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Foreword

Stochastic effects in nonlinear dynamical systems are an important field of state-

of-the-art research. The interplay of noise, nonlinearity, and time-delayed feedback

leads to a wealth of novel, unexpected phenomena, such as stochastic bifurcations,

coherence resonance, etc. Stochastic bifurcation denotes the transition from a

monomodal to a bimodal stationary probability distribution, and coherence res-

onance is a counterintuitive effect which describes the nonmonotonic dependence

of the coherence of noise-induced oscillations upon noise strength, resulting in an

optimum coherence at non-zero noise strength.

This Master Thesis focusses on these effects in a simple paradigmatic model, i.e.,

the Stuart-Landau oscillator. The model variant which is considered in this thesis

arises from the generic expansion of an oscillator system near a subcritical Hopf

bifurcation in terms of a fifth-order polynomial in the complex variable z. While

the third-order, supercritical form of the Stuart-Landau oscillator has been well

studied, much less is known about the effect of noise near a subcritical Hopf bi-

furcation which creates an unstable limit cycle in the deterministic system. This

thesis considers the regime of bistability between the trivial zero steady state and

a stable limit cycle which arises from the saddle-node bifurcation of the unstable

limit cycle. Originally, the term coherence resonance has been restricted to ex-

citable systems, but this thesis extends the notion to non-excitable systems with

a subcritical Hopf bifurcation, where coherence resonance is due to a novel mech-

anism.

The thesis demonstrates that coherence resonance can be modulated by time-

delayed feedback or coupling, i.e., enhanced or suppressed depending upon the

delay time. Analytical methods are developed and detailed numerical simulations

for various ranges of the noise intensity, bifurcation parameter, delay time and

feedback strength are presented for a single and for two coupled systems.

This thesis presents novel results on the interplay of noise and delay in nonlin-

ear systems, and in particular offers new insights into the modulation of coherence

resonance by time-delayed feedback.

Eckehard Schöll



vii

Profile of the Institute
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Chapter 1

Introduction

Random perturbations in dynamical systems are an ubiquitous phenomenon in
many fields of science. These perturbations, e.g. represented by noise, lead to an
unpredictable movement of the trajectories of the system. It is of great interest to
control such a random motion or other noise-induced effects.
Adding a random force term to the deterministic equations of a dynamical system
opens a new field of research with many new phenomena [1, 2]. New concepts
for the investigations have been developed in order to study stochastic systems,
e.g. a rigorous mathematical theory of stochastic bifurcations [3]. Noise is usually
unwanted because of the loss of predictability for the trajectory of a system. How-
ever, contrary to what one would expect, it turns out that noise can also play a
constructive role in nonlinear systems. Some famous and well studied examples are
the stochastic resonance [4] and coherence resonance [5–7]. Stochastic resonance
describes the effect that a weak periodic force, which drives a stochastic system,
is enhanced at an intermediate noise strength. Coherence resonance denotes the
maximum regularity of noise-induced oscillations without an external driving force
at a non-zero noise strength.
The investigation of delay differential equations has become a central topic in cur-
rent research. Time delay is a proper description for many processes in science.
Some examples from very different fields are presented in [8], e.g. population dy-
namics, chemical reactions, or lasers. A delay differential equation increases the
dimension of the phase space to infinity [9], in contrast to an ordinary differential
equation, so the initial condition has to be specified in a time interval (”history
function”) rather than at a single time (single initial value). Analytical studies are
hampered as a result.
Time-delayed feedback control [10] was suggested as an improved concept for chaos
control [11, 12]. This method (also known as Pyragas control) has become very
popular and has been applied in many different areas of research: stabilisation of
unstable fixed points and periodic orbits [13–16], various applications to experi-
mental setups [17–19], mathematical theorems [20–22], even in fluid dynamics [23]
and quantum systems [24]. Also in the context of controlling nonlinear stochastic
systems time-delayed feedback control has been applied successfully [25, 26].

P. M. Geffert, Stochastic Non-Excitable Systems with Time Delay,
BestMasters, DOI 10.1007/978-3-658-09295-5_1, © Springer Fachmedien Wiesbaden 2015



2 Chapter 1 Introduction

The studies of networks has attracted large attention because of the potential ap-
plication in many fields of research [27, 28]. Coupling terms with time delay are
a convenient way to describe for example the finite signal transmission between
nodes of the network. The type of coupling or the suitable choice of the coupling
parameters plays an important role in studies on synchronisation [29–34], in con-
nection with chaos [35, 36] or with the aim to stabilize periodic orbits [37, 38]. The
influence of delayed-coupling in systems with noise was investigated for neuronal
systems [39–42] and coupled lasers [43–45].

In this thesis, we want to investigate the interplay between noise and time-delay in
Hopf normal forms (Stuart-Landau oscillators). More precisely, we are interested in
the interplay or the possible modulation of the dynamical system by time-delayed
coupling and noise.
In chapter 2, a single Hopf normal form with a random force term is investi-
gated. We start with the bifurcation and linear stability analysis of the determin-
istic model. Then we add noise to the system and apply statistical linearisation
techniques to obtain analytical expressions for the study of the noise effects. To
conclude this chapter, we suggest a new quantity to uncover the mechanism of
coherence resonance in non-excitable systems.
Chapter 3 contains the investigations on the stochastic Hopf normal form with
time-delayed feedback. As in chapter 2, we start with a deterministic bifurca-
tion and stability analysis. Then we consider the stochastic time-delayed system.
A multiple scale perturbation expansion is developed to obtain an analytical ex-
pression for the stationary amplitude probability distribution. The modulation of
coherence resonance and its mechanism in the presence of time delay is discussed.
In chapter 4 we will try to extend the methods, developed in the chapters 2 and
3, to coupled Hopf normal forms for the investigations of noise effects.
Chapter 5 gives a summary of this thesis and chapter 6 provides an outlook, where
ideas and literature is suggested for the investigation of the noise effects in network
motifs or even large networks of coupled Hopf normal forms, which is beyond the
scope of this thesis.
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Chapter 2

Stochastic effects in nonlinear
systems

Oscillations are a frequently studied phenomenon in science. Examples of this
widespread behaviour range from economy to natural sciences. Neurons also ex-
hibit oscillatory properties. The Hodgkin-Huxley model [46] and the FitzHugh-
Nagumo model [47, 48] belong to the most famous models to describe the dynamics
of neurons. The FitzHugh-Nagumo model is used more widely, because the calcu-
lations for large networks of neurons are easier to handle with this system. It is
also the prototype of an excitable system [49].
Excitable systems can be described by three different states: a rest state, an ex-
cited state and a refractory phase. If the system is perturbed sufficiently above a
certain threshold, the trajectory is kicked out of a locally stable fixed point (rest
state) and makes a long excursion through the phase space emitting a spike (ex-
cited state). After the excursion the trajectory moves back to the stable fixed point
(refractory phase). Such a perturbation can be realised by noise. Noise-induced
oscillations can be found in excitable system (in the excitable regime), as already
mentioned, but also in system close to bifurcations (non-excitable systems). The
latter will be considered in this work.
A famous example for a non-excitable system is the Van der Pol model [50], which
is also the prototype a nonlinear oscillator. The behaviour of this system can be
divided into two parameter regions: in one parameter region the oscillator shows
damped oscillations, whereas the other regime is characterised by self-sustained
oscillations. To change from one regime to the other, the system undergoes a Hopf
bifurcation. A generic model to describe the behaviour of non-excitable systems
close to a Hopf bifurcation is the Hopf normal form, which is also known under
the name Stuart-Landau oscillator.

In this thesis, a Hopf normal form with a random force and time-delayed coupling
term is studied. Before we investigate the full stochastic and time-delayed dynam-
ics, we start with a single oscillator system with noise in this chapter. First, we
will understand the deterministic behaviour of our system.

P. M. Geffert, Stochastic Non-Excitable Systems with Time Delay,
BestMasters, DOI 10.1007/978-3-658-09295-5_2, © Springer Fachmedien Wiesbaden 2015



4 Chapter 2 Stochastic effects in nonlinear systems

2.1 Deterministic dynamics

The deterministic equation of motion reads

ż(t) = (λ+ iω0 − a|z(t)|2 − b|z(t)|4)z(t). (2.1)

z(t) is a complex variable, λ denotes the bifurcation parameter, and ω0 is the in-
trinsic frequency of the system. The real parameters a and b are used to distinguish
between the supercritical (a = 1, b = 0) and the subcritical (a = −1, b = 1) Hopf
normal form.
The complex variable z can be expressed in polar coordinates, z = reiφ (r ≥ 0), and
decomposed into its real and imaginary part. We obtain the following equations.

ṙ = λr − ar3 − br5, (2.2)

φ̇ = ω0. (2.3)

For the bifurcation diagram of the supercritical Hopf normal form, we set a = 1
and b = 0. The stationary solution or fixed point (ṙ = 0) of Eq. (2.2) is given by

r∗1 = 0. (2.4)

For λ > 0 there exists a periodic solution (limit cycle)

z2 = r∗2e
iωt with r∗2 =

√
λ. (2.5)

For the subcritical Hopf normal form, we set a = −1 and b = 1. Then the fixed
point is

r∗1 = 0, (2.6)

and the periodic solutions are

r∗2 =

√
1 +

√
1 + 4λ

2
, r∗3 =

√
1−√

1 + 4λ

2
. (2.7)

Now we have to investigate the stability of the fixed point r∗ and the limit cycles
and, therefore, we make a linear stability analysis [51].
We consider a dynamical system described by the differential equation ẋ = f(x),
where x represents the dynamical variable and f(x) is some nonlinear function of
this variable. This system will be linearised in the vicinity of its fixed point x∗

δx = x− x∗, (2.8)

where δx denotes a small deviation. We are interested in the time evolution of
these deviations, so we derive a differential equation

δẋ = ẋ− ẋ∗ = f(x)− f(x∗) = f(x), (2.9)



Chapter 2 Stochastic effects in nonlinear systems 5

where we used ẋ∗ = f(x∗) = f(x)|x=x∗ = 0. We can rewrite f(x) = f(x∗+ δx) and
perform a Taylor series expansion for small deviations δx around the fixed point
x∗ and we find

δẋ = f(x∗) +
d

dx
f(x)

∣∣∣∣
x=x∗

δx+O(δx2)

≈ d

dx
f(x)

∣∣∣∣
x=x∗

δx. (2.10)

Equation (2.10) is a differential equation for the behaviour of a system in the
vicinity of a fixed point. This problem can be solved using an exponential ansatz for
the deviations δx ∝ eΛt. More generally, in n dimensions, d

dx
f(x)

∣∣
x=x∗ is replaced

by the Jacobian matrix Df , so we have to deal with an eigenvalue problem of the
Jacobian.
For the fixed point r∗1 (Eqs. (2.4, 2.6)) we find that it is stable for λ < 0 and
becomes unstable for λ > 0.
For periodic orbits, such as limit cycles, Floquet theory answers the question as
to whether a periodic state is stable or unstable, because in this case the Jacobian
matrix is in general time-dependent. For the Stuart-Landau oscillator this time
dependence of the Jacobian matrix vanishes, so it is possible to perform the linear
stability analysis analytically.
We obtain for the supercritical case(

δṙ

δφ̇

)
=

(
λ− 3r2 0

0 0

)∣∣∣∣
r∗

(
δr
δφ

)
=

( −2λ 0
0 0

)
︸ ︷︷ ︸

M

(
δr
δφ

)
. (2.11)

The eigenvalues of the Matrix M are the Floquet exponents Λ:

⇒ Λ =

{
0 Goldstone mode (invariance of translation along the limit cycle)

−2λ
.

(2.12)
Hence the limit cycle, which exists for λ > 0 (see Eq. (2.5)), is stable.
For the subcritical Hopf normal form we have(

δṙ

δφ̇

)
=

(
λ+ 3r2 − 5r4 0

0 0

)∣∣∣∣
r∗

(
δr
δφ

)

=

(
λ+ 3

(
1±√

1+4λ
2

)
− 5

(
1±√

1+4λ
2

)2

0

0 0

)
︸ ︷︷ ︸

M

(
δr
δφ

)
, (2.13)

⇒ Λ =

{
0 Goldstone mode

λ+ 3
(

1±√
1+4λ
2

)
− 5

(
1±√

1+4λ
2

)2 . (2.14)
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The limit cycle with radius r∗3 (Eq. (2.7)) exists for λ ∈ [−1
4
, 0], and is unstable

because the Floquet exponent

Λ = λ+ 3

(
1−√

1 + 4λ

2

)
− 5

(
1−√

1 + 4λ

2

)2

= −1− 4λ+
√
1 + 4λ (2.15)

is always positive for −1
4
< λ < 0 since

1 + 4λ > (1 + 4λ)2

⇔ 4 < 8 + 16λ
⇔ 0 < 1 + 4λ (λ < 0).

(2.16)

However, the limit cycle with radius r∗2 (Eq. (2.7)), which exists for λ ∈ [−1
4
,∞],

is stable because the corresponding Floquet exponent

Λ = λ+ 3

(
1 +

√
1 + 4λ

2

)
− 5

(
1 +

√
1 + 4λ

2

)2

= −1− 4λ−√
1 + 4λ (2.17)

is negative for λ > −1
4
.

Figure 2.1: Deterministic bifurcation diagram; solid lines correspond to
stable focus/limit cycle, dashed lines to unstable ones.
(a) supercritical case (a = 1, b = 0), see Eqs. (2.4, 2.5, 2.12),
(b) subcritical case (a = −1, b = 1), see Eqs. (2.6, 2.7, 2.15,
2.17).

