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Preface

The present book is based on a one-year course of lectures given intermittently
during the years from 1990 to 2010 at the University of Heidelberg. The lectures
were devised as an in-depth introduction into many-body theory for finite electronic
systems, that is, molecules, atoms, and clusters, addressing graduate, doctoral, and
postdoctoral students, who were generally interested in quantum-chemical methods
and computations. The original course is essentially covered by the first 10 chap-
ters, while 7 additional chapters address further elaborations and extensions.

Many-body methods, or more accurately, field-theoretical many-body methods,
have originated in quantum field theory where they were developed as a means to
treat the physics of elementary particles. As was soon realized, these methods could
be transferred to the treatment of quantum many-body systems in solid-state phy-
sics and statistics, not conveying novel physics here but supplying a powerful new
formalism and a route toward alternative computational methods. Shortly afterward,
this formalism was taken up in the treatment of finite particle systems, first in
nuclear physics, and finally in quantum chemistry as well. It is now almost half a
century since computational schemes based on field-theoretical many-body theory
were developed and successfully applied to finite electronic systems.

In the field-theoretical approach, the many-particle problem is formulated in
terms of many-body Green’s functions or propagators. These entities are defined as
ground-state expectation values of time-dependent operator products, which, in
energy representation, take on the form of matrix elements of many-body resolvent
operators. They allow for a direct access to the energies and transition moments of
generalized excitation processes in the considered system, such as ionization
(electron removal), affinities (electron attachment), and neutral electronic excitation.

What is the advantage inherent to these methods and what can they actually do
better than the conventional procedures in dealing with small, medium size, and
large molecules? An apparent advantage is a direct access to physically relevant
quantities such as excitation energies and transition moments, which otherwise have
to be assembled from independent computations for the initial ground and final
excited states. But there is another, deeper justification, related to characteristic
shortcomings in the conventional approach.
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In the conventional quantum-theoretical treatment of finite many-electron sys-
tems, there are two basic tools: firstly, perturbation theory (PT), which, however, as
a computational scheme applies only to the N-electron ground state; and, secondly,
the standard numerical procedure of solving the time-independent Schrödinger
equation, that is, using suitable basis set expansions for the states of interest and
transforming the Schrödinger equation into the secular problem of the corre-
sponding matrix representation of the hamiltonian. The general problem of con-
figuration interaction (CI), as the standard procedure is referred to in quantum
chemistry, is the exponentially increasing dimension of the secular matrix,
d ¼ M

N

� �
, both with the size of the systems, reflected in the number of electrons, N,

and the demand for accuracy, reflected in the number M of one-particle states
underlying the many-electron basis states (CI configurations). This means that a full
CI treatment is not viable except for very small systems and limited one-particle
basis sets, and one has to resort to approximate CI schemes obtained by truncating
the configuration manifold in suitable ways.

Here, however, an unsuspected problem arises which disqualifies the CI as a
means of treating extended electron systems. In the CI secular equations, there is an
interaction (mixing) of configurations that differ exactly by a double excitation,
such as in a singly (S) excited configuration (relative to the reference state) and a
triply (T) excited configuration comprising the former single excitation.
A corresponding S-T secular matrix element is potentially “non-local”; that is, its
magnitude does not decrease or vanish when the involved single and double
excitations can be assigned to distant parts of the system or even to separate
fragments of a composite system. In truncated CI expansions, the presence of these
potentially non-local admixtures causes an uncontrollable error which grows with
the spatial extension of the system and, accordingly, is referred to as
size-consistency error.

The propagator methods, by contrast, do not suffer from this deficiency. As a
common feature, approximation schemes deriving from field-theoretical many-body
theory combine perturbation expansions (of the ground-state type) and eigenvalue
algebra within a generalized secular problem where in particular any potentially
non-local coupling contributions are taken care of in the PT part. As a consequence,
the propagator methods are inherently size-consistent and, moreover, more eco-
nomical, requiring distinctly smaller explicit configuration manifolds in the secular
problem than in CI expansions of comparable accuracy.

A brief guide to the tour through the five parts of this book may be helpful. The
first two chapters of Part I lay the groundwork for the quantum theory of
many-electron systems, addressing states, operators, the evaluation of matrix ele-
ments, and, finally, the use of second quantization. Thereupon, the prototypical
one-particle Green’s function or electron propagator is presented and discussed in
Chap. 3.

vi Preface



In the four chapters of Part II, the formalism of diagrammatic perturbation theory
is developed, based on three central theorems, the Gell-Mann and Low theorem,
Wick’s theorem, and the linked-cluster theorem. At the end of that part, the reader
should be able to draw and evaluate Feynman diagrams.

However, the diagrammatic arts do not yet establish a procedure to compute the
electron propagator or the physical information conveyed therein. So with Chap. 8
in Part III, the focus shifts to the issue of developing computational schemes. Here,
the prominent starting point is the Dyson equation, relating the electron propagator
to the so-called self-energy. The latter quantity is itself subject to a diagrammatic
perturbation expansion, where the diagrams are simpler than those for the electron
propagator. The subject of Chap. 9 is the algebraic–diagrammatic construction
(ADC), a general procedure to generate systematic higher-order approximations
(ADC(n) schemes) to the self-energy, being consistent through order n, and, cru-
cially, reproducing the correct analytical structure of the self-energy. The ADC
procedure is quite versatile and can directly be applied to the electron propagator,
or, more accurately, to its ðN � 1Þ-electron parts, as is demonstrated in Chap. 10.

Then, in Chaps. 11 and 12, our tour takes a remarkable turn: The direct ADC
approximations can be derived via a radically different route, namely a
wave-function-based approach referred to as intermediate state representation
(ISR). (An impetuous reader, already familiar with the topics of Chaps. 1 and 2,
might take a shortcut directly to Chaps. 11 and 12). The ISR concept bridges the
gap between propagator and wave-function methods, lifts certain limitations
inherent to the diagrammatic propagator approach, and allows for a rigorous
foundation (Chap. 12) of the defining many-body features.

In Part IV, we turn toward the physics of N-electron excitations and the
polarization propagator relevant here. Chapter 13 discusses how diagrammatic
perturbation theory can be adapted to the polarization propagator. The ADC and
ISR concepts for N-electron excitations are presented in Chap. 14, while Chap. 15
reviews the prominent random-phase approximation (RPA), being a paradigmatic
model in many-body theory. The final part V takes a look at two related approaches,
which may be seen as ISR variants: The equation-of-motion (EOM) methods
(Chap. 16) and methods based on the coupled-cluster (CC) ansatz (Chap. 17).

Altogether 9 appendices supplement the main text: Appendix A.1 reviews
many-body perturbation theory and recollects some useful algebraic techniques;
some more lengthy proofs are deferred to Appendices A.2, A.3, A.4, and A.6;
extensions to Chaps. 8, 13, and 16 are given in Appendices A.5, A.7, and A.8,
respectively; the final Appendix A.9 compiles various explicit ADC expressions.

As may be permissible in a textbook, perhaps even advisable, the bibliography
has been kept relatively short and selective. In topics that are well documented in
the literature, only a few key papers or books are quoted. More comprehensive
reference is made to subjects or issues that are less familiar or amenable. And, of
course, I have tried to indicate the sources wherever the text draws upon exemplary
previous presentations.
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Part I
Many-Electron Systems and the Electron

Propagator



Chapter 1
Systems of Identical Particles

In the first section, we take a look at the basic ingredients in the quantum-theoretical
formulation of many-electron systems: wave functions (states) and operators. For
an in-depth discussion of physical aspects relevant here, the reader is referred to
Chap.XIV in the textbook by A.Messiah [1]. In dealing with many-particle systems,
the handling of matrix elements involving Slater determinants is required. Here, the
essential tool is a set of simple rules, referred to as Slater–Condon rules, which will
be considered in the second section of this chapter.

1.1 Many-Electron Wave Functions

In the following, we will consider a system of N identical (more strictly: indistin-
guishable) particles, specifically, electrons in an atom or molecule. Each particle is
associated with a set of three spatial coordinates, x, and a spin variable, σ. Accord-
ingly, an N -particle wave function,

� = �(x1σ1, . . . , xNσN ) (1.1)

is a function of the N sets of variables, xkσk, k = 1, . . . , N . The wave function is a
representation of an underlying abstract state |�〉,

�(x1σ1, . . . , xNσN ) = 〈xNσN | . . . 〈x1σ1|�〉 (1.2)

Here, |xσ〉 denotes a (formal) one-particle eigenstate of the position and spin oper-
ators. For notational brevity, we shall occasionally combine the spatial and spin
variables,

ξi ≡ xiσi (1.3)

© Springer Nature Switzerland AG 2018
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4 1 Systems of Identical Particles

Using this notation, the wave function takes the form

�(ξ1, . . . , ξN ) = 〈ξN | . . . 〈ξ1|�〉 (1.4)

Integration with respect to the ξ-variables is defined according to

∫
. . .

∫
dξ1 . . . dξN =

∑
σ1

· · ·
∑
σN

∫
. . .

∫
dx1 . . . dxN (1.5)

To discuss the permutation symmetry, let us introduce permutation operators,
defined according to

P̂�(ξ1, . . . , ξN ) = �(ξP(1), . . . , ξP(N )) (1.6)

where P denotes a permutation of the figures 1, . . . , N :

P : i → P(i), i = 1, 2, . . . , N (1.7)

The set of permutations of N elements forms a group, referred to as the symmetric
group SN , and so does the corresponding set of permutation operators. (Here, the
group multiplication is the successive application, P̂ ′′ = P̂ P̂ ′.) The permutation
operators are unitary, that is, P̂−1 = P̂† (see Exercise 1.1). Each permutation can
be obtained as a product (consecutive application) of transpositions (exchanging
two figures). While this way of generating permutations is not unique, the number
of transpositions involved is either always even or always odd, depending on the
respective permutation. In that sense, a permutation P is said to be “even” or “odd,”
and a corresponding sign of P can be defined according to

(−1)P =
{

+1, even number of transpositions

−1, odd number of transpositions
(1.8)

The symmetrization postulate of quantum theory states that the wave functions
for a system of N uniform particles must be either totally symmetric (bosons) or
totally antisymmetric (fermions) with respect to any permutation of the particle vari-
ables:

P̂�(ξ1, . . . , ξN ) =
{

(−1)P�(ξ1, . . . , ξN ), fermions

�(ξ1, . . . , ξN ), bosons
(1.9)

In the following,we shall deal exclusivelywith fermions, specifically electrons.Here,
an immediate consequence of the symmetrization postulate is the Pauli principle,
stating that the wave function vanishes whenever the coordinates and spins of two
(or more) fermions coincide:

�(ξ1, . . . , ξN ) = 0 for ξi = ξ j (i �= j) (1.10)



1.1 Many-Electron Wave Functions 5

It is useful to expand general N -electron states in terms of products of orthonormal
one-particle states

|qγ〉 = |q〉|γ〉 (1.11)

Here, q and γ = ± 1
2 are spatial and spin quantum numbers, respectively. We shall

also use the notation γ = α,β, established in quantum chemistry. Note that the one-
particle states are themselves products of spatial states, |q〉, and spin states, |γ〉,
fulfilling the orthonormal conditions

〈q|q ′〉 = δqq ′ , 〈γ|γ′〉 = δγγ′ (1.12)

The corresponding wave functions are

ϕq(x) = 〈x|q〉
χγ(σ) = 〈σ|γ〉

The spin functions may also be written in spinor form,

χα =
(
1

0

)
, χβ =

(
0

1

)

A common choice of spatial orbitals is the set of molecular orbitals (MOs) generated
by a Hartree–Fock (HF) or self-consistent field (SCF) computation of the N -electron
ground state.

For a more abstract representation, it is helpful to replace the pair of a spatial and
a spin quantum number by single comprehensive spin-orbital quantum number

qγ ≡ q (1.13)

which, for notational economy, may be labeled by the same latin letter. (Whether
q labels a spin-orbital or merely a spatial orbital will be clear from the respective
context.) Accordingly, spin-orbital wave functions may be written as

ψq(ξ) = 〈ξ|q〉 (1.14)

A simple (not yet antisymmetric) product state of N electrons, in which the i th
electron “occupies” the spin-orbital qi , may be written as

|�〉 = |q1〉|q2〉 . . . |qN 〉 (1.15)

The corresponding wave function takes on the form (Hartree product)

�(ξ1, . . . , ξN ) = ψq1(ξ1) . . . ψqN (ξN ) = 〈ξN | . . . 〈ξ1|q1〉 . . . |qN 〉 (1.16)
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As in Eq. (1.4), |ξ1〉 . . . |ξN 〉 denotes the corresponding Hartree product (in ket form)
of the one-particle coordinate eigenfunctions |ξi 〉.

For a convenient formulation of antisymmetric product states, it is expedient to
introduce the antisymmetrization operator

Â = 1

N !
∑
P

(−1)P P̂ (1.17)

Here, the sum runs over all N ! permutations P (of N elements). The following
properties are readily established (see Exercise 1.2):

Â = Â† hermiticity (1.18)

P̂Â = (−1)P Â (1.19)

Â2 = Â projector (1.20)

With the help of the antisymmetrization operator, we may define normalized anti-
symmetric product states according to

|q1 . . . qN 〉 = (N !) 12 Â|q1〉 . . . |qN 〉
= (N !)− 1

2
∑
P

(−1)P |qP(1)〉 . . . |qP(N )〉 (1.21)

The corresponding wave function takes on the form

�A(ξ1, . . . , ξN ) = 〈ξN | . . . 〈ξ1||q1 . . . qN 〉
= 1√

N !
∑
P

(−1)PψqP(1) (ξ1)ψqP(2) (ξ2) . . . ψqP(N )
(ξN )

= 1√
N !

∑
P

(−1)Pψq1(ξP(1))ψq2(ξP(2)) . . . ψqN (ξ p(N )) (1.22)

Note that �A is normalized (supposing orthonormal one-particle states 〈qi |). Alter-
natively, one could use the antisymmetrized coordinate eigenstate

|ξ1 . . . ξN 〉 = (N !)− 1
2

∑
P

(−1)P |ξP(1)〉 . . . |ξP(N )〉 (1.23)

rather than the product of the 〈ξi | states. However, there is a subtlety as according to

〈ξN . . . ξ1|q1 . . . qN 〉 = √
N ! �A(ξ1, . . . , ξN ) (1.24)
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the result has to be multiplied with 1/
√
N ! to yield a normalized wave function (see

Exercise 1.4).
Owing to the formal equivalence to the definition of matrix determinants, an

antisymmetric product state wave function can also be written in the form of a
determinant of spin-orbitals, referred to as Slater determinant:

�A(ξ1, . . . , ξN ) = 1√
N !

∣∣∣∣∣∣∣∣∣

ψq1(ξ1) ψq1(ξ2) · · · ψq1(ξN )

ψq2(ξ1) ψq2(ξ2) · · · ψq2(ξN )
...

...
. . .

...

ψqN (ξ1) ψqN (ξ2) · · · ψqN (ξN )

∣∣∣∣∣∣∣∣∣
(1.25)

A shorthand notation for the Slater determinant (including the normalization factor)
is as follows:

�A(ξ1, . . . , ξN ) = ∣∣ψq1(ξ1)ψq2(ξ2) · · · ψqN (ξN )
∣∣ (1.26)

The antisymmetric product states fulfill the following properties:

1. Symmetry with respect to permutations:

P̂|q1 . . . qN 〉 = (−1)P |q1 . . . qN 〉 (1.27)

2. Pauli principle (the wave function vanishes if two electrons occupy the same
one-particle state):

|q1 . . . qN 〉 ≡ 0 if qi = q j , i �= j (1.28)

3. Linear combination of spin-orbitals:

|q1 . . . qi−1(aq + bq ′)qi+1 . . . qN 〉
= a|q1 . . . qi−1qqi+1 . . . qN 〉 + b|q1 . . . qi−1q

′qi+1 . . . qN 〉 (1.29)

The (multi-)linearity of the Slater determinants can be generalized to an arbitrary
linear transformation

|q̃i 〉 =
N∑
j=1

|q j 〉Uji , Uji ∈ C (1.30)

of the set of spin-orbitals, yielding the expression

|q̃1 . . . q̃N 〉 = det(U)|q1 . . . qN 〉 (1.31)

for the Slater determinant of the transformed spin-orbitals. Here, det(U) is the deter-
minant of the matrix of elements Ukl . Equation (1.31) can readily be derived (Exer-
cise 1.3) using the properties (1.27)–(1.29).
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For a complete basis set of one-particle states, the manifold of product states
|q1 . . . qN 〉, q1 < q2 < · · · < qN forms a basis of the Hilbert space of antisymmetric
N -electron states.

Physical observables are represented by (hermitian) operators. For an N -electron
system, the operators usually are of the form

Ŵ1 =
N∑
i=1

ŵ(i) one-particle operator (1.32)

Ŵ2 =
N∑
i< j

ŵ(i, j) = 1
2

N∑
i �= j

ŵ(i, j) two-particle operator (1.33)

Here, ŵ(i) is a one-particle operator acting on the coordinates of the i th electron.
Likewise, ŵ(i, j) denotes a two-particle operator, the action of which depends on
the coordinates of both the i th and the j th electrons. While in the elementary physics
of interacting electrons only one- and two-particle operators arise, one may, at least
formally, introduce r -particle operators Ŵr with r ≥ 3. Consistent with the indistin-
guishability of the particles, these operators are symmetric, which means they are
invariant with respect to a permutation of the numbering of the electrons:

Ŵr = P̂Ŵr P̂
−1 or Ŵr P̂ = P̂Ŵr , r = 1, 2, . . . (1.34)

The (nonrelativistic) hamiltonian for an N -electron atom or molecule may serve
as an example:

Ĥ =
N∑
i=1

{
− �

2

2me
�(i) −

K∑
a=1

e2Za

|xi − Ra|

}
+ 1

2

N∑
i �= j=1

e2∣∣xi − x j

∣∣ +
∑
a<b

Za Zbe2

|Ra − Rb|
(1.35)

Here, Za and Ra denote the nuclear charge numbers and positions. The last term
is the nuclear repulsion, which for fixed nuclear positions is simply a constant, not
affecting the electronic motion. The electronic hamiltonian (without the nuclear
repulsion term),

Ĥ = T̂ + V̂ (1.36)

is composed of a one-particle part

T̂ =
N∑
i=1

t̂(i) (1.37)

associatedwith the kinetic energy of the electrons and the electron–nuclei interaction,
and the electronic Coulomb repulsion,
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V̂ = 1
2

∑
i �= j

v̂(i, j) (1.38)

being a two-particle operator. It should be noted that Ĥ is spin-independent; that
is, its constituents act exclusively on the spatial coordinates of the electrons. Spin-
dependent terms come into play when relativistic effects are taken into consideration.

1.2 Matrix Elements for Many-Electron States

In dealing with many-particle systems, the handling of matrix elements involving
Slater determinants is required. The basic tool here is a set of simple rules, referred
to as Slater–Condon rules, which we consider in the following.

Let us consider a general Slater determinant

|�〉 = |q1 . . . qN 〉 (1.39)

corresponding to a specific choice of one-particle states of a given orthonormal basis
set {|q〉}. We shall specifically address three cases, namely (a) scalar products, (b)
matrix elements of one-particle operators, and (c) matrix elements of two-particle
operators.

(a) Scalar products:
Let us first consider the scalar product 〈�|�〉:

〈q1 . . . qN |q1 . . . qN 〉 = N ! 〈q1| . . . 〈qN |Â†Â|q1〉 . . . |qN 〉 (1.40)

= N ! 〈q1| . . . 〈qN |Â|q1〉 . . . |qN 〉 (1.41)

In the second line, we have used Â†Â = Â2 = Â, following from the hermiticity and
projector properties (1.18) and (1.20), respectively. Note that the states appearing
to the left and right sides of Â are Hartree products. To proceed, we use the defini-
tion (1.17) of the antisymmetrization operator and evaluate the scalar products of the
respective Hartree product states:

〈q1 . . . qN |q1 . . . qN 〉 = N ! 1

N !
∑
P

(−1)P〈q1|qP(1)〉 . . . 〈qN |qP(N )〉

= 〈q1|q1〉〈q2|q2〉 . . . 〈qN |qN 〉 = 1 (1.42)

Of all permutations, only the identical permutation, P(i) = i , gives rise to a non-
vanishing contribution, as in all others there is at least one vanishing overlap factor,
〈qk |ql〉 = 0, qk �= ql . The final result as given in the second line of Eq. (1.42) estab-
lishes the first Slater–Condon rule (SC) for scalar products (a1).
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The preceding treatment can readily be extended to the case of differing Slater
determinants. Let

|�〉 = |q1 . . . qk . . . qN 〉
|�′〉 = |q1 . . . q ′ . . . qN 〉, q ′ �= q1, . . . , qN (1.43)

denote two Slater determinants differing at exactly one position. Performing the same
algebra as in Eqs. (1.41) and (1.42), the second line of Eq. (1.42) becomes

〈�′|�〉 = 〈q1|q1〉 . . . 〈q ′|qk〉 . . . 〈qN |qN 〉 = 0

as even for the identical permutation there is one vanishing scalar product, 〈q ′|qk〉 =
0. In the same manner, Slater determinants differing at two or more positions can be
treated. The emerging SC rule a2 can be stated as follows:
The scalar product of two Slater determinants vanishes if they differ at least in one
position (upon appropriate ordering of the orbitals).

(b) One-particle operators:
In the discussion of the matrix elements 〈�′|Ŵ |�〉 of a general one-particle operator,

Ŵ =
N∑
i=1

ŵ(i)

we distinguish three cases: (i) |�′〉 = |�〉; (ii) |�〉 and |�′〉 differ in one position;
(iii) they differ in two or more positions.

(i) Here, the evaluation of the matrix element proceeds as follows:

〈�|Ŵ |�〉 = N !〈q1| . . . 〈qN |Â†Ŵ Â|q1〉 . . . |qN 〉
= N !〈q1| . . . 〈qN |Ŵ Â|q1〉 . . . |qN 〉

=
∑
P

(−1)P〈q1| . . . 〈qN |
N∑
i=1

ŵ(i) |qP(1)〉 . . . |qP(N )〉 (1.44)

Besides the hermiticity and projector properties (1.18) and (1.20), we here have used
ÂŴ = Ŵ Â, being an immediate consequence of the commutation relation (1.34).
Each term in the third line of Eq. (1.44) is a product of N−1 overlap factors and a
single one-particle integral:

〈�|Ŵ |�〉 =
N∑
i=1

∑
P

(−1)P〈qi |ŵ|qP(i)〉
N∏
j �=i

〈q j |qP( j)〉

=
N∑
i=1

〈qi |ŵ|qi 〉 (1.45)
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Here,

〈p|ŵ|q〉 =
∫

ψ∗
p(ξ)ŵ ψq(ξ)dξ (1.46)

denotes the one-particle matrix element for the spin-orbitals p and q. As in the case
of the scalar products, the product of overlap factors vanishes for all permutations
except for the identical permutation, giving rise to the simple final result in the sec-
ond line of Eq. (1.45). This constitutes the first SC rule (b1) for matrix elements of
a one-particle operator.

(ii) In the case of two Slater determinants (1.43), differing at the kth position, the eval-
uation of the matrix element 〈�′|Ŵ |�〉 is largely analogous to case (i) in Eq. (1.44).
Again, in summing over the permutations only the identical permutation survives,
and only the summation over the one-particle indices remains,

〈�′|Ŵ |�〉 = 〈q1|q1〉 . . . 〈q ′|ŵ|qk〉 . . . 〈qN |qN 〉 +
N∑
i �=k

〈qi |ŵ|qi 〉〈q ′|qk〉
∏
j �=i,k

〈q j |q j 〉

Here, the term corresponding to i = k has been taken out of the sum. Obviously,
the first term on the right-hand side is the only non-vanishing one, because all other
summands contain the vanishing overlap factor 〈q ′|qk〉. The final result (constituting
the SC rule b2) reads

〈�′|Ŵ |�〉 = 〈q ′|ŵ|qk〉

(iii) If the Slater determinants differ at two positions, say at k and l (k < l),

|�〉 = |q1 . . . qk . . . ql . . . qN 〉
|�′′〉 = |q1 . . . q ′ . . . q ′′ . . . qN 〉 q ′ �= q ′′ �= q1, . . . , qN (1.47)

the matrix element is readily seen to vanish,

〈�′′|Ŵ |�〉 = 0

The corresponding SC rule (b3) is that for a one-particle operator the matrix element
of two Slater determinants vanishes if they differ in two or more positions (upon
appropriate reordering).

(c) Two-particle operators:
In the following, we consider an arbitrary two-particle operator, written in the form

V̂ =
∑
i< j

v̂(i, j) (1.48)

As above, we shall distinguish several cases, here (i)–(iv), corresponding to the
number of positions in which the two Slater determinants differ.
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(i) Expectation values:
Like in the case of the one-particle operator,wemayuse the operator identity Â†V̂ Â =
V̂ Â, which allows us to write

〈�|V̂ |�〉 = N !〈q1| . . . 〈qN |V̂ Â|q1〉 . . . |qN 〉
=

∑
P

(−1)P〈q1| . . . 〈qN |
∑
i< j

v̂(i, j) |qP(1)〉 . . . |qP(N )〉

=
∑
i< j

∑
P

(−1)P〈qiq j |v̂|qP(i)qP( j)〉
∏
k �=i, j

〈qk |qP(k)〉 (1.49)

where

〈pq|v̂|rs〉 =
∫ ∫

dξ1dξ2ψ
∗
p(ξ1)ψ

∗
q(ξ2)v̂(ξ1, ξ2)ψr (ξ1)ψs(ξ2) (1.50)

denotes the two-particle matrix element, involving the four spin-orbitals p, q, r, s;
we shall also use the familiar shorthand notation

Vpqrs = 〈pq|v̂|rs〉 (1.51)

For a given pair (i, j) in the third line of Eq. (1.49), the overlap product implies that
only two permutations lead to a non-vanishing contribution, namely the identical
permutation where

P(i) = i, P( j) = j

and the transposition exchanging i and j ,

P(i) = j, P( j) = i

The situation can be depicted in the following scheme

Since a transposition, being an odd permutation, implies the sign (−1)P = −1, one
arrives at the result

〈�|V̂ |�〉 =
∑
i< j

(〈qiq j |v̂|qiq j 〉 − 〈qiq j |v̂|q jqi 〉
) =

∑
i< j

Vqi q j [qi q j ] = 1
2

∑
i, j

Vqi q j [qi q j ]

(1.52)
The two integrals in the integrand, referred to as direct and exchange integrals, can
be combined in the antisymmetrized two-particle integral
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Vpq[rs] = Vpqrs − Vpqsr (1.53)

Equation (1.52) constitutes the first SC rule (c1) for the two-particle matrix elements.
(ii) Slater determinants differing at one position:
The matrix element 〈�′|V̂ |�〉 for the two Slater determinants (1.39) and (1.43),
differing at the kth position, can be evaluated as above, yielding

〈�′|V̂ |�〉 =
∑
P

(−1)P〈q1| . . . 〈q ′| . . . 〈qN |
∑
i< j

v̂(i, j)|qP(1)〉 . . . |qP(N )〉

where q ′ is at the kth position of the Slater determinant on the left. If q ′ does not
enter the two-particle integral, that is, if i, j �= k, there will be a vanishing overlap
factor, 〈q ′|qP(k)〉 = 0, irrespective of the permutation P . This means that the dou-
ble summation running over the orbital indices i < j becomes a single summation
according to ∑

i< j

→
∑
i<k
j=k

+
∑
j>k
i=k

This gives

〈�′|V̂ |�〉 =
∑
i<k

∑
P

(−1)P〈qiq ′|v̂|qP(i)qP(k)〉
∏
l �=i,k

〈ql |qP(l)〉

+
∑
j>k

∑
P

(−1)P〈q ′q j |v̂|qP(k)qP( j)〉
∏
l �= j,k

〈ql |qP(l)〉

(1.54)

Let us consider the first term (A) on the right-hand side. The overlap product restricts
the permutations to the identical permutation and the transposition

P(i) = k, P(k) = i

as indicated in the following scheme:

Taking the sign of the transposition into account, the first term on the right-hand side
of Eq. (1.54) becomes

(A) =
∑
i<k

(〈qiq ′|v̂|qiqk〉 − 〈qiq ′|v̂|qkqi 〉)
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In the same way, the second term (B) in Eq. (1.54) can be treated. Bringing both
contributions together, the final result (SC rule c2) can be written as

〈�′|V̂ |�〉 =
∑
i,i �=k

(〈qiq ′|v̂|qiqk〉 − 〈qiq ′|v̂|qkqi 〉) =
N∑
i=1

Vqiq ′[qi qk ] (1.55)

Note that the restriction i �= k in the summation can be dropped because antisym-
metric two-particle integral vanishes for i = k.
(iii) Slater determinants differing at two positions:
The matrix element involving the two determinants (1.47) is evaluated according to

〈�′′|V̂ |�〉 =
∑
P

(−1)P〈q1| . . . 〈q ′| . . . 〈q ′′| . . . 〈qN |
∑
i< j

v̂(i, j) |qP(1)〉 . . . |qP(N )〉

where q ′ and q ′′ are in the positions k and l, respectively. The overlap argument
means that only the contribution with i = k, j = l does not vanish in the double
summation over i, j . Again, the overlap product on the right-hand side restricts the
permutations to the identical permutation and the transposition exchanging k and l.
The final result (SC rule c3) reads

〈�′′|V̂ |�〉 = Vq ′q ′′[qkql ] (1.56)

(iv) In a similar way, one can see that the matrix element of a two-particle operator
vanishes if the two determinants differ in three or more positions (upon appropriate
ordering of the orbitals). This is SC rule c4.

Examples:
As an example, let us consider the ground-state Slater determinant,

|�0〉 = |1 2 . . . N 〉 (1.57)

in which |q〉, q = 1, . . . , N , are the N energetically lowest Hartree–Fock (HF) spin-
orbitals. The expectation value of the hamiltonian (1.35) can readily be evaluated
according to the SC rules b1 and c1,

〈�0|Ĥ |�0〉 =
N∑
i=1

tii + 1
2

N∑
i, j=1

Vi j[i j] (1.58)

where ti j = 〈i |t̂ | j〉 and Vi jkl denote the one- and two-particle integrals, respectively.
The Slater determinant

|�ak〉 = |1 . . . (k − 1)a(k + 1) . . . N 〉, a > N (1.59)
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corresponds to a singly excited state (with respect to |�0〉), in which the kth electron
is excited to the virtual orbital a. The matrix element

〈�ak |V̂ |�0〉 =
N∑
i=1

Via[ik] (1.60)

may serve as an example for the SC rule c2.
To evaluate matrix elements for differing Slater determinants, one has to assure

that the orbitals are ordered in the form supposed in the derivation of the SC rules.
At the end of the next section, we shall demonstrate how this can be achieved quite
conveniently using second quantization.

Spin-Free Expressions:
Finally, we take a look at the derivation of spin-free expressions for many-electron
matrix elements, which applies to operators acting on the spatial variables only. Let
us again expand the spin-orbital quantum numbers used so far into the pair of spatial
and spin quantum numbers:

q → qγ

and recall that the spin-orbitals are products of spatial and spin-orbitals,

ψqγ(ξ) = ϕq(x)χγ(σ) (1.61)

For a spatial operator, the one-particle integrals (1.46) simplify according to

〈pγ|ŵ|qγ′〉 = 〈γ|γ′〉
∫

ϕ∗
p(x)ŵϕq(x)dx

= δγγ′wpq (1.62)

where wpq is a spatial one-particle integral, and the spin-integral becomes a trivial
Kronecker delta. In a similar way, the general two-particle integrals can be evaluated
to become

〈pγqσ|v̂|rρsτ 〉 = 〈γ|ρ〉〈σ|τ 〉
∫ ∫

dx1dx2ϕ∗
p(x1)ϕ

∗
q(x2)

e2

|x1 − x2|ϕr (x1)ϕs(x2)

= δγρδστVpqrs (1.63)

The simplification of the spin–orbit integrals can readily be exploited in themany-
electronmatrix elements. As an example, let us consider the ground-state expectation
value (1.58) of the hamiltonian. Supposing that there are n = 1

2N spatial orbitals,
each occupied by a spin-α and spin-β electron,

|�0〉 = |ϕ1αϕ1β . . . ϕnαϕnβ〉
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the one-particle part can be evaluated as follows:

N∑
i=1

tii =
n∑

p=1

∑
γ=α,β

tpγ,pγ

=
n∑

p=1

∑
γ=α,β

δγγ tpp = 2
n∑

p=1

tpp (1.64)

Here, the spin-orbitals have been expanded according to i ≡ pγ.
To evaluate the Coulomb part, the antisymmetric Coulomb integrals have to be

written in the original explicit form, because the direct and exchange integrals differ
with respect to the spin-integration,

〈�0|V̂ |�0〉 = 1
2

N∑
i, j=1

(
Vi ji j − Vi j ji

) = 1
2

n∑
p,q=1

∑
γ,γ′=α,β

(
Vpγqγ′ pγqγ′ − Vpγqγ′qγ′ pγ

)

= 1
2

n∑
p,q=1

∑
γ,γ′=α,β

(
δγγδγ′γ′Vpqpq − δγγ′Vpqqp

)

= 1
2

n∑
p,q=1

(
4Vpqpq − 2Vpqqp

)
(1.65)

The spin-orbital indices i, j in the first line have been expanded according to
i ≡ pγ, j ≡ qγ′.

Exercises

1.1 Show that the permutation operator is a unitary operator.
1.2 Establish the properties (1.18)–(1.20) for the antisymmetrization operator Â.
1.3 Derive the relation (1.31) for an orbital transformation in the Slater determinant.
1.4 Consider an antisymmetrized normalized state |�〉 with the (normalized) wave

function �(ξ1, . . . , ξN ). Show that

〈ξN . . . ξ1|�〉 = √
N ! �(ξ1, . . . , ξN ) (1.66)

where |ξ1 . . . ξN 〉 is given by Eq. (1.23).
1.5 Evaluate for the state (1.59) the excitation energy (through first order) Eak(1) =

〈�ak |Ĥ |�ak〉 − 〈�0|Ĥ |�0〉.
1.6 Specify the spin-orbitals in |�ak〉 according to a → aγ, k → kγ′ as products of

spatial orbitals and spin functions, and form one singlet and three triplet states
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as suitable linear combinations of the “primitive” states |�aγ,kγ′ 〉, γ, γ′ = α,β.
Evaluate the spin-free expressions for the singlet and triplet excitation energies
1Eak(1) and 3Eak(1), respectively.

Reference

1. Messiah A (1967) Quantum mechanics. North-Holland Publishing Company, Amsterdam



Chapter 2
Second Quantization

The concept of second quantization (SQ), originally developed in quantum field the-
ory, has proven to be an indispensable tool in many-body theory since it allows one to
represent many-electron states and operators in an utmost flexible and compact way.
In this chapter, we shall review the SQ formalism at some length. The presentation
of the SQ operator algebra in the first three subsections is essentially based on a
concise formulation in the appendix of a textbook by Baumgärtner and Schuck [1],
who acknowledge unpublished lecture notes by W. Brenig. A combination of SQ
and the SC rules, described in Sect. 2.4, leads to a practical means for evaluating
many-electron matrix elements. The SQ field operators relate to underlying one-
particle states. The transformations of the field operators induced by changes of the
one-particle representation are considered in the final subsection.

2.1 Definition of Creation and Destruction Operators

The starting point is a complete set (basis) of orthonormal one-particle states |q〉,

〈q|q ′〉 = δqq ′
∑

q

|q〉〈q| = 1̂

and the corresponding basis set of normalized antisymmetric N -electron product
states,

|q1q2 . . . qN 〉, q1 < q2 < · · · < qN

as introduced in Chap. 1. So far, the electron number N was assumed to be arbitrary
but fixed. Now, we extend the scope to allow for variable electron numbers. For this
purpose, the concept of the Fock space is introduced,

© Springer Nature Switzerland AG 2018
J. Schirmer, Many-Body Methods for Atoms, Molecules and Clusters, Lecture
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F = H0 ⊕ H1 ⊕ HA
2 ⊕ · · · (2.1)

being the direct sum of the N -electron Hilbert spaces, N = 0, 1, . . . , where for
N ≥ 2 we may confine us to the subspace of antisymmetric states,HA

N . For N = 0,
the Hilbert spaceH0 is spanned by exactly one state, referred to as the vacuum state,
|∅〉.

Obviously,F is a linear vector space, with a scalar product defined within each of
the linear subspaces. The definition of the scalar product can easily be generalized,

〈q ′
1 . . . q ′

N ′ |q1 . . . qN 〉 = 0 if N �= N ′ (2.2)

to cover products of states with differing electron numbers.
Having established the mathematical background, we are in the position to intro-

duce “fermion operators,” more specifically, creation and destruction operators.
Let us first consider the creation operators, which can be defined by specifying their
action on the Fock-space basis states:

c†q |q1 . . . qN 〉 = |q1 . . . qNq〉 (2.3)

Acting on a product state of N electrons, c†q generates a product state of N + 1
electrons, “creating” an electron in the one-particle stateq. Note that |q1 . . . qNq〉 = 0
unless q �= q1, . . . , qN . Beginning with

c†q |∅〉 = |q〉 (2.4)

an N -electron product state can be generated according to

|q1 . . . qN 〉 = c†qN . . . c†q1 |∅〉 (2.5)

by letting the creation operators act successively on the vacuum state.
Next, let us consider the effect of the hermitian conjugate operator, cq , that is,

cq = (c†q)
†, acting on an N -electron product state. For this purpose, we expand the

state of interest in terms of the Fock-space basis states:

cq |q1 . . . qN 〉 =
∑

q ′
1<q ′

2···<q ′
N ′

N ′=0,1,...

|q ′
1 . . . q ′

N ′ 〉〈q ′
1 . . . q ′

N ′ |cq |q1 . . . qN 〉

=
∑

q ′
1<q ′

2···<q ′
N ′

N ′=0,1,...

|q ′
1 . . . q ′

N ′ 〉〈q1 . . . qN |c†q |q ′
1 . . . q ′

N ′ 〉∗ (2.6)

In the second line, we have used the relation 〈�|B̂|�〉 = 〈�|B̂†|�〉∗ to replace cq
by c†q . Since

c†q |q ′
1 . . . q ′

N ′ 〉 = |q ′
1 . . . q ′

N ′ q〉
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is a state of N ′+1 electrons, the scalar products in the second line of Eq. (2.6) vanish
unless N ′ = N−1, and the latter equation is simplified accordingly:

cq |q1 . . . qN 〉 =
∑

q ′
1<q ′

2···<q ′
N−1

|q ′
1 . . . q ′

N−1〉〈q1 . . . qN |c†q |q ′
1 . . . q ′

N−1〉∗ (2.7)

This means that, acting on an N -electron state, cq generates an (N−1)-electron state,
cq |q1 . . . qN 〉 ∈ HA

N−1. Since the effect of the cq operators is to remove (“destroy”)
an electron, they are referred to as destruction operators. Acting on the vacuum state
yields the null vector,

cq |∅〉 ≡ 0 (2.8)

Using the Slater–Condon rules a1 and a2 for scalar products, Eq. (2.7) can be further
evaluated according to

cq |q1 . . . qN 〉 =
∑

q ′
1<q ′

2···<q ′
N−1

|q ′
1 . . . q ′

N−1〉〈q1 . . . qN |q ′
1 . . . q ′

N−1q〉∗

= δqqN |q1 . . . qN−1〉 − δqqN−1 |q1 . . . qN−2 qN 〉 + δqqN−2 |q1 . . . qN−3 qN−1 qN 〉 − . . .

(2.9)

The destruction operator cq removes an electron in the orbital q provided q is present
in |q1 . . . qN 〉, that is, q ∈ {q1 . . . qN }. The phases arise from aligning the positions
of q and qi in the two product states if q = qi , i = 1, . . . , N .

2.2 Anticommutation Relations for Creation
and Destruction Operators

To establish the anticommutation relations for the operators, we apply the operators
cp, c†q successively to an arbitrary basis state,

cpc
†
q |q1 . . . qN 〉 = cp|q1 . . . qNq〉

= δpq |q1 . . . qN 〉 − δp,qN |q1 . . . qN−1q〉 + . . . (2.10)

and in the reversed order

c†qcp|q1 . . . qN 〉 = δp,qN |q1 . . . qN−1q〉 − δp,qN−1 |q1 . . . qN−2qNq〉 + . . . (2.11)

Here, Eqs. (2.3) and (2.9) have been used. Comparing the latter two equations, one
sees that all the terms of Eq. (2.11) do also appear in Eq. (2.10), though with different
signs. This means that these terms cancel each other when both equations are added,
and only the first (unmatched) term in Eq. (2.10) survives:
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(cpc
†
q + c†qcp)|q1 . . . qN 〉 = δpq |q1 . . . qN 〉

Since this holds for arbitrary basis states, we may conclude the operator identity

{
c†q , cp

} = cpc
†
q + c†qcp = δpq (2.12)

In a similar way, the relations

{
c†p, c

†
q

} = 0,
{
cp, cq

} = 0 (2.13)

can be derived. The anticommutator relations (2.12) and (2.13) establish a versatile
tool for handling the many-electron product states (2.5) in an algebraic manner.

2.3 Operators in Second Quantization

The creation and destruction operators of second quantization allow us to represent
physical operators in a very advantageous way, as will be discussed in the following.
Let us first consider operators of the one-particle type (Eq. 1.32):

Ŵ =
N∑

i=1

ŵ(i) (2.14)

In second quantization, the operator Ŵ can be written in a more general form, which
is no longer referring to a specific N -electron space:

Ŵ ′ =
∑

p,q

wpqc
†
pcq (2.15)

where wpq = 〈p|ŵ|q〉 denote the one-particle integrals (1.46). To prove the equiva-
lence of the two forms (for a specific electron number N ), let us inspect the matrix
elements of Ŵ ′ with respect to the basis set of N -electron product states. Using the
anticommutator algebra established above, the result of applying Ŵ ′ to a general
product state becomes

∑

p,q

wpqc
†
pcq |q1 . . . qN 〉 =

∑

p

∑

qi

wpqi c
†
pcqi |q1 . . . qN 〉

=
∑

p

∑

qi

wpqi |q1 . . . qi−1 pqi+1 . . . qN 〉

Note that here no overall sign change occurs because a pair of operators is moved
to the respective position in the product state. Since, according to the SC rules a1
and a2,
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〈q1 . . . qN |q1 . . . qi−1 pqi+1 . . . qN 〉 = δpqi

the expectation value is given by

〈q1 . . . qN |Ŵ ′|q1 . . . qN 〉 =
N∑

i=1

wqi qi (2.16)

which means we have verified the SC rule b1. The matrix element for two product
states differing at one position, say position k, can readily be evaluated to give

〈q1 . . . q ′
k . . . qN |Ŵ ′|q1 . . . qN 〉 = wq ′

kqk (2.17)

This reproducesSC ruleb2, and, in a similarway, alsob3 canbeverified.To conclude,
within the respective N -electron space the operators Ŵ and Ŵ ′ are equivalent,

Ŵ ≡ Ŵ ′ =
∑

p,q

wpqc
†
pcq (2.18)

In the following, we will skip the apostrophe used to distinguish the general second-
quantization form of the operator from the original one.

In an analogous way, the equivalence of a two-particle operator in the traditional
(wave-function) form (Eq. 1.33),

V̂ =
N∑

i< j=1

v̂(i, j) (2.19)

and the second-quantization form

V̂ = 1
2

∑

p,q,r,s

Vpqrsc
†
pc

†
qcscr (2.20)

can be shown, where Vpqrs = 〈pq|v̂|rs〉 denote the two-particle integrals (1.50).
Note that the order of the operators, cs and cr , on the right-hand side of Eq. (2.20)
differs from the order of the corresponding indices in the two-electron integral, Vpqrs .

As an example, let us just verify the first SC rule (c1) for the two-particle operator.
If V̂ is applied to a general N -electron product state, we find

V̂ |q1 . . . qN 〉 = 1
2

∑

p,q,r,s

Vpqrsc
†
pc

†
qcscr |q1 . . . qN 〉 = 1

2

∑

p,q

∑

qi<q j

Vpq[qi q j ]c†pc†qcq j cqi |q1 . . . qN 〉

Here, the case qi > q j is accounted for by the antisymmetrized two-electron integral,
Vpq[qi q j ] = Vpqqi q j − Vpqq j qi . Since

〈q1 . . . qN |c†pc†qcq j cqi |q1 . . . qN 〉 = δpqi δqq j − δpq j δqqi
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the expectation value becomes

〈q1 . . . qN |V̂ |q1 . . . qN 〉 = 1
2

∑

qi<q j

(Vqiq j [qi q j ] − Vqjqi [qi q j ]) =
∑

qi<q j

Vqi q j [qi q j ] (2.21)

which is exactly as given by Eq. (1.52).
As noted above, three-particle operators, or more general, r -particle operators,

r ≥ 3, do not arise in the context of ab initio many-particle physics. Of course, the
SQ representation of operators can readily be extended to the case of r ≥ 3.

A few remarks concerning the use of the SQ operator representations are in order:

1. As we have already noted, the SQ representation of operators is independent of
the particle number, as it should be the case for genuine Fock-space operators. On
the other hand, the SQ representation is based on a specific choice of one-particle
states. Often, one uses the orbitals obtained from a Hartree–Fock (HF) treatment
of the N -electron ground state. Thismeans that the SQ representationmay depend
on the electron number in an implicit manner. This should be kept in mind when
SQoperators based on N -electronHForbitals are used in computations of systems
composed of N ± 1, N ± 2, . . . electrons.

2. Using the SQ representation, one can readily introduce model hamiltonians to
study, e.g., electron correlation in a simplifiedway. An example is the well-known
Hubbard hamiltonian,

Ĥ = −t
∑

i,γ

(c†iγci+1γ + c†i+1γciγ) +
∑

i

Uc†iαc
†
iβciβciα (2.22)

Here, the index i labels sites in a one-dimensional model crystal, t is the so-called
hopping parameter, and U parameterizes the on-site Coulomb repulsion.
A specific Fock-space operator is the particle number operator

N̂ =
∑

p

c†pcp, N̂ |q1 . . . qN 〉 = N |q1 . . . qN 〉 (2.23)

3. Based on an N -electron product ground state, |�0〉 = |1 . . . N 〉, which usually
will be theHF ground state, excited product states can be conveniently introduced
according to

|�ak〉 = c†ack |�0〉 1p-1h (single) excitations

|�abkl〉 = c†ac
†
bckcl |�0〉, a < b, k < l 2p-2h (double) excitations

|�abcklm〉 = . . .

... (2.24)

States of N−1 or N+1 electrons can be written as



2.3 Operators in Second Quantization 25

|�N−1
k 〉 = ck |�0〉 1h excitations

|�N−1
akl 〉 = c†ackcl |�0〉, k < l 2h-1p excitations

|�N−1
abklm〉 = . . .

... (2.25)

or

|�N+1
a 〉 = c†a|�0〉 1p excitations

|�N+1
abk 〉 = c†ac

†
bck |�0〉, a < b 2p-1h excitations

... (2.26)

respectively. Here, the indices k, l,m, . . . and a, b, c, . . . refer to occupied and
unoccupied (virtual) orbitals, respectively, with regard to |�0〉. In a similar way,
one may represent states of N ± 2, N ± 3, . . . electrons.

4. The SQ representation of states and operators can be used to evaluate matrix
elements in an algebraic way. As an example, consider the matrix element of
a one-particle operator taken with respect to a single excitation, |�ak〉, and the
ground state, |�0〉:

〈�ak |Ŵ |�0〉 = 〈�0|c†kca
∑

p,q

wpqc
†
pcq |�0〉

=
∑

p,q

wpq〈�0|c†kcac†pcq |�0〉

Now the commutator algebra of the c-operators can be used to move ca and c
†
k to

the right-hand side, yielding

〈�0|c†kcac†pcq |�0〉 = δapδkq

where we have used ca|�0〉 = 0 and c†k |�0〉 = 0. The final result is

〈�ak |Ŵ |�0〉 = wak (2.27)

The evaluation of ground-state expectation values for products of c-operators,
which is the essential step in the computation of matrix elements, can be treated in
a systematic manner, as will be discussed in Chap.5. However, for more demand-
ingmatrix elements this procedure becomes rather cumbersome. Amore practical
approach consists in using the SQ representation to bring the product states into a
form adapted to the SC rules, discussed in the preceding chapter. We will demon-
strate the latter approach with the help of a few examples below.
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2.4 Combining Second Quantization and Slater–Condon
Rules

Let us first examine the simplematrix element 〈�ak |Ŵ |�0〉.We have found it helpful
to introduce an illustration of the product ground state,

|�0〉 = k (2.28)

in terms of a rectangular box divided into N cells, where the kth cell represents the
occupied orbital k in |�0〉. Using that graphical representation, the two states on the
left- and right-hand side of the matrix element may be placed on top of each other
according to

c†ack k = a (2.29)

|�0〉 = k (2.30)

On the right-hand side of the first line the operator pair c†ack has been commuted to
the position k, to the effect that the orbital k is replaced by the orbital a. Note that
the total number of commutations required to reach position k is even, so that the
resulting phase is +1. Now the two states are in the form supposed in the SC rule
b2, yielding

〈�ak |Ŵ |�0〉 = wak (2.31)

In a similar way, one may readily obtain the result

〈�abkl |V̂ |�0〉 = Vba[kl] (2.32)

for the matrix element of a two-particle operator according to SC rule c3. In the
procedure of commuting operator pairs of the initial product c†ac

†
bckcl to the respective

positions in |�0〉, it is recommended tofirst commute the operator pair c†bck to position
k, and subsequently the remaining pair c†acl to the position l.

To see how the procedure works in a more demanding case, let us consider the
Coulomb matrix element

〈�N−1
j |V̂ |�N−1

akl 〉

for two (N−1)-electron states. First, we suppose j �= k, l. Again, we place the semi-
graphical representations of the two states, (I) and (II), on top of each other,

(I ) = c j k j l

(2.33)

(I I ) = c†ackcl k j l = cl a j l

(2.34)
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For the state (II), the operator pair c†ack can be commuted to the position k without
involving a sign change, as is indicated on the right-hand side of the second line.
To proceed, we commute the two operators c†j and c†l in |�0〉 to the left. This goes
with an unspecified number of sign changes, indicated by the phase factor (−1)ν ,
depending on the relative positions of j and l:

(I ) = c j c
†
j c

†
l k - - (−1)ν

(I I ) = clc
†
j c

†
l a - - (−1)ν

Since the same phase factor arises in both (I) and (II), it will drop out in forming the
matrix element. Straightforward operator algebra then yields

(I ) = c†l k - - (−1)ν

(I I ) = c†j a - - (−1)ν(−1)

where the sign (−1) in the second line arises from (anti-) commuting the operators
cl and c†j . Now we have reached a form where the two product states differ exactly
at two positions. Taking the resulting sign into account, SC rule c3 gives

〈�N−1
j |V̂ |�N−1

akl 〉 = −Vlk[ ja] (2.35)

In an analogous way, the case j = k (or j = l) can be treated. Here, the two states
can readily be reshaped such that they differ exactly at one position, and the SC rule
c2 applies:

〈�N−1
k |V̂ |�N−1

akl 〉 = −
∑

i �=k

Vil[ia] (2.36)

It is interesting to note that the corresponding matrix element of the full hamiltonian,
Ĥ = T̂ + V̂ , is simply given by

〈�N−1
j |Ĥ |�N−1

akl 〉 = −Vlk[ ja] (2.37)

comprising the case j = k(l), provided the one-particle states are HF orbitals (see
Exercise 2.2).

2.5 Change of the One-Particle Representation

The SQ creation and destruction operators are defined with respect to a given choice
of one-particle states (orbitals). This means that a change of the underlying one-
particle basis will result in a corresponding transformation of the fermion operators.
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Let us consider two sets of orthonormal one-particle states, denoted by |q〉 and |s̃〉,
respectively, being related by a unitary transformation according to

|s̃〉 =
∑

q

|q〉〈q|s̃〉 (2.38)

where 〈q|s̃〉 is the unitary overlap matrix of the two sets of orbitals. Let us denote the
fermion operators associated with the second set of orbitals by b†s (and bs). Applying
b†s to an arbitrary N -electron basis state (in the q-representation) gives

b†s |q1 . . . qN 〉 =|q1 . . . qN s̃〉
=

∑

q

|q1 . . . qNq〉〈q|s̃〉

=
∑

q

〈q|s̃〉c†q |q1 . . . qN 〉 (2.39)

where the expansion (2.38) of |s̃〉 has been used in the second line. From Eq. (2.39),
we can infer the operator relation

b†s =
∑

q

〈q|s̃〉c†q (2.40)

The transformation of the destruction operators is obtained by taking the hermitian
conjugate of Eq. (2.40)

bs =
∑

q

〈q|s̃〉∗cq =
∑

q

〈s̃|q〉cq (2.41)

The inverse transformation are given by

c†p =
∑

s

〈s̃|q〉b†s , cp =
∑

s

〈q|s̃〉bs (2.42)

A distinguished representation is based on the (continuous) one-particle eigen-
states of the position and spin operators, |ξ〉 = |xσ〉. Here, the transformations relat-
ing to normalized one-particle states, considered so far, are given by

|p〉 =
∫

dξ |ξ〉ψp(ξ) (2.43)

|ξ〉 =
∑

q

|q〉ψ∗
q(ξ) (2.44)

where ψp(ξ) = 〈ξ|p〉. Accordingly, one may define operators
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ψ̂†(ξ) =
∑

q

c†q ψ∗
q(ξ)

ψ̂(ξ) =
∑

q

cq ψq(ξ) (2.45)

creating or destructing, respectively, a particle with spin σ at the position x. These
operators, also referred to as field operators, obey the commutation relations

{ψ̂†(ξ), ψ̂(ξ′)} = δ(x − x′)δσσ′

{ψ̂(ξ), ψ̂(ξ′)} = 0, {ψ̂†(ξ), ψ̂†(ξ′)} = 0 (2.46)

In terms of field operators, the one- and two-particle operators take on the forms

Ŵ =
∫

dξ ŵ(ξ)ψ̂†(ξ)ψ̂(ξ)

V̂ = 1
2

∫ ∫
dξ dξ′ v̂(ξ, ξ′)ψ̂†(ξ)ψ̂†(ξ′)ψ̂(ξ′)ψ̂(ξ) (2.47)

and the N -electron coordinate eigenstate (1.21) can be written as

|ξ1 . . . ξN 〉 = ψ̂†(ξN ) . . . ψ̂†(ξ1)|∅〉 (2.48)

A useful mixed representation, associated with the products |x〉χγ(σ) of position
operator eigenstates and spin-functions, is given according to

ψ̂†
γ(x) =

∑

q

c†qγϕ
∗
q(x), ψ̂γ(x) =

∑

q

cqγϕq(x) (2.49)

Here, the original spin-orbital quantum number q has been expanded into the pair
of a spatial and a spin quantum number, q → qγ, and ϕq(x) is the spatial orbital in
the spin-orbital ψqγ(ξ) as in Eq. (1.61).

Exercises

2.1 Verify the SC rules c1–c4 for the two-particle operator (2.20) using the approach
discussed in Sect. 2.4.

2.2 (a) Evaluate the matrix element 〈�N−1
j |Ĥ |�N−1

akl 〉 for the cases k = j and l = j .
Show that for HF orbitals the result is as given by Eq. (2.37).
(b) Evaluate the matrix elements 〈�N−1

j |V̂ |�N−1
abklm〉 and 〈�aj |V̂ |�bcdklm〉.

2.3 (a) Evaluate the commutator [c j , V̂ ] where V̂ is a two-particle operator in the
form (2.20).
(b) Evaluate the commutator [ Â, B̂] for the one-particle operators
Â = ∑

r,s arsc
†
r cs, B̂ = ∑

u,v buvc†ucv .
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2.4 Going beyond one-particle physics, the simplest model is the two-electron–
two-orbital (2E-2O) system, as, for example, the hydrogen molecule in the
minimal-basis approximation. There are two spatial (Hartree–Fock) orbitals,
φg,φu , assumed to be real and of different symmetry (e.g., with respect to inver-
sion). Let tgg, tuu denote the corresponding matrix elements of the one-particle
part of the hamiltonian, and Vgggg, Vuuuu, Vgguu, Vgugu the non-vanishing spatial
Coulomb integrals.
(a) Determine the Hartree–Fock orbital energies, εg, εu , according to Eq. (4.5).
(b) Write the two-electron ground state as a linear combination of the two basis
states (CI configurations) of g-symmetry, |�0〉 = |gαgβ|, |�1〉 = |uαuβ| and
determine the elements of the hamiltonian (secular) matrix,

h =
(
h00 h01
h10 h11

)
(2.50)

(c) Solve the 2 × 2 secular problem and determine the ground-state energy, e0,
and eigenvector, x0; use here abbreviations, e.g., h11 = h00 + �, h01 = V .

2.5 Write the hamiltonian of the 2E-2O model in second quantization.

Reference

1. Baumgärtner G, Schuck P (1968) Kernmodelle. Bibliographisches Institut, Mannheim



Chapter 3
One-Particle Green’s Function

The one-particle Green’s function or electron propagator, which we shall introduce
in this chapter, is the first and simplest member in the hierarchy of many-body
Green’s functions [1–3]. While the formal definition looks rather abstract and even
forbidding, the benefits afforded by an approach based on the electron propagator
should become clear after the theory has been more fully described. Before working
through the various derivations, the readermight take a first look at Eqs. (3.24), (3.25)
in which the essence of the electron propagator is apparent: Its elements are matrix
elements of the many-body resolvent operator taken with respect to states of N+1 or
N−1 electrons. This indicates that the physics conveyed by the electron propagator
relates to excitations of the system following the addition of one electron (elec-
tron attachment) or the removal of one electron (ionization). We shall refer exclu-
sively to the electron propagator in much of the book, that is, when we develop the
formalism of diagrammatic perturbation theory in Chaps. 4–7 and establish practical
approximation methods in Chaps. 8–12. The polarization propagator and the physics
of N -electron excitations will be considered in the Chaps. 13–15 of Part IV.

3.1 Definition and Relation to Physical Quantities

In the following, we suppose a basis set of one-particle states |p〉 and the associated
creation and destruction operators c†p, cp as introduced in Chap.2. We consider an
N -electron system with the hamiltonian

Ĥ = T̂ + V̂ =
∑

tpqc
†
pcq + 1

2

∑
Vpqrsc

†
pc

†
qcscr (3.1)

and a non-degenerate (normalized) ground state |�0〉 of energy E0. Moreover, we
define time-dependent or Heisenberg operators according to

c†p[t] = ei Ĥ t c†pe
−i Ĥ t , cp[t] = ei Ĥ t cpe

−i Ĥ t (3.2)
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For notational brevity here and in the following, atomic units will be supposed where
� = 1. In the chosen representation, the electron propagator or one-particle Green’s
function (GF) G(t, t ′) is a matrix of time-dependent functions (components) defined
according to

Gpq(t, t
′) = −iθ(t − t ′)〈�0|cp[t]c†q [t ′]|�0〉 + iθ(t ′ − t)〈�0|c†q [t ′]cp[t]|�0〉

(3.3)
Here, θ(t) denotes the step function

θ(t) =
{
1, t > 0

0, t < 0
(3.4)

The notation can be shortened by using the time-ordering operator T̂TT , also referred
to as Wick’s operator. Acting on a product of time-dependent fermion operators, T̂TT
reorders the factors in such a way that operators with larger times are to the left of
those with smaller times; T̂TT also introduces a sign (−1)P , where P is the permutation
transforming the original order into the final one. The result is also referred to as
time-ordered product. In the case of two operators, the time-ordered product is
simply given by

T̂TT
(
cp[t]c†q [t ′]

) =
{

cp[t]c†q [t ′], t > t ′

−c†q [t ′]cp[t], t < t ′
(3.5)

This allows us to write the electron propagator components in the more compact
form

Gpq(t, t
′) = −i〈�0|T̂TT

(
cp[t]c†q [t ′]

) |�0〉 (3.6)

As seen from the definition (3.3), the electron propagator consists of two parts,

G(t, t ′) = G+(t, t ′) + G−(t, t ′)

Aswill be shown below, the two parts contain spectral information related to electron
attachment (G+) and electron removal or ionization (G−). Accordingly, the two parts
are also referred to as (N+1)- and (N−1)-electron parts, respectively.

Let us have a closer look at the physical content of the (N+1)-electron part. As a
first step, one may insert the explicit definition of the time-dependent operators (3.2)
in Eq. (3.3):

G+
pq(t, t

′) = −iθ(t − t ′)〈�0|ei Ĥ t cpe
−i Ĥ t ei Ĥ t ′c†qe

−i Ĥ t ′ |�0〉
= −iθ(t − t ′)ei E0(t−t ′)〈�0|cpe−i Ĥ(t−t ′)c†q |�0〉 (3.7)

This shows that the GF components depend only on the difference t − t ′ of the
two time arguments. To proceed, we insert the resolution of the identity in terms of
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a complete set of energy eigenstates |�N+1
n 〉 of the (N+1)-electron system in the

ground-state expectation value in Eq. (3.7). This yields

G+
pq(t, t

′) = −iθ(t − t ′)
∑

n

e−i(EN+1
n −E0)(t−t ′)〈�0|cp|�N+1

n 〉〈�N+1
n |c†q |�0〉 (3.8)

This expression is essentially a sumof periodic functions of t − t ′, where the frequen-
cies can be identifiedwith electron attachment energies, E0 − EN+1

n . In an analogous
way, the (N−1)-electron part can be written as

G−
pq(t, t

′) = iθ(t ′ − t)
∑

n

ei(E
N−1
n −E0)(t−t ′)〈�0|c†q |�N−1

n 〉〈�N−1
n |cp|�0〉 (3.9)

At this point, it is useful to switch to the so-called energy representation, obtained
by Fourier transform according to

Gpq(ω) =
∞∫

−∞
eiω(t−t ′)Gpq(t, t

′)d(t − t ′) (3.10)

The inverse transformation is given by

Gpq(t, t
′) = 1

2π

∞∫

−∞
e−iω(t−t ′)Gpq(ω)dω (3.11)

As can be seen by inspecting the Fourier transform of one of the time-dependent
functions in Eq. (3.8),

f +
n (ω) =

∞∫

−∞
eiωτ

[
−iθ(τ )e−i(EN+1

n −E0)τ
]
dτ

= −i

∞∫

0

ei[ω−EN+1
n +E0]τdτ (3.12)

the time integral is ill-defined at the upper limit, t = ∞. This can be cured in an unam-
biguous way by augmenting the step function with a convergence factor according
to

θ(τ ) → θ(τ )e−ητ (3.13)

where η is a positive infinitesimal. Using this convergence factor, the time inte-
gral (3.12) simply becomes



34 3 One-Particle Green’s Function

f +
n (ω) = −i

∞∫

0

ei[ω−EN+1
n +E0+iη]τdτ = 1

ω − EN+1
n + E0 + iη

(3.14)

As the reader should verify, the inverse transformation

g+
n (τ ) = 1

2π

∞∫

−∞
e−iωτ f +

n (ω)dω

= 1

2π

∞∫

−∞

e−iωτ

ω − EN+1
n + E0 + iη

dω = −iθ(τ )e−ητe−i(EN+1
n −E0)τ (3.15)

reproduces the original time function. Note that in the contour integrations required
here the integration paths involve (infinite) semi-circles in the upper and lower com-
plex ω-plane for the cases τ < 0 and τ > 0, respectively.

An analogous convergence factor has to be applied to the (N−1)-electron part,
which suggests to introduce these changes already in the definition (3.3) of the
electron propagator:

Gpq(t, t
′) = −iθ(t − t ′)e−η(t−t ′)〈�0|cp[t]c†q [t ′]|�0〉

+ iθ(t ′ − t)eη(t−t ′)〈�0|c†q [t ′]cp[t]|�0〉 (3.16)

The energy representation of the electron propagator according to the extended def-
inition (3.16) is given by

Gpq(ω) =
∑

n

〈�0|cp|�N+1
n 〉〈�N+1

n |c†q |�0〉
ω + E0 − EN+1

n + iη
+

∑

n

〈�0|c†q |�N−1
n 〉〈�N−1

n |cp|�0〉
ω + EN−1

n − E0 − iη
(3.17)

In this form, also referred to as spectral representation or Lehmann representation,
the physical content of the electron propagator becomes manifest. The two partsG+

pq
and G−

pq are given by sums of simple poles in the lower and upper complex ω-plane,
respectively, where the electron affinities

An = E0 − EN+1
n (3.18)

and the ionization energies
In = EN−1

n − E0 (3.19)

are identified as the negative pole positions −ωn of G+
pq and G−

pq , respectively. In a
schematical way, the pole structure of the electron propagator is illustrated in Fig. 3.1.
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Fig. 3.1 Pole structure of
the electron propagator

The corresponding pole strengths are given as products of so-called spectroscopic
factors,

x (n)
p = 〈�0|cp|�N+1

n 〉, n ∈ {N + 1} (3.20)

x (n)
p = 〈�N−1

n |cp|�0〉, n ∈ {N − 1} (3.21)

As a consequence of the anticommutator relation (2.12), the pole strengths fulfill the
following sum rule:

∑

n∈{N+1}
x (n)
p x (n)∗

q +
∑

n∈{N−1}
x (n)
p x (n)∗

q = δpq (3.22)

To get an idea of the meaning of the spectroscopic factors, one may inspect the
following (simplified) expression for the partial photo-ionization cross section for
generating the final ionic state |�N−1

n 〉 and a continuum electron with kinetic energy
ε = hν − In , where hν is the energy of the incident light:

σn(ε) ∼ 2

3
ε

∣∣∣∣∣
∑

p

〈ε|d̂|p〉x (n)
p

∣∣∣∣∣

2

(3.23)

Here 〈ε|d̂|p〉 is the matrix element of the one-particle dipole operator with respect
to the orbital |p〉 and the one-particle scattering state |ε〉 of energy ε. The factors x (n)

p
weight the “participation” of individual orbitals in the final ionic state. Often there is
only one dominant orbital contribution, and the sum on the right-hand side reduces
to a single term.

It should be noted that the summation over discrete states supposed in the
form (3.17) of the spectral representation can be generalized to comprise the respec-
tive continua. In the case of N−1 electrons, for example, the propagator component
G−

pq would comprise both a discrete summation and an integral of the form

∫
dE

μpq(E)

ω + E − E0 − iη
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where μpq(E) is a function of the energy E .
By undoing the resolution of the identity in the spectral representation (3.17), one

obtains the following compact forms

G+
pq(ω) = 〈�0|cp

(
ω − Ĥ + E0 + iη

)−1
c†q |�0〉 (3.24)

G−
pq(ω) = 〈�0|c†q

(
ω + Ĥ − E0 − iη

)−1
cp|�0〉 (3.25)

This shows that G±
pq(ω) are essentially matrix elements of the many-body resol-

vent (ω − Ĥ)−1, taken with respect to (N±1)-electron states c†p|�0〉 and cp|�0〉,
respectively.

3.2 Ground-State Expectation Values

Besides spectral information on the (N±1)-electron systems, the electron propagator
allows one to obtain ground-state expectation values of one-particle operators. As
basic quantities, let us consider the elements of the one-particle density matrix

ρrs = 〈�0|c†s cr |�0〉 (3.26)

Comparison with the electron propagator according to Eqs. (3.3) or (3.16) shows that

ρrs = lim
t ′→t+

(−i)Grs(t, t
′) (3.27)

where t ′ → t+ means a limit in which t ′ approaches t strictly from above, t ′ > t .
As a consequence of equating times that way, only the (N−1)-electron part survives
(since θ(t − t ′) = 0 for t ′ > t), and we may write

ρrs = −iGrs(t, t
+) = −iG−

rs(t, t
+) (3.28)

where t+ is used as an abbreviation for the limit t ′ → t, t ′ > t . Accordingly, the
ground-state expectation value of one-particle operator

Â =
∑

r,s

arsc
†
r cs (3.29)

can be written as

〈�0| Â|�0〉 =
∑

r,s

arsρsr = −i
∑

r,s

arsG
−
sr (t, t

+) (3.30)

Introducing the matrix
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A ≡ (ars) (3.31)

of the one-particle matrix elements, the ground-state expectation value can bewritten
according to

〈�0| Â|�0〉 = −iTr(AG−(t, t+)) (3.32)

as the trace of a matrix product.
The constant quantities Grs(t, t+) obtained by equating the time arguments in the

prescribed way can be derived as well from the energy representation of the electron
propagator by putting t ′ = t + ε, ε > 0, in the Fourier transform (3.10):

Grs(t, t
+) = lim

ε→0

1

2π

∫
eiωεG−

rs(ω)dω, ε > 0

The factor eiωε suggests to solve the integral by contour integration,where the contour
closes in the upper complex ω-plane, yielding

Grs(t, t
+) = 1

2π
2G−

rs(ω)dω (3.33)

Since the G+ part has only poles in the lower complex ω-plane, we may also write

ρrs = 1

2πi
2Grs(ω)dω (3.34)

The validity of Eq. (3.33) can easily be verified by performing the contour integration
for the spectral representation (3.17) of G(ω) or G−(ω). The equivalent to Eq. (3.32)
then reads

〈�0| Â|�0〉 = 1

2πi
2Tr

(
AG−(ω)

)
dω (3.35)

3.3 Ground-State Energy

The ground-state energy, expressed as the ground-state expectation value of the
hamiltonian,

E0 = 〈�0|Ĥ |�0〉 =
∑

trs〈�0|c†r cs |�0〉 + 1

2

∑
Vrsuv〈�0|c†r c†s cvcu |�0〉 (3.36)

can also be derived from the electron propagator, even though the second term
involves two-particle density matrix elements. This becomes possible because the
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electron propagator obeys an equation of motion (EOM) to be discussed in the fol-
lowing.

Let us first consider the time derivative of the time-dependent destruction operator:

i
∂

∂t
cp[t] = i

∂

∂t

(
ei Ĥ t cpe

−i Ĥ t
)

= ei Ĥ t
[
cp, Ĥ

]
e−i Ĥ t (3.37)

The commutator appearing in the last expression is readily evaluated (see Exer-
cise 2.3), which gives

i
∂

∂t
cp[t] =

∑

s

tpscs[t] +
∑

s,u,v

Vpsuvc
†
s [t]cv[t]cu[t] (3.38)

Now the time derivative of the electron propagator with respect to the time argument
t can be written as

i
∂

∂t
G pq(t, t

′) = δ(t − t ′)〈�0||
{
cp[t], c†q [t ′]

}〉�0

− i〈�0|T̂TT
[(

i
∂

∂t
cp[t]

)
c†q [t ′]

]
|�0〉

= δpqδ(t − t ′) − i
∑

s

tps〈�0|T̂TT
[
cs[t]c†q [t ′]

] |�0〉

− i
∑

s,u,v

Vpsuv〈�0|T̂TT
[
c†s [t]cv[t]cu[t]c†q [t ′]

] |�0〉 (3.39)

The delta function arises from the time derivative of the step function. For equal
times, t = t ′, the anticommutator in the first line becomes

{
cp[t], c†q [t ′]

} → δpq .
Note that we have disregarded here the convergence factors e±η(t−t ′) of the extended
definition (3.16); the additional terms arising from the time derivatives of the con-
vergence factors vanish for t = t ′, which is of interest below. The last equation can
be cast into the form

i
∂

∂t
G pq(t, t

′) −
∑

s

tpsGsq(t, t
′) = δpqδ(t − t ′) + i

∑

s,u,v

VpsuvGvu,qs(t, t; t ′, t+)

(3.40)
which makes explicit that the EOM of the one-particle GF involves the next higher
member in a hierarchy of many-body Green’s functions, namely the two-particle GF
defined as follows:

G12,1′2′(t1, t2; t ′1, t ′2) = (−i)2〈�0|T̂TT
[
c1[t1]c2[t2]c†2′ [t ′2]c†1′ [t ′1]

]
|�0〉 (3.41)

Here the indices 1, 2, 1′, 2′ are used as an abbreviated notation for general one-
particle quantum numbers, e.g., 1 ≡ p.
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To establish a relation to the ground-state energy, we take the sum of the diago-
nal elements in Eq. (3.39),

∑
p i

∂
∂t G pp(t, t ′), and equate the time arguments in the

fashion described above. Thus we find

∑

p

i
∂

∂t
G pp(t, t

+) − i〈�0|T̂ |�0〉 = 2i〈�0|V̂ |�0〉 (3.42)

Note that in the limit t ′ → t, t ′ > t the term δpqδ(t − t ′) on the right-hand side of
Eq. (3.40) must be skipped. Using Eq. (3.32) to relate the ground-state expectation
value of T̂ to the electron propagator finally yields

E0 = 〈�0|T̂ + V̂ |�0〉 = 1

2

∑

p

∂

∂t
G pp(t, t

+) − i

2

∑

p,q

tpqGqp(t, t
+) (3.43)

The analogous expression in the energy representation reads

E0 = 1

4πi
2 Tr [(ω1 + T ) G(ω)] dω = 1

4πi
2 Tr

[
(ω1 + T ) G−(ω)

]
dω

(3.44)
As above, this result is obtained from Eq. (3.43) by replacing the time-dependent
propagator components with

Gpq(t, t
+) = lim

ε→0

1

2π

∫
eiωεG−

pq(ω)dω, ε > 0 (3.45)

The relation (3.44) can also be derived directly. The contour integrations for the
products ωGpq(ω) can be readily evaluated to give

1

2πi
2 ωG−

pq(ω)dω = −
∑

n

(
EN−1
n − E0

) 〈�0|c†q |�N−1
n 〉〈�N−1

n |cp|�0〉

= 〈�0|c†q [cp, Ĥ ]|�0〉 = −〈�0|c†q(Ĥ − E0)cp|�0〉 (3.46)

This establishes the following sum rule for the ionization spectra:

∑

n∈{N−1}

(
EN−1
n − E0

)
x (n)∗
q x (n)

p = 〈�0|c†q(Ĥ − E0)cp|�0〉 (3.47)

To arrive at Eq. (3.44), we take the trace on both sides of Eq. (3.46) and evaluate the
commutators in the first term of the second line (see Exercise2.3). This yields

∑

p

1

2πi
2 ωG−

pp(ω)dω = 〈�0|T̂ |�0〉 + 2〈�0|V̂ |�0〉 (3.48)
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Combining this result with the ground-state expectation value of T̂ according to
Eqs. (3.35), (3.44) is readily retrieved.

3.4 Free One-Particle Green’s Function

The electron propagator can be specialized to a system of N non-interacting particles
with a hamiltonian of the form

Ĥ0 =
N∑

i=1

ĥ0(i) =
∑

εr c
†
r cr (3.49)

The orbitals |r〉 are supposed to be eigenstates of ĥ0, and the N -particle ground state
|�0〉 is given by the Slater determinant of the N energetically lowest orbitals |r〉. As
an example of particular importance, we may consider the HF approximation for an
atom or molecule, where |r〉 are ground-stateHF orbitals, and ĥ0 is the (one-particle)
HF operator.

The time-dependent Heisenberg operators simply become

cp(t) = ei Ĥ0t cpe
−i Ĥ0t = e−iεpt cp (3.50)

since

i
∂

∂t
cp(t) = ei Ĥ0t [cp, Ĥ0]e−i Ĥ0t = εpcp(t) (3.51)

Replacing Ĥ with Ĥ0 and |�0〉 with |�0〉 in the general definition (3.3), one obtains
the so-called free Green’s function (free electron propagator)

G0
pq(t, t

′) = −ie−iεp(t−t ′)δpq
(
θ(t − t ′)n̄ p − θ(t ′ − t)np

)
(3.52)

Here np, nq = 1 − nq denote occupation numbers with respect to |�0〉,

np =
{
1, p ≤ N

0, p > N
(3.53)

The corresponding energy representation

G0
pq(ω) = δpq

(
n̄ p

ω − εp + iη
+ np

ω − εp − iη

)
(3.54)

is obtained via Fourier transformation using convergence factors e±η(t−t ′) as dis-
cussed above. The free propagator is diagonal, and for each orbital p, there is exactly



3.4 Free One-Particle Green’s Function 41

one pole, located in the lower or upper complex ω-plane depending on whether p
is an occupied (np = 1) or unoccupied (np = 0) orbital in the ground-state Slater
determinant. The ionization energies and electron affinities are simply given by−εp,
that is, the negative orbital energies.

