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Preface

Praise be to Allah s.w.t… Peace and Blessing be to Prophet Muhammad s.a.w…

In preparation of this research book, we were in contact with numerous researchers
and academicians. They have contributed toward the understanding and thoughts of
Physics and communication systems link. In particular, we wish to express our
sincere appreciation and gratitude to Prof. Dr. Preecha P. Yupapin from KMITL,
Thailand, Prof. Dr. Noriah Bidin from Laser Centre, Ibnu Sina ISIR, and Dr.
Saktioto from the Physics Department, Universiti Teknologi Malaysia for their
motivations and support. Also, we like to thank our family members for their
patience. Without their continued support and interest, the completion of this book
would definitely have been impossible.

This research book serves to design and analyze the optical soliton control in
micro- and nanoring resonator systems. Optical soliton control in communication
and sensors is performed with the ring resonator systems described in the book. The
ring resonator systems are optimized as optical tweezers for photodetection.
Numerous arrangements and configurations of micro- and nanoring resonator
systems are explained. The analytical formulation and optical transfer function for
each model and the interaction of the optical signals in the systems are discussed.
The book shows that the models designed are able to control the dynamical
behavior of generated signals.

This research book consists of six chapters, namely as Introduction, Literature
Review, Theory, Research Methodology, Results and Discussion, and Conclusion.
The background of study, problem statements, scope, and significance of research is
discussed in Chap. 1. The objectives of the research are also explained in details.
Literature reviews of the research are discussed in Chap. 2. The characteristics of
bright and dark solitons, temporal solitons, optical trapping, and historical per-
spective of ring resonators are described in this chapter. Chapter 3 explains the
theoretical part of the research. The fundamental principles of ring resonator are
discussed in details. The nonlinearity of the optical solitons is discussed based on
the Kerr effect of optical fibre waveguides. The resonance characteristics of the fibre
is also presented. Besides, the basic principles of SPM, SFG, and Z-transform
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methods are also explained in this chapter. The mathematical formulation, mod-
eling, and description of add-drop and PANDA ring resonator systems are
explained in Chap. 4. The derivation of add-drop and PANDA ring resonator
systems arrangements are discussed precisely. The transfer function of each model
designed is derived based on the actual practical device values. The flowcharts that
perform the simulation processes are described. Chapter 5 explains the results and
discussions of the research findings. All parametric effects toward the system
performance are discussed in details. The optimization process for both add-drop
and PANDA ring resonator systems are explained accordingly. At the end, the
conclusions of this research work are described in Chap. 6.
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Abbreviations and Symbols

Abbreviations

FSR Free spectral range
FWHM Full width at half maximum
GVD Group velocity dispersion
IDRI Intensity dependent refractive index
MRR Microring resonator
NLS Nonlinear Schrödinger
NRR Nanoring resonator
PMMA Polymethyl methacrylate
SFG Signal flow graph
SHG Second harmonic generation
SOA Semiconductor optical amplifier
SPM Self-phase modulation
XPM Cross-phase modulation

Symbols

A Amplitude
Aeff Effective mode core area
a Acceleration
B Build-up factor
c Speed of light
D Delay dispersion parameter
dB Decibel
dBkm-1 Decibel per kilometre
E Electric field
Eadd Add port
Ed Drop port

ix



Ein Input port
Et Throughput port
E1 Circulating field 1
E2 Circulating field 2
E3 Circulating field 3
E4 Circulating field 4
F Finesse
Fg Gradient force
Fnet Net force
Fs Scattering force
f Frequency
fo Center frequency
GHz Giga Hertz
h Plank’s constant (6.63 x 10-34 m2kg/s)
I Intensity
Io Peak intensity
k Wave number
kn Propagation constant
L Propagation distance
LD Dispersion length
Leff Effective length
LL Circumference of left ring
LNL Nonlinear length
LR Circumference of right ring
Lu Smallest path length or the unit delay length
m Mass
mW miliWatt
N Number of photon
n Refractive index
nm nanometer
ns nanosecond
nL Optical path length
neff Effective refractive index
ng Group refractive index
no Linear refractive index
n2 Nonlinear refractive index
P Dielectric polarization
PL Linear polarization
PNL Nonlinear polarization
Pt Transmission power
p Momentum
pm pikometre
Q Quality factor
R Ring radius
RL Radius of left nanoring

x Abbreviations and Symbols



RR Radius of right nanoring
s Electron travelling distance
T Unit delay
To Pulse propagating time at initial input
t Time
tij Transmittance
u1 Inertial velocity
u2 Final velocity
v Velocity
W Watt
τ Pulse duration
ϕ Instantaneous phase shift of the pulse
ϕL Linear phase
ϕNL Nonlinear phase
κ Coupling coefficient
λ Wavelength
λo Center wavelength
θ Angle
θ1 Incident angle
θ2 Refractive angle
ω Optical frequency
ω0 Reference frequency
ω′ Instantaneous frequency
β Propagation constant
νc Center frequency
γ Coupling loss
μm micrometer
μm2 micrometer square
ϕ Phase shift
ϕo Linear phase shift
ϕNL Nonlinear phase shift
* Conjugate
α Loss coefficient
β Propagation constant
|t| Coupling losses
φt Phase of coupler
εo Vacuum permittivity
χeff Effective susceptibility of the medium
χ(1) Linear susceptibility
χ(2) Second-order susceptibility
χ(3) Third-order susceptibility
Δf Frequency shift
Δn Change in refractive index
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Δλ Wavelength shift
Δϕ Phase change
γ Coupling loss
Γ Length scale
3-D Three dimensional
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Abstract

Over the past few years, the development of optical soliton technologies has
progressed rapidly. This research book has been written to design and analyze the
optical soliton control in micro- and nanoring resonator systems. The add-drop and
PANDA ring resonator systems have been proposed for optical soliton control in
communications, sensors, and biological applications. The operating system
consists of a modified nonlinear add-drop configuration system based on InGaAsP/
InP fibre materials integrated with a series of nonlinear nanoring resonators.
Numerous arrangements and configurations of micro- and nanoring resonator
systems were designed. The analytical formulation and optical transfer function for
each model designed were developed based on these configurations and Z-trans-
form method was used to derive and prove the interaction of the optical signals for
the systems. Both the add-drop and PANDA ring resonator systems could be
optimized as optical tweezers for photodetection by controlling the input power,
ring radii, and coupling coefficients of the systems. The system was tuned to trap
and accelerate the particles. The system named as optical multiplexer can be used to
optimize the channel capacity and security of the signals. In conclusion, this
research shows that the models designed are able to control the dynamical behavior
of the generated signals.

xiii



Chapter 1
Introduction

1.1 Background of Study

Solitons or solitary waves, have been the subject of theoretical and experimental
studies in different fields, including hydrodynamics, nonlinear optics, plasma
physics, engineering, sensors, and biology (Ablowitz and Clarkson 1991; Abdullaev
et al. 1993; Drazin 1993; Gu 1995). The first investigation about the solitons was
reported by James Scott Russel in 1834, which observed that a heap of water in canal
propagated undistorted over several kilometres (Neuman et al. 2007). However, the
properties of the solitons were not completely understood yet, even different
mathematical models were introduced.

The terms solitons was coined in 1965 to reflect the particle-like nature of
solitary waves that remained intact even after mutual collisions. In mathematics and
physics, soliton is a self-reinforcing solitary wave that maintains its shape while it
travels at the constant speed (Newell 1995). In the context of nonlinear optics,
solitons can be classified to being either temporal or spatial solitons depending on
whether the confinement of light occurs in time or space during the wave propa-
gation (Shen 1984; Boyd 2001).

Various types of single-molecule force spectroscopy technique such as optical
tweezers, magnetic tweezers, and atomic force microscopy have been invented to
investigate tiny forces and motion associated with micro and nano-scaled particles.
Among these techniques, optical tweezers is considered as one of the most
successful technique for ultrafine positioning, measurement, and confinement of
nanoscopic object. Since its interception in early 1970s, the field of optical tweezers
has developed rapidly.

© The Author(s) 2015
S. Daud et al., Simulation of Optical Soliton Control in Micro- and Nanoring
Resonator Systems, SpringerBriefs in Physics, DOI 10.1007/978-3-319-15485-5_1

1



1.2 Problem Statement

Development of the optical soliton technology is typically very important because
of its potential and diverse technological applications from communication to
biological (Crisafuli et al. 2012). They have shown that such nonlinear behaviours
are beneficial for various fields, such as signal processing, digital encoding,
bistability switching, and others. However, the power attenuation of the signal
output becomes a big problem for the large system link. For this reason, a suitable
system is required to generate large bandwidth signal using soliton pulse propagates
in a Kerr type nonlinear medium (Liu and Zhao 2012).

Tuned soliton pulses are obtained using add-drop and PANDA multiplexers. The
characterization and optimization of the proposed systems are very important
indeed. In this research, the optical soliton control in microring resonator (MRR)
and nanoring resonator (NNR) systems will be studied including the characteristics
of the systems, optical soliton nonlinear equations, and soliton interaction within
the MRR and NNR systems.

Recently, this device has found its role in development of dynamic optical
tweezers by employing the concept of dark soliton pulse controlled by Gaussian
beam within the resonator system. Due to these special characteristics, the devel-
opment of dynamic optical tweezers using dark soliton pulse been typically
important in the research field with potential applications in various areas (Harada
and Asakura 1996).

Thus, characterization and optimization of the systems are very crucial element
that need to be considered. Development of ring resonator models with its analytical
derivations and optimization of the output transmission will be studied in details.
Analysing and examining the results establish a better understanding on the physics
knowledge.

1.3 Research Objective

The general aims of this research are to design, demonstrate, control and analyze
the optical soliton within the optical ring resonator systems.

The specific objectives of this research are:

(i) To design a number of different arrangements/configurations of micro- and
nanoring resonator systems integratedwith add-drop and PANDAconfiguration
systems.

(ii) To develop the analytical formulation and derivation of the transfer function
and examine the parametric effect of each proposed model designs.

(iii) To investigate and analyze the parametric effects on the dynamical behaviour
of the signals within MRR and NRR systems.

(iv) To optimize the ring resonator parameters for specific applications.
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1.4 Scope of Research

This research starts with the literature review on optical soliton control in ring
resonator systems. The theoretical part involves in numerical experiments on sev-
eral arrangements of integrated ring resonator systems consisting of micro-size ring
resonator as the main component, couples with nano-size ring resonators embedded
on the structure. Different arrangements of micro- and nanorings resonator systems
will be designed for the purpose. The configurations of add-drop and PANDA ring
resonator systems are integrated and described in details.

The proposed systems consist of an active ring resonator made of nonlinear
material called InGaAsP/InP with core refractive index, no = 3.34. During simu-
lation process, the coupling coefficient, j is set to be in range of 0–1, and the ring
radii are vary from 20 to 40 μm for microring and 40–90 nm for nanoring reso-
nators respectively. This research focused on the application in communication and
sensor technologies.

Nonlinear optics, optical solitons, optical Kerr effect, group velocity dispersion
(GVD), and self-phase modulation (SPM) are discussed thoroughly. The deriva-
tions of the equations used are based on the nonlinear Schrödinger (NLS) equation,
Kerr effect, and Z-transform method. Dark soliton pulse is introduced into the
systems through the input port, Ein. The important aspects including the power
input, ring resonator arrangements, ring radii, coupling coefficient, losses of the
systems, fibre wavelength, and depth of the ring resonators will be optimized.
A numerical method is developed based on Z-transform analysis and the results are
simulated using MatLab R2010b software programming.

1.5 Significance of Research

Dynamical optical tweezers in form of potential well can be used in communication
systems and frontier research for trapping and transporting dielectric particles. The
research leads us to a better understanding and qualifying the physics of such
systems that will give direct knowledge, especially in communication and biolog-
ical technologies. The proposed models designed are able to predict accurately the
dynamical behaviour of optical soliton interactions within the micro- and nanoring
resonator systems.

1.4 Scope of Research 3



Chapter 2
Literature Review

2.1 Introduction

This chapter begins with the historical perspectives of the optical solitons. The
bright and dark solitons characteristics are studied. In addition, the historical
backgrounds of the ring resonators, including micro- and nanoring resonators are
also discussed in details. Finally, the potential applications related to this research
work are reviewed.

2.2 Historical Background

A German astronomer, Johannes Kepler was first purposed the radiation pressure
theory in 1619 (Chen et al. 2009). Radiation pressure is the pressure associated with
the interaction of electromagnetic radiation on any given surface. He managed to
explain physical phenomenon of comet tails which always pointing away from the
sun because of the radiation pressure exert by sunlight (Svoboda and Block 1994).

In 1873, James Clerk Maxwell proposed the electromagnetism theory (Ashkin
1997) and described the existence of extremely small optical forces associated with
electromagnetic fields. Hemanaged to explain the electromagnetism theory precisely.
However, the existence of this tiny optical force on absorbing gasses and microscopic
objects was described by Russia physicist, Peter Lebedev in 1901 (Ashkin 2000).
Since that time, this field has undergone a slow-moving development and innovation
due to its feeble magnitude and insignificant impact on particles.

This field of study continues to grow tremendously after the invention of light
amplification of stimulated emission of radiation in 1960s (Pralle et al. 2000)
known as laser. Laser ensures the high intensities and collimated light which
become very useful in enhancing radiation pressure. Advent of laser has enabled
numerous of research and developments in this area.

© The Author(s) 2015
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2.3 Bright and Dark Solitons

Solitons are the localized excitations propagating in a system with constant velocity
colliding with each other without change in their shape (Sarapat et al. 2009). Soliton
can be divided into two, which are bright and dark solitons.

In the case of self-defocusing, the general form of the bright soliton is given as
(Kivshar and Agrawal 2003):

u z; xð Þ ¼ A sech A x� vzð Þ½ �exp i vzþ u z; xð Þð Þ½ � ð2:1Þ

where A is the amplitude of the soliton and v is its velocity.
In the self-defocusing Kerr medium, the continuous-wave plane-wave soliton is

always stable against small modulation. The dark soliton can be stated as (Chen
et al. 2012):

u z; xð Þ ¼ uo B tanh uoB x� Auozð Þ½ � þ iAf gexp �iu2oz
� � ð2:2Þ

where A2 þ B2 ¼ 1.
In the special case, (when / ¼ 0) dark soliton doesn’t move against the back-

ground and it is kept in stationary condition (Masi et al. 2010). In this case, (2.2)
reduced to:

u z; xð Þ ¼ uo tanh uoxð Þexp �iu20z
� � ð2:3Þ

The characteristics of the bright soliton depend on the amplitude, A and the
velocity, v while the speed of the dark soliton depends on its amplitude through the
parameter /.

2.4 Optical Trapping

The field of optical trapping was pioneered introduced by Arthur Ashkin in early
1970 (Ashkin 1997). The usage of intense laser beam has overcome the major
problem of extremely small magnitudes of optical forces. Realization of the large
magnitudes of optical forces allows this phenomenon to be studied well. His first
experimental works are considered as an important breakthrough in this research
area. By using forces of radiation pressure from a continuous wave visible laser
source, he managed to observe the acceleration of freely suspended micron-size
particles. This work have led to the first process of trapping particles in optical
potential well which created by using two identical counter propagating laser
beams. The stability of the potential well arises from the combination of radiation
pressure and gradient force of the laser.
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Arthur Ashkin following work is on the optical levitation process. In this work,
he has experimentally demonstrated stable levitation of transparent glass sphere by
using a laser in different types of medium. During experiment, light beam are
directed to strikes a sphere with higher refractive index, n compared to the sur-
rounding medium where it was suspended. This process has successfully proved the
existence of another component of force which tends to push the trapped particles
towards the center of the beam, which is the region where light intensity is highest.
Discovery of the force provides a better understanding on possibilities to create a
stable optical potential wells by using a single laser beam.

The potential shown by this technique is the main reason why this technique
went into numbers of theoretical and experimental studies over the decades.
Levitation of different particles in different medium such as in air and vacuum has
been demonstrated in various kinds of research and studies. During those invention
years, one of the most important studies has been carried out on optical levitation of
liquid drops (Rafizadeh 1997). The study has discovered that not only solid par-
ticles can be trapped, but this technique also works on liquid particles. The journal
also highlights on some important elements that need to be considered, such as
trapping of multiple particle and its restriction.

This technique continues to evolve as time goes by. Finally in 1986, a major
breakthrough on this technique has been recorded in history. Ashkin and his
co-workers at Bell Labs went into successful discovery on new method to trap a
particle by using only single laser beam. This technique is called “single-beam force
trap” or commonly referred to as an optical tweezers (Ashkin 2000). Technically,
the generation of optical tweezers involves process of focusing a laser beam upon a
high numerical aperture microscope objective lens in water immersion. This step
allows a strong convergent ray of light to be focused in a small area, which contains
very strong electric field gradients compare to the one produced in previous
experiment using a normal laser beam. During experiments, it turns out that
particles are attracted along the gradient towards the center of the beam with high
intensity observed. Geometry of the particle thus allows the forces to be stabilized
in transverse direction.

In previous levitation process, axial gradient force is too small that just enough
to balanced up with gravitational force to ensure the axial stability. They have
shown that by using extremely focused laser beam, magnitude of the force pro-
duced is very large that it dominates the axial stability of the trap. By considering
geometry of the particle, contributions from both components of forces are enough
to ensure the capability of this optical tweezers to hold microscopic particle stable
in 3 dimensions. They managed to extend the size regime of trapping for various
applications covering macromolecules, colloids, aerosol particles and look into
possibility in trapping of biological particles.

However, there are lots of arguments that have been considered on trapping
biological specimens since there appear no experimental and theoretical works that
have been done on this kind of sample. The main concern of this process was to
ensure that the forces used to trap the sample might not cause “opticution”, the term
referred to cell damage by interaction with high flux of laser beam. This kind of
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interaction leads to two major consequences that can cause harms in biological
samples especially living cells. First, it will break the covalent bond between
biological molecules and second, it will cause excessive heating associated with
optical absorption of the samples. Researchers from all over the world continued to
put some efforts on this subject and carried out numbers of experiments regarding to
this technique. Finally, after years of invention, trapping of biological sample has
been performed for the first time in 1987s. They have experimentally reported
process of trapping and manipulation of viruses and bacteria by using optical
tweezers (Dai et al. 1998). During experiments, single tobacco mosaic virus and
Escherichia coli (E. coli) bacteria were trapped in aqueous chamber filled with
water. Observation shows that both samples were successfully confined in the
optical trap over period of time with no apparent physical damage detected on the
sample. Since this remarkable initiation of optical tweezers in biophysical tech-
nique, it has opened up a major breakthrough in the new field which is known as
single-molecular research.