In Fig. 2.1a) for λ < 0 we have a stable focus, which loses its stability via a
supercritical Hopf bifurcation at λ = 0. For λ > 0 a stable limit cycle and an
unstable focus coexist. In Fig. 2.1b) we also have a stable focus for λ < 0, which
undergoes a subcritical Hopf bifurcation at λ = 0. This Hopf bifurcation gives rise
to an unstable limit cycle. At λ = −0.25 a saddle-node bifurcation of limit cycles
takes place and a stable limit cycle is born. The system is bistable for values of
λ ∈ [−0.25, 0].
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2.2 Stochastic dynamics

An additional noise term in the dynamical equations leads to many new dynamical
features [1, 49], e.g. noise-induced oscillations. For example, a system in the regime
of a deterministically stable focus is influenced by noise in such a way that the
trajectory is kicked out of the focus and shows random motion around it. Adding
a random force term to Eq. (2.1), we obtain

ż(t) = (λ+ iω0 − a|z(t)|2 − b|z(t)|4)z(t) +
√
2Dξ(t). (2.18)

D ≥ 0 describes the strength of the fluctuations (noise strength), whereas ξ(t) ∈ C

denotes the random variable. Here Gaussian white noise is used with the following
properties

〈ξ(t)〉 = 0, 〈ξ(t)ξ∗(t′)〉 = 2δ(t− t′). (2.19)

The white noise is usually used for describing an unknown perturbation, where all
frequencies contribute equally. This can be shown via Fourier transform (Wiener-
Khinchin theorem), where the power spectral density is a constant function [53].
For the investigations of stochastic systems we have to adapt our methods, be-
cause we are dealing with random variables. Their properties can be described by
probability distributions. Therefore, the deterministic concepts like bifurcations
or attractors cannot be applied, or have to be modified (see, e.g. stochastic bifur-
cations).
To calculate the probability distribution for our dynamical system (Eq. (2.18)), we
derive the corresponding Fokker-Planck equation. This computation can be found
in many textbooks, e.g. [53–55]. The Fokker-Planck equation for the amplitude r
and phase φ (z is decomposed in polar coordinates) corresponding to Eq. (2.18)
is:

∂tP = ∂r

((
−λr + ar3 + br5 − D

r

)
P +D∂rP

)
+ ∂φ

(
−ω0P +

D

r2
∂φP

)
(2.20)

where P (r, φ) is the probability density. A detailed derivation of Eq. (2.20) is
given in the Appendix A.
By using the spherical symmetry of the deterministic system, we neglect the deriva-
tives with respect to the phase variable (∂φP = 0). Furthermore, we are only
interested in the stationary behaviour of our system, therefore, we have ∂tP = 0.
We obtain the stationary amplitude probability distribution

P (r) = Nr exp

(
r2

D

(
λ

2
− ar2

4
− br4

6

))
, (2.21)

where N is the normalisation constant and given by

N =

(∫ ∞

0

r exp

(
r2

D

(
λ

2
− ar2

4
− br4

6

))
dr

)−1

. (2.22)
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2.3 Stochastic bifurcations

In deterministic systems, a bifurcation is a sudden change of the behaviour of the
system after varying a certain system parameter, which is the so-called bifurcation
parameter. An example was shown in the beginning of this chapter, where λ is the
bifurcation parameter and the system undergoes a Hopf bifurcation, which means
a change from damped oscillations to self-sustained oscillations (Eq. (2.1) and Fig.
2.1).
In a system with noise (stochastic system), the deterministic concept of bifurcation
theory cannot be directly applied but must be adapted. Here the noise intensity D
works as the control- or bifurcation parameter. Following [3] there are two types of
stochastic bifurcations: the phenomenological bifurcation (P-bifurcation) denotes
a change in the shape of the probability distribution, e.g. from unimodal to a
bimodal shape. The other type is the dynamical bifurcation (D-bifurcation) which
occurs, when the largest Lyapunov exponent becomes positive as a function of the
noise intensity. The latter will not be considered in this work.
There are many applications and investigations on stochastic bifurcations and
noise-induced transitions: studies on generic models [56, 57], biological and chem-
ical systems [58, 59] and experimental and theoretical investigations in lasers [60].
Many further examples can be found in [2]. For a generalised Van der Pol model,
the stochastic P-bifurcation was investigated in [61, 62].
First, we will investigate the supercritical case (a = 1, b = 0) for our system:
according to Eq. (2.21) the probability distribution is given by

P (r) = Nr exp

(
−W (r)

D

)
(2.23)

where W (r) is the potential

W (r) =
r4

4
− λr2

2
. (2.24)

Here we follow [61, 62] for further steps of investigation. We are looking for the
extrema of the distribution

d

dr
P (r) = N exp

(
−W (r)

D

)(
1− r

D

d

dr
W (r)

)
= 0. (2.25)

A stochastic P-bifurcation takes place if the number of extrema changes. The
relevant part from Eq. (2.25) reads

1− r

D

d

dr
W (r) = 1− r4

D
+

λr2

D
. (2.26)

The extrema of the distribution are the real-valued, positive roots of Eq. (2.26).
It is

D − r4 + λr2 = 0 → f(x) = x2 − λx−D = 0 (2.27)
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with the substitution x = r2. The number of extrema changes if f(xc) = f ′(xc) =
0, where xc denotes the corresponding extremum. So f ′(x) reads

2x− λ = 0, → xc =
λ

2
(2.28)

Inserting this result into Eq. (2.27), we find that

D = −λ2

4
. (2.29)

Equation (2.29) shows that a transition will only take place for negative noise
intensities, but D has to be positive. That implies that a stochastic P-bifurcation
of the amplitude probability distribution cannot occur in the supercritical case.
This is shown in Fig. 2.2, where the number of the maxima does not change by
increasing the noise intensity.

Figure 2.2: Stationary amplitude probability distribution for the super-
critical case, analytically (solid, according to Eqs. (2.23,
2.24)) and numerically (dashed) calculated.
Parameters: ω0 = 2π, λ = −0.01.

For the subcritical normal form (a = −1, b = 1) we follow [63] for another way of
the calculation. The probability distribution reads

P (r) = Nr exp

(
r2

D

(
λ

2
+

r2

4
− r4

6

))
, (2.30)

where N represents the corresponding normalisation constant (see Eq. (2.22)). We
present the detailed calculation for the bifurcation lines in the Appendix B:
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a condition for the variable r2 is found

r2 = −9D + λ

6λ+ 2
> 0 and r ∈ R. (2.31)

Equation (2.31) shows that only values of λ < 0 satisfy the condition. The bifur-
cation lines are represented by

D1,2 =
1

27

(
−9λ− 2

(
1±

√
(1 + 3λ)3

))
. (2.32)

This result can be seen in the following stochastic bifurcation diagram.

Figure 2.3: Stochastic bifurcation diagram following from Eq.(2.32) for
the subcritical case (a = −1, b = 1). The dashed line corre-
sponds to the boundary between deterministic monostability
(region 1) and bistability (region 2). The solid line denotes
the parameter line for the fixed deterministic bifurcation pa-
rameter λ. The shaded region denotes the parameter regime
where the distribution has a bimodal shape. Outside of this
region we have a unimodal distribution.

Figure (2.3) shows the stochastic bifurcation diagram for our noisy system: the
shaded region denotes the parameter values, where the amplitude probability dis-
tribution has a bimodal shape. The dashed vertical line describes the border
between the two different deterministic regimes corresponding to λ: in the left
part (region 1) there is only a stable focus, whereas in the right part (region 2) the
deterministic system is bistable, because additionally a stable limit cycle coexists
with the stable focus. The vertical solid line denotes the λ value of interest; for the
further investigations, λ = −0.26 is fixed, and we vary the noise intensity D. By
crossing the solid lines to enter or to leave the shaded region (parameter regime of
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Figure 2.4: Amplitude probability distribution (Eq. (2.30)) for the sub-
critical case for different noise strengths, analytically (solid)
and numerically (dashed) calculated.
Parameters: λ = −0.26, ω0 = 2π.

bimodality), we observe a stochastic P-bifurcation.
Figure 2.4 shows the probability distribution for values of the noise intensity D
in and outside from the region of bimodality. Furthermore, the analytical result
and the numerics for the amplitude probability distribution are shown: they are
in excellent agreement.
The discussion above was carried out for additive white noise sources. An investi-
gation for coloured noise, additive and multiplicative, can be found in [64], where
a Duffing-van der Pol model is investigated.

2.4 Coherence resonance

The presence of noise is usually unwanted because of its destructive character for
the deterministic dynamic. Nevertheless, noise can have a constructive effect in the
interplay with the nonlinearities of a dynamical system. A very well studied effect
is the stochastic resonance [4]: a weak periodic signal, which drives the dynamical
system, is enhanced by the noise. The counterintuitive aspect here is that the best
enhancement takes place at an intermediate non-zero noise strength.
Another phenomenon that is also related with the constructive role of the noise is
coherence resonance. In contrast to stochastic resonance, there is no external peri-
odic force present. This effect occurs from the intrinsic dynamic of the system; the
noise-induced oscillations become most regular at a finite non-zero noise strength.
Coherence resonance was investigated first by Gang et al. [5], who studied this phe-
nomenon in a generic model for a SNIPER (saddle-node infinite period) bifurcation
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(type I excitability). But their work was published with the title “Stochastic res-
onance without external periodic force”. The catchy name ”coherence resonance”
was invented by Pikovsky and Kurths, who investigated the FitzHugh-Nagumo
model (type II excitability), [6].
Coherence resonance was also investigated in a non-excitable system in [7, 61, 62].
[7] was a combined work with a laser experiment and theoretical modelling. In
the experiment, the authors investigated resonance effects caused by noise, setting
the laser close to a Hopf bifurcation. The theory was based on the estimate of a
Lorentzian spectrum. This suggestion was provided by the experiment and numeri-
cal simulations of a noisy Hopf normal form. With the help of the Wiener-Khinchin
theorem, the authors developed an amplitude approach to calculate measures of
coherence (see section 2.4.1). They found that coherence resonance occurs only in
the subcritical case. Therefore, we will not consider the supercritical case in the
following investigations.
Coherence resonance can be observed also below other types of bifurcations, where
characteristic signatures of noisy precursors occur [65, 66], in lasers [7, 45, 67, 68],
and neural systems [6, 39, 49, 69], just to mention a few examples. We will now
investigate the same theoretical model as used in [7], but our starting point for the
calculations is based on the generic Eq. (2.18). Using statistical linearisation tech-
niques, we are able to derive analytical expressions for the measures of coherence.
This measures will be introduced in the following section.

2.4.1 Measures of coherence

Usually, the following three measures are used to quantify the degree of regularity
of the oscillations:

• The signal-to-noise-ratio (SNR)

β =
H

Δω/ωp

. (2.33)

β is calculated from the power spectral density (see Fig. 2.5) and is usually
used in laser physics. It was introduced by Haken, see [5].

• The normalised fluctuations of the interspike interval (ISI)

R =

√
〈t2p〉 − 〈tp〉2

〈tp〉 . (2.34)

In excitable systems, it is useful to look at the time series and to determine
the statistics of spikes [6]. For a non-excitable system, this measure is not
used, because there are no spikes in the sense of an excitation.

• The correlation time

tcor =
1

Ψ(0)

∫ ∞

0

|Ψ(s)|ds, (2.35)
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Figure 2.5: Example of a power spectral density.

which is calculated from the autocorrelation function

Ψ(s) = 〈[x(t+ s)− 〈x〉][x(t)− 〈x〉]〉. (2.36)

Ψ(0) = σ2 is the variance and 〈. . .〉 denotes the ensemble average. This
measure was introduced by Stratonovich [70] and shows, how fast the cor-
relation decays in a stochastic process. For a linear stochastic process the
autocorrelation function is of the form Ψ(s) ≈ exp(− 2

π
s

tcor
) cos(ωs), see Fig.

2.6 [52, 77].

These measures are usually plotted as a function of the noise strength. If these
curves have an extremum, the system will show (in nearly all cases, see [7] for an
exception) coherence resonance. Now we want to give analytic expressions of these
measures for our system (Eq. (2.18)). To reach this goal we have to simplify our
nonlinear Eq. (2.18) by using suitable methods.
We will use the concept from [71] which is known as statistical linearisation. The
nonlinear terms from Eq. (2.18) (subcritical case a = −1, b = 1) |z(t)|2z(t) −
|z(t)|4z(t) are replaced by an effective linear term αz(t) [63], where α is a constant.
This effective term is estimated under the condition that the deviations due to the
nonlinearities are minimized〈∣∣(|z(t)|2z(t)− |z(t)|4z(t)− αz(t)

)∣∣2〉 → min. (2.37)
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Figure 2.6: Autocorrelation function and the exponential decaying enve-
lope, numerically calculated (Eq. (2.18)).
Parameters: a = −1, b = 1, ω0 = 2π, D = 0.05, λ = −0.26.

where 〈. . .〉 = ∫∞
0

. . . P (r)dr denotes the expectation value due to the stationary
amplitude probability distribution (Eq. (2.30)). Variation with respect to α gives

0 =
d

dα

〈∣∣(|z(t)|2z(t)− |z(t)|4z(t)− αz(t)
)∣∣2〉

=
〈−z∗(t)

(|z(t)|2z(t)− |z(t)|4z(t)− αz(t)
)− cc.

〉
=
〈−2(|z(t)|4 − |z(t)|6 − α|z(t)|2)〉 . (2.38)

Thus, we obtain for the effective coefficient

α =
〈|z(t)|4〉 − 〈|z(t)|6〉

〈|z(t)|2〉 . (2.39)

Other approximations are used in this way to replace the nonlinearities by their
mean value, assuming a Gaussian distribution [52, 62, 72]. In the context of
such a self-consistent mean-field approximation, it is possible to determine the
mean value self-consistently and also analytically, whereas the coefficient α (Eq.
2.39) has to be determined numerically. The self-consistent mean-field calculations
captures the nonlinear effects of the underlying system quite well [52], but are also
limited to certain parameter values and only show qualitative agreement with the
numerics when nonlinear terms of high order contribute to the dynamics, because
the underlying distribution is no longer a Gaussian distribution [73].
After the statistical linearisation of Eq. (2.18), we obtain a linear stochastic process
(Ornstein-Uhlenbeck process). Now we can compute the power spectral density
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and the measures of coherence analytically [53]:

ż(t) = (λ̃+ iω0)z(t) +
√
2Dξ(t), (2.40)

where λ̃ = λ+α denotes the effective system parameter. We decompose Eq. (2.40)
into real and imaginary parts (z = x+ iy) and obtain a two-dimensional system:(

dx
dy

)
= −

( −λ̃ ω0

−ω0 −λ̃

)
︸ ︷︷ ︸

=: A

(
x
y

)
dt+

( √
2D 0

0
√
2D

)
︸ ︷︷ ︸

=: B

(
dW1

dW2

)
. (2.41)

We compute the power spectral density

S(ω) = (A+ iω)−1BBT (AT − iω)−1. (2.42)

For the x-variable, we find

Sxx(ω) = D

(
1

(ω − ω0)2 + λ̃2
+

1

(ω + ω0)2 + λ̃2

)
. (2.43)

This gives us expressions for the peak height H, the full width at half maximum
2Δω and, therefore, also for the signal-to-noise ratio β, which are:

H =
D

λ̃2
, 2Δω = −2λ̃, λ̃ < 0, (2.44)

→ β =
H

Δω
= −D

λ̃3
. (2.45)

The autocorrelation function can be calculated via the Wiener-Khinchin theorem
from the power spectral density (Eq. (2.43)). Here it is calculated from the solution
of Eq. (2.41) [53]:

X(t) = exp(−At)X(0) +

∫ t

0

exp[−A(t− t′)]B ξ(t′)dt′. (2.46)

Using the stationary solution (t → ∞)

Xs(t) =

∫ t

−∞
exp[−A(t− t′)]B ξ(t′)dt′, (2.47)

we can calculate the autocorrelation function in the following way

Ψ(s) =
〈
[Xs(t− s)− 〈Xs(t− s)〉][Xs(t)− 〈Xs(t)〉]T

〉
= 〈Xs(t− s)Xs(t)

T 〉, (2.48)

where Xs =

(
x
y

)
and the zero mean of the stationary solution 〈Xs(τ)〉 = 0 (τ

represents an arbitrary time variable here).
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Therefore, we obtain

Ψ(s) =

〈∫ t−s

−∞
exp [−A(t− s− t1)]B ξ(t1)dt1

∫ t

−∞
ξT (t2) B

T exp [−AT (t− t2)]dt2

〉

=

∫ t−s

−∞

∫ t

−∞
exp [−A(t− s− t1)]B

〈
ξ(t1)ξ

T (t2)
〉︸ ︷︷ ︸

δ(t1−t2)

BT exp [−AT (t− t2)] dt2 dt1

=

∫ t−s

−∞
exp [−A(t− s− t1)]BBT exp [−AT (t− t1)] dt1. (2.49)

For the x component, we thus find

Ψxx(s) =
−D

λ̃
eλ̃s cos(ω0s). (2.50)

So we can calculate the correlation time

tcor =
1

Ψxx(0)

∫ ∞

0

|Ψxx(s)|ds

=

∫ ∞

0

∣∣∣eλ̃s cos(ω0s)
∣∣∣ ds

=

∫ ∞

0

eλ̃s |cos(ω0s)| ds

≈ 2

π

∫ ∞

0

eλ̃sds

= − 2

πλ̃
, (2.51)

where we used the filling factor 1
π

∫ π
2

−π
2
cos(φ)dφ = 2

π
[52, 77].

