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Preface to the Second Edition

This textbook on quantum physics is in some aspects different from most books on
this topic. While the essential mathematical formalism—in the simplest possible
form—both of non-relativistic single particle quantum mechanics and of quantum
field theory are presented, selected experiments play an important role in the
foundation of the theory and for making contact with modern applications. Hereby
a special focus is on nanostructures and nanoelectronics as the subtitle
“Schrodinger’s Cat with the Dwarfs (in Greek: nanos)” indicates. The structure of
atoms and of the Periodic Table of Elements, for example, is introduced on the basis
of the electronic structure of semiconductor quantum dots rather than by consid-
ering the hydrogen atom and its extrapolation to multi-electron atoms.
“Schrodinger’s Cat” in the subtitle paradigmatically describes the other aim of the
book, namely to discuss more in extension than commonly the philosophical
background and the counterintuitive aspects of quantum physics.

Why now a second edition of the book after a relatively short time? From
discussions with colleagues and students I got the impression that both specific
aspects of the book might be deepened somewhat more. For this purpose I have
added some more relevant experiments with nanostructures: The quantum point
contact in connection with the conductance quantum is introduced and its use as a
charge detector in nanoelectronic circuits is explained. As a direct application
interference experiments in a nanoscaled Aharanov Bohm ring with an additional
probe for “Which Way” information are presented. Furthermore, the realisation and
the study of the electronic properties of an artificial quantum dot molecule are
presented.

Already in the first edition of the book I had briefly mentioned that non-locality
of quantum physics should be better discussed within the frame of quantum field
theory. In this new edition I have extended and deepened this idea, that particle-
wave duality and non-locality in the Einstein-Podolsky-Rosen (EPR) paradox are
much better understood on the basis of quantum field theory than in the frame of
single particle Schrodinger quantum mechanics. Correspondingly, an additional
new section on the particle picture in quantum field theory and the non-locality of
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viii Preface to the Second Edition

quantum fields is devoted to this issue. Some counterintuitive aspects of quantum
physics, thus, become more acceptable to our understanding.

Apart from these two major additions to the book I have incorporated two
interesting new developments having been awarded with the Nobel prize, the
realisation of atomic Bose—Einstein condensates and the detection of the Higgs
particle. Both topics being relevant to quantum physics are briefly explained in the
corresponding context. Also, a quantum interference experiment with giant Cgg
buckyball molecules is reported as an example for present research in the direction
of elucidating the border line between classical and quantum behaviour. Some
minor errors have been removed in the new edition and some new problems have
been added.

I want to thank Gregor Mussler for his help in the preparation of most of the new
figures. Stefan Folsch has supplied nice figures of his work on Indium quantum dot
molecules and has critically read the related text; also thanks to him. Thanks are
also due to Claus Ascheron of Springer Verlag for his encouragement and his effort
in editing this new edition.

Aachen and Jiilich, Germany Hans Liith
June 2015



Preface to the First Edition

The original German edition of this book was published in 2009. Because of the
positive response I have got from students and colleagues I translated the book into
English and furthermore added some new problems, the last chapter “synopsis,”
and an additional Appendix about the reduced density matrix.

What was the reason to write this book? There are a large number of excellent
textbooks on quantum mechanics on the market. Nearly all of these books have in
common that quantum mechanics is presented as one of the most important and
successful theories to solve physical problems. This is totally in the sense of most
physicists, who applied, until the 1970s of the twentieth century, in a first quantum
revolution quantum mechanics with overwhelming success not only to atom and
particle physics but also to nearly all other science branches as chemistry, solid state
physics, biology, or astrophysics. Because of the success in answering essential
questions in these fields, fundamental open problems concerning the theory itself
were approached only in rare cases. This situation has changed since the last decade
of the twentieth century. Since then there are new sophisticated experimental tools
in quantum optics, atom and ion physics, and in nanoelectronics, which can touch
inherent quantum physical questions and allow interesting tests of the theory itself.
Such questions, as for example, origin and consequences of superposition and
entanglement, are of predominant importance for fields as quantum teleportation,
quantum computing, and quantum information in general.

From this “second quantum revolution” as this continuing further development
of quantum physical thinking is called by Alain Aspect, one of the pioneers in this
field, one expects a deeper understanding of quantum physics itself but also
applications in engineering. There is already the term “quantum engineering” which
describes scientific activities to apply particle wave duality or entanglement for
practical purposes, for example, nanomachines, quantum computers, etc.

This background in mind I have written the present book. Particular quantum
phenomena are more at the center of interest rather than the mathematical for-
malism. I prefer a more pictorial and sometimes intuitive description of the phe-
nomena, and recent experimental findings from research on nanoelectronic systems
are often presented to support the theory. Also, connections to other science
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branches such as elementary particle physics, quantum electronics, or nuclear
magnetic resonance in biology and medicine are made.

Concerning the formalism, I generally restrict myself to first approximation
steps, which are relevant for experimental physicists and engineers in applying the
theory or to estimate the order of magnitude of experimental results or data. On the
other hand, the Dirac bra-ket notation is introduced in analogy to three-dimensional
vectors and it is used for simplicity reasons in many cases. Similarly, commutator
algebra is introduced as essentially adding or subtraction of symbols (operators).
The mathematical background necessary to read the book is quite simple. Only the
knowledge of simple functions, simple differential equations, and basics of matrix
algebra is required.

Rather than axiomatically introducing important quantities and equations I have
preferred to make the invention of basic equations or the mathematical tools for field
quantization plausible by physically reasonable conclusions and extrapolations.

The book was written on the basis of manuscripts of lectures on quantum
physics and nanoelectronics, which I have given to physics and electrical engi-
neering students at the Aachen University of Technology (RWTH). Essential
extensions are, of course, due to my own research in quantum electronics. In
particular, supervising PhD students in this field and the many discussions with
them had great influence on the way of presentation. I want to thank all of them for
the interesting discussions which also helped me to a deeper insight into the fas-
cinating field of quantum physics.

Furthermore, I want to thank my former coworkers, meanwhile all in academic
teaching and research positions, Arno Forster, Michel Marso, Michael Indlekofer,
and Thomas Schépers for many exciting disputes, which contributed to further
elucidation of difficult questions.

During the translation of the original German edition into English Margrit
Klocker sometimes improved and corrected my English grammar; also thanks to
her.

I owe very special thanks to my late wife Roswitha. She supported me all the
time during which I wrote the original German manuscript and she invented the
subtitle “Schrodinger’s Cat and the Dwarfs.” This subtitle accurately expresses the
main focus of the book, namely a more thorough diving into the physical and
philosophical content of quantum mechanics (paradigm: Schrddinger’s cat), and
this in the context of the nanoworld (world of the dwarfs). Roswitha found the right
words for this aspect of the book that I lacked.

Aachen and Jiilich, Germany Hans Liith
September 2012
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Chapter 1
Introduction

Quantum physics is thought, without doubt, to be one of the greatest intellectual
achievements of the 20th century. Its history began at the turn from the 19th to
the 20th century. But we are confronted with its profound scientific, technological
and philosophical implications today even more than ever. Not only in scientific
original papers and text books but also in popular science literature and fiction more
and more frequently book titles appear which contain terms as quantum theory,
quantum mechanics, quantum physics, quantum world or quantum entrainment etc.
Sometimes these titles are abused to supply quite questionable and esoteric treatises
with a quasi-scientific background. What, therefore, is it all about with this field
of quantum physics, which plays a central role in the education of physicists and,
hopefully soon, also of chemists, biologists and engineers.

1.1 General and Historical Remarks

Isaac Newton created, more than 300 years ago, classical mechanics by finding the
laws of motion for solids and of gravitation between masses. This theory was so
successful for the deterministic description of motions, in particular for the planets in
our solar system, that Newton was led to the assumption that also light has corpuscular
character. On the basis of light particles, which propagate along a straight line in a
light beam, he could consistently explain a number of optical phenomena including
the reflection and diffraction of light. The diffraction and interference experiments
of Christian Huygens living at Newton’s time and a little bit later, at the beginning of
the 19th century, of Thomas Young and Augustin Fresnel, however, paved the way
for the wave theory of light, at that time still waves in a not understood ether.

The triumph of wave theory could not be stopped anymore when the prominent
Scottish physicist James Clark Maxwell successfully described the nature of light by
a wave-like propagation of electrical and magnetic fields. He, thus, unified the two
classical branches of optics and electricity in one and the same theory. By the detec-
© Springer International Publishing Switzerland 2015 1
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tion of radio waves at around 1887, Heinrich Hertz finally established the familiar
theoretical system of electrodynamics and electromagnetic waves.

Simultaneously, during the 19th century, an atomistic and molecular view of
matter emerged and became more and more important, and this against various
philosophical objections. Milestones in the development of an atomistic picture of
matter were certainly the statistical kinetic gas theory of Ludwig Boltzmann around
the end of the 19th century and the explanation of the Brownian motion in terms of
collisions between liquid molecules and pollen particles suspended in the liquid by
Einstein in 1905.

At the beginning of the 20th century, then, experimental results accumulated
which contributed essentially to the emergence of a new physics, quantum physics.
Among these there must be mentioned the detection of cathode rays in vacuum tubes,
of X-rays and of radio activity. In particular, the Rutherford model of the atom must
be emphasized, which was suggested by Ernest Rutherford in order to explain his
scattering experiments of a-particles on metal foils. Rutherford’s atom is already
imagined to consist of a massive small nucleus containing almost the entire atomic
mass and an extended electronic cloud which determines the spatial extension of the
atom.

This breakthrough in the understanding of the atom might be thought of as the
beginning of the era of quantum physics. In a next step, the emission of sharp spectral
lines of exited atoms being in contradiction to the successful theory of electrodynam-
ics by Maxwell was explained. In 1913 Bohr interpreted, or better made plausible,
the emitted line spectrum of hydrogen atoms on the basis of heuristic postulates
about stable electron orbits around the positive nucleus, the proton.

A little bit earlier, already Max Planck had broken new ground into the direc-
tion of quantum physics. Around the end of the 19th century there was the puzzle of
black body radiation. A so-called black body emits a continuous spectrum of electro-
magnetic radiation whose shape strongly depends on the temperature of the emitter.
By means of classical electromagnetic theory, the spectrum for the shortest wave-
lengths always was calculated to diverge into infinity, the so-called ultraviolet (UV)
catastrophe. Planck, who was a quite conservative physicist, made the revolutionary
assumption that a black body interacts with the electromagnetic field by exchange
of energy only in small quanta rather than in a continuous way. The UV catastrophe
could thus be removed and the experimental black body emission theoretically be
described correctly. In a kind of desperation, he must have drawn this conclusion
which was in strict contradiction to Maxwell’s electromagnetic field theory of con-
tinuous electric and magnetic fields. The assumption, indeed, led back to the rejected
corpuscular theory of light by Newton. Planck created the term quantum which gave
the whole field its name. In his theoretical assumption, the quanta carry an energy
E which is proportional to the light frequency v. The constant # = E /v has been
named Planck’s constant in honor of its inventor. A number of illuminating detections
followed (Chap.2) which finally led to the formulation of quantum mechanics in its
present form. In particular, the explanation of the photoelectric effect by Einstein
(Sect.2.1) shall be mentioned.
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1.2 Importance for Science and Technology

While quantum theory was originally intended to explain the world of atoms, mole-
cules and elementary particles, in particular the electron, it became clear meanwhile,
that the theory has universal importance for the understanding of the whole sur-
rounding world, up to cosmological questions. This is by no means astonishing since
our world consists of atoms, elementary particles and energy fields which closely
interact with matter. Thus, the stability of matter can only be understood on the basis
of quantum theory (Sect.5.7.2).

The fundamental principles of quantum theory as particle-wave duality, the uncer-
tainty principle and the random behavior on the atomic level, therefore, have to
be taken into account in almost every natural or engineering science. This is true,
although, because of historical or practical reasons, models of classical physics,
mechanics or chemistry are used in many of these sciences. This is shown in a
somewhat qualitative way in Fig. 1.1. Each science field plotted by one of the boxes
participates more or less in the general field of quantum physics. The amount by
which it reaches into the quantum circle should indicate to what extent theoretical
models and experimental tools of quantum physics are used in the field. A partial
overlap of a science field with the quantum circle does not mean that only part
of the phenomena or systems considered there obey the laws of quantum physics.
According to our understanding everything in this world, matter and fields, be it in

Quantum Physics

Fig. 1.1 Qualitative representation of the overlap between important science branches and the field
of quantum physics. The amount of overlap with the “quantum circle” indicates how far quantum
physical methods, theoretical and experimental ones, are used in the particular science disciplines
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microelectronics, in medicine, in chemistry or in astrophysics is totally subject to the
laws of quantum physics. A partial overlap (Fig. 1.1) only indicates qualitatively to
what extent one uses typically quantum physical methods and considerations in this
field. Partially, this is dependent on the degree of atomistic thinking in a particular
science field.

As an example take chemistry. All what happens in a chemical laboratory or in a
chemical plant is related to chemical bonds and reactions and thus obeys the laws of
quantum theory. Nevertheless a chemist working in the laboratory must not always
think about quantum physical laws. During the long history of chemical sciences
typically chemical rules about reactivity between molecules and radicals have been
established, which have to be applied in order to produce a certain product. But
being confronted with novel problems of chemical bonding or reactivity a theoretical
chemist using quantum mechanical calculations has to be asked for an efficient
solution.

Similarly in medicine, for the interpretation of images from NMR (nuclear mag-
netic resonance, Sect.6.5.3) or PET (positron emission tomography) usually the
skills of the special medical education are sufficient. But in difficult cases, at the
front of research, one has to dig into the basics of the quantum physical elementary
processes of spin precession or decay times etc. in order to reach a certain level of
understanding. The same is true for all nuclear medical methods of cancer treatment.
The interaction of high energy particle radiation with biomolecules and cells can
only be approached by means of quantum physical methods.

Biology presents an extremely broad field of scientific activity reaching from
animal observation, evolution biology (theory), cell biology down to molecular biol-
ogy. This latter branch of biology, which has an ever more growing influence on
the explanation of biological phenomena on the atomic and molecular level became
possible only on the basis of quantum theory. Decoding of the DNA and its function
in genetics was achieved on the basis of quantum theory. The study of folding of
proteins and the related biological activity requires the use of supercomputers and
algorithms being based on quantum mechanics.

Astrophysics and cosmology reach into the quantum circle only halfway. In these
research fields relativity theory certainly plays an equally important role as quan-
tum physics. Similarly, in plasma-physics (nuclear fusion) magneto-hydrodynamics
contributes to the understanding of problems as much as quantum physics does.

Nuclear- and elementary particle physics as well as condensed matter physics
penetrate the quantum circle almost completely. Both disciplines arose on the basis
of quantum physics and can only be understood within the frame of quantum theory.
Classical physical models are sometimes used only for analogy reasons.

Material science, micro- and nanoelectronics and nanoscience (treats nanostruc-
tured materials) are of particular interest. These disciplines penetrate the quantum
circle by a significant amount, since many theoretical models and experimental tech-
niques stem from quantum physics. Examples are the description of the electrical
resistance which is due to scattering of charge carriers on crystal defects and lattice
vibrations, as well as the scanning electron tunneling microscope which allows imag-
ing of single atoms and atomic orbitals on a solid surface. On the other hand, there
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exist many classical, microscopic analysis and preparation techniques in these fields,
which work without using explicitly quantum physics. Probes for mechanical hard-
ness and the design of micro- and nanoelectronic circuits shall be mentioned. In the
considered disciplines, however, a clear trend to more and more atomistic thinking
and to structures on the nanoscale is observed (transistors with 5-10nm dimen-
sions). In the near future, therefore, quantum physical techniques will be much more
important and the corresponding boxes in Fig. 1.1 will move more into the quantum
circle.

Informatics characterized by its historical roots, Shannon’s entropy (information
measure) and the Turing machine (abstract model for computer), managed with-
out using quantum physics. This situation has changed since quantum information
(Sect.7.1) has become an interesting and growing field within information science.
Superposition states being characteristic for quantum physics allow extremely par-
allel data processing which is by no means possible within a classical computer
with von Neumann architecture. The realization of quantum computers and corre-
spondingly adapted algorithms is meanwhile an important branch in physical and
information research.

Similarly as in science the impact of quantum physics on every day life can not
be estimated highly enough. Many industrial products which we use without one
single thought would just not exist without quantum physics. The development of
lasers, a product of quantum physics, enabled important applications in ophthalmol-
ogy, material engineering and, of course, the familiar CD (compact disk) player.
Our satellite antennas for TV reception contain, in the first amplifier stage, a low
noise transistor (HEMT: high electron mobility transistor) which was developed by
using principles of quantum physics. For the function of the navigation system (GPS)
atomic clocks are essential, also products of quantum physics. This is similarly true
for all imaging systems in medicine as NMR, CT, PET etc. The information age is
based on integrated semiconductor circuits the development of which was possible
after the electronic structure of semiconductors was understood from the laws of
quantum mechanics (Sect. 8.3.4). Weather forecast with high predictive quality and
climate models require calculations on supercomputers, products of modern semi-
conductor technology.

Quantum physics is an essential basis of our modern world. There is an estimate
that almost a quarter of the gross national product in highly developed countries
arises from products being directly or indirectly related to quantum physics.

1.3 Philosophical Implications

In Fig. 1.1, even philosophy penetrates into the quantum circle to some extent. No
other physics theory excited philosophers, at least those with a view on natural
science and epistemology, to such an extent as quantum theory did. No other theory
in physics interferes so much with philosophical questions as what is real, what can
we recognize, in how far is our knowledge about nature pure imagination.
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Let us start with the question, what means quantum theory for the whole edifice
of physical science. Its fundamental issues, random behavior on the atomic scale,
particle-wave duality (Chap. 3), uncertainty relation (Sect. 3.3), and the principles of
field quantization (Chap. 8) form a non-classical frame of thinking which is relevant
in all sub-disciplines of physics such as elementary particle physics, physics of
condensed matter, astrophysics etc. There are no experimental results in all these
fields which are in contradiction to quantum theory so far. Quantum physics, in its
non-relativistic Schrodinger formulation for condensed matter physics and the highly
sophisticated relativistic field theories of the standard model in elementary particle
physics (Sect. 5.6.4) describe nature equally well on all scales, even up to cosmology.
Quantum theory must, thus, be considered as a hyper-theory, which has to be matched
also by future theories about so far unsolved problems such as quantum-gravity or
dark matter and energy.

Theory of relativity and Darwin’s theory of biological evolution certainly also
belong into this class of hyper-theories. No serious biologist or natural scientist in
general would dare to make assumptions which are in contradiction to Darwin’s
theory, to its central statements, not to minor derivations. Similarly theory of rela-
tivity yields the general frame for our understanding of space and time as well as
of gravitation. A restriction, however, has to be made. In the theory of relativity,
welldefined curves in space and time do exist. The wave-particle dualism and the
uncertainty principle do not exist, relativity theory is a classical theory in that sense.
We therefore expect that in a future unification of quantum and relativity theory the
latter one has to adapt to quantum theory. First approaches to quantum-gravity as
loop or string theory point into this direction.

It is worth mentioning that in both hyper-theories, quantum theory and the theory
of biological evolution, accident, that is, random behavior, plays a dominant role.
Random mutations in biology enable the emergence of something new on the cellular
level. (“Le hazard et la necessite” how it is expressed very accurately by Monod [1]
in his famous book). Hereby, the term mutation in biology is intimately related with
random behavior as it is defined in quantum physics.

The strongest interference of quantum physics with philosophy is certainly
given in the field of the theory of knowledge. Two fundamental issues of quan-
tum physics, in particular, have troubled philosophers, the inherently random, that
is, non-deterministic behavior on the atomic level and the interference of the human
observer with the physical measurement process, that is, the co-determination of our
knowledge about nature by the observing subject. For a long time, the opinion pre-
vailed that the collapse of a wave packet upon a measurement and the transition of
the wave function into an eigenstate of the measured observable (Sect.3.5) demon-
strate the dependence of our knowledge on the measurement. Our knowledge should,
thus, be determined to an essential part by the measurement and the observer rather
than by an externally existing reality. The Copenhagen interpretation of quantum
mechanics (Bohr, Heisenberg) sometimes shows features of a subjective and ideal-
istic philosophy, in which a reality beyond our perception horizon is denied. Both a
better understanding of the physical measurement process in terms of entanglement
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(Sect.7.4) and philosophical developments as in evolutionary epistemology [2] have
caused a return to a critical, realistic interpretation of quantum mechanics.

Particularly, philosophical branches as Evolutionary Epistemology [2] in connec-
tion with Hypothetical Realism [3] are appropriate to quantum mechanics and form
a wider frame for quantum mechanical thinking. Popper presents a detailed analysis
on realism and subjectivism in physics and concludes [4]:

There is, therefore, no reason whatever to accept either Heisenberg’s or Bohr’s subjectivist
interpretation of quantum mechanics. Quantum mechanics is a statistical theory because the
problems it tries to solve—spectral intensities, for example—are statistical problems. There
is, therefore, no need here for any philosophical defence of its non-causal character...

To sum up, there is no reason whatsoever to doubt the realistic and objectivistic character of
all physics. The role played by the observing subject in modern physics is in no way different
from the role he played in Newton’s dynamics or in Maxwell’s theory of the electric field:
the observer is essentially the man who tests the theory.

The statement about the statistical nature of quantum physics must be seen in
connection with the fact that quantum physics is non-deterministic on the level of
elementary events; but the calculation of probabilities and average measurement
results for large ensembles of particles is performed in a deterministic way by means
of differential equations with boundary and initial conditions (Sect. 3.5).

The problem of the measurement process in quantum physics has posed many
questions and caused much discussion about perception of reality and subjectivism
in the past. Meanwhile, these discussions have been eased due to recent fundamental
experiments on the participation of the observer in a measurement (Sects.2.4.2 and
8.2.4) and due to the recognition of the importance of entanglement between the
system under study and the measurement apparatus (Sect. 7.2). In this modern context
the human experimentalist merely plays the role of an observer rather than an integral
part of the system under study. The entanglement (specific quantum correlation)
between measurement apparatus and the real object being studied connects both of
them and simultaneously separates the cognizing human observer from the reality
of the outside world. Consequently, experiments yield an image of the externally
existing reality, but we can achieve step by step an ever better image of that reality.

As is worked out in the epistemology of hypothetical realism, all statements about
the world have hypothesis character. According to Popper [4], these hypotheses must
be falsified to establish new improved hypotheses in a trial and error procedure. By
means of ever better hypotheses, reality is described step by step more adequately.
The “invention” of Schrédinger’s equation or of field quantization (Sect. 3.5, Chap. 8)
are good examples for the establishment of hypotheses. These hypotheses in quantum
physics could not be falsified in their corresponding validity ranges (non-relativistic
range for Schrodinger equation). They must be assumed to be valid for the description
of realty so far.

It is essential that modern quantum physics does not deny the existence of a
structured reality beyond our senses and our perception. In this context Vollmer
remarks [2]:
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‘We assume that a real world does exist, that it has particular structures and that these structures
are partially recognizable. We test how far we can come with these hypotheses (translation
from the German by the author).

In this context, we always have to remember that philosophical realism can not
be proven; it can neither be verified nor falsified [5]. But according to Popper [4]
and other philosophical realists, it is certainly the most reasonable hypothesis to get
along with the every-day environment as a human being.

In this sense of philosophical realism, the counter-intuitive character of quantum
physics, for example, the particle-wave duality, does not cause difficulties. In the
evolutionary epistemology, human recognition is essentially determined by limita-
tions of our sensual perception and the structure of our brain. Both are results of
the biological evolution of man who had to adapt to a macroscopic rather than to an
atomic scale environment. In this sense, Shimony [6] remarks:

Human perceptual powers are as much a result of natural selection as any feature of organ-
isms, with selection generally favoring improved recognition of objective features of the
environment in which our pre-human ancestors lived.
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Chapter 2
Some Fundamental Experiments

It is interesting to follow the development of today’s quantum physics by consider-
ing difficulties in the interpretation of important experimental results. In particular,
around the end of the 19th and the beginning of the 20th century empirical facts
accumulated which demonstrated the limits of interpretations on the basis of clas-
sical physics, Newton’s mechanics and Maxwell’s theory of electromagnetic fields.
Such a historic approach is not intended in the present book. Instead, I want to
select some few fundamental experiments, which indicate directly the peculiarities
of atomic systems. The experiments are chosen such that they intuitively motivate
the basic assumptions of quantum mechanics.

2.1 Photoelectric Effect

When a metal surface is irradiated with light of frequency w (ultraviolet or visible for
alkali metals), electrons are emitted from the metal. In an appropriate experiment,
the electron emitting metal can be the cathode in a vacuum tube and the electrons are
sucked up by a positively biased anode (Fig.2.1). This set-up is the basic element
of every secondary electron multiplier in which a series of additional electrodes
amplifies the electron beam in a sort of avalanche process before it reaches the last
anode and is detected.

Also at negligible acceleration voltage and even under de-acceleration bias (illu-
minated metal positive) electrons are emitted under illumination. The emitted current
vanishes not before a certain maximum de-acceleration voltage Up,x is exceeded
(Fig.2.1c). Thus, the energy of the emitted electrons can be determined from the
energy difference eUnax Which can be overcome by the propagating electrons. With
v as electron velocity one has eUnax = mv?/2. According to classical electrody-
namics the energy flux density in the light beam is given by the Pointing vector
S = € x H. For low light intensities one would, thus, expect that only after suffi-
cient time enough energy for the emission of electrons has been transferred to the
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Fig. 2.1 a—e Photo-effect: a Experimental set-up. By light irradiation (photon energy hw) electrons
are emitted from a photo-cathode; they produce a photo-current / under the action of abias voltage U .
b Photo-current / as function of light frequency w. ¢ Photo-current / as function of applied voltage U .
Positive bias defines the illuminated electrode as cathode. Uy, is the maximum negative bias which
can be overcome by the emitted electrons due to their kinetic energy. The saturation current height
I depends on the irradiated light intensity. d Maximum deceleration energy eUnax as function of
light frequency . From this plot the natural constant 7 is obtained as slope; the onset of the curve
(straight line) at ® = 0 yields the work function W of the cathode material. e Explanation of the
photo-effect by means of the potential box model of free metal electrons (shaded). The photon
energy how of the irradiated light is sufficient for the electrons to overcome the energy barrier of the
work function W; on top they carry an additional amount of kinetic energy E|

metal. Furthermore, the energy eUnax of the photoelectrons determined from the
de-acceleration voltage should increase with growing radiation power. This is not
observed in the experiment. The energy of the photoelectrons does not depend on
light intensity, that is, radiation power. Instead, a characteristic dependence of the
effect on the light frequency w is observed. A lower frequency limit wjim = 27 Viim
does exist, below which electrons are not emitted from the metal (Fig.2.1b). This
frequency limit is specific for the material. Furthermore, the emission of electrons
starts already at very low light intensities though with very low emission currents,
i.e. very small numbers of emitted electrons. A plot of the energy E¢] of the emitted
electrons (=eUnax, determined from de-acceleration voltage) versus light frequency
exhibits a linear dependence:

1
Eq = eUpax = Emv2 = hw — W, (2.1a)
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W is the so-called work function of the metal which has to be overcome by the
evading electron before it reaches the vacuum. The constant

h=h/2r =6.6x 10710 eV (2.1b)

is Planck’s constant, which can be measured in the described way by the photoelectric
effect.

An explanation of these phenomena is obviously not possible on the basis of
classical Maxwell’s electrodynamic theory, it became possible by means of Einstein’s
light quantum hypothesis [1] (1905, Nobel prize 1921). In Einstein’s revolutionary
new assumption light consists of small particles, the photons, which carry the energy
hw = hv. Energy can be transferred from the light beam to the metal only in portions
of these quanta. Each electron which leaves the metal with an energy E¢| (2.1a) has
taken over the energy of a photon. The intensity of a light beam with frequency w
is proportional to the number of photons with energy hw in the beam. Thus, the
emission current is also proportional to the number of photons. These assumptions
consistently explain the photoelectric effect (Fig.2.1).

Further properties of photons can be derived by means of relativity theory, where
the speed of light is the absolutely highest possible velocity, and this in all inertial
systems moving against each other with certain velocities. Photons as light quanta,
thus, move with the speed of light ¢ in the direction of light propagation described
by the light wave vector kK. From the existence of a maximum constant light velocity
relativity theory gives an expression for the energy of a mass m moving with a

momentum p:
E =/ p%c? +m2c*. (2.2)

Light, that is, also its constituting particles, the photons, have no mass. Together with
the light dispersion relation w = ck one obtains from (2.2)

E = ho = hck = pc. (2.3)
We, thus, must attribute a momentum p = hk to the mass-less photons. We conclude
that the electromagnetic field being continuous on the macroscopic scale is built up
by small particles, the photons, to which we attribute the specific photon energy
E =hw=hv (2.4a)
and a momentum

p = k. (2.4b)

The continuous field of classical Maxwell theory obviously has a granular character
in reality which is not seen in phenomena on macroscopic scale.
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2.2 Compton Effect

The particle character of electromagnetic radiation is also very clearly seen in the
Compton effect, which was detected by Compton and Simon [2] in 1925. When
X-rays with photon energies between 10% and 10° eV are scattered on free or weekly
bound electrons, beside elastically scattered Rayleigh radiation (equal wavelength A
as incident radiation) there appears a second contribution of scattered radiation which
is shifted in wavelength by A, independent on the material of the scattering target
(Fig.2.2). In the elastic Rayleigh scattering process the oscillating electric field of the
incoming X-rays excites electron oscillations (e.g. in the field of the positive nuclei)
with the X-ray frequency. These electrons then again emit secondary radiation of the
same frequency, the Rayleigh radiation. The additionally emitted radiation whose
wavelength is shifted against the Rayleigh scattered one exhibits a characteristic
dependence of the wavelength shift AA on the scattering angle ¥ (Fig.2.2). This
phenomenon can be explained quantitatively only under the assumption of an elastic
collision with energy and momentum conservation between the electron and the light
particle, the photon. We try this approach and write down the following ansatz for
momentum conservation in x- and y-direction (Fig.2.3b).

h  h
— = — cos ¥ + mv cos ¢, (2.5a)
c c
h' . .
0= —sin¥ —mvsing. (2.5b)
c

Fig. 2.2 Original
measurement data of 0°
Compton effect [2].

A graphite sample is
irradiated by K, radiation
from Mo under different
angles (0°-135°) with regard
to the direction of incidence.
The radiation is scattered
elastically (A = 0.71 A)
without A shift, partially
inelastically with increased
wavelength A

Scattering Intensity ( arbitrary units )

0700 0705 0710 0715
Wavelength /1 (Angstrom )



2.2 Compton Effect 13
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Fig. 2.3 a—c Scheme of Compton effect. a Experimental set-up. b Explanation of scattering para-
meters and particle parameters of X-rays (hv photon energy, 4v/c photon momentum) as well as
of scattered electron (mv2/2 energy, mv momentum). ¢ Momentum conservation in a Compton
scattering experiment

Hereby, m is the mass of the propagating electron which is related to its rest-mass
mg according to relativity theory by

m =mo(1 —v2/c?) "2, (2.6)

As in the interpretation of the photoelectric effect (2.4b), the photon carries the
momentum p = hk = h/A = hv/c. The observed frequency shift Av = v — v/
of the X-rays after scattering can therefore be related to a momentum change of
the X-ray photons during the collision with an electron. Apart from momentum
conservation (2.5a), (2.5b), also the relativistic energy conservation must hold for
the particles, that is, with (2.4a) the energy of the photons must obey the relation

hv + moc® = hv' + mc?. (2.7)
Hereby, the electron was assumed to be at rest (rest mass mg) before the collision.

By squaring (2.7) and by using (2.6) one obtains the following expression for the
frequency change Av:
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v2

2 2°

hz(Av)2 + 2moc’hAv = m%c4
cr—v

2.8)

In (2.5a), (2.5b), sin ¢ and cos ¢ can be eliminated by using the relation sin ¢ +
cos? ¢ = 1. After some calculation, one obtains

R2[(Av)% +20(v + Av)(1 — cos 9)] = mic* —— . (2.9)
.

A comparison of (2.8) and (2.9) shows the equality also of the left sides of the
equations which yields

moc*hAv = h*>v(v + Av)(1 — cos D), (2.10)

with

c c cAv
AL = — — = . (2.11a)
v v+ Av v(v 4+ Av)

Equation (2.10) yields

h
AL = — (1 —cos?) = Ac(1l — cos ¥}). (2.11b)
moc

The constant A¢ is called Compton wavelength of the electron, it amounts to:

h
o= —=24x10"""cm. (2.12)
moc

The Compton wavelength depends only on natural constants and is, therefore, of
general interest. The quantum energy of radiation with a wavelength A¢ corresponds
just to the rest mass mq of the electron:

hC 2
— = hv =moc®> =511 keV. (2.13)
AC

Equations (2.11a), (2.11b) describe quantitatively the frequency or wavelength shift
Av or A as a function of scattering angle ¢ as it is observed in the Compton effect.

Someone who feels stressed by the relativistic calculation (2.5a)—(2.12) can obtain
the result for the limit of small frequency changes by a non-relativistic treatment
(Fig.2.3c) where the electron mass is approximated by its rest mass (m = my).
Inspection of Fig. 2.3¢ easily shows that for the limit v &~ v’ the momentum vectors of
the incident and the scattered light are almost equal (hv/c &~ hv'/c). By considering
the two rectangular triangles SCB and SCA momentum conservation (mv = AB)
yields the following relation:
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—mvy = — sin —. (2.14)

By means of (2.14), the change of the kinetic energy of the electron (initially at rest)
which scatters the photon can be expressed by a change of photon energy (hv — hv'):

1 1 2 4h%2%sin2 9 )2
L2 o Lomo)” _ 4h7v7sinv/a 0 (2.15)
2 2 m 2mc?

With v & V" and by dividing nominator and denominator by /412, one obtains:

2h ., 0 v—=V 1 1 (2.16)
— sin” — = N == :
mc? 2 v2 VAY
Written as a wavelength change, A it follows
, 2h 50 h
AL=A —A=—sin"— = — (1 —cos D). 2.17)
mc 2 mc

In the non-relativistic limit (m ~ my), this equation is identical with the more general
relativistic relation (2.11a), (2.11b).

2.3 Diffraction of Massive Particles

While photoelectric and Compton effect can only be interpreted on the basis of
the particle character of electromagnetic radiation, there are meanwhile numerous
diffraction experiments (typical for waves) with all kinds of massive particle beams
as electrons, neutrons, atoms, molecules etc. which doubtlessly demonstrate the
wave-like propagation of these particles.

Already in 1919, Davisson and Germer detected intensity modulations in the
reflection of low energy electrons from crystalline surfaces as a function of the
observation angle [3]. The explanation of these observations became possible by De
Broglie’s hypothesis that the propagation of electrons obeys the laws of waves [4]. In
analogy to the photon, the mass-less light particle, De Broglie assumed the validity
of the fundamental relation p = h/A (2.4b) between momentum and wavelength
also for massive particles as electrons. Relating the momentum p = muv to the
kinetic energy Eyin = mv?/2 of a moving particle, one calculates the wavelength of
a propagating electron as

A= hCmEg) 2. (2.18a)
that is, electrons which have been accelerated by a voltage U possess a wavelength

A =123A/NU. (2.18b)
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The experiments of Davisson and Germer have initiated the development of a stan-
dard characterization method for the atomic structure of solid surfaces, the LEED
technique (low energy electron diffraction). The experimental set-up for LEED stud-
ies is meanwhile found in every surface science laboratory around the world. The
schematic representation of such an experiment is shown in Fig.2.4. The solid sur-
face under study is arranged in front of a curved fluorescent screen in a vacuum ves-
sel, usually an ultrahigh vacuum (UHV) chamber with background pressure below
10~19 Torr. Through an opening in the screen, an electron beam with well defined
kinetic particle energy Exi, = eU obtained by acceleration in a bias between 30 V
and 200 V is irradiated on the crystal surface. The electrons backscattered from the
sample surface have to pass an acceleration grid in front of the fluorescent screen and
an acceleration voltage of some 1000V in order to have enough energy to become
visible on the fluorescent screen. When the sample surface under study is crystalline
one always observes more or less bright intensity peaks on the screen, the so-called
LEED reflexes. In Fig. 2.5, the LEED reflexes observed on a clean ZnO surface pre-
pared in UHV are shown. The interpretation of this reflex (LEED) pattern is only
possible by attributing the propagating electrons in the primary beam a wave. When
this electron wave hits the surface atoms of the sample, each atom in the lattice emits
a spherical wave. All these spherical waves superimpose and interfere constructively
in certain directions and destructively in others. Since electrons with low energies
in the order of 100 eV are scattered preferentially on the uppermost atomic layer,
the scattering target is 2-dimensional to first approximation. According to Fig.2.4b,
the path difference between two partial waves originating from atoms A and B is
As = asin ¥ with a as the interatomic distance within the surface. For constructive
interference, As must equal a multiple of the electron wavelength A, which yields
the condition

asint = na. (2.19)

Fig. 2.4 a, b Scheme of a

LEED diffraction experiment

(LEED is Low Energy ()
Electron Diffraction) with
slow electrons.

a Experimental set-up in
ultra-high vacuum (UHV).
b Schematic representation
of the diffraction of an Screen
incident electron on the (b

upper most atomic layer of a Scattered
crystal. The atoms A and B
are the origin of scattered
spherical waves which
interfere constructively
(Bragg reflection peak) or .
destructively depending on Incident
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Fig. 2.5 LEED diffraction
pattern of electrons of a
kinetic energy eU = 140 eV
on a ZnO(1010) surface. The
electrons are incident normal
to the crystal surface; bright
spots are Bragg reflection
spots due to constructive
superposition of waves. The
dark shadow in the
diffraction pattern is due to
the crystal holder

Diffraction intensity is thus expected on a cone with opening angle (/2 — ¢)
around the atom row along A and B. Since the arrangement of scattering atoms
is 2-dimensional a second condition for constructive interference, analogously to
(2.19), must be fulfilled in a direction normal to A B in the surface. The two conditions
together limit the spatial range for constructive interference to only one direction,
that is, the direction of a particular LEED reflex (bright spot in Fig. 2.5). The different
diffraction spots in Fig.2.5 belong to higher diffraction orders, that is, to different
numbers 7 in (2.19) and the corresponding second equation. For the interpretation
of a LEED pattern as in Fig.2.5, one calculates the electron wavelength from the
kinetic energy of the primary electrons, or respectively from the acceleration voltage
according to (2.18a), (2.18b). By means of (2.19), the observation angle for a partic-
ular LEED reflex yields information about the interatomic distance, more accurately
the periodicity interval, within the sample surface. LEED is meanwhile a standard
analysis technique in surface science. Each LEED experiment, many times performed
around the globe, demonstrates the wave character of propagating electrons.

Not only moving electrons but also other particles obey the laws of wave propa-
gation. Already in 1930 Estermann and Stern demonstrated that He and Hy beams
undergo diffraction phenomena on solid surfaces [5]. A clear example from recent
time are diffraction experiments with He beams on clean, UHV prepared Pt sur-
faces [6]. The Pt surfaces exhibit a series of regularly spaced monoatomic steps
(distance a = 2 nm) which are produced by cutting the crystal at the appropriate
angle and annealing in vacuum. The atomic He beam used in the experiment is pro-
duced by a supersonic expansion of the gas from a nozzle. The interaction between
the atoms in the expanding gas produces a velocity distribution that is significantly
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sharper than the Maxwell distribution present before the expansion. The energetically
sharp He beam is irradiated on the Pt surface under UHV conditions (background
pressure below 10~ 10 Torr). In Fig. 2.6a, the diffracted intensity of He atoms is shown
as a function of the scattering (reflection) angle 9, with a fixed angle of incidence
¥ = 85° against the surface normal. The intensity maxima correspond to the dif-
fraction orders of the periodic lattice of terraces, that is, steps on the Pt surface rather
than from the lattice of individual atoms. The steps act as scattering centers, they
form a 1-dimensional array. Thus, for the interpretation of the scattering distribution
(Fig.2.6a) relation (2.19) can directly be applied. Only the path difference between
two neighboring scattered beams contains the amounts As; and As, of the incident
and the reflected (scattered) wave. The position of the diffraction maxima is thus
given by

a(sin¥; — sinv,) = ni. (2.20)
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Fig. 2.6 a, b Diffraction of a He atom beam on a Pt surface with a regular step array, step distance
a = 2 nm [6]. Like for an Echelette grating in light optics maximum diffraction intensity is obtained
in diffraction orders which appear under specular direction with regard to the interaction potential.
a Diffracted intensity as function of scattering angle ¥,; angle of incidence ©¥; = 85° with regard
to the Pt surface normal. The reflection angles indicated by 0, 1, 2, ..., 5 are calculated for a step
distance @ = 2 nm. b Scheme of the diffraction geometry. The path differences As; and As,
determine the reflection angle, under which the diffraction peak appears
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From (2.18a) the wavelength of the He atoms in the beam is obtained as 0.56 A. With
the step distance @ = 2 nm the intensity maxima numerated by n =0, 1,2, 3, ...1in
Fig.2.6a are calculated. The agreement between theory and experiment is excellent.
As in the case of an optical echelon grating, the direction corresponding to specular
(mirror) reflection from the terraces (maxima 3 and 4) is favored in the intensity
distribution.

Neutrons interact only extremely weakly with matter because of their missing
charge. They penetrate relatively thick solid samples without a significant loss of
beam intensity. But also in this case, neutrons which are irradiated on a solid crys-
talline sample, produce, beside the directly transmitted beam, well-defined sharp
beams of neutrons which are diffracted into certain angles with respect to the pri-
mary beam direction (Fig. 2.7). The interpretation of the experimental results is based,
similarly as in the case of electrons or He atoms, on the assumption of the propaga-
tion of neutron waves and their diffraction on the regularly arranged atomic nuclei
in the crystal [7].

Interference patterns have meanwhile been observed even with gigantic molecules
as Ceo [8]. This fullerene molecule, sometimes called buckyball (named in honour
of the British architect Richard Buckminster Fuller, who constructed similar cupo-
las) consists of 60 carbon atoms bonded in a quasi-planar sp? configuration within

Fig. 2.7 a, b Neutron
diffraction on a FeCo alloy
[7]. a disordered (left) and
ordered (right) phase of
FeCo. b Neutron
diffractogram of the ordered

and disordered phase of ®
FeCo. Because of low
counting rates in neutron
diffraction long
measurement times are
needed
@ Atom B
(b) @ Atom A or B
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Fig. 2.8 a Interference
pattern produced by Ceo
fullerene molecules
diffracted on a
lithographically prepared
grid [8]. The zeroth and
first-order maxima can be
seen. The solid curve is
calculated from experimental
data by means of grid
diffraction theory. b Control
experiment: The molecular
beam profile without the
grating in the path of the
molecules

Countsin 50 s

Countsinis

Position (um)

hexagons and pentagons and forming a football shaped sphere (Fig. 2.8, inset). The
molecule has a diameter of about 1nm (van der Waals diameter) and a weight of
1.2 x 1072 g, i.e. 720 times the weight of a proton.

In the diffraction experiment these molecules have been evaporated from an oven
at temperatures around 1000 K. A molecular beam with an average molecule velocity
of about 220 m/s is formed by apertures and focussed on a lithographically (Appendix
B) produced grid (SiNy, 50 nm slits at a distance of 100 nm). Typical distances
between the apertures and between grid and detector are in the meter range. For
detection the Cgp molecules are ionized by laser light and collected by an electron
optics in front of a chaneltron arrangement.

In Fig. 2.8a the observed interference pattern consisting of a central peak and two
1st order side peaks is shown. In the control spectrum measured without grid in the
molecular beam (Fig. 2.8b) the interference peaks are missing. The solid curve in
Fig. 2.9a calculated by means of grid diffraction theory is based on the (De Broglie)
wavelength A = h/vmcgg = 2.5 X 1070 cm =25 pm, which is attributed to the
moving molecules (v velocity, mceg mass) according to (2.4b).
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All these experiments with particle beams demonstrate clearly and doubtlessly,
that the propagation of massive particles as electrons, neutrons, molecules etc. must
be described in terms of wave expansion. Otherwise, we could not understand the
occurrence of diffraction and interference phenomena observed with these particles
and which are used meanwhile worldwide in standard characterization and analysis
techniques in solid state and surface physics. Present cutting edge research in this
field aims at the physical limits for the observation of particle interference with bigger
and bigger particles. The interesting question is, at what particle size is the quantum
character lost and the particle starts to behave classically.

2.4 Particle Interference at the Double Slit

Interference experiments with a double slit, that is, the appearance of diffraction
fringes on a screen after a light beam has passed the double slit arrangement, lead
Th. Young already in 1802 to the interpretation of light as a wave. Instead of a
double slit A.J. Fresnel used a bi-prism (Fig. 2.9a) for the demonstration of double
slit interferences. In this particular set-up a monochromatic light beam originat-
ing from a single slit S illuminates a double prism with small prism angles. This
bi-prism splits the primary beam into two partial beams which are superimposed on
a remote screen. As is seen from Fig.2.9a, the two partial beams seem to originate
from two virtual slits §” and S”. The interference pattern observed on the screen,
thus, is identical with one produced by a double slit arrangement as in Young’s
experiment. The intensity / of the interference pattern reaches a maximum when
the path difference between the two partial waves from S’ and S” equals a mul-
tiple of the light wavelength . Destructive interference, that is, intensity minima
appear on the screen for path differences of odd multiples of A/2. These types
of double slit interferences can only be explained in terms of wave propagation,
a non-local phenomenon. An interpretation on the basis of a particle picture is
excluded.

2.4.1 Double Slit Experiments with Electrons

Already in 1956, Mollenstedt and Diiker performed a double slit experiment with
electrons by means of a bi-prism [9]. The bi-prism for electrons in this experiment
consisted of a positively charged metallic filament arranged between two planar elec-
trodes on ground potential (Fig.2.9b). This set-up is incorporated into an electron
microscope column, where an electron beam is focused in a focal point F (Fig.2.9b).
The double prism arrangement splits the electron beam into two partial beams, sim-
ilarly as in the optical analogon, and deflects the two beams to the center again. The
electric field of the positive filament is proportional to »~! (r distance from filament).
An electron passing the wire in close vicinity is strongly deflected horizontally, but
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Fig.2.9 a—c Double slit diffraction of light and of electrons. a Set-up for the observation of optical
double beam interference with monochromatic light. The two light beams are produced by an
optical biprism. b Analogue equipment for the observation of electron double beam interference.
The biprism is realized by a positively charged metal filament in an electron microscope column.
¢ Electron double slit interference pattern produced by the experimental set-up in (b) [9, 10]

only for a short time. An electron passing further away experiences a smaller force,
but this for a longer time. The total deflection angle of the electrons in the field of the
wire surprisingly depends only on the electron energy and not on the distance from
the wire. Thus the two partial electron beams are focused and superimposed on a
photosensitive screen behind. An interference pattern with bright and dark fringes is
observed (Fig.2.9¢c). Electrons with a fixed energy thus behave as light waves pass-
ing Fresnel’s bi-prism or Young’s double slit, a further demonstration of the wave
character of electrons.

The experiment of Mollenstedt and Diiker was repeated by Tonomura et al. [11]
in 1989 with more sophisticated experimental tools. A particular advancement was
the use of extremely sensitive, space resolving (imaging) semiconductor detectors.
A whole field of highly sensitive pixel detectors enables the detection of one single
electron at one pixel and, thus, the computer aided construction of an image of the
spatial distribution of the electrons having passed the double slit. The results of the
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10 Electrons 100 Electrons

Fig. 2.10 a-d Successive formation of a two-beam (double slit) electron interference pattern. The
diffraction experiment has been performed by means of a biprism set-up as depicted in Fig.2.9b
[11]. The electron density in the beam is such low that only one single electron passes the electron
microscope column at a time. Only single distinct electrons are detected, one after each other, on the
2-dimensional spatially resolving pixel detector screen. The diffraction patterns (a—d) are recorded
after increasing electron numbers have passed the apparatus

experiment (Fig.2.10) clearly show the unexpected and weird behavior of electrons
propagating in space.

Electrons expand in space according to the laws of waves, they produce inter-
ference patterns, just as light does. But the interference fringes become visible only
after the observation of a sufficiently large number of electrons. The observation of
only 10 electrons which have passed the bi-prism (Fig.2.10a) yields a random flash
of one pixel somewhere on the screen. An interference pattern can not be recog-
nized. Collecting 100, 3000, or 70,000 events of electrons which have passed the
bi-prism builds up step by step the double slit interference pattern (Fig.2.10d). Only
for an ensemble with huge numbers of electrons the laws of wave propagation are
valid. One single electron behaves randomly; totally unexpected and statistically the
response of a pixel on the screen is caused by an impinging electron which transfers
its kinetic energy to the point-like pixel detector.

It must be emphasized at this point that an electron—electron interaction can be
excluded while the electrons pass the double prism arrangement to form the interfer-
ence fringes. Two subsequent electrons do not “see” each other in space and time.
The intensity of the electron beam current is so low that only after the detection of
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one electron in a pixel detector the next electron leaves the cathode of the microscope
column.

Single electrons have the choice to take one or the other path—through this or
the other slit—they are detected as point-like particles in a pixel detector, but ran-
domly distributed over the screen. We do not know their individual history, but as
an ensemble they build up the interference pattern without having information about
each other. This particle-wave duality, which is absolutely counter-intuitive, weird
in our imagination, is at the heart of quantum mechanics. Feynman [12] describes
this behavior being apparent in the double slit experiment as “impossible, absolutely
impossible to explain in any classical way, and has in it the heart of quantum mechan-
ics”. We have to get familiar with the idea, that nature behaves completely different
from our everyday experience on an atomic scale or below. For human beings, the
natural length scale is that of centimeters and meters corresponding to the percep-
tion horizon in our macroscopic surrounding. It would be astonishing, on the other
hand, if our sense organs and our brain, which have adapted during more than 100
million years of biological evolution to a macroscopic environment, could perceive
the reality of the whole cosmos, the smallest and largest on subatomic and cosmo-
logical length scales. In these periods of adaptation it was much more important for
human survival to correctly estimate the width of a creek or the distance between two
branches of an arbor than the path of an electron. We should, therefore, not be sur-
prised that the atomic and sub-atomic world as it appears in quantum physics is not
accessible to our limited senses and imagination. We should, however, be surprised
that mathematics opens the way to create an abstract picture of the atomic behavior
which allows even quantitative predictions of experimental results. The most straight-
forward explanation is certainly that a structured reality does exist beyond human
perception and imagination which obeys the laws of logic. Mathematics and logic
obviously go beyond the reality accessible to our senses and enable the invention of
theoretical systems as quantum theory which can correctly describe wide fields of
reality extending much further than our meter and centimeter environment.

2.4.2 Particle Interference and “Which-Way”’ Information

The behavior of atomic and sub-atomic particles becomes even more strange when we
ask the question through which particular slit has the particle moved in the double
slit experiment (Sect.2.4.1). Is this question for the detailed way of the particle
compatible with the observation of the double slit interference pattern? Already in
the early days of quantum mechanics, around 1920, this question was discussed
extensively in gedanken (thought) experiments by Heisenberg, Einstein and others
and later by Feynman [12]. The essential conclusion of all these discussions always
was that the interference pattern can only be observed without additional experiments
to elucidate the detailed path (“which-way” information) of the particles. Every
measurement of the detailed way, e.g. by scattering of a photon (see Compton effect,
Sect.2.2) in front of one of the two slits transfers so much momentum p = hk
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to the electron that interference of the electron waves is not possible anymore, the
fringe pattern is washed out due to phase shifts. According to the arguments of
Heisenberg and Feynman the photon energy of the probing light can be decreased
to such an extent that its effect on the electron is negligible. But simultaneously
one has to increase the wavelength of the light, because of p = hk = h/X, to an
amount which does not resolve the spatial distance between the two slits anymore.
Microscopic imaging of a structural dimension d, namely, requires A < d. In the
gedanken experiment, the measurement of the detailed particle path requires a light
wavelength A < slit distance, which simultaneously is accompanied by a momentum
transfer to the electron high enough to destroy the interference pattern.

In recent time, now, experiments became possible, where the “which-way” infor-
mation can be obtained without significant momentum transfer to the diffracted
particle in a double slit experiment. But look, the interference pattern disappears
without momentum transfer. The interference fringes can only be seen, when the
detection apparatus for the “which-way” information is switched off. Diirr et al. [13,
14] have performed an experiment with a beam of Rb atoms which are diffracted on
a standing laser light wave. As we will see later in Chap. 8, high intensity standing
light waves with their spatially fixed intensity maxima and knots (intensity = 0)
act as a diffraction grating for atoms, with a grating period of half the light wave-
length, similarly as the periodic array of atoms in a crystal (Sect.2.3). According to
Fig.2.11a, diffraction of the Rb atoms on a first standing wave produces, beside the
transmitted beam C (Oth order) a beam B diffracted in 1st order. These two atom
beams hit a second standing light wave where they are diffracted into the beams D, E
and F, G, which pair-wise interfere with each other. Thus, two interference patterns
phase shifted against each other are produced in a space resolving imaging detector
behind. Figure 2.11b shows the experimentally observed interference patterns for two
different laser light wavelengths with knot distances (periodicity period) d = 1.3
and 3.1 pm.

A special property of this experiment is due to the fact that the diffracted Rb atoms
are characterized, beside their spatial information, that is, the probability of being
somewhere, also by internal degrees of freedom as spin excitations etc. We will be
able to understand details of the described experiment only much later in this book
(Sect.8.2.4) after we have learnt a lot more about quantum theory. Nevertheless,
it should be anticipated at this point, that irradiation of microwave radiation with a
frequency of 3 GHz excites the Rb atoms into an excited state before entering the first
diffraction grating (1st standing wave). A second microwave pulse irradiated after
the splitting into the two partial beams B and C allows the distinction between the
two possibilities if the interference pattern (beams D and E respectively, F and G)
originates from an atom of the partial beam B or C.

In this experiment, the two beams of the double slit experiment are realized by the
partial beams B and C. By means of microwave pulses before and after passing the
firstdiffraction grating (1st standing light wave) one can distinguish between the ways
B and C which could have been taken by the atom. It is easily estimated (Sect. 8.2.4)
that a photon of 3 GHz microwave radiation can not transfer enough momentum to
the relatively heavy Rb atom such that the interference pattern is washed out. Nev-
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Fig. 2.11 a-c Two-beam interference of two Rb atom beams. An internal degree of freedom (spin
orientation of the outer Rb shell electron) can yield information about the path of a single electron
(“Which Way Information”) [13, 14]. a Scheme of the atom interferometer: By Bragg reflection on
an intense standing laser light wave the incident atomic beam A is split into two partial beams B
and C. A second standing laser light wave splits these two beams into the partial beams D and E
(negative spatial coordinate), respectively /' and G (positive spatial coordinate). These beams pair-
wise interfere with each other. Irradiation of microwaves before entering the first diffraction grating
(1st standing laser light wave) can excite the Rb atoms in an excited internal state. A 2nd microwave
pulse irradiated between the two diffraction gratings (1st and 2nd standing laser light waves) allows
the read-out of the “Which Way Information”, i.e., the detailed path of the two interfering atomic
beams (see also Sect. 8.2.4 and Fig. 8.5). b Measured atomic beam interference pattern originating
from the superposition of the partial beams D and E, respectively, F' and G; for these measurements
the “Which-Way Information” was not recorded (no microwave pulses); results with two different
grating periods (node distance of standing laser waves) d = 1.3 wum and d = 3.1 pm. The solid
lines are calculated results. ¢ Measured beam intensities upon superposition of partial beams D and
E, respectively, F' and G and recording the “Which-Way Information” using microwave pulses

ertheless switching on the microwave radiation as the measurement probe destroys
the interference (Fig.2.11c). Only a monotonous intensity background correspond-
ing to the average Rb atom density in the beams D and E respectively, F and G
is detected. This experimental result is found independently on the observation by
a human experimentalist; only the read-out of the which-way information by the
corresponding hard-ware probe is essential for the appearance or disappearance of
the interference pattern.

What do we learn from this experiment? First, we see that not the human observer
has an effect on the outcome of the interference experiment, only the switched on
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measurement probe for the which-way information is responsible for the destruction
of the interference pattern.

Real world does not worry if it is observed by a human being (Realism instead of
Idealism!). Furthermore, there must exist a correlation between the observed particle
and the measurement probe, which can not be reduced to energy or momentum trans-
fer between particle and measurement set-up. This phenomenon which is inherently
of quantum mechanical character is typical for atomic and sub-atomic systems and
beyond our macroscopic perception. It is called “entanglement” (Verschrinkung in
German, as Schrodinger called it), we will better understand what it means after
having learnt more about quantum physics (Chap. 7).

References

A. Einstein, Ann. Phys. 17, 132 (1905)
A.H. Compton, A. Simon, Phys. Rev. 25, 306 (1925)
C.J. Davisson, L.H. Germer, Phys. Rev. 30, 705 (1927)
L. de Broglie, Comptes Rendus Acad. Sci. Paris 177, 507 (1923)
I. Estermann, O. Stern, Z. Phys. 61, 95 (1930)
G. Comsa, G. Mechtersheimer, B. Poelsema, S. Tomoda, Surf. Sci. 89, 123 (1979)
C.G. Shull, S. Siegel, Phys. Rev. 75, 1008 (1949)
M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zeilinger, Nature 401, 680
(1999)
9. G. Mollenstedt, H. Diicker, Z. Phys. 145, 366 (1956)
10. C. Jonsson, Z. Phys. 161, 454 (1961)
11. A. Tonomura, J. Endo, T. Matsuda, T. Kaeasaki, E. Ezawa, Am. J. Phys. 5§7, 157 (1989)
12. R.P.Feymann, R.B. Leighton, M. Sands, The Feymann Lectures on Physics—Quantum Mechan-
ics (Addison-Wesley, Reading, 1965)
13. S. Diirr, T. Nonn, G. Rempe, Nature 395, 33 (1998)
14. S. Diirr, G. Rempe, Adv. At. Mol. Opt. Phys. 42, 29 (2000)

PNAN R LN =


http://dx.doi.org/10.1007/978-3-319-14669-0_7

Chapter 3
Particle-Wave Duality

3.1 The Wave Function and Its Interpretation

The experiments described in Chap. 2 doubtlessly show that both light waves propa-
gating in space as well as atomic and subatomic particles as electrons moving from
one to another spot have one thing in common: Their propagation obeys the laws of
wave expansion. On the other hand, also the particle character, which shows up in
scattering experiments as the Compton effect and in the detection process, can not
be denied. In a simplifying fashion one can say: everything, matter and energy fields,
are simultaneously wave and particle.

We, thus, arrive at the correspondence between particle and wave picture which
follows from the experiments in Chap. 2 and which is expressed by the following rela-
tions between particle energy E, particle momentum p and frequency w respectively,
wavelength A:

1 5
E = zmv = hw, (3.1
2 k
= =hk=h——. 3.2
p=mv K (3.2)

Mass m and velocity v are quantities characteristic for the particle picture while
frequency w, wavelength A and wave vector k make contact to the wave description.
Equations (3.1) and (3.2) might be used in a first approach to quantitatively describe
experiments as in Chap. 2, but there is need for a stringent and coherent theory for the
dynamics of particles, which combines the concepts of wave and particle propagation
being at first glance contradictory. This highly challenging goal was first achieved
with Schrodinger’s wave mechanics.

The propagation of a particle, e.g. of an electron is described by a wave function .
In the simplest case of motion along a straight line a plane wave

Y(r, 1) = cel®r=en, (3.3)
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describes the propagation of the particle, where wave vector k and frequency w
are connected to the particle picture by (3.1) and (3.2). The wave function i is a
quantity which is analogous to the wave amplitude of a light field. Its absolute square
is identified with an observed intensity after collecting a huge number of electrons on
ascreen (Sect. 2.4.1). In particular, the interference pattern in a double slit experiment
with electrons is obtained by superimposing two waves Y| and ¥, originating from
two slits 1 and 2 at the positions ry and r> on a remote screen at r (Fig.3.1).

At a long distance from the source both spherical and cylinder waves (circular
holes or slits at r; and r») can be approximated by plane waves. At the observation
point r on the remote screen, the superposition of the two wave functions thus yields

Y =y1 + Y2 with g = el (3.4)

In analogy to light waves the absolute square of the wave function (wave ampli-
tude), the intensity /, describes the observed intensity contrast on the screen, the
sequence of bright and dark fringes as seen in Fig.2.9:

I=|y@ o) =191+ Wl +2¢* cosk - (ry — 1), (3.5)

In (3.5), the wave vectors of the two partial beams coming from r; and rp are
approximated by one and the same k (Fig.3.1). The cosine term in (3.5), in which
the wavelength & = 27 /k of the particle and the slit distance (r; — rz) determine
the periodicity of the interference fringes, describes very accurately the observed
interference pattern.

k(r, —ry) is the path difference between the two partial waves 11 and v, in units
of the particle wave length, it determines the appearance of interference maxima
and minima, while ||? and |y|? describe a homogeneous intensity background.
This background intensity is exactly the signal (Fig.2.10c) which is observed in the
double slit experiment when “which-way” information is read out by an additional
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Fig. 3.1 Scheme of double slit interference of two particle waves 11 and 1». An approximately
plane wave (in reality a spherical wave) generates two new waves at the slits (holes) at r; and r».
These two partial waves interfere at the position r. For large enough distances between the detection
screen (r) and the double slit (ry, ry), the wave vectors of the two particle waves 11 and ¥, can be
assumed to be identical as k
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measurement (Sect. 2.4.2). Information about the detailed path of the particle, through
slit 1 or slit 2, therefore, washes out the cosine term in (3.5).

From the double slit experiment with a varying number of electrons (Fig.2.9), we
have learnt that the interference pattern typical for wave expansion is only observed
for a sufficiently large number of electrons having passed the double slit. Each single
electron is detected fully randomly on the observation screen. Details about the path
of a single particle are not reasonable questions in a quantum physical description,
the single particle behaves in a statistical manner, fully randomly. Only the ensemble
of many particles obeys the laws of waves.

From this observation, we conclude that the wave function v (r, ) is a statistical
quantity, which describes only ensemble properties. The more electrons are observed
in the experiment of Fig.2.9 the better (3.5) describes the interference pattern. This
leads directly to the conclusion that |y (r, 7)|? in (3.5) is proportional to the prob-
ability to find an electron at the position r at time ¢. The probability d P to find an
electron in a volume element d°r is proportional to the volume and, of course, to the
probability | (r, £)|2, that is,

dP o |y (r, 0] &, (3.6)

[ (r, 1)|? is, thus, the probability density to find an electron at r and time ¢. Corre-
spondingly the wave function ¥ (r, ¢) is called a probability amplitude.

When an electron, or more generally a particle, must be present in a certain
volume V of an experimental set-up, but we do not know where, we can only say
the particle is present in the volume V with certainty. It might be somewhere at
r{,ry, r3, ..., r, within the volume V. The total probability to find the particle
whether at ry or ra, ..., or r,, that is, somewhere in V, must be one (certainty).
Probabilities of independent events—whether or—add up to the total probability
that one or the other event occurs. Therefore, the total probability to find the particle
somewhere in the volume V must be written as

P (particle in V') :/ &3 |¢(r)’2 =1. (3.7
v

The wave function as a probability density must be normalized, in the sense of
(3.7), over the volume of the whole system considered. Depending on the particular
problem the considered volume V might be the whole universe.

As is commonly done for the description of electromagnetic waves and alter-
nating currents, we have adopted a complex valued wave function in (3.4) for the
representation of particle propagation. In electromagnetism and electricity theory
this is done simply for convenience reasons, one can more easily calculate with
exponential than with sine or cosine functions. All real, measured physical quan-
tities as currents or electric and magnetic fields are obtained as real or imaginary
parts of the complex wave amplitudes. This is fundamentally different for wave
functions of particle waves in quantum mechanics. This becomes clear from the fol-
lowing consideration. Imagine a spatially extended homogeneous electron beam, in
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which a propagating electron is described by a plane wave (3.3). The probability
density || = y*y, then, is a constant all over the beam, just what is required
to find an electron with equal probability at each location. If we would allow only
real valued functions for the electronic wave functions as sine or cosine, then, the
probabilities for finding an electron would have sin® or respectively cos® charac-
ter, that is, spatially and timely restricted regions where electrons are found or not
found. This is certainly not an appropriate description for a spatially homogeneous
electron beam. The wave description of particle propagation, thus, requires complex
valued wave functions ¥ (r, ). We will see that in some particular cases for spe-
cial boundary conditions, of course, also real valued wave functions are obtained
as solutions for a problem. But we want to stress that particle waves V¥ (r, t) in
general must have an amplitude and a phase or a real and imaginary part, respec-
tively.

We summarize: Atomic and subatomic particles are described by a complex val-
ued wave function ¥ (r, ) which is normalized to one according to (3.7). The free
propagation of a particle along a straight line in space is represented by a plane wave
(3.3), where the wave vector k indicates the propagation direction. A wave func-
tion does not give any information about one single particle, its fate is inherently
undetermined and stochastic. A wave function is a statistical quantity, its absolute
square | (r, 1)|? describes the probability to find a particle at r at a time 7. For a
large ensemble of particles, the description in terms of |y (r, 1) |2 is correct as is seen
from the double slit experiment in Fig.2.9. Since the fate of a single particle is prin-
cipally undetermined, the statistical interpretation of the wave function in quantum
physics is more fundamental and rigorous than in classical statistical mechanics.
The dynamical equations in classical mechanics are deterministic. From known ini-
tial conditions (position and velocity), classical mechanics allows the prediction of
the future behavior of a particle. Of course, quasi-un-deterministic behavior might
arise from tiny fluctuations in the initial conditions (butterfly problem). Neverthe-
less, the statistical description of a large particle ensemble in classical statistical
theory (kinetic gas theory, Brownian motion etc.) is a construct by which definite
quantities of a large ensemble can be calculated without knowing details about
the motion of single particles. In quantum physics, however, the un-deterministic
stochastic behavior of a particle is an inherent property. According to our present
knowledge so far—and our knowledge is quite profound and based on a wealth of
experimental data—there are no “hidden variables” which govern the behavior of a
single atomic or subatomic particle below its description level in terms of a wave
function . The wave function is ascribed to a certain particle, but only a large
ensemble of these particles shows the behavior in an experiment which is described

by [ [,
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3.2 Wave Packet and Particle Velocity

The energy-frequency relation (3.1), the connection between particle momentum
and wave number k (3.2) as well as the description of particle propagation by a
wave function and its statistical interpretation (3.3), (3.4) and (3.6) are the start-
ing point for the formal description of the particle-wave duality. There is a severe
difficulty with our formal description so far: For a spatially extended wave—in
the extreme limit, over the whole space—the velocity of a particle can not be
described. The term velocity contains inherently the movement of a particle, an
entity, which is more or less limited in its spatial extension. How can we make our
picture of an extended wave compatible with that of a propagating particle. The
key to the solution of the problem is the mathematical formalism of the Fourier-
transform. Every “non-pathological” function (mathematical details shall not be
considered) can be represented by a superposition of plane waves (3.3), that is,
by a sum or an integral over infinitely many waves with densely distributed wave
numbers k.

