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Chapter 1
Introduction

1.1 Energy in Buildings

Energy efficiency in the building sector accounts for around 30–40% of the total
energy consumption of human activities as per diverse sources (Pérez-Lombard et al.
2008; UNEP 2012). In 2010, its absolute consumption was 23.7 PWh and the Inter-
national Energy Agency indicates that it can reach 38.4 PWh in 2040 (IEA 2013),
being responsible for 38% of the greenhouse gas emissions (UNEP 2012). Around
the world, this sector currently represents 13% of the GDP and it is expected that it
increases to 15% in 2020 (Global Construction Perspectives and Oxford Economics
2013). Its total budget sat at 8.2 trillion dollars in 2013 (IHS Economics 2013) and it
is foreseen that this will grow to 15 trillion dollars in 2025. As such, those strategies
that focused on energy efficiency, consumption and emission reduction are one of the
main challenges of the construction sector. Thus, the need of predicting these factors
has forced official entities, like the European Union since 2002 (European Commis-
sion 2002), to obligatorily establish the measuring of buildings’ energy efficiency.

In this context, the scientific community has intensified their efforts aiming at,
if not reducing, at least containing the increase of CO2 emissions and energy con-
sumption associated to the construction sector. The design, construction, operation
and maintenance of a building is a long and costly process. Numerous factors are
involved consuming plenty of both economic and natural resources. In the last few
years, thanks to the increase in computing power, those studies focused on the sim-
ulation of building’s behavior with regard to their energy demand have specially
flourished. They can provide, even before starting the construction, reliable informa-
tion about their energy consumption and CO2 emissions during the lifespan of these
buildings.

The design of a building implies plenty of parameters. The final result comes from
the complex interaction of climatic variables, the building type, its shape, design,
use, construction systems and air-conditioning equipment. This research covers a
broad spectrum, focusing on the impact that some of these parameters could have
on the energy consumption and CO2 emissions. The final objective is to produce, as
a result, a mathematical model or series of data that would help the designer in the
early stages of the project to predict with a tolerable margin of error, the resources

© The Author(s) 2018
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2 1 Introduction

that a building is going to deplete, thus being able to quantify its future impact on
the environment.

Due to the strong influence that both local climate and local techniques exerts over
the construction industry, this phenomenon is, basically, a local phenomenon. For
that reason, although studies on the field of energy consumption and CO2 emissions
usually focus on a particular region or area, many local studies can add up to attain a
more global view on this phenomenon via comparative studies. The scientific output
of this research is expected to provide conclusions focused on the local case study
of the Chilean context.

The amount of energy embedded in construction materials, that is to say, the
energy that is consumed and the CO2 that is emitted to manufacture a given material,
has an impact on the total associated to the building. The results depend on the
country and the context being considered. In the case of residential buildings with
standardized spatial configurations that are located in Korea (Jeong et al. 2012),
steel, cement and concrete cover 85% of the CO2 emissions. In the case of office
buildings in Greece (Dimoudi and Tompa 2008), the conclusions are similar, with the
structural elements (steel, cement and concrete) being responsible for approximately
60% of the CO2 emitted. In these investigations, the methodology is based on the
compilation of databases that can serve as reference for designers when choosing
construction materials.

Predictions of future climate scenarios and their influence on energy demand in
architecture is postulated as one of the foci for research and development in the field
of building science, and it has attracted increasing attention and support from govern-
ments and research institutions. Since the creation of the Intergovernmental Panel on
Climate Change (IPCC) in 1988, which has recently published its Fifth Assessment
Report (AR5) (IPCC2014), there are numerous studies that consider globalwarming,
the increase of emissions and the scarcity of natural resources. In this line, sundry
prediction models have been generated for various climate scenarios (Jentsch et al.
2008). Most of these models have been developed in the United Kingdom (Mylona
2012), although they have increasingly extended through the international frame-
work (Guan 2009; Jentsch et al. 2013). Currently, IPCC, supported by the United
Nations Environment Programme (UNEP) and the World Meteorological Organiza-
tion (WMO),which is themostwidely accepted organization in thismatter, envisages
multiple emission scenarios (IPCC) for the near future (years 2020, 2050 and 2080).

Several studies have been conducted in order to assess the effect of variations on
climate over the energy demand of buildings (Sorrell 2015). Due to the affinity with
our case study, specific studies are cited for countries that encompass a variety of
climates, because existing literature shows that a variation in the climate may have
controversial effects, depending on the type of external conditions. An extensive
study by Wang (Wang and Chen 2014), whose data was extrapolated to the existing
building stock in the USA, proved that buildings located in temperate climates within
the USA would experience an increase in energy use, basically for cooling. While,
those in cold zoneswould reduce their energy consumption based on heating systems,
due to the occurrence of warmer winters. A study fromKalvelage et al. (2014), which
was focused on the influence on climate change over comfort hours and energy
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demand in buildings, provided data for 5 locations across the USA. Conclusions
showed that, within a one-year period, the number of hours when heating is needed
increases, while cooling needs decrease, and a reduction in global comfort hours is
observed. Another case study referring to Spain, which also comprises a variety of
climates, has been made by Gangolells and Casals (2012), with outcomes related to
the energy demand of the existing building stock in the most representative cities in
Spain. By using the degree-day method, it was concluded that, despite the heating
demand would be reduced around 30–36% for some cities, cooling demand would
rise between 107–296%. Other authors have focused on the elaboration of reliable
climate files to support the simulation process. Jentsch et al. (2013) concluded that
morphing actual weather files in EnergyPlus/ESP-r Weather (EPW) format with
previsions from IPCC using HadCM3 files for the scenario A2, gives a consistent
base to calculate variations in energy demand for buildings. These authors have also
made significant contributions on the technical aspects of the morphing process of
weather files (Jentsch et al. 2008), giving a reliable technical base to undertake this
research.

Thus, taking into account the preceding literature, countries that have to adapt their
building industry to a variety of climatic contexts may represent a compelling case
study for twomain reasons. First, as any given country envisages its own legal frame-
work for this matter, they must consider all possible climatic contexts, thus dividing
the territory into different zones, with controversial figures for energy demand. Sec-
ondly, future scenarios for climate change have to counterbalance the effects over
different contexts, mainly regarding the energy demand for cooling and heating; in
this sense, as it has been quoted before, a decrease in heating demand for cold zones
may compensate the increase in cooling demand in warmer climates, or the contrary,
may not be able to do so. This balance has to be taken into careful consideration, in
order to determine, for any given country or territory, whether energy demand for
the building sector may increase or decrease in global figures due to climate change.

In addition to the latter, it has to be taken into account that, regarding energy
demand, building shape plays a crucial role. In this sense, several authors have
studied the relation between changes in the future climate conditions and variations
in the optimal building shape. A study by Parasonis et al. (2012) determined the
relationship between the proportion and size of up to 3000 m2 buildings and their
energy performance, concluding that an optimization on building shape can reduce
the energy demand of buildings. Other authors, such as Gong et al. (2012), have
focused on various climates in China, optimizing different parameters in buildings,
such as walls and roof insulation thickness, window orientation, window-to-wall
ratio and glazing type, summarising seven passive design zones in which annual
thermal loads can be reduced due to this optimization. A similar approach by Ihm
and Krarti (2012) obtained the maximum energy saving potential in villa design in
four locations in Tunisia. Other studies are specifically focused on the optimization
of a single parameter, such as the window-to-wall ratio (Yang et al. 2015) in order
to mitigate the impacts of climate change (Dowd and Mourshed 2015).

The need to predict energy consumption and at least contain the increase of CO2

emissions in the construction sector has compelled official organizations, like the
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European Union since 2002 (European Commission 2002), to order that the energy
efficiency of buildings had to be quantified. One of the calculation methods recom-
mended by the Commission Delegated Regulation (EU) No. 244/2012 (European
Commission 2010) is the one contemplated in the ISO 13790:2008 (ISO 2008). This
method has been widely used in the scientific community (Zhao andMagoulès 2012)
in the first stages of design for both simple or complex envelopes (Negendahl and
Nielsen 2015); it has even been optimized for specific climates through the use of
the factor method (Jokisalo and Kurnitski 2007), as it is a validated tool and is rel-
atively easy to make iterations, unlike the dynamic simulation methods (Negendahl
2015).When it comes to simplifying the calculationmethods, there have been several
investigations that relate the heating and cooling demand in regards to their energy
consumption (Korolija et al. 2013a, b) and CO2 emissions (Pulido-Arcas et al. 2016)
with regression models.

In addition, the use of artificial neural networks has spilled over to the construction
sector (Kumar et al. 2013) because they give higher feasibility and reliability than
other traditional regression techniques. Most of the recent research is focused on
energy used in buildings (Karatasou et al. 2006), with various applications ranging
from predicting the consumption of the building per se, studies that predict energy
demand (Kialashaki and Reisel 2013), energy consumption (Neto and Fiorelli 2008),
both cooling and heating (Macas et al. 2016; Deb et al. 2016), and the performance
of different air-conditioning systems (Kljajić et al. 2012; Rodger 2014).

Moreover, theANNapproach has allowed researchers to combine several parame-
ters in the decision-making analyses (Cui et al. 2016) and the use of online forecasting
tools (Yang et al. 2005; Li et al. 2016). These approaches are also applied to elec-
tricity load forecasting (Jurado et al. 2015), hourly energy consumption (González
and Zamarreño 2005) and bioclimatic buildings (Mena et al. 2014). Other studies
consider the analysis of climate parameters in the built environment as well as indoor
air temperature (Ruano et al. 2006) and relative humidity (Mba et al. 2016), and there
are also investigations related to thermal (Boithias et al. 2012) and visual comfort
(Wong et al. 2010) levels gathered with energy consumption.

A revision of the relevant literature points out that those studies related to ANN
mainly rely on the study of a single case study or a group of case studies. Mba et al.
tested the performance of ANN in predicting comfort parameters in a small room
(6.5 m2) located in a building in Cameroon (Mba et al. 2016). Kumar et al. proposes
the application of ANN to study heating and cooling demands for a group of 250
buildings, with areas ranging from very small spaces (1–2 m2) to medium sized ones
(100 m2) (Kumar et al. 2013). Karatasou et al. compared the feasibility of an ANN
model against two case studies, one from a prediction tool and another from a real
case study of an office building in Athens (Karatasou et al. 2006). A single case-
study of an administrative building located in Sao Paulo (Neto and Fiorelli 2008) set
results from a simulation software and ANN off against each over. Another single
case-study was used as a test model for ANN in Southern Spain, in this case for
a bioclimatic building with a peculiar energy demand (Mena et al. 2014); while, a
secondary school located in Portugalwas used as a testmodel because of its suitability
for predictive neural networks (Ruano et al. 2006). A similar case-studywas used as a
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test model for ANN for a medium sized tertiary building in Italy (Macas et al. 2016).
The energy demand of three institutional buildings were assessed over 2 years and
then compared with the results of an ANN model (Deb et al. 2016). A similar study
proved the suitability of usingMachine learning methodologies to accurately predict
the energy demand of three educational buildings in Spain (Jurado et al. 2015)

With regard to tertiary buildings, Li et al. provided evidence of the adaptability
of these regression techniques to predict energy demands, testing the model against
two commercial premises, one small and onemedium-sized property (Li et al. 2016).
Energy demand for an entire rooftop air conditioning system of a single large-scale
commercial building could be also accurately predicted using ANN (Rodger 2014),
and similar results were provided by Kljajić et al. (2012) for a larger sample size:
65 boilers located randomly across 50 buildings in Serbia. Another case study, with
regard to sample size, tested the feasibility of meta-learning based systems against 48
test buildings and 1 real building (Cui et al. 2016). Studies have been made not only
for energy demand, but also for daylighting prediction using ANN, such as Wong
et al. (2010), where a 35×35 m simulation of a 40 storey building was carried out
as a single case study using Energy Plus software to then compare the results against
ones given by the ANN model.

Other authors focus on predicting the energy demand on a large scale (nationwide
study for the USA) (Kialashaki and Reisel 2013) focusing on the evolution of socioe-
conomic parameters or using existing data obtained from past records to predict the
short-term energy consumption (González and Zamarreño 2005). Additionally, other
earlier studies provide the necessary basis on how to adapt the architecture of anANN
to the requirements of a study of this kind (Yang et al. 2005) and how to improve the
algorithms to better predict comfort parameters and energy consumption (Boithias
et al. 2012).

Other research projects are more similar to the approach of this one, such as
Khayatian et al. (2016), who uses data generated from a simulation software for
energy certification in Italy as the training set in order to model an ANN that is
capable of predicting the expected outcomes. Dall’O’ et al. use a broad database of
around 175,000 elements to provide inputs for predicting outcomes for the energy
certification of buildings in a designated area (Dall’O’ et al. 2015). Alternatively
an ample database can be used to establish benchmarking methods for the energy
performance assessment of buildings (Wang et al. 2012).

Those existing studies provide a reliable scientific corpus thatwidely demonstrates
that ANN methodology is applicable for predicting several variables in relation to
building’s energy demand and energy consumption. In this way, the authors have
made some contributions on this matter in the development of prediction models
related to energy demand in buildings (Pulido-Arcas et al. 2016) and found out that
there is room for further development in this field.

This research intends to propose an advance in the use of ANN and linear regres-
sions to predict energy demand, energy consumption and CO2 emissions, taking
tertiary buildings located in Chile as a target, considering that this approach is com-
pelling for the following reasons. At first, Chile is a country that is experimenting
a profound transformation in the construction industry, as a consequence of being
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the first South American country to join the OECD. The legislative framework for
energy efficiency has strengthened remarkably over the last few years, changing from
an old 2007 standard (NCh835 2007) to some legislative texts that, despite not yet
being mandatory, provide useful guidelines to reduce CO2 emissions and contain
energy demand both for public (MOP 2011) and residential buildings (Estándares de
Construcción con Criterios de Sustentabilidad 2016). Additionally, the Chilean gov-
ernment has promoted a multilateral agreement with the objective of implementing
the BIM (Building Information Modelling) standard in all public projects in order
to improve efficiency and productivity (CORFO Chile 2016). This transformation
is being done in cooperation with countries such as Spain or the UK, who provide
technology and know-how about how to implement energy efficiency policies, in
particular with regard to the European ISO calculation standard and energy-rating
systems. Given this context, the context of this research is useful in helping this
transformation into an energy-efficient and reduced-CO2 policy.

