain an estimate for the
probability that B3 differs from B1. If one then defines error terms of
the form perr[B1A2B3] = p[(B+

1 , B−
3 |B1A2B3)]+p[(B−

1 , B+
3 |B1A2B3)],

a measurable extended CHSH inequality can be formulated:

〈χCHSH〉 ≤ 2(1 + perr[B1A2B3] + perr[C1B2C3]
+ perr[D1C2D3] + perr[A1D2A3])

(2.22)

If the above assumption 2.1 holds, then the violation of this inequal-
ity implies a violation of noncontextuality even if the observables are
not perfectly compatible, i.e. under realistic experimental conditions.



Chapter 3

Noise-Robustness of
Kochen-Specker Tests

In order to understand the details of experimental tests of the Ko-
chen-Specker theorem, we will first perform an analysis of the

noise-robustness of certain tests that have been performed. To do so,
we will break down the measurement process into a series of discrete
steps, and allow the system to perform a noisy evolution, according
to certain well-known models for experiment-induced noise (see sects.
3.3-3.6). This will allow us to provide bounds on the minimum quality
needed for an experiment in order to conclusively establish a violation
of non-contextuality.

3.1 The Measurement Process

Let us first consider how the introduction of noise into the measure-
ment process may lead to violations of compatibility. Recall that we
had defined compatibility in an operational way as the repeatability of
individual measurements within measurement sequences, see section
2.6.

However, experimental imperfections imply that the above ideal
situation can never be achieved in practice. Ambiguities in state
preparation/detection, imperfectly implemented unitary transforma-
tions, and interactions with the environment, to name a few examples,
generally spoil perfect compatibility. One may consider this to be due

J. Szangolies, Testing Quantum Contextuality, BestMasters,
DOI 10.1007/978-3-658-09200-9_3, © Springer Fachmedien Wiesbaden 2015
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to noise influences acting on the state between measurements. This
situation is schematically illustrated in Figure 3.1.

3.2 Noise Models and Quantum Operations

As it is depicted in Figure 3.1, the disturbance of a system by mea-
surement- (or, more generally, environment-)induced noise may be
modelled by sending the system through a noisy channel, effecting
the transformation ρ → E(ρ), if the system was originally in the state
ρ [60].

In order to develop this model, consider first the dynamics of a
closed quantum system, i.e. some arbitrary state ρS evolving unitarily:

ρS → ρ′S = UρSU †. (3.1)

If, now, the system is not closed, but is part of a larger system
together with some environment ρE , then in general the evolution of
the total system, restricted to the system of interest by tracing out
the environmental part, will no longer be unitary. For the combined
system, the evolution then is

ρS ⊗ ρE → U(ρS ⊗ ρE)U †; (3.2)

the evolution of the system under consideration on its own is then
given by

E(ρS) : ρS → ρ′S = trE

[
U(ρS ⊗ ρE)U †

]
, (3.3)

which defines the quantum operation E , and where trE denotes the
partial trace with respect to the environment ρE . Quantum operations,
especially those used to model noisy evolution of a quantum system,
are also sometimes referred to as (noisy) quantum channels, because
of their formal similarity to classical noisy information channels [60].

This representation, while intuitive, is somewhat inconvenient to
work with mathematically. Thus, it is useful to introduce the so-
called operator-sum representation, using the quantum channel’s Kraus
operators [67]. For this, we first assume that the environment can be
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considered to be in a pure state, ρE = |e0〉〈e0|. This we can always
do, since even if the environment is actually in a mixed state, we can
purify using a (ficticious) additional system, which does not change
the dynamics of the system under consideration [60]. Thus, equation
3.3 can be written as

ρ′S = trE

[
U(ρS ⊗ |e0〉〈e0|)U †

]
. (3.4)

If we now introduce a basis {|ei〉} for the environment, we can
compute the partial trace, yielding

ρ′S =
∑

i

〈ei|
[
U(ρS ⊗ |e0〉〈e0|)U †

]
|ei〉

≡
∑

i

EiρSE†
i , (3.5)

where in the last step we have introduced the operator-sum represen-
tation by means of the Kraus operators {Ei = 〈ei|U |e0〉}. From the
condition

Tr (E(ρ)) = 1, (3.6)

we immediately obtain the relation∑
i

EiE
†
i = 1. (3.7)

In order to apply this formalism to the problem at hand, we need to
develop it a little further. We are concerned mainly with expectation
values of sequences of measurements of the form 〈ABC . . .〉, with the
property that subsequent measurements are performed on the system
after it has been sent through a noisy channel. The expectation value
of one measurement on a state after it has been sent through a noisy
channel E can be readily evaluated:

〈A〉 = Tr(AE(ρ)) (3.8)

However, in case of a sequence 〈AB〉, where A is measured on
the original state, whilst measurement of B takes place on the state
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after it has been subject to noise effects, a little more work is needed.
First, we must find the state after the first measurement. If we have
obtained, say, the outcome +1, the state after measurement is

ρA− =
Π−

AρΠ−
A

Tr(Π−
Aρ)

, (3.9)

where Π−
A denotes the projector onto the eigenspace of A to the

eigenvalue −1. The probability of finding, say, B = +1 after having
found A = −1 then is

p(B = +1|A = −1) = Tr
(

Π+
B

Π−
AρΠ−

A

Tr(Π−
Aρ)

)
. (3.10)

This post-measurement state is then sent through the noisy channel
E . The expectation value can be written:

〈AB〉 = pA+B+ − pA+B− − pA−B+ + pA−B− , (3.11)

where for instance pA+B+ = p(B = +1, A = +1) is shorthand for ‘the
probability of obtaining the outcomes A = +1, B = +1’, etc. With
eq. 3.10, we get then

〈AB〉 = p(A+)Tr
(

Π+
BE

{
Π+

AρΠ+
A

Tr(Π+
Aρ)

})

− p(A+)Tr
(

Π−
BE

{
Π+

AρΠ+
A

Tr(Π+
Aρ)

})
(3.12)

− p(A−)Tr
(

Π+
BE

{
Π−

AρΠ−
A

Tr(Π−
Aρ)

})

+ p(A−)Tr
(

Π+
BE

{
Π−

AρΠ−
A

Tr(Π−
Aρ)

})

Now, we can use that, for instance, p(A−) = Tr(Π−
Aρ), which be-

cause of the linearity of E and the trace cancels with the normalization
factor:

〈AB〉 = Tr
(
Π+

BE
{
Π+

AρΠ+
A

})
− Tr

(
Π−

BE
{
Π+

AρΠ+
A

})
−Tr

(
Π+

BE
{
Π−

AρΠ−
A

})
+ Tr

(
Π−

BE
{
Π−

AρΠ−
A

})
(3.13)
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The expectation value of a longer measurement sequence then is
analogously

〈ABC〉 = Tr
[
CE

{
Π+

BE(Π+
AρΠ+

A − Π−
AρΠ−

A)Π+
B

−Π−
BE(Π+

AρΠ+
A − Π−

AρΠ−
A)Π−

B

}]
(3.14)

Thus, we now have the machinery to compute the expectation
values of arbitrary measurement sequences subject to different kinds
of noises.

However, we will also want to compute the effect of noisy measure-
ments on the error terms introduced in section 2.6.2. In order to do
so, we must first analyze their form. An error term such as

perr[B1A2B3] = p[(B+
1 , B−

3 |B1A2B3)] + p[(B−
1 , B+

3 |B1A2B3)] (3.15)

quantifies the probability of the observable B flipping its value due
to a measurement of A. Evidently, this is the sum of the probability
for obtaining the outcome −1 for the second measurement of B, after
having obtained +1 as the result of the first measurement, and the
probability for obtaining +1 for the second measurement of B, where
the first measurement yielded −1. Let us thus focus on just the term
p[(B−

1 , B+
3 |B1A2B3)], which we abbreviate as pB−AB+ .

Evidently, pB−AB+ = pB−A+B+ + pB−A+B+ . To calculate now, say,
pB−A+B+ , first recall that the probability of observing B = −1 in the
state ρ is

pB− = Tr(Π−
Bρ), (3.16)

which measurement outcome leaves the system in the state ρB− =
Π−BρΠ−B
Tr(Π−Bρ)

. Thus, the probability of observing first B = −1, and then
A = +1 is

pB−A+ = pA+|B−pB− = Tr(Π+
AE(ρB−))Tr(Π−

Bρ), (3.17)
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analogously to 3.10, 3.12. After this measurement, the system is

in the state ρB−A+ = Π+
AE(ρB− )Π+

A

Tr(Π+
AE(ρB− ))

Consequently, the probability of

observing the sequence B = −1, A = +1, B = +1, works out to:

pB−A+B+ = pB+|A+B−pB−A+

= Tr(Π+
BE(ρB−A+))Tr(Π+

AE(ρB−))Tr(Π−
Bρ), (3.18)

and analogously for pB−A−B+ .

3.3 Depolarizing Noise

A special, very general type of quantum noise is the depolarizing
channel [60]. Essentially, it corresponds to a process by which the
quantum system is, with a certain probability p, replaced by the
completely mixed state 1

Tr(1) , while it is left invariant with probability
1 − p. Thus, the system’s evolution is

E(ρ) = p
1

Tr(1)
+ (1 − p)ρ (3.19)

If we restrict our attention to a single qubit as object system, the
channel can be written as

E(ρ) =
p

4
(σxρσx + σyρσy + σzρσz) + (1 − 3p

4
)ρ, (3.20)

where the σi are the Pauli matrices. From this, we can directly read
off the Kraus operators:

E0 =

√
1 − 3p

4
1

E1 =
√

p

4
σx

E2 =
√

p

4
σy (3.21)

E3 =
√

p

4
σz
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This channel acts on a two-qubit system as follows:

Edep(ρ) = (E1
dep ⊗ E1

dep)(ρ) =
3∑

i,j=0

(Ei ⊗ Ej)ρ(Ei ⊗ Ej)†, (3.22)

where E1
dep denotes the single-qubit depolarizing channel. Thus, the

Kraus operators of the two-qubit depolarizing channel are simply

Eij = Ei ⊗ Ej , (3.23)

In this form, we can now apply the depolarizing channel to several
Kochen-Specker -inequalities and investigate their behaviour under
noisy measurements.

3.3.1 The CHSH-Inequality

Figure 3.2: The CHSH inequality subject to depolarizing noise. The
shaded region shows where an exclusion of noncontextuality
is possible.

Under the effect of depolarizing noise, the value of 〈χCHSH〉 experi-
ences a linear correction:

〈χCHSH〉Dep = 2
√

2 − 2
√

2p (3.24)
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Thus, as is shown in Figure 3.2, at a certain point the noise effects
will make the detection of a quantum violation of the CHSH inequality
impossible. We can interpret this as a restriction on the minimum
quality of the experiment needed to detect such a violation; in this
case, the depolarisation probability must fulfil the condition

pDep <

(
1 − 1√

2

)
≈ 0.293. (3.25)

3.3.2 The Extended CHSH-Inequality

Figure 3.3: The CHSH inequality subject to depolarizing noise, together
with the error terms. Again, the shaded region shows where
an exclusion of noncontextuality is possible.