A particle with a spatial extension Ax in one dimension might be described in
simple approximation by a wave function v having Gaussian shape. ¥ *, then, is
the probability to find the particle in the limited spatial region defined by the Gaussian
bell-shaped curve, essentially the spread of the Gauss curve. The Gauss function v
is evaluated in a Fourier series

Y(x) = a(k)elt dk, (3.82)

1 oo
A/ 27'[ [oo
where a(k) denotes the distribution of wave numbers k which are required to build
up the Gaussian function on the x-axis in real space. For simplicity reasons, we first
consider the wave function at the time r+ = 0. The Fourier transform (3.8a) can be
inverted to yield the k-distribution:

ak) = \/% [ Z v(x)e * dx. (3.8b)

We assume a Gauss function for ¥ in (3.8a) and denote its spread (width) on the
x-scale by (Ax)? which describes the average spatial extension of the particle:

. 2
¥ (x) = [2m(ax)?]F eXp(—m). (3.9)

The choice of the pre-factor is due to the normalization condition for | 12 (3.7). We,
thus, obtain, according to (3.8b), the following expression for the a(k) distribution
which builds up the packet of waves representing the ¥ function in real space.
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00 2
a(k) = \/LZ_T[ lm [27'[(Ax)2]_% exp(—4(zx)2) eXp(—lkX) dx
: /Ooe ( - )e (—ikx)d (3.10)
= — xp{ ———— ) exp(—ikx) dx. .
o3 (Ax2 ) T\ dan?) P
With
S ) (x? +14(Ax)*kx — 4(Ax)'K” + 4(Ax)*K?)
4(Ax)? 4(Ax)?
(=D .
= ol 2i(Ax)%k)’ + 4(Ax)*K?] (3.11a)
and . 5
_ 2% oy ] (3.11b)
2(Ax) dx 2(Ax)
follows
a(k) = mexp[ (Ax)“k ]/_Ooexp( y )dy. (3.12a)
The last integral equals /7 and we obtain finally:
4(Ax)?

: exp[—(Ax)*k?]. (3.12b)
27_[ p . .

1
2\ 1
a(k) = (—) (Ax)? exp[—(Ax)2k2] = [
bid
The distribution of k vectors a(k) building up the Gaussian wave packet is, thus,
again a Gauss function. The wave vectors of waves which form a wave function with
Gaussian shape in real space are therefore Gauss distributed (3.12b). If we compare

(3.12b) with the common representation of a Gauss distribution as function of k with
width Ak

1 K
a(k) = WCXP[—W}, (312C)

we obtain the following relation between spatial width Ax of the wave packet and
the spread or width of the corresponding wave vector distribution Ak:

1
AkAx = 7 (3.13)

We can summarize: Particle and wave picture are unified by attributing a superpo-
sition of infinitely many plane waves exp(ikx) with a Gaussian k vector distribu-
tion (3.10), (3.12a)—(3.12c) to the spatially restricted particle wave function . The
propagation of a particle which is a spatially limited entity can be described by the
expansion of infinitely many plane waves in space. For a bell-shaped Gaussian wave
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function with spatial width Ax a Gaussian distribution of k vectors a (k) is required,
with width Ak = 1/2(Ax)~ L.

So far we have considered the wave packet v (x) and the related k distribution
a(k) attime ¢ = 0. The time evolution of the wave packet is easily derived from that
of the participating plane waves by means of their frequencies w (k) = (1/h)E (k).
The propagating wave packet (particle) is then represented as a superposition of
expanding plane waves moving in time:

W(x, 1) = / dk a(k)e® =" o / dk e~ (7l gitke—o () (3.14)

Hereby, the participating plane waves are assumed to be distributed around a central
wave number ko with a spread (width) Ak. All these waves propagate with differ-
ent frequencies w (k). For a sufficiently narrow Gaussian distribution a(k), we can
evaluate w (k) around the central wave number kg:

(k — ko). (3.15)

9
wk) = w(ky) + =2
ok |y,

Using (3.15) and by multiplying (3.14) with exp(ikgx) exp(—ikpx) = 1, we obtain
V1) o ei(kww(ko)z)/dk o (02 i 220) (ko) (3.16)

This wave function is easily interpreted as a Gaussian wave packet whose maximum
is located at x — (dw/0dk)kot rather than x. The wave packet is multiplied by the
plane wave exp[i(kox — w(ko)t)] with the central wave number ko. The maximum
of this wave packet thus propagates along the x-axis with the velocity

dw

Uzﬁ

(3.17)

ko

Equation (3.17) is called group velocity of the wave packet, in contrast to the phase
velocity vphase = @/ k of a single plane wave which contributes to the formation of
the whole wave packet. In the particle picture, the group velocity (3.17) is identified
with the velocity of the moving particle. In three-dimensional (3D) space the same
formalism holds, that is, the integrals (3.8a)—(3.10) have to be extended over 3D
vectors r and k by means of volume elements d7 and d*k. The group velocity in 3D
space, then, is the gradient of the frequency or the energy of the particle, respectively:

v = Vio (k) = %VkE(k). (3.18)

For light waves in vacuum with @ = ck group velocity dw/dk and phase veloc-
ity w/k are identical with light velocity c¢. All light waves which build up a wave
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packet propagate with the same velocity c. The wave packet keeps its shape during
propagation in space.

For massive particle waves, however, the energy-wave vector dispersion relation
is E = hw = h?k?/2m, that is, the group velocity of a particle dw/dk = hk/m =
p/m is not identical with the phase velocity w/k = hk/2m = p/2m of the single
waves which build up the wave packet. While the center of mass of the wave packet
moves with the particle velocity p/m, the single constituting waves (w, k) propagate
with different speed. Short wave length waves (larger k) are faster than those with
longer wave lengths, which are passed over. This effect causes a broadening of the
wave packet during propagation of the particle (Fig. 3.2). The phenomenon is called
dispersion. Massive particle waves exhibit dispersion, while light waves in vacuum
propagate without dispersion because of the proportionality o o k.

There must be consistence between the formal introduction of the group velocity
dw/dk of a wave packet and the energy-frequency (3.1) and momentum-wave vector
(3.2) relations. Because of the classical particle energy E = (1/2)mv? the velocity of
aparticle in the particle picture v = 9 E /dp (with p = mv) can consistently be related
to the velocity in the wave picture v = dw/dk only, if both E is proportional to w and
p proportional to the wave number k via one and the same constant. This constant
h = h/2m (2.1b) was introduced in Sect. 2.1 in connection with the interpretation of
the photoelectric effect. We will see later that the sum of wave vectors is conserved
upon scattering of waves on each other as does the sum of momenta (7k) in a particle
scattering process, that is, also in this context & and &, respectively, must be a universal
constant with general importance for all kinds of waves and particles.
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Fig. 3.2 Schematic representation of a wave packet (Re v: solid line, | |: broken line), which
describes the propagation of a spatially localized free electron. The wave packet is shown for
different times ¢ = 0, #9, 2fy. The center of the wave packet, i.e. in the particle picture the electron
itself, propagates with the group velocity v = dw/dk. The spectral width of the wave packet ||
broadens with time. During the broadening of the packet the wavelength of the Re v oscillations
decreases at the front side while it increases at the back side
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3.3 The Uncertainty Principle

From the representation of a particle by means of a wave packet, we conclude directly
that the width Ak of the distribution of wave vectors a (k) which constitute the wave
packet is inversely proportional to the spread, that is, the spatial extension of the
wave packet (3.13). For a Gaussian wave packet we quantitatively obtain the relation
(3.13). The Gaussian packet, of course is a special case of a wave function which
describes a spatially limited probability amplitude to find a particle localized within
a certain volume at a particular position. Many other mathematical forms of wave
functions can be imagined which describe a localized particle by means of a spatially
limited function defined in a particular range Ax. Examples may be a rectangular
box extended along a width Ax or the function sin” x /x? which is defined along the
whole x-axis, but with non-negligible values only in a limited x range. Depending on
the particular problem all these wave packets can be used to describe the propagation
of a particle. An evaluation of these wave packets being restricted in some way to
a limited space region Ax in a Fourier series always yields, as Fourier transform,
a distribution a(k) of k vectors which are spread over a limited range Ak, only
(Fig.3.3). Because of the general rules of Fourier transformation a relation similar
to (3.13) is always valid:

Ax - Ak ~ 1. (3.19)

This relation between the spatial width Ax of a wave packet and the spread Ak of
its Fourier transform leads to an important, typically quantum physical phenomenon.
According to the probability interpretation of the wave function we have to interpret
the width Ax of the wave packet as that spatial range where we find the particle
in a position measurement. The exact detailed position of its detection within Ax is
stochastic and not determined in quantum physics. Analogously also the wave vector
k of the particle is determined only within an uncertainty range Ak. With p = hk as
the particle momentum both position and momentum of the particle are inherently
undetermined as exact values, they can only be obtained within certain margins Ax

¥(x) a(k)
Fourier-
Transformation
e
. Ax
Ak
0 X 0 k

Fig. 3.3 Gaussian wave packet ¥ (x) with a spatial extension (full width at half maximum) Ax
and its Fourier representation a (k) in the wave number space k. a(k) are amplitudes of harmonic
waves which build up ¥ (x) when they are integrated (added up) over k. The distribution a (k) has
again Gaussian shape
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and Ap which obey the relation
Ax - Ap ~ h. (3.20)

The measurement of a “sharp” position coordinate (Ax = 0) would require an
infinitely washed out information about the particle momentum (Ap — 00), that is,
no knowledge about its momentum anymore and vice versa. This important relation
(3.20) was detected by Heisenberg [1] and is called the uncertainty principle or
relation. If the Planck constant 4 or /& would be negligibly small as is the case
in classical physics, then position and momentum of a particle could be measured
simultaneously with infinite precision, as is assumed in Newtonian mechanics. The
uncertainty principle is, thus, fundamental and inherently connected with the particle-
wave duality in quantum mechanics and the un-deterministic behavior of atomic
and subatomic particles. We will see that apart from position and momentum there
are many other physical quantities which obey an uncertainty relation similar to
(3.20) and can therefore not be measured simultaneously with infinite precision. Such
quantities are called complementary or incommensurable and the principle behind
it principle of complementarity. Quantities which can be measured simultaneously
with any accuracy are called commensurable.

At this point it is worth mentioning that already in classical mechanics exactly
those complementary quantities of quantum mechanics were marked as special
canonical variables. We will learn a bit more about this topic in the next section.

The uncertainty principle, of course, must be valid in general, i.e. also in the
macroscopic world. Consider, e.g., a bullet, which moves with supersonic veloc-
ity of v = 10° cm/s and an uncertainty in speed of Av = 1072 cm/s (Ap =
m - 1072 cm/s). Then, the uncertainty in the determination of its position amounts to
Ax = (1/m)-10~% gcm. For a bullet mass of only 1073 g a spatial uncertainty Ax
of about 10722 ¢m, that is, about 10~'# atomic radii results. This is far below any
detection possibility. Even for small macroscopic bodies the uncertainty principle is
without any relevancy, it becomes important only on the atomic scale.

From the position-momentum uncertainty (3.20), we can derive a further “sec-
ondary” uncertainty relation, that for energy and time. A particle with a position
uncertainty Ax crosses during its movement a position x within a certain time inter-

val At. Then,
Ax mAx
At = — = (3.21)
v p

is the time, during which a wave packet with linear expansion Ax crosses the posi-
tion x. Because of E = p?/2m and AE = pAp/m (3.20) together with (3.21)
yield

AE - At = AxAp ~ h. (3.22)

Thus, also for energy and time an uncertainty relation holds, which, however, has a
different character than the position-momentum uncertainty principle. Position and
momentum are observable quantities, while time is not “observable”, it plays the role
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of a parameter in non-relativistic physics, along which we observe certain outcomes
of experiments. Nevertheless, we want to emphasize that an energy measurement
with an accuracy A E requires a time interval of at least At ~ h/AE.

The energy-time uncertainty relation (3.22) is also of importance for decay
processes where an exited state of an atom, a radioactive nucleus or an instable
elementary particle is de-exited by emission of a new particle. If the excited, unsta-
ble state has an average lifetime t, the emitted particle is in contact or interaction
with the unstable object during this time t. The time uncertainty for the emission of
the particle, thus, is 7, too. The particle is emitted with an energy uncertainty

AE ~ h/z. (3.23)

The energy width of the spectral emission line on the energy scale of the emitted
particle, thus, yields information about the lifetime of the excited state from which
the particle was emitted.

3.4 An Excursion into Classical Mechanics

The uncertainty relation (3.20) is an essential ingredient for quantum mechanics;
for macroscopic bodies, even small ones, it looses importance because of the huge
number of atoms being involved. In the limit of large numbers of atomic particles
building up a macroscopic system the laws of quantum mechanics approach those
of classical, deterministic Newtonian mechanics. Our familiar macroscopic environ-
ment is described correctly by classical mechanics. Engineers calculate bridges, cars
and air planes according to its laws and deliver systems in which we survive safely.

Classical mechanics can, thus, be considered as an extrapolation of quantum
mechanics into macroscopic dimensions. Accordingly we expect a very close simi-
larity between quantum mechanical principles and the rules of classical mechanics.
Otherwise, we could not understand the correspondence between both theories. This
correspondence helps us to guess or understand the laws of quantum mechanics:
we look at classical relationships and try to extend them, with reasonable additional
assumptions, into quantum physics. This principle of similarity between classical
mechanics and quantum mechanics is called correspondence principle.

The correspondence principle is already found in the uncertainty principle, where
two variables, position and momentum, are incommensurable, that is, can not be
measured simultaneously with infinite accuracy. Exactly these two variables appear
as canonically conjugate variables in classical mechanics, in its Hamiltonian formu-
lation. The so-called Hamilton formalism was invented by Hamilton (1805-1865)
as a fully equivalent version of Newtonian mechanics, but easier to handle for more
complex problems.

According to Newton the basic dynamic equation for the acceleration X of a mass
point (mass m) is
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dv

) 3.24
o (3.24)

mx = K(x) =—

where the acting force K (x) results as the gradient of the potential V (x). Hereby
p = mx is the momentum, which is conserved in collisions and, thus, plays an
important role in solving mechanical problems. Hamilton found out that for complex
systems the dynamic equation (3.24) can be solved much easier if one starts with
the so-called Hamilton function, the Hamiltonian H, which is nothing else than the
total energy of the mechanical system. For a simple mass point the kinetic energy is
T = p?/2m and its potential energy V (x), thus the Hamiltonian follows as

p2
H=T+V=—+4+V(x). (3.25)

2m
Within the framework of this description, the solution of mechanical problems is
performed by using the so-called Hamilton equations, which are written down in a
wonderful symmetrical form as

. oH
xX=—), (3.26a)
ap
. oH
p=—— (3.26b)
0x

When we apply (3.26a) to (3.25) we obtain p = mx, the relation between momen-
tum and velocity. Equation (3.26b) applied to (3.25) yields

) N oH oV
p=mx=—=——=K(x), (3.27)
ax ox
that is, the dynamical equation of Newton. The variables x and p are assumed to
be independent on each other. The Hamilton formalism expressed by (3.25), (3.26a)
and (3.26b), thus, completely represents Newtonian mechanics.

The Hamilton formalism, however, can be extended to dynamical variables other
than x and p. This might lead to mathematical simplifications if a moving body must
obey scleronomic (rheonomic) constraints, that is, if certain forces built-in into the
mechanic system exclude some degrees of freedom for the motion. Let us consider, as
an example, the simple pendulum. The pendulum is an oscillating system composed
of aweight (mass m) and a string which is attached at the top end to a pivot P (Fig.3.4).
The string’s length [ is a constant which restricts the degrees of freedom for motion
of the weight within the gravitation field (mg = gravity force) to oscillations on a
circle with radius / around P (scleronomic constraint). Rather than describing the
two-dimensional movement of the weight by means of the coordinates x and y it is
advantageous to take the scleronomic constraint into account and to introduce the
angle ¢ (Fig.3.4) as a generalized position coordinate. s = /¢ is the way of the
mass m on the circle around P, that is, we can write down the pendulum’s Hamilton
function as
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Fig. 3.4 Ideal pendulum: P

The mass point m oscillates -

on a circle at distance / from T

the pivot P Icosg 1

y L

h=1(1- cos@)

X

1
H=T+V = Ems'z—i-mgl(l — Ccos @)
_ l 2.2 _
= 2ml ¢~ +mgl(1 —cosg). (3.28)

In the Hamilton formalism (3.25), (3.26a) and (3.26b) we, thus, substitute x by the
generalized coordinate ¢ = ¢, that is, ¢ = ¢ and obtain from (3.26b) and (3.28)

. oH .
p=——= —mgl sin @. (3.29a)
dp

In analogy to the conjugate coordinate couple (x, p = mx), we conclude p o ¢
and derive from (3.26a) and (3.28)

. . 0H 0H 5.
ap aQ
Equation (3.29b) can be written as
. oH oH (3.29¢)
== —, .29¢
1= 3omi2g) ~ op
that is,
p= mlqu.

From (3.29a)—(3.29c¢), we obtain the dynamic equation for the pendulum as
p =ml*§ = —mglsing,

respectively,
¢+ % sing = 0. (3.30)

For small elongations (¢ < ) the familiar pendulum equation

¢+ w’p =0, (3.31)
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follows with w® = g/ as oscillation frequency. Equation (3.30) describes sine-like
angle oscillations ¢(¢) of the weight around its zero position ¢ = 0.

The simple example of the pendulum clearly demonstrates the importance of two
independent canonically conjugated variables, ¢ = ¢ and p = mi*¢ for the pendu-
Ium. The derivative of the Hamilton function with respect to one of these yields the
time derivative of the respective other conjugated variable (3.26a), (3.26b). Exactly
these canonically conjugated variables of Hamilton mechanics show up as incom-
mensurable variables in quantum mechanics, they obey the uncertainty principle. As
is required in the uncertainty relation (3.20), the product of these variables always
has units of an action (=energy x time) as Planck’s constant &7 = 2 h, the quantum
of action has. Check that the unit of m/%¢¢ is just Joule-Second.

A further advantage of the Hamilton formalism of classical mechanics derives
from the fact that it is easily extended to many-body problems by using a many-
particle Hamiltonian H and the Hamilton equations:

. IH ) s
pi=—— and § = —, (3.32)
9qi opi

pi and ¢g; are the generalized momentum and position coordinates of the particles
numerated by the index i. For a system with n degrees of freedom (3.32) yields 2n
equations of 1st grade.

This correspondence between incommensurable quantities as position and
momentum in quantum mechanics and the canonically conjugate variables in Hamil-
ton mechanics will serve as a guiding line in the following to find further incom-
mensurable quantities in quantum physics. Furthermore, we will use the Hamilton
function, the Hamiltonian (3.25), to “invent” the fundamental dynamic equation of
quantum physics, the Schrédinger equation.

3.5 Observables, Operators and Schrodinger Equation

Wave functions v (r, ¢) describe as y*y d>r probabilities to find a particle at time ¢
at a position r within a volume element d*r. The outcome of a position measurement
is fully random in detail, only a certain probability for the position of the particle
can theoretically be given in quantum physics. Thus, the result of such a position
measurement on a particle can only be given in terms of an average position (r) which
is obtained for an ensemble of a huge number of particles being observed under
exactly the same experimental conditions (see double slit experiment in Sect.2.4.1).

For a formal description of the issue we, therefore, want to remind classical
statistics. Here, the mean value (Y) of a randomly distributed discrete quantity Y;
which appears with probability w; is

2 wili

S

(3.33)
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Mostly the probabilities w; are normalized with > ; w; = 1. In analogy, the mean
value, descriptively called expectation value, of a position measurement, that is, the
average outcome of many measurements on an ensemble is written as

(r) = /d3r ) r = /d3rw*(r, Hry(r, 1). (3.34)

‘We have used the normalization of the wave function in the sense of (3.7) (Sect. 3.1).

For the wave function of a spatially limited wave packet as for example, a Gaussian
packet (Sect.3.2), the average coordinate (x) indicates the maximum of the spatial
Y distribution.

Its time derivative d(x)/dt is the group velocity v = dw/dk of the wave packet
which is identified with the particle velocity.

Because of the uncertainty relation (Sect. 3.3) also the momentum p of the wave
packet can only be defined as an expectation value (p) which is calculated as a
mean value from measurement results on an ensemble of many particles. Each single
momentum measurement on a particular particle yields statistically varying numbers
for its momentum. Thus, in analogy with (3.34) the average momentum of all these
measurement results on the ensemble is

(p) = /d3r Y, Hpy(r, ). (3.35)

Particle waves exhibit dispersion, that is, the particle energy is related to its
momentum via E(k) = hw(k) = ﬁ2k2/2m = p2/2m. In case of a statistical
momentum distribution, therefore, the particle energy must also be defined as an
average value over the ensemble:

(E) = (hw) = / &Ery*(r, Hhoy (r, 1). (3.36)

For plane waves exp[i(k - r — wt)] and all kinds of wave functions as for example,
wave packets, which are built up by plane waves by means of a Fourier series, the two
last terms in the integrals (3.35) and (3.36) can also be obtained by differentiating
the wave function:

h
EY = hoy (r, 1) = —?%w(r, 1). (3.38)

The average (expectation) values (3.35) and (3.36) might, therefore, also be written
as
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3 * h
(p) =/d ry (;V)w, (3.39)

(E) = / &dry* (ih%)w. (3.40)

In these expressions, of course, the sequence ¥ *—Differentiation—/ is relevant.
A changed order of wave functions and differentiation operation would yield a wrong
expression for the expectation values.

Since in quantum physics a measurement of a certain quantity—mostly called
observable—can only yield randomly distributed numbers (for a large ensemble
of particles a well defined average value is obtained), we better depart from the
familiar classical description of a physical quantity, an observable, in terms of sharp,
well defined numbers for the outcome of an experiment. This is fully in accordance
with the uncertainty principle (Sect. 3.3), which prohibits sharp, well defined values
simultaneously for momentum and space coordinate and other incommensurable
observables. Instead, we attribute, by looking at (3.37) and (3.38), so-called operators
p and H to the observables momentum and energy, respectively. In this particular case
of momentum and energy the corresponding operators are defined by a differentiation
of the wave function as

h
p=-V, (3.41)
1
~ 3
H =ih—. (3.42)
at

Other observables might be described by different types of operators, different opera-
tions on the wave function as e.g. integration or squaring etc. Defining the momentum
by means of an operator rather than by a simple number also avoids a problem which
we have stealthy suppressed in the expression (3.35) for the momentum expectation
value (p). Since p and r can not be measured simultaneously with any accuracy
because of the uncertainty principle, the expectation values (3.34)—(3.36) can not
be calculated, because measured numbers for the observables p and r do not exist
simultaneously.

Operators, that is, rules for operating on a wave function, always have to be
positioned in front of the wave function. As in (3.41) and (3.42) we always denote
operators in this book by means of a roof symbol " above the letter, in order to distin-
guish them from simple numbers or functions. The energy operator H is commonly
denoted as Hamilton operator or Hamiltonian, in analogy to the Hamilton func-
tion (Sect. 3.4). The corresponding average or expectation values for momentum and
energy, thus, are written as
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p) = / &y, (3.43)
(E) =/d3r VEHY. (3.44)

Energy or momentum measurements on a single particle, however, rather than on
an ensemble of many particles give single numbers for E and p as result, but ran-
domly varying from measurement to measurement. All such numbers taken together
(ensemble), of course are distributed according to (3.43) and (3.44). The numbers
p or E resulting from measurements on a single particle obey (3.37) and (3.38) or
expressed by the corresponding operators

py(r,t) =py(r, 1), (3.45)
Hy(r, 1) = EY(r, 1). (3.46)

In analogy, we can ascribe a position operator X (or T) to the position observable.
This operator does nothing else but multiplying the wave function with the space
coordinate x or r:

XY (r,t) = ry(r, t). (3.47)

All functions of r or x, for example, the potential V (r), in which a mass is moving,
are transformed into operators, which also mean just multiplication of that function
with the wave function. The potential operator V does nothing else but multiplying
the wave function ¥ with the potential V (r).

The relations (3.45)—(3.47) are called eigenvalue equations for the operators p,
H and %. From linear algebra and the mathematics of matrices eigenvalue equations
are well known. In matrix algebra they have the familiar form (Sect.4.3.1)

(-CHE ) e

A matrix A, two-dimensional (2D) in (3.48), multiplied with a vector (the matrix
acts on the vector, comparable to an operator acting on a function) yields the same
vector scaled by a number, in some cases a complex number. Equation (3.48) can be
fulfilled only under certain conditions. The number A in (3.48) is called eigenvalue of
the matrix, it represents the action of the whole matrix on the vector. For this particular
case of a2D matrix two eigenvalues A1 and A, exist. For higher dimensional problems,
as many eigenvalues exist as the number of dimensions is. In analogy, we say that
the operators p, H and % have momentum, energy and position eigenvalues which
are the measured numbers resulting from the corresponding experiments on a single
particle. A measurement on a single particle always yields one of the whole variety
of possible eigenvalues of the respective observable, randomly varying from one to
the other measurement. Many measurements on a whole ensemble of particles yield
the average or expectation values (p), (E), (r).
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As a general rule, we want to keep in mind: Observables £2 are described in
quantum mechanics by operators £2 which act on a wave function ¢. The operator’s
eigenvalues w determined from the eigenvalue equation

D0 = wo, (3.49)

are the possible measurement results obtained as real numbers from the measure-
ment of the observable §2. The outcome of a single measurement is random; only
measurements on a large ensemble determine a mean value (). We will see that not
only the operator itself determines the eigenvalues of a problem but also boundary
conditions. From the whole variety of possible eigenvalues for a free particle, for
example, the boundary condition, particle freely moving or confined to a box, selects
the eigenvalues appropriate to the problem. One might imagine the action of an oper-
ator in the eigenvalue equation like a frequency or wavelength filter in electronics.
The application of the operator (h/i)d/dx = p, for example, on the wave function
of a wave packet filters out a particular plane wave with a special k vector from the
whole variety of vectors constituting the packet.

Itis the fundamentally statistical behavior of atomic and subatomic particles which
requests that we leave the picture of well defined particle trajectories in classical
mechanics and introduce operators for the description of dynamical observables in
quantum mechanics.

The straightforward next step, of course, is the replacement of the classical basic
dynamical equation, Newton’s or Hamilton’s equations by a quantum mechanical
analogon. Having in mind the correspondence principle (Sect.3.4) we start, just as
Schrodinger did, with the classical Hamiltonian (3.25) and replace the expressions for
the kinetic and potential energy by the corresponding quantum mechanical operators.
Thus, in p?/2m the squared momentum is replaced by the operator p> and the
potential V (x) by its operator (only multiplication with V). Using (3.41), we thus
obtain the Hamilton operator or Hamiltonian as

ﬁ2 h2

’y % 2

H=—+4+V({@E)=——V +V(r). (3.50)
2m 2m

On the other hand, already in (3.42) we have found an expression for the Hamilton
operator. Both forms operating on a general wave function must yield the same result.
From the identity of (3.50) and (3.42) we, thus, obtain the fundamental dynamical
equation for one single particle in quantum physics. This differential equation named
after its inventor Schrodinger equation [2] allows the calculation of the wave function
Y (r,t) for a particular problem, if also boundary conditions are given. In three
dimensions, with V2 = A (squared nabla operator = delta operator), it is written as:

2

ihiw(r, 1) = (—h—A + V(r))w(r, 1). (3.51)
Jat 2m
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In one dimension, the Schrédinger equation is

2 92

., 0 I}
1h§1//(x, 1) = [_%W + V(x):|1//(x, t). (3.52)

As in all fundamental physical theories, the basic equations can not be derived deduc-
tively, they are guessed or invented, but clever, with a great amount of previous
knowledge. All facts known from experiment have to be considered and should be
described correctly by the equation. In successful cases, these fundamental equations
allow the prediction of a wealth of other new phenomena not known so far. We have
tried to make this way of guessing the Schrodinger equation a little bit plausible,
maybe not the way Schrodinger did it. It should be anticipated, that the Schrédinger
equation describes all phenomena for atomic and subatomic particles in the non-
relativistic limit extremely well. Relativistic extensions (Klein—Gordon and Dirac
equations) not treated in this book do the same for relativistic particles (Sects.5.6.4
and 8.3).

Having such a differential equation as (3.51) at hand a wave function ¥ (r, ¢) for a
particle can be calculated under certain boundary conditions imposed by the particu-
lar problem. By means of (3.34), (3.39) and (3.40) expectation values for interesting
variables are calculated which might be compared with the corresponding experi-
mental results obtained on an ensemble of many particles. So far experimental obser-
vations within the non-relativistic validity range always confirmed the Schrodinger
equation.

We analyze (3.51) a little bit further by considering that the Hamiltonian (3.50)
does not explicitly depend on time. In this case, the Schrodinger equation (3.51)

ih%mr, 1) = Hy(r, 1) (3.53)

can be separated with respect to space and time. For the wave function, we make the
separation ansatz

Y(r, 1) = f(H)e(r). (3.54)

Equation (3.54) inserted in (3.53) yields

I I B

In (3.55), the left side depends only on the time ¢ while the right side only contains
the position coordinate r. Both sides of the equation, thus, must have an identical
constant value which we call E. From the units of the right side we infer that £ must
be the total energy of the system. E is a constant of motion in this case.

We conclude the following time dependence of the wave function


http://dx.doi.org/10.1007/978-3-319-14669-0_5
http://dx.doi.org/10.1007/978-3-319-14669-0_8

48 3 Particle-Wave Duality

ih% f() = Ef@), (3.56a)

that is, _
f@) =eEUR, (3.56b)

The spatial dependence of the wave function, then, must obey the equation
Ho(r) = Eo(r). (3.57)

This is the so-called time-independent Schrodinger equation, a type of eigenvalue
equation as in (3.45)—(3.48). For a physical problem with particular boundary con-
ditions, the solution of (3.57) yields the energy eigenvalues, that is, the possible
numerical results of an energy measurement on the system. These energy values
are constants of motion as in classical mechanics, when the Hamiltonian does not
explicitly depend on time. In this case, the wave function ¥ (r, ¢) as a solution of
(3.53) is represented, because of (3.54) and (3.56b), as

y(r, 1) = p(r)e EVR, (3.58)

Even though the possible energies E of the system are constant in time, the wave
function ¥ exhibits a time dependence with iEt/ as the phase of the wave function.
Nevertheless, the probability density |1/|> and the expectation values as (3.43) etc.,
that is, observable quantities, do not depend on time. A wave function of the type
(3.58) always describes a stationary physical system, the Hamilton operator of which
does not depend on time.

3.6 Simple Solutions of the Schrodinger Equation

The Schrddinger equation as the fundamental dynamic equation of quantum mechan-
ics is a linear differential equation, of 1st order in time and of 2nd order in the position
coordinate. The solution of this equation requires boundary conditions, which fix the
wave function v (r, ¢) on a spatial border line given by the particular physical prob-
lem. This boundary or border line might be located in infinity. In that case, ¥ (r, t)
must be infinitely small in infinity, otherwise the normalization condition (3.7) could
not be fulfilled. Only those solutions of the Schrédinger equation are relevant in
physics, which can be normalized according to (3.7). This is required by the proba-
bility interpretation of the wave function (Sect.3.1).

Furthermore, for stationary problems with a time independent Hamiltonian H
(3.58) we only have to solve the time independent eigenvalue equation (3.57) rather
than the complete Schrodinger equation (3.51). The complete wave function with
time dependence is simply obtained by multiplying the time independent eigensolu-
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tion of (3.57) with the factor exp(—iEt /h), where E is the energy eigenvalue obtained
from the solution of (3.57).

In the following section we want to consider some simple examples of solutions
of the Schrodinger equation, which are nevertheless of considerable importance for
application.

3.6.1 “Locked-Up” Electrons: Confined Quantum States

In a metal free electrons are “locked-up”, they are confined in their motion to the
volume of the solid. They can only leave the metal by overcoming the potential
barrier of the work function [Sect. 2.1, (2.1a)]. In modern nanostructures, electrons
are confined to volume dimensions in the range of several ten nanometers (nm).
Also the valence electron in the hydrogen atom must be considered as “locked-up”
by the Coulomb potential —e? /4 eqr of the positive nucleus, the proton. Here, the
electron has a radius for free motion of about 0.1 nm. The most simple model for the
description of electron confinement is the so-called potential box with square well
potential. A cubic box with side length L is assumed as confinement volume. The
potential V (r) in the Schrodinger equation is constant within the box. Because of
freedom in the choice of the zero level of the energy scale we define the potential in
the box as V(r) = Vp = 0. On the surfaces of the box, an infinitely high potential
barrier is assumed which prohibits the electrons inside from leaving the box (ideal
confinement), that is,

Vo=0 forO<x,y,z<L

Vir) = — o0 atx,y,z=0; x,y,z=1L.

(3.59)

We will see that electron confinement in two-dimensional (2D), one-dimensional
(1D) and even zero-dimensional (0D) potentials is of considerable interest for real
nanostructures. Depending on their dimensions they are called quantum films (2D),
quantum wires (1D) and quantum dots or boxes (0D). Since the potential does not
depend on time, we solve the tim-independent Schrodinger equation for the cubic

box:
2

h
— 5~ Ap(r) = Eg(r). (3.60)
m

Since an electron can not leave the box, the wave function ¢ must vanish on the
surfaces of the box, that is, the boundary conditions are

px=0,y=0,z=0)=0, (3.61a)
ox=L,y=L,z=1L)=0. (3.61b)

The differential equation (3.60) is solved by the plane wave ¢(r) = Aexp(ik -r) =
A(cosk - r +isink - r), that is, also by the cosine and sine parts separately. Since
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the boundary condition (3.61a) can not be fulfilled by cosk - r, the solution of the
problem is
@(r) = C(sinkyx)(sinky,y)(sink;z). (3.62)

The second boundary condition (3.61b) requires quantized wave numbers Kk, that is,
only discrete values for ky, ky, k, because of

ky =nym/L, n,=1,2,3...,
ky=nyr/L, ny,=1,2,3..., (3.63)
k,=n,7/L, n,=1,2,3....

At the zero point (n,, ny, n;) = 0 the wave function ¢ vanishes and can therefore
not be normalized. This solution has no physical meaning and must be skipped.
Furthermore, negative numbers n,, n, and n, only change the sign of the wave
function (3.62) and do not produce new, linearly independent solutions. Thus, the
variety of meaningful solutions is simply represented as a point lattice within the
positive octant of reciprocal k space (Fig.3.5c). The points representing an elec-
tronic state ¢(r) (3.62) have a linear separation of /L. In k space a state occu-
pies a volume of (r/L)3. In Fig.3.5a, the three lowest wave functions for a 1D
quantum wire are plotted. These solutions of the Schrodinger equation are stand-
ing waves with wavelengths matching the length of the wire: Multiples of half the
wavelength must equal the wire length for each eigensolution. For a 3D quantum
box these properties are required for the three dimensions (3 axis in space) and
we can qualitatively represent the three lowest eigenstates by a “cloud” picture as
in Fig.3.5b. Here, the point density is a qualitative measure for the absolute value
of the probability density |¢(r)|> at a certain position in space. Similar pictures
are obtained for the 2D eigenstates in a quantum film. In this case the 2D cloud
picture of |¢(r)|* resembles Chladni figures of a resonating plate. On a plate or
membrane covered with powder 2D oscillations are excited by a violin bow and
the powder film orders into a characteristic node pattern (Chladni figure) which is
an image of the amplitude of the 2D standing wave. The wave functions of the
ID quantum wire in Fig.3.5a can similarly compared with standing waves on a
vibrating violin string tied at both ends. Waves of confined electrons behave as clas-
sical standing waves which might be described as the superposition of forth and
back propagating waves. As in the case of the oscillating violin string, only discrete
vibration modes are possible (Fig.3.5a, b). Correspondingly the energy eigenvalues
as solutions of (3.60) are discrete, that is, quantized. They follow from (3.60) as
E = h%k*/2m. With the k quantization (3.63) resulting from the boundary condi-
tions, one obtains

A N A
Foumr = g6+ 8480 = 5o (T) ()

ny,ny,n; =1,2,3.... (3.64)
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Fig. 3.5 a-d Free electrons in a potential box. a Ground state (n, = 1) and lowest excited states
(ny =2, 3) of an electron in a 1D square well potential with length L and infinitely high potential
walls. b Spatial cloud-like plot of the probability densities | (x, y, z)|? of the three low index 3D
wave functions of an electron in a cubic potential box. High dot density indicates high probability
density. ¢ Representation of the single electron states by means of a point lattice in the reciprocal
space of electron wave vectors k (2D cut along the &, k, plane). Each point belongs to a quantum
state. For fixed boundary conditions the possible k values are confined to the positive octant of k
space and the points have a linear distance /L. Because of the two spin orientations each point
represents two electronic states with opposite spin. d For periodic boundary conditions the points
cover the whole reciprocal space, but their linear separation is 277 /L. In ¢ and d spheres of constant
energy E (k) and E (k) 4+ dE are plotted

The possible energy eigenvalues of a confined (locked-up) electron always form
a discrete spectrum of energy levels. This is not only true for the simple confining
potential of a rectangular box but rather for all kinds of potential wells including
the (screened) Coulomb potentials of atomic nuclei. Confined quantum states have a
discrete spectrum of energy eigenvalues. This inevitably explains the sharp discrete
energy levels of electrons in an atom and thus the resulting sharp spectral lines upon
light emission.

Let us consider the energetic distance A E between the energy levels of an electron
confined in a box. Because of E = h2k? /2m, we conclude

h2
AE ~ —kAk. (3.65)
m

With increasing wave number k the interval A E grows proportional to k (Fig.3.5a)
and Ak changes in steps of /L (3.63), (3.64).



52 3 Particle-Wave Duality

To estimate the energetic distance between the two lowest energy levels from
(3.64), we assume ny = n; = 0 and n, = 1 and 2, respectively. This yields

302 (72
AE =E>00— E100 = 2—(—) . (3.66)
m \ L

The spatial extension L of the box, that is, of the confining potential, thus determines
the energetic distance of the quantized energy levels.

e For a macroscopic box, for example, a metal cube with 1cm edge length L, AE
(3.66) is in the order of 10~!8 eV. This is far below any detection limit by which
an energy measurement can resolve the quantized character of the energy. For
macroscopic bodies classical behavior is found, the energy levels are distributed
quasi-continuously. In this case, we could also solve the Schrodinger equation
(3.60) for infinite space [or in (3.63) L — oco] and obtain a continuous spectrum
of Kk vectors rather than (3.63).

e Formesoscopic structures, thatis, potential wells with spatial extension in the range
of 10nm the energy levels are spaced by amounts of the order of 0.25 meV. Such
mesoscopic structures can be fabricated by modern structuring techniques as for
example, electron beam lithography or prepared by self organized epitaxial growth
(Appendix B). At low temperatures spectroscopic measurements can resolve the
quantum character of the level distribution. At a temperature of 1K one might
assume a thermal “smearing” of the energy levels by about k71 g ~ 0.13 meV
(see Sect.5.6.3).

e In nanoscopic structures, for example, big molecules, we have dimensions with
characteristic lengths of 1 nm. Then, the energetic distance between the levels is
in the order of some electron volt (eV). Even at room temperature (k7300 k ~
0.04 eV) spectroscopic measurements can resolve the quantization of the energy.
Spectra of molecules exhibit sharp optical absorption lines.

e In atomic binding potentials with spatial extensions in the 0.1 nm range the energy
levels of an electron are typically spread by energies AE (3.66) of the order of
100 eV. These are typical binding energies of electrons in atoms which are known
from X-ray spectroscopy.

For macroscopic bodies with more than 10?? atoms/cm’ surface effects are usu-

ally not relevant, since a surface typically contains only 10'> atoms/cm?. The so-
called fixed boundary conditions with vanishing wave function on the surface of
the body (3.61a), (3.61b) can, therefore be relaxed in order to gain a more flexible
mathematical description. For fixed boundary conditions the possible wave num-
bers of electronic states are limited to the positive octant of reciprocal k space, an
uncomfortable restriction for the mathematical treatment of problems. Because of
symmetry reasons mathematics becomes simpler if all k vectors of the whole recip-
rocal space would be allowed for the possible states of an electron in the potential
box. This can be achieved by neglecting surface effects for macroscopic bodies.
So-called periodic boundary conditions are introduced, where it is only required
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that p(x = 0,y = 0,z = 0) = ¢(x = L,y = L,z = L) rather than a van-
ishing wave function ¢ on the boundaries. These boundary conditions seem rea-
sonable for a macroscopic solid which might be imagined as a piece of matter
within a large closed ring of that material. One revolution along this ring leads
directly to periodic boundary conditions. For periodic boundary conditions, instead
of (3.61a), (3.61b), the wave function ¢ o exp(ik - r) must obey less stringent
requirements:

eikrLoikyLoik:L _ o0 _ 1 (3.67)

From (3.67), the following quantization of wave numbers k results:

2
ky =ny{— ), n,=0,%1,4£2,...,

L
2w

ky = ny(T), ny=0,%1,42,..., (3.68)
2

k; =nz<7), n,=0,%£1,+2,....

In contrast to fixed boundary conditions, here, ny = n, = n, = 0 yields e¥ = 1and,
thus a physically meaningful wave function which can be normalized. Furthermore,
negative k values produce new wavefunctions linearly independent on those with
positive k. For periodic boundary conditions (3.68) the points attributed to electronic
states, therefore, fill the whole reciprocal k space (Fig.3.5d). Their linear distance,
however, has increased to 27r /L, double the value as that for fixed boundary condi-
tions. The volume of an electronic state in k space is (277/L)3, eight times that for
fixed boundary conditions. The points lie less densely in k space as compared with
fixed conditions (3.63).

For macroscopic solids, where surface effects might be neglected in good approx-
imation, both types of boundary conditions yield essentially identical results for
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Fig. 3.7 Electronic state densities DO(E), ..., D®(E) for electrons in quantum boxes of differ-

ent dimensions (0-3)

macroscopic quantities. This is easily seen from a consideration of the so-called
density of states per volume D (E). This quantity indicates how many electronic
states (energy levels) are found at an energy E within an energy interval d E around E;
it enters most macroscopic quantities as we will see soon. For electrons in a potential
box with E = %i%k?/2m the iso-energetic surfaces in reciprocal space are spheres
(Fig.3.6). The energy element dE is the volume between the two spheres of energy
E and E + dE, it amounts to 47 k* dk (Fig.3.6). For periodic boundary conditions,
each state occupies the volume (27/ L)3, that is, the density of states per volume in
real space L3 follows as:

1

D®(E)dE = 47 k> dk. 3.69
(E) Gt (3.69)
Because of hk = +/2m E one can also write
1
DO(EYAE = — 2 /2mE dE. (3.70)
272 K3

The same expression is obtained also for fixed boundary conditions (3.63). In that
case only one eighth part of energy shell (£, E + dE) contributes, but each state
occupies only one eighth of the volume as for periodic boundary conditions.
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While the electronic density of states D®)(E) of a 3D potential box increases
with the square root of the electron energy E [(3.69) and Fig. 3.7a], the correspond-
ing problem in lower dimensions yields differing functional dependencies (Fig.3.7).
For a 2D electron gas in a quantum film as realized in very thin metal layers or
some advanced modern semiconductor devices (heterostructure FETs, HEMTS,
Appendix A) also the reciprocal k space is two-dimensional. The k volume of states
between the energies E and E + dE, then, is a circular ring with an area 2wk dk
(Fig.3.6). For periodic boundary conditions an electronic state occupies an area of
(27/L)?. Because of dE = h*k dk/m we obtain the following expression for the
2D density of states per volume L? in real space:

2wk dk m

DP(E)dE = ——— = —_(E.
(E) 2n)2  27h?

(3.71)

The 2D density does not depend on the electron energy, it is a constant m /2w h. For a
1D quantum well, a quantum wire, we ask, how many states with a linear “volume”
(extension) 27 /L fitinto a reciprocal length element dk. This leads to the 1D density

of states
D(l)(E)dE—idk—i !
o 2 a 27nh 2mE

dE, (3.72)

DW(E) has a singular pole, the electronic states are not spread over a broad energy
range but rather concentrated in a sharp spectral structure (Fig.3.7). This concen-
tration is even more pronounced in a 0D quantum box or dot, where the density of
states consists of single sharp energy levels (Fig.3.7).

Also in 2D or 1D quantum wells, quantum films or quantum wires, electronic
states are described by wave functions ¥ (r) which depend on all three coordinates
X, Yy, z.Ina2D quantum film the electron is confined only along one direction z within
amesoscopic or nanoscopic length /; (5-200 nm). This dimension is not macroscopic
and fixed boundary conditions (3.63) must be applied along the z direction. We, thus,
obtain sine-like wave functions (Fig. 3.5a) within the interval /,. In x and y direction,
however, a quantum film is extended over macroscopic dimensions. Edge effects can
be neglected and periodic boundary conditions (3.68) are applied in the xy plane.
Electrons propagate freely within the xy plane which is described by plane waves
appropriate to periodic boundary conditions. For a 2D quantum film the electron
wave function, thus, follows as

Y (r) = Cerellrysink, z, (3.73)

ky and ky obey the conditions (3.68) with macroscopically large L values, that is,
quasi-continuous wave numbers Ky, k. For k, the quantization (3.63) is required, that
is, k; = n,m/l,. Because of (3.64), the energy levels of an electron in the quantum
film are obtained as

Rr? o, R0+

= omi2'" 2m

Exn. : (3.74)
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The first term describes the discrete quantized levels arising from confinement in
z direction. The series of levels is numbered by the numbers n, = 1,2,3,...
(Fig.3.5a). The second term is the kinetic energy of the free motion within the film
plane. Because of macroscopic dimensions of the film the wave numbers &, and k,
are quasi-continuous and we have the characteristic parabolic dependence of energy
on wave number for free motion. The energy levels (3.74) of an electron in a quantum
film, thus, form a series of parabolae on the energy scale, which are numbered by
nz, the quantum number of z-quantization. The different parabolae are also called
sub-bands. Each sub-band characterized by its index n, corresponds to free motion
of the electron in the film but with a different spatial structure of the wave function
in z direction (different number of nodes, Fig.3.5a). Each 2D sub-band belongs to
modes of the 2D quantum well and, thus, exhibits a density of states D® (E) which
is a constant as function of energy (3.71). The density of states of an electron in
a quantum film is the superposition of these constant contributions of the different
sub-bands, it has the shape of a staircase (Fig.3.7).

For a 1D quantum wire, nanoscopic dimensions are given for the x and y direc-
tions, while in one direction (z) the wire is macroscopic. In this z direction the electron
can freely propagate. Its kinetic energy is parabolic in k.. In x and y direction, the
electron is confined and fixed boundary conditions have to be applied. In analogy to
the 2D case (3.74) we, thus, obtain a series of parabolic (in k;) sub-bands which are
numbered by quantum numbers 7, and n, corresponding to 2D confinement. Each
1D sub-band has a peaked density of states according to (3.72). The density of states
of an electron in a quantum wire, thus, consists of a series of peaks on the energy
scale (Fig.3.7).

3.6.2 Particle Currents

The Schrodinger equation with a time independent potential describes phenomena
which do not depend on time, that is, the stationary behavior of a system. Also
stationary particle currents including an electrical current which does not change in
time belong into this category. For particle currents, there is a continuity relation
in classical physics. In the stationary case, conservation of particle number requires
that the change of the number of particles within a certain volume is reflected by
the total number of particles which flow into and out of that volume. This so-called
continuity relation is written as

o .
— +divj=0. 3.75
o + div j (3.75)

Hereby p(r, ¢) is the density of particles at r and time ¢. It changes in time due to the
current density j of in and out flowing particles. In quantum mechanics, the particle
density is given by the number N of particles multiplied with the probability density
Y*y to find a particle at the particular position. N describes a large ensemble of
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particles being all in the same quantum state. Measured quantities are obtained by
averaging the measurement results over the large number N or the results measured
on one particle over a long observation time (Sect.2.4.1). We, therefore, expect a
relation similar to (3.75) also for the probability density lW|*> = y*y. For the
derivation we differentiate |y |2 with respect to time, that is,

a . .
S = Y (3.76)

and use the Schrodinger equation to obtain

. n?

iRy g = —Ew*mp + Vyty, (3.77a)
. h?

ihy J* = %¢Aw* — VY. (3.77b)

Adding both equations together yields
L h?
(™ + ) = —— (U Ay — yAyY). (3.78)

Using the simple relation A = V2 = div(grad) we get from (3.76), (3.77a) and
(3.77b):

d * _ : h * *
5(1// V) = —dw[ﬂ(w Vi — ¢V )]. (3.79)

This equation is directly identified as the quantum mechanical analogon to the clas-
sical continuity relation (3.75). The quantum mechanical particle current probability
density is easily recognized as

J= e (VY YY) = (W B (80)
mi 2m

It describes the current probability density of particles in the state ¥ (r, ¢). Note
the correspondence between the classical velocity v = p/m of a particle and the
operator p/m in (3.80). j in (3.80) multiplied by the large number N of particles in
an ensemble yields the real current density j’ = Nv which is measured in a particle
stream as number of particles per area. NjdA is the number of particles which are
detected by a detector with area dA during time unit. j’ multiplied by the electronic
charge is the electric current density in quantum physics.
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3.6.3 Electrons Run Against a Potential Step

A classical particle which hits a potential barrier is reflected back or continues to
propagate with diminished kinetic energy, if its kinetic energy exceeds the potential
step height. Because of its wave character, electrons behave differently.

We solve the Schrodinger equation (3.51) for an electron which approaches a
potential step of height Vj (region II in Fig.3.8) from the left side (region I). Both
cases, that of the electron energy E exceeding the potential height V{ (Fig.3.8a) and
that with £ < Vj (Fig.3.8b) are considered. In the latter case, the particle could not
overcome the barrier in classical physics. The particle flow is stationary because of a
time independent potential, that is, we can apply the time independent Schrédinger
equation (3.57). The total time dependent solution ¥ (r, ¢) is obtained as usually
according to (3.58) if the energy eigenvalue E has been determined from (3.57). The
step potential (Fig.3.8) is assumed with Vj > 0 as

0, x <O,

1, x>0. (3-81)

V(x) = VO (x) with®(x) = [

(a) V(x) (b) V(x)
E »
Vo E V,
1 0 I X I 0 I X

: \ N ‘I‘(x)(l+i—’()/2
' ImY¥Y T k
1 1 1.5 =
\_/ ' ' 1 1 i 1 1
i § \_/ A5 -1 05 0 0.5 1 1.5
e e— xk/2m ——

xk /2w ——

Fig. 3.8 a, b Electrons with a kinetic energy E propagate from a region I with negligible potential
against a potential step (x = 0) into the region II with a potential V. a For E > V) the electrons
continue to propagate with longer wave length in region II, as is evident from the plot Re ¢ and
Im  versus xk/2m. b For E < V| the amplitude of the electron wave incident from region I decays
exponentially into region II, as is seen from the plot of the wave function ¥ (x) [reduced by a factor
2/(1 +ik/k)]
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We solve the Schrodinger equation (3.57) separately for the spatial regions I (x < 0)
and II (x > 0), that is,

d? 2mE .

AR (82
d? 2m(E — Vo) | .

V= _Tlp in I1. (3.82b)

For particle energies exceeding the potential step (E > V}) different wave num-
bers k1 and k; are introduced and one obtains for the two regions I and II

d2
L S5V = —k3y; ki =~2mE/h, (3.83a)
d2

These are vibration differential equations which are solved by exp(=ikx). Since
particles do not get lost during their path across the potential step, the particle current
must be continuous at the step (x = 0). Because of (3.80) this continuity is required
both for ¥ and dyr/dx, that is,

Yi(x =0) =yYp(x =0) and (3.84a)
Yi(x = 0) = Yy (x = 0). (3.84b)

In order to fulfill these conditions, we match three plane waves at the potential step:
in region I (left side) an incoming wave with wave vector k| and a wave (same wave
vector) reflected at the step with reflection amplitude r; furthermore a transmitted
wave with wave vector k» in region II. The transmission amplitude for this wave is f,
that is,

Yi(x) = 1Y 4 ey, (3.852)
Y (x) = reler, (3.85b)

Using the continuity conditions (3.84a), (3.84b) at the step location x = 0, one
immediately obtains

l+r=t and ikj(1 —r) = ikpt (3.86a)
respectively,

ki — ko , 2k
r= , = —.
k1 + ko ki + ko

(3.86b)

For a deeper insight into the meaning of the reflection and transmission amplitudes r
and 7, we calculate the current probability density j (x) within the two spatial regions
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I and IT according to (3.79):

Jilx) = %[(e_ik‘x + r*eiklx)ikl (eiklx - re_ik‘x) - c.c.]
m

= i[ikl (1—|r|? —re @M% 4 p*e?fid) —cc ],

2mi

hk
i) = 71(1 — 17 ) = Jjin — Jeef, (3.87a)
. hko 2 .
Jux) = 7'” = Jtrans- (3.87b)

Since hk/m = p/m isthe velocity of a particle, j; and ji describe current densities as
inthe classical case, but related to one particle (j = v). ji is the difference between the
incoming and the reflected current density, while ji describes the current of particles
propagating (transmitted) over the potential step. In addition to the amplitudes r and ¢
one might introduce transmission and reflection coefficients or probabilities T and R,
respectively, by

R=Jet e, p o dume Ko (3.88)

Jin Jn ki

We summarize: In quantum physics, particles are reflected at a potential step, even
when their kinetic energy is sufficiently high (E > Vj) to overcome the step. In
classical physics, all particles would continue to propagate forwards, though with
reduced energy. The reflection process is a typically wave mechanical phenomenon
which we know well from optics. Light (photons) is always reflected at the interface
between media with different refraction index.

For particle energies below the potential step (£ < Vp) the Schrodinger equa-
tion (3.82a) in region I remains unchanged (Fig.3.8b). As for E > Vj it is solved
by (3.85a). In the spatial range of the potential step (region II), however, we have to

assume )
d

V= K2y; k= /2m(Vo — E) /L. (3.89a)
X

In contrast to (3.83b), k is a real number because of Vy > E. Equation (3.89a)
thus has solutions which exponentially increase or decrease with x. The solutions
follow immediately with (3.83a), (3.83b) by assuming k> = ik as a purely imaginary
number [see (3.89a)]. If we transfer the results from (3.83a)—(3.85b), the solution
for region II with finite probability density follows as

Yu(x) = te . (3.89b)
In analogy to (3.86b), we obtain the reflection and transmission amplitudes as

N k1 — ik ¢ 2k1

_ L r= . 3.90
"k i ki + ix (3-90)
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From (3.90), we derive |r|> = 1, which means that all particles are reflected for
E < Vj. Nevertheless, because of (3.89a), (3.89b), particles enter to a certain extent,
namely up to the average depth « ~!, into the potential step. This is also a phenomenon,
which we know from optics, where light penetrates slightly into a strongly absorbing
medium.

Furthermore, these results suggest, that electrons confined in a quantum well
with finite potential walls behave differently from those confined between infinitely
high walls as in Sect.3.6.1. The wave function does not vanish on the surface of
the potential box but rather penetrates through the walls. Depending on the height
of the potential barrier Vjy and on the energy E of the quantized confined state the
electronic wave function (3.62) decays into the exterior of the potential box over a

distance k! = (2Zm (Vo — E)/h)~ L.

3.6.4 Electrons Tunnel Through a Barrier

We have seen that electrons, because of their wave character, can enter a potential step
similarly as light waves do in an absorbing medium. We, thus, expect that electrons
can penetrate a sufficiently thin energetic barrier, even when their energy is lower than
the potential barrier. This is, of course, impossible for classical particles if they do not
have enough kinetic energy to overcome the energetic barrier. But again, the analogy
to light waves is given, which can penetrate thin metal films (semi-transparent metal
coatings on windows).

For the description of the phenomenon called electron tunneling, we assume a
rectangular potential barrier with spatial extension a (width) on the x axis and an
energetic height Vg on the energy scale (Fig.3.9). The tunneling problem can be
described in terms of a stationary flux of electrons left and right of the barrier and the
potential in the time independent Schrédinger equation (3.57) is assumed piece-wise
as constant:

-

o
v
v

-

left right

]
0 X

Fig. 3.9 Schematic plot of an electron wave which moves with an amplitude a; from the left side
towards an energy barrier with thickness a. For the solution of the problem of an electron tunneling
through the barrier a superposition of several waves is required: a wave reflected to the left with
amplitude b; and two waves with amplitudes @, and b, in the region on the right side of the barrier
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0 forx <—5 (left),
Vi)={ Vg for —% <x <2, (3.91a)
0 forx > % (right).

For a constant potential (3.57) is solved by plane waves, since the electron energy
E exceeds the potential maximum. Within the barrier region, however, where
E = h?k?/2m < Vg, we must assume, in analogy to (3.89a), (3.89b), exponentially
decaying solutions. The solutions left and right of the barrier must be matched contin-
uously to those within the barrier. Because of particle (flux) conservation (3.80), both
Y and dir/dx must be continuous at the barrier borders at x = —a/2 and x = a/2
(Fig.3.9). The most general ansatz for the wave functions in the three spatial regions
is

a;e** 4 pe % x < —a/2,

Y(x) = 1 ce™™* +de; x < la/2|, (3.91b)
are®™ 4 be % x> a2,

Given the complete expression for a plane wave with its time dependence v
exp(ikx — iwt) we must interpret ¢; and a, as the amplitudes of waves propagating
to the right direction in the left (x < a/2)andright (x > a/2) spatial region (Fig.3.9).
In analogy, the waves with amplitudes b; and b, propagate to the left within the regions
left and right of the barrier (Fig. 3.9). We must make an ansatz with four propagating
plane waves which are matched to the solution inside the barrier, in order to fulfill
the continuity conditions at the barrier borders. Inserting (3.91a), (3.91b) into the
Schrodinger equation (3.57) we obtain, in analogy to (3.82a), (3.82b), the following
energy-wave number relations:

R2k?
E = Er forx < —a/2and x > a/2, (3.92a)
m
2,2
Vg — E=—— forx < |a/2|. (3.92b)
2m

Together with (3.92a), (3.92b), the continuity of ¥ and diy/dx at the left barrier side
at x = —a/2 requires

ale—ika/z +bleika/2 — CeKa/z +de_Ka/2, (3933)
ik (qe /2 — pye*a/?) = —ic(ce/? — de™/?). (3.93b)

These relations can be written as matrices
efika/Z eika/2 a e/ca/2 e*Ka/Z c
(eika/2 _eka2 )\ p, ) = %«em/z _ i?Ke—Ka/Z dl (3.93¢)
We now apply the rules of matrix algebra, which are known already or are explained

in a more general context in Sect.4.3.1, and solve for the vector (a;, b;), that is, we
rewrite (3.93c¢) into


http://dx.doi.org/10.1007/978-3-319-14669-0_4

3.6 Simple Solutions of the Schrodinger Equation 63

ar\ c
(bz) = M(a/2) (d). (3.94a)

Hereby the matrix M (a/2) has the form

1 i\ ka/24ika/2 (] _ ik ya—ka/2+ika/2
((1+k)e (I =7)e ) (3.94b)

M(a/2) = la- I\ exa/2=ika/2 (] 4 iTK)efKa/Zfika/Z

Our problem of matching 1 and diy//dx together at the positions —a /2 and a/2 has
mirror symmetry about x = 0 (Fig.3.9). For the barrier side at a/2 we, thus, obtain
the transformation matrix by substituting a/2 by —a/2 in (3.94b):

(Z’) = M(~a/2) (;) . (3.94¢)

By combining (3.94a) with (3.94c), the relation between the wave amplitudes left
(source) and the amplitudes in the right region (drain) is obtained as

()-2@)eC)] () e
u(5)(-5)] -5

is called the inverse of the transfer-matrix (transfer from left to right):

70—

The matrix

With the inverse matrix

a a1- E)eka/Z—i-ika/Z 1+ ﬁ)eka/Z—ika/Z

[%(_5)] =5 ((1 n %()e—/ca/2+ika/2 (- %()C—Ka/Z—ika/Z) (3.96)

we calculate from (3.95a)—(3.95¢) the relation between left and right wave amplitudes
as

ar\ _ o1 ar
() =5()
_ ((cosh Ka + % sinh ka)e'ke 17'7 sinh ka ) (ar)
= i —ika :

—% sinhka (coshka — % sinhka)e b,
(3.97)
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Hereby the following definitions were introduced

, (3.98a)

(3.98b)

with x ~! as the exponential decay length of the wave function into the barrier (3.92a),
(3.92b), (3.93a2)—(3.93c).

We now consider the frequent special case of transmission of particles which
approach the barrier from the left side. Then b, must be assumed to be zero (b, = 0)
and we obtain from (3.97)

a; = ay (cosh Ka + % sinh Ka)eik“, (3.99a)
iny .
by = ay (_E) sinhka. (3.99b)

The transmission amplitude f from left to right, then, describes the tunneling of
the electron through the barrier in terms of an attenuation of the incoming wave
amplitude upon transmission through the barrier:

a e—ika

f=—= , 3.100
a;  coshka +1i(g/2)sinhka ( )

7 as an amplitude is complex valued, it contains the phase change of the wave function
upon tunneling. Its real absolute square |7]? is the transmission probability from left
to right:

1 1
14+ 1+ %) sinh? ka 1 + 7 172 sinh” ka

T =12 = (3.101)

For high and wide barriers with low transmission probability one has ka >> 1, that s,
sinh(ka) =~ 1/2 and exp(ka) > 1. In this limit of weak tunneling, the transmission
or tunneling probability decays exponentially with the barrier width a:

T =1i* ~ %exp( 2\/2m(Vg — E)a/h). (3.102)

The tunnel effect described by (3.102) has played an essential role during the devel-
opment of quantum mechanics. In 1928, Gamow could explain the alpha decay of
atomic nuclei by means of tunneling of « particles (He nuclei) out of the nuclear
potential [3]. The nuclear potential forms a wall around the nucleus which confines
the protons and neutrons therein. Classically energy had to be supplied to the nucleus
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Fig. 3.10 a, b Scanning electron tunneling microscopy. a Electrical components and set-up of a
Scanning Tunneling Microscope (STM). Tip, piezo-drive and sample are located in an ultra-high
vacuum (UHV) vessel. b STM image of a Si(111) surface with (7 x 7) surface reconstruction
prepared in UHV. The bright dots are produced by tunneling electrons originating from occupied
Si atomic orbitals [5]

for the o particle to overcome the barrier and to be emitted. But due to tunneling of
the o particle through the nuclear potential wall the nucleus decays without energy
supply from outside.

Also in nuclear fusion of hydrogen to helium a tunnel barrier has to be penetrated.
The quantitative description of the effect is based on tunneling of H atoms through
the nuclear potential.

Meanwhile the most important application of electron tunneling (3.102) in solid
state physics is related to the scanning electron tunneling microscope (Scanning
Tunneling Microscopy = STM) [4]. As is shown schematically in Fig.3.10a, the
tunneling current of electrons between a metallic tip and a solid surface being the
sample under study is measured. Tip and surface are separated by a vacuum gap
(about 0.1 to 1 nm wide) which represents the tunnel barrier. The tip is scanned over
the surface by piezoelectric drives with a spatial precision in the range of 0.1 nm
and the tunnel current is measured and registered pixel-wise as a function of the
position on the surface. Because of the exponential dependence of the tunnel current
on the gap width between tip and surface (3.102) the tunnel current reacts extremely
sensitively to any unevenness of the surface under study. The scanning images of
the tunnel current, thus, show steps, dislocations, and at highest resolution, even the
position of surface atoms in detail (Fig.3.10b) [5]. Note that the tunneling electrons
originate from the spatially extended atomic orbitals of the surface atoms or of
those of the tip (at inversed tip bias). Position and shape of the measured intensity
contrast in STM images, thus, is determined by the shape of the atomic orbitals. STM
images have been a breakthrough in recognizing the wave nature of matter. For the
first time real pictures of the wave-like electronic orbitals at atoms could be made
visible experimentally. The solutions of the Schrodinger equation, so far existent
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only in mathematics, appeared on an experimental screen. For a further exprimental
example see Sect.6.2.4.

A further important application of the tunnel effect has emerged in modern semi-
conductor device physics. By means of advanced layer deposition (epitaxy) tech-
niques (MBE = molecular beam epitaxy, MOVPE = metal-organic vapor phase
epitaxy, Appendix B) semiconductor layer stacks with layer thicknesses down to
several atomic layers can be grown perfectly in their crystallographic structure on
each other (semiconductor heterostructures). By these techniques thin crystalline
AlAs layers, for example, can be built-in into GaAs having a lower electronic band
gap than AlAs. In AlAs, quasi-free electrons in the conduction band have an energy
higher by about 1 eV than in GaAs. A thin AlAs layer imbedded in a GaAs matrix,
thus, acts as a potential barrier for free electrons in the GaAs matrix. Conduction
electrons in the GaAs matrix can tunnel through the AlAs barrier, if it is sufficiently
thin. Furthermore, the AlAs barrier exhibits a higher electrical resistance (electrons
collect in the energetically more favorable GaAs) than the surrounding GaAs region;
an electrical bias can be applied between the two GaAs regions on both sides of
the AlAs barrier. Thus, by means of tunnel barriers built-in into semiconductor het-
erostructures novel semiconductor devices with new functionalities can be realized.
This will be more extensively considered in the next section.