For the diagonal components G0
pp(t, t

′), the EOM assumes the simple form

i
∂

∂t
G0

pp(t, t
′) − εpG

0
pp(t, t

′) = δ(t − t ′) (3.55)

As solutions of the latter inhomogeneous differential equation, the functions
G0

pp(t, t
′) are denoted as (mathematical) Green’s functions, here for the differential

operator
(
i ∂

∂t − εp
)
. It is this proximity to mathematical Green’s functions which has

led to the designation “many-body Green’s functions” in the present context. Note
that Eq. (3.55) has two distinct solutions, differing with respect to their “causal”
behavior. The comparison with the definition (3.52) shows that either the “retarded”
solution, ∼θ(t − t ′), or the “advanced” solution, ∼θ(t ′ − t), is adopted depending
on whether np = 1 or np = 1, respectively.

Exercises

3.1 Spin symmetry of the electron propagator: Write the spin-orbital indices in their
expanded form, p → pγ, and show thatGpα,qα = Gpβ,qβ andGpα,qβ = 0, sup-
posing a non-degenerate ground state |�0〉.

3.2 Revisit the 2E-2O model of Exercise 2.4 and
(a) Determine the ionization potentials and electron affinities;
(b) Evaluate explicitly the spectral representation (3.17) for Ggα,gα(ω).
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Part II
Formalism of Diagrammatic Perturbation

Theory

How can the electron propagator or other propagators actually be computed? And
will the eventual computational schemes offer distinct advantages over the conven-
tional computational methodology based on wave functions and the Schrödinger
equation? A prominent route to the computation of propagators is provided by the
formalism of diagrammatic perturbation theory, in which the contributions to the PT
expansions of the propagator matrix elements are represented in the form of graph-
ical schemes, the famous Feynman diagrams and variations thereof. The following
Chaps. 4–6 establish the diagrammatic perturbation theory specifically for the elec-
tron propagator. Three basic theorems, namely the Gell-Mann and Low theorem,
Wick’s theorem, and the linked-cluster theorem constitute the core of the formalism.
They are discussed in Chaps. 4 and 5. Here our presentation owes much to Chap.3
in the exemplary textbook by Fetter and Walecka [1]. Based on those theorems,
the rules to draw and evaluate Feynman diagrams are derived and demonstrated in
Chap. 6. The final Chap. 7 deals with the time-ordered or Goldstone diagrams, which
allow for a direct diagrammatical access to the results of the various time or energy
integrations required in the evaluation of the Feynman diagrams.

It should be noted that there are non-diagrammatic approaches as well, such as
the algebraic propagator methods reviewed in Chap. 16, the hierarchy of coupled
time-dependent equations of motion for many-body Green’s functions [2], and the
method of functional derivatives [3].

References

1. Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems. Mc Graw-Hill,

New York

2. Martin PC, Schwinger J (1959) Phys Rev A 115:1342

3. Kadanoff LP, Baym G (1962) Quantum statistical mechanics. Benjamin, Reading

http://dx.doi.org/10.1007/978-3-319-93602-4_4
http://dx.doi.org/10.1007/978-3-319-93602-4_6
http://dx.doi.org/10.1007/978-3-319-93602-4_4
http://dx.doi.org/10.1007/978-3-319-93602-4_5
http://dx.doi.org/10.1007/978-3-319-93602-4_3
http://dx.doi.org/10.1007/978-3-319-93602-4_6
http://dx.doi.org/10.1007/978-3-319-93602-4_7
http://dx.doi.org/10.1007/978-3-319-93602-4_16


Chapter 4
Perturbation Theory for the Electron
Propagator

As in the familiar Rayleigh–Schrödinger perturbation theory (RSPT) for the N -
electron ground state discussed in Appendix A.1, the starting point for perturbation
theory is a division of the original hamiltonian (3.1) into two parts,

Ĥ = T̂ + V̂ = Ĥ0 + ĤI (4.1)

where Ĥ0, defining the zeroth-order part, is a one-particle hamiltonian associated
with non-interacting particles, and

ĤI = Ĥ − Ĥ0 = Ŵ + V̂ (4.2)

is the interaction part, comprising the bare electron repulsion, V̂ , and, possibly, a
remainder of the one-particle part of the hamiltonian,

Ŵ = T̂ − Ĥ0 =
∑

wrsc
†
r cs (4.3)

In the so-called Møller–Plesset (MP) partitioning,

Ĥ0 =
∑

εr c
†
r cr (4.4)

is the Hartree–Fock (HF) hamiltonian, based on the solutions of the HF equations,

trs +
∑

k

Vrk[sk]nk = εrδrs (4.5)

where nk = 1, 0 denotes the usual (HF) ground-state occupation numbers. Accord-
ingly, the matrix elements of the one-particle interaction part Ŵ are given by

wrs = trs − εrδrs = −
∑

k

Vrk[sk]nk (4.6)
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46 4 Perturbation Theory for the Electron Propagator

The non-interacting (HF) ground state, denoted by |�0〉, is a solution of the
Schrödinger equation

Ĥ0|�0〉 = E (0)
0 |�0〉 (4.7)

where

E (0)
0 =

N∑

k=1

εk (4.8)

is the corresponding ground-state energy.
According to the definition (3.3) of the electron propagator, PT expansions come

into play in two ways: firstly, via the ground state, and, secondly, in the time-
dependent Heisenberg operators. To accomodate both demands, a procedure based
on time-dependent perturbation theory (TDPT) has proven advantageous. After a
review of TDPT in the ensuing Sect. 4.1, we shall discuss in Sect. 4.2 how this tech-
nique can be adapted to the case where the interaction part ĤI is slowly “switched
on” by applying an appropriate time-dependent function. In the so-called adiabatic
limit, a valid PT formulation of the interacting N -electron ground state is obtained,
which is the proposition of the Gell-Mann and Low theorem. The Gell-Mann and
Low formulation of the ground state can be extended to ground-state expectation
values of time-dependent operators and, moreover, to the elements of the electron
propagator, as will be discussed in Sect. 4.3.

4.1 Time-Development Operator in the Interaction Picture

The time development of a quantum state |�(t)〉 is governed by the time-dependent
Schrödinger equation (TDSE)

i
∂

∂t
|�(t)〉 = Ĥ |�(t)〉 (4.9)

which for a given initial state |�(t0)〉 at a time t = t0, uniquely determines |�(t)〉 for
times t ≥ t0. For a time-independent hamiltonian, the formal solution of Eq. (4.9)
takes the form

|�S(t)〉 = e−i Ĥ(t−t0)|�(t0)〉 (4.10)

This means that the state at t is obtained from the initial state at t = t0 via a unitary
transformation

ÛS(t, t0) = e−i Ĥ(t−t0). (4.11)

The subscript S indicates that we are dealing here with the Schrödinger represen-
tation of time-dependent quantum mechanics. As an alternative, one may resort to
the so-called interaction picture, which is more suitable for the case where the
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hamiltonian can be divided into a time-independent part and a (possibly) time-
dependent perturbation,

Ĥ = Ĥ0 + Ĥ1(t) (4.12)

In the interaction picture, one considers states defined according to

|�I (t)〉 = ei Ĥ0t |�S(t)〉 (4.13)

where |�S(t)〉 is the time-dependent state of the usual Schrödinger picture, now
labeled by the subscript S for clarity. The obvious purpose of this definition is to
account for the time development due to Ĥ0 in a formally explicit fashion. Using the
TDSE for |�S(t)〉 yields the equation of motion

i
∂

∂t
|�I (t)〉 = ĤI (t)|�I (t)〉 (4.14)

for the states in the interaction picture. Here

ĤI (t) = ei Ĥ0t Ĥ1(t)e
−i Ĥ0t (4.15)

is the perturbation part of the hamiltonian in the interaction picture. In the same way,
one may define the interaction picture representation of a general (Schrödinger)
operator ÔS:

ÔI (t) = ei Ĥ0t ÔSe
−i Ĥ0t (4.16)

As is readily seen, the matrix element of an operator between two states can be
written similarly in the Schrödinger and interaction picture,

〈�I (t)|ÔI (t)|� ′
I (t)〉 = 〈�S(t)|ÔS|� ′

S(t)〉 (4.17)

For time-independent operators ÔS , the corresponding interaction-picture operators
obey the simple equation of motion

i
∂

∂t
ÔI (t) =

[
ÔI (t), Ĥ0

]
(4.18)

When the hamiltonian (4.12) is time independent, the TDSE (4.14) in the inter-
action picture can be solved in a formal way as follows:

|�I (t)〉 = ei Ĥ0t |�S(t)〉
= ei Ĥ0t e−i Ĥ(t−t0)|�S(t0)〉
= ei Ĥ0t e−i Ĥ(t−t0)e−i Ĥ0t0 |�I (t0)〉
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This result may be written in a more compact form

|�I (t)〉 = Û (t, t0)|�I (t0)〉 (4.19)

where the unitary operator

Û (t, t0) = ei Ĥ0t e−i Ĥ(t−t0)e−i Ĥ0t0 (4.20)

is referred to as the time-evolution operator in the interaction picture.
One may readily verify the following properties of Û (t, t ′):

Û (t0, t0) = 1̂ (4.21)

Û (t1, t2)Û (t2, t3) = Û (t1, t3) transitivity (4.22)

Û (t, t0)
† = Û (t0, t) (4.23)

Û †(t, t0)Û (t, t0) = Û (t, t0)Û
†(t, t0) = 1 unitarity (4.24)

The form (4.19) applies also to the case of time-dependent interaction, Ĥ1 =
Ĥ1(t). Here, the TDSE translates into the following equation of motion for the time-
evolution operator Û (t, t0) in the interaction picture:

i
∂

∂t
Û (t, t0) = ĤI (t)U (t, t0) (4.25)

where ĤI (t) is given by Eq. (4.15). Note that the properties (4.21)–(4.24) apply to
the time-dependent case as well.

Performing time integrations on both sides, Eq. (4.25) can readily be transformed
into an integral equation (of Volterra type):

Û (t, t0) = 1̂ − i

t∫

t0

dt ′ ĤI (t
′)Û (t ′, t0) (4.26)

The advantage of the integral-equation form is that it can be solved in an iterative
way:

Û (t, t0) = 1̂ − i

t∫

t0

dt1 ĤI (t1) + (−i)2
t∫

t0

dt1

t1∫

t0

dt2 ĤI (t1)ĤI (t2) + . . . (4.27)

This establishes a perturbation expansion of Û (t, t0) in terms of powers of Ĥ1(t),
the nth-order term reading
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Û (n)(t, t0) = (−i)n
t∫

t0

dt1

t1∫

t0

dt2 . . .

tn−1∫

t0

dtn ĤI (t1)ĤI (t2) . . . ĤI (tn) (4.28)

It should be noted that the interaction operators ĤI (t) do not commute for different
time arguments, that is,

[ĤI (t), ĤI (t
′)] �= 0 for t �= t ′ (4.29)

Accordingly, the order of the operators in the integrals in Eq. (4.27) is essential. For
example, in the integration of the second-order term,

Û (2)(t, t0) = −
t∫

t0

dt1

t1∫

t0

dt2 ĤI (t1)ĤI (t2) (4.30)

the time-ordering t1 ≥ t2 has to be maintained. We may rewrite this term as

Û (2)(t, t0) = −
t∫

t0

dt1

t∫

t0

dt2 ĤI (t1)ĤI (t2)θ(t1 − t2) (4.31)

where the θ -function guarantees the proper time-ordering and allows one to use a
common upper limit for both the t1 and t2 integrations. Alternatively, one may write

Û (2)(t, t0) = −
t∫

t0

dt1

t∫

t0

dt2 ĤI (t2)ĤI (t1)θ(t2 − t1) (4.32)

and the latter two forms can be recombined to give

Û (2)(t, t0) = −1

2

t∫

t0

dt1

t∫

t0

dt2 T̂TT
[
ĤI (t1)ĤI (t2)

]
(4.33)

Here T̂TT is Wick’s time-ordering operator (Eq. 3.5), putting operators with larger
time arguments to the left of those with smaller time arguments. Note that the
re-ordering of operators is not accompanied by any sign changes because the inter-
action operators are formed by an even number of fermion operators.

The form obtained for the second-order term can readily be generalized to the
nth-order term, yielding
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Û (n)(t, t0) = (−i)n

n!
t∫

t0

dt1 . . .

t∫

t0

dtn T̂TT
[
ĤI (t1) . . . ĤI (tn)

]
(4.34)

Finally, the perturbation expansion of the time-evolution operator in the interaction
picture reads

Û (t, t0) =
∞∑

n=0

(−i)n

n!
t∫

t0

dt1 . . .

t∫

t0

dtn T̂TT
[
ĤI (t1) . . . ĤI (tn)

]
(4.35)

In a compact, if somewhat symbolic way, one may also write

Û (t, t0) = T̂TT e
−i

t∫
t0

dt ′ ĤI (t ′)

Theexpansionof the time-evolutionoperator, according toEq. (4.27) orEq. (4.35),
provides a basis for time-dependent perturbation theory. In the ensuing Sect. 4.2,
we shall use a specific time-dependent approach to re-formulate the usual (time
independent) perturbation theory for the ground state and ground-state expectation
values of an interacting N -electron system.

4.2 The Gell-Mann and Low Theorem

The starting point for the following derivation is the time-dependent hamiltonian

Ĥ(t) = Ĥ0 + e−ε|t | ĤI (4.36)

where the interaction part of the hamiltonian (4.1) is “switched on” (and off) as
a function of time. For t → ±∞, Ĥ(t) reduces to Ĥ0, while at t = 0, the origi-
nal hamiltonian is restored, Ĥ(0) = Ĥ . The parameter ε > 0 controls how fast the
interaction is turned on or off (see Fig. 4.1). In the limit ε → 0, referred to as the
adiabatic limit, one will expect that the ground state |�0〉 of the non-interacting
system at t = −∞ (assumed to be non-degenerate) evolves into the ground state of
the interacting system |�0〉 at t = 0.

The time-evolution operator associated with the hamiltonian (4.36) can be written
as

Ûε(t, t0) =
∞∑

n=0

(−i)n

n!
t∫

t0

dt1e
−ε|t1| . . .

t∫

t0

dtn e
−ε|tn | T̂TT

[
ĤI (t1) . . . ĤI (tn)

]
(4.37)

where
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Fig. 4.1 Switching function
for two different values of
the parameter ε

ĤI (t) = ei Ĥ0t ĤI e
−i Ĥ0t (4.38)

is the interaction part of the hamiltonian in the interaction picture. The subscript ε

indicates the dependence of the time-evolution operator on the switching parameter ε.
Let us assume that in the infinite past (t0 → −∞), the system is in the non-

interacting ground state,
Ĥ0|�0〉 = E (0)

0 |�0〉 (4.39)

In this limit, the Schrödinger-picture state becomes |�S(t)〉 = e−i E (0)
0 t |�0〉 and the

corresponding interaction-picture state is simply given by |�0〉:

|�I (t)〉 = ei Ĥ0t |�S(t)〉 = |�0〉 (4.40)

The state resulting from |�0〉 upon time evolution from t = −∞ to t = 0 is given
by

|�ε(0)〉 = Ûε(0,−∞)|�0〉

=
∞∑

n=0

(−i)n

n!
0∫

−∞
dt1e

−ε|t1| . . .
0∫

−∞
dtn e

−ε|tn |T̂TT
[
ĤI (t1) . . . ĤI (tn)

]
|�0〉 (4.41)

At this point, one might expect that in the adiabatic limit, ε → 0, the state |�ε(0)〉
approaches the ground state |�0〉 of the interacting system. However, the situation is
not that simple. As will be demonstrated in Sect. 4.4, |�ε(0)〉 has contributions that
diverge as ε−1. The divergent contributions can be canceled by multiplying |�ε(0)〉
with the inverse of 〈�0|Ûε(0,−∞)|�0〉. This is the essence of the Gell-Mann and
Low theorem [4], reading as follows:

Theorem: If the state

|� ′
0〉 = lim

ε→0

Ûε(0,−∞)|�0〉
〈�0|Ûε(0,−∞)|�0〉

(4.42)
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exists to all orders of perturbation theory, then it is the ground state of Ĥ with the
eigenvalue

E0 = E (0)
0 + lim

ε→0

〈�0|ĤI Ûε(0,−∞)|�0〉
〈�0|Ûε(0,−∞)|�0〉

(4.43)

A proof of the theorem is given in Appendix A.2. It is essentially based on an
elaborated version [1] of the original proof [4].

A few comments are in order:

1. The Gell-Mann and Low state |� ′
0〉 is formed as the ratio of two perturbation

expansions, one for the numerator, the other for the denominator. Both expansions
depend on the switching parameter ε and comprise terms that diverge in the
limit ε → 0. The ratio itself can be expanded, at least formally, in a perturbation
expansion. The precondition of the theorem is that in each order n of the latter
expansion the limit ε → 0 exists. If that assumption applies, which remains to
be shown at a later stage, the adiabatic limit leads to a (formally) well-defined
perturbation expansion for |� ′

0〉, and |� ′
0〉 is the interacting ground state.However,

the actual convergence properties of that perturbation expansion, depending on
the interaction strength, are not subject of the Gell-Mann and Low theorem.

2. Strictly speaking, the proof only guarantees that |� ′
0〉 is an eigenstate, but not

necessarily the ground state of the interacting system. In general, however, one
may reasonably expect that |� ′

0〉 is the interacting ground state provided the
respective non-interacting ground state |�0〉 is non-degenerate.

3. The |� ′
0〉 state is not normalized to unity, but satisfies the so-called intermediate

normalization,
〈�0|� ′

0〉 = 1 (4.44)

The proof of the Gell-Mann and Low theorem can readily be transfered to the
state

|� ′′
0 〉 = lim

ε→0

Ûε(0,∞)|�0〉
〈�0|Ûε(0,∞)|�0〉

(4.45)

resulting from a time-reversed adiabatic development (0 ← ∞). Note that
Ûε(0,∞) = Û †

ε (∞, 0), according to Eq. (4.23). If the underlying non-interacting
ground state is non-degenerate, the two modes of generating the Gell-Mann and
Low state will lead to the same result:

|� ′′
0 〉 = lim

ε→0

Ûε(0,∞)|�0〉
〈�0|Ûε(0,∞)|�0〉

= lim
ε→0

Ûε(0,−∞)|�0〉
〈�0|Ûε(0,−∞)|�0〉

= |� ′
0〉 (4.46)

Both states are subject to intermediate normalization (Eq. 4.44) which precludes the
possibility of differing phases.
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The time-reversed form (4.45) can be conveniently written as a bra state,

〈� ′′
0 | = lim

ε→0

〈�0|Ûε(∞, 0)

〈�0|Ûε(∞, 0)|�0〉
(4.47)

to be used in forming ground-state expectation values.

4.3 Expectation Values of Heisenberg Operators

The Gell-Mann and Low formulation of the interacting ground state can be extended
to ground-state expectation values of operators. In particular, we are interested in
expectation values involving time-dependent Heisenberg operators as encountered
in the definition of the electron propagator (3.6).

Let us consider a general Heisenberg operator

ÔH (t) = ei Ĥ t ÔSe
−i Ĥ t (4.48)

associated with a Schrödinger operator ÔS . Using Eq. (4.16), the ÔS may be replaced
by the corresponding operator ÔI (t) of the interaction picture:

ÔH (t) = ei Ĥ t e−i Ĥ0t ÔI (t)e
i Ĥ0t e−i Ĥ t (4.49)

For the time arguments (t, 0), the time-evolution operator in the interaction picture
(Eq. 4.20) can be written as

Û (t, 0) = ei Ĥ0t e−i Ĥ t (4.50)

Likewise, this result can be derived directly from the equation of motion (4.25).
Using Eqs. (4.49) and (4.50), ÔH (t) can be written in the form

ÔH (t) = Û (0, t)ÔI (t)Û (t, 0) = lim
ε→0

Ûε(0, t)ÔI (t)Ûε(t, 0) (4.51)

Note that for finite time arguments in the time-evolution operator, the limit ε → 0 is
unproblematic; that is,

Û (t1, t2) = lim
ε→0

Ûε(t1, t2) (4.52)

which justifies the second part of Eq. (4.51).
In the latter form, the Heisenberg operator is compatible with the Gell-Mann and

Low representation (4.42) of the ground state. Noting the normalization (4.44) of
|� ′

0〉, the ground-state expectation value of ÔH (t) can be written as
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〈�0|ÔH (t)|�0〉 = 〈� ′
0|ÔH (t)|� ′

0〉
〈� ′

0|� ′
0〉

= lim
ε→0

〈�0|Ûε(∞, t)ÔI (t)Ûε(t,−∞)|�0〉
〈�0|Ûε(∞,−∞)|�0〉

(4.53)

Here the transitivity relation (4.22) has been used to get

Ûε(t, 0)Ûε(0,−∞) = Ûε(t,−∞) (4.54)

and
Ûε(∞, 0)Ûε(0,−∞) = Ûε(∞,−∞) (4.55)

Finally, the exponential-type perturbation expansions of the time-evolution oper-
ators in the numerator on the right-hand side of Eq. (4.53) can be combined within a
single perturbation expansion, as is described in more detail in Appendix A.2. The
result reads

〈�0|ÔH (t)|�0〉 = lim
ε→0

∞∑

n=0

(−i)n

n!
∞∫

−∞
dt1e

−ε|t1| . . .
∞∫

−∞
dtn e

−ε|tn |

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)ÔI (t)

]
|�0〉

〈�0|Ûε(∞,−∞)|�0〉
(4.56)

Again, it should be noted that the limit ε → 0 does not exist independently for the
numerator and denominator on the right-hand side.

The formulation given above can readily be extended to the ground-state expec-

tation value of a time-ordered operator product T̂TT
[
P̂H (t)Q̂H (t ′)

]
, where P̂H (t) and

Q̂H (t ′) are Heisenberg operators:

〈�0|T̂TT
[
P̂H (t)Q̂H (t ′)

]
|�0〉 = lim

ε→0

∞∑

n=0

(−i)n

n!
∞∫

−∞
dt1e

−ε|t1| . . .
∞∫

−∞
dtn e

−ε|tn |

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)P̂I (t)Q̂ I (t ′)

]
|�0〉

〈�0|Ûε(∞,−∞)|�0〉
(4.57)

As an immediate application, we may now write the desired perturbation expansion
of the electron propagator as
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iG pq(t, t
′) =〈�0|T̂TT

[
cp[t]c†q [t ′]

] |�0〉

= lim
ε→0

∞∑

n=0

(−i)n

n!
∞∫

−∞
dt1e

−ε|t1| . . .
∞∫

−∞
dtne

−ε|tn |

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)cp(t)c†q(t

′)
]
|�0〉

〈�0|Ûε(∞,−∞)|�0〉
(4.58)

where the explicit perturbation expansion of the denominator is given by

〈�0|Ûε(∞,−∞)|�0〉 =
∞∑

n=0

(−i)n

n!
∞∫

−∞
dt1e

−ε|t1| . . .
∞∫

−∞
dtne

−ε|tn |

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)

]
|�0〉 (4.59)

Like in theGell–Mann andLow state (4.42), the resulting expression forGpq(t, t ′)
is seen to be the ratio of two perturbation expansions, both depending on the switch-
ing parameter ε. Likewise, the adiabatic limit (ε → 0) does not exist independently
for the denominator and numerator, but eventually for their ratio. The linked-cluster
theorem, to be addressed in Sect. 5.3, will show that the denominator cancels a cor-
responding factor in the numerator, thereby eliminating any diverging contributions
in the adiabatic limit.

The essential ingredients in the perturbation expansions for Gpq(t, t ′) are expec-
tation values of time-ordered products of creation and destruction operators in
the interaction picture, where the expectation value is to be taken with respect to
the non-interacting ground state |�0〉. The evaluation of these expectation values is
the subject of Wick’s theorem considered in Chap. 5.

4.4 Comparison with Rayleigh–Schrödinger Perturbation
Theory

The Gell–Mann and Low expressions (4.42), (4.43) for the interacting ground state
and ground-state energy establish a perturbation theoretical approach, which differs
completely from the familiar RSPT procedure. Of course, the resulting perturba-
tion expansions must be identical, and it is instructive to see explicitly how this
equivalence comes to pass at lowest orders.

The RSPT expansions for the ground state and ground-state energy can be written
in the closed-form expressions presented in Appendix A.1:

|�0〉 = |�0〉 +
∞∑

n=1

[
Q̂0

E (0)
0 − Ĥ0

(
E (0)
0 − E0 + ĤI

)]n

|�0〉 (4.60)
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E0 =〈�0|Ĥ |�0〉

=E (0)
0 + 〈�0|ĤI |�0〉 +

∞∑

n=1

〈�0|ĤI

[
Q̂0

E (0)
0 − Ĥ0

(
E (0)
0 − E0 + ĤI

)]n

|�0〉
(4.61)

where Q̂0 = 1̂ − |�0〉〈�0|. As further discussed in Appendix A.1, these so far rather
formal expansions can be made more explicit by applying the resolution of the
identity,

1̂ =
∑

I

|�I 〉〈�I | (4.62)

in terms of excited HF states |�I 〉, specified in Eq. (2.24).
The first-order wave function, for example, becomes

|�(1)
0 〉 =

∑

a<b,k<l

Vab[kl]
εa+εb−εk−εl

|�abkl〉 (4.63)

Here only the class of double excitations, |�abkl〉, comes into play, since the matrix
elements 〈�0|ĤI |�I 〉 vanish for states of higher excitation classes. Single excita-
tions, on the other hand, do not contribute since

〈�0|ĤI |�ak〉 = wak +
∑

r

Var [kr ]nr = 0 (4.64)

as a result of theHFEqs. (4.5), (4.6), which is often referred to as Brillouin’s theorem.
In a similar way, the expansion of the ground-state energy through second order can
be written as

E0 = E (0)
0 + 〈�0|ĤI |�0〉 −

∑

a<b,k<l

|Vab[kl]|2
εa+εb−εk−εl

+ O(3) (4.65)

Nowwe come back to the expansions based on the Gell–Mann and Low approach.
Amore convenient starting point for evaluating low-order contributions in the numer-
ator and denominator on the right-hand sides of Eqs. (4.42) and (4.43) is a closed-
form integration [5] in the original expression of the time-evolution operator (see
Eq. 4.28),

Ûε(0,−∞)|�0〉 =

|�0〉 +
∞∑

n=1

(−i)n
0∫

−∞
dt1

t1∫

−∞
dt2 . . .

tn−1∫

−∞
dtn e

ε(t1+···+tn) ĤI (t1) . . . ĤI (tn)|�0〉
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Since
ĤI (t j ) = ei Ĥ0t j ĤI e

−i Ĥ0t j (4.66)

the product of two successive time-dependent interaction operators with time argu-
ments t j , t j ′ , j ′ = j + 1, becomes

ĤI (t j )ĤI (t j ′) = ei Ĥ0t j ĤI e
−i Ĥ0(t j−t j ′ ) ĤI e

−i Ĥ0t j ′ (4.67)

This suggests to introduce new variables x1, . . . , xn according to

x1 = t1 t1 = x1
x2 = t2 − t1 t2 = x1 + x2
x3 = t3 − t2 t3 = x1 + x2 + x3

...
...

xn = tn − tn−1 tn = x1 + x2 + · · · + xn (4.68)

Here, the second column specifies the inverse transformation. Obviously, one obtains
fixed integration limits (−∞, 0) for each of the xi integrations. The determinant of
the Jacobi matrix is readily evaluated to give

∣∣∣∣

(
∂ti
∂x j

)∣∣∣∣ = 1 (4.69)

Moreover, there is factor e−i E (0)
0 (x1+···+xn) resulting from the last interaction opera-

tor acting on the non-interacting ground state, ĤI (tn)|�0〉. As a result, the n-fold
integration in the nth-order term factorizes according to

Û (n)
ε (0,−∞)|�0〉 = (−i)n

0∫

−∞
dx1e

nεx1ei(Ĥ0−E (0)
0 )x1 ĤI

0∫

−∞
dx2e

(n−1)εx2ei(Ĥ0−E (0)
0 )x2 ĤI · · ·

0∫

−∞
dxne

εxn ei(Ĥ0−E (0)
0 )xn ĤI |�0〉

and the individual integrations can readily be performed to give

Û (n)
ε (0,−∞)|�0〉 = 1

E (0)
0 − Ĥ0 + niε

ĤI

1

E (0)
0 − Ĥ0 + (n − 1)iε

ĤI · · · 1

E (0)
0 − Ĥ0 + iε

ĤI |�0〉
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The resulting perturbation expansion in the numerator of the Gell–Mann and Low
state reads

Ûε(0,−∞)|�0〉 = |�0〉 + 1

E (0)
0 − Ĥ0 + iε

ĤI |�0〉

+ 1

E (0)
0 − Ĥ0 + 2iε

ĤI
1

E (0)
0 − Ĥ0 + iε

ĤI |�0〉 + · · ·
(4.70)

and

〈�0|Ûε(0,−∞)|�0〉 = 1 + 〈�0| 1

E (0)
0 − Ĥ0 + iε

ĤI |�0〉 + · · · (4.71)

is the corresponding expansion in the denominator. The expansions (4.70), (4.71),
so far being merely formal, can be transformed into explicit perturbation expansions
by inserting the resolution of the identity (4.62) in appropriate ways. By contrast to
the formal RSPT expansions considered above, the unperturbed ground state |�0〉
must not be omitted.

For illustrative purposes, we may consider the simpler case of a one-particle
system, to which the Gell–Mann and Low procedure applies as well. Let

ĥ = ĥ0 + ĥi (4.72)

denote the hamiltonian of a one-particle system. Here, ĥ0 is the “unperturbed” part
for which the eigenvalue problem

ĥ0|φm〉 = em |φm〉, m = 0, 1, . . . (4.73)

is assumed to be solved; ĥi is the perturbation, and vmm ′ = 〈φm |ĥi |φm ′ 〉 denotes the
matrix elements of ĥi . The one-particle analogue to the time-evolution operator (4.37)
is obtained by replacing ĤI (t) with ĥ I (t) = eiĥ0t ĥi e−i ĥ0t . The formal perturbation
expansion (4.70) takes the form

Ûε(0,−∞)|φ0〉 = |φ0〉 + 1

e0 − ĥ0 + iε
ĥi |φ0〉 + · · · (4.74)

which may be further evaluated by inserting
∑

m |φm〉〈φm | on the right-hand side.
Note that there is no restrictionm �= 0 here. Throughfirst order, the explicit expansion
reads
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Ûε(0,−∞)|φ0〉 = |φ0〉 +
∑

m

vm0

e0 − em + iε
|φm〉 + . . .

= |φ0〉 + v00

iε
|φ0〉 +

∑

m �=0

vm0

e0 − em + iε
|φm〉 + . . . (4.75)

In the second line, the first term (m = 0) has been taken out of the m summation.
This term diverges as ε−1 in the limit ε → 0. Upon multiplication of the numerator
with the inverse denominator,

〈φ0|Ûε(0,−∞)|φ0〉−1 = 1 − v00

iε
+ . . . (4.76)

the first-order expansion of the ratio becomes

Ûε(0,−∞)|φ0〉
〈φ0|Ûε(0,−∞)|φ0〉

= |φ0〉 +
∑

m �=0

vm0

e0 − em + iε
|φm〉 + . . . (4.77)

where the singular contributions have canceled. Now the limit ε → 0 can safely be
taken, yielding

|ψ ′
0〉 = |φ0〉 +

∑

m �=0

vm0

e0 − em
|φm〉 + . . . (4.78)

which is seen to reproduce the RSPT first-order result. The explicit perturbation
expansion of |ψ ′

0〉 can be extended through second order without undue effort, illus-
trating here another subtlety in the cancelation of the diverging ε terms (see Exercise
4.1).

What we here have seen explicitly at lowest order, is the working of the linked-
cluster theorem (see Sect. 5.3), stating that the numerator of the Gell–Mann and Low
state factorizes according to

Ûε(0,−∞)|φ0〉 = {Ûε(0,−∞)|φ0〉}L〈φ0|Ûε(0,−∞)|φ0〉 (4.79)

The second factor cancels the denominator, whereas the symbolic expression {. . . }L ,
standing for “linked” contributions in the numerator, performs properly in the limit
ε → 0.

Exercises

4.1 Extend the perturbation expansions (4.75), (4.76) to second order and verify that
the second-order expansion of the ratio (4.77) in the limit ε → 0 reproduces
the RSPT expansion for the ground state (using (A.1.8) and the one-particle
hamiltonian (4.72)).

4.2 Ground-state PT in the 2E-2O model of Exercise 2.4:
(a) Expand the exact solution for the ground-state energy e0 in a PT series through
fourth order.
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(b) Generate the same expansion by means of RSPT for the two-electron ground
state (see Appendix A.1).
(c) Perform an analogous analysis through third order for the CI coefficient
x1 = 〈�1|�0〉 in the exact ground state.
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Chapter 5
Introducing Diagrams

The step from theGell-Mann and Low (GML) formulation of the PT expansion of the
electron propagator toward a diagramatic representation is enabled by Wick’s the-
orem. According to this theorem, the expectation values of time-ordered fermion
operator products arising in the GML expression can be evaluated in terms of
contractions of operator pairs (Sect. 5.1). The contractions are related to free elec-
tron propagators and can be represented graphically by a directed line between the
respective fermion operators. Together with the wiggly lines as graphical symbols
for the interaction integrals, this allows one to replace the original analytic terms
with diagrams (Sect. 5.2).

The contraction concept allows one to distinguish linked and unlinked contri-
butions (or diagrams) to the propagator PT expansion. The linked-cluster theorem,
discussed in Sect. 5.3, states that the denominator in the GML expressions exactly
cancels all unlinked parts so that only linked contributions (or diagrams) need to be
considered in the PT expansion of the electron propagator.

5.1 Wick’s Theorem

The perturbation expansion (4.58) for the electron propagator established in the
preceding Chap. 4 involves expectation values of time-ordered fermion operator
products, being of the form

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)cp(t)c

†
q(t

′)
]
|�0〉

where

ĤI (t) =
∑

wrsc
†
r (t)cs(t) + 1

2

∑
Vuvrsc

†
u(t)c

†
v(t)cs(t)cr (t) (5.1)

© Springer Nature Switzerland AG 2018
J. Schirmer, Many-Body Methods for Atoms, Molecules and Clusters, Lecture
Notes in Chemistry 94, https://doi.org/10.1007/978-3-319-93602-4_5

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93602-4_5&domain=pdf


62 5 Introducing Diagrams

A systematic way to evaluate these quantities is provided byWick’s theorem [1] to be
addressed below. The treatment based on Wick’s theorem can readily be translated
into the concept of Feynman diagrams, as will be discussed in the next section.

The first observation to be made is that the fermion operators c†p, cp can be clas-
sified according to their respective action on |�0〉:

c†p|�0〉 =
{

|�N+1
p 〉 for np = 0

0 for np = 1
(5.2)

cp|�0〉 =
{

|�N−1
p 〉 for np = 1

0 for np = 0
(5.3)

An operator is referred to as physical if the outcome is an (N±1)-state (first case in
Eqs. (5.2) and (5.3), respectively) and unphysical if the null vector results (second
case in Eqs. (5.2) and (5.3), respectively). This allows us to divide the fermion
operators into two classes comprising exclusively physical and unphysical operators,
respectively:

{
v̂s

} ≡ {
cp, c

†
q; np = 1, nq = 0

}
{
ûr

} ≡ {
cp, c

†
q; np = 0, nq = 1

}

In the following, we shall use the notations v̂i and ûi for physical and unphysical
fermion operators, respectively; general fermion operators will be denoted by â
or b̂. It should be noted that the physical fermion operators anticommute among
themselves, and so do the unphysical ones:

{v̂i , v̂ j } = 0, {ûi , û j } = 0 (5.4)

Consider a product âi (ti )â j (t j )âk(tk) . . . of time-dependent fermion operators
in the interaction picture; for brevity, the time arguments will be skipped in the
following. The time-ordering operator, first introduced in Sect. 3.1, generates the
time-ordered product,

T̂TT
[
âi â j âk . . .

] ≡ (−1)P âP(i)âP( j) . . .

where P is a permutation of the factors in the product such that operators with larger
time arguments are placed to the left of those with smaller time arguments; (−1)P is
the sign (or parity) of the permutation. In the case of equal (or absent) time arguments,
the definition can be generalized to the effect that creation operators c† are placed to
the left of the destruction operators c. Another reordering of the original product is
the normal-ordered product,

N̂NN
[
âi â j âk . . .

] ≡ (−1)P
′
âP ′(i)âP ′( j) . . .
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where P ′ is a permutation placing physical operators to the left of unphysical ones,
(−1)P

′
being the sign of the permutation. The operator N̂NN is referred to as the normal-

ordering operator. As an obvious property of the N̂NN product, the expectation value
taken with respect to the unperturbed ground state vanishes:

〈�0|N̂NN
[
âi â j âk . . .

] |�0〉 = 0 (5.5)

Note that this relation also holds if all operators in the product are physical operators.
Now we are in the position to define the contraction of two fermion operators as

the difference
â�
r â

�
s ≡ T̂TT

[
âr âs

] − N̂NN
[
âr âs

]
(5.6)

between the time-ordered and normal-ordered products. In addition to the dot nota-
tion, we shall also use contraction brackets,

âr âs ≡ â�
r â

�
s

Obviously, the definition (5.6) is antisymmetric,

â�
r â

�
s = −â�

s â
�
r (5.7)

To better understand the meaning of a contraction, we will inspect more closely
three distinct types:

(i) contractions of two unphysical operators:

ûr (t)
�ûs(t ′)� = ûr (t)ûs(t

′)θ(t − t ′) − ûs(t
′)ûr (t)θ(t ′ − t)

− ûr (t)ûs(t
′)

(
θ(t − t ′) + θ(t ′ − t)

)

= −{ûr (t), ûs(t ′)}θ(t ′ − t) = 0 (5.8)

In the second line, we have used θ(t − t ′) + θ(t ′ − t) = 1; the last equation
follows from the fact that unphysical operators anticommute (see Eq. 5.4).

(ii) contractions of two physical operators:

v̂r (t)
�v̂s(t ′)� = 0 (5.9)

which follows in a similar way as in (i).
(iii) contractions of a physical and an unphysical operator:

ûr (t)
�v̂s(t ′)� = ûr (t)v̂s(t

′)θ(t − t ′) − v̂s(t
′)ûr (t)θ(t ′ − t)

+ v̂s(t
′)ûr (t)

(
θ(t − t ′) + θ(t ′ − t)

)

= {ûr (t), v̂s(t ′)}θ(t − t ′) (5.10)

v̂r (t)
�ûs(t ′)� = −ûs(t

′)�v̂r (t)� (5.11)
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While contractions of the types (i) and (ii) simply vanish, this is not necessarily the
case for themixed-type contractions (iii). The anticommutator arising in Eq. (5.10) is
just a complex number though. This means that contractions are always c-numbers.
Using Eq. (5.5), a contraction can be written as the (non-interacting) ground-state
expectation value of the corresponding T̂TT product,

â�
r â

�
s = 〈�0|T̂TT

[
âr âs

] |�0〉 (5.12)

As an obvious consequence, contractions of the original fermion operators become

cp(t)
�cq(t ′)� = c†p(t)

�c†q(t
′)� = 0 (5.13)

cp(t)
�c†q(t

′)� = 〈�0|T̂TT
[
cp(t)c

†
q(t

′)
] |�0〉 = iG0

pq(t, t
′) (5.14)

where G0
pq(t, t

′) is the free one-particle Green’s function (Eq. 3.52). The only non-
vanishing contractions are those between a creation and a destruction operator, and
such a contraction can be expressed by the free one-particle Green’s functions.

To contract two operators in a normal-ordered product, one has to move the
operators next to each other, which gives rise to a phase factor (−1)ν according to
the number ν of transpositions needed here. Then, the contraction can be performed
and, resulting in a c-number, taken out of the product. For example,

N̂NN
[
âi â j âk âl . . .

]
= (−1)N̂NN

[
âi âk â j âl . . .

]

= (−1)âi âk N̂NN
[
â j âl . . .

]
(5.15)

Wick’s theorem [1] establishes a reformulation of a general time-ordered product
of fermion operators in terms of normal-ordered products and contractions. It may
be stated as follows:
Wick’s Theorem
A T̂TT product of m fermion operators can be transformed into a sum of N̂NN products
with all possible contractions of k = 0, 1, . . . , [m/2] operator pairs:

T̂TT
[
âi â j âk âl . . . âr âs ât

] = N̂NN
[
âi â j âk âl . . . âr âs ât

]

+ N̂NN
[
âi â j âk . . .

]
+ N̂NN

[
âi â j âk . . .

]
+ . . .

+ N̂NN
[
âi â j âk âl . . .

]
+ . . .

...

+ N̂NN
[
âi â j âk . . . âr âs ât

]
. . . (5.16)
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In a somewhat symbolic notation, one may write

T̂TT
[
âi â j âk âl . . . âr âs ât

] =N̂NN
[
âi â j âk âl . . . âr âs ât

]

+ N̂NN
[
sum over all possible pairs of contractions

]

Wick’s reformulation of a time-ordered product is obtained by moving physical
operators (PO) in the time-ordered product successively to the left. This generates
additional terms whenever a PO does not anticommute with an operator on its left.
A proof of the theorem is given in Appendix A.3.

Wick’s theorem establishes an operator identity. While the right-hand side of this
identity looks rather complicated, the actual benefit of Wick’s theorem becomes
apparent when ground-state expectation values of time-ordered products are to be
evaluated. According to the property of the N̂NN products, only the fully contracted
terms contribute to the expectation value:

〈�0|T̂TT
[
âi â j âk âl . . . âr âs ât

] |�0〉 = N̂NN
[
âi â j âk . . . âr âs ât

]
+ . . . (5.17)

As indicated on the right-hand side, there is a contribution for each full contraction
scheme. In the ensuing section, we will learn how the distinct contraction schemes
can be expressed in the form of diagrams.

5.2 Zeroth- and First-Order Feynman Diagrams

The perturbation expansion (4.58) of the electron propagator is of the form

iG pq(t, t
′) = lim

ε→0

i G̃ pq(t, t ′)
〈�0|Ûε(∞,−∞)|�0〉

(5.18)

where the numerator i G̃ pq(t, t ′) is given by

i G̃ pq(t, t
′) =

∞∑
n=0

(−i)n

n!
∞∫

−∞
dt1e

−ε|t1| . . .
∞∫

−∞
dtne

−ε|tn |

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)cp(t)c

†
q(t

′)
]
|�0〉 (5.19)

Using Wick’s result (5.17) for the ground-state expectation values of time-ordered
operator products, the respective nth-order terms in the perturbation expansions, both
for the numerator and denominator, can be determined analytically by generating and
evaluating all possible (full) contraction schemes. As a by far superior procedure,
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one can resort to a graphical representation in terms of diagrams, as first introduced
by Feynman [2] in the context of quantum electrodynamics (QED).

To introduce the diagrammatic formulation, let us consider the zeroth- and first-
order terms in the numerator i G̃ pq(t, t ′). For simplicity, we will suppose in the
following that the interaction hamiltonian (5.1) consists only of the Coulomb part,
which in turn means that one has to allow for a non-diagonal free one-particle part
Ĥ0. The case of the full interaction hamiltonian, ĤI = Ŵ + V̂ , comprising also a
one-particle part, will be discussed in Sect. 6.2.

Zeroth Order:

i G̃0
pq(t, t

′) = iG0
pq(t, t

′) = 〈�0|T̂TT
[
cp(t)c

†
q(t

′)
] |�0〉 = cp(t)

�c†q(t
′)� (5.20)

The zeroth-order term is just the free one-particle Green’s function (3.52) discussed
in Sect. 3.4, allowing here G0 to be non-diagonal. As the first graphical element, we
assign a “free fermion line” to the cp(t)�c†q(t

′)� contraction:

(5.21)

The arrow defines the direction of the line: it starts at the lower vertex associated
with the creation operator (one-particle index q, time argument t ′) and ends at the
upper vertex associated with the destruction operator (one-particle index p, time
argument t).
First Order:

i G̃(1)
pq (t, t

′) =

(−i)
1

2

∑
u,v,r,s

Vuvrs

∞∫

−∞
dt1e

−ε|t1|〈�0|T̂TT
[
c†u(t1)c

†
v(t1)cs(t1)cr (t1)cp(t)c

†
q(t

′)
] |�0〉

The second graphical symbol, associatedwith the Coulomb interaction (at an internal
time argument ti ), is the “wiggly interaction line”

(5.22)

A wiggly line has two entries and two exits (as indicated by the small arrows), where
free fermion lines can begin or end, respectively. With the indices u, v, r, s attached
as in (5.22), the interaction line represents the Coulomb integral Vuvrs . The order of
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the indices in the interaction line can be memorized as being left out, right out, left
in, right in.

The T̂TT product of the Coulomb part in i G̃(1)
pq consists of three creation operators,

c†u, c
†
v, c

†
q , and three destruction operators, cr , cs, cp. According to the relations (5.13,

5.14), there are 3! = 6 distinct non-vanishing contraction schemes, (A), (B),…,(F),
which we shall consider successively in the following.

Contraction scheme (A), depicted in the graph below,

gives rise to the following Feynman diagram:

(5.23)

There is a free fermion line as in the zeroth-order term, while the two other contrac-
tions connect the operators of the Coulomb interaction, depicted as two free fermion
lines beginning and ending at the same Coulomb integral (wiggly line) and at the
same internal time t1. This feature needs further analysis. Let us consider one of the
two contractions at equal time,

cs(t1)
�c†v(t1)

� = T̂TT
[
cs(t1)c

†
v(t1)

] − N̂NN
[
cs(t1)c

†
v(t1)

]
(5.24)

For equal times, the time-ordered product places creation operators to the left of
destruction operators; that is,

T̂TT
[
cs(t1)c

†
v(t1)

] = −c†v(t1)cs(t1) = −c†vcs (5.25)

Correspondingly, the contraction, being a c-number, becomes

cs(t1)
�c†v(t1)

� = −〈�0|c†vcs |�0〉 (5.26)

The expectation value on the right-hand side can be related to the free one-particle
Green’s function by equating the time arguments in the following way:

− 〈�0|c†vcs |�0〉 = lim
τ→0

iG0
sv(t1, t1 + τ) ≡ iG0

sv(t1, t
+
1 ) (5.27)
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Here τ > 0 and t+1 is used as a short-hand notation for the limit t1 + τ → t1. We
summarize this result in the following remark.

Remark 1:
In generalization of the relation (5.14), contractions at equal times are given by

cs(t1)
�c†v(t1)

� = iG0
sv(t1, t

+
1 ) (5.28)

Now the full analytical expression for diagram (A) can be written as

i G̃(1,A)
pq = (−i)

1

2

∑
Vuvrs

∫
dt1e

−ε|t1| iG0
ru(t1, t

+
1 )iG0

sv(t1, t
+
1 ) iG0

pq(t, t
′) (5.29)

Relating this expression to diagram (A), we note that it involves summations run-
ning over the “internal” one-particle indices, u, v, r, s, and time integration over
the “internal” time t1. The phase factors can be combined to give −i4 = −1. The
time integration in (5.29) reduces to an integral of the adiabatic switching function,∫
dt1e−ε|t1| = 2

ε
, being obviously singular in the limit ε → 0. This outcome is char-

acteristic for contributions such as G̃(1,A)
pq , where the diagram (and the corresponding

analytical expression) consists of two “unlinked” multiplicative parts.
In a similar way, we may evaluate contraction schemes (B), …, (F). Contraction

scheme (B) represented by the diagram

(5.30)

is the second unlinked contribution in first order. The corresponding analytical
expression is given by

i G̃(1,B)
pq = 1

2

∑
Vuvrs

∫
dt1e

−ε|t1| G0
su(t1, t

+
1 )G0

rv(t1, t
+
1 )G0

pq(t, t
′) (5.31)

Note the phase difference with respect to (A), reflecting the different contraction
scheme for the four “internal” operators.

Remark 2:
Diagrams (A) and (B) are referred to as unlinked diagrams because they consist of
two disjoint parts, resulting in products of two factors in their analytical expressions.
The unlinked diagrams will be seen to cancel the denominator in the full expression
(4.58) as a result of the linked-cluster theorem discussed in the next section.
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The next two contributions, represented by the diagrams below,

(5.32)
give rise to the expressions

i G̃(1,C)
pq = −1

2

∑
Vuvrs

∫
dt1e

−ε|t1|G0
pv(t, t1)G

0
rq(t1, t

′)G0
su(t1, t

+
1 ) (5.33)

i G̃(1,D)
pq = 1

2

∑
Vuvrs

∫
dt1e

−ε|t1|G0
pu(t, t1)G

0
rq(t1, t

′)G0
sv(t1, t

+
1 ) (5.34)

In both the diagrams, each of the two external fermion operators is contracted to one
of the internal ones. As one may readily verify, here the limit ε → 0 does not affect
the outcome of the time integration. We will come back to this issue in Sect. 7.2.

The remaining two diagrams (E) and (F)

are topologically equivalent to (C) and (D), respectively. The corresponding analyt-
ical expressions

i G̃(1,E)
pq = −1

2

∑
Vuvrs

∫
dt1e

−ε|t1|G0
pu(t, t1)G

0
sq(t1, t

′)G0
rv(t1, t

+
1 ) (5.35)

i G̃(1,F)
pq = 1

2

∑
Vuvrs

∫
dt1e

−ε|t1|G0
pv(t, t1)G

0
sq(t1, t

′)G0
ru(t1, t

+
1 ) (5.36)

are identical to (5.33) and (5.34), respectively, which is seen by replacing the dummy
variables (uvrs) with (vusr).
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Remark 3:
A linked diagram represents a pair of contraction schemes per interaction line, where
the two contraction schemes differ from each other by an out-of-plane rotation of
the interaction line. The corresponding analytical expressions are identical, which
can be taken into account by applying a factor of 2. Correspondingly, there are 2n

equivalent contraction schemes associated with a (topologically distinct) nth-order
diagram. The factor 2n cancels the factor ( 12 )

n arising from the Coulomb parts in Ĥ n
I .

In a similar way, the perturbation expansion of the denominator in Eq. (4.58) can
be formulated in a diagrammatic fashion. Through first order, the expansion reads

〈�0|Ûε(−∞,∞)|�0〉 =1 − i

2

∑
Vuvrs

∞∫

−∞
dt1e

−ε|t1|

〈�0|T̂TT
[
c†u(t1)c

†
v(t1)cs(t1)cr (t1)

] |�0〉 + O(2)

There are two non-vanishing contraction schemes in the first-order part, which can
be translated into diagrams as follows:

(5.37)

The corresponding analytical expression reads

〈�0|Ûε(−∞,∞)|�0〉(1) =
i

2

∑
Vuvrs

∫
dt1e

−ε|t1| [
G0

ru(t1, t
+
1 )G0

sv(t1, t
+
1 ) − G0

rv(t1, t
+
1 )G0

su(t1, t
+
1 )

]
(5.38)

Obviously, the two first-order diagrams of the denominator are parts of the numerator
diagrams (A) and (B), respectively, and the analytical expression is obtained from
Eqs. (5.29, 5.31) by omitting the factor iG0

pq(t, t
′).

5.3 Linked-Cluster Theorem

The first-order perturbation expansions evaluated using Wick’s theorem and the cor-
responding diagrammatic formulation suggests that the numerator on the right-hand
side of Eq. (4.58) can be written as a product
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where the first factor collects all linked diagrams in the expansion of G̃ pq , that
is, diagrams such as (C) and (D), while the second factor constitutes the perturba-
tion expansion of the denominator. This would mean that the second factor cancels
the denominator in Eq. (4.58), and the perturbation expansion of Gpq comprises
linked diagrams only. Through first order, the factorization can readily be veri-
fied by inspecting the analytical expressions for G̃ pq and 〈�0|Ûε(−∞,∞)|�0〉
presented in the preceding section. The general validity of the product form is
assured by the linked-cluster theorem (originally derived in diagrammatic PT for the
ground state [3, 4]).
Linked-cluster theorem:

iG pq(t, t
′) = lim

ε→0

∞∑
n=0

(−i)n

n!
∞∫

−∞
dt1 . . .

∞∫

−∞
dtne

−ε|t1|···−ε|tn |

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)cp(t)c

†
q(t

′)
]
|�0〉C (5.39)

where 〈�0| . . . |�0〉C comprises all linked contributions in the original expectation
value. The characterization “linked” is defined byWick’s contraction schemes or the
corresponding diagram topology.

As preliminary to the proof, let us consider the nth-order term in Eq. (5.19) and
make the following observations:

1. The use ofWick’s theorem in the evaluation of the ground-state expectation value
(and the diagrammatic formulation based on it) allows one to distinguish linked
and unlinked contributions. A linked contribution is associated with a contraction
scheme in which all interaction operators are connected directly or indirectly (via
other interaction operators) to the external operators cp(t) and c†q(t

′).
2. An unlinked contribution can be written as a product of two or more factors. For

example,

(5.40)

3. The order of the interaction operators ĤI (t j ) in the T̂TT product is arbitrary.
4. The integration variables t j are dummy variables which can be renamed at will.

Now let us consider a specific nth-order contribution (contraction scheme), where
ν (0 ≤ ν ≤ n) interaction parts are linked to the external operators cp(t) and c†q(t

′),
while the remainingμ = n − ν interaction parts have no direct or indirect connection
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to the external operators. Since there are
(n
ν

)
ways to choose ν interaction parts out of

n ones, there will be altogether
(n
ν

)
contraction schemes differing from the original

one only by the choice of the interaction parts. Considering the observations 3 and
4, those

(n
ν

)
contraction schemes will all result in the same contribution. This allows

us to rewrite the nth-order term according to

i G̃(n)
pq (t, t ′) = (−i)n

n!
n∑

ν=0

n!
ν!μ!

∞∫

−∞
dt1 . . .

∞∫

−∞
dtν 〈�0|T̂TT

[
ĤI (t1) . . . ĤI (tν)cp(t)c

†
q(t

′)
]
|�0〉C

︸ ︷︷ ︸
linked contributions only

×
∞∫

−∞
dtν+1 . . .

∞∫

−∞
dtn 〈�0|T̂TT

[
ĤI (tν+1) . . . ĤI (tn)

]
|�0〉

︸ ︷︷ ︸
μ=n−ν interaction operators

Here the switching functions have been omitted for brevity. Using the usual resum-
mation technique for the exponential series,

∞∑
n=0

(−i)n

n!
n∑

ν=0

n!
ν!(n − ν)! →

∞∑
ν=0

(−i)ν

ν!
∞∑

μ=0

(−i)μ

μ! (5.41)

the numerator i G̃ pq(t, t ′) can be written as

i G̃ pq(t, t
′) =

∞∑
ν=0

(−i)ν

ν!
∞∫

−∞
dt1 . . .

∞∫

−∞
dtν〈�0|T̂TT

[
ĤI (t1) . . . ĤI (tν)cp(t)c

†
q(t

′)
]
|�0〉C

×
∞∑

μ=0

(−i)μ

μ!
∞∫

−∞
dt1 . . .

∞∫

−∞
dtμ〈�0|T̂TT

[
ĤI (t1) . . . ĤI (tμ)

]
|�0〉

(5.42)

The second factor is seen to be the perturbation expansion of 〈�0|Ûε(∞,−∞)|�0〉,
which concludes the proof.

The linked-cluster theorem guarantees the existence (and triviality) of the adia-
batic limit. For any linked contribution to the right-hand side of Eq. (5.39), the limit
ε → 0 can be safely performed within the integrand of the time integration, reducing
the switching functions to unity. Accordingly, Eq. (5.39) becomes
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iG pq(t, t
′) =

∞∑
n=0

(−i)n

n!
∞∫

−∞
dt1 . . .

∞∫

−∞
dtn

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)cp(t)c

†
q(t

′)
]
|�0〉C (5.43)

A validation of this result will be deferred to Sect. 7.2 and Appendix A.4, addressing
the internal time integrations in the Feynman diagrams.

Exercises

5.1 Inspect the contraction patterns in the ground-state expectation value associated
with the second-order term, i G̃(2)

pq (t, t
′), in Eq. (5.19). Select the contraction

patterns relating to fully connected contributions (or diagrams).
5.2 Evaluate the ground-state expectation value 〈�0|V̂ |�0〉 of the Coulomb operator

using Wick’s theorem.
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Chapter 6
Feynman Diagrams

Having established the three pillars of the formalism in the two foregoing chapters,
we now can fully implement the diagrammatic approach to the PT expansion of
the electron propagator. Specifically, we derive and formulate a list of rules for
drawing and evaluating Feynman diagrams (Sect. 6.1). Adopting a HF one-particle
representation leads to a considerable reduction of the number of diagrams to be
considered, which will be discussed in Sect. 6.2. The systematic construction of
higher-order diagrams is greatly facilitated by using the compact Abrikosov notation,
in which sets of related Feynman diagrams can be incorporated within individual
Abrikosov diagrams (Sect. 6.3). Abrikosov diagrams can be represented by specific
matrices, which allows for the algorithmic construction of higher-order diagrams in
a systematical way.

6.1 Second-Order Diagrams

To further establish the diagrammatic formulation of the perturbation expansion of
the electron propagator, we will now take a look at the second-order contribution,

iG(2)
pq (t, t

′) = (−i)2

2!
∞∫

−∞
dt1

∞∫

−∞
dt2 ( 12 )

2
∑
uvrs
i jkl

VuvrsVi jkl

〈Φ0|T̂TT [c†u(t1)c†v(t1)cs(t1)cr (t1)c†i (t2)c†j (t2)cl(t2)ck(t2)cp(t)c†q(t ′)]|Φ0〉C (6.1)

as deriving from the general expression (5.43). The subscript C on the right-
hand side indicates that only linked diagrams are taken into account. The restric-
tion to linked diagrams discards from the outset many of the 5! = 120 individual
contraction schemes arising at second order. According to Remark 3 in Chap.5,
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Fig. 6.1 Equivalent
contraction schemes
comprised within the
second-order Feynman
diagram (A)

(A) (A’)

a linked second-order diagram stands for four distinct contraction schemes. Another
possibility of representing a class of contraction schemes by a single diagram arises
in second order and beyond. As depicted in Fig. 6.1, there are two distinct contrac-
tion schemes associatedwith the second-order diagram (A). The contraction schemes
differ in the order of the interaction parts, being (from above) ĤI (t1)ĤI (t2) in the
former and ĤI (t2)ĤI (t1) in the latter. As is readily seen, the analytical expressions
are identical, since the time arguments are dummy variables and can be interchanged
(t1 ↔ t2), and so can the one-particle indices in the sums (uvrs ↔ i jkl). The two
respective contraction schemes can be accounted for by an overall factor of 2, which
cancels the factor 1

2 on the right-hand side of Eq. (6.1). This finding can be readily
generalized to nth order:

Remark 4:
A given linked diagram of nth order represents n! equivalent contraction schemes
differing only in the order of the interaction parts. This allows one to introduce an
overall factor of n!, which cancels the corresponding prefactor in the nth order term
of the exponential-type perturbation expansion.

The analytical expression associated with diagram (A) reads

iG(A)
pq (t, t ′) =(−i)(−1)L A

∞∫

−∞
dt1

∞∫

−∞
dt2

∑
uvrs
i jkl

VuvrsVi jkl

G0
pu(t, t1)G

0
ri (t1, t2)G

0
s j (t1, t2)G

0
lv(t2, t1)G

0
kq(t2, t

′) (6.2)

Here, the phase factor (−i) is obtained according to (−i)2i5 = −i ; there is an addi-
tional phase, (−1)L A , which, at this point, has to be inferred from the underlying
contraction scheme.
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Fig. 6.2 Second-order Feynman diagram (B)

Another second-order diagram is shown in Fig. 6.2. Here, the end points of the
two upwards directed fermion lines have been interchanged with respect to diagram
(A). The analytical expression

iG(B)
pq (t, t ′) = − i(−1)LB

∞∫

−∞
dt1

∞∫

−∞
dt2

∑
uvrs
i jkl

VuvrsVi jkl

G0
pu(t, t1)G

0
r j (t1, t2)G

0
si (t1, t2)G

0
lv(t2, t1)G

0
kq(t2, t

′) (6.3)

differs from that of (A) by the exchange i ↔ j of the one-particle indices in the
second and third free Green’s function. Now let us determine the two phase factors
(−1)L A , (−1)LB by inspecting the respective contraction schemes:

According to the rules for contracting operators in a normal-ordered product
(Sect. 5.1), contraction scheme (A) results in an overall phase (−1), being absent
in (B). Obviously, the necessity for resorting to the original analytical expression
in order to determine the overall phase is a nuisance. Fortunately, the phase can be
obtained directly at the diagrammatic level, as will be explained in the following.

Let us consider a succession of fermion lines within a given diagram forming
a closed loop as schematically depicted in Fig. 6.3: The wiggly interaction line on
the right-hand side represents the term Vxvywc†xc

†
vcwcy or (likewise) Vvxwyc†vc

†
xcycw,

where the time arguments have been dropped for brevity. Within the original T̂TT
product, the latter term can be rewritten according to

Vvxwyc
†
vc

†
xcycw → Vvxwyc

†
vcwc

†
xcy
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Fig. 6.3 Schematic representation of a closed loop

so that now the two operators c†v, cw “attached” to the loop are next to each other.
Proceeding in the same way for the other terms involved in the closed loop, we
arrive—without sign change—at the following form of the operator product:

c†ucr c
†
s ct c

†
vcwc

†
j cl

Note that the order of the ĤI (tν) terms within the T̂TT product can arbitrarily be
changed. Now the contractions for the three innermost pairs of operators can be
taken without any sign change,

yielding iG0
rs iG

0
tviG

0
w j according to Eq. (5.14). By contrast, the remaining contrac-

tion of the first and last operator introduces a minus sign, c†�u c
�
l = −c�

l c
†�
u = −iG0

lu .
This demonstration can readily be generalized to closed loops of any length, and we
may formulate the result as the following rule:

Remark 5:
Each closed loop in a given diagram gives rise to a factor of (−1).

There is one closed loop in diagram (A), and none in diagram (B), that is, LA =
1, LB = 0.

In each diagram, there is one continuous line, beginning at the lower vertex (q, t ′)
and ending at the upper vertex (p, t), as depicted in Fig. 6.4. A consideration similar
to the case of the closed loops shows that no sign change arises here. For example,
the operators attached to the continuous line above can be ordered within the original
T̂TT product according to

c†ucr c
†
i clc

†
vcscpc

†
q

Obviously, cp can be moved to the left-hand side without effecting a sign change,
and then all contractions can be performed in their standard cc† form.
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Fig. 6.4 Schematic representation of a continuous fermion line

This completes the diagrammatic approach to the original perturbation expansion
of the electron propagator. The diagrammatic formulation can be cast in the following
set of diagram rules:

Feynman Diagram Rules for the Electron Propagator

(F1) To generate the nth order contribution to the electron propagator, G(n)
pq (t, t ′),

draw all topologically distinct connected diagrams with n wiggly interaction
lines and 2n + 1 [= (4n − 2)/2 + 2] directed free fermion or G0-lines, where
the first G0-line begins at the outer vertex (q, t ′) and the last one ends at the
outer vertex (p, t). At any wiggly interaction line, two G0-lines begin and two
lines end, as depicted in the graph below:

(F2) To evaluate a given diagram, assign one-particle indices and time arguments to
the interaction lines (inner vertices), thereby defining the one-particle indices
and time arguments of the free fermion lines. The arrowsfix the order of the one-
particle indices and time arguments in the G0-functions. Replace the graphical
symbols by the corresponding analytical expressions, Vuvrs and G0

rs(ti , t j ),
respectively. In the case of a G0-function with equal time arguments, the limit
G0(ti , t

+
i ) applies according to Remark 1.

(F3) Sum over indices and integrate over time arguments of the inner vertices.
(F4) Apply the phase factor i n , arising according to
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(−i) definition of G

(−i)n n-th order

i2n+1 G0-lines

⎫⎪⎬
⎪⎭ i n

and multiply by a sign (−1)L , where L is the number of closed loops.

6.2 Diagrams in the Hartree–Fock Representation

So far, we have confined ourselves to the case where the interaction hamiltonian
consists only of the Coulomb part. The diagrammatic formulation can readily be
extended to the general form

ĤI = Ŵ + V̂

where
Ŵ =

∑
wrsc

†
r cs

is a (non-diagonal) one-particle operator (see Eq. 4.3). As a graphical symbol asso-
ciated with the one-particle interaction, we use the one-particle interaction cross
with one entry and one exit,

(6.4)

According to
1

n! Ĥ
n
I = 1

n! (V̂ + Ŵ )n = 1

n!
n∑

ν=0

(
n

ν

)
V̂ νŴ n−ν

a general nth order diagram may have ν wiggly interaction lines and μ = n − ν

crosses, ν = 0, . . . , n. Remark 4 can be generalized in an obvious way, as the
(ν!μ!) orderings of the wiggly lines and crosses are equivalent.

The diagram rules can easily be adapted to the general case. The first rule, address-
ing the generation of diagrams, can be restated explicitly as follows:

(F1’) To generate the nth-order contribution G(n)
pq (t, t ′), draw all topologically dis-

tinct connected diagrams with ν wiggly interaction lines andμ = n − ν inter-
action crosses, ν = 0, . . . , n. The number of free Green’s function lines here
is 2ν + μ + 1; the first G0-line begins at the outer vertex (q, t ′) and the last
one ends at (p, t). At any wiggly interaction line, two G0-lines begin and two
end; at any interaction cross, one G0-line begins and one ends.

Rules (F2) and (F3), dealing with the evaluation of diagrams, apply essentially in
their original form; the phase factor of rule (F4) has to be adapted according to the
number of G0-lines (2ν + μ + 1).
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In first order, we now have three diagrams, namely the “oyster” and “tadpole”
diagrams (5.32), and a diagram with a one-particle interaction (cross):

(6.5)

The corresponding analytical expression can be written in the compact form

G(1)
pq (t, t

′) =
∫

dt1
∑
rs

srs G
0
pr (t, t1)G

0
sq(t1, t

′) (6.6)

where the matrix element

srs =wrs +
∑
uv

iG0
vu(t1, t

+
1 )Vruvs −

∑
uv

iG0
vu(t1, t

+
1 )Vrusv

=wrs +
∑
uv

Vru[sv]〈Φ0|c†ucv|Φ0〉 (6.7)

is obtained by combining the first-order interaction terms of the cross, oyster, and
tadpole diagrams.

The possibility of combining related cross, oyster, and tadpole terms into an
effective one-particle interaction applies at higher order as well. This suggests to
introduce a corresponding graphical symbol, referred to as “encircled cross,”

(6.8)

where the effective one-particle matrix element srs is given by Eq. (6.7). Now one
may replace crosses with encircled crosses and discard any diagrams with an oyster
or tadpole part.

Matters simplify considerably in the HF representation (Eqs. 4.4, 4.6), which
will be supposed in the following. Here, the free Green’s function is diagonal,

G0
pq(t, t

′) = δpqG
0
p(t, t

′) (6.9)

which means that the free fermion lines can be specified by single one-particle
indices. Using

−iG0
vu(t1, t

+
1 ) = 〈Φ0|c†ucv|Φ0〉 = δuvnv

Equation (6.7) takes on the form
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srs = wrs +
∑

v

Vrv[sv]nv (6.10)

According to Eq. (4.6), the matrix elements of the one-particle interaction part are
given by

wrs = −
∑

v

Vrv[sv]nv

which means that the effective first-order matrix elements simply vanish,

srs = 0 (6.11)

As a consequence, any diagram containing a one-particle cross, or an oyster, or a
tadpole part can be discarded. In particular, the first-order contribution to the electron
propagator vanishes:

G(1)
pq (t, t

′) = 0 (6.12)

so that the perturbation expansion through second order becomes

Gpq(t, t
′) = G0

pq(t, t
′) + G(2)

pq (t, t
′) + O(3)

Figure6.5 shows the two second-order Feynman diagrams contributing to
G(2)

pq (t, t
′). Using the Feynman diagram rules, diagrams (A) and (B) can readily

be translated into an analytical expression:

G(2)
pq (t, t

′) =
∑
r,u,v

∞∫

−∞
dt1

∞∫

−∞
dt2

(
VpruvVuvqr − VprvuVuvqr

)

G0
p(t, t1)G

0
u(t1, t2)G

0
v(t1, t2)G

0
r (t2, t1)G

0
q(t2, t

′) (6.13)

Fig. 6.5 The two
second-order Feynman
diagrams for the electron
propagator assuming the HF
representation

(A) (B)
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Here, the individual contributions (A) and (B) correspond to the two terms obtained
by expanding the round brackets.

6.3 Diagrams in Abrikosov Form

The bracket on the right-hand side of Eq. (6.13) could have been written in a more
compact form according to

(Vpruv − Vprvu)Vuvqr = Vpr [uv]Vuvqr

where the antisymmetrized Coulomb integral Vpr [uv] combines the integral terms
of the (A) and (B) diagrams. This suggests to introduce a corresponding graphical
symbol,

(6.14)

referred to as the (two-particle) interaction dot. As will be discussed below, it is
possible to replace the original Feynman diagrams by diagrams in Abrikosov nota-
tion [1] (or simply Abrikosov diagrams) using interaction dots rather than wiggly
lines. Obviously, an interaction dot does not determine the sign of the associated
antisymmetrized Coulomb integral since the order of the two incoming or two out-
going fermion lines is ambiguous. As a consequence, the overall sign of anAbrikosov
diagram can only be defined by resorting to one of the underlying Feynman diagrams.

Replacing the upper wiggly line by interaction dots, the two second-order Feyn-
man diagrams (A) and (B) merge into one diagram shown in Fig. 6.6. Now we may
proceed to replace also the lower wiggly line by an interaction dot. The resulting
Abrikosov diagram (Fig. 6.7) combines the two second-order Feynman diagrams of
Fig. 6.5 within a single diagram. However, replacing Vpr [uv]Vuvqr by Vpr [uv]Vuv[qr ]

Fig. 6.6 Introducing the “interaction dot”
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Fig. 6.7 Second-order Abrikosov diagram

in the analytical expression, (6.13), would result in 2 × G(2)
pq (t, t

′), as can readily
be checked. To compensate for this “overcounting” of the original Feynman dia-
grams, a factor 1

2 has to be introduced. The more general rule here is that whenever
two equivalent free fermion lines occur in an Abrikosov diagram a factor 1

2 has to
be applied. The analytical expression associated with the second-order Abrikosov
diagram (Fig. 6.7) reads

G(2)
pq (t, t

′) = 1
2

∑
r,u,v

∞∫

−∞
dt1

∞∫

−∞
dt2 Vpr [uv]Vuv[qr ]

G0
p(t, t1)G

0
u(t1, t2)G

0
v(t1, t2)G

0
r (t2, t1)G

0
q(t2, t

′) (6.15)

As already mentioned, the order within the incoming and outgoing pairs of free
fermion lines is not determined for an interaction dot and can, in fact, be chosen
at will. Then, for a given choice, e.g., the one adopted on the right-hand side of
Eq. (6.15), the overall sign of the analytical expression has to be determined in such
a way that one (and thus any) Feynman diagram, here (A) and (B), associated with
the given Abrikosov diagram is reproduced correctly.

The Abrikosov notation can readily be established at higher order. Let us consider
the following section of a given Feynman diagram (X ),
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showing a wiggly interaction line (≡ Vi jrs) with its four free fermion lines. The
letters A, B, C, and D indicate the clipped connections to the rest of the diagram.
The fermion line D → A on the left side of the vertex is part of an extended fermion
line, being either a continuous line or a closed loop, and the same applies to C → B
on the right-hand side. Exchanging the two incoming free fermion lines as indicated
below,

leads to another valid Feynman diagram (X ′), where the wiggly interaction line
corresponds to the contribution Vi jsr . In addition, the exchange introduces a sign
change; that is, (X ′)= (−1) (X ). This is seen by inspecting what happens to the
extended fermion lines in diagram (X ) upon switching the entries in the vertex. The
two extended fermion lines in diagram (X ) can be

(i) a continuous line (e.g., on the left) and a closed loop (e.g., on the right);
(ii) two separate closed loops;
(iii) a common continuous line (containing both D → A and C → B);
(iv) a common closed loop (containing both D → A and C → B).

In all four cases, the exchange of the two incoming lines leads to a change in the
number of closed loops by one unit. For example, case (ii) (two closed loops) turns
into case (iv) (one common closed loop). In any event, (X ) and (X ′) will differ in
their overall sign, which means they can always be combined into one diagram by
replacing the wiggly interaction line with the Abrikosov interaction dot:

(6.16)

In such a way, one can replace successively all wiggly interaction lines by interaction
dots, thereby combining each two Feynman diagrams into one Abrikosov diagram
per interaction point. However, as we have seen in second order, there may result an
overcounting of the original Feynman diagrams. This happenswhen two intermediate
diagrams, say (Y ) and (Y ′), to be combined are identical. For example, let us consider
the following section of a Feynman diagram (X ),
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where as above the letters A,…,D indicate the clipped connections to the rest of the
diagram. Exchanging the free fermion lines r, s in the upper wiggly interaction leads
to diagram (X ′),

and (X ) and (X ′) can be combined into one Abrikosov diagram according to (6.16).
However, a corresponding exchange of the free fermion lines k, l in the lower wiggly
interaction merely reproduces the original Feynman diagrams, as here (X ) → (X ′)
and (X ′) → (X ). This means that replacing the second wiggly interaction by an
Abrikosov dot leads to double counting, 2 × ((X) + (X ′)). In the present case, the
reason for double counting is that r and s are “equivalent” free fermion lines in the
Abrikosov notation. The corresponding rule is to introduce a factor of 1

2 for each pair
of equivalent free fermion lines. It should be noted that pairs of equivalent fermion
lines are not the only cause for double counting. At fourth order, for example, one
encounters an Abrikosov diagram that is topologically invariant with respect to the
permutation of two (inner) interaction points (diagram 8 in Fig. 9.1). Here, a factor
of 1

2 applies to compensate double counting of the associated Feynman diagrams.
This means that the Abrikosov notation should not be used without recourse to the
underlying Feynman diagrams. In the following, we compile the rules for drawing
and evaluating diagrams in the Abrikosov form:
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Rules for Abrikosov Diagrams

(A1) Draw all topologically distinct connected diagrams with n interaction dots

and 2n + 1 directed (solid) free Green’s function or G0-lines starting at the
outer vertex (q, t ′) and ending at the outer vertex (p, t). At each interaction
dot, two G0-lines start and two G0-lines end; assign a time argument to each
interaction dot.

(A2) Attach one-particle indices and time arguments to the G0-lines; the arrows
define the order of the time arguments. Replace the graphical symbols (free
fermion lines and interaction dots) by the respective analytical expressions.

(A3) Sum over indices and integrate over time arguments of the inner vertices.
(A4) The overall phase of an Abrikosov diagram can only be fixed by inspecting one

of the Feynman diagrams comprised in the Abrikosov diagram. The phase is
to be adapted in such a way that this Feynman diagram is reproduced correctly
by the Abrikosov expression.

(A5) Apply a factor of 1
2 for each pair of (topologically) equivalent G0-lines to

compensate for double counting of Feynman diagrams. Double counting may
arise for other reasons at fourth and higher order, and this possibility must be
checked at the level of Feynman diagrams.

As we have already seen, there is a single second-order Abrikosov diagram
(Fig. 6.7). Figure6.8 shows the three Abrikosov diagrams of third order. Can one
be sure that there are not more diagrams in third order? And how would one proceed
in fourth and higher order? In the following, we will briefly sketch how Abrikosov
diagrams can be constructed in an essentially systematic fashion through a given
order of perturbation theory.

Fig. 6.8 Third-order
Abrikosov diagrams
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Systematic Construction of Abrikosov Diagrams

Specifically, we will consider “ordinary” diagrams, that is, diagrams beginning with
a (1–3)-branching,

and ending with a corresponding (3–1)-junction,

Obviously, the second-order diagram (Fig. 6.7) and the T 1 and T 2 third-order dia-
grams (Fig. 6.8) are ordinary diagrams, whereas the T 3 diagram is of a different type
to be addressed separately.

1. Begin a graph with a (1–3)-branching at the bottom:

2. Add successively (inner) interaction points, and draw all possible extensions of
the previous graphs using three basic operations:

• junctions of two free fermion lines,

• (1–3)-branchings,

• (3–1)-mergings,

3. Inspect the graphs at order level n − 1. Those graphs, which can be “closed” with
a (3–1)-merging, give rise to ordinary nth order diagrams.
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4. Finally, check whether there are topologically equivalent diagrams (e.g., two dia-
grams differing only in a permutation of interaction points) and discard redundant
diagrams.

Let us use these recipes through third order. At the order level n = 1, there is just
the initial (1–3)-branching

The complete set of graphs at second order is as follows:

Here, graph (a) is the second-order diagram obtained by closing the graph of
order level n = 1 with a (3–1)-junction. The graphs (b) and (c) result by join-
ing two free fermion lines in the second interaction point, the arrow pairs being
up-up and up-down, respectively; the two possible (1–3) branchings give rise to
graphs (d) and (e).

