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Preface

This is the second in a series of four volumes, all written at an elementary calculus
level. The complete course covers the most important areas of classical physics,
such as mechanics, thermodynamics, statistical mechanics, electromagnetism,
waves and optics. This second volume deals with fluid mechanics, thermodynamics
and statistical mechanics.

The laws of Physics, and, more generally, of Nature, are written in the language
of mathematics. The reader is assumed to have previous knowledge of the basic
concepts of calculus: vectors, functions, limits and the derivative and integration
operations.

Physics is an experimental science, meaning that it is based on the experimental
method, which was developed by Galileo Galilei in the seventeenth century. He
taught us, in particular, that to try to understand a phenomenon, one must simplify
the relevant working conditions as thoroughly as possible, understanding which
aspects are secondary and eliminating them as far as possible. The understanding
process is not immediate, but rather, it proceeds by trial and error, through a series
of experiments, which might lead, with a bit of fortune and a lot of thinking, to the
discovery of the governing laws. Induction process of the laws of physics goes back
from the observed effects to their causes, and, as such, cannot be purely logical.
Once a physical law is found, it is necessary to consider all its possible conse-
quences. This is now a deductive process, which is logical and similar to the
mathematical one. Each of the consequences, the predictions, of the law must then
be experimentally verified. If only one prediction is found to be false by the
experiment, even if thousands of others have been found to be true, it is enough to
prove that the law is false or, better yet, to show the limits of its validity. This
implies that we can never be completely sure that a law is true; indeed, the number
of its possible predictions is unlimited, and in any historical moment, a number
of them may be uncontrolled. However, this is the price we must pay in choosing
the experimental method, which has allowed humankind to advance much further in
the last four centuries than in all the preceding millennia.
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Thermodynamics and statistical mechanics are amongst the great intellectual
constructions of Physics. Their laws are well established as well as the limits
of their validity. Consequently, it can be exposed in an axiomatic way, as a chapter
of mathematics. We can start from a set of propositions whose axioms are assumed
to be true by definition, and deduce from them a number of theorems using only
logics, as the Euclidean geometry theorems are deduced from the Euclid postulates.

We shall not follow this path. The reason for this is that, while it allows a shorter
and quicker treatment and is also logically more satisfactory for some, it also hides
the inductive historical trial and error process through which the postulates and the
general laws have been discovered. These are arrival rather than starting points.
This path has been complex, laborious, and highly nonlinear. Errors have been
made, hypotheses have been advanced that turned out to be false, but finally the
laws were discovered. The knowledge of at least a few of the most important
aspects of this process is indispensable for developing the mental capabilities that
are necessary to anybody contributing to the progress of natural sciences, whether
they pursue applications or teach them. In any case, we shall mention the names of
those that contributed most to the achievements that we will be discussing, along
with the date of the discovery and, the first time we meet him, the life span of the
author.

A large fraction of the book deals with the physics of fluids. We shall start with
their mechanical properties, continue with their thermodynamic aspects, and end up
with the statistical mechanics of their molecular structure. In Chap. 1, we shall
study the statics and the dynamics of fluids, called hydrostatics and hydrodynamics,
respectively. This is, rigorously speaking, a chapter of mechanics, but fluids are
much more complex mechanical systems than, for example, the rigid bodies studied
in the first volume. As a matter of fact, fluids have an infinite number of degrees of
freedom. We shall describe several aspects of the complex fluid phenomenology
aimed at understanding the physics rather than the mathematics. The latter requires
a knowledge of partial differential equations that is beyond the level of this course.

In the first volume, we learned the fundamental conservation laws of energy,
linear and angular momentum. We also saw that the total mechanical energy of an
isolated system is not always conserved. It is not conserved in the presence of
nonconservative forces. We had anticipated then, however, that the apparent non-
conservation of energy is due to having neglected to include all the forms of energy
in the balance. In the second chapter of this volume, we shall see that, indeed,
energy is always conserved. Thermodynamics teaches us how one must take into
account all the possible forms of energy exchange. Two systems can exchange
energy not only in the form of work but also in the form of heat. Beyond the
mechanical energy, we must also include the internal, or thermal, energy in the
balance. The first law of thermodynamics is the law of energy conservation.

Thermodynamics deals with systems that are extremely complex from a
mechanical point of view. In order to define the mechanical state of a fluid, for
example, one should know the positions and velocities of all its molecules. This is
not possible. Thermodynamics describes the state of the system under study with a
small number of global variables, like volume, pressure, density and temperature,
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and the processes from one state to another considering the heat and work
exchanges. In Chap. 2, we shall study, in particular, two important classes
of thermodynamic systems, the gases and the solids.

The second law of thermodynamics, discussed in Chap. 3, deals with the irre-
versibility of natural phenomena. For example, if two bodies at different temper-
ature are brought into contact, heat passes from the hotter to the colder one; the
temperature of the former decreases, while that of the latter increases. The opposite
process never happens spontaneously. As another example, if we drop a stone from
a certain height, it stops when it hits the ground and its temperature increases. It
never happens that a stone on the ground jumps up while cooling. We shall learn
how entropy, a fundamental quantity of thermodynamics, rules the irreversibility.

In Chap. 4, we shall apply the laws of thermodynamics to several relatively
simple thermodynamic systems. After having given some information on the
structure of matter and on its aggregation phases, we shall study the conditions for
equilibrium between phases (liquid and vapor, liquid and solid, solid and vapor),
the transitions between the phases and the surface phenomena.

In the final two chapters, we shall look at the thermodynamic processes from the
microscopic point of view, namely considering that the bodies are made of an
enormous number of molecules. We shall study statistically the kinematic variables,
namely their probability distributions and their average values. In this way, we shall
learn that (classical) thermodynamics laws are not independent of (classical)
mechanics, but rather logical consequences of same. Historically, the most
important steps forward in physics happen when fields that had been separated
become unified in a single theory. This had been the case for terrestrial and
heavenly mechanics with Galilei and Newton in the seventeenth century, as we saw
in the first volume. Similarly, thermodynamics (and chemistry as a part of it) was
unified with mechanics in the second half of the nineteenth century by, mainly,
James Clerk Maxwell and Ludwig Boltzmann. The study of statistical mechanics
will enlighten and give deep physical meaning to several findings within thermo-
dynamics. It shall also lead us to discover the limits of classical mechanics, the
limits at which quantum physics takes over.

Each chapter of the book starts with a brief introduction, to give the reader a
preliminary idea of the arguments he/she will find. There is no need to fully
understand these introductions at the first reading, as all the arguments are fully
developed in the subsequent pages.

At the end of each chapter, the reader will find a number of queries, through
which to check his/her level of understanding of the arguments put forward in the
chapter. The difficulty of the queries is variable; some of them are very simple,
some more complex, a few are true numerical problems. On the other hand, the
book does not contain a sequence of full problems, owing to the existence of very
good textbooks dedicated specifically to those.