3.6.5 Resonant Tunneling

Two potential barriers arranged in sequence, one behind the other, yield interesting
transport properties for electrons which are able to cross the whole structure. Such
double barrier arrangements can easily be realized in semiconductor heterostructure
technology (Appendix B). Between the two barriers a potential well is formed which
gives rise to discrete confined electronic states similarly as in the potential box
(Sect.3.6.1). Because of the finite energetic height of the barriers these confined
states do not have vanishing amplitudes at the inner barrier boundaries; they decay
exponentially into the barriers (quasi-standing waves). For sufficiently thin and low
barriers the exponential tails of these quasi-standing waves couple to the tails of
plane waves, the states of free electrons left and right of the double barrier, which
also leak into the barriers from left and right (Sect.3.6.3). As a consequence, one
single coherent wave function extends over the whole space, the double barrier region
and the regions of free electronic states left and right of the barriers.

The situation resembles that of a Fabry—Perrot interferometer in optics. There, two
parallel semi-transparent mirrors (finite potential barriers for light photons) cause the
built-up of quasi-standing waves in between when a parallel light wave passes the
double mirror arrangement. The transparency of the double mirror set-up reaches a
maximum when multiples of half the light wave length match the mirror distance.
We will see that a double barrier arrangement in a semiconductor heterostructure is
nothing else but a Fabry—Perrot interferometer for electron waves.
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For an elegant mathematical description of electron transmission through a dou-
ble barrier we introduce, beside the transfer-matrix S (3.95a)—(3.95¢), the so-called
transmission-matrix. This transmission-matrix couples the amplitudes of waves leav-
ing a potential barrier (a,, b; in Fig. 3.9) with those of waves approaching the barrier
(aj, by in Fig.3.9). For its calculation one has to reorder the continuity conditions
(3.932)—(3.93c¢) such that transmitted and reflected wave amplitudes, each propagat-
ing to the right and the left, respectively, are described by appropriate transmission
(#) and reflection-amplitudes (r) (Fig.3.9):

ay = ta; + ryby, (3.103a)
by = ria; + tby. (3.103b)

The transmission-matrix defined by the coefficients # and 7 is thus obtained as:

ar\ _ r Ty a
(bz) N (r; ?) (b,)‘ (3.103¢c)

For ideal reflection and transmission through the barrier and because of symmetry
reasons, we can assume:

t=1=t, (3.104a)
712 = lrl* = e, (3.104b)
11>+ r> = 1. (3.104¢)

Taking into account the different signs in the exponent of waves propagating to left
and to the right, respectively, we conclude furthermore:

trf = —nt*, (3.1052)
rrf = —rit*. (3.105b)

By comparison of (3.103c) with (3.95a)—(3.95¢) and reordering of the wave ampli-
tudes ay, by, a,, b, the relation between the transfer-matrix S and the elements r and
t of the transmission-matrix is obtained: -

1 Iy
St Siz & 3
§:(S21 Szz)z(i—* i) (3.106)
t* t
For the determinant of é follows
ot
detS = - = . (3.107)
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We express the complex transmission amplitude ¢ in terms of its modulus and its
phase ¢; as
t = |t|exp(igy), (3.108a)

and obtain by comparison of (3.97) with (3.106)
¢ = ¢ — ka. (3.108b)

Hereby, the angle ¢ is defined by

tang = Lk _x tanhka = ! tanh (3.108¢)
ng = n = n . .
a e % anh ka 28 anh ka c

The angle ¢; in (3.108b) describes the phase shift of the electron wave upon trans-
mission through the barrier. It depends sensitively on the wave vector k and the decay
length 1/« of the wave amplitude in the barrier.

In order to derive a formula for the transmission of an electron wave through a
double barrier we use the results about tunneling through one barrier at x = 0, shift
this barrier mathematically tox = —L (Fig.3.11) and calculate the effect of this shift
on the tunneling. Then the effects of both barriers have to be “switched” in series
mathematically.

The shift of the barrier to x = —L is identical with a shift of the coordinate system
by L in positive direction. This means for the wave functions:

¥ (x) = @™ 4+ be T g (x) = el belkr 4 peTleT (3.109)

The amplitudes a; and b; change into a; = a; exp(ikL) and b; = b; exp(—ikL), that
is, we obtain a transformation formula

a’\ _ elkL 0 ar\ _ a

and the inverse of T
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—ikL
= (e . ei('ZL)' (3.110b)

As the transfer matrix S relates the wave amplitude left with that on the right side

(Z:):g(ij), (3.111)

we still have to calculate the transfer matrix S = for the barrier which has been shifted
to left. For this purpose, we transform, analogously to (3.110a), the amplitudes into
the shifted coordinate system (upper dash) in (3.111):

ar\ _ -1\ _ o1 (9
Q@) o

‘We obtain for the shifted barrier the relation

a.\ g
I

S =£§g‘. (3.113)

Sand S , connect wave amplitudes right of the respective barrier with those on the

left side. The total effect of the double barrier arrangement on the wave amplitudes
is therefore obtained by multiplication of both transfer matrices:

=5 . (3.114)

tot =L =

Together with (3.106), (3.110a), (3.110b) and (3.113), we finally obtain the total
transfer matrix as

1 _ 9 —2ikL 1
tﬁ_{_e 21kL|it;|2 §(e - +[_*)

ST | gk L ke | G119

7+ e

According to (3.106) the total transmission amplitude #,o; through the double barrier

structure is, then, obtained from the matrix element Sﬁ%‘ as

ot = = = & = & (3.116)
R %lrlzeﬁ“ L+ ||kl '

and the transmission probability as
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r? (1 —1IrP)?

— 2 _ —
Tior = [tat]” = 1+ |r|2eB*L+é012 ~ |1 + |r|2eBkL+e) 2

(3.117)

In the limit of low reflection |r|?> <« 1 the transmission probability approaches
the value one. It can, then, be written as a product of transmission probabilities of
the two single barriers. Interference effects between the barriers (standing waves in
the quantum well) can be neglected.

The transmission probability through the double barrier is exactly one,
if T2/|1 — |r|?|*> = T?/|t|> = 1. This condition is fulfilled, if

exp[2i(kL + ¢)] = —1. (3.118a)

For this singular case it is required, that
2kL+¢)=Q2n+m, n=0,1,2,.... (3.118b)
For high barriers with strong reflection and low transmission (limit: Vg — 00)

(3.92b) yields k — oo, and with (3.108c), we obtain tan ¢ — —o0 and respectively
¢ — —m /2. Because of ¢; = ¢ — ka (3.108b), then (3.118b) yields the condition

2(kL—%—ka) =Qn+Dr, n=0,1,2,..., (3.118¢)

and because of w = L — a (Fig.3.11)
w=mn+1)Ar/2. (3.119)

In this limit of high barriers with high reflection the double barrier arrangement
exhibits a transmission probability of one (ideal transmission), if multiples of half the
electron wave length match the width w of the quantum well between the barriers.
The related kinetic electron energy is identical with the energies of the discrete
confined electronic states between the barriers (standing waves) (Fig.3.12). In this

w

34/2=w

Ekin

A=w

Al2=w

B ——
X

Fig. 3.12 Schematic plot of the three lowest energy bound states in a double barrier potential well
structure of width w: wave functions with A = 2w, A = w, A = 2w/3. Depending on their kinetic
energy Eyip electrons can resonantly tunnel through these bound states
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case, one single coherent electronic state is formed by the incoming (from the left)
and the transmitted (to the right) plane wave as well as the standing wave between
the two barriers (Fig. 3.14). This phenomenon is called resonant tunneling (through
a confined state).

At the beginning of the section, we have already emphasized the analogy between
resonant electron tunneling and light waves passing two parallel semitransparent
mirrors in a Fabry—Perrot interferometer. Correspondingly, we can calculate the
transmission amplitude #; for an electron tunneling through the double barrier by
summing up the contributions of partial waves which have passed the barriers after
multiple reflection and transmission (Fig. 3.13). For simplicity, we assume thin barri-
ers with negligible thickness at a distance L (approximately width w of the potential
well, Fig. 3.13). In that case, the phase change of the electron waves upon tunneling
through a single barrier can be neglected, that is, t* ~ ¢t & |t|. For sake of clearness,
we denote the transmission and reflection amplitudes, respectively, of the left barrier
by 1, r; and those of the right barrier by ¢, r-. According to Fig.3.13 each partial
wave, which contributes to the total transmitted signal after two additional reflections
left and right in the potential well, contains an additional amplitude factor exp(ikL).
The total transmission amplitude is, then, obtained by superposition of all partial
waves:

tiot = tleikLt, + tleikereikLrleikLtr + tleikLr,e. rle. rrei Lrle' r+---.

(3.120)

We now assume both barriers, left and right, as equal, that is, r; = r, and 1; = ¢,
and obtain

1kL 2.2 3ikL 2 .4 5ikL +.

fot =1 +t°rce +t°r'e

lkL[l + r2 2ikL + (r2e2ikL)2 + .. ] (3121)

Because of |r2 exp(2ikL)| < 1 we can sum up the geometrical series (3.121) and
obtain )
12eikL

tot = m . (3.122)
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The similarity with the more rigorous expression (3.116) is striking. Differences in
comparison with (3.116) are due to the simplifications assumed for the barriers in
the latter derivation (neglecting phase shift in barriers).

Again we consider the ideal situation of maximum transmission |# |2 = 1. From
(3.122), the requirement is 2 = 1 — r2, that is, exp(i2kL) = 1. This condition
is fulfilled by 2kL = 27 - n withn = 0,1,2,3,.... The resulting condition for
maximum transmission is analogous to (3.119):

A
w%LGE, n=1,2,3,.... (3.123)

The same physics determines maximum transmission 7| = 1 through the double
barrier (Fig. 3.13), namely multiples of half the electron wave length A must fit into
the potential well between the two barriers (Fig. 3.12).

As was emphasized before, upon resonance (3.123) one single coherent wave
function extends over the whole structure, from source (left) over the double barrier
to drain (right). It carries the electron transport by tunneling. Such a coherent wave
function was calculated by the described mathematical formalism for the case that
the electron wave coming from the left has a kinetic energy matching the energy E
of the lowest confined electronic state within the quantum well (Fig. 3.14). In the left
source region, the plane wave character of ¥ (x) is clearly seen. It passes over contin-
uously into the standing wave (approximate lateral extension A /2), which forms in
the quantum well, and finally into the plane wave leaving the barrier structure within
the right drain region. The wave amplitude in the quantum well is strongly enhanced
as is expected for many back and forth reflections at the inner walls of the quantum
well (Fig. 3.13). The calculation was performed for realistic conditions of two AlAs
barriers imbedded into a GaAs layer. Free electrons in AlAs have a minimum poten-
tial energy which is higher by about 1 eV than in GaAs (Sect. 8.3.4, Appendix A).
For free electrons in the GaAs matrix, therefore, the two AlAs layers form a double
barrier structure (Figs. 3.14 and 3.15) as discussed above. Such semiconductor reso-
nance tunneling structures can easily be prepared as epitaxial layer stacks with atomic
interface precision by modern deposition techniques (Appendix B) as is seen from the
transmission electron micrograph in Fig. 3.15 [6-8]. For the described semiconductor
double barrier structure two confined states between the A1As barriers are calculated,
which are shown in a quantitative plot in Fig. 3.16a. The transmission probability cal-
culated on this basis as a function of the kinetic energy of an electron approaching
from the left is presented in Fig. 3.16b. Corresponding to the two discrete confined
states in the well (Fig. 3.16a) two sharp transmission bands (T = 1) appear atenergies
of about 0.2 and 0.5 eV [8]. The electrons tunnel without any resistance through the
quasi-bound states of the quantum well. Because of the finite barrier height the ener-
getic positions of the quasi-bound states obey only approximately the simple 1/w?
dependence of confined states in an ideal quantum well (3.64). Because of the higher
electrical resistance of the AlAs barriers as compared with the GaAs matrix an exter-
nal voltage applied to a layer stack as in Fig. 3.15 drops essentially across the double
barrier region. By a variation of the applied voltage the electron energy on one side
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Fig. 3.14 Coherent wave function ¥ (x) (real) of an electron, which approaches a double barrier
structure (energy scale on left ordinate) from the left side, tunnels resonantly through the double
barrier and continues to propagate as a free particle again on the right side. The electron propa-
gates with a kinetic energy Eo which is identical with the energy of the first quasi-bound state of
the quantum well between the barriers. Between the barriers the wave amplitude is significantly
enhanced due to the quasi-bound state. The calculation has been performed for two AlAs barriers
embedded in a GaAs matrix [6, 7]

Fig. 3.15 Transmission
electron microscopic (TEM)
image of a double barrier
structure epitaxially grown
by molecular beam epitaxy
(MBE) (Appendix B). The
two potential barriers are
realized by thin AlAs layers
imbedded in GaAs. The
point pattern of the
micrograph shows the
atomic resolution of the
TEM image. Single points
represent atomic rows [8]
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Fig. 3.16 a, b Transmission 7" of a double barrier structure for resonance tunneling of an electron.
a Double barrier with energy levels of quasi-bound electronic states. b Calculated transmission 7
as function of the kinetic energy of an incident electron. The energetic position of the transition
maxima corresponds to the energies of quasi-bound states of the double barrier

of the double barrier (source) can be enhanced with respect to the energy on the other
side (drain). The energy of electrons in the source region might, thus, be tuned to the
lowest confined state in the well. Because of maximum transmission of electrons in
this resonance case the electric current measured between two contacts on both sides
of the double barrier layer stack reaches a pronounced maximum (Fig. 3.17). A layer
stack as in Fig. 3.15 structured into a column laterally and supplied with two electri-
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Fig.3.17 a, b Realistic quantum transport calculation of the measured current (/ )—voltage (V') char-
acteristic of a resonance tunneling diode prepared from an AlAs/GaAs multiple-heterostructure [9].
a Calculated local electronic density of states (half tone contures) plotted together with the lower
conduction band edge of the heterostructure (solid line showing the two barriers). The AlAs barriers
confine three quasi-bound states. The strength of blackening of the half tone contures is a measure
of the probability for finding the tunneling electron at that position. The diode is biased with 0.42 V.
b Experimentally determined /-V characteristic [8]. The current maximum at about 0.7 V arises
from resonant tunneling of electrons through the lowest quasi-bound state in (a)
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cal contacts on top and bottom (source and drain) is called resonance tunneling diode
(RTD). The current—voltage (/—V') characteristics measured on such an RTD device
is shown in Fig.3.17b. After the current through the RTD has reached its maximum
originating from electron tunneling through the lowest confined well state, it drops
again with increasing applied voltage, because the confined state gets out of reso-
nance with the kinetic energy of the incoming electrons (Fig.3.17). For even higher
voltages (U > 1V in Fig. 3.17b), the current increases again and eventually reaches
a second maximum due to resonance with the second confined state in the well.

The described RTDs are quantum-electronic devices which exhibit their charac-
teristic quantum behavior even at room temperature. Their complex non-linear -V
characteristics (Fig. 3.17b) with negative differential resistance (NDR) enables inter-
esting new functionalities in electronic circuits: RTDs are used in resonance circuits
to generate RF radiation with frequencies up into the THz range. Furthermore, they
offer the possibility for realization of novel digital logic circuits.

3.7 Single Electron Tunneling

At this point we leave, for a moment, the rigorous description of quantum mechani-
cal systems on the basis of Schrédinger equation and wave function, in order to get
familiar with a phenomenon which is of paramount importance for the experimental
research in fields as fundamentals of quantum mechanics, quantum electronics and
nano-physics. This phenomenon, called single electron tunneling, is related to tun-
neling of an electron through two sequential potential barriers, which form a type
of quantum dot or box with linear dimensions of some ten nanometers in between
(Fig.3.18). Across the two barriers the quantum dot is electrically (by tunneling) con-
nected to a left electrode, the source (S) of electrons, and a right drain (D) electrode,
through which the electrons leave the arrangement (Fig. 3.18a). A third electrode, the
gate (G), is capacitively coupled through an insolating layer (barrier) to the quantum
dot. A voltage (V,) applied between gate and source contact allows the variation of
the dot potential with respect to that of the source.

There are several ways to realize such a structure experimentally. A resonance tun-
neling layer structure consisting of GaAs and two built-in AlAs barriers (Fig.3.15)
might be structured lithographically (Appendix B) into a column with lateral dimen-
sions perpendicular to the layer sequence in the 100 nm range. Because of carrier
depletion near the surface (Appendix A) electrons are confined laterally within a
range of a couple of nanometers and perpendicularly by the two AlAs barriers along
a similar spatial extension. Thus, electrons within this spatial region are confined
in a quantum dot. As gate electrode an additional metal stripe might be prepared
lithographically on the side surface of the column (see also Sect.5.7.1, Fig.5.18a).

A further common method to realize a source/quantum dot/drain system with addi-
tional gate electrode is based on a two-dimensional electron gas (2DEG) which can
be prepared in a semiconductor heterostructure (Appendix A). Metallic electrodes
deposited on the surface of the heterostructure, about 30nm above the interface
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Fig. 3.18 a-d Scheme of single electron tunneling through a quantum dot. a Schematic measure-
ment circuit for the study of single electron tunneling. By means of a gate electrode, the potential
of the quantum dot can be shifted with respect to the source electrode. b Ground state energy U of
the quantum dot as function of gate voltage V, (plot normalized by C, V, /e). Different parabolas
correspond to different occupations of the dot with increasing number of electrons N =0, 1,2, ....
¢ Occupation of the dot with N = 0, 1, 2, .. . electrons as function of gate voltage V,. d Tunneling
conductivity o between source and drain contact as function of gate voltage V,. These so-called
Coulomb blockade oscillations exhibit maxima each time when the electronic occupation of the
quantum dot changes

(2DEG), deplete the 2DEG from electrons, in particular, if biased with a negative
voltage. The negative voltage pushes the electrons beneath away and creates inso-
lating areas below the metal patterns (Appendix B). Appropriately shaped metal
electrodes (patterns), thus, separate a conducting quantum dot area from source and
drain as well as from gate areas in the 2DEG.

In each case there is a quantum dot (box), in which electrons are spatially confined
and discrete energy levels are formed (Sect. 3.6.1). Depending on the size and on the
nature of the material (semiconductor or metal) these discrete levels lie quite close
to each other, quasi-continuously, or form a discrete level spectrum like in an atom.
In contrast to natural atoms, however, the potential of the quantum dot can be varied
with respect to its surrounding by changing the electrical bias between dot and source,
respectively drain contact. By an appropriate bias, we can even force electrons to
tunnel from the source contact into the quantum dot and to occupy one of the confined
states there. Depending on barrier thickness and height as well as on bias conditions
between the electrodes the electron can leave the quantum dot by tunneling into the
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drain contact. This process is called single electron tunneling. We will encounter an
interesting new phenomenon in this process, the so-called Coulomb blockade.

Imagine, some few electrons already occupy the energetically lowest confined
states in the quantum dot. We will learn in Sect.5.6.3 that a quantum state can be
occupied by one single electron only (Pauli exclusion principle). The next electron
which “wants” to tunnel into the quantum dot from the source contact, therefore, has
to occupy the next higher unoccupied state in the dot. Furthermore, this new electron
experiences the Coulomb repulsion from all other electrons already present in the
dot. Coulomb repulsion is a many body effect, an interaction between two or more
electrons, which was never considered so far in our single particle picture of quan-
tum mechanics. All quantum states for spatially constricted volumes (potential well,
quantum wire, quantum box, Sect. 3.6.1) and for propagating electrons (Sects. 3.6.2—
3.6.5) were single electron states. Interactions with other electrons were neglected.
Many body interactions as electron Coulomb repulsion require a much more involved
theoretical formalism than it is possible at this stage of understanding of quantum
physical phenomena. The reader should wait for Chap. 8 of this book to find a more
rigorous treatment of those kind of problems.

We will therefore use a quasi-classical description for the treatment of Coulomb
repulsion in single electron tunneling. In classical electrostatics the effect of an addi-
tional electron being added to a small body carrying some charge already is described
in terms of charging. In the following treatment of the single electron tunneling effect,
therefore, the addition of an electron to the quantum dot by tunneling through the
source/dot barrier is referred to as charging the dot by one elementary charge. We
only keep in mind that the quantum mechanical tunnel effect is responsible for the
electron to switch over from the source electrode to the quantum dot (Fig. 3.18a).

For the classical description of the phenomena, we start with an electrically
charged metal particle (dot) which is imbedded in a dielectric medium. With respect
to infinity the particle has a capacity C = ¢g/V with ¢ as the charge on the particle
and V a voltage referred to an infinitely distant electrode. When an additional charge
dg is brought on the particle, its energy increases by

dE =Vdg =qdgq/C. (3.124)

An increase of the total charge up to the value Q causes an energy increase to

Q4d 1 02
E =/ 9dg _ 107 (3.125)
, C 2cC

Therefore, the electrostatic energy of the charged particle amounts to E = Q2/2C.

In order to estimate the order of magnitude of the expected effects, we assume the
quantum dot to be a little circular conducting disk with the radius » = 250 nm at a
distance a = 70 nm from an extended planar metallic gate electrode. This quantum
dot shall be imbedded in GaAs with a dielectric constant &, &~ 13. The capacity of
the dot with respect to the planar gate electrode is
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C =g eomr?/a, (3.126)

and the numerical value for the considered example follows as C ~ 10~'¢ F. Accord-
ing to (3.125) the addition of one electron to the dot gives rise to a charging energy
Ec = &2 /2C which, in our example, amounts to about 1 meV. In order to resolve
such effects spectroscopically one has to perform the experiment at low temperature
T < 1K anobservation of charging effects at room temperature requires much lower
capacities (3.126), that is, the dimensions of the quantum dot must be in the order of
nanometers.

In our classical description, the so-called orthodox model of single electron tunnel-
ing, the charge transported via source and drain through the quantum dot is assumed
to be quantized in units of the electronic elementary charge. On the other hand, the
action of the gate bias V, is described in terms of a continuous charge C, V, which
is induced on the dot through the gate capacity C,. From (3.125), we then obtain the
electrostatic energy (ground state energy) of the quantum dot as

N
UN) = [lel(N = No) + CgVe]*/2C + > Ep. (3.127a)

Here N is the number of electrons on the dot and Ny the electron number at vanishing
gate voltage V, = 0. C is the total capacity of the dot, namely that against gate (Cy),
against source (Cg) and against drain (Cp):

C=C,+Cs+Cp. (3.127b)

E, are the single electron energies of the confined states in the dot (solutions of
Schrddinger equation, Sect. 3.6.1), which are filled with electrons up to the number N .
The last term in (3.127a), thus, contains the sum of the single particle energies, while
the first term describes the many-body interaction between the electrons in terms of
a classical charging energy.

If N — 1 electrons are present on a quantum dot, the addition of the Nth elec-
tron requires an energy, the electrochemical potential j1qp(N) of the dot with the
occupation number N. The thermodynamical potential jgp = 0U /9N, of course,
contains per definition the many-body electron—electron interaction. In the present
case we can write:

uQp(N) =U(N) —U(N — 1)
1
= E[{|e|(N—No)~I—Cng}2
—{lel(N = 1= No) + Co V) + Ex], (3.128a)

E is the energy of the highest occupied electronic state in the dot. Summing up the
brackets in (3.128a) yields for the electrochemical potential
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1) &2 C
nop(N) = (N—No— §)E+|e|ngg+EN. (3.128b)

The addition energy for adding one further electron to the dot, thus, follows as

Ap(N) = ugp(N + 1) — nugp(N)
—UN+1)—2UN)+U(N + 1)
62 6‘2
= —+ E —Ey=—+ AE. 3.129
C + En+1 N=G + ( )

In atomic physics one would call A = U(N) — U (N + 1) electron affinity and
I = U(N — 1) — U(N) ionization energy. The addition energy (3.129), then, equals
the difference of 7 and A: Au =1 — A.

The addition energy A (V) contains the highest single electron energies, that of
the highest occupied level Ey and that of the next higher empty state Ey (into
which the additional electron goes) as well as the charging energy ¢/ C arising from
the Coulomb repulsion between the electrons already present on the dot and the new
one being added (many body interaction).

Later we will see that for metallic quantum dots of sufficient size AE is negligi-
bly small as compared with the charging energy. For semiconductor quantum dots,

however, the sum of single electron energies ziv E, and, therefore, also A E cannot
be neglected and have to be taken into account for a quantitative description of the
phenomena.

In the following we consider a metallic quantum dot with the simplifying assump-
tion Ng = 0, that is, the quantum dot does not carry any charge at vanishing gate
voltage V, = 0. In this case the ground state energy is given by

UN, V) = %(N|e| V) . (3.130)
This energy plotted as a function of the gate voltage V, (Fig.3.18b) yields a series
of parabolas, each one belonging to an occupation of the quantum dot with N = 1,
N =2, N =3, ... electrons. At the point C, V, = ¢/2 the two parabolas belonging
to N = 0and N = 1 cross each other. For gate voltages exceeding this value, it is
energetically more favorable that one additional elementary charge is added to the dot
than if the dot would stay uncharged (N = 0, parabola centered around 0). Further
increase of the gate voltage correspondingly increases the occupation of the quantum
dot (Fig.3.18c). The dot changes its occupation with electrons at each crossing point
of the parabolas, while in the range in between the occupation is stable with N = 0,
N =1, N =2, ... electrons on the dot. In the stable regime between the crossing
points no current can flow, electron transport is blocked. Here the condition

UN+1,V,) —U(N, V) <0, (3.131a)
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holds, that is, according to Fig.3.18¢

(N—%) < CgVq/e < (N—i—%). (3.131b)

This phenomenon of a blocked current flow through the source/quantum dot/drain
arrangement because of a stable occupation of the dot is called Coulomb blockade.
At the crossing points of the parabolas, we have

UN +1)=UN). (3.132)

At this particular gate voltage the system does not show any preference for an occu-
pation of the quantum dot with N or N + 1 electrons. The number of electrons on the
dot can fluctuate, electrons can tunnel between source contact, quantum dot and drain
contact and a current flows through the arrangement. Its electrical conductance o as a
function of the gate voltage or of C, V, /e exhibits sharp peaks at the crossing points
of the parabolas (3.127a), so-called Coulomb blockade oscillations (Fig.3.18d).
The single electron tunneling phenomenon might also be explained in an energy
versus spatial position plot, in analogy to the one used for resonant tunneling
(Figs.3.16 and 3.17). In Fig.3.19, characteristic energies of the system are plot-
ted on an energy scale in the spatial regions source (), quantum dot (QD) and drain
(D). The three regions are separated by insolating potential barriers, which do not
have any electronic states in the energy range considered. The barriers are sufficiently
thin that the wave functions in S, D and QD have a significant overlap, which allows
electron tunneling between the three regions. In source and drain metallic charac-
ter is assumed, which is described by the model of the potential box (Sect.3.6.1):
The electronic states lie quasi-continuously dense on the energy scale and are filled,
each state by one electron (according to Pauli principle, Sect.5.6), up to maximum
energies us and wp, the chemical potentials of source and drain (blue areas). In
the quantum dot, we assume discrete energy levels because of the confinement of
the electrons (Fig.3.19). We take into account the many-body effect of Coulomb
repulsion (charging effect) by assuming that addition of one further electron to the
dot requires the addition energy ¢%/C. 1D (N + 1), here, denotes the many-body
energy (chemical potential) of the quantum dot at which the increase of the electron
occupation from N to N + 1 becomes possible. When the chemical potential g of
the source contact lies below pop (N + 1), no additional electron, exceeding the N
electrons already on the dot, can tunnel into the dot. This situation of the Coulomb
blockade is shown in Fig. 3.19a. By application of bias voltages between the S, QD
and D contacts the energies, that is, also the chemical potentials in source, quantum
dot and drain can be shifted against each other. In Fig.3.19b an appropriate gate
voltage V, shifts the dot potential with respect to s and i p such that wop(N + 1)
equals the chemical potential in the source contact (only slightly higher than in drain).
The quantum dot can change its electron occupation by tunneling from source into
drain. A tiny source-drain voltage Vsp, i.e. a minimum difference us — up > 0,
causes a tunneling current through the quantum dot. The Coulomb blockade is lifted.
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Fig. 3.19 a-f Explanation of single electron tunneling measured by means of a circuit consisting
of source contact (§), quantum dot, drain contact (D) and gate (right below). a Potential well
scheme (potential energy versus position coordinate) for source, drain and dot at negligibly small
bias between source and drain. s and 1 p are the chemical potentials of source and drain; pgp (N)
and pqp (N + 1) are the chemical potentials of the quantum dot being occupied by N, respectively
(N +1)electrons (Coulomb blockade). b Potential well scheme under a gate bias V, which lowers the
dot potential pqp(N + 1) to allow tunneling of an electron through the dot (removal of Coulomb
blockade). ¢ Source-drain current Isp as function of gate voltage V,. The sharp bands of the
Coulomb blockade oscillations indicate tunneling processes as shown in (b). d, e Possible tunneling
current transport by applying a convenient source-drain voltage Vsp. f Coulomb blockade staircase
characteristics Isp(Vsp) as it is observed for tunneling processes as in (d) and (e)

This situation occurs periodically upon increasing the gate voltage (Fig. 3.18b). This
explains the observation of Coulomb blockade oscillations (Fig. 3.18c).

The Coulomb blockade can also be lifted with constant potential at the quantum
dot (fixed gate bias) by increasing the source-drain voltage Vsp (Fig. 3.19d). Because
of the voltage drop across the two barriers the chemical potentials ugp(N) and
QD (N + 1) are shifted on the energy scale with respect to the potentials g and . p,
such that electron tunneling from S via QD into D becomes possible. A tunneling
current sets in, when ugp(N + 1) reaches the energetic level of ug (Fig.3.19d).
Further lowering of pgp(N + 1) by an increased voltage Vsp keeps the tunneling
current flowing, since occupied states in the source region still lie on the level of
1D (N+1) (Fig. 3.19¢). When the voltage Vsp is even further enhanced, the quantum
dot potential drops further and eventually the chemical potential pop(N + 2) for
adding a second electron to the dot reaches the source potential i s. A further electron
tunnels into the dot and the tunneling current increases by a corresponding step.
The source-drain current/voltage characteristics Isp(Vsp), thus becomes a stair case
function, called Coulomb blockade staircase (Fig.3.19f).
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Finally we want to emphasize again that the energy levels plotted in Fig.3.19
as QD (N), Qp(N + 1) etc. are many-body energies in the sense of the chemical
potential rather than single electron energies as discussed in connection with resonant
tunneling (Sect. 3.6.5).

3.8 The Quantum Point Contact as Charge Detector

Another nanostructure device, the so-called quantum point contact (QPC), has gained
significant importance in fundamental experiments, where the presence or movement
of single electronic charges is registered in nanoscaled electronic circuits. The device
essentially consists of a short highly conductive channel in which electrons are con-
fined in two dimensions perpendicularly to their propagation between source (S) and
drain (D) contacts having chemical potentials pg and pp. External gates along the
channel allow the induction of charge nearby and thereby widening or tightening of
the channel cross section depending on the sign of the induced charge. Depending
on the channel width more or less half electron wavelengths can match the channel
diameter. The number of electron wave modes, which can pass the channel, can,
thus, be controlled by the external gate bias.

The standard and frequently used experimental realisation of the QPC device is
based on the two-dimensional electron gas (2DEG) at the AlGaAs/GaAs heterostruc-
ture interface (Appendix A and Fig. 3.20). Two metal gate fingers evaporated on top
of the heterostructure produce depletion zones (Schottky contacts) beneath, where
the free electrons of the underlying 2DEG are removed except for a narrow stripe
between the metal fingers (Figs. 3.20a, b). This remaining area of high conductivity,
where the electrons have not been removed from the 2DEG, forms the channel in
which the electron waves are confined in x direction normal to their propagation
direction y. An electron current from the S to the D contact through the channel is
induced by the potential difference (s — ; p) being established by a convenient bias
voltage between S and D (Fig. 3.20c). A varying gate voltage V, applied between the
metal gate fingers and the ground contact modifies, by charge induction, the exten-
sion of the depletion space charge zones below the split metal gate contacts and thus
the width of the channel. Because of the geometrical arrangement of the two metal
contacts the described device is often called split gate contact (SGC). The name
quantum point contact (QPC) is used because of historical reasons. The described
effect of quantum transport through quantized electronic modes was originally also
observed in point-like contacts between the metallic tip of a scanning tunnelling
microscope (Sect.3.6.4) and a conducting surface.

Because of the channel length in the 100 nm range and the high electronic mobility
in the 2DEG (Appendix A) the electronic transport through the channel is ballistic at
low temperature. Even elastic scattering on crystal defects can largely be excluded
on these distances. For the calculation of the electron current through the channel
we thus need to know only the electronic states, respectively their density, and the
corresponding group velocity of electrons in these states. The origin of the current is
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Fig. 3.20 Quantum point contact (QPC) in split gate technology. a Schematic top view on a semi-
conductor heterostructure (e.g. GaAs/AlGaAs) containing a high mobility 2D electron gas (2DEG)
at the interface (Appendix A). Two (split gate) metal electrodes (dark grey) produce depletion space
charge layers (Schottky barriers) below the surface where the free electrons are removed from the
2DEG. Between the two depletion boundaries a narrow conductive channel between source (S) and
drain (D) remains in the 2DEG. ps and u p are the chemical potentials in the S and D region. b Cross
section view of the QPC along the line A-B as indicated in (a). The 2DEG quasi-1D channel is
indicated between the depletion zone boundaries. ¢ Electric circuit for measuring the conductance
of the QPC

due to an imbalance in the occupation of states between the S and the D side (lower
occupation) of the channel (Fig.3.21). Along the channel in y direction electrons can
freely move with a kinetic energy hzkg /2m. Perpendicularly, they are confined by the
channel width and by the z extension of the 2DEG. The electrons, thus assume quan-
tized discrete energy levels ¢; (Sect.3.6.1). The total energy, therefore, is obtained

as
h2k?2

E=—"+¢+eV . (3.133)
2m

eV is the electrostatic energy in the channel determined by the external bias at the
gate. In good approximation the potential valley between the two opposite depletion
space charge layers below the metal gate fingers can be described by a parabola
@ o (x —x0)? with x¢ as the centre of the channel (see Sect. 6.1.1). As will be shown
for the parabolic oscillator potential in Sect.4.4.2 the energy eigenvalues &; form a
ladder of equidistant levels with a groundstate g¢ (Fig.3.21), the mutual distance of
which (¢;41 — &;) decreases with increasing width w of the channel (Sect. 3.6.1). For
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Fig. 3.21 Qualitative plot of the electronic band structure in the QPC of Fig.3.20. The parabolic
sub-bands belonging to the lateral quantisation energies ¢; (due to x and z confinement) are filled
with electrons (two on each single electron level because of Pauli exclusion principle, Sect.5.6.2) up
to different energies 11 at the source and 1 p at the drain region (because of SD bias). Electrons can
freely move along y with a momentum k. In thermal equilibrium (zero external bias: ig = up) the
sub-bands are filled up to the energy Er (Fermi energy, Sect.5.6.3) a Situation for a wide channel.
b Narrow channel with stronger x confinement

the simplest assumption of a rectangular confining potential between the split gate we
conclude a dependence (g;41 —&;) o 1/w? of the energy eigenvalues on the channel
width w, i.e. also a decrease of the energetic level distance with increasing width
w (Sect.3.6.1). Plotted along k, the transport wave vector, the electron energies
(3.133) form a sequence of parabolas, whose mutual energetic distance decreases
with increasing channel width (Fig.3.21). Details of the (g;41 — ¢;) dependence,
the mutual distance of the parabolas on the channel width, depend on the shape of
the confining potential below the split gate. Each parabola of (3.133) in Fig.3.21 is
called a subband for electron transport. The subbands are numerated by the index i,
the number of the particular discrete level ¢;.

We can calculate the current /; through the channel for each subband separately
by summing up the product of electronic charge determined by the density of states
D; (E) within this subband and the electron velocity v; (E). Only those states of the
subband contribute which lie energetically between the source and drain potentials
us and up (Fig.3.21). For all other states current contributions from left to right
and vice versa cancel each other because of equal charge values having opposite
velocities. For one subband the current, then, follows as:

us
I; =e/D,-(E)v,~(E)dE . (3.134)

“D

The conducting channel in the present case is a quantum wire because of confinement
in two directions along xand z. According to (3.72) the density of states of a quantum
wire is (dk/d E)/2m. Because of spin degeneracy each state can be occupied by two
electrons (Sect. 5.6) and we obtain for the ith subband:
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ldk, 1 (dE\""
Di(E)y=——2=—-|— ) (3.135)
7 dE m \dky

According to Sect. 3.2 (3.17) the velocity of an electron in the ith subband is

dw 1dE

(E) = — = ———. 3.136

wB) = 2= T (3.136)

The product D;(E)v;(E) in the integral (3.134) is a constant and we obtain the
current carried by the ith subband as

2e 2¢?
Ii = —(us —up)=—Vsp , (3.137a)
h h
where Vgp is the source drain voltage. Usually a finite number of subbands is occu-
pied and contributes to the total current:

i max

2e
I = E z(u«s—un) . (3.137b)
i=1

imax denotes the highest occupied subband (Fig.3.21). From (3.137) we obtain for
the conductance of the QPC:

i

1 JaX 2e2
G = — = —_— . 3.138
QPC Ven ; 7 ( )

(3.138) describes a stepwise increase of the conductance of the QPC with decreasing
negative gate voltage. Each time, when a new subband becomes occupied with further
widening of the channel, the conductance jumps by an amount of (2¢%/h). This
is the so-called conductance quantum. It is noteworthy, that in spite of ballistic
transport without scattering of the carriers within the QPC channel the device has a
finite conductance. This phenomenon is due to the quantum nature of the transport,
which s reflected by the conductance quantum containing only the elementary charge
and Planck’s constant /. Sometimes also half the value ¢2/h is called conductance
quantum, depending whether spin degeneracy is taken into account or not.

The stepwise increase of the QPC conductance by jumps of (2¢2/h) has been
observed for the first time in a well defined manner on a split gate contact (QPC)
prepared on an AlGaAs/GaAs heterostructure [10] just as it has been explained in
Fig.3.20. In Fig. 3.22 the original data measured at a temperature of 0.6 K are
shown. The conductance increases with decreasing negative gate voltage, which
corresponds to less positive induced charge in the gate depletion space charge layer.
Hereby the conducting channel is widened and more and more subbands contribute
to the quantum transport (Fig.3.21).
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Apart from the interesting fundamental aspects of quantum transport through
the QPC the device is also useful for measuring the presence or transport of single
charges in nanoelectronics. Single charges in close vicinity to the QPC channel
modify the potential locally; hereby the channel width is varied and the QPC changes
its conductance. The effect is particularly strong, when the QPC gate voltage is
tuned into a region of steep conductance slope, i.e. into the jump region between
two plateaus. As an example Fig. 3.23 shows data of a measurement of charging and
discharging of a quantum dot (QD) [11]. The inset in Fig. 3.23 qualitatively depicts
the arrangement of a QD in close vicinity to a QPC, which is the measurement
probe for detecting charge changes on the QD. In the inset metal gate electrodes
on top of a 2DEG within an AlGaAs/GaAs heterostructure are plotted. These gate
electrodes produce depletion zones beneath in the 2DEG and define energy barriers
for electrons, which can freely move in the areas of the 2DEG between the electrodes.
The extension of the barriers can be modified by external voltages applied to the gates.
In the described way the gates G1 and G2 define the probe QPC, which is separated
from the QD on the right side by the bar opposite G2. The QD is defined by this bar
and the gate electrodes G5, G3 and G4. The gate G4 defining the right-hand edge of
the QD acts as a “plunger”. A voltage applied to G4 varies the potential of the dot.
When the voltage on G4 is swept, Coulomb blockade oscillations (Sect. 3.7) are seen
in the conductance of the QD. For the measurement of charge changes on the QD
the conductance of the QPC channel between G1 and G2 is set at a value where it
reacts most sensitively to the surrounding potential, i.e. at the jump region between
two conductance plateaus (Fig.3.22).

In Fig.3.23a the conductance through the QD (right scale) and the resistance of
the split gate QPC detector (left scale, curve with small dips on a rising background)
are shown as the plunger voltage at G4 is swept. The little dips on the rising detector
resistance (Rgpc) curve directly correlate with the Coulomb blockade oscillations
measured as conductance changes Ggp on the QD. The QPC obviously reacts sensi-
tively to charge changes on the QD. While the Coulomb blockade peaks in Fig.3.23a
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Fig. 3.23 Quantum point contact (QPC) as detector for charge on a quantum dot (QD) realized
in split gate technology on a GaAs/AlGaAs heterostructure [11]. a Coulomb blockade oscillations
versus gate voltage (G4) through the QD (scale on right side) in comparison with the resistance
of the QPC (scale on left side) Inset Metal gate arrangement for defining the QPC (gates Gl1,
G2) and the QD (gates G3, G4, GS5) within the 2D electron gas (2DEG) below the surface at the
GaAs/AlGaAs interface. b Change in QD potential A® g p versus gate voltage (G4) as calculated
from the QPC detector resistance

(right scale) indicate transmission of the QD, i.e. those plunger voltages, where the
QD changes its charge (Sect. 3.7), the dips in the QPC resistance Rqgpc shifted some-
what on the voltage scale are related to the presence of the particular charge on the
QD. This explains the somewhat different plunger gate voltages, at which the peak
structures appear. The detector QPC can be calibrated by removing the plunger bias
(G4) and applying a voltage to the 2DEG region between the tunnel barriers of the
quantum dot region. The measured detector channel resistance Rgpc can thus be
transformed into the QD potential A®qgp shown in Fig. 3.23b. This electrostatic
potential of the dot is oscillatory with an average amplitude of 5004100 wV, which
is the charging energy of the dot (Sect.3.7). As expected the dot potential A®gp
has its maxima and minima at plunger voltages between those, where the Coulomb
blockade peaks appear, i.e. where the charge on the QD jumps.

The described method for sensitively measuring single charges in nanoelectronic
circuits is based on capacitive coupling of the measurement probe (QPC) to the
sample under study (QD) rather than on a direct intervention into the charge transport
itself. The technique is less disturbing to the measurement process.
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Chapter 4
Quantum States in Hilbert Space

In the preceding chapters, we have learnt that on the atomic and nanoscopic scale
the world is ruled by laws which are different from those which we are familiar
with from our every day life experience. The propagation of a particle can no longer
be described in terms of trajectories with well defined position and velocity. The
uncertainty principle does exist for position and momentum observables. Both quan-
tities can be measured simultaneously only as statistical expectation values. On the
atomic and subatomic level physical phenomena are fundamentally random and
non-deterministic. By means of wave function and Schrodinger equation, however,
we were able to describe the statistical behavior of nature, characterized by the
particle-wave duality, in a well defined and rigorous mathematical formalism. The
Schrodinger equation, together with boundary conditions, determines unequivocally
the wave function, the basis for the statistical description. Hereby, sometimes the
term of a quantum state has sneaked into the discussion in a blurred way. Because of
the lack of fixed and definite numbers for position and momentum, we have used this
term of a quantum state to describe the behavior of an electron, or more precisely, of
an ensemble of electrons in terms of a wave function and/or its energy (eigenvalue).
In this chapter, we will formulate the term quantum state of a system more precisely.
For this purpose, generalized vectors in a so-called Hilbert space (David Hilbert
1862-1943, famous German mathematician) are used. At first sight, this approach
might look quite complex and abstract. But the handling of the mathematical for-
malism will appear as quite easy and straightforward, if we make use of the analogy
with the 3D Euclidean space of our familiar imagination.

4.1 Eigenvectors and Measurement of Observables

We start with the solutions of the Schrddinger equation for an electron in a 1D quan-
tum well (Sect.3.6.1). The eigenvalue problem (3.60) solved with fixed boundary
conditions yields
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on(x) = Csinkyx. 4.1)
Because of the boundary conditions (3.63), k, is quantized with values k, = nx/L
where the quantum number # has integer values n = 1, 2, 3, . ... The constant C is

determined by the normalization condition (3.7) required for the wave function over
the considered volume, in the present case, the length L:

L L -
/ or(x)pp(x)dx = C2/ sin? (n —x) dx =1 4.2)
0 0 L
that is, the normalization constant follows as C = (2/ L)~2 and the normalized

eigenfunction (4.1) is
/2
on(x) = 7 sinn%x. 4.3)

If we consider an integral similar to the normalization condition (4.2), but now with
two different eigenfunctions (wave functions) ¢, and ¢, (m #* n), we obtain

L 2 L
/0¢;(x)¢n(x)dx Z/o sin(mL—nx)sin(%x)dx

_ 2 [ sin(m —n)mw _ sin(m + n)mw —0
T L|2m—mn/L  2m+mmw/L|

4.4)

Eigenfunctions ¢, (x) being solutions to the Schrodinger equation (3.60) for an elec-
tron in the potential box, therefore, obey the relation

L
* . _ |1 form =n,
A (pm('x)(pn(-x) d-x - 8”1" - [0 fOrm # n, (45)

with §,,,, as the so-called Kronecker symbol.

Equal relations are derived for the eigensolutions of the Schrodinger equa-
tion (3.60) for an electron in the quantum box with periodic boundary conditions
(3.68). Using the general solution ¢ = Cexp(ikyx) with the k, quantization
ky = n2m /L we obtain the following relation

L L ' a
/0 0F () gn (x) dx = C2 /0 dx el =mFx (4.6a)

For n = m the normalization constant follows as C = 1/+/L. For n # m (4.6a)
yields
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L 1 L . 2w
/ @r ()@ (x)dx = — / dxel"=mTx
0 L Jo

1L in-m2L ]

= Lomti—m) [e L 1] =0. (4.6b)
Thus, also in the case of periodic boundary conditions the general relation (4.5) is
valid for the set of eigensolutions ¢, (x) of the Schrodinger equation.

Equation (4.5) is the starting point for an important generalization of the interpre-
tation of the system of eigensolutions of the Schrodinger eigenvalue equation (3.60)
and the Hamilton operator H, respectively.

We remember the properties of vectors in the familiar three-dimensional (3D)
space. There, the scalar product of two vectors a and b is defined as

3
a-b=> ab. (4.7a)
i=1

If a and b are mutually normal, the expression (4.7a) vanishes. For a and b being
unity vectors (length one) the expression (4.7a) becomes unity, if the two vectors are

parallel to each other. For unity vectors |a] = |b| = 1, we thus have
. 1 ifalb
a-b:Zl:a,-bi = [0 Falb. (4.7b)
=

Extending this relation to infinitely many dimensions x (instead of i = 1, 2, 3) with
x being a continuous variable (densely lying x values) the analogy between the sum
in (4.7a), (4.7b) and the integral in (4.5) is obvious. The continuous x values in
(4.5) correspond to the discrete vector components i = 1,2, 3 in (4.7a), (4.7b). In
an abstract sense, thus, the integral (4.5) can be considered as a generalized scalar
product of two vectors ¢, (x) and ¢, (x) being defined in a space with infinitely many,
continuously lying dimensions. It is important to emphasize that this continuous
vector space is a so-called dual vector space, since the vectors ¢, (x) have complex
values, that is, a real and an imaginary part, in general. The scalar product, then, has
to be calculated from ¢} ¢, similarly as the product of two complex numbers a*a
which yields the modulus |a| = (a*a)'/? of the complex number.

In analogy to the definition in 3D space (4.7a), (4.7b), we can consider the solu-
tions ¢, (x), ¢, (x) of the Schrodinger eigenvalue equation (3.60) as a system of
generalized normalized basis vectors of infinite dimension in an infinite continu-
ous space. This space is called Hilbert space. All eigenfunctions of an operator
(quantum mechanical observable) span an infinite vector space with densely lying
coordinates in which every physically reasonable wave function (abstract vector) can
be represented. This is completely analogous to the representation of a general 3D
vector in our familiar 3D Euclidean space. We will see later, that there exist also
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Hilbert spaces with a finite number of dimensions, even two only, in which specific
quantum states of a system are represented.

The analogy between 3D Euclidean and Hilbert space leads to further statements:
A general 3D vector r can be represented by three orthogonal unit vectors ap, a;, a3
as

3
r =«aja; + wa) + azaz = Zaiai. (4.8a)
i=1

The vector component ¢ in j direction is obtained, hereby, as

3 3
aj-rzzm(aj-a,-):Zai(Sij=ozj. (4.8b)
i=1 i=1

Correspondingly a general state vector in the Hilbert space, a general wave function
¥ (r), can be represented as a linear superposition of orthonormal eigensolutions
@, (1), that is, it can be expanded in terms of a series of eigenfunctions:

Y(X) =D bupa(r). (4.9)

Hereby, the functions ¢, (r) are the analogue to the three basis vectors in x, y, z
direction of the 3D Euclidean space and b,, the analogue to the vector components in
these directions. In analogy to (4.8b), the vector components in Hilbert space follow
as:

bm = / o @Y () dr =" b, / O (0@ (1) &r

= bubn = bn. (4.10)
n

In (4.10), we have used the orthonormality relation (4.5) for the system of eigen-
functions ¢, (r).

What we have learnt so far for the special case of solutions of the Schrédinger
equation for an electron in the potential box (eigenvalue equation: H on = Enen)
can be generalized (as mathematicians prove) to the case of a general, physically
proper (reasonable) operator £2 attributed to an observable £2.

A physically proper operator £2, thus, must have a system of orthogonal and
normalized (orthonormal) eigenfunctions ¢, (r) which solve the eigenvalue equation

Q¢ (r) = W, 0n(1). @.11)

According to Sect. 3.5, the eigenvalues w,, are, as measurement values, the possible
numerical results of a measurement of the observable §2. Apart from having an
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orthonormal eigenfunction system, a physically reasonable operator, thus, must have
real eigenvalues w,. Only real numbers can be the results of a measurement.

In order to guarantee both requirements for a physically reasonable operator, this
operator must fulfill the condition

/d3r P )2y (r) = /d3r (R¢)y = /d3r PS2*Y*. (4.12a)
Hereby 271 is called the adjoint operator to 2 if the following relation holds:
/d3r (2Fp) v = /d3r o Q2. (4.12b)

The adjoint is to an operator what the complex conjugate is to numbers. An operator
which fulfills (4.12a) is called Hermitian operator (or self-adjoint operator). If we
consider for such an operator beside

/d3r<p,’§f2<pn =wn/<p;,"<pn dr (4.13a)

the complex conjugate relation

/d3r PnS2* gy = ) / Orpn dr, (4.13b)
subtraction of both yields, because of (4.12a), (4.12b), the simple relation
wp — w, =0. (4.14)

The Hermitian property of the operator 2 (4.12a) guarantees real eigenvalues, that
is, an essential requirement for the operator to be physically reasonable.

Hermiticity of an operator also guarantees a system of orthogonal eigenfunctions,
as is easily shown. For two different eigensolutions ¢, and ¢, of a Hermitian operator
S}, we can write

Q(pm = WmPm, -é(pn = WnPn, (4.15)

/d3r 05 20, =wn/d3r @men and (4.16a)
3 * A _ 3 A%k % 3 *

/d 7 @820, _/d r (.Q %,,)‘Pn = wm/d T QP (4.16b)

Because of (4.14) subtraction of (4.16a) and (4.16b) yields
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0= (w, — wm)/d3r<pj;,<pn. (4.17)

For two different real eigenvalues w,, # w,, thus, the corresponding eigenfunctions
¢m and ¢, are orthogonal in the sense of (4.5). If several eigenfuntions possess one
and the same eigenvalue, they are called degenerate (the phenomenon: degeneracy). It
might easily be shown that degenerate eigenfunctions can be chosen to be orthogonal
to each other.

We summarize: Physically proper (reasonable) operators are Hermitian (4.12a),
(4.12b); they possess real eigenvalues and a system of orthogonal eigenfunctions.
These orthogonal eigenfunctions ¢, (r) can be normalized and they span a generalized
vector space, the Hilbert space. A general quantum state represented by a specific
vector of the Hilbert space, that is, a wave function v (r), can be expanded in terms of
a series of basis vectors ¢, (r) as shown in (4.9). In analogy to the 3D Euclidean space,
the weight b, (expansion coefficients), by which the eigenvectors ¢, (r) contribute
to ¥ (r), is calculated according to (4.10) as the generalized scalar product of ¢, (r)
and Y (r).

These general fundamental rules of quantum mechanics can only be applied to
a particular problem, if the corresponding system of generalized basis vectors, that
is, eigenfunctions ¢, (r) is complete. “Complete” means, all necessary basis vec-
tors (eigenfunctions) for the description (linear superposition) of a general vector
¥ (r) in that particular Hilbert space are contained in the variety of eigenfunctions
(coordinates) of the operator. Imagine, you want to represent a general 3D vector
in Euclidean space by its coordinates as in (4.8a). If in the mathematical formalism
one particular direction (unity vector a;) has been forgotten, the representation of a
general vector is not possible, because its component in a; direction does not exist.
The system of basis vectors is not complete. Such a situation must not occur for
a successful description of quantum mechanical phenomena. One, therefore, has to
require a complete, orthonormal system of eigenfunctions for a physically reasonable
operator. The mathematical expression for this requirement of completeness of an
eigenfunction system will be given later in Sect.4.2.

Instead, we want to elucidate the physical meaning of the expansion coefficients
by in the superposition (series expansion) representation of the wave function ¥ (r)
(4.9). A system is assumed to be in a quantum state described by the wave function
¥ (r) and a measurement of the observable 2 is performed. As outcome of such
an experiment we expect one particular eigenvalue w,, of the operator £2, which
one of all possible values can not be predicted with certainty. The specific result is
random. If we perform the measurement on an ensemble or if we repeat the same
measurement on one and the same system many times, we obtain, by averaging all
measured w, values, the expectation value (£2). A representation of (£2) by means
of an expansion in terms of eigenfunctions (basis vectors) ¢, (r) yields
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(2) =/d3r1/r*S§1/f :/d3r > b 2b,py

mn

= Zb;‘nbna)n/d3r<p:jl<pn =D b ba©adn
mn

mn

= > |bal*wn. (4.18)

This is exactly the expression (3.33) for a statistical average value. We conclude, that
|b,|? is the normalized probability for finding the numerical measurement result w,,
within the variety of all possible eigenvalues w,,.

The measurement of an observable §2 on a system being described by the wave
function ¥ (r, t) (its quantum state) forces the system into a new state, one of the
possible eigenvectors (states) ¢, (r) of the operator 2. The probability, by which
a particular eigenstate ¢, (r) is found after the measurement, is given by the term
|b,|?, where b, is determined through the series representation of the initial wave
function v (before the measurement):

Y 6) = D by(t)pa(r), (4.192)

¢, (r) are, of course, the time-independent eigensolutions of the operator 2. The
time dependence of v in (4.19a) expressed by b, (¢) follows, in the case of an energy
measurement, as that of a stationary solution of the Schrédinger equation exp(—iw,?).
b, () in (4.19a) can then be written as

bu(t) = by exp(—iwnt). (4.19b)

It is worth to emphasize: The §2 measurement changes the original wave function
¥ (r, t) into one of an eigenstate ¢, (r) of the operator £2 and the measurement result
is the corresponding eigenvalue w, of £2. This (previously somewhat mysterious)
phenomenon is called Reduction or Collapse of the wave function. The wave function
¥ (r, ) might be assumed as the result of a preceding measurement, where ¥ is
an eigenfunction of the corresponding operator. i is said to be prepared by this
preceding measurement.

4.2 Commutation of Operators: Commutators

The immediate question arises, if every measurement of an observable causes the
collapse of a given state vector (wave function). The answer is simple: A quantum
system is assumed to be in the state ¢, (r) which has been prepared as an eigenstate
of the operator A by measurement of the observable A. Subsequently, an observable
B is measured, the operator B of which has the same system of eigenfunctions ¢, (r)
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as A. The B measurement, then, can yield only one of the eigenstates ¢,, of B. The
eigenstate ¢, (r), however, has already been prepared by the A measurement; the B
measurement can do nothing else but yielding the same, already present eigenstate.
The state @, (r) persists, it does not collapse due to the B measurement.

We conclude: If two operators A and B (observables A and B) possess the same
eigenfunction system {¢,, (r)} the sequence of the two types of measurements can
be exchanged without collapse of the once obtained eigenstate (wave function). The
sequence of two measurements, B after A, is formally expressed by the sequential
application of the operators, i.e. the operator product AB. If two operators have the
same system of eigenfunctions, thus, their order of application can be exchanged.
What does that mean in detail? Lets assume A and B have the same eigenfunctions ¢y,
but with different eigenvalues a, and b,,. This means

Agn = angn, (4.20a)
By = bpgn. (4.20b)

From (4.20a), (4.20b), we immediately obtain
(AB — BA)py = Abugn — Bangn = anbu¢n — anbugpn = 0. @.21)
Thus, a new operator can be defined by
[A, Bl = AB — BA. (4.22)

It allows the distinction between operators which can or cannot be exchanged with
respect to their order of application. One also says, two operators commute with each
other or they do not commute. Accordingly the operator (4.22) is called commutator.

In (4.21), the commutator acts on a wave function and the result is zero. If this is
true for any wave function, we can say the commutator vanishes:

[A, B] = 0. (4.23)

Equation (4.23) means that the sequence of the A and B measurements can be inverted
without any influence on the given quantum state. The operators A and B commute,
that is, they have the same system of eigenfunctions. A vanishing commutator (4.23)
also implies that the two observables A and B can be measured simultaneously with
infinite precision. The observables are, therefore, also called commensurable. They
do not obey an uncertainty relation (Sect. 3.3) as for example, position and momentum
(3.20). Position and momentum are incommensurable observables and are subject to
the uncertainty relation ApAx & h. We prove the link between uncertainty relation
and incommensurability by calculating the commutator of the operators X = x and
p = (h/i)(8/9x) and applying it to a general wave function v (x):

A " . n h , h , h .
(X, Pl =xp ¥ — pXyY = —xy — —xyp — —p = ihy. (4.24)


http://dx.doi.org/10.1007/978-3-319-14669-0_3
http://dx.doi.org/10.1007/978-3-319-14669-0_3

4.2 Commutation of Operators: Commutators 97
Since this relation holds for any wave function i/, we can write the operator equation
[x, p]l = ih. (4.25)

As is shown here for the special case of position and momentum observables, we
can generally state: Incommensurable observables are described by non-vanishing
commutators as in (4.25). Such observables are subject to an uncertainty rela-
tion (Sect.3.3). The fundamentally random behavior of nature on the atomic and
sub-atomic level showing up in the uncertainty relation, thus, is reflected in non-
commuting operators in quantum physics. This is in contrast to classical physics,
where normal numbers as results of a measurement commute. The commutator rela-
tions (4.22)—(4.25) are, therefore, of paramount importance in quantum mechanics.
We will use them frequently in the following, when we try to derive, or better to
guess, quantum mechanical laws from classical relations.

4.3 Representation of Quantum States and Observables

In Sect.4.1, we have successfully used the analogy between the abstract Hilbert
space and the familiar 3D Euclidean space to describe quantum states in terms of
wave functions respectively vectors in the Hilbert space. In the following, we will
extend this analogy to learn some more details about quantum states and observables.

4.3.1 Vectors of Probability Amplitudes and Matrices
as Operators

So far, a quantum state has been described by a wave function ¥ as solution to the
Schrodinger equation. An equivalent description of a quantum state would be in
terms of probability amplitudes a,, which are the expansion coefficients in the series
representation of the same wave function [b,, in (4.8b) and (4.19a)]. These amplitudes
ap are, of course, only meaningful in connection with the system of eigenfunctions
(vectors) ¢, which are obtained, together with the eigenvalues A,, as outcome of
an A (observable) measurement on the state ¥ (r). This situation is described by the
equations .

Apy = Aygy, (4.26)

respectively

V=D ayp, witha, = / &rofy. 4.27)
n
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The probability to find the particular eigenvalue A, as the result of the A measure-
ment is, of course, given by the probability a;a, = la,|?. The set of probability
amplitudes (a1, a2, a3, a4, . . .) describes the quantum state equally well as the wave
function . Every information obtainable from i can also be derived from the set
of amplitudes a,. The description of a particular quantum state requires the whole
set of amplitudes, as only a probabilistic prediction about the outcome of a mea-
surement is possible. Each eigenvector ¢, with its amplitude a,, and the eigenvalue
A, might be the result. The set of amplitudes (aj, a2, a3, ...) represents a vector,
in this case with an infinite number of discrete components (also a finite number is
generally possible) in an infinite vector space, but in contrast to the i vector space
with continuous coordinates, here, with discrete coordinates.

We now want to find out, how a general operator Qs represented in the discrete
vector space of the amplitudes (aj, az, as, ...). For this purpose, we calculate the
expectation value (£2) in the state (wave function) i/ given as an expansion in the
eigenfunctions ¢j,:

(@) = / &y (099 (1)

= > ana / &repQRe0 = ayLunan, (4.28)
mn

mn

£, are, hereby, the elements of a quadratic arrangement of complex numbers, which
is called a matrix 2 = {£2,,,}, that is,

211 212 213

271 $22

2= with 2, = / dr ¢k 2, (4.29)

In this representation, the expectation value (§2) can be written as a product of the
matrix {$2,,,} with the vector (a1, a3, a3, . ..) and subsequently multiplied from left
with the vector (aj, a3, a3, .. .), that is,

.Qu 912 aj
(.Q):(a]k,a;,a;(,...) 221 $299 ... a | . (4.30)

In this context, one should remember the formalism of multiplying a 3D quadratic
matrix with a 3D vector and the multiplication of two matrices with each other:

Qi o a3 B1 Vi
a1 a2 Q23 Bl=1»r]- (4.31a)
a3 a3z a3z B3 V3
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The resulting y vector components are defined as y» = 2181 + a2282 + @23 83 and
analogously y1 and y3.

il Q2 a3 Bt Bz Bi3 Yi1 Y12 Y13
Q03 Bat B Bz | =| v v2 v23 (4.31b)
3] Q3 033 Bs1 B2 B33 V3l V32 V33

with y22 = a21B12 + @22822 + @23 832 and in analogy the other y;;.

Again, we remind, that the order of the matrices is essential in the calculation
of their product. Matrices, generally, do not commute. This is similar to operators
when applied to a wave function (Sect.4.2). We recognize the analogy between the
formal description by means of operators and wave functions and that using matrices
and vectors of probability amplitudes. The first formalism called Wave Mechanics
was invented by Schrodinger, while the approach to quantum physics by means of
discrete matrices and vectors dates back to Heisenberg and was sometimes called
Matrix Mechanics. Here, we have shown, that both approaches are equally well suited
for the description of single particle quantum dynamics.

Next, we want to examine how two mutually adjoint operators are represented as
matrices in the discrete space (alsoa partlcular Hilbert space) of probability amplitude
vectors. The operator 21 is adjoint to 2 if

/d3r (2T9) "y = /d3r<p*9¢. (4.32)

By expanding ¢ and ¥ in terms of a series of orthonormal eigenfunctions ¢,
that is,

0= apn, V= bupm (4.33)
n m

we obtain for the right side of (4.32)

Za;(/ d*r g} szwm) m= D ar2umbm. (4.342)

nm nm

and for the left side, respectively

Za;[/ &*r g (£27)" (pni| = Za*.Q* bm (4.34b)

By comparison of (4.34a) with (4.34b), we realize that two mutually adjoint operators
are represented in the vector space of probability amplitudes by two matrices, in
which rows and columns are exchanged (transposed matrices) and the elements are
the complex conjugate of each other. The matrix representing 21 is the transpose
conjugate of the matrix representing 2
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Qum — 2. (4.35)

Physically proper operators are self-adjoint or Hermitian, that is, they obey the rela-
tion 21 = 2 (4.12a). Correspondingly, their so-called Hermitian matrices obey

2y = Q2un. (4.36)
Also the fundamental dynamic equation of quantum mechanics, the Schrodinger

equation ihyy = H ¥ (3.50), (3.51), is transformed into a matrix equation by inserting
the expansion of i in terms of an orthonormal eigenfunction system {¢, }:

ih > an () = D ay(t) Ho(r). (4.37)

After multiplication of (4.37) with ¢, from the left and integration over the volume
of the system, we obtain:

ihZézn(I)/d3r 0 on = ithn(Smn = Zan(z‘)/d3r ¢ Hep,, (4.38a)
n n n

that is,

iRy (1) = Z Hpnan (1). (4.38b)

Equation (4.38b) is a system of coupled differential equations for the probability
amplitudes a, () which are obtained as results of a measurement of the observable A
(4.26), (4.27), with

Hyp = / &*r ¢ (1) Ho, (r) (4.39)

as the matrix elements of the Hamilton operator H in the eigenfunction system {¢j, }
of the operator A.

For time-independent problems, only the time-independent Schrodinger eigen-
value equation (3.57) must be solved. The representation of the Schrédinger equa-
tion H Y (r) = E¢(r) in terms of the matrix formalism is obtained by inserting the
series expansion of ¢ in eigenfunctions ¢,, multiplication with ¢, from the left and
integrating over the volume of the system:

D an / EropHon=E ay / Gnon &> = Eay, (4.40a)
n n

Z Hynan = Edy,. (4.40b)
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In (4.40b), the matrix H = ({H,,} is multiplied with the amplitude vector
(a1, az, as, ...) and the reﬁlting vector is represented as the same vector, only multi-
plied with the energy eigenvalue E. As described in (3.48) this is a typical eigenvalue
problem of linear algebra. The solution aims at finding a particular set of eigenvectors
(ay, az, az, . ..) with corresponding eigenvalues E. The analogy to the eigenvalue
problem in the operator, eigenfunction formalism (4.26) is obvious.

We will see in the following that the matrix formalism of quantum mechanical
relations might simplify the model description of certain problems considerably
by intuitive assumptions about the matrix elements H,,, of the Hamilton operator.
This is particularly true for so-called 2-level systems (Sect. 6.5), where simplifying
assumptions about the underlying physics reduce the dimension of H,,,, down to two.