Given the set of second-order graphs, we now may “harvest” the third-order
Abrikosov diagrams. Obviously, graphs (b) and (c) can be closed with a (3–1)-
merging, which gives rise to the two ordinary diagrams T1 and T2, respectively.

Yet, there is another possibility of generating a valid third-order diagram. At the
top of graph (d), there are five free fermion lines on the loose, three being directed
upwards, and two downwards. Obviously, two of the up fermion lines can be merged
with the two down ones by an additional interaction point, as depicted below:

The result of such a (4–0)-merging is a viable third-order diagram, ending with the
upwards directed fermion line not involved in themerger. Consider the casewhere the
(4–0)-merging spares the last up fermion line (counted from the left). The resulting
diagram looks like this:
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Obviously, the diagram is topologically equivalent to the non-ordinary T 3 diagram
(as can be seen by shifting the lowest interaction point upwards and placing it at a level
between the second and third interaction points). Thus, we have recovered all three
third-order diagrams. What about a second possibility of closing graph (d), namely
by omitting the first or second up fermion line in the (4–0)-merging? The third-order
diagram resulting here is seen to be topologically equivalent to T 2 (by permuting
two inner interaction points). In a similar way, the two distinct (4–0)-mergings of
graph (e) result in diagrams topologically equivalent to T 2 and T 3, respectively.

Let us note that the rules for the systematic construction of Abrikosov diagrams
could be readily extended to comprise also (4–0)-merging and the corresponding
(4–0)-branching,

Such an extension would allow one to exhaust the full set of Abrikosov diagrams,
though the procedure becomes a lot more cumbersome. On the other hand, the (4–0)-
merging/branching operations arise only in non-ordinary diagrams such as T 3 and
in ordinary diagrams with permuted inner vertices. The latter are redundant, and the
non-ordinary diagrams can be dealt with in a more specific way, as described in the
following.

The T 3 diagram can be seen as being constructed in the following way: take the
second-order diagram (Fig. 6.7), bend the two outer free fermion lines together such
that the two outer vertices can be joined and fixed to an interaction point, and connect
the interaction point to two free fermion lines. Analytically, this amounts to

T 3 ≡ (−i)

∞∫

−∞
dt1G

0
p(t, t1)G

0
q(t1, t

′)
∑
rs

Vpr [qs]G(2)
rs (t1, t1) (6.17)

where joining the two outer vertices corresponds to equating the time arguments in
the second-order Green’s function, t = t ′ = t1. Note that there is no need to spec-
ify the (infinitesimal) time-ordering of the first and second time argument, since
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G(2)
rs (t1, t

+
1 ) = G(2)

rs (t+1 , t1), as will be further discussed in the subsequent chapter.
Since G(2)

rs (t1, t1) is not time-dependent, Eq. (6.17) may be written in the form of a
first-order diagram,

(6.18)

where
X pq = (−i)

∑
rs

Vpr [qs]G(2)
rs (t1, t1) (6.19)

represents an effective one-particle potential. As will be discussed in Sect. 8.2, X pq

is a contribution to the static self-energy (SSE) part. In the same way, any diagram
of second and higher order can be inserted in a free fermion line in the form of an
effective potential, symbolically depicted in the following graph:

(6.20)

where the double line stands for any second- or higher-order contribution toGrs(t, t ′).
Obviously, such SSE insertions can be made in any free fermion line within a given
diagram. Diagramswith SSE insertions occur for the first time at third order, and they
exhibit necessarily (4–0)-branchings or mergings. This allows us to define ordinary
diagrams more strictly as diagrams which can be brought into a form without any
(4–0)-branchings or mergings.

Matrix Representation of Abrikosov Diagrams
The systematic generation of higher-order Abrikosov diagrams can also be based on
a simple matrix representation of diagrams, which, in turn, allows for an algorithm-
based implementation [2]. The idea is to enumerate the vertices (interaction points
and outer vertices), and let the matrix element (i, j) specify the number of fermion
lines running from vertex i to vertex j . In the case of the second-order diagram, this
mapping between diagrams and matrices reads
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More specifically, thematrix representationof diagrams canbebasedon the following
rules:

Matrix representation of Abrikosov Diagrams:

(M1) Label the n + 2 vertices by the numbers 1, 2, . . . , n + 2, beginning with the
outer vertex at the bottom (1) and ending with the outer vertex at the top
(n + 2).

(M2) Consider the quadratic (n + 2)-dimensional matrices � with entries γi j =
0, 1, or 2 according to the number of free fermion lines that run from vertex i
to vertex j .

Let us make a few rather obvious observations:

1. Any Abrikosov diagram can be mapped uniquely to a matrix according to (M1)
and (M2): D −→ �(D)

2. Different diagrams are mapped to different matrices; that is, the mapping is 1-1
on the domain �({D}).

3. The matrices � have the following properties:

(a) The matrix elements in the first column and last row vanish.
(b) Diagonal matrix elements vanish, γi i = 0.
(c) First row and last column sum up to 1.
(d) Rows and columns associated with inner vertices (2 ≤ i ≤ n + 1) sum up

to 2.

4. Amatrix fulfilling the properties (a)–(d) does not necessarily translate into a valid
Abrikosov diagram. For example, the matrix

0 0 0 1
0 0 2 0
0 2 0 0
0 0 0 0

represents an unlinked diagram.
5. A permutation of the inner vertices in a diagram is reflected by a corresponding

permutation of columns and rows in the matrix.

To determine the full set of nth-order Abrikosov diagrams, one may proceed as
follows:Generate all (n + 2)-dimensionalmatrices according to rule (M2) complying
with properties (a)–(d). Draw the corresponding diagrams according to rule (M1);
discard invalid diagrams and redundant diagrams, e.g., different permutations of
inner vertices.

In view of property (a), onemay of course resort to simplified (n + 1)-dimensional
matrices �′, in which the first column and last row have been discarded.
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Exercises

6.1 Evaluate the analytical expressions for the third-order diagrams T 1 and T 3 in
Fig. 6.8.

6.2 Generate all third-order Abrikosov diagrams using the matrix representation
discussed in Sect. 6.3.
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Chapter 7
Time-Ordered or Goldstone Diagrams

The analytical expressions deriving from the Feynman or Abrikosov diagrams are
not yet entirely explicit, since, at nth order, they involve an n-fold time integral with
regard to the time arguments of the inner vertices. The evaluation of these integrals,
involving products of time-dependent free Green’s functions, is rather cumbersome.
In the so-called energy (or ω-) representation, the time variables and time integra-
tions are replaced by energy variables and integrations as the result of appropriate
Fourier transformations. As will be discussed in Sect. 7.1, the ω-representation is
somewhat simpler than the original time representation, but does not solve the inte-
gration problem, as one is still left with n ω-integrations. Fortunately, the diagram-
matic formulation can be extended as to allow one to obtain the result of the inner
time or ω-integrations in an explicit, albeit fragmented form. This is accomplished
by inspecting the set of (n + 2)! time-ordered or Goldstone diagrams associated
with a given nth-order Feynman (or Abrikosov) diagram. The rules for drawing and
evaluating the time-ordered diagrams are presented in Sect. 7.2. A derivation of the
Goldstone rules is given in AppendixA.4.

7.1 Energy Representation of Diagrams

As discussed in Chap. 3, one can switch back and forth between the time and energy
(or ω-) representations of the electron propagator via Fourier transformations,

Gpq(ω) =
∞∫

−∞
d(t − t ′) eiω(t−t ′)Gpq(t, t

′)
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Gpq(t, t
′) = 1

2π

∞∫

−∞
dω e−iω(t−t ′)Gpq(ω) (7.1)

using here the fact that Gpq(t, t ′) depends only on the difference t − t ′ of the time
arguments.

In a similar way, any diagram Dpq(t, t ′) contributing to Gpq(t, t ′) can be trans-
formed to the ω-representation,

Dpq(ω) =
∞∫

−∞
d(t − t ′)eiω(t−t ′)Dpq(t, t

′) (7.2)

Let us consider the second-order contribution, represented by the second-order
Abrikosov diagram (Fig. 6.7, Eq.6.15):

G(2)
pq (ω) = 1

2

∑
r,u,v

Vpr [uv]Vuv[qr ]

∞∫

−∞
d(t − t ′)eiω(t−t ′)

∞∫

−∞
dt1

∞∫

−∞
dt2 G

0
p(t, t1)G

0
u(t1, t2)G

0
v(t1, t2)G

0
r (t2, t1)G

0
q(t2, t

′)

We may replace the time-dependent free Green’s functions by their Fourier trans-
forms,

G0
r (t, t

′) = 1

2π

∞∫

−∞
dωe−iω(t−t ′)G0

r (ω) (7.3)

where

G0
r (ω) = nr

ω − ωr + iη
+ nr

ω − ωr − iη
(7.4)

This leads to the following expression,

G(2)
pq (ω) = 1

2

∑
r,u,v

Vpr [uv]Vuv[qr ]

∞∫

−∞
d(t − t ′)eiω(t−t ′)

∞∫

−∞
dt1

∞∫

−∞
dt2

∞∫

−∞

dω1

2π
. . .

∞∫

−∞

dω5

2π
e−iω1(t−t1)e−iω2(t1−t2)e−iω3(t1−t2)e−iω4(t2−t1)e−iω5(t2−t ′)

G0
p(ω1)G

0
u(ω2)G

0
v(ω3)G

0
r (ω4)G

0
q(ω5)
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comprising altogether three time and five ω-integrations. The three time integrations
and three of the ω-integrations can be successively performed as described in the
following.

1. Integrate over inner time arguments t1, t2:

1

2π

∞∫

−∞
dt1e

it1(ω1−ω2−ω3+ω4) = δ(ω1 − ω2 − ω3 + ω4)

1

2π

∞∫

−∞
dt2e

it2(ω2+ω3−ω4−ω5) = δ(ω2 + ω3 − ω4 − ω5)

The delta functions resulting here impose energy conservation for the ω-variables
at each inner vertex:

ω1 + ω4 = ω2 + ω3 (7.5)

ω2 + ω3 = ω4 + ω5 (7.6)

This, in turn, implies
ω1 = ω5 (7.7)

2. The two delta functions obtained in the first step allow one to perform two ω-
integrations. Choosing ω4 and ω5 results in replacing ω4 by ω2 + ω3 − ω1 and ω5

by ω1.
3. Integrate over t − t ′:

1

2π

∞∫

−∞
d(t − t ′)ei(ω−ω1)(t−t ′) = δ(ω − ω1)

4. Integrate over ω1, using the delta function arising in the preceding step, which
means to replace ω1 by ω.

The final result of the foregoing “integral algebra” reads

G(2)
pq (ω) = 1

2

∑
r,u,v

Vpr [uv]Vuv[qr ] Iuvr (ω)G0
p(ω)G0

q(ω) (7.8)

where

Iuvr (ω) =
∫

dω1

2π

∫
dω2

2π
G0

u(ω1)G
0
v(ω2)G

0
r (ω1 + ω2 − ω) (7.9)

Note that here the original integration variables ω2,ω3 have been changed to ω1,ω2.
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The procedure of replacing the time by ω-integrations can readily be generalized
to arbitrary nth-order diagrams. This leads to the following modifications in the orig-
inal diagram rules.

Feynman/Abrikosov Diagrams in Energy Representation

1. Assign ω-variables to the 2n + 1 free fermion lines and use the corresponding
energy representations, G0

r (ω). Chose the (global) energy variable ω for the first
(incoming) outer free fermion line (G0

q(ω)), and inner ω-variables, ω1,ω2, . . . ,
for the other free fermion lines.

2. Use energy conservation at each of the n inner vertices: ωi + ωi ′ = ωo + ωo′ ,
where i, i ′ (o, o′) refer to incoming (outgoing) free fermion lines at a given ver-
tex. These n conditions ensure that there are n independent inner ω-variables,
ω1, . . . ,ωn , and the second (outgoing) outer free fermion line becomes G0

p(ω).

3. Perform the n inner ω-integrations
∫ dω1

2π . . .
∫ dωn

2π .

The choice of ω-variables in the second-order diagram is depicted below:

ω

ω1 ω2 ω3 = ω1 + ω2 − ω

ω

As the second-order diagram shows, the energy representation (7.8) is somewhat
simpler than the original time representation since here the two outer free Green’s
functionsG0

p(ω) andG0
q(ω) canbe factored out. Still, one is leftwith two integrations,

now involving energy rather than time variables.
The two ω-integrations in Eq. (7.9) can be evaluated using the calculus of com-

plex integration. Let us first consider the integration over ω2, involving the product
G0

v(ω2)G0
r (ω1 + ω2 − ω) of two free Green’s functions. Since this product behaves

asymptotically as ω−2
2 , we may extend the integration contour by an infinite semicir-

cle either in the upper or lower complexω2-plane. According to the general form (7.4)
of the free Green’s functions, the product G0

v(ω2)G0
r (ω1 + ω2 − ω) can be expanded

into the linear combination of four products of each two simple ω2-poles:
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G0
v(ω2)G

0
r (ω1 + ω2 − ω) =nvnr (ω2 − εv + iη)−1(ω1 + ω2 − ω − εr + iη)−1

+ nvnr (· · · − iη)−1(· · · − iη)−1

+ nvnr (· · · + iη)−1(· · · − iη)−1

+ nvnr (· · · − iη)−1(· · · + iη)−1

In the first and second term, both poles are located either in the lower or upper
complex ω2-plane, which means that they do not contribute to the ω2-integral (as the
contour can be chosen such that both poles are excluded). The third and fourth term
each have one pole in the upper and one pole in the lower complex plane, and the
theorem of residues can be used to yield the following result:

I (ω1 − ω) =
∫

dω2

2π
G0

v(ω2)G
0
r (ω1 + ω2 − ω)

= (−i) nvnr
ω1 − ω − εr + εv − iη

+ (+i) nvnr
ω1 − ω − εr + εv + iη

In the same manner, the remaining ω1-integration,

Iuvr (ω) =
∫

dω1

2π
G0

u(ω1)I (ω1 − ω)

can be evaluated to give

Iuvr (ω) = nrnunv

ω + εr − εu − εv + iη
+ nrnunv

ω + εr − εu − εv − iη
(7.10)

Using this result in Eq. (7.8), the energy representation of the second-order electron
propagator takes the explicit form

G(2)
pq (ω) = G0

p(ω)G0
q(ω)�(2)

pq (ω) (7.11)

where

�
(2)
pq (ω) = 1

2

∑
r,u,v

Vpr [uv]Vuv[qr ]
(

nr nunv

ω + εr − εu − εv + iη
+ nr nunv

ω + εr − εu − εv − iη

)

(7.12)
As will be discussed in the ensuing Chap. 8, the quantity �(2)

pq (ω) represents the
second-order self-energy part. Note that �(2)

pq (ω) is a sum of simple poles located in
the lower (first part) and upper (second part) complex ω-plane.
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7.2 Performing the Inner Time Integrations

As we have seen in the preceding section, the energy representation of the
Feynman diagrams has simplified the integration problem but not solved it: one still
has to deal with an n-fold ω-integration for each nth-order diagram. In the follow-
ing, we will address a diagrammatic technique, by which the result of the inner time
or ω-integrations is derived directly from the so-called time-ordered or Goldstone
diagrams (named after Ref. [1]) associated with a given Feynman (or Abrikosov)
diagram. Somewhat surprisingly, the concept of time-ordered diagrams can hardly
be considered aswidely known.While the rules for drawing and evaluatingGoldstone
diagrams can be found in the literature (see Refs. [2, 3]), actual derivations seem
to be missing. For a demonstration of how time-ordered diagrams come into play,
we begin with the simple case of the first-order Feynman diagram for a one-particle
interaction. Then, the general rules for drawing and evaluating the time-ordered dia-
grams will be presented and applied to the second-order Abrikosov diagram for the
electron propagator. A stringent derivation of the Goldstone diagram rules is given
in AppendixA.4.

Fourier and Internal Time Integrations in a Simple Example

Let us consider the simple Feynman diagrams involving one-particle interactions
only, shown in Fig. 7.1. Here, as can be seen by an analysis analogous to Sect. 7.1,
the energy representation leads directly to a final analytical expression without inner
ω-integrations. In time representation, on the other hand, the nth-order analytical
expression involves n inner time integrations. In first order, the energy representation
simply reads

D(ω) = wpqG
0
p(ω)G0

q(ω) (7.13)

where wpq denotes the matrix elements of the one-particle interation. In time repre-
sentation, on the other hand, the diagram gives rise to the expression

D(t, t ′) =
∞∫

−∞
dt1wpqG

0
p(t, t1)G

0
q(t1, t

′) (7.14)

Fig. 7.1 Diagrammatic PT
expansion for a one-particle
interaction
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To make contact with the Goldstone formulation, we will dwell on the latter expres-
sion and evaluate D(ω) from D(t, t ′). However, rather than applying the usual form
of the Fourier transform,

D(ω) =
∞∫

−∞
d(t − t ′)eiω(t−t ′)D(t, t ′) (7.15)

based on the fact that D(t, t ′) depends only on the difference t − t ′ of the outer time
arguments, we shall now employ two independent Fourier transforms for each time
variable t, t ′:

D(ω1,ω2) =
∞∫

−∞
dt

∞∫

−∞
dt ′ eiω1t e−iω2t ′ D(t, t ′) (7.16)

While we now have to deal with two additional “outer” time integrations in addition
to the inner time integration in (7.14), the three time arguments can be treated on a
similar footing, which allows for a more systematic evaluation.

Let us briefly establish the relation between these two Fourier transform variants
in a more general way. Let f (t − t ′) be a general function of the time difference and

f (ω) =
∞∫

−∞
d(t − t ′) eiω(t−t ′) f (t − t ′) (7.17)

denote the Fourier transform with respect to t − t ′. The separate Fourier transforma-
tions

f (ω1,ω2) =
∞∫

−∞
dt

∞∫

−∞
dt ′ eiω1t e−iω2t ′ f (t − t ′) (7.18)

define a function of two variables ω1 and ω2. The two time integrations in Eq. (7.18)
can readily be performed using the following transformation of the time variables:

t1 = t − t ′, t2 = t + t ′ (7.19)

or
t = 1

2 (t1 + t2), t ′ = 1
2 (t2 − t1) (7.20)

With the new variables, the integral (7.18) becomes separable:
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f (ω1,ω2) = 1
2

∞∫

−∞
dt1 e

i ω1+ω2
2 t1 f (t1)

∞∫

−∞
dt2 e

i ω1−ω2
2 t2

= f (
ω1 + ω2

2
)

∞∫

−∞

dt2
2
ei

ω1−ω2
2 t2

= 2πδ(ω1 − ω2) f (ω1) (7.21)

This establishes a simple relation between f (ω1,ω2) and f (ω1). The rule to obtain
f (ω) from f (ω1,ω2) is to discard the factor 2πδ(ω1 − ω2), and replace both ω1 and
ω2 by ω.

The two-variable Fourier transform for the first-order diagram (7.14) takes on the
form

D(ω1,ω2) = wpq

∞∫

−∞
dt

∞∫

−∞
dt ′

∞∫

−∞
dt1 e

iω1t e−iω2t ′G0
p(t, t1)G

0
q(t1, t

′) (7.22)

There are 3! = 6 possible orderings of the three time arguments t, t ′, t1, e.g., t > t1 >

t ′. This means that the original threefold time integral can be split into six distinct
parts by performing the integration in the respective time-ordered ways. Obviously,
this partitioning of the time integrations in the original Feynman diagram can be
visualized by the time-ordered diagrams in Fig. 7.2. Here, a vertical time axis is
assumed, larger times being placed above smaller ones.

The important aspect of the time-ordered (or Goldstone) diagrams is that the result
of the time-ordered integration can be derived directly from the respective diagram.
As a demonstration, let us perform the integration according to time-ordering (a):

D(a)(ω1,ω2) = wpq

∞∫

−∞
dt

∞∫

−∞
dt1

∞∫

−∞
dt ′ eiω1t e−iω2t ′

G0
p(t, t1)G

0
q(t1, t

′)θ(t − t1)θ(t1 − t ′) (7.23)

(a) (b) (c) (d) (e) (f)

Fig. 7.2 Time orderings of the first-order one-particle diagram
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Here, the time-ordering t > t1 > t ′ is assured by the product θ(t − t1)θ(t1 − t ′) of
step functions in the integrand. Recalling that G0

p(t, t1) is given by

G0
p(t, t1) = −iθ(t − t1)e

−i(εp−iη)(t−t1)n̄ p + iθ(t1 − t)e−i(εp+iη)(t−t1)np

we see that the first part is compatible with time-ordering (a), whereas the second
part is projected out according to θ(t1 − t)θ(t − t1) ≡ 0:

G0
p(t, t1) → −iθ(t − t1)e

−i(εp−iη)(t−t1)n̄ p

Analogously, the second part of G0
q(t1, t

′) is to be discarded, that is,

G0
q(t1, t

′) → −iθ(t1 − t ′)e−i(εq−iη)(t1−t ′)n̄q

This finding may readily be generalized. In a time-ordered diagram, the direction (up
or down) of a free fermion line has a distinct meaning: In upwards directed lines, the
first time argument is larger than the second one, which means that only the particle
part (n̄r = 1) of the free electron propagator comes into play; in downwards directed
lines, the first time argument is smaller than the second one, and therefore, only the
hole part (nr = 1) survives. Accordingly, we will denote upwards and downwards
directed lines in time-ordered diagrams as particle and hole lines, respectively.

We may now write Eq. (7.23) more explicitly as

D(a)(ω1,ω2) =(−i)2n̄ pn̄qwpq

∞∫

−∞
dtei(ω1−εp+iη)t

∫ t

−∞
dt1e

it1(εp−εq )

∫ t1

−∞
dt ′e−i(ω2−εq+iη)t ′ (7.24)

where the various factors have been reordered according to their dependence on t, t1,
and t ′. Note that the convergence factors for the t1-integration have cancelled each
other out. Now, the three integrations can be performed successively in the order
t ′, t1, and t . The t ′-integration yields

∫ t1

−∞
dt ′e−i(ω2−εq+iη)t ′ = eit1(εq−ω2−iη)

i(εq − ω2 − iη)
(7.25)

While the numerator enters the ensuing t1-integration, the denominator constitutes a
factorial part of the final result (see Eq.7.29 below). As is stated more specifically in
the diagram rules below, this factor can directly be related to a horizontal line (“cut”)
above the t ′-vertex. The horizontal line crosses the particle line with the index q and
an auxiliary ω-line connecting the outer vertices t and t ′, which allows one to specify
the entries (εq ,ω) and their signs in the denominator.
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Taking the numerator of Eq. (7.25) into account, we see that the εq terms drop out
of the t1-integral, which is consistent with the fact that the εq particle line ends at the
inner vertex t1. The t1-integration can readily be evaluated yielding

∫ t

−∞
dt1e

it1(εp−ω2−iη) = eit (εp−ω2−iη)

i(εp − ω2 − iη)
(7.26)

Again, the denominator, being part of the final result, can be associated with a cut,
here above the t1-vertex. The t-dependent numerator enters the final t-integration,
eliminating the εp term. Moreover, also the convergence factor e−ηt is cancelled, so
that the t-integration simply generates a delta function,

∞∫

−∞
dteit (ω1−ω2) = 2πδ(ω1 − ω2) (7.27)

as required by the two-variable Fourier transform. Combining the results
(7.25)–(7.27) gives

D(a)(ω1,ω2) = 2πδ(ω1 − ω2)wpq
n̄ p

(ω2 − εp + iη)

n̄q
(ω2 − εq + iη)

(7.28)

from which the final result

D(a)(ω) = wpq
n̄ p

(ω − εp + iη)

n̄q
(ω − εq + iη)

(7.29)

for the single-variable Fourier transform is obtained.
Let us take a brief look at the second time-ordering t1 > t > t ′ represented by

diagram D(b):

D(b)(ω1,ω2) =wpq

∞∫

−∞
dt1

∫ t1

∞
dt

∫ t

∞
dt ′

eiω1t e−iω2t ′G0
p(t, t1)G

0
q(t1, t

′)θ(t1 − t)θ(t − t ′) (7.30)

As above, a product of θ-functions has been introduced in order to make the time-
ordering t1 > t > t ′ explicit. Note that θ(t1 − t)θ(t − t ′) implies θ(t1 − t ′), which
makes apparent that G0

p(t, t1) and G0
q(t1, t

′) have to be replaced by their hole and
particle part, respectively:

G0
p(t, t1) → iθ(t1 − t)e−i(εp+iη)(t−t1) np

G0
q(t1, t

′) → −iθ(t1 − t ′)e−i(εq−iη)(t1−t ′) n̄q
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The three successive time integrations can easily beperformed, yieldingD(b)(ω1,ω2),
from which the final result

D(b)(ω) = −wpq
n̄q

(ω − εq + iη)

np

(εp − εq)
(7.31)

can be deduced. As above, D(b)(ω) is given essentially by a product of two denomi-
nators, which can be related to cuts above the vertex t ′ and t . The latter cut does not
cross the auxiliaryω-line, and accordingly, the second denominator isω-independent.
Note that εp �= εq because of the restriction npn̄q = 1. Accordingly, the infinitesimal
in the ω-independent denominator (being originally of the form (εp − εq − 2iη)−1)
is dispensable and has been omitted in Eq. (7.31).

In a similar way, the remaining time-ordered diagrams D(c), . . . , D( f ) can be
evaluated (see Exercise7.1). One may observe that whenever t > t ′, such as in
D(a), D(b), D(c), the ω-dependent denominators are of the form (ω · · · + iη)−1 (rep-
resenting poles in the lower complex ω-plane). By contrast, in the time-orderings
D(d), D(e), D( f ) with t < t ′, the poles are located in the upper complex ω-plane.

It is interesting to contrast the compact result of Eq. (7.13) with the fragmented
form associated with the use of time-ordered diagrams (see Exercise7.3):

D(ω) = D(a)(ω) + D(b)(ω) + · · · + D( f )(ω) (7.32)

Obviously, the product G0
p(ω)G0

q(ω) can be expanded in a sum of four products
of each two simple poles, two of which can readily be identified with D(a)(ω) and
D(d)(ω). The other two products are of mixed type combining poles in the upper and
lower complex plane. Here, the expansion into partial fractions generates each two
contributions of the type D(b,c)(ω) and D(e, f )(ω).

Rules for Time-Ordered or Goldstone Diagrams

A general treatment of the inner time and Fourier integrations in the Feynman (or
Abrikosov) diagrams is given in AppendixA.4, which establishes the following dia-
gram rules:

(G1) A Feynman (or Abrikosov) diagram of nth order gives rise to (n + 2)! time-
ordered or Goldstone diagrams corresponding to the (n + 2)! permutations of
the two outer vertices t, t ′ and n inner vertices t1, . . . , tn . Draw an auxiliary
line (ω-line) from vertex t to vertex t ′.

(G2) In the time-ordered diagrams, the direction of the G0-lines has the following
meaning: upwards and downwards directed lines are associated with unoccu-
pied (particle) and occupied (hole) orbitals, respectively. Introduce the corre-
sponding restrictions in the one-particle indices.

(G3) Each (horizontal) ‘cut’ between two successive vertices gives rise to a denom-
inator of the kind

(σω + εk + εl + · · · − εa − εb − · · · + iη)−1
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Here, any G0-line crossing the cut contributes an orbital energy: with positive
sign for hole lines (occupied orbitals), +εk,+εl , . . . ; with negative sign for
particle lines (unoccupied orbitals), −εa,−εb, . . . . The energy variable ω
arises, if the auxiliary line (ω-line) between the outer vertices (t → t ′) crosses
the cut. Here, the sign σ = 1 applies, if the ω-line is directed downwards, and
σ = −1, if the ω-line is directed upwards. Put σ = 0 if the ω-line does not
cross the cut; note that in that case the infinitesimal iη can be dropped.

(G4) Each hole line contributes a factor (−1). This leads to a total factor of (−1)L+M ,
where L is the number of closed loops and M is the number of hole lines. The
various i-factors total +1:

−i from the definition of the GF

(−i)n from the nth-order perturbation theory

i n+1 from the n + 1 cuts

⎫⎪⎬
⎪⎭ + 1

Two important consequences of the Goldstone diagram analysis should be noted:

1. As confirmed by the above rules, the time integrations arising in a linked
Feynman diagram can always be performed and lead to well-defined expressions.
This means that the adiabatic switching functions e−ε|tν | originally accompany-
ing the interaction terms are no longer needed to ensure convergence of the time
integrations. This justifies the a priori limit ε → 0 supposed in Sect. 5.3.

2. The time-ordered diagrams associated with a given Feynman (or Abrikosov)
diagram can be divided into two classes, I, II, according to the ordering of the
external vertices t and t ′. In the diagrams of class I (t > t ′), any ω-dependent
denominators are of the type (ω · · · + iη). Obviously, the diagrams of class I are
analytic in the upper complex ω-plane and, thus, contribute exclusively to the
G+ part of the electron propagator. Conversely, the diagrams of class II (t < t ′)
are analytic in the lower complex plane and contribute exclusively to G−. In this
way, the Goldstone diagrams establish independent diagrammatic PT expansions
of the G+ and G− parts.

The second-order Abrikosov diagram (Fig. 6.7) gives rise to 4! = 24 time-ordered
diagrams, as there are altogether four vertices, that is, each two outer and inner ones.
Figure7.3 shows the 12 diagrams of class I (t > t ′); the 12 diagrams of class II
(t ′ > t) are obtained by turning the class I diagrams upside down.

For a demonstration of the use of the Goldstone rules, we evaluate the second
diagram in Fig. 7.3:
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Fig. 7.3 Second-order Goldstone (time-ordered) diagrams in Abrikosov notation shown are the 12
diagrams with t > t ′, contributing to G+

The three cuts between every two successive vertices have beendepicted bydashed
lines, while the directed dotted line represents the auxiliary ω-line, connecting the
outer t, t ′ vertices. Moreover, one-particle indices have been assigned to the free
fermion lines, where a, b and k denote particle and hole states, respectively. For
the two outer fermion lines, denoted by the general (unspecific) indices p, q, the
HF occupation numbers np and n̄q are used to restrict p and q to hole and particle
states, respectively. With the help of the Goldstone rules, diagram A(2,2)

pq can readily
be expressed as follows:

A(2,2)
pq (ω) = (−1)s

n pn̄q
ω − εq + iη

1
2

∑
a,b,k

Vpk[ab]Vab[qk]
(εp + εk − εa − εb)(ω + εk − εa − εb + iη)

(7.33)
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where the overall sign (−1)s still needs to be fixed. Note that the factor 1
2 accounts

for the pair of equivalent particle lines (a, b) according to the Abrikosov rule (A5).
To determine the overall sign, one has to inspect one of the Feynman diagrams
comprised in the Abrikosov diagram A(2,2)

pq , for example:

p

ka b

q
(7.34)

Here, we have two hole lines and one closed loop, so that the overall sign is (−1)3 =
−1. The overall sign in the analytical expression (7.33) has to be (−1)s = −1, since
with that choice the Feynman diagram (7.34) is correctly reproduced by (7.33).

Exercises

7.1 Evaluate the six time-ordered diagrams in Fig. 7.2 by performing the time inte-
grations.

7.2 Adjust the Goldstone diagram rules to the case of a one-particle interaction dia-
grams and apply these rules to the first-order diagrams (a), . . . , ( f ) in Fig. 7.2.

7.3 Verify that the compact expression (7.13) is identical with the result deriving
from the six first-order Goldstone diagrams (Exercise7.2).

7.4 Supplementing Exercise6.1, evaluate the energy representation of the diagrams
T 1 and T 3 in Fig. 6.8

7.5 Evaluate the second-order Goldstone diagrams (7–10) shown in Fig. 7.3, which
individually feature 1p/3p-2h interactions. Verify that in the sum of these dia-
grams, S = (7) + (8) + (9) + (10) the 3p-2h-denominators cancel out.

7.6 Compare the contributions of the compact second-order expression (7.11), (7.12)
to G+(ω) with the 12 Goldstone diagrams in Fig. 7.3.
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Chapter 8
Self-Energy and the Dyson Equation

In the four preceding chapters, we have established the formalism of diagrammatic
perturbation theory for the electron propagator, which allows one to derive succes-
sively higher-order contributions G(n)(ω). However, a finite perturbation expansion,
e.g., through third order,

G(ω) = G0(ω) + G(2)(ω) + G(3)(ω) + O(4) (8.1)

does not result in a useful approximation scheme to determine the physical quantities
of interest, that is, ionization energies, electron affinities, and the corresponding
spectral factors. The reason is that the components Gpq(ω) are analytical functions,
and a finite perturbation expansion does not recover the proper analytical structure
(3.17), being a sum over simple poles, from which the desired information could be
extracted. So thequestion is how to translate the diagrammatic perturbation expansion
into a viable computational scheme. What is needed here is to sum the perturbation
expansion, even if only partially, through infinite order. A possible path toward such
infinite partial summations, recovering the proper analytical structure of the electron
propagator, is provided by the Dyson equation, which we will address in this chapter.

8.1 Diagrammatic Approach to the Self-Energy

According to the diagram rules, the Feynman or Abrikosov diagrams of order n ≥ 1
begin and end with a free fermion line. This suggests to write the perturbation expan-
sion of the electron propagator in a form depicted graphically in Fig. 8.1. Here, the
hatched symbol represents the quantity ˜�pq(t, t ′), referred to as improper self-
energy part. ˜�pq(t, t ′) is defined as the sum (n > 0) of all diagrammatic contri-
butions obtained by stripping off the respective two outer free fermion lines. The
analytical expression corresponding to Fig. 8.1 reads
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Fig. 8.1 Definition of the
improper self-energy part

Gpq(t, t
′) = δpqG

0
p(t, t

′) +
∫

dt1

∫

dt ′1 G
0
p(t, t1)˜�pq(t1, t

′
1)G

0
q(t

′
1, t

′) (8.2)

or, in ω-representation,

Gpq(ω) = δpqG
0
p(ω) + G0

p(ω)˜�pq(ω)G0
q(ω) (8.3)

Here

˜�pq(ω) =
∞

∫

−∞
d(t − t ′) eiω(t−t ′)

˜�pq(t, t
′) (8.4)

is the Fourier transform of ˜�pq(t, t ′). Using an obvious matrix notation, Eq. (8.3)
can be written in the form

G(ω) = G0(ω) + G0(ω)˜�(ω)G0(ω) (8.5)

To proceed to the definition of the less trivial proper self-energy part, let us
consider the fourth-order diagram shown in Fig. 8.2. Obviously, this diagram can
be separated into two parts by cutting a single free fermion line, namely the one
connecting the two second-order fragments. In a similar way, any diagram can be
characterized as being either separable or non-separable with respect to cutting a
single free fermion line. This allows one to define a quantity �pq(t, t ′) in analogy to
˜�pq(t, t ′), but with the restriction to non-separable diagrams:

�pq(t, t
′) ≡ {sum over non-separable contributions to ˜�pq(t, t

′)} (8.6)

�pq(t, t ′) is referred to as proper self-energy part, or simply, self-energy. Obviously,
the improper self-energy part can be constructed from the proper one in the way
shown graphically in Fig. 8.3, where the symbols designated � represent �pq(t, t ′).
The geometrical-type series of “powers” of �pq(t, t ′) reflects the fact that diagrams
can bemultiply separable. The third term in the power series, for example, comprises
all diagrams that decompose into three fragments upon cutting each two free fermion
lines.
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Fig. 8.2 A fourth-order Abrikosov diagram composed of two second-order diagrams

Fig. 8.3 Self-energy part
�pq (t, t ′) as a non-separable
contribution

Fig. 8.4 Electron propagator
as geometric series of powers
of the self-energy part
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The geometrical series for ˜�pq(t, t ′) in Fig. 8.3 may be used in the representation
of the electron propagator according to Fig. 8.1 or Eq. (8.2). The result, shown
graphically in Fig. 8.4, can be written as follows:

Gpq(t, t
′) = G0

pq(t, t
′) +

∫∫

dt1 dt
′
1 G

0
p(t, t1)�pq(t1, t

′
1)G

0
q(t

′
1, t

′)+
∑

r

∫

· · ·
∫

dt1 dt
′
1 dt2 dt

′
2 G

0
p(t, t1)�pr (t1, t

′
1)G

0
r (t

′
1, t2)�rq(t2, t

′
2)G

0
q(t

′
2, t

′) + · · ·
(8.7)

The latter equation can be cast into a more compact, albeit implicit form:

Gpq(t, t
′) = G0

pq(t, t
′) +

∑

r

∫∫

dt1 dt2 G
0
p(t, t1)�pr (t1, t2)Grq(t2, t

′) (8.8)

This is the famous Dyson equation [1], relating the electron propagator Gpq(t, t ′) to
the self-energy part �pq(t, t ′). Note that the explicit expansion of Eq. (8.7) results
by solving the Dyson equation iteratively for Gpq(t, t ′). A graphical representation
of the Dyson equation is given in Fig. 8.5.

Using the energy representation,

�pq(ω) =
∞

∫

−∞
eiω(t−t ′) �pq(t, t

′) d(t − t ′) (8.9)

and an obvious matrix notation, the Dyson equation can be cast in the compact form

G(ω) = G0(ω) + G0(ω)�(ω)G(ω) (8.10)

The formal solution for G(ω) is readily obtained, reading

Fig. 8.5 Schematic
representation of the Dyson
equation
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G(ω) = (

G0(ω)−1 − �(ω)
)−1

(8.11)

According to

G(ω) = (

1 − G0(ω)�(ω)
)−1

G0(ω)

= G0(ω) + G0(ω)�(ω)G0(ω) + . . . (8.12)

the right-hand side can be expanded as a geometrical series in powers of�(ω), which
is the energy representation analogue to Eq. (8.7).

The Dyson equation can be viewed as providing a formal definition of the self-
energy part �(ω), e.g., in the form

�(ω) = G0(ω)−1 − G(ω)−1 (8.13)

obtained from Eq. (8.10). Its usefulness, however, derives from the fact that there is
a direct diagrammatic approach to �(ω). An approximation to �(ω) (obtained for
example from a low-order diagrammatic expansion) will lead via the Dyson equation
to an approximation for the electron propagator in the form of an infinite, if only
partial, summation of terms in the original perturbation expansion. This may result
in a viable computational scheme.

1. Diagram Rules for the Self-energy Part
The diagram rules for the self-energy part can readily be obtained by obvious mod-
ifications of the original Feynman diagram rules for the electron propagator:

Employ the original Feynman rules (F1)–(F4) or the Abrikosov rules (A1)–(A4) for
the electron propagator Gpq(t, t ′) with the following modifications:

– consider only diagrams that cannot be separated into two fragments by cutting one
free fermion line;

– remove the two outer free fermion lines from the respective wiggly interaction line
(interaction dots), while keeping their one-particle indices, p, q, in the interaction
line (dot) expressions;

– the number of free fermion lines is 2n − 1 rather than 2n + 1. The overall phase
i n of rule (F4), however, still applies, because the two i-factors associated with
the two outer free fermion lines persist.

The second-order Feynman diagram for �pq(t, t ′) shown in Fig. 8.6 derives from
diagram (A) in Fig. 6.5. Its analytical expression reads

�(2,A)
pq (t, t ′) =

∑

r,u,v

VpruvVuvqrG
0
u(t, t

′)G0
v(t, t

′)G0
r (t

′, t) (8.14)

Note the absence of time integrations, since there are only (two) external vertices in
the second-order diagram. The second-order Abrikosov diagram for the self-energy,
comprising both second-order Feynman diagrams, is shown in Fig. 8.7. The diagram
can easily be translated into the following analytical expression:
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�(2)
pq (t, t ′) = 1

2

∑

r,u,v

Vpr [uv]Vuv[qr ]G0
u(t, t

′)G0
v(t, t

′)G0
r (t

′, t) (8.15)

In the energy representation (Eqs. (7.8), (7.9)) of the second-order electron prop-
agator, the G0 functions associated with the two outer free fermion lines factorize,
and �(2)

pq (ω) is obtained by simply discarding those G0-factors:

�(2)
pq (ω) = 1

2

∑

r,u,v

Vpr [uv]Vuv[qr ]
∫

dω1

2π

∫

dω2

2π
G0

u(ω1)G
0
v(ω2)G

0
r (ω1 + ω2 − ω)

(8.16)
The internal ω-integrations have been performed in Sect. 7.1 (cf. Eq. 7.10), and the
resulting explicit expression for�(2)

pq (ω) is given by Eq. (7.12). The rules presented in
Sect. 7.1 for evaluating diagrams in the energy representation can easily be adapted
to the case of the self-energy diagrams.

As discussed in Sect. 7.2, time-ordered or Goldstone diagrams can be used to
derive directly explicit ω-dependent expressions for the electron propagator dia-
grams. The same technique can be applied to the self-energy diagrams. In an nth-
order self-energy diagram, there are n vertices. Hence, the number of time-orderings
is n! rather than (n + 2)!, which means a considerable reduction in comparison with
the case of the electron propagator. The original diagram rule (G1) must be modified
accordingly:

Fig. 8.6 Feynman diagram for the self-energy part in second order

Fig. 8.7 Second-order Abrikosov diagram for the self-energy part
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2. Time-Ordered Diagrams for the Self-energy Part

(G1’) A Feynman (or Abrikosov) diagram of nth order gives rise to n! time-ordered
or Goldstone diagrams corresponding to the n! permutations of the two outer
vertices t, t ′ and n − 2 inner vertices t1, . . . , tn−2. Draw an auxiliary line
(ω-line) from vertex t to vertex t ′.

The other rules (G2)–(G4) apply in their original form. In particular, the overall phase
factor remains to be +1, which comes about as follows:

+1 ←

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−i from the definition of the propagator

(−i)n from the nth-order perturbation theory

i n−1 from the N−1 cuts

i2 from the two external free fermion lines

As an example, we will apply the Goldstone analysis to evaluate �(2)
pq (ω). The

two time-ordered diagrams associated with the second-order Abrikosov diagram
(Fig. 8.7) are shown in Fig. 8.8. Combining the analytical expressions deriving from
the Goldstone rules yields the following result for the second-order self-energy:

�(2)
pq (ω) = 1

2

∑

a,b,k

Vpk[ab]Vab[qk]
ω + εk − εa − εb + iη

+ 1
2

∑

a,k,l

Vpa[kl]Vkl[qa]
ω + εa − εk − εl − iη

(8.17)

where the indices a, b and k, l are restricted to particle and hole states, respectively.
The latter expression is of course equivalent to the result in Eq. (7.12), as can be seen
by renaming the summation indices.

The three third-order Abrikosov diagrams for the electron propagator shown in
Fig. 6.8 give rise to the corresponding third-order self-energy diagrams in Fig. 8.9.
These diagrams can readily be evaluated using the Goldstone analysis. Each diagram
has six time-orderings,which is in striking contrast to the propagator case,where each
third-order diagram gives rise to 120 Goldstone diagrams. The first three Goldstone
diagrams belonging to T 1 are shown in Fig. 8.10. Applying the above diagram rules,

Fig. 8.8 Second-order
Goldstone diagrams for the
self-energy
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Fig. 8.9 Third-order
Feynman/Abrikosov
diagrams for the self-energy
part

Fig. 8.10 The first three
time-orderings (Goldstone
diagrams) of the third-order
self-energy diagram T 1

the analytic expressions can easily be obtained (see Exercise 8.2); the results for
T 1(1) and T 1(2) are given in Eqs. (9.13) and (9.16) of Sect. 9.1.

Both the T 1 and T 2 diagrams give rise to ω-dependent expressions. By con-
trast, the T 3 diagram leads to constant (ω-independent) contributions. There is only
one external vertex here, suspending the possibility of auxiliary ω-lines. In the cor-
responding T 3 diagram for the electron propagator (Fig. 6.8), the two outer free
fermion lines begin and end at the same vertex. The analytical expression is of the
form given by Eq. (6.18). The self-energy contribution obtained by removing the two
outer free fermion lines reads

�T 3
pq (t, t ′) = δ(t − t ′)X pq

in time representation and
�T 3

pq (ω) = X pq

in ω-representation, where X pq is a constant given by Eq. (6.19). The finding that
the third-order self-energy consists of ω-dependent and ω-independent (constant)
contributions reveals a general analytical structure which will be addressed in the
ensuing Sect. 8.2.
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8.2 Analytical Properties of the Self-Energy

The self-energy can be written in the general form

�pq(ω) = �pq(∞) + Mpq(ω) (8.18)

Here,Mpq(ω) and�pq(∞) are referred to as dynamical (ω-dependent) part and static
(ω-independent) part, respectively. The notation �pq(∞) used for the static self-
energy part reflects the fact that Mpq(ω) → 0 for ω → ∞. Analogous to Eq. (3.17)
for the electron propagator, there is a spectral representation for Mpq(ω),

Mpq(ω) = M+
pq(ω) + M−

pq(ω) =
∑

ν

m(ν)
p m(ν)∗

q

ω − ων + iη
+

∑

μ

m(μ)
p m(μ)∗

q

ω − ωμ − iη
(8.19)

The M±
pq(ω) terms differ in the location of the poles, being in the lower and upper

complex ω-plane, respectively. Like in the case of the electron propagator, M+
pq(ω)

and M−
pq(ω) are referred to as (N+1)-particle (or affinity) and (N−1)-particle (or

ionisation) part, respectively. Other than in the spectral representation of the electron
propagator, the positions of the poles ωλ and the amplitudes m(λ)

p cannot directly be
related to physical quantities.

A general proof of Eq. (8.18) and the spectral representation (8.19) has been
presented in Refs. [2, 3]. In principle, the analytical form of the self-energy part may
be inferred from the spectral properties of G(ω) via Eq. (8.13), which can be seen
as a definition of �(ω). To get an idea of the algebra here at work, one may consider
a simple function modelled after the diagonal approximation to Eq. (8.13),

s(ω) = ω − ε − g(ω)−1 (8.20)

where

g(ω) =
m

∑

k=1

pk
ω − ek

,
∑

pk = 1 (8.21)

serves as a surrogate for the electron propagator. As the reader may verify (see
Exercise 8.3), the function s(ω) can be written in the desired form,

s(ω) = x +
m−1
∑

k=1

qk
ω − ωk

(8.22)

where ω1, . . . ,ωm−1 are the m − 1 zeros of g(ω), and x is a constant.
Of course, a corresponding analysis for the �(ω) and G(ω) matrices is more

demanding. We confine ourselves to the derivation of Eq. (8.18) and a specification
of the constant self-energy part, �(∞). To this end, we write the spectral represen-
tation (3.17) of the electron propagator in the generalizing form
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Gpq(ω) =
∑

n

x (n)
p x (n)∗

q

ω − en
(8.23)

where the index n runs over both (N+1)- and (N−1)-particle states; the imaginary
infinitesimals ±iη are not essential for the ensuing analysis and have been dropped.
Using a compact matrix notation, the spectral representation can be written as

G(ω) = x(ω1 − E)−1x† (8.24)

Here, E is a diagonal matrix of energies en , that is, negative electron affinities and
ionization potentials:

en =
{

−An, n ∈ {N + 1}
−In, n ∈ {N − 1} (8.25)

The matrix x is a rectangular matrix of amplitudes xpn :

xpn = x (n)
p =

{ 〈�0|cp|�N+1
n 〉, n ∈ {N + 1}

〈�N−1
n |cp|�0〉, n ∈ {N − 1} (8.26)

Note that
xx† = 1 (8.27)

which is the matrix form of Eq. (3.22).
Using Eq. (8.24) in (8.13) and G0(ω)−1 = ω1 − ε, where ε denotes the diagonal

matrix of HF orbital energies, the self-energy takes on the form

�(ω) = ω1 − ε − [

x(ω1 − E)−1x†
]−1

(8.28)

which now can be analyzedwith respect to taking the limitω → ∞. For this purpose,
we expand the second part on the right-hand side in a power series in ω−1 using twice
the geometric series:

G(ω)−1 = ω

[

x
(

1 − E
ω

)−1

x†
]−1

= ω

[

x
(

1 + E
ω

+ O(ω−2)

)

x†
]−1

= ω

[

1 + x
E
ω
x† + O

(

ω−2
)

]−1

= ω1 − xEx† + O

(

1

ω

)

Thus, the expansion of the self-energy becomes
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�(ω) = −ε + xEx† + O

(

1

ω

)

(8.29)

which allows us to identify the constant self-energy part as

�(∞) = −ε + xEx† (8.30)

This result, reading more explicitly

�pq(∞) = −εpδpq−
∑

n∈{N+1}
(E0 − EN+1

n )〈�0|cp|�N+1
n 〉〈�N+1

n |c†q |�0〉

−
∑

n∈{N−1}
(EN−1

n − E0)〈�0|c†q |�N−1
n 〉〈�N−1

n |cp|�0〉 (8.31)

can be seen as a sum rule for the energies (pole positions) and amplitudes of the
electron propagator. The sum over states on the right-hand side can be replaced by
the following closed-form expressions:

�pq(∞) = −εpδpq + 〈�0|[cp, Ĥ ]c†q |�0〉 + 〈�0|c†q [cp, Ĥ ]|�0〉
= −εpδpq + 〈�0|{c†q , [cp, Ĥ ]}|�0〉 (8.32)

The equivalence of Eqs. (8.31) and (8.32) can be seen by inserting the complete
sets of (N+1)- and (N−1)-electron states in the commutator expectation values
on the right-hand side of Eq. (8.32). The anticommutator/commutator {c†q , [cp, Ĥ ]}
on the right-hand side of Eq. (8.32) can readily be evaluated, upon which the static
self-energy takes on the form

�pq(∞) =
∑

u,v

Vpu[qv]
(〈�0|c†ucv|�0〉 − δuvnu

)

(8.33)

Here, the HF relations (4.6) have been supposed. Recalling the definition (3.26) of
the density matrix, we may write

�pq(∞) =
∑

u,v

Vpu[qv]
(

ρvu − ρ(0)
vu

)

(8.34)

where
ρ(0)

vu = 〈�0|c†ucv|�0〉 = δuvnu (8.35)

denote HF density matrix elements. Using Eqs. (3.28) and (3.34), the density matrix
elements can be replaced by electron propagator elements, which allows us to write
the static self-energy elements in the form
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�pq(∞) =
∑

u,v

Vpu[qv](−i)
(

Gvu(t, t
+) − G0

vu(t, t
+)

)

(8.36)

or

�pq(∞) =
∑

u,v

Vpu[qv]
1

2πi
2 (

Gvu(ω) − G0
vu(ω)

)

dω (8.37)

This result, establishing a relationship between the static self-energy and the electron
propagator, can further be expanded by inserting the formal solution (8.11) of the
Dyson equation for G(ω) on the right-hand side:

�pq(∞) =
∑

u,v

Vpu[qv]
[

1

2πi
2(

G0(ω)−1−�(∞)−M(ω)
)−1

∣

∣

∣

vu
dω −δuvnu

]

(8.38)
Here, the partitioning (8.18) of the self-energy has been used. As Eq. (8.38) shows,
the static self-energy part is determined by the dynamical part: For a given M(ω), it
constitutes an implicit equation for�(∞). Thismeans that in devising approximation
schemes for the self-energy one can focus on the dynamical part. Once a suitable
approximation for M(ω) has been devised, a consistent approximation for �(∞)

can be obtained via Eq. (8.38). A practical procedure for the evaluation of �(∞) is
described in AppendixA.5.

The closed-form expressions (8.36) and (8.37) can be obtained in a more intuitive
way using diagrammatic analysis. The diagrams contributing to �(∞) are of the
form of the third-order diagram T 3 in Fig. 8.9. Any nth-order diagram, n > 0, in
the electron propagator expansion can be transformed into a corresponding �(∞)

diagram of order n + 1 by joining the two outer free fermion lines in an interaction
dot (external vertex). Symbolically, the sum of all diagrams contributing to �(∞)

can be depicted as follows:

(8.39)

Here, as in Eq. (6.20), the double line represents the full electron propagator. That is,
the first graph on the right-hand side comprises all diagrams contributing to �(∞).
However, there is one extra diagram, namely the first-order “tadpole” diagram (sec-
ond graph on the right-hand side), associated with the zeroth-order diagram (free
fermion line). In the HF representation supposed here, there is no first-order con-
tribution to the electron propagator and, thus, to the self-energy, as was discussed
in Sect. 6.2. Therefore, the tadpole contribution to the static self-energy must be
subtracted from the first term on the right-hand side.

The graphical representation (8.39) of the static self-energy part can be translated
into an analytical expression as follows
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�∞
pq(t, t

′) = δ(t − t ′)�pq(∞)

�pq(∞) = lim
t ′1→t1

∑

r,s

Vpr [qs](−i)
(

Gsr (t1, t
′
1) − G0

sr (t1, t
′
1)

)

(8.40)

The overall phase factor (−i) on the right-hand side comprises several distinct con-
tributions, for example a factor (−1) arising from the fact that a closed loop is formed
when the two outer free fermion lines are joined at the same entry of a wiggly inter-
action line.

It should be noted that equating the time arguments t1 and t ′1 on the right-hand
side of Eq. (8.40) does not depend on the order of the time arguments:

(−i)Gsr (t, t
+) − (−i)G0

sr (t, t
+) = (−i)Gsr (t

+, t) − (−i)G0
sr (t

+, t)

= 〈�0|c†r cs |�0〉 − nrδrs

This can be seen by using the anticommutation relation {c†r , cs} = δrs both in the
definitions of Gsr and G0

sr .
Finally, we note that Eq. (8.34) allows us to establish a physical interpretation of

the diagonal elements of the static self-energy part. We consider a diagonal element,
�kαkα(∞), where k is a spatial orbital, and retain only the Coulomb parts of the
antisymmetrized two-particle integrals,

�kαkα(∞) ∼
∑

u,v

2Vkukv
(

ρvu − ρ(0)
vu

)

(8.41)

Hereu, v denote spatial indices, andρvu ≡ ρvγ,uγ . Using the electron density function
associated with the given density matrix,

ρ(x) =
∑

2φ∗
u(x)φv(x)ρvu (8.42)

Eq. (8.41) can be written as

�kαkα(∞) ∼
∫ ∫

dxdx′ |φk(x)|2
|x − x′| (ρ(x′) − ρ(0)(x′)) (8.43)

As this expression shows,�kαkα(∞) accounts for the ground-state correlation effect,
�ρ(x) = ρ(x) − ρ(0)(x), in the Coulomb repulsion between the electron density and
the charge, |φk(x)|2, of the electron in the HF orbital k. Note that the self-interaction
error due to the neglect of the exchange integrals in Eq. (8.34) is not relevant in
�ρ(x).
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8.3 Solving the Dyson Equation

1. The Dyson Secular Matrix

Using the general form (8.18) for the self-energy and the matrix notation G0(ω)−1 =
ω1 − ε for the inverse of the free electron propagator, the formal solution (8.11) of
the Dyson equation can be written more explicitly as

G(ω) = (

G0(ω)−1 − �(ω)
)−1 = (ω1 − ε − �(∞) − M(ω))−1 (8.44)

Moreover, onemay adopt the followingmatrix notation for the dynamical self-energy
parts:

M(ω) = M+(ω) + M−(ω), M±(ω) = m±† (

ω1 − �±)−1
m± (8.45)

Here, �± denote the diagonal matrices of the pole positions in the spectral represen-
tations (8.19) of the two M±

pq(ω) parts,

�+
νν = ων, ν ∈ {N + 1}, �−

μμ = ωμ, μ ∈ {N − 1} (8.46)

and m± are the corresponding matrices of the amplitudes,

m+
ν p = m(ν)

p
∗
, ν ∈ {N + 1}, m−

μp = m(μ)
p

∗
, μ ∈ {N − 1} (8.47)

As a result, the Dyson equation takes on the form

G(ω) =
(

ω1 − ε − �(∞) − m−†
(ω1 − �−)−1m− − m+†

(ω1 − �+)−1m+
)−1

(8.48)
which has some semblance of the partitioning formulas reviewed in AppendixA.1.
In fact, one may introduce the following Dyson secular matrix

A =
⎛

⎝

ε + �(∞) m−† m+†

m− �− 0
m+ 0 �+

⎞

⎠ (8.49)

Using the partitioning formulas (A.1.26) and (A.1.27) for the upper left diagonal
block of A, that is, A11 = ε + �(∞), the right-hand side of Eq. (8.48) can readily
be identified with the upper left diagonal block of the inverse of (ω1 − A):

G(ω) = (ω1 − A)−1
∣

∣

11 (8.50)

Let us note that in the upper left diagonal block, denoted by |11, the matrix indices
are the HF one-particle indices, comprising both occupied (h) and unoccupied (p)
orbitals.
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The inversion of an ω-dependent matrix of the form (ω1 − A), where A is her-
mitian, is equivalent to solving the eigenvalue problem (see Appendix A.1)

AX = XE, X†X = 1 (8.51)

as
(ω1 − A)−1 = X(ω1 − E)−1X† (8.52)

Here, E and X denote the diagonal matrix of the eigenvalues and eigenvectors of A,
respectively. Accordingly, the solution of the Dyson equation can be written as

G(ω) = X(ω1 − E)−1X†
∣

∣

11 (8.53)

or, more explicitly,

Gpq(ω) =
∑

n

x (n)
p x (n)

q
∗

ω − en
(8.54)

where en = Enn and x (n)
p = X pn , and n runs over both the (N+1)- and (N−1)-

electron states. As the comparison with Eqs. (8.23)–(8.26) shows, this is just the
spectral representation of the electron propagator. This means that the ionization and
electron attachment energies are obtained as the eigenvalues of the Dyson matrix
A, while the corresponding spectroscopic factors are given by the h or p orbital
components of the eigenvectors.

It should be noted that the sum rules (3.22) and (8.30), (8.31) can directly be
inferred from the 11-block of the eigenvalue equations (8.51):

∑

n

X pn X
∗
qn = δpq ,

∑

n

En X pn X
∗
qn = Apq = εpδpq + �pq(∞) (8.55)

In conclusion, we have seen that the Dyson equation can be formulated as the eigen-
value problem of a hermitian matrix, referred to as Dyson secular matrix, where
the entries derive from the spectral representation of the dynamic self-energy part
(amplitudes and pole positions), the matrix elements of the static self-energy part,
and the HF orbital energies.

2. Dyson Equation as an Effective One-Particle Eigenvalue Equation

Rather than dealing with the full eigenvalue problem (8.51) of the Dyson secular
matrix, one may resort to the partitioning of the original eigenvalue problem as
exemplified in Eq. (A1.31) of Appendix A.1. Contracting the eigenvalue problem to
the (11)-block of A, the Dyson equation takes on the form

(ε + �(en)) xn = enxn (8.56)
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where en = Enn are the eigenvalues of A and xn is the vector of the p/h-components,
x (n)
p = X pn , of the full eigenvectors Xn . This is an energy-dependent (pseudo-) eigen-

value equation for a one-particle problem, in which the self-energy matrix �(ω)

can be seen as orbital representation of an energy-dependent, non-local one-particle
operator �̂(x, x′;ω). The enormous reduction of the dimensionality with respect to
Eq. (8.51) comes at a price, as the solutions of the pseudo-eigenvalue problem have
to be sought using iterative techniques, which are prone to computational problems.
It should be noted that the usual orthonormalization features do not apply to the
pseudo-eigenvectors xn (see Appendix A.1).

3. Dyson Orbitals

As a tool for visualizing many-body effects in ionization (or electron attachment)
the so-called Dyson orbitals have proven useful. Consider a final ionic state, say of
N − 1 electrons, |�N−1

n 〉. A Dyson orbital �n(ξ) can be assigned to this state as
follows:

�n(ξ) =〈�N−1
n |ψ̂(ξ)|�0〉

=
∑

r

〈�N−1
n |cr |�0〉ψr (ξ) =

∑

r

x (n)
r ψr (ξ) (8.57)

As in Eq. (1.3), ξ ≡ xσ combines the spatial and spin variables; ψr (ξ) denote the
spin orbitals associated with the fermion operators, c†r , cr , and

ψ̂(ξ) =
∑

r

crψr (ξ) (8.58)

is the field operator according to Eq. (2.45). Alternatively, the Dyson orbital can be
obtained directly from the ground- and ionic-state wave functions,

�n(ξ) = √
N !

∫

�N−1
n (ξ2, . . . , ξN )∗�0(ξ, ξ2, . . . , ξN ) dξ2 . . . dξN (8.59)

where as in Eq. (1.5) the integration over ξi comprises the summation over spin
variables. To show that both definitions are equivalent (see Exercise 8.4) one may
insert in Eq. (8.57) the resolution of the identity in terms of the coordinate eigen-
states |ξ1 . . . ξN 〉 (respecting here Eq. 1.24) and evaluate ψ̂(ξ)|ξ1 . . . ξN 〉 according
to Eq. (2.9).

Like spin orbitals, the Dyson orbitals�n(ξ) can be written as products of a spatial
orbital and a spin function:

�nγ(x,σ) = �n(x)χγ(σ) (8.60)

Here, γ = α,β specifies the z-component of the spin in the final state, n ≡ nγ, and
γ denotes the spin quantum number complementary to γ, e.g., α = β. The spatial
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Dyson orbital is given by

�n(x) = 〈�N−1
nγ |ψ̂γ(x)|�0〉 =

∑

r

x (n)
r φr (x) (8.61)

where ψ̂γ is the mixed representation (2.49) of the field operator with φr (x) denoting
the spatial functions inψr (ξ). The alignment of γ and γ is of course a consequence of
the spin symmetry in the abovematrix element. In the second equation, the amplitudes
x (n)
r can be assumed to be spin-free as

x (n)
r = x (nγ)

rγ = x (nγ)

rγ (8.62)

We note again that, in general, the Dyson orbitals are not orthonormal,

∫

�∗
n(x)�m(x) dx =

∑

r

x (n)∗
r x (m)

r �= δnm (8.63)

because the amplitudes x (n)
r do not constitute the full final-state eigenvector.

Note that for an uncorrelated ground state, |�0〉, and a corresponding single-hole
ionic state, cpγ |�0〉, the Dyson orbital is simply given by the HF orbital φp(x).

4. Second-Order Approximation to the Self-energy

The construction of a Dyson secular matrix and the ensuing solution of the secular
equations applies not only to the exact self-energy but also to suitable approximations,
more specifically, approximations in which the dynamic self-energy part is given in
the form of the spectral representation (8.19). As an illustrative example, we will
consider the second-order approximation to the self-energy part in the following.

Obviously, the second-order self-energy, given by Eq. (8.17), is of the same ana-
lytic form as the spectral representation. Since there is no static second-order con-
tribution, we may write

�(2)
pq (ω) = M (2)

pq (ω) = M (2)+
pq (ω) + M (2)−

pq (ω) (8.64)

where

M (2)+
pq (ω) =

∑

a<b,k

Vpk[ab]Vab[qk]
ω + εk − εa − εb + iη

M (2)−
pq (ω) =

∑

a,k<l

Vpa[kl]Vkl[qa]
ω + εa − εk − εl − iη

(8.65)

The poles in the (N+1)- and (N−1)-parts are labeled by 2p-1h and 2h-1p index
triples. Note the 2p-1h and 2h-1p indices are restricted according to k, a < b and
a, k < l, respectively,which eliminates the factors 1

2 in the original expression (8.17).
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The matrix elements of the second-order Dyson secular matrix, A(2), can directly
be taken from Eq. (8.65):

�−
akl,akl = − εa + εk + εl

�+
abk,abk = − εk + εa + εb

m−
akl,q = Vqa[kl], m+

abk,q = Vab[qk] (8.66)

The structure of the A(2) matrix, as given below,

1h/1p 2h-1p 2p-1h

A(2) ≡

. . .

εq
. . .

...

. . . Vkl[qa] . . .
...

...

. . . Vab[qk] . . .
...

...

. . . Vqa[kl] . . .
...

. . .

−εa + εk + εl
. . .

0

...

. . . Vqk[ab] . . .
...

0

. . .

−εk + εa + εb
. . .

reflects the partitioning of the secular expansion manifold into three subsets corre-
sponding to HF orbitals (or 1h and 1p states), the 2h-1p, and 2p-1h configurations.

It is instructive to compare the second-order Dyson secular matrix to the secular
matrices arising in the context of a wave-function approach, that is, separate CI
expansions for the (N−1)-particle and (N+1)-particle states (see Sect. 12.3). Let
us consider the 1h and 2h-1p CI configurations,

|�N−1
j 〉 = c j |�0〉

|�N−1
akl 〉 = c†ackcl |�0〉, k < l

of N−1 particles. The correspondingmatrix elements of theCI secular matrix, taken
with respect to the subtracted hamiltonian, Ĥ ′ = Ĥ − E0(1), where E0(1) is the HF
(first-order) ground-state energy, read

H ′
i j = −εiδi j

H ′
j,akl = Vkl[ ja]

H ′
akl,a′k ′l ′ = (εa − εk − εl)δaa′δkk ′δll ′ + O(1) (8.67)
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Here, the matrix elements of the 2h-1p diagonal block are specified only through
zeroth order. Obviously, the secular matrix given by Eq. (8.67) is (up to a sign) part
of the second-order Dyson matrix. In a similar way, the analogous CI secular matrix
for N+1 particles is retrieved within A(2). What makes A(2) peculiar is the fact
that there is a coupling of the (N−1)- and (N+1)-particle parts. How can such a
coupling, which is not feasible within a wave-function approach, be rationalized?
An analysis of the results through second order of perturbation theory can give some
clue.

5. Analysis of the Dyson Equation Using Second-Order Perturbation Theory

Consider the ionization energy Ik of the state deriving from the one-hole configuration
|�k〉 = ck |�0〉. Through second order, straightforwardmatrix perturbation theory for
the A(2) secular problem gives

Ik(2) = −εk −
∑

a, j<l

|Vka[ jl]|2
εk + εa − ε j − εl

−
∑

j,b<c

|Vkj[bc]|2
εk + ε j − εb − εc

(8.68)

where the first and second sum on the right-hand side correspond to the coupling of
the single-hole configuration k with 2h-1p and 2p-1h configurations, respectively.
In accordance with Koopmans’ theorem, the ionization energy through first order is
given by the negative orbital energy, Ik(1) = −εk . How does the expansion (8.68)
compare with the exact ionization energy Ik = EN−1

k − E0? The formal perturbation
expansion of Ik through second order can be written as

Ik = −εk + W (2)
k (2h-1p) + W (2)

k (3h-2p) − E (2)
0 + O(3) (8.69)

Here,W (2)
h (2h-1p) denotes the second-order energy arising from the coupling of the

1h configuration with 2h-1p configurations and

E (2)
0 = −

∑

b<c,i< j

|Vbc[i j]|2
εb + εc − εi − ε j

(8.70)

is the second-order contribution to the ground-state energy, as specified in Eq. (4.65).
The explicit expression for W (2)

k (2h-1p) reads

W (2)
k (2h-1p) = −

∑

a, j<l

|Vka[ jl]|2
εk + εa − ε j − εl

(8.71)

which is just the second term on the right-hand side of the Dyson result (8.68). The
other second-order term in Eq. (8.69),
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W (2)
k (3h-2p) = −

∑

b<c
i< j �=k

|Vbc[i j]|2
εb + εc − εi − ε j

(8.72)

results from the coupling of the 1h configuration with 3h-2p configurations (see
Exercise 8.6). Apart from the restrictions i < j �= k in the summation indices,
W (2)

k (3h-2p) is of the same form as E (2)
0 . As can readily be seen, the difference

W (2)
h (3h-2p) − E (2)

0 of the 3h-2p contributions in the ionic energy and the 2p-2h
contributions in the ground-state energy can be identified with the second sum in the
Dyson result (8.68):

W (2)
k (3h-2p) − E (2)

0 =
∑

j,b<c

|Vkj[bc]|2
εb + εc − ε j − εk

(8.73)

This shows that the strange coupling of (N−1)- and (N+1)-particle states in the
Dyson secular problem can be seen as a means to account for the admixture of 3h-
2p configurations in the ionic state and the second-order correlation energy in the
ground state. A CI treatment of the 1h states at comparable accuracy would require
CI expansions comprising 1h, 2h-1p, and 3h-2p configurations. In the second-order
Dyson approach, by contrast, the secular matrix is formed by the manifold of 1h,
1p, 2h-1p, and 2p-1h configurations.

Besides the 1hmain states, the A(2) secular matrix accounts for so-called satellite
states deriving from 2h-1p configurations, treated however only in zeroth order:

Iakl = εa − εk − εl + O(1) (8.74)

In a completely analogous way, the 1p and 2p-1h states of N+1 particles can be
analyzed.

The second-order Dyson approximation, based on using the second-order self-
energy in the Dyson equation, provides a very simple computational approach to ion-
ization energies and electron affinities of closed-shell atoms andmolecules.However,
the accuracy hereby afforded is rather modest. Typically, the error in the ionization
energies of outer valence 1h main states is in the order of 1–2eV. An extension to
higher order is by no means straightforward. Already at the third-order level, the
dynamic self-energy deviates from the form of a sum over simple poles as here
products of poles come into play, which means that contributions M(n)(ω) for n ≥ 3
cannot readily be incorporated in the Dyson secular matrix.

6. Graphical Solution of the Dyson Equation in the Diagonal Approximation

For a given expression of the self-energy, theDyson equation (8.11) can also be solved
in a more descriptive way, where the desired information, that is, pole positions and
residues of the electron propagator, is extracted as the zero points and the respective
slopes of the inverse of the electron propagator,



8.3 Solving the Dyson Equation 131

G(ω)−1 = ω1 − ε − �(ω) (8.75)

In particular, such a procedure applies to the diagonal approximation in which the
non-diagonal elements of the self-energy part are neglected. As a consequence, there
is an individual equation for each diagonal element of the electron propagator:

Gpp(ω) = (

ω − εp − �pp(ω)
)−1

(8.76)

Assuming that �pp(ω) is of the form

�pp(ω) = �pp(∞) +
∑

n

|mpn|2
ω − �n

(8.77)

the zero points of Gpp(ω) are given by the solutions of the equation

ω − εp − �pp(∞) =
∑

n

|mpn|2
ω − �n

(8.78)

As depicted in Fig. 8.11, the function on the left-hand side is a straight line with slope
1 crossing the ω-axis at εp + �pp(∞), while the right-hand side is a sum over simple
poles located at the positions �n . Obviously, the straight line cuts the pole function
once between two successive pole positions, so that for each pair of successive poles
there is a single zero point ofGpp(ω)−1. This amounts to a “graphical solution” of the
one-component Dyson equation in the diagonal approximation. Of course, the zero
points between successive pole positions can also be determined numerically, using,
e.g., a Newton–Raphson-type procedure. The residues (or pole strengths) of the poles
ofGpp(ω) are determined by the slopes of the pole function at the intersection points.
Let ω0 be a pole position resulting from the single-component Dyson equation for
Gpp(ω) and P0 denote the residue to be determined. Expanding G−1

pp (ω) in a Taylor
series about ω0 yields

G−1
pp (ω) = (

ω − εp − �pp(ω)
) = 1

P0
(ω − ω0) + α(ω − ω0)

2 + · · · (8.79)

where 1/P0 is given by
1

P0
= 1 − �′

pp(ω0) (8.80)

The slope of the pole function is always negative so that the pole strength,

P0 = (1 − �′
pp(ω0))

−1 (8.81)

is a positive number smaller 1, P0 ≤ 1.
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ω
εp+Σpp(∞)

Fig. 8.11 Graphical solution of the diagonal form of the Dyson equation

Figure8.11 shows a typical arrangement of the poles. On the left side, there are
the self-energy poles associated with the (N−1)-particle (ionization) part, being
separated from the (N+1)-particle (electron affinity) poles on the right-hand side
by an energy gap of the order 3(εLUMO − εHOMO), where the acronyms HOMO
and LUMO refer to highest occupied and lowest unoccupied molecular (HF) orbital,
respectively. As assumed in Fig. 8.11, the orbital energy εp, say, of an occupied
orbital in the outer valence region, is located within the gap between the (N−1)- and
the (N+1)-particle poles. Accordingly, there is one solution within the gap with a
relatively large residue, since themodulus of the slope at the interaction point tends to
be small. This solution corresponds to the “single-hole” main state. In addition, there
are solutions within successive pole positions on the left- and right-hand side, which
however, havemuch smaller residues since here the pole function have steep slopes at
the crossing points. Those solutions correspond to “secondary” or “shake-up” states.

7. Beyond Second Order: Outer Valence Green’s Function (OVGF) Method

As already mentioned, the expansion of a diagonal self-energy element �pp(ω)

through third order,

�pp(ω) = �(2)
pp (ω) + �(3)

pp (ω) + O(4) (8.82)

is not of the simple analytic form (8.77) presumed in the graphical solution, as the
third-order diagrams introduce products of simple poles. Nevertheless, in the energy
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region within the ionization/electron-affinity gap, sufficiently far from the two outer-
most poles, �pp(ω) is a smooth function of ω, and the third-order expansion (8.82)
may represent that region quite reasonably, irrespective of its inadequacy in the pole
regions. Accordingly, for outer valence main (1h) states, where the graphical solu-
tions of the respective diagonal Dyson equations lie in the gap region, a third-order
self-energy expansion may afford a good approximation. An approach based on the
third-order expansion of the self-energy is the widely used and utmost successful
outer valence Green’s function (OVGF) method [4–6]. A related scheme is the P3
method basing on a partial third-order self-energy expression [7].

The two main ingredients of the OVGF method are:

1. Diagonal approximation for the electron propagator: Gpq(ω) ≈ δpqG pp(ω)

2. A modified third-order expansion of the diagonal self-energy matrix elements:

�pp(ω) ≈ �(2)
pp (ω) + 1

1 − Ap
�(3)

pp (ω) (8.83)

where Ap < 1 is a predefined correction coefficient.

In the OVGF expression for the self-energy, a correction factor is attached to the
strict third-order contribution �(3)

pp (ω), the purpose of which is to extrapolate the
expansion to higher orders. The usual recipe is

Ap =
∑5

i=2

(

T 1(i)|ω=εp + T 2(i)|ω=εp

)

M (2)
pp (εp)

(8.84)

Here, T 1 and T 2 are the two ω-dependent third-order diagrams (see Fig. 8.9),
and i = 2, . . . , 5 label the time-orderings that have only one ω-denominator. Obvi-
ously, Ap somehow measures the ratio of the third- and second-order self-energy
contributions (for the pth diagonal element), and, thus, the factor (1 − Ap)

−1 =
1 + Ap + A2

p + . . . in (8.83) can be understood as sort of an extrapolation to higher-
order contributions. It should be noted that there are twomore extrapolation schemes
to be applied in specific cases (see Refs. [4, 6] for details).

Exercises

8.1 Consider a general one-particle system with a hamiltonian of the form ĥ = ĥ0 +
v̂, where ĥ0 is a “free” hamiltonian and v̂ a perturbation. Accordingly, there are
resolvent operators ĝ(ω) = (ω − ĥ)−1 and ĝ0(ω) = (ω − ĥ0)−1 corresponding
to the full and free hamiltonian, respectively. Derive a Dyson-like equation for
ĝ(ω) and another equation analogous to Eq. (8.2). What are the analogues to the
improper and proper self-energy parts?

8.2 (a) Evaluate the three time-orderings contributing to �−(ω) (t ′ > t) of the dia-
gram T 1 in Fig. 8.9.
(b) Draw and evaluate the six time-orderings of diagram T 3 in Fig. 8.9.
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8.3 (a) Consider the model functions (8.20) and (8.21) in the simple two-pole case
(m = 2) and verify the corresponding Eq. (8.22).
(b) Perform the corresponding analysis for m = 3. (Use partial fraction decom-
position without explicitly solving the cubic or quadratic equations).
(c) Consider the general case (m arbitrary) and establish that s(ω) can be written
in the form of Eq. (8.22).

8.4 Adapt the matrix representation of Abrikosov diagrams (Sect. 6.3) to the dia-
grams for the dynamical self-energy part M(ω) and test that concept for the
second- and third-order diagrams.

8.5 Show that the definitions (8.57) and (8.59) for the Dyson orbitals are equivalent.
(Proceed here as indicated in Sect. 8.3.)