The answers to the large majority of the queries are included. However, the
solution to numerical problems (without looking at the answers) is mental gym-
nastics that are absolutely necessary for understanding the subject. Only the effort to
apply concepts one has learned to specific cases will allow the reader to master
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them completely. The reader should be conscious of the fact that the solution of
numerical problems requires mental mechanisms different from those engaged in
understanding a text. The latter, indeed, has already been organized by the author;
solving a problem requires much more active initiative from the student, a creative
activity that is needed for advancing scientific knowledge and its technical appli-
cations as well. Consequently, the student should work on an exercise alone,
without looking at the solution in the book. Even failed attempts to reach the
solution autonomously, provided they are undertaken with sufficient persistence,
yield important returns, because they aid in the development of processing skills.
If, after several failed attempts, the solution has not yet been reached, it is a better
practice to abandon the exercise momentarily, rather than looking at the solution,
instead going on to another exercise and coming back to the previous one later.

The following working scheme is methodologically advisable:

1. Examine the conditions posed by the problem in depth. If it is appropriate, make
a drawing containing the essential elements.

2. Solve the problem using letters in the formulas, not numbers, developing them
up to the point when the requested quantities are expressed in terms of the
known ones. Only then should you put numbers into the formulas.

3. Control the correctness of the physical dimensions.
4. When necessary, transform all the data in the same system of units (prefer SI).

Use the scientific notation, for example, 2.5 x 103 rather than 2500, 2.5 x 10−3

rather than 0.0025. In general, two or three significant figures are enough.
5. Once you have the final result, always verify if it is reasonable. For example, the

mass of a molecule cannot turn out to be 30 mg, the speed of a bullet cannot be
106 m/s, the distance between two towns cannot be 25 mm, etc.

Acknowledgments

The author is grateful to Andrej Gogala for his kind permission to use the photo in
Fig. 4.17.

viii Preface

http://dx.doi.org/10.1007/978-3-319-30686-5_4


Contents

1 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Fluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Fluid Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Fluids in the Weight Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Archimedes Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Fluid Equilibrium in the Centrifugal Field. . . . . . . . . . . . . . . . . 13
1.6 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Incompressible Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8 Bernoulli Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.9 Applications of the Bernoulli Theorem . . . . . . . . . . . . . . . . . . . 23
1.10 D’Alembert Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.11 Laminar Viscous Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.12 Turbulent Flow. Reynolds Number . . . . . . . . . . . . . . . . . . . . . 34
1.13 Drag at Small Reynolds Numbers . . . . . . . . . . . . . . . . . . . . . . 38
1.14 General Expression of Drag . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1 The Thermodynamic State . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3 State Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.7 Equivalence of Heat and Work . . . . . . . . . . . . . . . . . . . . . . . . 72
2.8 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.9 Specific Heats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.10 Le Chãtelier’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.11 Solid Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.12 Internal Energy of the Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . 83
2.13 Adiabatic Processes in Gases. . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.14 Compressibility and Thermal Expansion . . . . . . . . . . . . . . . . . . 88

ix

http://dx.doi.org/10.1007/978-3-319-30686-5_1
http://dx.doi.org/10.1007/978-3-319-30686-5_1
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec11
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec11
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec12
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec12
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec13
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec13
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec14
http://dx.doi.org/10.1007/978-3-319-30686-5_1#Sec14
http://dx.doi.org/10.1007/978-3-319-30686-5_2
http://dx.doi.org/10.1007/978-3-319-30686-5_2
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec11
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec11
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec12
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec12
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec13
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec13
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec14
http://dx.doi.org/10.1007/978-3-319-30686-5_2#Sec14


3 The Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . 93
3.1 The Second Law of Thermodynamics. . . . . . . . . . . . . . . . . . . . 94
3.2 The Simplest Heat Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.3 The Carnot Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4 The Carnot Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5 Thermodynamic Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.6 The Clausius Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.7 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.8 Engines Exchanging Heat with More Than Two Sources . . . . . . 113
3.9 Entropy of Remarkable Systems . . . . . . . . . . . . . . . . . . . . . . . 114
3.10 Principle of Maximum Entropy . . . . . . . . . . . . . . . . . . . . . . . . 117

4 Thermodynamic Properties of Real Fluids . . . . . . . . . . . . . . . . . . . 121
4.1 States of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2 Isothermal Transformations of Real Fluids . . . . . . . . . . . . . . . . 129
4.3 Van der Waals Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4 Joule-Thomson Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.5 Internal Energy and Entropy of Gases . . . . . . . . . . . . . . . . . . . 139
4.6 Clapeyron Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.7 Vaporization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.8 Pressure-Temperature Dyagrams . . . . . . . . . . . . . . . . . . . . . . . 148
4.9 Surface Tension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.10 Capillary Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.11 Boiling and Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5 Microscopic Interpretation of Thermodynamics . . . . . . . . . . . . . . . 165
5.1 Kinetic Model of Ideal Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2 Meaning of the Internal Energy. Specific Heats of Gases . . . . . . 171
5.3 Specific Heats of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.4 Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.5 The Ideal Gas in a Force Field . . . . . . . . . . . . . . . . . . . . . . . . 181
5.6 The Boltzmann Law for Kinetic Energy . . . . . . . . . . . . . . . . . . 184
5.7 Velocity Magnitude Distribution of Molecules. . . . . . . . . . . . . . 187
5.8 Experimental Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.9 Applications of the Boltzmann Law . . . . . . . . . . . . . . . . . . . . . 195
5.10 Nature of Irreversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.11 Entropy and Thermodynamic Probability . . . . . . . . . . . . . . . . . 204

6 Transport Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.1 Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.2 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.3 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Mean Free Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.5 Transport Properties in Gases . . . . . . . . . . . . . . . . . . . . . . . . . 223

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

x Contents

http://dx.doi.org/10.1007/978-3-319-30686-5_3
http://dx.doi.org/10.1007/978-3-319-30686-5_3
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_4
http://dx.doi.org/10.1007/978-3-319-30686-5_4
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec11
http://dx.doi.org/10.1007/978-3-319-30686-5_4#Sec11
http://dx.doi.org/10.1007/978-3-319-30686-5_5
http://dx.doi.org/10.1007/978-3-319-30686-5_5
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec7
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec8
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec9
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec10
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec11
http://dx.doi.org/10.1007/978-3-319-30686-5_5#Sec11
http://dx.doi.org/10.1007/978-3-319-30686-5_6
http://dx.doi.org/10.1007/978-3-319-30686-5_6
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec1
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec2
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec3
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec4
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec5
http://dx.doi.org/10.1007/978-3-319-30686-5_6#Sec5