The results for the four measures (peak height, width, signal-to-noise ratio, and
correlation time) as a function of the noise intensity are shown in Fig. 2.7:
the peak height, the signal to noise ratio and the correlation time exhibit non-
monotonic behaviour and a maximum, whereas the width shows a minimum cor-
responding to the optimal noise intensity at which coherence resonance can be
observed. All four measures show excellent agreement with the numerics; the de-
viations were caused by the statistical linearisation, which minimizes the error
between the non-linear and linear equation, but obviously there is still a small
difference.
So far, we used the linearisation based on [71]. In [7, 62] a similar approach (am-
plitude approach) was used, also with a good agreement with the numerics. To
calculate the power spectral density and the signal to noise ratio, other methods
can also be used. In [74] the calculation is based on a linear-response theory. The
analytical results of this powerful technique also show excellent agreement with
the numerics.
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Figure 2.7: Measures of coherence as functions of the noise strength:
a) Peak height H (Eq. (2.44)), b) width at half maximum
Δω (Eq. (2.44)), c) Signal-to-noise ratio β (Eq. (2.45)), d)
correlation time tcor (Eq. (2.51)). The solid lines correspond
to the analytical calculation and the dashed lines to numeri-
cal simulations. Parameters: λ = −0.26, ω0 = 2π.

2.4.2 Mechanism of coherence resonance

In excitable systems, the mechanism of coherence resonance can be explained by
two characteristic time scales and their different behaviour by increasing the noise.
Here we follow the explanation from [6]: the duration of a spike tp = ta + te con-
sists of the activation time ta, which denotes the time to excite the system out
of the fixed point, and the excursion time te, which describes the time passing by
during the phase space excursion back to the rest state. For small noise intensities,
the activation time dominates the process, because excitation from the rest state
above the threshold does not occur that often and fluctuates strongly. So we have
ta 
 te and, therefore, tp ≈ ta with strong variance. For high noise strengths, the
activation time is negligible and we have tp ≈ te. With increasing noise intensity,
the activation time decreases and the excitation time increases. At an intermedi-
ate noise strength the activation time is small and the excursion time is still quite
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regular. The system can perform a regular motion, resulting in a minimum of the
fluctuations of the pulse duration (see Eq. (2.34)).
For non-excitable systems, we suggest another mechanism, which connects the con-
cept of stochastic bifurcations with coherence resonance [62]. In Fig. 2.8 it can be

Figure 2.8: Correlation time for different values of λ, numerically calcu-
lated (Eq. (2.18)). Parameters: a = −1, b = 1, ω0 = 2π.

observed that the effect of coherence resonance is most pronounced in the regime
of a bimodal amplitude probability distribution. The reason is the following: for
low noise intensities we only find a distribution with a high peak in the vicinity
of the origin: the focus is merely shifted a bit. High noise intensities correspond
to a very broadened distribution, the dynamic is smeared out in the phase space.
Thus, in both cases one cannot observe regular motion of the trajectory. For in-
termediate noise intensities, the distribution becomes bimodal. Now there are two
preferred regions for the trajectory, so it can perform a regular motion between
this two regions. The left peak correspond again to the shifted focus, the right one
visualizes the ghost of the limit cycle and as a result the motion becomes most
coherent. This leads to coherence resonance.
Numerical simulations and the analytical calculations show that coherence res-
onance also occurs in the regime where no stochastic P-bifurcation takes place
(λ < −0.33), although much less pronounced, see Figs. 2.3 and 2.8. In this
regime, the probability distribution is smeared out, so no bimodal shape is ob-
served.
For the explanation we investigate the part of the probability distribution, which
transcends the radius where the saddle-node bifurcation of limit cycles takes place
in the deterministic case (D = 0), see Fig. 2.1.
The noise can somehow visualize the ghost of the deterministic limit cycle before
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this saddle-node bifurcation takes place. The quantity

g(D) =

∫ ∞

r0

P (r)dr (2.52)

measures that part of the distribution (Eq. (2.30)), which exceeds the critical ra-

dius r0 =
√

1
2
, where the deterministically stable limit cycle is born; therefore, we

call g(D) the ghost weight. Note that the integral (Eq. (2.52)) has to be evaluated
numerically. Therefore, we use 100 values for the noise intensity D from the inter-
vall D ∈ [0.001, 0.1] with the stepsize ΔD = 0.001 and estimate the ghost weight.
It increases monotonically as a function of the noise, see Fig. 2.9. To see how
this quantity changes due to the noise intensity, we calculate the corresponding
derivative dg(D)

dD
. Then the derivative is plotted for different λ, in the regime of the

stochastic P-bifurcation and below this region, see Fig. 2.10.

Figure 2.9: Ghost weight g(D) (Eq. (2.52)) for different values of λ, cal-
culated from the corresponding probability distribution (Eq.
(2.30)).

In Fig. 2.10 we observe that the sharpest change of the ghost weight takes place
in the regime of the stochastic bifurcation. But a remarkably high change can
also be seen outside of this region. For this effect the interplay between the fo-
cus and the ghost of the stable limit cycle becomes important. With increasing
noise intensity, the system can be driven further away from the deterministically
stable focus located at the origin. Therefore, it will reach the critical radius r0 at
a certain noise strength; this can be visualised by the distribution. The presence
of the ghost of the stable limit cycle gives rise to a second preferred region in the
phase space, so the ghost weight rapidly increases at this noise strength, which
results in a pronounced peak in the derivative with respect to the noise intensity.
Figure 2.10 also shows that the most pronounced resonance-like behaviour occurs



20 Chapter 2 Stochastic effects in nonlinear systems

Figure 2.10: Derivative of the ghost weight g(D) (Eq. (2.52)) for differ-
ent λ, calculated from the corresponding probability distri-
bution (Eq. (2.30)).

close to the saddle-node bifurcation in the parameter regime where the stochastic
P-bifurcation takes place. For higher noise intensities, the change of the ghost
weight is very small, because the main part of the distribution has already passed
the critical radius.
Going further away from the saddle-node bifurcation of limit cycles, the resonance-
like peak in the derivative of the ghost weight decreases and is shifted to higher
noise intensities. The impact of the deterministically stable focus is getting stronger
by increasing λ to higher negative values, so more noise is needed to drive the sys-
tem to higher amplitudes. The attraction of the ghost of the limit cycle also
decreases by moving away from the bifurcation, therefore, the change of the ghost
weight is less pronounced. But it is still visible and shows the impact of the ghost,
which results also in a weak maximum for the correlation time tcor for values
far away from the saddle-node bifurcation and in the absence of the stochastic
P-bifurcation e.g. λ = −0.5, see Fig. 2.8.

In order to show that the ghost weight is not a unique measure of coherence, we
also calculated the ghost weight and the corresponding derivative for the super-
critical case according to the probability distribution given by Eq. (2.23). The
derivative of the ghost weight also exhibits a clear visible maximum close to the
supercritical Hopf bifurcation (Fig. 2.12), but we cannot observe coherence reso-
nance. The maximum of the derivative of the ghost weight is much smaller than for
the subcritical case (Fig. 2.14), but still visible. This is why we have to be careful
when using this measure. This can somehow be compared with the signal-to-noise
ratio in [7], where this measure shows a maximum also for the supercritical case.
But this result is caused by the competition of two monotonic increasing functions
and cannot be related to coherence resonance.
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Figure 2.11: Ghost weight (Eq. (2.52)) in the supercritical case for dif-
ferent values of λ, calculated from the corresponding prob-
ability distribution (Eqs. (2.23, 2.24)).

Figure 2.12: Derivative of the ghost weight (Eq. (2.52)) in the super-
critical case for different values of λ, calculated from the
corresponding probability distribution (Eqs. (2.23, 2.24)).
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Figure 2.13: Ghost weight (Eq. (2.52)) for the subcritical (solid lines,
a = −1, b = 1) and supercritical (dashed lines, a = 1, b = 0)
case for different values of λ. The corresponding probability
distributions are represented by Eq. (2.30) in the subcriti-
cal, and Eqs. (2.23, 2.24) in the supercritical case.

Figure 2.14: Derivative of the ghost weight (Eq. (2.52)) for the subcrit-
ical (solid lines, a = −1, b = 1) and supercritical (dashed
lines, a = 1, b = 0) case for different values of λ. The
corresponding probability distributions are represented by
Eq. (2.30) in the subcritical, and Eqs. (2.23, 2.24) in the
supercritical case.
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Therefore, it is very important to mention the fact that the ghost weight is not a
unique measure to detect coherence resonance. It will just be used for providing
an explanation of the mechanism of coherence resonance in non-excitable systems
in the absence of a stochastic P-bifurcation.
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Chapter 3

Time-delayed feedback in
nonlinear stochastic systems

In this chapter 1, we will discuss the stochastic Hopf normal form with time-delayed
feedback. We want to study the influence of the time delay upon stochastic P-
bifurcations and coherence resonance. First, as in chapter 2, a bifurcation and
stability analysis is performed for the deterministic system.

3.1 Deterministic dynamics

The subcritical Hopf normal form with time-delayed feedback reads

ż(t) = (λ+ iω0 + s|z(t)|2 − |z(t)|4)z(t)−K(z(t)− z(t− τ)). (3.1)

λ is the deterministic bifurcation parameter, ω0 is the intrinsic frequency and
z(t) ∈ C. K is the real-valued, positive coupling strength, τ describes the time
delay, which will be used in units of the intrinsic time scale T = 2π

ω0
. We set the

real-valued coefficient s > 0, which means that we restrict our investigations to
the subcritical case. As mentioned in [7] and as we showed in chapter 2, coherence
resonance only occurs in the subcritical Hopf normal form. The time-delayed
coupling term is of the form of Pyragas control [10].
We will follow the methods used in [15, 16, 63] for the bifurcation and stability
analysis. For the fixed point z∗(t) = 0 of Eq. (3.1), we find after linearisation
(compare section (2.1), z(t) ∝ eΛt) the characteristic equation

Λ = λ+ iω0 −K(1− exp(−Λτ)). (3.2)

The subcritical Hopf bifurcation takes place at purely imaginary eigenvalues Λ =
iΩ. We decompose the equation above into real and imaginary part and obtain

1The main part of this chapter was published as [63] and is reused with kind permission of The
European Physics Journal (EPJ) and Springer Science+Business Media.

P. M. Geffert, Stochastic Non-Excitable Systems with Time Delay,
BestMasters, DOI 10.1007/978-3-658-09295-5_3, © Springer Fachmedien Wiesbaden 2015
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the following conditions for the Hopf bifurcation

Ω = ω0 −K sin(Ωτ), (3.3)

λ = K(1− cos(Ωτ)). (3.4)

We observe that the Hopf bifurcation point is shifted to higher values of λ by
increasing τ up to a half integer values of the intrinsic time scale; by further in-
creasing, the bifurcation point moves back and reaches the original position at an
integer value. To visualise this effect, we compute an expression for the represen-
tation in the (λ, τ)-plane.
Solving Eq. (3.3) for Ωτ yields

Ωτ = ± arccos

(
K − λ

K

)
+ 2πm (3.5)

with m ∈ Z. Using the trigonometric identity

cos2(Ωτ) + sin2(Ωτ) = 1, (3.6)

we obtain from Eqs. (3.3, 3.4)(
K − λ

K

)2

+

(
ω0 − Ω

K

)2

= 1. (3.7)

The solution for Ω reads

Ω = ω0 ∓
√
K2 − (K − λ)2. (3.8)

Combining Eqs. (3.5, 3.8), eliminating Ω and solving for τ yields the following
expression for the Hopf bifurcation lines

τh =
± arccos

(
K−λ
K

)
+ 2πm

ω0 ∓
√
K2 − (K − λ)2

. (3.9)

Next, we perform the bifurcation analysis for periodic states of rotating wave form

z(t) = r exp(iωt), (3.10)

where r denotes the positive amplitude and ω is the frequency. Inserting this
ansatz into Eq. (3.1), we obtain

−r4 + sr2 = −λ+K(1− cos(ωτ)), (3.11)

ω = ω0 −K sin(ωτ). (3.12)
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From Eq. (3.11) we find the limit cycles

r∗1 =

√
s+

√
s2 + 4(λ+K(cos(ωτ)− 1))

2
, (3.13)

r∗2 =

√
s−√

s2 + 4(λ+K(cos(ωτ)− 1))

2
. (3.14)

To investigate the influence of the delay to the saddle-node bifurcation of limit
cycles we rearrange Eq. (3.11) to

(
r2 − s

2

)2

= λ+
s2

4
−K(1− cos(ωτ)) (3.15)

and can observe that the right hand side of Eq. (3.15) has to be non-negative. So
the saddle-node bifurcation of limit cycles takes place under the condition

λ+
s2

4
−K(1− cos(ωτ)) = 0. (3.16)

At this bifurcation point, the amplitude of the periodic state reads

r =

√
s

2
. (3.17)

In the same way as for the fixed point z∗(t) = 0 we obtain from Eq. (3.12) and
Eq. (3.16) the saddle-node bifurcation lines

τsn =

± arccos

(
K−λ− s2

4

K

)
+ 2πm

ω0 ∓ 1
4

√
(8K − 4λ− s2)(4λ+ s2)

. (3.18)