8.6 Use (formal)RSPT for the (N−1)-electron state deriving from ck |�0〉 and verify
the second-order expressions (8.71)–(8.73).
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Chapter 9
Algebraic–Diagrammatic Construction
(ADC)

As was discussed in the beginning of Chap.8, a finite perturbation expansion of the
electron propagator does not reproduce its correct analytical form.While this applies
also to the self-energy part beyond second order, here finite perturbation expansions
together with the Dyson equation may provide viable approximations to the electron
propagator, as shown by the third-order OVGF approach discussed in Sect. 8.3. The
applicability of theOVGF approximation, however, is restricted to the energy region
above the highest pole of M−(ω) and below the first pole of M+(ω). For the treat-
ment of ionization energies and electron affinities outside that outer valence regime,
the behavior of the self-energy part near its poles matters. This means that one has to
recover the proper analytical form (8.19) of the dynamical self-energy part. Approx-
imations of that type are obtained as a result of performing infinite summations of a
certain class of diagrams. An example of such an infinite partial summation of dia-
grams in the case of the self-energy part is Hedin’s GW approximation [1], which,
in turn, is based on the famous random-phase approximation (RPA), being itself an
infinite partial summation of diagrams of the polarization propagator (see Chap. 15).
An alternative way of generating infinite partial summations in a diagrammatic per-
turbation expansion is the algebraic-diagrammatic construction (ADC) [2, 3]. In the
following we will discuss how the ADC procedure can be performed in the case of
the dynamic self-energy part. A direct ADC approach to the G−(ω) and G+(ω) parts
of the electron propagator is presented in Chap. 10.

9.1 ADC Formulation of the Dynamic Self-Energy Part

According to Eq. (8.19), the dynamical self-energy consists of two parts, M+(ω) and
M−(ω), referred to as affinity and ionization part, respectively. TheADC formulation
applies independently to either of them. To be specific, we will consider the affinity
part M+(ω) in the following and drop the superscripts + for notational ease. The
treatment of M−(ω) is completely analogous.
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The starting point is the spectral representation according to Eq. (8.19). In matrix
notation (see Eq.8.45), the matrix element Mpq(ω) can be written as

Mpq(ω) = m†
p(ω1 − �)−1mq (9.1)

Here, � is the diagonal matrix of self-energy pole locations ων (affinity part), and
mp is a vector of Dyson amplitudes mν p = m(ν)∗

p . Now, the diagonal spectral repre-
sentation can be replaced by the more general non-diagonal ADC form

Mpq(ω) = U†
p(ω1 − K − C)−1Uq (9.2)

where K + C is a constant hermitian matrix, referred to as ADC secular matrix,
and U p is a constant vector of ‘effective coupling’ matrix elements. The latter form
results from applying a general unitary transformation Q to Eq. (9.1), where

U p =Qmp

K + C =Q�Q† (9.3)

relate the Dyson amplitudes and self-energy poles to the corresponding quantities of
the ADC representation.

At this point, thematrix elements of K + C andU p are still unspecified. However,
we may suppose that the following perturbation expansions apply:

C =C(1) + C(2) + · · · (9.4)

U p =U (1)
p + U (2)

p + · · · (9.5)

Note that both expansions begin at first order. In the case of U p, this reflects the
fact that the perturbation expansion of Mpq(ω) begins at second order. The matrix
C begins at first order by definition, as the zeroth-order contribution to the ADC
secular matrix is represented by K . Obviously, K can be identified with �(0), which
allows us to specify K as the diagonal matrix of the HF energies of 2p-1h, 3p-2h,
. . . configurations of (N+1) electrons:

K jab, jab = −ε j + εa + εb

Ki jabc,i jabc = −εi − ε j + εa + εb + εc

... (9.6)

Here, i, j, . . . label occupied HF orbitals, while a, b, . . . refer to unoccupied ones.
The HF configurations allow one to designate also the expansion manifold under-
lying the effective interaction matrix (or ADC secular matrix) and the U vec-
tors. Let {I, J, . . . } ≡ { jab, a < b; i jabc, i < j, a < b < c; . . . } denote (N+1)-
electron HF configurations of successive 2p-1h, 3p-2h, . . . excitation classes
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(excluding the 1p class), then the secular matrix elements and U vector elements
may be written as CI J and UJ,p, respectively.

The ADC form (9.2) can be expanded in a formal perturbation series. For this
purpose, (ω1 − K − C)−1 is replaced with its geometric series,

Mpq(ω) =U†
p(ω1 − K − C)−1Uq

=U†
p(ω1 − K )−1

∞∑

n=0

{
C(ω1 − K )−1

}n
Uq (9.7)

and the perturbation expansions (9.4), (9.5) are used for C and U p (Uq ).
Now, we can formulate the ADC procedure as follows:

Compare the formal perturbation expansion of the ADC form (9.7) to the original
diagrammatic perturbation expansion for the self-energy part M+

pq(ω) through a
given order n of perturbation theory. Beginning at second order and proceeding to
higher order, this comparison allows one to determine successively the terms in the
expansions (9.4) and (9.5) of C and U p, respectively.

The procedure is best explained by actually performing it. Let us first consider
the trivial second-order case. The second-order ADC form, referred to as ADC(2),
reads

Mpq(ω) = U (1)†
p (ω1 − K )−1U (1)

q + O(3) (9.8)

which is to be compared with the second-order diagram for M (2)+
pq (ω) shown in

Fig. 8.8 (time-ordering t > t ′). The corresponding analytical expression, given by
the first term of Eq. (8.17), can be written as follows

M (2)+
pq (ω) =

∑

j,a<b

Vpj[ab]Vab[q j]
ω + ε j − εa − εb + iη

(9.9)

Comparing Eqs. (9.8) and (9.9) allows one to determine the first-order contribution
to Uq ,

U (1)
jab,q = Vab[q j] (9.10)

and confirm that
K jab, jab = −ε j + εa + εb (9.11)

Note that the infinitesimal +iη is not essential here; any pole in the time-orderings
contributing to M+(ω) is of the type (ω · · · + iη). Obviously, there are no contribu-
tions to C at the ADC(2) level.

The third-order or ADC(3) level is more interesting, as here the self-energy no
longer is a sum over simple poles. The ADC expansion through third order reads
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Mpq(ω) = U (1)†
p (ω1 − K )−1U (1)

q

+ U (2)†
p (ω1 − K )−1U (1)

q + U (1)†
p (ω1 − K )−1U (2)

q

+ U (1)†
p (ω1 − K )−1C(1)(ω1 − K )−1U (1)

q + O(4) (9.12)

The new quantities arising here, namely U (2)
p and C(1), are to be determined by com-

paring the second and third line with the diagrams for M (3)+
pq (ω). Before inspecting

the diagrams, let us note that, as in second order, the K denominators are restricted
to those of 2p-1h type. Accordingly, only the 2p-1h matrix elements of U (2)

p and

C(1) come into play at third order.
The two third-order diagrams T 1 and T 2, constituting M(3)(ω), are shown in

Fig. 8.9. Each three Goldstone diagrams (with t > t ′), shown in Fig. 8.10 for T 1,
contribute to the affinity part, M(3)+(ω). The diagrams T 1(1) and T 2(1) can directly
be compared to the third line in theADC expansion (9.12). Let us consider the T 1(1)
contribution,

T 1(1)pq =
∑

j,a<b

∑

j ′,a′<b′

Vpj[ab]
ω + ε j − εa − εb

δ j j ′Vab[a′b′]
Vqj ′[a′b′]

ω + ε′
j − ε′

a − ε′
b

(9.13)

where a superfluous
∑

j ′ δ j j ′ summation has been inserted for clarity. The comparison

with the ADC expression (third line of Eq.9.12) reproduces the U (1) expressions
already determined and yields the following contribution to C(1):

C (1)
jab, j ′a′b′ ← δ j j ′Vab[a′b′] (9.14)

In a similar way, the contribution of the T 2(1) diagram can be taken into account.
The final result can be written in the form

C (1)
jab, j ′a′b′ = δ j j ′Vab[a′b′] − (

δaa′Vj ′b[ jb′] + δbb′Vj ′a[ ja′]
) + (

a′ ↔ b′) (9.15)

Here, the 2p-1h configurations ( jab) and ( j ′a′b′) are restricted by requiring a < b
and a′ < b′; together with these restrictions, the form (9.15), being anti-symmetrized
with respect to the index pairs (ab) and (a′b′), is consistent with the diagrammatic
expressions.

To determine U (2)
jab,p, we may inspect the diagrams T 1(2) and T 2(2) conforming

to the third term in Eq. (9.12); diagrams T 1(3) and T 2(3) simply reproduce the
hermitian conjugate expression (second term of Eq. 9.12).
The analytic expression for T 1(2) reads

T 1(2)pq =
∑

j,a<b

Vpj[ab]
1

ω + ε j − εa − εb

1
2

∑

kl

Vab[kl]Vkl[q j]
εk + εl − εa − εb

(9.16)

from which the contribution to U (2)
jab,q is readily derived:
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U (2)
jab,q ← 1

2

∑

kl

Vab[kl]Vkl[q j]
εk + εl − εa − εb

(9.17)

Taking also T2(2) into account the full second-order contribution is obtained:

U (2)
jab,q = 1

2

∑

kl

Vab[kl]Vkl[q j]
εk + εl − εa − εb

+
(

∑

ck

Vac[k j]Vkb[qc]
εa + εc − ε j − εk

)
− (a ↔ b) (9.18)

To summarize, the ADC(3) secular matrix and U vectors read

(K + C) jab, j ′a′b′ = (−ε j + εa + εb)δ j j ′δaa′δbb′ + C (1)
jab, j ′a′b′ (9.19)

Ujab,q = U (1)
jab,q +U (2)

jab,q (9.20)

where C (1)
jab, j ′a′b′ is given by Eq. (9.15), and the first- and second-order contributions

to Ujab,q by Eqs. (9.10), (9.18). The explicit ADC(3) expressions for both M+(ω)

and M−(ω) are listed in AppendixA.9.
At the fourth-order level, the ADC procedure is already somewhat elaborate. A

comprehensive presentation has been given in Ref. [3], andwemay confine us here to
a brief sketch. There are 10 fourth-order Abrikosov diagrams shown in Fig. 9.1. Each
fourth-order diagram entails 24 time-orderings or Goldstone diagrams, so that there

1

Fig. 9.1 Fourth-order Feynman diagrams (in Abrikosov form) for the dynamic self-energy part
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are altogether 240 Goldstone diagrams, of which one half (120 diagrams) contributes
to M (4)+, the other half to M (4)−. For the ADC procedure, many of these diagrams
are redundant as they only recover ingredients already determined at the second- and
third-order level. To determine those ADC(4) contributions which arise for the first
time, it suffices to inspect a subset of certain key diagrams.

While the ADC(2) and ADC(3) configuration space for M+(ω) was spanned by
the 2p-1h excitations, the next higher excitation class, 3p-2h, comes explicitly into
play at the fourth-order level. The ADC(4) expansions are of the structure

C jab, j ′a′b′ = C (1)
jab, j ′a′b′ + C (2)

jab, j ′a′b′ (9.21)

C jab,i ′ j ′a′b′c′ = C (1)
jab,i ′ j ′a′b′c′ (9.22)

Ci jabc,i ′ j ′a′b′c′ = 0 (9.23)

and

Ujab,q = U (1)
jab,q +U (2)

jab,q +U (3)
jab,q (9.24)

Ui jabc,q = U (2)
i jabc,q (9.25)

Here, the underlined contributions are those to be determined at the fourth-order
level. Note that the 3p-2h components of the U vectors are of second order. There is
a first-order 2p-1h/3p-2h coupling block of the C matrix, while the 3p-2h diagonal
block of C vanishes. The 3p-2h diagonal block of the ADC(4) secular matrix, being
of zeroth order, is given by

Ki jabc,i ′ j ′a′b′c′ = (−εi − ε j + εa + εb + εc)δi i ′δ j j ′δaa′δbb′δcc′ (9.26)

For the explicit ADC(4) expressions, the reader is referred to Ref. [3].

9.2 Dyson-ADC Secular Equations

In the preceding section, we have seen how theADC procedure can be used to derive
in a systematic way higher-order approximations to the ADC secular matrix K + C
and the matrix of U vectors. To generate an explicit representation of the dynamic
self-energy part to be employed in theDyson equation, the respectiveADC(n) secular
problem has to be solved. Alternatively, the ADC secular quantities can directly be
incorporated into a common Dyson-ADC secular matrix. This will be discussed in
the following.

For a given ADC secular matrix K + C and matrix of U vectors, the dynamic
self-energy in the form of Eq. (9.1) is obtained via diagonalization according to
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(K + C)Y = Y�, Y †Y = 1 (9.27)

Here, � is the diagonal matrix of the poles of M(ω), and Y is the matrix of eigen-
vectors Y n . The Dyson amplitudes are given by

mnp = Y †
nU p (9.28)

which may be written in a compact matrix notation as

m = Y †U (9.29)

As the comparison with Eq. (9.3) shows, the eigenvector matrix Y can be identified
with the unitary transformation, Q = Y , that relates the diagonal (spectral represen-
tation) form (9.1) to the non-diagonal ADC form (9.2).

The Dyson equation can then be solved as described in Sect. 8.3 by diagonalizing
the Dyson secular matrix (8.49)

A =
⎛

⎝
ε + �(∞) m−† m+†

m− �− 0
m+ 0 �+

⎞

⎠ (9.30)

and expressing the electron propagator according to Eq. (8.50),

G(ω) = (ω1 − A)−1|11 (9.31)

Here, the energies �±
n and Dyson amplitudes m±

p are obtained from the respective
ADC approximation for M±(ω).

Rather than using the two-step approach described above, the ADC and Dyson
eigenvalue problems can be combined into the eigenvalue problem of a common
Dyson-ADC secular matrix B, being of the form

B =
⎛

⎝
ε + �(∞) U−† U+†

U− K− + C− 0
U+ 0 K+ + C+

⎞

⎠ (9.32)

The electron propagator is given by the 11-block of (ω1 − B)−1,

G(ω) = (ω1 − B)−1|11 (9.33)

Again, this can be seen by comparing Eqs. (8.44), (9.2) with the partitioning formu-
las (A1.26), (A1.27). Accordingly, Eq. (9.33) can be written as

G(ω) = X(ω1 − E)−1X†|11 (9.34)
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in terms of the eigenvalue and eigenvector matrices of B:

BX = XE, X†X = 1 (9.35)

Here, E and X denote the diagonal matrix of eigenvalues and the eigenvector matrix,
respectively. The obvious advantage of the Dyson-ADC secular matrix B is that one
can directly compute selected ionization energies, In = −En , or electron affinities,
Am = −Em , using iterative matrix diagonalization routines such as the Davidson [4]
or Lanczos [5, 6] methods. It should be noted, however, that the desired roots, e.g.,
for the energetically lowest ionization energies, lie in the middle of the eigenvalue
spectrum of B, which complicates the use of iterative diagonalization techniques.

As we have argued in Sect. 8.2, the static part �(∞) of the self-energy entering
the Dyson-ADC secular matrix in the 1p/1h block should be chosen to be consistent
with the respective approximation scheme employed for the dynamical self-energy
part M(ω). A practical method to determine �(∞) for an ADC representation of
M(ω) is presented in AppendixA.5.

The structure of the B matrix at the ADC(3) level is shown in Fig. 9.2. The
explicit configuration space comprises the 1h and 2h-1p configurations of N−1
particles, and the 1p and 2p-1h configurations of N+1 particles. The perturbation
expansions of the U± vector elements extend to second order, U (1,2) = U (1) + U (2),
while the C± matrix blocks are confined to first order. At the fourth-order level,
the explicit configuration spaces extend to the 3h-2p and 3p-2h configurations. The
required perturbation expansions of the secular matrix elements are of the form of
Eqs. (9.21)–(9.25).

Fig. 9.2 Structure of the
Dyson secular matrix B at
the ADC(3) level

1h/1 ε + Σ (∞ ) U−(1,2)† U+(1,2)†

U −(1,2)
K−+ C

−(1) 0

U+(1,2) 0 K++ C+(1)

2h-1p

2h-1p

p

1h/1p

2p -1h

2p -1h
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Let us state some general properties of the Dyson-ADC approximation schemes
for the electron propagator.

1. Infinite partial summation: The ADC(n) approximation (in the form of the
Dyson-ADC secular problem) represents an infinite partial summation of the
diagrammatic perturbation expansion, being complete through order n of pertur-
bation theory. The ionization energies (electron affinities) of 1h (1p) main states
are treated consistently through order n.

2. Diagonalization and perturbation theory: The resulting computational method
combines the eigenvalue problem (diagonalisation) of a hermitian secular matrix
with (finite) perturbation expansions of the secular matrix elements.

3. Regularity: With respect to convergence, the PT expansions of the secular matrix
elements behave essentially like the RSPT expansion of the ground-state energy.
The energy denominators are of the type

ν × εvir t − ν × εocc ≥ ν �ε, ν = 1, 2, . . . (9.36)

where �ε is the energy gap between occupied and virtual HF orbitals. There are
no “dangerous” denominators (with small or even zero absolute values) provided
the energy gap is sufficiently large. This is referred to as the regularity of the PT
expansions of the secular matrix elements.

4. Compact configuration spaces: At the second-order level, the explicit configura-
tion space of theDyson-ADC secularmatrix comprises the 1h/1p and 2h-1p/2p-
1h configurations. At each even order n = 4, 6, . . . , the explicit configuration
space grows by the next higher class of (N−1)- and (N+1)-electron configura-
tions. Accordingly, for the order levels n = 2m and n = 2m + 1,m = 1, 2, . . . ,
the explicit configuration space comprises the classes 1h, . . . , (m+1)h-mp and
1p, . . . , (m+1)p-mh.

5. Size-consistency: The Dyson-ADC approach is size-consistent. For a system S
consisting of two separated fragments A and B, the results obtained for a “local”
ionization, say, on fragment A, do not depend on whether the method is applied
to S or to fragment A. As is well known, this does not apply to the CI treatment
based on restricted (as opposed to full) CI expansions (see Sect. 12.3).

As a consequence of the compactness property, the ADC(n) configuration spaces
are smaller (more compact) than those of comparable CI expansions. The consis-
tent treatment of 1h main states through second (and third order) requires the CI
expansions to extend through the 3h-2p configurations. By contrast, the ADC(2)
(and ADC(3)) configuration spaces are restricted to the 2h-1p configurations of
N−1 particles, but also comprise the 2h-1p configurations of N+1 particles. With
increasing order n, the CI expansions required for a consistent treatment grow twice
as fast as their ADC counterparts: At each even order two further excitation classes
rather than one have to be taken into account (see Table9.1). For example, at the
fourth-order level, the 1h, 2h-1p, . . . , 5h-4p CI expansion is contrasted with the
ADC(4) configuration space spanned by the 1h/1p, 2h-1p/2p-1h, and 3h-2p/3p-
2h configurations.
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Table 9.1 ADC and CI configuration spaces required for a consistent treatment of 1h main state
ionization energies through increasing order n

n ADC CI

0,1 1h/1p 1h

2,3 1h,2h-1p/1p, 2p-1h 1h,2h-1p, 3h-2p

4,5 1h,2h-1p, 3h-2p/1p, 2p-1h, 3p-2h 1h,2h-1p,…,5h-4p
.
.
.

.

.

.
.
.
.

An alternative way of formulating the compactness property is based on the
inspection of truncation error orders (TEO). When the ADC configuration space
is truncated after the excitation class m, that is, the mh-(m−1)p and mp-(m−1)h
configurations of N−1 and N+1 particles, respectively, the error in the 1h (or 1p)
main state ionization energies is of the order 2m. For example, truncation after the
2h-1p/2p-1h configurations (m = 2) results in a fourth-order error in the 1h (and
1p) main states. The correspondingTEO in theCI expansions is only 2, reflecting the
fact that the 1h/3h-2p coupling is of first order, which means their omission causes
a second-order error in the 1h main state ionization energies.

So far the compactness property has only been stated but not justified. At the
diagrammatic level, a rationalization is as follows. According to the ADC analysis,
the second-order diagram for M(ω) (Fig. 8.7) corresponds to the 2h-1p and 2p-1h
configurations (cf. the energy denominators in the analytical expressions). The next
higher class, that is, 3h-2p (and 3p-2h) configurations can appear upon a (1–3)-
branching of one of the three free fermion lines in the second-order diagram (see the
paragraph ‘Systematic construction of Abrikosov diagrams’ in Sect. 6.3). In order to
obtain a valid diagram, the (1–3)-branchingmust be accompanied by a corresponding
(3–1)-junction. Since both the branching and junction are first-order constituents
(having one interaction dot each), real 3h-2p/3p-2h denominators can occur only
in fourth- and higher-order diagrams. Obviously, this finding can be generalized:
It takes two additional orders to install the next higher configuration class in the
diagrams. Stated differently,mh-(m−1)p andmp-(m−1)p configurations enter the
explicit ADC configuration space at the level of order 2m − 2.

A more general justification of the compactness property can be inferred from
the spectral representation (3.17) of the electron propagator. Let us consider the
(N−1)-electron part,

G−
pq(ω) =

∑

n

〈�0|c†q |�N−1
n 〉〈�N−1

n |cp|�0〉
ω + EN−1

n − E0 − iη
(9.37)
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The exact (N−1)-electron states |�N−1
n 〉 can be classified according to their descent

from CI configuration classes, mh-(m− 1)p,m = 1, . . . . We will denote the excita-
tion class of |�N−1

n 〉 by [n], that is, [n] = μ if |�N−1
n 〉 derives from a μh-(μ − 1)p CI

configuration. The amplitude 〈�N−1
n |cp|�0〉 fulfills the following remarkable order

relation [3, 7, 8]:
〈�N−1

n |cp|�0〉 ∼ O([n] − 1) (9.38)

This means that the lowest non-vanishing term in the perturbation expansion of the
amplitude is of the order [n] − 1. Now, we may ask at which order states of class [n]
will appear in the (diagrammatic) perturbation expansion of the electron propagator.
Using the order relation (9.38), and the fact that the energy denominators on the right-
hand side of (9.37) always begin at zeroth order, that is, in the form ω + εa + · · · −
εk . . . , the answer is 2[n] − 2, which is in agreement with the diagrammatic argument
outlined above. A completely analogous reasoning applies to the (N + 1)-electron
states.

The size-consistency of the ADC(n) approximations is a consequence of the dia-
grammatic perturbation theory, more specifically, the linked-cluster theorem. The
Feynman diagrams constituting the electron propagator or the self-energy part are
locally correct. Let us again inspect the case of separate fragments. If a diagram
begins with a local free fermion line, associated, for example, with a one-particle
state of fragment A, then the entire diagram pertains to fragment A, because any part
of the diagram is ultimately linked to the initial free fermion line and the interac-
tion dots (or interaction lines) can have only fragment-A entries due to the separate
fragment model (which implies that interaction points with both fragment-A and
fragment-B entries vanish). The separation of the diagrams into subsets of A- and
B-type is reflected in a corresponding separation of the ADC secular matrices. We
will come back to the size-consistency of the ADC approximations in Chap.12.

Exercises

9.1 Apply the systematic construction of Abrikosov diagrams discussed in Sect. 6.3
to the self-energy diagrams and verify that Fig. 9.1 shows all fourth-order dia-
grams for M(ω).

9.2 Use the matrix representation of self-energy diagrams (Exercise 8.4) to generate
the fourth-order diagrams for M(ω).

9.3 Redraw the diagrams 3–5 in Fig. 9.1 with the order of the two inner vertices
inverted. Apply the same procedure to diagram8.Discuss the finding for diagram
8 with regard to the rule (A5) for Abrikosov diagrams (Sect. 6.3).

9.4 Use RSPT for the (N−1)-electron state |�abjkl〉 deriving from c†ac
†
bc j ckcl |�0〉

and verify that the matrix element 〈�abjkl |cp|�0〉 vanishes in first order.
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Chapter 10
Direct ADC Procedure for the Electron
Propagator

In the precedingChap.9, the algebraic–diagrammatic construction (ADC) was estab-
lished as a procedure to derive systematically higher-order approximations to the
M+(ω) and M−(ω) parts of the dynamical self-energy M(ω). The respective ADC
matrices could then be incorporated within a common Dyson secular matrix allow-
ing one to solve the Dyson equation in the form of a hermitian eigenvalue problem.
As a characteristic feature, the Dyson approach combines the (N−1)- and (N+1)-
particle problems as parts of a common computational scheme. TheADC procedure,
however, is quite general and can be applied to the electron propagator as well, more
precisely, to the G−(ω) or G+(ω) parts. Such a direct ADC approach, described
in this chapter, avoids the Dyson equation altogether and leads to separate ADC
schemes for the (N−1)- and (N+1)-particle problems. The obvious advantage of
these direct or non-Dyson schemes is the smaller size of the secular problem, being
roughly half the size of a comparable Dyson formulation. Moreover, the lowest ion-
ization energies (or electron affinities) are at the edge of the eigenvalue spectrum
(and not in the middle of the joint (N ± 1)-particle energy spectrum). The price
to be paid here is a higher complexity in the PT expansions of the secular matrix
elements, which, however, is workable through the third-order ADC(3) level.

10.1 ADC Representation of G−(ω)

The directADC procedures for the (N ± 1)-parts of the electron propagator are com-
pletely analogous, and we shall confine ourselves to the G−(ω) part in the following.
As discussed in Sect. 3.1, the (N−1)-particle part of the electron propagator can be
written in the form of Eq. (3.25),

G−
pq(ω) =

〈
Ψ0|c†q(ω + Ĥ − E0 − iη)−1cp|Ψ0

〉
(10.1)
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that is, as matrix elements of the generalized resolvent operator (ω + Ĥ − E0 −
iη)−1. Inserting the resolution of the identity in terms of the exact (N−1)-electron
states,

1̂ =
∑

|Ψ N−1
n 〉〈Ψ N−1

n | (10.2)

before and after the resolvent operator on the right-hand side yields the spectral
representation

G−
pq(ω) =

∑
n

x (n)
p x (n)∗

q

ω − ωn − iη
(10.3)

where
ωn = −In = E0 − EN−1

n (10.4)

and
x (n)
p = 〈Ψ N−1

n |cp|Ψ0〉 (10.5)

are the negative ionization energies and spectroscopic factors, respectively. The
infinitesimal−iη in the denominator no longer is essential and will be omitted in the
following. Using a compact matrix notation, the spectral representation (10.3) can
be written as

G−(ω) = x(ω1 − �)−1x† (10.6)

where � is the diagonal matrix of negative ionization energies, and x is the matrix
of elements xpn = x (n)

p .
For a convenient notation, we introduce the transposed matrix

G̃(ω) = G−(ω)t = x̃†(ω1 − �)−1 x̃ (10.7)

where x̃ is the transpose of x, that is, x̃np = x (n)
p . In a similar way as in Sect. 9.1,

the diagonal spectral representation (10.7) can be transformed into the non-diagonal
ADC representation

G̃(ω) = f †(ω − K − C)−1 f (10.8)

bymeans of a general unitary transformation yet to be determined (see Eq.9.3). In the
present case, the transformation can bemade physically more explicit by supposing a
complete set of so-called intermediate states, |Ψ̃ N−1

I 〉, mediating between the exact
energy eigenstates and the (N−1)-electron HF (or CI) configurations. Indicative of
the latter connection, the capital letter indices refer to HF configurations,

{I, J, . . . } = {k; akl, k < l; abjkl, a < b, j < k < l; . . . } (10.9)

classified as 1h, 2h-1p, 3h-2p, . . . , configurations. As before, the indices a, b, c, . . .
and i, j, k, . . . denote unoccupied (virtual) and occupied orbitals, respectively, with
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regard to the HF ground state. In the following, the designation N−1 in the notation
of the intermediate states will be skipped, as the affiliation with (N−1)-electron
states can be inferred from the configuration indices I, J, . . . . In Chap.11, a direct
construction of the intermediate states will be presented. For the present purpose,
though, it suffices to suppose just the existence of such states, dispensing with the
need for further specification.

Analogously to the spectral representation, the ADC form (10.8) can be obtained
by using in Eq. (10.1) the resolution of the identity

1̂ =
∑

|Ψ̃I 〉〈Ψ̃I | (10.10)

in terms of the intermediate states. This allows us to define the ADC secular matrix
K + C and the matrix f of “effective” transition amplitudes as representations with
respect to the (so far hypothetical) intermediate states:

(K + C)I J = −〈Ψ̃I Ĥ − E0Ψ̃J 〉
f Iq = 〈Ψ̃I |cq |Ψ0〉 (10.11)

In the ensuing Sect. 10.2, we discuss how the ADC matrices K + C and f can
successively be derived from the diagrammatic perturbation expansion for the
electron propagator part G−(ω).

Let us assume that theADCprocedure has provided approximate (or exact) expres-
sions for K + C and f . Then, the adc secular equations,

(K + C)X = X�, X†X = 1 (10.12)

allow one to derive the physical information of interest. Here X denotes the matrix
of eigenvectors and � is the diagonal matrix of eigenvalues ωn , to be identified
with the negative ionization energies, ωn = −In . The spectroscopic factors, x (n)

p , are
obtained from the scalar product of the nth eigenvector and the respective columns
of the matrix f :

x (n)
p =

∑
J

X∗
Jn f J p (10.13)

The eigenvector components can be viewed as the expansion coefficients

XJn = 〈Ψ̃J |Ψ N−1
n 〉 (10.14)

of the exact (or approximate) energy eigenstates written as linear combinations of
the hypothetical intermediate states.
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10.2 Explicit ADC Procedure Through Second Order

So far the ADC form (10.8) is merely a formal construct yet to be related to the
diagrammatic perturbation expansion of G−(ω). To this end, one may expand the
ADC form in a (still formal) perturbation series supposing the sameMP partitioning
of the hamiltonian as in the diagrammatic expansion of the electron propagator. Both
the ADC secular matrix and the f matrix are subject to perturbation expansions

K + C = K + C(1) + C(2) + C(3) + . . . (10.15)

f = f (0) + f (1) + f (2) + . . . (10.16)

Here K denotes the zeroth-order part of the secular matrix, that is, the diagonal
matrix of (negative) HF ionization energies,

Kkk =εk

Kakl,akl =εk + εl − εa

... (10.17)

The partitioning of the ADC matrix into a zeroth-order part K and a remainder C
allows one to expand the resolvent matrix (ω − K − C)−1 as a geometric series,

G̃(ω) = f †(ω − K − C)−1 f = f † (ω − K )−1
∞∑

ν=0

(
C

ω − K

)ν

f (10.18)

Together with the PT expansions for C and f , this establishes the formalADC series
for G̃(ω).

TheADC expansion can further be specified by considering the block structure of
theADCmatrices associatedwith the partitioning of the configurations J into classes
μ = 1, 2, 3, . . . of 1h, 2h-1p, 3h-2p, . . . excitations. The respective matrix blocks
will be denoted by Kμ, Cμμ′ , and f μ, where μ denotes the class of μh-(μ − 1)p
excitations. The f μ matrix blocks may be distinguished further according to the
second matrix index, f Iq , as particle (nq = 1) or hole terms (nq = 1).

The ADC expansion (10.18) is to be compared with the diagrammatic PT expan-
sion for G−(ω). According to Chap.7, the latter is constituted directly from the class
of time-ordered (Goldstone) diagrams with t < t ′. As an instructive demonstration,
let us perform the ADC procedure for G−(ω) through second order of PT.

Zeroth Order:
The zeroth-order ADC matrix

G̃
(0)

(ω) = f (0)†(ω − K )−1 f (0) (10.19)

is to be compared with the explicit zeroth-order expression



10.2 Explicit ADC Procedure Through Second Order 151

G̃(0)
pq (ω) = δpq(ω − εp)

−1np

This shows that all blocks f (0)
μ vanish except for μ = 1,

f (0)
μ = 0, for μ > 1 (10.20)

and f (0)
1 is given by

f (0)
pq = δpqn p (10.21)

First Order:

Since f (0)
1 is the only non-vanishing zeroth-order block of f , the first-order ADC

form can be written more specifically as

G̃
(1)

(ω) = f (1)†
1 (ω − K 1)

−1 f (0)
1 + h.c.

+ f (0)†
1 (ω − K 1)

−1C(1)
11 (ω − K 1)

−1 f (0)
1 (10.22)

displaying the matrix blocks f (1)
1 and C(1)

11 as new constituents. The formal ADC
expression is to be compared to the (vanishing) first-order propagator contribution,
G(1)−(ω) = 0, (see Sect. 6.2), which gives

C(1)
11 = 0

f (1)
1 = 0 (10.23)

Second Order:

In second order, the ADC expansion takes on the form

G̃
(2)

(ω) = f (2)
1

†
(ω − K 1)

−1 f (0)
1 + h.c. (a)

+ f (0)
1

†
(ω − K 1)

−1C(2)
11 (ω − K 1)

−1 f (0)
1 (b)

+ f (1)
2

†
(ω − K 2)

−1 f (1)
2 + . . . (c)

+ f (0)
1

†
(ω − K 1)

−1C(1)
12 (ω − K 2)

−1C (1)
21 (ω − K 1)

−1 f (0)
1 + . . . (d)

+ f (0)
1

†
(ω − K 1)

−1C(1)
12 (ω − K 2)

−1 f (1)
2 + · · · + h.c. (e)

(10.24)

Here the findings (10.20), (10.23) from the zeroth- and first-order levels have already
been taken into account. The dots in lines (c), (d), and (e) indicate terms with higher

block indicesμ, e.g., f (1)
μ

†
(ω − Kμ)

−1 f (1)
μ ,μ > 2, in line (c). Anticipating the result

of the comparison with the second-order diagrams, none of the latter terms, having
(ω − Kμ)

−1 denominators, μ > 2, are retrieved in the diagrams, which means that
the quantities f (1)

μ vanish for μ > 2,
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f (1)
μ = 0, C(1)

1μ = 0 for μ > 2 (10.25)

and need no longer be considered in second and higher order.
The non-vanishing ADC terms, to be determined by the comparison with the

second-order diagrams, are f (2)
1 , f (1)

2 , C(1)
12 , and C(2)

11 . As discussed in Chap.7, there
are each 12 second-order Goldstone diagrams contributing to G+(ω) and G−(ω),
respectively. The diagrams for G+(ω) are shown in Fig. 7.3; the diagrams for G−(ω)

are obtained by simply turning those of Fig. (7.3) upside down; corresponding to the
numbering (1)–(12) in Fig. 7.3, we use the denotations (1), . . . , (12) for the upside-
down diagrams. Obviously, the diagrams (1)−(6), (11), and (12) can directly be
assigned to individual terms in the ADC expansion (10.24), namely (1) to (d); (2),
(3) to (e); (4) to (c); (5), (6), (11), (12) to (a). Here, the derivation of theADC terms
from the diagrammatic expressions is straightforward. As an example, let us consider
diagram (3). This diagram can directly be identified with the ADC contribution (e),
while the hermitian conjugate term relates to diagram (2). Exchanging the indices
p and q to be consistent with G̃ pq the diagrammatic expression for (3) reads

Ã(2,3)
pq (ω) = − 1

ω − εp

∑
a,i< j

Vi j[pa]
ω − εi − ε j + εa

Vqa[i j]
εq + εa − εi − ε j

n pnq (10.26)

Here, again, the infinitesimal −iη in the ω-denominators has been omitted. The
comparison of Eq. (10.26) and the ADC expression (e) of Eq. (10.24) allows us to
determine the first-order contributions to the ADC matrix blocks C12 and f 2:

C (1)
p,akl = −Vkl[pa] np (10.27)

f (1)
akl,q = Vqa[kl]

εq + εa − εk − εl
nq (10.28)

It should be noted that only the relative sign of the C(1)
12 and f (1)

2 matrix elements
can be extracted from diagram (3); the absolute signs can be chosen consistently,
herewith fixing the absolute sign of the entire C12 and f 2 matrix blocks. Obviously,
C(1)

12 and f (1)
2 could have been derived as well by equating the diagrams (1) and (4)

with the terms (d) and (c), respectively. This redundancy can, of course, be used for
checking the results in various ways.

Note that the f (2)
1 contributions deriving from comparing term (a) with the dia-

grams (11), (12) (or the h.c. part with (5), (6)) are of particle type, nq = 1.
The remaining four diagrams (7)−(10) need special consideration since they do

not individually match any of the ADC terms. Moreover, each diagram introduces
ω5-denominators, that is, denominators of the type (ω + εa + εb − εi − ε j − εk)

−1

as there are cuts between successive vertices crossed by two particle and three hole
lines (plus the ω-line). This seems to bring into play the 3h-2p configurations of
class μ = 3. However, when all four diagrams are combined, the ω5-denominators
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cancel, and the resulting expressions can be assigned to the ADC terms (a) and (b),
as will be shown in the following.

The diagrams (7)−(10) differ only in their denominator products so that they can
be combined according to

(7) + (8) + (9) + (10)
∣∣
pq = − 1

2

∑
a,b, j

Vab[pj]Vqj[ab]X(pqabj)npnq (10.29)

where X(pqabj) is the sum of the four denominator products arising in the diagrams
(7)−(10):

X(pqabj) =ω−1
5 (ω − εp)

−1(ω − εq)
−1+

ω−1
5 (ω − εq)

−1(εa + εb − εq − ε j )
−1+

ω−1
5 (ω − εp)

−1(εa + εb − εp − ε j )
−1+

ω−1
5 (εa + εb − εp − ε j )

−1(εa + εb − εq − ε j )
−1

Here, we use the abbreviation

ω5 = ω − εp − εq − ε j + εa + εb

for the common (3h-2p)-typedenominator.As the following small calculation shows,
ω5 is cancelled in the denominator and rather re-appears in the numerator:

X(pqabj) = ω−1
5

[
(ω − εp)

−1 + (εa + εb − εq − ε j )
−1

] [
(ω − εq )

−1 + (εa + εb − εp − ε j )
−1

]

= ω5 (ω − εp)
−1(ω − εq )

−1(εa + εb − εp − ε j )
−1(εa + εb − εq − ε j )

−1

Now, we may slightly rewrite ω5,

ω5 = 1
2 (ω − εp) + 1

2 (ω − εq) + (εa + εb − ε j − 1
2 εp − 1

2 εq)

so that X(pqabj) splits into three terms,

X(pqabj) = 1

ω − εp

1

ω − εq

εa + εb − ε j − 1
2 (εp + εq)

(εa + εb − εp − ε j )(εa + εb − εq − ε j )

+
(

1

ω − εp
+ 1

ω − εq

)
1
2 (εa + εb − εp − ε j )

−1(εa + εb − εq − ε j )
−1

Using this result in the full diagrammatic expression, (10.29) leads to a corresponding
tripartite form fitting naturally in the ADC expansion (10.24). Here, the contribution
featuring a product of poles,
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np

ω − εp

⎧
⎨
⎩− 1

2

∑
a,b, j

Vab[pj]Vqj[ab]
εa + εb − ε j − 1

2 (εp + εq)

(εa + εb − εp − ε j )(εa + εb − εq − ε j )

⎫
⎬
⎭

nq
ω − εq

corresponds to the ADC term (b), allowing us to derive the matrix elements of C(2)
11 :

C (2)
pq = 1

2

∑
a,b, j

vabpjvq jab(εa + εb − ε j − 1
2 εp − 1

2 εq), np = nq = 1 (10.30)

where the short notation

vrsuw = Vrs[uw]
εr + εs − εu − εw

(10.31)

is used here and in the following.
Similarly, the two one-pole contributions match the ADC term (a) and its hermi-

tian conjugate, supplying the matrix elements of f (2)
1 :

f (2)
pq = 1

4

∑
a,b, j

vabpjvq jab nq (10.32)

According to the restriction nq = 1, this is a contribution to the hole part of f (2)
1 .

Here a remark is appropriate. While the allocation of contributions to C(2)
11 and

f (2)
1 follows from the diagrammatic expressions in a natural way, it can be modified,

to a certain extent, by obvious algebraic manipulations. Consider a contribution to
the ADC term (b) of the form

1

ω − εp
z pq

1

ω − εq
, np = nq = 1, p �= q

where z pq can be seen as contributing to C (2)
pq . Now, we may apply partial fraction

decomposition to the pole product yielding

1

ω − εp
z pq

1

ω − εq
= 1

ω − εp

z pq
εp − εq

+ 1

ω − εq

z pq
εq − εp

The form on the right-hand side matches the ADC terms (a) and the hermitian
conjugate, and, as a consequence, now a contribution

f̃ pq = z pq
εp − εq

can be allocated to the hole part of the f 1 matrix. Note that the new f 1h contribution
is anti-hermitian, f̃ pq = − f̃ ∗

qp. This shows that the off-diagonal matrix elements of
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C11 (or parts thereof) could be transferred into f 1h , resulting ultimately in a diagonal
C11 matrix. While such a transfer from C contributions to f is formally possible, it
does not lead to viable computational schemes, as is indicated by the “dangerous”
denominator (εp − εq)

−1 in f̃ pq . Inversely, any anti-hermitian contributions in f pq
can be transferred into the off-diagonalmatrix elementsCpq andCqp ofC11. A unique
definition of both C11 and f 1h can be obtained by requiring that f 1h is hermitian.

At the third-order ADC level, the three diagrams T 1, T 2, and T 3 shown in
Fig. 6.8 have to be considered. Each diagram gives rise to 120 time-ordered (Gold-
stone) diagrams of which 60 contribute to G−(ω). The full ADC analysis has been
given in Ref. [1], and we may confine ourselves to a few remarks. Due to their topo-
logical similarity, the treatment of the T 1 and T 2 Goldstone manifolds is largely
analogous. Many of the 60 time-orderings are redundant for the ADC procedure as
they repeat only terms already established at second and first order. Accordingly,
it suffices to focus on certain key diagrams. The T 3 diagrams can be treated in a
closed analytical way, without the need to spell out the 60 time-orderings. The ADC
contributions coming into play at the third-order level are C(3)

11 ,C(2)
12 ,C(1)

22 in the sec-
ular matrix, and f (3)

1 , f (2)
2 in the spectroscopic amplitudes. The explicit ADC(3)

expressions are listed in AppendixA.9.

10.3 Properties of the non-Dyson ADC Schemes

The ADC procedure for the ionization part G−(ω) of the electron propagator as
outlined in the previous section leads to direct (or non-Dyson) ADC schemes for the
computation of ionization energies and spectroscopic amplitudes. In Fig. 10.1, the
structure of the second- and third-order ADC matrices is displayed. In both cases,
the configuration space is spanned by the 1h and 2h-1p configurations. The secular
matrix elements read

(K + C)kl = εkδkl +
∑
a<b, j

vabk jvl jab(εa + εb − ε j − 1
2 εk − 1

2 εl) + [C (3)
kl ]

Ck,ak ′l ′ = −Vk ′l ′[ka] + [C (2)
k,ak ′l ′ ]

(K + C)akl,a′k ′l ′ = (−εa + εk + εl)δaa′δkk ′δll ′ + [C (1)
akl,a′k ′l ′ ] (10.33)

where the ADC(2) scheme is constituted by the explicit expressions, while the terms
in brackets are surrogates for the additions needed at the ADC(3) level. In a similar
way, the ADC expressions for the transition amplitudes can be written as
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Fig. 10.1 Structure of the
ADC matrices K + C and f
in second and third order

1h 2h -1p

1h K1 + C
(2,3)
11 C

(1,2)
12

2h -1p C
(1,2)
21 K2 +C

(1)
22

f
(0,2,3)
1

f
(1,2)
2

fk j = δk j + 1
2

∑
a<b,i

vabkiv j iab + [ f (3)
k j ]

fka = 1

εa − εk
(
∑
b<c, j

vbck j Vaj[bc] −
∑
b,i< j

vab[i j]Vi j[kb]) + [ f (3)
ka ]

fakl,q = vqakl nq + [ f (2)
akl,qnq ] (10.34)

Note that we here distinguish the hole part (first line) and the particle part (second
line) of f 1. In the f 2 block (third line), there are particle contributions only.

The general properties attributed to the Dyson-ADC approach in Sect. 9.2 also
characterize the direct ADC schemes established in this chapter. Let us recall the
essential features:

– Via theADC form (10.8), one can derive in a systematic way higher-order approx-
imations (ADC(n) schemes) representing infinite partial summations of the dia-
grammatic PT expansion of G−(ω) (or likewise G+(ω)) being consistent through
order n.

– In the resulting computational scheme (cf. Eq. 10.12), the ionization energies are
obtained as the negative eigenvalues of a hermitian secular ADCmatrix, while the
spectroscopic factors derive from the corresponding eigenvectors together with
the ADC transition amplitudes (cf. Eq. 10.13).

– The direct ADC computational schemes combine diagonalization of a hermitian
secularmatrixwith regular perturbation expansionsof the secularmatrix elements.
At the ADC(n) level, the explicit configuration space comprises the excitations of
N−1 electrons (N+1 electrons) through the class μ = n/2 + 1 for even n and
μ = (n + 1)/2 for odd n. This compactness of the explicit configuration spaces
is reflected by a correspondingly high order of the truncation error: For the 1h
ionization energies (or 1p attachment energies), the error due to the truncation of
the configuration space at classμ is of the PT order 2μ. In theADC(2) andADC(3)
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schemes, for example, the error caused by omitting the 3h-2p and higher excited
configurations is of fourth order.

– Finally, the direct ADC(n) schemes are size-consistent, which is an indispensable
requirement in applications to larger molecules.

The justification of both the compactness and size-consistency properties, as given in
Sect. 9.2 for theDyson-ADC approach,was basedondiagrammatic arguments.While
the latter apply here as well, the non-Dyson ADC variant allows for an alternative,
more stringent formulation. Here, the key is that the direct ADC secular matrix can
be identified as the representation of the (subtracted) hamiltonian with respect to
a specific set of intermediate states presented in the following Chap.11. The basic
features of that intermediate state representation (ISR), ensuring the compactness
and size-consistency of the ISR-ADC(n) computational schemes, will be addressed
in Chap.12.

It is instructive to compare the direct ADC scheme to the Dyson-ADC version
presented in Chap.9 at the lowest non-trivial, that is, second-order level. The matrix
K + C of the direct scheme (Eq.10.33) can be largely retrieved in the (N−1)-
electron parts of the Dyson secular matrix B (Eq. 9.32). For example, the coupling

block C(1)
21 can be identified with the corresponding matrix elements of U (1)−. The

notable difference arises in the 1h diagonal block, where the C(2)
11 second-order

contributions are absent in B11 (the PT expansion of�(∞) begins in third order). The
counterpart to the C(2)

11 contribution is effected in the Dyson scheme by the coupling
of the 1h configurations via U+ to the 2p-1h configurations of N+1 electrons.
This can be put on a more rigorous foundation by applying a QDPT-type procedure
(quasi-degenerate perturbation theory [2]) to the 1h/2p-1h coupling in B.

An important indicator of the efficiency of a computational method is the scaling
of the computing effort with the size of the system or, more specifically, with the
number m of the one-particle basis states (molecular orbitals) entering the computa-
tion. At theADC(2) level for example, the construction of the C11 block scales asm5,
as there are m2 matrix elements, each requiring m3 integral multiplications. (Obvi-
ously, a more refined scaling expression could have been obtained by distinguishing
occupied and virtual orbitals.) The matrix-times-vector step in an iterative diagonal-
ization procedure scales asm4, as there arem4 non-vanishing secularmatrix elements
(arising in the C12 block). This would mean that the overall scaling behaviour of the
ADC(2) scheme is m5. Actually, the overall scaling can be reduced to m4 by using
the so-called direct diagonalization procedure, in which, rather than computing and
storing the secular matrix, the matrix elements are computed (and re-computed) “on
the fly” as needed in the matrix-vector product cycles. This allows one to form suit-
able intermediates, thereby reducing the computational cost (see Exercise10.4). The
corresponding scaling of the ADC(3) scheme is m5.

The computational performance of the direct third-order ADC scheme has been
examined in model applications [3] to a series of small molecules, allowing for
the comparison with full CI results. As expected, there is good mutual agreement
between the results obtained using the direct and the Dyson-ADC variants. For the
ionization energies of outer valence 1h states, the discrepancies of the ADC(3) and
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FCI results are typically in the order of ±0.2eV. This level of accuracy is consistent
with what has been found in numerous studies from the comparison of ADC(3)
ionization energies with experimental results.

ADC Expressions for Ground-State Expectation Values

As discussed in Sects. 4.2 and 4.3, certain ground-state expectation values can be
related to the electron propagator, or more specifically, to its (N−1)-electron part.
For example, Eq. (3.34)

ρ = 1

2πi
2G−(ω) dω (10.35)

allows one to derive the one-particle density matrix (3.26) from G−(ω). Using the
ADC form (10.8), the contour integration for G̃(ω) can readily be performed yielding

1

2πi
2 G̃(ω) dω = 1

2πi
2 f †(ω − K − C)−1 f dω = f † f (10.36)

As a result, the density matrix can be written as

ρ = ( f † f )t (10.37)

in terms of the transition amplitudes comprised in the ADC matrix f .
According to Eq. (10.16), theADC expression (10.37) establishes a PT expansion

for the density matrix. At a given nth-order ADC(n) scheme, this results in a trun-
cated expansion which, though, is consistent through order n. At the ADC(2) level,
Eq. (10.37) describes the density matrix consistently through second order. Here, for
example, the h-h diagonal block of ρ can be written more explicitly as

ρhh = 1hh + f (2)
1h + f (2)∗

1h + O(3) (10.38)

in terms of the ADC(2) results for the f 1h sub-block of the f matrix.
As an immediate consequence of Eq. (10.37), the ground-state expectation value

(3.35) of a general one-particle operator A can be written as

〈Ψ0| Â|Ψ0〉 = Tr(Aρ) = Tr(At f † f ) (10.39)

Using the ADC(n) expressions for f , one obtains a finite PT series for 〈Ψ0| Â|Ψ0〉,
being consistent through order n.

A particular one-particle operator is the particle number operator N̂ = ∑
q c

†
qcq .

Here, the (exact) expectation value is

N = 〈Ψ0|N̂ |Ψ0〉 = Tr( f † f ) (10.40)
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This means that Tr( f † f ) = N + O(n + 1) at the ADC(n) level, which can be used
as a check for the correctness of the ADC(n) expressions for f .

The ADC form (10.8) can also be applied to Eq. (3.44), relating the ground-state
energy to the electron propagator, which allows us to write E0 in the form

E0 = 1
2Tr( f

†(K + C) f + T t f † f ) (10.41)

As above, this establishes a PT expansion of E0 which, at theADC(n) level, recovers
the original RSPT series through order n.

Exercises

10.1 Evaluate the time-orderings (6) and (12) obtained by turning diagrams (6) and
(12) in Fig. 7.3 upside down and derive therefrom the ADC(2) expression for
fka .

10.2 Apply the direct ADC(2) scheme to ionization in the 2E-2O model (Exer-
cise2.4).

10.3 (a) Use Eq. (10.37) and theADC(2) expressions (10.34) to expand the h-h and
p-p matrix elements of the density matrix, ρkk ′ , ρaa′ , through second order.
(b) Verify that Tr(ρ) = N + O(3).

10.4 (a) Analyze the matrix-times-vector product for the ADC(2) secular matrix
and establish that the direct diagonalization can be designed to scale as m4.
(b) Perform a similar analysis for the four third-order contributions to the
ADC(3) secular matrix listed in AppendixA.9.
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Chapter 11
Intermediate-State Representation (ISR)

The direct ADC procedure for the electron propagator part G−(ω) considered in
the preceding chapter allows one to construct successively an in principle exact her-
mitian secular matrix, K + C , where (i) the eigenvalues are the negative ionization
energies −In; (ii) the matrix index labels are given by the HF configurations (10.9)
of N−1 electrons; (iii) the secular matrix elements can be expanded in regular PT
expansions. As already anticipated in Chap.10, these features suggest that K + C
is essentially a representation of the hamiltonian, or, more specifically, of Ĥ − E0,
deriving from a set of (N−1)-electron “intermediate” basis states. But what actually
are these presumed intermediate states underlying the ADC secular matrix? There
is a surprisingly simple solution to this issue, establishing an alternative closed-
form version of the ADC secular equations, completely independent of the original
diagrammatic derivation [1, 2]. Being a wave-function approach, the new formula-
tion overcomes certain limitations inherent to the propagator concept. Of the three
sections of this chapter, Sect. 11.1 presents the general procedure for constructing
the intermediate states and the consequent intermediate-state representation (ISR);
Sect. 11.2 demonstrates the explicit derivation of the second-order ISR equations;
and, finally, Sect. 11.3 discusses how the ISR concept can be applied to general
operators.

11.1 Correlated Excited States and Excitation Class
Orthogonalization

The starting point for the construction of the desired intermediate states are the
so-called correlated excited (CE) states (here of N−1 electrons),

|�0
J 〉 = ĈJ |�0〉 (11.1)
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Here, ĈJ denote physical excitation (ionization) operators of the manifold

{ĈJ } =
{
ck; c†ackcl , k < l; c†ac†bc j ckcl , a < b, j < k < l; . . .

}
(11.2)

where the index notations conform to those used in Eq. (10.9). As in Sect. 10.2, the
successive 1h, 2h-1p, 3h-2p, . . . excitation classes are numbered μ = 1, 2, 3, . . . .
To specify the class of a given configuration, J , we will use the symbol [J ], that is,
[J ] = μ if J designates a μh-(μ − 1)p configuration. The operators ĈJ are called
physical, since,when acting on theHF ground state, they create theHF configurations

|�J 〉 = ĈJ |�0〉 (11.3)

forming the CI expansion manifold for the (N−1)-electron system.
In contrast to the HF configurations, the CE states are not orthonormal:

SI J = 〈�0
I |�0

J 〉 = 〈�0|Ĉ†
I Ĉ J |�0〉 �= δI,J (11.4)

Here, SI J denote the matrix elements of the CE-state overlap matrix S, which also
can be seen as a generalized density matrix. The CE states form a complete set
of (N−1)-electron states [3, 4]. This suggests to generate proper basis states by
applying a suitable orthonormalization procedure to the CE states. However, the
most obvious choice, namely symmetric orthonormalization, according to

|� J 〉 =
∑
I

|�0
I 〉(S−1/2)I J (11.5)

has to be discarded because the resulting |� J 〉 states lead to a secular problem
that is neither compact nor size-consistent, as explained in Sects. 12.1 and 12.2. By
contrast, the ADC features are recovered by Gram–Schmidt orthogonalization with
respect to successively higherCE-state excitation classesμ, augmented by symmetric
orthonormalization within each class.

For illustration, we shall construct the intermediate states in the two lowest exci-
tation classes, μ = 1 and 2. In case of the 1h states, being the lowest class, only
symmetric orthonormalization is needed, and the intermediate states are obtained
from the CE states, |�0

k 〉 = ck |�0〉, by symmetric orthonormalization,

|�̃k〉 =
∑
i

ci |�0〉(S−1/2
1 )ik (11.6)

where
(S1)i j = 〈�0|c†i c j |�0〉 (11.7)

defines the overlap matrix S1 of the CE states of class 1. Note that S1 is the transpose
of the h-h block of the one-particle density matrix as defined in Eq. (3.26).
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Now, we may turn to the 2h-1p excitations. As the first step, the CE states
c†ackcl |�0〉 have to be orthogonalized to the intermediate states |�̃i 〉 of class 1. Apply-
ing the Gram–Schmidt procedure,

|�#
akl〉 = c†ackcl |�0〉 −

∑
i

|�̃i 〉〈�̃i |c†ackcl |�0〉 (11.8)

we obtain “precursor” states being orthogonal with respect to the intermediate states
of class 1 but not yet orthonormal. Thus, in a second step, we apply symmetric
orthonormalization to the precursor states. To that end, we introduce the overlap
matrix

S2 ≡ (〈�#
akl |�#

a′k ′l ′ 〉
)

(11.9)

of the precursor states of class 2, and the final 2h-1p intermediate states are obtained
according to

|�̃akl〉 =
∑
a′,k ′,l ′

|�#
a′k ′l ′ 〉(S−1/2

2 )a′k ′l ′,akl (11.10)

The extension to the higher classes, μ = 3, 4, . . . , is obvious, and we may for-
mulate the general excitation class orthogonalization (ECO) procedure for inter-
mediate states as follows:

(1) Assume that the intermediate states |�̃K 〉 of the classes 1, . . . , ν − 1 have been
constructed. Then, orthogonalize the CE states |�0

J 〉 of class ν with respect to
the intermediate states of class 1, . . . , ν − 1 according to

|�#
J 〉 = |�0

J 〉 −
∑

[K ]<ν

|�̃K 〉〈�̃K |�0
J 〉, [J ] = ν (11.11)

(2) The “precursor states” |�#
J 〉 of class ν may then be orthonormalized symmetri-

cally, yielding
|�̃J 〉 =

∑
[I ]=ν

|�#
I 〉(S−1/2

ν )I J (11.12)

where Sν is the overlap matrix of the precursor states of class ν,

(Sν)I J = 〈�#
I |�#

J 〉, [I ] = [J ] = ν (11.13)

It should be noted that the N -electron ground state |�0〉 underlying the ECO-IS
construction needs not be normalized to unity. A convenient choice is intermedi-
ate normalization, 〈�0|�0〉 = 1 (see AppendixA.1), which will be supposed in the
following.

The ECO construction allows one to establish a PT expansion of the intermediate
states,

|�̃I 〉 = |�̃(0)
I 〉 + |�̃(1)

I 〉 + |�̃(2)
I 〉 + . . . (11.14)
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deriving completely from the PT expansion of the N -electron ground state |�0〉.
Obviously, in zeroth order the intermediate states coincide with the HF states:

|�̃(0)
I 〉 = |�I 〉 (11.15)

In this sense, the intermediate states “mediate” between the HF states and the exact
(N−1)-electron energy eigenstates.

Rather than expanding the intermediate states, it is more advantageous to deal
directly with the PT expansions of the matrix elements of the intermediate-state
representations (ISR). The ECO intermediate states |�̃I 〉, forming a complete basis
of the (N−1)-particle states, establish the ISR secular matrix M,

MI J = 〈�̃I |Ĥ − E0|�̃J 〉 (11.16)

representing the (shifted) hamiltonian Ĥ − E0 in terms of the intermediate states.
The exact eigenstates |�N−1

n 〉 can be expanded according to

|�N−1
n 〉 =

∑
I

X In|�̃I 〉 (11.17)

where XIn are the components of the nth eigenvector of M. In matrix notation, the
ISR secular equations take on the form

MX = X�, X†X = 1 (11.18)

where� denotes the diagonal matrix of eigenvalues ωn , and X is the matrix of eigen-
vectors. According to Eq. (11.16), the eigenvalues can be identified as the ionization
energies,

ωn = EN−1
n − E0 (11.19)

Moreover, introducing the matrix f̃ of ISR transition amplitudes,

f̃ I p = 〈�̃I |cp|�0〉 (11.20)

the spectroscopic factors (10.5) can be obtained according to

x (n)
p =

∑
I

X∗
I n f̃ I p (11.21)

from the respective eigenvectors.
The PT expansions (11.14) of the intermediate states, based on the PT expansion

of the N -electron ground state |�0〉, translate into PT expansions of the ISR secular
matrix elements,

MI J = M (0)
I J + M (1)

I J + M (2)
I J + . . . (11.22)
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where, of course, the PT expansion of the ground-state energy E0 comes into play
as well. These expansions can actually be put in practice, as will be demonstrated
in the ensuing section. Here, it may already be noted that zeroth-order contributions
arise only in the diagonal elements of M since

M (0)
I J = 〈�0|Ĉ†

I (Ĥ0 − E (0)
0 )ĈJ |�0〉 = −δI J K I (11.23)

Here, KI denote the zeroth-order (HF) ionization energies (10.17).
In a similar way, PT expansions

f̃ I p = f̃ (0)
I p + f̃ (1)

I p + f̃ (2)
I p + . . . (11.24)

can be established for the ISR transition amplitudes. Due to the orthogonality prop-
erties of the intermediate states, the transition amplitudes of the hole part,

f̃ J k = 〈�̃J |ck |�0〉 = 0, nk = 1, [J ] > 1 (11.25)

vanish for configurations J from excitation classes μ > 1.
So far, the ECO-ISR formalism has been introduced as an autonomous approach,

completely independent of the direct ADC approach deriving from the diagrammatic
PT expansion of the propagator parts. Notwithstanding the distinct derivations, the
resulting secular equations turn out to be essentially equivalent. As suggested by
Eqs. (10.11) and (11.16), theADC and ECO-ISR secular matrices are to be identified
according to

K + C ≡ −M (11.26)

f ≡ f̃ (11.27)

With regard to the first line, it should be noted that the signs of off-diagonal secular
matrix elements are to a certain extent conventional.

But how, actually, can these equivalencies be justified? Firstly, the explicit ECO-
ISR equations through second order, as derived in the following Sect. 12.2, are iden-
tical with those of the direct ADC(2) scheme. Beyond second order, the derivation
of explicit ECO-ISR expressions becomes rather unwieldy, and the complementing
derivation of the third-order ADC(3) scheme via the ECO-ISR route has not been
given yet. Anyway, demonstrating the equivalence of the direct ADC(n) and ECO-
ISR(n) schemes for some low n, while a strong indication of correctness, is not a
substitute for a proof. Rather, the essential argument underpinning the equivalence of
theADC and ECO-ISR secular equations is that both versions share two constituting
features: Firstly, the secular matrix fulfills distinguished PT order relations, referred
to as canonical order relations; secondly, it is separable with respect to a system of
non-interacting fragments. The merit of the ECO-ISR approach is that these defining
properties can be formulated and proven in a stringent manner, as will be discussed
at length in Chap.12.
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It should be noted though that equivalence not necessarily means identity here. In
fact, we have seen inChap.10 that theADC procedure does not completely determine
the secular matrix, but leaves some room for algebraic transformations. By contrast,
for a given ground state and one-particle basis, the ECO-ISR procedure as defined
by Eqs. (11.11)–(11.13) results in a unique IS representation. Here, however, the
second step, that is, the symmetric orthonormalization of the respective precursor
states, is a mere convention, not necessary for constituting the two basic features. In
fact, any orthonormalization scheme could be used here. So there is some flexibility
in the ECO-ISR concept, which may be seen as the counterpart to the residual non-
uniqueness in the ADC expressions. Recognizing the general equivalence, we will
use the terms ECO-ISR and ISR-ADC synonymously in the following.

11.2 Explicit ISR Procedure Through Second Order

In the following, we shall derive the explicit PT expressions of the ISR secular matrix
M as needed for a consistent treatment of the 1h (main) ionic states through second
order, to be referred to as ISR(2) scheme.

The explicit configuration space required at the ISR(2) level is spanned by the
1h and 2h-1p intermediate states. The coupling of 1h and 3h-2p states is already of
second order (see Sect. 12.1). The PT expansions extend through second order in the
1h diagonal block M11,

Mkl = −εkδkl + M (1)
kl + M (2)

kl (11.28)

through first-order in the M12 block,

Mk,a′k ′l ′ = M (1)
k,a′k ′l ′ (11.29)

while only the zeroth-order contributions

Makl,a′k ′l ′ = (εa − εk − εl)δaa′δkk ′δll ′ (11.30)

are needed in the M22 block.
At the ISR(2) level, the PT expansion of the N -electron ground state underlying

the ISR construction is needed through second order:

|�0〉 = |�0〉 + |�(1)
0 〉 + |�(2)

0 〉 + O(3) (11.31)

The first-order term,
|�(1)

0 〉 =
∑

a<b,k<l

vabkl |�abkl〉 (11.32)
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simply reflects the admixture of double excitations, |�abkl〉 = c†ac
†
bckcl |�0〉. Here,

vabkl is defined according toEq. (10.31). The second-orderwave function, comprising
single, double, triple, and quadruple excitations, is already rather involved. Fortu-
nately, though, an explicit specification of the various contributions is not needed in
the following derivations.

As mentioned above, we may suppose intermediate normalization of |�0〉. This
means that there is a PT expansion of the normalization integral,

I0 = 〈�0|�0〉 = 1 + I (2)
0 + O(3) (11.33)

where the deviation from unity begins at second order:

I (2)
0 = 〈�(1)

0 |�(1)
0 〉 =

∑
a<b,i< j

|vabi j |2 (11.34)

The first-order expansions of the intermediate states are straightforward as
orthonormalization does not come into play before second order:

|�̃k〉 = |�k〉 + ck |�(1)
0 〉 + O(2) (11.35)

|�̃akl〉 = |�akl〉 + c†ackcl |�(1)
0 〉 + O(2) (11.36)

Herewith, the first-order matrix elements of M can easily be established. Let us
consider the M12 block. The first-order expression just reproduces the familiar CI
coupling matrix element:

M (1)
k,ak ′l ′ = 〈�k |ĤI |�ak ′l ′ 〉 = Vk ′l ′[ka] (11.37)

Note that the other potential first-order contributions, such as 〈�̃(1)
k |Ĥ0 − E (0)

0 |�a′k ′l ′ 〉,
vanish. In the M11 block, the first-order contributions are given by

M (1)
kl = 〈�k |ĤI − E (1)

0 |�l〉 (11.38)

which, for HF orbitals supposed here, vanishes according to Eq. (4.6).
A more demanding task is to evaluate the second-order contributions in

Mkl = 〈�̃k |Ĥ − E0|�̃l〉 (11.39)

The 1h intermediate states are given by

|�̃k〉 =
∑
i

ci |�0〉(s−1/2)ik (11.40)
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where S1 = s is used for the CE overlap matrix to simplify the notation. Note that
s is a hermitian and positive definite matrix so that s1/2 is well defined. The PT
expansion of s through second order reads

skl = 〈�0|c†kcl |�0〉 = δkl + s(2)
kl + O(3)

as the potential first-order contributions are seen to vanish,

s(1)
kl = 〈�(1)

0 |c†kcl |�0〉 + 〈�0|c†kcl |�(1)
0 〉 = 0

Accordingly, s has the structure

s = 1 + s(2) + O(3) (11.41)

where 1 denotes the unit matrix. This, in turn, entails the PT structure

s−1/2 = 1 − 1
2 s

(2) + O(3) (11.42)

for the inverse of s1/2. As a preparatory step, let us evaluate the second-order contri-
bution to s:

s(2)
kl = 〈�(1)

0 |c†kcl |�(1)
0 〉 + 〈�(2)

0 |c†kcl |�0〉 + 〈�0|c†kcl |�(2)
0 〉 (11.43)

As a consequence of the intermediate normalization supposed for |�0〉, the latter two
terms vanish, and the evaluation of the remaining first term yields (see Exercise11.1)

s(2)
kl = 〈�(1)

0 |c†kcl |�(1)
0 〉 = δkl I

(2)
0 −

∑
a<b, j

vabk jv
∗
abl j (11.44)

where I (2)
0 is given by Eq. (11.34). Using Eqs. (11.40) and (11.42), Eq. (11.39) can

be written as

Mkl =
∑
k ′,l ′

(s−1/2)kk ′ 〈�0|c†k ′(Ĥ − E0)cl ′ |�0〉(s−1/2)l ′l

=〈�0|c†k(Ĥ − E0)cl |�0〉 − 1
2

∑
l ′

〈�0|c†k(Ĥ − E0)cl ′ |�0〉s(2)
l ′l

− 1
2

∑
k ′

〈�0|c†k ′(Ĥ − E0)cl |�0〉s(2)
kk ′ + O(3) (11.45)

It remains to collect the second-order contributionsM (2)
kl arising on the right-hand side

of the latter equation. For the last two terms, this is easily accomplished as here the
second-order matrix elements s(2)

i j need to combine with zeroth-order contributions
of the ground-state expectation values. The resulting second-order contribution to
Mkl , termed (C1), reads
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(C1) ≡ 1
2 (εk + εl)s

(2)
kl (11.46)

with s(2)
kl given by Eq. (11.44). There are three more second-order contributions stem-

ming from the first term on the right-hand side of Eq. (11.45):

(C2) ≡〈�(1)
0 |c†k(Ĥ0 − E (0)

0 )cl |�(1)
0 〉

(C3) ≡〈�(1)
0 |c†k ĤI cl |�0〉 + 〈�0|c†k ĤI cl |�(1)

0 〉
(C4) ≡ − E (2)

0 δkl

Note that contributions involving |�(2)
0 〉, such as 〈�(2)

0 |c†k(Ĥ0 − E (0)
0 )cl |�0〉, vanish

(supposing intermediate normalization).Moreover, there are no contributions involv-
ing E (1)

0 , since here the respective expectation value factor vanishes, as for example,
〈�(1)

0 |c†kcl |�0〉 = 0.
In evaluating (C2) and (C3), it is advantageous to treat the cases k = l and k �= l

separately. Supposing k < l, one obtains the following expressions

(C2) = −
∑
a<b, j

vabk jv
∗
abl j (εa + εb − ε j − εk − εl)

(C3) = +
∑
a<b, j

Vab[k j]v∗
abl j +

∑
a<b, j

V ∗
ab[l j]vabk j

Now, the three non-vanishing second-order contributions have to be combined. Since
(C1), (C2), and (C3) differ only in orbital energy factors, they can easily be added
to give

M (2)
kl =

∑
a<b, j

vabk jv
∗
abl j (εa + εb − ε j − 1

2 εk − 1
2 εl) (11.47)

As can readily be established, this expression is no longer restricted to k < l and
comprises, in particular, the diagonal matrix elements, k = l, incorporating here also
the (C4) contribution. Thus, the final result for the ISR(2) secular matrix elements
reads

Mkl = −εkδkl + M (2)
kl (11.48)

with M (2)
kl given by Eq. (11.47). Together with Eqs. (11.37) and (11.30), this consti-

tutes the ISR(2) secular matrix at the second-order level.
The comparison with the ADC equations (10.33) shows that indeed the iden-

tity (11.26) between the ISR and the (negative)ADC secularmatrices is valid through
the second-order level.

In a similar way, the explicit ISR(2) expressions for

f̃kp = 〈�̃k |cp|�0〉
f̃akl,p = 〈�̃akl |cp|�0〉 (11.49)
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can be evaluated. The result confirms the identity (11.27) of the ADC and ISR
transition amplitudes.

Of course, the ECO-IS basis can be used to represent Ĥ (instead of Ĥ − E0),

H̃I J = 〈�̃I |Ĥ |�̃J 〉 = MI J + δI J E0 (11.50)

The second-order ISR(2) version of Ĥ is obtained from M by adding ground-state
energy expansions to the diagonal elements in a consistent way, that is, E (0)

0 + E (1)
0 +

E (2)
0 in the M11 block, and just E (0)

0 in the M22 block.
In view of the ISR(2) derivation just presented, it may be expected that matters

will become rather tedious at the next higher, i.e., third-order, level. So while the
ECO-ISR is the simpler concept, the ADC approach, based on the diagrammatic
PT expansion of the electron propagator, is clearly preferable when it comes to the
practical implementation.

11.3 Intermediate-State Representation of General
Operators

Obviously, the intermediate-state representation introduced in the preceding two
sections can be applied to operators other than the hamiltonian. This equips the ISR-
ADC approach with the full flexibility of wave-function-based methods, allowing
for applications not possible within the original propagator concept.

As an example for the additional opportunities, let us consider the treatment of
ionic-state properties. Let D̂ be a hermitian operator associated with the physical
property of interest, e.g., the dipole moment along a particular axis. The ISR of D̂ is
given by the matrix elements of D̂ with respect to the intermediate states |�̃I 〉:

D̃I J = 〈�̃I |D̂|�̃J 〉 (11.51)

The corresponding matrix will be denoted by D̃. For a particular ionic energy eigen-
state |�N−1

n 〉, the desired property is obtained as the expectation value

Dn = 〈�N−1
n |D̂|�N−1

n 〉 = X†
n D̃Xn

where Xn denotes the eigenvector associated with the ISR expansion

|�N−1
n 〉 =

∑
I

X In|�̃I 〉 (11.52)

of |�N−1
n 〉. In s similar way, transition moments involving two ionic states can be

derived according to
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Dnm = 〈�N−1
n |D̂|�N−1

m 〉 = X†
n D̃Xm (11.53)

As another useful option enabled by the generalization of the ISR, the original
hamiltonian Ĥ can be easily augmented with an additional (external) operator Û ,

Ĥ → Ĥ x = Ĥ + Û (11.54)

The operator Û may represent any perturbation of the system, such as an external
field. The important point here is that Û acts on the (N−1)-particle system, but does
not affect the original N -electron ground state. The extended secular equations read

(M + Ũ)X = X�x , X†X = 1 (11.55)

where U is the ISR of the external operator Û .
In the case of a time-dependent external potential, Û (t), the time-dependent

Schrödinger equation

i
∂

∂t
|�(t)〉 = (Ĥ + Û (t))|�(t)〉 (11.56)

becomes amenable to propagation schemes, such as,

x(t + dt) = x(t) − i(M + Ũ(t))x(t)dt (11.57)

based on the IS representation of Û (t); here, x(t) is the vector of the expansion
coefficients xI (t) = 〈�̃I |�(t)〉.

Let us now turn to the explicit construction of the ECO-IS representation of an
operator D̂. The procedure is largely analogous to that of the ISR secular matrix
discussed in the preceding section. Again, the ECO-IS construction establishes a PT
expansion of D̃:

D̃ = D̃
(0) + D̃

(1) + D̃
(2) + . . . (11.58)

Consistent approximation schemes are obtained by truncating in a systematic way
both the IS classes and the respectivePT expansions.Being the counterpart to the ISR-
ADC(2) secular equations, the second-order ISR(2) scheme comprises the excitation
classes 1 and 2, and the PT expansions in the corresponding sub-blocks of D̃ are as
follows:

D̃11 = D̃
(0)
11 + D̃

(1)
11 + D̃

(2)
11

D̃12 = D̃
(0)
12 + D̃

(1)
12

D̃22 = D̃
(0)
22 (11.59)

Thederivationof the explicit ISR(2) expressions is straightforward, though somewhat
more tedious than in the case of the secularmatrix.Wedispensewith a full description



172 11 Intermediate-State Representation (ISR)

and limit ourselves to some guiding remarks. For a more detailed account of the
procedure, the reader is referred to Ref. [5] where an analogous derivation for N -
electron excitations has been presented. For simplicity, we shall confine ourselves to
one-body operators, being of the form

D̂ =
∑

drsc
†
r cs

The ISR construction can be applied to two-body (and higher-rank) operators as well,
but obviously this is more cumbersome.

1. In deriving the ISR(2) expressions of a general one-body operator, the second-
order term in the ground-state PT expansion,

|�(2)
0 〉 = |�(2)

1p−1h〉 + |�(2)
2p−2h〉 + |�(2)

3p−3h〉 + |�(2)
4p−4h〉 (11.60)

comes into play, though only with the 1p-1h part:

|�(2)
1p−1h〉 =

∑
ak

x (2)
ak c

†
ack |�0〉. (11.61)

Here, x (2)
ak denote the second-order expansion coefficients of the 1p-1h admixtures

to the ground state,
x (2)
ak = 〈�0|c†kca|�(2)

0 〉 (11.62)

Note that the x (2)
ak coefficients through second order can be identified with the p-h

components of the one-particle density matrix,

ρak = 〈�0|c†kca|�0〉 = x (2)
ak + O(3) (11.63)

This relation can be used to replace the 1p-1h PT coefficient in the final ISR(2)
expressions. As should be recalled, the densitymatrix elements ρak can be derived
from the electron propagator part G−(ω), for example, according to Eqs. (3.34)
or (10.37).

2. The IS matrix elements turn out to be of the form

D̃I J = D0δI J + D̃′
I J (11.64)

where
D0 = I−1

0 〈�0|D̂|�0〉 (11.65)

is the expectation value of D̂ with respect to the (normalized) N -electron ground
state, and the matrix D̃

′
is a representation of the subtracted operator D̂′ = D̂ −

D0. In the diagonal ISR(2) matrix elements of D̃11, the PT expansion of D0
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D0(2) = D(0)
0 + D(2)

0 + O(3) (11.66)

extends through second order, whereas in D̃22 only the zeroth-order term

D(0)
0 = 〈�0|D̂|�0〉 =

∑
j

d j j (11.67)

is needed. Note that D(1)
0 = 0.