Symbols

Table 1 Symbols for the principal quantities

Acceleration a, as
Absolute temperature T

Angular acceleration a,a

Angular frequency x

Angular momentum l, L
Angular velocity x

Atmospheric pressure pa
Avogadro number NA

Boltzmann constant kB
Boundary layer thickness d

Cross section r

Debye temperature hD
Density (mass) q

Density (numerical) np
Diameter D

Diffusion coefficient D

Drag coefficient CD

Efficiency (thermic engine) η

Efficiency (refrigerator) n

Electric charge (elementary) qe
Enthalpy H

Entropy S

Force F
Frequency m

Gas constant R

Gas specific heats ratio c

Gravitational field G
(continued)
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Table 1 (continued)

Gravity acceleration g
Heat Q

Heat capacity C

Heat flux density UQ

Internal energy U

Isothermal compressibility j

Latent heat vaporization Qvap

Kinetic energy UK

Mass m, M

Mass flow rate Qm

Mass flux density (diffusion) Uc

Mean free path l

Mechanical equivalent of heat J

Molar heat C, Cp, CV

Molar volume Vm

Molecule kinetic energy flux density UT

Moment (mechanical) M

Momentum p
Momentum flux density Up

Normal (to a surface) unit vector n
Number density np
Number of moles n

Plane angle h

Polar angle h, /

Polar coordinates (space) q, h, /

Position vector r
Potential energy Up

Power w

Pressure p

Radius R, r

Reduced mass l

Reynolds number Re

Shear stress s

Specific heat c, cp, cV
Spring constant j

Surface S, R

Surface tension s

Temperature h

Thermal compressibility j

Thermal conductivity j

Thermal diffusivity v
(continued)
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Table 1 (continued)

Time t

Total (mechanical) energy Utot

Weight Fw

Work W

Mean value, of x xh i
Angular velocity x, X

Velocity of light (in vacuum) c

Velocity v, t
Unit vector of v ut
Unit vectors of the axes i, j, k
Van der Waals parameters a, b

Viscosity (dynamical) η

Viscosity (kinematic) m

Velocity flux density Ut

Velocity, root mean square trms

Volume V

Volumetric flow rate QV

Volumetric thermal expansion coefficient a

Table 2 Base units in the SI

Quantity Unit Symbol

Length meter/metre m

Mass kilogram kg

Time second s

Current intensity ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Table 3 Decimal multiples and submultiples of the units

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10−1 deci d

1021 zetta Z 10−2 centi c

1018 exa E 10−3 milli m

1015 peta P 10−6 micro µ

1012 tera T 10−9 nano n

109 giga G 10−12 pico p

106 mega M 10−15 femto f

103 kilo k 10−18 atto a

102 hecto h 10−21 zepto z

10 deka da 10−24 yocto y

Symbols xiii



Table 4 Fundamental constants

Quantity Symbol Value Uncertainty

Speed of light in vacuum c 299,792,458 m s−1 Defined

Elementary charge qe 1.60217653(14) � 10−19 C 85 ppb

Electron mass me 9.1093826(16) � 10−31 kg 170 ppb

Proton mass mp 1.67262171(29) � 10−27 kg 170 ppb

Newton constant GN 6.67384(80) � 10−11 m3 kg−1 s−2 120 ppm

Gas constant R 8.3144598(48) J mol−1 K−1 580 ppb

Water triple point temp. 273.16 K Defined

Avogadro number NA 6.0221415(10) � 1023 mole−1 170 ppb

Boltzmann constant kB 1.3806505(24) � 10−23 J K−1 1.8 ppm

Table 5 Greek alphabet

alpha a A iota i I rho q P

beta b B kappa j K sigma r, 1 R

gamma c C lambda k K tau s T

delta d D mu l M upsilon t !, �

epsilon e E nu m N phi /, u U

zeta f Z xi n N chi v X

eta η H omicron o O psi w W

theta h, 0 H pi p P omega x X
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Chapter 1
Fluid Dynamics

Both liquids and gases are called fluids. As opposed to solids, fluid substances do
not have a definite shape. Liquids do have a definite volume, as, in a very good
approximation, they are not compressible. On the other hand, gases occupy all the
volume at their disposal and can be easily compressed.

In this chapter, we shall study the motions of fluids, which may be very complex.
In the first volume of the course, we studied the motions of material points, which
have three degrees of freedom, and of rigid bodies, which have six. Fluids, on the
other hand, have an infinite number of degrees of freedom.

In the first five sections of the chapter, we shall study fluids at rest, in equilibrium
conditions. This chapter of physics is called hydrostatics. We shall see, in particular,
examples of equilibrium in the fields of weight and centrifugal (pseudo) force.

We shall then introduce the concept of viscosity, which is the internal friction in
fluids in motion, and discuss its dynamical effects. Its physical meaning, from the
microscopic point of view, will be studied in Chap. 6. In Sects. 1.7–1.10, we shall
consider the motions of an idealized system, the ideal fluid, which is a fluid that is
incompressible and with zero viscosity. Even if such a fluid does not exist, under
certain conditions, real fluids (even gases, in some instances) behave approximately
like that ideal one.

In the last four sections, we shall consider real fluids. We shall see how the
presence of viscosity often radically changes the flow. Next, we shall consider the
flow in cylindrical pipes and its different regimes, with the laminar, ordered one
being examined in Sect. 1.11, and the chaotic, turbulent one in Sect. 1.12.
Following that, we shall study the flow of a fluid around a body (equivalent to the
motion of a body in a fluid), which we shall take to be spherical. Again, we shall
start with the laminar regime in Sect. 1.13, and finally move to the turbulent one in
Sect. 1.14. The situations rapidly become complicated. However, it is possible to
employ dimensional arguments to analyze the principal characteristics of complex
motions in a simple way. We shall see, in particular, how the different regimes are
characterized by different values of a dimensionless quantity, the Reynolds
numbers.

© Springer International Publishing Switzerland 2016
A. Bettini, A Course in Classical Physics 2—Fluids and Thermodynamics,
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1.1 Fluids

Gases and liquids are collectively called fluids. As opposed to solids, fluids do not
have a proper shape; rather, they can be easily deformed. Liquids and gases have
some common and some different characteristics. Let us start with the latter.

The volume of liquids is limited by sharp surfaces, both those in contact with the
container and the free one. The density of liquids is much larger than that of gases
under the usual conditions. For example, the density of water is 103 kg/m3, while
the density of air at normal pressure and temperature is 1.3 kg/m3. Liquids are
practically incompressible, as are solids, and we have said that their volume is
definite. Contrastingly, gases can be easily compressed and their density strongly
depends both on pressure and temperature.

In liquids, the distances between the molecules are similar to their diameters, we
can say they touch each other, while in gases they are much larger. In both cases,
however, these distances are very small compared to the macroscopic sizes. For
example, in a gas like nitrogen or oxygen, under normal conditions, the mean
distance between molecules is a few nanometers. We can also posit that a volume of
0.1 mm diameter of water contains along the order of 1017 molecules while one of
air at ambient atmospheric pressure and temperature contains 1014 molecules. We
see that we can consider both media to be continuous at the macroscopic level with
a good approximation.