Optical tweezers advancing to another level when Svoboda et al. demonstrated
an experiment on trapping of metallic particles in 1994. This experiment was
unique because they managed to prove that metallic particle was possible to be
trapped by using optical tweezers technique. Before this significant finding, metallic
object was viewed as poor candidates in optical trapping process due to its rela-
tively large absorption and scattering forces. Magnitudes of these forces are directly
proportional to the intensity of light and tend to destabilize the trap. However, in
their experiment, they have clearly shown that gold nanoparticles with 36 nm in
diameter are trapped with relatively 7 times more stable compared to non-metallic
sphere of the same size. This surprising outcome was observed and analyzed. They
found out that metallic samples possess a large polarizability, thus producing high
magnitude of gradient forces to counterbalance the scattering forces components.
This process allows metallic samples to be trapped stable in optical tweezers.

This technique continues to develop as it found its crucial applications in trap-
ping and manipulating neutral particles. In 1997, Ashkin managed to design a new
experimental method/set-up by using single laser beam that immediately provides a
unique means to precisely control the dynamics of micro-size neutral particles. This
achievement plays an important role in the revolutionary of physical and biological
sciences. In addition, this research work leads to demonstration of cooling of a
neutral atom in context of atomic physics (Ashkin 1997).

In early 2000, a great research work on three dimensional particle tracking for
optical tweezers techniques has been carried out. This work successfully provided
an insight on high-resolution position sensor for optical trapping process. In this
work, lateral displacement and axial position of the trapped sphere are measured by
estimating the ratio between the intensity of scattered light towards the total amount
of light collected at the detector which is located at the back-focal plane of the
microscope. A fluorescent latex bead with radius approximately 300 nm is used as
the sample during process of trapping by Nd:YVO4 laser with wavelength at
1.064 nm and 50 mW input power. An inverted microscope with numerical aperture
NA = 1.3 is implemented in this experiment. This model was successfully used to
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explain and describe the results obtained from Rayleigh-trapping experiments.
Axial displacement of the trapped particle within the Rayleigh length which is
calculated to be at z = 150 nm can be measured with percentage of precision less
than 10 %. This work is considerably important as it provides a better means/
manner to study the dynamics of single membrane molecules.

Advent in nano-manipulation technique manages to extend the use of optical
tweezers down to nanometre scale. Frontier research works dealing with nanometre-
sized biomolecule has been carried out in 2001 (Agrawal 2001). In this experiment,
stiffness of a single actin filament is measured. Beads held by optical trap are
attached to both ends of the actin filament. The sample is stretched and the relative
displacement between the beads is measured. It is reported that the average dis-
placement of 15–20 nm is recorded corresponding to the stiffness of 65 pNnm−1.
Basically, this research is considered as one of the pioneer work that operates by
combining single molecule imaging with optical manipulation technique for the
study of nanometre-scaled molecular motor. Moreover, the unitary processes of
mechanical work and energy conversion have been successfully monitored by using
this technique. This crucial development has given the opportunity for the other
researchers to prolong their experimental research at the single molecular level.

In the following year, Dholakia et al. have reported the use of optical fields to
arrange, guide or deflect particles in desired optical lattice geometries. Dholakia in
his work entitled “Microfluidic Sorting in an Optical Lattice” managed to perform
an optical sorter for micron-size particles that exploit the interaction of particles
with dynamically reconfigurable 3-dimensional optical lattice. Sorting process
categorized into two types which are sorted by size or refractive index. Efficiency of
this sorting process has been calculated in the range of 96–100 %.

Optical trapping, manipulation and sorting techniques have been further
improved by upgrading conventional optical trapping system implementing the use
of diode laser bars. A single diode laser bar with dimension 100 μm × 1 μm
operates at center wavelength of 980 nm and input power of 3 W is multiplexed by
ten identical 0.25 NA objective lens along the entire width. This technique
maneuvers vast arrays of independently controlled trapping channels which enables
trapping of many particles simultaneously. It is reported that 1.8 μm polystyrene
beads are trapped along the trapping zone which can be controlled in the range of
1–100 μm without any detectable damage on the sample. This technique directly
enhanced the scaling limitation faced by previous laser traps.

The drive toward more sensitive nanoscale-manipulation of optical tweezers led
to the development of optical trapping tools that capable to resolve the motion of
biological system down to sub-nanometre level. In 2006, spatial resolution of
optical tweezers has been successfully improved by using dual traps technique. This
approach requires the subject to be held at both ends by using two different optical
traps. A single 1.7 μm DNA is tethered between two equal size 860 nm polystyrene
microspheres held in optical trap with stiffness of 0.13 pNnm−1. Relative distance
between polystyrene pair is recorded at the smallest spatial resolution of 2.3 Å
(Chen 2006). This work allows the optical-trapping related studies to go beyond
sub-nanometer scale with more promising results.
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Through all those years, this technique was not only studied experimentally.
Some researchers have comes out with modeling investigation on optical tweezers.
For instance, Zakharian et al. in 2006 has developed numerical solutions for single-
beam trapping of micro-beads in polarized light. In this work, electromagnetic fields
distribution including the forces components acting around the spherical geometry
of the trapped particle are successfully computed and modelled by using numerical
solution of Lorentz law of forces. This model can be used to precisely calculate the
stiffness of optical tweezers acting on a particle whether it is immersed in water or
suspended in air.

In the following year, computational modelling on optical forces components
and its torques has been successfully developed. In detail, a computational toolbox
in a proper computer interface system is created to ease the optical tweezers
modelling process. The model can be used to trap both spherical or non-spherical
samples by using either Gaussian or any other types of trapping beam. For instance,
simulation results of optical forces components plotted against relative displace-
ment of the particles from equilibrium point has been demonstrated for the case of
Gaussian and Laguerre-Gauss as the trapping beam. These kinds of modelling
activity are very important in obtaining quantitative results, thus directly provides a
bridge to link between theoretical work and experimental outcomes.

Within the past few years, scope of studies for this particular field is still growing
positively either in theoretical and experimental parts. Different techniques and
trapping apparatus for optical tweezers generation have been developed starting
from a single lens system to a huge and complicated instrument consisting of
multiple optical devices. This field evolves when the old lens-based optical tweezers
techniques have been substituted by an all-fibre optical tweezers technique. Unlike
the conventional tweezers system, this novel approach relies on the unique total
internal reflection phenomenon that occurs within the circular core of fibre optics
waveguide. This technique requires single-mode fibre probe with tapered hallow tip
to produce an intense annular trapping beam as the output. Realization of this
technique will greatly improve the design and instrumental part of optical tweezers
technique with various potential applications in communication and biology.

However, a single optical fibre device can’t form a stable 3-dimensional optical
trap because of the weak intensity possessed by the trapping beam. This problem
originates from the weak focusing ability possessed by the tapered fibre end which
directly induced weak gradient force component that tends to destabilize the
trap. This problem has been overcome by the usage of a single fibre probe with an
annular light distribution. For this purpose, a tapered, chemically etched and hallow
tipped metalized fibre probe are designed to produce the annular light beam. A solid
glass bead with diameter of 2 μm surrounded in water has been successfully trapped
by an annular light of 1.9 μm diameter produced from a single fibre probe with
20 μm tip. Laser source with input power of 10 mW and centered at λ = 1.32 μm is
used. Scattering force component is recorded at roughly 6 × 10−12 N and the
trapped bead is observed moving at the speed of 20 μm s−1. Trapping by this
technique can be explained by the balancing condition achieved between the
electrostatic force which tends to attract the particle towards the fibre tips and the
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scattering force component which push the particle in opposite direction. In the
following years, a group of scientist from Fukuyama University led by Ikeda
reported an interesting phenomenon of optical rotation on a micro-sized plastic bar
by using a single-beam optical fibre tweezers system. Such object was observed
rotated 360° in 4.8 s by using 20 mW output powers. In addition, they have
successfully demonstrated clockwise and anti-clockwise rotation on a bar and
cross-shaped plastic micron-size samples. During experiments, manipulation on the
sample has been done by tuning the power of the output beam produced by all three
tapered optical fibres. This technique is used to precisely control the rotational
direction of any trapped particles.

A novel method of optical trapping by using only a single tapered fibre optics
probe has been demonstrated in 2006. This unique fibre probe is originally made
from a single-mode fibre with core diameter of 9 μm. Fabrication process including
heating and drawing techniques are undergone by the waveguide in order to pro-
duce a parabola-like profile fibre tip. In this work, trapping of a yeast cell with
diameter 6.5 μm immersed in water is performed at the room temperature. Maxi-
mum output power supplied by the laser source is 120 mW centered at λ = 980 nm.
Trapping process takes place at the focal plane where the intensity of the laser beam
emerged from the fibre tip is highest. This point is located at 1 μm from the fibre
tip. Optical field distribution ejected from particular fibre tip is calculated and
modelled. Both gradient and scattering forces components are simulated by FDTD
method. Result shows that a stable three dimensional trap is plausible for this
technique. This breakthrough is important as it makes optical tweezers technique
become more convenient in dealing with micron-size particles.

Performance of the single-fibre optical tweezers is examined by Minzioni et al.
in one of his paper published in 2008 (Minzioni et al. 2008). In this study, a
comparison between all-fibre optical tweezers with conventional tweezers (single
beam trap) has been made. Detail numerical computations are performed in Mie
regime and performances of both tweezers are compared. A single-mode optical
fibre probe with core diameter of 6.5 μm is fabricated. Yb-doped fibre laser at center
wavelength of 1,070 nm is launched into the fibre probe with input power of 7 mW.

In the other case, a tightly focused Gaussian beam with the same input power
and centered at 1,070 nm corresponding to numerical aperture of 1.25 is considered.
Trapping of 5 μm polystyrene sphere immersed in water is performed by both
systems and the minimum energy required to escape the traps εesc are calculated.
Result suggests that single-fibre optical tweezers performance is relatively com-
parable to that obtained by a standard optical trap generated by a strongly focused
Gaussian beam as shown in Fig. 2.1. Thus, both systems can be used to deal with
micro-scale particle during optical manipulation process.

Recently, Yupapin and Jalil et al. have shown a new methodology to generates
optical tweezers by using optical soliton pulse propagates within microring reso-
nator system for several applications such as drug delivery, Alzheimer diagnostic,
and blood cleaning (Aziz et al. 2012). Adoption of optical tweezers in microring
resonator concept shows that there are still plenty of research and works that can be
performed with rising number of new applications in various areas of studies.
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2.5 Temporal Solitons

In the context of nonlinear optics, soliton can be classified as being temporal or
spatial solitons (Wen et al. 2010), depending whether the confinement of light
occurs in time or space during the wave propagation. Both types of solitons
(temporal or spatial) evolve from a nonlinear change in refractive index of an
optical material induced by the light intensity known as the optical Kerr effect (Ishii
et al. 2001). The bright and dark spatial solitons form only when the nonlinear
effects balanced the diffractive effect precisely. The spatial soliton can form in a
self-defocusing nonlinear medium.

The existence of temporal soliton in optical fibre was discovered in 1973 and
experimentally proved by the year of 1980 (Agrawal 2001). A balance between the
group-velocity dispersion (GVD) and self-phase modulation (SPM) induced by the
Kerr nonlinearity caused the formation of temporal soliton inside the optical fibre
(Tian and Gao 2005). Temporal soliton represents the optical pulse that maintains
its shape, while the spatial soliton is the self-guided beams that remains confined in
the transverse direction orthogonal to the direction of propagation. The major
nonlinear effects that are responsible for the formation of optical solitons are the
spatial self-focusing or self-defocusing and the temporal self-phase modulation
(SPM).

Temporal soliton defined as a pulse or wave packet that maintains its shape when
propagate at constant speed without any distortion due to dispersion (Yupapin and
Suchat 2007). The dispersion effect originates from the dependency of phase
velocity towards its frequency and any medium that exhibits such properties is
called dispersive media. Every wave packets built from a plane waves with several
different frequencies. Due to the dispersive effect, all of these waves travel at
different velocities, thus changing the pulse shape over the time. This effect is
presented by group delay dispersion parameter, D. D is described as:

Fig. 2.1 Minimum energy
for particle to escape the trap,
εesc plotted against particle
radius, r for single fibre
optical tweezers and strongly
focused Gaussian beam
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Ds � DLDk ð2:4Þ

where Dk is the bandwidth of the pulse in terms of wavelength.
The envelope of optical pulse widens for Ds after travelling at distance L. On the

other hand, the nonlinear Kerr effect induced variation in refractive index. This
process directly modified the phase shift in the pulse that leads to a change in
frequency spectrum of the pulse. This whole process is referred to SPM.

By considering that a Gaussian beam with intensity I depend on time t, hence:

I tð Þ ¼ Ioexp
�t2

s2

� �
ð2:5Þ

where Io is the peak intensity and s is the pulse duration of the wave.
Optical Kerr effect produces variation in refractive index of n Ið Þ ¼ no þ n2I. As

the propagation continues, the intensity at any point of media is changed.
This process yields a time-varying refractive index as:

dn Ið Þ
dt

¼ �2t
s2

n2Ioexp
�t2

s

� �
ð2:6Þ

The variation of refractive index values is responsible for instantaneous phase
shift of the pulse, /. / is given by:

/ tð Þ ¼ xot � kx ð2:7Þ

/ tð Þ ¼ xot � 2p
ko

L � n Ið Þ ð2:8Þ

where xo and ko represents the frequency and wavelength of the pulse respectively,
and L is the propagation distance.

These phase shifts induce the changes in frequency of the pulse and given by:

x tð Þ ¼ d/ðtÞ
dt

ð2:9Þ

x tð Þ ¼ xo � 2pLð Þ
ko

dn Ið Þ
dt

ð2:10Þ

x tð Þ ¼ xo þ 4pLn2Io
kos2

� t � exp �t2

s

� �
ð2:11Þ

Equation (2.11) can be substituted by x tð Þ ¼ xo þ at. The second term of the
right hand side of this equation clearly states that there is an extra frequency
component generated as it propagates in a medium.

2.5 Temporal Solitons 13



This SPM effect broadens the frequency spectrum of the pulse and leading edge
is said to be compressed and having a positive chirp. Such optical pulse is stable
and propagates undistorted in the form of temporal soliton.

2.6 Microring Resonator System

Marcatili were first demonstrated the concept of light transmission in curved optical
dielectric waveguide in 1969. From the experiments done by this group of
researchers, different cross sectional diameters of the dielectric waveguides were
examined. The bent of light wave within the guided waveguide materials was
successfully proved. These findings had been the pioneer work for the development
of the studies in the field of guided-wave optics from all over the world.

Weber and Ulrich (1971) reported the characteristics and operational of circu-
lated laser, formed by a circular single mode light-guiding thin film. This system
was initially known as ring resonator. This system consisted of a cylindrical glass
rod with 5 mm diameter coated with Rhodamine 6G doped with polyurethane film
n ¼ 1:55ð Þ. The operational of laser pulse from the ring resonator device was
successfully developed by this group (Ulrich and Weber 1972).

Haaristo and Pajer proposed and demonstrated the integration of ring waveguide
and two tangential straight-channel waveguides on both sides of the ring in 1980
(Moffitt et al. 2006). Both two waveguides were geometrically and intentionally
coupled. These straight bus waveguides were made of polymethyl methacrylate
(PMMA) doped film on quartz substrate. The most interesting part about this work
was that the device has a very small value of coupling loss (about 0.05 dBm/cm).
The special properties of low loss and its polarization maintenance were the main
reasons why this device was suitable enough for fibre optics interferometers.

In 1982, Stoke et al. successfully demonstrated the optical glass fibre ring
resonator (Minzioni et al. 2008). This device consisted of a single-mode fibre and a
dielectric coupler. This device was designed to operate at A ¼ 632:5 nm. The work
initiated numerous researchers on glass-based integrated ring resonator.

In early 1990s, a group of researchers have successfully demonstrated the
construction of microring resonator from semiconductor based materials (Chu et al.
1993). Through this research, the researchers came out with optical pumped
microdisk in both GaInAsP/InP and III-Nitrides materials with smallest disk
circumference recorded at 15 μm (Dai et al. 1998). However, one of the weaknesses
at this time was, the resonator designed without bus waveguide coupled to the ring
geometry. In this configuration, the transmission of light from the resonator relied
on the fibre. This draw back has been overcome by Rafizadeh (1997) with the
fabrication of integrated microring resonator system where two lateral bus wave-
guides coupled on the circumference of the ring.

Several configuration of the ring resonator systems have been proposed based on
GaAs/AlGaAs materials (Absil 2000). A racetrack-shaped ring resonator has been
designed to enhance the coupling efficiency at the coupler region with cross
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sectional area of 0.5 μm2 and 400 μm bus waveguide length. The device can
perform a wavelength conversion process with 14 % conversion efficiency, quite
high percentage compared with other configuration systems. Such results were
achieved by using relatively low input power of about 10 mW (Absil et al. 2000)
and due to the low-loss and high nonlinear properties possessed by the particular
device.

Rabus and Hamacher (2001) demonstrated various ring resonator configurations
based on the GaAs/AlGaAs medium. The development of this research area led to a
novel integration of a single resonator device made up of GaInAsP/InP material. By
using suitable wavelength values, the value of free spectral range (FSR) of 50 GHz
with the full width at half maximum (FWHM) of 24 pm were achieved. With
integration of semiconductor optical amplifier (SOA), the quality factor, Q up to
65,000 was induced (Rabus et al. 2002a).

A desire output ring resonator transmission can be realized by using multiple-
coupled ring resonator system. A new concept of lateral coupling between the ring
and bus waveguide has been introduced into different loss-compensated ring res-
onator configurations to modify the output filter functions. For instance, single,
double, and triple multistage optical filter devices were designed. It was reported
that such configuration results of FSR with 12.5, 25.0, and 50.0 GHz respectively
and on-off ratios greater than 20 dB (Rabus et al. 2002b).