3. The zeroth-order contributions to D̃11, D̃12, and D̃22 can easily be evaluated:

D̃(0)
kl = 〈�0|c†k D̂cl |�0〉 = δkl D

(0)
0 − dlk (11.68)

D̃(0)
akl,a′k ′l ′ = δaa′δkk ′δll ′ D

(0)
0 + δkk ′δll ′daa′ (11.69)

− (δaa′δkk ′dll ′ + δaa′δll ′dkk ′) + (k ′ ↔ l ′)

D̃(0)
k,ak ′l ′ = δkl ′dk ′a − δkk ′dl ′a (11.70)

4. In first order, there are no contributions to D̃11,

D̃(1)
kl = 〈�(1)

0 |c†k D̂cl |�0〉 + 〈�0|c†k D̂cl |�(1)
0 〉 = 0 (11.71)

since the 1h/3h-2p coupling matrix elements of a one-particle operator vanish;
here, the 3h-2p configurations arise by applying ck to |�(1)

0 〉.
As to the first-order contributions to D̃12, one has to evaluate the matrix elements

D̃(1)
k,ak ′l ′ = 〈�(1)

0 |c†k D̂c†ack ′cl ′ |�0〉 (11.72)

combining a 2h-1p configuration |�ak ′l ′ 〉 and 3h-2p configurations ck |�cdi j 〉
arising in ck |�(1)

0 〉. Note that terms of the type 〈�0|c†k D̂c†ack ′cl ′ |�(1)
0 〉 vanish. The

resulting expressions read

D̃(1)
k,ak ′l ′ = −δkk ′

∑
b, j

v∗
abjl ′dbj + δkl ′

∑
b, j

v∗
abjk ′dbj +

∑
b

v∗
abk ′l ′dbk (11.73)

5. To determine the second-order matrix elements D̃(2)
kl , we may set out from

Eq. (11.45), replacing here Ĥ − E0 with D̂ and using the zeroth-order ground-
state wave function |�0〉 rather than |�0〉 in the second and third terms on the
right-hand side:

D̃kl = 〈�0|c†k D̂cl |�0〉 − 1
2

∑
l ′

D(0)
kl ′ s

(2)
l ′l − 1

2

∑
k ′

D(0)
k ′l s

(2)
kk ′ + O(3) (11.74)
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It remains to deal with the three second-order contributions to the first term on
the right-hand side:

(1) ≡〈�(1)
0 |c†k D̂cl |�(1)

0 〉 (11.75)

(2, 3) ≡〈�(2)
0 |c†k D̂cl |�0〉 + h.c. (11.76)

While the evaluation of (2) and (3) is rather simple, that of (1) is more demanding.
In both cases, it is advisable to make use of the commutators,

[c†k , D̂] = −
∑
r

drkc
†
r , [D̂, cl ] = −

∑
s

dlscs (11.77)

We skip the somewhat lengthy derivation and jump directly to the final expres-
sions [6]:

D̃kl = D0(2)δkl − dlk −
∑
a

(dakρ
(2)
la + dlaρ

(2)
ak ) + D̃(2,1)

kl + D̃(2,2)
kl + D̃(2,3)

kl

where

D̃(2,1)
kl = −

∑
b,c,d

j

v∗
bdl jvcdk j dbc

D̃(2,2)
kl = 1

2

∑
c,d
i, j

v∗
dcl jvdcki di j

D̃(2,3)
kl = − 1

4

∑
c,d
i, j

v∗
dci jvdcki dl j + h.c. (11.78)

Here, D0(2) is given by Eq. (11.66), and ρ(2)
rs denotes the second-order contributions

to the one-particle density matrix (Eq.11.63).
The order relations and separability structure applying to D̃ will be addressed in

Sects. 12.1 and 12.2.

Exercises

11.1 Use ground-statePT to expand the overlapmatrix for the 1h CE states (Eq.11.7)
through second order.

11.2 Derive the ISR(2) expressions for the transition amplitudes (11.49).
11.3 Use the direct ADC(2) secular equation to derive the ionization energy for

a single-hole main state through second order, and compare the result to
Eq. (8.68).
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Chapter 12
Order Relations and Separability

The equivalence of the direct ADC approach and the ECO-ISR formulation rests on
two commonkey features. The first is the so-called canonicalPT order structure of the
secular matrix [1], establishing the compactness of the nth-order ISR-ADC approxi-
mation schemes. The other is the separability [2] of the secular matrix with respect to
two (or more) non-interacting sub-systems, which warrants size-consistency. While
in theADC context these features could have been substantiated using diagrammatic
arguments, the ECO-ISR concept established in the preceding chapter allows for a
stringent formulation and rigorous proofs. This is the topic of the present chapter.
Section12.1 (together with Appendix A.6) discusses the order structure of the sec-
ular matrix and the characteristic truncation errors thus entailed. The separability
property will be treated in Sect. 12.2. Finally, in Sect. 12.3, we take a comparative
look at the standard CI method, where the secular structure is simple but neither
canonical nor separable.

12.1 Canonical Order Relations

In the ISR-ADC approach, the secular matrix elements are given in the form
of PT expansions (see Eqs. 10.15, 11.22). Here, the remarkable finding is that
these expansions do not necessarily begin at zeroth order. Rather, the lowest non-
vanishing order in a matrix element MI J depends on the “distance” [I ] − [J ] of the
excitation classes, [I ], [J ], to which the configurations I and J belong. The rules
fulfilled by the ISR-ADC secular matrix elements are as follows:

MI J ∼ O(|[I ] − [J ]|) (12.1)
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Fig. 12.1 Order structure of
the ISR-ADC secular matrix
M for (N−1)-electron
excitations

1h 2h -1p 3h -2p 4h -3p 5h -4p ...

1h 0 1 2 3 4 ...

2h -1p 1 0 1 2 3 ...

3h -2p 2 1 0 1 2 ...

4h -3p 3 2 1 0 1 ...

5h -4p 4 3 2 1 0 ...

...
...

...
...

...
...

This means that in the PT expansion of MI J the lowest non-vanishing contribu-
tion is of the order |[I ] − [J ]|. For example, the coupling matrix element Mi,abjkl

combining a 1h (class 1) and a 3h-2p (class 3) configuration is of second order:

Mi,abjkl ∼ O(|[i] − [abjkl]|) = O(2) (12.2)

The rules (12.1) are referred to as canonical order relations (COR). Fig. 12.1 depicts
the COR structure of M; here, the respective lowest non-vanishing PT order is
assigned to the Mμν sub-blocks in the partitioning of M according to excitation
classes, μ, ν = 1, 2, . . . . A proof of these rules is given in Appendix A.6.

To better understand the essence of the COR, let us come back to the matrix
element Mi,abjkl , where the excitation classes of the first and second entry differ by
2. In the CI secular matrix (see Sect. 12.3), the corresponding coupling is of first
order (i.e., linear in the Coulomb repulsion integrals),

Hi,abjkl = 〈�i |ĤI |�abjkl〉 = −δi j Vkl[ab] + δikVjl[ab] − δil Vjk[ab] (12.3)

By contrast, the first-order contribution to Mi,abjkl vanishes as the result of a non-
trivial cancelation, where the Gram–Schmidt orthogonalization adopted in |�̃abjkl

〉

is crucial. According to

M (1)
i,abjkl =〈�̃i |Ĥ − E0|�̃abjkl〉(1)

=Hi,abjkl + 〈�̃(1)
i |Ĥ0 − E (0)

0 |�abjkl〉 + 〈�i |Ĥ0 − E (0)
0 |�̃(1)

abjkl〉 (12.4)

the first-ordermatrix element comprises in addition to theCI-type contribution (12.3)
two terms involving the first-order wave functions |�̃(1)

i

〉
and |�̃(1)

abjkl

〉
. The former

simply reads
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|�̃(1)
i

〉 = ci |�(1)
0

〉
(12.5)

where the first-order ground state, |�(1)
0

〉
, is given by Eq. (11.32). In first order, the

Gram-Schmidt orthogonalization of the intermediate 3h-2p state with regard to the
1h states comes into play, giving rise to following three terms,

|�̃(1)
abjkl

〉 =c†ac
†
bc j ckcl |�(1)

0

〉 − |� j
〉〈�̃(1)

j |�abjkl 〉 − |�k
〉〈�̃(1)

k |�abjkl 〉 − |�l
〉〈�̃(1)

l |�abjkl 〉
=c†ac

†
bc j ckcl |�(1)

0

〉 − |� j
〉
v∗
abkl + |�k

〉
v∗
abjl − |�l

〉
v∗
abjk (12.6)

Note that there are no first-order contributions from the orthogonalization with
respect to 2h-1p states. Accordingly, the third term in Eq. (12.4) becomes

〈�i |Ĥ0 − E (0)
0 |�̃(1)

abjkl〉 = −εi 〈�i |�̃(1)
abjkl〉 = εi (δi j v

∗
abkl − δik v∗

abjl + δil v
∗
abjk)

(12.7)
A related expression results from the second term,

〈�̃(1)
i |Ĥ0 − E (0)

0 |�abjkl 〉 =
(
δi jv

∗
abkl − δikv

∗
abjl + δilv

∗
abjk

)
(εa + εb − ε j − εk − εl ) (12.8)

Obviously, the latter two expressions can be combined to give (−1)Hi,abjkl which
cancels the CI term in Eq. (12.4), thus confirming the proposition

M (1)
i,abjkl = 0 (12.9)

In this derivation, the crucial role of Gram–Schmidt orthogonalization in effecting
the COR could be seen explicitly. If symmetric orthonormalization (11.5) of the CE
states is used rather than Gram–Schmidt, the 1h/3h-2p coupling matrix elements do
not vanish in first order (see Exercise 12.1):

〈� i |Ĥ − E0|�abjkl〉 = 1
2Hi,abjkl + O(2) (12.10)

This example shows that a representation of Ĥ − E0 based on symmetrically
orthonormalized CE states does not have the COR structure, nor the separability
structure as will be discussed in Sect. 12.3.

The order relations determine the PT order of the error caused by truncating the
(explicit) configuration space, supposing here a systematic truncation after a specified
class, sayμ. For example, the error in the 1h ionization energies caused by neglecting
the 3h-2p (and higher) configurations is of fourth order. Here, the coupling of the 1h
and 3h-2p configurations is at least of second order, so that the corresponding energy
contribution (being quadratic in the coupling matrix element) is of fourth (or higher)
order. Truncation after the 3h-2p configurations (class 3) leads to an error of the
order 6, which reflects the COR value of 3 for the coupling between configurations
of class 1 and 4.
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The general formula for the truncation error order (TEO) in the 1h-state energies
is (see Appendix A.6)

OT E (μ) = 2μ (12.11)

where μ denotes the highest class included in the (explicit) configuration space.
This formula can be generalized to states other than the 1h (main) states. Here,

we suppose that the final ionic states, |�N−1
n

〉
, can still be characterized according to

their PT descent, that is, as originating from a given excitation class. To denote the
respective PT descent, we will use the notation [n], that is, [n] = ν if |�N−1

n

〉
derives

from a CI state of class ν. The generalized TEO formula then assumes the form

O [n]
T E (μ) = 2(μ − [n] + 1), μ ≥ [n] (12.12)

Obviously, this equation reduces to Eq. (12.11) in the case [n] = 1.
In a similar way, we may analyze the transition moments, more specifically, the

spectroscopic factors
x (n)
p = 〈�N−1

n |cp|�0〉 = X†
n f p (12.13)

with respect to truncation errors. Order relations apply not only to the secular matrix
but also to the ISR-ADC transition amplitudes (see Appendix A.6):

f I p ∼ O([I ] − 1) (12.14)

As a direct consequence of the order structure (12.1) of the secular matrix, the COR
can be established for the eigenvector matrix X as well:

XJn = 〈�̃J |�N−1
n 〉 ∼ O(|[J ] − [n]|) (12.15)

A proof of the order structure of X is given in Appendix A.6. Using the latter order
relations together with those for f in Eq. (12.13) results in the following general
TEO formula for the spectroscopic factors:

O [n]
T E (μ) = 2μ − [n] + 1, μ ≥ [n] (12.16)

Note that for the 1h states, [n] = 1, the same TEO result applies both to the energies
and spectroscopic factors.

In Sect. 11.3, we have discussed the ISR of a general one-particle operator D̂,
and it may be of interest to inspect the order structure in this case. Here, the order
relations take on the form

D̃I J ∼
{
O(|[I ] − [J ]| − 1), [I ] �= [J ]
O(0), [I ] = [J ] (12.17)
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Fig. 12.2 Order structure of
the intermediate-state
representation D̃ of a
one-particle operator D̂

1h 2h -1p 3h -2p 4h -3p 5h -4p ...

1h 0 0 1 2 3 ...

2h -1p 0 0 0 1 2 ...

3h -2p 1 0 0 0 1 ...

4h -3p 2 1 0 0 0 ...

5h -4p 3 2 1 0 0 ...

...
...

...
...

...
...

The corresponding structure is depicted in Fig. 12.2. The zeroth-order coupling
between states I and J belonging to adjacent classes, [I ] = [J ] ± 1, reflects the
fact that the corresponding zeroth order (CI) coupling matrix elements 〈�I |D̂|�J 〉
need not vanish.

What is the effect of the somewhat weaker order relations (12.17) on the TEOs
in the properties of an ionic state? Considering an expectation value

Dn = 〈�N−1
n |D̂|�N−1

n 〉 = X†
n D̃Xn (12.18)

the TEO can easily be determined by combining the order structure of D̃ with those
of the respective eigenvector class. For 1h states ([n] = 1), the truncation error (trun-
cation after class μ) is seen to be

OT E (μ) = 2μ − 1 (12.19)

This means that at the ISR-ADC(3) level, where the explicit configuration space
comprises the classes 1 and 2, (one-particle) properties of the ionic 1h (main) states
are treated consistently through second order only.

12.2 Separability of the ISR-ADC Secular Matrix

The size-consistency properties of a computational method can be analyzed in a
stringent way by resorting to the separate fragment model, that is, a hypothetical
system S consisting of two strictly non-interacting sub-systems or fragments, A and
B. A method for treating electronic excitation, or ionization, electron attachment,
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etc., is size-consistent (here,more specifically, size-intensive), if for local excitations,
say on fragment A, the computed excitation energies and transition moments do not
depend on whether the method is applied to the fragment or the composite system.
Obviously, the outcome in the artificial separate fragment model is indicative for
the performance of the method in realistic systems, e.g., formed by interacting sub-
systems, or just extended systems beyond a certain size.

Let us begin with a few specifications of the separate fragment model. The total
hamiltonian is the sum

Ĥ = ĤA + ĤB (12.20)

of the two fragment hamiltonians, ĤA and ĤB , so that the ground state of the com-
posite is given as the product

|�0
〉 = |� A

0

〉|�B
0

〉
(12.21)

of the fragment ground states, |� A
0

〉
and |�B

0

〉
. It should be noted that in this and other

product states inter-fragment antisymmetrization is irrelevant and can be waived.
The one-particle states (HF orbitals) of S are assumed to be local, that is, a

given orbital either belongs to fragment A or B. As a consequence, the electron
configurations in the set (11.2) can be partitioned into three different subsets, namely
local excitations IA on fragment A, local excitations IB on fragment B, andmixed (or
non-local) excitations IAB involving both fragments A and B. Amixed excitation, for
example, might consist of an ionization on A, accompanied by a neutral excitation
on B. In analogy to the physical operators (11.2), we introduce the operator set

{ĈJ } =
{
c†ack; c†ac†bckcl , a < b, k < l; . . .

}
(12.22)

associated with the neutral 1p-2h, 2p-2h, . . . , excitations.
It should be noted that there are non-local excitations that do not conserve the

charge of the fragments, such as a double ionization on A accompanied by electron
attachment on B, resulting in an A++B− structure. However, such charge-transfer
excitations need not be regarded. In the separate fragment model, they are strictly
decoupled from the fragment-charge conserving excitations to be considered in the
following.

How is the structure of separated fragments reflected in the intermediate states
|�̃I

〉
? For the CE states |�0

J

〉
, forming the starting point of the ECO- IS construction,

the answer is trivial. Since the ground state is the product of the fragment ground
states (Eq.12.21) and the physical excitation operators ĈJ are operator products of
local fermion operators, theCE states can bewritten as products of each two fragment
states. A local state simply reads

|�0
JA

〉 = ĈJA |�0
〉 = ĈJA |� A

0

〉 |�B
0

〉
(12.23)

while for non-local states the factorization takes on the form
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|�0
JAB

〉 = ĈJAB |�0
〉 = ĈJA |� A

0

〉
ĈJB |�B

0

〉
(12.24)

But what about the final intermediate states? They result by applying an involved
orthonormalization procedure to the CE states, and it is not obvious whether the
outcome can be written as products of fragment states. The answer is given by the
following factorization theorem stating that non-local ECO intermediate states can
be written according to

|�̃JAB

〉 = |�̃ A
JA

〉 |�̃B
JB

〉
(12.25)

as products of fragment ECO intermediate states. The factorization of local ECO
intermediate states,

|�̃JA

〉 = |�̃ A
JA

〉 |�B
0

〉
(12.26)

can be seen as a special case of the general case (12.25).
A general proof of the factorization theorem has been given in Ref. [2] where

the interested reader is referred to. To see how this factorization comes about, it is
instructive to inspect the simple case of a non-local 2h-1p configuration. Let the
configuration be J ≡ a′ j ′k, where k denotes an orbital associated with fragment
A, and the primed indices refer to orbitals of fragment B. This is, J stands for a
1p-1h excitation on fragment B accompanying an electron vacancy (in orbital k) on
fragment A. The corresponding CE state reads

|�0
a′ j ′k

〉 = ck |� A
0

〉
c†a′c j ′ |�B

0

〉
(12.27)

Gram–Schmidt orthogonalization with respect to the intermediate states of class 1
yields the precursor state

|�#
a′ j ′k

〉 = |�0
a′ j ′k

〉 −
∑

l

|�̃l
〉〈�̃l |�0

a′ j ′k〉 (12.28)

where the 1h intermediate states can be restricted to those being local on
fragment A,

|�̃l
〉 = |�̃ A

l

〉|�B
0

〉
(12.29)

Using the latter product form together with that of the CE state (12.27) in Eq. (12.28)
gives

|�#
a′ j ′k

〉 =ck |� A
0

〉
c†a′c j ′ |�B

0

〉 −
∑

l

|�̃ A
l

〉〈�̃ A
l |ck |� A

0 〉 |�B
0

〉〈�B
0 |c†a′c j ′ |�B

0 〉

=ck |� A
0

〉 (
c†a′c j ′ |�B

0

〉 − |�B
0

〉〈�B
0 |c†a′c j ′ |�B

0 〉
)

(12.30)

To arrive at the second equation, we have used the identity
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ck |� A
0

〉 =
∑

l

|�̃ A
l

〉〈�̃ A
l |ck |� A

0 〉 (12.31)

that is, the decomposition of the CE state ck |� A
0

〉
of fragment A with respect to the

fragment A intermediate states of class 1. The term in brackets in the second line of
Eq. (12.30) can be identified as the precursor state

|�B#
a′ j ′

〉 = c†a′c j ′ |�B
0

〉 − |�B
0

〉〈�B
0 |c†a′c j ′ |�B

0 〉 (12.32)

of the 1p-1h excitation on fragment B which, being a neutral excitation, involves
orthogonalization to the ground state of fragment B (see Sect. 14.1). This means that
the 2h-1p precursor state (12.30) is the product

|�#
a′ j ′k

〉 = |� A#
k

〉 |�B#
a′ j ′

〉
(12.33)

of the respective fragment precursor states. Obviously, the ensuing symmetric
orthonormalization of the (non-local) 2h-1p precursor states is obtained by indepen-
dent orthonormalization of the fragment precursor states, establishing the product
form

|�̃a′ j ′k
〉 = |�̃ A

k

〉 |�̃B
a′ j ′

〉
(12.34)

for the final intermediate states.
Equipped with the factorization theorem, we may now establish the separability

of the secular matrix. The classification of the intermediate basis states according
to their localization type, that is, as local excitations on fragment A, local exci-
tations on fragment B, and non-local excitations involving both A and B, effects
a corresponding partitioning of the secular matrix M into sub-blocks, M Z Z ′ with
Z , Z ′ = A, B, AB. The essential property of the ECO-ISR secular matrix is that
all non-diagonal matrix blocks vanish. This structure, referred to as separability, is
shown in Fig. 12.3.

Obviously, there is no coupling between states local on A and states local on B:

MAA 0 0

0 MBB 0

0 0 MAB,AB

Fig. 12.3 Separable block structure of the ISR-ADC secular matrix M with respect to the separate
fragment model
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MIA,JB = 〈�̃IA |Ĥ |�̃JB 〉 = 〈�̃ A
IA |〈�B

0 |(ĤA + ĤB)|�̃B
JB

〉|� A
0

〉 = 0 (12.35)

as, for example, the states of fragment A, |�̃IA

〉
and |� A

0

〉
, are orthogonal (even relate

to different electron numbers). The case of the coupling block M A,AB is less trivial:

MIA,JAB =〈�̃IA |Ĥ |�̃JAB 〉
=〈�̃ A

IA |〈�B
0 |(ĤA + ĤB)|�̃ A

JA

〉|�̃B
JB

〉

=〈�̃ A
IA |ĤA|�̃ A

JA〉 〈�B
0 |�̃B

JB 〉 + 〈�̃ A
IA |�̃ A

JA〉 〈�B
0 |ĤB |�̃B

JB 〉 = 0 (12.36)

In the last line, the first term vanishes because, by construction, |�̃B
JB

〉
is orthogonal

to |�B
0

〉
, that is, 〈�B

0 |�̃B
JB

〉 = 0. The second term vanishes according to

〈�B
0 |ĤB |�̃B

JB 〉 = EB
0 〈�B

0 |�̃B
JB 〉 = 0 (12.37)

as |�B
0

〉
is the ground state of ĤB , and, again, 〈�B

0 |�̃B
JB

〉 = 0.
It is important to note that Eq. (12.36) holds through all orders of PT. As a con-

sequence, the separability property not only applies to the exact ISR but also to the
systematic ISR(n) approximation schemes.

It remains to show that the diagonal block M AA of M is identical with the secular
matrix M A of fragment A. This is easily seen as follows:

MIA,JA =〈�̃IA |ĤA + ĤB |�̃JA〉 − δIA,JA E0

=〈�̃ A
IA |ĤA|�̃ A

JA〉 + δIA,JA E
B
0 − δIA,JA E0

=〈�̃ A
IA |ĤA − E A

0 |�̃ A
JA〉 = MA

IA,JA (12.38)

The full separability structure of the ECO-ISR secular matrix guarantees size-
consistent results: For local excitations (ionizations) on one of the fragments, say
A, the eigenvalues (ionization energies) of the secular matrix M of the composite
system are identical with those of the fragment secular matrix M A.

Of course, this finding applies also to the spectroscopic factors. According to the
separability structure of M, the eigenvector of a local excitation, say on A, has the
form

Xn =
⎛

⎝
X A

n
0
0

⎞

⎠ (12.39)

where X A
n denotes the corresponding eigenvector ofM A. For an orbital p of fragment

A, the vector f p of transition amplitudes f I p takes on the same form,

f p =
⎛

⎝
f A
p

0
0

⎞

⎠ (12.40)
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DAA 0 DA,AB

0 DBB DB,AB

DAB,A DAB,B DAB,AB

Fig. 12.4 Block structure of the intermediate-state representation D of general operator D̂ with
respect to the separate fragment model

as, for example, f IB p = 〈� A
0 |cp|� A

0 〉〈�̃B
IB

|�B
0 〉 = 0. In Eq. (12.40), f A

p denotes the

vector of fragment A transition amplitudes, f AIA p = 〈�̃ A
IA

|cp|� A
0 〉. According to

x (n)
p = X†

n f p = X A†
n f A

p = x A(n)
p (12.41)

the composite and fragment versions of the spectroscopic factor are identical.
In a similar way, one may analyze the representation of a general (not necessar-

ily one-particle) operator D̂ = D̂A + D̂B . As seen in Fig. 12.4, the block structure
resulting for the separate fragment partitioning is not separable. For example, the
coupling matrix elements for local and non-local configurations

〈�̃IA |D̂|�̃JAB 〉 = δIA,JA 〈�̃B
0 |D̂B |�̃B

JB 〉 (12.42)

need not vanish. What does this mean for the computation of properties, which nec-
essarily relate to the composite system? Let us consider a local excitation (ionization)
|�N−1

n

〉 = |� A
n

〉|�B
0

〉
, where the eigenvector is of the form given by Eq. (12.39). The

corresponding expectation value of D̂ becomes

Dn = 〈�N−1
n |D̂A + D̂B |�N−1

n 〉 = X A†
n DAAX A

n = DA
n + DB

0 (12.43)

where DB
0 = 〈�B

0 |D̂B |�B
0 〉 is the ground-state expectation value of fragment B. The

last equation reflects the fact that the DAA block is given by

DAA = DA + DB
0 1 (12.44)

where DA denotes the ISR secular matrix of fragment A. According to Eq. (12.43),
the ISR-ADC approach reproduces correctly a property pertaining to the composite
as the sum of the fragment contributions, being here the property of the excited
(ionized) fragment A in the excited (ionized) state and the property of fragment B
in the ground state.
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12.3 A Look at the CI Method

The benefit of the ISR-ADC approach presented in the preceding chapters has to
be seen in comparison to conventional quantum-chemical methods, most notably
the standard configuration–interaction (CI) treatment. Therefore, the performance of
the CI method with regard to truncation errors and size-consistency shall briefly be
inspected in the following.

In the CI treatment, here of an (N−1)-electron system, the Schrödinger equation

Ĥ |�N−1
n

〉 = EN−1
n |�N−1

n

〉
(12.45)

is recast into an algebraic eigenvalue problem by expanding the ionic states
according to

|�N−1
n

〉 =
∑

J

X Jn|�J
〉

(12.46)

in terms of the CI states
|�J

〉 = ĈJ |�0
〉

(12.47)

as introduced by Eqs. (11.2), (11.3). In matrix notation, the algebraic eigenvalue
equations read

HX = X�, X†X = 1 (12.48)

Here, H denotes the CI secular matrix,

HI J = 〈�I |Ĥ |�J 〉 (12.49)

� is the diagonal matrix of ionic-state energies EN−1
n , and X is thematrix of (column)

eigenvectors Xn . To form ionization energies, In = EN−1
n − E0, one has to obtain E0

from a separate CI computation for the N -electron system.

Structure of the CI Matrix

Approximate CI treatments are obtained by limited CI expansions as opposed to full
(FCI) expansions. In the following, wewill be concerned with systematic truncations
of the CI expansions, that is, expansions being complete through a given excitation
class μ. These systematic truncation schemes can be examined with respect to the
PT order of the induced error in the CI results. For this purpose, one has to inspect
the structure of the CI secular matrix H .

Being a fully variational method, theCI secular matrix H has a rather basic “order
structure,” as shown inFig. 12.5.Owing to the Ĥ0 part of the hamiltonian, the diagonal
matrix elements are of zeroth order, as indicated by the zeros in the diagonal blocks.
Each excitation class μ is coupled through terms linear in the two-electron Coulomb
integrals (first order) to the excitation classes μ ± 1 and μ ± 2, which is indicated
by the entries 1 in the respective matrix blocks. There is no coupling between states
differing by more than two excitation classes (entry “-”).
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Fig. 12.5 Order structure of
the CI secular matrix H

1h 2h -1p 3h -2p 4h -3p 5h -4p ...

1h 0 1 1 - - ...

2h -1p 1 0 1 1 - ...

3h -2p 1 1 0 1 1 ...

4h -3p - 1 1 0 1 ...

5h -4p - - 1 1 0 ...

...
...

...
...

...
...

The characteristic structure of the CI secular matrix gives rise to comparatively
large truncation errors in the final state energies. As the most important case, let us
consider 1h (main) states.Due to the linear (first order) coupling to 3h-2p states, there
is a second-order contribution to the 1h ionic energies arising from the admixture
of 3h-2p excitations. This means that there is a second-order truncation error if the
CI configuration space is confined to the 1h and 2h-1p configurations. The general
formula for the TEO in the 1h state energies is given by

OT E (μ) =
{

μ, μ even

μ + 1, μ odd
(12.50)

where as before μ denotes the highest excitation class included in the CI expansion
manifold.

The CI truncation errors are relatively large, which, in turn, implies that large CI
expansions are required to meet specific accuracy levels. For example, in order to
treat 1h states consistently through second order of PT, the CI configuration space
must comprise the 3h-2p excitations (μ = 3). By contrast, in the ISR-ADCmethod,
a much smaller explicit configuration space, consisting of 1h and 2h-1p excitations,
affords the same level of accuracy.

Non-separability

With regard to the separate fragment model and the corresponding partitioning, the
CI secular matrix is not separable, as shown in Fig. 12.6. This is notwithstanding the
obvious fact that all CI configurations |�I

〉
assume the form of products of fragment

states, e.g.,
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|�0
〉 = |�A

0

〉|�B
0

〉

|�IA

〉 = |�A
IA

〉|�B
0

〉

|�IAB

〉 = |�A
IA

〉|�B
IB

〉
(12.51)

Unlike in the ECO-ISR case, there is no equivalent to Eq. (12.37) here. While the A
and B states are strictly decoupled, H AB = 0, there can be a non-vanishing coupling
between a local and a mixed excitation, e.g.,

HIA,JAB = δIA JA〈�B
0 |ĤB |�B

JB 〉 (12.52)

where 〈�B
0 |ĤB |�B

JB
〉 is a righteous matrix element in the CI treatment of the ground

state of fragment B.
Non-local coupling may arise explicitly in the CI matrix elements HI J , where

the configurations I, J differ by two excitation classes, such as in the 1h/3h-2p
matrix elements (12.3). Let l denote a 1h excitation on fragment A (IA ≡ l) and
a′b′ j ′k ′l ≡ JAB a non-local 3h-2p excitations where the primed indices refer to
one-particle states associated with fragment B; the couplingmatrix element becomes

Hl,a′b′ j ′k ′l = Va′b′[ j ′k ′] (12.53)

which obviously does not depend on the distance between the two fragments.
According to Eq. (12.10), the potentially non-local coupling between 1h and

3h-2p configurations arises also in the ISR version (11.5) based on symmetrically
orthonormalized (SO) CE states. This shows that the SO procedure for the CE states
does not result in a separable secular matrix either.

Given the structure shown in Fig. 12.6, there is no a priori decoupling of local
excitations (say on fragment A) from non-local (or mixed) excitations. The CI treat-
ment of the composite system S aims in an inextricable way at an optimal description
of both fragments, that is, the ionic state of fragment A and the ground state of frag-
ment B. In the exact (full) CI treatment of the composite system, the energy of a

HAA 0 HA,AB

0 HBB HB,AB

HAB,A HAB,B HAB,AB

Fig. 12.6 Non-separable block structure of the CI secular matrix H with respect to the separate
fragment model
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local ionization, say on A, is of course given as the sum EN−1
n = E A

n + EB
0 of the

fragment state energies. Here, subtraction of the FCI result for the composite ground
state, E0 = E A

0 + EB
0 , would cancel EB

0 and lead to the correct ionization energy
for the ionization of the local fragment A. In realistic applications, one has to resort
to truncated CI expansions, and here, an energy computed for the composite sys-
tem differs from the sum of the CI results for the respective fragment states. Due to
this well-known size-consistency error, the CImethod does not qualify as a genuine
many-body method.

Exercises

12.1 (a) Consider the symmetrical orthonormalization (SO) of theCE states accord-
ing to Eq. (11.5). Construct the 1h and 3h-2p states |� i

〉
, |�abjkl

〉
through

first order and verify Eq. (12.10). Hint: The overlap matrix S (Eq. 11.4)
of the CE states can be expanded as S = 1 + S(1) + . . . so that S−1/2 =
1 − 1

2 S
(1) + O(2).

(b) Sketch a proof for a factorization theorem analogous to the factorization of
the ECO-ISR states according to Eq. (12.25). Discuss the separability proper-
ties of the SO-CE secular matrix.

12.2 Multiple non-interacting 2E-2O systems (see Exercise 2.4):
A well-known model (see for example Ref. [3]) to demonstrate the size-
consistency problem in the (restricted) CI treatment is a system composed of
M (> 1) mutually non-interacting 2E-2O sub-systems, such as, for example,
an array of separate H2 molecules in the minimal basis (two orbital) approxi-
mation.
(a) Apply the double excitation CI scheme (CID) to the ground state of
the 2E-2O array. Establish that the configuration manifold comprises the
reference state, |�M

0

〉 = |�(1)
0

〉|�(2)
0

〉
. . . |�(M)

0

〉
, where |�(i)

0

〉
denotes the HF

ground state of the i th subsystem; and M doubly excited states of the
form |�M

i

〉 = Ĉi |�M
0

〉
, i = 1, . . . , M . Here, Ĉi = c†iuαc

†
iuβcigβcigα generates

a double excitation in the subsystem i , and ig, iu denote the orbitals of
subsystem i .
(b) Evaluate the (M + 1)-dimensional hamiltonian matrix, H , and solve the
corresponding eigenvalue equations for the ground state. Hint: the particular
form of H allows for a simple analytical solution. Determine and characterize
the remaining M solutions too.
(c) Compare the CID result, ECI

0 , with the exact ground-state energy of the
model. How does the resulting correlation energy ECI

c = H00 − ECI
0 scale

with M?
(d) Compare the exact ground state, |�M

0

〉
, with the CID result; consider here

in particular the coefficient x0 of the reference configuration (HF ground state),
|�M

0

〉
, in the normalized exact ground state, |�M

0

〉
.

12.3 (a) Expand the CID result ECI
0 in a perturbation series in powers of V/�, (see

Exercise 2.4c) and verify that the wrong scaling with M sets in with the quartic
terms.
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(b) Use RSPT (as in Exercise 4.2b) for the exact ground-state energy E0 and
analyze the M-dependence in the second- and fourth-order contributions.

12.4 Local ionization in the 2E-2O array:
(a) Use an analogous CI approach to determine the energy of the ionic state
resulting upon removing one electron from subsystem 1. The corresponding
one-hole (1h) configuration (spin symmetry Sz = 1

2 ) reads |�1g
〉 = c1gβ |�M

0

〉
.

In addition, there are M−1 3h-2p configurations, c1gβĈi |�M
0

〉
, i = 2, . . . , M ,

which differ from the 1h state by a double excitation on site i .
(b) Consider the ionization energy �E1g = E−

1g − E0 and compare the M-
dependent CI result with the exact ionization energy (see Exercise 3.2). Exam-
ine the cases M = 1 and M 
 1.
(c) Adapt the ADC(2) scheme (Eq.10.33) to the 2E-2O array and verify the
explicit size-consistency of the ionization energies.

References

1. Mertins F, Schirmer J (1996) Phys Rev A 53:2140
2. Schirmer J, Mertins F (1996a) Int J Quantum Chem 58:329
3. Meunier A, Levy B (1979) Int J Quantum Chem 16:955



Part IV
N-Electron Excitations



Chapter 13
Polarization Propagator

The electron propagator is the simplest many-body Green’s functions, and accord-
ingly, the formalism of diagrammatic perturbation theory was specifically presented
for that paradigm in Chaps. 4–6. Also the ADC and ISR concepts in the design of
practical approximation schemes (Chaps. 10–12) were explicitly formulated for the
electron propagator and the underlying physics, being (N−1)- and (N+1)-electron
excitations. In this and the two following Chaps. 14 and 15 we consider the polariza-
tion propagator designed for the treatment of N -electron excitations. By and large,
the concepts developed for the electron propagator can be transferred to the case of
the polarization propagator, but there are also important differences that need to be
addressed. In this chapter we present the polarization propagator, discuss its physical
significance, and outline the pertaining diagrammatic perturbation expansion.

13.1 Definition and Physical Significance

Reversing the order adopted in Sect. 3.1 introducing the electron propagator, we here
begin with the spectral representation of the polarization propagator and from there
go back to the original definition.

The polarization propagator is constituted by a matrix �(ω) of energy (or time)-
dependent functions �rs,r ′s ′(ω) which can be written in an explicit spectral repre-
sentation form as follows:

�rs,r ′s ′(ω) =
∑

m �=0

〈�0|c†s cr |�m〉〈�m |c†r ′cs ′ |�0〉
ω − Em + E0 + iη

+
∑

m �=0

〈�0|c†r ′cs ′ |�m〉〈�m |c†s cr |�0〉
−ω − Em + E0 + iη

(13.1)
In addition to notations already used in the analogous representation (3.17) of
the electron propagator, Em and |�m〉 denote the energies and energy eigenstates,
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respectively, of the N -electron system. It is important to note that the summations
in Eq. (13.1) explicitly exclude the ground state,m = 0. According to Eq. (13.1), the
polarization propagator functions consist of two parts,

�rs,r ′s ′(ω) = �+
rs,r ′s ′(ω) + �−

rs,r ′s ′(ω) (13.2)

being analytic in the upper (�+) and lower (�−) halves of the complex ω-plane. In
contrast to the electron propagator, here the two parts are interrelated,

�−
rs,r ′s ′(ω) = �+

s ′r ′,sr (−ω). (13.3)

so that �− (and thus �) can be determined from �+ and vice versa.
The physical information conveyed by �+ (or �−) comprises the (vertical)

excitation energies,
ΔEm = Em − E0 (13.4)

appearing as pole locations, and the transition amplitudes in the numerators,

xm,rs = 〈�m |c†r cs |�0〉 (13.5)

The transition amplitudes enter the computation of transition moments according to

Tm = 〈�m |D̂|�0〉 =
∑

r,s

xm,rsdrs . (13.6)

where
D̂ =

∑

r,s

drsc
†
r cs (13.7)

is a pertinent transition operator.
Beyond the spectral information, the polarization propagator also provides an

approach to time- or frequency-dependent polarizabilities and other linear response
properties. A brief outline of linear response theory and the connection to the polar-
ization propagator is given in AppendixA.7.

In analogy to Eq. (3.24), the components of �+(ω) or �−(ω) can be written as
matrix elements of a resolvent operator,

�+
rs,r ′s ′(ω) =〈�0|c†s cr (ω − Ĥ + E0 + iη)−1c†r ′cs ′ |�0〉 (13.8)

− 〈�0|c†s cr |�0〉〈�0|c†r ′cs ′ |�0〉(ω + iη)−1

where the second (subtraction) termcancels ground-state contributions (m = 0) com-
prised in the first term.

The time representation of the polarization propagator can be obtained by applying
the inverse Fourier transform,
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�rs,r ′s ′(t, t ′) = 1

2π

∞∫

−∞
e−iω(t−t ′)�rs,r ′s ′(ω)dω

to the spectral representation (13.1). Using Heisenberg operators as defined by
Eq. (3.2), the result can then be brought into a compact form, which for �+

rs,r ′s ′(t, t ′)
reads

�+
rs,r ′s ′(t, t ′) =θ(t − t ′)e−η(t−t ′)×

(−i)
(
〈�0|c†s [t]cr [t]c†r ′ [t ′]cs ′ [t ′]|�0〉 − 〈�0|c†s cr |�0〉〈�0|c†r ′cs ′ |�0〉

)

The latter expressions can be combined with those for �−
rs,r ′s ′(t, t ′) to give the time

representation of the polarization propagator in a form similar to the definition (3.3)
of the one-particle Green’s function:

�rs,r ′s′(t, t
′) = −i〈�0|T̂TT

(
c†s [t]cr [t]c†r ′ [t ′]cs′ [t ′]

)
|�0〉 + i〈�0|c†s cr |�0〉〈�0|c†r ′cs′ |�0〉

(13.9)
Here, the T̂TT time-ordering operator (3.5) incorporates the respective step functions
θ(τ ), possibly togetherwith the convergence factors e±η(t−t ′) as discussed in Sect. 3.1.
The subtraction terms in �+

rs,r ′s ′(t, t ′) and �−
rs,r ′s ′(t, t ′) differ only in the respective

step functions and convergence factors. Disregarding the latter, the step functions
combine to unity, θ(t − t ′) + θ(t ′ − t) = 1. According to Eqs. (3.26), (3.27), the
resulting substraction term on the right-hand side of Eq. (13.9) can be related to the
product

〈�0|c†s cr |�0〉〈�0|c†r ′cs ′ |�0〉 = −Grs(t, t
+)Gs ′r ′(t ′, t ′+) (13.10)

of one-particle Green’s functions at equal times.

Relation to the Two-Particle Green’s Function

The polarization propagator derives from the two-particle Green’s function. The
many-body Green’s functions form a hierarchy in which the one-particle Green’s
function (3.3) is the lowest rank. The next higher member is the two-particle Green’s
function (2p-GF) defined according to (cf. Eq. 3.41)

Gpq,uv(t1, t2; t ′1, t ′2) = (−i)2〈�0|T̂TT
(
cp[t1]cq [t2]c†v[t ′2]c†u[t ′1]

) |�0〉 (13.11)

Here, the notations are the ones introduced in Sect. 3.1. The 2p-GF allows one to
introduce the entity

Rpq,uv(t1, t2; t ′1, t ′2) = Gpq,uv(t1, t2; t ′1, t ′2) − Gpu(t1, t
′
1)Gqv(t2, t

′
2) (13.12)

referred to as particle–hole (p-h) response function [1]. Depending on four time
arguments, the p-h response function obviously is a rather complex construct. A
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useful simplification is obtained by equating each two time arguments,

�rs,r ′s ′(t, t ′) = i Rrs ′,sr ′(t, t ′; t+, t ′+) (13.13)

and this expression, involvingEqs. (13.11), (13.12), constitutes the original definition
of the polarization propagator. As the reader should check, the definition (13.13)
does not depend on the time-ordering of the limits t1 → t ′1 = t and t2 → t ′2 = t ′; the
particular ordering chosen on the right-hand side of Eq. (13.13) compares directly to
the form of Eq. (13.9).

It is important to note that, unlike with the electron propagator, there is no Dyson
equation approach to the polarization propagator. Of course, one might postulate a
Dyson-type equation according to

�(ω) = �(0)(ω) + �(0)(ω)P(ω)�(ω) (13.14)

thereby defining the quantity P(ω) as an analogue to the self-energy in the Dyson
equation part �(ω). However, in contrast to �(ω), there is no direct and diagram-
based approach to determine P(ω), which means that Eq. (13.14) is all but useless.
Only in a rudimentary form, obtained by restricting P(ω) to the constant first-order
approximation, Eq. (13.14) acquires ameaning: Here, it represents the defining equa-
tion of the random-phase approximation (RPA) to the polarization propagator, which
will be discussed in some detail in Chap.15.

As an actual counterpart to the Dyson equation for the electron propagator one
may see theBethe–Salpeter equation [2] for the p-h response function (13.12), which
in a shorthand notation can be written as

R12,1′2′ = G12′G21′ − iG1τGσ1′K ph
τσ′,στ ′ Rτ ′2,σ′2′ (13.15)

Here, repeated indices imply summation over one-particle states and integration
over time arguments; the quantity K ph is referred to as the irreducible p-h ver-
tex. Obviously, being an integral equation involving a fourfold time integration, the
Bethe–Salpeter equation is by far more complex than the Dyson equation.

13.2 Diagrammatic Perturbation Theory
for the Polarization Propagator

The diagrammatic perturbation theory formulated for the electron propagator in
Chaps. 4–7 can be transferred with minor adjustments to the case of the polarization
propagator. We recall the key steps as follows.

The starting point is the time representation of the polarization propagator
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Fig. 13.1 Symbolic representation of disjoint diagrams arising in the subtraction term inEq. (13.16)

�rs,r ′s ′(t, t ′) = −i〈�0|T̂TT
(
c†s [t]cr [t]c†r ′ [t ′]cs ′ [t ′]

)
|�0〉 − iGrs(t, t

+)Gs ′r ′(t ′, t ′+)

(13.16)
as given by Eqs. (13.9), (13.10).Wewill focus on the first term on the right-hand side,
to be denoted hereafter as �′

rs,r ′s ′ ; the subtraction term, −iGrs(t, t+)Gs ′r ′(t ′, t ′+),
allows us to discard any diagrammatic contributions to �′

rs,r ′s ′(t, t ′)which are of the
‘disjoint’ product structure, symbolically depicted in Fig. 13.1.

Repeating the development ofChap.4 for�′
rs,r ′s ′ leads to a perturbation expansion

of the Gell-Mann and Low type,

i�′
rs,r ′s ′(t, t ′) = lim

ε→0

∞∑

n=0

(−i)n

n!
∞∫

−∞
dt1e

−|t1| . . .
∞∫

−∞
dtne

−|tn|

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)c†s (t)cr (t)c

†
r ′(t ′)cs ′(t ′)

]
|�0〉

〈�0|Ûε(∞,−∞)|�0〉
(13.17)

which is the analogue of Eq. (4.58) for the electron propagator.
From here, we may leap forward to the linked-cluster theorem as presented in

Sect. 5.3. The analysis given there can directly be transferred to the case of the
polarization propagator. In analogy to Eq. (5.43), the perturbation expansion (13.17)
assumes the much simpler form

i�′
rs,r ′s ′(t, t ′) =

∞∑

n=0

(−i)n

n!
∞∫

−∞
dt1 . . .

∞∫

−∞
dtn

〈�0|T̂TT
[
ĤI (t1) . . . ĤI (tn)c

†
s (t)cr (t)c

†
r ′(t ′)cs ′(t ′)

]
|�0〉C (13.18)

where 〈�0| . . . |�0〉C means that only connected (linked) contributions are retained
in the respective ground-state expectation values. Let us recall that in the linked
contributions, the adiabatic limit ε → 0 can always safely be performed,whichmeans
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Fig. 13.2 Zeroth- and
first-order Feynman
diagrams for the polarization
propagator

that the switching functions e−ε|tk | on the right-hand side of Eq. (13.17) are no longer
needed.

The distinction of linked and unlinked contributions presupposesWick’s theorem,
the second pillar in the formalism of diagrammatic perturbation theory. As discussed
in Sects. 6.1 and 6.2, the ground-state expectation values arising, for example, in the
PT expansion (13.18) of the polarization propagator can be evaluated in terms of
contractions of operator pairs. This paves the way to the introduction of diagrams, as
anypossible contraction schemecandirectly be assigned to a correspondingFeynman
diagram.

To see the particular features of the Feynman diagrams for the polarization propa-
gator, let us take a look at the zeroth-order term on the right-hand side of Eq. (13.18):

i�′(0)
rs,r ′s ′(t, t ′) =〈�0|T̂TT

[
c†s (t)cr (t)c

†
r ′(t ′)cs ′(t ′)

]
|�0〉

=(−1)cr (t)
�c†r ′(t ′)� cs ′(t ′)��c†s (t)

�� + cr (t)
�c†s (t)

� cs ′(t ′)��c†r ′(t ′)��

The ground-state expectation value gives rise to two contraction schemes, as specified
in the second equation. Note the phase (−1) in the first term, which results from the
need to reverse the order of the operators in the contraction cs ′(t ′)�c†s (t)�. In the second
term, the contractions relate to operators at equal time arguments t and t ′, respectively.
Obviously, this term is canceled by zeroth-order contributionG0G0 to the subtraction
term in the definition (13.16) of the polarization propagator. Accordingly, the zeroth-
order polarization propagator can be written as

�
(0)
rs,r ′s ′(t, t ′) = icr (t)

�c†r ′(t ′)� cs ′(t ′)��c†s (t)
�� = −iG0

rr ′(t, t ′)G0
s ′s(t

′, t) (13.19)

that is (up to a phase) the product of two free electron propagators corresponding to
the zeroth-order Feynman diagram in Fig. 13.2.

To further familiarize ourselves with the diagrammatics in the case of the polar-
ization propagator, let us consider also the first-order term in the expansion (13.18):

i�
′(1)
rs,r ′s ′(t, t ′) = (−i)

1

2

∑

u,v,w,z

Vuvwz

∞∫

−∞
dt1

〈�0|T̂TT
[
c†u(t1)c

†
v(t1)cz(t1)cw(t1)c

†
s (t)cr (t)c

†
r ′(t ′)cs ′(t ′)

]
|�0〉C (13.20)



13.2 Diagrammatic Perturbation Theory for the Polarization Propagator 201

Here one has to deal with altogether 24 different contraction schemes (see Exer-
cise 13.1). Of these schemes, 12 represent disjoint and/or unlinked contributions
and can be discarded from the outset. Another 8 are of the form G0G(1), which, as
discussed in Sect. 6.2, can be disregarded if the PT is based on a HF representation
and Møller–Plesset partitioning of the hamiltonian. The remaining four contraction
schemes can be subsumed within the two first-order Feynman diagrams shown in
Fig. 13.2. The corresponding analytical expressions read

�
(1)
rs,r ′s ′(t, t ′) =

∞∫

−∞
dt1 (Vrs ′r ′s − Vrs ′sr ′)G0

r (t, t1)G
0
s (t1, t)G

0
r ′(t1, t

′)G0
s ′(t ′, t1)

(13.21)

where the free Green’s functions are assumed to be diagonal (cf. Eq. 6.9).
The diagram rules (F1)–(F4) for the electron propagator stated in Sect. 6.1 can

serve as a template for the case of the polarization propagator. Apart from some self-
explanatory adjustments, there are two specific amendments concerning the rules (F1)
and (F4). The first amendment, (F1’), reflects the subtraction term in the defining
Eq. (13.16); the second, (F4’), is an additional phase rule applying to a continuous
fermion line, which can be established analogously to the considerations before and
afterRemark 5 in Sect. 6.1. TheHFone-particle representationwill be supposed in the
following. As discussed in Sect. 6.2, this considerably simplifies the diagrammatic
PT expansions. The findings of Sect. 6.2 can directly be transferred to the case of the
polarization propagator.

Now, theFeynmandiagram rules for the polarization propagator can be formulated
as follows:

Feynman Diagram Rules for the Polarization Propagator

(F1) To generate the nth-order contribution to the polarization propagator, draw
all topologically distinct connected diagrams with n wiggly interaction lines
and 2n + 2 directed free fermion or G0-lines, which start and end, respec-
tively, at the external vertices (r ′, s ′; t ′) and (r, s; t) with a pair of upwards
and downwards directed free fermion lines (labeled (r ′, s ′) and (r, s)).

(F1’) Skip all disjoint diagrams, i.e., diagrams of the structure shown in Fig. 13.1.
Such diagrams contribute to the subtraction term −iGrs(t, t+)Gs ′r ′(t ′, t ′+).

(F2) To evaluate a given diagram, assign one-particle indices and time arguments
to the interaction lines (inner vertices), thereby defining the one-particle
indices and time arguments of the free fermion lines. The arrows specify
order of the one-particle indices and time arguments in the G0-functions.
Replace the graphical symbols by the corresponding analytical expressions,
Vouvw and G0

u(ti , t j ) (supposing diagonal G0 functions). In the case of a G0-
function with equal time arguments, the limit G0(ti , t

+
i ) applies according to

Remark 1 in Sect. 5.2.
(F3) Sum over indices and integrate over time arguments of the inner vertices.
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0 1

2A 2B 2C 2D 2E

Fig. 13.3 Feynman diagrams (in Abrikosov form) for the polarization propagator through second
order

(F4) Multiply by a sign factor (−1)L , where L is the number of closed (fermion)
loops; multiply by a factor i n+1 = (−i)(−i)n(+i)2n+2, where the three factors
relate to the definition of the polarization propagator, the n interaction lines,
and the 2n + 2 free fermion lines.

(F4’) An additional factor (−1) applies if one continuous fermion line runs from
the bottom (lower external vertex) to the top (upper external vertex) of the
diagram; note that then another fermion line runs from the top to the bottom.
(The opposite case is when one fermion lines run from top to top and another
one from bottom to bottom.)

As a first application, the reader may use these rules to confirm the first-order expres-
sion (13.21).

Abrikosov Diagrams

In Sect. 6.3, we have discussed how the Abrikosov notation, replacing the wiggly
interaction lines of the original Feynman diagrams by interaction dots, leads to a
more compact diagrammatic presentation. Obviously, this procedure applies as well
to the case of the polarization propagator.

Figure13.3 shows theAbrikosov diagrams for the polarization propagator through
second order of PT. In first order, for example, the two Feynman diagrams shown
in Fig. 13.2 have merged into a single Abrikosov diagram. The Abrikosov diagrams
are based on the original Feynman diagrams, and the rules for drawing and evaluat-
ing Abrikosov diagrams can be derived from those for the Feynman diagrams in a
straightforward way. Therefore, we may dispense with a separate presentation of the
Abrikosov rules for the polarization propagator. The reader may revisit the derivation
in Sect. 6.3 of the Abrikosov rules (A1)–(A5) for the electron propagator.
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Fig. 13.4 First-order
time-ordered (Goldstone)
diagrams contributing to �+

(a) (b) (c)

Time-Ordered or Goldstone Diagrams

The time-ordered or Goldstone diagrams considered in Chap. 7 allow one to write
down in a direct diagrammatic way the final outcome of a Feynman diagram after
performing the n internal time- or ω-integrations required at the nth-order level. The
Goldstone diagram rules (G1)–(G4) stated in Sect. 7.2 apply as well to the case of
the polarization propagator aside from a minor adjustment of the sign rule (G4) as
follows:

(G4) Each hole line introduces the factor (−1). Thus, multiply by a sign factor
(−1)L+M , where L is the number of closed loops and M is the number of hole
lines. Each (inner) vertex contributes a factor (−i), each cut a factor (+i), so
that, together with the factor (−i) from the definition of the polarization prop-
agator, the overall phase factor simply becomes unity: (−i)(−i)n(+i)n+1 = 1.
According to the Feynman rule (F4’), an additional factor (−1) applies if one
(or two) continuous fermion line(s) run between the external vertices.

For an illustration,we consider the third time-ordering (c) of the first-orderAbrikosov
diagram shown in Fig. 13.4. The analytic expression reads

D(1c) ≡ −1

ω − εr + εs

Vrs ′[r ′s]
εr ′ + εs − εr − εs ′

n̄r ns nr ′ n̄s ′ (13.22)

As in the case of the electron propagator (see Sect. 7.2), the time-ordered diagrams
for the polarization propagator can be divided into two classes, I and II, corresponding
to the time-orderings, t > t ′ and t < t ′, respectively, of the time arguments of the
external vertices. The diagrams of class I contribute exclusively to�+, those of class
II exclusively to�−. This establishes distinct diagrammatic perturbation expansions
for the two parts, allowing one to establish direct ADC formulations for �+ or �−.
In view of the redundancy of the two parts, here one may confine oneself to the case
of �+. The corresponding ADC and ISR approaches to the polarization propagator
are presented in the ensuing Chap. 14.

Exercises

13.1 Inspect all possible contraction schemes in the first-order term (13.20). Use a
diagrammatic representation and identify contraction schemes that are either
unlinked or disjoint (as in Fig. 13.1).
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13.2 Draw and evaluate the Feynman diagrams comprised in the second-order
Abrikosov diagram 2E in Fig. 13.3.

13.3 Evaluate the first-order Goldstone diagrams (a) and (b) in Fig. 13.4.
13.4 Adapt the matrix representation of diagrams presented in Sect. 6.3 to the

Abrikosov diagrams for the polarization propagator. Use the matrix concept
to establish the five second-order diagrams in Fig. 13.3.
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Chapter 14
ADC and ISR Approaches to the
Polarization Propagator

The direct ADC procedure presented in Chap.10 for the G±(ω) parts of the electron
propagator can essentially be transferred to the polarization propagator, where it
suffices to deal with �+(ω) due to the redundancy of the two parts. This will be
demonstrated in the following. Moreover, in analogy to Chap.11, the intermediate-
state representation (ISR), here based on the correlated excited N -electron states,
will be established and discussed.

14.1 General Framework

The spectral representation for the �+(ω) part of the polarization propagator, given
by the first term on the right-hand side of Eq. (13.1), can be written in matrix
notation as

�+(ω) = x†(ω − �)−1x (14.1)

where� is the diagonal matrix of excitation energies,ωm = Em − E0, and x denotes
the matrix of transition amplitudes xm,rs specified by Eq. (13.5). The ADC formula-
tion, by contrast, sets out from a non-diagonal representation

�+(ω) = f †(ω − M)−1 f (14.2)

deriving from a set of intermediate states |�̃J 〉 to be further specified below. Here,
the secular matrix M is defined according to

MI J = 〈�̃I |Ĥ − E0|�̃J 〉 (14.3)

as the intermediate-state representation (ISR) of the (shifted) hamiltonian Ĥ − E0.
The matrix f denotes a matrix of “effective” transition amplitudes
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f I,rs = 〈�̃I |c†r cs |�0〉 (14.4)

For a given, exact or approximate, secular matrix M, the excitation energies ωm can
be computed by solving the (hermitian) eigenvalue problem

MX = X �, X†X = 1 (14.5)

Here,� and X denote the diagonal matrix of eigenvalues and the eigenvector matrix,
respectively. Using the expansion

|�m〉 =
∑

J

X Jm |�̃J 〉 (14.6)

the transition moments (Eq.13.6) can be written as

Tm =
∑

r,s

xm,rsdrs . (14.7)

with the transition amplitudes given by

xm,rs =
∑

J

X∗
Jm f J,rs (14.8)

Now let us consider the construction of the intermediate states. As discussed in
Sect. 11.1, one starts from the correlated excited (CE) states

|�0
J 〉 = ĈJ |�0〉 (14.9)

Here, the operators ĈJ relate to neutral 1p-1h, 2p-2h, . . . excitations:

{ĈJ } =
{
c†ack; c†ac†bckcl , a < b, k < l; . . .

}
(14.10)

Again, we may number the successive excitation classes, μ = 1, 2, 3, . . ., and use
the notation [J ] to specify the excitation class to which the configuration J belongs;
that is, [J ] = μ if J belongs to the class of μh-μp excitations.

Unlike the ECO construction of (N−1) states considered in Sect. 11.1, now the
exact ground state |�0〉 has to be taken into account in order to ensure that the
intermediate states are orthogonal to |�0〉,

〈�0|�̃J 〉 = 0 (14.11)
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To this end the rule (1), addressing the precursor states (cf. Eq. 11.11) has to be
extended as follows:

(1) Assume that the intermediate states |�̃K 〉 of the classes 1, . . . , ν − 1 have been
constructed. Then, orthogonalize the CE states |�0

J 〉 of class ν with respect to
the intermediate states of class 1, . . . , ν − 1 and to |�0〉 (which may be seen as
constituting a zeroth excitation class, ν = 0) according to

|�#
J 〉 = |�0

J 〉 − |�0〉〈�0|�0
J 〉 −

∑

[K ]<ν

|�̃K 〉〈�̃K |�0
J 〉, [J ] = ν (14.12)

Note that in the ground-state Gram-Schmidt term |�0〉 is supposed to be normalized
to 1. The second rule can be literally transcribed from Sect. 11.1:

(2) The “precursor” states |�#
J 〉 of class ν may then be orthonormalized symmetri-

cally, yielding
|�̃J 〉 =

∑

[I ]=ν

|�#
I 〉(S−1/2

ν )I J (14.13)

where Sν is the overlap matrix of the precursor states of class ν,

(Sν)I J = 〈�#
I |�#

J 〉, [I ] = [J ] = ν (14.14)

As discussed in Sect. 11.1, the ECO construction establishes PT expansions of the
secular matrix elements,

M = M(0) + M(1) + M(2) + . . . (14.15)

and the effective transition amplitudes,

f = f (0) + f (1) + f (2) + . . . (14.16)

The explicit PT expressions in these expansions can be obtained by using the PT
expansion of the ground state, |�0〉, and ground-state energy, E0, in the CE states,
|�0

I 〉. This has been described in Sect. 11.2 for the (N−1)-electron states. Alter-
natively, one may resort to the ADC approach in which the PT expansion of the
right-hand side of Eq. (14.2) is compared with the diagrammatic PT expansion for
�+(ω) through successively higher order.

A hierarchy of higher-order approximation (ADC (n)) schemes for N -electron
excitations can then be devised by letting the explicit IS or ADC configuration
space comprise ever higher excitation classes and truncating the PT expansions
of the matrix elements in a coordinated and consistent way. In the next section,
the construction of the first- and second-order ADC schemes for the polarization
propagator will be demonstrated.
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14.2 Explicit ADC Schemes for the Polarization Propagator

In the ADC formulation, the secular matrix is conveniently written as

M = K + C

= K + C(1) + C(2) + . . . (14.17)

where
K = M(0) (14.18)

denotes the zeroth-order part of M. According to

M (0)
I J = 〈�I |Ĥ0 − E (0)

0 |�J 〉 = KI J (14.19)

K is the diagonal matrix of HF excitation energies,

Kak,ak = εa − εk

Kabkl,abkl = εa + εb − εk − εl

... (14.20)

In zeroth order, the ADC term

�(0)+(ω) = f (0)†(ω − K )−1 f (0) (14.21)

is to be compared with the diagrammatic expression (Eq.13.19),

�
(0)+
ak,a′k ′(ω) = δaa′δkk ′(ω − εa + εk)

−1 (14.22)

from which one obtains
f (0)
ak,rs = δarδks (14.23)

Moreover, the comparison in zeroth order implies f (0)
μ = 0 for μ > 1; that is, the

zeroth-order matrix elements f (0)
I,rs vanish unless I is a 1p-1h configuration.

First-Order ADC Scheme

Unlike in the (N−1)-electron case discussed in Chap.10, there is a non-trivial first-
order ADC(1) scheme here. The first-order ADC form reads

�(1)+(ω) = f (1)†
1 (ω − K 1)

−1 f (0)
1 + f (0)†

1 (ω − K 1)
−1 f (1)

1

+ f (0)†
1 (ω − K 1)

−1C(1)
11 (ω − K 1)

−1 f (0)
1 (14.24)
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where the respective 1p-1h matrix blocks are indicated by the subscript 1. The three
terms on the right-hand side are matched by the first-order Goldstone diagrams (b),
(c), and (a) shown in Fig. 13.4, which allows one to simply read off the quantities
C(1)

11 and f (1)
1 from the diagrammatic expressions. In particular, the expressions for

diagram (a) and diagram (b) (see Eq.13.22) yield

C (1)
ak,a′k ′ = −Vak ′[a′k] (14.25)

and

f (1)
ak,rs = Vas[rk]nrns

εa + εs − εk − εr
(14.26)

Note that f (1)
ak,rs vanishes unless the index pair rs is of h-p type.

Of course, these first-order results could have been obtained equally well using
the ISR formulation. Through first order, the 1p-1h intermediate states simply read

|�̃ak〉 = |�ak〉 + c†ack |�(1)
0 〉 + O(2) (14.27)

Consequently, the secular matrix

Mak,a′k ′ = 〈�̃ak |Ĥ − E0|�̃a′k ′ 〉 = Kak,a′k ′ + 〈�ak |ĤI − E (1)
0 |�a′k ′ 〉 + O(2)

(14.28)
can easily be expanded throughfirst order, reproducing theADC result of Eq. (14.25).
In a similar way, the expansion of the IS transition amplitudes

fak,rs = 〈�̃ak |c†r cs |�0〉
= 〈�ak |c†r cs |�0〉 + 〈�ak |c†r cs |�(1)

0 〉 + O(2) (14.29)

recovers Eqs. (14.23) and (14.26).
The ADC(1) scheme, constituted by the secular matrix

Mak,a′k ′ = (εa − εk)δaa′δkk ′ − Vak ′[a′k] (14.30)

and the effective transition amplitudes given by Eqs. (14.23) and (14.26), can be com-
pared to theCIS (single excitation configuration interaction)method (see Sect. 12.3),
also referred to as Tamm–Dancoff approximation (TDA). Eq. (14.28) shows that the
CIS secular matrix is identical with the ADC(1) matrix (up to the shift by −E0(1)
in the diagonal). The quality of the ADC(1) or CIS computational schemes is rather
modest, as the excitation energies of the 1p-1h states are treated consistently through
first order only. With regard to the transition moments, the CIS description based on
the expression

Tm =
∑

a′k ′
X∗
a′k ′,mda′k ′ (14.31)
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affords only zeroth-order consistency. The full first-order contribution (to a final state
deriving from the HF excitation |�ak〉) given by

T (1)
ak =

∑

a′k ′
X (1)∗
a′k ′,akda′k ′ +

∑

a′k ′
f (1)
ak,k ′a′dk ′a′ (14.32)

comprises a second term deriving from the first-order contribution to the ground
state, |�(1)

0 〉. By construction, theADC(1) result for the transition moment is correct
through first order. A more detailed PT analysis of the physics encountered in single
electron excitations is given in Sect. 15.1.

Second- and Third-Order ADC Approximations

At second order, theADC procedure for the polarization propagator is more involved
than in the case of the electron propagator treated in Sect. 10.2. Now we have to deal
with five second-order diagrams (rather than one for G(2)), and, moreover, there
are more terms in the ADC form as a consequence of non-vanishing first-order
contributions to C11 and f 1. Nevertheless, the procedure is rather straightforward,
and we may confine ourselves to a brief outline.

In the second-order ADC form, there are eight distinct (non-vanishing) contribu-
tions, (A)–(H), listed in Table 14.1. Note that in a formal sense there are more terms,
for example, f (1)†

3 ω−1
3 f (1)

3 , that is, terms of the type (F) for 3p-3h and higher con-
figurations. However, as there are no diagrammatic counterparts, those terms simply
vanish, which means f (1)

μ = 0 for μ ≥ 3.
The terms of Table 14.1 have to be compared to the second-order diagrams of

Fig. 13.3. As indicated by the terms (F), (G), and (H), now the 2p-2h excitations
(μ = 2) come explicitly into play, requiring to determine C(1)

12 and f (1)
2 . The other

ADC quantities to be derived from the second-order diagrams are C(2)
11 and f (2)

1 .
Each of the five second-order diagrams 2A, . . . , 2E gives rise to 12 Goldstone dia-
grams contributing to �+(ω), so that altogether a manifold of 60 diagrams has to be
inspected. As an example, we consider diagram 2C, which, by the way, belongs to
the series of RPA diagrams (see Sect. 15.1). Its 12 Goldstone diagrams are shown
in Fig. 14.1. Most of these diagrams can directly be identified with corresponding

Table 14.1 Non-trivial
contributions to the ADC
expansion for �+(ω) at
second-order

f (2)†
1 ω−1

1 f (0)
1 + h.c. (A)

f (1)†
1 ω−1

1 f (1)
1 (B)

f (1)†
1 ω1

−1C(1)
11 ω−1

1 f (0)
1 + h.c. (C)

f (0)†
1 ω1

−1C(1)
11 ω−1

1 C(1)
11 ω1

−1 f (0)
1 (D)

f (0)†
1 ω1

−1C(2)
11 ω−1

1 f (0)
1 (E)

f (1)†
2 ω2

−1 f (1)
2 (F)

f (1)†
2 ω2

−1C(1)
21 ω−1

1 f (0)
1 + h.c. (G)

f (0)†
1 ω1

−1C(1)
12 ω−1

2 C(1)
21 ω1

−1 f (0)
1 (H)
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(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Fig. 14.1 Time-ordered (or Goldstone) diagrams of second-order diagram 2C contributing to
�+(ω)

ADC terms in Table 14.1. Obviously, diagram (1) corresponds to term (D), and is
redundant for the ADC analysis as its constituents have already been determined
at the ADC(1) level. Such repetitive diagrams can simply be skipped. This is the
case for diagram (2) and its hermitian conjugate (3) matching term (C), as well as
for diagram (4) to be associated with term (B). The diagrams (5) and (11) and their
hermitian conjugated counterparts (6) and (12) are of the form (A), allowing for the
specification of contributions to f (2)

1 .
The remaining four diagrams (7)–(10) do not fit individually to the ADC terms

and,moreover, introduce denominators of 3p-3h type.However, as explicitly demon-
strated in Sect. 10.2 after Eq. (10.29), some simple algebra can be used to transform
the sum of these four structurally similar diagrams into the forms (E) and (A) and
derive contributions to C(2)

11 and f (2)
1 , respectively:

(7) + (8) + (9) + (10)|ak,a′k ′ →
{
C (2)
ak,a′k ′

f (2)
ak,a′k ′

(14.33)

In a similar way, one may treat the time-orderings (7)–(10) of the diagrams 2A and
2B.

The secular matrix of the ADC(2) scheme is given as follows:

1p-1h block:

Kak,a′k ′ = (εa − εk)δaa′δkk ′ (14.34)

C (1)
ak,a′k ′ = −Vak ′[a′k] (14.35)

C (2)
ak,a′k ′ = C (A)

ak,a′k ′ + C (B)
ak,a′k ′ + C (C)

ak,a′k ′ (14.36)
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where

C (A)
ak,a′k ′ = 1

2δkk ′
∑

c,i, j

vaci jvi ja′c
(
εi + ε j − εc − 1

2 (εa + εa′)
)

(14.37)

C (B)
ak,a′k ′ = 1

2δaa′
∑

c,d,i

vcdkivk ′icd
(
1
2 (εk + εk ′) + εi − εc − εd

)
(14.38)

C (C)
ak,a′k ′ =

∑

c,i

vk ′ia′cvacik
(
1
2 (εk + εk ′ − εa − εa′) + εi − εc

)
(14.39)

using again the abbreviations vrsuv as defined in Eq. (10.31).

1p -1h/2p -2h coupling block:

C (1)
ak,a′b′k ′l ′ = δaa′Vk ′l ′[kb′] − δab′Vk ′l ′[ka′] − δkk ′Val ′[a′b′] + δkl ′Vak ′[a′b′] (14.40)

2p-2h block:
Kabkl,a′b′k ′l ′ = (εa + εb − εk − εl)δaa′δbb′δkk ′δll ′ (14.41)

The relative signs have been chosen such that the first-order contributions C (1)
I J are

consistent with 〈�I |ĤI − E0(1)|�J 〉. The ADC(2) expressions for the transition
amplitudes f (0−2)

1 and f (1)
2 are listed in Appendix A.9.

Figure14.2 illustrates the ADC(2) secular matrix and the matrix of effective
transition amplitudes. Referring to the remarks in Sect. 10.3, the computational cost
at the ADC(2) level scales as m5. The energies of single (1p-1h) excitations are
treated consistently through second order, which translates into typical errors in the
range of±0.5 eV. Double excitations are described only poorly, through zeroth order,
that is. A consistent first-order treatment of the double excitations is achieved in the
ADC(2)-x extension. Here, the zeroth-order 2p-2h diagonal secular matrix block,
K 22, is extended by the first-order contribution, C

(1)
22 , which can either be anticipated

from the ADC(3) scheme or directly identified as the CI term

C (1)
abkl,a′b′k ′l ′ = 〈�abkl |ĤI − E (1)

0 |�a′b′k ′l ′ 〉

Fig. 14.2 Structure of the
ADC(2) matrices M and f

1p -1h 2p -2h

1p -1h M
(0,1,2)
11 M

(1)
12

2p -2h M
(1)
21 M

(0)
22

f
(0,1,2)
1

f
(1)
2
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Fig. 14.3 Third-order Feynman diagrams (in Abrikosov form) for the polarization propagator

using the ISR construction. While distinctly improving the description of the double
excitations and, thereby of single excitations with large admixtures of double exci-
tations, the ADC(2)-x scheme does not afford a systematic improvement of single
excitations in general. To this end, one has to resort to a consistent advancement such
as offered by the next higher ADC(3) scheme.

While the derivation of theADC(2) expressions could be done by anyone familiar
with Feynman diagrams on a “rainy sunday afternoon”, the corresponding task at the
third-order level is nothing less than a small research project [1]. We may confine
ourselves here to a few remarks and refer the reader to the original article. As depicted
in Fig. 14.3, there are 23 third-order Feynman/Abrikosov diagrams, each contribut-
ing 60 Goldstone diagrams to �+(ω), so that altogether one encounters a diagram
manifold of 1380 Goldstone diagrams. While only a fraction of the diagrams really
has to be considered in the ADC procedure, the number of key diagrams needed to
determine the additional ADC(3) terms is still considerable.

The explicit ADC(3) configuration space is as in the ADC(2) case spanned by
the 1p -1h excitations (class μ = 1) and the 2p -2h excitations (class μ = 2), and
the PT expansions for the different blocks are as follows:

C11 = C(1)
11 + C(2)

11 + C(3)
11

C12 = C(1)
12 + C(2)

12

C22 = C(1)
22 (14.42)

The additional contributions to be determined at the third-order level are C(3)
11 , C

(2)
12 ,

and C(1)
22 . The corresponding expansions of the transition amplitudes read
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f 1 = f (0)
1 + f (1)

1 + f (2)
1 + f (3)

1

f 2 = f (1)
2 + f (2)

2 , (14.43)

and the additional ADC(3) contributions are f (3)
1 and f (2)

2 . One may note that the
explicit third-order expressions are already somewhat lengthy. The C(3)

11 matrix ele-
ments, for example, consist of 29 individual terms.

The scaling of the ADC(3) computational cost is m6, that is, only one order
higher than in the ADC(2) scheme, where of course the applicable prefactors will
differ substantially. The ADC(3) results are consistently more accurate than those
of the ADC(2) level, the typical error being in the order of ±0.2 eV. For exemplary
applications of theADC(3) scheme, the reader is referred toRef. [2] and a benchmark
study by Harbach, Wormit, and Dreuw [3].

14.3 Properties of the ISR-ADC Schemes

In Chap.12, we have addressed the particular features of the ISR-ADC schemes, that
is, the canonical order relations for the secular matrix elements and the separability
of the secular matrix with regard to local and non-local excitations as encountered in
the separate fragments model. While the discussion in Chap.12 was focussed on the
case of N−1 electrons, the essential findings are entirely general and can directly
be transferred to the N -electron excitations considered here.

Canonical Order Relations and Separability

The N -electron ISR-ADCmatrix elements (14.3) fulfill the canonical order relations,

MI J ∼ O(|[I ] − [J ]|) (14.44)

being completely analogous to Eq. (12.1) for the (N−1)-electron case. Figure14.4,
depicting the order structure of the N -electron ISR-ADC matrix, is essentially a
replicate of Fig. 12.1, differing only in the notations (though not the numbering) of
the excitation classes.

As discussed in Sect. 12.1, the canonical order relations allow one to specify
truncation errors, i.e., the errors arising from truncating the explicit ISR-ADC con-
figuration spaces (see Eqs. 12.11, 12.12). For example, the error in the single (1p-1h)
excitation energies for a truncation after class μ is of the order

OT E (μ) = 2μ (14.45)

In the ADC(2) and ADC(3) schemes, the configuration space comprises the excita-
tion classes μ = 1, 2 so that the truncation error here is of fourth order.
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Fig. 14.4 Order structure
of the ISR-ADC secular
matrix M

1p -1h 2p -2h 3p -3h 4p -4h 5p -5h ...

1p -1h 0 1 2 3 4 ...

2p -2h 1 0 1 2 3 ...

3p -3h 2 1 0 1 2 ...

4p -4h 3 2 1 0 1 ...

5p -5h 4 3 2 1 0 ...

...
...

...
...

...
...

For the ISR-ADC transition amplitudes, the order relations are as given by
Eq. (12.14). Togetherwith Eq. (12.15) for the order relations in the eigenvectormatrix
X , one recovers the TEO formula (12.16) for the truncation errors in the transition
amplitudes (14.8) and the transition moments (13.6).

The discussion in Sect. 12.2 of the separability property of the ISR-ADC secu-
lar matrix applies mutatis mutandis to the secular matrix (14.3) for the N -electron
excitations and needs not be repeated here. In particular, Eqs. (12.35), (12.36), and
(12.38) can be transferred directly to the N -electron case. The corresponding block
structure of M is as shown in Fig. 12.3.

ISR of General Operators

Let us recall that the intermediate states |�̃I 〉 established by the ECO procedure
according to Eqs. (14.12)–(14.14) represent (together with the ground state |�0〉) a
well-defined basis for N -electron states . Accordingly, they can be used to represent,
besides the hamiltonian, any other operator of physical interest. Let D̂ denote an
operator, then the matrix D̃ of elements

D̃I J = 〈�̃I |D̂|�̃J 〉 (14.46)

is the IS representation of D̂. In Sect. 11.3, the ISR of arbitrary operators in the case
of (N−1)-electron states has been discussed. The essential features are quite general
and apply to the N -electron case as well. The explicit construction of the consistent
second-order (ISR(2)) approximation scheme for the ISR of a one-particle operator,
while basically analogous to the discussion in Sect. 11.3, is more demanding in the
N -electron case, and we refer the reader to Ref. [4] for details and the resulting
expressions. Here, it may suffice to briefly inspect the structure of D̃ in the ISR(2)
approximation:
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D̃11 = D̃
(0)
11 + D̃

(1)
11 + D̃

(2)
11

D̃12 = D̃
(0)
12 + D̃

(1)
12

D̃22 = D̃
(0)
22 (14.47)

As in the ADC(2) and ADC(3) secular equations, the configuration space comprises
the 1p-1h and 2p-2h excitations (classes 1 and 2), and the PTexpansions in the
various sub-blocks essentially match those of the ADC(2) secular matrix.

The ISR of an operator D̂ can be used to compute the associated property of an
excited state |�m〉 as the expectation value

Dm = 〈�m |D̂|�m〉 = X†
m D̃Xm (14.48)

Here, Xm is theADC eigenvector (see Eq.14.5) pertaining to |�m〉. In a similar way,
transition moments involving two states are obtained according to

Dmn = 〈�m |D̂|�n〉 = X†
m D̃Xn (14.49)

In such applications, usually one will ensure that the approximation schemes for
the two ingredients are consistent, e.g., in combining the ISR(2) operator matrix
with ADC(2) eigenvectors. Of course, one may as well combine the more accurate
ADC(3) eigenvectors with the second-order ISR operator expressions..