1.2 Office Sector in Chile

Chile is a representative case study for the following reasons. This country features
a particular geography, ranging from its Northernmost point 17° 29′ South to its
Southernmost point 56° 32′ South, extending across 4270 km. Due to this particu-
lar geography, it encompasses a wide variety of climates, ranging, according to the
Köppen-Geiger classification, from arid climates (type B) to temperate mesothermal
climates (type C) and polar and alpine climates (type E). Focusing on the build-
ing sector, the current Chilean standard NCh1079:2008 (INN 2008) classifies the
country into nine climatic zones, covering the aforementioned variations of Köppen-
Geiger. The Chilean Ministry of Environment, in is concerns about global warming,
has widely studied natural phenomena, creating the National Plan for Adaptation to
Climate Change (Ministerio del Medio Ambiente Gobierno de Chile 2011) and sev-
eral have come from the implications of the scientific community for these so-called
futures (Eriksen et al. 2011). With regard to the building sector in Chile, energy
efficiency is a relatively novel approach in public policies. The current regulation
“Terms of Reference—Standardized Environmental Control and Energy Efficiency”
(TDRe) (MOP 2011), which is focused on tertiary buildings, considers limitations
for energy demand as well as for the comfort of their inhabitants. Within this frame-
work, an understanding of changing climate scenarios shall provide tendencies for
the energy demand of buildings, as well as the strategies upon which future revisions
of the building code should be based. Thus, in a broader sense, these studies will help
shape the way in which the building industry will have to reduce its dependency on
energy consumption and depletion of natural resources (Robert and Kummert 2012).

In terms of the scale of the study, it has focused on tertiary office buildings,
because of this sector’s impact on construction activities in Chile (ERCROS 2014),
comprising facilities of all kinds and types in relation to the built area, location, shape
or conditioning systems, amongst other variables. According to data from theChilean
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Bureau of Statistics, office buildings are a growing sector, totalling 8.9million square
meters, approximately 12.75%of the total built area since the 2012–2015 period (INE
2015). Considering just the public policies and the Chilean Integrated Repository of
Projects (BIP 2015), more than 50% of the projects currently developed by the
Chilean Government are offices, and their average area is approximately 1500 m2,
with most of them located in the country’s capital, Santiago. That is why, in order to
assist this transition, this study attempts tomake a relevant contribution in forecasting
the three variables that are considered crucial for energy policies in the building
industry: Energy demand, energy consumption and CO2 emissions. As pointed out
before, there is not yet a standardized quasi-dynamic calculation procedure in Chile,
as in European countries, that guides the aforementioned calculations, and for this
reason it has been considered a novel approach to implement the ISO 13790:2008
standard in the Chilean context.

1.3 Legal Framework and Energy Services

Building’s CO2 emissions do not just depend on the building’s intrinsic parameters,
as its emissions are also associated to the type of energy that this uses to cover its
different demands. Thus, following the Standard International Energy Classification
(SIEC) in the International Recommendation on Energy Statistics (IRES) (Over-
gaard 2008), we distinguish between primary and secondary energy; primary energy
includes those materials that are directly burned in the building thus producing CO2,
such as petrol, coal and natural gas. Secondary energy includes those sources of
energy, in this case electric power, which are generated elsewhere and consumed in
the building. A building can consume both types of energy, so with the idea of unify-
ing all of these into a common unit, each type of energy has a CO2eq emission factor
associated to quantify the emissions that their combustion or production generate.
In the case of primary energy, this information is obtained directly from the type of
fuel that is used (Table 1.1).

If the equipment uses electricity it is necessary to quantify the primary
source that generates this, which has CO2 emission factors associated, depending
on its origin (wind, solar, gas, coal, nuclear, etc.). In the case of primary energy, we
can take data from the international scale, as the chemical-physical characteristics
of the fuels do not visibly vary from country to country; therefore, we estimate aver-
age values for the member countries of the OECD, which Chile is part of (Energy
Agency) (Table 1.2).

In the case of secondary energy, it is necessary to make a distinction for each
country. In the case of Chile, there are four interconnected electrical systems, the
Norte Grande Interconnected System (SING by its Spanish acronym) (28.06% of
the installed capacity in the country), the Central Interconnected System (SIC by its
Spanish acronym) (71.03% of the installed capacity), the Aysén System (SA by its
Spanish acronym) (0.29% of the installed capacity) and the Magallanes System (SM
by its Spanish acronym) (0.62% of the installed capacity). Their parks are comprised
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Table 1.1 CO2 emission factors associated to the different technologies used in the energy industry

Technology Setup CO2eq (kg/Ton)

Petrol boilers 3134

Diesel boilers 3192

Liquid gas boilers 3042

Bituminous/sub-bituminous boilers—mechanical loading
from above (solid fuels)

2.446/1.820

Boiler with mechanical loading from below (solid fuels) 2.455

Boilers with
bituminous/sub-bituminous
powdered feed (solid fuels)

Dry base, lit on the sides 2444/1819

Dry base, superficially lit 2451/1824

Wet base 2452/1824

Boilers with mechanical loader and
fluidized bed combustion chamber
(Solid fuels)

Circulation bed 2910

Effervescent bed 2910

Natural gas boilers 1.985 kg/m3

Natural gas turbines>3 MW 1.987 kg/m3

Source Own preparation based on IPCC 2006, chart 2.7 and NEB 2009 (Emission factors and LCV
obtained from IPCC 2006, density obtained from NEB 2009)

Table 1.2 CO2eq emissions
factors for primary energy
sources in 2015

Source Year (grCO2eq/kWh)

2015

Bituminous coal 875

Natural gas 400

Diesel 725

by different types of generation, what is called the energy mix; in the SING and SM,
the energy is generated by thermal plants; in the SIC, 47.41% of the generation park
is from hydroelectric plants (dams and run-of-river), 51.86% by coal, petrol, diesel
and natural gas combined cycle plants and 0.73% fromwind farms; in the SA, 56.5%
is from thermoelectric plants, 39.7% from hydroelectric and 3.8% wind. Therefore,
the CO2eq emissions associated to the electrical generation from each one of the
interconnected systems are associated to their production characteristics (Table 1.3).

Table 1.3 CO2eq emissions for the two most important electricity production interconnected
systems

Interconnected system Year (grCO2eq/kWh)

2010 2011 2012 2013 2014 2015

SING 715 725 806 811 790 764

SIC 346 379 391 432 360 346
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Chapter 2
Research Method

2.1 Introduction

To evaluate the energy behavior of the buildings it is necessary to know numerous
data related with its geometry, internal and external loads, construction systems,
air-conditioning systems and user profiles. Selecting and quantifying the parameters
needed is a complex task which requires the designer’s experience and knowledge,
as well as an in-depth understanding of the calculation process.

The ISO 13790:2008 standard establishes the international standard in regards to
the calculation procedures to get the energy demands needed to obtain the energy
consumption and CO2eq emissions. This calculation method is widely seen and
applied by Governments and researchers. It is recommended by the Commission
Delegated Regulation (EU) No 244/2012 (EC 2012/C 115/01 2012) which imple-
ments the Energy Performance of Buildings Directive (EU 2010). This method has
been widely used in the scientific community (Zhao and Magoulès 2012) in the first
design stages both for simple or complex envelopes (Negendahl and Nielsen 2015),
it has even been optimized for specific climates using the factor use method (Jokisalo
and Kurnitski 2007), as it assumes a validated and easy-to-use tool to make iterations
in contrast to the dynamic simulation methods (Negendahl 2015).

This research uses this calculation procedure for energy demand, energy con-
sumption and CO2 emissions, using an extensive series of entry data, organized into
several categories, which was then introduced into equations to give the output data.
Starting with a location, defined by its corresponding weather data, several proto-
types are produced considering the number of stories, the area of each story, the form
ratio of the buildings and the window to wall ratio. Secondly, for a given prototype
building, energy demand is calculated. Thirdly, a random COP and EER is assigned
in order to obtain the energy consumption for heating and cooling. Fourthly, this
consumption is multiplied by the emission factor to obtain the CO2eq emissions
associated with the corresponding consumption.

With the data of energy demand, energy consumption and CO2 emissions opti-
mization methods are carried out. First of all, the minimal energy demand (total,
cooling and heating demand) are identified considering the influence of the entry
data. In a second step, energy consumption and CO2 emissions are analyzed using a
multivariable regression model to produce the equation that best fits its distributions

© The Author(s) 2018
C. Rubio-Bellido et al., Energy Optimization and Prediction in Office Buildings,
SpringerBriefs in Energy, https://doi.org/10.1007/978-3-319-90146-6_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90146-6_2&domain=pdf


14 2 Research Method

establishing the model’s degree of accuracy. Finally, the regression models are com-
pared with Artificial Neural Networks Model in order to best predict to predict the
energy consumption and CO2 emissions.

It is expected that this research assists designers in the early stages of design,
being able to grasp the demand of resources of their design with a few variables.
The reference values from the multivariable regressions and ANN will be of help in
assisting future policy makers in establishing realistic goals in order to reduce, or at
least contain, the energy demand, energy consumption and CO2 emissions for office
buildings.

2.2 Calculation Procedure

The calculation procedure used in this research is an implementation of the model
defined in ISO 13790:2008 (Thermal performance of buildings—Calculation of
energy use) (ISO 2008), which is aimed at performing extensive calculations for
a large number of cases for the evaluation of the energy demand in non-residential
buildings. It is not a tool that is aimed at energy modelling of buildings, but rather
a procedure that describes buildings following a number of parameters, which are
organized into 5 main groups: Location, geometry of the building, constructive sys-
tems, internal heat loads and external heat loads. Each parameter is defined by a
numerical value that must be added to the calculation procedure, whose formula
is also defined in the aforementioned method. Using a static simulation model and
following the calculations that will be described further on, results regarding the
cooling and heating demand are obtained for the studied building.

This procedure relies on a fully prescribed monthly quasi-steady calculation
method, also called seasonal or monthly method (ISO 2008), that may not achieve
as accurate results as the dynamic methods, present in numerous commercial simu-
lation software. However, the ISO 13790:2008 has been duly tested with regards to
its application for several European legislative frameworks with satisfactory results
(Staudt and von D Hans 2010), and its accuracy is accepted for a quasi-steady calcu-
lation method, despite that each country demands some specific adaptation to their
particularities. Additionally, the model considers the whole building as an interior
conditioned space separated from the exterior by a thermal boundary, a single con-
ditioned thermal zone with no internal partitions.

On the other hand, the use of this method allows for a fast and efficient modelling
of a wide number of case studies, because a virtual model does not need to be
assembled. By combining numerical parameters, a building prototype is correctly
defined; afterwards, a wide range of case studies can be obtained by just varying
those parameters within a reasonable range.

This research has implemented the calculation procedure of the ISO 13790:2008
in MS Excel® Visual basic, in order to obtain results for a great number of cases.
The model runs iterations for all possible combinations of the parameters. The ISO
procedure is based only on physical variables so, as the intention is to adapt this
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model into the Chilean context, some adaptations have been made to the original
model. Thermal comfort conditions on the inside of buildings have been established
following the Chilean standard, TDRe, which is specifically aimed at fostering pas-
sive building design and, therefore, reduces dependency on energy consumption. For
this reason, the comfort range for occupants is extended, with the setting’s operative
temperature for cooling being 25 and 20 °C for heating.

2.2.1 Internal and External Loads

Internal heat gains in the test models are established according to the use, which is
a fixed parameter for all of the prototypes; 9 h of office activity (from 8 a.m. to 5
p.m.) in which the lighting load is quantified as 16.00 W/m2, occupancy loads as
6.00 W/m2 and equipment loads as 4.5 W/m2, according to the most representative
use (Ministerio de Desarrollo Social de Chile 2016) (Fig. 2.1). The standardized and
representative use for public office buildings, despite the fact this is a simplification
of the real use, allow us to compare all the models with an equal pattern of internal
loads.

In regards to the external heat gains, these depend on the orientation and shape
of the building, thus they differ for each test model. GHR levels have been obtained
from the EPW files per each location and scenario. An air flow of 0.3 l/s m2 has
been considered as the infiltration rate for each climate zone (Table 2.1) (Citec
UBB and Decon UC 2014) considering the envelope surface and air changes per
hour (Odriozoloa Maritorena 2008). The infiltration rate depends on the building
compactness, considering 50 Pa air tightness of the envelope. Due to this fact, average
air changes per hour (ACH) are related to air infiltration with a pressure difference
of 50, which can be considered as depicted in Eq. (2.1) for large non-residential
buildings.

ACH50 � Q50

60 · AE
(2.1)

qve,in f � Q50 · V
60 · AE · 3.6 · N f (2.2)

As, according toFR, the building envelope is variable (AE), themodel’s infiltration
rate is not constant. The simulation procedure automatically transforms infiltration
air limits (Q50) following TDRe (Table 2.1) to air flow (qve,k infiltration) by means
of Eq. (2.2). This transformation allows us to input Q50 to the ISO-13790:2008
procedure, as well as consider volume, AE and building exposure, which depends on
the climate zone

(
N f

)
. Explicitly buildings, in all cases, are considered on an urban

context with a constant building height of three storeys (Krigger and Dorsi 2004).
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Fig. 2.1 Ventilation, infiltration and internal heat loads schedule of the widespread office buildings
in Chile

2.2.2 Heat Balance

For each month, total heat balance values are obtained based on heat transfer by
transmission and ventilation (Eq. 2.3). Setting temperatures used in Eqs. (2.4–2.7) are
as per the model, as well as ventilation and infiltration rates (Table 2.1). The setpoint
temperature for cooling 25 and 20 °C for heating

(
θint,set,C, θint,set,H

)
, along with

monthly outdoor average air temperatures have been extracted from Meteornom®.
The values of thermal transmittance and solar factors used on transmission heat
transfer calculation (Eq. 2.8) have been set at their maximum value, according to
TDRe (Table 2.1), considering all the features of the building envelope. Thermal
transmittance is increased 0.1 W/m2 k due to thermal bridges, according to the
indications from ISO-13790:2008,

QH,ht or QC,ht � Qtr + Qve (2.3)

Heating: Qtr � Htr
(
θint,set,H − θe

)
t (2.4)
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Cooling: Qtr � Htr
(
θint,set,C − θe

)
t (2.5)

Heating: Qve � Hve
(
θint,set,H − θe

)
t (2.6)

Cooling: Qve � Hve
(
θint,set,C − θe

)
t (2.7)

Htr � �i Ai Ui (2.8)

Hve � ρa ca
(
�k qbve,k, kqve,k,mn

)
(2.9)

qve,k,mn � fve,t,k · qve,k (2.10)

In order to obtain the heat transfer coefficient for ventilation and infiltration (Hve)

(Eq. 2.9), an air heat capacity of 1.200 J/(m3 K) (ρa ca) is considered. The airflow
bve,k factor equal to 1 is estimated since the supply temperature is considered equal
to outdoor temperature. Averaged airflow qve,k,mn, is calculated using Eq. (2.10), the
time (f ve,t,k) considered for the infiltration air rate is equal to 1, since the air flow
works 24 h a day; for ventilation this value is set at 0.375, as 9 h are considered in
this case.