In extending the above analysis to the CHSH inequality extended
with error terms, 2.22, as was noted above, we have to take into
account the dependency of these error terms on the amount of added
noise. This yields much more stringent constraints on the required ex-
perimental quality. In the present case, the extended CHSH inequality
takes the form

〈χCHSH〉Dep ≤ 2 +
(

8 − 1√
2

)
p +

(
1√
2
− 4

)
p2 (3.26)
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meaning that the depolarization probability must fulfil

pDep <
16 + 3

√
2 −

√
434 − 48

√
2

2
√

2 − 16
≈ 0.084 (3.27)

in order to still detect a violation. This is shown in Figure 3.3.

3.3.3 The Peres-Mermin Inequality

Figure 3.4: The Peres-Mermin inequality subject to depolarizing noise.
The shaded region shows where an exclusion of noncontextu-
ality is possible.

The same methods may be applied to studying the noise-robustness
of the Peres-Mermin inequality (2.18). Due to the double application
of the depolarizing channel, the correction here is quadratic in the
probability:

〈χPM〉Dep = 6(p − 1)2 (3.28)

This is shown in Figure 3.4. To detect violations of noncontextuality,
the depolarization probability must obey

pDep <
1
3
(3 −

√
6) ≈ 0.184. (3.29)



3.4 Bit-Flipping 45

3.4 Bit-Flipping

A simple type of error that may be introduced during the evolution
of a quantum state is the bit flip [60]. As the name implies, this
corresponds simply to the flipping of a state to an orthogonal one
with a certain probability p. The action of this channel on the pure
states |1〉〈1| and |0〉〈0| is therefore:

EBF (|1〉〈1|) = (1 − p)|1〉〈1| + p|0〉〈0|
EBF (|0〉〈0|) = (1 − p)|0〉〈0| + p|1〉〈1| (3.30)

This can be achieved using the following Kraus operators:

E0 =
√

1 − p

(
1 0
0 1

)
=

√
1 − p1

E1 =
√

p

(
0 1
1 0

)
=

√
pσx (3.31)

3.4.1 The CHSH-Inequality

Figure 3.5: The CHSH inequality subject to bit-flipping noise.

Applied to the CHSH-inequality, the bit-flip channel produces a
correction of the form

〈χCHSH〉BF = 2
√

2 − 2
√

2p. (3.32)
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Thus, as is also shown in Figure 3.5, no violation of noncontextuality
can be observed unless the bit-flip probability obeys

pBF < 1 − 1√
2
≈ 0.293. (3.33)

Remarkably, for the CHSH inequality, bit-flip errors thus induce
the same kind of behaviour as depolarizing noise does. However,
differences exist with respect to the extended CHSH and Peres-Mermin
inequalities, as will be discussed in the next two sections.

3.4.2 The Extended CHSH-Inequality

Figure 3.6: The CHSH inequality with error terms subject to bit-flipping
noise.

In Figure 3.6, the effect of bit-flipping noise on the error terms is
included. Under this type of noise, the extended CHSH-inequality
takes the form

〈χCHSH〉BF ≤ 2 − 2(
√

2 − 4)p + (5
√

2 − 8)p2 − 3
√

2p3. (3.34)

This yields a bound on the bit-flipping probability of

pBF � 0.105. (3.35)
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3.4.3 The Peres-Mermin Inequality

Figure 3.7: The Peres-Mermin inequality subject to bit-flipping noise.

The correction suffered by the Peres-Mermin inequality under the
influence of noise of the bit-flipping type is the following:

〈χPM〉BF = 6 − 28p + 56p2 − 48p3 + 16p4 (3.36)

Thus, in order to observe a violation of noncontextuality, we need
for

pBF < 0.085 (3.37)

to hold (no simple closed form seems to exist). This is shown in Figure
3.7.

3.5 Amplitude Damping

The amplitude damping channel is a type of noise that characterizes
the effect of energy dissipation on a system. This models processes
such as the spontaneous emission of a photon, or the attenuation of
light in an optical cavity [60].
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This channel takes an excited state, |1〉〈1|, to a deexcited one, |0〉〈0|,
with a certain probability p. Thus, one of its Kraus operators ought
to be

E0 =
(

0
√

p
0 0

)
, (3.38)

since
E0|1〉〈1|E†

0 = p|0〉〈0|. (3.39)

From the requirement ∑
i

EiE
†
i = 1, (3.40)

we then get that

E1 =
(

1 0
0

√
1 − p

)
. (3.41)

Thus, we see that the application of this channel to the state |1〉〈1|
results in

EAD(|1〉〈1|) = E0|1〉〈1|E†
0 + E1|1〉〈1|E†

1 = p|0〉〈0| + (1 − p)|1〉〈1|,
(3.42)

while applied to the state |0〉〈0|, we simply get

EAD(|0〉〈0|) = |0〉〈0|, (3.43)

i.e. an excited state is deexcited with probability p, while a non-excited
state is left invariant.

Again, applied to a system of two qubits, the action of the channel
is:

EAD(ρ) = (E1
AD ⊗ E1

AD)(ρ) =
1∑

j,i=0

(Ei ⊗ Ej)ρ(Ei ⊗ Ej)†, (3.44)
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yielding the Kraus operators

E00 = E0 ⊗ E0 =

⎛
⎜⎜⎝

0 0 0 p
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

E01 = E0 ⊗ E1 =

⎛
⎜⎜⎝

0 0
√

p 0
0 0 0

√
p
√

1 − p
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

E10 = E1 ⊗ E0 =

⎛
⎜⎜⎝

0
√

p 0 0
0 0 0 0
0 0 0

√
p
√

1 − p
0 0 0 0

⎞
⎟⎟⎠ (3.45)

E11 = E1 ⊗ E1 =

⎛
⎜⎜⎝

1 0 0 0
0

√
1 − p 0 0

0 0
√

1 − p 0
0 0 0 1 − p

⎞
⎟⎟⎠

3.5.1 The CHSH-Inequality

Figure 3.8: The CHSH inequality subject to amplitude-damping noise.
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Under amplitude damping noise, the CHSH inequality receives the
correction

〈χCHSH〉AD =
√

2(1 − p +
√

1 − p). (3.46)

Accordingly, as shown in Figure 3.8, the amplitude damping proba-
bility (i.e. the probability of energy losses to the environment) must
obey

pAD <
1
2

(
1 − 2

√
2 +

√
1 + 4

√
2
)

≈ 0.376. (3.47)

3.5.2 The Extended CHSH-Inequality

Figure 3.9: The CHSH inequality with error terms subject to amplitude-
damping noise.

Taking the error terms into account, the extended CHSH inequality
becomes

〈χCHSH〉AD ≤ 1
8
(16 + (44 − 11

√
2 −

√
2 − 2p − 4

√
1 − p)p

− (4 − 30
√

2 −
√

2 − 2p (3.48)

− 2
√

1 − p)p2 − (4 + 11
√

2)p3);

thus, in order to observe violations of noncontextuality, we need

pAD � 0.143. (3.49)
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3.5.3 The Peres-Mermin Inequality

Figure 3.10: The Peres-Mermin inequality subject to amplitude-damping
noise.

For the Peres-Mermin inequality, amplitude damping induces the
correction

〈χPM〉AD = (1−p)(2+4
√

1 − p−(4+3
√

1 − p)p−6p2+2p3). (3.50)

Thus, the amplitude damping probability must obey

pAD < 0.151 (3.51)

in order for a violation of noncontextuality to be experimentally
observable, as depicted in Figure 3.10.

3.6 Phase Damping

The quantum channel known as phase damping models a noise effect
that is uniquely quantum-mechanical in nature: the loss of phase
information incurred via, for instance, random scattering of a photon
within a waveguide [60]. Thus, this channel provides a simple model for
decoherence: the off-diagonal entries in the density matrix decay away,
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indicating the ‘leaking’ of quantum information into the environment,
while the diagonal entries are left invariant.

The action of this channel on a quantum state ρ thus is:

EPD(ρ) =
(

ρ00 (1 − p)ρ01

(1 − p)ρ10 ρ11

)
, (3.52)

which may be realized by the Kraus operators

E0 =
√

p

2

(
1 0
0 −1

)
=

√
p

2
σz

E1 =
√

1 − p

2

(
1 0
0 1

)
=

√
1 − p

2
1. (3.53)

3.6.1 The CHSH-Inequality

Figure 3.11: The CHSH inequality subject to decoherence.

Under phase damping noise or decoherence, the CHSH inequality
receives a correction of the form

〈χCHSH〉PhD =
1√
2

(
p4 − 2p3 +

(√
1 − p + 3

)
p2

−
(√

1 − p + 2
)

p + 2
(√

1 − p + 1
))

, (3.54)



3.6 Phase Damping 53

and thus, the decoherence probability must obey

pPhD < 0.478. (3.55)

This is depicted in Figure 3.11.

3.6.2 The Extended CHSH-Inequality

Figure 3.12: The CHSH inequality with error terms subject to phase-
damping noise.

In the case of decoherence, the extended CHSH inequality becomes:

〈χCHSH〉PhD ≤ 1
32

((10 − 3
√

2)p8 + 4(3
√

2 − 10)p7

+(
√

2 − 2p − 30
√

2 + 108)p6

+(−3
√

2 − 2p + 42
√

2 − 164)p5

+(7
√

2 − 2p − 41
√

2 + 202)p4 (3.56)
+(−7

√
2 − 2p + 22

√
2 − 148)p3

+6(
√

2 − 2p −
√

2 + 16)p2 + 64),

meaning that in order to observe a violation of noncontextuality, we
need for

pPhD � 0.306, (3.57)

as can also be gleaned from Figure 3.12.
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3.6.3 The Peres-Mermin Inequality

Figure 3.13: The Peres-Mermin inequality subject to decoherence.

Finally, for the Peres-Mermin inequality subject to decoherence, we
get the correction

〈χPM〉PhD =
1
2
(4 + 8

√
1 − p − 4(2 + 3

√
1 − p)p

+ (15 + 16
√

1 − p)p2 − (21 + 16
√

1 − p)p3

+ 2(11 + 6
√

1 − p)p4 − (17 + 6
√

1 − p)p5 (3.58)

+ 2(5 +
√

1 − p)p6 − 4p7 + p8

This amounts to the following condition on the decoherence proba-
bility:

pPhD < 0.226 (3.59)

This is shown in Figure 3.13.

3.7 Summary

As we have seen, under a wide variety of noise models, the quantum
violation of Kochen-Specker inequalities is strictly decreasing. Thus,
certain requirements on experimental quality must be met in order to
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observe a violation of noncontextuality; however, in no case do these
requirements seem unmeetably strong.

Figure 3.14: The CHSH inequality under different noise models.

In Figure 3.14, the dependence of the violation of the CHSH-in-
equality on a noise-parameter p for certain kinds of noises is shown.
For two kinds of noises, depolarization and bit-flipping errors, the
dependence is simply linear, acting to destroy all correlations. This
is readily appreciable: for depolarizing noise, in the case of total
depolarization, the state is simply replaced by the completely mixed
one ρ = 1

Tr(1) , on which the measurements yield random results. For
the bit-flip channel, it is easy to show that the state ρ = |Φ+〉〈Φ+| is
invariant under the action

ρ → (σx ⊗ σx)ρ(σx ⊗ σx). (3.60)
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But for p = 1, this is just the action of the bit-flipping channel (all
other Kraus operators vanish). But then, the second measurement is
just independently random from the first.