Another benefit afforded by the ISR of general operators, already addressed in
Sect. 11.3, is the option to augment the original Hamiltonian Ĥ with an additional
operator Û , for example, associated with an external field:

Ĥ → Ĥ x = Ĥ + Û (14.50)

In the N -electron case considered here, the intermediate states can couple to the
ground state via Û . Accordingly, the IS configurations must be enlarged by |�0〉,
and the representation of Ĥ x − E0 has an additional row (and column), the elements
being

Mx
00 = U0, Mx

I0 = FI (U ), I 	= 0 (14.51)

Here,U0 = 〈�0|Û |�0〉 is the ground-state expectation value of Û , and FI (U ) denote
the IS transition moments for the operator Û ,

FI (U ) = 〈�̃I |Û |�0〉 =
∑

f I,rsurs (14.52)

supposing here a one-particle operator of the form Û = ∑
ursc†r cs . The matrix ele-

ments in the main block are given by

Mx
I J = MI J + ŨI J , I, J 	= 0 (14.53)

where ŨI J are the ISR matrix elements of Û .
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The order structure of D̃ (in case of a one-particle operator) is as shown in Fig. 12.2
(with the respective N -electron excitation classes replacing the original ones).
Figure12.4 shows the (non-separable) block structure of D̃ generated in the par-
titioning scheme of the separate fragment model. The conclusions with regard to the
size-consistency of excited-state properties (14.48) and transition moments (14.49)
can be inferred from the corresponding discussion in Sect. 12.2.

The Dipole Sum Rule and the Equivalence of Length and Velocity Forms of the
Transition Moments

In the following, we dispense from supposing atomic units and display the equations
in their more familiar explicit form.

Thefirst spectralmoment of thedipole operator,more specifically its z-component,

Ẑ =
N∑

i=1

ẑ(i) =
∑

r,s

zrsc
†
r cs (14.54)

is given by

S1(Z) =
∑

n

(En − E0)

∣∣∣〈�n|Ẑ |�0〉
∣∣∣
2

(14.55)

As is easily seen, S1(Z) can be expressed as the ground-state expectation value

S1(Z) = 1
2 〈�0|[Ẑ , [Ĥ , Ẑ ]]|�0〉. (14.56)

of a double commutator, which can directly be evaluated to give a constant,

[Ẑ , [Ĥ , Ẑ ]] = [Ẑ ,−i P̂z] �/me = N �
2/me (14.57)

Here, P̂z is the z-component of the momentum operator, coming into play as the
result of the commutator

[Ĥ , Ẑ ] = −i P̂z �/me (14.58)

Accordingly, the final result for S1(Z) reads

S1(Z) = 1
2N �

2/me (14.59)

which is the well-known Thomas–Reiche–Kuhn (TRK) or dipole sum rule.
In the ADC formulation, the moment S1(Z) can be written in the following

compact form:
S1(Z) = F(Z)†MF(Z) (14.60)

Here, F(Z) denotes the vector of effective transitionmoments for the dipole operator
Ẑ ,
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FJ (Z) =
∑

r,s

f J,rs zrs (14.61)

The equivalence of the ADC form (14.60) and Eq. (14.55) can be seen by writing
the secular equation (14.5) as

M = X�X† (14.62)

and using Eq. (14.7) with the transition operator Ẑ . Let us note that the ADC form
can readily be extended to other spectral moments, Sk(D), k = 0, 1, 2, . . . :

Sk(D) = F(D)†MkF(D) (14.63)

Here D refers to a given one-particle operator D̂.
The dipole sum rule (14.59) may serve as a test of the accuracy of the compu-

tational scheme. Deviations from the exact value can reflect shortcomings of the
method as well as an incompleteness of the molecular basis set used to compute the
excitation spectrum. Interestingly, in the random-phase approximation (RPA), to be
considered in Chap.15, the dipole sum rule is fulfilled exactly (apart from the basis
set error) although the RPA excitation energies and transition moments (of singly
excited states) are consistent only through first order. We will come back to this point
in Sect. 15.1.

Another significant quality test is the equivalence of the dipole length (L) and
dipole velocity (V) forms of the transition moments for exact states. This refers to
the well-known identity

〈�m |[Ĥ , Ẑ ]|�0〉 = (Em − E0)〈�m |Ẑ |�0〉 = −i〈�m |P̂z|�0〉 �/me (14.64)

The second term is referred to as the L-form of the transition moment; the third
term, obtained by evaluating the commutator according to Eq. (14.58), represents
the V-form. In the ADC formulation, the L-form can be written as

(Em − E0)〈�m |Ẑ |�0〉 = X†
mMF(Z) (14.65)

while the V-form of the transition moment is given by

〈�m |P̂z|�0〉 = X†
mF(Pz) (14.66)

Here, F(Pz) is the vector of effective transition moments for P̂z . By abstracting the
eigenvector X†

m on the right-hand side of the latter two equations, one yields the
general identity

MF(Z) = −iF(Pz) �/me (14.67)

which is no longer restricted to a particular transition.
As in the case of the dipole sum rule, deviations from this global form of length-

velocity equivalence encountered in actual computations are an indication of the
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accuracy afforded at the respective level of approximation and the quality of the one-
particle basis set used. Interestingly, for a consistent nth-order treatment, obtained,
for example, at the ADC (n) level, the deviation error is of order n, rather than n + 1
as one might expect. For an explanation, we have to take a closer look at how the PT
expansions conform to the exact spectral identities.

The difference 	m between the length and velocity transition moments written in
the form

	m = 〈�m |[Ĥ , Ẑ ]|�0〉 + i〈�m |P̂z|�0〉 �/me = 0 (14.68)

has a non-trivial PT expansion

	m = 	(0)
m + 	(1)

m + 	(2)
m + . . . (14.69)

with non-vanishing terms 	(ν)
m 	= 0, in spite of the fact that 	m vanishes. There is a

compensation of successive terms such that a finite expansion, say through order n,
has a non-vanishing residue of order n,

n∑

ν=0

	(ν)
m = O(n) (14.70)

which is compensated by a corresponding contribution of	(n+1)
m . The reason for this

behavior is that the commutator relation (14.58) holds for the total hamiltonian Ĥ
but not individually for the parts Ĥ0 and ĤI of the Møller–Plesset (MP) partitioning

Ĥ = T̂ + V̂ = Ĥ0 + ĤI (14.71)

underlying the PT expansions. Let us consider the HF operator

Ĥ0 =
N∑

i=1

f̂ (i) (14.72)

where the one-particle Fock operators are of the form (see Eq.4.5)

f̂ = t̂ − ŵ (14.73)

While the commutator with t̂ (comprising the operator of kinetic energy and the
electron-nuclei interaction) yields

[t̂, ẑ] = −i p̂z �/me (14.74)

the second part
ŵ = −

∑

r

( Ĵr − K̂r )nr (14.75)
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does not commutewith ẑ because of the presence of the non-local exchange operators
K̂r :

[ŵ, ẑ] = q̂ 	= 0 (14.76)

where q̂ can readily be evaluated (see Exercise 14.3). Accordingly, the commutator
for the corresponding N -particle operator Ŵ = ∑

i ŵ
(i) becomes

[Ŵ , Ẑ ] = Q̂ (14.77)

where Q̂ = ∑
i q̂

(i). Noting that Ĥ0 = T̂ − Ŵ and ĤI = V̂ + Ŵ , the individual
commutators become

[Ĥ0, Ẑ ] = − i Pz �/me − Q̂

[ĤI , Ẑ ] =Q̂ (14.78)

Now we apply the MP partitioning to Eq. (14.68) which then reads

	m = 〈�m |[Ĥ0, Ẑ ] + i P̂z �/me|�0〉 + 〈�m |[ĤI , Ẑ ]|�0〉 (14.79)

Using the commutator relations (14.78), the first term becomes −〈�m |Q̂|�0〉, and
the same expression applies to the second term, albeit with the opposite sign so that
the two terms cancel each other. In the PT expansion of	m , however, this cancelation
involves successive PT orders. For any nth-order contribution to the first term, there
is an analogous (n + 1)st contribution (of opposite sign) to the second term.

A similar analysis applies to the dipole sum rule (14.59). TheMP partitioning of
Ĥ splits the double commutator in Eq. (14.56) into two parts,

[Ẑ , [Ẑ , Ĥ0]] = 1
2N �

2/me + Q̂′ (14.80)

[Ẑ , [Ẑ , ĤI ]] = − Q̂′ (14.81)

where Q̂′ = [Q̂, Ẑ ]. As a consequence, there is a non-trivial PT expansion of the
first spectral moment,

S1(Z) = S(0)
1 (Z) + S(1)

1 (Z) + S(2)
1 (Z) + · · · = 1

2N �
2/me (14.82)

As in Eq. (14.70), summing these terms through order n,

n∑

ν=0

S(ν)
1 (Z) = O(n) (for n > 1) (14.83)
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results in a non-vanishing contribution of the order n, which is canceled by a part
of the next higher term, S(n+1)

1 (Z) . As should be noted, the expansion through first
order yields the exact result

S(0)
1 (Z) + S(1)

1 (Z) = 1
2N �

2/me (14.84)

This is a consequence of the fact that the matrix elements

〈�0|Q̂′|�(1)
0 〉 = 〈�(1)

0 |Q̂′|�0〉 = 0 (14.85)

vanish since Q̂′ is a one-particle operator and |�(1)
0 〉 a sum of 2p-2h excitations.

Exercises

14.1 Evaluate the time-orderings (7)–(10) of the second-order diagram 2C shown in
Fig. 14.1. Perform theADC analysis and derive the corresponding contributions
to C (2)

ak,a′k ′ and f (2)
ak,a′k ′ .

14.2 Consider the IS transition moments 〈�̃I |N̂ |�0〉 (see Eq.14.52) for the particle
number operator N̂ . Verify the resulting conditions on the diagonal amplitudes
f I,rr in the ADC(2) expressions listed in Appendix A.9.

14.3 In spin-free (spatial) form, the operator ŵ (Eq. 14.75) is given by ŵ =
−∑

(2 Ĵi − K̂i )ni , where Ĵi and K̂i denote the Coulomb and exchange oper-
ators for the (occupied) spatial orbital i . Apply the commutator q̂ = [ŵ, ẑ]
to a given spatial orbital, φ(x). Evaluate the (spatial) matrix element qak =
〈φa|q̂|φk〉 in the form qak = ∑

i,r (Vaiir drk − dar Vriik), where drs = 〈φr |ẑ|φs〉,
by using the resolution of the identity for the basis of spatial orbitals φr (x).
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Chapter 15
Random-Phase Approximation (RPA)

In this chapter, we will take a look at the famous random-phase approximation (RPA)
to the polarization propagator. The computational benefit afforded by the RPA is
rather modest, at least for atoms and molecules, as the resulting excitation energies
and transition moments are only consistent through first order of perturbation theory.
From a theoretical point of view, though, the RPA represents a highly interesting
concept, to be seen as an integral part of general knowledge in many-body physics.
Let us note some essential features:

– The RPA was originally devised in solid-state physics [1, 2] as a means to study
collective excitations (plasmons) of the interacting electron gas.

– TheRPA can be obtained by summing a distinct class of diagrams (RPA diagrams)
through infinite order (see for example Thouless [3]), representing the paradigm
of an infinite partial summation of diagrams in propagator perturbation theory.

– There are other independent derivations of theRPA, such as via the time-dependent
Hartree–Fock (TDHF) approach (going back to Dirac [4]), or the equation-of-
motion (EOM) method (see Sect. 16.3).

– The RPA introduces interesting mathematics, featuring a specific pseudo-
eigenvalue secular problem.

– The RPA solutions fulfill the dipole sum rule and the equivalence of the length
and velocity forms of the transition moments.

As a point of interest in the present context, the ADC procedure can be specifically
applied to the series of RPA diagrams. The corresponding reformulation of the RPA
and the derivation of ADC(n) schemes, approximating the full RPA solution, are
discussed in Sect. 15.2.
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15.1 Derivation and Properties of the RPA Equations

The random-phase approximation (RPA) for the polarization propagator is estab-
lished by a specific subset of diagrams shown in Fig. 15.1, referred to as RPA dia-
grams. The RPA diagrams are complete through first order, whereas in second and
higher order they represent only a small fraction of the full set of diagrams. As
seen in Fig. 13.3, the RPA diagram is one of altogether five second-order diagrams.
The RPA diagrams can be summed completely through infinite order owing to their
simple recursive construction principle, which is depicted in Fig. 15.2. In energy
representation, this recursion relation takes on the simple algebraic form (see Exer-
cise 15.1)

�RPA(ω) = �(0)(ω) + �(0)(ω)R�RPA(ω) (15.1)

Here, �(0)(ω) is the free (or zeroth-order) polarization propagator (13.19), reading
in energy representation

�
(0)
rs,r ′s ′(ω) = δrr ′δss ′

(
n̄r ns

ω−εr +εs+iη
− nr n̄s

ω−εr +εs−iη

)
(15.2)

Fig. 15.1 Series of RPA diagrams through third order

Fig. 15.2 Recursive construction of the RPA diagram series



15.1 Derivation and Properties of the RPA Equations 225

and R is a constant matrix of Coulomb integrals,

Rrs,r ′s ′ = −Vrs ′[r ′s] (15.3)

The configuration space of R (as of �(0) and �RPA) is spanned by the 1p-1h con-
figurations (n̄r ns = 1) and 1h-1p configurations (nr n̄s = 1). Using Eqs. (15.2) and
(15.3), the formal solution of Eq. (15.1) can be written as

�RPA(ω) = (ωS − M)−1 (15.4)

where M, referred to as the RPA secular matrix, is given by

Mrs,r ′s ′ = δrr ′δss ′(εr − εs)(n̄r ns − nr n̄s) − Vrs ′[r ′s] (15.5)

and S is a diagonal matrix of elements

Srs,r ′s ′ = δrr ′δss ′(n̄r ns − nr n̄s) (15.6)

Before addressing its physical content, we shall take a look at the mathematical
aspects of the RPA.

The partitioning of the RPA configurations into 1p-1h and 1h-1p configurations
leads to the following block structure of M and S:

M =
(

A B
B∗ A∗

)
, S =

(
1 0
0 −1

)
(15.7)

Here, the 1p-1h sub-block A is a (quadratic) matrix of elements

Ars,r ′s ′ = δrr ′δss ′(εr − εs) − Vrs ′[r ′s], n̄r ns = n̄r ′ns ′ = 1 (15.8)

while the sub-block B, coupling the 1p-1h and 1h-1p configurations, comprises the
matrix elements

Brs,r ′s ′ = −Vrs ′[r ′s], n̄r ns = nr ′ n̄s ′ = 1 (15.9)

A∗ and B∗ denote the complex conjugates of A and B, respectively. Obviously,
the sub-block A is hermitian, and thus, A∗ is hermitian as well; the B matrix is
symmetric, that is, Bak, jb = Bbj,ka . According to these properties of the sub-blocks,
the entire matrix M is itself a hermitian matrix – which of course could have been
deduced directly from Eq. (15.5).

As will be shown below, the inversion of the ω-dependent matrix (ωS − M) in
Eq. (15.4) is equivalent to solving a modified eigenvalue problem for the matrixM,
which is referred to as RPA pseudo-eigenvalue problem. Here, the characteristic
eigenvalue equation reads



226 15 Random-Phase Approximation (RPA)

M
(
xm
ym

)
= ωm

(
xm

− ym

)
(15.10)

whereωm denotes the eigenvalue, and the eigenvector consists of 1p-1h components,
xm , and 1h-1p components, ym :

Xm =
(
xm
ym

)

The difference to the usual eigenvalue problem is, of course, the minus sign in
front of the 1h-1p components on the right-hand side of the eigenvalue equation.
Using a compact matrix notation, the individual equations, m = 1, 2, . . . , can be
aggregated as

MX = SX� (15.11)

where� and X denote the diagonal matrix of eigenvalues and the eigenvector matrix,
respectively.

The structure of the RPA matrices M and S according to Eq. (15.7) has some
specific implications. There are two related sets of solutions referred to as excitation
solutions, m ∈ {+}, and de-excitation solutions, m ∈ {−}. The excitation solutions
relate to the upper left block, A, which is identical with the TDA (or ADC(1))
secular matrix, presented in Eq. (14.30) of Sect. 14.2. Supposing for a moment that
the coupling block can be disregarded, B = 0, the excitation solutions simply become
the TDA solutions. Likewise, the de-excitation solutions are related to the lower right
block, A∗, of the RPA secular matrix. However, they merely repeat the excitation
solutions in a somewhat different shape. Let

ω+, X+ =
(
x
y

)
(15.12)

be the eigenvalue and eigenvector of an excitation solution. It is easily shown that
there is a corresponding de-excitation solution with the eigenvector

X− =
(
y∗
x∗

)
(15.13)

and an eigenvalue ω−, being (if real) the negative of ω+:

ω− = −ω∗
+ (15.14)

What about normalizationof thepseudo-eigenvectors?As the reader should check,
two eigenvectors belonging to different eigenvalues obey the following pseudo-
orthogonality relation

X†
mSXm ′ = (x†m, y†m)

(
xm ′

− ym ′

)
= x†mxm ′ − y†m ym ′ = 0 for m �= m ′ (15.15)
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Compatible with the orthogonalization, the pseudo-eigenvectors can be normalized
according to

X†
mXm = |xm |2 − | ym |2 =

{
1, for m ∈ {+}
−1, for m ∈ {−} (15.16)

Here, one has to distinguish the excitation and de-excitation solutions as in the first
case (usually) the norm of the 1p-1h components is larger than that of the 1h-1p
components, whereas the opposite applies to the de-excitation solutions. The full
pseudo-orthonormalization conditions can be comprised in the following compact
matrix expression

X†SX = S (15.17)

As a simple consequence, SX†SX = 1, and the inverse of X is given by

X−1 = SX†S (15.18)

Now we may come back to the original form (15.4) of the RPA propagator. The
solution of the RPA pseudo-eigenvalue problem established by Eqs. (15.11, 15.17)
allows us to write the RPA secular matrix as

M = SX �X−1 = SX �S X†S (15.19)

where Eq. (15.18) has been used to arrive at the final expression. Inserting this expres-
sion for M in Eq. (15.4) leads to the form

�RPA(ω) = XS (ω1 − �)−1 X† (15.20)

in which the RPA propagator �RPA(ω) is expressed entirely in terms of the RPA
(pseudo-) eigenvalues and eigenvectors. In that sense, the inversion of the ω-
dependent matrix in Eq. (15.4) is equivalent to solving the RPA pseudo-eigenvalue
problem.

The RPA pseudo-eigenvalue problem (15.11) can be reformulated as an ordinary
eigenvalue problem of the non-hermitian matrix M′ = SM. Being eigenvalues of
a non-hermitian matrix, the RPA energies ωm are not necessarily real numbers. A
complex eigenvalue has of course no physical meaning and would indicate a failure
of the RPA in the treatment of the concerned excitation.

The possibility of complex eigenvalues as well as other features of the RPA
mathematics can nicely be demonstrated by means of a simple model. We shall
consider the 2 × 2 RPA-type matrix

M =
(
a b
b a

)
(15.21)
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where a and b are real numbers. The RPA pseudo-eigenvalue problem

M
(
x
y

)
= ω

(
x

−y

)
(15.22)

has the two eigenvalues

ω± = ±
√
a2 − b2 = ±|a|

√
(1 − b2/a2) (15.23)

The corresponding RPA eigenvectors can easily be determined too (see Exer-
cise 15.2). Obviously, complex eigenvalues emerge if |b| > |a|, that is, if the mag-
nitude of the coupling matrix element surpasses that of the diagonal element. Sup-
posing |b|/|a| < 1 the eigenvalues are real, and the square root can be expanded in
a perturbation series, which, for ω+ and a > 0, assumes the form

ω+ = a − b2

2a
+ . . . (15.24)

Note that the denominator is given by the sum (rather than the difference) of the
diagonal elements.

The partitioning of the RPA eigenvector matrix in an excitation and de-excitation
part,

X = (X+, X−) (15.25)

and the corresponding partitioning of the eigenvalue matrix,

� =
(

�+ 0
0 �−

)
(15.26)

allows us to write the RPA propagator (15.20) in the form

�RPA(ω) = X+ (
ω1 − �+)−1

(X+)† − X− (
ω1 − �−)−1

(X−)† (15.27)

This constitutes, in matrix notation, the spectral representation of �RPA(ω), that is,
the RPA approximation to the spectral representation (13.1) of the exact polarization
propagator. More explicitly, the first (excitation) part of Eq. (15.27) reads

�RPA+
rs,r ′s ′ (ω) =

∑
m∈{+}

Xrs,m X∗
r ′s ′,m

ω − ωm
(15.28)

In this form, the physical content of theRPApropagator becomesmanifest. Evidently,
the RPA (pseudo-) eigenvalues can be identified with the excitation energies,

�ERPA
m = ωm, m ∈ {+} (15.29)
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The transition moments derive from the RPA eigenvector components in an analo-
gous manner to Eq. (13.6),

T RPA
m =

∑
r,s

X∗
rs,mdrs(n̄r ns + nr n̄s), m ∈ {+} (15.30)

where drs are the one-particlematrix elements of a transition operator D̂. This expres-
sion may be written more compactly as

T RPA
m = X†

md (15.31)

where

d =
(
d ph

dhp

)
=

(
d ph

d∗
ph

)
(15.32)

denotes the (column) vector of p-h and h-p matrix elements drs .

Perturbation Theoretical Analysis of the RPA

As already mentioned, the RPA energies and transition moments are consistent with
those obtained at the TDA (or CIS and ADC(1)) level, since the 1p-1h sub-block
A of the RPA secular matrix is identical with the TDA secular matrix. However,
the RPA treatment goes beyond the TDA, the differences beginning at second order,
as a result of the off-diagonal blocks B and B∗, which couple the (physical) 1p-1h
excitations and the (unphysical) 1h-1p de-excitations. How can this curious coupling
be understood and what is the quality of the results thereby obtained? As a way to
better understand the situation, we shall analyze, like in Sect. 8.3, the RPA results
using perturbation theory, which, moreover, will allow us to discuss the relevant
physics of the excitation process.

Let us consider a single excitation a ← k from the occupied orbital k to the
virtual (unoccupied) orbital a, represented by the zeroth-order (HF) state |�ak〉 =
c†ack |�0〉. The formal PT expansion of the excitation energy, �Eak = Eak − E0,
through second order can be written as

�Eak = εa−εk − Vak[ak]
+U (2)

ak (1p-1h) +U (2)
ak (2p-2h) +U (2)

ak (3p-3h) − E (2)
0 + O(3)

(15.33)

Here, the three second-order terms, U (2)
ak (ν p-νh), ν = 1, 2, 3, are due to the (first-

order) coupling of |�ak〉 with 1p-1h, 2p-2h, and 3p-3h excitations, respectively,
and E (2)

0 is the second-order ground-state energy, as in Eq. (A.1.18).
In zeroth order, the excitation energy is just the difference of the HF orbital

energies, εa − εk . The HF orbitals, though, reflect the N -electron charge distribution
in the HF ground state. This means, the orbital energy εa does not account for the
instance that there is an electron vacancy in orbital k; nor does εk account for the
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presence of an electron in the virtual orbital a. The necessary correction is established
at the first-order level: Here, the Coulomb repulsion between electrons in orbitals k
and a, Jak = Vakak is subtracted from the zeroth-order result. The other first-order
term is the exchange integral, Kak = Vakka , accounting for the energy difference
between the singlet and triplet excitations (see Exercise 1.6).

At second order, one goes beyond the static one-particle picture and begins to
incorporate electron correlation and dynamic effects accompanying the excitation.
The first of the second-order terms in Eq. (15.33), U (2)

ak (1p-1h), is due to the admix-
ture of other 1p-1h excitations. The explicit PT expression is of little interest, as the
1p-1h (single) configuration interaction (CI) is rigorously treated at the RPA level
via the A block of the secular matrix. The original HF orbital k and even more so the
virtual orbital a may not afford an adequate representation of the final excited state,
and that is corrected by means of the 1p-1h admixtures.

More important is the U (2)
ak (2p-2h) contribution, resulting from the coupling

with 2p-2h excitations. Via the admixture of 2p-2h configurations of the type
c†bc j c

†
ack |�0〉, b �= a, j �= k the response of the so far unaffected electrons comes

into play. Here, we may distinguish relaxation and polarization: The electrons
“relax” as a response to the removal of an electron from the orbital k; and the elec-
tron promoted to the virtual orbital a “polarizes” the charge distribution of the ionic
core. The relaxation and polarization response leads to a substantial lowering of the
first-order (static) excitation energy. It is interesting to note that these two effects
compensate each other to a certain extent, roughly as in �ERP = −(R − P)2, the
energy lowerings being −R2 and −P2 separately for relaxation and polarization,
respectively. For a more detailled discussion of the PT analysis of the relaxation and
polarization energies, the reader is referred to Ref. [5].

The third term, U (2)
ak (3p-3h), accounts for correlation in the excited state. The

only 3p-3h excitations that can couple with |�ak〉 are of the type c†bc†cci c j c†ack |�0〉,
that is, double excitations on the |�ak〉 state. The explicit PT expression,

U (2)
ak (3p-3h) = −

∑
b<c �=a
i< j �=k

|Vbc[i j]|2
εb+εc−εi −ε j

(15.34)

is of the same form as that for E (2)
0 (see Eq.A.1.18) and differs only because of the

restrictions in the summation indices. Subtracting E (2)
0 from U (2)

ak (3p-3h) yields

U (2)
ak (3p-3h) − E (2)

0 =
∑
b,i< j

|Vab[i j]|2
εa+εb−εi −ε j

+
∑
j,b<c

|Vbc[k j]|2
εb+εc−εk−ε j

−
∑
j,b

|Vab[k j]|2
εa+εb−εk−ε j

(15.35)

As is to be expected, the correlation energy is somewhat larger in the ground state
than in the excited state, and as a result, electron correlation increases the excitation
energy. The first two terms in Eq. (15.35) are positive; the negative third term is
contained as a partial sum both in the first and the second term.



15.1 Derivation and Properties of the RPA Equations 231

The corresponding PT expansion of the RPA excitation energy is given by

�ERPA
ak = εa − εk − Vak[ak] +U (2)

ak (1p-1h) +U (2)
ak (1h-1p) + O(3) (15.36)

As expected, theRPA result reproduces the exact excitation energy throughfirst order
and, moreover, correctly accounts for the CI singles contribution, U (2)

ak (1p-1h). As
a specific RPA feature, the other second-order term, U (2)

ak (1h-1p), results from the
coupling of the considered excitation a ← k with de-excitation configurations of
block A∗ via the coupling matrix elements of B. What is its physical content? The
explicit expression reads

U (2)
ak (1h-1p) = −

∑
j,b

|Vab[k j]|2
εa+εb−εk−ε j

(15.37)

This result can be obtained, for example, using ordinary matrix perturbation theory
for the eigenvalue problem ofM′ = SM. Alternatively, one can resort to the ADC
formulation of the RPA presented in Sect. 15.2 and identify U (2)

ak (1h-1p) with the
diagonal element MRPA (2)

ak,ak of the RPA-ADC secular matrix in second order (see

Eqs. 15.61 and 14.39). The comparison with Eq. (15.35) shows that U (2)
ak (1h-1p) is

identical with the third term in the latter equation. This means that theRPA treatment
recovers one of the three correlation contributions to the excitation energy in second
order, however, the one lowering the excitation energy, whereas, as we just have
argued, the full second-order correlation increases the excitation energy.

Obviously, the gravest deficiency is the absence of theU (2)
ak (2p-2h) contribution,

indicating that in the RPA model the 2p-2h (and higher) excitations are excluded
from the outset. Accordingly, the physically important effects of relaxation and polar-
ization are beyond the RPA description. Therefore, the RPA cannot be seen as a
satisfactory approach to the treatment of excitation energies.

In a similar way, one may analyze the RPA transition moments, where the signa-
ture of the 1h-1p de-excitations can already be seen at first order. The exact transition
moment for the a ← k excitation can be expanded as

Tak = 〈�ak |D̂|�0〉 = 〈�ak |D̂|�0〉 + 〈�(1)
ak |D̂|�0〉 + 〈�ak |D̂|�(1)

0 〉 + O(2)
(15.38)

There are two first-order terms, related to the first-order excited state and the first-
order ground state, respectively. They are matched by corresponding terms in the
RPA expansion, reading

T RPA
ak = dak +

∑
b, j

X (1)
bj,akdbj +

∑
j,b

X (1)
jb,akd jb + O(2) (15.39)

where X (1)
rs,ak are the components of the first-order RPA eigenvector, X (1)

ak . In the

second term, the sum runs over the 1p-1h components of X (1)
ak , reflecting the (first-

order)CI singlesmixing in |�(1)
ak 〉. The third term, to be identifiedwith 〈�ak |D̂|�(1)

0 〉,
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features the 1h-1p de-excitation components of the RPA eigenvector, for which the
following PT expressions can be established:

X (1)
jb,ak = Vab[ jk]

εa+εb−εk−ε j
(15.40)

This means that theRPA transitionmoments are consistent through first order and, in
particular, account for the contributions arising from (first-order) ground-state cor-
relation. In this respect, the RPA performs like the ADC(1) approximation analyzed
in Sect. 14.2.

Spectral Properties

In Sect. 14.3, we have discussed the dipole sum rule (Eqs. 14.55 and 14.59) and the
equivalence of the length and velocity forms of the transition moments (Eq. 14.64).
These are characteristic properties of the exact excitation spectrum. Most notably,
theRPA treatment complies with both equivalences, although the excitation energies
and transition moments are rather poor approximations to the exact results. So it is
interesting to inspect how this remarkableRPA feature comes about. As in Sect. 14.3,
we briefly dispense from using atomic units.

At the RPA level, the first spectral moment takes on the form

SRPA
1 (Z) =

∑
m∈{+}

�ERPA
m |T RPA

m |2 =
∑
m∈{+}

ωm d†XmX†
md (15.41)

Equivalently, we may use the de-excitation solutions to obtain

SRPA
1 (Z) = −

∑
m∈{−}

ωm d†XmX†
md (15.42)

Combining these two expressions allows us to write SRPA
1 (Z) in a compact matrix

form as follows,
SRPA
1 (Z) = 1

2 d
†XS�X†d (15.43)

Now, Eq. (15.19) can be used to replace the eigenvector and eigenvalue matrices by
the original RPA secular matrix:

SRPA
1 (Z) = 1

2
d†SMSd (15.44)

This is a remarkable result. It shows that the PT expansion of SRPA
1 (Z) terminates

after first order, as the secular matrix elements are linear expressions of HF orbital
energies and Coulomb integrals. On the other hand, the RPA results are correct
through first order so that the identification

SRPA
1 (Z) = S(0)

1 (Z) + S(1)
1 (Z) (15.45)
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with the zeroth- and first-order terms in the PT expansion (14.82) of the exact spectral
moment is valid. Recalling the result of Eq. (14.84), this proves the dipole sum rule

SRPA
1 (Z) = 1

2N �
2/me (15.46)

for the RPA excitation spectrum.
For RPA excitations, the identity (14.64) applying to exact states would read

ωmX†
md = −iX†

m pz �/me (15.47)

where pz is the vector of the 1p-1h and 1h-1p matrix elements of the momentum
operator p̂z , analogous to d, being the vector of matrix elements of ẑ. This equation,
so far only asserted, can be replaced by a more abstract version not relating to a
particular excitation. To this end, we insert the S matrix twice on the left side of
Eq. (15.47), and make use of the RPA secular equation (15.10), which yields

ωmX†
md = ωmSX†

mSd = X†
mMSd (15.48)

Abstracting the eigenvector X†
m both on the left- and right-hand side of Eq. (15.47)

leads to the “global” identity

MSd = −i pz �/me (15.49)

In fact, the RPA secular matrices M and S fulfill that identity [6, 7], thus ensuring
the equivalence of the length and velocity forms of the RPA transition moments. The
identity (15.49) can be shown in a straightforward, if somewhat tedious way (see
Exercise 15.4), using the general length–velocity relation at the level of one-particle
operators,

[ f̂ , ẑ] = [ŵ, ẑ] − i p̂z �/me (15.50)

according to Eqs. (14.73)–(14.75).

15.2 ADC Formulation of the RPA

The RPA version of the polarization propagator is constituted by a specific class
of diagrams, namely the RPA diagrams shown in Fig. 15.1. Obviously, the ADC
procedure can be confined to that particular class of diagrams. This allows one to
convert the originalRPA scheme intoADC-type secular equations [8], as will briefly
be discussed in this section.

As in the general case, we start with the spectral representation (15.27):

�RPA+(ω) = X+(ω1 − �+)−1(X+)†
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The corresponding (non-diagonal) ADC form reads

�RPA+(ω) = ( f RPA)†(ω1 − M RPA)−1 f RPA (15.51)

Here, M RPA and f RPA are the RPA-ADC secular matrix and the matrix of RPA-
ADC transition amplitudes, which are to be constructed by the comparison of
the ADC form with the RPA diagrams through successively higher order. M RPA

is related to the diagonal matrix �+ of RPA excitation energies via a unitary
transformation,

M RPA = Y�+Y † (15.52)

f RPA = Y(X+)† (15.53)

So far, these relations are only formal since the RPA-ADC matrices are still to be
constructed. Of course, the construction is such that the eigenvalues of the final
(exact) M RPA matrix are the RPA energies of �+ and the unitary matrix Y is the
corresponding eigenvector matrix (see Eq.15.57). Note that according to Eq. (15.52)
M RPA is a hermitian matrix provided all of the RPA eigenvalues ωm are real, which
will be supposed in the following.

The RPA energies ωm comprised by �+ derive from the 1p-1h HF excitations
|�ak〉 = c†ack |�0〉 (cf. Eq. 15.8). Accordingly, M RPA is a matrix of elements MRPA

I J ,
where the indices I and J label 1p-1h configurations (class 1), such as I ≡ ak; f
is a matrix of elements f I,rs where the first index I labels 1p-1h configurations, and
the index pair (rs) denotes p-h and h-p components.

The matrix elements of M RPA and f RPA are subject to perturbation expansions

M RPA = M(0)
11 + M(1)

11 + M(2)
11 + . . . (15.54)

f RPA = f (0)
1 + f (1)

1 + f (2)
1 + . . . (15.55)

Here the subscripts, as in M(1)
11 , indicate that, in contrast to the ADC procedure for

the full polarization propagator, the configuration space is restricted to class 1, that
is, the 1p-1h excitations.

Now the formal PT expansion of the ADC form (15.51) can be compared with
the RPA diagrams, more specifically with the Goldstone diagrams contributing to
�RPA+(ω), through successively higher order n. This yields a hierarchy of RPA-
ADC(n) schemes, n = 0, 1, 2, . . . , consisting of the nth-order expansions

M RPA(n) =
n∑

ν=0

M(ν)
11

f RPA(n) =
n∑

ν=0

f (ν)
1 (15.56)

of the secular matrix and the transition amplitude matrix.
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For given approximations ofM RPA and f RPA, the spectral information is obtained
by solving the hermitian eigenvalue problem (ADC secular equation)

M RPAY = Y�, Y †Y = 1 (15.57)

where Y and� denote the eigenvector matrix and the diagonal matrix of eigenvalues,
respectively.
The RPA spectroscopic amplitudes are obtained according to

(X+)† = Y † f RPA (15.58)

so that the RPA-ADC transition moments are given by

T RPA
m = Y †

m f RPA d (15.59)

Here, Ym denotes the mth eigenvector of M RPA.
At the RPA-ADC(n) level, the results of Eqs. (15.57) and (15.58) provide approx-

imations to the full RPA energies and transition moments, being consistent through
nth order and expected to converge to the RPA results in the limit n → ∞.

Finally, we take a look at the explicit RPA-ADC expressions in the first- and
second-order schemes. Through first order, the RPA diagrams are complete so that
the derivation of the first-order RPA-ADC scheme does not differ from that for the
polarization propagator in Sect. 14.2. According to Eqs. (14.25, 14.26), the ADC(1)
expressions read

MRPA
ak,a′k ′ = (εa − εk)δaa′δkk ′ − Vak ′[a′k]
f RP A
ak,bl = δabδkl

f RP A
ak,lb = Vab[lk]

εa + εb − εk − εl
(15.60)

In second order, the RPA diagram (2C) in Fig. 13.3 is one of altogether five
Feynman diagrams for the full propagator. There are 24 Goldstone diagrams deriving
from (C), of which the 12 diagrams contributing to �+(ω) are shown in Fig. 14.1.
In Sect. 14.2, we have addressed the ADC(2) contributions deriving from these 12
diagrams, and the findings here can directly be transferred to the case of the second-
order RPA-ADC scheme. Accordingly, the second-order contribution to M RPA is
given by the expression C(C) of Eq. (14.39):

M RPA (2)
ak,a′k ′ = C(C)

ak,a′k ′ (15.61)

The second-order part of f RPA consists of three distinct contributions

f RPA = f (C)
1 + f (2,5)

1 + f (2,6)
1 (15.62)
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where f (C)
1 derives from the diagrams (C7)–(C10), while the other two contributions

are related to diagrams (C5) and (C11), respectively. The explicit expressions are
listed in Appendix A.9.

The unitary transformation Y may be viewed as transforming the excited “RPA
states” |�RPA

m 〉 to associated intermediate 1p-1h states |�̃RPA
ak 〉, so that

Yak,m = 〈�̃RPA
ak |�RPA

m 〉 (15.63)

Could one possibly construct those intermediate RPA states from CE states
c†ack |�RPA

0 〉 based on a RPA ground state |�RPA
0 〉 yet to be determined?What would

the presumed RPA ground state look like, and would it be of any use? In Sect. 16.3,
we come back to this issue.

Exercises

15.1 Formulate in the time representation the RPA recursion relation according to
Fig. 15.2 for theRPApolarizationpropagator,�RPA

rs,r ′s ′(t, t ′).DeriveEqs. (15.1)–
(15.3) using appropriate Fourier transforms.

15.2 Determine the two eigenvectors of the 2 × 2 RPA model according to
Eqs. (15.21,15.22); verify that the pseudo-orthonormalization scheme (15.17)
applies.

15.3 Schematic model:
(a) TDA variant: Consider a manifold ofm “elementary excitations” |�k〉, k =
1, . . . ,m with “unperturbed” energies εk , interacting via a uniform “pertur-
bation,” w = 〈�k |Û |�l〉, k, l = 1, . . . ,m. Inspect the eigenvalue equation for
the secular matrix and design a graphical scheme to determine the eigenvalues
(excitation energies) ek . The graphical solution allows for an obvious distinc-
tion of m − 1 ordinary solutions and a particular (“plasmon”) solution.
(b) The model can be simplified even further by supposing that the unper-
turbed energies are degenerate: εk = e, k = 1, . . . ,m. Determine and analyze
the analytical solutions for the eigenvalues and eigenvectors of the particular
and ordinary solutions.
(c)RPA variant: Augment theTDA excitationswith a corresponding set of “de-
excitations,” |�k〉, k = 1, . . . ,m, and suppose the same type of uniform cou-
pling, w = 〈�k |Û |�l〉, k, l = 1, . . . ,m, between excitations and
de-excitations (sub-block B of the RPA secular matrix). Transform the RPA
eigenvalue equations in a form allowing for graphical solutions and analyze
the various solutions.

15.4 Prove the identity (15.49) for a specific 1p-1h vector component, say aαkα
(where a and k denote spatial orbitals). Bring the left side of Eq. (15.49)
into spin-free form and replace the matrix element pak of p̂z with dak =
〈φa|ẑ|φk〉 using the relation −i pak �/me = (εa − εk)dak + 〈φa|[ŵ, ẑ]|φk〉 (see
Eqs. (14.73)–(14.75) and Exercise 14.3).

15.5 In a similar way like in Exercise 15.4, show that the dipole sum rule (15.46)
derives directly from the RPA expression (15.44).
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Part V
A Look at Related Methods

We set out from diagrammatic perturbation theory for propagators, developed a
practical approach for deriving systematic higher-order approximation schemes, and
finally established a relationship to a wave-function description by identifying the
direct ADC schemes as intermediate state representations (ISR) based on correlated
excited (CE) states. In the final two chapters wewill make contact with two important
concepts, both of which can be understood as particular ISR variants: The equation-
of-motion (EOM) method establishing an algebraic approach to the electron and
other propagators (Chap. 16) and the coupled-cluster (CC) theory for generalized
electronic excitations (Chap.17). The intuitive idea underlying the use of CE states
is that the excitation, removal or attachment of an electron will affect the initial
N -electron ground state to a certain extent, but not totally alter it. Therefore the use of
CEbasis states conveying the ground-state information should afford some advantage
over the simple CI treatment in which every excited state must be constructed from
the scratch as an expansion in terms of the uncorrelated HF excitations. However,
as we have seen, a proper orthonormalization of the CE states is crucial for these
advantages to materialize. So it will be interesting to see how the orthonormalization
of the CE states is handled in the context of the EOM and CC methods.

http://dx.doi.org/10.1007/978-3-319-93602-4_16
http://dx.doi.org/10.1007/978-3-319-93602-4_17


Chapter 16
Algebraic Propagator Methods

Algebraic propagator methods, as opposed to methods based on diagrammatic per-
turbation theory, have been derived within the so-called superoperator formulation
[1–3], in which the respective propagator is written and evaluated in the form of
a superoperator resolvent [4]. The resulting secular equations are fully equivalent
with those obtained in the context of the EOM method [5, 6], originally devised by
Rowe [7] in the field of nuclear physics. To some extent, the EOM formulation is
more general than the algebraic propagator approach since the former provides a
genuine wave-function representation of the (generalized) excited states in terms of
an extended set of CE states. In this chapter, we briefly review the EOM method,
emphasizing here in particular its ISR characteristics. For a more comprehensive
presentation as well as references to the original literature, we refer to the cited
review articles and to Ref. [8]. A direct connection to the algebraic propagator meth-
ods is established in Sect. 16.2, while the superoperator formulation is reviewed in
AppendixA.8.

16.1 Equations-of-Motion (EOM) Method for N ± 1
Electrons

Depending on the choice of the excitation operators, EOM schemes can be derived
for neutral (N -electron) excitations, as well as for generalized excitations of N±
1, N±2, . . . electrons. Exemplarily, we will consider the (N ± 1)-electron EOM
scheme in the following. The N -electron case, featuring some particularities, will be
addressed in Sect. 16.3.

In the EOM formulation, a general cationic state (not necessarily an energy eigen-
state) |�N−1

n 〉 is written in the form

© Springer Nature Switzerland AG 2018
J. Schirmer, Many-Body Methods for Atoms, Molecules and Clusters, Lecture
Notes in Chemistry 94, https://doi.org/10.1007/978-3-319-93602-4_16
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|�N−1
n 〉 = �̂n|�0〉 (16.1)

where �̂n denotes an associated excitation operator yet to be determined, and |�0〉 is
the exact ground state of the N -electron system. In addition to Eq. (16.1), the operator
�̂n is subject to the requirement

�̂†
n|�0〉 = 0 (16.2)

which is commonly referred to as “killer condition” (KC). The excitation operators
are assumed to be linear expansions

�̂n =
∑

J

X Jn ÔJ (16.3)

with regard to a manifold of “basis” operators ÔJ . Apparently, a suitable choice of
such basis operators is the set (11.2) of physical (N−1)-electron operators,

{Ĉ N−1
J } =

{
ck; c†ackcl , k < l; c†ac†bc j ckcl , a < b, j < k < l; . . .

}
(16.4)

As discussed in Sect. 11.1, the CE states Ĉ N−1
J |�0〉 obtained by applying these oper-

ators to the exact ground state form a complete set of (N−1)-electron states so
that Eq. (16.1) can be fulfilled. However, the operator set (16.4) is not sufficient to
solve Eq. (16.2) as well. To satisfy both EOM conditions, the operator set has to be
augmented with “unphysical” operators

{Ĉ N+1 †
J } =

{
ca; c†i cbca, a < b; c†j c†i cccbca, i < j, a < b < c; . . .

}
(16.5)

obtained as the hermitian conjugates of physical (N+1)-electron excitation operators
Ĉ N+1

J . In the combined operator set,

{ÔI } ≡ {Ĉ N−1
J } ∪ {Ĉ N+1 †

J } (16.6)

also referred to as Manne–Dalgaard basis, the capital letters used as subscripts
denote both (N−1)- and (N+1)-electron configurations, I ∈ {N − 1, N + 1}. As
first shown by Dalgaard [9], there is a unique solution of Eqs. (16.1), (16.2) in the
form of an expansion (16.3) based on the Manne–Dalgaard operators (16.6).

Supplied with a suitable operator basis, we may now turn to the secular equa-
tions needed to determine the expansion coefficients XJn for energy eigenstates. The
Schrödinger equation for the ionic state (16.1) can be combined with that for the
ground state as follows:

[Ĥ , �̂n]|�0〉 = ωn�̂n|�0〉 (16.7)
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where ωn = EN−1 − E0 denotes the excitation (ionization) energy of the cationic
energy eigenstate �̂n|�0〉. In a related way, the killer condition can be written in the
form

〈�0|[Ĥ , �̂n] = 0 (16.8)

Now we “multiply” (form a scalar product) the first equation from the left with
〈�0|Ô†

I and the second equation from the right with Ô†
I |�0〉,

〈�0|Ô†
I [Ĥ , �̂n]|�0〉 = ωn〈�0|Ô†

I �̂n|�0〉 (16.9)

〈�0|[Ĥ , �̂n]Ô†
I |�0〉 = 0 (16.10)

These two equations can be added to give

〈�0|{Ô†
I , [Ĥ , �̂n]}|�0〉 = ωn〈�0|{Ô†

I , �̂n}|�0〉 (16.11)

where { Â, B̂} = Â B̂ + B̂ Â denotes the anticommutator of the operators Â, B̂. Note
that the killer conditionhas beenusedon the right-hand side to replace 〈�0|Ô†

I �̂n|�0〉
with 〈�0|{Ô†

I , �̂n}|�0〉. Inserting the expansion (16.3) for �̂n yields the secular
equations, ∑

J

(MI J − ωn SI J )XJn = 0 (16.12)

where

MI J = 〈�0|{Ô†
I , [Ĥ , ÔJ ]}|�0〉 (16.13)

SI J = 〈�0|{Ô†
I , ÔJ }|�0〉 (16.14)

are the elements of the EOM secular matrixM and the metric (or overlap) matrix S,
respectively. Using matrix notation, Eq. (16.12) takes on the form

MX = SX� (16.15)

The normalization of the eigenvectors is obtained according to

X†SX = 1 (16.16)

which follows from the orthonormalization of the final states,

〈�0|{�̂†
n, �̂m}|�0〉 = δnm (16.17)

invoking here again the killer condition.
In the EOM secular equations, the operators ÔI and Ô†

I are treated on an equal
footing, and since the latter generate (N+1)-electron states when acting on |�0〉, one
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will expect that the set of EOM solutions comprises also the energy eigenstates of
the (N+1)-electron system. In fact, our derivation could have set out from (N+1)-
electron states. Using here the hermitian adjoint operator basis

{Ô†
J } ≡ {Ĉ N+1

J } ∪ {Ĉ N−1 †
J } (16.18)

leads again to Eqs. (16.12)–(16.14). This shows that the EOM secular problem pro-
vides a unified treatment of both (N−1)- and (N+1)-electron excitations. The EOM
eigenvalues relate to electron affinities and ionization energies,

ωn =
{
E0 − EN+1

n , n ∈ {N + 1}
EN−1
n − E0, n ∈ {N − 1} (16.19)

The general orthonormalization conditions (16.17) apply to the entire set of (N ± 1)-
electron solutions. One may note that the anticommutators {Ô†

I , ÔJ } in Eq. (16.14)
vanish if I ∈ {N + 1} and J ∈ {N − 1} (or vice versa).Accordingly, S has anobvious
block structure,

S =
(
S+ 0
0 S−

)
(16.20)

where S+ and S− denote the sub-blocks associated with I, J ∈ {N + 1} and I, J ∈
{N − 1}, respectively.

The state representations of the (N ± 1)-electron solutions are given by

〈�N+1
m | =

∑

J

〈�0|ÔJ X
∗
Jm, m ∈ {N + 1} (16.21)

|�N−1
n 〉 =

∑

J

X Jn ÔJ |�0〉, n ∈ {N − 1} (16.22)

while the associated KC relations can be written as

∑

J

X Jm ÔJ |�0〉 = 0, m ∈ {N + 1} (16.23)

∑

J

〈�0|ÔJ X
∗
Jn = 0, n ∈ {N − 1} (16.24)

Transitionmoments, such as the spectroscopic factors (3.20), are obtained accord-
ing to

x (n)
p = 〈�N−1|cp|�0〉 =

∑

J

X∗
Jn〈�0|{Ô†

J , cp}|�0〉, n ∈ {N − 1} (16.25)
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as the scalar product of the respective eigenvector and a vector of of transition
moments for the basis operators, 〈�0|{Ô†

J , cp}|�0〉. Here anticommutators can be
used as a result of the KC relation (16.24).

The explicit forms (16.21), (16.22) of the final states make apparent that the EOM
qualifies as a particular ISR approach, in which the treatment of the (N−1)- and
(N+1)-electron systems is combined. In fact, the EOM secular equations can be
obtained explicitly as a Fock-space state representation of a generalized hamilto-
nian, as will be demonstrated in the ensuing Sect. 16.2.

Orthonormalization and Approximation Schemes

Wenote that the EOM secular matrixM is hermitian, and the likewise hermitian over-
lapmatrix S consists of two positive definite sub-blocks. Accordingly, the eigenvalue
problem can be transformed into a regular hermitian one. This of course touches upon
the issue of the appropriate orthonormalization. As we have seen in Sect. 12.1, the
excitation class Gram-Schmidt orthonormalization of the CE states is crucial with
regard to the canonical order relations and the separability of the secular matri-
ces. This finding applies also to the EOM schemes. In the given form, based on
non-orthonormal CE states, the EOM secular matrices are neither “canonical” nor
separable. This can be seen by inspecting, for example, the matrix elements of the
1h/3h-2p coupling blocks of S and M, displaying non-vanishing first-order contri-
butions (Exercise 16.1),

M(1)
i,abjkl = εi

(
−δi j

Vkl[ab]
εa+εb−εk−εl

+ δik
Vjl[ab]

εa+εb−ε j −εl
− δil

Vjk[ab]
εa+εb−ε j −εk

)

(16.26)
Similar first-order contributions arise in the overlap matrix element, S(1)

i,abjkl , which
indicates that the problem can be traced to the fact that the EOM basis states are not
orthonormal. Again, symmetric orthonormalization based on S−1/2 is not expedient,
but the ECO-Gram-Schmidt procedure described in Chap. 11 can be extended to the
EOM case [8, 10], which procures the desired properties.

In its general form, the EOM method is an exact approach to (N±1)-electron
states and energies, though obviously not a practicable one. To devise viable approx-
imation schemes, one has to truncate the operator expansion manifold in appropriate
ways and replace the exact ground state with consistent finite PT expansions in
the expressions (16.13), (16.14) for the secular matrix elements. An example is the
consistent third-order EOM approximation scheme discussed in Ref. [6]. Here the
explicit operatormanifold comprises the 1h, 1p, 2h-1p, and 2p-1h excitation classes;
the PT expansions of the secular matrix elements in the respective sub-blocks are
such that the energies of the 1h and 1p main states are treated consistently through
third order.

Like the Dyson equation discussed in Chap. 8, the EOM method entangles the
treatment of N−1 electrons with that of N+1 electrons. Obviously, this procedure
is to be seen as a mathematical device rather than being physically motivated. The
advantages and disadvantages of the (N±1)-electron coupling with regard to com-
parable separated procedures have been addressed in Chap. 10. The coupled schemes
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require lower-order PT expansions for the secularmatrix elements than in comparable
separate schemes. However, this is contrasted by the unfavorably large configura-
tion spaces, the size being the sums of the (N−1)- and (N+1)-electron subspaces.
Moreover, the EOM solutions of interest lie in the middle of the spectrum, which
is not expedient for the iterative diagonalization routines used in the large matrix
eigenvalue problem.

16.2 A State Representation of the EOM Secular Equations

An alternative derivation of the EOM secular equations based explicitly on a state
representation of a generalized hamiltonian was presented in Ref. [8], and a brief
review of that approach should be instructive. For a convenient notation, we here sup-
pose that the underlying one-particle basis functions (spin-orbitals) are real functions.
This is hardly a restriction, since, in the absence of magnetic fields, the hamiltonian
is real so that the HF orbitals can always be chosen as real functions. An extension
to the case of complex orbitals [11] is addressed in Exercises 16.2 and 16.3.

We consider (N±1)-electron Fock-space states defined as

|�I 〉 = (Ô†
I + ÔI )|�0〉, I ∈ {N + 1, N − 1} (16.27)

where ÔI are the Manne–Dalgaard operators (16.6). By construction, these states
are superpositions of states of N+1 and N−1 electrons,

|�I 〉 = |�N+1
I 〉 + |�N−1

I 〉 (16.28)

First we establish that the overlap matrix elements 〈�I |�J 〉 can be identified with
the EOM overlap matrix elements SI J :

〈�I |�J 〉 =〈�0|(Ô†
I + ÔI )(Ô

†
J + ÔJ )|�0〉

=〈�0|Ô†
I ÔJ + ÔI Ô

†
J |�0〉

=〈�0|{Ô†
I , ÔJ }|�0〉 = SI J (16.29)

In the second line, terms of the type 〈�N+1
I |�N−1

J 〉have beendiscarded, as they vanish
according to the Fock-space extension of the scalar product to states of different
particle numbers (see Eq.2.2). Moreover, here we use the identity 〈�0|ÔI Ô

†
J |�0〉 =

〈�0|ÔJ Ô
†
I |�0〉, which is valid under the assumption that the spin-orbitals underlying

the operators are real functions.
The states (16.27) form a set of linear independent, complete states in the (N ± 1)-

subspace of the Fock space. This is a consequence of the linear independence and
completeness of the constituents |�N+1

I 〉 and |�N−1
I 〉 in the respective subspaces.

For example, the CE states |�0
J 〉 = ÔJ |�0〉, J ∈ {N − 1} are linear independent
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(and complete) in the (N−1)-electron Hilbert space (see Sect. 11.1). Consequently,
the subset of �-states, |�I 〉, I ∈ {N − 1}, is linear independent in the Fock space
too. The linear independence of the full set of�-states, I ∈ {N + 1, N − 1}, follows
from the orthogonality of the two subsets according to Eq. (16.20).

We now may expand an arbitrary (N−1)-electron state, |�N−1
u 〉, in terms of the

|�I 〉-states as follows:

|�N−1
u 〉 =

∑

I,J

|�I 〉(S−1)I J 〈�J |�N−1
u 〉 =

∑

I

X Iu |�I 〉 (16.30)

The expansion coefficients used in the second equation are given by

XIu =
∑

J

(S−1)I J 〈�0|Ô†
J |�N−1

u 〉 (16.31)

Since |�N−1
u 〉 is an (N−1)-electron state, Eq. (16.30) decomposes into two separate

equations,

|�N−1
u 〉 =

∑

I

X Iu ÔI |�0〉 (16.32)

0 =
∑

I

X Iu Ô
†
I |�0〉 (16.33)

This can be seen as a direct proof for the existence of a unique solution of Eqs. (16.1),
(16.2) based on the operator manifold (16.6).

Next we show that the EOM secular matrixM can be derived as the representation
of a modified hamiltonian in terms of the |�I 〉 states. We consider the operator

Ĥ = (Ĥ − E0)(N − N̂ ) (16.34)

where N̂ = ∑
p c

†
pcp is the particle number operator. Obviously, the factor (N −

N̂ ) does not affect the eigenstates of Ĥ − E0, but merely changes the sign of the

eigenvalues for the (N+1)-electron solutions. The matrix elements of Ĥ can be
evaluated as follows:

HI J = 〈�I |Ĥ|�J 〉 =〈�I |(Ĥ − E0)(N − N̂ )|�J 〉
=〈�0|Ô†

I (Ĥ − E0)ÔJ |�0〉 − 〈�0|ÔI (Ĥ − E0)Ô
†
J |�0〉

=〈�0|Ô†
I [Ĥ , ÔJ ]|�0〉 + 〈�0|[Ĥ , ÔJ ]Ô†

I |�0〉
=〈�0|{Ô†

I , [Ĥ , ÔJ ]}|�0〉 = MI J (16.35)

In the second line, contributions of the type 〈N−1|N+1〉 and 〈N+1|N−1〉 have
been discarded; in the third line, the identity
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〈�0|ÔJ (Ĥ − E0)Ô
†
I |�0〉 = 〈�0|ÔI (Ĥ − E0)Ô

†
J |�0〉

has been used, supposing again that the underlying one-particle states (and Ĥ ) are
real. The latter result, together with the overlap relations (16.29), establishes that the
EOM secular equations are identical with the eigenvalue equations of the modified
hamiltonian (16.34) in the (N±1)-electron subspace of the Fock space.

An eigenstate of Ĥ can be written as

|�n〉 =
∑

I

X In|�I 〉 =
∑

I

X In(Ô
†
I + ÔI )|�0〉 (16.36)

where XIn are the components of the corresponding eigenvector ofM. Since |�n〉 is
either an (N+1)-electron or an (N−1)-electron state, the latter equation splits into
two separate equations, reading for an (N−1)-electron solution, n ∈ {N−1},

|�n〉 =|�N−1
n 〉 =

∑

I

X In ÔI |�0〉 (16.37)

0 =
∑

I

X In Ô
†
I |�0〉 (16.38)

which of course just reproduces the corresponding Eqs. (16.22), (16.24).

Relation to the Electron Propagator

The formulation of the EOM secular problem in terms of a state representation of the
modified hamiltonian Ĥ allows for a direct approach to the electron propagator in
the form of Eqs. (3.24), (3.25). This is established by observing that the propagator
matrix elements Gpq(ω) can be written as

Gpq(ω) = 〈�p|(ω + Ĥ)−1|�q〉 (16.39)

that is, as matrix elements of the resolvent operator (ω + Ĥ)−1 in terms of the 1h/1p
states, |�p〉 = (c†p + cp)|�0〉. This can be verified as follows:

〈�p|(ω + Ĥ)−1|�q 〉 =〈�0|cp(ω + Ĥ)−1c†q |�0〉 + 〈�0|c†q (ω + Ĥ)−1cp|�0〉
=〈�0|cp(ω − Ĥ + E0)

−1c†q |�0〉 + 〈�0|c†q (ω + Ĥ − E0)
−1cp|�0〉

=G+
pq (ω) + G−

pq (ω) (16.40)

As in the derivation of Eq. (16.29), only pure (N+1)- or (N−1)-electron matrix
elements need to be retained; in the first line, we have used that

〈�0|c†p(ω + H)−1cq |�0〉 = 〈�0|c†q(ω + Ĥ)−1cp|�0〉
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which supposes a real-valued one-particle representation. Note that the operator Ĥ
and the corresponding resolvent simplify if applied to an (N+1)- or (N−1)-electron
state, e.g., Ĥc†q |�0〉 = (−Ĥ + E0)c†q |�0〉. The representation (16.39) means that the
EOM secular equations, which according to Eqs. (16.29), (16.35) represent secular
equations for Ĥ and, in extension, the resolvent operator (ω + Ĥ)−1, allow one to
determine the poles and residues of the electron propagator. Another way of relating
the EOM secular problem to algebraic propagator equations is the superoperator
formalism reviewed in Appendix A.8.

16.3 EOM Treatment of N-Electron Excitations

While the derivation of the EOM method for N -electron excitations is essentially
analogous to the (N ± 1)-case, there emerge some distinct features which need to
be addressed.

Excited states |�n〉 of the N -electron system are represented in the form of an
operator expansion

�̂n =
∑

J

X Jn ÔJ (16.41)

acting on the exact ground state,

|�n〉 = �̂n|�0〉 (16.42)

In addition, there is the killer condition,

�̂†
n|�0〉 = 0 (16.43)

which here also implies that the excited state is orthogonal to the ground state,
〈�n|�0〉 = 0.

TheManne–Dalgaard operator basis required for a unique solution ofEqs. (16.42),
(16.43),

{ÔJ } =
{
c†ack; c†ac†bckcl , a < b, k < l; . . .

}
∪

{
c†kca; c†l c†kcbca, a < b, k < l; . . .

}

(16.44)
is formed by the set (14.10) of physical N -electron excitation operators, {ĈI }, and the
set {Ĉ†

I } of their hermitian adjoints, also referred to as de-excitation operators. Like
the 1p-1h, 2p-2h, . . . , classes of physical excitations (I ∈ {+}), onemay distinguish
classes 1h-1p, 2h-2p, . . . of de-excitation operators, (I ∈ {−}).

In the derivation of the secular equations one proceeds along Eqs. (16.7)–(16.10),
but then uses commutators rather than anticommutators in Eq. (16.11), as a conse-
quence of subtracting Eq. (16.10) from Eq. (16.9) The resulting secular equations
read
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MX = SX� (16.45)

with the secular matrices given by

MI J =〈�0|[Ô†
I , [Ĥ , ÔJ ]]|�0〉 (16.46)

SI J =〈�0|[Ô†
I , ÔJ ]|�0〉 (16.47)

Formally, Eq. (16.45) looks like the secular equation (16.15) in the (N ± 1)-case, but,
in fact, there is a fundamental difference. The partitioning of the secular matricesM
and S with regard to excitation ({+}) and de-excitation ({−}) configurations reveals
an RPA-type structure,

M =
(

A B
B† A∗

)
, S =

(
S+ 0
0 −(S+)∗

)
(16.48)

While M itself is hermitian, the sign structure of the S matrix indicates that the
N -electron secular equation (16.45) represents a pseudo-eigenvalue problem of
RPA-type. In Sect. 15.1, the mathematical features of the RPA pseudo-eigenvalue
problem have been discussed at length, and many of the above findings also apply
to the more general N -electron EOM secular problem.

The solution manifold of Eq. (16.45) comprises two interrelated sets, namely
the excitation solutions, m ∈ {+}, and de-excitation solutions, m ∈ {−}. For any
excitation solution, n ∈ {+}, with the eigenvalue

ωn = En − E0, (16.49)

there is a corresponding de-excitation solution, n ∈ {−}, of negative energy,

ωn = −ωn, (16.50)

The respective eigenvectors, Xn and Xn , are interrelated as in Eqs. (15.12), (15.13).
Obviously, the de-excitation solutions can be regarded as redundant since they convey
the same physical information as the excitation solutions.

The EOM eigenvectors satisfy the pseudo-orthonormalization relations

X†SX =
(
1 0
0 −1

)
(16.51)

For the excitation solutions, n ∈ {+}, this is consistent with the usual orthonormal-
ization of the energy eigenstates,

〈�n|�m〉 = 〈�0|[�̂†
n, �̂m]|�0〉 = δnm, n,m ∈ {+} (16.52)
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where the first equation is a consequence of theKC relation (16.43). In the case of the
de-excitation solutions, n ∈ {−}, where �̂n = ∑

XJn Ô
†
J , theKC relation eliminates

the first term of the [�̂†
n, �̂m] commutator,

〈�0|[�̂†
n, �̂m]|�0〉 = −〈�0|�̂m�̂†

n|�0〉 = −δnm, n,m ∈ {−} (16.53)

which explains the minus sign in the “normalization” of the de-excitation eigenvec-
tors.

The state representation of an excitation solution, n ∈ {+}, explicitly reads

|�n〉 =
∑

I

X In ÔI |�0〉 =
∑

I∈{+}
XInĈI |�0〉 +

∑

I∈{−}
XInĈ

†
I
|�0〉 (16.54)

The two terms in the second equation relate to excitation and de-excitation compo-
nents, respectively, of the eigenvector Xn; note that in the second term the subscripts
I are related to I ∈ {−} as implied in (16.44), e.g., ka ≡ ak. In a similar way, the
KC relation (16.43) can be written as

0 =
∑

I

X∗
I n Ô

†
I |�0〉 =

∑

I∈{+}
X∗

I nĈ
†
I |�0〉 +

∑

I∈{−}
X∗

I nĈI |�0〉 (16.55)

Transition moments (for excitation solutions) are obtained according to

Tm = 〈�m |D̂|�0〉 = 〈�0|[�̂†
m, D̂]|�0〉 =

∑

I

X∗
Im DI (16.56)

where the use of the commutator is justified because of the KC relation (16.55); DI

are transition matrix elements for the basis states,

DI = 〈�0|[Ô†
I , D̂]|�0〉 (16.57)

In a similar way, properties of excited states and, more general, transition moments
for different excited states can be obtained according to

Tmn = 〈�m |D̂|�n〉 = 〈�0|[�̂†
m, D̂�̂n]|�0〉 =

∑

I,J

X∗
Im X JnDI J (16.58)

Here the basis state matrix elements are given by

DI J = 〈�0|[Ô†
I , D̂ÔJ ]|�0〉 (16.59)

The RPA and Other EOM Approximations

Approximation schemes to the (in principle) exact EOM equations can be devised
by truncating the excitation operator manifold and adopting finite PT expansions for
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the ground state in a consistent way. Of special interest is the RPA scheme, which
we have extensively reviewed in Chap.15. In fact, the RPA secular equations (15.5),
(15.6) result from Eqs. (16.46), (16.47) upon restricting the EOM operator manifold
to the 1p-1h and 1h-1p configurations and replacing |�0〉 with the HF ground state
|�0〉 (see Exercise 16.4). The derivation as an EOM approximation supplies the
RPA solutions with state representations according to Eqs. (16.54), (16.55); a brief
inspection of these RPA states should be of interest.

As in Sect. 15.1, we consider the RPA solution for a single excitation, a ← k,
According to Eq. (16.54), the related state representation derives from

|�RPA
ak 〉 ∼

∑

b,l

(
Xbl,akc

†
bcl + Xlb,akc

†
l cb

)
|�0〉 (16.60)

where Xrs,ak denote the components of the RPA eigenvector, the zeroth-order con-
tribution being X (0)

rs,ak = δraδsk . This expression combines an approximate excitation

operator, �̂RPA
ak , with the exact ground state, |�0〉, and one may ask whether there is

more consistent approximation for the latter. To address this question, it is useful to
inspect the KC relations (16.55) for the RPA excitation,

0 ∼
∑

b,l

(
X∗
bl,akc

†
l cb + X∗

lb,akc
†
bcl

)
|�0〉 (16.61)

Using first-order PT expansions, |�0〉 = |�0〉 + |�(1)
0 〉 + . . . , and Xrs,ak = δraδsk +

X (1)
rs,ak + . . . , the KC expression can be expanded through first order,

c†kca|�(1)
0 〉 +

∑

b,l

X (1)∗
lb,akc

†
bcl |�0〉 + O(2) = 0 + O(2) (16.62)

In zeroth order, the KC relation is trivially fulfilled, and also the two first-order
terms cancel each other, as can be seen by comparing X (1)

lb,ak (see Eq. 15.40) and the

2p-2h coefficients in |�(1)
0 〉. Obviously, the RPA excitations satisfy theKC relations

consistently through first order, which also shows that the first-order ground state,
|�0〉 + |�(1)

0 〉, is consistent with the RPA level of theory. One may try to go beyond
the first-order ground state and devise anRPA ground state, |�RPA

0 〉, being consistent
at second and higher order, but since the RPA errors are of first and second order
in the states and excitation energies, respectively, the relevance of such constructs is
questionable.

For the RPA state (16.60), the PT expansion through first order reads

|�RPA
ak 〉 = c†ack |�0〉 +

∑

b,l

X (1)
bl,akc

†
bcl |�0〉 + c†ack |�(1)

0 〉 + O(2) (16.63)

There are two first-order terms, of which the former simply accounts for the mixing
with other 1p-1h excitations. The second term correctly describes the (first-order)
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admixture of 3p-3h configurations in the exact final state. This makes explicit what
was inferred in Sect. 15.1 from the PT analysis of the excitation energy, namely that
the RPA accounts for the effect of the 3p-3h admixtures.

Furthermore, the first-order state expansion reveals the main shortcoming of the
RPA, that is, the neglect of 2p-2h admixtures. As a result, the RPA does not account
for the important relaxation and polarization effects (see Sect. 15.1). For a more
appropriate treatment of excitations in the N -electron system, one has to include
the 2p-2h excitation operators together with their 2h-2p de-excitation counterparts,
as is the case in the second-order polarization propagator approximation (SOPPA)
scheme [12, 13].

The considerations in Sect. 16.1 concerning the order relations and the separability
of the EOM secular matrices apply to the N -electron case as well. In the form of
Eqs. (16.46), (16.47), M is neither canonical nor separable, and it requires again
an orthonormalization procedure of ECO-Gram-Schmidt type to afford the latter
properties [8].

The N -electron EOM treatment features a non-hermitian secular problem com-
bining physical excited configurations and an equally large manifold of unphysical
de-excitation configurations. As in the (N±1)-electron case above, one may weigh
advantages and disadvantages of the EOM concept as compared to the plain ISR
schemes of the type presented in Chap.14. Besides the size of the EOM secular
matrix, being here exactly twice the size of comparable plain ISR schemes, the fact
that the EOM treatment involves a non-hermitian RPA-type secular problem consti-
tutes another disadvantage.

Exercises

16.1 Verify the expression (16.26) for the first-order contribution to theEOM secular
matrix element Mi,abjkl ; evaluate the analogous contribution, S(1)

i,abjkl , for the
EOM overlap matrix.

16.2 Field operators in coordinate space representation:
(a) Revisit the abstract definition (2.3) of the creation operator c†q and “trans-
late” it to the coordinate space representation. Let �(ξ1, . . . , ξN ) denote an
antisymmetrized and normalized wave function of N electrons (N even).Write
the (N+1)-electron wave functions c†q�(ξ1, . . . , ξN ) in terms of a properly
antisymmetrized linear combination of products of the type �φq .
(b) Write cq�(ξ1, . . . , ξN ) as an expansion of (N−1)-electron basis states�n

in analogy to Eq. (2.7).
(c) Let φq be a complex-valued orbital. The coordinate space representation
according to (a) and (b) allows one to define “complex” field operators, c∗†

q

and c∗
q . Verify that c∗†

q � = (c†q�)∗ and c∗
q� = (cq�)∗ for a real-valued wave

function �.
16.3 EOM state representation in case of complex-valued orbitals:

Suppose a complex one-particle representation and modify the definition
(16.27) of Fock-space states according to |�I 〉 = (Ô∗†

I + ÔI )|�0〉, where the
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complex operators ÔI are defined via the coordinate space representation (as
in Exercise 16.2).
(a) Consider the 1p/1h states |�p〉 = (c∗†

p + cp)|�0〉 and show that

〈�p|�q〉 = 〈�0|{c†p, cq}|�0〉=:Spq ( = δpq )

and

〈�p|(Ĥ − E0)(N − N̂ )|�q〉 = 〈�0|{c†p, [Ĥ , cq ]}|�0〉=:Mpq

Here the hamiltonian is assumed to be real, and so is �0 (possibly up to an
irrelevant phase factor).
(b) Establish analogous results for arbitrary |�I 〉 states.

16.4 Derive the RPA equations (15.5), (15.6) as an approximation to the EOM
expressions (16.46), (16.47) obtained by restricting theEOM operatormanifold
to the 1p-1h and 1h-1p operators and replacing |�0〉 with the HF ground
state |�0〉. Note that the relative phase of the 1h-1p operators implied by the
definition (16.44) differs from that underlying Eq. (15.5). Verify that this is
consistent with the transition moments DRPA

rs = 〈�0|[Ô†
rs, D̂]|�0〉 deriving

from Eq. (16.57).

References

1. Pickup BT, Goscinski O (1973) Mol Phys 26:1013
2. Öhrn Y, Born G (1981) Adv Quantum Chem 13:1
3. Linderberg J, Öhrn Y (2004) Propagators in quantum chemistry. Wiley, New York
4. Goscinski D, Lukman B (1970) Chem. Phys Lett 7:573
5. McCurdy CW, Rescigno TN, Yeager DL, McKoy V (1977) In: Schaefer HF (ed) Methods of

electronic structure theory. Plenum, New York, p 339
6. Herman MF, Freed KF, Yeager DL (1981) Adv Chem Phys 48:1
7. Rowe DJ (1968) Rev Mod Phys 40:153
8. Mertins F, Schirmer J, Tarantelli A (1996) Phys Rev A 53:2153
9. Dalgaard E (1979) Int J Quantum Chem 15:169
10. Herman MF, Freed KF, Yeager DL (1980) J Chem Phys 72:602
11. Mertins F (1995) Dissertation, Universität Heidelberg
12. Nielsen ES, Jørgensen P, Oddershede J (1980) J Chem Phys 73:6238
13. Oddershede J, Jørgensen P, Yeager DL (1984) Comput Phys Rep 2:33



Chapter 17
Coupled-Cluster Methods for
Generalized Excitations

The extension of the coupled-cluster (CC) method, originally devised for ground-
states [1, 2], to the treatment of (generalized) electronic excitations is based on CE
states in which the CC ground-state parametrization is used. To deal with the non-
orthogonality of the CE states and, even more importantly, to obtain tractable secular
equations, one introduces, as a second expansion manifold, the set of associated
biorthogonal states. The corresponding mixed or biorthogonal (B) representation of
the (shifted) hamiltonian gives rise to the non-hermitian BCC secular matrix.

This BCC secular problem lies at the core of the excited-state CC methodology,
which comprises two historically independent developments or brands, namely the
CCLR (coupled-cluster linear response) theory (see [3] and references therein) and
theEOM- CC (equation-of-motion coupled-cluster) approach (see [4] and references
therein). A closely related method is the SAC- CI (symmetry-adapted cluster con-
figuration interaction) scheme [5]. For comprehensive presentations of ground- and
excited-state CC theory, the reader is referred to textbooks [6, 7] and review arti-
cles [8–10].

In this chapter, we give an introduction into the BCC concept and review in
particular the order relations and separability properties of theBCC secular equations.
We here refer to the extensive analysis given in Ref. [11] which may be consulted
for further details.

17.1 Ground-State Coupled-Cluster Formulation

In the CC approach, the ground state is represented in the form of an exponential
operator acting on the HF ground state |�0〉:

|�cc
0 〉 = eT̂ |�0〉 (17.1)
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Here, the cluster operator T̂ in the exponential is given by the expansion

T̂ =
∑

I

tI ĈI (17.2)

in terms of the physical excitation operators, ĈI , as specified in Eq. (14.10), and
the CC amplitudes (or coefficients) tI . We note that the exponential operator can be
simplified according to

eT̂ =
∏

I

etI ĈI =
∏

I

(1 + tI ĈI ) (17.3)

since the ĈI operators commute, and their powers vanish: Ĉm
I ≡ 0,m ≥ 2.

We recall some notations introduced inChap.11. The successive excitation classes
will be numbered ν = 1, 2, 3, . . . , that is, classμ is formed by theμp-μh excitations.
The notation [J ] is used to specify the excitation class to which configuration J
belongs: [J ] = μ if J labels a μp-μh excitation. The classification of the excitations
allows one to write T̂ as the sum

T̂ =
N∑

ν=1

T̂ν (17.4)

of class-specific operators
T̂ν =

∑

[I ]=ν

tI ĈI (17.5)

For example, T̂2 is given by

T̂2 =
∑

a<b,k<l

tabkl c
†
ac

†
bckcl (17.6)

The CC amplitudes obey the (nonlinear) ground-state CC equations obtained by
projecting the Schrödinger equation

Ĥ |�cc
0 〉 = E0|�cc

0 〉 (17.7)

onto the space spanned by the CI states, |�I 〉 = ĈI |�0〉, including the HF ground
state |�0〉. Practical CC approximation schemes are obtained by truncating the
operator manifold at successively higher excitation classes, such as in the CCSD
approximation, in which the operator manifold comprises the single (S) and dou-
ble (D) excitation operators. Here, we will not discuss the actual derivation of the
respective CC equations and computational aspects, being well documented in the
CC literature cited above.
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It should be noted that the CC equations do not constitute a variational approach
to the CC amplitudes. This has implications to the performance of the truncated CC
schemes, which deteriorates when the ground state is no longer adequately described
by a single dominant (reference) configuration. To cope with such situations, multi-
reference (MR)CC schemes have been developed (see Refs. [9, 12]), which aremuch
more complicated though.

As a point of particular interest, the CC amplitudes fulfill the order relations

tI ∼ O([I ] − 1), [I ] > 1 (17.8)

which are a consequence of the exponential ansatz [13]. The CC order relations can
be contrasted with the CI order relations (A.1.24),

xI ∼
{

1
2O([I ]), [I ] even
1
2O([I ] + 1), [I ] odd,> 1

(17.9)

Here, xI are the coefficients in the ground-state CI expansion (see AppendixA.1),

|�0〉 = |�0〉 +
∑

I

xI ĈI |�0〉 (17.10)

The 2p-2h and 3p-3h amplitudes are of first and second order, respectively, both in
theCC andCI expansion; but beginningwith the 4p-4h excitations,where xI ∼ O(2)
and tI ∼ O(3), the orders of the CC amplitudes are increasingly higher than those
of their CC counterparts.