The Hopf (Eq. (3.9)) and the saddle-node bifurcation lines (Eq. (3.18)) are pre-
sented in Fig. 3.1.
We observe that the positions, where the bifurcations take place, are shifted to
higher values of the bifurcation parameter λ by increasing the delay time τ . The
highest possible value of λ can be reached by an half integer delay time, whereas
for integer delays the original bifurcation scenario is achieved.
For higher delay times (τ > 2) the bifurcation scenario becomes more complicated.
The character of the Hopf bifurcation can change from subcritical to supercritical.
This aspect will be important in section 3.2.1. In the saddle-node bifurcation of
limit cycles two periodic solutions exist with equal frequency given by Eq. (3.12).
For higher delay times, more solutions arise from this equation, so we obtain at
these saddle-node bifurcations two periodic states with different frequencies. The
latter type of saddle-node bifurcation is named non-rigid bifurcation, whereas the
other one is called rigid bifurcation, see [63] for a detailed study. Furthermore, the
Hopf and saddle-node bifurcation lines can cross.
Now we want to investigate the stability of the fixed point. Equation (3.2) is a
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Figure 3.1: Hopf and saddle-node lines in the (λ, τ)-plane. Black: Hopf
bifurcation lines (dashed: subcritical bifurcation, solid: su-
percritical bifurcation). Grey: saddle-node bifurcation lines
(dashed: non-rigid bifurcation, solid: rigid bifurcation, see
[63] for a detailed study). The parameter regime of interest,
which is below the saddle-node bifurcation of the periodic
solutions, is slightly shaded. Parameters: K = 0.5, ω0 = 2π,
s = 1, for m = 0, 1, .., 6. Reused from [63] with kind permis-
sion of The European Physics Journal (EPJ).

transcendental equation for Λ and has an infinite number of solutions. For an
analytical expression we can write

Λl = λ+ iω0 −K +
1

τ
Wl [Kτ exp(−(λ+ iω0 −K)τ)] (3.19)

where Wl denotes the l-branch of the Lambert W-function [75]. The fixed point
z∗(t) = 0 is unstable, when the largest real part of Λl becomes positive.
Figure 3.2 displays the non-monotonic behaviour of the real part of Λl the as a
function of the delay time τ : for small τ the main branch (l = 0) dominates the
dynamics; further increasing of τ leads to more influence from the other branches.
At half integer delays the focus is more stable, because the delay shifts the bifur-
cation scenario further away to higher values of λ. When choosing integer delays
the focus becomes less stable in comparison to the half integer values and also to
smaller integer values. This will become important for the investigation of coher-
ence resonance, see section (3.2.3).
Next, we discuss the stability of the periodic states by linearising around the orbit:

z(t) = (r + δr) exp(iωt+ iδφ). (3.20)
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Figure 3.2: Real part of Λl according to Eq. (3.19). The main branch
of the Lambert W-function (l = 0) is presented by the big
dots. Only the branches for l = −7, .., 7 are shown here.
Parameters: λ = −0.26, K = 0.5, ω0 = 2π.

Decomposing Eq. (3.1) in polar coordinates, the linearised system reads

d

dt

(
δr(t)
δφ(t)

)
=

(
λ− 5r4 + 3sr2 −K −Kr sin(ωτ)

K
r
sin(ωτ) −K cos(ωτ)

)(
δr(t)
δφ(t)

)

+

(
K cos(ωτ) Kr sin(ωτ)
−K

r
sin(ωτ) K cos(ωτ)

)(
δr(t− τ)
δφ(t− τ)

)
. (3.21)

As in chapter 2, we make an exponential ansatz for the small deviations (δr, δφ ∝
exp(Λt)). So we obtain the following eigenvalue problem for Λ∣∣∣∣

(
A B
C D

)∣∣∣∣ = 0 (3.22)

with

A =− 5r4 + 3sr2 −K(1− cos(ωτ) exp(−Λτ)) + λ− Λ,

B =−Kr sin(ωτ)(1− exp(−Λτ)),

C =
K

r
sin(ωτ)(1− exp(−Λτ)),

D =−K cos(ωτ)(1− exp(−Λτ))− Λ. (3.23)

Now we have to insert the limit cycles from the Eqs. (3.13, 3.14) and to calculate
the largest Floquet exponent. We have to do the calculation numerically because
the characteristic equation is of transcendental type.
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It turns out that the limit cycle corresponding to Eq. (3.13) is stable, the largest
Floquet exponent is negative for different choices of τ and K, whereas the limit
cycle corresponding to Eq. (3.14) is unstable, because the largest Floquet exponent
is always positive.
It appears that this type of feedback term does not change the stability of the
orbits, just the bifurcation scenario is shifted, see Fig. 3.1. For a change of the
stability, a complex coupling parameter is needed, where a suitable choice of the
coupling phase can lead to the stabilisation of an unstable orbit [16, 21].

3.2 Time-delayed feedback and noise

As shown in the previous section, the dynamical behaviour of nonlinear systems
with time delayed feedback becomes more complex. Nevertheless, time-delayed
feedback can be used to control the noise-induced properties of a system by a
suitable choice of the time delay. This has been investigated in excitable neuronal
systems with Gaussian white noise [25, 26] or correlated noise [76], non-excitable
systems [52, 77], lasers [78, 79] or semiconductor structures [80–82]. The impact
of a nonlinear coupling term was considered in [83].
Here, we want to investigate the modulation of coherence resonance in non-excitable
systems, but we use different methods to achieve an analytical treatment as it was
done in [84]. Our full stochastic delay differential equation now reads

ż(t) = (λ+ iω0 + s|z(t)|2 − |z(t)|4)z(t)−K(z(t)− z(t− τ)) +
√
2Dξ(t) (3.24)

where D ≥ 0 is the noise intensity and ξ(t) describes Gaussian white noise.
Numerical simulations of Eq. (3.24) for different delay times show a modulation
of the probability distribution and the correlation time, see Figs 3.3 and 3.4. The
amplitude probability distribution is changed in such a way that the bimodality
vanishes for half integer delays. For integer delay times the bimodality is changed
slightly so that more noise is needed to reach the same shape as for the non-
delayed case. The result for the correlation time is similar to previous studies on
coherence resonance in excitable systems [25, 26]: for the half integer delay times,
the correlation time is very small, the effect of coherence resonance is suppressed.
For integer delays, the effect is enhanced, one can observe a higher correlation time
and a small shift of the optimal noise intensity.
As for the non-delayed case, one wants to have some analytical expressions for the
measures of coherence and the probability distribution. But Eq. (3.24) describes
a non-Markov process caused by the delay. More precisely infinite dimensional
function spaces related with delay differential equation [9] make a direct calculation
of the probability distribution as in section 2.2 (see also Appendix A) very difficult.
There have been many studies to obtain the probability distribution for systems
with time delay analytically. For linear systems, it is even possible to derive an
exact expression [85]. Many other approximations are developed as small delay
approximations [86–88] or multivariate Fokker-Planck equations for data analysis
of nonlinear systems [89], but are mainly performed for linear equations.
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Figure 3.3: Numerical simulation of the amplitude probability distribu-
tion for different delay times, based on Eq. (3.24).
Parameters: λ = −0.26, s = 1, ω0 = 2π,K = 0.5, D = 0.015.

Figure 3.4: Numerical simulation of the correlation time for different de-
lay times, based on Eq. (3.24).
Parameters: λ = −0.26, s = 1, ω0 = 2π, K = 0.5.
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In the next section, the stochastic delay differential equation is reduced to an
effective stochastic differential equation. The mathematical path for such a centre
manifold reduction is shown in [90]. We will present a different way in terms of a
multiple scale perturbation expansion [63, 91, 92].

3.2.1 Multiple scale perturbation expansion

We start with the assumption that the deterministic part of Eq. (3.24) for D = 0
undergoes a Hopf bifurcation

λ0 = K(1− cos(Ωτ)), Ω = ω0 −K sin(Ωτ). (3.25)

The linear deterministic part of Eq. (3.24) describes harmonic oscillations of the
form

z(t) = A exp(iΩt). (3.26)

We are interested in the dynamics close to the bifurcation (λ = λ0 + δλ). Thus, a
small expansion parameter ε is introduced and we make an amplitude modulated
ansatz

z(t) = εA(ε4t) exp(iΩt). (3.27)

All parts of Eq. (3.24) contribute equally to the stochastic dynamics. Therefore,
we scale δλ → ε4δλ, s → ε2s, and D → ε6D. The noise is scaled as follows

〈ξ(ε4t)ξ∗(ε4t′)〉 = 2δ(ε4(t− t′))

=
2

ε4
δ(t− t′)

=
1

ε4
〈ξ(t)ξ∗(t′)〉 (3.28)

→ ξ(ε4t) =
1

ε2
ξ(t). (3.29)

The delay term is expanded in a Taylor series; it will turn out that even the delay
contributes in the same way as the other parameters do:

A(ε4(t− τ)) = A(ε4t)− ε4τA
′
(ε4t) +O(τ 2), (3.30)

where A
′
(ε4t) denotes the derivative due to the slow time scale ε4t.

Inserting all this into Eq. (3.24) we obtain

ε exp(iΩt)(A(θ)iΩ + ε4A
′
(θ))

= (λ0 + ε4δλ+ iω0 + sε2|εA(θ)|2 − |εA(θ)|4)εA(θ) exp(iΩt)
− Kε exp(iΩt)(A(θ)− exp(−iΩτ)(A(θ)− ε4τA

′
(θ))) +

√
2Dε6ε2ξ(θ) (3.31)

where θ = ε4t denotes the slow time scale. We obtain terms of order ε and of
order ε5 (leading order). The terms of order ε fulfil the conditions for the Hopf
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bifurcation (see Eq. (3.25)):

iΩ = λ0 + iω0 −K(1− (cos(Ωτ)− i sin(Ωτ))). (3.32)

In leading order ε5 we get

exp(iΩt)A
′
(θ) = (δλ+ s|A(θ)|2 − |A(θ)|4)A(θ) exp(iΩt)
−K exp(iΩt) exp(−iΩτ)τA

′
(θ) +

√
2Dξ(θ). (3.33)

Rewriting Eq. (3.33) we obtain

A
′
(θ) =

(δλ+ s|A(θ)|2 − |A(θ)|4)A(θ)
1 +Kτ exp(−iΩτ)

+

√
2Dζ(θ)

1 +Kτ exp(−iΩτ)
, (3.34)

where we use the assumption that the isotropic noise is not affected by a complex
phase transformation ζ(θ) = ξ(θ) exp(−iΩ0t).
The full stochastic delay differential equation (Eq. (3.1)) is reduced to an effective
stochastic differential equation (Eq. (3.34)). Therefore, we can derive the sta-
tionary amplitude probability distribution, because Eq. (3.34) describes a Markov
process. To make the noise intensity real-valued, we take advantage of the fact
that a complex phase can be absorbed by the isotropic noise: 1+Kτ exp(−iΩτ) =
|1 +Kτ exp(−iΩτ)| exp(−iα), ξ̃(t) = ζ(t) exp(−iα), so we find

A′(θ) =
1 +Kτ exp(iΩτ)

|1 +Kτ exp(−iΩτ)|2
(
δλ+ |A(θ)|2 − |A(θ)|4)A(θ)

+

√
2D

|1 +Kτ exp(−iΩτ)|2 ξ̃(θ). (3.35)

We transform to polar coordinates A = r exp(iϕ), and derive the Fokker-Planck
equation as already done in section (2.2) (see Appendix A). The stationary ampli-
tude probability distribution reads

P (r) = Nr exp

(
r2

Deff

(
δλ

2
+

sr2

4
− r4

6

))
(3.36)

with

δλ = λ−K(1− cos(Ωτ)),

Deff =
D

1 +Kτ cos(Ωτ)
, (3.37)

andN denotes the normalisation factor. We observe that the bifurcation parameter
λ and even the noise intensity are modulated by the time delay.
To check the validity of this approximation, we compare the result with numerics
for integer and half-integer delay times. Figure 3.5 shows the comparison between
numerics and analytics for integer delay times and we observe that both are in
good agreement. The half integer values are shown in Fig. 3.6: for τ = 0.5 the
curves display excellent agreement. For the other values there is a high remarkable
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Figure 3.5: Amplitude probability distribution, calculated analytically
(solid, Eqs. (3.36, 3.37)) and numerically (dashed) for differ-
ent integer delay times. Parameters: K = 0.5, ω0 = 2π, D =
0.015, λ = −0.26, s = 1.

Figure 3.6: Amplitude probability distribution, calculated analytically
(solid, Eqs. (3.36, 3.37)) and numerically (dashed) for dif-
ferent half integer delay times. Parameters: K = 0.5, ω0 =
2π, D = 0.015, λ = −0.26, s = 1.
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deviation between numerics and analytics. Nevertheless, the suppression of the
bimodality is captured by the analytical approximation. Although we made the
approach with the assumption being close to the bifurcation, it displays the correct
behaviour in a wide range of parameter values, at least qualitative, e.g. for τ = 1.5.
The approach is limited to small delay values, because we made use of a Taylor
expansion of the delay-term (Eq. (3.30)). The scaling factor 1+Kτ cos(Ωτ) of the
noise strength (Eq. (3.37)) plays also a crucial role. We have to take care, because
this factor can change the sign; this happens when the product of coupling strength
and delay time exceed the value one. Then we would obtain a negative effective
noise strength and the bifurcation scenario would change from sub- to supercritical
(see Fig. 3.1). As already mentioned in the deterministic bifurcation analysis, the
transcendental equation for the frequency (Eq. (3.25)) provides more than one
solution for higher values of the delay. Using such a solution Ω �= 2π, we obtain
again a positive effective noise strength and a good result for our approximation,
see Fig. 3.6 for the value τ = 2.5.
To improve the approach, we should use higher order terms in the centre manifold
reduction to describe the impact of the delay more appropriately or we have to use
higher orders from the Taylor series (Eq. (3.30)).
Next, we calculate the stochastic bifurcation diagram from the result based on
the analytical approximation (Eq. (3.36)). In Fig. 3.7, we observe that the delay
shifts the ”stochastic triangle” to higher values of λ up to the half integer delay
time and back. The shape is also affected by increasing the delay, which results
from the different solutions for Ω (Eq. (3.25)) and the scaled noise intensity (Eq.
(3.37)). As we will see in section 3.2.3, coherence resonance is also influenced by
these results: the most pronounced coherence resonance can be found in the regime
of a bimodal shaped probability distribution (section 2.4.2 and [62]). If the time
delay is increased, we have to adjust λ to stay inside of the triangle, see Fig. 3.7.
This result of the shifted stochastic bifurcation diagram is not surprising, because
the deterministic bifurcation scenario is also shifted in the same way, see Fig. 3.1.

In our work we only focussed on the case with additive noise; an investigation
of multiplicative noise in stochastic delay differential equations and the analytical
derivation of stationary probability distributions is shown in [93–95].