Consider the infinitesimal cubic element of a fluid shown in Fig. 1.1. Its volume
is dV = dx dy dz and its mass is dm = ρ(x, y, z)dV, where ρ is the fluid density,
which is possibly a function of the position. The forces acting on the element can be
divided into two categories:

(1) the volume forces dF(V) (see Fig. 1.1) that are proportional to the volume and
the mass of the element. Such are the weight and, in a non-inertial frame, the
apparent inertia forces. In general, we can say

dF Vð Þ ¼ G x; y; zð Þdm ¼ G x; y; zð Þq x; y; zð ÞdV ; ð1:1Þ

where G generically indicates the force per unit mass (it is the gravity
acceleration g in the particular case of the weight).

(2) the surface forces dF(S) (see Fig. 1.1) that act on each of the (geometrical)
faces that delimit the element and are due to the fluid outside the element

dS

dV

dF(S)

dF (V)

n

dF (S)

dF(S)

t

n

Fig. 1.1 Infinitesimal
element in a fluid and forces
acting on it
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touching it on that face. As we shall soon see, it is convenient to divide the

surface force into its components dF Sð Þ
n normal and dF Sð Þ

t tangent to the sur-
face. The magnitude of the surface force is proportional to the area of the
surface dS through which it acts. The force per unit area is called stress. The
normal (to the surface) and shear stresses are

p ¼ dF Sð Þ
n

dS
normal stressð Þ; s ¼ dF Sð Þ

t

dS
shear stressð Þ: ð1:2Þ

The normal stress is more commonly called pressure. We shall immediately
show that the normal stress at a given point in the fluid is independent of the
direction in which it exerts. Pressure is a scalar, not a vector. As a matter of fact, we
have anticipated this result and used the symbol p that already indicates a scalar.
Usually, the normal stress on a surface is directed towards the inner part of the
volume, being due to the external elements pushing on it. In exceptional situations,
it may happen that the external elements attract the one under consideration. Under
these conditions, the pressure is negative. We shall consider an example of that in
Chap. 4, while in this one we assume the pressure to be always positive.

The shear stress has, constrastingly, a direction. This is, by definition, parallel to
the surface on which it is exerted. If the fluid is in equilibrium, all its elements are
by definition at rest. Considering that there is no constraint forbidding contiguous
elements from shifting one over the other, we understand that, in a fluid at equi-
librium, all the shear stresses must be zero. In a fluid, the equivalent of static
friction, which opposes the relative motion of two surfaces of solid bodies in
contact, does not exist. However, as we shall see, if the liquid is in motion, such as
water in a duct, for example, shear stresses are present.

The physical dimensions of pressure and shear stress are those of a force divided
by a surface. The unit in the SI is called pascal (Pa), in honor of Blaise Pascal
(1623–1662). One pascal is one newton per square meter. This is a rather small
pressure. To get an idea, imagine that the atmospheric pressure at sea level is about
105 Pa. A multiple of the pascal, the bar = 105 Pa, is often used, because it is close
to the old “atmosphere” unit, even if it is not SI. We shall further discuss pressure
measurements in Sect. 1.3.

We now show that, at every point in a fluid at rest, the pressure through all the
surface elements through the point O is the same, independent of the orientation of
the surface. This is an immediate consequence of the shear stresses being zero.

We take the coordinate axes with origin in O, as shown in Fig. 1.2. We then take a
tetrahedron having three surfaces on the coordinate planes and the fourth one, ABC,
inclined and near toO. Let n be the external normal to ABC. Both volume and surface
forces act on the tetrahedron, which, by definition, is in equilibrium. We do not know
the sufficient conditions for the equilibrium, because we are dealing with a fluid
element. However, we know the necessary ones. We mentally solidify the element.
The conditions necessary and sufficient for the equilibrium of the “solidified” element
are certainly necessary for the equilibrium of the liquid element.

1.1 Fluids 3
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We first observe that the volume forces, the weight in particular, are infinitesimal
of the third order of the linear dimensions, because they are proportional to the
volume. The surface forces are infinitesimal of the second order. We can conse-
quently neglect the volume forces. We conclude that, for equilibrium, the pressure
forces must have zero resultant. Let us impose that, starting with one direction, x,
for example. Let px be the pressure on the face normal to x, which is OCB and has
the area dSx. The corresponding force is in the positive direction of the x-axis. We
call α the angle between the unit vector n and the x-axis and dS the area of ABC.
The pressure p exerts a force on ABC that has the direction of −n. Its component on
the x-axis is equal to �pdS cos a. Hence, the equilibrium condition is
pxdSx � p cos adS ¼ 0.

On the other hand, geometry immediately gives dSx ¼ cos adS, and we have
px ¼ p. Similar conditions hold for the other components and we have

px ¼ py ¼ pz ¼ p;

which is what we had to show.
The pressure in a fluid in equilibrium is independent of the direction in which it

is exerted.

1.2 Fluid Statics

The density of a fluid can be different at its different points, namely it may be a
function of the coordinates, ρ(x, y, z). Let us see how it varies. We start by choosing
an inertial frame, as in Fig. 1.3, and mentally insulating an infinitesimal cubic
element of the fluid.

Let (x, y, z) be the coordinates of the element, dV = dx dy dz its volume and dS
the area of the faces. We indicate with dF(S) the resultant of the (6 in number)
surface forces and with dF(V) the volume force. The latter is proportional to the
mass of the element, namely

x

y

z

A

B

C

O α

n

Fig. 1.2 Pressure is
independent of direction
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dF Vð Þ ¼ G x; y; zð Þdm ¼ G x; y; zð Þq x; y; zð ÞdV :

A necessary equilibrium condition is the resultant force being zero

dF Sð Þ þ dF Vð Þ ¼ 0: ð1:3Þ

Consider the components parallel to one axis, z, for example. The contributing
surface forces are those that exert through the two planes normal to z. Adding them
up, we have p x; y; zð ÞdS� p x; y; zþ dzð ÞdS ¼ � @p

@z dzdS ¼ � @p
@z dV . The z compo-

nent of the volume force is dF Vð Þ
z ¼ Gz x; y; zð Þq x; y; zð ÞdV , and Eq. (1.3) gives

Gz x; y; zð Þq x; y; zð ÞdV � @p
@z

dV ¼ 0;

or
@p
@x

¼ Gz x; y; zð Þq x; y; zð Þ:

Similar expressions hold for the other axes, and we can summarize

@p
@x

¼ Gxq;
@p
@y

¼ Gyq;
@p
@z

¼ Gzq; ð1:4Þ

or, in an equivalent, more synthetic notation

grad p x; y; zð Þ ¼ q x; y; zð ÞG x; y; zð Þ: ð1:5Þ

Arelevant exampleof the volume force isweight.Neglecting the effects of the earth’s
rotation, G = g = (0, 0, −g), namely the gravity acceleration. Equation (1.4) becomes

@p
@x

¼ 0;
@p
@y

¼ 0;
@p
@z

¼ �gq: ð1:6Þ

dSdV

dF(V)

dF (S)
n

z

x

y

Fig. 1.3 Pressure and
volume forces on an
infinitesimal cubic fluid
element
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The pressure decreases with increasing height. Every volume element (see
Fig. 1.4) is subject to its weight, a force that must be equilibrated by the pressure
forces, acting on its horizontal faces. The pressure below must push more than the
pressure above.