As analyzed by Hubbard [13], the exponential ansatz (17.1) rests on a general-
ized linked-cluster theorem, which implies that, in contrast to the CI coefficients, the
t-amplitudes do not exhibit “non-linking” PT contributions, that is, terms involving
coupling matrix elements of the type HI J , where I and J differ by a double excita-
tion, [I ] − [J ] = ±2. An elaboration of these findings is given in the first section
of AppendixA.6.

17.2 Biorthogonal Coupled-Cluster Representation

Now we can turn to the BCC approach to electronic excitations, where we consider
specifically the case of N -electron excitations. Of course, the BCC concept is quite
general and can easily be adapted to ionization (IP- EOM- CC), electron attachment
(EA- EOM- CC), and other cases of interest.

The BCC secular matrix Mcc is obtained as a non-hermitian representation of the
(shifted) hamiltonian Ĥ − E0,

Mcc
I J = 〈�I |Ĥ − E0|�0

J 〉 (17.11)
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in terms of two distinct sets of states:

(i) the CC states (right expansion manifold {R})

|�0
J 〉 = ĈJ |�cc

0 〉 = ĈJ e
T̂ |�0〉 (17.12)

(ii) the associated biorthogonal states (left expansion manifold {L})

〈�I | = 〈�0|Ĉ†
I e

−T̂ (17.13)

Here, the operators ĈI are the physical excitation operators already used in the
ground-state CC expansion.

The biorthonormality of the two sets of states

〈�I |�0
J 〉 = 〈�I |e−T̂ eT̂ |�J 〉 = δI J (17.14)

is an obvious consequence of the orthonormalization of theCI configurations |�I 〉 =
ĈI |�0〉. Since the operator T̂ is formed entirely of physical excitation operators, it
commutes with any operator ĈJ . Thus, the CC states of Eq. (17.12) can likewise be
obtained by applying the exponential operator to the CI states,

|�0
J 〉 = eT̂ ĈJ |�0〉 = eT̂ |�J 〉 (17.15)

The matrix elements (17.11) may also be written in the form

Mcc
I J = 〈�I |(Ĥ − E0)ĈJ |�cc

0 〉 = 〈�0|Ĉ†
I e

−T̂ [Ĥ , ĈJ ]eT̂ |�0〉. (17.16)

where the ground-state energy E0 no longer appears explicitly.
The two expansion manifolds establishing the BCC representation are of quite

different quality. The states of {R} are essentially the “correlated excited” (CE)
states (11.1), (14.9) underlying the ISR construction presented in Chaps. 11 and 14.
As may be anticipated, the CE states are superior to the biorthogonal {L} states, if
more complex. Obviously, a CC state of class [I ] can be written according to

|�0
I 〉 = eT̂ |�I 〉 = |�I 〉 +

∑

K , [K ]>[I ]
z(I )
K |�K 〉 (17.17)

as a linear combination of |�I 〉 and CI configurations of higher excitation classes,
[K ] > [I ], extending through N -tuple excitations. By contrast, the CI expansion of
a biorthogonal state from the {L} set reads

〈�I | = 〈�I |e−T̂ = 〈�I | +
∑

K , [K ]<[I ]
z(I )
K 〈�K | (17.18)
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that is, a linear combination of 〈�I | and CI excitations of lower classes, [K ] =
1, . . . , [I ] − 1 (including |�0〉 as a zeroth class in the case of N -electron excitations).

As is easily seen, the linear space spanned by the biorthogonal states through a
given excitation class μ is identical with the corresponding space of CI configura-
tions:

span{〈�I |e−T̂ , [I ] = (0), 1, . . . ,μ} = span{〈�I |, [I ] = (0), 1, . . . ,μ}
(17.19)

This suggests that expansions in terms of the biorthogonal states of the {L} set are
essentially of CI type.

The BCC secular matrix is manifestly non-hermitian, so that one has to deal with
a right and a left eigenvalue problem, reading as follows:

MccX = X�

Y †Mcc = �Y † (17.20)

Here, X and Y denote the matrices of the right and left eigenvectors, respectively,
and � is the diagonal matrix of eigenvalues ωn , to be identified with the (vertical)
electronic excitation energies,

ωn = En − E0. (17.21)

The two sets of secular equations can be combined,

Y †Mcc X = �, Y †X = 1 (17.22)

where the right and left eigenvectors are mutually biorthonormal. Accordingly, the
corresponding right and left excited states,

|�(r)
n 〉 =

∑

I

X In|�0
I 〉 (17.23)

〈�(l)
m | =

∑

I

Y ∗
Im〈�I | (17.24)

are biorthonormal as well, 〈�(l)
m |�(r)

n 〉 = δmn .

Extended BCC Expansion

In general, the right excited states |�(r)
n 〉 are not yet eigenstates of Ĥ , because

the expansion manifold {R} of Eq. (17.12) is incomplete as long as the ground
state |�cc

0 〉 is not taken into account. Using the extended CC expansion manifold
{Rx } = {|�cc

0 〉, |�0
I 〉} on the right-hand side, and, likewise, the extended biorthog-

onal manifold {Lx } = {〈�0|, 〈�I |} on the left side, one obtains an extended BCC
representation of Ĥ − E0:

Mx =
(
0 v

0 Mcc

)
. (17.25)
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Here, v = (v1, v2, . . . ) is the (row) vector of the elements

vI = 〈�0|Ĥ |�0
I 〉 (17.26)

that is, the coupling matrix elements between the HF ground state and the excited
CC states. We note that in the usage of the EOM-CC approach the extended matrix
Mx is denoted by H ; in the CCLR context, on the other hand, the original BCC
secular matrix Mcc is referred to as the CC Jacobian, A, and the coupling vector v

is denoted as η.
The extension of the BCC secular problem has some implications. Obviously,

there is one more eigenvalue, namely ω0 = 0, associated with the ground state. The
corresponding right eigenvector,

X ′
0 =

(
1
0

)
(17.27)

is trivial, reconfirming that |�cc
0 〉 is the exact ground state. The left eigenvector takes

on the form
Y

′†
0 = (1,Y †

0) (17.28)

where Y †
0 is a row vector given by

Y †
0 = −v(Mcc)−1 (17.29)

The corresponding state

〈�0| = 〈�0| +
∑

I

Y ∗
I0〈�I | (17.30)

is referred to as “dual” ground state (denoted 〈�| in the CCLR literature). In view
of the nature of the left expansion manifold, the dual ground state can be viewed
essentially as a CI-type representation of the ground state.

As the structure of Mx shows, the excited state eigenvalues are given by the
eigenvalues ωn of the Mcc sub-block. Here, the left eigenvectors of Mx are obtained
as the simple extensions

Y
′†
n = (0, Y †

n) (17.31)

of the left eigenvectors of Mcc. Accordingly, the excited states 〈�(l)
n | of Eq. (17.24)

are proper eigenstates of Ĥ . In particular, they are orthogonal to the exact ground
state,

〈�(l)
n |�cc

0 〉 = 0 (17.32)

which follows from 〈�I |�cc
0 〉 = 0. By contrast, the extended right-hand eigenvectors

may have a non-vanishing zeroth component,
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X ′
n =

(
xn
Xn

)
(17.33)

Here, Xn denotes the nth right eigenvector of Mcc, and the xn component is given
by

xn = ω−1
n v Xn = v (Mcc)−1Xn = −Y †

0Xn (17.34)

using here the eigenvalue equation MccXn = ωnXn and, moreover, Eq. (17.29). As
a consequence, the right expansion of an excited eigenstate takes on the form

|�(x)
n 〉 = xn|�cc

0 〉 + |�(r)
n 〉 (17.35)

where |�(r)
n 〉 is given by Eq. (17.23). We note the relation

xn = 〈�0|�(x)
n 〉 (17.36)

which follows from 〈�0|�(r)
n 〉 = 0. The excited eigenstates |�(x)

n 〉 are orthogonal to
the dual ground state,

〈�0|�(x)
n 〉 = xn + Y †

0Xn = 0 (17.37)

which follows from the relations 〈�I |�(r)
n 〉 = XIn and Eq. (17.34).

Transition Moments

For spectral intensities, the squared moduli |Tn|2 of the transition moments (13.6) are
required, involving normalized ground and excited states. In theBCC representation,
a properly normalized expression for |Tn|2 is obtained according to

|Tn|2 = T (l)
n T (r)

n (17.38)

where

T (l)
n =〈�(l)

n |D̂|�cc
0 〉 (17.39)

T (r)
n =〈�0|D̂|�(x)

n 〉 (17.40)

denote transition moments associated with the left and right forms of the excited
states. The left transition moment can be written as the scalar product,

T (l)
n = Y †

nF
(l) (17.41)

of the left eigenvector, Y n , and a vector F(l) of basis set transition moments,

F (l)
I = 〈�I |D̂|�cc

0 〉 (17.42)

In a similar way, onemay define transitionmoments for the right expansionmanifold,
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F (r)
I = 〈�0|D̂|�0

I 〉 (17.43)

and write the right transition moments as

T (r)
n = xn〈�0|D̂|�cc

0 〉 + F(r)†Xn (17.44)

Here, the first term derives from a possible ground-state admixture in |�(x)
n 〉 accord-

ing to Eq. (17.35). We note that the biorthonormality relations 〈�0|�cc
0 〉 = 1 and

〈�(l)
n |�(x)

n 〉 = 1 ensure the proper normalization of the product (17.38).

17.3 Order Relations and Separability Properties

The different quality of the two expansion manifolds becomes apparent in the order
structure of theBCC secularmatrixMcc shown inFig. 17.1.As explained inChap.12,
the entries in the Mcc

μν sub-blocks associated with the excitation-class partitioning
denote the lowest (non-vanishing) PT orders of the matrix elements in these blocks.
Theupper right (UR) triangular part ofMcc shows the characteristicCIorder structure
as in Fig. 12.5 (there for the case of (N−1)-electron excitations). By contrast, the
lower left (LL) triangular part (μ > ν) displays the canonical order relations (see
Eqs. (12.1), (14.44))

Mcc
μν ∼ O(μ − ν) (17.45)

The CI structure of the UR part can be inferred by using the expansions (17.17),
(17.18) in the BCC matrix elements Mcc

I J , [I ] < [J ]:

〈�I |Ĥ − E0|�0
J 〉 = 〈�I |Ĥ |�J 〉 +

∑

[K ]<[I ]

∑

[L]>[J ]
z(I )
K z(J )

L 〈�K |Ĥ |�L〉 (17.46)

Obviously, there are no contributions from the double sum, because the excitation
classes of the states K and L differ at least by a triple excitation, that is, [L] − [K ] ≥
3, so that all matrix elements 〈�K |Ĥ |�L〉 vanish. In fact, this shows that the BCC
and CI secular matrix elements in the UR blocks are identical:

Mcc
I J = HI J , for [I ] < [J ] (17.47)

For matrix elements Mcc
I J of a diagonal block, [I ] = [J ], we obtain

Mcc
I J = 〈�I |Ĥ − E0|�J 〉 +

∑

[K ]=[I ]−1

∑

[L]=[I ]+1

z(I )
K z(J )

L 〈�K |Ĥ |�L〉 (17.48)

Obviously, the BCC and CI expressions differ beyond first order, which of course
does not affect the trivial order relation, Mcc

μμ ∼ O(0), in the diagonal blocks.
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Fig. 17.1 Order structure of
the BCC secular matrix Mcc

1p-1h 2p-2h 3p-3h 4p-4h 5p-5h . . .

1p-1h 0 1 1 - - . . .

2h-2p 1 0 1 1 - . . .

3p-3h 2 1 0 1 1 -

4p-4h 3 2 1 0 1 1

5p-5h 4 3 2 1 0 1

...
...

...
...

...
...

. . .

The less obvious (canonical) order relations for the LL part of Mcc are addressed
in AppendixA.6.

As discussed in Sect. 12.1 and AppendixA.6, the order structure of the secular
matrix determines the truncation errors inherent to approximations obtained by lim-
iting the configuration space. As a consequence of the CI structure in the URmatrix
blocks of the BBC secular matrix, the truncation properties are somewhat weaker
than those in a full canonical order structure. For example, neglecting the triple
excitations in the BCC expansion causes a third-order error (as can be seen from
Fig. 17.1), whereas in the ISR-ADC scheme, the corresponding error is of fourth
order. For the energies of 1p-1h (single) excitations, the BCC truncation error orders
(TEO) are given by (see Ref. [11])

OT E (μ) =
{

3
2μ, μ even
1
2 (3μ + 1), μ odd

(17.49)

where μ denotes the highest excitation class included in the secular expansion. This
formula can be compared to Eq. (14.45) specifying the truncation errors in the ISR-
ADC case. In Table 17.1, the explicit BCC, ISR-ADC, and CI truncation errors are
listed for successively larger configuration spaces.

With regard to the transitionmoments, wemay refer to Ref. [11], where a compre-
hensive analysis has been given of the truncation errors in the left and right transition
moments. For the single (1p-1h) excitations, the left and right transition moments
have the same truncation error characteristics, shown in Table 17.1 for the lowest 6
expansion levels.
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Table 17.1 Truncation errors (PT order) for excitation energies and transition moments of singly
excited states: comparison of CI, BCC, and ADC approaches for the lowest six truncation levels

Truncation
level

Excitation energies Transition moments

CI BCC ADC CI BCC ADC

1 2 2 2 1 1 2

2 2 3 4 2 3 4

3 4 5 6 3 4 6

4 4 6 8 4 6 8

5 6 8 10 5 7 10

6 6 9 12 6 9 12

Separability

An analysis of the separability properties of the BCC secular equations and the size-
consistency of the resulting excitation energies and transition moments can easily be
performed along the lines of Sect. 12.2. We confine ourselves to a brief sketch of the
essential features.
The hybrid character of the BCC secular matrix is reflected in the block structure
associated with the separate fragment model shown in Fig. 17.2. The LL part is
separable, whereas the UR part displays the non-separable CI structure.

According to the generalized linked-cluster theorem (see Sect.A.6.1), the T̂
operator can be written as the sum of fragment operators,

T̂ = T̂A + T̂B (17.50)

and the exponential of the T̂ operator factorizes,

eT̂ = eT̂AeT̂B (17.51)

M cc
AA 0 M cc

A,AB

0 M cc
BB M cc

B,AB

0 0 M cc
AB,AB

Fig. 17.2 Block structure of the BCC secular matrix Mcc with respect to the separate fragment
model
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As a consequence, both the CC states and the biorthogonal states can be written as
products of fragment states. For a non-local excitation, J ≡ JAB , the CC state takes
on the form

|�0
JAB 〉 = |� A

JA〉|�B
JB 〉 (17.52)

where
|� A

JA〉 = ĈJAe
T̂A |�A

0 〉 (17.53)

denotes a CC state for fragment A. The corresponding biorthogonal state reads

〈�JAB | = 〈�A
JA |〈�

B
JB | (17.54)

where the fragment biorthogonal state, say for A, is given by

〈�A
JA | = 〈�A

0 |Ĉ†
JA
e−T̂A (17.55)

Using the factorization of the left and right BCC basis states, the block structure of
Mcc can readily be established (Exercise 17.4). As an example, we consider a matrix
element in the Mcc

A,AB block:

Mcc
IA,JAB =〈�IA |ĤA + ĤB |�0

JAB 〉
=〈�A

IA |ĤA|� A
JA〉〈�B

0 |�B
JB 〉 + 〈�A

IA |� A
JA〉〈�B

0 |ĤB |�B
JB 〉

While the first term in the last line vanishes due to the orthogonality of |�B
0 〉 and

|�B
JB

〉, the second term may not vanish for IA = JA, since |�B
0 〉 is not an eigenstate

of ĤB . In a similar way, one may verify that

Mcc
AA = Mcc(A) (17.56)

where Mcc(A) denotes the BCC secular matrix of fragment A.
What are the consequences of the semi-separable structure of the BCC secular

matrix? There are no ramifications for the excitation energies. The characteristic
polynomial for the fragment secular matrix, Mcc

AA, is a factor of the characteristic
polynomial of the full Mcc matrix, so that the eigenvalues of Mcc

AA are a subset of
all eigenvalues. This means that the energies are size-consistent: the BCC results for
local excitations do not depend on whether the method is applied to the respective
fragment or to the composite.

For the transition moments, the situation is more nuanced. The left transition
moments are size-consistent, although the left eigenvectors are non-separable: The
eigenvector Y n for a local excitation in one of the fragments has non-vanishing
non-local components, YJAB ,n 	= 0. However, this does not matter because in the
vector of the left basis set transition moments, F(l), all non-local components vanish:
F (l)
JAB

= 0. The right transition moments (17.40) are not size-consistent, even though
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the right eigenvectors are separable. The problem is due to the use of the dual ground
state (17.30) in the right basis set transition moments (17.43). The dual ground state,
being essentially a CI expansion, is not separable, that is, a factorization

〈�0| = 〈� A
0 |〈�B

0 | (17.57)

of the composite ground state is attained only in the exact (full) BCC treatment.
It should be noted that in the CCLR formulation this shortcoming is avoided, as
here a separable, if more elaborate expression is employed for the right transition
moments [14, 15].

Exercises

17.1 (a) Compare the CC expansion |�0〉 = eT̂1+T̂2+T̂3+...|�0〉 for the ground state
with the CI expansion |�0〉 = (1 + Ŝ1 + Ŝ2 + Ŝ3 + . . . )|�0〉, where Ŝν =∑

[I ]=ν xI ĈI denotes the excitations of class ν in the CI expansion. Express the

four lowest CI operators Ŝ1, . . . , Ŝ4, in terms of the CC operators T̂1, . . . , T̂4.
(b) Deduce the order relations for T̂1, T̂2, and T̂3 from those for Ŝ1, Ŝ2, and Ŝ3;
what is the situation for T̂4?

17.2 (a) Consider the excitation operator ĈK for a quadruple excitation K ≡
abcd; i jkl and establish that this operator can be written in 18 distinct ways as
a product of two “disjunct” double excitations, such as Ĉabcd;i jkl = Ĉacil Ĉbd jk .
(b) Inspect the PT expression for the ground-state amplitude x (2)

abcd;i jkl =
〈�abcd;i jkl |�(2)

0 〉 in second order (see AppendixA.1), and show that x (2)
abcd;i jkl

can be written as a sum over products x (1)
I x (1)

J of first-order amplitudes for
(disjunct) double excitations, I, J , where Ĉabcd;i jkl = ĈI ĈJ .
(c) Use the results of (b) together with Exercise 17.1 to show that the CC
amplitude tabcd;i jkl is (at least) of third order.

17.3 Consider the BCC representation for an (N−1)-electron system (IP- EOM-
CC) and expand the coupling matrix elements Mcc

i,abjkl and Mcc
abjkl,i for a 1h

state and a 3h-2p state through first order.
17.4 Establish the block structure of theBCC secular matrix with respect to separate

fragment partitioning (Fig. 17.2).
17.5 Apply the ground-state CC concept to the 2E-2O model considered in Exer-

cise 2.4. Here, the CC operator consists of a single double excitation, T̂ =
t c†uαc

†
uβcgβcgα so that |�cc

0 〉 = eT̂ |�0〉 = |�0〉 + t |�1〉. Project theSchrödinger
equation for |�cc

0 〉 onto |�0〉 and |�1〉 and determine t and E0.
17.6 CCD(doubles) treatment of the multiple 2E-2O system (see Exercise 12.2):

Consider theCCoperator T̂ = ∑
i ti Ĉi where Ĉi = c†iuαc

†
iuβcigβcigα, i = 1, . . . ,

M , are double excitation operators for the M sub-systems. Derive the ground-
state CC equations and verify that the amplitudes are all equal, ti = t . Deter-
mine t , and establish that the CCD results reproduce the exact ground-state
energy and wave function.
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Appendix

A.1 Basic Tools

A.1.1 Perturbation Theory for the Ground State

In the following, a brief recapitulation is given of Rayleigh–Schrödinger pertur-
bation theory (RSPT) for the N -electron ground state. Here, we adopt the elegant
general derivation of ground-state perturbation theory presented by March, Young,
and Sampanthar in Chap.1 of their textbook [1].

As usual, the starting point is the decomposition

Ĥ = Ĥ0 + ĤI (A.1.1)

of the Hamiltonian into an unperturbed part Ĥ0 and an interaction part ĤI . Let |�0〉
denote the ground state of Ĥ0 with the energy E (0)

0 , and

Q̂0 = 1̂ − |�0〉〈�0| (A.1.2)

the projector onto the orthogonal complement of |�0〉. The exact ground state |�0〉
can be written as

|�0〉 = |�0〉 + Q̂0|�0〉 (A.1.3)

which implies intermediate normalization, 〈�0|�0〉 = 1. The Schrödinger equation
for |�0〉 allows us to write

(ε − Ĥ)|�0〉 = (ε − E0)|�0〉 (A.1.4)

where ε is an arbitrary parameter to be specified later. Applying Q̂0 to the latter
equation gives

(ε − Ĥ0)Q̂0|�0〉 = Q̂0(ĤI + ε − E0)|�0〉 (A.1.5)

© Springer Nature Switzerland AG 2018
J. Schirmer, Many-Body Methods for Atoms, Molecules and Clusters, Lecture
Notes in Chemistry 94, https://doi.org/10.1007/978-3-319-93602-4

269



270 Appendix

and
Q̂0|�0〉 = (ε − Ĥ0)

−1 Q̂0(ĤI + ε − E0)|�0〉 (A.1.6)

The latter expression for Q̂0|�0〉 can be used in Eq. (A.1.3), yielding an implicit
equation

|�0〉 = |�0〉 + Q̂0

ε − Ĥ0

(ĤI + ε − E0)|�0〉 (A.1.7)

for |�0〉, which can be solved formally by iteration:

|�0〉 = |�0〉 +
∞∑

ν=1

[
Q̂0

ε − Ĥ0

(ĤI + ε − E0)

]ν

|�0〉 (A.1.8)

The associated expansion of E0 deriving from the energy expression

E0 = 〈�0|Ĥ0 + ĤI |�0〉 (A.1.9)

is given by

E0 = E (0)
0 + 〈�0|ĤI |�0〉 + 〈�0|ĤI

∞∑

ν=1

[
Q̂0

ε − Ĥ0

(ĤI + ε − E0)

]ν

|�0〉
(A.1.10)

The closed-form expansions (A.1.8), (A.1.10) still contain the exact energy E0. To
obtain explicit perturbation series, the expansion

E0 = E (0)
0 + E (1)

0 + E (2)
0 + . . . (A.1.11)

has to be used in an appropriate way. Here, the individual terms can be determined
successively from Eq. (A.1.10).

The familiar Rayleigh–Schrödinger (RS) perturbation theory results from
Eqs. (A.1.8) and (A.1.10) by setting ε = E (0)

0 . Another obvious choice, namely
ε = E0, leads to the so-called Brillouin–Wigner (BW) perturbation theory which
will be briefly addressed at the end of this section.

Note that the formal development presented so far is completely general and can
easily be transferred to the case of a one-particle system, essentially by adapting
the notations accordingly: Write the hamiltonian as ĥ = ĥ0 + ĥ1 and let φ0 and ψ0

denote the unperturbed and exact ground states, respectively, and e0 and e(0)
0 the

corresponding energies.
Let us construct the actual first- and second-order terms in the expansion of |�0〉.

The explicit RS perturbation expansion through second order reads
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|�0〉 = |�0〉+ Q̂0

E (0)
0 − Ĥ0

ĤI |�0〉+

Q̂0

E (0)
0 − Ĥ0

(ĤI − E (1)
0 )

Q̂0

E (0)
0 − Ĥ0

ĤI |�0〉 + O(3) (A.1.12)

where in the second-order term the last numerator (ĤI − E (1)
0 ) has been simplified

because Q̂0|�0〉 = 0.
To further evaluate the terms in the PT expansion, one may insert the resolution

of the identity
1̂ =

∑

I

|�I 〉〈�I | (A.1.13)

to the left of each ĤI operator. Here, |�I 〉 denote the ground and excited HF states
(or, more general, eigenstates of Ĥ0) as specified by Eq. (2.24).

The first-order term thus becomes

|�(1)
0 〉 =

∑

J �=0

1

E (0)
0 − E (0)

J

|�J 〉〈�J |ĤI |�0〉 (A.1.14)

Here, the states |�J 〉 are restricted to the 1p-1h and 2p-2h excitations, since the
matrix element 〈�J |ĤI |�0〉 vanishes for higher excitations. Supposing the Møller-
Plesset (MP) partitioning of the hamiltonian (see Eqs. 4.2–4.4), there are no 1p-1h
components either, because the matrix elements

〈�ak |ĤI |�0〉 = wak +
∑

r

Var [kr ]nr = 0 (A.1.15)

vanish according to Eq. (4.6). This is often referred to asBrillouin’s theorem. Accord-
ingly, the first-order ground state is a linear combination of double excitations,

|�(1)
0 〉 =

∑

a<b,k<l

x (1)
abkl |�abkl〉 (A.1.16)

where the coefficients are given by the characteristic PT fractions

x (1)
abkl = Vab[kl]

εa +εb−εk −εl
(A.1.17)
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With the help of Eq. (A.1.10), the second-order ground-state energy is given by

E (2)
0 = 〈�0|ĤI |�(1)

0 〉 = −
∑

a<b,k<l

|Vab[kl]|2
εa +εb−εk −εl

(A.1.18)

The second-order ground state consists of two terms,

|�(2)
0 〉 = Q̂0

E (0)
0 − Ĥ0

ĤI
Q̂0

E (0)
0 − Ĥ0

ĤI |�0〉 − E (1)
0

Q̂0

(E (0)
0 − Ĥ0)2

ĤI |�0〉 (A.1.19)

where E (1)
0 = 〈�0|ĤI |�0〉. Applying again the resolution of the identity (twice in

the first term) and using the first-order result, |�(2)
0 〉 may be written as

|�(2)
0 〉 =

∑

J �=0

∑

c<d,i< j

1

E (0)
0 − E (0)

J

|�J 〉〈�J |ĤI |�cdi j 〉 Vcd[i j]
εc+εd −εi −ε j

+ E (1)
0

∑

a<b,k<l

|�abkl〉 Vab[kl]
(εa +εb−εk −εl)2

(A.1.20)

Here, the sum over the states |�J 〉 in the first term comprises single, double, triple,
and quadruple excitations (ν p-νh, ν = 1, 2, 3, 4).

Let us consider the |�abkl〉 component in |�(2)
0 〉. The corresponding amplitude

x (2)
abkl can be written as

x (2)
abkl = 〈�abkl |�(2)

0 〉 = −
∑

c<d,i< j
�=(abkl)

〈�abkl |ĤI |�cdi j 〉Vcd[i j]
(εa +εb−εk −εl)(εc+εd −εi −ε j )

−〈�abkl |ĤI − E (1)
0 |�abkl〉Vab[kl]

(εa +εb−εk −εl)2
(A.1.21)

Here, we have separated the diagonal contribution in the sum over the 2p-2h states
which can be combined with the second term of Eq. (A.1.20), effecting the modified
diagonal matrix element 〈�abkl |ĤI − E (1)

0 |�abkl〉 in the numerator.
As another example, the 1p-1h excitations in |�(2)

0 〉 contributewith the amplitudes

x (2)
ak = 〈�ak |�(2)

0 〉 = − 1

εa −εk

∑

c<d,i< j

〈�ak |ĤI |�cdi j 〉 Vcd[i j]
εc+εd −εi −ε j

(A.1.22)
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As these examples show, the general PT expansion (A.1.8) for |�0〉 establishes
individual PT expansions for the amplitudes (or CI coefficients)

xJ = 〈�J |�0〉 (A.1.23)

The onset of these expansions, that is, the PT order O(xJ ) of the first non-vanishing
contribution, depends on the excitation class [J ] of the respective excitation J . The
amplitudes xabkl are of first order (and that would apply to xak as well were it not
for Brillouin’s theorem). The x-amplitudes for the triple and quadruple excitations
(excitation classes 3 and 4, respectively) begin in second order; in third order, the
next two excitation classes, ν = 5 and 6, come into play, and so forth. The general
order relations read

O(xJ ) =
{

1
2 [J ], [J ] even
1
2 ([J ] + 1), [J ] odd,> 1

(A.1.24)

They follow from the structure of the expansion (A.1.8) and the instance that via the
two-body Coulomb operator contained in ĤI there is a (non-vanishing) coupling of
states of excitation class ν to states of the two higher classes, ν + 1 and ν + 2.

A.1.2 Matrix Algebra

There are some basicmatrix algebra techniques which are generally useful and apply,
in particular, to some of the topics treated in this book. While these algebra tools
are simple, they cannot necessarily be considered common knowledge so that the
following brief inspection may be helpful.

Inverse of a Partitioned Matrix

Consider a square matrix

M =
(
A B
C D

)
(A.1.25)

consisting as indicated of sub-blocks, where A and D are square matrices, and B
and C are rectangular matrices of corresponding size. The inverse of the partitioned
matrix (

A B
C D

)−1

=
(
E F
G H

)
(A.1.26)
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has the same block form, and the sub-blocks of the inverse can be directly written in
terms of the original blocks according to

E =(A − BD−1C)−1, F = −A−1BH

G = − D−1CE, H = (D − CA−1B)−1 (A.1.27)

To derive these equations, one may break down the general inversion product,

(
A B
C D

)(
E F
G H

)
=

(
1 0
0 1

)

into the following four sub-block equations:

AE + BG =1

AF + BH =0

CE + DG =0

CF + DH =1

Nowonemay, for example, solve the third equation for G. The result G = −D−1CE
can be used to replace G in the first equation, which then can easily be solved for E
in the form given by Eq. (A.1.27).

A side remark: The simple expression

(
a b
c d

)−1

= 1

ad − bc

(
d −b

−c a

)
(A.1.28)

for the inverse of a 2 × 2 matrix is useful in dealing with small matrices. Obvi-
ously, the inversion of a 3 × 3 matrix or a 4 × 4 matrix can be accomplished in a
straightforward way (leading to closed-form expressions) by using a (1-2) or (2-2)
partitioning scheme, respectively, and combining Eq. (A.1.28) with the partitioning
formulas (A.1.27). Such an approach is particularly helpful if one deals withmatrices
where the matrix elements are functions of one or several variables.

Partitioning of an Eigenvalue Problem

The partitioning technique can also be applied to the matrix eigenvalue problem.
Consider the eigenvalue equation for (a hermitian) matrix M given in the form of
Eq. (A.1.25): (

A B
C D

)(
x
y

)
= λ

(
x
y

)
(A.1.29)
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Here, λ denotes an eigenvalue of M, and the corresponding eigenvector is written in
an obvious partitioned form. More explicitly, the latter equation is composed of the
two sub-block equations

Ax + B y =λx

Cx + Dy =λ y

coupling the x and y components of the eigenvector. Solving the second equation
for y gives

y = (λ1 − D)−1Cx (A.1.30)

which can be used to replace y in the first equation. The result is the following
pseudo-eigenvalue equation for x:

(
A + B(λ1 − D)−1C

)
x = λx (A.1.31)

While the matrix on the left-hand side is of smaller dimension than that of the
original matrix M, it depends on the respective eigenvalue λ. This means one has to
resort to an appropriate iterative procedure in order to solve the pseudo-eigenvalue
equation, which of course brings up computational issues such as the convergence
of the procedure to selected (or a manifold of) pseudo-eigenpairs λk, xk . Once such
an eigenpair has been determined, the y components of the full eigenvector of M
can be obtained using Eq. (A.1.30).

Note that, in general, two pseudo-eigenvectors xk and xl associated with distinct
eigenvalues,λk �= λl , are not orthogonal. Orthogonality only applies to the full eigen-
vectors of M, of which the x components are only a part. (As pseudo-eigenvectors
of Eq. (A.1.31) xk and xl derive from distinct sub-block matrices.)

The computational benefit of partitioning the eigenvalue problem depends of
course on the specifics of the problem under consideration. Generally, a partitioning
scheme will be desirable in which the sub-block A is of small dimension and prefer-
ably coupled only weakly to the (large) sub-block D via the off-diagonal blocks
B and C (= B†). The advantage of a low-dimensional pseudo-eigenvalue problem,
being of the dimension of A, is offset to a certain extent by the need of inverting the
large matrix (λ1 − D) for various values of λ in the iterative procedure. The latter
task is addressed in the following sub-section.

The simplest partitioning scheme is onewhere the sub-block A is one-dimensional:

m =

⎛

⎜⎜⎜⎝

a b1 . . . bm

c1 d11 . . . d1m
...

...
. . .

...

cm dm1 . . . dmm

⎞

⎟⎟⎟⎠ (A.1.32)
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The corresponding one-dimensional eigenvalue equation reads

λ − a − bt (λ − d)−1c = 0 (A.1.33)

where d denotes the matrix of elements di j and b and c are (column) vectors of the
elements bi and c j , respectively. If d is already diagonal, dkl = δkldk , and, moreover,
supposing bi = c∗

i for hermiticity of m, the eigenvalue equation simplifies to

λ − a −
m∑

k=1

|bk |2
λ − dk

= 0 (A.1.34)

This allows for “graphical” solutions obtained as the intersections of the straight line
f (λ) = λ − a and the pole function g(λ) = ∑

k |bk |2(λ − dk)
−1.

Inversion of Resolvent-Type Matrices

Let M be a hermitian matrix of dimension n. The task of inverting the matrix
(ω1 − M) as a function of a variable ω is encountered in resolvent-type matrices
such as

R(ω) = (ω1 − M)−1 (A.1.35)

This inversion problem is essentially equivalent to solving the eigenvalue problem
for M,

MX = X�, X†X = 1 (A.1.36)

Here,�denotes the diagonalmatrix of eigenvalues,ω1, . . . ,ωn , and X is thematrix of
eigenvectors (represented by columns of X). According to the eigenvalue equations,
the original matrix M can be written as

M = X�X† (A.1.37)

Using this formand theorthonormality relations for X in the resolventmatrix (A.1.35)
yields

R(ω) =(ωXX† − X�X†)−1 = [
X(ω1 − �)X†

]−1

=X(ω1 − �)−1X† (A.1.38)

The last line gives an explicit expression of (ω1 − M)−1 in terms of the eigenvalues
and eigenvectors of M; the inversion of the diagonal matrix (ω1 − �) is of course
trivial.

A particular matrix element of R(ω) is given by

R pq(ω) =
n∑

k=1

X pk
1

ω − ωk
X∗

qk (A.1.39)
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While the relation (A.1.38) is of obvious theoretical interest, one may wonder
about its usefulness in actual computations.Again, this depends on the actual problem
under consideration. If M is a large matrix, full diagonalization is certainly not a
desirable or feasible option. Often, however, one is not interested in the resolvent
matrix as a function of the energy variable, but rather in its particular pole positions,
that is, selected eigenvalues of M. Then, of course the eigenvalue problem of M is
to be dealt with in the first place, and one can resort to the iterative diagonalization
methods such as the Davidson [2] or Lanczos procedures [3, 4]. In case one actually
needs R(ω) as a function of ω such as for frequency-dependent polarizabilities
(see Appendix A.7), a viable computational scheme can be based on the Lanczos
algorithm. There the exact spectral representation according to Eq. (A.1.38) can
be approximated by a corresponding representation in terms of a set of L Lanczos
eigenvalues and eigenvectors (Lanczos pseudo-spectrum), where L is the number of
Lanczos iteration steps.

An Application: Brillouin–Wigner Perturbation Theory

Using the partitioning technique in the eigenvalue problem of the hamiltonian allows
one to understand the essence of the Brillouin–Wigner perturbation theory. The BW
expansion for the ground-state energy is obtained from Eq. (A.1.10) with the choice
ε = E0. For notational ease, we consider the case of a one-particle system, where
that expansion takes on the form

e0 =e(0)
0 + 〈φ0|ĥ1|φ0〉 + 〈φ0|ĥ1

∞∑

ν=1

(
q̂0 ĥ1

e0 − ĥ0

)ν

|φ0〉

=〈φ0|ĥ|φ0〉 + 〈φ0|ĥ1
q̂0

e0 − ĥ0

ĥ1|φ0〉 + 〈φ0|ĥ1
q̂0

e0 − ĥ0

ĥ1
q̂0

e0 − ĥ0

ĥ1|φ0〉 + . . .

(A.1.40)

Here, q̂0 = 1̂ − |φ0〉〈φ0| is the one-particle analogue to the projector (A.1.2). Trun-
cating the expansion after the nth order term gives rise to an implicit equation for
the energy e0 of the type

e0 = fn(e0) (A.1.41)

Obviously, the BW procedure does not lead to a usual PT expansion for e0. Rather,
it will be seen to be a specific way of applying a CI treatment to the ground state.

Representing the hamiltonian in terms of the eigenstates φk, k = 0, 1, . . . of ĥ0,

h =

⎛

⎜⎜⎜⎝

h00 h01 h02 . . .

h10 h11 h12 . . .

h20 h21 h22 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎠ (A.1.42)

the Schrödinger equation takes on the form
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hx = e0x (A.1.43)

where x denotes the ground-state eigenvector. Partitioning of the Schrödinger equa-
tion as in Eq. (A.1.32), one obtains the one-dimensional secular equation

e0 − h00 − v†(e0 − h̃)−1v = 0 (A.1.44)

Here, v is the (column) vector of the matrix elements

vk = hk0 = 〈φk |ĥ1|φ0〉, k ≥ 1 (A.1.45)

and h̃ denotes the sub-block of h with matrix elements hkl, k, l ≥ 1. Writing h00

more explicitly as h00 = e(0)
0 + 〈φ0|ĥ1|φ0〉 and, correspondingly, h̃ as

h̃ = e(0) + h̃1 (A.1.46)

where e(0) is the diagonalmatrix of eigenvalues e(0)
k of ĥ0, k ≥ 1, the one-dimensional

eigenvalue equation (A.1.44) takes on the form

e0 = e(0)
0 + 〈φ0|ĥ1|φ0〉 + v†(e01 − e(0) − h̃1)

−1v (A.1.47)

Expanding the matrix inverse in a geometrical series according to

(e01 − e(0) − h̃1)
−1 =(e01 − e(0))−1

(
1 − h̃1

e01 − e(0)

)−1

=(e01 − e(0))−1 + (e01 − e(0))−1 h̃1(e01 − e(0))−1 + . . .

the right-hand of side Eq. (A.1.47) can be directly identified with the BW expan-
sion (A.1.40). To make the BW expressions more explicit, one may replace each q̂0

operator with
∑

k �=0 |φk〉〈φk |.
To conclude, theBW approach to the ground-state energy is essentially equivalent

to a CI treatment, in which the CI eigenvalue problem is recast via partitioning into
a one-dimensional iterative eigenvalue equation. The energy-dependent inversion of
the (large) residual matrix is handled by truncating the associated geometric series
at successively higher orders.
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A.2 Proof of the Gell-Mann and Low Theorem

The proof of theGell-Mann andLow theorempresented in the following is essentially
based on the version given in the textbook by Fetter and Walecka [5].

Theorem:

If the state

|�〉 = lim
ε→0

Ûε(0,−∞)|�0〉
〈�0|Ûε(0,−∞)|�0〉

(A.2.1)

exists in all orders of perturbation theory, then it is an eigenstate of Ĥ with the
eigenvalue

E0 = E (0)
0 + lim

ε→0

〈�0|ĤI Ûε(0,−∞)|�0〉
〈�0|Ûε(0,−∞)|�0〉

(A.2.2)

Proof :
For brevity, we use the notation

|�0(ε)〉 = Ûε(0,−∞)|�0〉 (A.2.3)

where Ûε(0,−∞) is given as in Eq. (4.41).
The first step is to derive an expression for Ĥ |�0(ε)〉.
Consider the commutator

[Ĥ0, Ûε(0,−∞)]|�0〉 = (Ĥ0 − E (0)
0 )|�0(ε)〉 (A.2.4)

Toevaluate the commutator on the left side, consider thenth order term in Ûε(0,−∞):

[Ĥ0, ĤI (ti )ĤI (t j ) . . . ĤI (tk)] = [Ĥ0, ĤI (ti )]ĤI (t j ) . . . ĤI (tk)

+ ĤI (ti )[Ĥ0, ĤI (t j )] . . . ĤI (tk) + . . .

+ ĤI (ti )ĤI (t j ) . . . [Ĥ0, ĤI (tk)]

where ti > t j > · · · > tk is a specific ordering of the n time arguments. Using
Eq. (4.18), the commutators may be replaced by time derivatives,

[Ĥ0, ĤI (t)] = −i
∂

∂t
ĤI (t)

which yields

[Ĥ0, ĤI (ti )ĤI (t j ) . . . ĤI (tk)] = (−i)

(
∂

∂t1
+ · · · + ∂

∂tn

)
ĤI (ti )ĤI (t j ) . . . ĤI (tk)

This allows us to write the right-hand side of Eq. (A.2.4) in the form
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(Ĥ0 − E (0)
0 )|�0(ε)〉 = −

∞∑

n=1

(−i)n−1

n!
∫ 0

−∞
dt1 eεt1 . . .

∫ 0

−∞
dtn eεtn

T̂TT
[(

n∑

k=1

∂

∂tk

)
ĤI (t1)ĤI (t2) . . . ĤI (tn)

]
|�0〉 (A.2.5)

Next, the time derivatives can be placed before the time-ordering operator. This is
possible since

(
n∑

k=1

∂

∂tk

)
θ(tP(1) − tP(2))θ(tP(2) − tP(3)) . . . θ(tP(n−1) − tP(n)) ≡ 0

where P(i) denotes a permutation of the integers i = 1, . . . , n. The latter identity
holds because each factor θ(tP( j) − tP( j+1)) is differentiated twice, and the respective
two time arguments have a plus and a minus sign, respectively. In the simple case
n = 2, for example, we find

(
∂

∂t1
+ ∂

∂t2
)θ(t1 − t2) ≡ δ(t1 − t2) − δ(t1 − t2) ≡ 0

In consequence, Eq. (A.2.5) takes on the form

(Ĥ0 − E (0)
0 )|�0(ε)〉 = −

∞∑

n=1

(−i)n−1

n!
∫ 0

−∞
dt1 eεt1 . . .

∫ 0

−∞
dtn eεtn

(
n∑

k=1

∂

∂tk

)
T̂TT [ĤI (t1)ĤI (t2) . . . ĤI (tn)]|�0〉 (A.2.6)

To proceed, let us note that

(i) each time derivative on the right-hand side of Eq. (A.2.6) yields the same con-
tribution; that is, we may replace (

∑n
k=1

∂
∂tk

) by n ∂
∂t1

.
(ii) we may then use partial integration for the t1 integration according to

eεt1
∂

∂t1
(. . . ) = ∂

∂t1
(eεt1(. . . )) − εeεt1(. . . )

This allows us to write Eq. (A.2.6) as

(Ĥ0 − E (0)
0 )|�0(ε)〉 =

= −ĤI

∞∑

n=1

(−i)n−1

(n − 1)!
∫ 0

−∞
dt2 eεt2 . . .

∫ 0

−∞
dtn eεtn T̂TT

[
ĤI (t2) . . . ĤI (tn)

]
|�0〉

+ ε

∞∑

n=1

(−i)n−1

(n − 1)!
∫ 0

−∞
dt1 eεt1 . . .

∫ 0

−∞
dtn eεtn T̂TT [ĤI (t1) . . . ĤI (tn)]|�0〉 (A.2.7)
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Note that in the first line on the right-hand side the operator ĤI = ĤI (0) could be
placed to the left of the time-ordering operator, because t1 = 0 is the maximal value
in any of the remaining time arguments. Equation (A.2.7) can be written in a more
compact form as follows:

(Ĥ0 − E (0)
0 )|�0(ε)〉 = −ĤI |�0(ε)〉 + iεg

∂

∂g
|�0(ε)〉

∣∣∣∣
g=1

(A.2.8)

Here, the first term on the right-hand side is readily identified with the first term on
the right-hand side of Eq. (A.2.7). The second term on the right-hand side can be
understood as the result of introducing a coupling strength parameter associated with
the interaction part, i.e., ĤI → g ĤI , so that in nth order the relation

g
∂

∂g
gn = ngn

holds. The aim of the first step is thus achieved, the result being of the form

(Ĥ − E (0)
0 )|�0(ε)〉 = iεg

∂

∂g
|�0(ε)〉

∣∣∣∣
g=1

(A.2.9)

At this point, however, the limit ε → 0 cannot be carried out, because |�0(ε)〉 contains
diverging contributions.

Second step: Bring Eq. (A.2.9) into a form complying with the premise of the
theorem, so that the adiabatic limit can be taken.

Multiplying Eq. (A.2.9) from the left by 〈�0|
〈�0|�0(ε)〉 yields

E0(ε) − E (0)
0 = iεg

∂

∂g
log〈�0|�0(ε)〉 (A.2.10)

where E0(ε) is defined as inEq. (A.2.2)without taking the limit ε → 0; the choice g =
1 is no longer explicitly indicated. On the other hand, we may multiply Eq. (A.2.9)
from the left by 〈�0|�0(ε)〉−1, yielding

(Ĥ − E (0)
0 )

|�0(ε)〉
〈�0|�0(ε)〉 = iεg

1

〈�0|�0(ε)〉
∂

∂g
|�0(ε)〉

= iεg
∂

∂g

|�0(ε)〉
〈�0|�0(ε)〉 − iεg|�0(ε)〉 ∂

∂g

1

〈�0|�0(ε)〉
= iεg

∂

∂g

|�0(ε)〉
〈�0|�0(ε)〉 + |�0(ε)〉

〈�0|�0(ε)〉 iεg
∂

∂g
log〈�0|�0(ε)〉 (A.2.11)

Using Eq. (A.2.10) in the second term of the last line of Eq. (A.2.11), takes us to the
final result

(Ĥ − E0(ε))
|�0(ε)〉

〈�0|�0(ε)〉 = iεg
∂

∂g

|�0(ε)〉
〈�0|�0(ε)〉 (A.2.12)
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which is of a form in which the limit ε → 0 can be taken on both sides. According
to the assumption,

|�〉 = lim
ε→0

|�0(ε)〉
〈�0|�0(ε)〉

exists in all orders of perturbation theory, and this property is not affected by applying
the operation g ∂

∂g
(in each order n). Then, due to the factor ε, the right-hand side

vanishes for ε → 0, and we obtain

(Ĥ − E0) lim
ε→0

|�0(ε)〉
〈�0|�0(ε)〉 = 0

which completes the proof.

Combining Operators and the Time-Evolution Operator:

In deriving Eq. (4.56), the following extended transitivity property of the time-
evolution operator has been used:

Ûε(∞, t)ÔI (t)Ûε(t,−∞) =
∞∑

n=0

(−i)n

n!
∫ ∞

−∞
dt1e−ε|t1| . . .

∫ ∞

−∞
dtn e−ε|tn |

T̂TT
[

ĤI (t1) . . . ĤI (tn)ÔI (t)
]

(A.2.13)

To prove this property, let us consider the nth order term on the right-hand side of
Eq. (A.2.13) for a given value of t ,

X (n)(t) = (−i)n

n!
∫ ∞

−∞
dt1 . . .

∫ ∞

−∞
dtn T̂TT

[
ĤI (t1) . . . ĤI (tn)ÔI (t)

]
(A.2.14)

omitting here the switching functions for simplicity. The n-fold time integrations
can be broken up into (n + 1)! distinct contributions according to the different time-
orderings of the n + 1 time arguments t1, . . . , tn, t . These time-orderings can further
be classified according to the number μ = 0, . . . , n, counting the time arguments
larger than t ; correspondingly, ν = n − μ is the number of time arguments smaller
than t . For a given μ, there are

(n
μ

)
ways to select μ time arguments from the set

t1, . . . , tn , and for each selection, there are μ! ν! time-orderings in which the first μ
and the last ν time arguments are permuted among themselves. Note that the total
number of time-orderings in class μ is n! = (n

μ

)
μ!ν!. Let

ti > t j · · · > tk > tl > t > tr > · · · > tu

denote a specific time-ordering of class μ; that is, ti > t j · · · > tk > tl are μ time
arguments. The corresponding contribution in the integrand can be written as
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θ(ti − t j ) . . . θ(tk − tl)θ(tl − t)θ(t − tr ) . . . ĤI (ti )ĤI (t j ) . . . ĤI (tl)

ÔI (t)ĤI (tr ) . . . ĤI (tu)

Obviously, the μ! permuted time-orderings of the first μ time arguments can again
be combined according to

T̂TT
[

ĤI (ti ) . . . ĤI (tl)
]

(A.2.15)

in a corresponding T̂TT product, and the same holds for the last ν time arguments.
Using the fact that the time arguments in the time integrations are dummy variables
which can be renamed at will, Eq. (A.2.14) can be written as

X (n)(t) = (−i)n

n!
n∑

μ=0

(
n

μ

)∫ ∞

t
dt1 . . .

∫ ∞

t
dtμ T̂TT

[
ĤI (t1) . . . ĤI (tμ)

]

ÔI (t)
∫ t

−∞
dt1 . . .

∫ t

−∞
dtν T̂TT

[
ĤI (t1) . . . ĤI (tν)

]
, ν = n − μ

(A.2.16)

Using this result on the right-hand side of Eq. (A.2.13) and taking again the switching
functions into account, we obtain

∞∑

n=0

(−i)n

n!
∫ ∞

−∞
dt1e−ε|t1| . . .

∫ ∞

−∞
dtn e−ε|tn | T̂TT

[
ĤI (t1) . . . ĤI (tn)ÔI (t)

]

=
∞∑

n=0

(−i)n

n!
n∑

μ,ν=0

δn,μ+ν

(
n

μ

)∫ ∞

t
dt1e−ε|t1| . . .

∫ ∞

t
dtμe−ε|tμ| T̂TT

[
ĤI (t1) . . . ĤI (tμ)

]

ÔI (t)
∫ t

−∞
dt1e−ε|t1| . . .

∫ t

−∞
dtνe−ε|tν | T̂TT

[
ĤI (t1) . . . ĤI (tν)

]
(A.2.17)

As in the proof of ex+y = ex ey , the summations on the right-hand side can be
reordered according to

∞∑

n=0

(−i)n

n!
n∑

μ,ν=0

δn,μ+ν

(
n

μ

)
→

∞∑

μ=0

(−i)μ

μ!
∞∑

ν=0

(−i)ν

ν! (A.2.18)

which brings us to the left side of Eq. (A.2.13).
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A.3 Proof of Wick’s Theorem

The key step in the proof of Wick’s theorem [6] is the following
Lemma 1: Let âi â j . . . âs ât be a product of time-dependent fermion operators and
b̂ an operator with a time argument smaller than those of the factors in the product.
Then the following identity holds:

N̂NN
[
âi â j . . . âs ât

]
b̂ = N̂NN

[
âi â j . . . âs ât b̂

]

+ N̂NN
[

âi â j . . . âs ât b̂

]
+ · · · + N̂NN

[
âi â j . . . âs ât b̂

]

+ N̂NN
[
âi â j . . . âs ât b̂

]
(A.3.1)

Proof : The operator b̂ can either be a physical operator, b̂ = v̂, or an unphysical
operator, b̂ = û. In the latter case, the lemma is essentially trivial. All contractions
on the right-hand side vanish,

â�
l û

� = T̂TT
[
âl û

] − N̂NN
[
âl û

] = 0

since each of the products âl û is both time- and normal-ordered. Moreover,

N̂NN
[
âi . . . ât û

] = N̂NN
[
âi . . . ât

]
û

as û is unphysical, so that Eq. (A.3.1) is fulfilled.

Now let us consider the case, where b̂ = v̂ is a physical operator. Without loss of
generality, we can assume that the factors in the operator product are already normal-
ordered (otherwise a corresponding rearrangement could be performed on both sides
of Eq. A.3.1). In particular, wemay assume that there areμ physical and ν unphysical
factors in the original product, so that the left side of Eq. (A.3.1) can be written as

N̂NN
[
v̂1 . . . v̂μû1 . . . ûν

]
v̂ = v̂1 . . . v̂μû1 . . . ûν v̂ (A.3.2)

To proceed, we commute v̂ successively to the left. The first step gives

v̂1 . . . v̂μû1 . . . ûν v̂ = − v̂1 . . . v̂μû1 . . . ûν−1v̂ûν

+ v̂1 . . . v̂μû1 . . . ûν−1
{
ûν, v̂

}
(A.3.3)

Now the anticommutator
{
ûν, v̂

}
on the right-hand side can be replaced by the

contraction û�
ν v̂

�,

{
ûν, v̂

} = ûν v̂ + v̂ûν = T̂TT
[
ûν v̂

] − N̂NN
[
ûν v̂

] = û�
ν v̂

� (A.3.4)
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since T̂TT
[
ûν v̂

] = ûν v̂ and N̂NN
[
ûν v̂

] = −v̂ûν . Accordingly, Eq. (A.3.3) can bewritten
in the form

v̂1 . . . v̂μû1 . . . ûν v̂ = − v̂1 . . . v̂μû1 . . . ûν−1v̂ûν

+ N̂NN
[
v̂1 . . . v̂μû1 . . . ûν−1ûν v̂

]
(A.3.5)

where the contraction has been inserted in the N̂NN product (see Eq. 5.15). Obviously,
the second term on the right-hand side reproduces the first contracted N̂NN product in
Eq. (A.3.1).

In the same way, the anticommutator arising in the second step,
{
ûν−1, v̂

}
can be

replaced by the contraction û�
ν−1v̂

�:

v̂1 . . . v̂μû1 . . . ûν v̂ =v̂1 . . . v̂μû1 . . . ûν−2v̂ûν−1ûν

+ N̂NN
[
v̂1 . . . v̂μû1 . . . ûν−1ûν v̂

]

+ N̂NN
[
v̂1 . . . v̂μû1 . . . ûν−2ûν−1ûν v̂

]
(A.3.6)

Note that the phase (−1) in the first termon the right-hand side of Eq. (A.3.5) has been
accounted for by writing the û�

ν−1v̂
� contraction in a separated form (see Eq. 5.15)

maintaining the original order of the operators. Performing ν commutations in such
a way, the original product (A.3.2) can be written as

v̂1 . . . v̂μû1 . . . ûν v̂ =(−1)ν v̂1 . . . v̂μv̂û1 . . . ûν + N̂NN
[
v̂1 . . . v̂μû1 . . . ûν−1ûν v̂

]

+ N̂NN
[
v̂1 . . . v̂μû1 . . . ûν−2ûν−1ûν v̂

]
+ . . . (A.3.7)

where the operator v̂ is situated to the left of the û operators and ν normal-ordered
products with one contraction have emerged as a result of commuting v̂ to that
position.

At this point, we may stop, because a contraction (and anticommutator) of v̂ and
any of the μ physical operators vanishes. Obviously, the first term on the right-hand
side written as

(−1)ν v̂1 . . . v̂μv̂û1 . . . ûν = N̂NN
[
v̂1 . . . v̂μû1 . . . ûν v̂

]
(A.3.8)

reproduces the contraction-free normal product on the right-hand side of Eq. (A.3.1).
This concludes the proof of the lemma.

It should be noted that the lemma can readily be generalized to the case where the
N̂NN product contains one or more contractions, since the contractions can be taken
out of the respective N̂NN product.
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Using Lemma 1, Wick’s theorem follows readily by induction with regard to the
number n of operators.

Proof of Wick’s theorem: For n = 2, Wick’s theorem (cf. Eq. 5.16) merely refor-
mulates the definition (5.6) of a contraction:

T̂TT
[
âb̂

]
= N̂NN

[
âb̂

]
+ â�b̂�

Suppose that the theorem holds for n factors and consider a product of n + 1 factors
â1 . . . ânân+1. The last operator ân+1 may be chosen such that its time argument is
smaller than those of the other factors, which allows us to write

T̂TT
[
â1 . . . ân

]
ân+1 = T̂TT

[
â1 . . . ânân+1

]
(A.3.9)

Multiplying both sides of Wick’s Eq. (5.16) on the right by ân+1 yields

T̂TT
[
â1 . . . ân

]
ân+1 = T̂TT

[
â1 . . . ânân+1

]

= N̂NN
[
â1 . . . ân

]
ân+1 + N̂NN

[
â1â2â3 . . .

]
ân+1

+ N̂NN
[

â1â2â3 . . .

]
ân+1 + . . . + N̂NN

[
â1â2â3â4 . . .

]
ân+1 + . . .

(A.3.10)

Applying Lemma 1 individually to all the terms on the right-hand side, one obviously
reproduces the right-hand side of Wick’s operator identity for a product of n + 1
operators:

T̂TT
[
â1 . . . ânân+1

] = N̂NN
[
â1 . . . ânân+1

]

+ N̂NN
[
sum over all possible pairs of contractions

]
(A.3.11)

Finally, the initial restriction with regard to the time argument of ân+1 can be lifted,
since the factors within the T̂TT and N̂NN products can be changed at will, resulting only
in a common phase on both sides of Eq. (A.3.11).
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A.4 Time-Ordered Diagrams: Derivation of Goldstone
Rules

To establish the rules (G1)–(G4) of Sect. 7.2 for assigning analytic expressions to the
time-ordered Feynman diagrams, one has to perform the required time integrations
for an arbitrary nth order diagram in a systematic and generic way. The procedure
presented in the following is based on notes by F. Mertins [7].

Let us consider an nth order Feynman diagram, D = D(t, t ′), where t, t ′ denote
the two external time arguments. The Fourier transformed diagram, D(ω), can be
obtained according to

D(ω) =
∞∫

−∞
dt eiωt D(t, 0) (A.4.1)

using here the legitimate choice t ′ = 0. This means that altogether the computation
of D(ω) requires n + 1 time integrations:

D(ω) =
∞∫

−∞
dt

∞∫

−∞
dtn

∞∫

−∞
dtn−1 . . .

∞∫

−∞
dt1 eiωt D(t, 0; t1, . . . tn) (A.4.2)

Here, D(t, 0; t1, . . . , tn) denotes the full time-dependent form of D (prior to the n
internal time integrations).

The n + 1 time integrations in Eq. (A.4.2) can be decomposed with respect to
distinct time-orderings of the time arguments. Let τ1, τ2, . . . , τn+1 denote a particular
permutation P of the time arguments t, t1, . . . , tn such that

τ1 ≤ τ2 ≤ · · · ≤ τm ≤ 0 ≤ τm+1 ≤ · · · ≤ τn+1 (A.4.3)

The corresponding contribution to the full time integral (A.4.2) is given by

DP (ω) =
∫ ∞

0
dτn+1

∫ τn+1

0
dτn . . .

∫ τm+2

0
dτm+1

︸ ︷︷ ︸
(B)

∫ 0

−∞
dτm

∫ τm

−∞
dτm−1 . . .

∫ τ2

−∞
dτ1

︸ ︷︷ ︸
(A)

D(τ1, . . . )

(A.4.4)
whereD(τ1, . . . ) is the integrand of Eq. (A.4.2) as a function of the τ -variables. The
original Feynman diagram may be redrawn such that the order of the vertices (both
internal and external) reflects the particular permutation of the time arguments. This
is referred to as a time-ordered or Goldstone diagram (rule G1).

Let us first consider part (A) of the integral, comprising the variables τi ≤ 0. In
analogy to the treatment of the time-evolution operator in Sect. 4.4, we introduce
new variables, x1, . . . , xm :
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xm = τm τm =xm

xm−1 = τm−1 − τm τm−1 =xm−1 + xm

...
...

x1 = τ1 − τ2 τ1 =x1 + x2 + · · · + xm (A.4.5)

Here, an xi -variable is assigned to each pair of successive τ -arguments (with
xm = τm − 0 for i = m). The second column in (A.4.5) specifies the inverse trans-
formation. The Jacobian determinant of the transformation (A.4.5) simply is

∣∣∣∣

(
∂τi

∂x j

)∣∣∣∣ = 1 (A.4.6)

and the integration limits become (−∞, 0) for any of the xi -ntegrations.Accordingly,
(A) can be written as

(A) ≡
∫ 0

−∞
dxm

∫ 0

−∞
dxm−1 . . .

∫ 0

−∞
dx1 D

Before applying a similar transformation to part (B),

(B) ≡
∫ ∞

0
dτn+1

∫ τn+1

0
dτn . . .

∫ τm+2

0
dτm+1 . . .

=
∫ ∞

0
dτm+1

∫ ∞

τm+1

dτm+2 . . .

∫ ∞

τn

dτn+1 . . .

let us note that the original integration procedure (first line above) is equivalent
to performing the integrations as indicated in the second line. Applying now the
transformation

ym+1 = τm+1 τm+1 =ym+1

ym+2 = τm+2 − τm+1 τm+2 =ym+1 + ym+2

...
...

yn+1 = τn+1 − τn τn+1 =ym+1 + · · · + yn + yn+1 (A.4.7)

part (B) becomes

(B) ≡
∫ ∞

0
dyn+1

∫ ∞

0
dyn . . .

∫ ∞

0
dym+1 . . .

Altogether, the (n + 1)-fold integral (A.4.4) takes on the form

DP(ω) =
∫ ∞

0
dyn+1

∫ ∞

0
dyn . . .

∫ ∞

0
dym+1

∫ 0

−∞
dxm

∫ 0

−∞
dxm−1 . . .

∫ 0

−∞
dx1 D̃
(A.4.8)
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Fig. A.1 Schematic
representations of the n + 2
vertices of an nth order
Feynman diagram associated
with a specific time-ordering
of the time arguments. Both
the internal and external
vertices are drawn as
horizontal lines. The time
arguments τν , ν = 1, . . . ,
n + 1 denote a permutation
of the original time
arguments ti , i = 1, . . . , n
and t ; the time argument of
the lower external vertex has
been set to t ′ = 0

τn+1
yn+1

τn
yn

τv
yv

t > 0

ω-lineτm+2
ym+2

τm+1
ym+1

0
xm

t′ = 0

τm
xm−1

τm−1
xm−2

τ3
x2

τ2
x1

τ1

where D̃ denotes the integrand as a function of the new variables. As will be seen,
the new integration variables, xi and y j , can be assigned to “cuts” between consec-
utive variables of the original set τ1, . . . , τn+1. The situation is depicted in Fig. A.1
representing the time-ordered diagram DP in a schematic way. Here, the horizontal
lines represent the n + 2 general (inner and external) vertices of the time-ordered
Feynman diagram, each being associated with one of the n + 2 time arguments
τ1, . . . , τm, 0, τm+1 . . . , τn+1. There are n internal vertices (normally depicted as
wiggly interaction lines), with two outgoing and two incoming free fermion lines
each. The two external vertices of the original Feynman diagram have positions
according to the respective time-ordering. In Fig. A.1, the upper external vertex is
assigned to t = τv , with one free fermion line ending here. The other external vertex
is assigned to the t ′ = 0 line (between τm and τm+1), where one free fermion line
sets out toward a lower lying (inner) vertex.

The time-orderings form two classes, (I) and (II), according to t > 0 and t < 0,
respectively. To be specific, we shall confine us to the case t > 0, as assumed in
Fig. A.1; the treatment of time-orderings with t < 0 is completely analogous.
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The integrand is given as a product of free Green’s functions and the eiωt factor
of the Fourier transform. Let us recall the general form (cf. Eq. 3.52)

iG0
q(τ , τ ′) =

{
θ(τ − τ ′)e−iεq (τ−τ ′)e−η(τ−τ ′)nq

(−1)θ(τ ′ − τ )e−iεq (τ−τ ′)eη(τ−τ ′)nq

(A.4.9)

of a free Green’s function, beginning at the vertex τ ′ and ending at the vertex τ .
Here and in the following, the convergence factors e±η(τ−τ ′) required for the Fourier
transforms of the θ-functions are explicitly taken into account.

In a time-ordered diagram, either τ > τ ′ or τ < τ ′. In the former case, G0
q is

given by the upper expression on the right-hand side, associated with particle states,
nq . The corresponding G0-line is referred to as a particle line, its direction arrow
pointing upwards (from τ ′ towards τ ). For τ < τ ′, theG0-line is directed downwards,
representing the hole part of G0 according to the second line in Eq. (A.4.9).

This is summed up in rule (G2): In a time-ordered diagram, the direction arrows
of the G0-lines distinguish particle contributions (arrow upwards) and hole contri-
butions (arrow downwards). Note that each hole line introduces a factor (−1) in the
integrand (cf. rule G4).

Now we inspect how a G0-line running between two vertices, τs < τr , con-
tributes to the respective integrations in (A.4.8). Let us first consider a particle line,
G0

p(τr , τs), running from τs to τr ; here, the index p stands for “particle.” We may
distinguish three cases with respect to the extension of the G0

p-line within the dia-
gram:

(i) r > s ≥ m + 1: Since

τr − τs = yr + yr−1 + · · · + ys+1

one obtains a factor
e−iεp yi e−ηyi , i = s + 1, s + 2, . . . , r

for any y-coordinate encompassed by the τr and τs vertices.Note that the lower vertex
of the particle line could also be τs = 0, which would bring the lowest y-coordinate,
that is, ym+1 into play.
(ii) r > m ≥ s: According to

τr − τs = yr + yr−1 + · · · + ym+1 − xm − xm−1 − · · · − xs

both x and y variables come into play yielding the following factors in the respective
integrands: {

e−iεp yi e−ηyi , for i = m + 1, . . . , r

eiεp x j eηx j , for j = s, s + 1, . . . , m
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(iii) m ≥ r > s: Here,

τr − τs = −xs − xs+1 − · · · − xr−1

which leads to the factors

eiεp x j eηx j , for j = s, s + 1, . . . , r − 1

in the integrands of the x-integrals.

To summarize: A particle line crossing two successive vertices contributes to the cor-
responding x- or y-integration. The orbital-energy factors in the respective integrals
are {

e−iεp yi for y-integrals

e+iεp xi for x-integrals
(A.4.10)

The convergence factors contribute as follows

{
e−ηyi for y-integrals

eηxi for x-integrals
(A.4.11)

In the same way, we can analyze a hole line, G0
h(τs, τr ), running from τr to τs . As

above, we may distinguish the following three cases

(i) r > s ≥ m + 1;
(ii) r > m ≥ s;
(iii) m ≥ r > s, (or τr = 0);

and analyze them separately. The finding is that any hole line crossing a pair of
successive vertices contributes to the associated x- or y-integration, the orbital-energy
factors being {

eiεh yi for y-integrals

e−iεh xi for x-integrals
(A.4.12)

Note that the orbital energies enter the exponential factors with signs being opposite
to those in the particle case (A.4.10). By contrast, the convergence factors deriving
from the hole lines agree with those from the particle lines, as given by (A.4.11).

Finally, we have to consider the exponential factor eiωt associatedwith theFourier
transform. As assumed in Fig. A.1, the vertex τv, v ≥ m + 1, is assigned to the
original time argument t . This is consistent with the class (I) of time-orderings
(t > 0) considered so far. Expressing τv in terms of new variables,

τv = ym+1 + ym+2 + · · · + yv (A.4.13)

shows that the factors eiωyi enter the integrations over yi , i = m + 1, . . . , v. Obvi-
ously, those yi variables correspond to pairs of successive τ vertices crossed by the
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Fig. A.2 Particle and hole
lines crossing the cut (dashed
line) between vertex levels
τ j , τ j+1

τj+1

τj

xj
p1 p2 p3 h1 h2 h3

auxiliary ω line starting at the vertex τv = t and ending at the vertex t ′ = 0 (between
τm and τm+1).

Now the xi - and yi -integrations can successively be performed. Let us consider a
particular x-integration, say, over x j (1 ≤ j ≤ m). Let there be n p particle lines with
indices p1, p2, . . . running between the vertices τ j and τ j+1 (or likewise crossing
the “cut” between τ j and τ j+1), as well as nh hole lines, h1, h2, . . . . A schematic
depiction of the situation is given in Fig. A.2. Each of the particle and hole lines
contributes a factor to the integrand, yielding altogether

f (x j ) = ei(εp1+εp2+···−εh1−εh2−... )x j e(n p+nh)ηx j (A.4.14)

Note that the overall convergence factor e(n p+nh)ηx j guarantees that the integrand
vanishes in the limit x j → −∞, as n p + nh > 0 is a non-vanishing integer. The
integral becomes

∫ 0

−∞
dx j f (x j ) = i

(
εh1 + εh2 + · · · − εp1 − εp2 + · · · + i(n p + nh)η

)−1

(A.4.15)
Obviously, the infinitesimal i(n p + nh)η in the denominator is no longer relevant
and can be omitted.

A similar procedure applies to the y integrals. For the integration over y j , j =
m + 1, . . . , n + 1, the integrand is of the form

f (y j ) = ei(ωσ j −εp′
1
−εp′

2
+···+εh′

1
+εh′

2
+... )y j e−(n′

p+n′
h)ηy j (A.4.16)

assuming here the presence of n′
p particle and n′

h hole lines. In addition to the con-
tributions from the particle and hole lines crossing the cut between the τ j and τ j−1

vertices, the factor eiωy j comes into play if the auxiliary ω-line crosses the cut. The
parameter σ j = 1, 0 accounts for the two possibilities.

The integral can be evaluated to give

∫ ∞

0
dy j f (y j ) = i

(
ωσ j + εh′

1
+ εh′

2
+ · · · − εp′

1
− εp′

2
− · · · + i(n′

p + n′
h)η

)−1

(A.4.17)
where the upper limit of the integral vanishes due to the cumulated convergence
factor for the y j -integration, e−(n′

p+n′
h)ηy j . As above, the infinitesimal i(n′

p + n′
h)η
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in the denominator can be discarded if the denominator is a constant (σ j = 0); for
ω-dependent denominators (σ j = 1), the infinitesimal i(n′

p + n′
h)η may be replaced

by iη.
For the case t > 0 considered so far, the expressions (A.4.15), (A.4.17) establish

rule (G3); note, moreover, that each integral introduces a factor i , as accounted for by
rule (G4). The time-orderings of class (II), where t < 0, can be treated in a completely
analogousway. Theω-dependent denominators in the time-ordered diagrams of class
(I) and (II) are of the form ω + · · · + iη and ω + · · · − iη, respectively.

Revisiting the Adiabatic Limit

After having established the rules for performing the time integrations in theFeynman
diagrams, we now may revisit the issue of the adiabatic limit ε → 0 underlying the
Gell-Mann and Low theorem (see Sect. 4.2). Here, ε is the parameter of the adiabatic
switching function e−ε|t | augmenting the interaction part of the hamiltonian (cf.
Eq. 4.36).

As stated in Sects. 5.3 and 7.2, the adiabatic limit exists (and is trivial) for the
linked Feynman diagrams. How can this claim be justified? Just take that limit a
priori by skipping the n switching functions e−ε|ti |, i = 1, . . . , n, for the internal
vertices of an nth order diagram and verify that a well-defined analytical expression
can be assigned to that diagram according the Goldstone rules of Sect. 7.2. However,
the analysis given above can easily be extended to take into account the adiabatic
switching functions as well, allowing us to take the adiabatic limit a posteriori. Let
us consider again a specific time-ordering, such as (A.4.3) belonging to class (I).
Using the τ arguments, the product of the n switching functions can be written as

e−(|t1|+···+|tn |) = eε(τ1+τ2+···+τm )e−ε(τm+1+...τm+2+···+τn+1)+ετv (A.4.18)

Note that τv = t is the time argument of an external vertex and has to be excluded
from the product on the right-hand side, more specifically, from the second factor
(supposing the time-ordering t > 0). This is the achieved by the final term, +ετv , in
the exponent.

Using the transformations (A.4.5), (A.4.7), the τ -variables are replaced by the x-
and y-variables. According to

τ1 + τ2 + · · · + τm = mxm + (m − 1)xm−1 + · · · + x1 (A.4.19)

the first factor on the right-hand side of Eq. (A.4.18) can be expressed by a product
of factors eε j x j , j = 1, . . . , m. Thus, for each x j integral, the original convergence

factor, eη(n( j)
p +n( j)

h )x j , due to the hole and particle lines crossing the cut j is augmented
by the factor eε j x j , acting as a “supporting” convergence factor in the limit ε → 0.
This means that the ε-factors are redundant and can safely be omitted: There is no
difference between taking the limit ε → 0 a priori or a posteriori.

In a similar way, the ε-functions of the second factor in (A.4.18) can be introduced
in the y-integrations. Here, the relation between the sums in the exponent is
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τm+1 + · · · + τn+1 = (n − m + 1)ym+1 + (n − m)ym+2 + · · · + 3yn−1 + 2yn + yn+1
(A.4.20)

As noted above, the external time argument τv , being

τv = ym+1 + · · · + yv−1 + yv (A.4.21)

in terms of the y arguments, has to be discarded. Altogether, for each yi integration,
there is an additional convergence factor, e−ελ j y j , with λ j being a positive integer
for j = m + 1, . . . , n, and λn+1 ≥ 0. In the limit ε → 0, the ε-functions act as con-
vergence factors together with the original η convergence functions in eliminating
the upper y-integration limits. As above, there is no difference between taking the
adiabatic limit a priori or a posteriori.

Remark:
From the analysis given above, it follows that the argument of the redundancy of the
ε-functions might also be reversed: One could keep the ε-functions and discard the η
convergence factors in the G0-expressions (A.4.9) as redundant. Here it is required,
though, to introduce a convergence factor in the Fourier transform (A.4.1):

D(ω) =
∞∫

−∞
dt eiωt e−η|t | D(t, 0) (A.4.22)

Then, the evaluation of the time integrations for a given Feynman diagram can be
based on the expression

D(ω) = lim
ε→0

∞∫

−∞
dt

∞∫

−∞
dtn

∞∫

−∞
dtn−1 . . .

∞∫

−∞
dt1 eiωt e−η|t | D(t, 0; t1, . . . , tn)e−ε(|t1|+···+|tn |)

(A.4.23)
where all η factors in D(t, 0; t1, . . . , tn) have been omitted. The general procedure
used to establish the Goldstone rules (G1)–(G4) can be applied in a completely
analogousway, leading to identical results.Here, the infinitesimal ε and the remaining
infinitesimal η ensure that the respective upper and lower integration limits vanish. In
the denominators resulting from the x- and y-integrals, the limit ε → 0 is trivial,while
the η infinitesimal enters the ω dependent denominators in the form (ω · · · ± iη) for
time-orderings of class (I) or (II), respectively.
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A.5 Dyson Expansion Method for the Static Self-Energy
Part

In this Appendix, we briefly describe an approximation method for the static part of
the self-energy referred to as Dyson expansion method (DEM) [8, 9].

According to Eq. (8.18), the self-energy is the sum of a static and a dynamic part,

�(ω) = �(∞) + M(ω) (A.5.1)

Here, the static part, �(∞), can be expressed directly in terms of density matrix
elements (Eq. 8.34), or likewise, using Eq. (3.34), in terms of electron propagator
integrals,

�pq(∞) =
∑

u,v

Vpu[qv]
(
ρvu − ρ(0)

vu

) =
∑

u,v

Vpu[qv]
1

2πi
2 dω

(
Gvu(ω) − G0

vu(ω)
)

(A.5.2)
The static part is related to the dynamic part and can be determined consistently once
the dynamic part M(ω) or an approximation to it has been established. This is seen
by writing the Dyson equation (8.10) more explicitly as

G(ω) = G0(ω) + G0(ω)(�(∞) + M(ω))G(ω) (A.5.3)

and inserting this form in Eq. (A.5.2). The result is an implicit equation for �(∞).
For a givenM(ω), the associated result for�(∞) can be obtained, in principle, via an
obvious iteration scheme. However, such a self-consistent procedure may not be very
practical, and it is more advisable to relinquish the quest for a fully self-consistent
solution for�(∞) and rather resort to an approximation such as theDEM considered
below.