2.2.3 Heat Gains

Total gains (Eq. 2.11) are obtained from internal sources (Eq. 2.12) and external solar
gains (Eq. 2.13). Solar heat flow is depicted in Eq. (2.14), considering that there are
no remote obstacles

(
Fsh,ob,k � 1

)
or mobile shade devices

(
Fsh,gl � 1

)
, and taking

into account the solar radiation that impinges on the element. It should be noted that
Eqs. (2.15 and 2.16) are used for translucent and opaque elements, respectively. The
absorption coefficient of the opaque surfaces

(
αs,c

)
is considered as 0.75 and the

surface thermal resistance (Rse) 0.05 m2 k/W. The average difference between the
temperature of the outside air and the apparent temperature of the sky has been set at
11 K, in line with the standard. The exterior coefficient of heat radiation transfer (hr)
is estimated as 5εW/(m2 K), considering emissivity of all the external enclosures as
0.9. Fr,k equals 1 for a non-shaded flat roof and 0.5 for a non-shaded façade (Eq. 2.17).

QC,gn or QH,gn � Qint + Qsol (2.11)

Qint � (
�k Φint,mn,k

) · t (2.12)

Qsol � (
�k Φsun,mn,k

) · t (2.13)

Φsol,k � Fsh,ob,k · Asol,k · Isol,k − Fr,k · Φr,k (2.14)

Asol,k � Fsh,gl · SFi · (1 − FF) · Aw (2.15)

Asol,op � αs,c · Rse ·Ui · Ac (2.16)

Φr,k � Rse ·Ui · Ac · hr · Δθer (2.17)
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2.2.4 Energy Demand

The annual demand is obtained by adding the monthly heating and cooling require-
ments throughout the year; for each month. This figure is obtained from Eqs. (2.18
and 2.19), respectively.

Heating QH,n � QH,ht − ηH,gnQH,gn (2.18)

Cooling QC,n � QC,gn − ηC,lsQC,ht (2.19)

Heating demand equations consider that energy balance is produced frombuilding
heat transfer

(
QH,ht

)
and it is possible to reduce the need from the internal gains(

QH,gn
)
. However, the need for energy is directly related with the gains in cooling

demand equations, and it is possible to reduce it considering building heat transfer.
Hence, a utilisation factor for heating or cooling is used (Dener and Torino 2007;
Jokisalo andKurnitski 2007), ηH,gn, ηC,ls, which is in terms of the ratio of the calorific
balance, γH, γC (Eqs. 2.20 and 2.26), and a numerical parameter α, which depend on
the thermal inertia of the building (Eqs. 2.21 and 2.22), following Eqs. (2.23–2.29.
The internal heat capacity of 400 kJ/m2 K has been considered for the building due
to its thermal inertia.

γH � QH,gn

QH,ht
(2.20)

α � α0 +
τ

τ0
(2.21)

τ � Cm/3600

Htr + Hve
(2.22)

The numerical parameter α considers the reference time constant (τ ). For the
monthly method τ0 � 15 and α0 � 1 are considered (Corrado and Fabrizio 2007).
The utilization factor for heating or cooling can be calculated depending on the value
of γH or γC.

If γH > 0 and γH �� 1 ηH,gn � 1 − γα
H

1 − γα+1
H

(2.23)

If γH � 1 ηH,gn � α

α + 1
(2.24)

If γH < 0 ηH,gn � 1

γH
(2.25)
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The same procedure is applied for calculating the cooling demand (Eqs.
2.26–2.29).

γC � QC,ls

QC,ht
(2.26)

If γC > 0and γC �� 1 ηC,ls � 1 − γ−α
C

1 − γ
−(α+1)
C

(2.27)

If γC � 1 ηC,ls � αC

αC + 1
(2.28)

If γC < 0 ηC,ls � 1 (2.29)

2.2.5 Energy Consumption and CO2 Emissions

Chile features a wide variety of climates, and this is reflected in different types of
environmental conditioning systems. There are locations with arid climates where
only cooling equipment is needed to maintain the comfort temperatures while in
cold areas, heating equipment would also be needed. In an intermediate point, there
are locations where both pieces of equipment would be needed in different propor-
tions (Rubio-Bellido et al. 2015). The different air-conditioning systems depend,
in principle, on the climatic conditions, but also on the local construction industry,
pursuant which there are always pieces of equipment whose use is common. Each
one of the pieces of equipment, whether heating or cooling, are characterized by
the COP (Coefficient Of Performance), the EER (Energy Efficiency Ratio), the HEF
(Heating Emission Factor) and the CEF (Cooling Emission Factor). The first two
are dimensionless factors which inform the equipment’s energy efficiency and that,
once introduced in the calculation model, provide the energy consumption of the
equipment and, therefore, the building. The next two establish a conversion factor
with the objective of transforming the energy consumed by the equipment into CO2

equivalent emissions resulting from the building’s air-conditioning.
A convention has been established for using this equipment. In locations where

the heating demands assume at least 10% of the annual total, the building does not
have specific heating equipment, and said demand is covered by the operation of
cooling equipment under heat pump mode. The reason behind this decision is due to
the design logic in climates with scarce heating demands, where it is more logical to
acclimatize using cooling equipment through the heat pump sporadically in heating
mode instead of investing in a boiler.
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Once the demands are obtained, both for heating and cooling, each building is
randomly assigned air-conditioning equipment pursuant the following standards. To
cover the cooling demand, a piece of equipmentwhoseEERvaries randomly between
2.4 and 4.4 is assigned; and in the case of the heating, the equipment’s COP varies
randomly between 0.6 and 0.9. However, in case the heating demand is lower than
10% of the totals, the simulation model eliminates the choice of heating equipment
and transfers the demand to the air-conditioning equipment (cooling), where an EER
is assigned randomly for the heat pump mode.

The heating and cooling consumption in kWh/m2 is obtained with this procedure.
Finally, the CO2 equivalent emissions associated to their corresponding consump-
tions are obtained by multiplying by the CO2eq emission factor, these values are
assigned randomly, as the emissions associated to the production and electricity vary
every year, depending on the type of generation (energy mix).

2.3 Test Models

2.3.1 Location

Nine different locations have been considered for the test models. Each one is located
in one representative city for each one of the climate zones of Chile, as defined in
1079. Of 2008. Those cities comprise a wide range of climates according to the
Köppen-Geiger classification. For each location, the name of the city, the latitude
and longitude and the climate zone information is provided (Table 2.3).

2.3.2 Geometry

Test models are considered as parallelepiped volumes with rectangular plans, located
according to a perfect North-South orientation. Proportions in the three dimensions
of space are defined by the gross area and number of storeys. To achieve this gross
area, both the North-South and East-West façades of each test model façade vary in
longitude, from 10 to 50 m each, giving as a result, multiple combinations for each
direction. Theparameter that relates the twoof them is denoted asFR, a dimensionless
coefficient.As each testmodel has façades in twodirections, and for the sake of clarity
in the discourse, FR is defined as shown in Fig. 2.2, that is, as the ratio between the
length of the East-West façade and the North-South façade. For instance, an FR
of 5 indicated that the East-West façade has a longitude of 50 m, and the North-
South façade of 10 m. In this way, just by altering this parameter, the dimensions and
orientation of the façades are precisely defined.With all the aforementionedvariables,
the area of the thermal enclosure (external walls, slabs and roofs) is defined.
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Fig. 2.2 FR storey

Finally, the window-to-wall ratio (WWR) coefficient is set as free, expressed
as a percentage of the window area with regards to the whole area of the thermal
enclosure, varying from a minimum of 10% to a maximum of 60%. These boundary
limits are established following the Chilean standard, TDRe (Table 2.2), giving as
a result, multiple types of façades with different WWR. Summing up, FR defines
the geometrical characteristics of each test model, and WWR, their type of thermal
enclosure. These two variables are set as free in the simulation and they will be the
core of the analysis in this research.

2.3.3 Constructive Systems

The thermal envelope for each test model is established following the TDRe limit
conditions (Table 2.1), which modify openings’ thermal transmittance (Ui) and solar
factor (SFi) according to the window-to-wall ratio (WWR) (Table 2.2), generating
432 different cases ofUi and SFi. Given any location (climate zone), orientation and
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WWR, for a test model, limit values both for Ui and a fixed value for the SFi are
automatically established, following the TDRe limits. Thermal inertia (Cm) is fixed
at 400 kJ/m2 K (heavy construction), using Table 12 of ISO-13790:2008, which is
the most commonly used and matches the ever-increasing construction techniques
in Chile nowadays, due to the earthquake risk.

2.4 Climate Context

2.4.1 Current Climate Zones

The climate in Chile is very diverse, covering the climatic variants B (arid and semi-
arid), C (template) and E (polar and alpine) of the Koppen-Geiger classification
(Kottek et al. 2006). According to the Chilean standard TDRe, the Chilean territory
is divided into 9 climatic zones, which roughly correspond with the country’s 9
main climates: north-coastal, north-desert, north-transversal valleys, central-coastal,
central-inland, south-coastal, south-inland, extreme south and Andean. The Chilean
standard establishes said classification to facilitate a suitable conditioning of the
envelope; its unification criteria are based mainly on the average temperatures of
the coldest and warmest months of the year. A representative city has been chosen
for each one of the 9 climate zones, which also allows symbolizing most climatic
variants following the Koppen-Geiger system (Table 2.3).

EPWfiles have been used tomodel the climate of the 9 considered locations. These
files include meteorological measurements for a period of 30 years featuring, among
others, dry bulb temperature, relative humidity, solar radiation, wet bulb temperature,

Table 2.3 Selected locations from Chilean Climatic Zoning

Zone Code Location Koppen-
Geiger
Class

Latitude Longitude Elevation
(m)

1 NL Antofagasta BWk 23.43° S 70.43° W 120

2 ND D. de
Almagro

BWk 26.22° S 70.03° W 923

3 NVT Copiapo BWk 27.30° S 70.42° W 291

4 CL Valparaiso CSb 30.03° S 71.48° W 41

5 CI Santiago CSb 33.38° S 70.78° W 474

6 SL Concepción CSb 36.77° S 73.05° W 16

7 SI Temuco CFb 38.75° S 72.63° W 120

8 SE Punta
Arenas

ET 53.00° S 70.85° W 37

9 AN Lonquimay CFb 38.43° S 71.23° W 925
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dewpoint andwind regime.They arewidely usedbymanydifferent types of computer
software when applied to building energy and environmental simulation.

2.4.2 Climate Change Simulation

The climate in Chile is varied just like its territory, ranging from B (arid), C (temper-
ate) to E (polar), considering the Köppen-Geiger classification (Table 1). Following
the Chilean standard, 9 climatic zones have been taken into account for this research
(INN 2008). For each of the 9 referenced locations, weather data files are obtained
by means of Meteornom® (Table 2.3). A representative city has been selected for
each of the 9 climatic zones, which comprises a wide variety of climates, following
the Köppen-Geiger classification. Data is exported to EnergyPlus Weather (EPW)
format. These 9 files have been used to model the so-called “base scenarios”, whose
data files comprise average climate values for the 1960–1991 period; from these,
data regarding Global Horizontal Solar Radiation (GHR, Wh/m2), Relative Humid-
ity (RH, %) and Dry Bulb Temperature (DBT, °C) has been selected.

Future climate scenarios have been modelled by means of the UK Met Office
Hadley Centre Coupled Model 3 HadCM3 (Met Office Hadley Centre 2016). This
model takes into account the combination of A2a, A2b and AS2c scenarios in
regards to CO2 emissions. Using the morphing tool, CCWorldWeatherGen (Met
Office Hadley Centre 2016), based on the studies of Belcher et al. (2005), the EPW
files for the 9 base scenarios are morphed with the GHG A2 emissions scenario,
obtaining sets of data for the years 2020, 2050 and 2080. Thus, in total, 27 climate
future scenarios have been produced and altogether, 36 climate scenarios compose
the database used in this research.

The authors consider that the aforementioned predictions can be considered as a
likely future development for this time-span. Although the HadCM3 A2 model is
the most extensive to perform simulations for future predictions, and also, in spite
of the numerous research papers that rely on its basis, some considerations should
be made with regard to its accuracy and limitations.

– A certain uncertainty in the resolution of the Coupled Model (GCM) is found
for specific cases. The HadCM3 model has a grid resolution of 2.5×3.8°(Pope
et al. 2000), which means that each simulated grid element should cover around
278×422 km.Although thismodel can be applied to this case-study, it is primarily
used for making predictions at a global scale, and that gives some uncertainty for
objects of study whose size is relatively small compared to the grid resolution.

– EPW files are composed by measurements frommeteorological stations, thus pro-
vide open field conditions. That is, they do not envisage specific contour conditions
that can alter energy demand for buildings, such as solar obstructions, urban heat
island (UHI) or microclimate effect.
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– HadCM3 models foresee future trends for the average values regarding climate
variables, but it is not capable of contemplating extraordinary natural phenomena
associated with climate change: heavy seasonal floods, hurricanes, storm surges,
periods of drought, etc.

That said, the future scenarios that are used in this research should be understood
as the most probable expected average climatic conditions for a given time-span and
for open field boundary conditions, in selected locations with a margin of error that
corresponds to the grid size of the HadCM3 model.