The behaviour of the nonlinear channels, amplitude and phase
damping, is also not hard to understand. For amplitude damping,
once the noise parameter reaches 1, the state is effectively lost to the
environment. The behaviour in the case of phase damping, for p = 1,
any state ρ is replaced by a completely decohered one, i.e.

EPhD(ρ) =
(

ρ00 0
0 ρ11

)
. (3.61)

But this does not imply that the correlations have to vanish; and
indeed, in the present case, it is easy to verify that, while 〈AB〉 =
〈DA〉 = 0, 〈BC〉 = 〈CD〉 = 1√

2
, and thus, 〈χCHSH〉PhD

p=1 =
√

2, as can
also be seen in Figure 3.14.

The dependence of the bound for the extended CHSH inequality
on the noise parameter for different kinds of noise is shown in Figure
3.15. It is interesting that for maximum noise parameter, the error
terms vanish for the bit-flip channel, since, again, for p = 1, we just
get the original state back. For the depolarizing channel, each error
probability is equal to 1

2 for maximum noise parameter. This is also
not surprising: after all, for maximum depolarization, we are left with
the completely mixed state in the end, and thus, the final measurement
is simply random, and has thus an even chance of agreeing with the
first.

Lastly, in Figure 3.16, we see the behaviour of the Peres-Mermin
inequality subject to the different kinds of noises discussed in this
chapter. Broadly, the dependence on the noise parameter is qualita-
tively similar for all noise models as in the case of the CHSH-inequality,
though the induced constraints are considerably more severe. We have
collected the constraints for all inequalities and all kinds of noises
studied in Table 3.1.
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Figure 3.15: The extended CHSH-inequality under different noise models.

Table 3.1: Maximum values for the noise parameter in order to still be
able to detect a violation of noncontextuality.

CHSH CHSH ext. Peres-Mermin
Depolarization 0.293 0.084 0.184

Bit-Flip 0.293 0.105 0.085
Ampl. Damping 0.376 0.143 0.158
Phase Damping 0.478 0.306 0.226

As can clearly be seen in the direct comparison, the constraints
placed on experimental quality provided by the error-term extended
inequalities are the most strict ones for depolarizazion and amplitude
damping, while for the bit-flip and phase damping channels, the noise
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Figure 3.16: The Peres-Mermin inequality under different noise models.

influence is strongest for the Peres-Mermin inequality. In the case of
the bit-flip channel, it is interesting to note that for the Peres-Mermin
inequality, the constraint is nearly twice as strong as for any other
kind of noise.



Chapter 4

Statistical Models for Noisy
Measurements

In the previous chapter, we have seen how quantum noise may
influence the experimental tests of Kochen-Specker inequalities.

The aim of this chapter is to consider the measurement process
from the perspective of an explicit model acting on the space of
possible hidden variables, in order to see how this affects measurement
results. In particular, we will model the influence of noise on the
measurement process using a purely stochastic—and hence, explicitly
non-contextual—process, acting on the states of the hidden variables.

4.1 Conceptual Model of the Measurement Process

In this chapter, we will aim to provide a suitable model of the influence
of noise on the hidden-variable state, and thus, the measurement
results. In order to maintain the non-contextuality of the model,
it is necessary that it does not depend on the choices of previous
measurements, i.e. that it has no ‘memory’. This will be achieved
by simply considering our hidden-variable state to be a probability
distribution over possible measurement outcomes, which is updated
in a random way after each measurement. This simple model will
turn out to be surprisingly powerful: as will be shown, despite being
arguably non-contextual, it can lead to violations of Kochen-Specker
inequalities that can be seen to be due to the incompatibilities induced
by the model, which parallel those present in every real experiment.

J. Szangolies, Testing Quantum Contextuality, BestMasters,
DOI 10.1007/978-3-658-09200-9_4, © Springer Fachmedien Wiesbaden 2015
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4.1.1 Ontic State Space

The first notion we will need is that of an ontic state. An ontic state
may be considered to be a state of the hidden variables that uniquely
determines the value of measurable observables, i.e. that characterises
the properties of the system in an unambiguous way [68]. Due to this
uniqueness, it is possible to characterise the state by simply listing all
its properties, or at least all those of interest in some given experiment.

Since we are exclusively interested in cases in which the properties of
interest are given by the values of dichotomic observables, we can thus
represent any ontic state by an ordered list of these values, symbolized
by + and −, i.e. any given state λ ∈ Λ is of the form (++−+−−· · · ),
denoting the values of observables A, B,C, D, . . . in sequence. In order
to streamline notation, it is useful to interpret each such list as a
binary number, and use its decimal value as an index referring to the
state, such that, for instance, the state (+ + − +) may be uniquely
referred to as λ2.

This essentially provides us with a partition of the ontic state
space: any given λi refers to the set (or equivalence class) of hidden
variable states yielding the same outcome i for a set of observables.
Evidently, different hidden variables described by the same λi cannot
be experimentally distinguished. This takes heed of the fact that the
observables we measure may be, in fact, coarse-grained rather than
truly microscopic properties of the system.

Another way to view these ontic states which will be useful later is
offered by considering the following basis:

(+) =
(

1
0

)
, (−) =

(
0
1

)
(4.1)

Then, any given state λi can be considered the tensor product of
these basis states, e.g.:

λ9 = (− + + −) = (−) ⊗ (+) ⊗ (+) ⊗ (−) (4.2)
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4.1.2 Violations of Compatibility

Given the possibility of a hidden-variable description underlying
quantum theory, we must take into account our ignorance of the
hidden-variable dynamics; in particular, it is possible that interac-
tions during measurement may lead to uncontrollable, and therefore
essentially random, changes in the state of the hidden variables. For
instance, during measurement, the act of measuring may disturb a
system in the state λi, causing it to transition to some other state λj .
This, of course, entails a possible violation of compatibility, as an ob-
servable previously measured as + may, upon repeated measurement
within some sequence of measurements, now yield − (cf. the definition
of compatibility in section 2.6). This is schematically represented in
Figure 4.1 for a system in which we are interested in two observables,
A and B, and can thus partition the hidden-variable space into the
four sets λ0 = (++), λ1 = (+−), λ2 = (−+), and λ3 = (−−), where
the values of A and B are indicated in sequence.

The evolution of the hidden-variable state depicted in Figure 4.1 is
clearly deterministic; however, due to our ignorance of the detailed
dynamics and kinematics of the hidden variables, it is clear that we
must consider more general cases. For instance, two states leading to
the same measurement results for all observables may nevertheless
evolve differently during a sequence of measurements; thus, we must
allow for probabilistic splitting of the evolution. Also, we do not
necessarily have complete control over the hidden-variable state we
prepare. Therefore, we will in general only be able to initialize the
system with a certain probability distribution p(λ) over the hidden
variables. An example of such a more general evolution is given in
figure 4.2.

Let us use the concrete evolution in figure 4.2 to calculate the
expectation value 〈ABA〉 of the measurement sequence. To do this,
we need to assign probabilities to all possible evolutions of the system.
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Figure 4.1: Schematic representation of a sequence of measurements,
together with the evolution of the hidden variables. The phys-
ical system is indicated by the underlying grey square, while
the λi designate its state. The result of the measurement of
the observable to the left on the system in some given state is
indicated by the value in the circle. The transition from λ1 to
λ3 causes the second measurement of A to disagree with the
first, and thus, violates compatibility. Time runs downward
throughout.

There are five of these:

λ1 → λ1 → λ1

λ1 → λ0 → λ3

λ0 → λ1 → λ1

λ0 → λ0 → λ3

λ0 → λ2 → λ1

For simplicity, let us assume that all these are equally probable,
i.e. p111 = p103 = p011 = p003 = p021 = 1

5 . The value of ABA for
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Figure 4.2: A more general evolution: starting from a state that may be
either λ1 or λ0, all of the depicted transitions are possible.
Thus, during repeated runs of the same sequence of measure-
ments, the values of the observables need not agree, and their
expectation values will generally differ from ±1.

each evolution is simply the product of the value of each observable in
the respective state, i.e. A1B0A3 = (+1)(+1)(−1) = −1, where the
notation Ai means ‘the value of A in the state λi. Thus, the expected
value is

〈ABA〉 =
∑
ijk

pijkAiBjAk = −3
5
. (4.3)

It may seem odd that we have elected to assign probabilities to entire
evolutions in toto, rather than simply giving probabilities to each
branch, or, more accurately, specifying a conditional distribution over
the λi at each measurement. The reason is that this would impose an
unwarranted restriction on the hidden-variable dynamics, effectively
assuming that the distribution over possible evolutions is always
factorizable, i.e. that (in the present case) 〈ABA〉 = 〈A〉〈B〉〈A〉.
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The model as discussed so far is clearly not sufficient, in the sense
that it cannot capture all quantum-mechanical predictions. Most
seriously, it will typically be at variance when it comes to the case of
explicitly non-compatible observables: in general, if [A, B] �= 0, for a
measurement sequence like ABA, the outcome of the B-measurement
as well as the second measurement of A will be random according to
quantum mechanics, while the outcome for the final measurement of A
in a sequence like ABAA will always be deterministic. But the model
clearly cannot guarantee that: either there will be some probability to
change the hidden variable state after the measurement of A—then,
the second measurement of A will not be deterministic. Or, there
is no such possibility—but then, the measurement of B will not be
random.

This problem can be remedied, however, by noting that in the
case of explicit incompatibility between two observables, there is no
good reason to assume noncontextuality (cf. Bell’s objection to von
Neumann’s no-go theorem in sect. 2.1). Thus, since there always ex-
ists a possible evolution for the system compatible with the quantum
predictions, we can simply introduce an additional selection rule which
picks out such an evolution in the case of measurements of explicitly
noncompatible observables. This selection rule will be strongly contex-
tual, and in fact, depend on the entire sequence of measurements that
is performed; but this is not at variance with the implications of the
Kochen-Specker theorem, which requires noncontextuality only in the
case of compatible observables. Thus, we can use a two-tiered dynam-
ics to bring the model into account with experimental observations: in
the case of compatible measurements, the model simulates the effects
of experimental imperfections; the probabilities for state changes can
always be chosen such that they are in agreement with observation.
If one measures incompatible observables instead, then an evolution
is chosen that is in complete agreement with the expected results.

Furthermore, note that we have introduced, in sect. 2.5.2, an
operational framework for contextuality tests in order to evade the
finite-precision problem. In this sense, we should imagine that we are
provided with a box, which produces certain outputs from certain input



4.2 Markov Models 65

settings. The question of contextuality is then simply the question
of whether the behaviour of the box can be explained in terms of a
noncontextual theory or not—i.e. whether its outputs depend on its
inputs individually, or can only be explained by considering all inputs
together. In this framework, since it is in principle independent of the
details of quantum mechanics, the notion of incompatible observables
does not strictly apply, and the model discussed above is adequate to
represent a certain class of noncontextual theories that might be put
forward to explain the box’s behaviour.

4.2 Markov Models

In this section, we aim to present a more explicit model that cor-
responds to a specific sub-class of the models discussed above. In
particular, we will demonstrate that, using this model, a violation of
both the usual CHSH inequality (2.4) and the extended one (2.22) is
possible, despite its noncontextuality—recall that the hidden-variable
state transition is effected independently of the context.