Until this date, record shows that there is no active type ring resonator device
that has been fabricated. The first active ring resonator device was constructed from
all-active materials. This device was capable to alter the filtering performance. An
active ring resonator device was fabricated from indium phosphate material. Such
systems showed a relatively high FSR of 10.5 nm with Q of 5,700. Under resonance
state, this device was operated at the center wavelength, k ¼ 1:584 μm and
resulting the output signal transmission, T of 0.1 with finesse, F ¼ 40 (Djordjev
et al. 2002a). The models of ring resonator which vertically coupled to the bus
waveguide have been used with small radius, up to 10 μm (Djordjev et al. 2002b).
This successful work becomes a reference for numerous researchers and acade-
micians in this field. In last few decades, this field have rapidly grown and realized
in electro-optic polymer, silicon nitride, and silicon oxynitride based materials
(Rabiei and Steier 2003; Tan 2004; Geuzebroek 2005).

A complete analysis expression describing the propagation within nonlinear
dispersive microring resonator systems has been obtained using matrix approaches.
The transfer matrix method can describe precisely a complicated system, such as
multiple numbers of coupled ring resonator and others. This method can implement
to any structures or geometries of microring resonators. It is also valid for any
values of coupling parameters (Poon et al. 2004).

The theoretical analysis on optical microring becomes very important indeed.
Details in calculation of loss element in ring resonator device are carried out
successfully. The perturbation approach may compute the scattering and radiation
losses of components for microring resonator with cylindrical waveguide.
The losses in the system which is originated from the shape defect on the ring
waveguide and the fluctuation of core refraction index are successfully discussed
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(Rabiei 2005). Such analysis provides an insight for a better understanding on
microring resonator as discrete loss component impose a serious limitation during
fabrication process.

Mahdi (2013) proposed the analytical vernier effect for nanophotonics circuits
by using ring resonator systems. It is shown a big contribution about the mathe-
matical calculation especially in physics fields. Amiri (2013) proposed an idea of
optical soliton based on communication technology by using microring resonator
systems. He has shown that the integrated dark soliton is a useful concept for the
communication technology. The dark-bright solitons conversions within add-drop
system have been done by Muhammad Arif in 2013. He has shown that the dark-
bright solitons can be converted in ring resonator within add-drop system. The
research is focussed on the nanotechnology and biomedicine based studies.
Muhammad Safwan (2013) proposed the tenability of the optical solitons in micro-
and nanoring resonator systems. The electrooptics tenability of the optical solitons
interaction within PANDA and double-PANDA system has been investigated.

Due to its potential applications, in the recent years, microring resonator
becomes a rapidly developing research interest, especially in photonics devices.
Recently, Jalil and Yupapin (2008, 2009, 2011, 2012) have reported a novel idea of
PANDA ring resonator configurations which utilized in various applications,
especially in communication and medical applications. The development on design
and fabrication of microring resonator has been a subject of intense studies among
researchers.
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Chapter 3
Theory

3.1 Introduction

The fundamental principles of the ring resonators, including single ring resonator
and the add-drop configuration systems are discussed in this chapter. Nonlinear
response of the temporal solitons from nonlinear Kerr effect in optical fibre and the
basic principles of self-phase modulation (SPM), signal flow graph (SFG) theory,
and Z-transform method are explained accordingly.

3.2 Ring Resonator System

The first study on integrated ring resonator for a bandpass filter in microwave has
been published by E.A. Marcatili in 1961 (Absil et al. 2000). The proposed layout
of the channel dropping filter is as shown in Fig. 3.1. The transmission properties of
the guide consist of a dielectric rod with a rectangular cross section, surrounded by
several dielectrics of small refractive indices (Marcatili 1969).

Purely passive single ring resonator filter as shown in Fig. 3.1 have been realized
materials of AlGaAs-GaAs (Hagness et al. 1997), Si-SiO2 (Little et al. 1997), and
Si3N4-SiO2 (Parkin et al. 2006). In the form of racetrack, GaInAsP (Vanderhaegen
et al. 1999) and AlGaAs-GaAs (Chin et al. 1999) material systems have been
realized for passive ring resonator. The general architecture for an autoregressive
planar waveguide optical filter was firstly demonstrated in 1996 by Madsen and
Zhao (1996). The autoregressive lattice filters were designed and fabricated using
Germanium-doped silica waveguide.

© The Author(s) 2015
S. Daud et al., Simulation of Optical Soliton Control in Micro- and Nanoring
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3.2.1 Single Ring Resonator

Based on Yariv (2002), the basic ring resonator consists of unidirectional coupling
between a ring resonator and a waveguide as shown in Fig. 3.2. Ei1 and Et1 are the
input and output port respectively, j and t are the coupling coefficients of the
coupler, j� and t� are its conjugates respectively, and a is the loss coefficient of the
ring.

When an input electric field, Ei1 is coupled into the ring waveguide, positive
feedback mechanism is induced and the field inside the ring resonator, Ei2 starts to
build-up. In such configuration, only certain wavelengths are allowed to resonate
inside the ring waveguide. Only the waves that have the same wavelength with the
waveguide are allowed to resonate within the waveguide while the rest will be
reflected. Thus, the selective frequency is obtained (Yariv 2002; Rabus 2010).

The various kinds of losses occur along the propagation of light in the ring
resonator filter. That interaction can be described by the matrix relation:

Et1

Et2

� �
¼ t j

�j� t�

� �
Ei1

Ei2

� �
ð3:1Þ

The complex mode amplitudes, E are normalized so that their square magnitude
corresponds to the modal power. The coupler parameters, j and t depend on the
specific coupling mechanism used while the * denotes the conjugated complex
values of j and t respectively.

It is considered that the networks are reciprocal. Thus, the matrix is symmetric
(Yariv 2000). Therefore:

Fig. 3.1 Ring resonator channel dropping filter
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j2
�� ��þ t2

�� �� ¼ 1 ð3:2Þ

and

Ei1 ¼ 1 ð3:3Þ

Then, the roundtrip of the ring is given by:

Ei2 ¼ a � e jhEt2 ð3:4Þ

where a is the loss coefficient of the ring (zero loss: a ¼ 1), h ¼ xL=c, L ¼ 2pr is
the circumference of the ring, r is the radius of the ring, c ¼ co=neff is the phase
velocity of the ring mode, x ¼ kco is the angular frequency, co is the speed of light
in vacuum, and k ¼ 2p=k.

By using the vacuum wavenumber, the effective refractive index, neff can be
introduced into the ring coupling relations by:

b ¼ k � neff ¼ 2p � neff
k

ð3:5Þ

where b is the propagation constant.
As discussed earlier, h ¼ xL

c ; c ¼ co
neff

; k ¼ 2p
k .

Simplified,

h ¼ xL
c

Fig. 3.2 Schematic diagram of single ring resonator waveguide
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h ¼ 4p2neff
r
k

ð3:6Þ

Thus the transmission power, Pt1 in the output waveguide is given as (Timotijevic
et al. 2006):

Pt1 ¼ Et1j j2¼ a2 þ tj j2 � 2a tj j cos hþ utð Þ
1þ a2 tj j2 � 2a tj j cos hþ utð Þ ð3:7Þ

where t ¼ tj j exp jutð Þ. tj j are the coupling losses and ut is the phase of the coupler.
The circulating power, Pi2 in the ring then is given as:

Pi2 ¼ Ei2j j2 ¼
a2 1� tj j2
� �

1þ a2 tj j2 � 2a tj j cos hþ utð Þ ð3:8Þ

In case of resonance, hþ utð Þ ¼ 2pm; where m is an integer. Thus, Pt1 and Pi2 are
obtained as:

Pt1 ¼ Et1j j2¼ a� tj jð Þ2
1� a tj jð Þ2 ð3:9Þ

and

Pi2 ¼ Ei2j j2¼
a2 1� tj j2
� �
1� a tj jð Þ2 ð3:10Þ

Once the internal losses are equal to the coupling losses, a special case will
happen, where a ¼ tj j in (3.9). Then, the transmitted power becomes zero. This is
due to the destructive interface, which is known as critical coupling. By using the
above equations, it is possible to get a good idea of the behaviour of a simplified
basic ring resonator filter configuration consisting of only one waveguide and one
ring.

3.2.2 Add-Drop Configuration

The basic ring resonator for add-drop configuration system is shown in Fig. 3.3.
Add-drop configuration system consists of two bus waveguides and the ring
resonator itself. The four ports of the ring resonator are referred as input port, add
port, throughput port, and drop port depicted as Ein, Eadd, Et, and Ed respectively.

For simplification, input port, Ein is defined to be equal to 1, Ein ¼ 1. The
throughput mode amplitude in the first waveguide is given as (Heebner et al. 2008):
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Et ¼ t1 þ
�j1j�1t

�
2a

2
1=2e

jh t1j j2þ j1j j2

1� t�1t
�
2a

2
1=2e

jh

Et ¼
t1 � t�2a

2
1=2e

jh

1� t�1t
�
2a

2
1=2e

jh

Et ¼ t1 � t�2ae
jh

1� t�1t
�
2ae

jh
ð3:11Þ

where a ¼ a21=2 and h ¼ 2h1=2:

Now, the mode amplitude in the ring pass the second coupler. The dropped
mode amplitude in the waveguide is given as (Heebner et al. 2008):

Ed ¼
�j�1j2a1=2e

jh1=2

1� t�1t
�
2ae

jh
ð3:12Þ

At resonance, the output power from the drop port is given as (Heebner et al. 2008):

Pd�Resonance ¼ Ed�Resonancej j2

Pd�Resonance ¼
1� t1j j2

� �
� 1� t2j j2
� �

� a
1� a t1t2j jð Þ2 ð3:13Þ

At resonance, the throughput port mode amplitude, Et becomes zero. For
identical symmetrical coupler, t1 ¼ t2 if a ¼ 1, which indicates that the wavelength
on resonance is fully extracted by the resonator.

Fig. 3.3 Schematic diagram of add-drop configuration system
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Hence,

a ¼ t1
t2

����
���� ð3:14Þ

If the ring resonator is lossless ða ¼ 1Þ, then the coupler have to be symmetric in
order to achieve the minimum intensity. The transmission of a lossless ring reso-
nator add-drop filter with radius, R = 148 μm is as shown in Fig. 3.4.

3.3 Fibre Nonlinearity

Optical fibre is a media which response nonlinearly when high intensity light
passing through it (Singh and Singh 2007). Nonlinear effects in optical fibre are
mainly contributed from nonlinear refraction caused by the third-harmonic gener-
ation and four-waves mixing are not efficient in optical fibre. This phenomenon
refers to the intensity dependence of optical fibre medium on the refractive index.

Nonlinear medium is a medium in which the dielectric polarization, P response
nonlinearly to the intense electromagnetic fields. The behaviour of light in nonlinear
medium can be described by using the theory of nonlinear optics. In the funda-
mental level, the origin of nonlinear response is related to a harmonic motion of
bound electrons under the influence of an applied field (Ashkin and Dziedzic 1987;
Calander and Willander 2002; Chen 2006).

The total electric polarization induced is related to electric field, E and is given
as (Bonessi et al. 2007):

P ¼ eo vð1Þ : E þ vð2Þ : EE þ vð3Þ : EEE þ � � �
� �

ð3:15Þ

where eo is the vacuum permittivity and vðnÞ is the nth order component of the
electric susceptibility of the medium.

Fig. 3.4 Add-drop ring
resonator filter characteristics
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The linear susceptibility, vð1Þ represents the dominant contribution towards P.
For linear medium, the polarization of the medium varies linearly with E and in this
case only first term of this equation is considered (Dienerowitz et al. 2008). The
second-order susceptibility, vð2Þ responsible for nonlinear effects such as sum fre-
quency generation (SFG) and second harmonic generation (SHG). vð2Þ is a scalar
quantity. In reality, vð2Þ is a tensor which depends on the combination of more than
one frequencies. SFG process occurs when two input photons at angular frequen-
cies x1 and x2 annihilate and one photon with frequency x3 is generated simul-
taneously during the parametric process. SHG can be considered as a special case of
SFG (Harada and Asakura 1996; Liu and Zhao 2012).

The input photons must have the same angular frequencies. Hence,
x1 ¼ x2 ¼ 1

2x3. During this process, the photons are effectively combined to form
the new photons with twice energy and frequency, and half wavelength of the input
photons. The lowest order nonlinear effects originate from the third-order suscep-
tibility, vð3Þ. It is also known as higher-order frequency mixing, which is respon-
sible for the phenomenon such as third-harmonic generation, four-waves mixing,
and nonlinear refraction (Stilgoe et al. 2008).

Assume that the nonlinearity of the fibre ring is the Kerr type effect (Ke and Gu
1999). When light propagates within nonlinear materials or mediums, there is a
change in the refractive index of the medium in response to an applied electric field.
The refractive index of the medium, n is given as:

n ¼ no þ noI ¼ no þ n2
Aeff

P ð3:16Þ

where no is the linear refractive index, n2 is the nonlinear refractive index, I is the
optical intensity, P is the optical power, and Aeff is the effective mode core area of
the device (Fazal and Block 2011; Neuman and Block 2011).

This phenomenon leads to a number of interesting nonlinear effects such as
cross-phase modulation (XPM) and self-phase modulation (SPM). XPM occurs
when an optical field induced a nonlinear phase shift on another field that having a
different wavelength. When two optical fields with different frequencies, x1 and x2

propagate simultaneously inside a fibre, the total electric field, E is given as
(Van Mameren et al. 2011):

E ¼ 1
2
bX E1 exp � i x1tð Þ þ E2 exp � i x2tð Þ½ � ð3:17Þ

In the other case, an optical field propagates inside the optical fibre can expe-
rienced self-induced phase shift. This phenomenon is known as SPM.
The change in phase of the optical field is given as:
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u ¼ ~nkoL ¼ nþ n2 Ej j2
� �

koL ð3:18Þ

where ko ¼ 2p
k and L is the length of the fibre. Spectral broadening of pulses and

formation of optical solitons are due to SPM phenomenon (Qiu and Xu 2011).

3.4 Nonlinear Kerr Effect

Solitons induce enharmonic motion between bound electrons in the medium. These
electrons emit secondary wave which is directly proportional to the induced
polarization. Due to this phenomenon, the optical field has extra phase retardation.
The whole process can be manifested as intensity-dependent change in refractive
index of the medium. This process is called as optical Kerr effect (Butcher and
Cotter 1990).

Hahn (2006) in his book entitles Light Scattering Theory states that the Kerr
effect was firstly discovered by a Scottish physicist, John Kerr in 1875. Kerr effect
is a change in refractive index, n of a material in response to applied electric fields
(Melnichuk and Wood 2010). The induced refractive index change is directly
proportional to the square of the electric field. Thus, the optical Kerr effect is the
variation in refractive index which is proportional to the local irradiance of the light
passing through the media. This unique phenomenon leads to numbers of inter-
esting nonlinear effect such as self-phase modulation (SPM) and cross-phase
modulation (XPM).

Intense light beam can provide the modulation electric field in the isotropic Kerr
medium. The polarization vector, P in the direction of electric field, E is given as:

E ¼ Eo cos xt þ kzð Þ ð3:19Þ

where Eo is the amplitude, x is the frequency, and k is the wavenumber.
The dielectric polarization, P is given as:

P ¼ eov
1ð ÞEo cos xt � kzð Þ þ eov

2ð ÞE2
o cos

2 xt � kzð Þ
þ eov

3ð ÞE3
o cos

3 xt � kzð Þ þ � � �
ð3:20Þ

By using double and triple-angle formulas from trigonometry relation,

cos 2x ¼ 2 cos2 x� 1 ð3:21Þ

and

cos 3x ¼ 4 cos3 x� 3 cos x ð3:22Þ
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Equation (3.20) can be rewritten as:

P ¼ 1
2
eov

2ð ÞE2
o þ eov

1ð ÞEo cos x� kzð Þ þ 1
2
eov

2ð ÞE2
o cos 2 xt � kzð Þ

þ 3
4
eov

3ð ÞE3
o cos x� kzð Þ þ 1

4
eov

3ð ÞE3
o cos 3 xt � kzð Þ þ � � �

ð3:23Þ

The first term on the right side in (3.23) is a term that gives a dc field across the
media. The second term is assigned as the fundamental harmonic of polarization,
which shows that the component oscillates at frequency x. The second harmonic
polarization can be seen in the third term which represents the oscillation with
double fundamental frequency, 2x. The term with frequency 3x is called the third
harmonic of polarization.

In the field of optical fibre, the component vð2Þ vanished and (3.23) can be
transformed into:

P ¼ eov
1ð ÞEo cos xt � kzð Þ þ 3

4
eov

3ð ÞE3
o cos xt � kzð Þ

þ 1
4
e0v

3ð ÞE3
o cos 3 x� kzð Þ

ð3:24Þ

Because of variation in indexes of the fibre, there is phase lack between fre-
quency x and 3x. Due to this mismatch phase, the third term in (3.24) can be
neglected.
Hence, the polarization can be rewritten as:

P ¼ eov
1ð ÞEo cos xt � kzð Þ þ 3

4
eov

3ð ÞE3
o cos xt � kzð Þ ð3:25Þ

Equation (3.25) can be decomposed into two components, which are linear polar-
ization, PL and nonlinear polarization, PNL. PL and PNL are given as:

PL ¼ eov
1ð ÞE r; tð Þ ð3:26Þ

and

PNL ¼ eoeNL E r; tð Þ ¼ 3
4
eov

3ð Þ E r; tð Þj j3 ð3:27Þ

For the plane wave, the intensity, I is given as:

I ¼ 1
2
ceonoE2

o ð3:28Þ

where c is the speed of light in vacuum.
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By substituting (3.28) into (3.25), P can be rewritten as:

P ¼ eov
1ð ÞE r; tð Þ þ 3

2
vð3Þ

ceono
IE r; tð Þ ð3:29Þ

veff defines as the effective susceptibility of the medium. veff is given as:

veff ¼
P
eoE

ð3:30Þ

Therefore,

veff ¼ v 1ð Þ þ 3
2

v 3ð Þ

ceono
I ð3:31Þ

The effective refractive index, neff is given as (Heebner et al. 2004):

n2eff ¼ 1þ veff ð3:32Þ

Thus,

neff ¼ 1þ veff
� �1=2 ð3:33Þ

neff ¼ 1þ v 1ð Þ þ 3
2

vð3Þ

ceon2o
I

	 
1=2
ð3:34Þ

By using Taylor’s expansion series, (3.34) can be rewritten as:

neff ¼ no þ 3
4

vð3Þ

ceon2o
I � 3

16
vð3Þ

ceon2o
I þ � � � ð3:35Þ

As compared with the first term, the third term in (3.35) have a very small value and
can be neglected. Thus,

neff ¼ no þ 3
4

vð3Þ

ceon2o
I ð3:36Þ

From (3.16), the linear refractive index can be represented as:

no ¼ 3
4

vð3Þ

ceon22
ð3:37Þ

where no is the linear refractive index and n2 is the nonlinear refractive index of the
media. Equation (3.37) describes accurately the nonlinear response for any Kerr
medium.
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The change in refractive index, Dn is proportional to the intensity of light or
square of the steady electric field (Melnichuk and Wood 2010). This process is a
self-induced effect in which the phase velocity of the wave depends on its intensity.
Such process assigned as the nonlinear refraction within Kerr media.