2.5 Optimization and Prediction Methods

2.5.1 Minimal Energy Demand

Multiple iterations based on the 5 main categories (location, geometry, constructive
systems, internal and external heat loads) are made according to the Chilean stan-
dard TDRe and ISO-13790:2008 for each location and scenario. For each climate
zone, simulations are set considering the climate change scenarios. An algorithm is
implemented in the script in order to find the combination of building parameters
that give as a result the minimal energy demand per each scenario. This process is
divided in two phases. First, the algorithm finds the best possible combination of
both current and future energy demand, considering heating and cooling demand
as a whole. Then, the algorithm analyses again the original dataset, but this time
making a difference between cooling and heating demand, in order to clarify how
that best possible combination that was found in the first phase balances its energy
demand between heating and cooling. This approach allows to see at first how the
buildings will behave in general terms, considering energy demand as a whole. After
that, the optimization method goes further deep and splits the demand into heating
and cooling in order to clarify which one is more influential. In this way, the opti-
mization method is based on dataset results that allows understanding the evolution
of annual global energy demand together with heating and cooling over time and
their implication on building shape and form.

2.5.2 Multiple Linear Regressions

Given the quantitative variable Y and the set of p predictor variables X1… Xp, the
Multiple Linear Regression (MLR) model assumes that the mean of Y (Eq. 2.30)
determines the values of the predictor variables in a linear combination:

Y � β0 + β1X1 + · · · + βpXp + ε (2.30)
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MLR is a classic technique that provides several advantages: simplicity, inter-
pretability, possibility of being adjusted over the transformations of the variables, and
the performing of reasoning, supposing the hypothesis of normality, homoscedastic-
ity and intercorrelation between the error ε and the predictor variables. In this work,
the function lm of the package R (R Core Team, 2016) has been used for the adjust-
ment by minimum blocks of the MLR model. Multiple linear regression models do
not require any additional configuration for the parameters by means of validation
process, thus they were adjusted on the basis of the conjunction of both validation
and training sets, being later applied to the test data.

2.5.3 Multilayer Perceptron

The Artificial Neural Network (ANN) is a computational paradigmwhich provides a
great variety of mathematical non-linear models, which are useful for tackling differ-
ent statistical problems. Several theoretical results support a particular architecture,
namely themultilayer perceptron (PM), for example, the universal approximate prop-
erty, as in Bishop (1995). We have considered a three-layered perceptron with the
logistic activation function g(u)=eu/(eu +1), in the hidden layer, and the identity
function as the activation function for the output layer. By denoting H as the size
of the hidden layer, {vih, i =0,1,2,…, h=1,2,…,H} as the synaptic weights for the
connections between the p-sized input and the hidden layer, and {wh, h=0,1,2,…,H}
as the synaptic weights for the connections between the hidden and the output layer,
then the output of the neural network from a vector of inputs (x1,…,xp) becomes
(Eq. 2.31):

o � wo +
H∑

h�1

whg

(

v0h +
p∑

i�1

vihxi

)

(2.31)

The net R function (Venables and Ripley 2002) fits single hidden-layer neural
networks by using the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) pro-
cedure, a quasi-Newton method also known as a variable metric algorithm, which
attempts to minimize a least-square criterion which introduces a decay term λ in
an effort to prevent problems of overfitting. The BFGS algorithm can be found in
Bishop (1995). Defining W=(W1,…,WM) as the vector of all the M coefficients of
the net, and given n target values y1,…,yn, the M parameters are estimated through
the following optimization problem (Eq. 2.32):

Min
W

n∑

i�i

∥∥zi − ẑi
∥∥2

+ λ

(
M∑

i�i

W 2
i

)

(2.32)

It is well known that the performance of the final model can be improved with the
normalization of the input variables. In this way, each variable was transformed to
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achieve a mean equal to zero and a standard deviation equal to 1. We must note that
this transformation worked out with the means and standard deviations computed on
the training set, and those statistics were used to normalize the test set.

The implementation of a PM model requires the specification of two parameters:
the size of the hidden layer (H) and the decay parameter, and therefore a 10-fold
cross-validation search was carried out with the tune.nnet function in R over a grid
defined as {1,2,3,…,10} × {0,0.01,0.05,0.1,0.2,…,1.5}. Amongst all possible pairs,
the one with the lowest Mean Quadratic Error (ECM) value was selected in the
validation set, obtaining always null (0) as the regularization parameter. The latter
agreed with the fact that the big size of the training set and the reduced number of
predictors does not seem to be a prone scenario for overfitting problems. Once the
suitable size for the hidden layer was identified, themultilayer perceptronwas trained
using the function tune.nnet in R, over the junction of the training and validation sets.
Finally, each compiled PM model was applied over the test data, in order to obtain
reliable estimations regarding the possibility of generalization.
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Chapter 3
Energy Demand Analysis

3.1 Introduction

The energy demand analysis is performed following a methodology that comprises
threemain stages (Fig. 3.1). In the first stage, the input data for the simulation process
is set up, making a distinction between two groups: Climate data and what has been
called “test models”. On one side, the 9 different climate zones in which Chile is
divided into by theChilean building standard are considered; these zones cover all the
existing climate contexts in the country and have been called “climate scenarios”. For
each of these 9 zones, files containing the current climate data have been compiled.
These files have been “morphed” according to the predicted climate scenarios for
2020, 2050 and 2080, producing a new set of climate files for these future years.
These files will be used as the external conditions for the calculation of the energy
demand. On the other side, test models have been defined following the parameters
of the TDRe standard; some variables have been fixed while those related to the
building shape and the enclosure will be set as free and studied in this research.

In the second stage, all the input data is input into the simulation routine, whose
calculation model is based on the ISO-13790:2008 procedure, aimed at obtaining
energy demand in buildings. These calculations have been performed for numerous
variations of the selected variables from the first stage. As a result, output data
regarding energy demand is obtained for a combination of parameters.

In a third stage, the output data is analysed in threemain groups. First, themorphed
climate files are analysed to clarify which changes are expected to occur in the
near future or, in other words, what the tendency regarding climate change will be.
Secondly, the expected future energy demand for different combinations of building
shapes and enclosures will be clarified. In a later stage, this data will be analysed in
order to find the most optimal combination of building shape and enclosure for each
given climate scenario, with the objective of establishing design strategies.

© The Author(s) 2018
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Fig. 3.1 Methodology for annual energy demand optimization under the impact of climate change

3.2 Climate Variation

The original EPW files provide the average climate conditions for the 9 consid-
ered locations for the base scenario. After applying the morphing procedure under
the GHG A2 scenario, these EPW files are transformed to represent the forecasted
average climate conditions in 2020, 2050 and 2080. From all the climatic variables,
the focus is placed on Global Horizontal Solar Radiation (GHR, Wh/m2), Relative
Humidity (RH, %) and Dry Bulb Temperature (DBT, °C). For each location, a com-
parison is set between the base scenario and the three future scenarios, leading to
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a clarification regarding the change of the aforementioned variables. Each of these
variables comprises 8760 items alongwith hourly data that comprises thewhole year.
For greater clarity, these predictions have been grouped by year (Table 3.1) and by
month (Fig. 3.2).

With regard to these changes, the following tendencies can be outlined. First,
average Dry bulb temperature (DBT, °C) increases in all locations. However, the
largest increases are predicted in warmer climates: 4.19 °C in 2080 in 1NL, 3.73 °C
in 2ND, 3.57 °C in 3NVT, 3.18 °C in 4CL and 3.67 °C in the 5CI zone, whereas
in cold climates dry bulb temperatures would increase 2.55 °C in 6SL, 2.50 °C in
7SI and 2.14 °C in 8SE zone. A singular pattern occurs in the 9AN zone, where
DBT would increase by 3.29 °C. Thus, in general terms, all climates would become
warmer when comparing to the present situation. Relative humidity (RH, %) would
decrease in all zones, so that all climates would become drier with the following
figures: −4.17% in 2080 in 1NL, −4.58% in 2ND, −3.51% in 3NVT, −5.42% in
4CL, −5.92% in 5CI zone, −2.83% in 6SL in −2.50% 7SI and −0.57% in the 5CI
zone. Again, 9AN presents a singular pattern, with a decrease of 5.16%. Global
Horizontal Solar Radiation (GHR, Wh/m2) is not greatly altered according to AR5
(IPCC), with slight increases or decreases in each climate zone in 2080 for the A2
scenario: 0.67% (1NL), −1.87% (2ND), −3.46% (3NVT), 8.48% (4CL), 8.62%
(5CI), 10.75% (6SL), 14.40% (7SI), −8.02% (8SE) and 16.10% (9AN).

3.3 Effects on Annual Energy Demand

3.3.1 WWR and FR Influence

The simulation routine has considered all the possible combinations of the variables
that were set as free, following Table 3.2, that is FR, which varies from 0.2 to 5 in 41
steps and WWR, which varies from 10 to 60%, in steps of 1%. From all the possible
variables combinations, 2050 cases are obtained for each year of study per each
location. Covering the four scenarios, 8200 cases are considered for each location,
with a total of 73,800 cases. Although the simulation model performs analysis for
WWR variations in 1% steps, with the lower and upper limit values of 10–60%
respectively, for the sake of clarity, the annual energy demands is depicted for the
intervals 10, 20, 30, 40, 50 and 60% (Fig. 3.3).

For each climate zone and climate scenario, the optimized values forWWRandFR
have been identified. This term is defined as the single value or combination of values
for WWR and FR that achieves the minimum energy demand. With this in mind,
when speaking about the 9 different locations, the outcomes from the simulations
can be brought into four categories. The first group are those climatic zones where
the optimized WWR and FR are similar for the four considered scenarios (3NVT).
The second group are those areas where the optimal WWR remains constant in all
scenarios, but optimal FR differs (2ND, 4CL, 5CI, 6SL 8SE and 9AN). The third
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Fig. 3.2 Average dry bulb temperature (DBT) and relative humidity (RH) for the current scenario,
2020, 2050, 2080 under the A2 (medium-high) emissions scenario in the 9 climate zones of Chile
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Table 3.2 Parameters that define each test item for energy demand building modelling

Units Source Lower limit Upper limit Number of
items

Location City – Manual
input

9

Lat. and
long.

Degrees Meteonorm 9

Climatic
zone

– 1079. of
2008

9

Geometry Gross area m2 Manual
input

1500 1500 1 (fixed)

Storeys integer Manual
input

3 3 1 (fixed)

North
façade

m Manual
input

10 50 40

East façade m Manual
input

10 50 40

FR – Calculated 0.2 5 41

WWR % TDRe 10 60 50

Constructive
systems

Ui W/m2 K TDRe 0.4 5.7 432

SFi – TDRe 0 9 432

Cm kJ/m2 K ISO
13790:2008

400 400 1 (fixed)

Internal
heat loads

Lighting W/m2 TDR 16 16 1 (fixed)

Occupancy W/m2 TDRe 6 6 1 (fixed)

Equipment W/m2 TDRe 4.5 4.5 1 (fixed)

Intensity of
use

h TDRe 9 9 1 (fixed)

External
heat loads

GHR W/m2 From EPW 19.16 617.79 2160

Air flow l/s*m2 TDRe 0.3 0.3 1 (fixed)

Infiltration
rate

ACH50 TDRe 2.0 6.0 351

Conversion
factor

ACH50 to
ACHn

LBL 10.9 17.2 4
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Fig. 3.3 FR and WWR (every 10%) versus energy demand for current scenario and 2020, 2050,
2080 under the A2 (medium-high) emissions scenario in the 9 climate zones of Chile
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group consists of the areas in which recommended FR is similar in regards to the
current and forecasted scenarios, but WWR is not (1NL). Finally, the fourth group
includes those locations where optimized values of WWR and FR vary for each
one of the considered scenarios (7SI). According to these results, it can be stated
that the optimization of the geometric variables, aimed at achieving minimal energy
demands, depends on the geographical location and the climate conditions.

If theWWRvariation is analyzed as a single parameter, three patterns can be iden-
tified. The first refers to locations where buildings require a higher WWR (50–60%)
to decrease their energy demand in the majority of the scenarios (1NL, 2ND, 4CL,
5CI, 6SL, 7SI and 9AN); the second comprises locations where constructions are
compelled to achieve a lower WWR (10–20%) to improve their energy performance
(8SE). Finally, the last category includes the locations with an intermediate percent-
age of openings (40%) for an optimal energy performance (3NVT).

Figure 3.3 depicts the variation of the energy demand for all the possible WWR
and FR combinations. Given a fixed location, different values of FR (0.20–5), com-
bined with different values of WWR (10–60%) give a predicted energy demand in
(kWh/year)/m2 as a result for all the considered scenarios (current, 2020, 2050 and
2080). The first group is composed of locations such as 1NL, 2ND, 3NVT, 4CL and
5CL, where the main finding is that, no matter how much the combination of WWR
and FR would be optimized, and energy demand will irretrievably rise. The set of
continuous lines that corresponds to the 2080 scenario presents energy demand val-
ues that are higher than their counterparts; this rise ranges about 1 (kWh/year)/m2.
That said, in order to minimize the increase of energy demand, some trends can be
outlined. In all locations except for 1NL, the rise in the demand is nearly inelastic
with respect to the variation of FR or, in other words, compactness is not an issue.
In 2ND, for a fixed value of WWR and FR varying from its lower to its upper limit,
energy demand varies only 0.5 (kWh/year)/m2; these figures are similar in locations
3NVT, 4CL and 5CL.

In these locations, focus should be placed on the WWR values, whose optimal
values are in the intermediate range, between 40–60%. In 1NL, compact buildings
with an FR of around 0.45–1 present a higher energy demand in all climate scenarios.
Besides, an intermediateWWR ratio, of around 40–60%would also prove beneficial
to counteract a rise in the energy demand. In locations 6SL, 7SI and 9AN the situation
is unclear, at first, but some trends can be clarified. In this group, intermediate WWR
values (40–60%) are the key factor to contain the rise in energy demand, and the best
value at these locations is clearly 60%.

FR plays a contradictory role depending on the location. In 6SL, buildings should
be compact (0.7–1.2) and have aWWRof 60% to achieve aminimumenergy demand.
In 7SI and 9ANFR, the upper value of 5 should be reached, meaning that the building
should face its longest façades to the North and South. 8SE is a particular case in
itself, explained by its particular location. Here, energy demand could be reduced if
a proper combination of WWR and FR is adopted. In all scenarios, it is clear that
compactness (FR 0.8–1.25) allows for a lower energy demand, so the key factor in
this case is WWR, whose optimal values should be the lowest possible (10%).
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3.3.2 Annual Energy Demand for Different Climate
Scenarios

For each location, the 2050 possible combinations of energy demand have been
assessed for the current scenario, 2020, 2050 and 2080. Going one step further in the
discussion, they are compared as a whole, trying to attain the lowest possible energy
demand (Fig. 3.4). Overall, it can be stated that climate change will have significant
consequences on the energy performance of existing and future buildings. The results
regarding energy demand can be gathered in two categories. First, the climate zones
where energy demand will increase: 1NL, 2ND, 3NVT, 4CL, 5CL and 9AN; the
second category comprises the zones where energy demand is expected to decrease:
6SL, 7SI and8SE.For each climate scenario, the optimized energydemand is outlined
for the sake of clarity in the discourse.