The matrix eigenvalue problem for the energy (Hamilton) operator (4.40b) is
only one special example of the general class of eigenvalue problems which are
obtained from the representation of the general operator equation QY = oy (3.49)
in terms of the matrix formalism. By expanding the wave function ¥ in terms of
the eigenfunction system {¢, } and performing a calculation analogously to (4.40a),
(4.40b), we obtain the matrix equation

> Qunan = way, with 2, = / ar ¢ 2o, (4.41)
n

Witha = (ay, a, a3, . . .) as the amplitude vector, (4.41) can be written in a compact
form as

ga = wa. (4.42)
With
1 0 0 O 0 0 O
1=lo o 1m0 0] (443
as unity and zero matrix we obtain from (4.42)
(2-wl)a=0 (4.44a)
and respectively,
a=(2-oh)0. (4.44b)

At this point we want to remind the solution of this eigenvalue problem of lin-
ear algebra a little bit more in detail: The vector/matrix equation (4.44b) can only
have non-trivial solutions for the eigenvalues w if the inverse matrix (2 — wl)~!
approaches infinity (exactly: their single elements). What does that mean in detail?
Let us consider the calculation of an inverse matrix.
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The inverse matrix M~ of a matrix M is defined by MM~ = 1. It is calculated

from M by the rule o B
S T

M = M.

= det M=

(4.45)

Hereby, g is the so-called cofactor matrix. Each matrix element 1\7Il~ j is calculated
by the following multistep procedure:

e Remove the ith row and jth column of M.

e For each i, j index doublet the remaining matrix elements form a so-called sub-
matrix with one dimension lower than M.

e Calculate the so-called minor determinants A; j from these submatrices, supply
them with a sign according to (—1)'*/A; ; and form a new matrix with these
elements (checkered change of signs).

e Transpose this matrix of minor determinants by exchanging rows and columns and
obtain the element ]l71i ; of the cofactor matrix.

The following two-dimensional example shall clarify the procedure. From the matrix

(> B
M = ( Y 5) (4.462)
we calculate the matrix of minor determinants with alternating (checkered) signs
s —
1 _ 14
M = (—ﬁ o ) . (4.46b)

The one-dimensional minor determinant, in this case the simple number § in (4.46b),
follows from (4.46a) as the remaining element after removing the row o, 8 and the
column ¢, y. g in (4.46b) is transposed and we obtain the cofactor matrix

i = ( s =P ) . (4.46¢)
With det g = ad — By, we obtain the inverse matrix
1 _

M=—— (% 7Y (4.46d)
= ad—Bs \—B «

The proof simply follows as

w6 2)
— as—By \y ¢ -y«

. 1 (0{8—,3)/ —ot,B—i—aﬁ)
a8 — By \¥8 =38y ad— By

Il
/N
O =
—_ O
v

Il

1=

—

&

N

~J

N’
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Because of (4.45) equation (4.44b) has non-trivial solutions for the eigenvalue w
only if
det(£2 —wl) =0. (4.48)

For a 3 (n) dimensional matrix £2 the determinant in (4.48) is a polynomial of 3rd
(nth) order. The so-called characteristic equation (4.48) to the eigenvalue problem,
thus, has 3 (n) solutions for w, the eigenvalues w1, wy, w3, . ... The eigenvalue equa-
tion (4.42) fixes the eigenvector only up to an overall scale factor. Multiples of an
eigenvector are not treated as distinct eigenvectors. The eigenvectors a are calculated
from (4.42) by inserting the different eigenvalues w;. Subsequently, the eigenvec-
tors are normalized in order to fulfill the basic quantum mechanical normalization
condition.

4.3.2 Rotations of Hilbert Space

In the Euclidean 3D space, one and the same vector a can be represented, of course
with different Cartesian coordinates, in infinitely many, mutually rotated coordinate
systems. A rotation of the coordinate system keeps orientation and length (= |a|'/?)
of the vector unchanged. The coordinates in the different mutually rotated coordinate
systems are, therefore, connected with each other through a transformation matrix
(rotation matrix) which is attributed to the corresponding rotation. For a rotation
of the (x, y) coordinate system into the (x’, y') system by the angle ¢ about the z
axis, the situation is shown in Fig.4.1. The relation between corresponding vector
components is expressed by a rotation matrix containing sin ¢ and cos ¢ elements:

a') [ cosg sing a\ _( acosg+bsing (4.49)
b)) \—sing cosp J\b)  \ —asing+bcosgp ]’ ’

Because of sin” ¢ + cos? ¢ = 1 the squared modulus, that is, the length of the vector
is conserved upon rotation:

a> + b2 = (acosg + bsing)” + (—asing + b cos ¢)?
=a’ + b (4.50)
Equation (4.50) results from the orthogonality of the rotation matrix: their rows and

columns assumed as vectors are mutually orthogonal. Furthermore, if we mirror the
rotation matrix at its diagonal, we obtain the inverse matrix (see Sect.4.3.1).



104 4 Quantum States in Hilbert Space

Fig. 4.1 Representation of a
vector a in the Cartesian

x, y-coordinate system and
in the tilted x’, y’-system
(rotation angle ¢)

Analogous properties can be derived for the abstract vectors (ay, az, as, ...) of
a quantum state in the Hilbert space. A general state, given in terms of a wave
function ¥, can be expanded in two different eigenfunction systems, for example,
{en} and {¥,} being eigensolutions to the operators A and B, respectively. Apart
from (4.26) we, thus, have in addition

éwn = ann- (451)

¥ can be expanded in both eigenfunction systems as follows:
Y= Zan(p,, with a,, = /d3r ony, (4.52a)
n
Y= buYm withb, = / &ryty. (4.52b)
m

We can construct the connection between both representations of ¥y by expanding
the eigenfunctions v, in terms of the functions ¢,:

Ym =D Tungn With T, = / a&r ol . (4.53)
n

Hereby, the expansion coefficients 7;,, form a transformation matrix, the properties
of which we want to elucidate a little bit more in detail. We can represent the relation
(4.53) also in terms of the vectors {a,} and {b,} of probability amplitudes (4.52a),
(4.52b). For this purpose, we multiply the complex conjugate relation of (4.53) with
¥ (r) and integrate over the volume of the system:
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b = /d3r Y= Tm*n/d3r¢;¢ = > Tr.an. (4.54a)
n n

The transformation recipe between the two representations of ¢ in probability ampli-
tudes is, thus, given by

by = Z T* ay. (4.54b)
n

In analogy to 3D space (4.50), the state vector ¥ (r) in Hilbert space must have the
same length (modulus) in both coordinate (eigenfunction) systems {¢,} and {y,}.
This requires:

/ Fry*y =" aran / & @rom = D brbm / &Er Y. (4.55a)
nm

nm

We have used the expansions of ¥ in terms of ¢, and ¥, (4.52a), (4.52b). Because
of the orthogonality of both eigenfunction systems, we directly obtain

Z a‘a, = Z b¥b,. (4.55b)
n n

Equation (4.54b) inserted into (4.55b) yields:

Za:an = Z Tum T,y oy Gy - (4.56)
n

nmm’

The condition of equal length of the vector in the two representations (4.55b) requires
for the transformation matrix 7':

> T Tum = Swim- (4.57a)
n

By comparison with (4.31a), (4.31b), we realize that the order of indices n and m
in (4.57a) is not correct for the calculation of a matrix product. Summation has to
be performed over the inner indices as in (4.31b). In order to write (4.57a), (4.57b)
as a matrix product, the indices in Tn*m, have to be exchanged, the matrix must
be transposed. Then, (4.57a) means that the matrix 7 multiplied from left with its
complex conjugate and transposed yields the unity matrix. We have encountered such
matrices already earlier. They belong to mutually adjoint operators (4.32)—(4.36).
Usually they are denoted by the symbol 7", such that (4.57a) is written as

I'T=1 (4.57b)
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Matrices (or transformations) 7 which connect different eigenvector systems for
the representation of a general state vector with each other obey the relation (4.57a),
(4.57b). They are called Unitary Matrices or Transformations. Due to (4.57b), unitary
matrices fulfill the following relations:

T'rrf =17, (4.58a)
rr=11"=1 (4.58)

respectively, ] .
I =1 (4.59)

Unitary transformations or matrices mutually transform different representations
(4.52a), (4.52b) of one and the same state vector 1 (r) in different Hilbert spaces.
They describe how measurement results of an observable A transform into results of
a measurement of another observable B. The different Hilbert spaces are spanned by
different eigenfunction systems {¢,} and {,,} which are the possible new quantum
states after an A and a B measurement, respectively. In analogy to the situation in
the 3D Euclidean space (4.49), Hilbert spaces belonging to different measurements
(observables) are said to be rotated against each other.

4.3.3 Quantum States in Dirac Notation

In the preceding section, we have seen that a state of a quantum system described
by a wave function ¥ (r) might be represented in different eigenfunction systems
(4.52a), (4.52b):

V@) =D anpn =D b, (4.60)

Hereby, the Hilbert spaces spanned by {¢,} and {1, } are rotated against each other.
As for rotations the modulus of the state vector i (r) is conserved upon rotation
(4.55a), (4.55b):

/ Eryr@y) =D ara, = bib. (4.61)

It is always one and the same quantum state, which is concerned, independent of its
particular representation, be it in the continuous coordinates r (integral over ¥ *r
is analogous to a sum, Sect.4.1) or in the discrete vector space of the probability
amplitudes a, and b,. The different representations are analogous to the situation
in Fig.4.1, where one and the same 2D vector a can be described by its coordi-
nates a, b or by a’, b’ in the rotated coordinate system. The notation a, hereby, is
a description of the vector which is not dependent on a special coordinate system;
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it is very well suited for a mathematical formalism of great generality. In analogy,
Dirac (1902-1984), one of the founders of quantum theory, has invented an elegant
general description of quantum states, which is independent of the coordinate (eigen-
function) system [1]. Rather than expressing a quantum state as in (4.60) in terms of
its wave function or different components a, or b, in Hilbert spaces of probability
amplitudes Dirac denotes a quantum state by the general and abstract symbol |¢/).
This symbol describes the quantum state in an abstract way as does the solid symbol
a for an abstract vector in 3D space. In both cases the notation is independent on a
particular coordinate (eigenfunction) system. As our Hilbert spaces are dual spaces
with complex numbers and functions, the following correlations are defined:

ai

aj
V= a | V), (4.62a)
vt = (af,a3,dd,.. ) = (V. (4.62b)

From (4.62a), (4.62b), the following expression for the scalar product, the modulus,
of ¢ (4.61) is obtained:

Wi = [ @@ = X ala, (4.63)

The expression (¥ |1r) looks like a bracket. Dirac, therefore, called the left part (|
a bra vector and the right part |) a ket vector. Bras and kets are mutually complex
conjugate and transposed vectors within a general Hilbert space, without making
notice to any special representation in a particular space. The bra-ket notation of
quantum states is, thus, independent of any special representation, it describes a
physical state of a system in a most general and abstract way. But we will see, that
calculations based on bras and kets are quite easy to handle, if we apply some simple
algebraic rules.

A scalar product of two wave functions ¥ and ¢ is formed in the bra i and ket ¢
notation as

(W) = / &ryte. 4.64)

Accordingly the expansion of a wave function ¥ in terms of eigenfunctions ¢, is
written in Dirac notation as

W) =D anlen) = D anln) witha, = (n|y). (4.65)
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In the last term of (4.65), acommon way of denoting a quantum state in the bra-ket
formalism is used: Rather than using the expression |¢,) only the quantum number
n of the state is written into the ker symbol. This is sufficient, since the bra-ket
formalism is independent on any coordinate system. Of course, the context, in which
the quantum numbers n are defined, must be known. We will see in Sect.7.4.3 that
even large macroscopic systems as a living animal, a cat, can be inserted into the ket
symbol (|cat)), as long as they are considered as complex multidimensional many
particle quantum systems.

With respect to (4.65), it should be emphasized again, that the probability ampli-
tude for finding the eigenstate |n) in an A measurement on the V ket is the projection
of |Y) into the |n) direction, namely (n|y). Using solely the quantum number 7 in
the ket symbol the eigenvalue equation for the operator A is written as

Aln) = Ayln). (4.66)
The orthonormality of the eigenfunctions ¢, is expressed in Dirac notation as
(m|n) = Smn. (4.67)

Also the condition for completeness (Sect.4.1) of an orthonormal eigenfunction
system {¢,} can be written down in a very elegant way. In a complete system, all
eigenvectors |n) necessary to expand any vector |¢) in the Hilbert space do exist.
By means of (4.65) we, thus can expand the i ket as

=Zan|n>=z (nly)In) = Zm Y nly). (4.68)

For a complete series representation the right side of (4.68) must equal |), that is,
the completeness condition for the system of eigenkets |n) is obtained as:

> Inynl =1, (4.692)

where 1 is the unity operator or the unity matrix in a discrete Hilbert space.

The operator |n)(n| in (4.69a) looking like a butterfly is called projection operator
P, for the |n) ket. It projects the vector |yr) onto the eigenket |n), that is, it filters
out from [1) (4.65) specifically the |n) direction with its component a,, (probability

amplitude):
Puly) = Zan Zan i) |n’)

= Za,, 1)8p = ann). (4.69b)
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In Dirac notation matrix elements £2,,,, (complex numbers) in the eigenfunction
system {¢;,} of an operator §2 are expressed as:

(m|2|n) = (P |21pn) = / &*r ¢ 2pn = 2un. (4.70)

From (4.32), we conclude that for the adjoint operator 2% to £2 the matrix elements
in Dirac notation must obey the relation

(m|21n)* = (n|27 |m). 4.71)

By twofold application of the completeness relation (4.69a), any operator £2 can
be represented by its matrix elements (4.70):

Q2= Zm (n|2]m)(m| =" (n|$2|m)|n)(m|

nm

- Z Qpm|n)(m (4.72)

Using (4.71) and (4.69a), (4.69b), a relation between ket [} and bra(y’| and the
action of an operator 2 can be derived. For this purpose, we assume

lv') = 2ly) = Zm (n|2|y) (4.73a)

and obtain for the corresponding bra vector:

(W=D tnlnl21y)* =D (nl(y|27|n)

n

=> (W2 )| = (y|2". (4.73b)

The action of an operator §2 from left on a ket is equivalent to the action of the adjoint
operator 21 from right on the bra.

The Dirac bra-ket notation of quantum states in a very general way, without
notice to any special Hilbert space, allows a very elegant representation of quantum
mechanical formulas. Quantum theoretical calculations often seem like a game with
bra and ket symbols. One has to keep in mind the formulas (4.64), (4.65), (4.67) and
particularly (4.69a), (4.69b) in order to play this game.

In the following, we will use all kind of representations of quantum states and
operators, depending on what the most comfortable way for the solution of the
problem they offer. The Dirac notation, however, often is the most compact and
comfortable formalism.
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4.3.4 Quantum States with a Continuous Eigenvalue Spectrum

For confined states of an electron in a potential box (Sect.3.6.1), the spectrum of
eigenstates and eigenvalues is discrete, that is, they are numerable by discrete quan-
tum numbers n. For electrons propagating in free space, however, as they tunnel
through barriers or surmount potential steps, the quantum numbers, their wave vec-
tors k lie densely, they form a continuous spectrum (Sects. 3.6.3, 3.6.4). The reason
is the infinite extension of the physical system, the free space. Also an electron
localized in space by a propagating wave packet (Sect. 3.2) is described by a dense,
continuous variety of k vectors or wave numbers k [distribution a(k)] which build
up the wave packet.

In all these cases, we can formally evade the problem of a continuous eigenvalue
spectrum by assuming a large macroscopic cubic box with length L as physical
system rather than considering the infinite space as the definition volume. By using
periodic boundary conditions (3.67) we, then, obtain a discrete quantization of k
values (3.63), but with a quasi-continuous spectrum. In this case integration over the
k space always requires the following substitution:

L3 :
g / &Sk — Z (4.74)
k

For discrete spectra of states, the formalism considered so far is sufficient. Mathe-
matical problems arise when we try to describe series extensions, orthogonality of
eigenvectors etc. for systems with continuous eigenvalue spectra.

Let us consider the momentum operator p = (h/i)d/dx as an example. In infinite
space, its spectrum of eigenvalues is continuous. Its eigenvalue equation

h d .
Ta V) =p¥p(x) or plp) = plp) (4.75)

is solved by familiar plane waves ¥, (x):

Yp(x) = ﬁeipx/h- 4.76)

Because of their property of being eigensolutions of (4.75), the v, (x) functions
form an orthonormal complete functional basis with a continuous eigenvalue (p)
spectrum. In the orthogonality (4.67) and completeness (4.69a), (4.69b) relations,
therefore, the sum over discrete quantum numbers must be replaced by an integral
over x and p, respectively, that is:

1 . /
Wplvp) = (plp') = / dx Y50y () = o— / du =PI (4.77a)
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1 ,
/dp|p><p|=/dp1/f;(x’)1/fp(x) o dp PR (4.77b)

According to (4.67), (4.69a) and (4.69b), respectively, both relations (4.77a), (4.77b)
must yield an expression which is in some way similar to “one”, in the sense of the
Kronecker symbol §,,, (4.5). More precisely, {p|p’) (4.77a) must equal a normal-
izable expression for p = p’, otherwise it should be negligibly small. Analogous
behavior must be given for (4.77b) when x = x'.

The solution to the problem becomes obvious when we consider the Fourier
expansion of a function f(x) as it was used for the description of a wave packet
(Sect.3.2).

With g(k) as the densely lying, continuous expansion coefficients one has:

fx) = dk g(k)e**. (4.78a)

7l

Hereby the Fourier transform g (k) is written as

g(k) = dx’ f(x')e " (4.78b)

=

If we insert g(k) from (4.78b) again into (4.78a), exchange of the integrals yields:

fx) = /dx/ f(x/) [%/dk eik("_x,)]
= /dx/ f(x)s(x —x'). 4.79)

The integral on the right side must again equal the function f(x). Under what con-
ditions is that possible? Let us consider the situation a little more in detail.
8(x — x") was used in (4.79) to denote the following expression:

ik(x—x") |00

S(x —x') = 1/ dieike—) — 1 ¢
2 21 (x — x') | _o

_ l lim |:smk(x —x )]' (4.80)

T k—oo| (x —x')

The corresponding graph of the function sinkx/mx in Fig.4.2 suggests that for
increasing k values (k = 50, 100, 200 in Fig.4.2) this function approaches an infi-
nitely high peak at x = 0 (for k — 00). Simultaneously, the oscillations around the
x axis get higher and higher frequencies. In the limit k — oo, we expect densely
lying nodes on the x axis, that is, an extremely fast variation of positive and negative
functional values. An integral as in (4.79), thus, would be canceled outside the posi-
tion x = 0. Atx = 0, the functional value is regained in the integral. The expression
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Fig. 4.2 Graph of the

function sin kx /7 x for k 60

values k = 50, 100, 200. In 504 — k=200
the limit k — oo this ) — k=100
functional series represents 401 sinkx/7x — k=50

the delta function
(distribution) §(x)

(4.80), thus, represents a series of functions (for increasing k values) for which in
the limit k — oo the following relation holds:

f0) = /OO dx f(x)é(x) (4.81a)
respectively,
fx) = /dx’ F(x)s(x —x'). (4.81b)

Only in this sense the identity between left and right side of the relation (4.79) is
understood. Dirac has introduced this expression §(x — x’) into the physical and
mathematical literature. It is called Dirac delta function, even though it is not a well
defined function in the strict sense. The delta function is only defined by an integral
relation as in (4.81a), (4.81b). Apart from (4.80) a number of other functions can
fulfill (4.81a), (4.81b), for example,

R
5(x — e ] (4.82)

1
Y = — lim
=z im| 75
Beside (4.81a), (4.81b) the delta function obeys the relations:
S(X — x/) =0 forx #x/, (4.83a)

/ S(x —x)dx' = 1. (4.83b)

—00

Expressions which are represented by series of functions, but which obey, as the delta

function, integral relations as (4.81a), (4.81b) and (4.83b) are called distributions.
The analogy of the delta function for a continuous distribution of eigenvalues with

the Kronecker symbol §,,, for a discrete distribution of m, n is obvious from (4.83a),
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(4.83b). According to (4.80) the right sides of (4.77a), (4.77b) and (4.80) are exactly
the representations of 8 (p' — p) = 8(p — p’) and § (x" —x) = 8(x —x'), respectively.
Using the delta function, we can write the normalization and completeness conditions
for bras and kets with continuous p and x eigenvalues as

{p|p)=3(p—p'), (4.842)

/dp Ip)(pl =8(x —x'). (4.84b)

It should again be emphasized that the boundary conditions are important for the
fact that the normalization condition for the p kets is written as in (4.84a) for infinite
space or as (p|p’) = 8,y for an electron confined in a potential box (Sect.3.6.1).

As a further example of a continuous eigenvalue spectrum, we consider the posi-
tion operator x. In Dirac notation, the eigenvalue equation for the position kets |x”)
with eigenvalues x’ is written as

£)x) = x|x). (4.85)
The orthonormality of the position states is expressed as:
(x|x") = 8(x — x). (4.86)

Equation (4.86) can also be understood as the position representation of a position
state |x’), namely the projection of |x”) on the position basis vector |x). The delta func-
tion implies that in this case of a position measurement [eigenvalue equation (4.85)]
the particle position is sharp, well defined, namely exactly at x". For an expansion of
a general quantum state |) in terms of position eigenstates |x’), we obtain:

lv) :/dx/g(x/)|x/) :/dx/(x’|¢)|x/). (4.87)

g(x’) = (x'|¥) is the probability amplitude to find an electron exactly at the posi-
tion x’, i.e. the familiar wave function v (x’) in the common Schrédinger picture.
We, thus, learn that the wave function ¥ (x) is nothing else but the representation
of a general quantum state in the special Hilbert space of position eigenstates of the
X operator. In this context, the time-dependent wave function v (r, 7) of stationary
states is written as

(r, 1) = x|y, 1), with |y, 1) = e E/ Py, (4.88)

In Dirac notation the Schrodinger equation reads

ih%hﬁ, 1y = H|y, 1). (4.89)
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In order to make contact to the familiar Schrodinger equation (3.51), we have to
transform (4.89) into the position representation, i.e. we must multiply (4.89) from
the left with the time-independent bra(x|, the position eigenvector. This means that
we select from the general vector |, ¢) the particular component in (x| direction by
projection on this direction:

9 .
iho ([ 1) = (x| H Y 1). (4.90)

The left side of (4.90) the position representation (x|, t) already represents the
time-dependent wave function ¥ (x, t). On the right side, we apply the completeness
relation

/dx’ |x’)(x’| =1 (4.91)

and obtain

iha g (0 = / dx’ (x| A |, 1), (4:92)

(x| H |x’) is the Hamilton operator in matrix representation in the continuous Hilbert
space of position eigenvectors |x). How does this matrix element look like? To
evaluate the matrix element, we remember that the eigenvectors |x’) of the position
operator X in position representation are given by delta functions § (x —x’). In analogy
to the calculation of matrix elements £2,,, in discrete Hilbert spaces (4.29), (4.70),
we construct the element as

(x|ﬁ|x’)=/d§5(x — O HE)S(x — &), (4.93)

where H (&) is the familiar Hamilton operator (3.50) for a particle. Using the rules
for calculations with delta functions (4.81a), (4.81b) we obtain, by inserting (4.93)
into (4.92), the following result:

i) 5
iy (x, 1) = /dx’dg §(x —)HE)S(x' — &)y (v, 1)
= /dx’a(x —x)H(X )y (¥, 1) = Hy (x, 0). (4.94)

As we have expected, this is the familiar Schrodinger equation (3.51). The calculation
clearly demonstrates, that the Schrodinger equation is nothing else but the position
representation of the equation (4.89) in generalized Dirac notation.
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4.3.5 Time Evolution in Quantum Mechanics

A physical theory must allow predictions for the future, once the present state of a
system is sufficiently well defined. In classical mechanics Newton’s dynamical laws
or the Hamilton equations (Sect. 3.4) predict the future development of a mechanical
system of mass points with known initial conditions (position and velocity) unequiv-
ocally. In quantum mechanics the Schrodinger equation (4.89) yields the necessary
information about the time evolution of a quantum state |, ¢). Since in (4.89) the
first time derivative appears, only the initial state |1, 1 = 0) must be known as initial
condition for the description of future states. Although the wave function allows only
statistical statements about the outcome of random physical events, the prediction
of the wave function, that is, the basis of the statistical description, is determinis-
tic and well defined by means of the Schrodinger differential equation (4.89). In
the Schrodinger picture, also in Dirac notation, the quantum state [, 7) iS time-
dependent; one could also write | (2)).

Assuming a time-independent Hamilton operator H in the Schrodinger equa-
tion (4.89), we obtain from

9 .
iﬁg’l/f(l‘)) =H|y (1)) (4.95)

by formal integration

lv () = exp(%ﬁt) [y (0)) = Uy (0)). (4.96)

Hereby, we have treated operators and vectors in Hilbert space as if they were ordinary
normal numbers. One can attribute an operator function f (£2) to a an ordinary
function f(w), if simultaneously the commutation rules of operators are respected.
For a time-dependent Hamilton operator H (1),e.g., H (1) at a later time #; > fq does
not commute with H (t0). Under those conditions (4.96) does not solve (4.95). The
correspondence between (4.95) and (4.96) is due to the time independence of H.
The operator function U= exp(—iI:I t/h) is defined by the series expansion of the
exponential function, that is, by sequential multiple application of the Hamiltonian H:

U = exp(—iH1/h)

g 1 (i 2ﬁﬁ+1 —it 3161;};} (497)
- h 21\ h 3\ & '

Since usually normal functions can be expressed in terms of series expansions, the
corresponding operator functions are defined as well by these series, analogously to
(4.97). Important examples are the operator functions sin 2 and cos 2 (Sect.5.6.2).

The operator U (4.97), which describes the temporal evolution of [ (0)) into
[ (1)), is illustratively called propagator. What can we learn about this propagator?
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H is an Hermitian operator, i.e. according to (4.12a) it obeys the relation
/ $Sro*HyYy = /d3r (Ho)*y. (4.98)

The operator U, now, is represented in a series with multiple application of H (4.97).
Therefore U obeys the relation (4.98), too, 1t is Hermitian. In addition it is obvi-
ous that U0 = 1, that is, the propagator Uisa unitary operator. According to
Sect.4.3.2, the temporal evolution of a quantum state |y (¢)) is, thus, described by
a rotation of the corresponding state vector in Hilbert space. The vector |y (0)) is
rotated during the time ¢ into |1/ (¢)), while the length of the vector, the modulus,
stays constant:

(VOly®) = (¥ O]y ) (4.99)

In this context, it should be emphasized again, that in spite of a time-independent
Hamiltonian H, that is, a stationary physical problem, the state vectors (wave func-
tions) are dependent on time according to (4.88). They are usually represented in
“coordinate systems” of the time-independent eigenvectors |n) of the Hamilton oper-
ator. This is a procedure familiar to us from classical dynamics in 3D Euclidean space
where motions of particles are described in time-independent coordinate systems.
Imagine how complicated the description of the change of a 3D vector would be in
a time varying coordinate system.

In order to elucidate the time evolution in quantum mechanics, a little bit more we
start with the representation of the propagator U in terms of its matrix elements Uy, :

U= Zm (nle” th Z|n i {

nm

_Z|n ~HEnt (nm) (m| = Ze—%En’m)(m. (4.100)
n

Hereby |n) are the eigenkets of the H operator and the orthogonality (n|m) = &,
is used.

The time evolution of a quantum state corresponds to a rotation of its state vector
in Hilbert space. An appropriate economical description of the time evolution of a
state might, therefore, be possible if the coordinate system (eigenstate basis) also
rotates, but with the same speed as do the vectors of the quantum states. In such
a rotating basis the state vectors would appear as “frozen” or fixed, in contrast to
| (¢)). In contrast to the formalism used so far, the operators attributed to a particular
measurement will become time-dependent. This change in the formal description of
a measurement must, of course, leave all measurement results, in particular, the
expectation values (W|Q|1ﬂ) unchanged.

We, therefore, calculate this expectation value by use of (4.96):

(W] 2]y ®) = (W O |erH 2e=H1 |y 0)). (4.101)
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In this expression (4.101), we have shifted the formal description of the time evolution
from the state vector | (¢)) to the operator which is now time-dependent. The time-
dependent operator characterized by a double roof symbol is obtained as

Q) = er M Qe wHl, (4.102)

In this formalism the state vectors | (0)) do not depend on time any more, they
coincide Wlth the initial state vectors (4.96) used so far.

Since H commutes with itself, it also commutes with exp(lH t/h) (multiple appli-
cation of H) and we obtain the time- dependent Hamilton operator as:

H=cihe—nlll — . (4.103)

The Hamilton operator itself is not affected by the change of formalism, it remains
unchanged upon switching from time-dependent state vectors to time-dependent
operators. It is not important for the underlying physics if the coordinate system of
eigenkets or if the state vectors |i) rotate.

In the formalism of time-dependent state vectors |y (7)) the fundamental dynamic
equation is the Schrodinger equation (4.89). The picture of time-dependent operators
requires an equivalent dynamic equation, which controls the time evolution in quan-
tum physics. For its derivation, we differentiate a general time dependent operator

9] (4.102) with respect to time:

d 2 d, ip, » i i ~2 2 A

— e i Qe wHy = Z(AQ — QH),

dr dt( ) h( )

dfz i[1f1 193 (4.104)
dr Bt '

In case, §2 contains an additional explicit time dependence, for example, due to a

time-dependent potential, a further term (i/ h)as2 /0t has to be added in (4.104).
The dynamical equation (4.104) for time-dependent operators is called Heisenberg
equation. The time derivative of an operator is given, there, by the commutator of
that operator and the Hamilton operator.
An important consequence of the dynamical equation (4.104) concerns the time
evolution of an operator which commutes with the Hamilton operator. For this case,

we conclude £2 = £2 and d§2/d¢ = 0. The observable belonging to that operator is
a constant of the motion.

In later sections about many-body systems and the quantization of fields, for
example, the electromagnetic field (Chap.8), we will encounter essentially time-
dependent operators and timely fixed state vectors. In this context, the Heisenberg
picture of quantum mechanics is of paramount importance. For economical reasons,
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we will then denote time-dependent operators (4.102) with only one roof symbol as
usually. From the context it is easily seen whether time-dependent Schrodinger state
vectors |1 (1)) or time-dependent Heisenberg operators are concerned.

4.4 Games with Operators: The Oscillator

The harmonic oscillator is a model system with great importance in many branches
of physics, both in classical mechanics and in quantum physics. Classical oscillating
systems are, for example, the pendulum, a vibrating violin string, a vibrating rod fixed
at one end or a mass coupled by a spring to a support. In quantum physics, typical
examples of an oscillator are atomic vibrations in molecules and in solids or of ions
in magnetic and electrostatic potential wells. Furthermore, the dynamic equation of
the harmonic oscillator, both of the classical and of the quantum mechanical one,
can be solved analytically and the solution is represented in compact analytic form.
The oscillator model, thus, yields a simple system, where we can train our ability to
apply operators and the commutation rules of quantum mechanics. “Playing” with
operators in this context will supply us with some feeling what is it all about with
quantum calculations.

4.4.1 The Classical Harmonic Oscillator

In its simplest form, the classical harmonic oscillator is realized by an oscillating (in
one direction: 1D) mass which is coupled to a fixed position by a spring. For small
elongations of the mass Hook’s law yields a proportionality between elongation x and

restoring force F, that is, F' = —kx. In Newton’s mechanics, the dynamic equation
follows as
mx = —kx (4.105a)
respectively
¥+ w’x =0. (4.105b)

Hereby, @ = +/k/m is the oscillation frequency of the oscillator. The force law
F = —kx implies a potential V = (1/2)kx? for the moving mass m and thus a
Hamilton function
P o1
H=T+V ="+ —mo’x>. (4.106)
2m 2

Equation (4.106) describes the oscillator equally well as (4.105a), (4.105b). Appli-
cation of the Hamilton equations (3.26a), (3.26b) on (4.106) leads directly back to
Newton’s dynamic equations (4.105a), (4.105b). This correspondence of Newton’s

and Hamilton’s mechanics was already considered in connection with the pendulum
in Sect.3.4.
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Fig. 4.3 Two different V(x) V(x)
binding potentials V (x) with
minima at xg. Around the
minima positions the
potentials can be
approximated by parabolas
(broken line)

The great importance of the oscillator model in physics derives from the general
applicability of (4.105a), (4.105b) and (4.106) to any problem where a particle is
locked (confined) in an arbitrary potential V (x) near a minimum at xo (Fig.4.3).
The particle can oscillate around the potential minimum and for sufficiently small
oscillation amplitudes a description in terms of the oscillator model is possible. We
can see this quite easily: Every potential with a minimum at xy can be expanded in
a Taylor series around xp:

2

1
Vix) = V(xo)-i-((ii—;/ (x —x0) + (x—xo)z-i--“ . (4.107)

A2
0 20da? |,

The first constant term V (xg) can be defined as the zero point of the energy scale
and the second term, the first derivative dV /dx, vanishes at the minimum. Therefore,
the first non-negligible term in the Taylor series (4.107) is quadratic in (x — xp), all
following terms are significantly smaller and can be neglected to first approximation.
The resulting approximated potential is that of the harmonic oscillator (after setting
xo = 0). The harmonic oscillator model thus opens the possibility to approximately
treat a wide class of physical problems, namely fluctuations of a particle around a
potential minimum.

A short additional remark: The total energy E contained in an oscillation of the
harmonic oscillator is a constant of the motion. With x(¢) = A cos(wt + ¢) as the
general solution of (4.105b) the total energy E is obtained as:

1 1 1
E=T+V = -mi*+ ~mo*x* = —mw’A%. (4.108)
2 2 2
Hereby, A is the maximum oscillation amplitude, which is a constant for a particular
oscillation.

4.4.2 Upstairs-Downstairs: Step Operators and Eigenvalues

For the quantum mechanical treatment of the harmonic oscillator we start, as usu-
ally, from the classical Hamilton function (4.106) and substitute the canonically
conjugated variables p and x by the corresponding operators p and X, to obtain the
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Hamilton operator:

A2 A2

A p 1 2.2 p mw .,

A= 4 - —n me2). 4.109
om 2" w(2mhw ot ) (4.109)

For convenience reasons, the energy is expressed in terms of Aw, a familiar notation
in quantum physics (particle-wave duality, Sect.3.1). The direct, but tedious way
to solve the time-independent oscillator Schrodinger equation for eigenvalues and
eigenvectors, would be the representation of (4.109) in the position basis (Sect.4.3.4).
Then, ¥ would mean multiplication by the x coordinate and p differentiation with
respect to x. Solution of the Schrédinger equation (3.57) results in solving a differen-
tial equation. Qualitatively the outcome of the calculation is obvious. The oscillator
potential, at least approximately a parabola with a minimum at the bottom (Fig.4.3),
is a confining potential which locks up a particle. Correspondingly a discrete eigen-
value spectrum is expected, where eigenvalues and eigenfunctions can be numerated
with integer numbers n (Sect.3.6.1).

Rather than following this standard procedure we prefer an elegant solution
method based on a very general commutator algebra, which is furthermore of para-
mount importance when it comes to field quantization and many body physics
(Chap. 8). Only the general representation of state vectors and operators in Hilbert
space and the commutation relations between p and X (4.26) are used for the solution
of the problem.

Using the binomial formula

(@ +iB)(a —if) = o + B2 (4.110)

we factorize the Hamilton operator (4.109) by defining first the following operators
being equivalent to X and p:

mw A 1
§= |—% and f= |—p. 4.111
=gt and P=y\g noP “.11D

Then, the factorization is performed by using (4.111) and defining the new operators
b=a-+ifand bt =& —ip as

n mo 1
h= ["Pe s 5 4.112
21 TN 2 (4.1122)
~ mow , . 1
bt = it i 5P (4.112b)

By multiplication and by use of the commutation relation [X, p] = ih we conclude
from (4.112a), (4.112b):
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+5 L p2 lmo® 5, 0

= — _— —[x, pl, 4.113
hw 2m + how 2 S 2h[x Pl ( 2)
that is, by means of (4.109)
A 1 ~ 1
b™h=—H— - 4.113b
hw 2 ( )

From the definition of the operators b and b+ (4.112a), (4.112b) and fromAthe com-
mutation relation for X and p, we gain the commutation relation between b and bt:

[b,67] =bbT —bTh=1. (4.114)

Since x and p are Hermitian (self-adjoint) operators and since (5*)* =b, bt is the
adjoint operator to b (4.71). Furthermore, the Hamilton operator (4.109) is obtained

as
R D |
H= (b+b + E)ha). (4.115)

As the eigensolutions to H span a Hilbert space with discrete numerable eigen-
states |n), the time-independent Schrodinger equation for the harmonic oscillator
must be written as

. a1
Hln) = ha)(b+b + §)|n> = E,|n). (4.116)

From the properties of the operators b and b (4.112a-4.114) we, now, derive all
essential issues about eigenvalues E,, and eigenstates |n) of the harmonic oscillator.

(i) For any general eigenstate |n) of the eigenvalue equation (4.116), there is a

vector 5|n).
As bt is the adjoint operator to b the modulus (length) of the vector I;|n),
namely

(n|b*bln) >0 4.117)

must be positive (or zero). This is in direct analogy to 3D space, where the
modulus of a vector is |a|2 = Z?:l al.2 > 0. From (4.117) and (4.116), we
instantly conclude that all eigenvalues E,, of the harmonic oscillator must be
positive.

(i) We examine the action of the operator b+ on an eigenstate |n) of (4.116) by

applying b* on (4.116) from the left:

aAL A ~ ~ 1 ~
bTH|n) = hwb™ (b+b + E)|n> = E,b"|n). (4.118a)
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(iii)

(iv)
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On AtheA left sidAe ofA tAhe equation, we use the commutation relation (4.114), that
is, bbb = bt (bbT — 1) and obtain

AL An 1. ~
hw(b*bb’L — Eb+)|") = E,b"|n),

respectively

NS 1\ ~ ~
hw(b*b - E)bﬂn) = E,b"|n). (4.118b)

Together with (4.115), this yields:
H(bTIn)) = (En + how) (b |n)). (4.119)

This is again an eigenvalue equation, analogously to (4.116), but now for the
eigenstate bt |n) with the eigenvalue E, 4 hw. Application of the operator bt
on any eigenstate |n) transforms this state into the next higher one |n 4 1) with
an eigenvalue augmented by an amount /w in comparison to the former one.
Sequential application of b* on an eigenstate, thus leads to higher and higher
eigenstates. Each time the eigenvalues increase by an amount hw (staircase:
upstairs), thatis, E,11 = E, + ho.

In analogy, application of the operator b on an eigenstate |n) with eigenvalue
E, leads to the next lower eigenstate |n — 1) with eigenvalue (E,, — 1) (staircase:
downsteps), as is easily shown:

~ o~ af AL~ 1 ~
bH|n) = hwb(b*b + E)|n> = E,b|n),

N 3\ ~ ~
hw(b*b n §)b|n) — E,bn). (4.120)

A (bln)) = (En — ho) (bln)).

We have again used (4.115) and the commutation relation (4.114). According
to (4.120) l;|n) is the eigenvector |n — 1) with eigenvalue E,_| = E,, — ho.
Starting from an eigensolution |n) with eigenvalue E, all higher and lower
eigenvalues..., E,_2, E 1, Ey, Epi1, En42, . .. canbe calculated by adding
or subtracting each time the energy quantum Aw. The spectrum of eigenvalues
is a series (ladder) of energetically equidistant levels differing in energy by hw,
thatis, E,+1 = E, & hw. The operators b and b™ are, therefore, appropriately
called step operators or sometimes jump operators.

Upwards, the action of b is not limited. The ladder of eigenvalues nhw runs
to infinitely high values, since the parabolic potential of the ideal harmonic
oscillator V (x) o x2 has no upper limit. Downwards, however, a lower limit
must exist for the eigenvalues, since all eigenvalues must be positive according
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v)

to (). Therefore, a lowest eigenvalue Ey must exist, which belongs to the ground
state |0) (no excitation) of the oscillator. For this ground state the eigenvalue
equation (4.116) reads

H|0) = Eo|0). (4.121a)

Using the expression (4.115) for H,we get
PP
hw(b*b + E)|0> = E|0). (4.121b)

For the ground state |0), we have l;|0) = 0, that is, the lowest ground state
energy of the harmonic oscillator amounts to Ey = (1/2)hw. All higher energy
eigenvalues are obtained by sequential addition of a quantum Aw each time.
The spectrum of the oscillator eigenvalues is, thus, given by

1
E, = (n + E)ha). (4.122)

An analytical form of the ground state wave function of the oscillator is easily
obtained by representing the corresponding eigenvector equation l;|0) =0in
the position vector basis. In this representation (x|0) is the ground state wave
function ¢o(x) and bis essentially a multiplication of the wave function by x
and a position derivative (p = (h/i)d/dx), that is, l;|0) = 0 is expressed as

[mw [ h d
( Ex—i— %a)wo(x):o. (4.123a)

After short calculation, we get

d
&0 _ MY dx, (4.123b)
%o h

that is, after integration the ground state wave function of the harmonic oscil-
lator:

me ,

@o(x) = Cexp| ———x"), (4.124)
2h

with C = (mw/mh)'/* as normalization constant. As expected, this wave

function, a Gaussian bell function, describes the localization of the oscillating

particle within a spatially limited region due to the confining parabolic potential.
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(vi) Because of their property as step (or jump) operators (4.119, 4.120) b and b+

transform an eigenstate |n) into the next lower and next higher state, respec-
tively, that is, they obey the relations

bin) = cpln — 1), (4.125a)
bTin) = cln +1). (4.125b)

Here, ¢, and ¢}, are normalization constants which have some importance in

calculations. For their determination, we use that b and b are mutually adjoint
and derive from (4.125a): .
(n|b™ = (n — 1|c*. (4.125¢)

n
Equations (4.125a)—(4.125c¢) directly yield:
(n|b*hln) = (n — 1|n — 1)ctcy, (4.126a)

and because of the normalization (n — 1|n — 1) = 1 and (4.115):
1 = ) = e (4.126b)
n ha) 2 n) = \|Cu| . .

A combination of the H operator (4.115) with its eigenvalues (4.122) yields
the following expression for the eigenvalue equation (4.116):

hw(b*b + )In) = hw(n + ;)m), (4.127)

that is, application of b*b on the eigenstate |n) yields the quantum number n
of the corresponding state: o
bTbln) = nin). (4.128a)

A=bThis appropriately called quantum number operator of the harmonic
oscillator.
Furthermore, from (4.126a) the normalization constant ¢, is obtained as

(n|btbln) = n(nin) = n = |cy|*. (4.128b)

An analogous calculation for the application of the operator bt ~onthe eigenstate
|n) finally leads to important relations for the step operators band bt:

bln) = /nln — 1), (4.1292)
btin) =n+ Ln +1). (4.129b)
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(vii) By means of (4.129a), (4.129b), a recursion formula for the calculation o{ a
general eigenstate |n) of the harmonic oscillator can be given. The operator b
n-times applied on the ground state |0) leads to the state |n) [using (4.129b)]:

n) = ——b*n — 1) b n —2)
ny=—=b"n—-1=— n—2)=---
Jn Jnn =1
1 .
= —(bM)"0). 4.130
W( )"10) ( )
The oscillator eigen(wave)function ¢,(x) = (x|n) for the nth eigenvalue

(4.122) is obtained by representing (4.130) in the position basis and using
the position representation of b (4.112b):

_ ()_L(/@ _ /Li)" )
(xl’”_‘p”x_m Y TV 2mwdx ) OV

1 mw h d ”4ma) _mo 2

—ﬁ(\/ﬁx‘\/ma)\/ﬁe e @a8h

In this expression, the wave function of the ground state (4.124) was used.
Equation (4.131) is a recursion algorithm which allows the calculation of any
wave function ¢, (x). Computational programs as MAPLE can handle this job
quite easily. Some low index eigenfunctions of the harmonic oscillator are
plotted in Fig.4.4.

Using the harmonic oscillator as an example we want to elucidate, one times more,
the relation between classical and quantum mechanics. For this purpose, we consider
a macroscopic classical pendulum, where a mass of 1g oscillates back and forth
one times per second. The oscillation amplitude is A = 2 cm. The corresponding
angular frequency w, then, amounts to about 6 s~!. Using the classical formula
(4.108) for the total energy Ejass being contained in the motion, we obtain E¢jygs &
70 x 1077 kg m?/s? from the valuesm = 1 g, A = 2 cm, w = 6 s~ . If we compare
this value with the energetic distance AE = hw = 6 x 1073* kgm?/s> between
two quantum mechanical excitation states (eigenvalues) of the pendulum, we realize
the quasi-continuous character of the quantum states for a macroscopic system as
the classical pendulum. Accordingly the quantum number n corresponding to the
classical oscillation of the pendulum amounts to

n & Ecass/AE ~ 107, (4.132)
The macroscopic pendulum, thus, is in an extremely high quantum mechanical exci-

tation state. For extremely high quantum numbers quantum mechanics passes over
into classical mechanics.
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Fig. 4.4 Wave functions of the eigenstates of the harmonic oscillator [2]. a Low index eigenfunc-
tions Yo(y) up to ¥s(y) with quantum numbers n = 0 to n = 5. Instead of a representation as
function of the x-coordinate a renormalized plot versus y = x/xo = x+/mw/his chosen. b Proba-
bility for finding an electron |11 |? in the oscillator eigenstate with quantum number n = 11. The
classical probability is plotted in broken line

4.4.3 The Anharmonic Oscillator

In Sect.4.4.1, we have discussed that the model of the harmonic oscillator with its
potential being parabolic in x, the elongation, (4.106) can be considered as the first
approximation for a general binding potential close to its minimum. In the next higher
approximation of such a binding potential (4.107), we have to take into account also
terms being cubic in the elongation (x — xg). For this further approximation, called
the anharmonic oscillator, the Hamilton operator is written as:

) 2

~ p mo ;2 I 4

b= 2 4.133
m T 2 38 (4.133)

In the last term, g /3! describes the deviation from the parabolic potential, essentially
the third derivative of the potential with respect to elongation (4.107). This term being
cubic in the elongation is called the anharmonic term in the oscillator potential. The
Hamiltonian (4.133), of course, is a good approximation only if |gx| <« mw?/2
holds. In this case, the anharmonic term can be treated as a small perturbation of the
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harmonic oscillator and the unperturbed eigenstates |n) of the harmonic oscillator
might be used for an approximate description. Accordingly we substitute the first two
terms in (4.133) by the equivalent Hamiltonian of the harmonic oscillator (4.115)

n NP | 1
A= hw(b+b + 5) - §g£3. (4.134)
To proceed with the third term in (4.133), we express the position operator X in terms
of step operators. From the representation of the step operators b and b in terms
of x and p (4.112a), (4.112b) we obtain, by addition of (4.112a) and (4.112b), the
representation of % in terms of b and b™:

S 2L S S S Gy
P=3 mw(b+b )= 2ma)(b+b ). (4.135)

3
. a1 1 I a1 .
H = hw(b+b + —) - —g(—) (b +b+)3 = hw(b+b + 5) — h. (4.136)

As the anharmonic part h is a small perturbation of the harmonic oscillator, we
continue to use the harmonic eigensolutions |r) (4.130) with its eigenvalues (4.122).
How the Hamiltonian (4.136) acts on the |n) kets is defined by the recipe for the step
operators (4.129a), (4.129b).

What is the change in physical behavior being introduced by the small anharmonic
perturbation? For the harmonic oscillator the quantum number operator 1 = btb
commutes with the Hamilton operator (4.115) consisting essentially of 7. According
to Heisenberg’s dynamical equation (4.104) this implies that the quantum number n
is a constant of the motion. The eigenstates |n) are stationary states for the harmonic
oscillator. In a harmonic potential a state |n) once prepared stays unchanged forever.
This is different for the anharmonic oscillator (4.136). The number operator 7 cer-
tainly commutes with the first harmonic term in (4.136). The second anharmonic
term being proportional to (b 4+ b™)3, however, does not commute with i = bTb.
This is easily seen from

[b,b7b) = bbb —bThb = b (4.137)

by use of the commutation relations (4.114).

For the anharmonic oscillator, we have [, A ] # 0, i.e. the quantum number n
is not a constant of the motion. A small amount of anharmonicity in the oscillator
potential gives rise to changes of the harmonic eigenstates during time. Eventhough
|n) are still good approximate solutions, they are not stationary anymore. Due to
the anharmonicity the oscillator jumps between different harmonic eigenstates |n).
What jumps are possible?
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To answer that question one has to solve the time-dependent Schrédinger equation

3 .
iﬁ5|1/f(t)) = H|y (1)) (4.138)

with the anharmonic oscillator Hamiltonian (4.136) for a general time-dependent
state | (¢)). For this purpose, we expand the state |y (7)) in terms of the time-
independent eigenkets |n) of the harmonic oscillator:

@)= cu®)ln). (4.139)

The time dependence is contained in the amplitudes ¢, (#). They indicate how the
eigenkets |n) change during time due to the action of the perturbation h. By means
of (4.135), we evaluate the anharmonic perturbation h= g%3/3! as a function of the
step operators:

~

e R R
= (—) (bbb + bbb™ + bb™ b + bb™b™ + bbb + b bb™
+bThth+bThThY). (4.140)

In this calculation, the sequence of order of the step operators band bt must strictly be
observed because of their commutation rules (4.114). Inserting (4.139) into (4.138)
yields

AL A 1 ~
ih Y éu(t)|n) = HholbTh + = hen (2)|n). 4.141
i Zn:cn(nm ;cno w( +2)|n>+zn: cn(t)In) (4.141a)
Multiplication with the eigenbra (m| from left yields, because of (m|n) = 8,,,:
. 1 -
ihé, (1) = (m + E)hwcm(t) + Z (m|h|n)c, (1), (4.141b)
m

that is, a system of coupled differential equations, which describes the change of an
amplitude c,, () due to its coupling with the other amplitudes ¢, (¢).
By neglecting the anharmonicity #, that is, taking into account only

1
ihé, = (m + z)hwcm =E,cm (4.142a)
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we obtain, as expected, the stationary solution for the harmonic oscillator:

em (@) = cm(0) exp(—%Emt) (4.142b)

with the energy eigenvalue E,, = (m + 1/2)ho.
We, now, calculgte the matrix elements (m|h|n) appearing in (4.141b). The per-
turbation operator £ is evaluated in terms of step operators according to (4.140):

1 32 aaal aa
(m|h| ) = ——— (m|bbb + bbb™ +bb b + - - - |n). (4.143)
3' 2mw

The relations (4.129a), (4 129b) indicate how b and b act on |n). With (m|n) = §,,,,
the matrix element (m |bbb|n) does not vanish only if

(m|bbb|n) = (m|n — 3)y/n(n — 1)(n — 2) = Sp.p_3v/n(n — 1)(n —2) (4.144a)

that is, if m = n — 3. Through this particular matrix element the quantum state |m)
with energy E,, = (m + 1/2)hw only couples to a state |[n) whose energy exceeds
that of |m) by three quanta hw. Beside others this state contributes to the decay of
|m) described by the time-dependent amplitude ¢, (¢).

From analogous considerations, the matrix element

(m|b*tb*bin) = (min 4+ 1)/nn(n + 1) = 8ppi1v/nn(n + 1) (4.144b)

describes coupling of the state |m) to a state |n) whose energy is lower than E,, by
one quantum hw (because of m = n + 1, i.e., n = m — 1). For transitions into the
ground state |0) of the oscillator, this matrix element is obviously irrelevant.

The number of transitions from excited states into the ground state |0) (m = 0) of
the oscillator is limited. From the whole variety of possible b and b combinations
in (4.140), only the following matrix elements doe not vanish:

(01bbb|3) = (0]0)v/6 = V6, (4.1452)
01bb b1y = (0]0) = 1, (4.145b)
(01bbb (1) = (0|0)V/4. (4.145¢)

The excited states |3) and |1), thus, contribute to the population of the ground state
with probability ratios 6:1:4 (squared amplitudes).

The example of the anharmonic oscillator demonstrates how a small perturba-
tion in the Hamiltonian induces transitions between different quantum states. We
will encounter this idea in a much broader sense in the context of time-dependent
perturbation theory (Sect. 6.4).
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Chapter 5
Angular Momentum, Spin
and Particle Categories

At first sight the motion of a particle on a curved path, in the simplest case a closed
circle, might nothing be special; it should be described by the general law of par-
ticle dynamics (in Newtonian mechanics: K = mv). Nevertheless, there are some
peculiarities, even in classical mechanics, which require a stringent formal treatment
because of phenomena not matching our everyday experience. The weird behavior
of a gyroscope or the accelerating pirouettes of an ice-dancer are good examples.
We will see that on the atomic and subatomic level the angular momentum, the
most interesting observable related to curved trajectories, is of paramount impor-
tance with far reaching consequences for our understanding of matter. The stability
of matter, the structure of the periodic table of elements and the classification of
elementary particles into two categories, fermions and bosons, are intimately related
to properties of atomic angular momenta. Before starting the treatment of quantum
mechanical angular momenta classical rotational dynamics shall briefly be reminded.

5.1 The Classical Circular Motion

A particle moving on a circular trajectory (Fig. 5.1) underlies scleronomic constraints
(Sect.3.4). These constraints might be due to an attractive potential as the Coulomb
potential of the hydrogen nucleus or, in case of a macroscopic circulating body,
a string which keeps the mass in constant distance from the pivot (see pendulum,
Sect.3.4). The corresponding force directed in string direction (Fig.5.1) causes an
acceleration of the mass towards the pivot, the so-called centripetal acceleration. The
velocity v = ds/dt along the circular trajectory remains constant since the central
force acts normally to the motion. Additionally to the central force there might be
forces acting on the mass along the path, which accelerate the mass in direction of
motion. Those forces have a component normal to the position vector r of the mass,
with |r| as the radius of the circular trajectory. These forces in the direction of motion
are adequately described in terms of a forque D.

© Springer International Publishing Switzerland 2015 131
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Fig. 5.1 Characteristic dv
variables for the description \
of a circular motion. Note, ds

that the infinitesimal velocity
change dv is normal to the

position change ds and '
directed towards the center

of the circle

Figure 5.1 explains the calculation of the centripetal acceleration a = dv/dr
perpendicular to the circular path and directed to the pivot: The infinitesimal change
dv of the velocity is directed parallel to the radius vector r and perpendicular to the
velocity v itself. Thus, the differential displacement along the path is

ds =rdp =rodr =rwdt (5.1a)
and the velocity
ds
= = 5.1b
v ” ro ( )

and finally with dv = v dg (Fig.5.1) the centripetal acceleration

d
a= d—l: = v = ro’, (5.1¢)

w is the angular velocity dg/dr.

For the description in terms of three dimensional vectors it is convenient to
attribute a vector w to the angular velocity, which is oriented normal to the plane of
the circular motion (upwards for positive angular change).

For the general treatment of rotational dynamics, we start with standard (transla-
tional) Newton’s dynamic equation

d
K = —(mv). (5.2)

To take into account forces K acting normal to the position vector r, that is, causing
an acceleration along the circular path, we define the torgue D = r x K and obtain
from (5.2):

d
D=rxK=rx E(MV)' (5.3a)

Since the vector cross product of dr/df = v and v vanishes, the following relation
holds:
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d d d d
E(rxmv)z d—: X mv—+71 X E(mv):rx a(mv). (5.3b)

Thus, (5.3a) can be written as
D=rxK d(rx V) d(r>< ) (5.3¢)
= = — m = — . .AC
dr dr P

We define L = (r x p) as the angular momentum of the circular motion and obtain
the classical fundamental law of rotational dynamics as

d d
D= K=— = —L. 54
r x G TP =4 5.4

The angular momentum L, therefore, is a constant of the circular motion as long as
no force acts normal to the position vector r (D = r x K = 0). This explains why an
ice dancer ends up in an accelerating pirouette when she takes her arms close to her
body: L. = r x p must be conserved since no force acts in the direction of the circular
motion, apart from the friction between ice and skates (neglected here). The lateral
extension of the rotating body decreases (coordinate r), that is, the momentum p
must increase.

From its definition L = r x p, the angular momentum is a vector which is directed
normal to the plane of the circular motion similar as @. By means of (5.1b), we can
relate the moduli of L and w by

L = mrto. (5.5a)

The quantity mr? is called, in analogy to the inertial mass (p = mv) for linear
motion, moment of inertia of a mass m which rotates around a pivot at distance r.

Because of v = rw (5.1b) and (5.5a), the kinetic energy of a mass rotating on a
circle of radius r is derived as

2
Eyin = —mv? = L .
2 2mr?

(5.5b)

This relation will be useful in the following.

5.2 Quantum Mechanical Angular Momentum

Circular motion of an atomic or subatomic particle, for example, of an electron in
the Coulomb potential of the proton in a hydrogen atom, must be described in terms
of operators. The angular momentum operator L=rx p derives from the classical
angular momentum L. = r x p by substituting the classical variables r and p by their
corresponding operators. Since ¥ and p do not commute, we expect a non-trivial
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commutation algebra for the components of the angular momentum. What do we
expect qualitatively?

A circular motion is spatially confined. An electron in the Coulomb potential is
“locked-up” as in a potential well. We, thus, expect discrete eigenvalues for the energy
and consequently also for the angular momentum according to (5.5b). Furthermore,
a circular motion can be decomposed into two mutually perpendicular harmonic
oscillations. A similarity between the eigenvalues of the angular momentum and
those of the harmonic oscillator (Sect. 4.4.3) is, thus, expected. A discrete eigenvalue
spectrum of L is suggested, maybe even with energetically equidistant levels as for
the oscillator.

For the mathematical treatment, we start with the definition of the angular momen-
tum operator L=*fx p and the representation of the momentum operator

Lo h({ @ 9 9
b v e, te, 2 te. ). 5.6
P=7 i(exax+eyay+ezaz) (5-6)

ey, e, and e, are unity vectorsin x, y, z direction. This leads directly to the following
commutation relations for the vector components of the angular momentum operator:

[Ly, Ly] =ihL., (5.7a)
[Ly,L;) =ihL,, (5.7b)
[L,, L] =ihLy. (5.7¢)

For (5.7¢), we check this commutation as follows:
doia— (" 9 8 9D
EPEAT) Uater T SaxYaz )

(BN d e 92
i y&x yZaxaz yZE)xBZ’

A B .
= (—) y— = —ih(yTa) = —il(—L,). (5.7d)

1 0x

The commutation relations (5.7a)—(5.7d) can be written in a compact formula as
L x L = inl. (5.8)

by using the rules for calculating the vector cross product.
Since an operator always commutes with itself and because of the relation

A

[i)zp [:z] = Lx[im I:z] + [I:xs I:z]l:xs (59)

we conclude from (5.7a) to (5.7d)
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A

A2 A ~ ~ PN ~ ~
[ L] = [£2 4+ 03 + £2. 0] = [£2 + £2. L]
= I:x[[:xs iz] + [ilxa lA'z]lAlx + I:y[[:ys iz] + [i,y, lAlz]lAly
= —ihL,Ly —ihLyLy +ihlyLy +ikL,Ly = 0. (5.10)

The same result is obtained for the other components of the angular momentum:
(L2, L] =[L2 Ly]1=0.

We learn that the components of the angular momentum operator do not commute
(5.7a)—(5.7d), but that the absolute square 1.2 commutes with each single compo-
nent L . iy, f,z of the angular momentum. Therefore, the three components of I.
separately have the same system of eigenfunctions as L.2. The following eigenvalue
equations, thus, have to be solved:

<2

L|, m) = AR, m), (5.1D)

L.\, m) = mh|l, m). (5.12)
Equations (5.11) and (5.12) are written in a convenient way for calculation: Since the
angular momentum has the dimension of an action, the eigenvalues are expressed in
units of Planck’s constant . Furthermore, we need two different discrete quantum
numbers A(/) or/ and m (now vyithout dimension) which are attributed to the different
eigenvalue spectra of L? and L. Correspondingly the eigenvectors being the same
for the two operators are denoted as |, m).

First, the eigenvalue problem (5.11) is treated. Using (5.12), we can write down
the following equations:

l.m) = (L} + L3 + L2)|l.m) = AR*|l, m), (5.13)
L2, m) = L,L.|l,m) = m*K>|l, m). (5.14)

By subtraction, one obtains:

(LE+ L2)|l m) = B (A —m?)|l, m). (5.15)
We do not explicitly prove that the matrix element (/, mlﬁi + i§ |l, m) is positive,
but this can reasonably be guessed because of the squared angular momentum com-
ponents. We, thus, conclude

£2 72 _ 32 2

(l,m|Ly + L5ll,m) =N (A—m )(l,m|l,m) >0 (5.16)

and the eigenvalues of (5.11) and (5.12) must obey the relation

A() —m? > 0. (5.17)
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Because of (5.17) the eigenvalues m?, respectively |m| of iz have an upper limit
determined by the eigenvalues A(/) of the operator L2. This is physically evident,
since the angular momentum in a special direction z can not exceed the total angular
momentum \/ﬁ .

In analogy to the harmonic oscillator (4.110)—(4.112b), we factorize the operator
(ii + i%) (5.15) by defining two new operators

Ly =L, +iL,, (5.18a)
and obtain . A o
Li+L3=LyL_. (5.18b)

From (5.7a) toA(5.7d) apd (5.10), we derive the following commutation relations
for the operators L4 and L_:

[L. is] =0, (5.192)
(L., L+]=+hLy, (5.19b)
Ly, L.]=FhLy. (5.19¢)

By means of (5.19a) the eigenvalue equations (5.11) and (5.13), respectively, allow
the conclusion

Lot m)y = RRA(Lsll m)). (5.200)
L2 (Lallm)) = RRA(Lsll m)) (5.20b)

that is, if |/, m) is an eigenstate to ﬁz, then the vectors ii|l , m) are also eigenstates
to the squared angular momentum operator.

A similar relation is derived for the eigenvalue equation (5.12) of the operator L z
by using the action of Ly

Lyl |l, m) = hm|l, m). (5.21a)
Because of (5.19¢), we conclude
(L,L+ F hLo)|l, m) = hm|l, m), (5.21b)

or
L (Lyll,m)) = h(m £ 1)(Ly|l, m)). (5.21¢)

ii |l, m) are, thus, eigenstates to the operator L 2, the angular momentum in z direc-
tion, if |/, m) is an eigenstate, but with eigenvalues m#n higher or lower by A in
comparison with those of |/, m). Ly are step operators for the z component of the
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angular momentum. They change the eigenvalues of L . by 7 as do the operators bt
and b for the oscillator eigenstates (Sect. 4.4.2). The dimensionless quantum number
m always changes by an integer:

Lyll,m)=|l,m=+1). (5.22)

On the other hand, because of (5.17), m? and |m| have an upper limit determined
by the maximum total angular momentum in terms of the eigenvalue A(l). For a
fixed A, there are maximum and minimum values mpyax and mp;i,, which obey the
relations

Li|l, mmax) = 0, (5.23a)
L_|l, mmin) = 0. (5.23b)

Because of (5.22) (mmax — n}mm) must be an integer. Furthermore, the algebra of
Ly, Ly (5.72)—(5.7d) and of L (5.18a), (5.18b) requires:

Lels=L3+LyFL:h
=L>—L.(L,+h). (5.24)

Since |/, m) is eigenstate both to L2 and iz, application of (5.24) on |/, mmax) and
|{, mpin) yields:

LoLill mmay) = [AQ) = Mgy — Mumax B2 1L mimay) = 0, (5.252)
Ly L)l muin) = [AQ) — m% + Muin F2 1L, Mumin) = 0. (5.25b)

Both expressions vanish due to (5.23a), (5.23b); but because of the existence of
|l, mmax) and |I, mmin) the brackets on the right side equal zero and we obtain:

A(l) = myax(Mmax + 1) = Muyin(Mmin — 1). (5.26)

A simple calculation yields
Mmax = —Mmin- (5.27)

The reasonable assumption [ = mmn;x yields the solution to the eigenvalue problems
of the operators L? and L, as

L2, m) =1 + DR, m), (5.28a)
Le|l,m) = mh|l,m), (5.28b)

withm=—-I, -1 +1,-[+2,...,0,...,] = 1,1
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It is, thus, required that
l—v=-I,

respectively
I =v/2 holds with v as integer. (5.28¢)

This result needs further analysis. The quantum number m is called magnetic
quantum number, since only in a magnetic field states with different orientations of
the angular momentum in space (meaning of m) can be distinguished with respect
to their energy (see Sect.5.4). A better name is orientation quantum number, a term
which does only relate to the direct meaning of the orientation of the angular momen-
tum in space. The orientation quantum number m can change only in integer steps
up to maximum and minimum values / and —/. Hereby, / might also have half-integral
values according to (5.28c¢). In this case, the angular momentum / = 0 is excluded,
since for integer steps of / change only / £ 1/2 and higher half integral values are
allowed. The spectrum of eigenvalues / of the total angular momentum, therefore,
divides into two distinct series:

[=0,1

e

27 3’ MR (5.293.)