3.5 Resonance Characteristics

Resonance describes as the tendency of a system to oscillate with greater amplitude
with particular frequency (Yupapin and Pornsuwanchareon 2008). The resonance
frequency is a natural frequency of variation, determined by the physical parameters
of the vibrating object. It occurs when a system is able to store and easily transfer
energy between two or more different storage modes. Resonance system can be
used to generate vibration of a specific frequency. The performance of each reso-
nator can be measured in terms of resonance width, free spectrum range, finesse,
and quality factor.

3.5.1 Bandwidth

The bandwidth of the resonator is given by the full width at half maximum
(FWHM) of the ring intensity resonance or its 3-dB bandwidth. It is a measure of
the sharpness of the resonance. The resonance bandwidth determines how fast the
optical data can be processed by a ring resonator.
The FWHM of the single ring resonator is given as (Saeung and Yupapin 2008):

d/ ¼ 2 � 1� x � yð Þffiffiffiffiffiffiffiffi
x � yp ð3:38Þ

where x and y are the x-component and y-component of the selected point
respectively.

To understand how the bandwidth of the resonator is affected by the coupling
coefficient j, a critically coupled ring resonator is considered as an example. In
such a case, (3.38) can be simplified as:

d/ ¼ 2 � jffiffiffiffiffiffiffiffiffiffiffi
1� j

p ð3:39Þ

Therefore, it may conclude that the lower the coupling coefficient, j the smaller
the resonance bandwidth.
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3.5.2 Finesse

The finesse, F of the resonator is defined as the ratio of the free spectral range (FSR)
and the full width at half maximum (FWHM) of a resonance (Yupapin and
Pornsuwanchareon 2008). By considering the FSR in terms of phase is equal to 2π,
thus the finesse of the resonator is given as:

F ¼ 2p
d/

¼ p � ffiffiffiffiffiffiffiffi
x � yp

1� x � yð Þ ð3:40Þ

Simply,

Finesse;F ¼ FSR
FWHM

ð3:41Þ

The finesse gives the resolving power of the resonator when it is used as a
transmission filter. The resonator finesse is independent on its dimensions or
circulating light wavelength. It is only a function of the coupling coefficient and the
internal loss.
The finesse of a critical coupling (x ¼ y) is given as:

Fjx¼y ¼
p � y
1� y2

¼ p � ffiffiffiffiffiffiffiffiffiffiffi
1� j

p

j
ð3:42Þ

Fjx¼y ¼
p � x
1� x2

¼ p � D exp�aL=2

1� D2 exp�aL
ð3:43Þ

Figure 3.5 shows the relationship between the finesse, F with the coupling
coefficient, j of the resonator. It is shown that the finesse, F exponentially decrease
with the increase of the value of coupling coefficient, j. From the graph, it can be
concluded that the finesse, F depends on the coupling coefficient, κ at the point of
maximum on-off ratio.

3.5.3 Free Spectral Range

The free spectral range (FSR) is the frequency spacing between two resonance
peaks of a signal (Yupapin and Pornsuwancharoen 2008). For calculation, simply
the phase constant which corresponds to / ¼ 2 � mp is defined as k and the phase
constant which corresponds to / ¼ 2 � mþ 1ð Þ � p is defined as k þ Dk, where m is
an integer and Dk is the phase constant.

The frequency shift, Df and the wavelength shift, Dk are related to the variation
of the phase constant, Dk as:
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Df ¼ c
2p

� Dk ð3:44Þ

and

Dk ¼ � k2

2p

� �
� Dk ð3:45Þ

The resonance spacing in terms of frequency, f and wavelength, k are given as:

Df ¼ c
ngr � L ð3:46Þ

and

Dk ¼ � k2

ngr � L
����

���� ð3:47Þ

where ngr is the group refraction index.

Fig. 3.5 Relationship between finesse, F with the coupling coefficient, j at the point of maximum
on-off ratio

3.5 Resonance Characteristics 29



ngr is defined as:

ngr � neff � k
dneff
dk

¼ Dk
2p

ð3:48Þ

By using d/ ¼ d kn � Lð Þ ¼ 2p
F and the FWHM, d/ in terms of frequency, f and

wavelength, k at the resonance peaks are given as:

df ¼ c
F � ngr � L ð3:49Þ

and

dk ¼ k2

F � ngr � L ð3:50Þ

By using the FSR (Df or Dk) and the FWHM (df or dk), the finesse, F can also be
calculated by using:

F ¼ FSR
FWHM

ð3:51Þ

In the frequency domain,

Df
df

¼
c

ngrL
c

F�ngr �L
¼ F ð3:52Þ

In the wavelength domain,

Dk
dk

¼
k2

ngrL

k2

F�ngr �L
¼ F ð3:53Þ

3.5.4 Quality Factor

The quality factor, Q or also known as the factor of resonator is a measure of the
sharpness of the resonance (Yupapin and Pornsuwancharoen 2008). The Q factor of
an optical waveguide is due to its energy stored and the power lost per optical cycle.
Q factor is defined as:

Q ¼ x
Stored energy
Power lost

ð3:54Þ
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For the ring resonator, Q factor can be calculated as:

Q ¼ fo
df

¼ ko
dk

ð3:55Þ

In the frequency and wavelength domains, Q factor is the ratio of the absolute
frequency, fo or absolute wavelength, ko to the 3-dB bandwidth (df or dk). Q factor
determines the shape and bandwidth of the response filter.

Finesse, F and quality factor, Q are important indeed, when one is interested in
both FSR and 3-dB bandwidth. F and Q are related to each other by:

Q
F
¼ fo

Df
¼ ko

Dk
ð3:56Þ

The high cavities of Q factor are very important especially as the building block
for optical signal processing application or for the laser application where high
quality factors are required.

3.6 Optical Tweezers

Optical tweezers arise from the ability of light to exert the force on the matter
(Neuman and Block 2004). This phenomenon originates from the basic principles
of momentum (Guck et al. 2001; Wilson et al. 2005).

Newton’s Second Law of Motion states that the rate of change of momentum is
proportional to the imposed forced in the direction of the force (Rohrbach and
Stelzer 2001).
The net force of the body is given as:

F ¼ dp
dt

¼ d mvð Þ
dt

ð3:57Þ

F ¼ m
dv
dt

¼ ma ð3:58Þ

where F is the net force applied, p is the momentum, m is the body’s mass, v is the
velocity, and a is the body’s acceleration.

According to Snell’s Law (Barton 1995; Summers 2009), the ray of light passing
through an object is refracted.

Figure 3.6 shows the schematic diagram of the refraction of light at the interface
between two media of difference refractive indices, where n2 > n1. In this phe-
nomenon, the velocity at the second medium is lower than the velocity in the first
medium (u2 < u1). The refraction angle, h2 is less than the incident angle, h2.The ray
in the higher-index medium becomes closer to the normal line.
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Hence,

sin h1
sin h2

¼ u1
u2

¼ n2
n1

ð3:59Þ

where h1 and h2 are the incident and refractive angles respectively, u1 and u2 are the
inertial velocity and final velocity respectively, and n1 and n2 are the refractive
indexes for the first and second mediums respectively.

As a result, the ray of light that exit the medium/molecule is slightly different in
direction compared with its original angle. The angle of refracted ray is more close to
the origin. The difference between the angles of incident and refraction rays shows
that there is a momentum change during the process. The quantum of light possesses a
momentum proportional to its energy and associated with its propagation.

The linear momentum of photon, p associate with laser beam at wavelength, k is
given as:

p ¼ E
c

ð3:60Þ

where E is the energy of light.
E is given as:

E ¼ hf ð3:61Þ

where h is the Planck’s constant (6.63 × 10−34 m2 kg/s) and f is the frequency of
light.

Fig. 3.6 Refraction of light
between two media
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f is given as:

f ¼ c
k

ð3:62Þ

where c is the speed of light.
From (3.60)–(3.62) the momentum of a single photon, p can be expressed as:

p ¼ E
c
¼ hf

f k
¼ h

k
ð3:63Þ

From (3.58), the net force, F is given as:

F ¼ dp
dt

F ¼
XN
i

Dpi
Dt

ð3:64Þ

where N is the number of photon and t is the time.
Equation (3.64) represents the region with high intensity of light (large N) and

results in the greater force. This is due to the massive change in momentum
compared to the region with the small values of N.

The sum of the optical force from all rays can be divided into two major com-
ponents, known as scattering force, Fs and gradient force, Fg. Fs acts in the direction
of the propagation light while Fg arising from the light intensity gradient and pointing
toward the center of beam (Douglas et al. 2007).
Fs and Fg are related as:

Fnet ¼ Fs þ Fg ð3:65Þ

where Fnet is the net force.
For the normal light beam, the scattering force component dominates the particles

and tends to push it away from its stable position. In order to create a stable 3-D
trapping, the axial gradient force, Fg must overcome the destabilizing force, Fs. This
can be realized with the existence of a very steep gradient in laser beam intensity
profile. The domination of Fg ensures the stability of the optical trapping. Fg can be
considered as the restoring force that pulls the particle into the center of the trap.

3.7 Self-phase Modulation

The intensity dependent refractive index (IDRI) of Kerr effect causes a series of
interesting nonlinear behaviour. Self-phase modulation (SPM) and cross-phase
modulation (XPM) are two major effects that been studied intensely.
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SPM can be described as the self-induced phase shift experienced by ultrashort
pulse of light once travelling in any nonlinear Kerr medium. The varying intensity
of input optical signal results in time varying refractive index of the IDRI medium.
This directly produced a varying phase change in the optical signal. The fluctuation
of signal intensity causes the phase change of the signal itself as it propagates
through the medium (Yang et al. 2006).

The phase change, / of the optical field, E propagates over a distance L can be
describes as:

/ ¼ nkL ð3:66Þ

/ ¼ 2p
k
nL ð3:67Þ

where n and k are the refractive index and wavelength of the propagating optical
pulse respectively, and k is the wavenumber. The value of nL is known as an optical
path length in nonlinear medium.

In optical fibre, n and L are replaced by the effective refractive index, neff and
effective length, Leff respectively. Hence,

/ ¼ 2p
k
neff Leff ð3:68Þ

and

/ ¼ 2p
k

no þ n2ð ÞLeff ð3:69Þ

Equations (3.68) and (3.69) consist of two parts of phase constant which is assigned
as linear and nonlinear portion respectively. Hence,

/L ¼ 2p
k
noLeff ð3:70Þ

/NL ¼ 2p
k
n2ILeff ð3:71Þ

Consider the intensity is time dependent, I tð Þ. The phase depends on the time
change. The change in phase with time dependence induces the change in frequency
spectrum.
Hence,

x ¼ d/
dt

ð3:72Þ

By considering a pulse with optical frequency of xo propagates in Kerr media,
the new instantaneous frequency is given as:
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x0 ¼ xo þ d/
dt

ð3:73Þ

In the expression of phase ðxt � kzÞ, the sign of SPM phase shift is negative.
Thus, the phase equation can be rewritten as:

/ ¼ � 2p
k

no þ n2Ið ÞLeff ð3:74Þ

In an optical fibre with cross-sectional area of Aeff , the phase shift is induced by
an optical beam of power P which is given as:

/SPM ¼ � 2p
k
Leff P

n2
Aeff

ð3:75Þ

3.8 Photonics Signal Flow Graph Theory

Signal flow graph (SFG) theory has been introduced by Samuel Jafferson Mason in
1950s (Mason 1953). The SFG technique has been widely used in diverse fields of
electronics, digital signal processing, and controlling systems. A signal flow graph
is defined as a network of directed branches which connect at nodes (Tan 2004).
Simply, it is a pictorial representation of the simultaneous algebraic equations
describing a system and graphically displays the flow of signal through a system.
The SFG method can be interpreted as a transformation of either the method of
successive substitutions of simultaneous equations or the transfer matrix method to
a topological approach. In general, the SFG theory can be applied to any linear
time-invariant systems.

Generally, the SFG technique is used to solve a set of linear algebraic equation.
It can be described as (Serpegüzel 1999):

xj ¼
Xn
i¼1

tijxi; j ¼ 2; 3; . . .; n ð3:76Þ

where xi is the only driving force in the system with independent variable,
x2; x3; . . .; xn are the dependent variables, and tij is the transmittance.

There are many advantages of using SFG technique over conventional methods.
It yields a pictorial representation of the flow of signal through the system, which
enhance the understanding of the operation of the systems. For the graphical
simulation system using computer program, SFG can provide an easy and systematic
way of manipulating the variables of interest. It also enables the solutions of any
circuit problems to be obtained easily by direct inspection of the simple system.
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The physical behaviour and topological properties of a simple system can be easily
identified by using the SFG theory.

Transmission rule, addition rule, and product rule are the three basics rules that
frequently used in photonics signal flow graph theory. The theoretical descriptions
of the rules will be discussed in details at this section.

3.8.1 Transmission Rule

Transmission rule states that the value of the variable denoted by a node is
transmitted on every branch leaving that node (Fig. 3.7). The expression of the
transmission rule is given by:

xj ¼ tijxi ð3:77Þ

where j ¼ 1; 2; 3; . . .; n� 1; n.

3.8.2 Addition Rule

Addition rule states that the value of the variable denoted by a node is equal to the
sum of all signals entered that node (Fig. 3.8). Mathematically, addition rule can be
describes as:

Fig. 3.7 Schematic diagram
of the transmission rule

Fig. 3.8 Schematic diagram
of the addition rule
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xj ¼
Xn
i¼1

tijxi ð3:78Þ

where i ¼ 1; 2; 3; . . .; n� 1; n.

3.8.3 Product Rule

Product rule states that the effective transmittance of a branch is equal to the product
of the transmittances of all branches in cascade (Fig. 3.9). The expression for
additional rule is given as:

xn ¼ t12t23 � � � tn�1ð Þx1 ð3:79Þ

3.9 Z-Transform Method

The filter function arises from the interference of two or more waves. The incoming
signal is split into multiple paths by division of the wavefront or its amplitude
(Mario 2007). Different gratings are an example of the wavefront division while the
partial reflectors are the example of the amplitude division.

As travelling along the different paths, the optical waves combine and interfere.
In this case, the waves must have the same polarization, same frequency, and
temporally coherent over the longest delay length. When the signals are recom-
bined, their relative phases determine whether they interface constructively or
destructively.
The phase path, / is given as:

/ ¼ bL ð3:80Þ

where b is the propagation constant and L is the distance travel along the path.
The individual optical path lengths are typically integer multiples of the different

smallest path length. The refractive index, n is assumed to be wavelength
dependent.

Fig. 3.9 Schematic diagram of the product rule
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The unit delay, T is defined as:

T ¼ Lu
n
c

ð3:81Þ

where Lu is the smallest path length or the unit delay length. Each delay is an
integer multiple of a unit delay length, Lu.
The phase for each path is then expressed as a multiple of bLu. Hence,

/P ¼ PbLu ð3:82Þ

where P is an integer.
The total transverse electric field, Eout for N path is given as:

Eout ¼ Eoe
�j/o þ E1e

�j/1 þ E2e
�j/2 þ � � � þ EN�1e

�j/N�1 ð3:83Þ

To obtain a Z-transform of Eout, the phase can be expressed as a multiple of the
unit delay, T . By using the expression of X ¼ 2pv and c ¼ vk,

bLu ¼ 2pnLu
k

bLu ¼ 2pvnLu
c

bLu ¼ XLun
c

bLu ¼ XT ð3:84Þ

Equation (3.84) brings to:

/P ¼ PbLu ¼ PXT ð3:85Þ

Therefore, (3.83) becomes:

Eout ¼ Eoe
�j0 þ E1e

�jXT þ E2e
�j2XT þ � � � þ EN�1e

�j N�1ð ÞXT ð3:86Þ

For dispersion-less line, unit delay, T is a constant. By using z ¼ e jXT , (3.86)
becomes:

Eout ¼ Eo þ E1z
�1 þ E2z

�2 þ � � � þ EN�1z
� N�1ð Þ ð3:87Þ
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Because of the multiples of unit delay, the frequency response is periodic. One
period is defined as the free spectral range, FSR which is given as:

FSR ¼ 1
T

ð3:88Þ

From f ¼ x
2p ; the optical frequency can be rewritten as:

f ¼ v� vcð ÞT ð3:89Þ

or

f ¼ X� Xc

2p
T ð3:90Þ

where vc is the center frequency.
vc is given as:

vc ¼ c
kc

ð3:91Þ

The propagation loss of a delay line is counted by multiplying z� 1 by e�
aL
2 ,

where a is the average loss per unit length and L is the delay path length.
From (3.88), FSR is then given as:

FSR ¼ c
ngLU

ð3:92Þ

Hence,

T ¼ ngLu
c

ð3:93Þ

where ng is the group refractive index evaluated at either center frequency, fo or
center wavelength, ko.
ng in terms of fo and ko are given as:

ng ¼ neff þ fo
dneff
df

� �
fo

ð3:94Þ

or

ng ¼ neff þ ko
dneff
dk

� �
ko

ð3:95Þ

The optical circuit can be analysed with Z-transform method using waveguide
delay and directional coupler. It is used for splitting and combining more than one
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signal. Two waveguides are brought close together so that their evanescent fields
overlap each other. The circuits are assumed to be linear and invariant. A power
coupling ratio, j is associated with each directional input power. The coupling ratio
determines by the length of the region where the waveguides are coupled. It is
assumed that the wavelength is independent. This brings the matrix elements to be
constant.
The through and cross ports transmission beam are given as (Mitatha et al. 2011):

c ¼ cos h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cð Þ 1� jð Þ

p
ð3:96Þ

and

�js ¼ �j sin h ¼ �j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cð Þj

p
ð3:97Þ

where c is the coupling loss.
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Chapter 4
Research Methodology

4.1 Introduction

This chapter describes the methodologies used for the simulation process of this
research. Every system, either add-drop or PANDA ring resonator systems consists
of a series of microring resonator, connected with two bus waveguides at the top
and bottom of the center microring. The mathematical formulation and modelling
description of proposed systems are described in details. The transfer functions for
each model operating systems are derived based on actual practical device values.
The whole process starting from the generation of input signals until the end of the
process is expressed in the flow charts. All the simulation analysis are done by
using MatLab programming software.