There are locations where the difference between the optimized current demand
and the optimized demand in 2080 is less than 0.75 (kWh/year)/m2: (1NL, 6SL, 7SI,
8SE and 9AN); in other locations the difference is greater than 1.50 (kWh/year)/m2,
even reaching a difference of 3.266 (kWh/year)/m2 in the location 2ND. Hence,
geometry optimization has a decisive role in coastal Northern, Southern and Andean
areas of Chile. Various locations are easily predictable following the building per-
formance, since all the cases depict the same trend, implying either a reduction or an
increase in energy demand (1NL, 2ND, 3NVT, 4CL, 5CI, 8SE, 9AN). This situation
is harder to predict in 6SL and 7SI, because in these zones, according to the outcomes
produced by the model, energy demand is, whether increased or steadily maintained,
based on the considered geometrical characteristics (combination of FR andWWR).

There is a wide variability of performance depending on the climatic zone. In
3NVT, 4CL, 5CI and 8SE, it can be appreciated that although energy demand varies
for different geometries, similar values are found in the 2020, 2050 and 2080 scenar-
ios. However, in zones 2ND, 6SL, 7SI and 9 AN, 2020 and 2050 scenarios present
a common trend, marking clear differences in performance compared with the 2080
scenario. Energy demand in 1NL is reduced by 2020 and 2050, however, it will tend
to increase for the year 2080.

3.3.3 Heating and Cooling Energy Demand for Different
Climate Scenarios

The energy demand combinations discussed above (Fig. 3.4) correspond to the sum
of the demand for heating and cooling for the current time, 2020, 2050 and 2080. To
have a better view of the variation, both demands have been mapped independently,
making the combination for the heating and cooling demands of the optimized annual
energy demand (Fig. 3.5). In general, it can be said that climate change will lead to an
increase of cooling demands and decrease in heating demands. Specifically, for the
selected cases, heating minimum demands will be reduced by between 2.62 and 0.54
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Fig. 3.4 Current energy demand versus future energy demand for 2020, 2050, 2080 under the A2
(medium-high) emissions scenario in the 9 climate zones of Chile
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(kWh/year)/m2, while cooling will increase between 4.47 and 0.53 (kWh/year)/m2.
The results discussed in the previous section were grouped into climatic zones where
the annual energy demand r will increase (1NL, 2ND, 3NVT, 4CL, 5 CL and 9AN);
and into areas where it is expected that the annual energy demand decreases (6SL,
7SI and 8SE). This is because the areas in which cooling demand increases due to
the increase of outdoor temperatures is much greater than the reduction that heating
demands will have.

Analyzing the differences between2080 and today, it is seen that the climatic zones
whichwill produce a higher increment of cooling demand are 2ND and 3NVT, which
will increase in the selected cases by 4.47 and 3.50 (kWh/year)/m2 while the heating
demand will be reduced in 1.21 and 1.02 (kWh/year)/m2. This entails an increase in
the total annual demand of 3.26 and 2.48 (kWh/year)/m2, respectively.

4CL and 5CL zones also suffer increases in cooling demands (2.76 and 2.85
(kWh/year)/m2), with these being significantly less than the previous zones. The
heating demandwill be reduced in 1.17 and 1.27 (kWh/year)/m2, which indicates that
the increase in total annual energy demand is lower. The Coastal-North and Andean
regions (1NL and 9AN) also increase total demands but, with a different pattern as
can be seen in Fig. 3.3. The heating energy demand of 1NL zone will be reduced
by 2.62 (kWh/year)/m2, while in the 9AN 0.59 (kWh/year)/m2, this similarly occurs
with cooling demands which increase by 3.25 and 1.07 (kWh/year)/m2 respectively,
representing 0.63 and 0.48 (kWh/year)/m2 of the total increase.

Climatic zones in which the increase of outdoor temperatures scarcely affects
optimal cases are 6SL, 7SI and 8SE. In these areas, there will be an increase in
cooling demands (0.59, 0.53, 0.58 (kWh/year)/m2) and the reduction of heating
demands are similar (0.725, 0.55, and 0.85 (kWh/year)/m2), in all cases having a
greater heating rather than cooling reduction. Therefore, the reduction in the annual
energy demand is minimal, ranging between 0.02 and 0.27 (kWh/year)/m2.

3.4 Effects on Design Strategies

3.4.1 Evolution on Annual Energy Demand

Taking as a base all 73,800 simulated test models, optimized energy demands in each
of the 9 locations, for each climate scenarios, have been extracted from Figs. 3.4
and 3.5 and depicted in Fig. 3.6. Taking into account only these optimized cases,
there are locations where, even the best optimized buildings will inevitably increase
their annual energy demand (1NL, 2ND, 3NVT, 4CL, 5CI, 9AN). However, there
are other locations, such as Concepción (6SL), Temuco (7SI), and Punta Arenas
(8SE), where the energy demand could be noticeably close to current figures accord-
ing to the forecasted 2020, 2050 and 2080 scenarios, if the best combination of
WWR and FR is achieved, and may be reduced between 0.13 (kWh/year)/m2 (6SL)
and 0.27 (kWh/year)/m2 (SE), respectively. A common pattern is noticed in the
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Fig. 3.5 Current energy heating and cooling demand versus future energy heating and cooling
demand for 2020, 2050, 2080 under the A2 (medium-high) emissions scenario in the 9 climate
zones of Chile
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Fig. 3.6 Evolution of energy demand for the optimal combination ofWWR and FR for 2020, 2050,
2080 under the A2 (medium-high) emissions scenario in the 9 climate zones of Chile

evolution of the cooling and heating demand of the minimum annual energy demand
cases, that is, an increase in cooling (0.53–4.47 (kWh/year)/m2) and a decrease in
heating demand (0.54–2.62 (kWh/year)/m2). Zones 6SL, 7SI and 8SE practically
balance out these increases and decreases and their annual energy demands remain
constant (0.02–0.27 (kWh/year)/m2). Whereas in zones 2ND, 3NVT, 4CL, 5CI and
9AN the increment of cooling demands produces an increment in the annual energy
demand, despite the fact that heating demands decrease (0.48–3.27 (kWh/year)/m2).
A particular case study occurs in zone 1NL, in which the optimized case abruptly
increases the cooling demand (3.25 (kWh/year)/m2) and also noticeably decreases
the heating demand (2.62 (kWh/year)/m2).
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3.4.2 Evolution on WWR and FR

In order to clarify which trendWWRand FR should follow in the future to counteract
the effect of a climate change, the temporal evolution of the optimizedWWR and FR
in the present time, 2020, 2050 and 2080 is depicted in Fig. 3.6. Regarding theWWR,
there are locations where this ratio must be increased in order to lower annual energy
demand in 2080 (1NL, 6SL, 7SI, 9AN); however, in zone 2ND, this ratio should be
reduced. In locations 3NVT, 4CL, 5CI and 8SE, optimal values of WWR are similar
for every considered scenario (Fig. 3.7). Antofagasta (1NL) is the location where the
optimal WWR ratio increases from 10% (current scenario) to 60% in 2080.

In most locations, the optimal FR figures for 2080 imply that the building must
face North, with the climate zone 3NVT being the only one where the same optimal
FR is kept constant for the four scenarios (Fig. 3.7). In zone 8SE, North orientation
is not recommended in 2080, as the FR evolves from 1.250 to 2.178 in the year
2080. Hence, if a building were designed to reduce its future annual energy demand,
it should face North except in Punta Arenas. The optimal WWR for buildings in
Chile will be 60% in zones 1NL and 6SL; 54% in 9AN; 51% in 2ND, 4CL and 5CI;
40% in 3NVT; 43% in 7SI and 10% in 8SE. Therefore, office buildings that have
previously achieved their optimal FR ratio, built under TDRe standards and located
near the coast of Chile, should have aWWR ranging between 51% and 60% in order
to optimize their future annual energy demand; in the central area they should have
a WWR between 40 and 51%, in the Andean zone 54% and in the South 10%.

Fig. 3.7 OptimalWWRandFRvalues for 2020, 2050, 2080under theA2 (medium-high) emissions
scenario in the 9 climate zones of Chile
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3.5 Discussions

It has been proved that climate change has a significant impact on energy performance
of office buildings in all climate contexts of Chile, as well as on the features of their
basic design, such as FR and WWR. The optimization of the FR and WWR in the
early design stages, taking into account a climate that would become warmer and the
current Chilean building standard (TDRe), could result in a decrease in their annual
energy demand. This will help in improving the optimization process of this kind of
buildings, so that they will be more resilient during their lifetime. When considering
this matter, using this study, the following outcomes can be outlined:

With respect to the relation between climate variables and energy demand for
buildings, the following facts have been clarified in this paper. Predicted tendencies
for 2020, 2050 and 2080 foresee a Chilean scenario where the climate will become
hotter and drier for all locations; solar radiation levels will basically remain constant.
With similar levels of GHR, lower RH and higher DBT, buildings will face a climatic
scenario where cooling energy demand for air conditioning will rise. As the three
scenarios are not very distant from present times (2, 32 and 62 years) and bearing in
mind that they could embrace the expected lifespan of buildings designed and built
today, these facts should be taken into account in the design of present buildings.

The influence of different FRs can be understood both from their evolution through
time, and their tendency for a fixed time scenario. In regards to the first one, given a
fixed location and a fixed scenario (2020, 2050 and 2080), the energy consumption
seems to be quite independent from the FRvariable, as little variance can be observed.
This means that shape and orientation of the building is not strongly related with
energy consumption for a given scenario in a given location.However, if the evolution
of this variable is observed through time, it can be noted that the FR that gives the
minimum energy consumption for all location tends to stabilize at around 5, except
for location 8SE, where it is around 2. Thus, when designing buildings bearing in
mind future climate scenarios, it should be taken into account that their FR should
range around these reference values.

The influence of WWR shows, however, a different tendency. If location and cli-
mate scenario (2020, 2050, 2080) are fixed, expected energy consumption is strongly
correlated to WWR. However, when its evolution is observed through the three con-
sidered scenarios, their reference values for minimum energy consumption do not
change or only change slightly (50, 60%), except for the 1NL location, where an
abrupt change is seen from 10 to 60%. Hence, buildings that should be adapted to
this climate scenario should adopt a fixed WWR for each location, but careful atten-
tion should be paid, as a slight variation in this ratio would greatly affect energy
demand.

If these two variables are combined (FR andWWR) and a batch test is performed
for each location in order to devise the tendency for the energy consumption, the
general tendency shows that, even when trying to find theminimum for each scenario
(2020, 2050, 2080), energy consumption will inevitably rise, except for the locations
6SL, 7SI and 8SE. However, that decrease can be considered as non-significant,
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compared with the increase observed in the rest of locations. For some locations, the
trend shows nearly a linear distribution, whereas in others it adopts the distribution
of a point cloud, and that means that in some locations the tendency can be identified
more easily, whereas in others is not so clear what may happen in future scenarios.

As this chapter was aimed at predicting the evolution of energy demand in future
scenarios of climate change (2020, 2050, 2080), setting two variables as free (WWR
and FR), and leaving the rest as fixed, the main conclusion that can be drawn from
the study is this. No matter how much WWR and FR are optimized, energy demand
of buildings will increase under the considered scenarios. This does not imply a
disregard of these variables in the design process when trying to achieve a low
energy design, as they are a commonplace in the basics of passive design. The main
point is that under the considered evolution of climatic variables, the optimization of
these variables will only be able to contain building’s energy demand to skyrocket,
but they will not be able to diminish it.

As a consequence of the former, with the objective being to reduce energy demand
under future climate scenarios, other variables, which have been set as fixed in this
study, such as improved constructive systems or changes in the internal heat loads
profile, should be parameterized and set as free, in order to check their influence on
future energy demand. Considering specific boundary conditions for sundry local
environments that focus on real case studies, rather than on abstract prototypes, is
also crucial to clarify the forecasted evolution of energy demand. Therefore, further
study on this matter is necessary in order to devise effective strategies, which will
help in reducing energy demand of buildings in a context of a changing climate.



Chapter 4
Multiple Linear Regressions

4.1 Introduction

This chapter intends to develop a mathematical model that allows predicting, with
an acceptable degree of uncertainty, the energy consumption and CO2 emissions for
the office buildings in Chile. Through the multivariable regression method, diverse
equations will be produced that will bear in mind the parameters mentioned for the
different locations. In this way, the designers will be able to know the consequences
that their decisions will have on the energy consumption and CO2 emissions. This
research has an eminently practical nature and is susceptible to being applied in the
future design and construction of buildings.

The research sets out a simple but realistic approach to predict the energy con-
sumption and the CO2eq emissions of a standard office building located in different
cities of Chile, based on the location, total surface area, number of stories, orienta-
tion, window-to-wall ratio, efficiency of the systems and emission factors (Fig. 4.1).
ISO 13790:2008 was used to build and simulate individual setups of the building
which were generated using national standards. 77,000 simulations were made for
each location to create a group of integrated data that covers the complete range of
design parameters. Below, the results of the energy simulations were put into practice
in a regression equation system to predict the energy consumption and the emissions
under each design variables scenario.

The number of floor levels varies between 1 and 5. The surface area of the floor
varies between 500 and 2000 m2, in steps of 100 m2. The form ratio is defined as
the proportion between the length of the face orientated towards the North and that
orientated to the East. The buildings are assumed to be perfectly orientated as per
a N-S axis. The values of this parameter vary between 5 (an extended building in a
E-W direction) and 0.2 (extended in a N-S direction), varying the building’s degree
of compactness, in this way, in stages of 0.2. The glazing percentage is considered
to be uniform for all the facades and varies between the values permitted by the
standard, which are 10 and 60%; the variation has been established in 5% intervals.

Given that the choice of a determined piece of air-conditioning equipment is the
decision of the designer, and that this is also influenced by numerous factors (client
preferences, size of the building, project budget, etc.), a random value of COP, EER,
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Fig. 4.1 Parameter tree

HEF and CEF has been assigned for each one of the 77,000 available cases, that sits
between the maximum and minimum limits established in Table 4.1 (Fig. 4.1).