The model will be implemented by considering the hidden-variable
states λi as the states of a Markov chain, that is, as the states in a
process such that a memoryless, probabilistic transition is implemented
between them. Here, the memorylessness guarantees noncontextuality:
transitions depend only on the state the system is currently in. These
transitions are effected by stochastic matrices [69]. A (left-) stochastic
matrix is an n × n matrix M = (mij) such that

n∑
i

mij = 1. (4.4)

This condition ensures that for each probability vector p = (pi), for
which

∑n
i pi = 1, p′ = Mp = (

∑n
j mijpj) again is a probability vector

such that
∑

i p
′
i = 1. It is the classical equivalent of the normalization

condition 3.6 for quantum channels.
In this setup, each observable A can be represented by a vector

A, such that 〈A〉 = A · p =
∑

i Aipi. After a measurement, the
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probability distribution is evolved to p′ according to the above rule,
and the expectation value of A changes to 〈A〉 = A · p′ = A · Mp =∑

ij Aimijpj . This is the most clear-cut way in order to model random
influences leading to compatibility violations due to the measurement.

The expectation value of a product of observables then straight-
forwardly evaluates to 〈AB〉 =

∑
ij AiBjpij , where pij is the joint

probability distribution of the observables. The extension to a prod-
uct of three or more observables proceeds in an obvious way, i.e.
〈ABC〉 =

∑
ijk AiBjCkpijk.

4.2.1 Violating KS Inequalities with Probabilistic Evolutions

In order to study the behaviour of the CHSH-inequality under random
hidden-variable state changes, it is useful to introduce the quantity
Kij = AiBj + BiCj + CiDj − DiAj , where Ai denotes the value of
the observable A given the hidden variable state λi. Thus, any Kij

just gives the value of χCHSH given that the hidden-variable evolution
was λi → λj . For this quantity, the following holds:

Proposition 4.1. For any Kochen-Specker inequality, there exists
K = (Ki1i2...in) such that 〈χKS〉 ≤ Kmax.

Proof. Consider that each expectation value 〈AB〉 can be written as∑
ij AiBjpij , and thus

〈χCHSH〉 =
∑
ij

Kijpij ≤ Kmax
∑
ij

pij = Kmax. (4.5)

This generalizes immediately to cases with more observables.

All possible values for Kij in the case of the CHSH-inequality are
shown in A.1.

This shows straightforwardly that a simple, deterministic evolution
suffices to maximally violate the CHSH inequality: K0,8 = 4, since
λ0 = (++++) and λ8 = (−+++), and thus, 〈AB〉 = 〈BC〉 = 〈CD〉 =
+1, while 〈DA〉 = −1. Via probabilistic mixtures of such evolutions,
it is possible to equal any value between 2 and 4; for instance, if
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p0,0 = 2−
√

2 and p0,8 =
√

2− 1, i.e. if the initially prepared state λ0

remains undisturbed with a probability of ca. 58.6%, and flips to λ8

with a probability of 41.4%, then the expected value 〈χCHSH〉 equals
the Tsirelson bound, 2

√
2. This already demonstrates well the spirit

of the model: despite being explicitly noncontextual, a contextuality
test would yield a positive result simply because of the compatibility
violation effected by the hidden variable state transition.

Let us now investigate how models of the presented kind manage
to produce violations of Kochen-Specker inequalities. First, consider
the case in which we have perfect control over the hidden-variable
state we prepare. Then, the distribution over the hidden variables is
pi = 1 for some i, i.e. we are with certainty in the state λi. We can
then prove the following:

Proposition 4.2. For any hidden-variable state λj, there exists a
deterministic evolution such that 〈χCHSH〉 = 4.

Proof. Let λj be the state of the hidden variables. Then, for any
observable X, 〈X〉 =

∑
i Xipi. Since Xipi = 0 for all i �= j and pj = 1,

〈X〉 = Xj . Any deterministic channel now takes the distribution p
to some p′ with the property that p′k = 1 for some k, i.e. afterwards,
the system is definitely in the hidden-variable state λk. Hence, the
expectation value of a product is equal to 〈XY 〉 = XjYk. In order to
maximally violate the CHSH inequality, we now only need for all of
AjBk, BjCk, and CjDk to equal 1, while DjAk must equal −1. But
such a state can always be found: it is uniquely the state λk for which
Bk = Aj , Ck = Bj , Dk = Cj and Ak �= Dj .

Another important consideration is what happens in the case of a
channel that only leads to very weak compatibility violations, i.e. in
which the state is only changed with a certain, small, probability p; this
models the realistic case of small measurement-induced disturbances.
In this case, we have:

Proposition 4.3. For any hidden-variable state λj, there exists a
Markov channel inducing probabilistic state changes such that the
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CHSH-inequality is violated for arbitrarily small transition probabili-
ties.

Proof. As before, since we start out in a definite state, 〈X〉 = Xj for
the observable measured first in a sequence. As was shown above,
there exists always a state λk such that 〈χCHSH〉 is maximal for any
λj . Thus, we shall assume that the system always either transitions
to this state with probability p, or remains in the same state with
probability 1 − p. Then, any expectation value of a sequence of two
observables can be written as 〈XY 〉 = Xj(pYj + (1 − p)Yk). For the
sequences AB, BC, and CD, this does not change anything, since
AjBj = AjBk, BjCj = BjCk, and CjDj = CjDk. However, for the
sequence DA, we get 〈DA〉 = p(−1) + (1 − p)(+1) = 1 − 2p, since
DjAj = −DjAk. Thus, the value of 〈χCHSH〉 evaluates to

〈χCHSH〉 = 〈AB〉 + 〈BC〉 + 〈CD〉 − 〈DA〉 = 2 + 2p, (4.6)

i.e. 〈χCHSH〉 > 2 for all p > 0.

Alternatively, this follows immediately from the fact that there
always exists a deterministic evolution maximally violating the CHSH
inequality (see 4.2), and an evolution yielding 〈χCHSH〉 = 2, the convex
combination of which then leads to 〈χCHSH〉 = 2 + 2p.

The noncontextual nature of this model can be made more explicit
by considering the representation 4.2 of the hidden-variable states.
Take, for instance, the hidden- variable state λ0 = (+ + + +). Then,
in the notation introduced in 4.2, the Markov channel can be written
as:

M =
(

1 − p p
p 1 − p

)
⊗

(
1 0
0 1

)⊗3

(4.7)

In this representation, it is obvious that the channel acts exclusively
on the observable A, flipping its value with probabilitiy p, regardless
of the other observables (whose values it leaves invariant).

Thus, the CHSH inequality can be violated by a model such as
the above for arbitrarily small violations of compatibility, which are
unavoidable in any real experiment.
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Now, turn to the other extreme: if we assume absolute uncertainty
about the preparation of the hidden variables, i.e. pi = 1

16 for all i,
we obtain:

Proposition 4.4. In the case of absolute preparation uncertainty,
i.e. p(λi) = 1

16 for all λi, there exists a unique evolution such that
〈χCHSH〉 = 4.

Proof. This result follows directly from proposition 4.2, which asserts
that there always is a maximally CHSH-violating evolution for any
state. It then suffices to take the convex combination of all these
evolutions, i.e. choose pij such that pij = 1

16 if Kij = 4 and pij = 0
otherwise.

This directly entails that for all possible initial probability distribu-
tions, one can always find evolutions such that the CHSH inequality
is violated to any desired degree.

4.2.2 Violating Extended KS-Inequalities

Recall that it was proven in [44] that for each hidden-variable dynamics
obeying Assumption 2.1 (cumulative noise), the extended CHSH
inequality

〈χCHSH〉 − 2perr[B1A2B3] − 2perr[C1B2C3]
− 2perr[D1C2D3] − 2perr[A1D2A3] ≤ 2 (4.8)

holds. In order to evaluate this in the present context, we first show
the following:

Proposition 4.5. Assumption 2.1 does not hold for random evolu-
tions in general.

In order to prove this, we first establish the following lemma:

Lemma 4.6. Any Markov matrix M such that mij = mji, and
mij = 1 for exactly one value of j, i.e. which is both symmetric and
deterministic, squares to the unit matrix.
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Proof. The elements of the square of M , M2
ij =

∑
k mikmkj , are non-

vanishing if, and only if, i = j, since mik = mki by symmetry, and
mkj = 0 for all j �= i because of the Markovianicity condition 4.4 and
the channel’s determinism. Because of the latter, every non-zero value
also must be equal to 1, and thus, M2 = 1.

With this, we can now prove the theorem:

Proof. Consider a symmetric, deterministic Markov matrix Msym. By
lemma 4.6, M2

sym = 1. Thus, evolving the original probability dis-
tribution twice returns it to its original state. But this means that
p[(B+

1 , B−
3 |B1A2B3)] = 0, while p[(B+

1 |B1) and (B−
2 |A1B2)] is arbi-

trary (equal to 1, for instance, if the state is changed after every mea-
surement); thus, p[(B+

1 |B1) and (B−
2 |A1B2)] � p[(B+

1 , B−
3 |B1A2B3)],

meaning that the disturbance is not cumulative.

Thus, not all possible dynamics for the hidden variables obey as-
sumption 2.1. Therefore, the extension of Kochen-Specker inequalities
by error terms does not necessarily completely solve the problem of
compatibility: if some evolution exists such that the disturbance is
non-cumulative, inequalities such as 2.22 or 4.8 may be violated by
non-contextual models. Indeed, we can establish the following:

Proposition 4.7. For any hidden-variable state λj, there exists a
deterministic evolution maximally violating the extended CHSH-in-
equality and the assumption of cumulative noise (2.1).

Proof. Proposition 4.2 assures us that we can always find a Markov
channel that violates the CHSH inequality using a deterministic
model, and proposition 4.5 establishes that if the model is symmet-
ric, assumption 2.1 is violated, and in fact, all terms of the form
p[(B+

1 , B−
3 |B1A2B3)], and thus, all error terms, vanish; hence, it suf-

fices to be able to violate the original CHSH inequality, and it remains
only to be shown that one can do so using a symmetric Markov matrix.
But this is necessarily the case: the model capable of violating the
CHSH inequality was such that it always flipped the hidden-variable
according to the rules given in the proof of proposition 4.2, i.e. for
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instance from λ3 = (+ + − −) to λ1 = (+ + + −); thus, applying
the channel again simply undoes the flip, and restores the original
state.

Therefore, the same simple kind of models that are capable of
violating the CHSH inequalities are also capable of violating the
extended inequalities of ref. [44]. However, while they cannot perfectly
rule out these models, the extended inequalities can be used to put a
bound on the strength of the violation of compatibility needed:

Proposition 4.8. For any hidden-variable state λj, if p represents
the probability that a state transition occurs, a probabilistic Markov
model that violates the extended CHSH inequality needs p to exceed 7

8 .