3.2.2 Power spectral density and correlation properties

As already done in section 2.1, we can linearise our system in the same way as in
the non-delayed case [63, 71]. Again, we replace the nonlinear terms in Eq. (3.24)
by an effective linear term (see Eqs. (2.37 - 2.39)).
Therefore, we obtain

ż(t) = (λ̃+ iω0)z(t)−K(z(t)− z(t− τ)) +
√
2Dξ(t) (3.38)

with λ̃ = λ+ α and α =
s〈|z(t)|4〉−〈|z(t)|6〉

〈|z(t)|2〉 .

The solution of a linear stochastic delay differential equation (Eq. (3.38)) can be
expressed in closed form, see [85]. To calculate the measures of coherence, we adapt
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Figure 3.7: Stochastic bifurcation diagram for different time delays based
on Eq. (3.36).
Parameters: K = 0.5, ω0 = 2π, s = 1.

the methods presented in [63, 90]. The characteristic equation corresponding to
the deterministic part of Eq. (3.38) reads

Λ = (λ̃+ iω0)−K(1− exp(−Λτ)), (3.39)

and can be solved by using the Lambert W-function (see Eqs.(3.2, 3.19))

→ Λl =
Wl(Kτ exp(−(λ̃+ iω0 −K)τ))

τ
+ λ̃+ iω −K. (3.40)

The solution of Eq. (3.38) can be expressed in terms of eigenmodes z(t) =
∑

l Cl(t),
where the time evolution of the coefficients is determined by the linear stochastic
differential equation

Ċl(t) = ΛlCl(t) +

√
2Dξ(t)

Nl

(3.41)

with the normalisation factor Nl = 1 + Kτ exp(−Λlτ) (see Appendix C for a
detailed derivation). We end up with the solution for a single mode

Cl(t) = C0 exp(Λl(t)) +

√
2D

Nl

∫ t

0

exp(Λlt
′′)ξ(t− t′′)dt′′ (3.42)

which can be governed by using variation of constants. The stationary solution of
Eq. (3.38) (t → ∞) reads

z(t) =
√
2D

∫ ∞

0

T (t′)ξ(t− t′)dt′, (3.43)
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where

T (t) =
∑
l

exp(Λlt)

Nl

. (3.44)

For the calculation of the autocorrelation function, we consider some relations
between the complex variable and the real and imaginary part:

x(t) =
z(t) + z∗(t)

2
, y(t) =

z(t)− z∗(t)
2i

. (3.45)

Using the properties of the noise (Eq. (2.19)), we can write for the autocorrelation
function of the real and the imaginary part

〈x(t)x(0)〉 = 〈y(t)y(0)〉 = 1

2
Re〈z(t)z∗(0)〉. (3.46)

Note that the variable t denotes here the shifting variable. We use the station-
ary expression of the autocorrelation function, so it depends just on the shifting
argument. The brackets 〈. . .〉 denote the ensemble average. We compute the au-
tocorrelation function of the complex variable z(t) as follows:

〈z(t)z∗(0)〉 = 2D
∑
l,l′

∫ ∞

0

∫ ∞

0

exp(Λlt
′) exp(Λ∗

l
′ t′′)

NlN∗
l
′

〈ξ(t− t′)ξ∗(−t′′)〉︸ ︷︷ ︸
2δ(t−t′+t′′)

dt′dt′′

= 4D
∑
l,l′

∫ ∞

0

exp(Λlt) exp((Λl + Λ∗
l
′ )t′′)

NlN∗
l′

dt′′

= 4D
∑
l,l

′

exp(Λlt)

NlN∗
l′ (−Λl − Λ∗

l′ )
. (3.47)

From the Eqs. (3.46, 3.47) we get the autocorrelation function of the real part

〈x(t)x(0)〉 = 2D
∑
l,l′

Re
exp(Λlt)

NlN∗
l
′ (−Λl − Λ∗

l
′ )
. (3.48)

Now we are able to investigate the correlation properties of our system, e.g. the
power spectral density via the Wiener-Khinchin theorem and the correlation time.
We start with the power spectral density, so the Fourier transform of the autocor-
relation function (Eq. (3.48)) is estimated (detailed calculation in the Appendix
D):

Sxx(ω) =

∫ ∞

−∞
eiωt〈x(t)x(0)〉dt

= 2DRe
∑
l,l′

−2Λl

Λ2
l + ω2

1

NlN∗
l′ (−Λl − Λ∗

l′ )
. (3.49)

Using the Laplace transform, it is also possible to give a closed expression for the
power spectral density, see [63].
The validity of Eq. (3.49) is tested numerically for different system parameters.
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For different time delays one example and a comparison with numerics is shown
in Fig. 3.8. The power spectral density shows the central peak at the resonance
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Figure 3.8: Normalised power spectral densities for different integer delay
times. The dashed white lines correspond to Eq. (3.49) and
the solid curves represent the result of the numerical simula-
tion from Eq. (3.24). The top and bottom spectral density
are shifted for a better visibility. Parameters: λ = −0.26,
K = 0.5, ω0 = 2π, D = 0.015, s = 1. Reused from [63] with
kind permission of The European Physics Journal (EPJ).

frequency ω = ω0 and additional peaks below and above the central peak for
increasing delay times. The approximate result from Eq. (3.49) shows excellent
agreement with the numerics, even for high values as τ = 5.
As already mentioned in the previous chapter, the power spectral density can also
be calculated from a linear-response ansatz [74]. Other examples of computing the
power spectral density regarding to a delay differential equation can be found in
[52, 77].
To show the modulation of coherence resonance, we calculate the correlation time.
Therefore, we use the autocorrelation function for the real part (Eq. (3.48)). As
mentioned in section 2.4.1 (Eq. (2.35)), the correlation time can be defined as

tcor =

∫ ∞

0

|Ψxx(t)|dt, (3.50)

where Ψxx(t) =
1

〈x(0)x(0)〉〈x(t)x(0)〉 describes the normalised autocorrelation func-

tion. In the following calculation we use the abbreviation M = 1
〈x(0)x(0)〉 . With Eq.
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(3.48) we get

tcor =

∫ ∞

0

|Ψxx(t)|dt

= |M |
∫ ∞

0

∣∣∣∣∣∣∣Re
∑
ll
′

exp(Λlt)(N
∗
l Nl

′ (−Λ∗
l − Λl

′ ))∣∣∣NlN∗
l
′ (−Λl − Λ∗

l
′ )
∣∣∣2

∣∣∣∣∣∣∣ dt

= |M |
∫ ∞

0

∣∣∣∣∣∣
∑
ll′

exp(γt)[A cos(wt) + B sin(wt)]

A2 +B2

∣∣∣∣∣∣ dt, (3.51)

where we used in the last step

Re [exp(Λlt)(N
∗
l Nl

′ (−Λ∗
l − Λl

′ ))] = exp(γt)[cos(wt)A+ sin(wt)B] (3.52)

with the abbreviations

γ = Re(Λl), w = Im(Λl), A = Re(N∗
l Nl

′ (−Λ∗
l − Λl

′ )),

and B = Im(N∗
l Nl

′ (−Λ∗
l − Λl

′ )).

To solve the integral (Eq. (3.51)), we use the triangle inequality |∑k ak| ≤
∑

k |ak|,
and we obtain

|M |
∫ ∞

0

∣∣∣∣∣∣
∑
ll
′

exp(γt)[A cos(wt) + B sin(wt)]

A2 +B2

∣∣∣∣∣∣ dt
≤ |M |

∫ ∞

0

∑
ll′

∣∣∣∣exp(γt)[A cos(wt) + B sin(wt)]

A2 +B2

∣∣∣∣dt
= |M |

∑
ll′

∫ ∞

0

∣∣∣∣exp(γt)[A cos(wt) + B sin(wt)]

A2 +B2

∣∣∣∣dt
= |M |

∑
ll
′

1

A2 +B2

∫ ∞

0

exp(γt) |(A cos(wt) + B sin(wt))|dt. (3.53)

We rewrite the trigonometric functions of the integrand (Eq. 3.53) to obtain one
cosine term, which can be replaced by a filling factor (see section 2.4) for an easier
evaluation of the integral:

A cos(ωt) +B sin(ωt) = A cos (ωt)︸︷︷︸
φ1

+B cos
(
ωt− π

2

)
︸ ︷︷ ︸

φ2

=

√
A2 +B2 + 2AB cos

(π
2

)
cos(ωt+ φ)

=
√
A2 +B2 cos(ωt+ φ) (3.54)



40 Chapter 3 Time-delayed feedback in nonlinear stochastic systems

with tanφ = A sin(φ1)+B sin(φ2)
A cos(φ1)+B cos(φ2)

.
Therefore, we can solve the integral∫ ∞

0

exp(γt) |(A cos(wt) + B sin(wt))| dt

=

∫ ∞

0

exp(γt)
∣∣∣√A2 +B2 cos(wt+ φ)

∣∣∣ dt
=

∫ ∞

0

exp(γt)
√
A2 +B2 |cos(wt+ φ)| dt

≈
∫ ∞

0

exp(γt)
√
A2 +B2

2

π
dt

=
√
A2 +B2

2

π

−1

γ
. (3.55)

The final result is

tcor =
2

π
|M |

∑
ll′

√
A2 +B2

A2 +B2

−1

γ

= Z
∑
ll′

1∣∣∣NlN∗
l
′ (−Λl − Λ∗

l
′ )
∣∣∣Re(−Λl)

(3.56)

with Z = 2
π
|M |. The comparison between numerics and the analytical expression

from Eq. (3.56) is shown in Fig. 3.9.

Figure 3.9: Correlation time for different time delays τ . The solid line
corresponds to Eq. (3.56), but only the main branch (l = 0)
of the Lambert W-function is used; the dashed lines denotes
the numerics. Parameters: K = 0.5, λ = −0.26, ω0 =
2π, s = 1.
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Figure 3.10: Correlation time for different values of K. The solid line
corresponds to Eq. (3.56), but only the main branch (l = 0)
of the Lambert W-function is used; the dashed lines denotes
the numerics.
Parameters: τ = 1.0, λ = −0.26, ω0 = 2π, s = 1.

Equation (3.56) captures well the behaviour of the correlation time for different
time delays: as already mentioned for Fig. 3.4, the correlation time is enhanced
for integer delay times and decreases for half integer delays. Here, we only plot
the main branch (l = 0) of the Lambert W-function, because it dominates the
dynamics for small time delays (see Fig. 3.2). For τ = 1.5 and τ = 2.0 a change in
the analytical result can be observed by adding more branches but the differences
are not that significant.
We also calculate the correlation time for different coupling strengths and a fixed
time delay. Figure 3.10 displays that coherence resonance is enhanced by a higher
coupling strength and also the optimal noise intensity is shifted to higher noise
strengths.

3.2.3 Mechanism of coherence resonance in delayed sys-
tems

Now we want to discuss the modulation of the correlation time caused by the time
delay.
We observe in Figs. 3.4 and 3.9 that the correlation time tcor exhibits a pronounced
maximum at a certain optimal noise intensity only for integer delays. For half in-
teger delays this maximum is suppressed. Furthermore, the optimal noise intensity
Dopt is shifted to higher values of D for larger time delays.
The aspect of the enhancement and suppression of coherence resonance can be
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related to the stability of the deterministic focus. We consider a system that is
able to show coherence resonance. In [25] it is pointed out that noise-induced
oscillations are more regular, the less stable the eigenmode is. In Fig. 3.2 it is
shown that the focus is more stable for half integer delays and thus, it is more
difficult to excite the system. Therefore, coherence resonance is suppressed. For
the integer delay times, the focus becomes less stable so that it is easier to perturb
the system, which means that the trajectory is kicked out of the stable focus. So
coherence resonance is enhanced. As already mentioned, this kind of modulation
could also be observed for excitable systems [25, 26].
For the explanation of the shift of the optimal noise intensity, we use the prob-
ability distribution (Eq. (3.36)) and plot the bifurcation diagram for the integer
delays to compare it with the non-delayed case.

Figure 3.11: Stochastic bifurcation diagram for different integer time de-
lays. The dashed line splits the figure up into the two de-
terministic regimes, compare Fig. 2.3. The black solid line
shows the fixed λ value, where the noise intensity is in-
creased (compare Fig. 2.4).
Parameters: K = 0.5, ω0 = 2π, s = 1.

Figure 3.11 shows that the lower bifurcation line is steeper for higher delays. For
a fixed λ a higher value of the noise strength D is needed to reach the regime of
bimodality. This is also connected with the scaling of the noise intensity by the
delay (see Eq. (3.37)): to obtain the same value of the effective noise intensity
Deff for τ = 0 and τ = 2, the value D has to be higher for the case τ = 2. As we
mentioned in section 2.4, coherence resonance occurs in a most pronounced way
in the regime of bimodality [62]. Therefore, the optimal noise intensity is shifted
to higher values of D.
To complete the discussion about the mechanism of coherence resonance, we also
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Figure 3.12: Correlation time for different values of λ, numerically cal-
culated (Eq. (3.24)).
Parameters: τ = 1.0, K = 0.5, ω0 = 2π, s = 1.

investigate the correlation time for parameter values outside the region of bimodal-
ity. The result is given in Fig. 3.12 and it displays the same behaviour as already
shown in chapter 2, see Fig. 2.8: coherence resonance is most pronounced in the
regime of bimodality, but can still be observed outside of this region.
To answer the question why coherence resonance can still occur outside of the
regime of a bimodal probability distribution, we calculate again the ghost weight
(Eq. (2.52)) due to the approximate probability distribution (Eq. (3.36)). The
ghost weight was introduced in section 2.4.2 to measure the part of the distribu-
tion, which exceeds the critical radius, where the saddle-node bifurcation of limit
cycles takes place for D = 0. The corresponding derivative displays how this part
of the distribution changes by increasing the noise intensity.
The results of the investigations, including the time-delay, are given in the Figs.
3.13 and 3.14. We observe the same result as in the non-delayed case: the deriva-
tive of the ghost weight exhibits the resonance-like behaviour, which decreases for
more negative values of λ and is most pronounced close to the saddle-node bifur-
cation of limit cycles.
Next, we compare the derivative of the ghost weight for different values of the
time delay; this is shown in Fig. 3.15. Comparing the integer values of τ , we can
observe that the resonance-like peak decreases for higher values of τ .
A similar result is obtained for different coupling strengths, which can also be
connected to the effective noise strength (Eq. (3.57)), see Fig. 3.16; for a smaller
coupling strength K the derivative of the ghost weight is more pronounced.
The decrease of the maximum of the ghost weight derivative due to higher time
delays and higher coupling strengths is connected with the rescaling of the noise
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Figure 3.13: Ghost weight for different values of the bifurcation param-
eter λ, calculated from the approximate probability distri-
bution (Eq. (3.36)).
Parameters: τ = 1.0, K = 0.5, ω0 = 2π, s = 1.

intensity (Eq. (3.37))