In this way, the summarized calculation process is as follows. For a given location,
following the ISO 13790:2008 standard, a heating and cooling demand is generated
for 77,000 possible office buildings, resulting from the multiple combinations of
the following variables, number of stories, floor area, shape coefficient and glaz-
ing percentage of the facades. Once the heating and cooling demands are obtained,
each building is assigned air-conditioning equipment whose energy efficiency is dis-
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Table 4.1 Ranges and intervals for geometry and HVAC calculation procedure

Input parameters Unit Range Interval Number of itemsa

Number of
stories (NS)

Nos. 1–5 1 5

Floor area (FA) m2 500–6000 100 56

Form ratio (FR) – 0.2–5 0.2 25

Window-to-wall
ratio (WWR)

% 10–60 5 11

Coefficient of
performance
(COP)

% 60–90 10 4

Energy efficiency
ratio (EER)

– 2.5–4.4 0.1 15

Heating emission
factors (HEF)

(TCO2eq/kWh) 0.201–0.271 0.01 8

Cooling emission
factors (CEF)

(TCO2eq/kWh) 0.346–0.811 0.01 11

aThe combination of the items generates 77,000 heating demands and other refrigeration demands
for each one of the locations studied

tributed randomly, providing 77,000 heating energy consumption options and 77,000
cooling consumption options. After that, in order to transform electrical consumption
into CO2eq emissions, a random CO2eq emission factor is assigned from Table 4.1,
and depending on the electrical system to which each prototype should be connected
to, the CO2 emission factor is assigned to these 154,000 options. Finally, multiply-
ing by 9 locations, we obtain 1,386,000 possible cases, which constitute the two
databases used to prepare the multivariable regression models (Fig. 4.1).

4.2 Energy Consumption

Regression models have been devised for the calculation of the energy consumption
(EC) for each one of the 9 climatic zones already defined. The model contains
coefficients that represents, as close as possible, the distribution of the data; each
model has one constant term (β0) and coefficients (βp) that affect the 6 independent
variables, following in this way the form already seen in this equations.

Y � β0 + β1X1 + · · · + βpXp + ε (4.1)

For each of the climatic zone, the equation that best represents the energy con-
sumption is given below. Following this common pattern, the equations for each one
of the considered climatic zones are as follows (Eqs. 4.1–4.9):
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Zone 1NL

EC � 10.6054 +
1

FA
760.409 + ENS6.6294 × 10−3 +

1

FR
7.4437 × 10−3

− 1

WWR
4.5996 + ln(COP) · 3.21246 + ln(EER)4.16894 (4.2)

Zone 2ND

EC � 14.6288 − 1

FA
34.341 + ENS5.44267 × 10−4 +

1

WWR
1.12755

−ln(COP) · 1.13665 − ln(EER) .69142 (4.3)

Zone 3NVT

EC � 12.2494 − 1

FA
48.7499 + ENS6.70744 × 10−3 +

1

FR
1.09518 × 10−3

+
1

WWR
0.898009 − ln(COP) · 0.378144 − ln (EER) · 5.49944 (4.4)

Zone 4CL

EC � 12.9473 +
1

FA
320.757 + ENS1.95948 × 10−3 +

1

FR
4.05568 × 10−3

− 1

WWR
2.08727 − ln(COP) · 1.28408 − ln(EER) · 5.1702 (4.5)

Zone 5CI

EC � 12.6872 +
1

FA
286.71 − ENS3.64316 × 10−5

− 1

WWR
2.09835 − ln(COP) · 1.11644 − ln(EER) · 5.19887 (4.6)

Zone 6SL

EC � 12.0439 +
1

FA
509.268 + ENS4.08027 × 10−3 +

1

FR
8.65602 × 10−3

− 1

WWR
4.12168 − ln(COP) · 1.2269 − ln(EER) · 4.71123 (4.7)

Zone 7SI

EC � 12.3528 +
1

FA
708.38 + ENS2.75877 × 10−3 +

1

FR
9.26539 × 10−3

− 1

WWR
6.48265 − ln(COP) · 1.33644 − ln(EER) · 4.76629 (4.8)
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Zone 8SE

EC � 12.353 +
1

FA
1580.01 + ENS13.4577 × 10−3 +

1

FR
22.3996 × 10−3

− 1

WWR
19.7227 − ln(COP) · 6.41663 − ln(EER) · 4.2491 (4.9)

Zone 9AN

EC � 12.6116 +
1

FA
573.704 + ENS38.6045 × 10−3

− 1

WWR
5.15063 − ln(COP) · 1.15101 − ln(EER) · 5.06677 (4.10)

All of the nine equations adopt the same form with some remarks. The term 1/FR
has been deleted from zones 2, 5 and 9 after conducting a p-value analysis, which
determined that the parameter FR has no influence in the energy consumption in those
climates. This is not minor feat when trying to devise a sort of mathematical model
that finds adaptation to a variety of climates with remarkable differences, which is
the case of Chile. In this occasion, the decision was to remove the term for the sake of
simplicity; however, only 3 out of 54 constant terms were removed, which indicates
that the model, in its actual form, represents with enough accuracy the variation
of climates in Chile as per OGUC and more recently the non-compulsory standard
TDRe. Anyway, precaution should be exercised in informing the potential users of
which variables are not significant in order to reduce the computational load.

Other important issue when devising models for the early stages of design is to
bear in mind the real accuracy of the model and the expected error, which can be
measured, respectively, using the coefficient of determination R2, the Standard Error
(SE) and the Mean Absolute Error (MAE). Table 4.2 shows these parameters for
the 9 considered climate zones. Following the common rule of statistics, when R2

values are above 95% the model should be considered reliable enough. In this case,
the model for zones 1, 7 and 8 are between 90 and 95%, which can be considered
fair but not ideal. The rest of the 6 models are all above 95%. For each one of them,
the SE and the MAE will give information about the expected inaccuracy of a given
calculation.

This concept can be furtherly clarified using a concrete example. Let’s consider
that an office building is planned to be built in the city of Concepción, located in
zone 6SL. The building will have a floor area of 1500 m2, distributed in 3 floors;
the plan will adopt the shape of a square oriented towards North-South axis, that
is, form ratio (FR) will be the unit; the glazing percentage will be 30%, that is, a
WWR of 30; finally, the considered HVAC equipment will be a multi-split system
with reversible heat pump (heating and cooling) with a COP of 80 and a EER of
3.3. Just by substituting all terms into the aforementioned equation for zone 6SL we
can have an estimation of the energy consumption as 4.160 KWh/m2. Considering
also the MAE of the model, this statement should be reformulated in this way.



52 4 Multiple Linear Regressions

Ta
bl
e
4.
2

R
eg
re
ss
io
n
co
ef
fic
ie
nt
s
an
d
m
od
el
pr
ec
is
io
n
(e
ne
rg
y
co
ns
um

pt
io
n)

C
od
e

1N
L

2N
D

3N
V
T

4C
L

5C
I

6S
L

7S
I

8S
E

9A
N

R
2

93
.5
4

96
.7
9

98
.0
5

96
.9
4

97
.5
8

95
.2
6

93
.5
3

91
.8
1

96
.1
0

SE
0.
27

0.
22

0.
15

0.
26

0.
23

0.
30

0.
34

0.
54

0.
31

M
A
E

0.
20

0.
18

0.
11

0.
20

0.
18

0.
23

0.
27

0.
41

0.
23



4.2 Energy Consumption 53

The predicted EC should fall between 4.160 + 0.11 kWh/m2. Going into absolute
figures, the energy consumption of the whole building should be in the range of
6240 + 165 kWh. Of course, spreadsheet software may be useful when doing these
calculations as the coefficients can be tabulated; in that way, calculation become
much more accessible to those who even do not have a deep understanding of energy
simulations in buildings.

Also, some remarks can be made about the physical meaning of the model by
analyzing the terms of the said equations, bearing in mind that these data should
be handled carefully. First, the constant term ranges from 10.6054 (Zone 1NL) to
14.6288 (Zone 2ND), being around 12 in the rest of zones. This indicated that the
minimum theoretical energy consumption that a designer could expect, in the best
case scenario, would be around these figures (10–14 kWh/m2). Floor area (FA),
number of stories (NS) and Form ratio (FR) shall be understood together, because
they would have no physical meaning alone (they are modified by inverse fractions
and exponential functions and their sign swings from positive to negative depending
on the climate zone). The three of them, understood as a whole, are related with
the form of the building and therefore, with the so-called form factor; the equation
could have included this parameter instead, but these three parameters allows for
more flexibility because no previous calculations are necessary. The window to wall
ratio (WWR) would suggest, at first glance, that the lower the WWR, the lower
the energy consumption, as windows have always lower U values that the opaque
envelope according to data from Chilean standard. So that in every zone this factor
should be preceded by a positive sign, so lower WWR should yield smaller incre-
ments of energy consumption. But that relation is not that simple, so in this case the
mathematical model fits WWR into an inverse fraction, affected by a constant term
and a change in the preceding sign, depending on the climate zone. As an example,
in cold climates, properly oriented windows can help with solar gains, and in mild
climates the infiltration rates of windows can counteract the internal gains, which
are particularly important in tertiary buildings. Last, the terms associated with COP
and EER behave in a logic manner; all of them are preceded by negative signs and
affected by a coefficient depending on the climate zone. In this case, a direct physical
meaning can be inferred, because higher COP and EER, that is, better heating and
cooling equipment, would mean a reduction in energy consumption.

This exercise should be performed after obtaining the multivariable regression
model in order to gain a better grasp about the actual meaning of the whole equation,
as well as each term itself. As previously stated, the questions that the designer
should ask him/herself when analyzing each term is ¿has the term physical meaning
by itself? The affirmative answer would correspond to COP and EER in this case.
Second question: If it has no physical meaning by itself ¿is it related to various
factors that could explain this lack of sense? That would be the case of WWR. Third
question. If it has no physical meaning by itself ¿should it be understood together
with other terms in order to make sense? That is the case of FA, NS and FR, which,
all together, define the form of a given office building.
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4.3 CO2 Emissions

Once having the energy consumption of the office building, the same method can be
used to estimate their CO2 emissions, but introducing a new factor: The CO2 equiva-
lent emission factor (CO2eq). This factor is related to the way electricity is generated
in a given country or region, and inform the designer on how much CO2 is pro-
duced to generate 1 kWh of electric energy that will be, at last, used in the building.
Two assumptions are used. First, the HVAC systems runs exclusively on electricity;
second, the CO2eq is independent of the building features, and is extracted from sta-
tistical data from the electric grid. Energy companies usually provide with this data,
which actually varies year to year, depending on the energy mix. In the case that the
building should be prone to use other source of energy (for example, diesel or natural
gas boilers for heating) another factor should be used, CO2eq (Kg/Ton). In this case,
two new terms have been introduced into the equation: The heating emission factor
(HEF) and the cooling emission factor (CEF). Taking into account these considera-
tions, the regression equations for each zone are as follows (Eqs. 4.11–4.19).

Zone 1NL

CO2eq � e

0.750595 + 1
FA41.8966 − ENS1.34961 × 10−4 − 1

WWR0.225368−
ln(COP) · 0.285616 − ln(EER)} · 0.7302 + HEF · 1.16794 + CEF · 1.32949

(4.11)

Zone 2ND

CO2eq � e

1.29841 − 1
FA2.85706 + ENS2.66382 × 10−4 − 1

FR4.81831 × 10−4 + 1
WWR0.24591−

ln(COP)} · 0.124535 − ln(EER) · 0.947335 + HEF · 0.284265 + CEF · 1.53482

(4.12)

Zone 3NVT

CO2eq

� e

1.18476 − 1
FA10.4812 + ENS1.35099 × 10−3 − 1

FR1.91223 × 10−4 + 1
WWR0.160358−

ln(COP) · 0.0551293 − ln(EER)}cdot0.960037 + HEF · 0.0640181 + CEF · 1.76345

(4.13)

Zone 4CL

CO2eq � e

1.14686 + 1
FA18.7367 + ENS6.31546 × 10−5 − 1

WWR0.0418683−
ln(COP) · 0.150913 − ln(EER)}cdot0.830998 + HEF · 0.427063 + CEF · 1.42374

(4.14)
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Zone 5CI

CO2eq � e

3.52613 + 1
FA39.3627 − ENS3.58186 × 10−4 − 1

WWR0.0115162−
ln(COP) · 0.309527 − ln(EER)}cdot2.89103 + HEF · 0.817204 + CEF · 4.89869

(4.15)

Zone 6SL

CO2eq � e

1.0351 + 1
FA26.066 − ENS9.75502 × 10−5 − 1

WWR0.148346−
ln(COP) · 0.16862 − ln(EER) · 0.786633 + HEF · 0.520632 + CEF · 1.37929

(4.16)

Zone 7SI

CO2eq

� e

1.02811 + 1
FA36.7475 − ENS2.77123 × 10−4 + 1

FR5.41478 × 10−4 − 1
WWR0.304362−

ln(COP) · 0.188558 − ln(EER) · 0.767077 + HEF · 0.599526 + CEF · 1.3633

(4.17)

Zone 8SE

CO2eq

� e

0.774452 + 1
FA80.7924 + ENS5.31195 × 10−4 + 1

FR1.1994 × 10−3 − 1
WWR0.971469−

ln(COP)} · 0.415091 − ln(EER) · 0.600031 + HEF · 1.73368 + CEF · 1.09288

(4.18)

Zone 9AN

CO2eq

� e

1.12736 + 1
FA30.0675 − ENS7.26357 × 10−4 + 1

FR4.27955 × 10−4 − 1
WWR0.159419−

ln(COP) · 0.151394 − ln(EER) · 0.830492 + HEF · 0.443889 + CEF · 1.40514

(4.19)

Follow the same pattern, focusing on the physical differences between both regres-
sionmodels, the following remarks shall bemade. Firstly, onemight think that CO2eq
emissions could be obtained just by multiplying the result for EC by the HEF or the
CEF, on a case basis. However, the procedure bears no so simple relation. As both
heating and cooling are introduced in the equation for EC, the equivalent emission
factors (HEF and CEF) cannot be introduced in such a direct way, and that is why
another equation becomes necessary.

In the same fashion, after conducting ap-value analysis, it can be concluded that
the FR is not statistically relevant when predicting CO2eq emission in zones 1NL,
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4CL, 5CI and 6SL; besides, theWWR is not necessary in zone 5CI. Out of 72 terms, 5
have been found to be irrelevant; therefore, the chosen variables seem to be adequate,
though some simplifications can bemade, especially in zone 5CI, in order to alleviate
the computational load.