We also see that the pressure varies with height but not with the other coordi-
nates, namely that it is constant on any horizontal plane. The surfaces of constant
pressure are called isobaric surfaces. In the field of the weight force, the isobaric
surfaces are the horizontal planes; such are also, it should be remembered, the
equipotential surfaces. As a matter of fact, the equality of isobaric and equipotential
surfaces is a general property when the volume force is conservative. If it is such,
and we indicate its potential with ϕ, the force per unit mass is G ¼ �grad/ and

grad p x; y; zð Þ ¼ �q x; y; zð Þgrad/ x; y; zð Þ: ð1:7Þ

The gradients of the pressure and of the potential are parallel. The isobaric and
equipotential surfaces, which are normal to them, are parallel too, and so they
coincide.

A further important property is that the isobaric surfaces are also surfaces of
constant density. We show that considering two isobaric, hence also equipotential,
surfaces S and S′, infinitely near to each other (see Fig. 1.5). Let dn be the vector
normal to the surfaces from S to S′, dp the pressure difference and dϕ the potential
difference.

It follows from the properties of the gradient that dp is equal to the dot product of
its gradient and of dn, and the same can be said for dϕ. Hence,

dp ¼ grad p � dn; d/ ¼ grad/ � dn.

z

x

y
z

z+dz

p(z)

p(z+dz)
Fig. 1.4 A fluid element in
the field of the weight

dn

S

S'

p

p+dp

φ

φ+dφFig. 1.5 Two infinitely close
isobaric and equipotential
surfaces
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but, for Eq. (1.7), we can write dp ¼ �q x; y; zð Þgrad/ � dn, and finally

dp
d/

¼ �q x; y; zð Þ:

Now, the left-hand side of this expression does not depend on the coordinates on
the surfaces. Hence, the same must be valid for the density ρ.

In conclusion, in a fluid at rest in a field of conservative forces, the isobaric surfaces
are also equipotential and constant density surfaces. We observe that when we look at
the free surfaces of the liquids, which, on small scales, are horizontal planes. On larger
extensions, comparable to those of the earth, such as on lakes and seas, free surfaces
are spherical. The same arguments explain the spherical shape of the planets and of
many celestial bodies. Several of them are gaseous, such as the sun and some of the
planets. As for the solid planets, like earth, one should consider that they were fluid
when they formed. To be precise, afluid celestial body is not at rest in an inertial frame,
duemainly to its rotation about its axis.We can extend the above arguments to include
the inertial forces, in particular, the centrifugal force and its potential. The resulting
equipotential surfaces are not spherical, but rather rotation oblate ellipsoids.

1.3 Fluids in the Weight Field

In this section, we shall consider the case of the weight force and take the z-axis
vertical upwards. G is the gravity acceleration and we have

Gx ¼ 0; Gy ¼ 0; Gz ¼ �g: ð1:8Þ

Equation (1.6) holds

@p
@x

¼ 0;
@p
@y

¼ 0;
@p
@z

¼ �gq: ð1:9Þ

If we want to know how the pressure varies with height, we need to know
something about density. We shall consider here two important cases; a liquid, like
water, and a gas, like the atmosphere.

In the case of a liquid, the density can be considered constant, namely independent
of pressure, in a good approximation. We can write the latter part of Eq. (1.9) as
dp ¼ qgdz.We integrate to find the pressure difference between two points, sayA and
B, at different heights (Fig. 1.6). We find p zBð Þ � p zAð Þ ¼ �qg zB � zAð Þ. Calling
h ¼ zB � zA, we have

p zAð Þ ¼ p zBð Þþ qgh; ð1:10Þ

1.2 Fluid Statics 7



which is known as the Stevin law, after Simon Stevin (1548–1620). The quantity
ρgh is the hydrostatic pressure, which is the pressure exerted by a column of
homogenous liquid of height h on its base. Indeed, consider a fluid cylinder of
height h with base of area S. Its mass is Shρ and its weight Shρg. This is the force
that acts on the basis. Dividing it by the area of the basis, we have the pressure,
Shρg/S = ρgh.

The Stevin law tells us, in particular, how the pressure varies when we dive
underwater. At every meter of depth, the pressure varies of
ρg = 103 kg/m3 × 9.8 m s−2 ≈ 104 Pa. In other words, the pressure underwater
increases by one atmosphere (about 105 Pa) every 10 m. This is why, diving down,
one must “compensate” the pressure in the ears every few meters.

The atmospheric pressure on earth is the weight of the air column on its basis. In
this case, however, we cannot consider the density to be constant. On the contrary,
the pressure continuously decreases with increasing altitude. Already at 40 km, the
air density is only a few per mille of the sea level value.

The first measurement of the atmospheric pressure and the correct interpretation
of the experiment, in 1644, were carried out by two pupils of Galilei, respectively,
Vincenzo Viviani (1622–1703) and Evangelista Torricelli (1608–1647). The
instrument used by Viviani is known as the Torricelli barometer, and is shown in
Fig. 1.7. To build it, one takes a glass tube about one meter long, closed at one
extreme, turns it vertical and completely fills it with mercury. The open end is then
closed with a finger (use a glove; mercury is toxic), the tube turned upside down
and its extreme immersed in a basin of mercury. If we now open the extreme, we

zA

zBpB

pA A

B

h

0

zFig. 1.6 Liquid cylinder and
two points at different heights

h

A pa

Fig. 1.7 The Torricelli
barometer
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see the free surface of mercury in the tube lowering somewhat and then reaching the
equilibrium level, when the column height is, say, h.

Notice that if we move the tube vertically up or down, provided the lower
extreme remains in the mercury and some space remains on top, the height h of the
column over the free surface in the basin does not vary. In addition, if you repeat
the experiment with tubes of different diameters and different shapes, including
curved ones, you shall observe that the height of the column is always the same.

The interpretation of Torricelli was as follows. All the points at the level of the free
surface in the basin, both on the surface itself and inside the tube, like A in the figure,
are at the same pressure, which is the atmospheric pressure pa; otherwise, it would not
be in equilibrium. However, the air column does not act on the horizontal section
A inside the tube. To what is the equilibrating force due? Torricelli stated that no air
could have possibly entered into the tube above the mercury. That space had to be
empty.Note that, at that time, themajority of scientists did not accept the existence of a
vacuum. If this is the case, he continued, the equilibrium is due to the weight of the
mercury column. Its pressure on the base inA is ρgh, where ρ is the density ofmercury.