[ =

)

N

> (5.29b)

| =
| W

In order to understand the deeper physical meaning of these eigenvalue spectra of
the angular momentum, we refer to the position representation of the operators. For
the description of circular motion spherical coordinates are best suited. The definition
of spherical coordinates (7, 9, ¢) is explained in Fig.5.2. With the unity vectors e,,
€y, €, inr, ¥ and ¢ direction the corresponding displacement elements are written as

dsy = dre,, (5.30a)
dsy =rdv ey, (5.30b)
dsy =rsinv dpe,. (5.30¢)

The orthogonality of the spherical unit vectors requires

e X ey = ey, (5.31a)
e X e, = —ey, (5.31b)
€y X €y = €. (5.31¢)

The Nabla operator is, thus, represented in spherical coordinates as

v :eri —i—e,9i —i—ewi
ar as as ¢
d 10 1 d
= T e T g o 632
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Fig. 5.2 Definition of z e,
spherical coordinates by
means of their three ey
directional unity
ey y

Vectors e, ey, €, ¢ K

4
X
Using (5.31a)—(5.31c) and (5.32), we calculate the angular momentum operator
A A ho.
L=rxp=—-(xV)
i
in spherical coordinates as follows:
exVor e ad te 10 ‘e 1 9
xV=rx — -— —
Tor %90 T sinw 09
(e e)8 (e, x €,) 0 (5.33)
= X — = X — .
TRy T T in g ag
0 1 .
respectively

=e,— — e —,
Y39 Usino dg
AR 19

=—-|e,— —e —).
i\ sinv dg

According to Fig.5.2 (ep), = — sin ¢ and the z component of the angular momentum
is evaluated as

ho
= _(r x V), = —— (5.34a)
ide

In position representation v, ; = (r|l, m) the eigenvalue equation (5.28b) is, thus,
obtained as

9
—ih—Yu = mh, (5.34b)
dp

that is, the eigenfunctions of L . 1n position representation must be
Yy o e’ (5.35a)

Since the wave function v, ; must be unequivocal on a circle, a change of m¢g by
multiples of 27 leads to the same function, that is, the orientation quantum number
m must be integer. Half integral values for m are not allowed as eigenvalues to an
angular momentum L . which corresponds to a circular motion of a mass in space.
Angular momenta belonging to curved particle trajectories can have as measurement
values only /(I + 1)h? for L? and mh (m integer) for iz. Hereby the following
relations hold:
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m=-—l,-l+1,...,0,...,1-1,1; 1=0,1,2,.... (5.35b)

A corresponding plot for a total angular momentum L?> = [(I 4+ 1)/ is shown in
Fig.5.3.

The question arises, if the half integral quantum numbers [ of the total angular
momentum (5.29b) are meaningless, if they are not realized in nature. We will see
that this is not the case. There are angular momenta in nature which obey (5.29b), but
they do not belong to motions on curved trajectories (Sect. 5.5). Conclusions from the
general commutation algebra of the angular momentum operators are obviously more
stringent than relations derived from the position representation of wave functions
and operators.

Before we come to a more detailed discussion of these particular types of angular
momenta with half-integral quantum numbers /, an important symmetry property
related to the angular momentum shall be considered.

5.3 Rotational Symmetry and Angular Momentum;
Eigenstates

From classical mechanics we know that the angular momentum for motions in a
potential with rotational or spherical symmetry is a constant of motion. We expect
that this is also true in quantum mechanics.

For the mathematical proof we start with a general function f(r) defined in 3D
space. After performing an infinitesimal displacement §r the function can be written
as

f(r—28r) = f(r) —ér- V£(r). (5.36)

We now assume the displacement r to be a rotation by the infinitesimal angle §¢
around an axis, i.e.

Fig. 5.3 Schematic z
representation of the
directional quantization of
the angular momentum L in
units of A along the z
direction




5.3 Rotational Symmetry and Angular Momentum; Eigenstates 141
or =8¢ Xr. (5.37)

Hereby §¢ is a vector with length §¢ directed along the rotational axis according to
a right handed screw. In this case the infinitesimal change of the function f(r) is
obtained as

8f(r) = f(r—3dr) — f(r) = (8p xr)-Vf(r). (5.38a)

The rule for exchange of vectors in a combined vector cross and scalar product yields
5f(r) = —8¢-(r x Vf) = —%8¢-I:f(r). (5.38b)

Hereby, the definition of the angular momentum operator L=*fx p was used.
According to (5.38b), a rotation of the coordinate system by 8¢, thus, changes the
function f(r) by §f and in the rotated coordinate system the modified function f’
is obtained as

f(r) = f(r) + 8f = (1 - %5(0 : Il)f(r). (5.38¢)

The operator [1 — (i/h)d¢ L] generates the corresponding change of the function
f(r) when the coordinate system is rotated by the infinitesimal angle ¢ = ndég
(n is unity vector in direction of rotation axis). This operator is called generator of
infinitesimal rotations. We can easily derive the generator (operator) of finite rotations
by building up a finite rotation of angle ¢ by a large number N of sequentially
performed infinitesimal rotations §¢ = ¢/N (N — 00, ¢ — 0):

ig A\
‘ry = lim(1—--—n-L r). 5.39a
£ M( e )f() (5.392)

S¢—0

Then, Euler’s formula for the exponential function applied on the operator yields

f'(r) = exp(—%(pn : ﬁ) £ (). (5.39b)

The exponential operator in (5.39b) which generates the rotation of the coordinate
system is defined by its series expansion, in analogy to (4.97). Instead of rotating the
coordinate system we could also rotate the function f (r), respectively the vectors r
in a fixed coordinate system. In that case —dr in (5.38a) has to be replaced by dr and
a positive sign is obtained in the exponent of (5.39b).

The operator

0, = exp(%g)n : ﬁ) (5.40)
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thus, rotates a quantum state or wave function around a fixed axis n (unit vector) in
space. Since L is Hermitian the rotation operator U(p (5.40) is a unitary operator:

Ut = i L)=0"" 5.41
p =exp|—pen-L)=U," (5.41)

We consider a wave function ¥ (r) and rotate the coordinate system from r to r’.
The wave function is then transformed from ¥ (r) to v (r"). This transformed wave
function is spatially arranged in the transformed coordinate system as the original
wave function ¥ (r) in the original non-rotated coordinate system. The question,
now, is how a general operator transforms upon rotation of the coordinate system.
We describe the action of a general operator £2 in the non-rotated system by 2 Y(r) =

¢(r). Because of UTU = 1, we conclude:

UQUT [0y )] = Up(), (5.42a)

or
U0 y(r) = o(r). (5.42b)

For the operator ' in the rotated coordinate system we, thus, obtain
Q=020 (5.42¢)
In these relations, we recognize essential properties of rotations in Hilbert space
(Sect.4.3.2).
By means of (5.38b), we derive interesting properties of potentials V (r) with
rotational symmetry, that is, potentials, which depend only on the radius r and not
on angular changes §¢ around their center. In that case, we have

Vr,o) =V, ¢+ 5¢). (5.43a)

By means of (5.38b), we can also write:
i R
V(r,o+38p)=V(r,p)+ ﬁ&p LV, ). (5.43b)

From this relation we derive the commutation relation between the potential v, ®)
(written as operator) and the angular momentum L:

Vi = [v +1sp. nv,n}
—[V.1]+ %[Sgo LV, L, (5.442)

or
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i An oA
;L[Sq) -LV,L]=0. (5.44b)

As L commutes with itself we conclude that the angular momentum operator
L commutes with each operator V(r) of a potential with rotational symmetry:
[V(r),L]=0.

In order to make far-reaching conclusions about particle motion in a potential with
rotational symmetry (electron in Coulomb potential, electron in circular quantum
dot, Sect.5.7.1), we must investigate the commutation of the angular momentum L
with the kinetic energy operator T = p?/2m, too. The Hamilton operator, namely,
contains both the kinetic and the potential energy. We are, therefore, interested in the
commutation relation [L, p?1, the essential part of the kinetic energy, that is,

A

[L, 5*] = [# x b, §?]. (5.452)
First, we consider the x component of the angular momentum:

[ x P)x. py + py + p7| = [$h:. by + Py + b7

=342, 2]
=3$p.p; — Py9b. = pzyp) P39 p-
= lsz(ﬁyj’ + lh)Py - pyypZ' (5.45b)

For the calculation, it was used that the angular momentum components mutually
commute and also § with p, and p, but not with p,. By use of the commutation
relation y p, = p,J + ih, the calculation (5.45b) finally yields:

[L., p*] = 0. (5.45¢)

An analogous calculation can be performed for the other components L s L . of the

angular momentum. The important result is that the angular momentum operator L
commutes with the kinetic energy of a moving particle:

[L, p*/2m] = 0. (5.46)
According to (5.44b) and (5.46) potentials with rotational or spherical symmetry
(dependent only on r, but not on ¢ and/or #) yield a Hamilton operator H = T + V

which commutes with the angular momentum operator L. From Heisenberg’s dynam-
ical equation we, then, obtain:

f= }li[ﬁ, f]=0. (5.47)

glea



144 5 Angular Momentum, Spin and Particle Categories

In a potential with rotational or spherical symmetry the quantum mechanical angular
momentum is a constant of motion. Quantum mechanics confirms the classical result.
The commutation relation [H, L] = 0 also implies

[A,L*] =0, (5.48)

for a Hamiltonian containing a potential with rotational or spherical symmetry.
Because of the commutation relations for angular momentum operators (5.9), (5.10),
the following commutations are valid for rotational or spherical potentials:

[A,L*) =[L* L] =[L* L] = [L* Ly] = 0. (5.49)

Consequently L? and the different components of the angular momentum, for exam-
ple, L - have the same eigenfunction system as the Hamilton operator (with rotational
or spherical symmetry).

This does not mean that A and all components L; have the same eigenfunction
system simultaneously ([ii, L i1#0).

Nevertheless, for systems with spherical symmetry the eigensolutions for energy
and angular momentum can be represented in position representation as

(rln,l,m) = R, ;(n 1" (9, ¢). (5.50)

1;" (9, ) are the eigenfunctions to the angular momentum operators L2and L -; they
depend only on the angles ¥ and ¢ (spherical coordinates, Fig.5.2) and are called
spherical harmonics (if normalized over the whole solid angle).

The radial part of the eigensolution R, ;(r) describes the radius dependence of
the wave function of an electron in a spherical potential. It depends, of course on the
angular momentum quantum number /, since varying angular momenta imply also
different radii of the circular trajectories of the particle. But different radii of the
circular motion means simultaneously different total energy (5.5b). The so-called
principal quantum number n, therefore, numerates the different energy eigenvalues
E,; of the Hamilton operator H.The spectrum of z is discrete because of particle
confinement in the spherical binding potential (as assumed here). Neither R, ; nor
E, 1, depend on the directional quantum number m, since a spherical potential does
not distinguish any particular direction in space. The states for a particular n and /
are degenerate in m, they have the same energy for each m value. An additionally
applied magnetic field defines a certain direction in space and quantum states with
different directional quantum number m get different energies, the m degeneracy is
removed. This explains the other name of m, magnetic quantum number.

We summarize the eigenvalue equations for a spherical potential in position rep-
resentation as follows:
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ARy (NY)" = En Ry Y,", (5.51a)
L2Ru Y™ =11 4+ VAR, 17", (5.51b)
L Ry Y™ = mhR, )", (5.51c)

The radial part of the wave functions R, ;(r) and the electron energy eigenvalues
E,.; depend on the special shape of the spherical potential, for example, a Coulomb
potential in the hydrogen atom or a binding parabolic (oscillator) potential in a
semiconductor quantum dot. The angular parts 7;" of the wave functions, on the other
hand, do not depend on details of the particular potential; These eigenfunctions of
the angular momentum are always found as part of the eigensolutions to a Hamilton
operator containing a potential with rotational or spherical symmetry. They will
shortly be presented in the following.

Without presenting the analytical solution of the differential eigenvalue equation
(5.51b), the explicit form of some low index spherical harmonics shall be given here:

1Y = : (5.52a)

1
Var
1 3 1 3 . ip
Ty =4/ —cos?, T, = —/z—sinve?, (5.52b)
4 8
5
Ty = ‘/EB cos® ¥ — 1), (5.52¢)
15 . 15 .
Tzl =/ c—sin v cos ve'?, T22 =,/ sinZ ¥el2?. (5.524d)
8 32

In addition, for negative m values we have the relation:
= ()" (5.53)

In Fig.5.4, the spherical harmonics Tl’” with [ = 0, 1,2, 3 are plotted in polar
diagrams. Wave functions with/ = O having spherical symmetry are called s-orbitals,
those with [ = 1 distinguishing a particular direction in space are named p-orbitals.
Consequently the functions with / = 2 and I = 3 are called d- and f-orbitals,
respectively.

Without distinction of a particular axis in space, for example, by a magnetic field,
all angular momentum states with equal quantum number / but differing m values
are equivalent, they have the same energy. In this situation, linear superpositions of
7" with equal / but differing m might be more adapted to particular problems than
one special function (5.52a)—(5.52d) with a fixed m value. Thus, by superposition of
Tll (5.52b) and Tfl (5.53) we obtain new p-orbitals, which are oriented along the
X, Yy, z axis in space, with equal shape along these axes (Fig.5.5).

These superposition states are named py, py, p; orbitals, their mathematical
expressions are as follows:



146 5 Angular Momentum, Spin and Particle Categories

iz iz Az iz Az z

R
U

M = /J
N Q xy-Ebene
[=0 {=1 1=1 1=2 1=2 1=2
m=0 m=%] m=0 m=%2 m=z¢i m=0
i; '
r= ¥y (99112

% xy -Ebene

3 l=
*3 m=

3 [=
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l
m
Fig. 5.4 Representation of the angular momentum eigenfunctions 77, with [ = 0, 1,2, 3 in polar

diagrams. The radial distances r from the center (see / = 1, m = 0) are a measure for the value
|77 |? as function of ¥ [18]

Fig.5.5 Three dimensional polar representation of the absolute amounts of the angular momentum
wave functions of the s orbital and of the three py, py, p; orbitals [18]

-1, —1 3.
E(TI -1 = —ﬂsmﬂcosq), (5.54a)

-1 [3
Y, = —(1) —717") =,/ — sin® sin g, (5.54b)
Py @( 1 1 ) 4 %
T, =17 (5.54¢)

TPX =

]
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After the extensive discussion of the quantum mechanical angular momentum, its
eigenvalues and eigenfunctions we turn to the question: How can we observe angular
momenta in experiment? For this purpose, we must derive a relation between angular
momentum of a charged particle and magnetic moment.

5.4 Circulating Electrons in a Magnetic Field

5.4.1 The Lorentz Force

As we know from classical physics charge carriers (positive charge ¢) moving in a
magnetic field are deflected from their linear path. They are subject to the so-called
Lorentz force

mv =F =ev x B. (5.55)

In every moment, this Lorentz force acts perpendicular to the velocity v of the charged
particle and to the magnetic field B. Charge carriers entering a region with a constant
magnetic field B perpendicularly to the field are forced into a stable circular orbit
being normal to the B field. These so-called cyclotron orbits are characterized by a
centrifugal acceleration [outwards of the orbit, inverse direction of centripetal force
(5.1¢)] which is compensated by the centripetal acceleration due to the Lorentz force
(5.55). For the stable cyclotron orbit, we thus obtain the following relation for the
rotational frequency, the so-called cyclotron frequency:

mra)g = mvw, = evB, (5.56a)
we = < B. (5.56b)
m

The Lorentz force is directed normal to the particle velocity, it does not change
the energy of the particle. Thus, it can not be expressed as a potential difference, that
is, as a gradient of the potential like the familiar forces in Newtonian mechanics.

The reason for this peculiarity derives from the fact that this force can only be
understood on the basis of special relativity [1]. Maxwell’s equations of the elec-
tromagnetic field are compatible with special relativity, they are Lorentz-invariant.
Consequently electric and magnetic fields in inertial reference frames moving with
different relative velocity are connected with each other. A static electric charge gen-
erates a magnetic field in an inertial frame which moves at a relative velocity with
respect to the static charge. Vice versa, a static magnetic field induces an electric field
(force on an electric charge) in a second inertial frame moving relative to the first
one. While the action of an electric field £ = —e grad ¢ can be introduced into the
Schrodinger equation via its potential ¢ [contained in potential energy V (r)], this
procedure is not possible for the magnetic field. How, then, can we obtain a reason-
able mathematical ansatz, which allows the description of the effect of a magnetic
field on particle motion, without using special relativity theory?
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The solution to this problem requires an ansatz for the Hamilton operator H,
or in classical physics, for the Hamilton function H(p, g) (3.25), which yields a
dynamical equation of the type (5.55) after application of the classical Hamilton
formalism (3.26a), (3.26b) or in quantum mechanics the Schrédinger or Heisenberg
(4.104) equation.

5.4.2 The Hamilton Operator with Magnetic Field

In order to find the correct Hamiltonian with magnetic field, we guess that a good start-
ing point, as often in electrodynamics and in quantum electrodynamics (Sect. 8.2),
will be the vector potential A of the magnetic field B = curl A. A charge carrier
circulating on a cyclotron orbit in a constant magnetic field B has a velocity v and
respectively, a momentum vector p which follows as a tangent the circular trajectory.
The same position dependence is given for the vector potential A of the magnetic
field B. For a spatially constant magnetic field B = (0, 0, B;) A can be chosen as

A= %Bzrew = %(yBZex — xBey). (5.57)
This is easily proven by applying the relations (5.30a)—(5.30c), (5.31a)—(5.31c)
between the coordinate unity vectors and the rules for the curl operator. One should
remember that the choice of A is not unequivocal. One can add any gradient of a
scalar function to (5.57) without changing the relation B = curl A (Sect.5.4.4).
On a cyclotron orbit the particle momentum p has the same spatial dependence
as A (5.57):
p = mve, = mrwe,. (5.58)

It thus seems reasonable—at this point a try—to introduce the magnetic field in
terms of A into the Hamiltonian, in parallel to the momentum. Just for having the
same units as the momentum p we must multiply A with an electric charge and can
add both quantities. For an electron with negative elementary charge moving in a
magnetic field B = curl A we, thus, make the ansatz:

~ 1 o
H=—(p—eA)>. (5.59)
2m

While p is called canonical momentum (canonical variable, Sect. 3.4) the generalized
momentum . R
mr=p—eA=1m (5.60)

is named kinetic momentum of the motion.
As the operator A(r) is a vector function, which depends only on r, it commutes
with r but not with p. With ¥ = (x1, x2, x3) we derive the following commutation
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relations for 7:

(%, mX;] = [&, 7] = ih8;;; (5.61)

[7%,’,7%]'] = [m)?i,m)?j] =[p; —eA,',ﬁj —eAj]

= —[pi,eAj] — [eA;, p;]

. . 0
15[8—%’, eAji| + 1h|:eA,-, E]

0 a A+ A a a a a a
— ihel — A ; AL e A A
3)6,' J J 3)(,' J 3)(,' ! 3)6.,' 3)6.,' ! ! 3)6.,'
d a
=ihe| —A; — —A; ) =iheB; (5.62a)
3)6,' 3)Cj
that is,
(7, 7] = iheB. (5.62b)

For the derivation of (5.62a), we have used that an operator product requires differen-
tiation not only of the function A; but also of the wave function (on which the operator
acts) which is not explicitly expressed in (5.61). This requires the application of the
chain rule of differentiation.

We now calculate the time derivative of the kinetic momentum 7 by means of
the Heisenberg dynamical equation (4.104). In a first step the commutation relations
(5.61) and (5.62b) yield an expression for & from which we derive the time derivative:

i A i[ A2 .
T =mrf = %[H,mf'] = ﬁ[%,mf'} =P —e€A, (5.63)
& =mi= %[I:I,mf‘] = }li[zfl, 7] = ef x B. (5.64)

According to (5.64) the kinetic momentum 7 = p — eA indeed obeys a dynam-
ical equation with the Lorentz force as driving force, just as in the classical equa-
tion (5.55). Due to this correspondence between quantum and classical mechanics
(Sect.3.4). The Hamilton operator H=#2 /2m (5.59) must be applied for the solu-
tion of problems in which a magnetic field is partially responsible for the particle
motion.
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5.4.3 Angular Momentum and Magnetic Moment

In classical electrodynamics, currents through a closed loop generate a magnetic
field which penetrates the loop perpendicularly. At some distance this magnetic field
has the same spatial structure as that of a magnetic dipole (Fig.5.6). In an external
magnetic field, the current loop behaves as a magnetic dipole, it is subject to forces,
that is, a torque, as a magnetic dipole in an external field. These forces can be
derived from the Lorentz force on single electrons which carry the current through
the loop. We will see that similar conclusions can be drawn in quantum mechanics,
for example, for electrons in atoms or in nanoscopic rings in semiconductor nano-
electronics.

For the mathematical treatment of this problem, we start with the Hamilton oper-
ator (5.59) of an electron in a magnetic field:

n | ~ h2 e . AL 2 A2
H=—p-eA?=2 -~ @.A+A.p+S=—. (569
2m 2m  2m 2m

The choice of the magnetic vector potential (5.57) yields a magnetic field B =
curl A = B.e; in z direction. For sufficiently small B fields the last A2 term can be
neglected and only the p - Aand A - P terms must be considered. Using the chain
rule for differentiation, we calculate the action of p - A on a wave function:

p-Ay = —ihV - (AY)

= —ih[(V - Ay +A - VY]

= —ihA-Vy = A - py. (5.66)
Fig. 5.6 Magnetic field .
produced by an electric
current through a closed 1 v
loop. At some distance from - -
the loop (coil) the magnetic = VU =

field resembles the field of a
magnetic dipole p

(schematically indicated by 4
the central arrow)
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For the derivation, we used V - A = divA = (. By means of (5.66), we can write
the Hamiltonian (5.65) in linear approximation:

A2
A=2_ % 0A.p. (5.67)
2m  2m

Apart from the kinetic energy of a free particle p?/2m there is an interaction energy
Hine = eA - p/m which can be expressed, by using (5.57), as:

A e B, . R
Hing = —— —(=ypx +xPy). (5.682)
m 2

Now the z component of the angular momentum L=t p is written as f,z =
x Py — yPx and we obtain the interaction operator with the magnetic field (5.68a) as:

Hy = ——L - B. (5.68b)

The energy of a magnetic dipole u in a magnetic field Bis £ = —u -B (analogous
to an electric dipole in the electric field). According to (5.68b), we attribute a magnetic

dipole moment (operator)
e ~

iL=—L (5.69)
2m

to acharged particle (charge —e, mass m) circulating on an orbit with angular momen-

tum L. The dipole moment (parallel to I:) is directed normal to the orbit area (Fig. 5.6).
It is worth mentioning that at a given angular momentum the mass of the particle
determines the magnetic moment. Protons with a mass exceeding that of electrons by
a factor of about 2000, therefore, are expected to have a magnetic moment smaller by
about the factor 2000 than that of an electron at equal angular momentum. Nuclear
magnetism is significantly smaller than electronic magnetism of the electronic shell
of atoms. It is furthermore interesting that the quantum mechanical relation (5.59)
is equally well derived for classical observables in electrodynamics. We consider a
classical circular current loop with radius r carrying a current /. According to clas-
sical electrodynamics a constant magnetic field B exerts a torque on this loop as on
a magnetic dipole p described by

nw=1-A4, (5.70)
A = 7 - r? is the area of the current loop. For one single particle with charge g
circulating along the loop the current (charge per time at a certain position on the
loop) amounts to

1 =qv/2nr. (5.71)

The magnetic moment (5.70), then, is obtained as
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u= v nrl = imvr = iL, (5.72)
2r 2m 2m

by applying the classical formula (5.5a), (5.5b) for the angular momentum L =
mvr = mr’w. Equation (5.72) equals the quantum mechanical expression (5.69)
except from the different meaning of classical observables and quantum mechanical
operators.

So far we have considered only the terms being linear in A, respectively B, in
the Hamiltonian (5.65). These terms are responsible for the generation of magnetic
dipoles due to rotating electrons, which are orientated in an external magnetic field,
e.g. electrons in atoms with L # 0. This part of magnetism of atoms or matter
in general derives from magnetic dipoles already present, which interact with an
external field. It is called paramagnetism.

In addition, matter also exhibits the property of diamagnetism. This type of mag-
netism is based on circular currents in atoms which are induced by an external
magnetic field. According to Lentz rule the magnetic moment connected with these
circular currents is directed opposite to the applied external field. This causes a neg-
ative, so-called diamagnetic contribution to the magnetic susceptibility. Since the
induced magnetic moment is proportional to the B field and, furthermore, the energy
of the induced dipole in the external field is also proportional to B, the diamagnetic
contribution to magnetism is proportional to B2. This dependence on the magnetic
field arises from the third term % A2 /2m in the Hamilton operator (5.65). It is respon-
sible for the diamagnetic properties of atoms molecules and matter in general.

For an estimation of diamagnetism, we assume a magnetic field B = B.e; in z
direction and again the representation A = —(1/2)(r x B) of the magnetic vector
potential. Then, the third diamagnetic term (5.65) applied on a wave function yields

iy R W (B2~ (r-B) )y
JR— e p— X = — — .
2m 8m 8m d
232
=222 (2 4y (5.73)
8m

To estimate the order of magnitude of this expression for an atom, we calculate
the expectation value as

ezang
8m

(W1(x* + y*)e* B2/8m|yr) ~ (5.73b)
The expectation value (y |x2+y2|y), aradius of atomic dimension, is approximated
by the Bohr radius a ~ 0.05 nm. It is particularly interesting to compare (5.73b)
with the paramagnetic contribution (5.68b). For this purpose, we estimate the expec-
tation value (i) in (ﬁint) by A. The ratio between diamagnetic and paramagnetic
contribution is, the, obtained approximately as
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e2a’ ;eh _10
—/— B, &~ 1x10 - B, [G]. 5.74)
8m /' 2m

Even for extremely large magnetic fields in the order of B ~ 10° Gauss diamagnetism
in atoms is negligibly small in comparison to paramagnetism.

5.4.4 Gauge Invariance and Aharanov-Bohm-Effect

We are used to the fact that energy or potential are determined only apart from an
additive constant. Forces measured in an experiment result from a potential differ-
ence, that is, a gradient of the potential. Similarly, the magnetic field B = curl A
might be expressed in terms of its vector potential A which is not defined unequivo-
cally either. We can generate one and the same magnetic field from a whole variety
of different vector potentials A, since the gradient of any scalar field U (r) vanishes
under the action of the curl operator for the calculation of the B field. Because of
V x VU(r) = 0 the following relation

B = curl[A + VU(r)] = curl A, (5.75)
is valid. Without changing the magnetic field, we can perform the transformation
A = A =A+VU(r) (5.76)

of the vector potential from A to A’. Since the vector potential A enters the kinetic
moment T = (P — eA) in the Hamiltonian (5.59) the transformation (5.76) certainly
modifies the fundamental Schrodinger equation. We will prove, now, that the trans-
formation of the vector potential A = A’ (5.76) keeps the Schrodinger equation
unchanged if we simultaneously transform the wave function according to

Y, t) = Y'(r,1) = exp(%U(r))l//(r, 1). (5.77)

This transformation does not change the probability density either: |y'|> = ||
The proofis as follows. We start with the original Schrodinger equation for ¥ (r, ¢):

2
! (EV - eA) Y= ih%w. (5.78a)

2m \i

We use the abbreviation y = ie/h and for simplicity reason the one-dimensional
representation:
R (9 S
——\|——vyA) ¥ = 17151//. (5.78b)
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The wave function is transformed (v = ) according to (5.77) by multiplying
(5.78b) from the left with exp[y U (x)]:

h? 9 d d
—~ %eyU(a - yA) (5 - yA)w = ihg(eﬂfw). (5.79)

On the right side of the equation, the time derivative of the transformed wave func-
tion v appears. For the left side of (5.79), some calculation is necessary to obtain
something like the one side of a Schrodinger equation. The factor exp(y U) must be
“shifted through” the product of operators [(d/dx) — y A], in order to combine it
with v for the generation of ¥/'.

The following application of the chain rule of differentiation is helpful:

08N e e D e I8 w08 e O 560
0x 0x 0x 0x 0x 0x

Using this relation, we obtain in a first step from (5.79):

R (0 U 3 3
— (= —y== —yA)erU (= —yA )y =in— (V). 5.81
2m(8x yax Y )e <8x v )I// ! at (e w) ( 2)
In a second step, we get
B(a  aU : d
oL YUy = ii— (e’ Y ). 5.81b
2m(8x vV ) ("%y) =iho (") (5.81b)

By insertion of y = ie/h the Schrodinger equation, here written in three dimensions,
is obtained for the transformed wave function:

1 h g ieU(r 0 ieU(r
%[TV —eA(r) — eVU(r)] (e u( )/hy/) = 155(6 u( )/hI//). (5.82)

With the transformations (5.76) and (5.77), the Schrodinger equation in the trans-
formed system ' and A’ is obtained as

l h / : ! . a !/
2m(iV eA) v _1hat1//. (5.83)
A simultaneous transformation of the vector potential (by adding the gradient of
a function U) and the wave function (by multiplication with the factor exp[ieU /h]),
thus, conserves the dynamics of a particle, an unexpected and interesting result. This
simultaneous transformation of A and v, which does not change the dynamical laws,
is called gauge transformation. Quantum mechanical laws are gauge invariant.
We can also go the way in inverse direction. We can require gauge invariance for
the Schrodinger equation when a magnetic field shall be introduced into the equation.



5.4 Circulating Electrons in a Magnetic Field 155

This requirement unequivocally leads to the introduction of the kinetic momentum
P — €A in the Hamiltonian (Sect.5.4.1).

This way of using gauge invariance has been proven to be very successful in mod-
ern field theories of elementary particle physics to elegantly introduce interactions
between different particle fields.

In the following, we want to use gauge invariance to derive an interesting electron
interference effect in ring-like nanostructures, the Aharanov—Bohm-effect. This effect
is important for a fundamental understanding of the interaction of charged particles
with magnetic fields but it is also the basis for interesting novel interference devices
in quantum electronics.

We start with the double-slit experiment for electrons (Sect.2.4.1) and assume
that behind the double-slit, between the two interfering electron beams (1) and (2) a
long solenoid is arranged perpendicular to the plane of the beams (Fig.5.7). A current
through the solenoid, then, generates a locally confined magnetic field with field lines
normal to the plane of the beam trajectories. The solenoid is sufficiently long that
the magnetic stray field outside the coil in the region of the two electron beams can
be neglected. The electrons, thus, propagate in a space free of any magnetic field.
According to B = curl A and A = (1/2)Bre, the solenoid, however, is surrounded
by a circular magnetic vector potential, through which the electrons propagate.

The electrons, thus, move through a region where

B=VxA=0 withA #0. (5.84)

Because of (5.75), these relations are not modified if we assume U (r) = —W (r) and
express A in terms of W(r) by

A=VW() #£0. (5.85a)
Current carrying 1
Coil >
I
Electron Source E
B-Field >
Detector

Fig. 5.7 Scheme of an Aharanov—Bohm interference experiment. The magnetic field B (perpen-
dicular to the image plane), which is produced by an electric current through a coil, produces a
phase shift between the two electron waves representing the interfering electron beams (/) and (2)
originating from the double slit set-up
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Integration along a line between ry and r yields

W(r) = /r ds - A(s). (5.85b)

0

Because of gauge invariance we have two possibilities to represent the wave function
of an electron and its Schrodinger equation, respectively, in the original form with
A#0
1 (h 2 o

(—V - eA) v =ihy, (5.86a)

2m \i
or in the transformed version with
A =A-VWr) =0:

1 (B N\, . .,
—(=V) ¥ =imy'. (5.86b)
2m \ i

In the latter case, the action of the vector potential A is contained in the Schrédinger
equation within the transformed wave function ¥/, that s, in the factor exp(—ieW/h).
With ¢ as the wave function for vanishing magnetic field B = 0 [in the Schrédinger

equation (5.86b)] the vector potential A appears in the original wave function v (r),
according to (5.85a), (5.85b), as follows:

Y(r) = Iﬁ’exp(%W(r)) = w’exp[% /r ds - A(r)}. (5.87)

0

Equation (5.87) is the adequate representation for the two partial waves which
circulate around the spatially confined magnetic field B right (1) and left (2) (Fig.5.7).
Their superposition (5.87) generates the interference on the detector screen:

Y(r) =y exp(i—e/ds . A(s)) + exp|:i—e/ds~A(s):|, (5.88)
hJy h /)y

Y1 and vy are the wave functions at vanishing vector potential A. The path integrals
are defined by the slits at r; and r;. By passing the two ways (1) and (2) in inverse
direction the sum (or difference) of the two integrals in (5.88) can be rewritten into
a path integral over a closed loop around the B field in the coil and a magnetic flux
@ p through the loop is defined by:

/ds-A—/ds-A:jI{ds-A(s):/df-curlA:/df-B:(PB. (5.89)
1 2

By taking the exponential factor in the second term of (5.88) in front of the bracket
we obtain, by use of (5.89), the superposition wave function on the detection screen
as:
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Y(r) = exp[iﬁe/zds . A(s)i| (Wl exp[%@g} + lﬂz). (5.90)

This relation reminds us of the double slit interference experiment discussed in
Sect.2.4. Two partial waves with nearly equal wave vector k but originating from
different slits or holes at r; and r, are superimposed and, thus, represented as

Yo=Y+ = [T 4k, (5.91a)

Because of (5.90) the effect of the magnetic field, i.e. the magnetic flux @p is taken
into account in the double slit experiment by adding the phase factor exp(ie®@p/h)
to the wave function ;. This yields

v = Ceik~r[efi(k'l‘1+%¢8) + efik‘rz], (5.91b)

Analogously to the calculation in Sect.2.4 the intensity on the detection screen, i.e.
the probability to find an electron at r is obtained as:

Y)Y (r) = 2C*C[1 + COS<k -(rp—r2) + %%H

Dp
=2C*C|:1 +cos[k-(r1 —I‘2)+27l’¢—]:|. (5.92)
0

Hereby the so-called magnetic flux quantum was introduced as
po=hle~414x 107 TA7L (5.93)

It depends only on fundamental natural constants. We will frequently encounter this
flux quantum in problems with current loops and enclosed magnetic fields.
Equation (5.92) shows that the interference pattern arising from the superposition
of the two partial waves 1| and v, is shifted on the screen by a variation of the
enclosed magnetic field, that is, the flux through the closed loop of the electron paths.
Intensity maxima and minima appearing at vanishing magnetic field at a position
determined merely by the phase difference k - (r; — ry) are shifted according to the
value of 5 = [ df-B.In other words: at a fixed position r on the screen maximum or
minimum interference intensity is produced by a variation of the magnetic flux @p.
The Aharanov-Bohm experiment, as described here, with negligible magnetic
field B but A # 0 in the region of the electron trajectories was meanwhile made with
high precision in electron microscopes [2, 3]. It must be emphasized that such an
ideal experiment with B = 0 outside the coil is not easy to perform. Stray fields must
be suppressed very carefully by sophisticated tools. The results of those experiments
demonstrate in detail the conclusions (5.92) about the Aharanov—-Bohm-effect. This
is, in particular, an argument to attribute more importance (reality) to the magnetic
vector potential A than to the commonly measured magnetic field B. We will not dig
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into this more philosophical question at this point, but only mention that A and A*
play a major role in the quantum field theory of the electromagnetic field (Sect. 8.2).
These variables will appear as canonically conjugate variables in field quantization
(with commutation relations), similarly as r and p in single particle Schrodinger
quantum mechanics.

Aharanov-Bohm interference experiments are meanwhile well established in
quantum electronics. By means of electron beam lithography (Appendix B) metallic
or semiconductor ring structures with source and drain contacts on opposite sides of
the ring are prepared (Fig. 5.8a). The diameter of these rings must be smaller than the
mean free path between two electron scattering processes in order to maintain a well
defined phase during carrier propagation. For ballistic transport, the mean free path
between two inelastic scattering processes on phonons as well as between two elastic
processes due to defect scattering must exceed the length of the electron trajecto-
ries. But also the weaker condition where elastic scattering in the so-called diffusive
transport regime might occur (but not inelastic scattering) allows the observation of
Aharanov-Bohm interferences. Roughly speaking, this requires ring diameters in the
500nm range and below and measurements at low temperature, for example, below
1 K.

Summarizing, the fundamental condition for the observation of Aharanov—Bohm
interferences is a well defined phase relation between the two partial waves circulat-
ing left and right around the enclosed magnetic flux. This is given in case of ballistic
transport or under the weaker condition of only elastic scattering on defects. It is,

(a) (b)

InGaAs/InP

Resistance (k Ohm)

-0.2 0.0 0.2
Magnetic Field B (T)

Fig. 5.8 a, b Aharanov—Bohm experiment on a semiconductor ring [4, 5]. a Mesa ring structure
with source (left) and drain (right) contacts fabricated by electron beam lithography (Appendix B).
Above and below the ring two gate contacts A and B are prepared as mesas; they allow a change
of the electronic Fermi wave vector and, thus, a shift of the phase in the two rig parts with respect
to each other. The conducting channel is formed by a 2D electron gas (2DEG) at the interface
of an InGaAs/InP heterostructure extended over the whole mesa area (Appendix A). b Measured
resistance of the ring structure as function of the magnetic field B penetrating the ring normally.
The Aharanov—Bohm oscillations measured at 0.33 and 2 K are suppressed at higher temperatures
since inelastic scattering of the electrons on lattice vibrations (Sect. 8.4) destroys phase coherence
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furthermore, required that the partial waves arriving at the drain contact have a suffi-
ciently sharp wave vector k. Superposition of waves with strongly varying k vectors
destroys the interference. Thus, the 1D quantum wires forming the ring stricture must
have a thickness that only one or at least a very low number of quantum states fit
into the confining wire potential (Sect.3.6.1). The thickness of the wires forming the
ring must therefore match the wavelength of the electrons which carry the transport,
that is, the Fermi wavelength. In semiconductors electrons in the conduction band
(conduction channel) have Fermi wave lengths in the range of 50 nm in comparison
to metals with relevant electron wave lengths in the 0.5 nm range.

It is, thus, technologically (lithography, Appendix B) much easier to study
Aharanov-Bohm interferences in ring-like semiconductor structures than in met-
als. Because of the high electron mobilities (large mean free path) rings structured
out of 2D electron gases (2DEG) in semiconductor heterostructures as for example,
InGaAs/InP, AlGaAs/GaAs or AlIGaN/GaN (Appendix A) are particularly suited.
An Aharanov—Bohm experiment performed on an InGaAs/InP ring is presented in
Fig.5.8 [4, 5]. A current between left (source) and right (drain) contacts is split
into two partial currents through the ring which encloses a magnetic flux due to an
applied magnetic field B normal to the ring (Fig.5.8a). A variation of the magnetic
field strength causes current /(B) or resistance oscillations as shown in Fig.5.8b.
These oscillations can quantitatively described by Aharanov—Bohm interferences
(5.92) due to constructive or destructive superposition of electron waves moving
through the two ring arms.

Such experiments on nanoscopic semiconductor or metal rings are, of course, not
ideal. The magnetic field penetrating the ring and producing the flux is also present
within the current carrying regions and outside the ring. This part of the B field does
not affect the interferences but, on the other hand, the experiment can not prove the
importance of the vector potential A rather than the B field for the occurrence of
Aharanov—-Bohm oscillations.

For applications in quantum electronics it is interesting that the relative phase
difference between the electron partial waves in the upper and lower part of the ring
can also be varied by changing the electric potential in one part of the ring. A potential
shift changes the electron occupation within the corresponding part of the wire and,
therefore, also the Fermi wave vector kr of the current carrying electrons. The phase
of the wave function in one arm of the ring is again shifted against that in the other
part of the ring, this time by an electric potential change rather than by a change of
a magnetic field. For the realization of such an experiment additional gate contacts
A and B are lithographically structured on the sample in Fig.5.8a. Different gate
voltages at those contacts allow switching between interference maxima and minima
of the drain current. An interference transistor has been realized which switches
between current maxima and minima by changing a gate voltage. Research in this
field is often called phase-based nanoelectronics.
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5.5 The Spin

In everyday language, spin has a lot of meanings. In the context of motion, a spinning
motion might also be described as whirling. In physics the meaning is more precise.
With relation to stars or the earth one speaks of the Earth’s spinning motion and
means the rotation of the earth (more general of a solid body) around an axis through
the earth (body) center. In this sense, spin is also attributed to elementary particles
as we will see. A particle thus might have an angular momentum due to a rotation
about an internal axis. For massive particles with spatial extension, this sounds as a
familiar phenomenon. As we will see, however, in quantum physics even point-like
and mass-less particles as photons have a spin. This is again a typically quantum
mechanical counter-intuitive phenomenon. In the next section, we will see how the
spin of particles was detected and what its peculiarities are in the context of the
general rules of angular momenta in quantum physics.

5.5.1 Stern—Gerlach Experiment

With the knowledge that electrons moving in an orbit, that is, charged particles
with an angular momentum, produce a magnetic moment g, we can understand a
fundamental experiment in the early times of quantum mechanics (Stern and Gerlach
1922) [6, 7].

Stern and Gerlach produced a beam of neutral silver (Ag) atoms in a heated oven
and sent it through a strongly inhomogeneous static magnetic field B(z) originating
from two asymmetric pole shoes (Fig.5.9). The silver atoms were collected on a
screen where they produced two sharp, clearly separated stripe patterns. This result
demonstrates that the atoms exhibit two well defined magnetic dipoles in z direction.
In order to understand the two stripe pattern, we remember that the energy of a
magnetic dipole p in a field Bis E = —pu - B (Sect.5.4.3). In case of a field being
inhomogeneous in z direction a force in z direction results according to

K=—-gradE=V(u-B) >~ pu, aaiz e.. (5.94)
Depending on the strength of the magnetic dipole the atoms in the beam are devi-
ated more or less from their initial flight direction. Classically a magnetic moment
connected to the silver atoms would have a random orientation with respect to
the flight direction and a continuous darkening of the screen between two max-
imum values in z direction is expected (Fig.5.9a). The experimental result is in
contradiction: The magnetic moment p, of the silver atoms is quantized, only two
sharp well defined values for w, are derived from the experiment (Fig.5.9a). This
is exactly the result which we would expect for a measurement of the quantized
angular momentum. Angular momenta of charged particles are directly related to
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magnetic dipoles (5.69). The experiment obviously demonstrates the quantization
of angular momentum. Astonishingly, however, no u, = 0 value is observed nor
multiple quantized values. Only two distinct values of the dipole moment, that is,
the angular momentum appear. A quantitative analysis of the results yields the two
magnetic dipole moments u, & +(e/m.)h which have to be attributed to the silver
atoms.

Silver atoms have a nucleus of protons and neutrons and a couple of electrons in
their electronic shell. An interpretation of the results of the Stern—Gerlach experi-
ment, thus, requires a detailed knowledge of the electronic structure of silver atoms.
A direct, more evident approach to the understanding of the results is derived from
a similar experiment by Phipps and Taylor [8], who performed the experiment of
Stern and Gerlach, but with neutral hydrogen (H) atoms rather than with silver
atoms. These authors obtained the same result, qualitatively and quantitatively, with
H atoms as earlier Stern and Gerlach with Ag atoms. H atoms have only one single
electron in their outer shell, which is bounded by the Coulomb potential of the posi-
tive nucleus of a proton. Since the magnetic moment, according to (5.69), is inversely
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proportional to the particle mass, the dipole moment of the nucleus (proton) can not
play a significant role for the observed splitting of u, into two components (proton
mass ~ 2000 x electron mass). The observed magnetic dipole moment, thus, has
to be ascribed to the electron within the H atom. Under the experimental conditions
the electron of the H atom must be in its quantum mechanical ground state with
vanishing orbital angular momentum L = 0. The energies in the experiment did not
allow an excitation of the electron into an excited state with L # 0.

The conclusion derived from these experiments is straightforward: An electron of
the hydrogen or the silver atom carries an inherent magnetic dipole moment which can
be oriented within a magnetic field B, parallel or antiparallel to the field. Depending
on this orientation, the atoms containing that electron are deviated from their initial
path into two well defined directions observed on the screen (Fig.5.9).

According to the general laws of electrodynamics (Sect.5.4.3), the magnetic
moment of a charged particle must be connected to an angular momentum of the
particle. The magnetic dipole moment it of an electron on a spatial orbit is related
with its angular momentum L via L= (e/ 2m,)L. This relation must not necessarily
hold for the inherent magnetic moment of a spinning electron (around internal axis),
which does not arise from a circular motion of the particle on an orbit. Therefore,
the so-called Lande factor or the gyro-magnetic ratio g is introduced in order to con-
nect the elementary magnetic moment of an electron itself with its inherent angular

momentum, called spin:
~ € A
Kspin = g2m S. (5.95)
e

Both magnetic moment and spin are quantum-mechanical observables which are
described by operators (roof symbols) rather than by normal numbers. The eigenval-
ues of these operators are found as numbers in an experiment (results of a measure-
ment). By the assumption that the gyro-magnetic ratio g in (5.95) equals 2 the results
of the Stern—Gerlach and the Phipps—Taylor experiment can be explained quantita-
tively. In particular, the rules for angular momentum quantization (5.28a)—(5.28¢),
(5.29a), (5.29b) can be fulfilled, including ©, = O (i.e., also orientation quantum
number m = 0). We must only assume that the z component of the spin can have the
following eigenvalues:

1
Se=msh withmy = % (5.96)

The spin orientation quantum number m , then, fulfills the condition of half integrity
(5.29b), a condition which is excluded for orbital angular momenta of parti-
cles moving on a curved trajectory because of (5.35b). The spin as the inherent
angular momentum of an electron can assume only the two measurement values
S, = £(1/2)h according to the Stern—Gerlach and the Phipps—Taylor experiment.
However, any multiple half-integer values (1/2)h, (3/2)h, (5/2)h, ... of angular
momentum (5.29b) are obtained for a particle with spin =/2/2 which simultaneously
has an orbital momentum L. Both angular momenta, then, have to be summed up
and the operator of the total angular momentum
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J=L+S8 (5.97)

fulfills the eigenvalue equations
Tl m,mg) = (m +m)h|l, m, my), (5.98a)
jzll, m,mg) = j(j + DR, m, my), (5.98b)

where m; &£ (1/2) is introduced as spin quantum number. Taking together spin and
orbital angular momentum of an electron the total orientation quantum number of
the electron m, = m + m (5.98a) assumes the following values:

1

me=—j—j 411 withj=2 2 5 (5.99)

3

N W
|

This spectrum of quantum numbers, of course, is only obtained for particles with
spin one half (s = 1/2, my = £1/2). Particles with zero spin (s = 0), they do exist,
the series of integer orientation quantum numbers (5.35b) as for the orbital angular
momentum alone is obtained.

At this point it is worth reflecting a little bit on the spin degree of freedom, a quite
counter-intuitive property a particle can have. According to present knowledge the
electron with a spatial extension of about 2.8 x 10~!3 cm is a point-like particle with-
out any internal structure as for example, the proton (contains 3 quarks, Sect.5.6.4).
Nevertheless, this point-like particle carries an inherent angular momentum, the spin,
which is related to a magnetic dipole.

The corresponding elementary magnetic dipole moment of the electronic spin is
called Bohr magneton wup, its value amounts to

up = eh/2m, ~9.28 x 1072 JT71. (5.100)

The spin is a truly quantum mechanical phenomenon, which can not be derived
classically on the basis of charged carriers circulating on an orbit.

Even though counter-intuitive at first glance, the phenomenon of spin and its
related elementary magnetic moment instantly follows mathematically from the uni-
fication of single particle quantum mechanics with the rules of special relativity,
that is, the four dimensional space-time world of relativity theory. In order to make
Schrodinger’s quantum mechanics compatible with special relativity Dirac invented
an extension of the Schrédinger equation, the so-called Dirac equation which requires
as solutions pairs of wave functions, so-called spinors, rather than simple scalar wave
functions ¥ (r, ¢). The two wave function components of a spinor finally emerge as
wave functions related to two different spin orientations. A further success of Dirac’s
theory of a quantum mechanical relativistic electron is the derivation of the gyro-
magnetic ratio (Lande factor) g of exactly 2 for the spin. As it has been shown later
on in quantum field theory (interaction of electrons with quantized electromagnetic
field, Sect.8.2) and also in experiment, the g value exceeds 2 by a tiny amount
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(g = 2.0023...). Experiment and theory agree up to the 7th decimal, a significant
success both for theory and experiment.

5.5.2 The Spin and Its 2D Hilbert Space

The spin S is an angular momentum, that is, a vector defined in 3D Euclidean space.
In quantum physics the three vector components, however, must be operators: S =
(Sx, S}, S .). The dimension of the Hilbert space attributed to these operators is
given by the number of possible measurement results for these operators. Since
only two distinct spin states -/1/2 are possible the corresponding Hilbert spaces of
the operators S’x, S’y, S’Z are 2-dimensional. As for angular momentum operators in
general the following commutation rules (5.7a)—(5.7d), (5.8) are valid also for spin
operators:

[S,, §,1 =ins,, (5.101a)
[Sy, 8.1 = ihS,, (5.101b)
(3., §¢1 = ihS,, (5.101¢)

S x S =inS. (5.101d)

Only one single component of S, e.g. S'Z can be measured as a sharp value simulta-
neously with S2 that is,

[S.5:]=[S".8]=[S.5]=0. (5.102)

S‘Z and S2 have the same system of eigenstates with the eigenvalues +A/2 (my =
+1/2) for S'Z. In the abstract Dirac notation, the two spin states related to these
eigenvalues are sometimes denoted as |+) and | —) or respectively, [1) and || ) for spin
up and spin down. Correspondingly the eigenvalue equations for the spin operators
are written as:

S:11) = +§’m, (5.103a)
S:14) = —gm, (5.103b)
§°11) = s(s + DA21) = %hzm (5.103¢)
§%11) = s(s + DR2Y) = zhzm. (5.103d)

Equations (5.103a)—(5.103d) reflect the general relations for angular momenta
(5.28a)—(5.28c). At this point, for the first time, we encounter a Hilbert space with
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only two dimensions (2D Hilbert space); it is spanned by only two eigenkets |1)
and || ). We have to distinguish this 2D spin Hilbert space from the 3D Euclidean
space in which the three spin vector components (operators) S, 8 Vs ~§z are defined.
As in our infinite dimensional and continuous Hilbert spaces of the operators H, p, X
etc. (Chap. 4), the spin eigenstates must be orthonormal in the 2D spin Hilbert space,
that is,

(=0 (M =) =1 (5.104)

The completeness relation, of course, contains only two terms to be summed up:

MM+ 1) (] = 1. (5.105)

It guaranties that every possible spin state can be expressed as a superposition of the
two eigenstates |1) and || ). A general spin state |s) is, thus, expressed as:

Is) = aq|1) +a-[]), (5.106)
where o4, o— are probability amplitudes which describe to what extent the two
eigenstates |1) and || ) are contained in the general spin state. The normalization
condition (s|s) = 1 requires as usually:

lo | + Ja—|? = 1. (5.107)
As was discussed in the context of infinite dimensional Hilbert spaces (Sect.4.3),
a representation of spin states in terms of 2-dimensional (2D) vectors of the 2D

Hilbert space is possible. The vector components are the probability amplitudes of
(5.106) and we get:

o_ .
o= (a+) , respectively o = (o, a¥). (5.108)

We can also say, o4 and o are the projections of the general spin state |s) on the
two axis of the 2D Hilbert space:

1) — ((1)) and |}) — ((1)) (5.109)

ar = (Ms),  a- = (ls). (5.110)

that is,

A general spin operator, for example, §Z is represented in this 2D Hilbert space as a

2D matrix: ~
s = ((TI%IT) <T|§z|\1«>). (5.111)
=z 1Sz (IS 1)
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In analogy to the general step operators of the angular momentum L+ (5.18a),(5.22),
we introduce the following step operators for the spin:

84 =8, +i8,. (5.112a)

The inverse operators are
~ 1 ~ 4 A 1 ~
Sy = E(S + S-), Sy = E(SJr -S), (5.112b)

S’Jr and S_ operate between two states (steps) only, namely the two spin states:

Sity =0, S_11) =hly), (5.113a)
Syl =h1),  S_|) =0, (5.113b)

From the vector representation (5.109) of |1) and || ) and from (5.113a), (5.113b)
the matrix representation of the spin step operators is derived:

01 00 h(1 0

According to (5.112b) the three components of the spin can, thus, be expressed as

h(o 1 hi(0 —i h1l 0
éx—§(1 0)’ éy_z(i 0)’ §z_§(o —1)' (5-113)

Note that this representation involves the arbitrary choice of S‘z as the measured
spin component. This choice causes the matrix éz to be diagonal with the eigenvalues
(diagonal elements) £7/2. '

According to (5.115), Pauli has introduced the following matrices (called Pauli
matrices):

01 0 —i 1 0
axz(l 0)’ cryz(i 0), OZ:(O _1). (5.116)

By means of the Pauli matrices, the spin vector S whose components are 2D matrices
is represented as

S=—o0. (5.117)

Pauli matrices are used in many quantum mechanical problems other than spin related
ones. All 2D Hilbert spaces can be described by use of Pauli matrices and corre-
sponding 2D vectors. Quantum systems which can be described approximately by
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two distinct quantum states only fall into this category. We will discuss these issues
more in detail in Sect. 6.5.

The spin degree of freedom can only be probed in an experiment if the Schrodinger
equation or the Hamilton operator of the particular problem explicitly contains a term
with spin operators. Therefore, a magnetic field or more generally an electromagnetic
field must be present. In this case, the Hamiltonian for an electron is obtained as:

A1 .
Hzg_@—eNﬁ0f+V@J%+mﬁ-B (5.118)
m

The potential energy V (r, ¢) contains time dependent electric fields in terms of the
electric potential e® (r, t). The magnetic field enters the Hamiltonian two times, in
terms of the vector potential A and as the scalar product of the B field with the Pauli
(spin) operator . This latter term, where the spin operator enters, is the energy of
the magnetic dipole ascribed, via the Bohr magneton pp (5.100), to the electronic
spin and the external magnetic field B. For vanishing magnetic field the spin operator
disappears from the Hamiltonian and a normal Schrodinger equation without spin
has to be solved. But note, also in this case two wave functions ¥4 (r, ¢) and v (r, t)
exist as solutions according to two spin orientations.

For B = 0 these two wave functions are identical. The states are degenerate in
their spin degree of freedom.

The spin degree of freedom is independent of any spatial degree of freedom. Spin
can be measured with absolute accuracy simultaneously with observables as posi-
tion ¥, momentum P or orbital angular momentum L. The corresponding operators
commute:

(S,#1=1S,pl = [S,L]1 = 0. (5.119)

A general state containing spatial degrees of freedom (described by wave function i)
and the spin degrees of freedom, thus, is a product of position and spin states. In a
chosen basis |r)|1) and |r)|{ ), the probability amplitudes o4 and o— (5.108) must be
replaced by the position dependent amplitudes 4 (r) and ¥ (r), the corresponding
spin specific wave functions. A general state consisting of a superposition of all
possible single states is, then, represented as:

$) = / Er [ IR + ¥, @10 1] (5.120a)

The representations in position and spin Hilbert spaces, that is, the correspond-
ing projections of (5.120a) on to the spin and position eigenstates are obtained, as
expected:

(rjg) = Yy (O11) + ¥ (), (5.120b)
(trlg) = ¥y (r); (LU(r[g) = &) (r). (5.120c)
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Equation (5.120b) suggests that in the presence of external magnetic fields the treat-
ment of problems with spin is most conveniently done in the 2D vector and matrix
representation. In the position representation, 2D spinors are used:

Y AZY)
o (r) = (m(r))' (5.121)

This finally leads to a 2D Schrodinger equation where the spin is represented in terms
of Pauli matrices o:

a2 (Y = [ (P9 oA 1o B (1)
lhat (1/f¢)_|:[2m(iv eA) +V(r,t)](0 1)+ILBG B:| (‘/fl .

(5.122)
This is the so-called non-relativistic Pauli equation. It replaces the normal scalar
Schrodinger equation in case where an external magnetic field induces significant
spin effects, that is, where spin degeneracy is removed.

5.5.3 Spin Precession

The simplest dynamics of a spin is given for a localized electron in an external
magnetic field.

The electron might be confined in a spatially fixed atom (ion trap) or in a 0D
quantum dot (Sect. 3.6.1). Translational degrees of freedom can be neglected and for
a constant potential, e.g. in the quantum dot, we can assume V (r) = 0. The Pauli
equation (5.122) for a general spin state |s) of the electron in a constant external
magnetic field B is, then obtained as

. 0 N
1h5|s) = upo - Bls) = up6;B;|s). (5.123)

We have chosen the magnetic field in z direction, such that only the spin component
6, appears in the Hamiltonian.
The general spin state |s) is a superposition of |1) and || ):

I5) = a0 (D11) +a_(O|}) = ape EMp) pa_e ER ) (5124

Since |1) and || ) are stationary eigenstates their probability amplitudes must exhibit
the characteristic exponential time dependence with the corresponding energy eigen-
values E4 and E | in the exponents.

For the solution of the Schrodinger (Pauli) equation (5.123), we insert the ansatz
(5.124) and obtain
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8 A
iha—t[oz+ O +a— (O] = upBb:[ar 1) +a—(I)]. (5.1252)
Time differentiation of o (#) and «v—(¢) yields

(Ero, 1) + Eya|1)) = upB:oz (o4 1) +a-|1)). (5.125b)

We multiply these equations from the left side with (1| and subsequently with (| |
and obtain, by means of the orthogonality relations (5.104):

Epogy = upB:(18: | Doy + s B (11621 e, (5.126a)
Eyo— = upB:(}18: o + g B (V161 1)ay. (5.126b)

For the calculation of the 2D matrix elements (1]6;|1) etc., we use the 2D vector
representation of spin states (5.109) and obtain for example:

(I62I1) = (O, 1) ((1) _01) ((1)) — 0,1 ((1)) — 0. (5.126¢)

Analogous calculations (5.126a)—(5.126¢) yield:

ET Z[LBBZ, E¢ Z—MBBZ. (51273.)
As expected we find two distinct eigenvalues or energies of the stationary spin states
[1) and ||) in a magnetic field, corresponding to the two spin orientations in the
magnetic field. Using the expression for the Bohr magneton pp = eh/2m and the

frequency woy = eB;/m [identical with cyclotron frequency (5.56b)] we can write
these two energy eigenvalues as:

Ey/h= —B, = w)/2. (5.127b)
2m
E|/h=——B.=—wp/2. (5.127¢)
2m

The general spin state (5.124), then, is expressed as

Is) = oy 1) + e |}) = ape2t) 4 a_e ). (5.128a)
Normalization of the state requires:

(sls) = lax > + lo—)? = lar)® + la_)? = 1. (5.128b)
In order to get an intuitive picture of the motion of the spin in a magnetic field,

we calculate the expectation values of the spin angular momentum in the three space
directions ((h/2)6y), ((R/2)6y), ((h/2)6;). These quantities can directly be com-
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X

Fig. 5.10 a, b Precession of a spin (s) in a constant magnetic field B in z direction. a Two stable
precession modes with spin orientation in B, and in negative B; direction and with energies Ej
and E are possible. b Schematic plot of the spin precession mode with energy E

pared with classical dynamical variables. In 2D vector representation, we get

ho\ B, h
(55 = e =) (o ) (2)
B h
=St () = S -t )
h
5(Ia+| a_p). (5.129)

According to (5.124), the amplitudes a4 and a_ do not depend on time. The z
component of the spin (expectation value) is a dynamical constant of the motion in
the magnetic field B;. This is not true for the x and y components as is easily shown:

h, h (0 1\ [« [N
(3= stera) (7 0) () = 50 (32)
;(a+a +a*a}) = ara_hcoswot. (5.130a)

Analogously, we get for the y component
h . :
(Sy) = an = aja_hsinwyt. (5.130b)

According to (5.130a) and (5.130b) the expectation values (Sy) and (Sy) of the spin
angular momentum move on a circular path around the magnetic field B, (z direction)
with a frequency wog = eB;/m (Fig.5.10).

When we imagine the quantum mechanical spin as a classical peg top or gyro
(rigorously not allowed) this top turns around itself (around internal axis) and simul-
taneously the internal rotation axis of the peg top circles around the magnetic field
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lines as axis (Fig.5.10). This characteristic spin motion in a magnetic field is called
precession with the precession frequency wg. Two stable configurations of this motion
are possible, z component of the spin in B, direction and opposite to it, corresponding
to the two energy eigenvalues E4 and E . In Sect.6.5.2, we will learn how small
oscillating electromagnetic fields of adequate frequency can flip the spin orientation
between these two stable orientations.

5.6 Particle Categories: Fermions and Bosons

5.6.1 Two and More Particles

So far we have treated quantum mechanical properties only for one single particle,
usually the electron. When we consider more than one particle, in the simplest case
only two, we encounter totally new unexpected quantum phenomena solely due to the
uncertainty in the description of position and momentum of particles. When the wave
functions of two identical particles overlap in space we have no chance to distinguish
between the two particles, that is, to follow their individual path in that spatial region.
The particles are un-distinguishable. This is in contrast to classical particles, they
are always distinguishable. We can follow their individual trajectories with absolute
accuracy (at least in the abstract ideal case). In addition, we can attribute properties,
as for example, color, to classical particles (at least bigger ones) which do not affect
their dynamics.

In quantum mechanics, two identical particles are solely described by their wave
function ¥ (ry, ra, ) where P(ry, rp,t) = | (ry, 1o, t)|2 is the probability density
at time ¢ to find particle (1) at ry and particle (2) at rp. A measurement of the particle
position at a time ¢ yields ry, r» and at a later time ¢’ the positions r/] and r/z. Ateach
time, only two particles are detected at two differing positions, it is totally undefined
in the framework of quantum mechanics what particle of the two is detected here or
there. The two-particle wave function ¥ (r1, I3, t) is defined in a 6-dimensional (6D)
position space at a time ¢. Together with the spin degree of freedom the wave function
must be expressed as ¥ (rys1, r2s2, ) with s; as spin quantum numbers. The definition
of P(ry, rp) as the probability density to find the particles at r; and r7, respectively,
requires the normalization of the two-particle wave function, this time over the 6D
space of the two particles. The normalization guarantees that two particles are found
in any case somewhere in the normalization volume. Normalization is expressed as:

= (Yly) =/|<r1,rz|w>|2d3r1 d3r2=/P(l‘1,I‘2)d3V1 d*r;.  (5.131a)

The two-particle Schrodlnger equation and Ham1lt0n1an respectively, contains
the kinetic energies T = Pi 2 /2m and Tz = p; 2 /2m of the two identical particles
and a potential V (r, r2) being dependent on both particle coordinates, since a force
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acts on both particles, mostly mutually. Without spin the Hamiltonian for the two
identical particles (equal mass) is, thus, obtained as

R pAZ ﬁ2
H="14 24V ). (5.131b)
2m  2m

It is immediately obvious that the mathematical description of one single particle in
two dimensions is identical with that of two particles, each in one dimension. As an
example, we consider a system of two identical independent harmonic oscillators (1)
and (2). Their Hamiltonian is
~2 n2
pitpy 1 2, 1 2

+ —mowx{ + —mwx;. 5.132
2m 2 T 5132

H=

We can assume X;, p; as 1D position and momentum operators of the ith particle
(i = 1, 2) or equivalently x1, x and p;, p> as the operators belonging to the two
coordinates of one and the same particle.

Furthermore, if we can separate the potential V (ry, r) into two separate potentials
of (in this case different) non-interacting particles V (ry, r2) = V(r1) + V(r2), the
Hamiltonian is written as

. p? Ha

A=+ =L 4 vien+ 22 4 v, (5.133)
2m 2my

It can be separated into two separate operators H, and H», each one acting only

on particle (1) and particle (2), respectively. The Schrédinger equation of the two
particles, then, is obtained as

.0 A A
ih=— | (r1, 120) = (Hy + Ho) [y (1, 120)). (5.134)
A product ansatz for the two-particle quantum state separates the problem:

[ (x1, ma0)) = (Y1) 1Y), (5.135)

and we obtain from (5.134):
0 N N
iﬁgl%)l%) = (H\ + H)|Y1)|¥2), (5.136a)

I;ﬁ acts on |yr1), only, and I:IZ on |y»). The two single particle problems, therefore,
allow the familiar ansatz |; o exp(—iEt/h)) respectively, |y o exp(—iEat/h))
and we obtain:

a
ih@llﬂﬂl%) = (E1 + ED)[Y) [¥2). (5.136b)
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For two non-interacting particles the single energy eigenvalues E| and E; are con-
stants of motion and the total energy of the system can be expressed as the sum of
the single particle energies:

E=E+ E». (5.137)

With |E1) and | E3) as the time-independent eigenstates which are obtained from the
separated eigenvalue equations

Hi|E1) = E\|E1), Ha|E2) = E2| En) (5.138)

the general state of the two-particle system without particle interaction is expressed
as
[ (@) = |E1)e F1R Epye 2/, (5.139)

We want to keep in mind: The total energy of two non-interacting particles is the
sum of the two single particle energies: E = E| + E>. Not only E but also E; and
E, separately are constants of motion. The wave function, respectively the state of
the total system (5.139) is the product of the single particle states. The number of
dimensions of the new two particle Hilbert space is obtained as the product of the
dimensions of the two single particle Hilbert spaces. This is also true for the case of
two interacting particles, where the total state of the system can not be expressed as
the product of the two single particle states.

A system of two spins (connected to electrons) shall be considered as an example.
The Hilbert space of one single spin is spanned by the states |1) and || ). A two-spin
Hilbert space contains the following four states |1)[1), [1)[{), [4)11), [4)[{). These
states span the 4D Hilbert space, independent on a possible interaction between
the spins. Each two-spin state can be represented as a superposition of these four
states.

Since two subatomic particles can not be distinguished except by different quan-
tum numbers, we are lead to another quantum physical peculiarity. Imagine a two-
particle state |a, b) = |a — r1, b — r») in which a position measurement yields par-
ticle a at the position r and particle b at r». We can not distinguish between the parti-
cles; the state |a, b) is, therefore, identical with the state |b, a) = |b — r{,a — 13)
where particle b is detected at r; and particle a at r». Both states |a, b) and |b, a)
solve the Schrodinger equation equally well. Since the Schrodinger equation is a
linear differential equation, the most general solutions are the linearly independent
superpositions normalized by the factor 1/+/2:

|¥s) = %(Ia, b) + |b, a)), (5.140a)
Wa) = %(m, b) — |b, a)). (5.140b)
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A two particle quantum system, thus, has in general two different types of states,
a symmetric one |Ys), which keeps its sign upon exchange of the two particles a and
b, and an antisymmetric one |y 4), which changes sign upon particle exchange.

Which type of state is realized in nature, or do they both exist? In the following
section, we will relate the property symmetry or antisymmetry of a quantum state
directly with the spin of the particles.