The regression coefficients (Table 4.3) indicate that this model is even more accu-
rate that the one for EC. All zones have R2 values above 95%; SE and MAE should
be used, again, to have an idea of the inaccuracy of the model.

Following the same example that in the previous section, let’s consider that an
office building is located in Concepción (zone 6SL). A random value for HEF of
0.210, and for CEF of 0.3709 are assigned. Using the proposed equation, the expected
CO2eq emission per square meter would be 1.57 ± 0.02 kgCO2/m2; going into
absolute figures, that would result in 2361±30 kgCO2. Roughly speaking, the said
building would contribute with 2.3 tons of CO2 due to the energy consumption in
heating and cooling.

In this occasion, the physical meaning of the model is not so clear because the
whole equation is affected by an exponential function; sometimes this time of mathe-
matical operations become necessary in order to improve the accuracy. The statistical
software used for devising the regression model will perform these operations auto-
matically, trying to balance the most accurate model with the simplest expression.
Anyway, some check would reveal whether the model has some mistake. COP and
EER are all affected by a negative sign in all zones, which seems logical; besides,
HEF and CEF coefficients are all preceded by positive signs, which indicates that,
the higher CO2 emissions from the electric grid, the higher the CO2 emissions from
the building that is connected to that grid. The rest of the terms have changing signs
and very different coefficients because, as said before, they have a more complex
interplay that do not allow for a direct interpretation.

4.4 Regression Models Validation

The R2, SE and MAE give information about the accuracy and consistency of the
mathematical expression itself. However, in order to actually check whether that
expression actually reflect the phenomenon that is trying to reproduce (a physical
phenomenon, a calculation procedure, etc.) it is necessary to undertake additional
checks.

In this case, the objective of the multivariable regression model is to reproduce
in a more simplified manner the calculation procedure per ISO 13790:2008, which
can be considered, in this occasion, the base case. That is why, amongst all the avail-
able data, 75% was used for generating the regression equations, and the remaining
25% (training data) is used to check the results against the base case. It is impor-
tant, in such a manner, to have an ample database and to store this remaining 25%
for additional checking; of course, more data means more accuracy. In this case,
1,386,000 cases were considered, amongst 1,039,500 were used to generate the 18
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regression equations and 346,500 to check the accuracy against direct results per
ISO 13790:2008.

At first, results from both the regression model and the ISO procedure fits pretty
well, because the cloud point is distributed uniformly around theX=Y line (Fig. 4.2).
It is also representative that the point clouds for all zones are more compact for
buildings with low energy consumption and more disperse when the consump-
tion reaches higher figures. The minimum energy consumption for all zones ranges
around 3.5–4–5 kWh/m2, which contradicts the statement from Sect. 4.1; that is
why, when trying to grasp the physical meaning of a multivariable regression model,
caution should be exercised before checking results against training data. In such a
similar manner, the maximum expected consumption should range between 8 and
18 kWh/m2. This is an additional advantage of such verifications; with such amount
of data, minimum and maximum values can be established and therefore outliers
can be easily identified; for example, in the event that energy simulations for an
office building located in zone 5CI were undertaken, as long as the building features
fall into the ranges of this regression model, unitary energy consumption should be
between 3.5 and 10.5 kWh/m2. Different values should be deemed, at first, as outliers
and calculations should be verified again.

As commonplace in statistics and multivariable regression models, residuals are
present because the model is not 100% accurate. The question is how to analyze
those residuals and how to determine if these residuals jeopardize the validity of
such model. This questions can be answered by means of the studentized residual,
which is a way of determining if an outlier is exerting a strong influence on the model
in such a way that the regression equation can be altered. The basic idea consists
on deleting a given observation (result) of the model and see how the regression
model is refitted with the remaining n-1 observations. Then the results from the
model with and without the given observation are compared, producing a deleted
residual; as this deleted residual is dependent on the measurement unit, it has to
be standardized, and that is why the deleted residual is divided by an estimate of
its standard deviation, and that is called the “studentized residual”. Logically, if the
event that the model would be perfect, all studentized residuals would be zero; in
statistics, it is commonly accepted that residuals over 3 are deemed as outliers. It is
also important to note that the shape of the graph is deemed important; no patterns
should be present if the model fits well and if the point cloud adopt a concrete shape
(the most common are parabolic and funnel shape) there may be non-linearity in the
data or heteroscedasticity, which are both undesirable effects. At this point, if deeper
explanations are needed, specialized texts on statistics should be consulted.

In this case, studentized residuals are presented in Fig. 4.3. First, studentized
residuals higher than 3 are present, despite their number is residual when compared
with the whole cloud point; that is, the densest cloud is enclosed by two horizontal
lines, +3 and −3. The presence of outliers in this case can be explained by the
elevated amount of data, which may produce particular combinations of variables
that would make no sense. Let’s consider, as an example, an office building located
in Punta Arenas, with a predominance of heating and no presence of cooling. The
designer makes the dumbest choice, a heating system with the lowest possible COP
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Fig. 4.2 Predicted energy consumption versus ISO 13790:2008 energy consumption

and a cooling systemwith the highest available EER, unless it would be unnecessary.
Besides, a poor choice of the considered design variables (predictors) could lead to
unrealistic results (in this case, worst orientation possible, a highWWR, a poor form
factor, etc.). The point is, when such elevated amount of data is treated, outliers will
be present, but their number should be marginal when compared to the total number
of points, as in this case.
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Fig. 4.3 Studentized residual energy consumption

The shapeof the cloudpoint, asmentionedbefore, is also deemed important. In this
case, the cloud points are distributed randomly around the horizontal lineY=0,which
is a good indicator; that means that the residuals do not follow a particular trend;
that is, they bear no mathematical relation with the regression equation. Besides, it
can be observed that residuals larger than 3 are more numerous for higher energy
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consumptions. This means that the model losses accuracy until some extent when
trying to predict higher energy consumptions, unless it can be still considered reliable.

Some remarks should be make regarding zone 3NVT; their graphs show a par-
ticular shape, because both fitting between ISO and regression consumptions and
the studentized residual show a group of points detached from the main group. This
phenomenon can be explained by the fact that energy demand for heating is below
10%, but very close. As stated in Sect. 2.2.5, if heating demand is assumed, in this
case, by cooling equipment in heat pump mode, the results can be distorted. ISO
calculation procedure does not make this simplification, so that results will not fit
and, therefore, the studentized residual will be outstanding in those few cases.

This checking has also been performed for CO2 equivalent emissions (Fig. 4.4).
The fitting between the calculation per ISO 13790:2008 and per the multivariable
regression model show that the point clouds are pretty much compact. The equations
for this model are all affected by an exponential sign and that is why the model
fitting seems better. Talking about figures, CO2 equivalent emissions are in the range
of 0.4–2.2 kgCO2eq/year m2 for the whole country. Resuming the former example,
a building located in zone 3NVT with an estimated CO2 equivalent emissions of
1.57 kgCO2eq/year m2 would be located in the upper tier of the graph. Outliers or
abnormal values for CO2 equivalent emissions can be also be easily identified by
virtue of this analysis.

The analysis for the studentized residual of CO2eq emissions (Fig. 4.5) also shows
that, in general terms, no clear patter can be detected, unless for zone 5CI, where
the point cloud seems to have a paraboloid shape. In all cases, residuals higher than
3 are present, but, once more, this can be considered admissible due to the elevated
amount of data and the presence of such numerous predictor variables, which make
possible to have “unreal” design combinations thatwill produce, at last, unreal figures
for CO2eq emissions. In all zones, it can be noted that small clusters are formed
around certain values of X axis. Precisely, 11 clusters can be identified in each zone,
especially in zones 2ND, 3NVT and 4CL,whichwould correspond to the 11 assigned
CEF. This suggest the strong influence that any variation in the CEF exerts on the
model. Taking each cluster separately, the residuals have aperfect randomdistribution
around zero.

The paraboloid shape in zone 5CI suggest that there is some room for improvement
in the model; taking each one of the 11 clusters that can be identified, the residuals
have a random distribution, but taking them as a whole, a pattern can be identified.
In this case, the model would have some room for improvement (for example, trans-
forming some variable). Anyway, the accuracy of the model seems balanced for all
locations so, in order to keep the coherence, in this case no further transformations
will be necessary.

That is que question that the designer should bear in mind when devising a large
number of multivariable regression models: Keeping a common pattern for all of
them may compromise the accuracy of some; in this case, the exponential function
gave a hint about the best balance between accuracy and applicability of suchmodels.

https://doi.org/10.1007/978-3-319-90146-6_2
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Fig. 4.4 Predicted energy consumption versus ISO 13790:2008. CO2 emissions

4.5 Discussions

Mutivariable regression is a technique widely used in many fields of science. It also
finds wide application in architecture and engineering, and in this case it has been
used to estimate two figures that are of interest when dealing with low energy design:
Energy consumption and CO2 emissions.
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Fig. 4.5 Studentized residual. CO2 emissions

This methodology can be replicated for any kind of building (residential, educa-
tional, administrative…) in their early stages of design, if the following conditions
are met. First, the designer should have an educated guess about the design features
of the building itself; that will give a hint about the predictor variables. In this case,
office buildings were found to adopt a rectangular shape, with different orientations
and percentages of glass. More complex shapes (L-shaped or H-shaped, for instance)
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or other variables could also be included only if the second condition is met: The
predictor variables should be parametrized, which means that they should be prone
to be defined by numbers and/or mathematical expressions. Third, a base case for a
proper checking should be available; in this case, ISO 13790:2008 was used as the
base case for checking the accuracy of the model.

These models are especially useful during the early stages of design, when impor-
tant decisions about the geometry, orientation and façade design are made. Other
variables, such as internal loads and U values of the external envelope can be fixed,
as in this case, per building codes. In such way, they allow for trial and error of
numerous combinations of the predictor variables and therefore the best combina-
tion of such parameters can be clarified before going deeper into executive design.
Besides, fixing all the predictor variables except one will allow for a detailed study
about the influence of such variable in the energy consumption and CO2 emissions.
In the specialized literature, this technique, often denoted as parametric design, has
proven to be highly effective, because optimum values for those parameters that
have a great impact in the design of the building can be clarified in the first stages of
design. Therefore, these techniques are placed in the early stages of design, that is,
basic design, feasibility studies or first drafts.

These models should be understood to estimate the energy consumption and CO2

emissions of office building, but no to give exact figures; that is why theMAE should
always be introduced to give a range (minimum and maximum expected values) of
such parameters. These estimations may be handy in the first stages of design, when
estimations are more useful than exact values. Drawing a parallelism, in this stage
the exact dimensions of the structure of the building would not still be clarified, but
an estimation should be sufficient.

Other application of themultivariate regressionmodels is that they provide simple
equations to represent a complex calculation procedure; in this way, they can also
be used to enhance building policies or provide them with tools in order to check
compliance with rating schemes, such as LEED or BREEAM.

The main limitations of the models hereby presented relies in the fact that the
design features of the buildings are expressed asmathematical parameters, and there-
fore the design is parametrized and, until some extent, simplified. That is why these
models find no application when dealing with personalized designs or any kind of
particular buildings. Structures where a typology could be easily identified (offices,
schools, hospitals, social dwellings…) are prone to be parametrized.



Chapter 5
Artificial Neural Networks

5.1 Introduction

This chapter intends to demonstrate the performance and reliability of ANN in pre-
dicting large scale data not only for a single parameter, but for three of them (energy
consumption, energy demand and CO2 emissions) in relation to a large-scale sam-
ple of buildings, with all the issues associated to them, such as the nonlinearity of
problems related to building design and performance.

It is expected that the results of the study will be of help in two main areas. First,
assisting designers in the early stages of design, being able to grasp the demand of
resources of their design with a few variables. Second, the reference values expected
from the ANN results will be of help in assisting future policy makers in establishing
realistic goals in order to reduce, or at least contain, the energy demand, energy
consumption and CO2 emissions for these buildings.

Following the ISO 13790:2008 standard, a heating and cooling demand is gen-
erated for 77,000 possible office buildings in Santiago, resulting from the multiple
combinations of the number of storeys (NS), floor area (FA), form ratio (FR) and
window-to-wall ratio (WWR). Once the heating and cooling demands are obtained,
each building is assigned air-conditioning equipment whose coefficient of perfor-
mance (COP) and Energy efficiency ratio (EER) is distributed randomly, provid-
ing 77,000 heating energy consumption options and 77,000 cooling consumption
options. After that, in order to transform electrical consumption into CO2eq emis-
sions, a random CO2eq emission factor, that is, the CO2 emission factor is assigned
to these 154,000 options (Fig. 5.1). Summing up, the training data used in this study
is composed of 77,000 possible designs for office buildings, formed by combining
all the variables depicted in Fig. 5.1. These amounts of data are not composed by
a single variable, but by a complex interplay of several design parameters that bear
both linear and non-linear relations.

© The Author(s) 2018
C. Rubio-Bellido et al., Energy Optimization and Prediction in Office Buildings,
SpringerBriefs in Energy, https://doi.org/10.1007/978-3-319-90146-6_5
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Fig. 5.1 Parameter tree
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Table 5.1 Correlations matrix of the non-transformed predictor variables

FP FR NS WWR COP EER HEF

FR 0.0000 –

NS 0.0000 0.0000 –

WWR 0.0000 0.0000 0.0000 –

COP 0.2869 −0.0437 −0.5485 −0.2060 –

EER −0.0009 0.0000 0.0000 0.0000 −0.0028 –

HEF 0.2230 −0.0349 −0.4241 −0.1596 0.7092 −0.0321 –

CEF 0.0001 −0.0001 0.0000 −0.0003 0.0022 −0.0660 0.4769

5.2 Data Description

The predictor variables used for the regression models and multilayer perceptron for
the calculation of the cooling and heating demands are solely those related with the
building’s geometry, FP, FR, NS and WWR (Table 5.1). The consumption models
are formed through the geometry’s predictor variables added to the air-conditioning
systems’ energy performance predictor variables (COP andEER). The emissions fac-
tors must be added to these variables to determine the heating and cooling emissions
models (HEF and CEF).