Proof. The probability that the value of a certain observable changes
is equal to the probability that the state changes, given that the state
changes to one in which the observable has a different value. In order
to show a violation of the assumption, it is enough to consider one
measurement sequence, e.g. AB; thus, the only error probabilities
are p[(A+

1 |A1) and (A−
2 |D1A2)] = p[(A−

1 |A1) and (A+
2 |D1A2)] = p. In

order to violate assumption 2.1, we need that, for instance,

p[(A+
1 |A1) and (A−

2 |D1A2)] > p[(A+
1 , A−

3 |A1D2A3)]. (4.9)

Since we need the symmetry of the transition matrix in order to
violate the assumption at all, we know that this probability must be
equal to the probability of remaining in the state λk after the second
transition, i.e. of not transitioning back to the original state λj . Since
the transition λj → λk occurs with a probability of p, and the system
then remains in the state λk with probability (1 − p), the probability
for the evolution λj → λk → λk is equal to p − p2. Thus, in order to
violate assumption 2.1, it is necessary that

p > p − p2. (4.10)

This is of course the case for all p > 0. Thus, any symmetric
probabilistic Markov model violates assumption 2.1.
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It now remains to establish when such a model violates equation
2.22. As was shown in the proof of proposition 4.3, for a probabilistic
evolution, 〈χCHSH〉 = 2 + 2p. In order to establish a lower bound
for the probability, we need to examine the worst case, in which all
observables change their value. This is the case, for instance, for the
evolution (− + −+) → (+ − +−). Then, all error terms contribute,
and perr[B1A2B3] = perr[C1B2C3] = perr[D1C2D3] = perr[A1D2A3] =
2(p − p2). Thus, the necessary condition for this violation is

2 + 2p > 2 + 16(p − p2), (4.11)

which yields p > 7
8 .

We have seen in this section that simple, random evolutions of the
hidden variables can lead to violations of Kochen-Specker inequalities
even if they are perfectly noncontextual: the measurement context
does not factor into the Markov channel, as it is applied uniformly
after each measurement. This surprising feature has its origin in the
fact that violations of compatibility, which is an essential assumption
in the Kochen-Specker theorem but hard to guarantee in reality, may
reinforce one another in a conspiratorial way to lead to experimental
results that are seemingly at variance with classical predictions. Past
attempts to explicitly address this issue have been shown to be not
fully adequate, though able to significantly reduce the range of possible
models.

One may, of course, call into question the reasonability of the models
used here. It is clear that the simplest versions can, in principle, be
detected and excluded easily: a model that deterministically changes
the value of one observable upon measurement may be defeated by
simply measuring the same observable twice and noting the consistent
discrepancy; many models that introduce a random evolution, such as
the one presented above to obtain the Tsirelson bound, still produce
far higher error rates than experimentally observed. However, these
admittedly crude models can be refined and made more realistic in
various ways: uncertainty about the prepared state together with
probabilistic state changes may conspire to make the compatibility
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violations significantly harder to detect, and as has been shown above,
models exist that can foil methods proposed previously to correct for
just such deviations.

Furthermore, the problem is not so much one of practice as it is one
of principle: though they may appear increasingly baroque, models
can be found that agree with any measurement record and which
nevertheless ought not be called contextual. To remedy this situation
would certainly be of great interest.



Chapter 5

Noncontextual Evolution

The last chapter showed, with explicit models, that it is possible to
violate Kochen-Specker inequalities using noncontextual dynamics.

This seems to once more dampen the hopes of a definitive experimental
test of the Kochen-Specker theorem. Nevertheless, as we aim to show
in this chapter, the contextuality of quantum mechanics runs deeper
still, and indeed deeper than the original Kochen-Specker theorem
establishes. Thus, we extend the notion of contextuality to apply not
merely to the state, but to the entire evolution of a system, i.e. the
succession of hidden variable states λi → λj → λk → . . . it traverses.
This notion of noncontextual evolution does not require the strict
compatibility of jointly measured observables. Then, we show that
existing Kochen-Specker inequalities may be reformulated such that
their violation translates to a violation of noncontextual evolution,
and thus, excludes a class of hidden-variable theories containing both
the usual noncontextual ones (in the limit where the hidden-variable
state does not undergo any evolution) and those given by the models
of the previous chapter.

5.1 Noncontextually Evolving Systems

In order to make precise the notion of noncontextual evolution, we
first state the following assumptions:

I. All of a system’s observables have definite values at any given
time (value definiteness (VD)).

J. Szangolies, Testing Quantum Contextuality, BestMasters,
DOI 10.1007/978-3-658-09200-9_5, © Springer Fachmedien Wiesbaden 2015
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II. It is possible to uniquely attribute to each system a sequence of
(hidden-variable) states λi → λj → λk → . . . that is independent
of the measurements performed on the system (noncontextual
evolution (NCE)).

These are clearly weaker assumptions than those made in the Ko-
chen-Specker definition of noncontextuality, as there exist models that
obey both I. and II., yet nevertheless violate a Kochen-Specker inequal-
ity (see theorem 4.2). However, the notion of contextuality arrived at
using these assumptions includes the Kochen-Specker notion: if we
choose the evolution such that the hidden-variable state never changes,
we get the usual formulation of noncontextuality. Thus, any experi-
mental refutation of noncontextual evolution entails a verification of
the Kochen-Specker theorem.

Furthermore, the notion arrived at in this way does not make explicit
mention of the measurement context of compatible observables, and
is thus not vulnerable to the problem of compatibility; there is no
requirement that in a sequence of measurements ABAC . . . A the first
and last measurements of A necessarily agree (recall the discussion of
compatibility in sect. 2.6). Indeed, in general, this will not be the case
for a noncontextual evolution. The only thing that is required in this
case is that there is a fixed sequence of values that can be attributed
to any observables, corresponding to a fixed series of (hidden-variable)
states traversed by the system.

The notion of noncontextual evolution is appropriate for model-
ing systems with unknown, but essentially classical, dynamics. The
motivation for the models discussed so far is the notion that during
measurement, random influences may change the ontic state, thus
giving rise to incompatibilities between observables assumed to be
compatible. However, we are not fixed on this interpretation. An-
other possible view would be that the system, as characterized by its
hidden-variable state, simply evolves on its own according to rules
unknown and/or inaccessible to us. Measurement in this case could
be construed essentially classical: the objective value of some physical
property is registered, with none or only negligible interaction between
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measurement device and system. The outward effect of both would
be the same: states assumed ‘in between’ measurements are simply
not registered, and thus, one can ignore them, studying instead only
the ‘reduced’ or ‘coarse-grained’ evolution as depicted in figure 5.1.
In this view, the probabilistic nature of the evolution may be thought
of as arising simply from differences in the timing of measurements:
the same sequence of measurements finds the system in different
states due to its internal dynamics, even though they are essentially
deterministic.

Thus, we see that the notion of a noncontextually evolving theory
is a quite general one, independent of the microscopic details of
a possible hidden-variable theory in the sense that only observed
quantities matter, not the dynamics of how the system evolves from
one state to another.

5.2 Inequalities for All Noncontextually Evolving
Systems

From proposition 4.1, we know that the value of a Kochen-Speck-
er inequality is upper bounded by the quantity Kmax. As a brief
reminder, for the CHSH-inequality, this is the maximum of Kij =
AiBj + BiCj + CiDj − DiAj , i.e. 4. This is the highest value that
can be reached by models undergoing noncontextual evolution—and,
as the discussion in the previous chapter shows, this limit is actually
attainable.

Can an inequality be found, such that the quantum value exceeds
the value attainable by noncontextual evolution? If so, experimentally
verifying this violation would amount to both a conclusive test of
the Kochen-Specker theorem, since observables in this scenario may
exhibit arbitrary violations of compatibility, and exclude an actually
even larger class of hidden variable theories, namely those exhibiting
noncontextual evolution.

The strategy is thus clear: if we can find an inequality such that
Kmax is smaller than the quantum value, its experimental violation
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a) b)

Figure 5.1: a) Measuring a system that undergoes a deterministic, but
unknown and uncontrollable evolution: measurements exe-
cuted at different times during different runs of the experi-
ment (full resp. broken circles) may yield different results,
while states of the system in between measurements have no
observational consequences. b) The same system as in a),
however, the evolution is now understood as a probabilistic
superposition of two possible evolutions, leading to the same
observations.

would establish that quantum mechanics cannot be explained in terms
of a noncontextually evolving hidden variable theory and, by restric-
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tion to the case in which all observables are compatible, that it thus
cannot be explained in terms of a (Kochen-Specker) noncontextual re-
alistic theory. Remarkably, such inequalities can indeed be found, and
are given by slight modifications of already familiar Kochen-Specker
inequalities.

5.2.1 Generalizing the CHSH-Inequality

We shall start our investigations with the CHSH-inequality. Let us
look first at its general form:

〈χ〉 = 〈X(1)Y (1)〉 + 〈X(2)Y (2)〉 + 〈X(3)Y (3)〉 − 〈X(4)Y (4)〉 (5.1)

From this, the form 2.4 follows by the identifications X(1) = Y (4) =
A, Y (1) = X(2) = B, Y (2) = X(3) = C, and Y (3) = X(4) = D. The
value of Kij is computed as before:

Kij = X
(1)
i Y

(1)
j + X

(2)
i Y

(2)
j + X

(3)
i Y

(3)
j − X

(4)
i Y

(4)
j (5.2)

We can establish certain conditions that must hold for this expres-
sion to be maximized, i.e. equal to 4. Keeping in mind that each of
X

(k)
i = Y

(k)
i = ±1, these are:

X
(1)
i = Y

(1)
j (5.3)

X
(2)
i = Y

(2)
j

X
(3)
i = Y

(3)
j

X
(4)
i �= Y

(4)
j

Clearly, with the above assignment of observables leading to the
form 2.4, these conditions can be met, since in general, for instance,
Ai �= Aj . Thus, the original form of the CHSH inequality is not an
inequality capable of ruling out noncontextually evolving hidden vari-
ables, as indeed was explicitly demonstrated in the previous chapter.
If, however, we could find an assignment such that not all condi-
tions can be satisfied simultaneously, then Kmax would necessarily be
constrained to a lower value.
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One way to do this is to ensure that the truth of the first three
conditions in 5.3 implies the falsity of the fourth. We make the
following choice:

X
(1)
i = X

(4)
i (5.4)

Y
(1)
j = Y

(2)
j

X
(2)
i = X

(3)
i

Y
(3)
j = Y

(4)
j

This directly leads to the following:

Proposition 5.1. The following version of the CHSH inequality,
which we call simply CHSH∗, given by

〈χCHSH∗〉 = 〈AB〉 + 〈CB〉 + 〈CD〉 − 〈AD〉 ≤ 2 (5.5)

holds for all noncontextually evolving systems, but is violated by quan-
tum mechanics.

Proof. The proof follows straightforwardly by checking the conditions
5.3. Recall that, for CHSH∗,

Kij = AiBj + CiBj + CiDj − AiDj . (5.6)

Evaluating the conditions 5.3, Ai = Bj and Ci = Bj , and thus,
Ai = Ci. But then, since Ci = Dj , Ai = Dj , violating the fourth
condition. Thus, Kij ≤ 2.

In order to show the quantum violation, it suffices to exhibit a set
of observables and a state that yield a value of 〈χCHSH∗〉 > 2. We
again choose a pair of qubits in the state |ψ〉 = 1√

2
(|00〉 + |11〉), and

the observables A = σx ⊗ 1, B = − 1√
2
1 ⊗ (σz + σx), C = σz ⊗ 1

and D = 1√
2
1⊗ (σz − σx)), thus ensuring 〈χCHSH∗〉 = 2

√
2. However,

there is a slight additional hitch that needs to be addressed: the value
of 2

√
2 implicitly assumes perfect compatibility, i.e. the state does not

change between measurements. This, as has already been discussed,
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is unrealistic, and moreover would reintroduce the dependence on
compatible observables into the scenario.