Deff =
D

1 +Kτ cos(Ωτ)
. (3.57)

In all numerical simulations and analytical plots we increased the parameter D
with the step size ΔD = 0.001. For the non-delayed case (K = 0, τ = 0) the
parameter Deff rises with the same step size ΔDeff = 0.001, see Eq. (3.57).
Setting K = 0.5 and τ = 1.0 we get from Eq. (3.57) (Ω is calculated via the
transcendental equation (3.25))

Deff =
2D

3
. (3.58)

Again by increasing D with the step size ΔD = 0.001 we obtain the effective step
size ΔDeff = 0.00067. So the increase of the effective noise intensity is slower
compared to the non-delayed case. By choosing a higher value for the time delay
τ = 2.0 and K = 0.5 the effective step size reads ΔDeff = 0.0005, which describes
again a slower increase of the effective noise intensity.
For the half integer delays it is the other way around: we have ΔDeff = 0.0013 for
τ = 0.5 and ΔDeff = 0.004 for τ = 1.5. This is why we also observe a maximum
for the case of nearly suppressed coherence resonance for τ = 1.5, although we are
far away from the saddle-node bifurcation of limit cycles.
The various increase of the part of the probability distribution exceeding the criti-
cal radius is shown for different integer time delays in Figs. 3.17 - 3.19: we increase
the noise intensity from D = 0.005 to D = 0.01 with a step size of ΔD = 0.001 and

can observe that the part of the distribution exceeding the critical radius r0 =
√

1
2
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Figure 3.14: Derivative of the ghost weight for different values of the
bifurcation parameter λ, calculated from the approximate
probability distribution (Eq. (3.36)).
Parameters τ = 1.0, K = 0.5, ω0 = 2π, s = 1.

shows the strongest increasing for the non-delayed case and the slowest increase is
achieved for the highest time delay, here τ = 2.
The effects shown in the Figs. 3.15 and 3.16 reflect the opposite behaviour com-
pared to the correlation time by varying the delay time or the coupling strength,
see Figs. 3.9 and 3.10. A comparison of the derivative of the ghost weight between
different delay times τ or different coupling strength K can lead to confusion.
Therefore, we have to point out that this measure cannot be used to conclusively
determine higher or lower regularity between two different delay times or coupling
strengths.
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Figure 3.15: Derivative of the ghost weight for different values of the
time delay τ , calculated from the approximate probability
distribution (Eq. (3.36)).
Parameters: λ = −0.26, K = 0.5, ω0 = 2π, s = 1.

Figure 3.16: Derivative of the ghost weight for different values of the cou-
pling strength K, calculated from the approximate proba-
bility distribution (Eq. (3.36)).
Parameters: λ = −0.26, τ = 1.0, ω0 = 2π s = 1.
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Figure 3.17: Amplitude probability distribution (Eq. (3.36)). The verti-
cal line denotes the critical radius r0 =

√
1/2. Parameters:

λ = −0.26, ω0 = 2π, s = 1, and for τ �= 0 K = 0.5.

Figure 3.18: Amplitude probability distribution (Eq. (3.36)). The verti-
cal line denotes the critical radius r0 =

√
1/2. Parameters:

λ = −0.26, ω0 = 2π, s = 1, and for τ �= 0 K = 0.5.

Figure 3.19: Amplitude probability distribution (Eq. (3.36)). The verti-
cal line denotes the critical radius r0 =

√
1/2. Parameters:

λ = −0.26, ω0 = 2π, s = 1, and for τ �= 0 K = 0.5.
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Chapter 4

Coupled stochastic systems

In the previous chapters, we investigated the modulation of coherence resonance
and stochastic P-bifurcations by time-delayed feedback. For these studies, we
made use of suitable methods such as statistical linearisation and a multiple scaling
technique.
The aim of this chapter is to study the possible modulation of the noise effects
in delayed coupled oscillator systems. For this purpose, we will try to extent our
methods to coupled stochastic delay differential equations.

4.1 Stochastic bifurcations in coupled oscillators

A system of N stochastic oscillators with delayed coupling can be written in the
following form

żk(t) = f(zk(t)) +
√
2Dξk(t)−K

N∑
j=1

Gkj(zk(t)− zj(t− τ)), (4.1)

where k is an index denoting the k-th oscillator and f(zk(t)) is a function describing
the local deterministic dynamics of this node, which is a nonlinear function in our
case for the Hopf normal form f(zk(t)) = (λ + iω0 + s|zk(t)|2 − |zk(t)|4)zk(t). λ
denotes the deterministic bifurcation parameter, ω0 the intrinsic frequency, s > 0
is the cubic coefficient and we just investigate the subcritical case. D describes
the noise intensity, ξk(t) is independent Gaussian white noise with the property
〈ξk(t)ξ∗l (t′)〉 = δklδ(t − t

′
), τ is the delay time, and K is the real-valued coupling

constant.
As already mentioned in section 3.1, a complex coupling strength σ = Keiβ, where
K denotes the amplitude and β the phase, is useful in the context of stabilisation.
[37] and [96] are nice examples in this context with investigations of coupled Hopf
normal forms.

P. M. Geffert, Stochastic Non-Excitable Systems with Time Delay,
BestMasters, DOI 10.1007/978-3-658-09295-5_4, © Springer Fachmedien Wiesbaden 2015
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We concentrate on the case N = 2 for Eq. (4.1)

ż1(t) = (λ+ iω0+s|z1(t)|2−|z1(t)|4)z1(t)−K(z1(t)−z2(t− τ))+
√
2Dξ1(t), (4.2)

ż2(t) = (λ+ iω0+s|z2(t)|2−|z2(t)|4)z2(t)−K(z2(t)−z1(t− τ))+
√
2Dξ2(t). (4.3)

It is a very difficult task to solve the coupled Eqs. (4.2, 4.3) for the oscillators
z1 and z2. Therefore, we have to find another way to obtain the results for the
stochastic dynamics of the coupled system.
An expansion in network modes was performed in [97] and the resulting equa-
tions were solved. This was done for damped oscillators and Hopf normal forms;
the latter were linearised by a mean-field approximation. Because of the linear
equations for the local dynamics, the decoupling of the system could be done in a
straightforward way by diagonalising the coupling matrix.
In the previous chapters, we were also able to linearise our equation, even for the
delayed case. But for this purpose we used the corresponding probability distribu-
tion. Here, a direct derivation of the probability distribution is again very difficult.
So we are not able to decouple our coupled oscillator system by a direct calcula-
tion.
We make use of the fact that mutually delay-coupled Hopf normal forms show
different types of network patterns: there is an in-phase solution and out-of-phase
motions, which can be described as anti-phase or splay-state solutions. It is possi-
ble to control which of the network motions is performed by the choice of the time
delay.
It is important to know that for single systems with time-delayed feedback [98]
but also for networks with delayed-coupling [99] it was shown that the periodic
solutions form branches due to the time delay parameter τ . An increase of τ can
lead to the coexistence of multiple stable and unstable branches.
The two Eqs. (4.2, 4.3) exhibit in the deterministic case (D = 0) an in-phase
and an anti-phase solution depending on the value of the time delay. We assume
deterministic solutions of rotating wave form

zk(t) = reiωt, (4.4)

where r denotes the positive amplitude and ω the frequency. This ansatz was also
successfully used for coupled stochastic Hopf normal forms in [74]. For integer
values of τ , we will get the in-phase solution, whereas for half integer values of τ
the anti-phase solution describes the dynamics of the coupled system. Applying
the in-phase solution ansatz zS = z1 = z2 to the Eqs. (4.2, 4.3), we obtain two
equations of the form

żS(t) = (λ+iω0+s|zS(t)|2−|zS(t)|4)zS(t)−K(zS(t)−zS(t−τ))+
√
2DξS(t). (4.5)

Note that we only adapted an deterministic ansatz to the stochastic equations
and ignored for now the stochastic input coming from the coupled oscillator. We
expect that this approach will work especially in the low noise limit (D → 0).
We investigated such a type of stochastic delay differential equation already in
chapter 3 and performed also the deterministic bifurcation analysis (see Fig. 3.1).
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Therefore, the stationary amplitude probability distribution reads

P (r) = Nr exp

(
r2

Deff

(
δλ

2
+

sr2

4
− r4

6

))
, (4.6)

with

δλ = λ−K(1− cos(Ωτ)), Deff =
D

1 +Kτ cos(Ωτ)
. (4.7)

For half integer τ we obtain the anti-phase solution zA = z1 = −z2, which reads

żA(t) = (λ+iω0+s|zA(t)|2−|zA(t)|4)zA(t)−K(zA(t)+zA(t−τ))+
√
2DξA(t). (4.8)

This equation has a slightly different coupling term, but we can calculate the
corresponding stationary probability distribution for the amplitude by using the
methods from section 3.2. We just point out the main steps of the calculation: the
conditions for the Hopf bifurcation are

λ = K(1 + cos(Ωτ)), Ω = ω +K sin(Ωτ). (4.9)

Using the multiple scaling technique, we derive the corresponding effective equation
of motion

A′(θ) =
(δλ+ s|A(θ)|2 − |A(θ)|4)A(θ)

1−Kτ exp(−iΩτ)
+

√
2Dζ(θ)

1−Kτ exp(−iΩτ)
. (4.10)

The corresponding stationary probability distribution for the amplitude reads

P (r) = Nr exp

(
r2

Deff

(
δλ

2
+

sr2

4
− r4

6

))
, (4.11)

with

δλ = λ−K(1 + cos(Ωτ)), Deff =
D

1−Kτ cos(Ωτ)
. (4.12)

So we derived the probability distributions corresponding to the periodic solu-
tions of the coupled system. To check the validity of our ansatz, we simulate the
stochastic dynamics of the Eqs. (4.2, 4.3) and determine the stationary probability
distribution for the amplitude. We will just study the in-phase solution, because
for the anti-phase solution the results would not differ.
This comparison is made for three different coupling strengths: in Fig. 4.1 we set
K = 0.05, and in Figs. 4.2 we have K = 0.25 and K = 0.5.

The analytical expression (Eq. (4.6)) displays the qualitative behaviour of the
numerics for weak and strong noise intensities and quite good agreement in the
low noise limit (D → 0). But for the parameter values of interest, strictly speaking
for intermediate noise strengths, (where a stochastic P-bifurcation was observed in
the chapters 2 and 3), the analytical and numerical results differ so strongly that
this ansatz does not seem to be useful, especially for higher coupling strengths.
The best agreement is achieved for the weak coupling strength K = 0.05 in Fig.
4.1.
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Figure 4.1: Stationary amplitude probability distribution of oscillator z1,
analytically (solid, Eq. (4.6)) and numerically (dashed, Eqs.
(4.2, 4.3)) estimated. Parameters: τ = 1.0, λ = −0.26, ω0 =
2π, s = 1.

For D = 0, the relation zS = z1 = z2 is valid, but for D �= 0 we have to write
zS = z1 ≈ z2 because of the underlying stochastic dynamics. The main reason is
probably that the deterministic ansatz ignores the stochastic input of the coupled
oscillator. Because we chose two different white noise terms in the Eqs. (4.2, 4.3)
a second independent noise source enters the equation. Equation (4.6) could be a
proper description if the white noise terms are equal.
For small values of the coupling constant K, we can more or less neglect the
stochastic influence of the coupled oscillator, therefore, we have the best agreement
with the numerics. But by increasing K the coupled stochastic oscillator becomes
more important for the dynamics.
Before we continue with our discussion, we use the numerical results to check
whether a stochastic P-bifurcation takes place in the coupled oscillator system or
not.

It turns out that a stochastic P-bifurcation takes place only for weak coupling (Fig.
4.3): in this case the curve for D = 0.023 represents a bimodal shaped distribution.
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Figure 4.2: Stationary amplitude probability distribution of oscillator z1,
analytically (solid, Eq. (4.6)) and numerically (dashed, Eqs.
(4.2, 4.3)) estimated. Parameters: τ = 1.0, λ = −0.26, ω0 =
2π, s = 1.

For higher values of the coupling strength, the distribution is smeared out and stays
unimodal (Fig. 4.4).
Probably the form of the coupling term could also have an influence on the results.
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Figure 4.3: Stationary probability distribution for the amplitude of z1,
numerically calculated from the Eqs. (4.2, 4.3). Parameters:
τ = 1.0, λ = −0.26, ω0 = 2π s = 1.

Figure 4.4: Stationary probability distribution for the amplitude of z1,
numerically calculated from Eqs. (4.2, 4.3). Parameters:
τ = 1.0, λ = −0.26, ω0 = 2π, s = 1.

We can rewrite Eq. (4.2)

ż1(t) = (λ−K︸ ︷︷ ︸
=η

+iω0 + s|z1(t)|2 − |z1(t)|4)z1(t) +Kz2(t− τ) +
√
2Dξ1(t) (4.13)

where η represents an effective bifurcation parameter. By increasing the coupling
strength, the oscillator z1 is shifted away from the saddle-node bifurcation of limit
cycles and, therefore, out of the parameter regime for a bimodal shaped probability
distribution. Because the oscillator z2 is driven by a different stochastic force, a
different behaviour is observed than in the case with time-delayed feedback.
The single system exhibits a stochastic P-bifurcation for λ ∈ (−0.33,−0.25). The
values K = 0.05 and λ = −0.26 result in an effective value η = −0.31, where it
is still possible to discover a stochastic P-bifurcation, see Fig. 4.3. For K = 0.25
and λ = −0.26 we obtain for η = −0.51 which is far away from the region of
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bimodality, see Fig. 4.4. In the case of higher coupling strength, the stochastic
force of the other oscillator also plays an important role, which we will see in the
investigation of coherence resonance.
Further studies are needed to understand the behaviour of the coupled stochastic
oscillators.

4.2 Coherence resonance in coupled oscillators

Next, we simulate the stochastic dynamics of the coupled oscillators and calculate
the correlation time for the real part of the oscillator z1, which represents the
stochastic in-phase solution for τ = 1 and the stochastic anti-phase solution for
τ = 0.5. The numerical results are given for different values of the bifurcation
parameters λ (Fig. 4.5) and for different coupling strengths (Fig. 4.6). Again only
the in-phase solution is investigated because the results for the anti-phase solution
do not differ (compare [74], Figs. 8b, 8e).

Figure 4.5: Numerical simulation of the correlation time tcor for different
values of λ for the real part of z1 (Eqs. (4.2, 4.3)).
Parameters: τ = 1.0, K = 0.5, ω0 = 2π, s = 1.

Figure 4.5 displays the result, which we also obtained in the previous chapters: for
the value of λ close to the saddle-node bifurcation of limit cycles, we get the most
pronounced coherence resonance and by going further away the maximum of the
correlation time tcor decreases.
For different coupling strengths (Fig. 4.6) we obtain a result, which provides the
suggestions made on the effect of the coupling term. For small values of K the
correlation time decreases and then increases again by further increasing the cou-
pling strength.
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Figure 4.6: Numerical simulation of the correlation time tcor for different
values of K for the real part of z1 (Eqs. (4.2, 4.3)).
Parameters: τ = 1.0, λ = −0.26, ω0 = 2π, s = 1.