It must be emphasized that the properties derived for two particles are equally
found for many particles. For a system of three non-interacting particles, for example,
the three-particle wave function (without spin) is written as

Y (ry, 12,13, 1) = Y1 (ry, DY (2, )3 (rs, ). (5.141)

For this product representation of the wave function it is necessary that the total
potential can be separated into three single particle potentials:

V(ri, ra, r3) = Vi(ry) Va(r) V3 (r3). (5.142)

We can distinguish between symmetric and antisymmetric wave functions also for
many-particle wave functions. It is relevant whether the wave function or the many-
body state changes its sign upon exchange of any two particles. An N-particle state
shall be described by |rj, 2, 13, ..., ry), that is, a position measurement yields
particle (1), (2), ..., (N) at the positions ry, rp, 3, ..., ry. The symmetric |S) and
antisymmetric state |A), then, are defined by:

[S) =ri,r2,r3,...,rN)s = |rp, r(,r3,...,IN)s, (5.143a)
|[A) =|r1,r2,r3,...,IN)A = —|F2, T, T3,...,TN)A. (5.143b)

In (5.143a), (5.143b), each time particle (1) and particle (2) were exchanged, that is,
on the left side of the equations particles (1) and (2) were detected at r| and r», respec-
tively, while on the right side particle (1) was detected at r» and particle (2) at ry. In
the nomenclature of (5.143a), (5.143b) the order in the series of position coordinates
indicates the particle number, while the position coordinates ry, rp, ..., ry itself
describe the detection site. Many-particle states as in (5.143a), (5.143b) are normal-
ized to one in analogy to (5.131a) in order to guarantee the probability interpretation
of the wave function, that is:

1= <S|S)5= (I‘l,l'z,...,I‘N|l‘1,l'2,...,l'N)S

=/w;‘(r],rz,...,rN)lps(rl,rz,...,r_N)d3r1 Ery. . Pry. (5.149)
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5.6.2 Spin and Particle Categories: The Pauli Exclusion
Principle

We will see that there is a direct correlation between the spin of a particle and the
symmetry property, symmetric or antisymmetric, of the corresponding two (many)
particle wave function. For the derivation we use a gedanken experiment. Two elec-
trons are assumed to be localized within a distance a at the positions r; and r»,
e.g. by confinement in two quantum dots. Due to an external magnetic field B in z
direction (normal to a) both electrons have the same spin orientation || B (Fig.5.11).
A wave function v (ry, ry) describes the spatial part of the two-particle state. We
take into account overlap of the single electron wave functions, which forbids a
product representation of the two particle wave function. According to (Sect.5.5.2)
the two-electron state |¢ (1, 2)) including the spin degree of freedom is, then, written
in position representation as:

M @
<r|¢>>=¢><1,2>=w(r1,rz)|¢><“|¢><”=w<r1,rz)(0) ((1)) . (5.145)

Spin interaction is excluded, that is, the spin states of the two electrons can be written
as a product, once in abstract bra-ket notation |1)(", [1) and also in 2D Hilbert
vector representation (5.109). Note the equal spin orientation due to the magnetic
field. Both electrons are identical, also concerning their spin orientation. They can
not be distinguished. We, thus, can exchange them without modification of the two-
particle quantum state.

Formally this exchange of the two particles can also be performed by a rotation
of the two-electron wave function by 180° = & around an axis (z direction) midst
between the particles, normal to a (Fig.5.11). The wave function originating from
the rotation of ¢ (1, 2) (5.145) by the angle m, which is identical with the one after
exchanging the two electrons, is denoted by ¢(”) (1, 2). We will calculate this rotated
wave function by using the rotation operator (rotation around the z axis) as it was

1B

Fig. 5.11 Schematic representation of a quantum state of two particles (/) and (2) being at the
positions r; and rp. The particles carry spins (see 2D spin vectors), which are oriented equally
in z direction by the constant magnetic field B (spin precession not shown). A realization of this
two-particle state might be achieved in a double quantum dot. A physically identical state as the
one depicted might be prepared by exchange of the two particles or by rotation of the quantum state
around the z axis by an angle ¢ = 180°
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introduced in Sect. 5.3 (5.40):
Uy = exp(%nfz) = expl:%rr(iz + S‘Z)], (5.146)

fz is the total angular momentum operator in z direction containing the orbital angular

momentum L . and the spin angular momentum S’Z. For the two-electron system .§Z
is expressed by the sum of the two spin matrices az(l) and oz(z) which act on electron
(1) and electron (2) separately. According to (5.39b), the rotated two-particle wave

function is, then, obtained as:

™1 2)=expi why+ Z16® 4+ Zrs@ |y 1, 1) N (1
’ RITTY T 2R 2% ’ 0 0

i » T .1 1 D
= exp(EﬂLZ)w(rl,rz) exp(iEoZ( )) (0)
(2)
T A2 1
X exp(lgaz( )) (O) . (5.147)

This representation implies that L . acts on the spatial part of the quantum state, that
is, the wave function v (ry, r»), while JZ( D and 01(2) act on the spin parts of the states
of electron (1) and electron (2). The m rotation of i (ry, r2) performed by the action
of f,z is identical with an exchange of the two electrons, that is, with 1 (r, 7).
We, now, have to derive how the application of the spin operator exp(in&z(l) /2)
modifies the 2D spin Hilbert vector of electron (1) and the same for electron (2).
We remember that operator functions (4.97) are represented by series expansions

(Sect.4.3.5), that s,

i P, P
exp(igoaz) = Cos EUZ + isin Eaz, (5.148a)

and with the expansions of sinus and cosinus functions

o]

@ (=D p2v,
cos > 62 = Z 3012 &2, (5.148b)
v=0 ’
oo
- eI
S EO'Z = ;mi o, . (5148C)

Exponential and trigonometric functions of operators are expressed by multiple appli-
cation of these operators itself on the state or the wave function.
From the spin matrix relations

. (1 0 o (1 0) _
=0 5) #=(o1)-2

>
Nw
>

=6, (5.149)
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we conclude:

0. < (=D ¢
cos EUZ = UZEO )] 5 é: (cos 5); (5.150a)
and analogously
sin26. = (sin % )6 (5.150b)
27 2] '

By means of (5.148a), we obtain exp(i6,/2) = i6; and finally the 7 -rotated wave
function (5.147) as

n\® 1\?®
¢”<1,2)=w(rz,r1>(i)(0) (i)(o)

I
=—w<rz,r1)(0) (o) =—¢(2,1). (5.151)

Since both electrons are identical, also concerning their spin orientation, we can not
distinguish the rotated quantum state (wave function) from the original one, that is,
we obtain:

¢ (1,2) = a(1,2) = —¢a(2, 1). (5.152)

This is a very important result: Particles with half integer spin //2, as for example,
electrons, have an antisymmetric two-particle wave function and state |1, 2), respec-
tively. The quantum state changes its sign upon exchange of the two particles. Because
of this antisymmetry, the wave function (5.152) is denoted by the subscript A.

This interconnection between antisymmetry of the wave function and spin is also
valid for particles with spin 32/2; 57/2; 7h/2; etc. as is easily shown by a calculation
analogously to (5.147)—(5.152).

If one assumes, in the above calculation, integer spin for the two particles, as
S, = =£h or multiples of A including S; = 0, the rotation operators in the spin
Hilbert space are written as exp(ir 6;) and because of exp(inrd,) = —&, we obtain
a symmetric wave function (subscript §):

9 (1,2) = ¢s5(1,2) = ps(2, 1). (5.153)

The wave function keeps its sign upon exchange of the two particles.

Depending on whether a particle has a half integer or an integer spin the cor-
responding two-particle wave functions are antisymmetric respectively, symmetric
upon exchange of the two particles. What we have learnt, here, for two-particle wave
functions is generalized to many-particle systems of any kind in relativistic quantum
field theories (Chap. 8).

Our world, thus, splits up into two separate categories of particles (electrons,
protons, neutrons, photons etc.): Particles with half integer spin i/2; 3h/2; 5h/2; . ..
are described by antisymmetric wave functions; they are called fermions. Particles
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with integer spin O; ; 2/; 35; . . . belong to symmetric wave functions, which keep
their sign upon exchange of any two particles. These particles are called bosons.

A short explanation of the whole variety of possible spin values in nature might
be helpful. What is the origin of all these spins S = 0; h/2; h; 3h/2;...7

The electron has only one absolute spin value S = h/2. The same is true for
protons, neutrons and also for quarks, the constituting particles of proton and neu-
tron (Sect.5.6.4). Similarly as proton and neutron are built up by three quarks and
atoms by protons, neutrons (nucleus) and shell electrons, many atomic and sub-
atomic particles are composed of other particles. The spin of a compound particle,
then, is the sum of the spins of the components (no orbital momenta). The pro-
ton as a fermion has the spin 2/2 since the three constituting quarks (also fermi-
ons) have the spin components +4/2, +h/2, —h/2. In a superconductor current,
transport involves so-called Cooper pairs (Sect. 8.4.4), a couple of two paired elec-
trons with opposite spin. These Cooper pairs, thus, have zero spin and bosonic
character.

Beside the consideration of the total spin of a compound particle its category—
bosonic or fermionic—can also be determined by performing an exchange of two
particles in the corresponding two (many) particle wave function. As an example we
choose the hydrogen (H) atom, which is composed of a proton p and an electron e,
both fermions. Now, we consider a system of two H-atoms. Its two-atom (four-
particle) wave function is written as ¥ (p1, e1, p2, e2). For an exchange of the two
H-atoms, we exchange the two protons pi, p» and subsequently the electrons e
and e;. Because of the fermionic character of the particles this requires:

Y (p1,e1; p2, e1) = =¥ (p2, e1; p1, e2) = Y (p2, e2; p1, e1). (5.154)

In the final expression of the wave function, after exchange of the two H-atoms, the
sign is conserved, that is, the H-atom is a boson.

In general, when a particle is composed of an odd number of fermions, this particle
itself is a fermion. An even number of fermions, as in the case of the H-atom, setup a
bosonic compound particle. Accordingly the He atom with its two protons and one
neutron in the nucleus and with its two electrons in the shell is a fermion, while the
“He atom with two protons and two neutrons in the nucleus (additionally two shell
electrons) is a boson.

For non-interacting fermions, the antisymmetry of the many-body wave function
can be expressed in a simple way which is called after its inventor (Wolfgang Pauli
1900-1958) the Pauli exclusion principle. For its derivation, we consider two elec-
trons (or fermions in general) in a potential box. These two particles, each separately,
can assume the energy eigenvalues (3.64) with a discrete series of eigenfunctions
Yn(r, s) (3.62), where n is the series of integer numbers and s the spin quantum
number. The spin quantum number s (or my = %1/2) can also be taken into account
in the wave function as v, (r). In the two-particle case, where one particle found at
the position r; with spin s; has the wave function v; (ry, s1) and the other one at r;
with spin s, the wave function v (r2, s2), the anti-symmetric wave function of the
non-distinguishable particles must be written as:
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1
Ya(ry, si,rp, $) = ﬁ[l//i(rl, sV (X2, 82) — ¥ (ry, sDVi(r2, 52)]

_ L iter s g ) (5.155)

V2 | i, ) Yi(ra, )|

Since the particles do not interact with each other, the two-particle wave function
can be represented as a product of single particle wave functions. Because of the
requirement of anti-symmetry a superposition (with inverted sign) of the wave func-
tion products with exchanged particles leads to a representation of the two-particle
wave function in terms of a determinant.

From the representation (5.155), it is evident that the two-particle wave function
Ya(ry, s1, T2, s2) vanishes fori = j or r; = rp, s1 = s2. A determinant with two
equal rows or columns is zero. Fermions at one and the same position can not have
identical quantum numbers, spin included. In other words: non-interacting fermions
can occupy a single particle quantum state only one times; no quantum state can be
occupied by more than one fermionic particle. For three non-interacting fermions
with single particle wave functions ¥; (r, s1), ¥ (r2, s2), ¥« (r3, s3) the normalized
antisymmetric three-particle wave function is written as

Yi(ry, s1) ¥y, s1) Yy, sp)
‘ﬁijk(rlasl,rZ,SZ»r3a53)=ﬁ Yi(ra, s2) ¥j(ra, s2) Yr(rz,s2)|. (5.156)

(s, s3) ¥j(rs, s3) Yi(rs, s3)

According to the rules for calculating a determinant (5.156) vanishes for i = j,
i = k,or j = k as well as for equal position coordinates and spin quantum numbers.
The representation (5.156) also guaranties the antisymmetry of the wave function,
since exchange of two rows, that is, rq, s1 <> I2, s2, changes its sign.

The generalization for N non-interacting fermions is obvious. The corresponding
wave function is represented by an N-dimensional determinant:

I/Inlnz‘..nN(rly Sl, r2’ 32, r37 S3, M) va SN)

Yn (X1, 81) Yy (X1, 81) -+ Yy (X1, 81)
1 Yuy (X2, 52) Y, (X2, 82) -+ Yy (r2, 52)

- = (5.157)

Y, (13, 53) Wn2(1:3,S3) coo Yy (13, 83)

This representation is called Slater determinant, according to its inventor. For non-
interacting fermions the antisymmetry requirement upon exchange of two particles,
thus, leads to the Pauli exclusion principle which is formally expressed by the Slater
determinant (5.157). According to this principle it is forbidden for two fermions to
occupy one and the same single particle quantum state, including spin, at the same
position.

It should be emphasized again at this point that the Slater determinant representa-
tion can only be applied to a problem of non-interacting fermions. In case of particle
interaction, a many-particle wave function is defined, the quantum numbers of which
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are ascribed to the total system as a whole rather than to single particle states. Here,
only the weaker antisymmetry requirement for the many-body wave function is valid.

5.6.3 Two Different Worlds: Fermi and Bose Statistics

Our world consists of large complex many-body systems, which in principle have
to be described by coherent many-body wave functions. This is mostly a mathemat-
ically un-treatable problem. For the formal description it is, therefore, of eminent
importance that in many cases the interaction between particles is weak and spa-
tially as well as timely restricted. In that case we can approximately ascribe single
particle states, respectively wave functions with corresponding quantum numbers
(nx,ny,nz, K, s, ...) to the particles, electrons, nuclei, atoms etc. This is even true
for particles which are scattered with each other. Usually these particles approach
each other from long distances (on the atomic scale) before they hit. Between two
scattering processes the particles are essentially free, described by spatially restricted
wave packets. Their wave functions overlap only during a short time in a limited spa-
tial region. During this comparatively short scattering time, the two particle wave
function can not be factorized into two single particle wave functions. In between
the scattering events, however, the description in terms of non-interacting particles
is appropriate. We can use well-defined single particle states with quantum numbers
kKK,...,s, 8, ....

Now the question arises which single particle states are occupied in an ensemble
of fermions or bosons. According to Pauli’s exclusion principle, non-interacting
fermions can occupy a single particle quantum state only one times. Is a state already
occupied, a further particle has to find another quantum state. Bosons, on the other
hand, can occupy a single particle quantum state in any number. For non-interacting
bosons, the most general symmetric many-body wave function is the sum of products
of single particle wave functions (with equal sign), in which each time two particles
have been exchanged. This sum (superposition) of products results from the fact
that quantum particles can not be distinguished except by their quantum numbers.
Because of equal signs of the products the general many-particle wave function is
symmetric upon exchange of two bosons, as required (Sect.5.6.2).

We now assume a system consisting of N bosonic states and we ask the following
question: If n single quantum states are already occupied by bosons, in how many
ways can a further boson be added to the system, such that the resulting many-particle
wave function is symmetric again. Apart from an occupation of the N existing states
the new particle can be exchanged with the n particles already present. Therefore,
(N + n) possibilities exist for the new additional boson to be combined with the
already present ones to a symmetric many-particle wave function. The possibility
to add bosons to a quantum system increases with the number n of bosons already
contained in the system. Bosons obey a “herd instinct”; they collect there where
already many of them are found.
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In contrast, fermions behave differently: If n of the given N single particle states
are already occupied by fermions, there are only (N —n) states which can be occupied
by an additional fermion.

On the basis of these considerations we are able to derive an occupation statistics
for fermions and bosons. Explicitly said, we ask the question, what the probability
is for weakly interacting fermions and bosons to occupy single particle states in a
many-body system. The description in terms of single particle states requires long
free pathways of the particles and small spatially restricted scattering volumes, that
is, our approximation is valid for weak particle interaction and low particle densities.

For the derivation of the particle statistics, we consider a large ensemble of parti-
cles, for example, a macroscopic or mesoscopic system (gas) of quantum particles, in
which thermal equilibrium is established by collisions. Within the large ensemble we
assume two sub-ensembles (1) and (2), also macroscopically large. Dynamical ther-
mal equilibrium, then, implies that the sub-ensembles (1) and (2) undergo energetic
fluctuations where the total energies E1 and E» of the two sub-ensembles are perma-
nently equalized by particle collisions back and forth. Since we are concerned with
macroscopic systems, both the total system and the sub-ensembles obey the laws of
classical physics (correspondence principle, Sects.3.3 and 3.4). According to clas-
sical thermodynamics the probabilities w, that is, the number of realizations v(E)
and v(E,) of two systems with energies E; and E; are related by the Boltzmann

factor
w(Ey)  v(Ep) ( E, — Ez)
= =exp| ———).
w(Ey)  v(E?) kgT

(5.158a)

where kp is Boltzmann’s constant and 7 the temperature of the large total ensemble
of which the sub-ensembles (1) and (2) are part of.

Equation (5.158a) describes the dynamical equilibrium of the total system in
which the sub-systems are represented with the frequencies v(E;) and v(E3) or
probabilities w. By dividing the frequencies v through an equal time interval, we
obtain the Boltzmann relation (5.158a) also for the rates » by which the two sub-
systems fluctuate into each other:

r1>2 E| — Ez)
=expl——). 5.158b
121 p( kgT ¢ )

The energy exchange between the two sub-systems can even be due to the transfer
of only one particle. The rate equation (5.158b) is, therefore, valid also for single
particles. In analogy to the sub-ensemble energies E1 and E», we denote two single
particle energies by E; and E ;. If for the energies E; (E ;) each time N; (N;) quantum
states are available and n; (n;) states are already occupied, then the number of
particles changing their quantum state i into state j within the time interval At
amounts to

Visj = r,~_>jn,~(Nj :i:nj)At. (5.159a)


http://dx.doi.org/10.1007/978-3-319-14669-0_3
http://dx.doi.org/10.1007/978-3-319-14669-0_3

182 5 Angular Momentum, Spin and Particle Categories

The particle character, boson or fermion, is essential for the number (N; £ n;) of
possible final states in (5.159a). Bosons follow a “herd instinct”; here the plus sign
is valid. Fermions can only occupy empty states; consequently the minus sign is
required. The number of particles, which change their quantum state from j to i, is
written in analogy as

Ei—E;
Visj = rj_>,-nj(N,- :i:n,') =Ti-j|eXp| — nj(N,- :i:n,'). (5.159b)

kgT
Hereby the rate ratio r;_,;/r; j was expressed according to (5.158b). In thermal

equilibrium the transition rates for collisions from i to j must equal those from j
to i. From (5.59) we, therefore, obtain

E; — E;
risini(Nj£nj) =risj [exp(—#)]nj(Ni + ;). (5.160)

This equilibrium condition yields for any state i or j:

Mi GEi/keT _ i Ej/keT (5.161)
N; £n; Nj*n;
Thus, the quantity
N, OP(E/ksT) (5.162)

Is a constant at a fixed temperature 7. We, therefore, have omitted the indices i,
respectively j and have denoted the single particle energies by E. For each energy E
the number of existing quantum states amounts to N, of which 7 states are occupied.
The relative occupation number n/N of the single particle energy level E is then
obtained from (5.162) as

n 1 E/kgT -
= — == 1 . 5.163
YEN (Ke + (5-163)

The minus sign is obtained for bosons and the plus sign for fermions. For fermions
it is comfortable to write the temperature dependent constant K as

K =exp(Er/kpT). (5.164)

The quantity Er is called Fermi energy. With this definition the occupation proba-
bility w of fermionic single particle states is obtained as

w=f(E)= = :

- (5.165)
N exp(B55) +1
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This so-called Fermi distribution f(E) is easily interpreted on the basis that only
one single fermion can occupy a quantum state.

As an example consider the problem of free electrons confined in a 3D potential
box (Sect.3.6.1), as it is found, for example, for conduction electrons in a metal.
Electrons occupy wave quantum states with discrete wave numbers k (3.68) in recip-
rocal space as quantum numbers (Fig.3.5). The density of these states D(E), that
is, the number of states per volume and energy interval AE at an energy E (with
differing k and spin) is a square root function D® (E) x VE (Fig.3.7). How these
states are occupied by electrons is controlled by the Fermi distribution f(E) (5.165).
Thus, the density of occupied states at an energy E is

n(E) = DY (E) f(E). (5.166)

At zero temperature T = 0 the electrons occupy the energetically lowest possible
energy states. Because of the Pauli principle they successively fill up all quantum
states from £ = O up to a maximum energy Er (Fig.5.12a). EF is just the energy
defined above as Fermi energy. It is evident that for T = 0 the Fermi distribution
f(E) is a step function as in Fig.5.12a. Below E ¢ the occupation probability of a
state is one while above EF it is zero. This is exactly the functional dependence of
(5.165)at T = 0.

It is obvious that the Fermi distribution is a step function at 7 = 0 as shown
in Fig.5.12a. Below the step at E all states are occupied, that is, the occupation
probability is one (certainty) while above E ¢ the states are empty and zero occupation
probability is given. The square root density of states DG (E) is occupied up to
the sharp Fermi energy Efr (Fig.5.12b). When the temperature is raised a little
bit, electrons from states below Er are exited into states closely above Ef, which
were empty before. The density of occupied states given by n = DO)(E) f(E) is

(a) (b) (c)

T=0 T>0

D® o<cE

0

0
0 1 f(E) DO(E)(E) ‘ DOE)(E)

Fig. 5.12 a—c Occupation of electronic states of a free electron gas in a 3D potential box, whose
density of states D® is proportional to ~/E. For electrons the occupation is determined by the
Fermi statistics f(E). a Fermi distribution f(E) at T = 0 K. b Electron density n obtained as
product of Fermi function f(E) and state density D® at T = 0 K. ¢ Electron density 7 at a finite
temperature 7 > 0 K


http://dx.doi.org/10.1007/978-3-319-14669-0_3
http://dx.doi.org/10.1007/978-3-319-14669-0_3
http://dx.doi.org/10.1007/978-3-319-14669-0_3
http://dx.doi.org/10.1007/978-3-319-14669-0_3

184 5 Angular Momentum, Spin and Particle Categories
Fig. 5.13 Occupation T T T T T T T T
probability according to > | Te=Er/kg=5x 10°K
Fermi statistics for different % 10l 2T
temperatures 7" as function s — 0K
of electron energy E g — 300K
(normalized by Boltzmann S — 1000 K
constant kp). Tr and EF are =051 5000 K
Fermi temperature and Fermi & 10000 K
energy, respectively § \

0.0 L ! - - - ; L

0 1 2 3 4 6 7 8 9

Energy per Boltzmann Constant E/kg (104K)

plotted in Fig. 5.12c. It reflects the smoothened Fermi function for somewhat elevated
temperature. This behavior of the Fermi function (5.165) is quantitatively shown in
Fig.5.13. From this plot, we derive that the temperature dependent energy range,
where the Fermi edge is smoothened, amounts to about 4k 7. Mathematically the
properties of the Fermi function (5.165) are easily seen from the limit |E — Ef| >
kpT. For E < Ep the exponential function in the denominator can be neglected
which results inn ~ N or f(E) ~ 1. For E > EF the exponential function is the
dominant part in the denominator and n becomes negligibly small.

A more general derivation of the Fermi function in the context of statistical thermo-
dynamics shows that the Fermi energy E r is nothing else but the chemical potential
w of the electrons.

From (5.163), the occupation probability gz for bosonic quantum states follows

as
wegg=to 1 (5.167)
N exp(4) — 1
In this case, u is the chemical potential of the so-called Bose gas (gas of Bose par-
ticles). Bose statistics (sometimes also called Bose—FEinstein statistics) is compared
with classical Boltzmann and Fermi statistics in Fig.5.14. It is evident that for ele-
vated energies E/kT (E > Ef in Fermi statistics) with low occupation of the
quantum states also the spatial density of particles is low. In this case, many unoc-
cupied states are available and the different behavior of fermions and bosons does
not play an important role. Both Fermi and Bose statistics approach the classical
Boltzmann distribution.

An important application of Bose statistics is concerned with the radiation density
of the electromagnetic field (Planck’s formula). The electromagnetic field is built up
by photons (Chap. 8), particles with spin %7, that is, bosons. As we will see, the two
spin orientations correspond to clock and counter-clockwise circular polarization
with respect to the light wave propagation direction (wave vector). Photons, thus,
obey Bose statistics.

Bose statistics (5.167) is the key to the understanding the classical problem of
black-body radiation. In solving this problem, Planck has opened the door for the
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development of modern physics, in particular quantum mechanics. The question
is how the possible electromagnetic wave modes are distributed (as a function of
temperature) in a cavity the walls of which are in thermodynamic equilibrium with
the radiation field. If the cavity has a little hole, it will radiate electromagnetic waves
according to this distribution, that is, with corresponding frequencies w. This is the
so-called black-body radiation.

Similarly as electrons are confined in a potential box with a discrete spectrum of
electron waves as quantum states (Sect.3.6.1), electromagnetic waves in a metallic
cavity form standing waves with similar boundary conditions as electron waves in the
box. For periodic boundary conditions (as for electrons in Sect.6.6.1), a vibrational
mode needs a volume V, = (2m/ L)3 in the g space of the light (photon) wave
vectors, with L as the edge length of the cubic cavity. In analogy to electronic states,
we calculate the number of possible photon states in the reciprocal space of wave
numbers g by dividing the volume of an energy shell 47 ¢2 dg with thickness dg by
the volume of a state (277/L)3. Relating to the volume L3 of the cavity one obtains
the number of photon states or vibrational modes of the electromagnetic field per

cavity volume:

2q2

(2m)?

Z(q)dg = 4nq*dq/2n)® = dg. (5.168)

The density of photon states per cavity volume and per energy, respectively frequency
interval (E = hw) is, then, calculated by means of

D(how) dw = Z(q) dq. (5.169)

In contrast to electrons, where the energy-wave number relation is given by E =
fiw = h2k?/2m, photons obey the classical dispersion relation @ = cg with ¢ as
light velocity. From (5.168) to (5.169) we, then, obtain the density of photon states
as

2

(@) = 52

(5.170)
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The radiation density of the cavity is calculated from the density of states (5.170)
by multiplication with the occupation probability gp(E = hw) for bosons (photons).
We must take into account that each photon state described by a wave vector q in
reciprocal space contains two spin states represented by opposite circular polarization
directions. The radiation density of the cavity is, then, obtained as

S(hw) = 2gp (hw) Dph(w) ho. (5.171)

According to Sect.2.1 (see also Chap. 8) the particle energy Aw has been attributed
to the photon. When we refer the single particle energies £ = hw to an energy
zero-point . = 0, the radiation density of a cavity in thermal equilibrium follows as

haw? 1
72c3 exp(hw/kpT) — 1

S(hw) = (5.172)

This is the famous Planck formula for the electromagnetic radiation density which
is emitted by a black body in thermal equilibrium (Fig.5.15).

As has been discussed before, bosons have a “herd instinct”; they are attracted
by high numbers of bosons already present in that state. In a gas of Bose particles, a
Bose gas, bosons can occupy one and the same many-particle state in high density
at sufficiently low temperature. They condense in a common ground state and the
many-particle system is called a Bose-Einstein condensate. In this Bose-Einstein
condensation process temperature is an essential parameter which determines how
close bosons approach each other to form the condensate. For an adequate estimation
the average extension of a particle, i.e. the space needed at minimum, is important.
A lower limit is certainly the de Broglie wavelength A pp, which is attributed to the
particle at a certain temperature (mean kinetic energy). Below X p g the wave packet of
the particle can not be defined anymore. Because of A = 27 / k the particle wavelength
App is calculated from the average wave vector k of particles in a statistical ensemble
at a particular temperature:

=L [ B am) = [P T ks T
k——/oodpexp( Bp /2m)—\/ﬁ 5 " 2mrkpT (5.173)

hJ_

where B = 1/kpT and p = hk = mv, the particle momentum. From (5.173) the
so-called thermal de Broglie wavelength of the particle is obtained as

h
«/ZmﬂkBT

In order to achieve Bose-Einstein condensation the average particle distance must
shrink to values in the order of A p g given by (5.174). This minimum distance ensures
enough overlap of the electronic cloud of the particles for the formation of the
coherent many-particle condensate. In the approximation of non-interacting Bose

App(T) =21 /k = (5.174)
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Fig. 5.15 Planck radiation
density S of a black body as
function of the emitted
radiation wave length A for
different temperatures

Radiation Density S ( arbitrary units )

particles the density of the Bose gas can be assumed to be aboutn =~ )‘1_)79' This allows
the estimation of a critical temperature T ., below which Bose-Einstein condensation
is expected:

hZ n2 /3

mkp

T ~ 27 (5.175)

Apart from a factor of two (5.175) coincides with the exact expression which is
derived by a more rigorous theoretical treatment.

Bose-Einstein condensation was indeed experimentally found by two American
groups at the University of Colorado, Boulder [9], and at the MIT, Boston [10]. In
Colorado a gas of Rb atoms was cooled down to 170 nK, while at the MIT 23Na
atoms were observed to form the Bose-Einstein condensate. For this work the Nobel
prize was awarded to Eric Cornell, Carl Wieman (Boulder) and Wolfgang Ketterle
(MIT) in 2001. The new exciting result of this work was the verification of Bose-
Einstein condensation with atoms. On the other hand, Bose-Einstein condensation
had already been demonstrated by the observation of superconductivity, where Bose
type Cooper electron pairs condense in a common many-particle ground state (see
Sect.8.4.4).
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5.6.4 The Zoo of Elementary Particles

We have seen that in general two types of particles, fermions and bosons, are dis-
tinguished because of their inherent spin degree of freedom. Their different spin
has paramount consequences for the statistical occupation of single particle states.
In this context it is worth describing briefly our present knowledge about number
and properties of existing elementary particles which obey the laws of quantum
mechanics.

At the beginning of the 20th century, when quantum physics emerged, only the
electron and somewhat later proton and neutron as constituents of the atomic nucleus
were known as elementary particles. Since about 1970 a clearer picture of the variety
of particles has been created in elementary particle physics. For the time being, this
picture was completed in the so-called standard model.

Without going much into details, we will report some essential results of research
in elementary particle physics which are explained in the standard model [11]. This
shall provide only a rough impression, down to what level our understanding of the
subatomic world reaches and to what smallest entities quantum mechanics is applied
so far.

In this context, two fundamental issues are derived from special relativity theory:
the equivalence of mass and energy and the existence of antiparticles to each particle
(antimatter). Both results have been proven meanwhile by an overwhelming amount
of experimental facts.

With respect to the equivalence of mass and energy, we remind the expression for
the relativistic momentum p of a particle with mass m moving with a velocity v:

muv

Y eyl

Note that for v%/c? < 1 (c light velocity) the classical momentum mv of the particle
is obtained. Using (5.176) we calculate, without showing details, the relativistic work
W performed by the force F' to accelerate a mass m to the velocity v as

(5.176)

2 2
W:/Fdx:/pdx:L%mcz—i—ﬂ. (5.177)

V1—=1v2/c? 2

The second term in (5.177) is the classical kinetic energy of the particle. The first
term doubtlessly attributes an energy E = mc?, the so-called rest energy, to the mas-
sive particle. Theory of special relativity tells us that mass and energy are equivalent
physical quantities. Energy and mass can mutually be transformed into each other.
How this happens in detail, by what mechanisms, does the famous Einstein equa-
tion E = mc? not explain. Mechanisms of mass-energy transformation have been
theoretically developed not before the advent of relativistic quantum field theories
(Chap. 8). Nevertheless, we realize, elementary particles must not live forever. After
a finite lifetime, they can transform into energy and energy again into another kind
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Fig. 5.16 Schematic representation of the Dirac sea of relativistic electrons with mass m. In the
vacuum state, negative energy states with me? < 0 are occupied and states with mc? > 0 are empty.
A single electron in vacuum means occupation of one single state of positive energy as shown in
the figure

of particle. A particle which transforms into another particle, of course must have a
larger mass than the final product. Otherwise, the law of energy conservation would
be violated.

Furthermore, it is a familiar habit in elementary particle physics to express the
rest mass m of a particle in terms of energy via the relation £ = mc?. The GeV
(=10° eV) scale, hereby, has been proven to yield a suitable order of magnitude.

From (5.176) and (5.177), one derives the relativistic energy-momentum relation
for a particle:

1
2 2.2 2 4 222 2 4
Ec—c'p = m°ct —m°cv’) =m-c
1—v2/c2( ) ’

E? = p? + m2ct. (5.178a)

This equation has solutions with positive and negative energies:

E = 4,/c2p? + m2c*. (5.178b)

Dirac, for the first time, has taken both types of solutions for serious and realistic.
He did not reject the negative-energy solutions as non-physical but rather postulated
the existence of an antiparticle (with negative energy) to the electron carrying the
opposite charge of the electron. This at first glance counter-intuitive assumption was
made by Dirac for all kinds of fermions. Similarly as in the electronic band scheme
of a semiconductor (Sect. 8.3.3) the negative-energy particles are assumed to occupy
quantum states with E = —mc? in a so-called Dirac sea (Fig.5.16). Under vacuum
conditions, all states with positive energy E = mc? are empty while all states with
negative energy are occupied. The presence of one electron in vacuum is described by
one occupied state at E = mc?. We remember the semiconductor band scheme with
an empty conduction band and a completely occupied valence band (Sect. 8.3.3).
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The occupation of the Dirac sea at E < 0 is controlled by Fermi statistics, that
is, each single particle state can be occupied only once (spin degree of freedom
included). Within this Dirac picture the vacuum state contains an infinitely high
charge. This unfamiliar picture does not lead into contradictions, since the completely
occupied states with negative energy can not be observed in experiment. Electrons at
E > 0 cannotinteract with those at E < 0, as no empty states are available in the full
Dirac sea (Pauli principle, Sect.5.6.2). If however a minimum energy of 2me? (two
times rest energy of an electron (5.178b) with p = 0) is transferred to the vacuum, an
electron, respectively another fermion of mass m, can be excited from E = —mc?in
the Dirac sea to E = mc? above. A hole is produced in the Dirac sea at —mc? and an
electron created in vacuum with its rest energy mc?. The hole state in the Dirac sea is
called antiparticle of the electron. It has the same mass m as the electron but opposite
(positive) charge. It is called positron and was detected experimentally in 1932 by
C.D. Anderson in the cosmic radiation [12]. This was the brilliant proof of Dirac’s
theoretical assumption of antimatter. The existence of antimatter is meanwhile a well
established fact, not only for electrons but rather for all kinds of fermions. We will
not discuss at this point the generalization to antibosons.

Since electrons have a rest mass (energy) of about 0.5 MeV the described process
of electron—positron (pair) production in vacuum can only occur at energy supplies
exceeding 2mc*> = 1 MeV, that is, at energies being totally irrelevant in solids.
We can generally say that processes of particle conversion, annihilation or creation
require such high energies, at minimum mc?, that they are irrelevant in solid state
physics (apart from unstable radio-active nuclei).

The study of elementary particle processes requires particle accelerators which
accelerate particles far into the GeV energy range. In earlier days, before the advent
of particle accelerators, only the investigation of cosmic radiation has provided infor-
mation about the high-energy scale of particle physics. In this context, we will briefly
describe what elementary particles are known so far, how important they are for our
understanding of matter, and how they fit into the categories of bosons and fermions.

As it was already known at the beginning of the 20th century, it is true also on the
basis of our present understanding, that matter under normal earth-like conditions
as in crystals, liquids, gases, semiconductor nanostructures or in biological systems
consists of electrons, protons and neutrons, altogether fermions. Protons and neutrons
form the atomic nucleus, which is enclosed by a cloud (shell) of electrons. While the
nucleus carries nearly the whole mass of an atom, the electronic shell determines the
spatial extension of the atom (nucleus: 10™!3 cm, shell: 1078 cm). Only electrons
and protons are assumed so far to have an infinite lifetime. The electron always
appears in experiments as an elementary particle not composed of any sub-particles.
In contrast, scattering experiments with high-energy photons (y particles) reveal a
sub-structure of the proton and the neutron. Both particles are composed of three
sub-particles. Proton and neutron, called nucleons, are fermions; the sub-particles,
therefore, must be fermions, too (Sect.5.6.2). Their electric charge, added up over
three sub-particles for each nucleon, must yield the positive elementary charge eg of
the proton or zero charge of the neutron.
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Within several decades of elementary particle research, these constituents of the
nucleons have been identified as really elementary and point-like as the electron.
These particles are called quarks, a name which has been taken by their theoretical
“inventors” Gell-Mann and Zweig from James Joyce’s novel “Finnegans Wake”.

After many years of research, matter has been shown to be built-up by two types of
elementary, point-like particles, so-called leptons (AewrTo¢ = light) as the electron
and quarks being the constituents of the nucleons. Both types of particles are fermions
with half-integer spin. In Table 5.1, all leptons and quarks known so far as the basis
of the standard model are listed. All particles, even though elementary, have strongly
differing life times ¢. While the electron is stable (t — 00), the other two leptons
with charge —ey, the u and t, are short living particles with life times 2.2 x 1076
(w) and 2.9 x 1013 s (1), respectively. Both leptons and quarks exist as pairs, in
Table 5.1 indicated by brackets: for example, the electron e together with its neutrino
v (charge zero, spin 1/2, mass <3 eV i.e. much smaller than electron mass). There
are three families or flavors of leptons and analogously of quarks, which differ by
increasing rest masses (Table5.1). The first family (flavor) of leptons (e, v,) and
quarks (u, called up; d, called down) is encountered in matter on earth under normal
conditions. In tri-fold combination, both quarks u# and d build-up the nucleons: (1uud)
the proton and (udd) the neutron. From the quark charges, (2/3)eg ascribed to u
and —(1/3)eg to d, the charges +e¢( of the proton and zero of the neutron, are easily
derived. Even though scattering experiments with high-energy y photons doubtlessly
demonstrated the threefold substructure of proton and neutron, quarks have never
been observed as free single particles. Correspondingly the field theory of quarks,
called chromodynamics (see below), is designed that the attracting force between
quarks increases (limit infinity) with increasing quark distance. This is in contrast
to the electromagnetic Coulomb force between electrons, protons or electrons and
protons, which decreases and finally becomes negligibly small for large particle
distances.

Already long before the quark model was taken serious as a realistic description
of nature, the community of particle physicists argued that proton and neutron might

Table 5.1 Three families (flavors) of elementary fermions with spin %/2: the leptons electron (e),
myon (), T particle with their neutrinos v,, vy, v, and the quarks up (), down (d); charm (c),
strange (s); top (7), bottom (b). The masses are given in units of GeV (m = E/ c?)in square brackets.
Note that the charge of the particles in brackets differs by AQ = e each time. To each particle an
anti-particle with equal mass and opposite electrical charge exists (¢ to u, ¢ to ¢, v, to v, etc.)

3 Families (flavor) Charge (eg)

Leptons ( Ve _3)( G )( o ) O]AQ=e0
(formions) e[05 x 1031 ) \ pro.1061 ) \ z[1.78] -1

Quarks u[0.33] c[1.5] £[173] 2/3 AQ—e
(fermions) d[0.33] 5[0.45] b[4.9] -1/3 -
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be two different quantum states | p) and |n) of one and the same particle (Heisenberg
1932: isospin model). Major arguments were derived from the similar rest mass of
the two particles and from similarly strong interactions in the atomic nucleus in spite
of their different charge.

Meanwhile, we know that most elementary particles transform into each other if
the energy balance and some other rules are fulfilled. It is, thus, straight forward to
describe elementary particles in terms of quantum states by means of wave functions
or bras and kets in Dirac notation. The theoretical picture is: matter and energy
can assume particular quantum states (as an electron in a potential box, Sect.3.6.1),
namely those of the elementary particles. The nucleon quantum state kets are, then,
expressed as

|p) = |luud) for the proton, (5.179a)
|[n) = |udd) for the neutron. (5.179b)

We want to keep in mind that the surrounding matter under earth-like conditions,
from micro-Kelvin up to thousands of Kelvin, only contains leptons (e, v.) and
quarks (u, d) of the first family (flavor) as constituting particles. In the context of
condensed matter physics, chemistry and biology it is sufficient to limit our interest
solely to electrons and nucleons, proton and neutron. Quarks as constituents of the
nucleons will never appear as single free particles because of quark confinement.

In the following, we want to survey some more results which have been obtained
in elementary particle physics by studying particles under extreme and unusual con-
ditions, be it in high-energy accelerators (CERN, DESY, Fermi-Lab etc.) or in cos-
mological events as supernovae or the big bang. Experiments on accelerators are
roughly speaking scattering experiments in which highly accelerated particles as
electrons, protons etc. are scattered on other (target) particles, again protons, neu-
trons etc. At certain well defined energies £ = mc?, then, an abundance of scattering
processes is observed, a band-like structure in the energy spectrum of the scattering
processes occurs. The increasing number of scattering events in such a spectral band
tells us that at the particular energy the incoming particles are transformed into a
new particle. Its mass is determined from the energetic position E of the spectral
band by m = E/c?. The observed spectral band in the scattering spectrum has a
spectral width AE = (Am)c? which is related to a mass uncertainty Am of the
elementary particle. This uncertainty, on the other hand, determines the lifetime of
the new elementary particle by means of the uncertainty relation tAE =~ £ (3.23).
Excitations in the scattering (elementary particle) spectrum yield direct information
about mass and lifetime of particles. In the case of very short lifetimes of particles
the term particle resonance is mostly used.

Based on a broad experimental basis, mainly scattering experiments of the
described kind, the following picture has been developed: Apart from the leptons
(Table 5.1) there is a class of particles composed of quarks, which are called hadrons
(é‘ 8pos = large). As shown in Table5.2 there are two types of hadrons, one which
contains three quarks and the other one which is built-up of quark and anti-quark.
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The three-quark hadrons |gqq) are called baryons (BapiU¢ = heavy), while those
containing a quark and an anti-quark |gg) are named mesons (ueocos = middle).
Baryons containing three fermionic quarks are, of course, fermions. The two-quark
mesons are bosons for the same reason (Sect.5.6.2). There is an explanation, why
quarks can build-up only these two types of stable hadrons, those containing only
three or two quarks. We will make this plausible below.

In Table 5.2, some important hadrons, baryons and mesons, are listed together
with their quark content. The table distinguishes between hadrons containing only
u and d quarks of the first family (flavor) (constituents of surrounding matter) and
those which are composed also of charm (c), strange (s) respectively top (¢) and
bottom (b) quarks. The familiar nucleons proton |p) and neutron |n) belong to this
first family. Only the proton is stable. The neutron has a finite lifetime of 887s
in nuclear reactions. In most atomic nuclei, however, it lives infinitely long, since
possible decay products (nuclei) would have a larger mass than the initial nucleus
(contradiction to energy conservation). Hereby, it is essential that the binding energy
of the nuclei can be expressed as a mass difference.

The AT baryon (A resonance) has an extremely short lifetime of only 5.5 x
10~24 5. Lifetimes of baryons, thus, scatter over a large range between infinity and
10~2* 5. According to a quark content of three u and/or d quarks these hadrons
have masses around 1 GeV. Minor differences are due to somewhat different internal
interactions (mass = energy).

Table 5.2 Some important hadrons: Baryons consist of three quarks, mesons of quark and anti-
quark. For the surrounding matter on earth only proton | p) and neutron |n) are important. The names
of the quarks u, d, s are given in Table 5.1. Charge, mass and life-time are experimental values

Some hadrons

Quark content Charge (eq) Mass (GeV) Life time (s)
Baryons |gqq) |luud) = |p) +1 0.9383 o0
(Fermions) [udd) = |n) 0 0.9396 887

luuu) = |ATT) +2 1.232 ~5.5x%x 1072

luds) = | A) 0 1.116 2.6x 10710

_ lud) = |7 ) +1 0.1396 2.6x 1078

Mesons |gq) - _ 0 17
(Bosons) (\dd) — luii))/2=17% 0 0.1349 8.4 x 10

|dit) = |77) —1 0.1396 2.6x 1078

|d5) = |K° 0 0.4977 8.3 x 10711

lus) = K+ +1 0.4937 1.24 x 1078
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With respect to mesons it is remarkable that particles with equal mass but opposite
electric charge as the 7 mesons |7 1) and |77 ~) are each time combinations of quark
and antiquark |ud), respectively |dii).

A detailed analysis of all experimental facts about the A*™ resonance revealed a
spin of 3//2 for this particle. Its quantum mechanical state including the spin degree
of freedom must, thus, be written as

|ATT) = Juuu)| 1 11). (5.180)

With the assumption of negligible angular momentum for the quarks in their ground
state (s state) the representation (5.180) is in contradiction to the Pauli principle,
since AT must be a fermion because of its half integer spin. Exchange of two
quarks does not change the state representation (5.180). The particle state |[ATT) is
symmetric with regard to exchange of two particles, that is, it is not fermionic but
rather bosonic, in contradiction to its spin value.

This contradiction, apart from some other important arguments, lead the elemen-
tary particle physicists to a totally new and unusual assumption: All quarks have, in
addition to their spin, a further internal degree of freedom, i.e. quantum property for
distinction. So far particles could be distinguished by their masses, their charge and
their spin. Quarks must have, in addition to their charge (2e¢/3 and —ep/3) and spin,
a further quantum number, which can assume three different values rather than only
two as the spin does.

Using this trinity of new quantum numbers, we can explain, or at least make
plausible, why quarks can form only two stable types of hadrons, baryons |gqq)
and mesons |gg). Physicists have artistic fantasy; they have called this new quantum
property of quarks color. The fundamental colors red (R), green (G) and blue (B)
superimposed with each other yield the neutral color white. As negative and positive
charges as well as opposite spins add up to zero, so does in analogy the quantum
number color: the three colors R, G, B, if superimposed, add up to neutral white,
or “zero color”. If u, d, s or ¢ quarks appear in three colors, then the most general
states of hadrons must be expressed as superpositions of states having the colors
R, G, B. This is analogous to the representation of a general spin wave function
(5.120a)—(5.120c).

For a bosonic meson of the type |gg) we, thus, write the general quantum state as

1 _ _ _
7) = — (IRR) + |GG) + |BB)), 5.181
laq) ﬁ(l )+ |GG) + |BB)) (5.181)

where the prefactor 1/+/3 guarantees the normalization of the state.

The representation (5.181) is symmetric upon exchange of two quarks R < G,
R < B, G < B, just what is required for a boson. Furthermore, the superposition
of quarks with different color (5.181) is white (neutral); all three colors are contained
in the state with the same amount. This state is called a color singlet, in analogy to
a spin singlet state, where two opposite spins compensate each other to zero spin.
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Just as charged particles form stable composite systems at the lowest possible
energy by combining an equal number of opposite charges in a neutral compound,
colored quarks, obviously, tend to build up stable, color neutral (white) singlet com-
posite states as mesons of the type (5.181). In a similar way, colored quarks can
also form antisymmetric fermionic singlet states (equal number of colors) which
are stable. As a short consideration shows the color neutral superposition state with
antisymmetry upon exchange of two quarks (Pauli principle), requires, in contrast to
bosons (5.181), the superposition of three quarks of the type |ggq). Antisymmetry
of the state is guaranteed by alternating signs of the elements. We thus arrive at the
following representation of a fermionic color neutral singlet hadron state:

1

lgqq) = \/6(|RGB) — |RBG) + |[BRG) — |BGR) + |GBR) — |GRB)).

(5.182)
As required (5.182) changes its sign upon exchange of two colored quarks. All
three colors are represented with equal weight (white singlet). It is evident that the
contradiction in the AT representation (5.180) is removed when the quark state
|uuu) is replaced by its color decomposition, the color singlet (5.182). The ATT
resonance is antisymmetric when the color degree of freedom is respected.

The existence of the color degree of freedom explains all hadrons observed so
far. In particular, it explains why only two types of hadrons, mesons and baryons,
are found in experiments. It must finally be emphasized again, that only quarks carry
color with three quantum numbers G, R, B. Leptons do not have this internal degree
of freedom.

Corresponding to the different elementary particles (Table 5.2) there exist different
fundamental interactions in nature between these particles:

e The electroweak interaction contains two types of interactions which are separated
at low energies in classical physics. On the one hand, this interaction constitutes
the electromagnetic Coulomb force between electrically charged particles. The
charge is the source of the electric field which is responsible for the force between
the particles. On the other hand, this electroweak interaction is also responsible for
particle reactions as the radioactive B decay (n — p + e + v,). Atsufficiently high
energies it, thus, couples to leptons (e, V) as well as to quarks (|n) = |udd), |p) =
|uud)).

e The strong interaction couples only between quarks, and this only on a very short
length scale below 10~!3 cm. On longer distances it vanishes (quark confinement).
Strong interaction is inherently related to the quantum property color of the quarks,
similarly as the electromagnetic interaction is due to the electric charge. The strong
interaction binds two or three quarks together in mesons and baryons as protons
and neutrons. Its external forces, outside the proton or neutron (quadruple or higher
moments) constitute the nuclear forces, which bind together the nucleons in an
atomic nucleus. This nuclear force, which was not understood for a long time, is
thus a Van der Waals type force between color neutral hadrons originating from
strong color interactions.
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e The gravitation is the attracting force between two masses which is solely con-
nected to the property mass of the two bodies. In general, this interaction can only
be observed when the much stronger electroweak (Coulomb) interaction is inter-
nally compensated by equal numbers of oppositely charged particles in a body
(e.g., a planet or a star).

At this point we must briefly describe, without formal mathematical treatment, the
outcome of a unified quantum theory of particles and fields (quantum field theory,
Chap. 8). A particle in the classical sense with an own identy does not exist in
quantum field theory. A particle is rather a local excitation of the extended non-local
quantum field (see Sect.8.3.3). Interactions between particles classically described
by fields, as for example, the electromagnetic field between charged particles, are
attributed to the exchange of particles, so-called field quanta. This phenomenon is
roughly depicted in Fig. 5.17a. Particle (1) propagates with wave vector k¢ and emits
another particle w, a so-called field quantum, near the position A. The underlying
reason for the emission might be the decay of particle (1) into another particle. The
field quantum w might be absorbed again by a second particle (2) with wave vector k|,
at the position B. Emission of particle w at A causes a momentum transfer to particle
(1) which changes its momentum from Ko to k. On the other hand, the absorption of
w by particle (2) changes the momentum of that particle into k’. If we forget about the

(a)

‘Field
Quantum @

Q)

@

Fig. 5.17 a—c Representation of the interaction of two particles by exchange of a third particle,
a field quantum, in terms of so-called Feynman graphs. a General representation of the scattering of
two particles (/) and (2) with wave vectors kg and k6 by exchange of a field quantum w. Coulomb
scattering of two electrons on each other is mediated by photons as field quanta. b S-decay of a
neutron n into a proton p: During the transformation n — p a W™ boson is emitted, which decays
into an electron e and an electronic anti-neutrino v, . ¢ Representation of the 8-decay (b) in the quark
picture: the process is attributed to the transformation of a d quark into a u quark with simultaneous
emission of a W~ boson
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exchange of the field quantum (particle) w, the process illustrated in Fig. 5.17a might
be interpreted as an interaction between particle (1) and particle (2) in a spatial region
which contains the positions A and B. Hereby, even the type of the particles might
change during the interaction. Leaving the w exchange out of the consideration, thus,
leads back to the classical picture of a field mediated interaction between particles
(1) and (2).

In the quantum field theoretical description (Chap. 8), the interactions between
the fundamental elementary fermions leptons and quarks are described in terms of
exchange of other types of elementary particles, so-called field quanta, which are
altogether bosons with spin £#.

The Coulomb force between two charged particles, for example, two electrons
or an electron and a proton in the hydrogen atom, which is classically described by
the electric field, is ascribed to an exchange of photons in quantum electrodynamics
(Sect. 8.4.4). Photons have zero mass, a spin of £/ (bosons) and infinite lifetime
(Sect. 8.2).

The weak interaction, which mediates coupling between quarks and leptons and
thus causes the 8 decay (n — p + e + V.), is due to exchange of so-called heavy
W= bosons (Fig.5.17b). These particles have a charge +e¢, a spin &/ and a short
life time of 3.1 x 1072 s. By means of the W~ boson, the 8 decay is explained in
terms of a transformation of a d quark contained in the neutron into a # quark and
simultaneous emission of the W~ boson. This boson decays into the products e and
V. while the quark transformation changes the neutron |ddu) into a proton |duu)
(Fig.5.17¢).

Quarks being the constituents of baryons and mesons (Table5.2) interact by
exchange of so-called gluons (derived from “glue”). These bosons being massless as
photons with spin 4/ are supposed to carry in addition the color degree of freedom
(R, G, B). In this case of the strong interaction between quarks also the field quanta,
the gluons; are characterized by color as are the quarks. This is in contrast to the
Coulomb interaction (weak interaction) where the mediating particles, the photons
as field quanta, are not charged in contrast to the interacting electrons, protons, ions
etc. The quantum field theory, which describes the strong interaction between quarks
by means of gluons, is called chromodynamics (xpo'nwog = color) because of the
characteristic new quantum property color of the involved particles.

Unlike for the electroweak and the strong interaction there does not exist so far
a quantum field theory of gravitation, in which the attraction of masses classically
described by action at a distance is ascribed to the exchange of field quanta between
massive bodies. Nevertheless physicists believe that such a quantum field theory of
gravitation will be created in the near future. Based on this believe one has already
given the name gravitons to these bosonic field quanta of gravitation even though they
were neither found in experiment nor does a unified theory of quantum gravitation
exist so far.

The standard model discussed in this section is based on the three families of
leptons and quarks (Table 5.1) and the force mediating bosons: photons, heavy W=
(and Z) bosons and gluons. This standard model had a severe problem so far: it
could not explain why elementary particles have a mass (inertia). A solution to this
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problem is the so-called Higgs mechanism, which was developed as a theoretical
model already in 1964 by Higgs [13], Englert (Nobel prize 2013) and Brout [14].
According to this model there exists a field everywhere in space, which is meanwhile
called the Higgs field. The different particle fields, those of the leptons, the quarks
and the heavy bosons (W*, Z) interact with this field and the corresponding particles
(field excitations) feel an inertia upon moving in the Higgs field. They get a finite
mass. The mechanism is similar to that of the effective mass, which an electron gains
upon moving through a crystal (Sect. 8.3.4). The particular value of the particle mass
depends on the interaction strength between the particle field (electron, quark, W
boson etc.) and the background Higgs field.

Up to about 2012 the Higgs mechanism was a purely theoretical model. But
between 2011 and 2012 a new particle, the so-called Higgs boson was detected at the
Geneva CERN accelerator LHC (Large Hadron Collider). This particle has all prop-
erties, which are predicted for a particle being the field quantum (excitation) of the
Higgs field. It is neutral, has zero spin, a mass of about 125 GeV/c?(approximately
2.25 x 10~ kg) and a life time of about 10722 s. Since the field quantum, the Higgs
particle, does exist, the related quantum field must exist, too. It finally explains, why
elementary particles can have a finite mass. The experimentally determined masses
can not be derived from this general mechanism. So far the interaction strengths of
the different particle fields with the Higgs field enter the theory as external parame-
ters. It must also be emphasized, that the mass of common matter, i.e. essentially the
mass of atomic nuclei, is determined to a small amount only by the Higgs mecha-
nism. According to the mass-energy equivalence (E = mc?) the nucleon mass results
to a high extent from the interaction energy between quarks and gluons being the
constituents of the nucleons.

This section could only give a short overview over the elementary particles respec-
tively the quantum states of the matter-field reality known so far. Stringent quantum
field theories about particle interaction as quantum electrodynamics and chromo-
dynamics are, of course, based on the fundamental rules of quantum mechanics
(particle-wave duality, uncertainty relation etc.), but they are relativistic, that is, con-
sistent with special relativity, in contrast to non-relativistic approaches as treated
in Chap.8. Reactions between elementary particles require extremely high ener-
gies such that particle velocities are close to the light velocity. This prohibits non-
relativistic treatments in elementary particle physics.

When we restrict, however, our considerations on phenomena related to con-
densed matter, in particular on nanostructures and its electronic properties, the non-
relativistic formulation of quantum mechanics within the frame of the Schrédinger
equation is sufficient. There is a considerable gap between characteristic energies
in condensed matter physics, typically 1-100 eV, and those in elementary particle
physics significantly above MeV. Both fields of physics are completely decoupled
on the energy scale. In condensed matter physics, the assumption of electrons and
atomic nuclei being the fundamental stable particles of interest is usually sufficient.
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5.7 Angular Momentum in Nanostructures and Atoms

In Sect.5.6, we have seen that the angular momentum, in particular the spin degree
of freedom, represents an important organizing principle in nature, down to the
world of elementary particles. In the following, we will learn that the Pauli exclusion
principle, which derives from symmetry properties of the spin operators (Sect. 5.6.2),
determines essential properties of matter, in particular its stability. Why are atoms
composed by certain well defined numbers of electrons and why can they be ordered
according to the rules of the periodic table? The answer is given by the Pauli principle
as we will see.

It is a benefit of nanotechnology, in particular the modern techniques of nano-
structuring semiconductors (Appendix B), that meanwhile nanoscaled device struc-
tures can be prepared in which electrons behave similarly as in atoms and molecules
found in nature. These artificial semiconductor atoms allow experimental studies
which mimic the properties of natural atoms, but under easier conditions for the
experiment. Electrical measurements on these semiconductor nanostructures reveal
the rules according to which real atoms are built-up. In the following, we will con-
sider an example which clearly demonstrates the importance of the electronic angular
momentum for these type of questions.

5.7.1 Artificial Quantum Dot Atoms

In natural atoms, electrons are confined to the atomic volume by the action of the
attractive Coulomb potential of the positive nucleus. Here, the confining potential
has the radius dependence e? /47 eor. Nanostructuring techniques, on the other hand,
allow the preparation of tiny quasi-one-dimensional (1D) semiconductor structures,
so-called quantum dots (Sect.3.6.1). Depending on details of the shape of the dots
and of boundary conditions, the confining potential for an electron might be parabolic
or of the hard wall type, that is, much easier to handle than the Coulomb potential of
a natural atom.

A common method to prepare such quantum dots is based on semiconductor layer
structures such as GaAs/AlGaAs/Ing 05sGag 95 As/AlGaAs/GaAs (Fig. 5.18a) which
are epitaxially grown (Appendix B). In this layer structure, the electron is confined
to the InGaAs layer (thickness 12 nm) by means of the two AlGaAs neighbouring
potential barriers (thicknesses 9 nm and 7.5 nm at the bottom). The InGaAs layer with
the lowest forbidden band between conduction and valence band (Sect. 8.3.5) offers
the lowest possible energy for an electron in the conduction band in comparison with
the surrounding layers. The electron is confined in this layer as in a 2D potential
box with finite walls. By means of lithographical techniques (Appendix B), the layer
sandwich can be structured vertically into columns with diameters below 500 nm.
This leads to a quasi-1D confinement of the electrons in a dot formed by the column
dimension and the two AlGaAs barriers on top and bottom (Fig. 5.18a). Tunneling of
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Fig.5.18 a-d Single electron tunneling through artificial quantum dot atoms [15]. a Realization of
a semiconductor quantum dot by two AlGaAs tunneling barriers surrounding a thin InGaAs region
built-in in a GaAs column. The dot is formed by the InGaAs region having the lowest potential for
conduction electrons in the structure. The potential of the InGaAs dot can be varied in relation to the
drain contact by a metallic side gate contact (separated from the current channel by Schottky contact,
Appendix A). Drain and source contacts are realized by n-doped GaAs regions. Metal contacts are
in red colour (left). The lateral structuring of the columns with a diameter of about 500 nm was
performed by electron beam lithography (Appendix B). Scanning electron micrographs of three
column structures are shown on the right side. b Coulomb blockade oscillations measured on the
device in (a). Current peaks as function of gate voltage indicate the occupation of electronic states in
the quantum dot. Insert Plot of addition energies for addition of 1, 2, 3, 4, . .. electrons to the states
of the quantum dot. ¢ Schematic representation of the successively filled quantum states of the dot
in terms of a shell model. e/ C represents the Coulomb repulsion upon adding a further electron to
the dot. AE is the energy of a quantum jump from one to the next higher shell. d Representation of
the shell model by means of boxes which represent electron orbitals: 1st shell (principal quantum
number n = 0) lower box; 2nd shell (principal quantum number n = 1) two boxes on top. Because
of the two possible spin orientations each box can be occupied by two electrons (see Table 5.3).
According to Hund’s rule 4 electrons fill the lower box (1st shell) with 2 electrons and the two upper
boxes of the 2nd shell, each with one electron of identical spin orientation
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electrons from the bottom (source) GaAs region through the lower AlGaAs barrier
into the dot and tunneling through the upper barrier into the top (drain) GaAs region
allows the observation of single electron tunneling as described in Sect. 3.7. An
external bias between source and drain contact can shift the potential of these contacts
against each other. In addition, the potential of the whole dot with respect to source can
be varied by means of a side gate contact biased in an adequate way against the source
contact (Fig. 5.18a). The arrangement in Fig. 5.18a is a realization of the schematic
experimental set-up of Fig. 3.18a for the observation of single electron tunneling
effects. As shown in Sect. 3.7 measurement of current, respectively, conductivity o
between source and drain contact as a function of gate voltage V, (Fig. 3.18) yields
a spectroscopy of the electronic states of the quantum dot. Hereby, we observe the
sequential occupation of the states with N = 1,2,3,4, ... electrons. Due to the
Pauli exclusion principle each quantum state of the dot (resulting from confinement,
Sect. 3.6.1) can be occupied only once by an electron tunneling into the dot. In case
of spin degeneracy, two electrons with opposite spin, of course, can occupy a state.
In addition, an electron tunneling into the dot, where already one or more electrons
occupy states, experiences the Coulomb repulsion of the already present electrons.
This many-body repulsion energy must be overcome by an additional electron. For
successful tunneling into the dot, that is, breaking of the Coulomb blockade, it must
carry the so-called charging energy ¢%/C with C as the capacity of the dot against
its surrounding (Sect. 3.7). The addition energy Ay = (¢*/C) + AE for adding
one further electron to the dot (3.128a), (3.128b), thus, contains two terms: the
charging energy (many body repulsion) and the energy difference A E between the
lowest unoccupied quantum state of the dot, which will be occupied by the incoming
electron, and the highest already occupied state.

In a first step for understanding single electron tunneling through the quantum
dot in Fig. 5.18a, we want to inquire into the spectrum of quantum states originating
from electron confinement in a planar dot with rotational symmetry. The electron
wave function can be described in this case in the frame of rectangular Cartesian
coordinates with x and y as coordinates in the plane of the flat box and z pointing
into the direction perpendicular to the heterostructure layer sequence in Fig.5.18a.
But also a description in terms of cylindrical coordinates with r and ¢ parallel to
the layer sequence is possible. Because of the dimensions of the flat box (thickness
10nm, diameter approx. 500 nm) cylindrical coordinates are adequate.

The potential V (r) an electron is exposed to in the box is, thus, two-dimensional
(2D) and has a minimum in the center of the box at » = 0. At the surface of the
cylindrical box an electron depletion layer with upwards bending of the conduction
band (potential energy of free electrons in the dot) is given, similarly as for a Schottky
barrier (Appendix A). In good approximation, the potential is parabolic, centered
around r = 0, and is written as

1 1
V@) = gm*ejr? = om oo (x* +y7), (5.183)
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* is the so-called effective mass of the electron, the electronic mass modified by
the surrounding crystal lattice (Sect.8.3.4). wp is a parameter which describes the
curvature of the confining parabolic potential.

In Cartesian coordinates we, thus, obtain the following Hamiltonian for an electron
confined in the flat box:

N + 1
H= %+2m wo(x? + y?). (5.184)
This is the Hamilton operator of two equal oscillators oscillating in directions perpen-
dicular to each other. A circular motion can be reduced to two mutually perpendicular
oscillations. The energy eigenvalues of the two oscillators (2D oscillator) in (5.184)
are represented as

1 1
Engn, = Ex + Ey = (nx + E)hwo + (ny + E)hwo = (nx +ny + Dhwyg.

(5.185)
The quantum numbers n, and n, separately assume the values 0, 1, 2, 3, .... The
solution in Cartesian coordinates, thus, yields the following spectrum of electronic
states in the cylindrical box (ny + ny = n):

E, = (n + 1)hwo, (5.186)

with n as integer numbers.

On the other hand, the Hamiltonian of the problem can also be represented in
cylindrical coordinates. In this case, we separate the kinetic energy into a radial
contribution fr and an orbital part (5.5b):

L 1 20
Y 5+ 2m wyr©. (5.187)

A

=7 +

T, describes the kinetic energy related to a change of the radial component of the
position vector and L is the angular momentum operator in z direction. The cylinder
symmetry of the potential implicates that the Hamiltonian H commutes with L 2, that

is, H and LZ have the same system of eigenstates |n, m):

Hin,m) = Eymln, m), (5.188a)
L.|n, m) = mhin, m). (5.188b)

Hereby, the orientation quantum number of the angular momentum assumes the
valuesm = 0, £1, £2, +3, ... . Because of the shape of the quantum dot (flat plate)
the angular momentum can assume only one orientation, perpendicular to the plate-
like dot along z. The angular momentum quantum number !/ is, therefore, identical
with the absolute value of the directional quantum number |m]|.
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In order to represent the energy eigenvalues E,, (5.185) as a function of the angu-
lar momentum quantum number m, that is, E, ;,, the Schrodinger equation must be
solved in cylindrical coordinates r, ¢ by using the Hamiltonian (5.187). We skip this
mathematical procedure and use the following simple argumentation: The energy of
an electron orbiting in the cylindrical box does not depend on the rotational direc-
tion, that is, the orientation +z or —z of the angular momentum, it therefore depends
on |m|. On the other hand, in any case (5.186) must be one possible representa-
tion of the eigenvalues; this is required by the solution of the problem in Cartesian
coordinates. The series of integer numbers n (5.186), thus, must contain the angu-
lar quantum number as |m|. Apart from an increase of the angular momentum, the
total energy of the electron can also increase by a change of the kinetic energy 7,
that is, a variation of the radial component of the position vector. Because of the
circular motion, the x and y coordinates are equivalent in this variation. Referring
to the Cartesian representation (5.185), then, a change of the quantum number n,
by one unit requires an identical change of the quantum number n,. Within the
series n (5.186) of quantum numbers, there must be a sub-set of even numbers 2k
(k=0,1,2,...). We, thus, arrive at the conclusion that the energy eigenvalues E,
(5.185), (5.186) can also be expressed as

En = Exm = (2k + Im| + 1)hwy = (n + Do, (5.189)

with k = 0,1,2,3,...and m = 0, +1,£2, £3,.... The quantum number k is
attributed to different radial wave functions while the directional quantum number m
describes different angular momenta of the electron orbit, that is, classically differ-
ent angular velocities of the electron. Both representations (5.186) and (5.189) are
equivalent, they only originate from different formalisms of solving the Schrédinger
equation.