Luckily, we can here take advantage of the discussion in chapter
3, where it was shown that, under very general models for the noise
introduced at the quantum level into the measurement, the value of
〈χCHSH∗〉 only decreases (until eventually no violation is observable
anymore). Thus, in order to demonstrate a violation of noncontextual
evolution, a necessary and sufficient condition is

2 < 〈χCHSH∗〉 ≤ 2
√

2. (5.7)

The values of Kij for the CHSH∗ inequality are collected in A.2.
That this simple variation on the CHSH inequality should have such

far-reaching consequences deserves some further discussion. Let us
consider what happens during a measurement sequence. We start out
with a probability distribution p(λ), from which the first observable’s
value is drawn; then, the probability distribution is evolved, and the
second observable’s value is drawn from the evolved distribution. Since
the evolution is noncontextual, it will be the same regardless of which
observable is measured first; thus, whenever an observable is drawn
second, it will be drawn from the same distribution. This then yields
some intuition as to why noncontextually evolving systems cannot
violate the inequality 5.5: since each observable always appears in the
same place in each measurement sequence, its value is always drawn
from the same probability distribution.

This intuitive argument applies only in the case of a product dis-
tribution, however; nevertheless, the result applies to non-product
distributions as well.

5.2.2 Generalizing the Peres-Mermin Inequality

Taking a hint from the previous discussion, we immediately state the
following:
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Proposition 5.2. The version of the Peres-Mermin inequality given
by

〈χPM∗〉 = 〈ABC〉+〈cab〉+〈βγα〉+〈Aaα〉+〈βBb〉−〈cγC〉 ≤ 4 (5.8)

holds for all noncontextually evolving theories, but is violated by quan-
tum mechanics.

Proof. Again, we must check the value of Kmax. Let us first analyze
the condition that must be met in order for a term such as 〈ABC〉
to be maximal. Interpreting the outcomes of measurements of the
observables as truth values, i.e. considering the Ai,Bj and Ck to be
propositions of the form ‘the value of A, given the hidden variable
state λi, is 1’, and thus, to be represented by Boolean variables, the
maximality of 〈ABC〉 is equivalent to the truth of the proposition:

Pmax = (Ai∧Bj ∧ Ck) ∨ (Ai ∧ ¬Bj ∧ ¬Ck)
∨ (¬Ai ∧ Bj ∧ ¬Ck) ∨ (¬Ai ∧ ¬Bj ∧ Ck), (5.9)

where ∧ denotes the logical and, ∨ denotes or, and ¬ stands for
negation. This means nothing else than that either all three or only
one of the outcomes must be +1 in order to have 〈ABC〉 = 1. Using
the rules of Boolean algebra, this proposition can be reduced to
Ai ⊕ Bj ⊕ Ck, where ⊕ denotes the exclusive or or xor (i.e. addition
modulo 2). We can thus compactly write the condition of maximality
for the whole inequality, taking note of the fact that ¬(x ⊕ y ⊕ z) =
x ⊕ y ⊕ z ⊕ 1:

(Ai ⊕ Bj ⊕ Ck) ∧ (ci ⊕ aj ⊕ bk) ∧ (βi ⊕ γj ⊕ αk)
∧ (Ai ⊕ aj ⊕ αk) ∧ (βi ⊕ Bj ⊕ bk) ∧ (ci ⊕ γj ⊕ Ck ⊕ 1) = 1(5.10)

But this proposition cannot be fulfilled. To see this, consider
that ci ⊕ aj ⊕ bk = 1 implies that ci = aj ⊕ bk ⊕ 1, and similarly,
γk = βi ⊕ αk ⊕ 1 and Ck = Ai ⊕ Bj ⊕ 1. Substituting these into
the condition for the maximality of the final, negative term in the
inequality 5.8, which is

ci ⊕ γj ⊕ Ck ⊕ 1 = 1, (5.11)
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we get
ci︷ ︸︸ ︷

aj ⊕ bk ⊕ 1⊕
γk︷ ︸︸ ︷

βi ⊕ αk ⊕ 1⊕
Ck︷ ︸︸ ︷

Ai ⊕ Bj ⊕ 1 != 1. (5.12)

Using 1 ⊕ 1 = 0, we can rearrange the above to

βi ⊕ Bj ⊕ bk ⊕ Ai ⊕ aj ⊕ αk
!= 1. (5.13)

However, βi ⊕ Bj ⊕ bk = 1 and Ai ⊕ aj ⊕ αk = 1 are just the
conditions for the maximality of 〈βBb〉 and 〈Aaα〉, respectively.

But then, it immediately follows that 5.13 is a contradiction, and
thus, 〈βBb〉, 〈Aaα〉, and −〈cγC〉 cannot simultaneously equal +1.
Hence, Kmax is constrained to remain below 4 for all noncontextually
evolving theories.

The quantum violation of 5.8 follows from the same considerations
as in the case of 5.5: again, any quantum noise induced tends only to
drive the value of 〈χPM∗〉 down; additionally, the quantum violation
saturates the algebraic maximum of the inequality. Thus, a necessary
and sufficient condition to prove a violation of noncontextual evolution
is

4 < 〈χPM∗〉 ≤ 6. (5.14)

In this formulation, we can take full advantage of the fact that
the proof of the Peres-Mermin inequality, as given in 2.2.2, is state-
independent; thus, not only contextuality, but also the contextuality of
evolution is a state-independent property of quantum mechanics—as
it of course must be, since it includes the former notion.

As discussed so far, the method used to rearrange Kochen-Specker
inequalities is limited to those inequalities that possess a particular
permutational symmetry in their terms. However, as shown in [70],
it is possible to enhance the approach to cover a wider set of cases.
Consider, for example, the following inequality due to Klyachko, Can,
Binicioğlu, and Shumovsky (KCBS), which is capable of being violated
even for a single qutrit system [39]:

〈χKCBS〉 = 〈AB〉 + 〈BC〉 + 〈CD〉 + 〈DE〉 + 〈EA〉 ≥ −3. (5.15)
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Clearly, the attempt to rearrange it following the pattern used so far
will not be successful. However, this can be remedied by including an
additional term: modifying it to

〈AB〉 + 〈CB〉 + 〈CD〉 + 〈ED〉 + 〈EA〉 − 〈AA〉 ≥ −4, (5.16)

we again obtain an inequality valid for all noncontextually evolving
systems, which is however violated by quantum mechanics. Other
inequalities can be treated similarly.

5.3 An Extension of the KS-Theorem

In the previous section, we have arrived at inequalities valid for
noncontextual evolutions (NCE-inequalities), which are:

I. obeyed by any theory in which systems evolve noncontextually,
i.e. which obey both VD and NCE as defined in section 5.1,

II. violated by quantum mechanics,

III. independent of the notion of compatible observables,

IV. due to their operationally-definable nature, immune to the finite-
precision problem, and

V. a generalization of Kochen-Specker inequalities, in the sense that,
if compatibility holds between the different measurements, their
violation implies the Kochen-Specker theorem.

These properties furthermore entail the following:

1. Quantum mechanics cannot be completed by a theory in which the
hidden variable state evolves noncontextually.

2. The impossibility of completing quantum mechanics with noncon-
textually evolving hidden variables can be tested experimentally.
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3. Experimental verification of this impossibility implies a verification
of the Kochen-Specker theorem.

The truth of 1 follows straightforwardly from I and II. For 2, as was
discussed in chapter 2, the main obstacles to experimentally testing
the Kochen-Specker theorem are the finite-precision problem (2.5)
and the problem of compatibility (2.6). The second problem does not
apply, since the notion of noncontextual evolution is independent of the
notion of compatibility (III). Furthermore, as was also explicitly shown,
the models implementing violations of compatibility as discussed in
chapter 4 are incapable of violating inequalities 5.5 and 5.8. As argued
in chapter 2, the finite-precision problem does not apply to inequalities
which may be arrived at via an operational definition free of references
to quantum theory (see sect. 2.5.2). Finally, 3 follows directly from
the fact that the set of all noncontextual evolutions includes the trivial
evolution, i.e. that in which the hidden variable state never changes.

This result deserves some further comments. First, we note that
the notion of noncontextually evolving systems is a very intuitive one
and applies to all classical systems: a thrown baseball, for instance,
follows its parabolic trajectory independent of measurements of its
height, position, or momentum (in so far as such measurements may
be obtained without exercising significant influence on the ball, such
as, for instance, optically, i.e. via video or photography).

Thus, noncontextual evolution formalizes the intuitive idea that
in a classical theory, measurement is exclusively about ascertaining
the value of a possessed property of a system, and it does so in a
way that is weaker than the original Kochen-Specker notion: Kochen-
Specker noncontextuality asserts that there is a definite association of
properties to a system in a given state; noncontextual evolution merely
asserts that there exists a set of states that the system may assume
such that we can validly assert propositions of the form ‘in the state
λi, the value of the observable A is Ai’. This extends the notion of
contextuality from one applicable within a given state, and thus, within
a set of compatible measurements (as incompatible measurements
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will change the state according to the projection postulate), from one
applicable to the set of possible states as a whole.

A somewhat related concept, similarly establishing the impossibility
of mimicking the time evolution of quantum systems classically, was
introduced by Leggett and Garg in their 1985 article “Quantum
Mechanics versus Macroscopic Realism: Is the Flux There when
Nobody Looks?” [71]. They define a notion of macroscopic realism
by means of the following two postulates:

I. A macroscopic system with two or more macroscopically distinct
states available to it will at all times be in one or the other of
these states (macroscopic realism (MR)).

II. It is possible, in principle, to determine the state of the system
with arbitrarily small perturbation on its subsequent dynamics
(noninvasive measurement (NM)).

From these notions, they derive inequalities that any theory obey-
ing MR and NM must satisfy, but which are violated in quantum
mechanics. One such inequality is the following:

C12 + C23 + C34 − C14 ≤ 2 (5.17)

Here, a symbol like Cij denotes the correlation between measure-
ments on a system undertaken at times ti and tj . The similarity
to the CHSH∗ inequality is obvious if we identify C12 = 〈A1B2〉,
C23 = 〈C3B2〉, C34 = 〈C3D4〉 and C14 = 〈A1D4〉, where the symbol
B2 for instance denotes the observable B measured at time t2.

Despite this similarity, however, there are important differences.
The most obvious one lies with the fact that Leggett and Garg consider
only a single measurement, repeated at different times: if the system
then does not undergo any dynamics in between measurements—i.e.
if its state stays the same—, then quantum mechanics predicts just
a repetition of the same outcome with each new measurement, and
thus, perfect correlation. But then, C12 + C23 + C34 − C14 ≡ 2. This
contrasts with the fact that for 5.5, 〈χCHSH∗〉 = 2

√
2 in the case of

no state changes, due to our choice of observables. But this fact is
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necessary in order to conclude a violation of noncontextuality from
an experimental violation of 5.5; thus, inequalities like 5.17—which
after all were not derived with a focus towards contextuality—cannot
be used for this purpose.

Furthermore, with their postulate II., they insist on the noninvasive-
ness of measurement, while the motivating assumption of the present
work, to a large extent, was precisely the fact that measurements
tend to be invasive in the sense that in realistic implementations,
noise effects and environmental couplings tend to induce spontaneous
state changes. Thus, while one can argue that the notions coincide
in the case of what we have called deterministic evolutions (as we
have indeed done, see Figure 5.1 and surrounding text), it seems
more problematic to incorporate the notion of probabilistic mixtures
of evolutions into their approach. Additionally, we have not been
concerned with any notion of macrocopicity.