To be historically precise, the Viviani and Torricelli experiment had been
anticipated by a similar and highly spectacular one made with water around 1641
by Gaspero Berti (ca 1600–1643). A reconstruction is shown in Fig. 1.8. G. Galilei

Fig. 1.8 The Berti’s
experiment. From “Technica
curiosa, sive mirabilia artis”
by C. Schott, 1687
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had stated that water cannot be raised in a pipe more than “18 arms”, which is about
10.5 m. Berti fastened a vertical tube to the façade of his palace in Rome, somewhat
longer, namely 12 m, to be safe, with a glass globe tightly fixed on the top. On the
bottom, the tube ended in a jar and was closed with a tap. The upper globe had an
opening in its top (C at the top of the figure). Globe and tube were completely filled
with water through that opening, which was then closed with a cork. The tap near
the road was opened. Water started to run out in the jar, and the free surface of
water moved down in accord, for a while. But soon, a steady level was reached,
which did not change until the following morning. When, at that time, the cork on
the globe was removed, all the water poured out. Berti measured the height of the
column, from the free surface in the jar. It was just 18 arms.

The Torricelli barometer is still used in laboratories. With the known values of
ρ = 13.596 × 103 kg/m3 and of g, we can determine the atmospheric pressure, by
measuring the height h. Under normal conditions at sea level, it is h = 760 mm.
The atmospheric pressure is then

pa ¼ qgh ¼ 13:596� 9:81� 0:76 ¼ 1:012� 105 Pa: ð1:11Þ

We have already used this value. Obviously, at a given point, the pressure varies
in time depending on the weather conditions. The just-calculated value is an
average, which is assumed by definition to be the standard atmospheric pressure. It
is often used as measurement unit, called atmosphere (atm)

1 atm ¼ 1:012� 105 Pa: ð1:12Þ

Another often used unit, non-SI, is the pressure of a 1 mm height mercury
column, called a torr. Clearly, one torr is 1/760 of an atmosphere

1 torr ¼ 133:2 Pa ¼ 1:332 hPa: ð1:13Þ

In practice, the atmospheric pressure is measured with barometers, which are
handier to use. A common type is the aneroid barometer, which consists of a box
partially exhausted of air. Its top is an elastic disk, which budges inwards under the
pressure to measure. The deformation moves a pointer connected to the disk
through suitable levers that amplify the displacement. The pointer moves on a scale,
on which the pressure values can be directly read. While the Torricelli barometer
gives absolute measurements, the aneroid barometers give only relative ones. Their
scale must be calibrated on an absolute instrument.

We now consider how the pressure of a gas, subject to its weight, varies with the
height, or the altitude in the atmosphere. To make things simpler, we assume the
temperature to be uniform, namely independent of the height. Obviously, this is not
the case in the atmosphere over large differences of altitude, but it is approximately
true over moderate drops (a few hundred meters). In a gas at constant temperature,
there is a well-defined relation between pressure and density; this is the gas law,
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which we shall study in the next chapter. We anticipate here that it simply states
that the density is proportional to the pressure, or p=q ¼ const.

We take the z-axis, as usual, to be vertical upward with its origin at sea level. We
indicate with p0 and ρ0 the pressure and the density at this level. The gas law tells us
that

q zð Þ ¼ q0
p0

p zð Þ: ð1:14Þ

Using the Stevin law for a column of height dz, we have

dp ¼ �q zð Þgdz ¼ � q0
p0

gp zð Þdz

and, spearing the variables

dp
p zð Þ ¼ � q0

p0
gdz:

This is a differential equation. The unknown is the function p(z). As we have
only one of the two variables on each side, we solve it by integration from the
reference height z = 0 to the generic z

Zz

0

dp
p zð Þ ¼ � q0

p0
g
Zz

0

dz ) ln
p zð Þ
p0

¼ � q0
p0

gz:

We take the exponential of both sides, obtaining

p zð Þ ¼ p0e
�z=k with k¼ p0

q0g
: ð1:15Þ

The gas law immediately gives the density’s corresponding dependence on the
altitude

q zð Þ ¼ q0e
�z=k: ð1:16Þ

We see that both the density and the pressure decrease exponentially with
increasing altitude. The constant λ defined in Eq. (1.15), which has the dimension
of a length, is the drop over which the pressure and the density reduce their value by
a factor 1/e. In the atmosphere, λ is of the order of 7–8 km. Figure 1.9 graphically
represents Eqs. (1.5) and (1.16).

Communicating vessels is the name given to a set of connected containers open
on their upper surface. If a liquid is introduced into any of them, it will occupy all
the connected vessels. At equilibrium, if the liquid is homogeneous, all the free
surfaces are at the same level, whatever the shape of the vessels.
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1.4 Archimedes Principle

The Archimedes principle, established by Archimedes of Syracuse (287 BC–212
BC), states that a body immersed in a fluid experiences an upward directed force
equal in magnitude to the weight of the fluid it displaces. It is called buoyancy or
upthrust. The buoyant force is present whether the body is completely or partially
immersed in the fluid and is applied in the center of mass of the displaced fluid. To
demonstrate the principle, let us start by thinking that the body is not present and
consider the volume of fluid that will be occupied by the body when we put it back.
This volume being at rest, the surface forces balance the volume force. The latter is
the weight of the fluid (that will be displaced by the body). It is applied in the center
of the fluid mass. If we now put the body back in its place, the surface forces do not
change, the surface being the same. Their resultant is the weight of the displaced
fluid mass.

If Vi is the immersed volume and ρl is the density of the fluid, the buoyancy is

FA ¼ �Viqlg: ð1:17Þ

Example E 4.1 An iceberg of density ρi = 900 kg/m3 is immersed in seawater
(density ρw = 1030 kg/m3). Find the emerged fraction.

Calling Vi and Ve the immersed and emerged volume, respectively, the buoyancy
is FA ¼ qwVig and the weight Fw ¼ qi Vi þVeð Þg. For equilibrium, it should be
qi Vi þVeð Þg ¼ qwVig, or

Ve

Vi
¼ qw � qi

qi
¼ qw

qi
� 1:

The emerged fraction is then

Ve

Vi þVe
¼ qw � qi

qi
¼ 0:14:�

1.0

0

1.0

0.50.5

0 10 20 30 40

p(atm) ρ(kg/m3)

p

ρ

z

km

Fig. 1.9 Pressure (left scale)
and density (right scale) in
normal atmosphere versus
altitude
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Consider now the case of a homogeneous body of density ρb completely
immersed in the liquid. The volumes of the body and of the displaced liquid
coincide. Call them V. Both forces are applied in the center of mass of the body.
Their moment is zero. The resultant force is

F ¼ Vi qb � qlð Þg: ð1:18Þ

which is vertical downward if the body is denser than the liquid, and upward in the
opposite case.

1.5 Fluid Equilibrium in the Centrifugal Field

Consider now a homogeneous liquid in a cylindrical container, which rotates about
its axis at constant angular velocity ω. After an initial transient, the liquid assumes
an equilibrium configuration in which the free surface is a rotation paraboloid, with
its axis on the rotation axis.