4.2 Add-Drop Configuration System

The add-drop configuration system consists of unidirectional coupling between a
ring resonator and fibre waveguides as shown in Fig. 4.1. The system consists of
one microring resonator which is connecting with two bus waveguides at the top
and bottom of the ring. The waveguides are coupled into the ring resonator by the
coupling coefficients j1 and j2 respectively. When an input electric field is coupled
into the ring waveguide through an external bus waveguide, a positive feedback is
induced and the field inside the ring resonator starts to build-up.
The circumference of the ring, L is given as:

L ¼ 2pR ð4:1Þ

where R is the radius of the ring measured from the center of the ring to the center
of the waveguide.

© The Author(s) 2015
S. Daud et al., Simulation of Optical Soliton Control in Micro- and Nanoring
Resonator Systems, SpringerBriefs in Physics, DOI 10.1007/978-3-319-15485-5_4
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For an input in one port, the power coupled to the system is t times the input
power for through-path transmission and j times the input power for cross-path
transmission. t and j are the coupling parameters, where κ is the cross-coupling
coefficient and t is the self-coupling coefficient of the waveguide. j is associated
with each transmission field that pass through the coupler and c is a coupling
intensity loss for the field amplitude. c is equal to zero for the lossless coupling.
t and j are related as (Yupapin et al. 2008):

j2
�� ��þ t2

�� �� ¼ 1 ð4:2Þ

The transmission for one complete roundtrip is represented as:

exp
�aL
2

� jknL

� �
ð4:3Þ

Then, the Z-transform parameter is given as (Absil 2000):

z�1 ¼ exp�jknL ð4:4Þ

where kn ¼ 2p
k neff is the propagation constant, k is the wavelength, and neff is the

effective refractive index of the waveguide.
The roundtrip loss inside ring is given as:

exp
�aL
2

� �
ð4:5Þ

where a is referred to intensity attenuation coefficient, including the propagation
loss.

The losses are resulted from the transitions in the curvature of the ring and
bending losses. The value of a depends on the properties of the material and
waveguide used.

Fig. 4.1 Add-drop
configuration system
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It is assumed that the coupling is lossless ðc ¼ 0Þ. There are no power or
intensity losses in the coupling region. It is also assumed that there is no phase
change for the field that passes through the coupling region ðD/ ¼ 0Þ. There is no
significance value of the coupling distance because the coupling takes place on a
point between the tangential circular arc of the ring and input waveguide.

The transmitted and throughput output field at the output waveguide are given as:

a ¼ exp
�aL
2

� �
ð4:6Þ

From input Ein, the transmission optical field Et at throughput port is given as
(Yupapin et al. 2008):

Et ¼ t1 þ �j1ð Þ2 t2ð Þ z�1� �
að Þ � 1þ t1t2az

�1� �þ t1t2az
�1� �2þ � � � t1t2az

�1� �nn oh i

ð4:7Þ

By using Taylor’s expansion series, (4.7) can be simplified as:

Et ¼ t1 � az�1t2j21
1� t1t2az�1ð Þ

� �
� Ein ð4:8Þ

Et ¼
t1 � t2az�1 t21 þ j21

� �
1� t1t2az�1ð Þ

� �
� Ein ð4:9Þ

From (4.2),

Et ¼ t1 � t2az�1

1� t1t2az�1

� �
� Ein ð4:10Þ

Hence, the transfer function, H11 can be written as:

H11 ¼ Et

Ein
ð4:11Þ

H11 ¼ t1 � t2az�1

1� t1t2az�1

� �
ð4:12Þ

The transmission power, Pt is then given as (Yupapin et al. 2008):

Pt ¼ Et � E�
t ð4:13Þ

Pt ¼ t1 � t2ae�jknL

1� t1t2ae�jknLð Þ
� �

� t1 � t2aeþjknL

1� t1t2aeþjknLð Þ
� �

� E2
in ð4:14Þ
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Pt ¼ t21 � t1t2ae�jknL � t1t2ae jknL þ a2t22
1� at1t2e�jknL � at1t2e jknL þ a2t21t

2
2
� E2

in ð4:15Þ

Pt ¼
t21 þ a2t22 � at1t2 e�jknL þ ejknL

� �
1þ a2t21t

2
2 � at1t2 e�jknL þ ejknLð Þ � E

2
in ð4:16Þ

By using

ejx ¼ cos xð Þ þ j sin xð Þ and e�jx ¼ cos xð Þ � j sin xð Þ; ð4:17Þ

becomes:

Pt ¼ t21 þ a2t22 � 2at1t2 cos knLð Þ
1þ a2t21t

2
2 � 2at1t2 cos knLð Þ � E

2
in ð4:18Þ

The transmission optical field, Ed at drop port, from input Ein is given as:

Ed ¼ �j1j2
ffiffiffi
a

p ffiffiffiffiffiffiffi
z�1

p
� 1þ t1t2az

�1� �þ t1t2az
�1� �2þ � � � þ t1t2az

�1� �nn oh i
� Ein

ð4:19Þ

Ed ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Ein ð4:20Þ

Similarly, the transfer function, H12 can be written as:

H12 ¼ Ed

Ein
ð4:21Þ

H12 ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
ð4:22Þ

The transmission power, Pd is given as:

Pd ¼ Ed � E�
d ð4:23Þ

Pd ¼ �j1j2
ffiffiffi
a

p
e�jknL=2

1� t1t2ae�jknL

� �
� �j1j2

ffiffiffi
a

p
ejknL=2

1� t1t2aejknL

� �
� E2

in ð4:24Þ

Pd ¼
a 1� t21
� �

1� t22
� �

1þ a2t21t
2
2 � 2at1t2 cos knLð Þ � E

2
in ð4:25Þ
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The transmission optical field, Et at throughput port, from input Ein is given as:

Et ¼ �j1j2
ffiffiffi
a

p ffiffiffiffiffiffiffi
z�1

p
� 1þ t1t2az

�1� �þ t1t2az
�1� �2þ � � � þ t1t2az

�1� �nn oh i
� Eadd

ð4:26Þ

Et ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Eadd ð4:27Þ

Hence, the transfer function, H21 can be expressed as:

H21 ¼ Et

Eadd
ð4:28Þ

H21 ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
ð4:29Þ

The transmission power, Pt is given as:

Pt ¼ Et � E�
t ð4:30Þ

Pt ¼ �j1j2
ffiffiffi
a

p
e�jknL=2

1� t1t2ae�jknL

� �
� �j1j2

ffiffiffi
a

p
ejknL=2

1� t1t2aejknL

� �
� E2

add ð4:31Þ

Pt ¼
a 1� t21
� �

1� t22
� �

1þ a2t21t
2
2 � 2at1t2 cos knLð Þ � E

2
add ð4:32Þ

The transmission optical field Ed at drop port from input Eadd is given as:

Ed ¼ t2 þ �j2ð Þ2 t1ð Þ z�1� �
að Þ � 1þ t1t2az

�1� �þ t1t2az
�1� �2þ � � � þ t1t2az

�1� �nn oh i
� Eadd

ð4:33Þ

Ed ¼ t2 � az�1t1j22
1� t1t2az�1

� �
� Eadd ð4:34Þ

Ed ¼ t2 � t1az�1

1� t1t2az�1

� �
� Eadd ð4:35Þ

Hence, the transfer function H22 can be expressed as:

H22 ¼ Ed

Eadd
ð4:36Þ
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H22 ¼ t2 � t1az�1

1� t1t2az�1

� �
ð4:37Þ

The transmission power, Pd is given as:

Pd ¼ Ed � E�
d ð4:38Þ

Pd ¼ t2 � t1ae�jknL

1� t1t2ae�jknL

� �
� t2 � t1aejknL

1� t1t2aejknL

� �
� E2

add ð4:39Þ

Pd ¼ t22 þ a2t21 � 2at1t2 cos knLð Þ
1þ a2t21t

2
2 � 2at1t2 cos knLð Þ � E

2
add ð4:40Þ

Finally, the transfer functions for the resonator system are defined as follows:

H11 ¼ t1 � t2az�1

1� t1t2az�1

� �
ð4:41Þ

H12 ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
ð4:42Þ

H21 ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
ð4:43Þ

H22 ¼ t2 � t1az�1

1� t1t2az�1

� �
ð4:44Þ

The scattering matrix method is used to obtain the total optical transmission field
at throughput and drop ports, which is given as:

Et

Ed

� �
¼ SR

Ein

Eadd

� �
ð4:45Þ

where SR is the abbreviations of the ring system.
SR is given as:

SR ¼ H11 H12

H21 H22

� �
ð4:46Þ

SR ¼
t1�t2az�1

1�t1t2az�1

h i
�j1j22

ffiffiffiffiffiffiffi
az�1

p
1�t1t2az�1

h i
�j1j2

ffiffiffiffiffiffiffi
az�1

p
1�t1t2az�1

h i
t2�t1az�1

1�t1t2az�1

h i
2
4

3
5 ð4:47Þ
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Hence,

Et

Ed

� �
¼

t1�t2az�1

1�t1t2az�1

h i
�j1j22

ffiffiffiffiffiffiffi
az�1

p
1�t1t2az�1

h i
�j1j2

ffiffiffiffiffiffiffi
az�1

p
1�t1t2az�1

h i
t2�t1az�1

1�t1t2az�1

h i
2
4

3
5 Ein

Eadd

� �
ð4:48Þ

By solving the matrix, (4.48) becomes:

Et ¼ Ethroughput ¼ t1 � t2az�1

1� t1t2az�1

� �
� Ei1 þ �j1j22

ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Eadd ð4:49Þ

and

Ed ¼ Edrop ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Ei1 þ t2 � t1az�1

1� t1t2az�1

� �
� Eadd ð4:50Þ

The interaction between the input optical field, Ein and control signal, Eadd

occurs inside the ring resonator waveguide. The circulated optical fields, E1 and E2

inside the system can be written as follows.
Circulated field E11, from input field Ein is given as:

E11 ¼ �j1
ffiffiffiffiffiffiffiffiffi
az�1

p
� 1þ t1t2az

�1� �þ t1t2az
�1� �2þ � � � þ t1t2az

�1� �nn oh i
� Ein

ð4:51Þ

E11 ¼ �j1
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Ein ð4:52Þ

Similarly, circulated field E12 from input field Eadd can be expressed as:

E12 ¼ �t1j2az
�1 � 1þ t1t2az

�1� �þ t1t2az
�1� �2þ � � � þ t1t2az

�1� �nn oh i
� Eadd

ð4:53Þ

E12 ¼ �t1j2az�1

1� t1t2az�1

� �
� Eadd ð4:54Þ

Total circulated optical field, E1 is then given as:

E1 ¼ E11 þ E12 ð4:55Þ

E1 ¼ �j1
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Ein þ �t1j2az�1

1� t1t2az�1

� �
� Eadd ð4:56Þ
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Circulated field E21 from input field Ein can be expressed as:

E21 ¼ �t2j1az
�1 � 1þ t1t2az

�1� �þ t1t2az
�1� �2þ � � � þ t1t2az

�1� �nn oh i
Ein

ð4:57Þ

E21 ¼ �t2j1az�1

1� t1t2az�1

� �
� Ein ð4:58Þ

Similarly, circulated field E22 from input field Eadd is given as:

E22 ¼ �j2
ffiffiffiffiffiffiffiffiffi
az�1

p
1þ t1t2az

�1� �þ t1t2az
�1� �2þ � � � þ t1t2az

�1� �nn oh i
� Eadd

ð4:59Þ

E22 ¼ �j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Eadd ð4:60Þ

Total circulated optical field, E2 is given as:

E2 ¼ �t2j1az�1

1� t1t2az�1

� �
� Ein þ �j2

ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Eadd ð4:61Þ

Hence, the transmission fields at E1 and E2 are given as:

E1 ¼ �j1
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Ein þ �t1j2az�1

1� t1t2az�1

� �
� Eadd ð4:62Þ

and

E2 ¼ �t2j1az�1

1� t1t2az�1

� �
� Ein þ �j2

ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Eadd ð4:63Þ

Finally, the output fields at throughput and drop ports are given as:

Et ¼ t1 � t2az�1

1� t1t2az�1

� �
� Ein þ �j1j22

ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Eadd ð4:64Þ

and

Ed ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Ein þ t2 � t1az�1

1� t1t2az�1

� �
� Eadd ð4:65Þ
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4.3 PANDA Ring Resonator System

PANDA ring resonator system consists of an add-drop interferometer system and
two nanoring resonators. Two bus waveguides are coupled on top and bottom of the
center microring while two nanorings are coupled on the right and left-hand sides of
the center microring respectively. The microring resonator is connected to the bus
waveguides and two nanorings by the coupling coefficient depicted as j1, j2, j3,
and j4 respectively. The system represents a new technique of combination and
integration of micro- and nanoring resonators which can be widely used to improve
the secured communication and the high capacity of optical signal proceeding
especially in communication network. The schematic diagram of PANDA ring
resonator system is as shown in Fig. 4.2.

There are four main ports in this system, which are input, add, throughput, and
drop ports respectively. The input optical signals are launched into the input and
add ports of the system while the corresponding signals ejected from the system
through the throughput and drop ports respectively. All the characteristics of the
output signals will be examined and discussed in details in the next chapter.

As depicted in Fig. 4.2, Ein, Eadd , Et, and Ed are the abbreviations of input port,
add port, throughput port, and drop port respectively. E1, E2, E3, and E4 are the
circulating optical fields associated with the center microring, R. j1 and j2 are
assigned as the coupling parameters for the waveguides while j3 and j4 are the
coupling parameters for the coupling between the center microring and both right
and left nanorings respectively.
By assuming,

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c1

p
x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p

x3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c3

p
x4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c4

p

and

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j1

p
y2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

p

y3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j3

p
y4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j4

p

Fig. 4.2 PANDA ring
resonator configuration
system
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The expression for output fields at throughput port, Et and drop port, Ed are
given as:

Et ¼ x1y1Ein þ jx1
ffiffiffiffiffi
j1

p
E4 ð4:66Þ

and

Ed ¼ x2y2Eadd þ jx2
ffiffiffiffiffi
j2

p
E2 ð4:67Þ

where c1, c2, c3, and c4 are the intensity insertion loss coefficient of different
coupler in the system and j1, j2, j3, and j4 are the coupling coefficients of the
system.
By assuming,

/ ¼ � aL
2
� jknL ð4:68Þ

Hence,

/R ¼ � aLR
2

� jknLR ð4:69Þ

and

/L ¼ � aLL
2

� jknLL ð4:70Þ

where L, LR, and LL are the circumferences of center, right and left rings
respectively.

4.3.1 Right Nanoring of PANDA Ring Resonator System

The circulating fields on the right nanoring are given as (Aziz 2013):

ER1 ¼ jx3
ffiffiffiffiffi
j3

p
E1 exp

/
4

� �
þ x3y3ER2 ð4:71Þ

ER2 ¼ ER1 exp /Rð Þ ð4:72Þ

By substituting (4.71) into (4.72), ER2 can be simplified to be:

ER2 ¼
jx3

ffiffiffiffiffi
j3

p
E1 exp /R þ /

4


 �
1� x3y3 exp /Rð Þ ð4:73Þ
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Hence,

ER ¼ x3y3E1 exp
/
4

� �
þ jx3

ffiffiffiffiffi
j3

p
ER2 ð4:74Þ

By substituting (4.73) into (4.74), the expression for ER in terms of E1 can be
rewritten as:

ER ¼ x3y3E1 exp
/
4

� �
þ jx3

ffiffiffiffiffi
j3

p jx3
ffiffiffiffiffi
j3

p
E1 exp /R þ /

4


 �
1� x3y3 exp /Rð Þ

2
4

3
5 ð4:75Þ

ER ¼ E1 exp
/
4

� �
x3y3 � x23 exp /Rð Þ
1� x3y3 exp /Rð Þ

� �
ð4:76Þ

4.3.2 Left Nanoring of PANDA Ring Resonator System

Similarly, the circulating fields on the left nanoring are given as (Aziz 2013):

EL1 ¼ jx4
ffiffiffiffiffi
j4

p
E3 exp

/
4

� �
þ x4y4EL2 ð4:77Þ

EL2 ¼ EL1 exp /Lð Þ ð4:78Þ

By substituting (4.77) into (4.78), EL2 can be simplified as:

EL2 ¼
jx4

ffiffiffiffiffi
j4

p
E3 exp /L þ /

4


 �
1� x4y4 exp /Lð Þ ð4:79Þ

Hence,

EL ¼ x4y4E3 exp
/
4

� �
þ jx4

ffiffiffiffiffi
j4

p
EL2 ð4:80Þ

By substituting (4.79) into (4.80), the expression for EL in terms of E3 can be
rewritten as:

EL ¼ x4y4E3 exp
/
4

� �
þ jx4

ffiffiffiffiffi
j4

p jx4
ffiffiffiffiffi
j4

p
E3 exp /L þ /

4


 �
1� x4y4 exp /Lð Þ

2
4

3
5 ð4:81Þ
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EL ¼ E3 exp
/
4

� �
x4y4 � x24 exp /Lð Þ
1� x4y4 exp /Lð Þ

� �
ð4:82Þ

Therefore, the expressions for circulating fields at four different points in the center
ring resonator are given as:

E1 ¼ jx1
ffiffiffiffiffi
j1

p
Ein þ x1y1E4 ð4:83Þ

E2 ¼ E1ER exp
/
2

� �
ð4:84Þ

E3 ¼ jx2
ffiffiffiffiffi
j2

p
Eadd þ x2y2E2 ð4:85Þ

E4 ¼ E3EL exp
/
2

� �
ð4:86Þ

By using the expressions in (4.82), (4.85), and (4.86), the expression for E4 can be
rewritten as:

E4 ¼
jx2

ffiffiffiffiffi
j2

p
ELEadd exp

/
2


 �
þ jx1x2y2

ffiffiffiffiffi
j1

p
ERELEin exp /ð Þ

1� x1x2y1y2EREL exp /ð Þ ð4:87Þ

By substituting (4.87) into (4.83), E1 becomes:

E1 ¼
jx1

ffiffiffiffiffi
j1

p
Ein þ jx1x2y1

ffiffiffiffiffi
j2

p
ELEadd exp

/
2


 �
1� x1x2y1y2EREL exp /ð Þ ð4:88Þ

Equations (4.87) and (4.88) describe the relation between the circulating fields
E1 and E4 in terms of input and control signals.
Similarly, E2 and E3 can be rewritten as:

E2 ¼
jx1

ffiffiffiffiffi
j1

p
EREin exp

/
2


 �
þ jx1x2y1

ffiffiffiffiffi
j2

p
ERELEadd exp /ð Þ

1� x1x2y1y2EREL exp /ð Þ ð4:89Þ

E3 ¼
jx2

ffiffiffiffiffi
j2

p
Eadd þ jx1x2y2

ffiffiffiffiffi
j1

p
EREin exp

/
2


 �
1� x1x2y1y2EREL exp /ð Þ ð4:90Þ
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Finally, the output signals ejected from the system at throughput and drop ports are
given as:

Et ¼
x1y1Ein � x1x2

ffiffiffiffiffi
j1

p ffiffiffiffiffi
j2

p
ELEadd exp

/
2


 �
� x21x2y2ERELEin exp /ð Þ

1� x1x2y1y2EREL exp /ð Þ ð4:91Þ

and

Ed ¼
x2y2Eadd � x1x2

ffiffiffiffiffi
j1

p ffiffiffiffiffi
j2

p
EREin exp

/
2


 �
� x1x22y1ERELEadd exp /ð Þ

1� x1x2y1y2EREL exp /ð Þ ð4:92Þ

4.4 Modelling Consideration

This section will discuss on the dynamical simulation and calculation of the elec-
tromagnetic fields propagating within nonlinear fibre ring resonator. The analytical
expression and formulation of the fibre optic ring resonator systems are derived
previously. The optical transfer function of the operating systems obtained based on
the light transmission theory by taking into account the refractive index deforma-
tion due to the nonlinear Kerr effect. The numerical method used in simulation and
calculation process of the output signals are discussed in details.