Nevertheless, the similarity of both results is certainly striking, and
the new connection to contextuality and the Kochen-Specker theorem
seems well worth pursuing. One straightforward consequence of this
connection is the possibility to view the Peres-Mermin inequality
in the form 5.8 as a kind of Leggett-Garg inequality involving the
correlations between measurements at three different moments in
time:

C123 + C456 + C789 + C159 + C726 − C483 ≤ 4, (5.18)

using the identifications C123 = 〈A1B2C3〉, C456 = 〈c4a5b6〉, C789 =
〈β7γ8α9〉, and so on.

5.3.1 Contextually Evolving Hidden Variables

In order to fully grasp the notion of noncontextual evolution, it is
instructive to consider systems that evolve contextually, and thus,
are capable of violating the NCE-inequalities despite all observables
having definite values at all times. Such models have, for instance,
been proposed in the investigation of the memory cost of classically
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simulating contextuality [72], or in Larsson’s proposal to formulate a
contextual extension [73] of Spekkens’ toy theory [74].

The model of ref. [72] is defined as an automaton, i.e. as a system
with a finite number of states and fixed rules according to which it
transitions between them, which can capture all the predictions of
the Peres-Mermin square (see sect. 2.2.2). The particular automaton
they choose has four distinct states:

S1 =

⎡
⎣+ + (+, 2)

+ + (+, 3)
+ + +

⎤
⎦ (5.19)

S2 =

⎡
⎣ + + (+, 2)

− + −
(−, 4) (+, 3) +

⎤
⎦ (5.20)

S3 =

⎡
⎣ + − −

+ + +
(+, 1) (−, 4) +

⎤
⎦ (5.21)

S4 =

⎡
⎣+ − (−, 3)
− + (−, 3)
− − +

⎤
⎦ (5.22)

The notation for these states includes the transition rules between
them: if, for instance, the third observable in the first row of the
Peres-Mermin square (corresponding to the observable C) is measured
while the system is in state S1, it outputs the value +1 and then
transitions to the state S2.

Let us investigate how the model violates the NCE-inequality 5.8.
We will assume that for every sequence of measurements, the automa-
ton is initialized in the state S1. We will denote the state before and
after measurement as subscripts, and the measurement outcome as
superscript on the symbol for the observable measured, in the form

S1
C+

S2
, meaning that the automaton was in the state S1 before mea-

surement, the measuring of C produced the outcome +1 and caused
the automaton to transition to the state S2. Thus, an expectation
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value such as 〈ABC〉 evaluates to S1
A+

S1
B+

S1
C+

S2
= 1. Then, we can

calculate 〈χPM∗〉 as follows:

〈χPM∗〉 = S1
A+

S1
B+

S1
C+

S2︸ ︷︷ ︸
1

+ S1
c+
S2

a+
S2

b+
S2︸ ︷︷ ︸

1

+ S1
β+

S1
γ+

S1
α+

S1︸ ︷︷ ︸
1

(5.23)

+ S1
A+

S1
a+

S1
α+

S1︸ ︷︷ ︸
1

+ S1
β+

S1
B+

S1
b+
S1︸ ︷︷ ︸

1

− S1
c+
S3

γ+
S3

C−
S1︸ ︷︷ ︸

−1

= 6

Thus, the automaton correctly reproduces the quantum value
〈χPM∗〉 = 6. This means that the automaton evolves in a contextual
way, as can also be seen by the fact that its evolution cannot be
depicted by a diagram of the form of 4.2; the branching does not
occur in a probabilistic way, but rather, deterministically based on
the measurements performed on the system. Two example evolutions
are given in Figure 5.2.

Figure 5.2: Two evolutions of the automaton from ref. [72]; the state
change after the measurement of C in the first evolution is
not indicated.

Thus, systems of this kind may, in principle at least, underly the
dynamics of contextually evolving systems. However, the transition
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rules 5.19–5.22 are rather ad hoc and unnatural (of course, it was not
the purpose of ref. [72] to find a natural or realistic model). Hence, it
would be interesting to consider a model whose rules might be more
well-motivated.

Such models are given by close ‘cousins’ of the models discussed
in chapter 4. Again, we will focus only on their capacity to violate
NCE-inequalities, neglecting for the moment the question of how to
fashion them into realistic models for quantum mechanics as a whole.

The key to these models is to restrict attention to only the part
of the state relevant to a given measurement; i.e. if the state is
λ4 = (+−++), and we are considering the measurement sequence AB,
the relevant part is simply the tuple (+−), which we name, in analogy
with the naming convention we used for the λi, μi. Thus, if we consider
the CHSH∗ inequality, the relevant state space is {μ0, μ1, μ2, μ3} =
{(++), (+−), (−+), (−−)}. On this reduced state space, we let the
same Markovian dynamics act that defined the models in chapter 4.
This has the effect that, since different reduced states evolve differently,
and the same full state reduces in different ways depending on the
measurement being carried out, the state transformation depends on
the measurement—and is thus explicitly contextual.

To give an example, let the full state be λ4, and consider the
measurement sequence AB. As defined above, the reduced state is
then μ1 = (+−). However, if we consider the measurement sequence
CD, the reduced state is μ0 = (++). If now the Markov channel
is such that the states μ1 and μ0 get mapped to different states,
this means that implicitly the state λ4 evolves in a different way if
the measurement sequence is AB than if it is CD; we thus have a
contextually evolving system.

We can now show the following:

Proposition 5.3. There exist models of the above-discussed kind
capable of violating NCE-inequalities.
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Proof. The proof follows by exhibiting a concrete example: the model
implemented by the Markov matrix

Mμ =

⎛
⎜⎜⎝

1 0 0 1
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ (5.24)

violates the CHSH∗ inequality 5.5 maximally if the hidden variables
start out in the state λ9 = (− + + −). The proof follows by direct
calculation of the expectation value 〈χCHSH∗〉. As a reminder, the
CHSH∗ inequality is

〈χCHSH∗〉 = 〈AB〉 + 〈CB〉 + 〈CD〉 − 〈AD〉 ≤ 2. (5.25)

Since the hidden variable state in the beginning is λ9, the reduced
states relevant for the calculation are, in order:

• μ2 = (−+) for the measurement of AB,

• μ0 = (++) for the measurement of CB,

• μ1 = (+−) for the measurement of CD, and

• μ3 = (−−) for the measurement of AD.

The stochastic matrix 5.24 tells us how the state is changed during
each measurement: a one in the position i, j indicates that the state μi

is always changed to μj after the first observable is measured. Using
notation analogous to 5.23, we get the expectation values:

〈χCHSH∗〉 = μ2
A−

μ1
B−

μ3︸ ︷︷ ︸
1

+ μ0
C+

μ0
B+

μ0︸ ︷︷ ︸
1

+ μ1
C+

μ3
D+

μ0︸ ︷︷ ︸
1

− μ3
A−

μ0
D+

μ0︸ ︷︷ ︸
−1

= 4

(5.26)
The model thus violates the CHSH∗ inequality maximally, yielding

〈χCHSH∗〉 = 4.
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This model has some peculiar properties that are worth investigating.
First, let us generalize to a case in which the state transition only
occurs probabilistically, i.e. to a model given by the Markov matrix
Mμ(p):

Mμ(p) =

⎛
⎜⎜⎝

1 0 0 p
0 1 − p p 0
0 p 1 − p 0
0 0 0 1 − p

⎞
⎟⎟⎠ (5.27)

Here, p is the probability that a given state is changed, and thus,
1 − p is the probability that it remains unchanged.

We can immediately establish an analogous result to proposition
4.3:

Proposition 5.4. The model implemented by the stochastic matrix
5.27 violates the CHSH∗-inequality for any value of p > 2

3 .

Proof. The proof follows via direct calculation. The expectation value
of a product of two observables, say, A and B can be written as
〈AB〉 = p

(
μ2

A−
μ1

B−) + (1 − p)
(
μ2

A−
μ2

B+
)

= p(+1) + (1 − p)(−1) =
−1 + 2p; similarly, 〈CB〉 = 1, 〈CD〉 = −1 + 2p and 〈AD〉 = 1 − 2p.
Hence,

〈χCHSH∗〉 = 〈AB〉 + 〈CB〉 + 〈CD〉 − 〈AD〉 = −2 + 6p (5.28)

Thus, 〈χCHSH∗〉 > 2 requires p > 2
3 .

This might seem to immediately disqualify such a model due to
unacceptably large violations of compatibility. However, the most
immediate, naive test of compatibility, checking the requirement that
[X, Y ] = 0 for all observables X and Y in the same context, will not
work as expected:

Proposition 5.5. Despite its obvious violations of compatibility, the
model as given by 5.27 is pseudo-compatible, i.e. 〈[X, Y ]〉 = 0 for all
observables within a context.
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Proof. We will establish this by explicitly checking the commutators.
For this, it suffices to check whether 〈BA〉, 〈BC〉, 〈DC〉 and 〈DA〉
agree with their counterparts calculated in the proof of proposition
5.4. This yields 〈BA〉 = p

(
μ1

B+
μ2

A+
)

+ (1− p)
(
μ1

B+
μ1

A−) = p(+1) +
(1−p)(−1) = −1+2p, 〈BC〉 = 1, 〈DC〉 = −1+2p and 〈DA〉 = 1−2p.
Hence, the expectation value of all commutators vanishes.

This shows that, in order to establish compatibility, it is not enough
to require the commutator to vanish, contrary to what is sometimes
claimed in the literature (e.g. [32, 49]).



Chapter 6

Conclusion

The main topic of this book has been to examine the experimental
testability of the Kochen-Specker theorem, with a focus towards

the problem of compatibility. The approach we have taken towards
the Kochen-Specker theorem, and to no-go theorems in general, was
motivated by the debate about the possibility of a completion of
quantum mechanics by hidden variables, such that the resulting
theory yields definite and unambiguous predictions for all observable
quantities.

As has already been remarked upon, it is not possible to rule
out hidden variable theories in general: a perfectly adequate hidden
variable theory can, for instance, always be given by the observed
probability distributions in any experiment themselves. Thus, the best
one can do is to put limits on possible completions, and then consider
whether what is left really can give rise to a theory whose implications
are any less radical than those of quantum mechanics. To this end,
it is important to collect experimental evidence for the validity of
no-go theorems1, as has been already done with great success in the
case of Bell’s theorem, in order to establish which of a pair (or set) of
mutually exclusive possibilities is in fact realized in nature.

Thus, in chapter 3, we have first undertaken an investigation into
the behaviour of certain noncontextuality inequalities under noisy

1Of course, there is not really a way to test a theorem experimentally; in as
much as it is a piece of pure mathematics, it is exactly as good and valid as
the assumptions and reasoning that went into its derivation. Rather, it is the
experimental consequences of a theorem that are being tested, and language of
the kind used above should be understood as shorthand for this.

J. Szangolies, Testing Quantum Contextuality, BestMasters,
DOI 10.1007/978-3-658-09200-9_6, © Springer Fachmedien Wiesbaden 2015
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measurements, in order to quantify the degree of violation to be
expected in real experiments.