The problem is conveniently studied in a frame rotating with the cylinder and z-
axis on the geometrical axis. The x and y axes are horizontal and rotate with the
cylinder. The reference is not inertial and we must include the apparent force, which
is the centrifugal force. Both this force and the weight are proportional to the mass,
both being volume forces.

The centrifugal force per unit mass is the centrifugal acceleration, which is

proportional to the distance from the axis r0 ¼ x2 þ y2ð Þ1=2 and is directed outwards
(see Fig. 1.10). Calling r′ the position vector taken from the axis, the centripetal

z

r'

Fig. 1.10 A liquid in a
rotating cylinder
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acceleration is then ac ¼ x2r0. Consequently, the field in which the liquid is
immersed is

G ¼ gþx2r0 ¼ x2x;x2y;�g
� �

: ð1:19Þ

The field is conservative and its potential, by integration, is

/ x; y; zð Þ ¼ � 1
2
x2 x2 þ y2

� �þ gzþ const: ð1:20Þ

Under equilibrium conditions, the free surface is an equipotential, ϕ = const,
which we can solve for z and write

z ¼ x2

2g
x2 þ y2
� �þ z0;

where z0 is a constant to be determined. This is the equation of a round paraboloid;
z0 is the value of z for x = y = 0, and hence is the vertex of the paraboloid. It can be
calculated knowing the volume of the liquid.

1.6 Viscosity

In Sect. 1.1, we saw that, in general, the surface forces acting on a fluid element
have a component normal to the surface, which is the pressure, and one parallel to
the surface, which is the shear stress. The latter are zero if the fluid is at rest or if it
moves all together, as in the rotation in a stationary regime. Contrastingly, shear
stresses are present if parts of the fluid, both liquid and gas, move relative to one
another. We shall now begin to study these phenomena.

Consider two fluid elements flowing one over the other, as shown in Fig. 1.11.
We call v1 and v2 the velocities of the two elements, which are parallel to the
contact surface, which we call dS. We consider the case that υ1 > υ2. Like the
friction, the shear stress always acts in opposition to the relative motion of the
elements. In other words, the shear stress force direction is always opposite to the
relative velocity. In the case we are considering, υ1 > υ2, the direction of the shear

stress dF Sð Þ
12 exerted by element 1 on element 2, which is slower, is such as to

accelerate it, while the direction of the shear stress dF Sð Þ
21 exerted by element 2 on

v1

v2
dF 12

(S)
dF 21

(S)1

2

Fig. 1.11 Two fluid elements
in relative motion
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element 1, which is faster, is such as to decelerate it. The two forces are an
action-reaction pair and, as such, are equal and opposite.

We already know that the surface forces are proportional to the surface on which
they act. In addition, experiments show, as we shall see, that the shear stress is
proportional to the derivative of the magnitude of the velocity in the direction
n normal to the considered surface dS, namely that

dF Sð Þ ¼ g
@t
dn

dS; ð1:21Þ

where η is an important quantity characteristic of the fluid, which is called viscosity
and, more specifically, dynamic viscosity (to distinguish it from keninematic vis-
cosity, as we shall see in Sect. 1.11). For a given fluid, viscosity depends on
temperature and pressure. The physical dimensions of viscosity, such as one sees in
Eq. (1.21), are

g½ � ¼ ML�1 T�1� � ¼ pT½ �; ð1:22Þ

where p in the last member stands for pressure. The unit of viscosity is kg m–1 s–1

or, more frequently, Pa s. Notice that in the literature, one can still find an old unit
called poise, which is 1 g cm–1 s–1, hence equal to 0.1 Pa s.

Table 1.1 examples of the viscosity of several liquids and gases. In two relevant
cases, water and air, the values at several temperatures are reported. Notice that the
viscosity values span more than ten orders of magnitude. Notice also that the
viscosity of the liquids usually decreases with increasing temperature, while that of
gases increases.

Table 1.1 Viscosity of liquid and gases

Liquid Temp. (°C) η (µPa) Gas Temp. (°C) η (µPa)

Water 0 1.787 Air −32 15.39

20 1.002 0 17.08

40 0.653 18 18.27

60 0.467 40 19.04

80 0.355 Argon 20 22.17

100 0.282 Helium 20 19.41

Methyl alcohol 20 0.597 Hydrogen 20.7 8.76

Glycerin 20 1.49 Neon 20 31.11

Olive oil 20 84 Nitrogen 27.4 17.81

Molasses 109 2.8 × 106 Oxygen 19.1 20.18

Pitch 20 1010 Methane 20 10.87

Liquid tin 500 1.2 Water vapor 100 12.55

Liquid zinc 389 1.31 300 20.24
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The shear stress can be obtained dividing Eq. (1.21) by the surface element dS,
which gives

s ¼ dF Sð Þ

dS
¼ g

@t
dn

: ð1:23Þ

The physical meaning of viscosity can be understood considering the molecular
structure of fluids. This will be done in Sect. 6.3.

We now go back to the liquid in a rotating cylinder of the previous section,
where we considered its motion in a stationary regime. Suppose now the cylinder
containing the liquid to be initially at rest. The surface of the liquid is a horizontal
plane. Immediately after the rotation is started, the surface is still plane and the
liquid is still at rest, while the surfaces of the cylinder rotate. The viscosity between
the walls of the cylinder and the liquid elements accelerates layers of fluid,
beginning with those closer to the walls, and gradually reaching the innermost ones.
After a transient, the situation becomes stationary. The liquid now rotates as a solid
body; there are no relative motions between layers of liquid, and the shear stresses
are zero.

The validity of Eq. (1.21) can be verified experimentally with the device shown
in Fig. 1.12. It is also used to measure viscosities and is called a viscometer. The
internal cylinder C1 of radius r1 is rather massive and hangs on a torsion wire,
bearing an index I to measure the rotation angles. The internal cylinder is contained
in an external one, coaxial with it, with C2 of radius r2, a bit larger than r1. Hence,
we have Dr � r2 � r1 � r1. The external cylinder is fixed to an axis that can be put
into rotation by an engine (not shown in the figure). The interspace between the
cylinders is filled with the liquid under study up to the level AA. Let h be the height
of the immersed part of the internal cylinder.

We now put in rotation C2 with a certain angular velocity ω, corresponding to
the velocity υ = ωr of its wall. We observe the index I moving to a new aquarium

I

A A

C1
C2

h

ω

r1r2

Δr

Fig. 1.12 A viscometer
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position, rotated at an angle α relative to, the position in absence of rotation. The
device is a torsion balance; the angle α (and the elastic moment) is proportional to
the moment M acting on the cylinder C1. This is the moment due to viscosity.