Dyson Expansion

The starting point is the truncation of the Dyson expansion (8.12) after the linear
term in �(ω):

G(ω) = G0(ω) + G0(ω)(�(∞) + M(ω))G0(ω) + . . . (A.5.4)

Note that the truncation error here is of fourth order because the perturbation expan-
sion of �(ω) begins in second order. Inserting the truncated Dyson expansion in
Eq. (A.5.2) yields the following linear set of equations for the matrix elements of
�(∞):

�pq(∞) =
∑

r,s

Vpr [qs]
1

2πi
2G0

s (ω)�sr (∞)G0
r (ω)dω + bpq + O(5) (A.5.5)
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where O(5) indicates that the truncation error for �pq(∞) is of fifth order. The
inhomogenities bpq are given by

bpq =
∑

r,s

Vpr [qs] Qsr (A.5.6)

where Qsr denote the contour integrals

Qsr = 1

2πi
2G0

s (ω)Msr (ω)G0
r (ω)dω (A.5.7)

based on the matrix elements of the dynamic self-energy part M(ω). Performing the
contour integrations in Eq. (A.5.5) allows us to write the linear equations in the more
explicit form

�pq(∞) =
∑

r,s

Vpr [qs]
nsnr − nsnr

εs − εr
�sr (∞) + bpq (A.5.8)

Here the DE truncation error is no longer indicated.
First,wediscuss the solution of the set of linear equations for given inhomogenities

bpq . Obviously, the linear equations for the p-h and h-p matrix elements of �(∞)

are decoupled from those for the h-h and p-p elements:

�ak(∞) =
∑

b,l

(
Val[kb]

1

εl − εb
�bl(∞) + Vab[kl]

1

εl − εb
�lb(∞)

)
+ bak (A.5.9a)

�ka(∞) =
∑

b,l

(
Vkl[ab]

1

εl − εb
�bl(∞) + Vkb[al]

1

εl − εb
�lb(∞)

)
+ bka (A.5.9b)

Supposing real orbitals, the linear equations can be restricted to the p-h components
�ak(∞):

�ak(∞) =
∑

b,l

1

εl − εb
(Val[kb] + Vab[kl])�bl(∞) + bak (A.5.10)

Introducing the p-h coefficient matrix Aph ,

Aph
ak,bl = 1

εl − εb
(Val[kb] + Vab[kl]) (A.5.11)

and corresponding (column) vectors � ph(∞) and bph , Eq. (A.5.9) can be written in
a more compact form as

� ph(∞) = Aph� ph(∞) + bph (A.5.12)
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Thus, the formal solution of the linear set of equations takes on the form

� ph(∞) = (1 − Aph)−1bph (A.5.13)

Once the p-h and h-p components of �(∞) have been obtained by solving the
Eqs. (A.5.9) or (A.5.10), the h-h and p-p matrix elements can be evaluated according
to

�i j (∞) =
∑

b,l

1

εl − εb
(Vil[ jb]�bl(∞) + Vib[ jl]�lb(∞)) + bi j (A.5.14)

�ac(∞) =
∑

b,l

1

εl − εb
(Val[cb]�bl(∞) + Vab[cl]�lb(∞)) + bac (A.5.15)

Treatment of the Inhomogenities

The inhomogenities bpq , as given by Eqs. (A.5.6), (A.5.7), establish the connection
with the dynamic part M(ω) of the self-energy via the contour integrals (A.5.7). If
M(ω) is available in the explicit form of spectral representation (8.19), the contour
integrals Qrs can readily be evaluated. Here, it is useful to distinguish between p-p,
h-h, and p-h elements of Q. In the p-p case, the calculation is as follows:

Qab = 1

2πi
2G0

a(ω)Mab(ω)G0
b(ω) dω

=
∑

ν∈{N−1}

1

2πi
2 1

ω − εa + iη

m(ν)
a m(ν)∗

b

ω − ων − iη

1

ω − εb + iη
dω (A.5.16)

=
∑

ν∈{N−1}

m(ν)
a m(ν)∗

b

(εa −ων)(εb−ων)
(A.5.17)

Note that here only the M−(ω) part contributes. In a similar way, one obtains the
h-h and p-h integrals

Qkl = −
∑

μ∈{N+1}

m(μ)

k m(μ)∗
l

(εk −ωμ)(εl −ωμ)
(A.5.18)

Qak = −
∑

μ∈{N+1}

m(μ)
a m(μ)∗

k

(εa −εk)(εk −ωμ)
−

∑

ν∈{N−1}

m(ν)
a m(ν)∗

k

(εa −εk)(εa −ων)
(A.5.19)

In the latter case, both parts M±(ω) of the self-energy contribute, whereas only
M+(ω) is involved in the h-h results. Note that Qka = Q∗

ak .
The computation of the Qrs integrals according to the explicit expressions above

presupposes that the full spectral information ofM(ω) is available. Usually, however,
the acquisition of that information within a given approximation is computationally
expensive and hardly expedient. In the ADC approximation for M(ω) presented
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in Chap. 9, the explicit computation of the self-energy pole positions and residue
amplitudes can be circumvented as described in the following.

According to Eq. (9.2), each of the M±(ω) parts can be written in the ADC form

M±
pq(ω) = (U±

p )†
(
ω − K± − C±)−1

U±
q (A.5.20)

where K± + C± and U±
p are the secular matrices and coupling vectors as given at

the respective ADC level. The associated ADC eigenvalue equations (9.27)

(K± + C±)Y± = Y±�±, (Y±)†Y± = 1 (A.5.21)

determine the pole positions as the eigenvalues ωn , and the residue amplitudes (9.28)
according to

mnp = (Y±
n )†U±

p (A.5.22)

In view of the size of the ADC secular matrices, their full diagonalization, needed to
obtain all eigenvalues and residue amplitudes, is obviously not a viable computational
strategy. For an alternative approach, we introduce the (column) vectors

V+
k = (εk1 − K+ − C+)−1U+

k (A.5.23)

for occupied orbitals, k, and

V−
a = (εa1 − K− − C−)−1U−

a (A.5.24)

for unoccupied orbitals, a. With the help of these vectors, the Qrs integrals can be
written simply as

Qab =(V−
a )†V−

b (A.5.25)

Qkl =(V+
k )†V+

l (A.5.26)

Qak = − 1

εa −εk
(U+

a )†V+
k − 1

εa −εk
(U−

a )†V−
k (A.5.27)

To verify these expressions, consider the relations

V r =(εr 1 − K − C)−1Ur

=Y(εr 1 − �)−1Y †Ur = Y(εr 1 − �)−1mr

which apply to both types of vectors; for notational ease, the ± superscripts have
been dropped. The term mr in the last line denotes the (column) vector of residue
amplitudes m(n)

r of M+(ω) or M−(ω).
Now the computational task consists in solving linear equations of the type
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V r = (εr 1 − K − C)−1Ur (A.5.28)

for K+ + C+ and occupied orbitals εk , as well as for K− + C− and unoccupied
orbitals εa . In both cases, the elements of the diagonal matrix εr 1 − K are of the
order of a double excitation energy, ±(εa + εb − εk − εl). This suggests an iterative
solution of the matrix inversions as follows. Let

�r = εr 1 − K (A.5.29)

denote the respective diagonal matrix and rewrite εr 1 − K − C as

εr 1 − K − C = �r − C = (1 − C�−1
r )�r (A.5.30)

Then, the inverse matrix can be expanded in a geometrical series,

(εr 1 − K − C)−1Ur =(�r − C)−1Ur

=�−1
r

(
1 + C�−1

r + (C�−1
r )2 + . . .

)
Ur

which in turn defines an obvious iteration scheme

V r (0) =�−1
r Ur

V r (n + 1) =V r (0) + �−1
r CV r (n) (A.5.31)

for the V r vector itself.
An alternative computational approach is the Lanczos diagonalization [3, 4] of

the secular matrices K± + C±. Here, the p-p integrals (A.5.16), for example, are
approximated by the expressions

Qab ≈
L∑

s=1

m̃∗
sam̃sb

(εa −ω̃s)(εb−ω̃s)
(A.5.32)

based on the Lanczos pseudo-spectrum for K− + C− upon L Lanczos steps. Here,
ω̃s are the corresponding eigenvalues, and the amplitudes are obtained according to
m̃sa = Z†

sU
−
a from the Lanczos vectors Zs . A more detailed report on the use of the

Lanczos method in the present context has been given in Ref. [9].
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A.6 Proofs of Order Relations

A.6.1 Diagrammatic Perturbation Theory for Ground-State
CI and CC Amplitudes

To explain the order relations (17.8),

tI ∼ O([I ] − 1), [I ] > 1 (A.6.1)

for the CC amplitudes we have to take a closer look at the diagrammatic PT for
the ground state. In Sect. 4.4, we have considered the Gell-Mann and Low expres-
sion (4.42) for the ground state,

|�0〉 = lim
ε→0

Ûε(0,−∞)|�0〉
〈�0|Ûε(0,−∞)|�0〉

(A.6.2)

and discussed how the time integrations in the time-evolution operator ,

Ûε(0,−∞) =
∞∑

n=0

(−i)n

n!
∫ 0

−∞
dt1e−ε|t1| . . .

∫ 0

−∞
dtn e−ε|tn | T̂TT

[
ĤI (t1) . . . ĤI (tn)

]

(A.6.3)
could explicitly be performed resulting in the closed-form expression (4.70). Then,
the connection to the familiar RSPT series (see Sect. A.1) could be established by
inserting these results both in the numerator and the denominator in Eq. (A.6.2)
and expanding their ratio. Alternatively, one could have proceeded along the lines
of Chaps. 5–7 to devise a diagrammatic PT formulation for the ground-state or the
ground-state energy. Let us consider in particular the diagrammatic PT expansions
for individual ground-state amplitudes (CI coefficients),

xI = 〈�0|Ĉ†
I |�0〉 = lim

ε→0

〈�0|Ĉ†
I Ûε(0,−∞)|�0〉

〈�0|Ûε(0,−∞)|�0〉
(A.6.4)

in the ground-state CI expansion (17.10),

|�0〉 = |�0〉 +
∑

I

xI ĈI |�0〉 (A.6.5)

The respective excitation operator, Ĉ†
I , I ≡ ab . . . kl, can be supplied with the time

argument t = 0, that is, Ĉ†
I (0) = c†l (0)c

†
k(0) . . . cb(0)ca(0) (seeEq. 3.50).Now Ĉ†

I (0)
can be incorporated in the time-ordered products of the time-evolution operator (4.37)
according to
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Fig. A.3 First-order
Feynman diagram
(Abrikosov form) for the
ground-state amplitude xabkl

a b k l

Fig. A.4 Disconnected
third-order Feynman
diagram (Abrikosov form)
for the ground-state
amplitude xabkl

Ĉ†
I (0)T̂TT

[
ĤI (t1) . . . ĤI (tn)

]
= T̂TT

[
Ĉ†

I (0)ĤI (t1) . . . ĤI (tn)
]

(A.6.6)

since the time argument t = 0 is always larger than the other time arguments.
Finally, the expectation values 〈�0| . . . |�0〉 can be evaluated using Wick’s theo-
rem as described in Sect. 5.1. The operator C†

I represents a fixed external vertex in
the resulting Feynman diagrams for the numerator in Eq. (A.6.2).

As a simple example, we consider the first-order diagram for the double excitation
Ĉabkl = c†ac†bckcl shown in Fig. A.3. The corresponding analytical expression reads
(as the reader should check)

x (1)
abkl = (−i)

∫ 0

−∞
dt1eεt1 Vab[lk]G0

a(0, t1)G
0
b(0, t1)G

0
k(t1, 0)G

0
l (t1, 0)

which after performing the time integration (and the limit ε → 0) yields the familiar
first-order CI coefficient (A.1.16),

x (1)
abkl = Vab[kl]

εa + εb − εk − εl
(A.6.7)

A linked-cluster theorem of the kind discussed in Sect. 5.3 applies to the PT
expansion (A.6.4). Here the external vertex C†

I allows one to distinguish contraction
schemes or diagrams as being entirely connected (to the vertex C†

I ) or having parts
not connected toC†

I . Figure A.4 depicts a simple disconnected diagram of third order.
As a result of the linked-cluster theorem, the PT expansion (A.6.4) of xI simplifies
to

xI = lim
ε→0

〈�0|Ĉ†
I Ûε(0,−∞)|�0〉C (A.6.8)

where the subscript C indicates that only connected diagrams are taken into account.
An interesting new feature can be seen in Fig. A.5, which shows a second-order

diagram for the 4p-4h (quadrupel) amplitude xabcd;i jkl . While this is a connected
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Fig. A.5 Factorizing
Feynman diagram (second
order) for the quadruple
excitation amplitude
xabcd;i jkl

a b k l
t = 0

c d i j

t1

t2

Fig. A.6 Strictly connected
(non-factorizing) Feynman
diagram (third order) for the
quadruple excitation
amplitude xabcd;i jkl

a b i c
t= 0

d j k l

t3

t2

t1

diagram in the original sense, that is, containing no sub-units not linked to the external
vertex, C†

abcd;i jkl , it nevertheless factorizes into the product of two first-order double
excitation diagrams, which is enabled by the multiplicative structure of the external
vertex C†

abcd;i jkl . The diagram in Fig. A.5, denoted Q1(abcd; i jkl)), entails two
Goldstone (time-ordered) diagrams which can be combined as follows:

Q1(abcd; i jkl) = 1

εa +εb+εc · · · −εk −εl

(
Vab[i j]

Vcd[kl]
εc+εd −εk −εl

+ Vcd[kl]
Vab[i j]

εa +εb−εi −ε j

)

=x (1)
abi j x (1)

cdkl (A.6.9)

which makes the product form of Q1(abcd; i jkl) explicit. Note that there are alto-
gether 18 distinct factorizing diagrams Qν(abcd; i jkl), ν = 1, . . . , 18, contributing
to the second-order quadruple amplitude x (2)

abcd;i jkl . The four unoccupied orbitals,
a, b, c, d, and the four occupied ones, i, j, k, l, allow for 36 different double exci-
tations, forming 18 pairs of complementary double excitations, such as (acjl) and
(bdik), entailing Ĉabcd;i jkl = Ĉacjl Ĉbdik . The diagrammatic results can directly be
verified by evaluating x (2)

abcd;i jkl with the second-order RSPT expression (A.1.20) for
the ground-state (see Exercise 17.2).

As the factorizing diagrams for the quadrupole amplitudes show, the concept
of connectivity can be extended: A diagram for the ground state amplitudes xI is
termed strictly connected if it has no unlinked sub-units (original meaning) and,
moreover, cannot be disassembled into disjoint parts by cutting the external vertex
line. A strictly connected diagram, pertaining to the quadrupel amplitude xabcd;i jkl ,
is shown Fig. A.6.

A generalized linked-cluster theorem based on the concept of strictly connected
diagrams was established by J. Hubbard [10]. However, the diagrams considered
by Hubbard relate directly to the time-evolution operator (A.6.3) rather than the
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Fig. A.7 First-order
Feynman diagram for the
ground-state amplitude xabkl
(left) and the associated
Hubbard diagram (right)

a k b l

a b

k l

amplitudes (A.6.4). In devising these diagrams, Hubbard makes use of Wick’s the-
orem (5.16) in a more general way than in Chap. 5. Unlike in Eq. (5.17), the oper-
ator identities are analyzed with regard to their application to the HF ground state:
T̂TT

[
âi â j âk âl . . . âr âs ât

] |�0〉. Thereby, all contributions retaining only unphysical

operators drop out, whereas N̂NN products in Eq. (5.16) that feature solely physical
operators persist and give rise to non-vanishing diagrammatic contributions. Those
surviving operators are referred to by Hubbard as edges of the respective diagram.
As a consequence, any Hubbard diagram is either a c-number (corresponding to a
fully contracted term) or a product

Dh
I = dI ĈI (A.6.10)

of a c-number dI and an excitation operator ĈI from the set (14.10). For the Hubbard
diagrams of the latter form, an obvious one-to-one mapping can be established onto
the diagrams for the ground-state amplitudes (A.6.4). Consider an arbitrary diagram
DI for the amplitude xI = 〈�0|Ĉ†

I |�0〉, and let δI denote the corresponding ana-
lytical expression. Then, there is a corresponding Hubbard diagram Dh

I (obtained
by identifying the external lines of DI with edges in the Hubbard diagram) so that
Dh

I = δI ĈI . This is illustrated in Fig. A.7, showing the first-order Feynman diagram
for the 2p-2h amplitude xabkl and the associated Hubbard diagram.

Summing up all Hubbard diagrams of the form (A.6.10) yields the CI operator
expansion,

lim
ε→0

[
Ûε(0,−∞)

]h

C
=

∑

I

xI ĈI (A.6.11)

and the corresponding representation of the exact ground state according to
Eq. (A.6.5). As indicated by the subscript C , the (somewhat symbolical) expres-
sion on the left side comprises only connected diagrams (not having disconnected
c-number sub-units) as a result of the conventional linked-cluster theorem. Note that
any individual coefficient xI can likewise be obtained according to Eq. (A.6.8) from
the diagrams for the corresponding ground-state amplitude (A.6.4).

Like the diagram shown in Fig. A.5, a general Hubbard diagram Dh
I contributing

to the term xI ĈI may consist of two (or more) disconnected sub-units, say Dh
K and

Dh
L , resulting in a corresponding factorization of the analytical expression,

Dh
I = dI ĈI = dK ĈK × dLĈL (A.6.12)
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As opposed to these unlinked diagrams, there are strictly connected (SC) Hubbard
diagrams, Dh|SC

I , forming a subset of the Hubbard diagrams of the form (A.6.10).
Summing up all SC diagrams for a given configuration (or edge structure) I ,

∑
Dh|SC

I = tI ĈI

defines a new amplitude, tI , which differs from xI . As should be noted, the tI can
likewise be obtained from the diagrams for the ground-state amplitude (A.6.8) by
discarding all diagrams that are not strictly connected:

tI = lim
ε→0

〈�0|Ĉ†
I Ûε(0,−∞)|�0〉SC (A.6.13)

In analogy to Eq. (A.6.11), the sum of all strictly connected Hubbard diagrams
establishes a particular operator expansion,

lim
ε→0

[
Ûε(0,−∞)

]h

SC
=

∑

I

tI ĈI (A.6.14)

and this operator expansion allows for a representation of the ground state in the
form

|�0〉 = e
∑

I tI ĈI |�0〉 (A.6.15)

This is the central result of Hubbard’s extended linked-cluster theorem. The latter
two equations can be seen as a foundation of the CC ansatz (17.1), and, moreover,
establish a diagrammatic PT approach to the CC amplitudes.

The validity of the order relations (A.6.1) for the t-amplitudes can be seen by
inspecting the construction principle underlying the strictly connected diagrams as
shown in Fig. A.6. Beginning with a double excitation, [I ] = 2, O(tI ) = 1, it takes
each one interaction point (order 1) to increase the excitation class by 1, that is, by
a 1p-1h excitation. This means it takes (at least) ν − 2 interaction points to arrive at
an excitation of class ν > 2. The ν − 2 interaction points have a cumulated order of
ν − 2, to which the order 1 of the initial double excitation vertex has to be added.

A.6.2 Proof of Canonical Order Relations

Originally, a proof of the canonical order relations obeyed by the ISR-ADC secular
matrix elementswas given inRef. [11]. However, amore elegant proof [12] is enabled
by recourse to the closed-form expressions of the biorthogonal coupled cluster (BCC)
representation discussed in Chap. 17. Following the latter concept, we shall first
derive the BCC order relations and then use these results to establish the canonical
ISR-ADC order relations.
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BCC Order Relations

In the derivation of the canonical order relations (17.45) for the LL part of Mcc,
we shall essentially follow the presentation in App. 1 of Ref. [13], which itself is
based on the general proof given in Ref. [12]. An alternative approach was pursued
by Christiansen et al. [14] and Hald et al. [15].

Consider an LL matrix element Mcc
I J with [I ] > [J ]. What is to be shown is

Mcc
I J ∼ O([I ] − [J ]) (A.6.16)

which means that in the PT expansion of Mcc
I J the non-vanishing contributions do not

begin before order n = [I ] − [J ]. Let us write the matrix element somewhat more
conveniently as

Mcc
I J =〈�0|Ĉ†

I e−T̂ [Ĥ , ĈJ ] eT̂ |�0〉
=〈�0|Ĉ†

I e−T̂ K̂ J eT̂ |�0〉 (A.6.17)

where
K̂ J = [Ĥ , ĈJ ] (A.6.18)

denotes the commutator of the hamiltonian and the excitation operator ĈJ . Obviously,
K̂ J can be partitioned according to

K̂ J = K̂ (0)
J + K̂ (1)

J (A.6.19)

into a zeroth-order contribution, K̂ (0)
J = [Ĥ0, ĈJ ], and a first-order contribution,

K̂ (1)
J = [ĤI , ĈJ ]. The considered matrix element is of the form

Mcc
I J ∼ 〈�0|Ĉ†

I ÔJ |�0〉 (A.6.20)

where the operator

ÔJ = e−T̂ K̂ J eT̂ (A.6.21)

is subject to a PT expansion, ÔJ = Ô(0)
J + Ô(1)

J + . . . . What we have to show is
that the matrix element vanishes for the orders ν = 0, . . . , [I ] − [J ] − 1, of this
series. To this end, the concept of the rank of an operator is essential. For a (charge-
conserving) operator given by a product of fermion operators, the rank is the number
of creation operators (c†) in the product. If an operator is a sum of such fermion
operator products, the rank is defined as the maximal rank of its constituents. For
example, the rank of Ĥ0 and ĤI is 1 and 2, respectively. The rank of ĈI is its
excitation class number, r = [I ], and the class-specific T̂μ operators are of rank μ.
Why is the operator rank of interest? Because the nth order contribution to the matrix
element (A.6.20) necessarily vanishes,
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〈�0|Ĉ†
I Ô(n)

J |�0〉 = 0 (A.6.22)

if the rank r of the operator Ô(n)
J is lower than the rank ofC†

I , that is, if r < [I ]. Thus,
the intended proof can be carried out by inspecting the rank and order of successive
contributions to the operator ÔJ .

The two parts K̂ (0)
J and K̂ (1)

J of the commutator (A.6.18) have the ranks [J ] and
[J ] + 1, respectively.More general, the commutator [ Â, B̂] of two operators Â and B̂
with definite ranks, r and r ′, respectively, is of rank r + r ′ − 1. Another commutator
feature relates to the number of unphysical fermion operators in an operator product:
A commutator [ Â, B̂] of a general product operator Â and a physical operator B̂, as
in K̂ (1)

J , reduces the number of unphysical fermion operators in Â by 1. Accordingly,
the terms of K̂ (1)

J exhibit at most three unphysical c-operators compared to the four
unphysical operators in ĤI . As a particular case, the zeroth-order commutator K̂ (0)

J

consists only of physical c-operators, reflecting the fact that Ĥ0 is a diagonal one-
particle operator. As a consequence, K̂ (0)

J commutes with the CC operator T̂ so that

e−T̂ K̂ (0)
J eT̂ = K̂ (0)

J (A.6.23)

Accordingly, the matrix element (A.6.17) can be written as the sum

Mcc
I J = 〈�0|Ĉ†

I K̂ (0)
J |�0〉 + 〈�0|Ĉ†

I e−T̂ K̂ (1)
J eT̂ |�0〉 (A.6.24)

of a zeroth-order contribution and a contribution involving K̂ (1)
J , being at least of first

order. Recalling that the rank of K̂ (0)
J is [J ], the zeroth-order term, Mcc(0)

I J , necessarily
vanishes unless [I ] = [J ]; that is, both I and J belong to the same excitation class;
to put it differently, zeroth-order contributions arise only in the diagonal blocks of
Mcc.

To analyze the higher-order contribution, we make use of the Baker–Hausdorff
(BH) expansion according to

e−T̂ K̂ (1)
J eT̂ = K̂ (1)

J + [K̂ (1)
J , T̂ ] + 1

2
[[K̂ (1)

J , T̂ ], T̂ ] + 1

6
[[[K̂ (1)

J , T̂ ], T̂ ], T̂ ]
(A.6.25)

which here terminates after the threefold commutator since each successive com-
mutator eliminates one of the original three unphysical c-operators in K̂ (1)

J . The BH
expansion (A.6.25) begins with K̂ (1)

J , being of the rank [J ] + 1 and representing
the only first-order contribution in the operator expansion (A.6.25). This means that
there is a non-vanishing first-order contribution if (and only if) [I ] = [J ] + 1. Stated
differently, the sub-diagonal blocks of Mcc obey the order relation Mcc

μ+1μ ∼ O(1);
all other LL blocks are at least of second order.

Now consider matrix elements Mcc
I J where I and J differ by more than one exci-

tation class: [I ] = [J ] + μ, μ ≥ 2. Thus, the minimal rank in the operator (A.6.25)
required to yield a non-vanishing matrix element is r = [J ] + μ. In the first commu-
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tator, the required rank comes with the CC operator for class μ: [K̂ (1)
J , T̂μ] is of rank

r = [J ] + μ, while its PT order is given by μ (being the sum of the order μ − 1 of T̂μ

according to Eq. (A.6.1) and the order 1 of K̂ (1)
J ). Likewise, the double commutator

[[K̂ (1)
J , T̂2], T̂μ−1], involving a lower classCC operator, yields terms of rank [J ] + μ,

but again the resulting PT order is μ. One may inspect all other possibilities of gen-
erating operator terms of rank r = [J ] + μ and one will find that the concomitant
PT order is always equal (or larger) than μ. This proves the order relations (A.6.16)
for the LL blocks Mcc

μν with μ ≥ ν + 2.

Some complementary notes are of interest:

1. Obviously, the order relations (A.6.16) apply also to the BCC representation of
the hamiltonian itself,

H cc
I J = 〈�I |Ĥ |�0

J 〉 (A.6.26)

as Hcc differs from Mcc only in the diagonal elements,

Mcc = Hcc − E01 (A.6.27)

As an instructive exercise, one may explicitly establish the non-trivial order rela-
tion for the 3p-3h/1p-1h matrix elements of Hcc,

H cc
abcjkl,aj ∼ O(2) (A.6.28)

by verifying that various first-order contributions cancel each other here. (See
also Exercise 17.3.)

2. In a similar (and even simpler) way, the BCC representation of a general one-
particle operator D̂

Dcc
I J = 〈�I |D̂|�0

J 〉 (A.6.29)

can be analyzed. The matrix elements in the LL part of Dcc obey the relations

Dcc
I J ∼ O([I ] − [J ] − 1), [I ] > [J ] (A.6.30)

The full order structure is depicted in Fig. A.8.
3. The left CC transition moments

D(l)
I = 〈�I |D̂|�0〉 ∼ O([I ] − 1) (A.6.31)

can be obtained as a special case ([J ] = 0) of Eqs. (A.6.29), (A.6.30).

Proof of the ISR-ADC Order Relations

After having established the order relations for the BCC representation, the proof of
the canonical order relations (12.1),
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Fig. A.8 Order structure of
the BCC representation Dcc

of a one-particle operator D̂

1p-1h 2p-2h 3p-3h 4p-4h 5p-5h . . .

1p-1h 0 0 - - - . . .

2h-2p 0 0 0 - - . . .

3p-3h 1 0 0 0 - -

4p-4h 2 1 0 0 0 -

5p-5h 3 2 1 0 0 0

...
...

...
...

...
...

. . .

MI J ∼ O(|[I ] − [J ]|) (A.6.32)

for the ISR-ADC secular matrices (Eqs. 11.16, 14.3),

MI J = 〈�̃I |Ĥ − E0|�̃J 〉 (A.6.33)

is straightforward. Since M is hermitian, we can confine ourselves to states where
[I ] ≥ [J ]. The case [I ] = [J ] is trivial, as Mμμ ∼ O(0) is seen by the construction
of the intermediate states. Accordingly, we may suppose [I ] > [J ] in the following
and simplify Eq. (A.6.33) accordingly:

MI J = 〈�̃I |Ĥ |�̃J 〉 (A.6.34)

To relate the ISR-ADCmatrix elements (A.6.34) to theBCC representation, wemake
use of the biorthogonal resolution of the identity (RI),

1̂ =
∑

K

|�0
K 〉〈�K | (A.6.35)

in terms of the CC states (17.12) and their biorthogonal counterparts (17.13). Note
that in the case of N -electron excitations, there is a ground-state term K = 0, that
is, |�0〉〈�0|. Inserting the biorthogonal RI twice, the matrix element (A.6.34) can
be written as

MI J =
∑

K ,L

〈�̃I |�0
K 〉〈�K |Ĥ |�0

L〉〈�L |�̃J 〉 (A.6.36)
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By construction, the intermediate state |�̃I 〉 is orthogonal to the CE states |�0
K 〉

of lower classes, [K ] < [I ]. Therefore, the summation over K can be restricted to
[K ] ≥ [I ]. An opposite restriction, namely [L] ≤ [J ], applies to the summation over
L . To see this, consider the matrix element

〈�L |�̃J 〉 = 〈�0|Ĉ†
Le−T̂ |�̃J 〉 (A.6.37)

and recall that by construction |�̃J 〉 is of the form of

|�̃J 〉 =
∑

[L ′]≤[J ]
zL ′ĈL ′ |�0〉 (A.6.38)

where the excitation classes of the operators ĈL ′ are restricted to [L ′] ≤ [J ]. As a
consequence,

〈�L |�̃J 〉 =
∑

[L ′]≤[J ]
zL ′ 〈�0|Ĉ†

LĈL ′ |�0〉 = 0, for [L] > [J ] (A.6.39)

Here, e−T̂ has been commuted to the right, yielding e−T̂ |�0〉 = |�0〉. Altogether,
the summations in Eq. (A.6.36) are restricted according to [K ] ≥ [I ] > [J ] ≥ [L].
Since 〈�K |Ĥ |�0

L〉 ∼ O([K ] − [L]) according to the BCC order relations (A.6.16),
we may conclude that every summation term and thus the entire sum (A.6.36) is at
least of the order [I ] − [J ]. The minimum value [I ] − [J ] is associated with the case
[K ] = [I ] and [L] = [J ], as here the overlap integrals 〈�̃I |�0

I 〉 and 〈�J |�̃J 〉 are of
zeroth order (in fact, of the form 1 + O(2)).

ISR of Operators and Transition Moments

The foregoing proof can easily be transferred to the ISR of an arbitrary one-particle
operator, D̂,

D̃I J = 〈�̃I |D̂|�̃J 〉 (A.6.40)

as considered in Sects. 11.3 and 12.1 for (N − 1)-electron excitations (Eq. 11.51)
and Sect. 14.3 for N -electron excitations (Eq. 14.46). As above, one may insert the
biorthogonal RI before and after the operator D̂ and use the order structure (A.6.30)
in the related BCC matrix D̂cc. The order relations thereby established read (see
Eq. 12.17 and Fig. 12.2)

D̃I J ∼ O(|[I ] − [J ]| − 1), [I ] �= [J ] (A.6.41)

The transition moments

FI (D) = 〈�̃I |D̂|�0〉 ∼ O([I ] − 1) (A.6.42)
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can be treated in a similar way, using here Eq. (A.6.31). This establishes the order
relations (11.20) or (14.4) for the transition amplitudes, being

f I,rs ∼ O([I ] − 1) (A.6.43)

in the N -electron case.

Order Structure of the ISR Eigenvalue Matrix

As an immediate consequence of the order structure (12.1) of the ISR secular matrix
M, the canonical order relations apply to the eigenvector matrix X as well (see
Eq. 12.15),

X Jn = 〈�̃J |�n〉 ∼ O(|[J ] − [n]|) (A.6.44)

Here, it is assumed that the final state |�n〉 has a PT origin in a specific HF configu-
ration, say |�I 〉, of class [I ]:

|�n〉 ← |�I 〉 (A.6.45)

Accordingly, |�n〉 is said to belong to the excitation class [n] := [I ].
The emergence of the order relations (A.6.44) can be explained as follows (for a

different, more stringent derivation see Ref. [13]). Let Xn be the eigenvector for a
state |�n〉 of class [n],

MXn = ωnXn (A.6.46)

and assume that |�n〉 derives from a HF configuration |�I 〉, [I ] = [n]. Now we
consider an eigenvector component X Jn , where J denotes an excitation from another
excitation class, [J ] �= [I ]. Applying a simple matrix perturbation theory (MPT),
where the diagonal matrix elements, MK K , furnish the “zeroth-order” level, and the
non-diagonal elements, MK L , K �= L , define the perturbation, one obtains a “first-
order” contribution to X Jn of the form

X Jn ← MJ I

MJ J − MI I
(A.6.47)

This contribution results from the coupling of the configurations |�I 〉 and |�J 〉 via
the secular matrix element MJ I . The actual PT order of this term is equal to the order
of MJ I ,

MJ I

MJ J − MI I
∼ MJ I ∼ O(|[J ] − [I ]|) = O(|[J ] − [n]|) (A.6.48)

since the denominator is of zeroth order, MJ J − MI I ∼ O(0). In fact, there are no
contributions of lower order than that. Consider an “interaction path” J ← K ← I
encountered in “second order” of MPT. The corresponding contribution is given by
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X Jn ← MJ K MK I

�J I �K I
(A.6.49)

where �L I = ML L − MI I . Again, the order is determined by the numerator so that

MJ K MK I ∼ O(|[J ] − [K ]|) + O(|[K ] − [I ]|) ≥ O(|[J ] − [I ]|) (A.6.50)

Note that the equals sign applies if the classes of the interacting states are ordered
according to [J ] > [K ] > [I ] or [J ] < [K ] < [I ]. In a similar way, onemay analyze
MPT interaction paths of “third” and “higher order.” The resulting contribution to
X Jn is always at least of the PT order O(|[J ] − [n]|).

The Order of Truncation Errors

The order relations (A.6.44) can be directly used to analyze the errors in the excitation
energies (or transition moments) arising in (systematic) truncations of the secular
expansion manifold. To this end, we write the energy ωn as an expectation value

ωn = X†
nMXn =

∑

J K

X∗
Jn MJ K X K n (A.6.51)

and inspect the orders of the individual contributions. The diagonal secular matrix
elements, MJ J , are of zeroth order. Hence, the full expression for ωn can be replaced
with the sum of dominant diagonal contributions,

ωn ∼
∑

J

X∗
Jn X Jn (A.6.52)

This means that configurations of class [J ] give rise to contributions to ωn that are,
according to Eq. (A.6.44), of the order

X∗
Jn X Jn ∼ 2(O([J ] − [n]), [J ] > [n] (A.6.53)

Conversely, if the configuration manifold is truncated after class μ (≥ [n]), the trun-
cation error is of the order

OT E (μ) = 2(μ + 1 − [n]), μ + 1 > [n] (A.6.54)

that is, the order of contributions related to class μ + 1, being the lowest of the
disregarded configuration classes.
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A.7 Linear Response Theory and the Polarization
Propagator

The polarization propagator discussed inChap. 13 is closely related to polarizabilities
or, more general, to the linear response of properties, as, e.g., dipole moments, to a
time-dependent “external” perturbation [5]. In this Appendix, we briefly outline that
relation and show how the ADC approach can be used to treat linear response prop-
erties. For a more comprehensive presentation, general references, and a discussion
of the computational performance, the reader is referred to Ref. [16].

Let Ĥx (t) denote the hamiltonian for an external perturbation,

Ĥx (t) = B̂ f (t) (A.7.1)

where
B̂ =

∑
Brsc†r cs (A.7.2)

is a (constant) one-particle operator and f (t) a time-dependent function describing
the time-dependence of the perturbation. The perturbation is assumed to be turned
on at t0; that is, f (t) = 0 for t ≤ t0. The full hamiltonian is given by

Ĥ ′(t) = Ĥ + Ĥx (t) (A.7.3)

where Ĥ is the hamiltonian of the unperturbed system. Initially, that is, at and prior
to t0, the system is assumed to be in the ground state |�0〉 of Ĥ .

To construct the solution of the TDSE, we may resort to the procedure presented
in Sect. 4.1, where now Ĥ (rather than Ĥ0) is the time-independent part of the full
hamiltonian. As in Eq. (4.13), the time-dependent wave function can be written in
the form

|�(t)〉 = e−i Ĥ t |�x (t)〉 (A.7.4)

where |�x (t)〉 denotes the wave function in the interaction picture with Ĥ acting as
the unperturbed part of the hamiltonian. Analogous to Eq. (4.19), we may write

|�x (t)〉 = Û (t, t0)|�0〉 (A.7.5)

where the time-evolution operator in the interaction picture, Û (t, t0), is subject to
an integral equation of the type featured in Eq. (4.26). Solving this integral equation
in an iterative way generates a perturbation expansion (see Eq. 4.27). In the present
case, where the time-dependent part of the hamiltonian is given by Eq. (A.7.1), the
expansion through first order reads

Û (t, t0) = 1̂ − i
∫ t

t0

B̂I (t
′) f (t ′) dt ′ + . . . (A.7.6)
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Here,
B̂I (t) = ei Ĥ t B̂e−i Ĥ t (A.7.7)

is the perturbation operator in the (time-dependent) interaction picture.
Now we consider a property associated with a one-particle operator, say Â =∑
Arsc†r cs . For t ≥ t0, the expectation value of Â, being

Ā0 = 〈�0| Â|�0〉 (A.7.8)

at t0, evolves in time according to

Ā(t) = 〈�(t)| Â|�(t)〉 = 〈�x (t)| ÂI (t)|�x(t)〉 (A.7.9)

where
ÂI (t) = ei Ĥ t Âe−i Ĥ t (A.7.10)

is representation of Â in the interaction picture. The difference

�A(t) = Ā(t) − Ā0 (A.7.11)

is referred to as the response of the property A to the time-dependent perturbation
Ĥx (t). Using Eqs. (A.7.5), (A.7.6), the function �A(t) can be expanded in a PT
series in the perturbing potential, beginning in first order (linear response):

�A(1)(t) =〈�(1)
x (t)| Â(t)|�0)〉 + 〈�0| Â(t)|�(1)

x (t)〉
=

∫ t

t0

i〈�0|[B̂(t ′), Â(t)]|�0〉 f (t ′) dt ′ (A.7.12)

Introducing the so-called linear response function RAB(t, t ′),

RAB(t, t ′) = iθ(t − t ′)〈�0|[B̂(t ′), Â(t)]|�0〉 (A.7.13)

the response can be written in the compact form

�A(1)(t) =
∫ ∞

t0

RAB(t, t ′) f (t ′) dt ′ (A.7.14)

Here, RAB(t, t ′) represents the generic part of the response, while the particular
time-dependence of the respective perturbation enters via f (t ′).

The energy representation of the response function is obtained via the Fourier
transformation

RAB(ω) =
∫ ∞

−∞
ei(ω+iη)t RAB(t, 0) dt (A.7.15)
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Here, the convergence factor e−ηt has been introduced to ensure the definiteness of
the Fourier integral at the upper limit, t = ∞ (see Eq. 3.13 in Sect. 3.1); note that
the lower bound of the integral actually is t = 0 due to the step function θ(t).

Like in the spectral representation of the electron propagator (see Sect. 3.1), the
Fourier transformation (A.7.15) can explicitly be performed upon employing the
resolution of the identity in terms of the exact eigenstates |�n〉, n = 0, 1, . . . in the
commutator expression (A.7.13). The result is the sum-over-states (SOS) formula

RAB(ω) =
∑

n �=0

〈�0| Â|�n〉〈�n|B̂|�0〉
ω − En + E0 + iη

−
∑

n �=0

〈�0|B̂|�n〉〈�n| Â|�0〉
ω + En − E0 + iη

(A.7.16)

Note that the restriction n �= 0 in the two sums reflects the fact that the original n = 0
contributions to the first and second term cancel each other. The response function
can be written in a compact resolvent-type form as follows:

RAB(ω) = 〈�0| Â(ω−Ĥ + E0 + iη)−1 B̂|�0〉
− 〈�0|B̂(ω + Ĥ − E0 + iη)−1 Â|�0〉 (A.7.17)

The equivalence of the latter form with the SOS expression (A.7.16) can easily be
verified by using again the resolution of the identity in an appropriate way.

According to Eq. (A.7.16), the linear response function consists of two contribu-
tions,

RAB(ω) = RI
AB(ω) + RI I

AB(ω) (A.7.18)

which, in fact, are redundant as the relation

RI I
AB(ω) = RI

AB(−ω)∗ (A.7.19)

shows.
The connection to the polarization propagator can easily be established by expand-

ing the operators Â and B̂ (as in Eq. A.7.2) in the SOS expression (A.7.16) and com-
paring the result with the spectral representation (13.1) of the polarization propagator.
This shows that RI

AB(ω) can be written as

RI
AB(ω) =

∑

r,s,r ′,s ′
Ars�

+
rs,r ′s ′(ω)Br ′s ′ (A.7.20)

in terms of matrix elements of �+(ω).
Now the ADC representation of RI

AB(ω) is simply obtained by using the ADC
form of �+(ω) according to Eqs. (14.2)–(14.4). The resulting expression reads

RI
AB(ω) = F(A)†(ω − M)−1F(B) (A.7.21)
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Here, the infinitesimal iη has been skipped; F(A) denotes a vector of components
FJ (A) formed from the ADC transition amplitudes f J,rs and operator matrix ele-
ments according to

FJ (A) =
∑

f J,rs Ars (A.7.22)

Of course, the ADC form of the response function could also have been obtained by
applying to Eq. (A.7.17) the resolution of the identity in terms of the ECO intermedi-
ate states (Eqs. 14.12, 14.13). The resulting expression for the full response function
reads

RAB(ω) = F(A)†(ω − M)−1F(B) − F(B)†(ω + M)−1F(A) (A.7.23)

Using theADC(n) approximations for the secular matrix M and the transition ampli-
tudes f J,rs , Eq. (A.7.23) establishes computational schemes for frequency-dependent
response properties being consistent through nth order of perturbation theory (in
the residual electron-electron interaction). As noted in Sect. A.1, the computational
method of choice in dealing with Eq. (A.7.23) is the Lanczos diagonalization algo-
rithm.
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A.8 Superoperator Approach to the Electron Propagator

The superoperator formulation [17] allows for a very compact and seemingly intuitive
derivation of algebraic propagator equations. However, being hardly self-evident to
the uninitiated, it should be helpful to explain this approach by relating its workings
to more familiar concepts.

A.8.1 Superoperator Definitions

First, we consider the superoperator form of the electron propagator and show its
equivalence with the original definition.

For a given operator Â, a superoperator (indicated by a double hat) can be defined
according to

ˆ̂AX̂ = [X̂ , Â] (A.8.1)

Of actual interest is the hamiltonian superoperator, ˆ̂H ,

ˆ̂H X̂ = [X̂ , Ĥ ] (A.8.2)

and the identity superoperator ˆ̂I defined by

ˆ̂I X̂ = X̂ (A.8.3)

Obviously, there is a notational benefit of the superoperator concept, allowing one,
for example, to write an n-fold nested commutator compactly as

ˆ̂H n X̂ = [. . . [[X̂ , Ĥ ], Ĥ ], . . . Ĥ ] (A.8.4)

Another definition needed in the superoperator context is the “binary product” of
two operators Â and B̂, being the ground-state expectation value of the anticommu-
tator { Â†, B̂},

( Â|B̂) = 〈0|{ Â†, B̂}|0〉 (A.8.5)

Here and in the following, we use the abridged notation |0〉 ≡ |�0〉. A corresponding
“binary” matrix element is defined by

( Â|Ô|B̂) = 〈0|{ Â†, Ô B̂}|0〉 = 〈0| Â† Ô B̂|0〉 + 〈0|Ô B̂ Â†|0〉 (A.8.6)

Note that this symmetrical notation supposes that Ô is hermitian and |0〉 an eigenstate
of Ô (otherwise ( Â|Ô B̂) �= (Ô Â|B̂)).
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The superoperator formulation of the electron propagator reads

GS
pq(ω) = (cq |(ω ˆ̂I − ˆ̂H)−1|cp) (A.8.7)

where ˆ̂R(ω) = (ω ˆ̂I − ˆ̂H)−1 (A.8.8)

is referred to as the superoperator resolvent. Expanding the binary matrix element
yields

GS
pq(ω) = 〈0|c†q ˆ̂R(ω)cp|0〉 + 〈0|( ˆ̂R(ω)cp)c

†
q |0〉 (A.8.9)

which makes explicit that

GS
pq(ω) = GS(−)

pq (ω) + GS(+)
pq (ω) (A.8.10)

is composed of an (N −1)- and an (N +1)-electron part.

Equivalence with the Original Definition

It is not obvious that the superoperator form of the electron propagator is equivalent
to the usual definition, as given by Eqs. (3.24), (3.25). To verify that equivalence,
one may expand the superoperator resolvent

(ω ˆ̂I − ˆ̂H)−1 = 1

ω

∞∑

ν=0

ˆ̂H ν

ων
(A.8.11)

and compare the resulting nested commutator expressions with the terms obtained
by applying the Baker–Hausdorff expansion

cp[t] = ei Ĥ t cpe−i Ĥ t = cp + i t[Ĥ , cp] + (i t)2

2! [Ĥ , [Ĥ , cp]] + . . . (A.8.12)

in the definition (3.3) of the electron propagator and then performing the time inte-
gration of the Fourier transform (3.10).

A simpler proof of the equivalence is as follows [7]. According to Eq. (A.8.8), the

superoperator resolvent ˆ̂R(ω) is defined as the inverse of the superoperator (ω ˆ̂I − ˆ̂H).

Thus, the action of ˆ̂R(ω) on an arbitrary operator Â

ˆ̂R(ω) Â = X̂ (A.8.13)

generates an ordinary operator X̂ , such that

(ω ˆ̂I − ˆ̂H)X̂ = Â (A.8.14)
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To determine X̂ , we take matrix elements on both sides,

〈m|(ω ˆ̂I − ˆ̂H)X̂ |n〉 = 〈m| Â|n〉 (A.8.15)

where |m〉 and |n〉 denote exact energy eigenstates of the hamiltonian for systems of
possibly distinct electron numbers N , N ± 1, . . . . For example, in the case Â ≡ cp,
non-vanishingmatrix elements are obtained if |m〉 and |n〉 are (N −1)- and N -electron
states, respectively. Equation (A.8.15) can be evaluated further:

〈m| Â|n〉 = 〈m|ω X̂ − [X̂ , Ĥ ]|n〉 = (ω + Em − En)〈m|X̂ |n〉 (A.8.16)

which can be resolved for 〈m|X̂ |n〉, yielding

〈m|X̂ |n〉 = 〈m| ˆ̂R(ω) Â|n〉 = 〈m| Â|n〉
ω + Em − En

(A.8.17)

Now we consider the superoperator expression (A.8.9) and insert resolutions of the
identity (RI),

GS
pq(ω) =

∑

m

〈0|c†q |m〉〈m| ˆ̂R(ω)cp|0〉 +
∑

n

〈0| ˆ̂R(ω)cp|n〉〈n|c†q |0〉 (A.8.18)

where the states |m〉 and |n〉 are (N −1)- and (N +1)-electron states, respectively.
With Eq. (A.8.17), we obtain

GS
pq(ω) =

∑

m∈{N−1}

〈0|c†q |m〉〈m|cp|0〉
ω + Em − E0

+
∑

n∈{N+1}

〈0|cp|n〉〈n|c†q |0〉
ω − En + E0

(A.8.19)

which is just the spectral representation (3.17) of the original electron propaga-
tor, G pq(ω). This shows that GS

pq(ω) ≡ G pq(ω) supposing that the infinitesimals
±iη in the denominators can be ignored (if needed they could be “smuggled” into
Eq. (A.8.9)).

A.8.2 Superoperator Equations

Having established that Eq. (A.8.7) is a legitimate definition of the electron propa-
gator, we now discuss the superoperator derivation of the basic algebraic equations
for the propagator and show their equivalence with the secular equations of the EOM
approach discussed in Sect. 16.1.



Appendix 319

Operator-Based Resolution of the Identity for Binary Products

The use of operator-based resolution of the identity in binary products, being a
basic ingredient in the superoperator approach to the electron propagator, is not self-
explanatory. To better understand the mathematical structure of the ensuing operator
algebra, one may first visit the Excursus at the end of this Appendix, reviewing
analogous procedures in the simpler case of state representations.

Consider two operators, Â, B̂, generating (N −1)-electron states, Â|0〉 and B̂|0〉.
(Likewise, one could proceed with operators for (N +1)-electron states.) What we
want to show is that a RI in terms of basis operators can be applied to the binary
product (A.8.5) in the following form:

( Â|B̂) = ( Â|h)(h|h)−1(h|B̂) (A.8.20)

Here,
h ≡ {ÔI } (A.8.21)

is a short notation for the set of the basis operators (16.6),

{ÔI } = {ck; c†ackcl; . . . } ∪ {ca; c†k cbca; . . . } (A.8.22)

which were introduced in Sect. 16.1. The binary product can be rewritten as

( Â|B̂) =〈0|{ Â†, B̂}|0〉
=〈0| Â† B̂|0〉 + 〈0|B̂ Â†|0〉
=〈0| Â† B̂|0〉 + 〈0| Â B̂†|0〉
=〈0|( Â† + Â)(B̂† + B̂)|0〉 (A.8.23)

Scalar products of states with different particle numbers vanish, so that

〈0| Â B̂|0〉 = 〈0| Â† B̂†|0〉 = 0 (A.8.24)

which has been used to arrive at the last equation. In the third equation, it is assumed
that Â, B̂ are real-valued operators and the ground-state wave function is real-valued
too, so that

〈0|B̂ Â†|0〉 = 〈0|B̂ Â†|0〉∗ = 〈0| Â B̂†|0〉 (A.8.25)

In the case of complex operators, one may instead resort to the identity ( Â|B̂) =
〈0|( Â∗† + Â)(B̂∗† + B̂)|0〉 (see Sect. 16.2 and Exercises 16.2 and 16.3).

Now we may bring in the (N ± 1)-electron (Fock space) states (16.27) discussed
in Sect. 16.2,

|�I 〉 = (Ô†
I + ÔI )|0〉 (A.8.26)

Obviously, the overlapmatrix elements (16.29) are just the binary products, (ÔI |ÔJ ):
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SI J = 〈�I |�J 〉 = 〈0|{Ô†
I , ÔJ }|0〉 = (ÔI |ÔJ ) (A.8.27)

Analogous to Eq. (A.8.46), the states |�J 〉 establish a conventional RI, based on
a non-orthonormal basis,

1̂ =
∑

I J

|�I 〉(S−1)I J 〈�J | (A.8.28)

Applying this in the last line of Eq. (A.8.23) gives

( Â|B̂) =
∑

I J

〈0|( Â† + Â)|�I 〉(S−1)I J 〈�J |(B̂† + B̂)|0〉 (A.8.29)

Here, the matrix elements on both sides of S−1 can again be recast into the compact
binary product form,

〈0|( Â† + Â)|�I 〉 = 〈0|( Â† + Â)(Ô†
I + ÔI )|0〉 = ( Â|ÔI ) (A.8.30)

so that Eq. (A.8.29) takes on the form

( Â|B̂) =
∑

I J

( Â|ÔI )(O|O)−1|I J (ÔJ |B̂) (A.8.31)

where (O|O) is used instead of S according to Eq. (A.8.27). Obviously, this is just
a somewhat more explicit form of Eq. (A.8.20).

“Inner Projection” of the Superoperator Resolvent

Now we come back to the definition (A.8.7) of the electron propagator, which can
be written in an obvious matrix notation as

G(ω) = (c| ˆ̂R(ω)|c) (A.8.32)

Analogous to Eq. (A.8.29), we may apply theRI in the form of Eq. (A.8.28) to obtain

(c| ˆ̂R(ω)c) = (c|h)(h|h)−1(h| ˆ̂Rc) (A.8.33)

The RI can be used once more in the operator product ˆ̂R c,

ˆ̂R c = ˆ̂R(ω)|h)(h|h)−1(h|c (A.8.34)

so that Eq. (A.8.33) takes on the form

(c| ˆ̂R(ω)|c) = (c|h)(h|h)−1(h| ˆ̂R(ω)|h)(h|h)−1(h|c) (A.8.35)
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Analogous to Eq. (A.8.51), one can derive the relation

(h|(ω ˆ̂1 − ˆ̂H)|h)−1 = (h|h)−1(h| ˆ̂R(ω)|h)(h|h)−1 (A.8.36)

for the generalized matrix representations of (ω ˆ̂1 − ˆ̂H) and its inverse,
ˆ̂R(ω) = (ω ˆ̂1 − ˆ̂H)−1. This allows us finally to write Eq. (A.8.35) as

G(ω) = (c| ˆ̂R(ω)|c) = (c|h)(h|(ω ˆ̂1 − ˆ̂H)|h)−1(h|c) (A.8.37)

The expression on the right-hand side is often referred to as the “inner projection”
of the superoperator resolvent, implying a connection to Löwdin’s inner projection
concept [18].

To make contact with the EOM secular equations, we just expand the compact
superoperator form into the underlying conventional expressions, so that Eq. (A.8.37)
takes on the form

G pq (ω) =
∑

I,J

〈0|{c†q , ÔI }|0〉
(
ω〈0|{Ô†

K , ÔL }|0〉 + 〈0|{Ô†
K , [Ĥ , ÔL ]}|0〉

)−1
∣∣∣∣
I J

〈0|{Ô†
J , cp}|0〉

(A.8.38)

As the comparison with Eqs. (16.12)–(16.14) shows, the poles of G pq(ω) are given
- up to a sign change - by the roots (16.19) of the EOM secular equations, while the
spectroscopic factors are obtained from the eigenvectors as in Eq. (16.25).

A.8.3 Excursus: Matrix Representations of an Operator
Inverse

Consider an operator Â, and let A denote the matrix representation of Â,

Akl = 〈k| Â|l〉 (A.8.39)

with respect to a complete set of orthonormal states, |k〉, k = 1, 2, . . . . As is easily
seen, the matrix representation of the inverse operator Â−1

Â Â−1 = 1̂ (A.8.40)

is just the inverse of the matrix A. Let A′ denote the matrix representation of Â−1,

A′
kl = 〈k| Â−1|l〉 (A.8.41)
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Consider an arbitrary matrix element of Eq. (A.8.40) und use the resolution of the
identity (RI),

1̂ =
∑

k

|k〉〈k| (A.8.42)

as follows:

δnm = 〈n| Â Â−1|m〉 =
∑

k

〈n| Â|k〉〈k| Â−1|m〉 = (AA′)nm (A.8.43)

This shows that
A′ = A−1 (A.8.44)

The situation is less obvious if the representations is based on non-orthonormal
states, |k̃〉, k = 1, 2, . . . . Let S denote the corresponding overlap matrix,

Skl = 〈k̃|l̃〉 (A.8.45)

so that the RI can be written as

1̂ =
∑

k,l

|k̃〉(S−1)kl〈l̃| (A.8.46)

Again, we consider matrix representations Ã of Â and Ã′ of Â−1:

Ãkl = 〈k̃| Â|l̃〉, Ã′
kl = 〈k̃| Â−1|l̃〉 (A.8.47)

To establish the relation between Ã′ and Ã, one can proceed as above, yielding

Snm = 〈ñ| Â Â−1|m̃〉 =
∑

k,l

〈ñ| Â|k̃〉(S−1)kl〈l̃| Â−1|m̃〉 (A.8.48)

or in matrix form,
S = ÃS−1 Ã

′
(A.8.49)

This relation can be resolved for Ã
′

Ã
′ = SÃ

−1
S (A.8.50)

Note also the relation
Ã

−1 = S−1 Ã
′
S−1 (A.8.51)

for the inverse of Ã.
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A.9 Compilation of ADC Expressions

In the explicit ADC expressions given below, the indices i, j, k, l, . . . and a, b, c, . . .
refer to occupied and unoccupied orbitals, respectively, with respect to theHF ground
state. The subscripts p, q, r . . . label both occupied and unoccupied orbitals. The
short notation

vrsuv = Vrs[uv]
εr +εs −εu −εv

(A.9.1)

is used throughout. Note that vuvrs = −v∗
rsuv .

A.9.1 ADC(3) Expressions for the Dynamical Self-energy

According to Eq. (9.2), the affinity and ionization part M+(ω) and M−(ω), respec-
tively, of the dynamical self-energy can be written in the ADC form

M±
pq(ω) = U±†

p (ω1 − K± − C±)−1U±
q (A.9.2)

At the ADC(3) level, the matrices K±, C±, and U±
q are defined with respect to 2p-

1h configurations, ( jab), a < b, in the affinity part (+); and 2h-1p configurations,
(akl), k < l, in the ionization part (−).

K +
jab, j ′a′b′ = (−ε j + εa + εb) δ j j ′δaa′δbb′ (A.9.3)

K −
akl,a′k ′l ′ = (−εa + εk + εl) δaa′δkk ′δll ′ (A.9.4)

C+
jab, j ′a′b′ = δ j j ′ Vab[a′b′] − ( δaa′ Vj ′b[ jb′] + δbb′ Vj ′a[ ja′] ) + (a′ ↔ b′) (A.9.5)

C−
akl,a′k ′l ′ = −δaa′ Vkl[k ′l ′] + ( δkk ′ Va′l[al ′] + δll ′ Va′k[ak ′] ) − (k ′ ↔ l ′) (A.9.6)

U+
jab,q = Vab[q j] − 1

2

∑

k,l

vabkl Vkl[q j] + (
∑

k,c

vack j Vkb[qc] ) − (a ↔ b) (A.9.7)

U−
akl,q = Vkl[qa] + 1

2

∑

b,c

vklbcVbc[qa] − (
∑

i,b

vkiba Vbl[qi] ) + (k ↔ l) (A.9.8)

Here, (r ↔ s)means the preceding term (in brackets) upon interchanging the indices
r and s.
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A.9.2 Direct ADC Expressions for the Ionization Part of the
Electron Propagator

In the following, directADC expressions (Chap. 10) are compiled for the G−(ω) part
of the electronpropagator, covering specifically the secularmatrix K + C at the third-
order (ADC(3)) level, and the effective transition moments f at the ADC(2) level.
Here, the ADC configuration manifold comprises the 1h and 2h-1p configurations.

ADC(3) Secular Matrix

1h diagonal block:

Kkk ′ =εkδkk ′ (A.9.9)

Ckk ′ =
∑

a<b, j

vabk jvk ′ jab
(
εa + εb − ε j − 1

2 εk − 1
2 εk ′

)
(A.9.10)

+ C (A)
kk ′ + C (B)

kk ′ + C (C)
kk ′ + C (D)

kk ′ + �
(3)
kk ′ (∞) (A.9.11)

where

C (A)
kk ′ = 1

4

∑

a,b,c,d
l

vabklv
∗
cdk ′l Vcd[ab] (A.9.12)

C (B)
kk ′ =

∑

a,b,c
l,m

vabklv
∗
ack ′m Vlc[bm] (A.9.13)

C (C)
kk ′ = 1

4

∑

a,b
l,m, j

vablmv∗
abjk ′ Vlm[ jk] + h.c. (A.9.14)

C (D)
kk ′ =

∑

a,b,c
l,m

vablmv∗
bck ′m Vlc[ka] + h.c. (A.9.15)

The last term inEq. (A.9.11) is the third-order contribution to the constant self-energy
part,�kk ′(∞) (see Sect. 8.2). In actualADC(3) computations, it is recommendable to
go beyond the strict third-order level here, which is afforded by the Dyson expansion
method (DEM) presented in Sect. A.5. The actual third-order expressions can readily
be derived from diagram T 3 in Fig. 8.9 (see Exercise 8.2). Alternatively, one may
resort to Eq. (8.34),

�(3)
pq (∞) =

∑

r,s

Vpr [qs] ρ(2)
sr (A.9.16)

and relate the second-order density matrix elements via Eq. (10.37) to the effective
transition amplitudes,
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ρ(2)
kk ′ = f (2)

kk ′ + f (2)∗
kk ′ (A.9.17)

ρ(2)
ka = f (2)

ka (A.9.18)

ρ(2)
aa′ =

∑

b,k,l

f (1)∗
bkl,a f (1)

bkl,a′ (A.9.19)

The ADC(2) expressions needed here are below (Eqs. A.9.22–A.9.25).

1h/2h-1p block:

C j,akl = Vkl[aj] + 1
2

∑

b,c

v∗
bckl Vbc[ ja] + (

∑

b,i

v∗
abli Vkb[ j i]) − (k ↔ l). (A.9.20)

2h-1p diagonal block:

Kakl,a′k ′l ′ =(−εa + εk + εl)δaa′δkk ′δll ′

Cakl,a′k ′l ′ = − δaa′ Vk ′l ′[kl] + (δkk ′ Val ′[a′l] + δll ′ Vak ′[a′k]) − (k ′ ↔ l ′). (A.9.21)

ADC(2) Expressions for the Effective Transition Amplitudes

Usually, transition amplitudes and spectroscopic factors are not needed at utmost
accuracy, and for most purposes, a practical and satisfactory approximation is
obtained by combining ADC(3) eigenvectors with the ADC(2) expressions for the
effective transition amplitudes. The complete ADC(3) expressions can be found in
Ref. [19].

1h part:

fkl =δkl − 1
2

∑

a<b, j

vabk jvl jab (A.9.22)

fka = 1

εa −εk
( 1
2

∑

b,c, j

vbck j Vaj[bc] − 1
2

∑

b,i, j

vabi j Vi j[kb]) (A.9.23)

Note that the fkk ′ submatrix is hermitian.

2h-1p part:

fakl, j =0 (A.9.24)

fakl,b = − vabkl (A.9.25)

A.9.3 ADC(2) Expressions for the Polarization Propagator

The direct ADC procedure for the �+(ω) part of the polarisation propagator was
discussed in Chap. 14. Here, the secular matrix elements and the effective transition
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amplitudes constituting the second-order ADC(2) scheme are listed. The configura-
tion manifold is spanned by the 1p-1h and 2p-2h configurations.

Secular Matrix

1p-1h diagonal block:

Kak,a′k ′ =(εa − εk)δaa′δkk ′, (A.9.26)

Cak,a′k ′ = − Vak ′[a′k] + C (A)
ak,a′k ′ + C (B)

ak,a′k ′ + C (C)
ak,a′k ′ (A.9.27)

where

C (A)
ak,a′k ′ =δkk ′ 1

2

∑

c,i, j

vaci jvi ja′c(εi + ε j − εc − 1
2 εa − 1

2 εa′), (A.9.28)

C (B)
ak,a′k ′ =δaa′ 1

2

∑

c,d,i

vcdkivk ′icd(
1
2 εk + 1

2 εk ′ + εi − εc − εd), (A.9.29)

C (C)
ak,a′k ′ =

∑

c,i

vk ′ia′cvacik(
1
2 εk + 1

2 εk ′ − 1
2 εa − 1

2 εa′ + εi − εc). (A.9.30)

1p-1h/2p-2h block:

C (1)
ak,a′b′k ′l ′ = δaa′ Vk ′l ′[kb′] − δab′ Vk ′l ′[ka′] − δkk ′ Val ′[a′b′] + δkl ′ Vak ′[a′b′], (A.9.31)

2p-2h diagonal block:

Kabkl,a′b′k ′l ′ = (εa + εb − εk − εl)δaa′δbb′δkk ′δll ′ (A.9.32)

The 2p-2h diagonal block can be extended with the first-order secular matrix ele-
ments anticipated from the ADC(3) level:

C (1)
abkl,a′b′k ′l ′ =δkk ′δll ′ Vab[a′b′] + δaa′δbb′ Vk ′l ′[kl]

− (
δbb′δll ′ Vak ′[a′k] + δbb′δkk ′ Val ′[a′l] + δaa′δll ′ Vbk ′[b′k] + δaa′δkk ′ Vbl ′[b′l]

)

+(k ′ ↔ l ′) + (a′ ↔ b′) − (k ′ ↔ l ′, a′ ↔ b′). (A.9.33)

While this extension (ADC(2)-x) improves the treatment of doubly excited states, it
does not afford consistently better results for the single excitations.

Effective Transition Amplitudes

1p-1h part, p-h amplitudes:

fak,a′k ′ = δaa′δkk ′ + f (A)
ak,a′k ′ + f (B)

ak,a′k ′ + f (C)
ak,a′k ′ (A.9.34)

where
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f (A)
ak,a′k ′ = 1

4

∑

c,i, j

vaci jvi ja′cδkk ′, (A.9.35)

f (B)
ak,a′k ′ = 1

4

∑

c,d,i

vcdkivk ′icdδaa′ , (A.9.36)

f (C)
ak,a′k ′ = − 1

2

∑

c,i

vackivk ′ia′c, (A.9.37)

1p-1h part, p-p amplitudes:

fak,a′b′ = δaa′

εb′ −εk
(− 1

2

∑

c,i, j

vb′ci j Vi j[kc] + 1
2

∑

c,d,i

vcdki Vb′i[cd] ) (A.9.38)

1p-1h part, h-h amplitudes:

fak,k ′l ′ = δkl ′

εa −εk ′
(− 1

2

∑

c,d,i

vcdik ′ Via[cd] + 1
2

∑

c,i, j

vcai j Vi j[ck ′] ) (A.9.39)

1p-1h part, h-p amplitudes:

fak,k ′a′ = vaa′k ′k +
6∑

i=1

f (2,i)
ak,k ′a′(εa + εa′ − εk − εk ′)−1 (A.9.40)

where

f (2,1)
ak,k ′a′ =

∑

c,i

vca′k ′i Vai[ck], (A.9.41)

f (2,2)
ak,k ′a′ =

∑

c,i

vacik Via′[k ′c], (A.9.42)

f (2,3)
ak,k ′a′ = −

∑

c,i

vca′ik Vai[k ′c], (A.9.43)

f (2,4)
ak,k ′a′ = −

∑

c,i

vack ′i Via′[ck], (A.9.44)

f (2,5)
ak,k ′a′ = − 1

2

∑

c,d

vcdk ′k Vaa′[cd], (A.9.45)

f (2,6)
ak,k ′a′ = − 1

2

∑

i, j

vaa′i j Vi j[k ′k]. (A.9.46)
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2p-2h part:

fabkl,k ′l ′ =δkl ′ vablk ′ − δll ′ vabkk ′

fabkl,a′b′ =δba′ vab′kl − δaa′ vbb′kl (A.9.47)

References

1. March NH, YoungWH, Sampanthar S (1967) Themany-body problem in quantummechanics.
Cambridge University Press, Cambridge

2. Davidson ER (1975) J Comput Phys 17:87
3. Parlett BN (1980) The symmetric eigenvalue problem. Prentice Hall, Englewood Cliffs
4. Cullum JK, Willoughby RA (1985) Lanczos algorithm for large symmetric eigenvalue com-

putations. Birkhäuser, Boston
5. Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems. McGraw-Hill,

New York
6. Wick GC (1950) Phys Rev 80:268
7. Mertins F (1991) unpublished notes
8. von Niessen W, Schirmer J, Cederbaum L (1984) Comput Phys Rep 1:57
9. Schirmer J, Angonoa G (1989) J Chem Phys 91:1754
10. Hubbard J (1957) Proc R Soc A 240:539
11. Schirmer J (1991) Phys Rev A 43:4647
12. Mertins F, Schirmer J (1996) Phys Rev A 53:2140
13. Schirmer J, Mertins F (2009) Theor Chem Acc 125:145
14. Christiansen O, Koch H, Jørgensen P (1995) J Chem Phys 103:7429
15. Hald K, Jørgensen P, Olsen J, Jaszuński M (2001) J Chem Phys 115:671
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A
Abrikosov notation (of diagrams), 83–88

Abrikosov diagrams, see Diagrams
Adiabatic limit, 50–52, 55, 72, 199, 293, 294
Algebraic propagator methods, 241–254

see also Equations-of-motion
see also Superoperator formalism

Algebraic-diagrammatic construction
(ADC)

for self-energy, 135–140
for electron propagator, 147–155
for polarization propagator, 205–214
formulation of RPA, 233–236

Anticommutation relations, 21–22, 29
Antisymmetrization

of wave functions, 3–7
operator, 6, 9, 16

B
Bethe–Salpeter equation, 198
Binary product, see Superoperator formal-

ism
Brillouin theorem, 271

C
Closed loop, see Fermion line
Compactness property, 143, 144
Configuration Interaction (CI), 187–191

full CI (FCI), 187
Contractions (of operator pairs), 63–64, 200

contraction schemes, 65, 67, 70–72, 76,
200, 201, 203, 301

Convergence factor, 33–34, 38, 40, 103, 197,
290–294, 314

Correlated excited states (CES), 161, 206,
241, 245, 258

Coupled-cluster (CC) methods
biorthogonal CC (BCC), 255, 257–266,
304–308

CC linear response (CCLR), 255, 312
equation-of-motionCC (EOM-CC), 223,
255

ground-state CC, 255–258
multi-reference CC, 257
symmetry-adapted cluster CI (SAC-CI),
255

Creation operator, see Operators
Cross sections

photoionization cross section, 35

D
Density, see electron density
Destruction operator, see Operators
Diagrams

Abrikosov diagrams, 75, 88–93, 116,
118, 139, 202, 213

Feynman diagrams, 62, 65–70, 75–83,
84, 87, 100, 106, 108, 111, 115, 200–
204, 213, 235, 287, 289, 293, 294, 301

Goldstone (time-ordered) diagrams, 95,
100–108, 117, 118, 138–140, 150, 152,
155, 203, 209, 210, 213, 234, 235, 287–
294, 302

Hubbard diagrams, 303, 304
linked/unlinked diagrams, 68–70, 75,
304

self-energy diagrams, see Self-energy
strictly connected diagrams, 302, 304

Dipole sum rule, see Sum rules
Dyson equation, 111–134
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Dyson-ADC equations, 140–145
Dyson expansion method (DEM), 295–
299

Dyson orbital, 126–127
Dyson secularmatrix, 124–126, 147, 157

E
Energy representation (of propagators, dia-

grams), 33, 34, 37, 39, 40, 95, 98–
100, 115–117, 195–197, 203, 224,
314

Electron attachment, 31, 32, 125, 257
energy (electron affinity), 33, 34, 125,
132

Electron density
density function, 123
one-particle density matrix, 36, 37, 122,
123, 158, 172, 174

Electron propagator, see Propagator
Equations-of-motion (EOM)

formany-bodyGreen’s functions, 38, 40,
41

for ionization/electron attachment, 241–
245

for N-electron excitations, 249–253
EOM-CC, see Coupled-cluster methods

F
Factorization theorem, 183–184, 265–266
Fermion operator, see Operators
Fermion line

closed loop, 77–79, 85, 106, 123, 202,
203

continuous, 79, 201–203
free (or G0-line), 66, 67, 79–80, 88, 107,
201, 202, 289

Feynman diagrams, see Diagrams
Field operator, see Operators
Fock space, 19, 20, 246, 247

G
Gell-Mann and Low theorem, 46, 50–53,

199, 279–282, 293
Goldstone diagrams, see Diagrams
Green’s functions, see also Propagators

free one-particle (free electron propaga-
tor), 40, 64, 66, 77, 81, 87, 96, 201, 290

one-particle (electron propagator), 31–
36, 41, 197

two-particle, 38, 197

Ground-state energy, 37–39, 52, 55–56,
129–130, 143, 159, 165, 170, 190,
207, 229, 258, 272, 277, 278

Ground-state expectation value, 36–37, 53–
54, 65, 71, 158, 168, 186, 199, 200,
216, 217, 316

GW approximation, 135

H
Hartree-Fock (HF)

approximation, 24, 45
diagrams in HF representation, 81–82

Heisenberg operator, see operators
Heisenberg representation, 197
Hubbard hamiltonian, 24
Hubbard diagrams, see Diagrams

I
Infinite partial summation (of diagrams),

111, 135, 143, 156, 223
Interaction symbols:

cross, 80, 81
dot, 83–87, 115, 144, 202
wiggly interaction line, 66, 77, 79, 80,
85, 123, 201, 202, 289

Interaction picture, 46–48, 50, 51, 53, 55, 62,
312, 313

Intermediate state representation (ISR)
for N±1 electrons, 161–170
for N electrons, 205–207, 214
ISR of operators, 170–174, 215–216

Ionization, 31
energy, 34, 129–131, 174, 190, 191

K
Killer Condition (KC), 242–243, 249–252
Koopmans’ theorem, 129

L
Length form, see Transition moments
Linear response theory, 312–315

linear response function, 313
particle-hole (p-h) response function,
197, 198

Linked-cluster theorem, 55, 59, 61, 68, 70–
72, 145

generalized linked-cluster theorem, 257,
264, 302–304
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M
Manne-Dalgaard (operator set), 242, 249
Matrix representation (of diagrams), 91–93
Møller–Plesset partitioning, 45, 201, 219,

220, 271

N
N-electron excitations, 31, 195, 207, 214,

215, 249, 257, 259, 308
Normal-ordering (of operator products), 62–

64, 284–285
operator, 63

O
Operators

creation operator, 20–21, 27–29, 55, 62,
64, 66, 67, 305

destruction operator, 19–22, 27–29, 31,
38, 55, 62, 64, 66, 67

fermion operator, 20, 28, 32, 49, 61, 62,
64, 69, 126, 182, 284, 305

field operator, 19, 29, 127
Heisenberg operator, 31, 40, 46, 53, 54,
197

one-particle operators, 8–11, 29, 36, 173,
233

permutation operator, 4, 6, 8
physical/unphysical operators, 62, 63,
65, 258, 284–285, 303, 306

in second quantization, 22–24, 30
two-particle operators, 8, 9, 11–14, 29

Order Relations (OR)
canonical order relations (COR), 165,
177–181, 214, 245, 304–311

Orthogonalization
excitation class orthogonalization
(ECO), 161–166, 206, 207

Gram–Schmidt orthogonalization, 162,
178, 179, 183, 245, 253

symmetric orthogonalization, 162, 163,
166, 207

Outer-Valence Green’s Function (OVGF)
method, 132–133, 135

P
Partitioning (of a matrix):

inversion of a partitioned matrix, 273–
274

partitioning of an eigenvalue problem,
274–276

Pauli principle, 4, 7

Permutation
permutation operator, 4, 8
permutation symmetry, 4

Perturbation theory
Brillouin-Wigner (BW) perturbation the-
ory, 270, 277–278

Rayleigh-Schrödinger perturbation the-
ory (RSPT), 45, 55–59, 269–273, 300,
302

time-dependent perturbation theory, 46–
50, 312

Plasmons, 223
Polarizability, 196, 277, 312
Polarization, 230, 231, 252
Polarization propagator, see Propagators
Pole strength, 35, 131, 132
Propagators, see also Green’s functions

electron propagator (one-particle
Green’s function), 31–40, 46, 54, 61,
65, 66, 82, 95, 99, 111, 114–122, 123,
125, 131, 133, 135, 141, 144, 145, 158,
159, 161, 172, 195–198, 201, 210, 248,
314, 316–318, 320

free electron propagator (free one-
particle Green’s function), 40–41, 61,
103, 124, 200

polarization propagator, 31, 135, 195–
204, 208–214, 223, 228, 312–315

R
Random-Phase Approximation (RPA), 135,

198, 218, 223–236, 251–253
RPA diagrams, 210, 223, 224
RPA pseudo-eigenvalue problem, 225–
229, 250

Rank (of an operator), 305–306
Regularity (of PT expansions), 143, 156
Relaxation, 230, 231, 252

S
Satellite (shake-up) states, 130
Scaling, 157, 214
Schrödinger representation, 46
Second quantization, 19–30
Self-Consistent Field (SCF), see Hartree-

Fock (HF)
Self-energy, 111–124

diagrams, 115–119, 139
dynamical self-energy part, 119, 124,
135–140, 297–299

improper self-energy part, 112
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static self-energy part, 91, 119, 122, 123,
125, 295–299

Separability, 177, 179, 181–186, 188, 189,
214, 215, 245, 253, 255, 262–265

Separate fragment model, 145, 181–186,
188, 189, 217, 264–266

Size-consistency, 145, 157, 177, 181, 190,
217, 263

Slater determinant, 3, 7, 9–11, 13–16, 40
Slater–Condon rules, 3, 9–14, 21, 26–27
Spectral representation, 34–37, 41, 119, 120,

124–128, 136, 144, 148, 149, 195,
197, 205, 228, 277, 297, 314, 318

Spectroscopic factors, 35, 125, 148, 149,
156, 164, 180, 185, 186, 244, 321

Spin-free formulation, 15, 16, 127
Sum rules, 35, 39, 121, 125

dipole (Thomas-Reiche-Kuhn) sum rule,
217, 218, 220, 223, 232, 233

Superoperator formalism, 241, 316–322
binary product, 316, 318, 319
superoperator resolvent, 317, 318, 321

Symmetric group, 4
Symmetrization postulate, 4

T
Tamm-Dancoff Approximation (TDA), 209,

226, 229
Thomas-Reiche-Kuhn (TRK) sum rule, see

Sum rules
Time-Dependent Hartree-Fock (TDHF), see

Random-phase approximation (RPA)

Time-ordering
time-ordered (Goldstone) diagrams, see
Diagrams

time-ordered product, 32, 49–51, 54–55,
62, 64, 65, 67, 197, 282–286, 300

time-ordering (Wick’s) operator, 32, 62,
197, 280, 281

Time representation (of propagators, dia-
grams), 32, 79–80, 100, 119, 197,
198, 201

Transition amplitudes, 149, 156, 164, 165,
170, 174, 180, 196, 205, 206, 209,
212, 213, 215, 310, 315

Transition moments, 170, 180, 182, 196,
206, 209, 215–219, 223, 229, 231–
233, 235, 244, 251, 254, 261–266,
307, 309

length form, 217, 223, 233
velocity form, 217, 223, 233

Truncation errors, 144, 180, 181, 188, 214,
215, 263, 264, 311

V
Vacuum state, 20, 21
Velocity form, see Transition moments

W
Wick’s operator, see Time-ordering
Wick’s theorem, 61, 62, 64, 65, 71, 200, 284,

286, 301
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