Under a wide variety of noise models (depolarizing noise (3.3),
bit-flip errors (3.4), amplitude damping (3.5), and phase damping
(3.6)), it was found that the quantum violation decreased steadily,
but not too fast in order to expect to be able to observe violations
of noncontextuality of quantum mechanic origin in real experiments.
Furthermore, we analyzed the extended Kochen-Specker inequalities
of ref. [44], for which the bounds were found to be significantly tighter,
but still not unmatchable.

Then, in chapter 4, we introduced classical models designed to
produce violations of compatibility in order to give the appearance of
violations of noncontextuality. The operational motivation of these
models was rooted in the measurement process: since we have no
control over any possible hidden-variable state underlying the quantum
state of a system, interactions between the measurement device and
the measured system may cause unpredictable and effectively random
hidden-variable state transitions. Such transitions then show up in
the form of violations of compatibility. As was shown in proposition
4.2, for any possible hidden-variable state, there exists an evolution
such that the CHSH inequality is maximally violated, despite this
evolution being independent of the measurement context and thus in
this sense noncontextual.

Furthermore, we have subjected the extended CHSH inequality
of ref. [44] to the same analysis, and found that, while it is not as
easily violated as the regular CHSH inequality, it—and, by extension,
similar extensions of other inequalities—nevertheless cannot exclude
these models.

Finally, chapter 5 saw the formulation of a first attempt to overcome
the problem of compatibility. To this end, we formulated a notion
of noncontextuality which we termed noncontextual evolution 5.1,
defined by two postulates:

I. All of a system’s observables have definite values at any given
time (value definiteness (VD)).
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II. It is possible to uniquely attribute to each system a sequence of
(hidden-variable) states λi → λj → λk → . . . that is independent
of the measurements performed on the system (noncontextual
evolution (NCE)).

As shown in chapter 4, systems obeying I. and II. may exhibit
violations of Kochen-Specker inequalities. However, the notion of
noncontextual evolutions led us to new inequalities—actually, refor-
mulations of inequalities 2.4 and 2.18 in which attention was paid to
the ordering of observables—, that were shown to be obeyed by all
noncontextually evolving systems, yet are nevertheless violated by
quantum mechanics, the contextuality of which thus was shown to
run even deeper than the Kochen-Specker notion.

The advantage of noncontextual evolution is that it does not depend
on the notion of compatibility: while it is not possible to derive in-
equalities such as 2.4 and 2.18 without assuming the co-measurability
(and hence, compatibility) of the observables, and thus, the experi-
mental violation of these inequalities does not say anything about the
Kochen-Specker notion of contextuality, inequalities like the one we
called CHSH∗, given by

〈χCHSH∗〉 = 〈AB〉 + 〈CB〉 + 〈CD〉 − 〈AD〉
HV
≤ 2, (6.1)

hold even if there is no perfect compatibility between the observ-
ables. The only requirement is for there to be a definite evolution
(or probabilistic combination of such evolutions) λi → λj → . . .
that applies independently of the measurements being carried out
on the system, i.e. the context. Thus, experimental observation of
the violation of these inequalities does unambiguously indicate that
quantum mechanics cannot be replaced by a noncontextually evolv-
ing theory, since, due to the investigations of chapter 3, we know
that even under imperfect measurements, quantum mechanics vio-
lates such inequalities. Additionally, since any system for which the
Kochen-Specker notion of noncontextuality applies is a noncontex-
tually evolving system—its evolution being the trivial one in which
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the hidden variable state never changes—, this experimental viola-
tion also implies that quantum mechanics cannot be supplanted by
Kochen-Specker noncontextual hidden variables.

In fact, as commented upon in [70], an experiment testing whether
nature obeys the constraints of noncontextual evolution has effectively
already been carried out by Kirchmair et al. in [45]. There, they
measure all possible combinations of compatible observables in the
Peres-Mermin square (2.1), including those necessary for testing the
inequality 5.8. With this data, the observed value is 〈χPM∗〉QM =
5.35(4), comfortably violating the noncontextual-evolution bound
〈χPM∗〉NCE = 4.

An interesting side result to this discussion has been the realiza-
tion of a connection between our NCE-inequalities and Leggett-Garg
inequalities, and thus, between noncontextuality and macroscopic
realism. In a sense, an inequality such as 6.1 above may be considered
as both a Leggett-Garg and Kochen-Specker inequality: it rules out
macroscopic realism for nontrivial evolutions in between measuremens,
and noncontextuality in the case of no state changes (which the usual
Leggett-Garg inequalities do not). Thus, the notion of noncontextual
evolution may be considered to provide a unified background to both.

We then seem to have arrived at a possible answer to the problem
of compatibility, and thus, at a route towards subjecting the Kochen-
Specker theorem to the same rigorous empirical testing that Bell’s
theorem already has withstood so magnificently.

We hope that this present work will thus aid in the program to put
the Kochen-Specker theorem on the same firm experimental footing
that Bell’s theorem already rests upon, possibly opening up ways for
quantum contextuality to play a role in the foundations and applica-
tions of quantum mechanics similarly to that enjoyed by nonlocality.
Some first steps in this direction have already been undertaken: con-
textuality has been implicated to play a role in measurement-based
quantum computation 2.1, it has been used to guarantee the secu-
rity of quantum key distribution protocols [76, 77], and its role in
axiomatizations of physical theories has been investigated [25].



A Some Tables of Values

A.1 Possible Values for the CHSH-Inequality

For the CHSH-inequality, the quantity Kij = AiBj + BiCj + CiDj −
DiAj , for all combinations, evaluates to (negative values are marked
by an overbar, e.g. 2 ≡ −2):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 4 2 2 2 2 2 2 4 0 0 0 2

4 2 2 2 2 0 0 0 0 0 0 2 2 2 2 4

0 2 2 2 2 0 0 4 4 0 0 2 2 2 2 0

0 2 2 2 2 0 4 0 0 4 0 2 2 2 2 0

0 2 2 2 2 4 0 0 0 0 4 2 2 2 2 0

2 4 0 0 0 2 2 2 2 2 2 0 0 0 4 2

2 0 4 0 0 2 2 2 2 2 2 0 0 4 0 2

2 0 0 4 0 2 2 2 2 2 2 0 4 0 0 2

2 0 0 4 0 2 2 2 2 2 2 0 4 0 0 2

2 0 4 0 0 2 2 2 2 2 2 0 0 4 0 2

2 4 0 0 0 2 2 2 2 2 2 0 0 0 4 2

0 2 2 2 2 4 0 0 0 0 4 2 2 2 2 0

0 2 2 2 2 0 4 0 0 4 0 2 2 2 2 0

0 2 2 2 2 0 0 4 4 0 0 2 2 2 2 0

4 2 2 2 2 0 0 0 0 0 0 2 2 2 2 4

2 0 0 0 4 2 2 2 2 2 2 4 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.1)

J. Szangolies, Testing Quantum Contextuality, BestMasters,
DOI 10.1007/978-3-658-09200-9, © Springer Fachmedien Wiesbaden 2015
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A.2 Possible Values for the CHSH*-Inequality

Analogous to the CHSH-inequality, the values of Kij = AiBj +CiBj +
CiDj−AiDj for the CHSH∗-inequality are (negative values are marked
by an overbar, e.g. 2 ≡ −2):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.2)
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Specker Theorem: A Proof with 18 vectors, Phys. Lett. A 212,
183 (1996)

[29] A. Peres, Incompatible results of quantum measurements, Phys.
Lett. A 151, 107 (1990)

[30] N. D. Mermin, Simple unified form for the major no-hidden-
variables theorems, Phys. Rev. Lett. 65, 3373 (1990)

[31] G. Greenstein and A. G. Zajonc, The Quantum Challenge: Mod-
ern Research on the Foundations of Quantum Mechanics, 2nd
edition, Sudbury, Jones and Bartlett Publishers (2006)
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[73] J-Å. Larsson, A Contextual Extension of Spekkens’ Toy Theory,
AIP Conference Proceedings 1424, 211 (2012)

[74] R. W. Spekkens, In defense of the epistemic view of quantum
states: a toy theory, Phys. Rev. A 75, 032110 (2007)



108 Bibliography

[75] R. Raussendorf, Quantum computation, discreteness, and con-
textuality, arXiv:0907.5449 [quant-ph] (2009)

[76] K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, M.
Paw�lowski, and M. Bourennane, Contextuality offers device-
independent security, arXiv:1006.0468 [quant-ph] (2010)

[77] S. Adhikari, D. Home, A. S. Majumdar, and A. K. Pan, Quantum
contextuality as security check in quantum cryptography using
intraparticle entanglement, arXiv:1101.0660 [quant-ph] (2011)


	Foreword
	Profile of the Institute
	Preface
	Contents
	List of Illustrations
	Figures
	Tables

	Chapter 1 Introduction and Motivation
	Chapter 2 Theory and Background
	2.1 The Completeness of Quantum Theory
	2.2 The Kochen-Specker Theorem
	2.2.1 Kochen and Specker’s Original Proof
	2.2.2 The Peres-Mermin Square

	2.3 Testing the Kochen-Specker Theorem
	2.4 Non-Contextuality Inequalities
	2.4.1 The CHSH-Inequality
	2.4.2 An Inequality from the Peres-Mermin Square

	2.5 The Finite-Precision Problem
	2.5.1 MKC Models
	2.5.2 Answers to the Finite-Precision Problem

	2.6 The Problem of Compatibility
	2.6.1 A Kochen-Specker Test on Separated Qutrits
	2.6.2 Extended KS Inequalities


	Chapter 3 Noise-Robustness of Kochen-Specker Tests
	3.1 The Measurement Process
	3.2 Noise Models and Quantum Operations
	3.3 Depolarizing Noise
	3.3.1 The CHSH-Inequality
	3.3.2 The Extended CHSH-Inequality
	3.3.3 The Peres-Mermin Inequality

	3.4 Bit-Flipping
	3.4.1 The CHSH-Inequality
	3.4.2 The Extended CHSH-Inequality
	3.4.3 The Peres-Mermin Inequality

	3.5 Amplitude Damping
	3.5.1 The CHSH-Inequality
	3.5.2 The Extended CHSH-Inequality
	3.5.3 The Peres-Mermin Inequality

	3.6 Phase Damping
	3.6.1 The CHSH-Inequality
	3.6.2 The Extended CHSH-Inequality
	3.6.3 The Peres-Mermin Inequality

	3.7 Summary

	Chapter 4 Statistical Models for Noisy Measurements
	4.1 Conceptual Model of the Measurement Process
	4.1.1 Ontic State Space
	4.1.2 Violations of Compatibility

	4.2 Markov Models
	4.2.1 Violating KS Inequalities with Probabilistic Evolutions
	4.2.2 Violating Extended KS-Inequalities


	Chapter 5 Noncontextual Evolution
	5.1 Noncontextually Evolving Systems
	5.2 Inequalities for All Noncontextually Evolving Systems
	5.2.1 Generalizing the CHSH-Inequality
	5.2.2 Generalizing the Peres-Mermin Inequality

	5.3 An Extension of the KS-Theorem
	5.3.1 Contextually Evolving Hidden Variables


	Chapter 6 Conclusion
	A Some Tables of Values
	A.1 Possible Values for the CHSH-Inequality
	A.2 Possible Values for the CHSH*-Inequality

	Bibliography