Based on the suitability in engineering and numeric scientific computation,
MatLab programming software is chosen as the programming device. This program
may process any types of data in complex and matrix form which is constructed
from a rectangular array at either real or complex elements. This program provides
user with powerful graphic facilities for two and three-dimensional plotting
(Attaway 2011). Such program also offers precise numeric computations, data
acquisition, algorithm development, prototyping, modelling, and simulation.

In comparison with C and Python languages, MatLab programming runs in
shorter execute speed, which provides clear and intuitive system and allows better
algorithm solution for the centre complex problems (Fangohr 2004). In this
research, the analysis and simulation processes are done by using MatLab pro-
gramming software version R2010b.

4.4.1 Add-Drop Configuration System Modelling

The schematic diagram of an add-drop configuration system is depicted earlier in
Fig. 4.1. The circulating fields of add-drop system are assigned at two different
points, marked with E1 and E2 respectively.
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The expressions for these circulating fields are given as:

E1 ¼ �j1
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Ein þ �t1j2az�1

1� t1t2az�1

� �
� Eadd ð4:93Þ

and

E2 ¼ �t2j1az�1

1� t1t2az�1

� �
Ein þ �j2

ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Eadd ð4:94Þ

From (4.93) to (4.94), the output signals ejected from the system at throughput and
drop ports are given as:

Et ¼ t1 � t2az�1

1� t1t2az�1

� �
� Ein þ �j1j22

ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Eadd ð4:95Þ

and

Ed ¼ �j1j2
ffiffiffiffiffiffiffiffiffi
az�1

p

1� t1t2az�1

" #
� Ein þ t2 � t1az�1

1� t1t2az�1

� �
� Eadd ð4:96Þ

During the simulation process, dark soliton is chosen as the input signal, Ein and
Gaussian beam as the control signal, Eadd . Dark soliton is chosen as the input signal
because of the high security of the signal which is very important for the com-
munication purposes. It is not easily can be detected by using normal photodetector.
Meanwhile, the Gaussian beam is chosen as the control signal due to the charac-
teristics of this laser type which is useful indeed for the fibre resonator technology.
The expression for Ein and Eadd are given as (Jalil et al. 2011):

Ein ¼ A tanh
T
To

� �
exp

z
2LD

� �
� ixot

� �
ð4:97Þ

and

Eadd ¼ Eo exp
z

2LD

� �
� ixot

� �
ð4:98Þ

where A and z are the optical field amplitude and propagation distance respectively.
T is the time of soliton pulse propagating in a moving frame, where T ¼ t � b1z:
LD ¼ T2

o= b2j j is the dispersion length of the soliton pulse, where b1 and b2 are the
coefficients of the linear and second-order terms of Taylor expansion of the prop-
agation constant. To be the soliton pulse propagating time at initial input or soliton
pulse shift time and xo is the frequency shift of the soliton.
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This solution describes a pulse that kept its temporal width invariance as it
propagates. Once soliton peak intensity, b2=CT

2
o

�� �� is given, the values of To can be
determined. In a microring device, a balance between the dispersion length, LD and
the nonlinear length, LNL should be achieved. Dispersion length, LD is the length
travel by the light that cause the significance of the dispersion while the nonlinear
length, LNL is the length travel by light in nonlinear medium that cause significance
value in dispersion.
The nonlinear length, LNL is given as:

LNL ¼ 1
C/NL

ð4:99Þ

where C ¼ n2k is the length scale over which dispersive or nonlinear effects make
the beam wider or narrower. Here, n2 is the nonlinear refractive index and k is the
wavenumber.

For a soliton pulse, there is a balance between dispersion and nonlinear lengths.
Hence,

LD ¼ LND ð4:100Þ

In this research, the circulating and output fields, E1, E2, Et, and Ed are simulated
based on the (4.95)–(4.98) derived earlier. All parameters used on the system are
strongly effected the characteristics of these fields region. Thus, some key param-
eters are varied and the output signals are recorded and analyzed.

During the simulation process, certain key parameters are controlled and varied
in order to optimized the output signals, either at throughput or drop ports of the
system. By simulating the expressions in (4.95)–(4.98), the generated signals at E1,
E2, Et, and Ed are graphically depicted and analyzed. For this reason, the input
signal of 5 W dark soliton is launched into the system at the input port, Ein.
Gaussian beam with 2 W input power is then injected towards the system through
the add port, Eadd . 30 µm ring radius of the microring resonator is used for the
simulation purpose. In order to optimizing the output signal, the radii of the ring are
simulated in range of 20–40 µm respectively.

The coupling coefficient of resonators is a dimensionless value which charac-
terizes the interaction of two resonators. Coupling coefficients are used in resonator
filter theory. The resonators may be either electromagnetic or acoustic, or both
electromagnetic and acoustic. In this research, the values of coupling coefficients,
j1 and j2 vary from 0 to 1 respectively. At the point where j ¼ 0, there is no light
entering the system, while 100 % of light from the source entering the system at the
point where j ¼ 1 (Figs. 4.3 and 4.4).

Based on the practical device values, the value of refractive index, no of the
optical fibre is set to be no ¼ 3:34, while the effective cross sectional area, Aeff is set
at Aeff ¼ 0:5 lm2. The 1550 nm single-mode fibre waveguide is used. The
waveguide wave coefficient, a and the insertion loss coefficients, c are set to be
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a ¼ 0:05 dBkm�1 and c ¼ 0:1 respectively. All these parameter values are
imported to the MatLab programming software and simulated based on the
expressions in (4.95)–(4.98) respectively. All the simulated results are analyzed and
discussed in details.

Figure 4.5 shows the flow chat of the simulation and modelling process for the
add-drop configuration system. The expression of input signal, control signal,
circulating field E1, circulating field E2, output signal at throughput port, Et and
drop port, Ed are computed to the MatLab programming software. All the param-
eters used in the add-drop system are input to the programming software. For this
configuration system, a few parameters are varies, that are the ring radius, R and the
coupling coefficients, j1 and j2. All the characteristics of the signals output from
the system will be discussed in details.

4.4.2 PANDA Ring Resonator System Modelling

The schematic diagram of PANDA ring resonator system is depicted in Fig. 4.2.
The circulating fields are assigned at four different points, marked with E1, E2, E3,
and E4 respectively.
The expressions for all circulating fields are given as:

E1 ¼
jx1

ffiffiffiffiffi
j1

p
Ein þ jx1x2y1

ffiffiffiffiffi
j2

p
ELEadd exp

/
2


 �
1� x1x2y1y2ELER expð/Þ ð4:101Þ

Fig. 4.3 Right nanoring

Fig. 4.4 Left nanoring
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Fig. 4.5 Flow chart of simulation/modelling process for add-drop configuration system
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E2 ¼
jx1

ffiffiffiffiffi
j1

p
EREin exp

/
2


 �
þ jx1x2y1

ffiffiffiffiffi
j2

p
ELEREadd exp /ð Þ

1� x1x2y1y2ELER expð/Þ ð4:102Þ

E3 ¼
jx2

ffiffiffiffiffi
j2

p
Eadd þ jx1x2y2

ffiffiffiffiffi
j1

p
EREin exp

/
2


 �
1� x1x2y1y2ELER expð/Þ ð4:103Þ

E4 ¼
jx2

ffiffiffiffiffi
j2

p
ELEadd exp

/
2


 �
þ jx1x2y2

ffiffiffiffiffi
j1

p
ELEREin exp /ð Þ

1� x1x2y1y2ELER expð/Þ ð4:104Þ

From (4.101) to (4.104), the output signals at throughput and drop ports are
given as:

Et ¼
x1y1Ein � x1x2

ffiffiffiffiffi
j1

p ffiffiffiffiffi
j2

p
ELEadd exp

/
2


 �
� x21x2y2ELEREin exp /ð Þ

1� x1x2y1y2ELER expð/Þ ð4:105Þ

and

Ed ¼
x2y2Eadd � x1x2

ffiffiffiffiffi
j1

p ffiffiffiffiffi
j2

p
EREin exp

/
2


 �
� x1x22y1ELEREadd exp /ð Þ

1� x1x2y1y2ELER expð/Þ ð4:106Þ

As discussed previously, the input and control signals magnitudes influence the
characteristics of the output signals. During the simulation process for this part,
dark soliton is chosen as the input signal, Ein and Gaussian beam as the control
signal, Eadd .

In this research, the circulating fields, E1, E2, E3, E4 and both throughput and
drop ports, Et and Ed are simulated based on the (4.101)–(4.106) that have been
derived earlier. Some key parameters are varied and output signals are recorded and
analyzed. During the simulation process, numbers of key parameters are optimized
in order to achieve the best output signals from the system, either at throughput or
drop ports.

The input and control signals launched into the system are similar to the signals
obtained for the add-drop system. For the purpose, 5 W dark soliton input signal is
launched at the input port, Ein and controlled by 2 W Gaussian beam is injected
through the add port, Eadd . The radius of main ring, R is set at 30 µm while the radii
of the right and left nanorings, RR and RL are varied from 40 to 90 nm respectively.
The best values of R, RR, and RL are determined and discussed. All the values of
coupling coefficients, j1, j2, j3, and j4 are set to vary from 0 to 1 respectively.

Based on the practical device values, the value of refractive index, n of the
optical fibre is set to be n ¼ 3:34, while the effective cross sectional area, Aeff is set
at Aeff ¼ 0:5 µm2. The 1550 nm fibre waveguide is used. The waveguide wave
coefficient, a and the insertion loss coefficient, c are set to be a ¼ 0:05 dBkm−1 and
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c ¼ 0:1 respectively. All these parameter values are imported to the MatLab pro-
gramming software and simulated based on the expression in (4.101)–(4.106)
respectively. All the simulated results are analyzed and discussed in details.

Figure 4.6 shows the flow chat of the simulation and modelling process for the
PANDA ring resonator system. The expression of input signal, control signal,
circulating field E1, circulating field E2, circulating field E3, circulating field E4,
output signal at throughput port, Et and drop port, Ed are computed to the MatLab
programming software. All the parameters used in the add-drop system are input to
the programming software. For this configuration system, a few parameters are
varies, that are the ring radii (R, RR, and RL) and the coupling coefficients (j1, j2,
j3, and j4). The effect of the input power towards the performance of the PANDA
system is also investigated. All the characteristics of the signals output from the
system will be discussed in details.

4.5 Applications of the PANDA System
for Photodetector Technology

To increase the device performance, the used of trapping and accelerating particles
with optical tweezers is recommended. The performance of the device can be
increased and controlled using the PANDA microring resonator system. In
manipulation, PANDA system may generate the optical tweezers for trapping
electrons/atoms to the terminal contact. By this technique, electrons/atoms can be
driven to the contacts without regarding to generate defects. Moreover, the use of
PANDA system also found in many applications such as photonics microdevice
(Sumetsky et al. 2002), hybrid transistor (Suwanpayak 2011), therapeutic
(Aziz et al. 2012), and telecommunication network (Yupapin 2010). The trapping
tools generator is reviewed and the new design for the particle accelerator is
described. The simulation results using MatLab programming software are
demonstrated.

By using dark-bright solitons pulse propagating within PANDA ring resonator
system, the trapping tools can be formed and used to trap the molecules/atoms from
the system. In this study, the multiplexed signals with slightly difference wavelengths
of the dark soliton are controlled and amplified within the system. The dynamical
behaviour of dark-bright solitons interaction are also analyzed and described
accordingly.

Generally, the photodetector performance depends on the number of electrons
that can move from the diode depletion layer to the contacts under the drift velocity,
which cannot be controlled. In this study, the generated optical tweezers can be
controlled by using PANDA ring resonator system. The optical tweezers can be
designed and generated for electron trapping in the device. The required electrons
can be trapped and injected to the contact without loss, and the transport time to the
contacts can also be controlled. The optical tweezers sizes can be varied and
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selected for suitable electron trapping by controlling the PANDA ring resonator
input signals. Figure 4.7 shows the optical tweezers model for electron trapping, in
which the trap size can be adjusted and tuned.

By using the proposed system designed, the optical waveguide can be used to
trap the electrons/atoms. The photodetector device can be constructed incorporating
with the optical tweezers assembly. The trapped electrons can transfer from anode
to cathode contacts via the optical waveguide. In the simulation process, the input
signals choose are dark soliton and Gaussian beam at the peak power of 100 mW
respectively. The ring radii are set at R ¼ 20 µm and RR ¼ RL ¼ 5 µm. The cou-
pling coefficients of the PANDA ring resonator are set to be j1 ¼ j2 ¼
j3 ¼ j4 ¼ 0:5. The effective core area, Aeff is set at Aeff ¼ 300 lm2. The wave-
guide loss coefficient, a and coupling loss, c are set at a ¼ 0:1 dBkm�1 and c ¼
0:01 respectively. The dimensions of the optical tweezers are controlled by various
tweezers size, ranging from 100 to 250 µm respectively.

Fig. 4.7 Optical tweezers
model for electron trapping
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Chapter 5
Results and Discussion

5.1 Introduction

In this chapter, the simulation results of the add-drop and PANDA ring configuration
systems are discussed in details. The contributions of both linear and nonlinear effect
towards the systems are explained accordingly. The profile results generation using
dark soliton input pulse and Gaussian beam control signal are demonstrated. The ring
radii and the coupling coefficient parameters are optimized for the purposes. The
relationship between the input and output power at throughput and drop ports are
studied. All the numerical solution and simulation processes are performed using
MatLab programming software.

5.2 Add-Drop Configuration System

Add-drop configuration system consists of a microring resonator and two bus
waveguides connected at the top and bottom sides of the ring as depicted in Fig. 4.1
in Chap. 4. The add-drop system is very important especially for filtering and
cancelling the chaotic signals, which is very important and useful especially for the
communication and security technologies. In this study, the behaviour of the output
signals of the system are examined based on the actual practical device parameter
values. The proposed system is simulated and the output signals at both throughput
and drop ports of the system are investigated.

For the add-drop configuration system set-up, dark soliton with 5 W input power
is launched into the system through the input port, Ein. At the same time, Gaussian
beam with 2 W input power is injected into the system through the add port, Eadd .
The simulation results for circulating fields, E1 and E2 and the output fields at
throughput and drop ports, Et and Ed are examined. The characteristics of the
output signals of the system are discussed in details.

© The Author(s) 2015
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In operation, 30 μm ring resonator radius is used for the purposed configuration.
The effective cross sectional area, Aeff is set at Aeff ¼ 0:5 lm2. By using InGaAsP/
InP fibre waveguide, the refractive index of the fibre is set at no ¼ 3:34. The
waveguide wave coefficient, a and the intensity insertion loss coefficient, c of the
coupler are set as a ¼ 0:05 dB km�1 and c ¼ 0:1 respectively. As per depicted in
the schematic diagram shown in Fig. 4.1, there are two fibre couplers connected at
the top and bottom of the ring resonator, marked with j1 and j2 respectively. These
couplers are used as the device to control the percentage of light entering the system
from Ein and Eadd . The coupling coefficients, j1 and j2 are set at j1 ¼ 0:55 and
j2 ¼ 0:35 respectively.

The results of the interaction between dark soliton and Gaussian beam within the
add-drop configuration system are shown in Fig. 5.1. Figure 5.1a–d are the optical
signals generated at E1, E2, Et, and Ed respectively. At the circulating points E1 and
E2, the signals are tuned in the ring resonator due to resonance. The circulating
process within the ring result the output signals of the system. A single signal is
displayed at the output system, either at throughput or drop ports. The signals
filtering and cancelling process of the add-drop system results the single signal as
the outputs.