The quantum number n = 2k + |m|, which numerates the possible energies E,
(5.189) of the system, is called principal quantum number. For a given energy E,
of the electron, a maximum angular momentum must exist, since an increase of the
angular momentum simultaneously enhances the kinetic energy of the particle. Thus,
for a fixed principle quantum number n a maximum angular momentum quantum
number |m| = [ exists, which follows as

l=|ml=n—2k=nn—2,n—4,...,10r0. (5.190)

Equation (5.190) describes the variety of quantum states of a 2D harmonic oscillator,
which is a good model for an electron being confined in a flat circular quantum dot.

In Table 5.3, the energetically lowest eigenstates are listed. The occupation of
states is governed by the Pauli principle: Each single electron level (spin degenerate)
is occupied by at maximum two electrons, one with spin “up” and one with spin
“down” (s = £1/2). This explains the degrees of degeneracy 2, 4, 6, 8 for the four
lowest energy levels hwy, . . ., 4hwy. 2,4, 6, 8 electrons can occupy the corresponding
energy levels with principle quantum numbers n = 0, 1, 2, 3. The extension of the
scheme to higher quantum numbers is easily done in analogy.
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Table 5.3 Description of the energetically lowest eigenstates of the 2D harmonic oscillator by
the different quantum numbers n, k, m, s. Additionally to principal quantum number n the angular
momentum quantum numbers k (mostly called /) and m the spin quantum number s indicates the
two possible spin orientations of an electron. The electron configuration corresponding to the energy
eigenvalue v is called vth shell

Energy Principle Radial Angular Spin quantum | Degree of

eigenvalue | quantum No., | quantum mom. q. No., | No., s degeneracy

E, n No., k m

hawo 0 0 0 +1/2 2 1. Shell

2 huwy 1 0 +1 +1/2 4 2. Shell

3hwq 2 0 +2 +1/2 6 3. Shell
1 0 +1/2

4hwg 3 0 +3 +1/2 8 4. Shell
1 +1 +1/2

The eigenstates of a three-dimensional (3D) oscillator can be obtained in anal-
ogy. A 3D oscillator is a superposition of three equal mutually perpendicular 1D
oscillators. Accordingly the energy eigenvalues are obtained similarly to (5.189) as

3
EZP = (Zk 14 E)hw"’ (5.191)

Since in the 3D case the angular momentum can be arbitrarily oriented in space rather
than only perpendicular to the plane of a 2D oscillator, the quantum number of the
total angular momentum / appears in (5.191) instead of only the orientation quantum
number |m| in (5.189). We have to take into account, however, that according to
different orientations of the angular momentum the quantum number m assumes
integer values between —/ and +/. This determines finally the degeneracy of each
energy level. As for the 2D oscillator, the radial quantum number appears as 2k. In
spite of the three-dimensionality of the problem the electron moves on a planar orbit
(as in the 2D case) independent of its orientation in space. For the three energetically
lowest eigenstates with principal quantum numbers n = 0, 1, 2 we, thus, obtain the
following combination of quantum numbers:

n=0; [ =0; m=0
n=1; [ =1; m =0, £1 (5.192)
n=2; [1=0,2; m =0, 2, £1.

To obtain the degeneracy of an energy level, we must finally take into account also the
two possible spin orientations s = £1/2, that is, for n = 1 the degree of degeneracy
amounts to 6.

We now return to the 2D oscillator in order to understand spectroscopic results
which have been obtained on the flat disc-like quantum dot of Fig. 5.18. We expect to
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find the spectrum of energies (5.189) of Table 5.3. Hereby, each level can be occupied
by electrons according to its degree of degeneracy.

An adequate spectroscopy for the study of these effects is single electron tunneling
through the quantum dot (Sect. 3.7). Indeed, measurements of the tunneling current
at a small source-drain bias as function of gate voltage V, (Fig.5.18b) show sharp
spectral bands which are due to Coulomb blockade (Sect.3.7). Each spectral band
indicates a gate voltage at which the quantum dot increases its occupancy by one
electron. At around —1.6 V gate voltage the first peak appears, it arises from the
occupation of the lowest energy level hwg (1st shell) by one electron. At a gate
voltage of about —1.5 V a second electron can break the Coulomb blockade. It
possesses the necessary charging energy e¢%/C to overcome the repulsion of the
electrons already present in the dot and occupies the second possible state (with spin
opposite to the 1st electron) of the 1st shell (n = 0). According to Table5.3 and
Fig.5.18c the 1st shell, then, is fully occupied. Addition of a further 3rd electron to
the dot, now, requires, on top of the charging energy ¢/ C (to overcome the Coulomb
repulsion), an additional energy hwy = AE for the quantum step to the 2nd shell
(n = 1). The total addition energy is higher than that for adding the 2nd electron and
the voltage distance between 3rd and 2nd peak is larger than that between 2nd and
1st one (Fig.5.18b).

The 2nd shell with n = 1 can accept four electrons (Table5.3 and Fig.5.18c,
d). Taking into account the occupation of the Ist shell with two electrons the 3rd
shell starts to be filled at the transition from the 6th to the 7th tunneling electron, i.e.
peak 6 to 7 in Fig.5.18b. Indeed, the distance between peaks 7 and 6 is somewhat
larger than that between peaks 6 and 5, namely by the excitation energy AE = hwyg
between 2nd and 3rd shell (step in principal quantum number).

If the applied gate voltage V, would depend linearly on the energetic distances
between the energy levels of the dot, the distances between peaks 6 and 7 as well as
between 2 and 3 in Fig.5.18b should be equal, namely (¢2/C) + hwyg. This is not
the case. One reason is that a voltage change at the gate does not reflect directly the
corresponding shift of the potential on the dot because of various inherent resistances
in the semiconductor structure. On the other hand the assumption of the so-called
orthodox model (Sect.3.7) for single electron tunneling is too simple. Different
electron occupations of the dot require in principle (slightly) different Coulomb
repulsion energies which is neglected in the present simple description. A more
profound theoretical description explains the deviations from the experimental results
nearly perfectly [15].

A plot of the series of addition energies for adding one electron to the dot
(Fig.5.18b, inset) shows enhanced values where a new shell starts to be filled, i.e.
at N = 2,6,12,.... This is, of course due to the quantum step to the new shell.
But increased addition energies are also found at electron numbers N = 4,9, ...,
where each time a shell is half filled. With four electrons, for example, on the dot the
2nd shell is half filled. According to its discoverer this phenomenon is called Hund’s
rule. The underlying reason is again the requirement of antisymmetry of the wave
function (Pauli principle): Upon filling a shell (states with equal principle quantum
number), the available states are first filled with electrons of equal spin orientation
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before subsequently electrons with opposite spins are added to each state of the shell
(Fig.8.15d). As seen in Fig.8.15d, four electrons in the quantum dot require equal
spin orientation of the two electrons in the 2nd shell (» = 1). Parallel spins are related
to a symmetric two-particle spin wave function. The requirement of antisymmetry
for the total wave function, thus, requires an antisymmetric position wave function
for the two electrons. Upon exchange of the two electrons, the position wave function
must change its sign, that is, it has a node between the two electrons. In comparison
with a symmetric one, this antisymmetric wave function forces the electrons to be
at largest possible distance from each other. The Coulomb repulsion between the
electrons is reduced as compared with a symmetric wave function and the parallel
spin orientation of the two electrons in the shell is favored. It is, thus, energetically
more favorable to fill up the states of a shell with electrons of equal spin orientation
before spins of opposite orientation are added. When a shell is half filled with elec-
trons of equal spins, the addition of a further electron with opposite spin requires
a little bit more energy due to the enhanced Coulomb repulsion of electrons being
arranged now somewhat closer to each other. This is the straightforward explanation
for Hund’s rule.

The described experiment of single electron tunneling through a quantum dot
excellently demonstrates the importance of angular momentum and spin for the
internal electronic structure of many-particle systems. The considered issues also
yield the key for an understanding of the structure of atoms and the periodic table,
which governs the properties of atoms and their relation with each other.

5.7.2 Atoms and Periodic Table

The simplest atom in nature, the hydrogen (H) atom, also has one confined electron,
similarly as the electron in the quantum dot in Sect.5.7.1. In contrast to the dot,
however, the electron of the H atom is confined by the attractive Coulomb potential
of the positive proton of the nucleus. Accordingly the Hamilton operator for the
valence electron of the H atom is written as (m free electron mass):

PO S S (5.193)
T 2mr?r  dweor” '

The nucleus (proton) is about 2000 times heavier than the electron; in good approx-
imation it is, therefore, assumed to be at rest. The potential in (5.193) is static.

Because of the 3D character of the problem the total angular momentum L enters
the description rather than only its z component (as in a planar problem). Because
of spherical symmetry of the H atom L and L2 commute with H (Sect. 5.3). Due to
various possible orientations of the electron orbit in space, the z component of the
angular momentum must not coincide with the total momentum. Thus, the following
complete system of eigenvalue equations has to be solved:
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HIRy)|l,m) = Ep 1 m| R, m), (5.194a)
i IR, m) = 1+ DR Ru)|L, m), (5.194b)
Lo |Ry)IL, m) = mhi|Ry)|l, m), (5.194c¢)

|l, m) are the angular momentum eigenstates (part of the complete eigenstates),
which are given in their position representation (wave functions) and discussed in
Sect.5.3. Between the quantum numbers / and m the relation m = —I, —[ + 1,

..,0,...,1— 1,1 —2holds (5.35b). The angular momentum quantum number [ is
bounded above for a particular given energy Ej, ; ,, of the electron. |R,) is the radial
part of the complete eigenstate. Different principal quantum numbers n describe
different radial distances of the electron from the nucleus, i.e. also different electron
energies E, | .

A peculiarity of the Coulomb potential is the degeneracy of the energy eigen-
values in the quantum number /. The energies E, ;, coincide for differing angular
momentum quantum numbers /. Without a magnetic field, this degeneracy is then
also given for the directional quantum number m. We do not prove this peculiarity
of the Coulomb potential here. But we keep in mind that the energy of the hydro-
gen valence electron (without any external perturbation) does only depend on the
principal quantum number n:

_ e*m 1 _ 1 !
E, =— W 5 __Ryﬁ' (5.195)

The term R, being only dependent on natural constants is called Rydberg constant.
Equation (5.195) is not formally derived in this book. For this purpose, the eigenvalue
problem (5.194a)—(5.194c) had to be solved in spherical coordinates, a rather tedious
job. A semiclassical treatment on the basis of Bohr orbits also yields the important
result (5.195). One can find the formal solution in every theoretical textbook on
quantum mechanics, for example, [16]. The formal treatment, of course, yields the
upper limitation of the angular momentum by the electron energy, that is, the upper
bound of the quantum number / by the (energy) principal quantum number #:

1=0,1,2,....,n— 1. (5.196)

In conclusion, the variety of quantum numbers for the electron in the hydrogen atom
is given as follows:

Principal quantum number n =1,2,3,4, ...
Angular momentum quantum number 0 </ <n —1
Orientation quantum number —I/ <m </
Spin quantum number s = +1/2.

In analogy with (5.192), we obtain the following possible combinations of quantum
numbers for the hydrogen electron:
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n=1; [ =0; m = 0; s ==x1/2
n=2; 1=0,1; m =0, %1; s ==x1/2 (5.197)
n=3; 1=0,1,2; m =0, +1; £2, s =+£1/2.

Incontrastto (5.192), the spin quantum number with the two possible values 1/2 has
explicitly added. The energy levels, thus, have the following degrees of degeneracy
(in brackets):

E1(2), E>(8), E5(18), .... (5.198)

Notice that the quantized eigenvalues E, (5.194a)—(5.194c), (5.195), (5.198) are
negative because of the binding character of the potential. The energetically lowest
ground state has a binding energy E1 = —13.6 eV with respect to a potential zero
point infinitely far from the atom. We will approximately calculate this value in
Sect.6.2.2.

The ladder of negative energy eigenvalues E, (5.195) approaches the limit zero
for n — oco. When an electron is excited from any binding energy E, to this limit,
the atom is ionized. The electron is no longer bounded, it can evade to infinity.

The radial wave functions R, (r) = (r|R,) (5.194a)—(5.194c) resulting from the
solution of the Schrodinger equation with the Hamiltonian (5.193) have a maximum
at r = 0 and decay to zero for r — oo. For principal quantum numbers n > 0,
the radial wave functions oscillate around zero with (n — 1) zero values (nodes).
The probabilities 27 |R,, (r)|>r? of finding the electron at a radial distance r from
the nucleus have maxima at values which approximately correspond to the orbits
calculated on the basis of Bohr’s atomic model. For the ground state this is the so-
called Bohr radius (Sect. 6.2.2) of about 0.05 nm [16]. Electronic excitations between
the energy levels (5.195) explain the spectrum of sharp absorption and emission lines
of atomic hydrogen which had eminent importance for the development of quantum
physics.

We now proceed to the consideration of more complex atoms with higher atomic
numbers Z > 1. These atoms contain Z protons and comparably many neutrons
in their nucleus and Z electrons in their shell. In this case, a many-particle prob-
lem with Z electrons in the attractive Coulomb potential of the Z-times positively
charged nucleus should be solved. This complex procedure is generally avoided by
using a single electron approximation: The Schrodinger equation is solved for one
single electron in an effective potential which contains the nuclear charge and the
other Z — 1 electrons of the shell. The nuclear charge is surrounded by the Z — 1
electrons. This positively charged system is called atomic core. The effective poten-
tial for the one considered electron is, thus, represented by the screened Coulomb
potential of one positive core charge. One-electron eigenstates and energy eigenval-
ues are approximately calculated in this core potential. A next better approximation
is obtained by using the obtained eigenstates (wave functions) for the calculation
of a mathematically improved atomic core. This procedure can be repeated self-
consistently until deviations between two subsequent solutions are only marginal.
The atomic core consisting of the nucleus (charge Ze) and Z — 1 shell electrons has
spherical symmetry and so has the screened Coulomb potential for the considered
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electron. Its eigenstates, therefore, contain the angular momentum eigenstates |/, m)
as factors. The electronic wave functions can, thus, be characterized by the quantum
numbers / and m and, of course, by the spin quantum number s. As in the case of the
hydrogen atom, there is the additional principal quantum number n which is related
to different radial distances of the electron from the nucleus. Since the potential is
not the pure Coulomb potential, there is no degeneracy in the angular momentum
quantum number / as for the hydrogen atom. Different angular momenta of the elec-
tron (different /) are connected with different energies. A hydrogen energy level E,
splits into a variety of different levels E,, ; ,, where the m degeneracy is broken only
in an applied magnetic field.

The physical reason for the loss of the / degeneracy in the screened Coulomb
potential is a different amplitude of the electronic wave functions with different
angular momentum. States with low angular momentum have a large amplitude near
the nucleus and the electron samples the nuclear charge to a higher extent than
an electron with high angular momentum. States with high angular momentum are
suppressed at the origin, they see the nuclear charge shielded by the electrons in the
inner orbits. Consequently, at each n the energy increases with /. The [/ degeneracy
is broken.

Pauli principle, now, requires that every single electron level (spin taken into
account) is occupied by one single electron only. Consequently we can count how
many electrons with equal principal quantum number # can occupy states in an atom.

For each principal quantum number n (particular shell of the atom), there are n
possible values of the angular momentum quantum number /.

e For each quantum number /, there are (2/ + 1) possible values of the orientation
quantum number m.

e For each pair (/, m) of quantum numbers, there are two possible values of spin
quantum numbers s.

e Each pair (n, /) of quantum numbers allows at maximum 2(2/ + 1) electrons in
the particular n shell of the atom.

These rules and the degeneracies of the principal quantum numbers (5.197) yield a
deeper understanding of the internal structure of atoms. This structure is expressed in
the periodic table of elements (Fig. 5.19), in which Mendeleev organized the chemical
elements for the first time in 1869. At that time, the order was established only on
the basis of experimentally observed chemical similarities and reactivities of the
elements.

Since in general the electronic energy within a particular shell described by the
principal quantum number n splits up into different levels with quantum numbers
I, a common notation is used for the different angular momentum states (Sect.5.3):
The states with [ = 0,/ = 1,1/ = 2,1 = 3,... are called s, p,d, f, ... orbitals.
Accordingly the energy level E,; with n = 1,1 = 0 is called 1s shell, that with
n = 2,1 = 0 2s shell, respectively that with n = 2, [ = 1 2p shell. In analogy
to Fig.5.18d, chemists got accustomed to using a simple casket scheme (Fig. 5.20).
Each casket represents an atomic orbital which can be occupied by two electrons with
opposite spin. For each p level, the three caskets arranged together correspond to
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Fig. 5.19 Periodic table of elements, i.e. of natural atoms. The nomenclature 1522522 p? denotes
the occupation of the 1s and 2s shell with 2 electrons each and the 2 p shell with 3 electrons

the py, py, p; orbitals of Fig.5.5. The atom in Fig.5.20 has occupied 1s, 2s orbitals
and two of the three 2 p orbitals are filled with one electron. Note that according to
Hund’s rule (Sect.5.7.1), two p orbitals are filled, each with one electron, rather than
a filling of one orbital with two electrons. Equal spin orientation in two orbitals is
energetically more favorable than two electrons with opposite spin in one and the
same orbital. Comparing Fig.5.20 with the periodic table in Fig.5.19, the depicted
atom is recognized as the carbon (C) atom with atomic number 6.

Coming back to the periodic table in Fig.5.19, we begin the description with
hydrogen (H), the simplest atom. Corresponding to the atomic number 1 only the
Ls orbital is filled with one electron. Filling of the 1s orbital with two electrons of
opposite spin leads to helium (He) with atomic number 2. The first shell is now com-
plete. Using arguments based on filling of molecular orbitals (Sect. 6.2.3) a complete
electronic shell causes negligible chemical reactivity of the element. Helium, there-
fore, is a noble gas. The next higher atomic number 3 requires filling of the 2s orbital
with one electron (Fig.5.20). A half filled shell means high chemical reactivity and
this is indeed true for the alkali metal lithium (Li). The subsequent atomic numbers
are related to partially filled orbitals and the corresponding elements participate in
chemical reactions. At an atomic number 10 the 1s, the 2s and the 2p orbitals are
completely full; the corresponding unreactive element neon (Ne) is again a noble gas.
Along these arguments sequential filling of the atomic orbitals, respectively shells,
yields the periodic table of Fig.5.19.
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Fig. 5.20 Box, respectively shell model of the natural atoms up to the d shell. As an example the
carbon (C) atom with its six electrons is shown. The occupation of the 2 p shell with two electrons
of equal spin in two different boxes demonstrates again Hund’s rule (compare Fig. 5.18d). The
notation 1522s%2p? expresses the total electron occupation of the 1s, 2s and 2p shells with two
electrons each

As is seen in the arrangement of elements, the filling of the 3p orbitals is not
followed by occupation of the 3d states but rather of the 4s ones. This is not what
one expects from the hydrogen atom where first the 3d orbitals would be filled. The
reason for this unexpected anomaly is the non-zero wave amplitude of the s states at
the nucleus. The screening action of the other outer electrons is, thus, reduced and
the energy of the s orbitals is lowered in comparison with the hydrogen model.

Subsequent filling of the d orbitals generates the 3d transition metals from Sc
to Zn. In analogy, there are 4d and 5d transition metals because of initial filling of
the s states each time. The same phenomenon for the f states is responsible for the
existence of the rear earth series Ce to Lu and the actinides Th to Lr.

Quantum mechanics explains the chemical reactivity and all other properties of
chemical elements which is reflected in the periodic table having been developed
more than hundred years ago solely on the basis of observation.

5.7.3 Quantum Rings

Instead of using a quantum dot for single electron tunneling spectroscopy (Sect. 5.7.1)
we can also study a nanoscopic ring structure. Electrons, then, tunnel through a
barrier at one side into the ring (source contact) and leave the ring at the opposite
side again through a tunnel barrier (drain contact). The ring as a whole behaves as
a quantum dot with respect to charging by addition of an electron from the source.
The addition energy A = (¢?/C) 4+ AE contains as before the charging energy
€?/C (many-particle repulsion) and the energy difference AE between the lowest
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empty and the highest occupied electronic level in the quantum ring. Single electron
tunneling in the Coulomb blockade regime through this ring structure, thus, allows
again a spectroscopy of the single electron states in the ring by measuring the AE
term. As in other cases of electrons orbiting in a ring structure, for example, in the
Aharanov-Bohm effect (Sect. 5.4.4), measurements in an external magnetic field are
of interest.

Such experiments have been performed on quantum rings which were prepared by
split-gate technique (Appendix B) in a two-dimensional electron gas (2DEG) at the
interface of an AlGaAs/GaAs heterostructure (Appendix A) [17]. The 2DEG posi-
tioned about 34 nm below the surface of the layer sandwich was structured laterally
by means of local oxidation in a scanning force microscope (Appendix B). Below
the oxide traces (thickness in the nanometer range), the metallic 2DEG becomes
depleted from electrons (depletion space charge, Appendix A) and the 2DEG is split
up into distinct conducting areas separated by insulating barriers (Fig.5.21). Source
and drain contacts are prepared in this way as well as the quantum ring by means
of a central dot-like and two ring-like depleted traces (Fig.5.21). In addition, two
side contacts (pgl and pg2) separated from the ring by insulating barriers allow
potential variations of the ring as a whole against source by application of a gate
voltage. The four contacts gpc la, 2a, 1b, 2b arranged rectangular with respect to
each other enable a precise control of the quantum point contacts at the entrance to
and the exit out of the ring. Adequate applied voltages allow a convenient adjustment
of the tunnel barriers between the ring and the source and drain contacts.

Before the presentation of experimental results, we want to get some theoretical
insight into the spectrum of electronic states expected for a quantum ring. The ring

(a) (b)

source

drain

Fig.5.21 a,b Quantum ring prepared by local stripe-wise oxidation of the surface of an A1As/GaAs
heterostructure carrying a high mobility 2D electron gas (2DEG) at the interface [17]. Local surface
oxidation depletes the 2DEG below from electrons and creates potential barriers which separate
conducting areas within the 2DEG from each other (Appendix B). a Scanning electron micrograph
of the oxide structures which give rise to potential barriers for electrons within the 2DEG. Source,
drain, pgl etc. are non-oxidized areas where the 2DEG below has full electrical conductance.
b Schematic plot of the quantum ring with dimensions. Dark lines indicate the potential barriers
for electrons; grey lines show the extension of depletion space charge zones at the borders of the
barriers
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has a radius of r9 = 132 nm and the potential V' is assumed to be constant over the
wire thickness of Ar & 65 nm (in spite of parabolic potential in reality, Sect.5.7.1).
Because of the constant potential V = const = 0 the kinetic energy of the electron
is just that of a circular motion: Eyj, = m*v?/2 = m*r3w2/2, where m* is again,
as in Sect.5.7.1, the effective mass of the electron, i.e. the electronic mass modified
by the action of the crystal lattice (Sect.8.3.5). With w as the angular frequency of
the electron its classical angular momentum is L, = m*réw. We replace all classical
quantities by operators and obtain by means of Eyj, = (1/ 2)L§ / m*rg the following
Hamilton operator for an electron moving on a circular orbit with radius rg:

A~ 11
H=-—L2 (5.199)
2 m*r§

Because of | H, L] = 0 the eigensolutions of the problem are identical with those
of the angular momentum operator L, that is,

L.\m) = mhm), (5.200)
. 2
H|m) = Epp|m) = ——m>. (5.201)
2m*r3
Hereby, the directional quantum number assumes the valuesm = 0, &1, £2, £3, ...
and the wave function follows as (r|m) o exp(im¢) according to (5.35a).

For the experiments, the quantum ring device of Fig.5.21 was used. Measure-
ments were performed at low temperature with a variable magnetic field oriented
perpendicular to the ring (z direction). The eigensolutions E,, must, therefore, be
calculated in the presence of a magnetic field B = (0, 0, B) = curl A. In this case, the
Hamiltonian (only kinetic energy) is written as H = (p — ¢A)?/2m*. In analogy to
the above case with B = 0 we express the energy by the angular momentum operator
f,z in order to represent the eigenstates in terms of angular momentum states |m).
Given the magnetic field as B = Be, the field lines of the vector potential A enclose
the B field lines in the direction of the unity vector e, that is, the following ansatz
for A is adequate:

A= %Brew. (5.202)
The ansatz (5.202) is checked, that is, B = Be, = curl A is derived from (5.202), by
using the relations (5.30a)—(5.32) and setting ¢ = 7/2 for cylindrical coordinates.

With the mechanical momentum written as

p = m*v = m*rope, = m*rowe,, (5.203)

we obtain the classical kinetic energy as
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(p — eA)? 1 1 2
Exin = T T 5 m*rowe, — EeBroeq,
1 *_ 2 1 2 g
=5 miryw — 56370 . (5.204a)
m
0

We replace the angular frequency w by the angular momentum L Zm*rga) and express
the classical quantities by operators (Exi, — H) to obtain the corresponding Hamil-
tonian:
. Lo 1 5\
H=_——>\L:— EeBrO . (5.204b)

*
2m ry

Since B is a simple number rather than an operator, H commutes with f,z, i.e.
LH, L] = 0, and the Schrédinger equation is solved again by eigenstates |m) of the
angular momentum operator L;:

. 1 [/~ 1 2
H|m) = L.— —er’B , 5.205
|m) 2m*r§( z 2er0 ) |m) ( a)
H|m) ! - Le2p 2| ) = Ep|m) (5.205b)
m) = ———=\\mn— —er, m) = m). .
Zm*rg 270 "

The energy eigenvalues E,, of the orbiting electron indexed by the directional quan-
tum number m are obtained as

E : L R Le ap ’ (5.2062)
= — —er, = — =7 . 2062
" 2m*r§ " Ze 0 2m*r§ " 250

The magnetic flux through the quantum ring is @ = nrgB and we can write

Ey

e \* h? 2
——@) =——5(m—P/Dg)". 5.206b
(m A ) P (m — @/ ®o) ( )

B Zm*rg
Hereby, @9 = h/e is the magnetic flux quantum introduced in Sect.5.4.4. For a
fixed angular momentum (quantum number m), the electron energies as a function
of the magnetic field B or the magnetic flux @ form a parabola (5.206a), (5.206b).
Different angular momenta with different quantum numbers m give rise to a series
of parabolas shifted against each other by the flux quantum @ (Fig.5.22a).

In a single electron tunneling experiment the electrons tunneling through the ring
must occupy the energy levels (5.206b). When the magnetic field, which penetrates
the ring, is varied during the measurement, the electron can not increase its energy to
much by following one single parabola with fixed m. It will rather change from one
to the next parabola (m — m + 1) in order to keep its energy at a minimum (solid
zig-zag line in Fig. 5.22a). A corresponding zig-zag pattern should be found exper-
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Fig.5.22 a, b Single electron energy levels of the quantum ring of Fig. 5.21 as function of magnetic
field, respectively magnetic flux which penetrates the ring normally. a Calculated energy spectrum:
the different parabolas shifted with respect to each other correspond to different angular momentum
quantum numbers [/ (@ flux quantum). b Experimental spectrum of energy levels of the quantum
ring measured by single electron tunneling [17]

imentally when a Coulomb blockade peak is measured as function of the magnetic
field penetrating the quantum ring. This is indeed observed as shown in Fig. 5.22b
[17]. Beside the zig-zag energy levels additional values are found which depend only
weakly on the magnetic field or flux. A more profound theoretical analysis of the
experimental data explains these findings by an asymmetry of the potential, that is,
deviations from the ideal ring structure. This causes mixing of states with positive
and negative angular momentum [17].

References

1. R. Resnick, Introduction to Special Relativity (Wiley, New York, 2002), p.157

2. A.Tonomura, The Quantum World Unveilded by Electron Waves (World Scientific, Singapore,
1998)

Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

J. Appenzeller, T. Schépers, H. Hardtdegen, B. Lengeler, H. Liith, Phys. Rev. 51, 4336 (1995)
B. Krafft, A. Forster, A. van der Hart, T. Schipers, Physica E 9, 635 (2001)

I. Estermann, Recent research in molecular beams, in A Collection of papers Dedicated to Otto
Stern, ed. by 1. Estermann (Academic Press, New York, 1959)

H. Kopfermann, Kernmomente, 2nd edn. (Akademische Verlagsgesellschaft, Frankfurt, 1956)
T.E. Phipps, J.B. Taylor, Phys. Rev. 29, 309 (1927)

M.A. Anderson, J.R. Enscher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198
(1995)

kW

O ® =



216 5 Angular Momentum, Spin and Particle Categories

10. K.B. Davis, M.-O. Mewes, M.R. Andrews, M.J. Van Druten, D.S. Durfee, D.M. Kum, W.
Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

11. C. Berger, Elementarteilchenphysik—Von den Grundlagen zu den modernen Experimenten
(Springer, Berlin, 2006)

12. C.D. Anderson, Phys. Rev. 43, 491 (1933)

13. P.W. Higgs, Phys. Lett. 12, 132 (1964)

14. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)

15. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701 (2001)

16. H. Haken, H.C. Wolf, Afom- und Quantenphysik (Springer, Berlin, 1980), p. 153

17. A. Fubhrer, S. Liischer, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Nature 412,
822 (2001)

18. F. Schwabl, Quantenmechanik, 2nd edn. (Springer, Berlin, 1990), pp. 104-105



Chapter 6
Approximate Solutions
for Important Model Systems

Only in the minority of cases exact solutions to a quantum mechanical problem
can be obtained. Examples are tunneling of electrons through a rectangular barrier
(Sect.3.6.4), tunneling through double barriers (Sect. 3.6.5), electrons confined in a
quantum well with infinitely high walls (Sect.3.6.1) or an electron in a harmonic
oscillator potential (Sect.4.4.2).

Mostly the potentials in the Schrédinger equation do not allow simple analytical
solutions for the dynamics of an electron, even more for more than one particle or
for time dependent potentials. Even though modern supercomputers can solve nearly
every problem in quantum physics quantitatively with any accuracy, the treatment
of approximation methods for solving the Schrodinger equation is of high value.
Approximation techniques often yield the algorithm for computer simulations and,
furthermore, provide a deeper insight into the underlying physics of a particular
complex problem, for example, the relative importance of certain quantities, their
interrelation etc. Approximations in physics involve the neglect of certain quantities
or functional dependencies in the calculation on the basis of intuitive arguments and
estimations. This requires a profound and subtle characterization and analysis of the
particular problem. Accordingly specific types of approximation methods have been
established which meet particular issues and requirements of physical problems.

For nearly free particles moving in a weak potential, for example, the wave func-
tion of a free particle is modified, such that the effect of the weak potential is approx-
imately accounted for.

There are different approximation methods for weakly perturbed stationary quan-
tum states in a time independent potential (slightly different from an already solved
problem) and states in a time dependent potential which are no more stationary but
can be approximated by transitions between stationary states.

This category of issues also includes approximate solutions to scattering problems
of particles. In this case, particles freely propagate in space and undergo a timely
limited perturbation upon passing a spatially limited scattering target (potential).
Hereby, the initial states of a free particle are transformed into new scattering states.
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6.1 Particles in a Weakly Varying Potential: The WKB
Method

In Sect.3.6.4, we have considered particles which tunnel through an energy barrier.
Butalso particles which have enough energy to propagate over the barrier are affected.
Their wave number K, their wavelength A and their momentum p = 7k, respectively,
are changed during their path over the barrier.

A free particle with energy £ moving in a constant potential V along the x axis
is described by the wave function (plane wave):

V(x) = CetPe/h — cetikx, (6.1a)

where C is a normalization constant and where momentum p, respectively, wave
number k = 27 /X are given by

p = hk = \/2m(E — V). (6.1b)

Different potentials V, thus, shift the phase ikx of the plane wave by different
amounts.

We now assume that the particle moves over a locally varying potential with only
slight barrier height variations. The potential V (x) extending between the positions x¢
and x can be thought as being composed of infinitesimally small regions of constant
potential. Each potential region (i), then, shifts the phase of the particle wave by
a different amount §(px);. The total phase shift of the wave after the particle has
passed the potential between xo and x is the sum of all contributions §(px);. An
approximate solution to the wave function after passage of the weak potential is,
therefore a wave with a phase (exponent) which contains the sum of the infinitesimal
phase shifts §(px);. In the limit, the phase sum (i/k) > i d(px); is replaced by an
integral and we obtain the approximate wave function as

X

¥ (x) = ¥ (xo0) exp[i%/ p(x) dx/]. (6.2a)

0

In accord with the spatially varying potential V (x’), a spatially varying momentum
p(x") respectively, wavelength A(x’) is attributed to the electron wave:

p(x/) = 1/2m[E — V(x’)]. (6.2b)

As usual, plus and minus sign of the phase in (6.2a) indicate waves moving to the
right and to the left. The most general solution is a linear superposition of both waves.

A more subtle analysis is needed to clarify details of the approximation involved
in (6.2a), (6.2b). We have assumed that the wave function remains plane wave like
even though this is not true for arbitrary potentials. The plane wave character is


http://dx.doi.org/10.1007/978-3-319-14669-0_3

6.1 Particles in a Weakly Varying Potential: The WKB Method 219

exactly given only for piece-wise constant potentials. In this context, we have to
ask if the assumption of a spatially varying momentum, respectively wavelength is
physically meaningful. A wavelength is attributed to a spatially extended wave train
(packet), it can not be defined for a particular point on the x axis. The variable A(x)
is only meaningful, if variations §A are negligibly small along the extension of a
wavelength A, i.e.

‘ ’ (83./dx) - X‘ ‘ < 1. (6.3)

The present approximation method called WKB approximation [1, 6] according to
their inventors Wentzel, Kramers, Brillouin is, thus, valid for extremely small position
derivatives of the wavelength (6.3).

For a formal treatment of the approximation, we solve the time independent
Schrodinger equation

K2 d?
[ ) + V(x)}w(x) =Ey(x) (6.4)

by the ansatz ¥ (x) o exp[ig(x)]. This ansatz seems convenient because the phase
of the wave contains the essential approximation (6.2a). Inserting the ansatz into the
Schrodinger equation (6.4) yields

2. 2m i

[¢ 0] —ig" () = S5 [E = V] = K0 = 5 p* (0. (6.5)
Because of the weak position dependence of the potential also wave number k and
momentum p vary weakly as a function of position. Consequently, we neglect the

curvature ¢” (x) of the phase. Then, (6.5) is easily integrated:

o(x) = :I:/X k(x")dx'. (6.6)

0
This relation represents exactly the previously guessed phase integral in (6.2a). Fur-

thermore, the approximation can also be described by the condition |¢”(x)| <«
|¢’ (x)|? and by means of the relation ¢’ (x) ~ k(x) [see (6.5)] we obtain the condition

dk

K2,
ol <

< [kl 6.7)

o
an analogous condition to (6.3).
By means of (6.6), equation (6.5) is rewritten into

[¢ 0] = K (x) + g (x) = K2(x) + ik (x). (6.82)
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Taking the square root yields

Lo [ K@
¢'(x) = k), [T £ i, (6.8b)

Series expansion of the square root gives

() = k(o) + KO (6.8¢)
X)X~ X .0C
v 2k(x)
and finally we obtain the phase angle (6.6) by integration of (6.8c) as
* i
p(x) ~ j:/ k(x")dx" £ 3 Ink(x). (6.9)
X0

The wave function approximated within the frame of the WKB method, then, is
obtained as

Y (x) >~ exp|::|:i /X k(x') dx’:|. (6.10)

0

k(x)

A is a normalization constant. Apart from the 1/+/k(x) term the above wave function
(6.2a) is obtained. This pre-factor guarantees current conservation when the particle
wave passes the potential V (r) between xg and x. According to (3.79), the current
density of a plane wave is j = (hk/m)|¢|?. In this way, the WKB approximation
ensures that the probability for finding a particle is lower in a region where the
particle moves faster. Backscattering of particles from the weak potential (Sect. 3.6.3)
is neglected within the approximation.

6.1.1 Application: Tunneling Through a Schottky Barrier

Metal-semiconductor junctions are found in every semiconductor device. Such con-
tacts have commonly rectifying properties upon current flow. This phenomenon was
already used in the early days of semiconductor electronics in connection with the
detection of radio waves. The rectification effect is due to the formation of a so-called
Schottky barrier (Fig.6.1). Electronic interface states (Appendix A) at the metal-
semiconductor junction fix the Fermi level (Sect.5.6.3) at an energy ®@sp below the
conduction band edge Ec (x = 0) in the forbidden band (gap E). The Fermi level
EF is said to be pinned at the interface at an energy ®@sg below E¢. The Schottky
barrier height @gp is characteristic for the particular metal-semiconductor junction;
it does neither depend on doping nor on temperature. For an n-doped semiconductor
as in Fig. 6.1, the Fermi level Ef deep in the bulk (x > d) lies, at low tempera-
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Fig. 6.1 Electronic band scheme of a metal/n-semiconductor junction with Schottky barrier. The
metal is described by a potential well, the electronic states of which are occupied (one electron per
state) up to the Fermi energy Er. In thermal equilibrium Ef as chemical potential has the same
value in the n-doped semiconductor as in the metal. Due to electronic interface states (Appendix A)
EF is pinned at the interface near midgap, while in the semiconductor bulk the n-doping causes E
to be located slightly below the conduction band edge E¢. As a consequence the electronic bands in
the semiconductor are bent upwards near the interface causing a depletion of free electrons within a
depletion space charge zone of thickness d. Within this depletion zone the donor atoms are ionized
and form a spatially fixed positive space charge. Ep energy of donors, Ey valence band edge, @sp
Schottky barrier

ture, between the donor levels (energy Ep) and the lower conduction band edge Ec,
that is, close to the conduction band (<30 meV). Since however @sg amounts to
about half the forbidden band energy (for GaAs: @sg = 0.7 eV) the electronic bands
are bent upwards near the junction. The donor levels slightly below E¢ are emptied
from electrons and a positive space charge arising from spatially fixed ionized donors
results. The extension d of the space charge layer depends on the doping level of the
material (Appendix A). Within this space charge layer, there are no free electrons in
the conduction band anymore, it is called depletion layer. Its electrical resistance is
high in comparison with the bulk semiconductor. Current flow from the metal into the
semiconductor is suppressed. This is in particular true for a negative voltage applied
to the metal since electrons then have to overcome the energy barrier @sp in order
to enter the conduction band of the semiconductor. In this reverse bias polarity only
a very small reverse current flows, even at relatively large voltages.

A negative voltage applied to the semiconductor side, on the other hand, shifts
the Fermi level upwards in the semiconductor with respect to the metal. The lower
conduction band edge is simultaneously lifted and reaches or exceeds the barrier
energy ®@sg. More and more electrons flow from the semiconductor into the metal
and we observe an exponential increase of the so-called forward current. In this
polarity, the contact is highly conductive whereas under inverse bias the contact
blocks the current. The metal-semiconductor junction is a rectifier.
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For the calculation of the reverse current (polarity: metal negative) tunneling of
electrons through the Schottky barrier (depletion zone) is an important factor beside
thermal excitation over the barrier @sg. The tunneling contribution can easily be
calculated by using the WKB approximation. The tunneling barrier has the height
@gp and a thickness d (Fig.6.1). In between x = 0 and x = d the conduction
band edge E¢ decreases from @gp with curved shape down to about E . The func-
tional dependence Ec(x) is calculated by double integration of Poisson’s equation
d?V /dx? = —p/sey with an assumed constant charge density p = eNp of the ion-
ized donors (density Np) in the space charge region. Hereby a parabolic dependence
of the conduction band edge is obtained in the depletion zone:

Ec(x) = @sp[1 — (x/d)?]. (6.11)

The thickness d of the depletion zone is obtained from the barrier height @sg by
using the relation

Psp = ¢>Npd?/2e0¢. (6.12)

By means of (6.11), the tunneling barrier is completely described mathematically.

For the calculation of the tunneling rate (probability), the probability to find an
electron at x = d after passing the barrier has to be evaluated. For this purpose
the wave function (6.2a), (6.2b), respectively (6.1a), (6.1b) has to be squared and
we must bear in mind that in these equations the energies E are positive. In the
derivation, the propagating electrons had energies E which exceed the maximum
of the slightly varying potential V (r). In the present case of tunneling electrons,
however, the electron energies are lower than the potential maximum: £ < V(x).
The real wave vector k(x) in (6.10) must, therefore, be replaced by an imaginary
quantity k (x) = /2m[V (x) — E]/h(Sect.3.6.4,(3.91a), (3.91b)). The transmission
probability through the barrier is, then, obtained as

d
T = |1/f(X=d)|2Nexp[—2/ K(x)dx], (6.13a)
0

respectively

d 2m¢SB X 212 2m¢SB
T ~ eXp[—Z/ {—(1 — —) ] dx:| = exp(—d ) (6.13b)
o | 2 d h2

The tunneling probability decays exponentially over a length /A2 /2m®sg. For
GaAs with a dielectric constant ¢ & 10 and a Schottky barrier height ®sg ~ 0.7 eV,
this decay length amounts to about 1 nm. In order to prepare well conducting metal
contacts with quasi-ohmic behavior to GaAs, the thickness d of the Schottky bar-
rier, that is, of the depletion space charge layer must not exceed a value of 1 nm.
Such thin depletion layers, however, require extremely high bulk doping levels above
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10" cm™3 [see (6.12)]. Good quasi-ohmic metal-semiconductor contacts are, thus,
commonly obtained by preparation of a highly doped layer in the semiconductor
just below the metal contact using techniques as epitaxy (Appendix B), diffusion or
ion implantation. The thin barriers (depletion zones), then, allow quite high tunnel-
ing currents through the contact and the exponential current-voltage characteristics
appears linear in a small voltage range. This quasi-linearity offers approximately
ohmic behavior (quasi-ohmic contact).

6.2 Clever Guess of a Wave Function: The Variational
Method

The solution to quantum mechanical problems often benefits from physical intuition.
Understanding the essential physical basis of a problem frequently leads to a rough,
qualitative picture of the wave function by analogy to similar problems. In a binding
1D rectangular potential box of width d, e.g., the eigensolutions to the Schrédinger
equation are standing sinus waves with d = 1/2,21/2,31/2, ... (Sect.3.6.1). The
solutions to the Schrodinger equation with the binding parabolic potential of the
harmonic oscillator are qualitatively similar (Sect.4.4.2). In a binding potential with
mirror symmetry with respect to a central plane we expect, in general, a ground state
wave function which is convex, downwards open and symmetrical to the mirror plane
of the potential (Fig.6.2). In analogy to the rectangular quantum box potential, the
first excited state, also in a general binding potential, will be similar to a standing
wave with d = A, that is, it will change its sign upon reflection on the symmetry
plane of the potential (inversion symmetry). The next higher state will have again
mirror symmetry with respect to the mirror plane of the potential. But in contrast
to the ground state, this excited state exhibits two nodes where ¢ = 0 (Fig.6.2).
These statements about wave functions in a binding potential are qualitatively cor-
rect, but the exact solutions to a particular problem have to be obtained by solving the
Schrodinger equation. We will see, however, that the intuitive knowledge about the
solutions of a particular problem provides a pathway to a good quantitative approxi-
mate solution of the Schrodinger equation. The first step, hereby, is to guess a wave
function based on qualitative similarities with already solved problems.

Fig. 6.2 General binding v
potential V (x) with
qualitatively plotted energy Y- —
eigenfunctions Yo, Y1, ¥2 E,
corresponding to the three I
lowest energies Eg, E1, E> ‘/,/' -
- ] E1
W
EO
X
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In order to see how a clever guess of a wave function can finally lead to a good
quantitative approximation of the problem, we assume we know the exact solution
to the problem, that is, the corresponding Schrodinger equation is solved by the kets
(on|, that is:

H|pn) = Enlgn). (6.14)

We now consider a general state |{) which has been guessed as a possible preliminary,
trial solution to the Schrodinger equation (6.14) based on qualitative arguments as
discussed above. The energy expectation value for this state follows as

WIHIY) = D W HI@n) (@al¥) = D En(Wlon)@altr). (6.15)

n

In the calculation, the completeness condition (Sect.4.3.3) for the orthonormal sys-
tem of eigenkets |¢,) was used. Replacing the series of energy eigenvalues E, by
the lowest possible ground state energy Eo we can give a lower limit for (6.15):

(WIHW) = D" EoWlea)@altr) = Eo(¥/]¥). (6.16a)

For an arbitrary guessed (non-normalized) state |¢) we, thus, obtain

Eo < WiHw) (6.16b)

- Yy

The exact energy eigenvalue E( of the ground state is obviously smaller than the
energy mean value (1ﬂ|1:1 [v)/{¥|¢) for any guessed approximate trial wave func-
tion |i).

We discuss the estimation (6.16a), (6.16b) in some more detail by assuming the
trial wave function

[¥) = lon) + 16¢) (6.17)

for the nth eigenstate with energy eigenvalue E,,. The ket |6¢) describes a deviation
of the trial state vector from the exact solution |¢,) of the Schrodinger equation.
It is orthogonal to |¢,), otherwise it could simply be taken into account by the
normalization factor of the exact state vector. Equation (6.17) inserted into (6.16b)
yields:

WIHY)  (pal + oD H(@n) + 18¢))

Wlv) (gl + oD ea) + 189))

E, + (8¢|H|8¢) ,
N = En + 0(13¢)°). 6.18
(@nlen) + (8@|0p) (| ) ) ( )
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While the guessed trial wave function |y) deviates from the exact solution |g,)
linearly in |§¢), the error in the energy eigenvalue is quadratic in |§¢). Small errors
in the guessed wave function or state vector yield approximate energy eigenvalues
which are better than the trial functions. The error in energy is of the second order
in the error in the state vector.

A numerical example shall demonstrate this general result. We guess a trial ground
state |) of a particular problem which deviates by 10 % of the next excited state
|@1) from the exact ground state |¢g), that is, the guessed ground state wave function
exhibits 10 % contamination (admixture) of the next excited state:

1
) = leo) + 1—0I<p1)- (6.19)

The trial wave function (6.19) is inserted into the energy functional (6.16b) and we
obtain the approximate energy eigenvalue for the ground state as follows:

A

WIHY) ol + 1D H(go) + 5101)

Ely] = =
(Wly) (@0 + 15901190 + T5901)
_ {polHlgo) + g lerl Hlg1) — Eo+ 0.01E,
1+ 5 1.01
~0.99Ey + 0.01E;. (6.20)

Although the guessed trial function contains 10 % admixture of the wrong excited
state wave function, the calculated energy eigenvalue deviates by only 1% of the
first excited state energy E; from the correct ground state energy Ej.

So far we have no mean to optimize the trial wave function, that is, to bring it
as close as possible to the correct wave function. We can make the approximation
method even more effective by improving the trial wave function in a minimization
process for the energy functional (6.16b). For this purpose, we parameterize the trial
wave function in a clever way by some variables «, §, ... which have the general
features one expects of the true ground state ket. By standard minimization procedure
these variables are determined numerically such that the functional E[v] reaches a
minimum, that is, approaches the true energy eigenvalue as close as possible. For
the ground state we, thus, guess the trial state [Yo(¢, B, ...)) which yields a repre-
sentation of the energy functional E[v] as function of the free variables «, 8, .. .:

E@,B,...) = E[¥o@ B,..)] = %;ﬁfﬂ _.)_')hx((’i“ﬂﬂm)))). (6.21a)

Minimization of (6.21a) with respect to the variables «, 8, . .. finally yields an even
better approximation to Eg in comparison with the use of the simply guessed trial
state |@p). The minimization condition for (6.21a) requires:
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0E OE

el e — . (6.21b)

da 0B
Equation (6.21b) determines the values g, By, . .. at which the energy functional
(6.21a) becomes a minimum, that is, the best approximation to the true value Ey. This
optimum approximate energy is obtained by inserting o, fo, . .. into E(x, B, ...)
(6.21a):

Eo < E(ag, Bo, - - -). (6.21¢c)

The approximation procedure described here for the ground state is easily trans-
ferred to higher excited states of the considered system. The first excited state |¢1)
with its true energy eigenvalue E is orthogonal to the ground state |¢p). For the
calculation of an approximate energy E| one, therefore, has to guess a trial excited
state |1 (o, B, .. .)) with adjustable variables &', 8’, . .. which is orthogonal to | @)
or its approximation. The functional

) = Wi B OHyi @ B, ..)

E(d,B,...)= 6.22
(/.8 (e, B, )Y@, By ) (.22

is calculated and minimized by differentiation with respecttoa’, f’, . . ., analogously
to (6.21b). The fixed values ¢, f1, ... obtained by differentiation of the energy
functional (6.22a) and solving equations as (6.21b) yield the optimum approximation
for the energy of the first excited state:

Ey S E(ay, B, ...). (6.22b)

In analogy also approximate values for higher energy eigenvalues E», E3, ... are
calculated. For the calculation of E;, of course, the guessed trial wave function for
|¢2) must be orthogonal both to |¢g) and |¢1).

In conclusion, the described variational method is based on the fact that the eigen-
solutions (states) of the Hamilton operator H are stationary points of the energy
functional E[v/]. A change of these kets in first order does not change the functional
E[]. The ground state, furthermore, is the absolute minimum of the functional.

In the following, we present some instructive examples for approximate solutions
of the Schrodinger equation.

6.2.1 Example of the Harmonic Oscillator

According to Sect.4.4.2 the problem of the harmonic oscillator can be solved ana-
lytically. In a parabolic binding potential (cx x2), the eigenfunctions of the oscillator
Hamiltonian exhibit the described position dependence (Fig.6.2): the ground state
convex and downwards open, without any node (Fig.4.4, n = 0), the first excited
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state with one node and inversion symmetry around x = 0 (Fig.4.4,n = 1), all higher
excited states with an increasing number of nodes and alternatively with mirror and
inversion symmetry around x = 0 (Fig.4.4).

We will now approximately calculate the ground state energy of the oscillator by
means of the variational method even though we know the exact value being hw/2
with w as the oscillator frequency (4.122). Having the qualitative shape of the ground
state wave function in mind we guess, as a trial wave function, a negative parabola
opening downwards (Fig.6.3):

m,:A[l_(g)z}a(l_pa. (6.23)

For the minimization of the energy functional we have introduced the free variables
a and A, where A is only a normalizing constant. It is already taken into account
in the calculation of (6.21a) by the denominator, that is, only one free parameter a
is used for the minimization. With p = x/a the approximate Hamiltonian (energy
functional) is obtained as:

R d om o, ., R 4 moe?d®
mdez T 297 =_2ma2d_,02+ 2y P (6.24)

The numerator Z of the energy functional (6.21a) is, then, obtained as

Z = (Yol H o)
hZ 1 ) d2 5
—‘524“‘pbﬂ?“‘pﬁw

2 1
+%/ a’p*(1 — p*)adp
-1

4 K2 16 mw?a®
_4 wa” 6.25
3ma 105 2 (6.252)

Fig. 6.3 Downward open Y(x)
parabola as a rough
approximation (trial function
for variational method) for
the ground state wave
function of the harmonic
oscillator

-a 0 a X
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while the denominator follows as

1 16

N = (Yolwro) = a/1 (1- ) do= 1o (6.25b)

The energy functional (6.21a), thus, results as

Z 5 1 45,

E =—== — . 6.26
[WO(G)] N~ dma? + 14ma) a ( )
It is minimized by means of the parameter a:
IE 5h2+1 2o 627
— =—=—+-mow" =0. 27a
da 2ma* 7
Resolving (6.27a) for a yields:
. 35 B , 5 h
a’ = ——— respectively a“ ~4.18—. (6.27b)
2 m2w? mw

Inserting this expression into (6.26) finally leads to the minimum value of the energy
functional

Emin ~ 0.597ho. (6.27¢)

That is the best approximation for the ground state energy hw/2 of the harmonic
oscillator, of course, within the limitations of the particular trial wave function.

Taking into account the quite rough assumptions about the trial function ¥y and the
simple mathematics the approximate value (6.27c) for iw/2 is astonishingly good.
Note that the approximate value exceeds the true value a little bit as is expected from
(6.21c).

In order to obtain an approximation for the next higher excited state energy Efq,
we must assume a trial function 11 with one node, inversion symmetry around x = 0
and being orthogonal to (6.23). A simple assumption is certainly:

Y1 (b, A) = Asin %x, Y1 =0 for|x| > b. (6.28)

This function, correct eigensolution to the rectangular quantum box, fulfills the
requirements. With b as adjustable variable for the minimization of the energy func-
tional (6.22a), a calculation analogous to (6.24)—(6.26) and (6.27a)—(6.27¢c) yields an
approximate energy value for the first excited state of the oscillator (=E| = 3fw/2).
The calculation is left to the reader as an exercise.
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6.2.2 The Ground State of the Hydrogen Atom

The hydrogen (H) atom is the simplest atom. Its most frequent isotope has one proton
as nucleus, which binds one electron in the shell by Coulomb attraction. This is in
principle a two-body problem. But the proton is about 2000-times heavier than the
electron, i.e. for the description of the electron motion the proton can be assumed
as static in good approximation. The dynamics of the electron moving around the
central nucleus is a problem with spherical symmetry. In analogy to (5.183) and
(5.5b) we can, therefore divide the electronic total kinetic energy into a radial part T,
and an orbital contribution £.2 / 2m,r? with m, as the electronic mass. Unlike (5.183),
where the problem has rotational symmetry (around an axis) our present problem
has spherical symmetry with all possible orientations of the angular momentum in
space. Instead of i?, therefore, the total angular momentum L? enters the hydrogen
problem. With the Coulomb potential between electron and proton

—e2
Vr)= (6.29)
4 egr
the Hamilton operator for the electron in the hydrogen atom is obtained as:
I L? e?
H=T+—— — . 6.30
rt 2mer?  Amegr (6.30)
Because of the kinetic energy p?/2m, with p = —iiV as momentum operator the

radial part T, of the kinetic energy contains a double differentiation with respect to the
radius. A detailed calculation by means of the vector representation (5.30a)—(5.30c),
(5.312)—(5.31c¢) and (5.32) for spherical coordinates yields (see Problem 4.7):

. 13,9
T, = — rr—). (6.31)

2m, 2 or or

The calculation is not performed here, since the representation of the V and A
operators in spherical coordinates is given in every textbook of mathematics.

Because of the spherical symmetry of the problem the operators H,L% L , com-
mute with each other according to Sect.5.3; they have the same system of eigen-
functions. The electron wave functions of the hydrogen atom, thus, contain, beside
a radial part R, (r), the spherical harmonics 7} as eigensolutions of the angu-
lar momentum operator. The principal quantum number » numerates the different
discrete energy levels of the binding Coulomb potential.

According to (5.28a), the action of the L? operator on 7;" yields /(I + 1)7? and
we obtain the following Schrodinger equation for the electron in the hydrogen atom:
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. 19 9 11+ 1)h? 2
HR, ;7" =|— — (2= _ R, Y™
ml |: 2m, r2 or (r Br) + 2m, 4 eor .
=EyimRul". (6.32)

In this context, we do not discuss the exact eigensolutions in detail (Sect.5.7.2)
but rather determine the ground state energy E( approximately by means of the
variational method. The ground state has certainly zero angular momentum (I = 0),
i.e. with the ground state wave function ¥y = RloTé) the Schrodinger equation (for
the radial part) is written as

. 13 (,9d e?
HYy=|——— — ) - Yy = Eg¥). 6.33
o |: 2m, r? r(r 8r) 41'[80ri| 0 00 ( )

Because of I = 0 only the radial part of the problem with spherical symmetry must
be treated, that is, in the functional (6.16b) the integration over the solid angle can
be replaced by a factor 47 - r2. The ground state energy Ej is then estimated by

J5C AmryH oy dr

Ey S E[W] =
08 = s ar

(6.34)

In the functional E[¥], a trial wave function is assumed which has spherical sym-
metry and describes the localization of an electron near the positive nucleus. Outside
a certain radial distance p = 1/4/a it must vanish. These conditions are certainly
fulfilled by a Gauss function which leads to the trial wave function

¥ = Aexp(—ar?), (6.35)
A is anormalization constant which leaves a as a free parameter for the minimization

for the energy functional (6.34). Using common integration tables we, thus, obtain
the denominator of (6.34) as

[es] 0 3/2
N =) = / drr2e 2 4r = 2 / 22 g T[T (1) .
0 00 2a\ 2a 2a
(6.36)

The numerator of the functional (6.34) follows as

2 2
7 - _47Th /oo e_arz i}gi e—ar2 dr — ¢ * re_2‘"2 dr (6.37a)
2me Jo ar or €0 Jo . .

After differentiation in the integrand and extension of the integral to minus infinity
the numerator is
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6rah? [ 2 dga’h? [® 2 e2 [ 2
Z=- r2e 24" qr — rle 2 qr + — re 24" qr
me —00 me —00 €0 Jo

3 h2 2
e L Yt DL (6.37b)
4 me dmega
The energy functional, then, is obtained as
3h2Qa)  €*(2a)'/?
E[y @] == - : (6.38)

4 m, 2eom3/?

The best approximation for the hydrogen ground state, of course within the lim-
itations given by the particular trial function (6.35), follows by minimization of the
functional (6.38) with respect to a:

9E 6h: 1 €2

=

= - i 1=0. 6.39
00 dm. 2 Jaegnd” (6358)
This finally yields:
Ja mee? (6.39b)
a=— .
34/ 269 R273/2
2,4
m;e )
a=——>——|cm “|. 6.39¢
183731 [ ] ( )
As a is positive, the derivative d E/da is also positive:
IE 2
= c > 0. (6.40)

EP RN Ty

We have indeed found a minimum of the energy functional.
With a inserted in (6.38) the approximate value for the hydrogen ground state
energy is obtained as

1 mee*
EgSE=—————2>~—12¢V. 6.41
0~ 12 73622 ¢ (641)

The correct value obtained by analytical solution of the Schrodinger equation and
also from experiment amounts to —13.6 eV. As expected, the approximate value is
a little bit higher but close to the correct value.

The present approximation also yields some information about the spatial exten-
sion of the ground state wave function, that is, the diameter of the hydrogen atom.
According to the ansatz (6.35), the half-width of the Gaussian wave function is
given by 1/./a. Using (6.39b), this half-width (diameter of H-atom) is calculated
to be 1078 cm = 0.1 nm = 1 A. This value matches very well the Bohr radius
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ap = 0.05 nm of the ground state electron orbit which is calculated semi-classically
within the Bohr model of the hydrogen atom.

6.2.3 Molecules and Coupled Quantum Dots

In this section, the variational method is applied to a general class of problems in
physics which cover the field of covalent bonding in molecules, coupled quantum
dots in nano-electronics and the realization of quantum-bits (Q-bit, Sect.7.5), the
information unit in quantum information science.

The simplest molecule in nature is certainly the hydrogen molecule (H,) where
the two shell electrons of the two H atoms cause the covalent chemical bond. There
is an even simpler molecule, namely the H;’ ion, in which only one electron binds
two positive protons in a covalent bond. The situation is shown schematically in
Sect. 6.4. At sufficiently large distance, both protons create two separate Coulomb
potentials —e/4megr in their surrounding, which can bind the electron in discrete
quantum states. The ground states |L) and |R) in the left (L) and in the right
(R) atomic Coulomb potential, respectively, have wave functions ¢ which decay
exponentially from each proton (at large distance) with a functional dependence
exp(—r/a) (Sect.6.2.2, Fig. 6.4b).

An analogous situation is given for two quantum dots, which might be prepared
on a semiconductor chip, laterally by the split-gate technique or vertically by means
of mesa lithography (Appendix B). The binding potentials in the two quantum dots
(Fig. 6.4g), again, create discrete states in both dots, with ground states |L) and |R)
left and right. The shape of the binding potentials determines the detailed functional
dependence of the wave functions and the energies of the states. In rectangular
box potentials, e.g., the ground state wave functions are standing half sine waves
(Sect.3.6.1).

In both cases, the two Coulomb potentials of the protons and the binding poten-
tials of neighbouring quantum dots, the ground state wave functions |L) and |R)
start to overlap at sufficiently small distances of the protons and the quantum dots,
respectively. At small distances the energetic barrier between the two potential wells
becomes smaller and smaller and the electron can tunnel between the potentials left
and right. As in resonant tunneling (Sect. 3.6.5), one coherent quantum state extend-
ing over the two neighbouring protons or quantum boxes is formed. Or in other words,
the electron in the H;’ ion or the two quantum dots can be found simultaneously both
in |L) and |R), the ground states of the decoupled systems. |L) and |R) separately
solve the Schrodinger equation of the decoupled systems:

(T +V)IL) = EL|L) and (T + Vg)|R) = Eg|R). (6.42)
For the approximate solution of the problem by means of the variational method,

the linear superposition of the states |L) and | R) is assumed as trial wave function.
This ansatz corresponds well with the fact that the electron is present in the left or
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Fig. 6.4 a-i Comparison of an H2+ ion with two coupled quantum dots being occupied by one single
electron. a Potentials of the two protons in the H;’ ion. b Qualitative ground state wave functions
of an electron in the separate proton potentials. ¢ Overlapping wave functions upon approaching
of the two protons. d Antibonding molecular state (orbital) of the electron in the potential of the
coupled atomic nuclei. e Bonding molecular state (orbital) with enhanced localization probability
the electron between the two nuclei. f Splitting of the ground state energies of the free atoms into
bonding and antibonding energy levels of the coupled atoms. g Two different bonding potentials
for the double quantum dot. The similarity with the H;’ potential in (a) is evident. Correspondingly
wave functions and energy levels are qualitatively similar with those of the H;' ion [plots (b)—(f)].
h Schematic representation of the interaction between the potentials of the double quantum dot by
back and forth tunneling of the electron between the states |L) and |R) left and right. i Schematic
representation of the coupled electronic states with energies split into a bonding and an antibonding
level. ugs and wp are the chemical potentials (Fermi energies) of two metallic contacts (source and
drain), left and right, which allow the measurement of the dot energies by single electron tunneling
(see also Fig.5.18)

right binding potential (“whether, or”):
[¥) > cLIL) + crIR). (6.43)
This trial wave function for an electron in the two-center system of two coupled

binding potentials describes the partial localization of the electron in the left (L) and
the right (R) potential. The amplitudes c¢; and cg, assumed as real numbers in the
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simplest case, can be used as adjustable variables for the minimization of the energy
functional E[y(cr, cg)] (6.21a).
The problem to be solved shall be described briefly again. The Schrodinger equa-
tion .
Hly) = Elyr) (6.44a)

of the problem contains the kinetic energy T of the electron and the two binding
potentials Vi (r — rp) and Vg(r — rg) left and right. In case of the H;r molecule,
both positive nuclei move freely in space and repulse each other. Accordingly the
Coulomb repulsion, energy must be taken into account in the Hamiltonian, too:

62

H=T+V.(r—rp) + Vr(r —rg) + (6.44b)

47T80|r]_ —rRl'

In case of the coupled quantum dots, the two binding potentials are fixed in space
at the constant coordinates r;, and rg and the Coulomb term in (6.44b) does not exist
or is constant (energy scale normalization).

For the following calculation, it does not matter if we focus onto the H;‘ molecule
or the two coupled quantum dots. The energy functional (6.21a) is calculated by
means of (6.43) as follows:

(WIHW) _ (Ll +cr(RDH(cLIL) + crIR))
(wly) (cL(L] + cr(RD(cLIL) + cgIR))
¢?Hpp + ckHgg + cLcgHog + cocrHRy

E[y(cL.cr)] =

- 6.45
ci —l—c%e + 2cr.crS ( )

Hereby, the following matrix elements are defined:
Hyp = (LIH|L), Hgg = (R|HIR), (6.46a)
Hig = (L|H|R), (6.46b)
Hr. = (R|H|L), (6.46¢)
S = (L|R) = (R|L). (6.46d)

The problem has been formulated, here, more generally than in the H;r case,
namely with two unlike potential wells left and right. A realization might be two
quantum dots with different dimensions.

We consider the matrix elements a little bit more in detail: The diagonal elements
Hp 1 and Hgp of the quantum dot system can be represented as

Hy; = (L|T +V, + Vg|L) = E; + (L|Vg|L) = E; — Ry, (6.47a)
Hgr = (R|T 4+ Vi + Vg|R) = Eg + (R|VL|R) = Eg — Lg. (6.47b)
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E; and Ep are the ground state energies of the separate uncoupled quantum dots
left and right, which are obtained from the Schrédinger equations (6.42). Ry and Rg
are small corrections to the ground state energies arising from the presence of the
neighbouring potential each time. Since the potentials have binding character, Ry
and Ry have been introduced as positive quantities with negative sign. We define
S = (L|R) = (R]|L) as the so-called overlap integral, a relatively small quantity,
which describes the spatial overlap of the two ground state wave functions in the
region between r;, and rg. The non-diagonal matrix elements Hy g and Hg are then
written as

Hpg = (L|T + VL + VRIR) = Eg(L|R) + (L|VL|R), (6.48)
Hgr = (RIT + Vi + Vg|L) = EL(R|L) + (R|Vg|L). (6.48b)

The terms (L|\7L |R) and (R| VR|L) couple the ground states left and right by means
of the potentials 7 respectively Vk. The strength of these coupling matrix elements,
of course, depends on the overlap of the three involved functions.