The reason could be that for small coupling strengths the system is shifted away
form the parameter regime, where a pronounced coherence resonance can be ob-
served. At a certain value ofK the stochastic input from the coupled oscillator take
over the main influence on the dynamics and the two independent noise sources
play a constructive role, which results in an increase of the correlation time. The
maximum is shifted to higher values, which may be connected to the effective bi-
furcation parameter η (Eq. (4.13)), which increases to more negative values; as we
observed in Fig. 4.5 the maximum of the correlation time tcor is shifted to higher
values of the noise intensity for more negative values of λ.
Note that for a coupling term of the form Kz2(t− τ) instead of K(z1−z2(t− τ)) it
was observed in [74] that an increase of the coupling strength leads to more regular
motion (smaller width at half maximum) and a smaller optimal noise intensity.
Although we observe a clear pronounced maximum for the correlation time at the
value λ = −0.26, there is no stochastic P-bifurcation present; the underlying dis-
tribution has a unimodal shape (Fig. 4.4).
Therefore, we calculate the ghost weight (Eq. (2.52))

g(D) =

∫ ∞

r0

P (r)dr (4.14)

and the corresponding derivative due to the noise intensity to check if the stochas-
tic phase space shows an influence of the ghost.
Although we used analytical expressions of the stationary probability distribution
for the calculation of the ghost weight in the previous chapters, we only have nu-
merical data available here.
We calculate 100 realisations of the probability distribution for values of the noise
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Figure 4.7: Ghost weight g(D) (left) and the corresponding derivative
dg(D)
dD

(right) for z1 obtained from numerical data, repre-
sented by dots. The line shows the data fit for the values
of g(D) > 0. In the right plot the dots show the correspond-
ing derivative, calculated from the fit function.
Parameters: K = 0.5, τ = 1.0, ω0 = 2π, s = 1.

intensity D ∈ [0.001, 0.1]. Because of the stochastic character of our equations, the
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Figure 4.8: Ghost weight g(D) (left) and the corresponding derivative
dg(D)
dD

(right) for z1 obtained from numerical data, repre-
sented by dots. The line shows the data fit for the values
of g(D) > 0. In the right plot the dots show the correspond-
ing derivative, calculated from the fit function.
Parameters: τ = 1.0, ω0 = 2π, λ = −0.26, s = 1.

probability distributions are not smooth lines. Thus, we do not obtain a smooth
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transition for the ghost weight from g(D) = 0 to g(D) �= 0. We use a polynomial
function of order five as a fit function for the values g(D) �= 0, including the last
value g(D) = 0.
Then we calculate the derivative of the polynomial fit function and plot it as single
points to illustrate that all data used for this calculation are available as discrete
values. The values g(D) = 0 do not contribute for the derivative, so we set them
zero, d

dD
g(D) = 0. Hence, we have to interpret the first value d

dD
g(D) �= 0 as the

maximum, which is in nearly all cases also the highest value.
As we observed in the sections 2.4.2 and 3.2.3, the derivative of the ghost weight
decreases from the maximum value monotonically for D → 0.1. Here, we find that
for values D → 0.1 the derivative shows unexpected behaviour, which is caused by
the fit function. The fit function is just a suitable visualisation of the ghost weight
up to values of the noise intensity D = 0.1.
We observe that for different values of λ, the most pronounced resonance-like be-
haviour of the derivative of the ghost weight dg(D)

dD
is shown close to the saddle-node

bifurcation of limit cycles and decreases by going further away to more negative
values of λ, see Fig. 4.7. This result was also observed for the single Hopf normal
form, with and without time-delayed feedback, see sections 2.4.2, 3.2.3.
For different coupling strengths, we obtain the same result as for the Hopf normal
form with self-feedback: having a small coupling strength, the maximum of the
ghost weight derivative shows a greater value as for stronger coupling strengths, see
Fig. 4.8. This is somehow connected again with the scaling of the noise strength
(see Eqs. (3.37, 4.7, 4.12)) in contrast to the correlation time, where a higher
coupling strength leads to a higher correlation time (in Fig. 4.6 for the values
K = 0.05, K = 0.25 and K = 0.5).
Looking at the Figs. 4.3, 4.4, 4.8, it can be observed that the derivative of the
ghost weight is most pronounced in the regime of bimodality and less pronounced
in the region, where the probability distribution has a unimodal shape.
The ghost weight and the corresponding derivative show that the ghost of the
stable limit cycle has a strong influence of the stochastic dynamics and that it
is also possible to observe coherence resonance in the absence of a stochastic P-
bifurcation.
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Chapter 5

Conclusion

In this work, we have studied noise effects in non-excitable nonlinear systems with
time-delayed feedback, and in delay-coupled oscillator systems. The nonlinear sys-
tems were represented by Hopf normal forms with additive Gaussian white noise.
For a single system, we performed the bifurcation and stability analysis for the
deterministic equation. Then we turned on the noise and derived the station-
ary probability distribution for the amplitude. By changing the noise intensity, a
stochastic P-bifurcation occurred for the subcritical Hopf normal form. We showed
that no stochastic P-bifurcation takes place in the supercritical case. Furthermore,
we investigated coherence resonance in our system. Besides numerical simulations,
we made use of statistical linearisation techniques to obtain analytical expressions
for the measures of coherence (peak height, width at half maximum, signal-to-
noise ratio, and correlation time). Our analytical approximations showed good
agreement with the numerical simulations and we observed an extremum of the
measures of coherence at an intermediate noise strength. The mechanism of coher-
ence resonance in non-excitable systems can be related to stochastic P-bifurcations:
a most regular motion is provided in the regime of a bimodal distribution. How-
ever, coherence resonance can also be observed in a much less pronounced form
outside of this region. So we introduced the ghost weight as a novel measure for
the explanation. The ghost weight measures the part of the distribution, which
exceeds the radius, where the saddle-node bifurcation of limit cycles takes place in
the deterministic case. The derivative of the ghost weight with respect to the noise
intensity exhibits a maximum at an intermediate noise strength. In the regime of
bimodality, this maximum is the highest, but also outside the region of bimodality
it is clearly pronounced. So the ghost of the limit cycle has still a strong effect on
the stochastic dynamics outside of the regime of a bimodal probability distribu-
tion.
The ghost weight was not introduced as a unique measure for the regularity of
the noise-induced oscillations; it just shows the influence of the ghost of the stable
limit cycle for the stochastic dynamics and provides an explanation, why coherence
resonance can also be observed outside the region of bimodality.
Adding a time-delayed self-feedback term, we performed the steps of investiga-
tion similar to the non-delayed case. We started with a bifurcation and stability

P. M. Geffert, Stochastic Non-Excitable Systems with Time Delay,
BestMasters, DOI 10.1007/978-3-658-09295-5_5, © Springer Fachmedien Wiesbaden 2015



62 Chapter 5 Conclusion

analysis for the deterministic delayed system. Switching the noise on, we were
able to reduce the stochastic delay differential equation to an effective stochastic
differential equation close to the Hopf bifurcation, using a multiple scaling pertur-
bation approach. Hence, we calculated the stationary probability distribution for
the amplitude and our approximation shows excellent agreement with the numer-
ics in a wide parameter range. For half integer delays, we observed a suppression
of the bimodality and for the integer values of the delay we obtained a change of
the stochastic bifurcation diagram - strictly speaking a change of the parameter
regime - where the bimodality can be found. We made again use of the statistical
linearisation and derived an expression for the correlation time. Here, we also
found that for half integer values of the time delay the correlation time decreased,
which corresponds to a suppression of coherence resonance, whereas the correla-
tion time increased for integer time delays, so coherence resonance is enhanced.
Furthermore, the position of the optimal noise intensity is shifted to higher values
of the noise strength for higher integer values of the time delay.
The enhancement and the suppression is related to the stability of the determinis-
tic focus. The shift of the optimal noise intensity can be explained by the change
of the regime of bimodality for the different time delays: a higher noise strength
is needed to reach the parameter region, where the system has a bimodal shaped
probability distribution. As already shown in chapter 2, the derivative of the ghost
weight displayed again a maximum, also for parameter values outside the regime
of bimodality. The derivative of the ghost weight was also calculated for differ-
ent time delays and coupling strengths; these comparisons show that the ghost
weight does not tell anything about the regularity of the noisy oscillations. The
maximum decreased for higher coupling strengths and for higher integer values of
the time delay, which could be related to the scaling of the noise intensity by the
time-delayed coupling.
Two delay-coupled stochastic systems were investigated in chapter 4. Numerical
simulations showed that a stochastic P-bifurcation took only place for small cou-
pling strengths. But coherence resonance was observed, even in the absence of the
stochastic P-bifurcation. Therefore, the derivative of the ghost weight was esti-
mated, which showed a high maximum due to the noise intensity. An analytical
approximation of the in-phase and anti-phase solutions of the two coupled systems
failed to give a suitable expression of the probability distribution. The derivative
of the ghost weight was investigated for different parameter values for the deter-
ministic bifurcation parameter λ, but also for different coupling strengths K and
different delay times τ .



63

Chapter 6

Outlook

In this thesis, we only studied a single stochastic oscillator and two coupled oscilla-
tors. It will be interesting now to see if we can extent our methods to other network
motifs (three or four coupled oscillators with directed or undirected coupling) or
even large networks to find similar results for some general statements. Different
network topologies or coupling schemes could be studied to find out whether and
how the noise effects are affected by the structure of the network. The studies on
the ghost weight could be applied to larger systems to check, if it is still a suitable
way to provide an explanation of the mechanism of coherence resonance. It is also
necessary to prove the statement that coherence resonance is most pronounced in
the regime of a bimodal probability distribution for coupled systems.
Another aspect for further investigations could be the development of a suitable
approach of the probability distribution for higher time delays for the single os-
cillator with self-feedback and for coupled oscillator systems. For large networks,
the methods presented in [100–103] might be useful to derive an analytical expres-
sion for the probability distribution. Otherwise the investigations on stochastic
networks would be restricted to numerical simulations. The stochastic impact of
the coupled oscillators could be modelled with delayed noise terms [104–107], or
a description with coloured noise for the interplay of different stochastic forces
might be helpful. We only made use of Gaussian white noise in our studies. The
connection between other types of noise, e.g. coloured noise, and time delay could
be investigated.
Stochastic D-bifurcations were not considered in our work. In the context of larger
networks, it might be important to check how the stability is affected in the pres-
ence of many stochastic forces. The influence of time delay to this type of bifur-
cation could also play an interesting role [108].
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[77] E. Schöll, A. G. Balanov, N. B. Janson, and A. B. Neiman: Controlling
stochastic oscillations close to a Hopf bifurcation by time-delayed feedback ,
Stoch. Dyn. 5, 281 (2005).

[78] C. Masoller: Noise-induced resonance in delayed feedback systems ,
Phys. Rev. Lett. 88, 034102 (2002).
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Appendix A

Derivation of the Fokker-Planck
equation

In general, a n-dimensional stochastic differential equation is written

dx = A(x, t)dt+B(x, t)dW(t), (A.1)

where x is a state vector, A denotes the drift vector, B is the diffusion matrix,
and W(t) describes a Wiener process. The corresponding Fokker-Planck equation
reads (we use the Stratonovich interpretation of a stochastic differential equation
[53], which is usually used in physics)

∂tP (x, t) = −
∑
i

∂i(AiP (x, t)) +
1

2

∑
i,j,k

∂i(Bik∂j[BjkP (x, t)]), (A.2)

where P (x, t) is the probability density. In chapter 2, our equation for the Hopf
normal form with Gaussian white noise ξ(t) ∈ C reads

ż(t) = (λ+ iω0 − a|z(t)|2 − b|z(t)|4)z(t) +
√
2Dξ(t). (A.3)

z(t) is the complex variable, λ denotes the bifurcation parameter, and ω0 is the
intrinsic frequency of the system. The real parameters a and b are used to distin-
guish between the supercritical (a = 1, b = 0) and the subcritical (a = −1, b = 1)
Hopf normal form and D ≥ 0 describes the strength of the fluctuations (noise
strength). We first transform z(t) into polar coordinates z = reiφ and decompose
the resulting equation into real and imaginary part. Also the noise variable is
decomposed up into radius and phase part. The equation reads(

ṙ

φ̇

)
=

(
λr − ar3 − br5

ω0

)
︸ ︷︷ ︸

=: A

+
√
2D

(
cos(φ) sin(φ)

− sin(φ)
r

cos(φ)
r

)
︸ ︷︷ ︸

=: B

(
ξr
ξφ

)
. (A.4)
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For simplicity, we write P (x, t) = P (x1, x2, t) = P (r, φ, t) = P in the whole calcu-
lation. The first part of equation (A.2) for our system (eq.(A.4)) is∑

i

∂i(AiP (x, t)) = ∂1 (A1P ) + ∂2 (A2P )

= ∂r
(
(λr − ar3 − br5)P

)
+ ∂φ (ω0P ) . (A.5)

The second part of equation (A.2) reads (we ignore the prefactors 1
2
(eq.(A.2)) and√

2D (eq.(A.4)) for a moment)∑
i,j,k

∂i(Bik∂j[BjkP (x, t)]) = ∂1(B11∂1[B11P ]) + ∂2(B21∂1[B11P ])

+ ∂1(B11∂2[B21P ]) + ∂2(B21∂2[B21P ])

+ ∂1(B12∂1[B12P ]) + ∂2(B22∂1[B12P ])

+ ∂1(B12∂2[B22P ]) + ∂2(B22∂2[B22P ]), (A.6)

∂1(B11∂1[B11P ]) = ∂r(cos(φ)∂r[cos(φ)P ])

= cos2(φ)∂rrP, (A.7)

∂2(B21∂1[B11P ]) = ∂φ

(− sin(φ)

r
∂r (cos(φ)P )

)

= − cos2(φ)

r
∂rP +

sin2(φ)

r
∂rP − sin(φ) cos(φ)

r
∂φ∂rP, (A.8)

∂1(B11∂2[B21P ]) = ∂r

(
cos(φ)∂φ

(− sin(φ)

r
P

))

= cos(φ)∂r

(− cos(φ)

r
P − sin(φ)

r
∂φP

)

=
cos2(φ)

r2
P − cos2(φ)

r
∂rP

+
cos(φ) sin(φ)

r2
∂φP − cos(φ) sin(φ)

r
∂r∂φP, (A.9)

∂2(B21∂2[B21P ]) = ∂φ

(− sin(φ)

r
∂φ

(− sin(φ)

r
P

))

= ∂φ

(− sin(φ)

r

(− cos(φ)

r
P − sin(φ)

r
∂φP )