Those input and control signals are continuous to propagate into the system and
cause the optical collision between both signals within ring waveguides. Results
show that they are different in amplitudes numbers for the power output at the
regions E1 and E2. For the output signals at Et and Ed , the highest point are
recorded at 2.448 and 1.678 W respectively.

5.3 Ring Radius of Add-Drop System

Ring radius is one of the important parameter that needs to be considered in this
research. By using the suitable value of ring radius, the output signals can be
optimized accordingly. As the wave propagate within the system acquires phase
shift as it travels along the radius of curvature of the ring, the relative phase of the
travelling wave determines whether the light interfere constructively or destruc-
tively with the input signals. This phenomenon directly influenced the output signal
of the system.

During simulation process, 5 W input dark soliton and 2 W Gaussian beam are
fed into the system through the input and add ports respectively. The coupling
coefficients of the system are set at j1 ¼ 0:55 and j2 ¼ 0:35 respectively. To
examine the most suitable values of ring radius, all the other parameters are fixed at
constant values. The ring radius of the system is varied from 30 to 36 μm. The
impact of the ring radius towards the system are presented in Fig. 5.2, where figures
(a–d) show the circulating fields E1 and E2, throughput, and drop ports respectively.

Figure 5.2 illustrates the output signals of the add-drop system with different size
of the ring radius. The green, black, blue, and red colours represent the ring radius
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of 30, 32, 34, and 36 μm respectively. From Fig. 5.2, the values of Et and Ed

increases with increase in R size at R ¼ 30, 32, and 34 µm respectively. At the point
where R ¼ 36 lm, the values of Et and Ed are decreased. Based on the simulation
results obtained, the highest peak power of Et and Ed are recorded at 2.454 and
2.168 W respectively, corresponding to the operating system with ring radius,
R ¼ 34 lm. For the other values of ring radii, the output powers are significantly
dropped. From the obtained data, it can be conclude that the best value for the ring
radius of the system is at R ¼ 34 lm.

5.4 Coupling Coefficient of Add-Drop System

As discussed in previous section, the suitable value of ring radius, R is very
important for optimizing the output signals of the system. The rate of light emits the
system and resonance within the ring also contributes towards the generated output
signals. The rate of light entering the system is controlled by the coupling coeffi-
cient, j. For add-drop system, there are two coupling coefficients attached on it, one
at the top and another one at the bottom of the microring. These coupling coeffi-
cients are marked with j1 and j2 respectively, as depicted in schematic diagram
shown in Fig. 4.1.
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5.4.1 Variation of j1 Towards Add-Drop System

In simulation, fibre waveguide with the cross sectional area, Aeff ¼ 0:5 lm2 is used.
The optical light source of 5 W dark soliton and 2 W control Gaussian beam are
injected towards the system through the input and add ports respectively. InGaAsP/
InP fibre with no ¼ 3:34 is used as waveguide. The attenuation coefficient, a and
intensity insertion loss coefficient of the coupler, c are set at a ¼ 0:05 dB km�1 and
c ¼ 0:1 respectively.

For this configuration system, the values of j1 are varied from 0.45 to 0.65,
while the value of j2 is kept constant at j2 ¼ 0:35. Figure 5.3a–d show the output
signals at E1, E2, throughput, and drop ports respectively. The blue, red, and green
signals represent the values of j1 for j1 ¼ 0:45, 0.55, and 0.65 respectively. From
the signals generated as depicted in Fig. 5.3, the values of Et and Ed are increases
with increase in j1 values.

Higher value of the first coupling coefficient, j1 results the higher output power
of the system, either at throughput or drop ports. This shows the agreement with the
roles of coupling coefficient, j. The higher value of j1 indicates that the big portion
of light entering the system from Ein. Means, more collision between the input and
control signals happened within the system.
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Table 5.1 shows the values of output power for the add-drop system with
varying of j1. The value of j2 is kept at j2 ¼ 0:35 while the values of j1 increase
from j1 ¼ 0:10 to 1.00. From the data input in Table 5.1, it is shows that the value
of output power at throughput and drop ports are increases significantly with
increase of the values of j1.

Figure 5.4 shows the graph of j1 plotted against output power at throughput and
drop ports with the constant value of j2. From the graph plotted, it is observed that
the output power of the system is directly proportional to the values of j1. The
gradient of the graph is measured to be 1.58 W for the throughput port and 1.02 W
for the drop port respectively. As for conclusion, for the higher value of j1, higher
output power is generated at the throughput and drop ports of the add-drop system.

Table 5.1 Values of output
power for the add-drop
system with varying of j1

j1 j2 Output power (±0.001 W)

Throughput port, Et Drop port, Ed

0.10 0.35 2.443 1.382

0.20 0.35 2.596 1.487

0.30 0.35 2.768 1.582

0.40 0.35 2.922 1.674

0.50 0.35 3.072 1.791

0.60 0.35 3.229 1.884

0.70 0.35 3.371 1.976

0.80 0.35 3.503 2.073

0.90 0.35 3.647 2.164

1.00 0.35 3.786 2.279
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5.4.2 Variation of j2 Towards Add-Drop System

The values of coupling coefficients are very important for optimization of the
performance of the system. From the results simulated in previous section, the
values of output power increases with increase of j1. For this section, all the
parameter values are kept as same as in the previous section, except for the values
of j1 and j2. During simulation, the value of j1 is fix at j1 ¼ 0:75 while the values
of j2 are varies from 0.65 to 0.85.

Figure 5.5 shows the simulation results of the add-drop system with varying of
j2 values. The blue, red, and green colours of the signals represents the values of j2
for j2 ¼ 0:65, 0.75, and 0.85 respectively. All the signals at the circulating fields
E1, E2, throughput, and drop ports are shown in Fig. 5.5a–d respectively.

From the signals generated as shown in Fig. 5.5, it is observed that the ampli-
tudes of output power at throughput and drop ports increase with the increases in
j2. The higher value of j2 indicates that the big portion of light entering the system
from Eadd . When the light entering the system at add port increase, more collision
between the input and control signals happened within the system. This led to the
increasing of the output power of the system.

Table 5.2 shows the values of output power for the add-drop system with
varying of j2. The value of j1 is kept at j1 ¼ 0:75 while the values of j2 increase
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from j2 ¼ 0:10 to 1.00. Table 5.2 shows the data taken from the simulation
process. It is shown that the value of output power at throughput and drop ports are
increase with increases of the values of j2 until the point where j2 ¼ 0:80. At the
point where j2 ¼ 0:80 and higher, it is shows the decreasing of the output power.

From the data computed in Table 5.2, Fig. 5.6 is plotted. Graph plotted in
Fig. 5.6 shows the relationship between the coupling coefficient j2 with the output
power at throughput and drop ports respectively. From the graph plotted, it is seen
that the values of output power increase with increase in j2 until the point where
j2 ¼ 0:80. At the point where j2 is higher than 0.80, the power output of the
system is significantly dropped as shown in the graph plotted in Fig. 5.6. This
shows that the system is achieved the maximum resonance with the input light and
the control signal beam at the point where j2 ¼ 0:80.

Table 5.2 Values of output
power for the add-drop
system with varying of j2

j1 j2 Output power (±0.001 W)

Throughput port, Et Drop port, Ed

0.75 0.10 2.448 2.265

0.75 0.20 2.633 2.453

0.75 0.30 2.827 2.641

0.75 0.40 3.021 2.821

0.75 0.50 3.204 2.985

0.75 0.60 3.362 3.121

0.75 0.70 3.479 3.216

0.75 0.80 3.533 3.250

0.75 0.90 3.482 3.182

0.75 1.00 3.166 2.707
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The maximum resonance can be achieved when the phase is in multiple of 2p as
discussed in Sect. 3.5.3 in Chap. 3. The system is said to achieved the maximum
resonance at the point where j1 ¼ 0:75 and j2 ¼ 0:80 respectively.

5.5 Optimization of Add-Drop Configuration System

The dynamical behaviour of the optical signals of add-drop configuration system is
demonstrated and discussed. The tunability of such signals can be obtained by
varying and controlling the key parameters on the system. For convenience anal-
ysis, the circulated fields within the ring are presented by E1 and E2 while the
output fields at throughput and drop ports of the system are depicted by Et and Ed

respectively. The key parameters are tuned and vary in order to optimize the output
signals generated from the system.

For the purpose, 5 W input dark soliton with 50 ns pulse width is launched into
the system through the input port, Ein and 2 W Gaussian beam is injected towards
the system via the add port, Eadd . The fibre waveguide at center wavelength, ko ¼
1550 nm is used for the purposed. The effective core area of the system is fixed at
Aeff ¼ 0:5 lm2. The attenuation coefficient, a is fixed at a ¼ 0:05 dB km�1 and the
intensity insertion loss coefficient of the coupler, c is set at c ¼ 0:1 respectively. For
instance, the center ring radius is chosen at R ¼ 34 lm. The coupling coefficient
values are set at j1 ¼ 0:75 and j2 ¼ 0:80. Figure 5.7a–f represent the input dark
soliton, Gaussian beam, E1 field, E2 field, throughput port, and drop port respec-
tively. The values of throughput and drop ports for the optimized system are
calculated at Et ¼ 3:784 W and Ed ¼ 2:893 W as shown in Fig. 5.7.

5.6 PANDA Ring Resonator System

PANDA ring resonator system as depicted in Fig. 4.2 in Chap. 4 is proposed and
simulated using MatLab R2010b programming software. The system is constructed
by a series of nonlinear micro- and nanoring resonators integrated with two bus
waveguides to form a beneficial system especially in physics and biological tech-
nologies. The ring resonator waveguide system is assumed to exhibit Kerr
nonlinearity.

The refractive index of the waveguide is given by n ¼ n0 þ n2I where no and n2
are the linear and nonlinear refractive indexes of the fibre respectively. The
behaviour of the optical signals passing through the system is simulated and ana-
lyzed accordingly. Both signals generated at throughput and drop ports of the
system are analyzed and discussed in details. The behaviour of the simulated sig-
nals at E1, E2, E3, and E4 are also presented.
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In order to associate the system with the practical device, the parameter val-
ues are selected to have the values as per real devices. The fibre waveguide of
InGaAsP/InP with center wavelength, k0 ¼ 1550 nm is selected. The linear and
nonlinear refractive indexes of InGaAsP/InP fibre waveguide are no ¼ 3:34 and
n2 ¼ 2:5� 10�13 m2 W�1 respectively. The effective cross sectional area, Aeff of
the waveguide used are in the range of 0.2 nm2

–0.5 μm2 respectively. The wave-
guide wave coefficient, a is fixed at a ¼ 0:05 dB km�1 and the intensity insertion
loss coefficient of the coupler, c is set at c ¼ 0:1.

For simulation process of the PANDA system, dark soliton with 5 W input power
and 50 ns pulse width is launched into the system through the input port, Ein. As
for control signal, the Gaussian beam with 2 W input power is injected through the
add port, Eadd . For operation, the center ring, R is chosen to be R ¼ 30 lm, while the
right and left nanoring are set at RR ¼ RL ¼ 40 nm. The coupling coefficients
between the center ring to the bus waveguides at j1 and j2 are set at j1 ¼ 0:65 and
j2 ¼ 0:40 respectively. Both the coupling coefficients within the center microring to
the right and left nanorings, j3 and j4 are set at j3 ¼ j4 ¼ 0:20.
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Fig. 5.7 Optimized signals for add-drop configuration system where a dark soliton, b Gaussian
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Figure 5.8 shows the simulation results of the interaction between input dark
soliton with the Gaussian beam as the control signal. Both input and control signals
with centre wavelength of ko ¼ 1550 nm are injected into the system through input
port, Ein and add port, Eadd respectively. Figure 5.8a–d shows the dynamical
interaction between the input signals at four different circulation fields in the sys-
tem, namely as E1, E2, E3, and E4 respectively. These signals are the results of the
optical collision between input and control signals within the ring waveguide.

From the generated signals as shown in Fig. 5.8a–d, it is observed that the
interactions are generated at different amplitudes level. The destruction happens at
E2 and leads to the decrement of peak power in circulating signals. The output
signals at throughput and drop ports of the system are generated in forms of optical
potential well. The highest output signal generated at throughput port, Et is mea-
sured at 20.42 and 10.97 W at the drop port, Ed as shown in Fig. 5.8e, f respec-
tively. It is shown that the potential well is formed at the gap between two
intensities, which provides the trapping force in the system. The system produces
the output fields in forms of chaotic signals.
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Fig. 5.8 Optical signals generated by PANDA ring resonator system where a–d are circulated
fields at E1, E2, E3, and E4, e throughput port, and f drop port
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5.7 Ring Radii of PANDA System

The size or radius of the ring greatly affects the characteristics of the circulating
fields as well as the output signals of the system due to phase shift in propagating
wave within the resonator along the curvature of the system. To determine the light
interferes constructively or destructively with the input signals, the combination of
the signals injected toward the system can be seen at certain points. This process
directly influences the output signals at throughput and drop ports of the system. In
this study, the Kerr nonlinearity is considered. The contributions from linear and
nonlinear phase shift are taken into the account.

5.7.1 Center Ring Radius

Dark soliton with 5 W input power is fed into the system through the input port, Ein.
At the same time, 2 W Gaussian beam is injected into the system through the add
port, Eadd . The coupling coefficient values of the system are set at j1 ¼ 0:65,
j2 ¼ 0:40, and j3 ¼ j4 ¼ 0:20 respectively. The InGaAsP/InP fibre with ko ¼
1550 nm is used as the waveguide. The linear and nonlinear refractive indexes of
the fibre are set at no ¼ 3:34 and n2 ¼ 2:5� 10�13 m2 W�1 respectively. The
effective core area of the ring is fixed at Aeff ¼ 0:5 lm2. The attenuation coefficient,
a is fixed at a ¼ 0:05 dB km�1 and the intensity insertion loss coefficient of the
coupler, c is set at c ¼ 0:1. The radii of both right and left nanorings are set at
RR ¼ RL ¼ 40 nm respectively. Based on the practical device values, the radius of
the center microring, R is varied in range of 28–36 μm. The simulation results
obtained from PANDA system at throughput and drop ports are presented in
Fig. 5.9a, b respectively.

Figure 5.9a, b illustrates the output signals generated at throughput and drop
ports of the system respectively. The radii of the center ring of PANDA system are
set at 28, 30, 32, 34, and 36 μm. As shown in the Fig. 5.9, the shape and peak
power of the generated signals are different for each ring size used. The highest pick
power at Et and Ed were recorded at 31.36 and 16.87 W respectively. These
maximum values are recorded at the point where R ¼ 34 lm. For other values of R,
the output power are recorded with the lower values as compared to the value
obtained at R ¼ 34 lm for both throughput or drop ports.

The highest transmission of the output signals can be described by the resonance
states from the interaction between the lights entering the system and the ring itself.
The ring resonator which is under resonance condition has the highest ratio between
the circulating power to the input power which can possibly achieved in the
practical device system.

In nonlinear Kerr medium, the relative phase shift experienced by the travelling
wave at certain points on the system depends on a few parameters such as input
power, nonlinear refractive index, effective core area, circumference length of the
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ring, waveguide loss coefficient, and the insertion loss coefficient of the system. In
this case, the ring radius is chosen to satisfy the integral multiple of 2π phase shift
while the other parameters are kept constant. During the process, the travelling
waves in the ring waveguide interfere constructively with the input signal. The
propagating wave interferes constructively within the system when the interactive
light acquires phase shift multiple of 2π as it completes one full roundtrip.
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Fig. 5.9 Optical signals generated at a throughput port and b drop port where center radius,
R varied from 28 to 36 μm
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The phase shift of one complete roundtrip of the PANDA system is given as:

/ ¼ /o þ /NL þ
p
2

ð5:1Þ

where /o and /NL are the linear and nonlinear phase shift respectively.
/o and /NL are given as:

/o ¼ kLno ð5:2Þ

and

/NL ¼ kLn2I ð5:3Þ

In (5.2) and (5.3), k is constant, L is the length of the roundtrip, no is the linear
refractive index of the fibre, n2 is the nonlinear refractive index of the fibre, and I is
the intensity. The term p

2 represents the phase shift experienced by the input light
signal passing through the coupler.

If the interacting fields with the wavelength is not in resonance condition
/ 6¼ 2pð Þ, the circulated fields interferes destructively with the input fields. This
lead to the low transmission and drop in output power. The incident light achieve
the resonance condition with the ring when / ¼ 2pm, where m is the integer mode
number. In this research, the highest output power is achieved at the point where
R ¼ 34 lm. Hence, it can be concluded that the incident light achieved the max-
imum resonance with the ring at this point.

5.7.2 Right and Left Nanorings

The radii of right and left nanorings, are important indeed in order to optimize the
system performance. By using the same input and control signal values as discussed
in Sect. 5.7.1, the variations of RR and RL towards the performance of the system
are measured and analyzed precisely. The center ring radius is set at R ¼ 34 lm.
The values of coupling coefficients of the system are kept as per previous section
where j1 ¼ 0:65, j2 ¼ 0:40, and j3 ¼ j4 ¼ 0:20 respectively.

Figure 5.10 shows the output signals generated at throughput and drop ports of
the system for the different values of RR and RL. For this simulation process, the
center ring radius, R is fixed at R ¼ 34 lm while the right and left nanorings are
varied from 40 to 80 nm. As shown in Fig. 5.10, the variation in RR and RL values
changed the amplitude signals of the output power, at both throughput, Et and drop,
Ed ports.

The values of output power increases with increase in the nanorings radii until
the point where RR ¼ RL ¼ 70 nm, which shows the higher values of the output
power. On the other side, the output power starts to decrease at the point where
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(RR ¼ RL) > 70 nm. The highest peak power obtained at throughput and drop ports
of the system are recorded at 33.76 and 18.38 W respectively, which corresponds to
the values of RR ¼ RL ¼ 70 nm. Based on Fig. 5.10, the output signal is slightly
decreased for other values of R. Thus, the system is said to achieve the maximum
resonance at the nano rings radii values of 70 nm.
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Fig. 5.10 Optical signals generated for different values of RR and RL at a throughput port and
b drop port of PANDA system
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5.8 Coupling Coefficient of PANDA System

Some important parameters are varied to investigate the dynamical behaviours of
the generated optical signals from the PANDA system. As discussed in previous
section, the ring radii (R, RR, and RL) plays an important role in order to optimizing
the system performance. The coupling coefficients (j1, j2, j3, and j4) also con-
tribute toward the performance of the system. The coupling parameters for the
coupler between the center microring with the bus waveguides (j1 and j2) and the
coupler between the center microring with the right and left nanorings (j3 and j4)
are varied in order to examine the effect coupling coefficients toward the output
signals.