It is seen, in Table 5.1, that most of the linear correlation coefficients between
the non-transformed predictor variables are 0 or are very low, with the exception
of the COP and HEF variables. The COP, EER, HER and CEF variables have been
allocated randomly to the calculation process to determine the dependent variables
to generate the models. The allocation has been done in MsEXCEL® through the
RAND formula. This has been done because the COP only has 4 values to allocate
and HEF 8, generating a linear correlation between said predictor variables and the
rest.

Given that the NS variable presents a discrete set of values, from 1 to 5, a variance
analysis has been made of one factor with 5 levels for one of the remaining variables.
Figure 5.2 presents the box-and-whiskers graphical representation for each variable.
COP and HEF values present some outliers due to the following reason. Despite the
considered buildings usually having to address both heating and cooling demands,
in some cases the consumption for heating is statistically non-significant due to
the climatic context of Santiago, so it has been established as a criteria that when
the heating consumption represents less than 10% of the total, this demand will be
covered by the cooling system itself, which can run on heat pump operation mode.
This criterion distorts the values for COP andHEF and explains the presence of some
outliers.

As would be expected on examining these figures, only the analysis of variance
(ANOVA) of the COP and HEF variables following the NS levels, was significant
(p value< 0.001). In the following section, the transformationsmade to the predicting
variables are described to check if, in this way, it is possible to obtain more reliable
regression models.
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Fig. 5.2 Box-and-whiskers FP, FR, WWR, COP, EER, HEF and CEF based on NS

5.3 Data Pre-processing

For a reasoned and reliable comparison of the different methods, the data set has been
divided randomly into three parts, with respective sizes of 50, 25 and 25. The first part
is used to adjust the models (38,500 cases), therefore acting as the training set. The
second sub-set (19,250 cases) is used for the validity and the third sub-set (19,250
cases), the previously adjusted models are applied, so that the error measurements
calculated using said test set allow estimating the generalization capacity, that is,
what performance should be expected for amodel over the observations of the studied
population. This division was kept in the construction of all 36 models (18 different
configurations and 2 predictive techniques).
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Table 5.2 Transformations of the predictor variables

Predictor variables Transformation

Footprint (FP) 1/FP

Form ratio (FR) 1/FR

Number of storeys (NS) Exp(NS)

Window-to-wall ratio (WWR) 1/WWR

Coefficient of performance (COP) Log(COP)

Energy efficiency ratio (EER) Log(EER)

Heating emission factors (HEF) –

Cooling emission factors (CEF) –

Table 5.3 Matrix of correlations of the transformed predictor variables

FP FR NS WWR COP EER HEF

FR 0.0000 –

NS 0.0000 0.0000 –

WWR 0.0000 0.0000 0.0000 –

COP −0.3283 −0.0083 −0.6144 0.2251 –

EER 0.0014 −0.0030 0.0000 0.0000 −0.0019 –

HEF −0.2482 −0.0064 −0.4629 0.1694 0.7275 −0.0324 –

CEF 0.0000 0.0003 0.0001 0.0004 0.0013 −0.0667 0.4769

On the other hand, the models constructed in this work have been adjusted consid-
ering the sets of pairs (predictor variables, dependent variable). In the first setup, both
the predictor variables and the dependent variable intervene just like they have been
measured; consequently, there are four predictor variables for demand, six for con-
sumption and eight for emissions. In the second setup, four predictor variables have
been built, through transformations following the relation they have with the energy
demands of the buildings. Specifically, the eight transformations of the predictor
variables for this setup, appear in Table 5.2.

Table 5.3 shows the correlations estimated between the transformed predictor
variables for the models MLR2, MLR3, PM2 and PM3. It can be seen that there
is no presence of severe multicollinearity, that is to say, a correlation between the
predictor variables. In this case, there are no correlations with absolute values above
0.5 (without including the constant term).

In the third setup, apart from transforming the predictor variables, the dependent
variable is transformed logarithmically, looking for a more symmetrical distribution.
Both the Multiple Linear Regression (MLR) models and the Multilayer Perceptron
(PM) have been developed over the three setups, so there are six different models
which have been adjusted for each one of the dependent variables (Cooling Demand,
Heating Demand, Cooling Consumption, Heating Consumption, Cooling Emissions
and Heating Emissions).
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5.4 Comparison with Linear Regressions

Tables 5.4, 5.5 and 5.6 contain three quality indicators of the prediction models.
Three measurements have been selected from the diverse existing indicators. The
tables also include in the row H information about the size of the hidden layer of
each multilayer perceptron.

First of all, in the tables, the p-value corresponding to the Ljung-Box test is
shown about the possible first order self-correlation in the residue that arises from
the adjustment of each model. It would be desirable that the p-value of LB would be
non-significant, that is, if LB>0 .05, the null hypothesis that the first order correlation

Table 5.4 Results for energy demand

MLR1 MLR2 MLR3 PM1 PM2 PM3

Cooling

Ljung-Box
(p-v.)

0.145 0.447 0.439 0.609 0.101 0.378

ECM 0.497 0.552 0.552 0.032 0.117 0.072

R2 0.357 0.206 0.205 0.997 0.964 0.986

H 14 12 14

Heating

Ljung-Box
(p-v.)

0.265 0.668 0.835 0.098 0.576 0.480

ECM 0.275 0.361 0.361 0.012 0.025 0.032

R2 0.635 0.369 0.378 0.999 0.997 0.995

H 15 12 14

Table 5.5 Results for energy consumption

MLR1 MLR2 MLR3 PM1 PM2 PM3

Cooling

Ljung-Box
(p-v.)

0.717 0.918 0.930 0.649 0.232 0.398

ECM 0.226 0.159 0.128 0.013 0.014 0.019

R2 0.953 0.977 0.985 1.000 1.000 1.000

H 10 14 12

Heating

Ljung-Box
(p-v.)

0.756 0.563 0.860 0.735 0.957 0.343

ECM 0.416 0.340 0.290 0.024 0.049 0.043

R2 0.895 0.930 0.950 1.000 0.999 0.999

H 15 9 11
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Table 5.6 Results for CO2 emissions

MLR1 MLR2 MLR3 PM1 PM2 PM3

Cooling

Ljung-Box
(p-v.)

0.698 0.553 0.842 0.901 0.593 0.823

ECM 0.248 0.226 0.095 0.010 0.016 0.012

R2 0.959 0.966 0.994 1.000 1.000 1.000

H 14 12 15

Heating

Ljung-Box
(p-v.)

0.445 0.863 0.747 0.006 0.818 0.332

ECM 0.097 0.086 0.075 0.008 0.014 0.019

R2 0.855 0.886 0.916 0.999 0.997 0.994

H 14 15 14

of residuals equals 0 could not be rejected. With regard to Ljung-Box, generally
speaking results for p-values are non-significant.

The second indicator is the Mean Quadratic Error (ECM), that is, the mean of the
quadratic residue. The measurement has been calculated on the original scale of the
dependent variable, even in the models MLR3 and PM3. This ECM value should be
as small as possible.

The third measure, R2, is the linear correlation coefficient to the square between
the values observed and the predictions. R2 values range between 0 and 1, with the
best values being those that are nearest to 1.

All the models constructed present residues where a significant self-correlation of
the first order is not appreciated.While for the ECM and R2 criteria, the model which
provides a greater generalization capacity, according to the values obtained in the
test set, is the multilayer perceptron adjusted over the original variables, which offers
ECM values closer to 0, with an R2 coefficient that is greater than 99% (Tables 5.4,
5.5 and 5.6). The comparison of the MLR and PM models demonstrates a clear
superiority to the multilayer perceptron models, substantially improving the quality
of the predictions. It is possible to see in Tables 5.4, 5.5 and 5.6 that the PMmodels do
not need to work with the transformed variables, their nature of universal non-linear
approximators lets them obtain high quality predictions with the original predictor
variables.

Focusing on the demand models, the effect of making transformations is not
positively seen in the MLR2 and MLR3 models. As can be seen in Table 5.4, the
ECM test increases from 0.497 to 0.552 for cooling and from 0.275 to 0.361 for
heating, while the R2 coefficient passes from 35.7 to 20.6% and from 63.5 to 36.9%.
However, themodels based on themultilayer perceptron have not needed toworkwith
transformations of the predictor variables. The PM1 model provides a lower ECM
test than those of the PM2 and PM3models, with R2 coefficients of 99.7% for cooling
and 99.9% for heating. This shows the non-linear nature of themultilayer perceptron,
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Fig. 5.3 MLR1 and PM1 test, cooling energy demand (kWh/year)/m2

capable of providing a good fit when the proportion between the predictors and the
dependent variable is not of a linear nature. This better behaviour seen for the models
based on the multilayer perceptron is even cleared in the point clouds formed by the
pairs (dependent variable, prediction) (Figs. 5.3 and 5.4).

As an illustration, Figs. 5.3 and 5.4 show the points clouds for the best linear
regression model for demands (MLR1) and the best multilayer perceptron model
(PM1), for the cooling and heating variables in the test set. The fit provided by PM1
is clear, graphically showing the high quality of the model obtained. It is seen that
the points cloud for the linear regression models has a much greater spread than the
points clouds for the PM models.

In regards to the consumption models, the effect of making transformations both
of the predictor variables and of the dependent variable is seen positively in the
MLR2 and MLR3 models. The ECM test is reduced between the MLR1 and MLR3
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Fig. 5.4 MLR1 and PM1 test, heating energy demand (kWh/year)/m2

models from 0.226 to 0.128 for cooling and from 0.416 to 0.290 for heating, while
the R2 coefficient passes from 95.3 to 98.5% and from 89.5 to 95.0% (Table 5.5).
Just like what would happen in the models based on the multilayer perceptron for
the demand, it has not been necessary to generate transformations of the predictor
variables, obtaining an ECM of 0.013 with an R2 of 100.0% for cooling and a
heating model with an EMC of 0.024 with an R2 of 100.0%. For that reason, in
Figs. 5.5 and 5.6, it can be seen that the multilayer perceptron continues to provide
a better fit between the non-linear dependent variable, obtaining a lower spread
even in the heating consumption variable which has a greater difficulty of fit in the
regression models in spite of the transformations both of the predictor variables and
the dependent variable.

The emissions models in spite of being formed by eight predictor variables have
similar behaviours to those of consumption, obtaining the best result in the regression
models, case where the predictor variables and the dependent variable have been
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Fig. 5.5 MLR3 and PM1, test, cooling energy consumption (kWh/year)/m2

transformed. The MLR3 model reduces the ECM for cooling from 0.248 to 0.095
and from 0.097 to 0.075 for heating, with R2 passing from 95.9 to 99.4% and from
85.5 to 91.6%. Just as occurs in the previous cases, the multilayer perceptron model
has a good fit both for the untransformed and transformed variables, finding the best
fit in the PM1 model with an ECM of 0.010 for cooling emissions and of 0.008 for
heating emissions, with the R2 for the first emissions model sitting at 100.0% and for
the second at 99.9% (Table 5.6). It is necessary to indicate that the transformations
of the variables in the PM models do not only worsen their performance but their
ECM too and in some cases their R2 as well (Tables 5.4, 5.5 and 5.6).

As an illustration, Figs. 5.7 and 5.8 show the points clouds for the best linear
regression model for emissions (MLR3) and the best multilayer perceptron model
(PMI) for the cooling and heating emissions variables in the test set. The fit provided
for PM1 is clear, graphically showing the high quality of the model obtained.
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Fig. 5.6 MLR3 and PM1, test, heating energy consumption (kWh/year)/m2

Therefore, the results show a better performance of the models based on the
multilayer perceptron, not only for the analysis of the numeric indicators, but by
the graphical representation on comparing observed values and predictions, where
an almost perfect fit is shown for the neural network model built on the first setup,
that is, considering the four, six and eight predictor variables. The PM1 models
produce the best results working with ECM and R2, and for each dependent variable,
the points cloud of the model based on the multilayer perceptron shows a stronger
linear relation in comparison with the corresponding linear regression model. The
improvement of the fit stands out especially in the predictive models for cooling and
heating demand. It is true though, that the MLR models do not always improve with
the proposed transformations.
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Fig. 5.7 MLR3 and PM1, test, cooling emissions (TCO2/kWh)

5.5 Discussions

A procedure to develop training data set for ANN following a quasi-static method
calculation procedure such as ISO 13790:2008 has been successfully implemented,
generating a database of 77,000 cases, being statistically representative of a concrete
building typology, in this case, office buildings. The authors consider that this fact
remains particularly important because one of the main concerns when using ANN
is the amount of data that can be used as the training set. This procedure, which relies
on a verified methodology, allows for the generation of considerable amounts of data
to be used not only in the present but also in further studies.

The statistical models that best reproduce the results of the ISO 13790:2008
standard, are those developed from the multilayer perceptron, obtaining an R2 of
99.8% in cooling and 99.9% in heating with ECM values of 0.0008 and 0.0001
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Fig. 5.8 MLR3 and PM1, test, heating emissions (TCO2/kWh)

without needing to transform the dependent variable or the predictors. The linear
regression models, however, obtain higher performance when the predictor variables
are transformed, obtaining R2 values closer to 85% both in heating and in cooling,
and ECM values between 0.0269 and 0.0606. Through this, it can be confirmed that
the models created starting from the Artificial Neural Network (ANN) have a greater
precision to substitute the calculation procedures established in the norm when the
constructive standards and the internal loads are suitably defined.

An ANNmodel has been obtained for the prediction of multiple variables regard-
ing the energy demand, energy consumption and CO2 emissions for a statistically
representative set of data regarding office buildings in Santiago. The ANN model
has shown a satisfactory performance even when dealing with variables without
transformation, obtaining values of R2 over 0.994 for all models and non-significant
p-values. It has been determined that, so there is no collinearity between the predic-
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tor variables, these must be transformed, mainly IR which is linked to the building’s
volume and, therefore, the number of storeys.

It is considered that the results from this research can open roads towards the future
implementation of advanced calculation methods regarding energy demand, energy
consumption and CO2 emissions, being the first research to bring these methods into
the Chilean legislative framework. ANN models can provide simplified and faster
calculation methods that are able to enhance the implementation of ISO 13790:2008
into the Chilean context. Designers will be benefitted as they will be able to estimate
the depletion of resources for their projects in the early stages of design; FP, NS and
FR define the basic shape of the construction, WWR deals with the amount of glass
in the façade and finally IR is related to the constructive standards intended to be
implemented. Additionally, as this country is in the process of updating the legislative
framework with regard to building energy efficiency, the values obtained from this
study can be of use when developing future standards, establishing realistic goals
that can be effectively accomplished by developers, designers and stakeholders.
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