))

=
cos2(φ)

r2
P − sin2(φ)

r2
P

+ 3
sin(φ) cos(φ)

r2
∂φP +

sin2(φ)

r2
∂φφP, (A.10)
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∂1(B12∂1[B12P ]) = ∂r (sin(φ)∂r (sin(φ)P ))

= sin2(φ)∂rrP, (A.11)

∂2(B22∂1[B12P ]) = ∂φ

(
cos(φ)

r
∂r (sin(φ)P )

)

= − sin2(φ)

r
∂rP +

cos2(φ)

r
∂rP +

sin(φ) cos(φ)

r
∂φ∂rP, (A.12)

∂1(B12∂2[B22P ]) = ∂r

(
sin(φ)∂r

(
cos(φ)

r
P

))

= sin(φ)∂r

(
−sin(φ)

r
P +

cos(φ)

r
∂φP

)

=
sin2(φ)

r2
P +

sin(φ) cos(φ)

r
∂r∂φP

− sin2(φ)

r2
∂rP − sin(φ) cos(φ)

r2
∂φP, (A.13)

∂2(B22∂2[B22P ]) = ∂φ

(
cos(φ)

r
∂φ

(
cos(φ)

r
P

))

= ∂φ

(
cos(φ)

r

(
−sin(φ)

r
P +

cos(φ)

r
∂φP

))

= − cos2(φ)

r2
P +

sin2(φ)

r2
P

− 3
sin(φ) cos(φ)

r2
∂φP +

cos2(φ)

r2
∂φφP. (A.14)

Combining the equation (A.7) and equation (A.11) yields

cos2(φ)∂rrP + sin2(φ)∂rrP = ∂rrP. (A.15)

Equation (A.10) and equation (A.14) result in

cos2(φ)

r2
P − sin2(φ)

r2
P + 3

sin(φ) cos(φ)

r2
∂φP +

sin2(φ)

r2
∂φφP

− cos2(φ)

r2
P +

sin2(φ)

r2
P − 3

sin(φ) cos(φ)

r2
∂φP +

cos2(φ)

r2
∂φφP

=
1

r2
∂φφP. (A.16)
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The equations (A.8) and (A.12) vanish, when added together.
Equation (A.9) and equation (A.13) give

cos2(φ)

r2
P − cos2(φ)

r
∂rP +

cos(φ) sin(φ)

r2
∂φP − cos(φ) sin(φ)

r
∂r∂φP

+
sin2(φ)

r2
P +

sin(φ) cos(φ)

r
∂r∂φP − sin2(φ)

r2
∂rP − sin(φ) cos(φ)

r2
∂φP

=
1

r2
P − 1

r2
∂rP. (A.17)

Now we put the prefactors 1
2
and

√
2D back to our equations; we finally obtain

from the equations (A.15), (A.16), and (A.17)

→ D

(
∂rrP +

1

r2
∂φφP +

1

r2
P − 1

r2
∂rP

)
. (A.18)

Combining equation (A.5) and equation (A.18), we end up with the Fokker-Planck
equation for the noisy Hopf normal form (A.3)

∂tP = − ∂r
(
(λr − ar3 − br5)P

)− ∂φ (ω0P )

+D

(
∂rrP +

1

r2
∂φφP +

1

r2
P − 1

r2
∂rP

)

= ∂r

((
−λr + ar3 + br5 − D

r

)
P +D∂rP

)
+ ∂φ

(
−ω0P +

D

r2
∂φP

)
.

(A.19)
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Appendix B

Stochastic bifurcation diagram

The probability distribution (see eq.(2.21))

P (r) = Nr exp

(
r2

D

(
λ

2
+

r2

4
− r4

6

))
(B.1)

undergoes a stochastic P-bifurcation by varying the noise intensity D. Here, we
want to show the detailed calculation for the bifurcation lines.
The exponent of P (r)

lnP =
r2

D

(
λ

2
+

r2

4
− r4

6

)
+ ln(r) (B.2)

shows an inflection point, which means

d

dr
ln(P (r)) = 0,

d2

dr2
ln(P (r)) = 0. (B.3)

Therefore, we obtain two conditions

−D/r − λr − r3 + r5 = 0

D/r2 − λ− 3r2 + 5r4 = 0. (B.4)

By rewriting, we find two equations of third order for the variable r2:

−D − λr2 − r4 + r6 = 0 | I

D − λr2 − 3r4 + 5r6 = 0 | II. (B.5)
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Now we reduce the high order to obtain a condition for the variable r2

r6 − r4 − λr2 −D = 0 | I + II = Ia

5r6 − 3r4 − λr2 +D = 0 | II, (B.6)

6r6 − 4r4 − 2λr2 = 0 | Ia · 5
2

5r6 − 3r4 − λr2 +D = 0 | II · 3, (B.7)

15r6 − 10r4 − 5λr2 = 0 | Ia

15r6 − 9r4 − 3λr2 + 3D = 0 | II − Ia = IIa, (B.8)

3r4 − 2r2 − λ = 0 | (Ia) · b = Ib

r4 + 2λr2 + 3D = 0 | (IIa) · 3c = IIb, (B.9)

3r4 − 2r2 − λ = 0 | Ib

3r4 + 6λr2 + 9D = 0 | IIb− Ib, (B.10)

(6λ+ 2)r2 + 9D + λ = 0 | IIb, (B.11)

r2 = −9D + λ

6λ+ 2
> 0. (B.12)

This shows that only values of λ < 0 are allowed; otherwise the radius becomes
imaginary. Inserting this condition to the equations (B.5), we find after some
calculation (or using mathematica)

(2− 27D + 9λ)(−D(4 + 27D)− 18Dλ+ λ2 + 4λ3)

8(1 + 3λ)3
= 0, (B.13)

(−2 + 135D + 9λ)(−D(4 + 27D)− 18Dλ+ λ2 + 4λ3)

8(1 + 3λ)3
= 0. (B.14)

The common condition from this two equations is

0 = −D(4 + 27D)− 18Dλ+ λ2 + 4λ3

= −27D2 −D(4− 18λ) + λ2 + 4λ3. (B.15)

This result also follows directly by calculating the resultant of the two polynomials.
Solving equation (B.15) to D, we obtain

D1,2 =
1

27

(
−9λ− 2

(
1±

√
(1 + 3λ)3

))
. (B.16)

Equation (B.16) represents the two bifurcation lines (see also section 2.3, figure
2.3).
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Appendix C

Eigenmode expansion

Here we want to collect the main steps from [90] to understand the calculation
progress in chapter 3 (see eq.(3.41)).
We start with a linear delay differential equation

ẋ(t) = −ax(t) + bx(t− τ), (C.1)

with the constant coefficients a and b and the initial condition

x(θ) = φ(θ), − τ ≤ θ ≤ 0. (C.2)

We are interested in solutions of exponential type, x(t) = exp(λt). The corre-
sponding characteristic equation reads

λ = −a+ b exp(−λτ). (C.3)

We can solve this equation by using the Lambert W-function

λl = −a+
Wl(bτ exp(aτ))

τ
, (C.4)

where Wl denotes the l-branch of the Lambert W-function. The solution of equa-
tion (C.1) can be written as

x(t) =
∑
l

cl exp(λlt). (C.5)

The coefficients cl are determined in agreement with the initial condition

φ(θ) =
∑
l

cl exp(λlθ)︸ ︷︷ ︸
=Ul(θ)

. (C.6)
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We use the condition (for (l �= l
′
) and due to equation (C.3))

b exp(−λl′τ)

∫ 0

−τ

exp(−λl′θ) exp(−λlθ)dθ =
b exp(−λl′τ)− b exp(−λlτ)

λl − λl′

= − 1 (C.7)

to show that the expression

V ∗
l (θ) = [δ(θ) + b exp(−λl(θ + τ))]/Nl (C.8)

is orthogonal to Ul(θ) (eq.(C.6))

Nl

∫ 0

−τ

V ∗
l
′ (θ)Ul(θ)dθ = 1 + b exp(−λl′τ)

∫ 0

−τ

exp(−λl′θ) exp(−λlθ)dθ

= 0 (C.9)

We choose the normalisation constant Nl that

1 =

∫ 0

−τ

V ∗
l (θ)Ul(θ)dθ (C.10)

is valid. So we have

Nl = 1 + bτ exp(−λτ) = 1 + aτ + λlτ (C.11)

and hence, we can estimate the coefficients cl∫ 0

−τ

V ∗
l (θ)φ(θ)dθ = cl. (C.12)

Finally the solution of equation (C.1) reads

x(t) =
∑
l

[
φ(0) +

∫ 0

−τ

b exp(−λl(θ + τ))φ(θ)dθ

]
exp(λlt)

Nl

= T (t, 0)φ(θ) +

∫ 0

−τ

T (t, θ + τ)bφ(θ)dθ, (C.13)

with

T (t, t
′
) =

{ ∑
l exp(λl(t− t

′
))/Nl if t > t

′
,

0 if t < t
′
.

(C.14)

For the case of an inhomogeneous equation

ẋ(t) = −ax(t) + bx(t− τ) + f(t) (C.15)

and the initial condition (eq.(C.2)) the solution is expanded in eigenmodes:

x(t+ θ) =
∑
l

Cl(t) exp(λlθ), − τ ≤ θ ≤ 0. (C.16)
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To determine the coefficients Cl(t) we use the equations (C.10) and (C.12)

Cl(t) =

∫ 0

−τ

V ∗
l (θ)x(t+ θ)dθ

=

[
x(t) + b

∫ t

t−τ

exp(λl(t− θ − τ))x(θ)dθ

]
/N. (C.17)

Taking the time derivative yields

Ċl(t) =

[
ẋ(t) +

d

dt

(
b

∫ t

t−τ

exp(λl(t− θ − τ))x(θ)dθ

)]
/N. (C.18)

Using

d

dt

(∫ b(t)

a(t)

f(x, t)dx

)
=

∫ b(t)

a(t)

d

dt
f(x, t)+ f(b(t), t)

d

dt
b(t)− f(a(t), t)

d

dt
a(t) (C.19)

one can write the second term as

d

dt

[(
b

∫ t

t−τ

exp(λl(t− θ − τ))x(θ)dθ

)]

= b

∫ t

t−τ

d

dt
exp(λl(t− θ − τ))x(θ)dθ + b exp(−λlτ)x(t)− bx(t− τ). (C.20)

Therefore, we obtain

NĊl(t) = − ax(t) + bx(t− τ) + f(t) + bλl

∫ t

t−τ

exp(λl(t− θ − τ))x(θ)dθ

+ b exp(−λlτ)x(t)− bx(t− τ)

= (−a+ b exp(−λlτ))x(t) + f(t) + bλl

∫ t

t−τ

exp(λl(t− θ − τ))x(θ)dθ.

(C.21)

Now we use equation (C.4) and we end up with

Ċl(t) =

(
λlx(t) + bλl

∫ t

t−τ

exp(λl(t− θ − τ))x(θ)dθ + f(t)

)
/N

= λlCl(t) +
f(t)

N
. (C.22)

Using Cl(0) = cl as initial condition, we obtain by integration

Cl(t) = exp(λlt)cl +

∫ t

0

exp(λl(t− t
′
))f(t

′
)dt

′
/Nl (C.23)
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Therefore, the solution for the inhomogeneous equation (C.15) is

x(t) =
∑
l

Cl(t)

=
∑
l

(
exp(λlt)cl +

∫ t

0

exp(λl(t− t
′
))f(t

′
)dt

′
/Nl

)

=
∑
l

[(
φ(0) +

∫ 0

−τ

b exp(−λl(θ + τ))φ(θ)dθ

)
exp(λlt)

Nl

+

∫ t

0

exp(λl(t− t
′
))f(t

′
)dt

′
/Nl

]

= T (t, 0)φ(0) +

∫ 0

−τ

T (t, θ + τ)bφ(θ)dθ +

∫ t

0

T (t, t
′
)f(t

′
)dt

′
, (C.24)

where we used the equations (C.8), (C.12), and (C.14).
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Calculation of the power spectral
density

Here we want to show the detailed calculation of the power spectral density from
section 3.2.2. We make use of the Wiener-Khinchin theorem by computing the
Fourier transform of the autocorrelation function:

Sxx(ω) =

∫ ∞

−∞
eiωt〈x(t)x(0)〉dt

=

∫ ∞

0

eiωt〈x(t)x(0)〉dt+
∫ 0

−∞
eiωt〈x(t)x(0)〉dt

=

∫ ∞

0

eiωt〈x(t)x(0)〉dt+
∫ ∞

0

e−iωt〈x(t)x(0)〉dt

=

∫ ∞

0

2 cos(ωt)〈x(t)x(0)〉dt

= 2Re

∫ ∞

0

eiωt〈x(t)x(0)〉dt, (D.1)

where we used the property that the autocorrelation function is an even function.
Now we can perform the integration directly by using the autocorrelation function

〈x(t)x(0)〉 = 2D
∑
l,l

′
Re

exp(Λlt)

NlN∗
l′ (−Λl − Λ∗

l′ )

= 2D
1

2

∑
l,l

′

(
exp(Λlt)

NlN∗
l
′ (−Λl − Λ∗

l
′ )

+
exp(Λ∗

l t)

N∗
l Nl′ (−Λ∗

l − Λl′ )

)
(D.2)
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and obtain the power spectral density after some rearranging

Sxx(ω) = 2D
1

2
2Re

∑
l,l′

[
1

−Λl − iω

1

NlN∗
l
′ (−Λl − Λ∗

l
′ )

+
1

−Λ∗
l − iω

1

N∗
l Nl′ (−Λ∗

l − Λl′ )

]

= 2D
1

2

∑
l,l′

[
1

−Λl − iω

1

NlN∗
l
′ (−Λl − Λ∗

l
′ )

+
1

−Λ∗
l + iω

1

N∗
l Nl

′ (−Λ∗
l − Λl

′ )

+
1

−Λ∗
l − iω

1

N∗
l Nl

′ (−Λ∗
l − Λl

′ )
+

1

−Λl + iω

1

NlN∗
l
′ (−Λl − Λ∗

l
′ )

]

= 2D
1

2

∑
l,l

′

[(
1

−Λl − iω
+

1

−Λl + iω

)
1

NlN∗
l′ (−Λl − Λ∗

l′ )

+

(
1

−Λ∗
l − iω

+
1

−Λ∗
l + iω

)
1

N∗
l Nl

′ (−Λ∗
l − Λl

′ )

]
= 2DRe

∑
l,l

′

−2Λl

Λ2
l + ω2

1

NlN∗
l′ (−Λl − Λ∗

l′ )
, (D.3)

where we used for the last step(
1

−Λl − iω
+

1

−Λl + iω

)
=

−2Λl

(−Λl − iω)(−Λl + iω)
=

−2Λl

Λ2
l + ω2

. (D.4)
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