5.8.1 Variation of j1 and j2

In operation, fibre waveguide with the cross sectional area, Aeff ¼ 0:5 lm2 at the
center microring and Aeff ¼ 0:2 nm2 at right and left nanorings are used. The
optical fields of 5 W dark soliton and 2 W control Gaussian beam are injected into
the system through the input and add ports respectively. The InGaAsP/InP fibre
waveguide with no ¼ 3:34 and n2 ¼ 2:5� 10�13 m2 W�1 is used for the purposed.
The attenuation coefficient, a is set at a ¼ 0:05 dB km�1 and the intensity insertion
loss coefficient of the coupler, c is set at c ¼ 0:1.

The radii of the center microring, right nanoring, and left nanoring are set at
R ¼ 34 lm, and RR ¼ RL ¼ 70 nm respectively. The values of coupling coeffi-
cients j1 and j2 are varied in range of 0.1–1. During this simulation process, the
values of coupling coefficients j3 and j4 are kept constant where j3 ¼ j4 ¼ 0:20.
This is done to examine the contribution of coupling coefficients j1 and j2 toward
the system. Dynamical behaviours of the interacting fields of the system are
investigated and analyzed accordingly.

Figure 5.11 shows the simulation results of PANDA ring resonator system
where j1 varies from 0.65 to 0.95 and j2 is fixed at j2 ¼ 0:40. Figure 5.11a–d
shows the simulated results of the circulated fields at E1, E2, E3, and E4 respec-
tively. This is corresponds to four different points on the ring waveguide as depicted
in Fig. 4.2 in Chap. 4. The output signals at throughput and drop ports of the system
are shown in Fig. 5.11e, f respectively.

As the values of j1 increase, the output power at throughput port, Et also
increases, while the output power at drop port, Ed decreases. Based on the light
transmission theory, when the values of coupling coefficient increase, the portion of
input light coupled within the ring also increases. The majority of input fields are
coupled into the ring resonator system. Thus, only minor component of input light
is transmitted through the first coupler and vice versa. With the constant value of
j2, the throughput port is at high transmission region and it leads to the increasing
pattern of the output power at throughput port, Et.
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The same parameters as per previous section are repeated with the constant value
of j1 and j2 is varied. In this case, the value of j1 is fixed at j1 ¼ 0:85 and the
values of j2 are varies from 0.15 to 0.45 respectively. Figure 5.12e, f show the
output signals generated at throughput and drop ports of the system for different
values of j2. As shown in Fig. 5.12, the output power at drop port, Ed increases
with increase in j2 while the output power at throughput port, Et decreases with
increase in j2. This caused a significant enhancement in circulated power within the
ring as more fraction of light being coupled into the waveguides. With the increases
values of j2, the drop port is at high transmission region and it leads to the
increasing pattern of the output power at this region.

The relationship between j1 and j2 with Et and Ed are presented in 3-dimensional
(3-D) graph as shown in Figs. 5.13 and 5.14 respectively. During simulation process,
the output power of 5 W dark soliton and 2 W control Gaussian beam are injected
toward the system through Ein and Eadd ports respectively. The coupling coefficients,
j1 and j2 are varied from 0 to 1. The value of coupling coefficient, j determine the
rate of light entering the system. Maximum light entering the system when j ¼ 1
while no light emit to the system when j ¼ 0.
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Fig. 5.11 Output signals generated at a–d circulating fields, e throughput port, and f drop port of
the PANDA system with variable values of j1
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Fig. 5.12 Output signals generated at a–d circulating fields, e throughput port, and f drop port of
the PANDA system with variable values of j2

Fig. 5.13 Output power at throughput port plotted against j1 and j2
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Figure 5.13 shows the simulation results at throughput port, Et with varying of
j1 and j2. As shown in Fig. 5.13, Et reaches to the highest value at the point where
j1 is equal to one (j1 ¼ 1) and κ2 is zero (j2 ¼ 0). Based on the theory discussed,
none fraction of input light coupled into the ring at drop port for increasing the
values of j1. Due to the intensity build-up factor, the output power of the system is
induced and increased. Zero value of j2 means that there is no fraction of light is
injected into the system through the second coupler. The highest output power
measured at the throughput port, Et is 34.94 W. The circulated fields within the ring
are injected through the first coupler, j1 which directly increased the output power
at throughput port.

Figure 5.14 shows the 3-D simulation signals ejected at drop port, Ed plotted
against j1 and j2. All the parameters in this case are set as per previous section
where the values of j1 and j2 varies from 0 to 1, and j3 ¼ j4 ¼ 0:2. The maximum
power is achieved at the point where j1 ¼ 0 and j2 ¼ 1. The highest output power
recorded is 19.96 W. From Fig. 5.14, the output power does not change for any
values of j1 where j2 is zero. This means that there are no fraction of light coupled
into the resonator system for j2 ¼ 0.

5.8.2 Variation of j3 and j4

The effect of the values of the coupling between microring and two bus wave-
guides, j1 and j2 towards the PANDA system are discussed in previous section. In
this section, the effect of coupling coefficients between microring and right and left
nanorings, j3 and j4 towards the system are examined.

During the simulation process, dark soliton with ko ¼ 1550 nm and 5 W input
power is injected into the system through the input port, Ein. The Gaussian beam with
2 W input power is chosen as the control signal and is launched into the system

Fig. 5.14 Output power at drop port plotted against j1 and j2
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through the add port, Eadd . The center microring radius is set at R ¼ 34 µm and both
right and left nanorings are fixed at RR ¼ RL ¼ 70 nm respectively. The values of
coupling coefficients connected within the center microring and the bus waveguides,
j1 and j2 are kept constant at j1 ¼ 0:65 and j2 ¼ 0:40. As per practical device
values, the effective core areas of micro- and nanorings are set at 0.5 µm2 and 0.2 nm2

respectively. The waveguide coefficient of the ring, a is set at a ¼ 0:05 dB km�1 and
the fractional coupler intensity loss, c is set at c ¼ 0:1. The obtained output signals
generated at throughput and drop ports are analyzed precisely.

The values of j3 and j4 are varies for 0.1, 0.2, 0.3, 0.4, and 0.5. The output
signals at throughput and drop ports of the system are as shown in Fig. 5.15a, b
respectively. The values of Et and Ed shows the increasing pattern with the increase
of j3 and j4. The highest peak powers recorded are 35.26 and 18.71 W for Et and
Ed which corresponds to the values of j3 ¼ j4 ¼ 0:5 respectively.

As the propagating field from the center microring are entered to the right and
left nanorings, the fields resonate in the loop of RR and RL. The travelling waves
within the waveguide interfere constructively with the input waves. Thus, the
intensity in the ring resonator is much higher than its initial input pulse. This shows
that the intensity within the ring starts to build-up. The values of coupling coeffi-
cients, j3 and j4 plays an important role in the system performance. As the values
of j3 and j4 increase, the propagating light coupled into the device is increased
which increases the power of the circulating fields within the ring and directly
induced the amplitude of build-up factor.

The build-up factor, B is the factor by which the total value of the quality being
assessed at the point of interest exceeds the value associated with only primary
radiation.

The build-up factor, B is given as (Ashkin 1997):

B ¼ Er2

Ei

����
����
2

¼ ix
ffiffiffi
j

p
ae�j/2

1� xyae�j/

�����
�����
2

ð5:4Þ

From (5.4), as the values of j3 or j4 increase, the magnitude of B also increases.
Then, the rate of the circulated fields toward the input fields become higher and the
intensity within the ring starts to build-up. Due to the dynamical configuration of
the PANDA system, any increasing of the coupling coefficient values for the
coupler at either sides of the ring results the large amplification of the travelling
optical signals. This is due to the intensity build-up process within the right and left
nanorings.

The components of light coupled into the ring increases as the values of coupling
coefficient, j increase. As the value of the coupling coefficient decrease to zero
(j ¼ 0), there is no component of light is coupled into both right and left nanorings.
This is because the light passing through the coupler j3 and j4 are not circulate
within either right or left nanorings. As for conclusion, greater values of coupling
coefficients, j are required to produce the higher peak power of the output signals.
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5.9 Input Power of PANDA System

Input power is one of very important parameter since it will give big effects towards
the system performance. PANDA ring resonator system consists of an input port
and an add port, where these two parameters influence the performance of the
system at the circulating fields as well as output fields characteristics.
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Fig. 5.15 Output signals generated at a throughput port and b drop port of PANDA system with
j3 and j4 varies for 0.1, 0.2, 0.3, 0.4 and 0.5
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For the purposed, the InGaAsP/InP fibre waveguide with cross sectional area,
Aeff ¼ 0:5 lm2 is used. The center ring radius is set at R ¼ 34 lm and the right and
left nanorings are set at RR ¼ RL ¼ 70 nm. The linear and nonlinear refractive
indexes of the fibre are set at no ¼ 3:34 and n2 ¼ 2:5� 10�13 m2 W�1. The
waveguide coefficient is fixed at a ¼ 0:05 dB km�1 and the intensity insertion loss
coefficient is set at c ¼ 0:1. In order to examine the effect of the input power, Ein

towards the system, the values of input power varies from 5 to 50 W respectively.
The input power of the control signal is maintained at Eadd ¼ 2 W.

Table 5.3 shows the values of simulation results obtained at the throughput and
drop ports of respectively. From the data collected, it is shown that the values of
output power increases with increase of the input power, Ein. The relationship
between the input power and the output power for both throughput and drop ports
are presented in Fig. 5.16.

From the graph plotted in Fig. 5.16, it can be seen that the output power of the
system increases exponentially with the increase in the values of input power, Ein.
This is significantly related from the theoretical calculation where:

E ¼ Aeiðkz�xtÞ ð5:5Þ

E2 ¼ A2e2iðkz�xtÞ ð5:6Þ

Hence,

P / E2: ð5:7Þ

Equation (5.7) proved that the values of output power (Et and Ed) are expo-
nentially increase with increases of the values of input power, Ein.

Table 5.3 Values of input
and output power of the
PANDA system

Input power, Ein (W) Output power (±0.01 W)

Throughput port,
Et

Drop port, Ed

5 22.62 10.39

10 38.24 17.48

15 57.86 26.37

20 81.25 37.08

25 108.65 49.62

30 139.94 63.95

35 175.05 80.15

40 214.05 98.16

45 256.97 117.83

50 299.15 139.35
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5.10 Optimization of PANDA Ring Resonator System

The dynamical behaviour of the optical signals generated from PANDA ring res-
onator system is demonstrated and discussed. The tunability of such signals can be
obtained by varying and controlling the important parameters of the system. For
convenience analysis, the circulated fields within the ring are represented by E1, E2,
E3, and E4 while the output fields at throughput and drop ports of the system are
depicted as Et and Ed respectively. The key parameters are tuned and varied in
order to optimize the output signals generated. For instance, the center ring radius,
R is chosen at R ¼ 34 lm and the radii of the right and left nanorings are chosen at
RR ¼ RL ¼ 70 nm respectively. The coupling coefficient values are set at
j1 ¼ 0:85, j2 ¼ 0:80, and j3 ¼ j4 ¼ 0:50. The effective core area of the microring
is fixed at Aeff ¼ 0:5 lm2 and Aeff ¼ 0:2 nm2 for the right and left nanorings. The
attenuation coefficient, a is fixed at a ¼ 0:05 dB km�1 and the intensity insertion
loss coefficient of the coupler, c is set at c ¼ 0:1.

5 W input dark soliton with 50 ns pulse width is launched into the system
through the input port, Ein and the Gaussian beam with 2 W input power is injected
into the system via add port, Eadd . The optical signals are generated at center
wavelength, ko ¼ 1550 nm as shown in Fig. 5.17. Figure 5.17a–h represent the
input dark soliton, Gaussian beam, E1 field, E2 field, E3 field, E4 field, throughput
port, and drop port respectively. The values of throughput and drop ports for the
optimized system are calculated at Et ¼ 37:93W and Ed ¼ 24:28 W as shown in
Fig. 5.7.
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5.11 Optical Tweezers for Photodetector
Performance Improvement

By using the proposed system designed, the optical waveguide can be used to trap
the electrons/atoms. The photodetector device can be constructed incorporating
with the optical tweezers assembly. The trapped electron can be transferred from
anode to cathode contacts via the optical waveguide. In the simulation process, the
input signals are dark soliton and Gaussian beam with peak power of 100 mW. The
ring radii of the system are set at R ¼ 20 lm and RR ¼ RL ¼ 5 lm respectively.

The coupling coefficients of the PANDA ring resonator are set to be
j1 ¼ j2 ¼ j3 ¼ j4 ¼ 0:5. The effective core area, Aeff of the fibre is set at
Aeff ¼ 300 lm2. The waveguide loss coefficient, a and the coupling loss of the
fibre, c are set at a ¼ 0:3 dB km�1 and c ¼ 0:1 respectively. The dimensions of the
optical tweezers are controlled by using various tweezers size, ranging from 100 to
250 µm.
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Figure 5.18 shows the results of different center wavelengths. The wavelength of
the tweezers are 1.45, 1.50, 1.55, and 1.65 µm for the red, green, blue, and black
colours respectively. The shapes of the fields are different for each center wave-
length plotted. The highest peak signal of optical tweezers is obtained for the
wavelength of 1.55 µm.

Figure 5.19 shows the comparison of the highest peak output at throughput and
drop ports respectively. The optical tweezers generated at throughput and drop ports
of the system can trap electrons and deliver to the contacts. The tweezers generated
at throughput port is more suitable than drop port. The optical tweezers of drop port
may not be strong enough, in which the trapped electrons can escape during the
transportation process. The dimension of optical tweezers can be adjusted to form
the various tweezers sizes, which are required to fit the electrons sizes. Therefore,
the design optical tweezers sizes are important for each trapping electrons. When
the optical tweezers are too large, then the electrons can escape from the trap.

Fig. 5.18 Signals generation at different center wavelength

Fig. 5.19 Comparison of output power where a throughput, b drop ports
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The optical tweezers cannot be used to trap electrons when the tweezers size is too
small.

In application, the different sizes of traps can be generated as shown in Fig. 5.20.
In practice, the optical tweezers can propagate within the optical waveguide. This
means that the trapped electrons can transport to the required destinations by using
the optical fibre or waveguide. By using the proposed model system designed,
electrons can be trapped via the suitable waveguide and transported to the required

Fig. 5.20 Different trapping sizes
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targets or destinations. It is found that the photodetector speed can be increased to
more than the normal photodetector speed for about 3 × 105 times.

From the results obtained, the photodetector performance improvement can be
achieved and seen. It is found that the trapped electrons from the depletion region
can transport and reach to the cathode contact with the speed increasing up to
3 × 105 times from the normal condition. Furthermore, this technique can also be
used to improve the device performances such as molecular accelerator, capacitor,
solar cells, and other semiconductor devices.

The calculation is carried out by using the simple relationships where:

s ¼ v � t ð5:8Þ

s ¼ c
n

� �
� t ð5:9Þ

and

2pr ¼ c
n
� t ð5:10Þ

Here, s is an electron traveling distance, c is the speed of light in vacuum, n is the
device reflective index, t is the traveling time, and r is the ring radius.

A solar cell embedded with particle accelerator using an optical tweezers for
photodetector performance improvement is proposed. The optical tweezers are
generated using dark soliton as carrier signal, while the Gaussian beam is used as
the control signal within the device. By using an optical tweezers, it is shown that
the electron particles can be trapped and formed the electrical carriers to the device
contacts via an optical waveguide. In this case, the optical tweezers are generated
and controlled within a PANDA ring resonator system, where finally the photo-
detector speed can be increased by the accelerated electrons.
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Chapter 6
Conclusion

This research explained and described in details the formation of ring resonator
systems and output signals as generated by dark soliton input pulse propagated
within micro- and nanoring resonator systems controlled by Gaussian beam. There
were two different systems being considered, namely as add-drop configuration
system and PANDA ring resonator system. The characteristics of the output signals
for both systems were observed and discussed in details.

The research has designed, demonstrated, and analyzed the optical soliton
control within optical micro- and nanoring resonator systems. The characteristics of
the add-drop configuration system and PANDA ring resonator system have been
investigated. The analytical formulation and derivation of the transfer function have
been developed and the parametric effect of each model designed been examined
accordingly. The dynamical behaviour of the circulating fields and output signals
generated within micro- and nanoring resonator systems have been investigated and
analyzed in details. At the end, the ring resonator system parameters have been
optimized.

The dynamical behaviour of such signals has been investigated for the microring
radius in range of 20–40 μm and nanorings radii range from 40 to 90 nm respec-
tively. The coupling coefficient values have been investigated for the range of 0–1.
In this research, the input power, Ein and control signal, Eadd were set at 5 and 2 W
respectively. For instance, certain parameters were fixed, such as no ¼ 3:34,
n2 ¼ 2:5� 10�13 m2 W�1, Aeff ¼ 0:5 lm2, a ¼ 0:5 dB km�1, and c ¼ 0:1
respectedly.

For add-drop configuration system, with R ¼ 34 lm, j1 ¼ 0:75, j2 ¼ 0:80, and
center wavelength, k0 ¼ 1550 nm, the highest peak power was obtained at
throughput, Et and drop, Ed ports were recorded at 3.84 and 2.91 W respectively.
For PANDA ring resonator system, the highest output power generated at Et and Ed

were recorded at 37.93 and 24.28 W respectively. This results obtained by the
operating system where R ¼ 34 lm, RR ¼ RL ¼ 70 nm, j1 ¼ 0:85, j2 ¼ 0:80, and
j3 ¼ j4 ¼ 0:20.
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Results obtained shows that the output power generated increased with increase
in the input power, Ein. By comparing both systems studied, the output power of
add-drop system was less, due to the losses of the system waveguides itself. But,
it’s FWHM and FSR number remained constant. This was very useful for the large
system link which is very important in communication technology. With the
additional right and left nanorings in PANDA system, only small input signals with
less power amplitudes was required to produce reasonable trapping system to
generate the optical trapping fields and tweezers.
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