In the next section we will show that the matrix elements (6.48a), (6.48b) can be
interpreted as probability transition amplitudes for electrons changing their quantum
state from |R) to | L) respectively |L) to |R). These electronic transitions occur under
the action of the potentials \7L (acting on |R)) and VR (acting on |L)). They describe
in this sense transfer or transition amplitudes of an electron from the right to the left
potential well and vice versa. Using the convenient notation —¢t. and —¢_, for the
transition amplitudes (6.48a), (6.48b) are written as

Hirp=EgS—1t._, (6.48¢)
Hr;, = ErS—1t_,. (6.48d)

For the further treatment of the energy functional (6.45), we keep in mind that the
diagonal elements Hy; and Hgp are, apart from minor corrections Ry, and L g, the
ground state energies Ep, Eg in the left and the right potential. They are the leading
terms in (6.45). In comparison, the non-diagonal elements Hy g and Hgy as well as
the overlap integral S (6.46d) depend on the small overlap of the potentials and wave
functions left and right, they are of minor importance in (6.45).

For the approximate calculation of the ground state energy of the two-center
problem the energy functional E[vy(cr, cg)] (6.45) is minimized with respect to the
parameters cr, cg, that is, we require

IE  JE
— = =0

= = 6.49
acL acR ( )

For simplicity reasons, we write (6.45) as

E(C% + C%g + ZCLCRS) = C%HLL + C%HRR +crcrHLgr +crcrHrr  (6.50)
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and perform the differentiation (6.49) in this formula. Because of (6.49), the following
relations are obtained:

Hig+H

cL(Hpr — E) +cr (# - ES) =0, (6.512)
Hip+H

cr(Hrr — E) +c1 (% _ ES) =0. (6.51b)

For clearer representation of the calculation, the following definition of average
values of the non-diagonal elements of the Hamiltonian are made:

H = (Hpp + Hgr)/2, (6.52a)
h = (HLg + Hg1)/2. (6.52b)

From (6.51a), (6.51b), we then obtain the eigenvalue problem for the energy as

(Hi —E) (h—ES) \(cL) _
(@—E& WM—EJ<%)_0 (053

A non-trivial solution requires a vanishing determinant:

Hy; + Hgrgr —2hS  HyppHrg — h?
2 LL RR LLIIRR _
E*’—E — + ) =0. (6.53b)

As expected the two ground state energies Er, Eg, respectively, Hr 1, Hrpr of the
two separate potentials change into two new energy levels E 1 as solutions to (6.53b)
due to the coupling of the two systems:

H—hS 1 - —
Ex=T—a 1= Sz\/(l — 82)(h? — Hpo Hgg) + (H —hS)2. (6.54)

We first consider the case of equal potential wells shifted against each other by
(rp —rg), that is, the two-center system with mirror symmetry. This case is given for
the H;' molecule. Mirror symmetry is not easy to achieve for two coupled quantum
dots because of technological limitations in the reproducibility.

With the symmetry requirements

I:IZHLLZHRR and }_lZHLRZHRL. (6.55)
Equation (6.54) yields

Ei = ! (Hrp + Hgg) = ! (H+h) (6.56a)

ET Es L E R = T ' ooa

This can also be written as



6.2 Clever Guess of a Wave Function: The Variational Method 237

1

= m[(EO —8) £ (EoS — 1R, (6.56b)

E.

when we use the representations (6.47a), (6.47b) and (6.48a)—(6.48d) of the diagonal
and non-diagonal matrix elements together with the corrections Ry = Lr = §
(because of symmetry) and the tunneling amplitudes 7. = ¢t_, = 7 r. Because of
equal potentials left and right the ground state energies are equal: E;, = Eg = Ey.

In conclusion, in the H;r molecule as well as in two coupled quantum dots an
electron can occupy two quantum states with energies £ and E_ which are coher-
ently extended over the two-center system. Taking into account that § and f; g are
small in comparison to Ey, respectively, EgS with S, the overlap integral being sig-
nificantly smaller than one, the energies E+ are concluded from (6.56a), (6.56b) to
lie above and below the ground state energies Eq, respectively, Hy;, Hrg, of the
separate uncoupled potentials (Fig. 6.4f). For a molecule as H; the energetically
lower state with energy E_ is called the bonding state while the upper state with
the energy E above the original ground state energy E is called the anti-bonding
state. The lowering of the energy E of the bonding state with respect to the ground
state energy Eg of the free uncoupled potential well favors an approach of the two
positive protons and finally the formation of the covalent chemical bond in the H;
molecule. The formation of bonding and anti-bonding states is the origin of covalent
chemical bonding. Anti-bonding states are excited states of a molecule which might
lead to dissociation, if they are excited.

The deeper physical reason for the splitting of the ground state energy E( into
bonding and anti-bonding state energies £_ and E becomes obvious from a calcula-
tion of the eigenvector (cr, cg) (6.53a) by inserting the eigenvalues (6.56a), (6.56b)
into (6.53a). In the present case of equal potentials left and right, the eigenvectors
are obtained as (1, 1) and (1, —1), that is, the normalized bonding and anti-bonding
eigenstates of the coupled potential wells are represented as

1
[¥bond) = _(|L> + |R))’ (6.57a)

-5

antib) = —=(|L) — |R)). 6.57b
[¥antib) ﬁ(l ) —IR)) ( )

In the bonding state (6.57a), the two wave functions, left and right, are superimposed
with positive sign; due to the overlap of the functions negative electronic charge is
accumulated between the positive protons (Fig. 6.4e). In comparison to the uncoupled
case (Fig. 6.4b) with negligible negative charge between the nuclei, the two protons
are now bonded together by means of the negative charge in between (covalent bond).
In contrast, in the anti-bonding state (6.57b) there is a wave function node between
the two protons (Fig. 6.4d) and electronic charge is removed there in comparison to
the decoupled case. The positive proton charge is less screened by electronic charge
than in the case of two separate protons. Consequently the energy E exceeds Ey,
the ground state energy of an electron in the separate decoupled proton potential.
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For a two-center molecule with unlike partners (no mirror symmetry) as for exam-
ple, CO, HF or NO or two unlike quantum dots (Fig. 6.5a) the general formula for
the energy eigenvalues (6.54) must be discussed more in detail. The two electronic
ground state energies Hy; = E; — Ry and Hrg = Eg — L g of the separate atoms or
quantum dots are, of course, different. Considering the different orders of magnitude
of the energy terms Hyy, Hgrr, H g, H, hS, etc. the following result is obtained:
The energy E. of the anti-bonding state exceeds the energy Hy; or Hgrpg of the
energetically highest state (Fig. 6.5b). Analogously the bonding state energy E_ lies
below the energetically lowest energy Hyy or Hrg (Fig.6.5b).

In molecules, the centers of the two coupled potentials (protons in H;r and Hp)
are mobile. In this case, it is interesting to calculate the energies E and E_ of the
anti-bonding and bonding state as functions of the distance (r;, —rg) between the two
atomic nuclei. Independent on details of the potentials (Coulomb potential for H2+
or screened potentials for bigger atoms) an increase and a decrease of E4 and E_,
respectively, is qualitatively obtained as a function of decreasing atomic distance
(Fig.6.6). The energy of the bonding state, however, does not drop to infinitely
negative values. In the described calculation the case of extremely close nuclei is
not treated. For small distances (r; — rg) the electron in the H; becomes spatially
more and more confined; because of the momentum/position uncertainty relation
(Sect. 3.3) its kinetic energy must increase. An additional contribution to the energy
increase is due to the Coulomb repulsion of the two approaching positive nuclei.
Both energy contributions give rise to a strong increase of the bonding energy E_
for small nuclei distances (broken line in Fig. 6.6). The energy minimum between the
dropping and increasing part of the E_(r; — rg) curve determines the equilibrium
distance rp of the two atoms in the molecule (Fig. 6.6).

Fig. 6.5 a Qualitative plot (a)

of the electronic potentials of

two unequal coupled \4 L R

quantum dots (no mirror | |

symmetry) or of a two-center ! ! r

molecule consisting of two
unequal atoms. Additionally
the ground state energy
levels of an electron in the

uncoupled potential wells are (b)

indicated. b Splitting of the

ground state energies into E

bonding and anti-bonding antibonding E.
levels due to the interaction E,

bonding E_
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Fig. 6.6 Qualitative dependence of the energies £ and E_ of the antibonding and the bonding
state on the nuclear distance r; — rg of the two atoms in a two-center molecule. The part of the
bonding potential plotted in broken line can not be derived from a consideration of the bonding and
antibonding states. The underlying physical reason for this strongly increasing potential branch is the
strong spatial confinement of the valence electron at short distances below the bonding distance rp

The descriptive picture of an electron being localized alternatively once close to
the left nucleus (dot) and then near the right one (dot), that is, of an electron which
tunnels back and forth between the two potential wells, might also be quantified
(Fig. 6.4h,i). For the simple symmetrical case of two equal potentials (6.56b) we
calculate the difference between the energies of the bonding and anti-bonding state:

E.—Ey— 0 ‘LR (6.582)

=Ej— —— — ——, .58a
P TIYS T 1+s
) tLR

E —Ey— —>_ . 6.58b

0 1—S+1—S ( )

In good approximation, we obtain

ho = |E+—E7| ~ 2|tLR|. (6.58¢)

The tunneling probability amplitude 7 g = (L| VL |R) = (R| VR |L), thus, determines
a frequency » with which the electron tunnels between the two potential wells back
and forth (Fig.3.19, Fig. 6.41, and Fig.7.1b).
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6.2.4 Experimental Realisation of a Quantum Dot Molecule

An artificial two-atom molecule consisting of two quantum dots has been prepared
experimentally and the two fundamental electronic states, the bonding one |Vponq)
and the antibonding one |V4u:ip) (6.57a) as described in Sect.6.2.3, have been
observed directly by scanning electron tunnelling microscopy (STM, Sect.3.6.4)
[2]. Standard lithographic techniques (Appendix B) do not allow the preparation
of two identical quantum dots because of inevitable variations in size and shape
and, consequently, variability in their electronic wave functions and energies. Folsch
et al. [2], therefore, have prepared atomically precise quantum dots and couples of
them by manipulating single In atoms on a well defined InAs(111)A surface using
a scanning electron tunnelling microscope (STM) (Sect.3.6.4). At a temperature of
5K they could thus build up atomically well defined quantum dots in an ultra high
vacuum (UHV: pressure below 108 Pa) system. The manipulation process consists
of lowering the STM tip over a previously adsorbed In atom, picking it up by the tip
(assisted by the tip induced electric field) and then transferring it to a well defined
adsorption site on the surface [3]. The latter back transfer process of the In atom
to the surface is supported by short range adhesive forces between the surface and
the In atom at the tip apex [3]. For the preparation of fully identical nanostructures
performing step by step manipulation of single In atoms also well defined adsorption
sites for the atoms must be available. This has been achieved in the present experi-
ments by preparing a well defined InAs(111)A surface under UHV conditions using
molecular beam epitaxy (MBE, Appendix B). By this technique a thin InAs layer
with a thickness of 20nm has been grown on an InAs substrate of suitable crystal
orientation. Such a freshly grown InAs film is terminated by In atoms and a so-called
(2 x 2) superstructure, where the surface atomic periodicity in two directions is dou-
ble that of the bulk atomic arrangement (Fig. 6.7b). Semiconductor surfaces usually
exhibit atomic arrangements at the surface different from that in the bulk because of
energetic reasons due to lacking bonding partners at the vacuum side [4]. The par-
ticular InAs surface with (2 x 2) superstructure considered here has a well defined
defect structure with regularly arranged vacancy sites (Fig.6.7b). These vacancies
are energetically favoured for the adsorption of the In atoms transferred there by the
STM tip. This STM manipulation of In atoms is performed in a UHV system different
from the MBE growth chamber. The freshly grown InAs film, therefore, had to be
protected for transfer through the atmosphere between the two UHV vessels by an
evaporated amorphous As film. Within the STM chamber this As film was removed
from the sample by thermal desorption. By STM manipulation one finally obtains
atomically well defined chains of In atoms, as shown in the constant-current STM
image in Fig.6.7a.

Samples with two six-atomic In chains, separated by different numbers of empty
vacancy sites between the chains, were prepared by the described procedure. The
study presented in the present context was performed on a sample with two empty
vacancy sites between the In atom chains on the InAs surface. These two Ing chains
can be considered as two longish quantum dots being located close to each other
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Fig. 6.7 Chain of In atoms assembled by a low temperature scanning tunnelling microscope (STM)
at 5K on a polar In terminated InAs(111)A surface prepared by MBE growth (Appendix B) [2].
a Topographic STM image measured with a sample bias of —0.3 V with respect to the STM tip and
at a tunnelling current of 0.1 nA. Twenty two In atoms were placed on adjacent In vacancy sites of
the (2 x 2) reconstructed surface. b Atomic structure of the image section in (a). The regular array
of In vacancies yields the adsorption sites for the In adatoms (red) of the In, chain. The surface
consists of In (yellow) and As atoms (blue). 4 is the vacancy distance

(Fig. 6.8a) such that they can interact by electron tunnelling, or in other words, by
spatial overlap of their electronic wave functions. The electronic structure of each Ing
dot is described by wave functions of an electron confined in this dot. According to
Sect. 3.6.1 the ground state wave function (o) extends over the six In atoms with one
and the same sign; it has no node and leaks into the area around the longish Ing dot.
The spacing between the two dots is sufficiently small that the wave functions of the
two dots overlap. Tunnelling between the dots is possible and the physical situation
is exactly that which is mathematically described in Sect. 6.2.3. The two coupled Ing
dots can be described as an artificial Ing — Ing or (Ing), molecule with fixed atomic
bonding distance. We expect as the lowest electronic molecular states the bonding
|V¥pona) and the antibonding state |1,,¢i5) Which were calculated in Sect.6.2.3.

In the experiment the molecular orbitals have been made visible by the same
STM which was used for the preparation of the two-dot molecule (Fig. 6.8). As was
explained in Sect. 3.6.4 electronic tunnelling between the STM tip and the surface,
respectively the adsorbed In atoms is connected with electron transfer between the
electronic states (orbitals) of the tip and the orbitals of the adsorbed (Ing), mole-
cule. Since the states of the tip are metal states being energetically and spatially
continuously distributed and washed out (Sect. 3.6.1) structures which are found in
the tunnel spectra or spatial maps are essentially due to the adsorbed quantum dot
molecule. Depending on the polarity of the STM bias between tip and sample sur-
face electrons tunnel from occupied (Ing), states into empty tip states or vice versa
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Fig. 6.8 Artificial double quantum dot molecule consisting of two Ing chain quantum dots separated
by a gap of two In vacancy sites on the InAs(111)A-(2x2) surface [2]. a Topographic STM image
measured with a sample bias of —0.3 V at 0.1 nA at low temperature (5 K). The dotted arrow line and
the cross indicate where the differential tunnelling conductance dI/dV was measured as a function
of position (arrow line) or at fixed tip position (marked by the cross) to obtain a bias-dependent
differential tunnelling conductance spectrum (Fig. 6.9). b Density of states map D(x, V) measured
along the dotted arrow line in (a). The graded intensities indicate varying probability densities ||
of the molecular orbitals along the dotted line. Two orbitals, the bonding one (o) and the antibonding
one (o*) appear at sample bias voltages of —167 and —97 mV, respectively. These voltages indicate
the corresponding orbital energies. ¢ Probability density | Y2 | spatial maps D(x, y) of the symmetric
o and the antisymmetric o * orbitals. The differential tunnelling conductance dI/dV was measured
as a function of position in a 2D scan at the sample bias voltages —167 mV (o) and —97 mV (¢*)
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from occupied metallic tip states into empty (Ing), states. At a polarity InAs/(Ing)2
negative with respect to the STM tip, electrons tunnel from the InAs/(Ing); side into
the continuously distributed tip states. By measuring the derivative of the tunnelling
current dI/dV as a function of the sample bias relative to the tip, a spectroscopy of
the electronic states of the (Ing)2 molecule becomes possible. In Fig. 6.9 two char-
acteristic eigenstate energies of the (Ing)> molecule are revealed by peaks in the
corresponding conductance spectrum shown in magenta line colour, measured with
the tip held fixed at the position marked by a cross in Fig. 6.8a. These two energies,
denoted E_ and E in Sect. 6.2.3 belong to the bonding (¢ or |/ponq)) Or antibonding
(o*or |Yantip)) states arising from the symmetric or antisymmetric superposition of
the two ground states of the Ing quantum dots left and right |L), |R) (6.57a, 6.57b).
These o and o * states are occupied electronic states of the quantum dot molecule
because the dI/dV peaks in Fig. 6.9 occur at negative sample-tip bias. As is expected
from (6.58c), the energy difference |E; — E_| decreases with smaller tunnelling
amplitude tz g, i.e. with increasing gap size between the two Ing chains. The gap size
4 is given in Fig. 6.9 by the number of empty vacancy sites between the Ing chains.
Additionally, by scanning the STM tip at constant height and constant sample-
tip bias along a fixed line across the surface or, alternatively, over the whole area
covered by the (Ing), molecule, plots of the density of states of the occupied (Ing)»
orbitals along the line (Fig. 6.8b) or 2-dimensional (2D) maps of the occupied orbitals
(Fig. 6.8c) are obtained. To begin with the first measurement mode, the dI/dV signal is
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probed at fixed bias only along the dashed arrow line indicated as x in Fig. 6.8a. Start-
ing this procedure at a sample-tip bias of —0.3 V and reducing the bias line-by-line to
0V, the x-versus-bias dI/dV map in Fig. 6.8b is obtained. In this representation differ-
ent colour grades indicate the intensity of the orbital probability density |v/|?, probed
along the dashed arrow line close to the two dots in Fig. 6.8a. The bias-dependent
line scans show a resonant behaviour at the energies E_ and E (corresponding to
the tip-sample voltages of —0.167 and 0.097 V, respectively) revealing the energeti-
cally lower bonding o orbital with finite density in between the two Ing chains (dots)
and the antibonding o * orbital with a node in between the two quantum dots. In the
second detection mode of scanning 2D dI/dV maps the spatial distribution of the o
and o* orbitals is directly visualized, as shown in Fig.6.8c. In this measurement,
the sample-tip bias was adjusted to —0.167 and 0.097 V, respectively, to record the
dI/dV signal in resonance with the o and o* states. The bonding orbital extends with
non-negligible density over the space in between the two quantum dots, whereas
the antibonding orbital has a node in between. In contrast to the assumption of a
simple hat-like ground state wave function for a single quantum dot in Sect. 6.2.3 the
ground state wave function of an electron confined in one single Ing chain (dot) is
more complex. It is structured with intensity maxima along and on both sides of the
atomic chain. This is due to the mixing between electronic and topographic infor-
mation resulting from the dI/dV scanning procedure across the chains at constant tip
height. Nevertheless, concerning the spatial character and the energetic behaviour of
the bonding and antibonding states of the artificial (Ing)2 quantum dot molecule the
theoretical results of Sect. 6.2.3 are exactly found in the experiment.

6.3 Small Stationary Potential Perturbations:
The Time-Independent Perturbation Method

Both approximation techniques presented so far, the WKB method and the vari-
ational method, treat time-independent problems: A Schrodinger equation with a
time-independent Hamiltonian is approximately solved by stationary quantum states,
respectively, wave functions.

The same class of stationary problems is also approached by the so-called time-
independent perturbation method. This approximation technique can be applied if
the problem to be solved is only a slightly varied version of a problem of which the
exact solution is known already.

As an example we consider an atom in a stationary electric field £. The ener-
gies of the quantum states of the unperturbed atom (£ = 0) are determined
by the confinement of the outer electrons in the atomic potential of the posi-
tive nucleus. The responsible electric field strengths being connected with these
potentials are in the order of 10° V/cm, since electrons with binding energies of
about 10-100 eV are confined in spatial regions with linear extensions of about
1078 cm. Even the strongest external fields of about 10°V, as in semiconduc-
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tor heterostructures or space charge layers (Sect.6.1.1, Fig.6.1, Appendix A) are
tiny perturbations of the atomic fields, in the 0.1 % range. For the approximate
calculation of atomic states and their energies in an external electric field, there-
fore, the unperturbed states of the free atom can be taken as the starting point.
They are the basis for calculating the modifications of states and energies due to
small stationary perturbations of the Hamiltonian. The modified wave functions
are most probably only a little bit shifted and deformed with respect to the unper-
turbed ones. This can be taken care of by mixing into the unperturbed wave func-
tions small contributions of unperturbed wave functions of higher excited quantum
states.

For the following formal treatment, we assume the unperturbed problem to be
described by the Hamiltonian H, its eigenvalues E,? and |n) as the eigenkets of the
unperturbed Schrodinger equation:

H|n) = E%n). (6.59)

The small perturbation of the time-independent potential is now described by an
operator A - h, where A is a numerical parameter (0 < A < 1) for denoting the order
of magnitude of the elements in the series expansion of the state vectors and energy
eigenvalues.

The slightly perturbed system [with respect to (6.59)] is then represented by the
Schrddinger equation

(H + M) W) = Enl¥), 0<i<1. (6.60)

The energy eigenvalues E,, and the state vectors [y, are represented as series expan-
sions, where higher elements describe smaller corrections to the unperturbed energy
and the state vector, respectively:

E,=E%+ el + 2%/ +---, (6.61a)

[¥n) = In) + Aldn') + 2%[6n") + - - . (6.61b)

These corrections of first, second, third, ... order can now be determined; ordered

according to A, A%, A3, ... they yield ever better solutions to the perturbed problem.
We insert (6.61a), (6.61b) into (6.60) and obtain

(H +1h)(1n) + Alsn') + ) = (ED + re, + ) (In) + Alén) +---).  (6.62)

This equation is valid for each X value, that is, the coefficients of the different A powers

on both sides of (6.62) must be equal. We thus consider the separate equations for

AO, Al,kz, ....For AO, we get

Hin) = EX|n), (6.63a)



246 6 Approximate Solutions for Important Model Systems

the Schrodinger equation of the unperturbed problem (6.59), as expected. The next
better approximations follow from the equations for A!, A2, etc.:

AL hin) + H|sn') = &) |n) + EO|sn’), (6.63b)
A2 h|on')+ H|sn") = EQ|6n”) + e [sn') + ellln). (6.63¢)

The first order approximation (A!) is obtained from (6.63b) by
(A — EQ)|sn') = (¢' — h)In). (6.64)

We expand the small perturbation |8n’) of the unperturbed state |n) in terms of the
orthonormal system of the unperturbed eigenkets |k):

|6n') = D" clylk). (6.65)
k

Hereby the coefficients ¢/, denote the first order (') approximation to the state |n).
Inserting (6.65) into (6.64) yields

D (B = ED)cpilk) = (e}, — k) In). (6.66)
k

To calculate the perturbation of the eigenvalue E ,(,) in this approximation, we multiply
(6.66) from left with the bra (n| and use I-}|k) = E,?lk):

> e (ED = EQ) (nlk) = &), — (nlh|n). 6.67)
k

Because of (n|k) = 8, the first order perturbation &), of the energy eigenvalue E 2
is obtained as

&, = (nlhln). (6.68)

In case of A # 1 the corresponding A value must be included in (6.68). The simple
result in (6.68) expresses the first order perturbation ¢, of the energy eigenvalue as
the diagonal matrix element of the perturbation operator h in the the unperturbed
state |n).

To obtain the first expansion coefficients c;lk, that is, the perturbation induced
modification of the state |n), we multiply (6.66) from the left with the bra (m| where
m # n. The result is
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chk EY — EX)(mlk) = &' (m|n) —
C;zm (Em Er(z)) = _<mm|n>,
,_ (mlhln)
C

nm — 0 0"
En_Em
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(mlh|n),

(6.69)

The first order perturbation of the quantum state, thus, follows as

(6.70)

For the next approximation step, the calculation of E/] and |§n”), the terms in A2 are

collected and compared:

(A — EY)|sn") =

(e, — h)|8n’) + &) |n).

6.71)

The perturbations |§n’) and |8n”) are expanded in terms of the unperturbed states,

that is, according to (6.65) and
|6n") =" e k)
k

we obtain

Zc Hlk) — Zc E%k) = ¢, chk|k

> crihlk) + &) In).
k

(6.72)

(6.73)

Both sides of (6.73) are multiplied by the bra (m| and because of (m|k) = &k, we

obtain
¢! (m|H|m) —c E®=¢lc — chk (mhlk) + € S, (6.74a)
chn(ES — EO) =6l — chk(m|h|k> + &8 (6.74b)
k
For calculating the second correction ¢/, to the energy eigenvalue E,(z) from (6.74a)—
(6.74c) m = n is assumed in (6.74b) and we obtain
en = D chpnlhlk) + ¢, (n|hin) — c,e). (6.74¢)

k#n

Because of (6.68), the two last terms cancel and the perturbation follows as

= > cinlhlk).

k#n

After inserting (6.69), we finally obtain

(6.75a)
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3 |(nlfalk) >
"
k#n TN k

For the calculation of the second order perturbation |8n”) of the state vector (6.72),
that is, the coefficients c},,,, we start with (6.74b) but assume m # n. This derivation
is skipped here and more extended books on quantum mechanics are recommended.
For practical applications, the approximations considered here are mostly sufficient.

We summarize: A small stationary potential h being assumed as a perturbation to
an already solved problem with known energy eigenvalues E, and known eigenkets
|,) gives rise to the following slightly modified energies and eigenstates:

hk) 2
+ (n]hn) +Z|<”|| W (6.762)
k#n
k|h|n
[¥n) = In) +Z = 0| -, (6.76b)
£ E) — E}
#n

The approximation has the following implications:

e The requirement that the perturbation operator his sufficiently small means in
detail that the series expansions (6.76a), (6.76b) must converge sufficiently fast.
For this purpose, the matrix elements (n|h|k) must be significantly smaller than
the energetic distances between the unperturbed energies E,?

e A problem appears when the energy denominators in (6.76a), (6.76b) vanish. In this
case of degeneracy of the considered state |n) with other states |k), we have to use
amodified perturbation method which is presented in the next section (Sect. 6.3.1).

e The first order perturbation (n|h|n) might have a positive or negative sign. On the
other hand, considering a perturbation of the ground state energy E8 we realize
that all denominators (Eg — E,?) are negative. Since the numerators in (6.76a) are
all positive, perturbations of the considered type always lower the ground state
energy in second order.

6.3.1 Perturbation of Degenerate States

The described approximation method breaks down if in (6.70) two or more unper-
turbed energy levels are equal and the energy denominators vanish. This situation
appears in the case of degeneracy, where one and the same energy level belongs to
several different quantum states.

Degeneracies mostly arise from symmetry properties of the potential in the
Schrodinger equation. In a spherical potential, for example, the angular momen-
tum states are degenerate for different directional quantum numbers m. The states
with different m all have the same energy. This degeneracy is lifted by an external
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magnetic field B which breaks the spherical symmetry of the problem. Different
orientations of the angular momentum m in the B field cause different energies.

Degenerate states arising from a certain symmetry belong to the same unperturbed
energy eigenvalue E 2, they have equal weight in the representation of a general state.
A symmetry breaking perturbation now causes a different weight of the unperturbed
(degenerate) states in the representation of the new perturbed state. This new weight-
ing of the degenerate states is not known at the beginning, it must be evaluated within
the frame of the perturbation calculation. For simplicity reasons, we assume two-
fold degeneracy of the unperturbed state with energy £ 2. Two orthogonal states |r1)
and |n3), then, solve the unperturbed Schrodinger equation with one and the same
energy eigenvalue EQ . The series expansion (6.61a) of the perturbed energy must
incorporate the fact that the small perturbation operator h causes a splitting of the
unperturbed energy E,? into two new levels £, and E;;»:

Eni = EX+ el + 2% + -+, (6.772)
Enp = EX +aely + 2%l +--- . (6.77b)

Similarly, we have to take into account that in the expansion of the perturbed
eigenkets (6.61b) two new states |1,1) and |yy2) must occur due to the two-fold
degeneracy. Expansion coefficients (amplitudes) c11, c12, c21 and ¢ describe the
new weighting of the unperturbed eigenkets |n1) and |ny) in these expansions:

[¥n1) = crilny) + cialnz) + A[8nf) + - -, (6.78a)
[¥m2) = ca1lm) + caalna) + A[8n5) + - - . (6.78b)

The determination of the amplitudes c;; yields the correct combination of eigenstates
|n1) and |ny) for the description of the broken symmetry due to the perturbation.

For the further calculation, we proceed analogously to (6.62) and insert (6.77a),
(6.77b) and (6.78a), (6.78b) into the perturbed Schrodinger equation:

(H + ah) (cr1lny) + cialna) + Aldnf) + - -+

= (EQ + ré&ly) (crnlny) + cialna) + Alon}) + -+, (6.79a)
(H + 1h)(ca1ln1) + exlna) + A[snh) + - )

= (E + réeln) (ca1ln1) + canlna) + Aldnh) + - --). (6.79b)

Comparison of the expansion elements belonging to A° = 1 yields, as in (6.63a), the
solution to the unperturbed problem:

H(c11ln1) + ci2ln2)) = E(c11ln) + ci2lna)), (6.80)

respectively, the same relation with the amplitudes ¢ and c2,. These are all possible
linear combinations if |n1) and |n,) are the eigenkets with the energy eigenvalue Eg.
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For the calculation of the first approximation we compare, in analogy to (6.63b),
the elements belonging to AL, From (6.79a), (6.79b) we obtain:
ciihiny) + ciahlng) + I:I|8n/1) = cr1epn) + ciaey In2) + EY|8n)),  (6.81a)
eathing) + enhlng) + H|8nh) = catelplni) + cnelylna) + EO|8nb).  (6.81b)
The perturbations |8r)) and |8n),) must be normal to the state vectors |n1) and |n2),
of course, otherwise they could be represented in terms of normalization factors in
the unperturbed states, that is:
(n1|H|6n}) = EXny|sn}) = 0, (6.82a)
(na) H|8n) = E(na|sn}) = 0. (6.82b)

Analogous relations are valid for |8n}) and by multiplication of (6.81a) with the bras
(n1] and (n;| from left we obtain
cr(milhlng) + ciafmlhlng) = ey, (6.83a)

/

cr1(nalhlny) 4 cra(nalhing) = ciagl;. (6.83b)

With the matrix elements 4;; = (n; |fz |n ;) of the perturbation operator the following
secular equation system is obtained:

(h11 =, hia e} _ (0
( ha1 (hao — s;ﬂ)) (qz) = (0) . (6.84a)

The solution yields the perturbation ¢/, of the energy eigenvalue and the amplitudes
c11 and ¢ which represent the relative contributions of the unperturbed states |r1)
and |n) to the perturbed wave function.

The same treatment of (6.81b) yields in analogy to (6.84a):

(h11 = &) hia 1) _ (0
( ha (ha — 8;’12)) ((;22) = (0)- (6.84b)

The two eigenvalue problems for the determination of ¢/, and ¢, are identical. To
obtain non-trivial solutions, the determinant of the matrix must vanish. By setting
the eigenvalue ¢ = ¢/, = ¢/ , it is required that

(h11 —¢) hi2

= (h11 —&)(hap — &) — h12hp = 0. 6.85
Iy (hay — £) (h11 — €)(haa — €) — h12h2 (6.85)

The solution of this quadratic equation yields two energy corrections:
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h h
_ 1+ 22jE

£
+ 2

1
\/h12h21 + Z(h“ — h2)2. (6.86)

As expected, the symmetry breaking perturbation potential h splits the two-fold
degenerate energy level E,? into two new energy levels:

Ey=EX+e; and Ep=E’+e_. (6.87)

From a calculation of the eigenvectors (c11, ¢12) and (c21, ¢22), we obtain a symmet-
rical and antisymmetrical superposition of the state vectors |n1) and |n3).

One should not be astonished about the mathematical similarity of these approx-
imate solutions to the problem of two coupled quantum dots or of the H; molecule
(Sect.6.3.2). The coupled quantum dots and the H;r molecule could also be treated
in the frame work of the time-independent perturbation method. In this treatment the
neighbouring nucleus (proton) in the molecule is assumed as a perturbation potential
for the states of an H atom (unperturbed system).

The extension of the two-dimensional calculation presented here to the gen-
eral problem of d-fold degeneracy is straightforward. When ES is an energy level
with d-fold degeneracy in the unperturbed system, there are d orthogonal states
|n1), |n2), ..., |ng) with this same energy. In analogy to (6.84a), (6.84b), we con-
struct a d-dimensional secular equation system with the perturbation matrix elements
(n; |fz |n ;). By setting the determinant to zero d different solutions are obtained which
represent the first order corrections to the energy E°.

6.3.2 Example: The Stark Effect in a Semiconductor
Quantum Well

We consider a GaAs quantum well (thickness 2L = 10 nm) embedded between
two AlAs regions. The whole layer structure is prepared by epitaxy (Appendix B).
Even though the conduction band discontinuities (Appendix A) between GaAs and
AlAs amount to about 0.4 eV only, we assume, for simplicity reasons, infinitely high
potential walls of the well. The Schrédinger equation for an electron in the con-
duction band (Sect. 8.3.4), that is, the well, is one-dimensional with the coordinate x
being the epitaxial growth direction normal to the layer sequence. The corresponding
representation of the well potential is written as:

0 forO0<x <?2L,

oo elsewhere. (6.88)

Vix)= [

With m* as effective mass of the conduction electron (Sect.8.3.4) the Schrodinger
equation
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2
- p
Hln) = (Zm* + V(x))|n) = E%n) (6.89)
has the solution (Sect.3.6.1):
1
Yn(x) = (x|n) = ﬁsin(n;—Lx), n=12,.... (6.90)

These wave functions have mirror symmetry around the center of the quantum well
(symmetric) for odd n values, for even n they change their sign (anti-symmetric)
upon mirror reflection at a central plane through the well. The energy eigenvalues
obtained from (6.89) are

h2k2 hZ 2.2
=2 T ithk, = 28 6.91)

E© — = .
n 2m* 8m*L2 2L

We now assume an electric field applied normal to the layer structure along the x
direction. It generates an electric field strength £ in the quantum well between x = 0
and x = L. The system is, thus, perturbed by the energy operator

h = ex|E|. (6.92)

Voltages in the Volt range applied over a quantum well with a length of 100nm
typically produce fields in the 10°> V/cm range. These fields are small in comparison
to atomic fields in the 10° V/cm range and the time-independent perturbation method
can be applied to calculate field induced changes ¢/, (6.68) of the energy eigenvalues
(6.61a). According to (6.68) and (6.90), we obtain

R £ 2L
&, = (nlhln) = (nle|E|x|n) = %/0 xsinz(%) dx. (6.93)

Using the general relation 2sinx siny = cos(x — y) —cos(x +y)andx =y =
nxm /2L one obtains from (6.93):

, elE| 2L nwx elE| x2
g, = — x|l —cos{ — ) |dx = — —
2L Jo L 2L 2

This shift linear in the electric field strength was detected by Stark on atomic systems
[5]. Accordingly it is called Stark effect.

For the considered AlAs/GaAs/AlAs quantum well with the thickness 2L =
10 nm an applied electric field of 10° V/cm changes the energy levels by g, =
50 meV.

At this point, a peculiarity of the problem must be noted. In case that the quantum
well had been assumed symmetrical around the zero point of the x axis,i.e. V(x) =0
for —L < x < L, the wave functions v, would have been cosine-like rather than

2L
=eL|&|. (6.94)
0



http://dx.doi.org/10.1007/978-3-319-14669-0_3

6.3 Small Stationary Potential Perturbations: The Time-Independent Perturbation Method 253

sine-like. An analogous calculation, then, yields vanishing matrix elements (n|fz|n)
(6.93); a linear Stark effect does not exist anymore.

How can we understand this physically different behavior even though only the
coordinate system was shifted? In the first case of a quantum well only on the positive
X axis anon-vanishing moment of electric charge with respect to the zero point exists.
In the second symmetrical case, the moment of charge vanishes. This case is always
given when the electric field is applied symmetrical to the quantum well, that is, by
electrical contacts symmetrical to the potential well. This is the common experimental
situation: The linear Stark effect vanishes. The calculation of field induced energy
level shifts requires the next step of perturbation calculation up to quadratic order in
the electric field. This is called the quadratic Stark effect.

In the mathematical treatment, we analyse the expression ¢, (6.75a). This shall
be done only for the ground state with n = 1, where the following matrix elements
must be evaluated:

sin sin dx
2L

(11h]k)

k—1 k+1
= @ x| cos ﬂ — cos M dx. (6.95a)
2L 2L 2L
Partial integration yields
el€l 4L%cos(k — D — 1) 4L2{cos(k + D — 1}
(11Alk) = ) 5 = 5
2L k—1) k+1
. 4eLI €] 1 1 . 16eL| €| k (6.95b)
w2 (k+1)2 (k—1)? w2 (k2 —1)2° '

For (k £ 1) the matrix element (1|fz|k) vanishes because of symmetry reasons. The
perturbation potential mixes into the symmetrical ground state only antisymmetrical
higher states. It can generally be shown that for higher states with n > 1 only states
with opposite parity to |n) contribute to the perturbation matrix elements. For the
first approximation, that is, the lower limit of the matrix element (6.95b), we take
into account only a contribution of the first exited state with k = 2 to the ground
state:

N 16
(11h]2) = —97T—e2(2L)|5|. (6.96)

According to (6.75b), the quadratic part of the Stark effect in the ground state |1) is
then obtained as N )
g K(RI2)]S 256 (e2L)

~ =— : &2 6.97
TR R T T 243nt R || ©7

A more detailed calculation of the matrix elements (1 |fz|k) taking into account also
contributions of higher mixed-in states modifies the matrix element (1|2|2) (6.96)



254 6 Approximate Solutions for Important Model Systems
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Fig. 6.10 a, b Qualitative representation of the ground state wave function ¥ (x) of an electron
in a 1D potential well with finite potential wall heights; V (x) is the potential curve. a Unperturbed
system without electric field. b System with externally applied electric field

only in the percentage range. For the evaluation of the quadratic Stark effect (6.75b)
we can, thus, restrict the approximate calculation to admixtures of the next higher
states.

Figure 6.10a qualitatively shows a potential well with finite wall height. In contrast
to the idealized solutions (6.90) for infinitely high walls, the wave functions penetrate
the potential walls right and left. Application of an electric field £ in x direction
(Fig. 6.10b) tilts the potential lines, that is, the lower edge of the conduction band E,.
in the semiconductor, and the center of the ground state wave function is shifted due
to admixtures of the next higher state. This shift of the center of electronic charge
against the positive back ground charge, for example, holes in the valence band of
the quantum well, generates an electric dipole moment. This field induced dipole
moment causes a shift of the energy eigenvalues in the electric field. The quadratic
Stark effect is, thus, related to field induced dipoles (ox £) which cause an energy
change (o< &) in the electric field. The linear Stark effect, on the other hand, requires
the presence of an electric dipole already for vanishing electric field. This existing
dipole is directed in the field.

6.4 Transitions Between Quantum States:
The Time-Dependent Perturbation Method

The approximation techniques described so far were all focused on a solution of the
Schrodinger equation with time-independent potential. The stationary eigensolutions
of the problem were, then, slightly modified by small time-independent potential
perturbations. We encounter a different type of problem when a time dependent
perturbation acts on stationary states of a system. We expect that time-dependent
perturbation potentials in the Schrodinger equation excite the system, that is, induce
transitions from one stationary state into other states. States might be excited or
might decay. These types of problems can also be treated if the time-dependent
perturbation potentials are sufficiently small in comparison with the large built-in
stationary potential which determines the original stationary states.
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We consider a Schrodinger equation with time-independent H operator:
ihly) = Hly). (6.98)

Its solutions |¢) are assumed to be known. Because of the time-independent potential
a state with eigenenergy E, has a time dependence exp(—iE,t/h) as all stationary
wave functions (3.58). We introduce the time-dependent perturbation into (6.98) by
means of a small potential contribution ﬁ(t):

ihly) = (H + h(n)¥). (6.99)

The perturbation calculation, now, must yield a probability (amplitude) for the tran-
sition of an initial state |i) into a final state | f') due to the action of the time dependent
perturbation potential h. i) and | f) belong to the variety of stationary eigenstates
|n) of the unperturbed time-independent Hamiltonian (6.98). Typical examples of a
perturbation h are a short electric pulse or a harmonically (sine) varying electric field
acting on an electron in an atom or in a quantum dot.

The solution |) to the Schrodinger equation (6.99) can, thus, be expanded in a
series of orthonormal eigenvectors |n) of the unperturbed time-independent problem
(6.98):

W) =D an(®)e Er/ M), (6.100)

In this representation, the time dependence of the solution originating from h(@) is
expressed in terms of time-dependent probability amplitudes a, (). They describe
the probability for the emergence of stationary states |n) other than the initial state as
a consequence of the time-dependent perturbation. To perform the first order pertur-
bation calculation, the series expansion (6.100) is inserted into the time-dependent
Schrodinger equation (6.99):

. E .
ih[z O (t)elE”t/hi| In)
n

= > anEye  Ei P n) 3" a, () En ). (6.101a)
n n

This yields

ih Y an (e E My =" ay (e E () |n), (6.101b)

an equation, where the unperturbed Hamilton operator appears solely in terms of its
eigenvalues E,,. Only the time-dependent potential h(r) determines the time devel-
opment of the probability amplitudes a,, (¢). To answer the question how a particular
stationary final state | f) is reached, in (6.101b) the projection on this state has to be
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calculated. We thus multiply this equation from the left with the bra ( f | exp(iE st /h)
and keep in mind {f|n) = 6 fy:

ihag(t) =D (fIA@)|n)e " ay(t),

n

with wf, = (E; — Ep)/h. (6.102)

In this relation, the time change (derivative) of the final state amplitude a 7 (¢) at time
t depends, via the perturbation matrix elements (f |fz|n), on all other amplitudes
at time ¢. In general, at this time all a,(¢) are non-vanishing. Their detailed form
depends on the initial conditions of the problem and the type of the perturbation.

When we consider the zero approximation of the solution to (6.102), a, is assumed
to vanish and we obtain, as expected, stationary behavior; the state | f) does not
change in time.

In first approximation, we take into account from the whole variety of a,, only one
single fixed initial state |i) witha; (f = 0) = 1, asin zero order only time-independent
states with a,, = const are given. Then, the first approximation is obtained as

ap(t) = %( FlA@iYe s, with ho s = Ef — Ei, (6.103)

and after integration

i

t
ap(t) =85+ /0 (FIR()D)e " ', (6.104)

8ri is required as integration constant since in a stationary situation |i) does not
change and equals | f).

We will not treat higher order approximations in the present context but will rather
consider one of the most important applications of the time-dependent perturbation
method, namely the excitation of an atomic system by a periodic perturbation.

6.4.1 Periodic Perturbation: Fermi’s Golden Rule

A light wave incident on an atom, a molecule or a solid can excite electronic transi-
tions between stationary quantum states if the photon energy matches the energetic
difference between these states. The treatment of this problem is a predominantly
important application of the time-dependent perturbation method.

In the simplest case, the electric field of the light wave causes a time and even-
tually position dependent perturbation of the potential energy which varies in time
periodically as '

h(t) = hoe ", (6.105)
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Here, hy might be a constant or a position-dependent operator ho (). According to
(6.104), the change of the final state amplitude a ¢ (¢) in time is calculated for a given
initial state |i) as:

—1 t A . ’
as(t) = El /O (flholi)e!@ri=" qf'. (6.106a)

It is assumed that the system is in contact with the perturbation at + = 0. We then

obtain )
el(w_/,- —w)t __ 1

ap(t) = —%<f|ﬁ0|i>—. (6.106b)

(wfi —w)
Using the relation

|ei<p _ l|2 _ |ei<p/2 (ei¢/2 _ e—i(p/2)|2
2
= (2 sin g) . (6.107)

Equation (6.106b) yields (by squaring) the transition probability from [i) to | f) at
the time ¢:

(6.108)

1 A sinf{(w i — w)t/2}7?
Wiy = las? = ﬁ|<f|ho|i>|2[ ({a()ﬂf’_ w)t)/z/ }] 2.
The function in squared brackets resembles the representation (4.80) of the § function
in Sect.4.3.4 if the time variable would be defined both for positive and negative
values and the limes ¢ — o0 is considered.

In (6.108), however, only positive values t > 0 are meaningful. Nevertheless,
it must be noted that the function has a narrow peak at + = 0. The width of this
peak might be estimated from the first zero point of the numerator appearing at
(wfi — w)t/2 = m. It is thus concluded that essentially those final states | f) are
reached from |i) for which the following relations hold:

|(wfi —w)t/2| <7, e (6.109a)
Ef— E; = liw £27h/t, or (6.109b)
Ef—E; = ho(1 £271/wt). (6.109¢)

For large times ¢, that is, long acting harmonic perturbations with frequency w (oscil-
lation quantum hw, Chap. 8) a transition between the states |i) and | f) is induced.
For this transition, it is required:

Ef— E = ho. (6.109d)

The quantum energy hw of the exciting vibration (perturbation) is consumed for
overcoming the energy difference between initial and final state of the system.
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It must be emphasized that (6.109d) is valid only for large time intervals during
which the perturbation is in action. For small times ¢ the system exhibits no particular
preference for the level Ef = E; + hw (6.109d). The reason is simple: In the
beginning, the system does not know that it is dealing with a periodic perturbation.
It must wait a few cycles to get the message.

In order to derive an expression for the transition rate from |i) to | f), we consider
the action of a harmonic perturbation with long duration more in detail. The perturba-
tion /1 is assumed to interact with the system during the time interval —7/2 < t < t/2
with 7 — o0, i.e. the probability amplitude a ¢ for the final state follows as

—i 7/2 . .
af = — lim (flholi)el@ri=" g (6.110a)

=00 ) 112

The transition probability is obtained as the square of (6.110a):

) 1 . ) Uz vz
Wi = lagl> = — |(flholi)|” lim / el@ri=elt g / ell@si=ot 4y,
h =00 J o 2
(6.110b)
This probability, of course, grows with increasing time t during which the system
is exposed to the perturbation. The time-independent transition rate (probability per
time) Wy; /7 is, therefore, the more interesting quantity. For its calculation, we must
evaluate, how the right side of (6.110b) depends on the time variable 7.

Because of the representation of the § function (Sect.4.3.4) the first integral in
(6.110b) is identical, for T — o0, with §(wf; — w), apart from a factor 2. This §
function has non-vanishing values only for w r; = w, thatis, if we set wy; = w in the
integral (approximation for the § function), we obtain a factor t in front of the second
integral by integration. The second integral approaches the function 6 (w r; — w) just
as well. The approximate calculation of the product of the two § functions in (6.110b),
therefore, yields the following transition rate R y; from state |i) into state | f):

Wi 2 A
Ryi = Tf - ﬁ|(f|h0|z)‘28(a)fi — w). (6.111a)

Expressing the transition frequency wy; in terms of the energies E and E; of the
initial and final states, respectively, and using the relation 8(ax) = a~'8(x) for &
functions we obtain for the transition rate

|(Flholi) |8 (Ef — Ei — hw). (6.111b)

Wy 2
Ry = —1L —
fi T h

This relation for the calculation of transition rates between stationary quantum states
is of predominant importance for application; according to its inventor it is called
Fermi’s golden rule [7]. One must not worry about the § function with its infinite
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values. In all applications, integral expressions of (6.111b) enter the calculation and
the result will depend on the finite area under the § function.

For sufficiently long perturbation time (t — 00), the § function in (6.111b)
guarantees the equivalence of the quantum energy hw of the exciting harmonic per-
turbation (oscillation) with the difference between final and initial state energies.
This energy difference E s — E; which is necessary for the electronic transition is
supplied by the exciting light field. As we will see in Chap. 8, the electromagnetic
field is described in quantum field theory as being built-up by light particles, the
photons, which carry the photon energy hw. According to (6.111a), (6.111b) one
photon is able to induce the transition and the energy of the total system electron
plus light field is conserved. In this quantized field picture (Chap.8), the energy
conservation during the electronic transition can, then, be expressed in terms of a §
function § (E tht — E!°Y) where E ;ﬁ” and E!° are the final and initial energies of the
total system electron plus photon.

6.4.2 Electron-Light Interaction: Optical Transitions

Fermi’s golden rule (6.111a), (6.111b) shall now be applied to the calculation of light
induced transition rates between electronic quantum states in matter. In the simplest
case, we consider an electron in an atom or in a quantum dot which interacts with
electromagnetic radiation (light). The electron is in a potential V (r), be it an atomic
potential of the nucleus or the well potential of a quantum dot. The electron can
occupy the discrete energy levels of a binding potential. According to Sect.5.4.3
(5.67) the Hamiltonian of the electron in the surrounding light field described in
terms of its vector potential operator A(r, t) is, thus, given by

n 132 e n
H=—+4V({) ——QA p). (6.112)
2m 2m

In this approximate expression, only terms linear in A (small perturbation) are taken
into account. With a positive elementary charge e > 0 the electron carries the negative
charge —e. For common electromagnetic fields, the last term in (6.112) is considered
as a time-dependent perturbation:

h=——A-p. (6.113)

e
m
The exciting light wave is described by its electric field

E(r,t) =2e&pcos(q - r — wt), (6.114a)

with e as unit vector oriented perpendicular to the light wave vector q.
Because of £ = —dA/dt the vector potential of the light field is
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A(r, 1) = 2e&y/w) sin(q - T — wt). (6.114b)

Using the exponential representation of the sine function, we obtain the perturbation

(6.113) as
e&y

maw

h=———"[el@r=eD _emi@r-on]ce.p). (6.115)
For the derivation of Fermi’s golden rule, the perturbation had been assumed to have
a time dependence h(t) = hgexp(—iwt). Accordingly, (6.115) yields two different
perturbation terms, one with @ > 0 and the other one with w < 0. Two different
transition rates, are, therefore obtained:

27 ((e&0\? .

R.(fli) = ?(m_i) [(fle- pll>\28(Ef — E; — hw), (6.116a)
27 ((e&0\* .

R?f = ;(m—i) |<f|e~p|z>\28(Ef — E; + ho). (6.116b)

Both rates have the same absolute value but the § functions describing the energy
conservation during the transition are different. In (6.116a), the energy balance reads

Ef = Ei + ho, (6.117a)

while (6.116b) yields

In the first case (6.117a), the final state | f) is reached by addition of one photon
energy quantum hw to the initial state |i). The light quantum (photon) is destroyed
during the transition |i) — | f); itis absorbed by the electron. We are concerned here
with optical absorption by excitation of the state | f). In the second case (6.117b),
the initial state energy E; is decreased by the photon energy Aw to reach the final
state with energy E r. The initial state |i) is de-excited into | f) and light with photon
energy hw is emitted by the electron. This is the inverse effect to optical absorption;
it is called optical emission.

Note that this emission process is stimulated by irradiated photons, that is, a pertur-
bation by the external light field. In Sect. 8.2.2 we will see that the classical description
of the light field in terms of field variables A(r, 7) and £(r, t) is not complete in the
quantum mechanical sense. At a fixed position in space, the light field appears as har-
monic oscillations of the field vectors. These oscillations obey the laws of quantum
mechanics and must be quantized according to the rules for the harmonic oscilla-
tor (Sect.4.4). The energies of the oscillations assume discrete values including a
non-vanishing ground state energy. As a consequence, an electron in a surrounding
radiation field interacts also with the ground state of the field (ground state means: no
macroscopic external field) and photon emission is induced even without stimulation
by an external light field. The electron being in an excited state is de-excited into the
ground state of the field by emission of a photon. This process is called spontaneous
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emission since no external light field is necessary. More details about these emission
processes are presented in Chap. 8 in the general context of field quantization.

Light emission by de-excitation of excited electronic quantum sates is the physical
basis for such important applications as lasers and light emitting diodes (LED).

For many applications, a more descriptive representation of the transition matrix
elements ( f|e - p|i) in the transition rates (6.116a), (6.116b) is useful. For its deriva-
tion, we use the quantum mechanical dynamic equation in the Heisenberg represen-
tation (Sect.4.3.5). In this formalism, the time derivative of the position operator F,
that is, essentially the momentum is given by

int = ihp/m = [f, H] = —[H, F], (6.118a)

that is,
b= i%[H,f]. (6.118b)

The essential term of the matrix element (6.116a), (6.116b) is thus obtained as

.m

(fIpli) = 1g[<f|ﬁf|i> — (fIRH|i)]
= i%(Ef — ED(fIRli)
= imaw g (fI£]i). (6.119)

The transition rates for absorption (6.116a), respectively, stimulated emission
(6.116b) of a light quantum (photon) can then be written as

N2
RY) = %(%) |[(f1€oe - (eB)]i)[*8(Ef — E; — hw). (6.120)

In this representation, the perturbation operator emerges as the product of the
electric field amplitude e&y and the dipole moment et related to the oscillating elec-
tron (between final and initial state). This is nothing else but the energy of a dipole
in an oscillating electric field. We could have guessed this energy perturbation in the
Hamiltonian already by classical analogy, without the quantum mechanical deriva-
tion via the magnetic vector potential operator. Quantum state transitions induced
by an electromagnetic field, thus, require the existence of electric dipole moments
being connected with the transitions. This is at least true for the so-called dipole
approximation considered here.
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6.4.3 Optical Absorption and Emission in a Quantum Well

A simple interesting example of optical transitions in nanostructures is excitations
between confined electronic states in a semiconductor quantum well. Such a quantum
well can be realized by a GaAs layer (band gap ~1.4 eV) with a thickness between
10 and 100nm epitaxially grown between two AlAs layers (band gap ~2.2 eV).
The structure is qualitatively shown in Fig. 6.11a. According to Sect. 3.6, the eigen-
solutions of the Schrodinger equation within the 2D quantum well are products of
confined bound states ¢; (z) and plane waves [see, e.g., (3.72)] which describe the
free motion of an electron in the quantum well parallel to the layer sequence of the
structure. With z as the coordinate normal to the layer sequence and x and y the
coordinates parallel to the quantum well plane (Fig.6.11), the eigensolutions are
represented as

Yik = (rlik) = Ce; (2)e’™™, (6.121)
(@) Aas  Gaas ans D) (©
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Fig. 6.11 a-e Optical absorption due to electronic transitions in a 1D quantum well of GaAs
embedded between AlAs barriers. Electronic transitions between occupied and empty states (ener-
getically separated by Fermi energy Er) of the 2D sub-bands are considered. a—c Possible relative
orientations of light wave vector q and electric field £ = (Ex, Ey, E;) of the light wave, respec-
tively, with regard to the layer sequence of the AlAs/GaAs heterostructure, which give rise to optical
transitions allowed in the dipole approximation. d Wave functions along the z coordinate, i.e. the
layer sequence of the quantum well, and corresponding energy levels ) to e4. The line thickness of
the arrows is a qualitative measure of the oscillator strength; arrows in broken line indicate forbid-
den transitions. e Sub-band structure of the electronic states with k vector parallel to the quantum
well layer, i.e. || x, y plane. Allowed transitions are perpendicular in this plot
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r|| is a position vector in the plane of the quantum well. In case of infinitely high
energetic walls ¢; (z) are sine functions of the type (6.90) and according to Sect. 3.6.1
the energies E; (k) of the electronic states in the well are
h2k2
Ei(k)) = & + —L, (6.122)

2m

¢; are the energies of the confined bound states and the second term on the right side
describes the kinetic energy (o< k2) of an electron moving freely along r. E;(ky)
form a sequence of parabolas along an electronic wave vector K| = (ky, k) of the
2D reciprocal space parallel to the plane of the quantum well (Fig.6.11e). These
energy parabolas are called sub-bands of the quantum well.

Assuming the AlAs barriers to be doped to such an extent, that the Fermi level is
located between the energies €, and €3 (Fig. 6.11e), an electron can be excited from
the occupied levels €1 and &, into higher empty levels €3, &4 etc. Subsequently, the
electron might be de-excited into energetically lower states. These processes corre-
spond to absorption and emission, respectively, of light quanta. The related transition
rates are calculated according to (6.116a), (6.116b) and (6.120), respectively.

It is straightforwardly seen that the calculation of the transition matrix elements
(j,K'|e-pli, k) between final and initial states | j, K'), |i, k) sensitively depends on the
orientation of the electric field £, that is, the unity vector e of the light polarization.
It is important whether the light polarization, that is, the vector e is oriented parallel
or perpendicular to the plane of the quantum well (Fig. 6.11a—c).

At first, we assume a polarization direction parallel to x, that is, parallel to the
quantum well plane (Fig.6.11a, b). The polarization unity vector is, then, written as
e = (1,0, 0). The light wave can propagate in this case in y or in z direction, that
is, within the plane of the well or perpendicular to the layer sequence. The matrix
element (6.116a), (6.116b) is represented as

0
e-p=—ih—. (6.123a)
ax
The momentum operator p is essentially a derivation with regard to the x coordi-
nate; it does not affect the bound part ¢; (z) of the wave function (6.121). From the
orthogonality condition, follows

(jK'|e - plik) = hk, (jK'|ik) = 0. (6.123b)

This relation has an important consequence: Light irradiation with a polarization
direction in the plane of the quantum well, that is, parallel to the layer sequence
of the AlAs/GaAs double-heterostructure, is not connected with any absorption or
stimulated emission of light. This is true for light propagation (direction of wave
vector q) both parallel and perpendicular to the layer sequence (Fig.6.11a, b).

Let us now consider the case of light polarization normal to the layer sequence
[E = (0,0, E;)] and propagation direction parallel to the well (Fig.6.11c). The
transition matrix element is, then, obtained as
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(K le - plik) = |C|? / dz/ dx dy ¢5 (e ® KM b g (2)

=|CJ? / dz ¢ (2) p- i (2) / dx dy e!®=K) T, (6.124)

The second integral on the right side over dx and dy yields a § function, that is, it
vanishes for all electron wave vectors except for k = K’. The electron wave vector
in the final state must equal that in the initial state.

We summarize: optical transitions between electronic states in a quantum well,
that is, light absorption or emission do only occur with light polarization having an
electric field component E, normal to quantum well plane. Furthermore, the electron
wave number Kk is conserved in the transition. These are “vertical” transitions in the
band scheme of the electronic sub-bands (Fig.6.11e). The light photon energies
(frequencies), thus, equal the energetic distance between the sub-bands. In spite of
the continuous spectrum of sub-bands (parabolas) the optical absorption and emission
spectra of a quantum well consist of discrete sharp bands (Fig. 6.12). Their energetic
location is directly related to the width of the quantum well (Sect.3.6.1).

Fig. 6.12 a—c Optical Photon Energy (meV )
absorption measured at 180 160 140 120 100 80
T =300 K on a sequence of 40

T [ 1 ] 1 I ) I 1 I 1 ] L

50 quantum wells of GaAs
embedded between AlAs.
The electronic transitions
occur between sub-bands of
conduction band quantum
wells in GaAs [10].

a Quantum well thickness
6.5 nm, (b) and (¢) quantum
well thickness 8.2 nm
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30 =

20—
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We can rewrite the remaining matrix element in (6.124) as

(J1p=1i) = /dz 97 (2) pz¢i (2) = imwj; (j|2li). (6.125a)

We have used the dipole representation (6.119) with hwj; as the energy difference
between the sub-bands E; and E;. From the representation of the matrix element

(JIFi) = / dz ¢} (2)z¢i (2) (6.125b)

a further restriction for the occurrence of optical transitions follows. We assume the
zero point of the z axis in the integral of (6.125b) to be in the center of the quantum
well. The integral, then, separates into two parts, one where ¢;(z) is multiplied
by positive z values, the other one where ¢; (z) is multiplied by negative z values.
The integral in (6.125b) does not vanish, therefore, only if ¢;(z) or ¢;(z) change
their sign upon reflection at the zero point of the z axis. This property is given for
example, for the sin(z) function. Wave functions which keep their sign upon this
reflection operation are called functions of even parity. Functions which change
their sign have odd parity. According to (6.125a), (6.125b), light induced optical
transitions are only possible between electronic states of different parity, for example,
fromi = 1toj = 2,4,...,butnotto j = 3,5,... (Fig.6.11d). This result, of
course, is only valid for quantum wells with a symmetric potential V(z) = V (—z),
in which the eigenstates separate into those with even and those with odd parity.
In order to lift this parity selection rule, one must prepare asymmetric quantum
wells.

For better measurability of the optical transitions, the absorption is enhanced
by repetition of one and the same quantum well structure in the epitaxial multi-
layer sandwich. In Fig. 6.12, results of an optical absorption measurement on a layer
stack of 50 GaAs quantum wells, each single one with a thickness of 6.5nm or
8.2 nm are shown. Relatively sharp absorption bands as expected from theory are
observed. Furthermore, the absorption line at higher photon energy results from the
thinner quantum well. The thinner the well the more the sub-bands are energetically
spread.

6.4.4 Dipole Selection Rules for Angular Momentum States

According to Sect.6.4.3, the symmetry of the final and initial states as well as the
light polarization direction are essential factors for the intensity of optical transi-
tions. They determine whether particular optical transitions actually couple to the
electromagnetic radiation. So-called selection rules tell us whether under particular
state symmetries and irradiation geometries the transition matrix elements ( f|r|i)
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(6.125b) vanish, that is, that the corresponding optical transitions are forbidden. In
approximations higher than the dipole approximation considered here quadrupole
moment transitions, of course, can occur.

Within the frame of the dipole approximation, it is useful to distinguish between
allowed and forbidden transitions solely on the basis of selection rules. This saves
calculation work in obtaining the transition rates. We have done this in Sect. 6.4.3
already for the potential box.

An important class of problems reaching from atoms to quantum dots (Sect. 5.7.1)
and quantum rings (Sect.5.7.2) is based on potentials with rotational or spherical
symmetry (Sect.5.3). In this case, the eigensolutions of the problem in position
representation are obtained as a product of a radial part R, ;(r) and the spherlcal
harmonics 7} (4, ¢), the eigenfunctions of the angular momentum operators L2 L
(Sect.5.3):

(rln,1,m) = R, 1(NY" (¥, p). (6.126a)

The spin degree of freedom is not considered here. It is therefore interesting to find
out eventual selection rules, which allow or forbid particular optical transitions
between angular momentum states with different quantum numbers m and /. For
this purpose, we consider dipole transitions between the angular momentum states

(r|ll,m) = 1" (9, ), (6.126b)

and calculate transition matrix elements of the type (I’, m'|r|l, m).

To derive selection rules for the orientation quantum number m, that is, for transi-
tions between states with different orientation of the angular momentum in space, we
must calculate the matrix element (I, m’|z|l, m), where z is the particular direction
in space determined for example, by a magnetic field. The interesting eigenstates
are therefore those of the operator iz. It seems useful in this context to consider
the commutator [L 2» 2] which contains both the angular momentum and the position
operator. From

L,=(rxpP),=3%py— 9px (6.127a)
and
[£py — IPx, 21 =0 (6.127b)
we conclude .
[L;,2]1=0. (6.127¢)

The matrix element of the commutator (6.127c¢), then, is obtained as

0=(I',m'|[Le, 21, m) = (', m'|L 21, m) — (', m'|ZL |1, m)
=m'{l',m'|2|l, m) — m{l', m'|Z|1, m). (6.1274d)
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This yields the following interesting relation for the interesting transition matrix
element:
(", m'|21l, m)(m" —m) = 0. (6.128)

Consequently, only for m’ = m the transition matrix elements for an electronic
dipole moment in z direction does not vanish. Optical transitions in which the elec-
tronic transition dipole oscillates in z direction require conservation of the orientation
quantum number m.

For optical transitions with electronic dipole orientation normal to z, that is, par-
allel to x, y, we analogously consider the commutator [I: 2 X

(L, %] = —[$px, X1 = = px, & + 9 px
= —ihy. (6.129a)

Taking into account also the y component yields
(L., % +iy] = (& +iD)A. (6.129b)

The calculation of the matrix elements of this commutator in the basis of the angular
momentum states leads to the relation

(',m'|[L, 2 £i511, m) = (I',m'| £ & £i9)II, m)F, (6.130a)
and finally to

(',m'|L.& £i)l,m) — (I',m'| £ & £i9)L|1, m)
= (m —m)R(l',m'|& £i9)|l,m) = {I',m'| £ (& £i$)Il,m)h.  (6.130b)

Comparing the last two equations in (6.130b) we must require m’ — m = =+1 for
non-vanishing matrix elements of dipoles in x, respectively, y direction.

We keep in mind: For optical dipole transitions between angular momentum states
|l, m) the orientation quantum number m must obey the following selection rules:

m’ —m =0 for dipole in z-direction, (6.131a)
m’ —m = +1 for dipole in x, y-direction. (6.131b)

The orientation quantum number must be conserved or can change by 1. Both cases
belong to different emission or absorption geometries regarding light polarization
and propagation direction.

According to (6.120), the transition rate Ry; is different from zero only if the
scalar product of light polarization direction e (oscillation direction of electric field)
and electronic transition dipole D ¢; = ( f|er|i) does not vanish.
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Optical transitions with conservation of the orientation quantum number
(m" = m) and dipole moment D; oriented in z direction, thus, require a light
polarization with an electric field component parallel to D;, that is, along z. The
light propagation direction (emitted or absorbed) described by the wave vector q_Le
can not be directed parallel to D ¢;, that is, along z; or in other words: Light irradiated
along the z direction can not excite dipole transitions with an electric dipole moment
parallel z and such transitions can not cause light emission in z direction (Fig. 6.13a).

Let us now consider the case of transition matrix elements Dy; = ( f|er|i) with
orientation in the x—y plane (Fig.6.13b—d). Here, the selection rule m" — m = +1
is valid. In this geometry, the light polarization £ye must have a component in the
x—y plane. This polarization might be given both for light propagation in z direction
(g |l z) (Fig.6.13b, c) and for propagation within the x—y plane (Fig.6.13d). In any
case the electric field £ye of the light wave must have a component parallel to the
transition dipole D 7; oriented within the x—y plane.

(b) (d)

z
4
1
1
1
1
1
1
1
1
|

Fig. 6.13 a-d Schematic representation of the dipole selection rules for optical transitions between
angular momentum states. Optical absorption and emission in dipole approximation is possible, a if
the electric field of the light with wave vector q and oscillation direction e (unity polarization vector)
has a vector component in the direction of the transition dipole D r; mediating between initial and
final states of the electron. b, ¢ If a circularly polarized light field propagates with a wave vector q
normal to the transition dipole D ;. Depending on the light polarization direction, left hand or right
hand (e unity polarization vector) the photon spin is directed in positive or negative z direction.
d If a linearly polarized light field propagates with a wave vector q in the x, y plane containing the