We can think of the liquid as being composed of coaxial cylindrical layers. The
outermost layer, which is in contact with cylinder C2, is at rest relative to it, namely
it moves with its velocity υ. Similarly, the innermost layer is in contact with
cylinder C1 and is still. The velocity of the intermediate layers varies gradually
between these two values, maximum outside, minimum inside.

Equation (1.21) tells us that the viscous force is directly proportional to the area
of the two surfaces in relative motion, to the difference of velocity (namely υ,
because C1 is at rest) and inversely to their distance. The proportionality coefficient
is the viscosity that we want to measure.

Consider the liquid layer of height h and angular width dϕ (see Fig. 1.13). The
internal and external surfaces are, respectively, dS1 ¼ hr1d/ and dS2 ¼ hr2d/.
They are not exactly equal, but they are close to being so, because the internal and
external radiuses are, by construction, almost equal. We can then approximate each
area with the mean of the two. If r is the mean of r1 and r2, this is dS ¼ hrd/. The
shear force on each of the two surfaces given by Eq. (1.21) is

dF ¼ g
t
Dr

dS ¼ g
t
Dr

rhd/:

The force is parallel to the relative velocity, and hence is perpendicular to the
axis. Its moment about the axis is

dM ¼ rdF ¼ g
t
Dr

r2hd/:

Integrating we have

M ¼ ghr22p
t
Dr

¼ gr2S
x
Dr

; ð1:24Þ

where, we recall, S = 2πrh is the area of the moving surfaces and x ¼ t=r is the
angular velocity of C1. We obtain the moment M from the measurement of the
rotation angle α of the torsion balance.

We can now check the validity of Eq. (1.21). If we vary the angular velocity ω
of the external cylinder, we observe that α varies in proportion. If we change the

r1

r2

dφ

Fig. 1.13 Section of the
viscometer of Fig. 1.12
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height h of the liquid, for example, using only half of it, and consequently halving
the facing surfaces, we see that α varies in proportion too. We can verify the
dependence on the distance Δr by changing the internal cylinder with one of smaller
or larger radius. These tests show that Eq. (1.21) holds.

On the other hand, we can use the device to measure the viscosity of a liquid,
measuring the moment M and the stationary state angular velocity ω and knowing
the other quantities S, r and Δr by construction. This is given by

g ¼ MDr
r2Sx

: ð1:25Þ

1.7 Incompressible Flow

We now begin the study of hydrodynamics, or fluid dynamics. As we know from
everyday experience, the motions of fluids can be very different, ranging from rather
simple to very complicated. For example, the motion of the water in a river in a
stationary regime is simple, while being much more complicated in a mountain
creek or waterfall. The motion of air in the wake of an airplane or of a car is
extremely complex.

We shall start from the simplest cases or even idealizations. We shall then move
on to more realistic situations. In this chapter, we shall limit the discussion to
situations in which the density of the fluid can be considered constant, indepen-
dently, in particular, of pressure. In other words, we shall assume the fluid to be
incompressible. Its motion is called incompressible flow. This approximation is
good for liquids, as is obvious, but can also be applied to the gases in several
dynamical problems. As a matter of fact, the volume changes during motion are
generally very small, with the exception of instances in which the velocity is close
to the speed of sound (340 m/s for air at ambient temperature).

We shall describe the motions in an inertial reference frame. We imagine the
fluid divided into physically infinitesimal elements. Let us consider the situation in
a certain instant t. In that instant, the velocity of the element in the position (x, y,
z) is, say, v(x, y, z, t). The velocity is a vector function of coordinates and time. In
the next immediate instant, we shall find a different fluid element at the same point,
moving, in general, at a different speed. A vector function of the coordinates and,
possibly, of time is called a vector field. If the vector is independent of time, the
field is said to be stationary. The field we are considering is the velocity field. If the
velocity field is stationary, and we fix our attention to any point in the fluid, all the
different fluid elements that we see going through that point have the same velocity.
For example, the water that goes through a section of a river in a stationary regime
is always physically different, but its velocity is always the same.

In the first volume of the course, we studied force fields, which are vector fields
exactly similar to the velocity field. In that instance, we found it useful to draw the
field lines. This is also very useful now. The lines of the velocity field are called
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streamlines. A streamline is a line drawn in the fluid such that its tangent at each
point is parallel to the local fluid velocity. The streamlines are infinite in number. At
any point, there is only one streamline. The set of all the streamlines at a given
instant constitutes the instantaneous flow pattern.

Let us examine the procedure for drawing the field lines, say at a certain instant t,
to take into account non-stationary situations. We shall obtain a shot of the field at
the considered instant. We start from point 1 in Fig. 1.14 and consider the velocity
v1 of the fluid element passing at the considered instant. We make a small step δs in
the direction of v1. We reach point 2. We consider the velocity v2 of the fluid
element passing in 2 at the same instant t and make a small step in its direction, and
so on. In this way, we draw a broken line, which, going to the limit of infinitesimal
step length, becomes a curve. This is the flow line.

We can visualize the flow pattern in a liquid with the following artifice. We mix
into the fluid a number of small particles, which we can see, and that can remain in
suspension. We can use aluminum powder in water, for example. The particles
make the fluid elements somewhat visible. We can take pictures and films. If we
take a photo with an exposure time Δt, every particle will appear as an oriented
segment v Δt, which is the displacement of the particle in the exposure time. Hence,
every oriented segment is proportional to the velocity at that point and has its
direction. We obtain a snap shot of the velocity field at the considered instant.

In a non-stationary field, the streamlines change continuously, while in a sta-
tionary field, they do not. We shall consider only stationary conditions in the
following, up to the point where it is advisable to do the contrary.

A second important concept is the flow tube, also called a stream tube. Consider
any closed curve, like e Γ in Fig. 1.15. A flow tube is the set of the flow lines that
pass along the points of this curve. A flow tube of infinitesimal section is called a
flow filament or stream filament.

It is often useful to look at the motion of a fluid from a different, complementary
point of view. Let us fix our attention on a certain fluid element. We might paint it
mentally in red, for example. We mark it by stating that it is the element that passes

1 2 3 4

v1 v2

v3
v4

δs

Fig. 1.14 Building a
streamline

Γ

Fig. 1.15 A flow tube
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along the point (x0, y0, z0) at time t0. We look at its motion. Our element describes a
trajectory, which we call the path line. At a subsequent instant t1, we see another
element passing at (x0, y0, z0). We mentally paint it blue. We look at it and see its
trajectory. In general, the red and blue trajectories may be different. However, if the
velocity field is stationary, they are equal. It is evident that in a stationary field, the
path lines and the streamlines coincide.

Let us now go back to the flow tube in a stationary regime. Indeed, it behaves
exactly like a tube. No flux exits or enters from its lateral walls, even if these are
ideal and not physical. Indeed, by definition, the velocity is tangent to its walls and
consequently cannot have any normal component. This observation has the fol-
lowing important consequence.

Consider a flow tube having a section small enough to allow for considering the
velocity to be equal at all the points of a given normal section (but obviously not in
the different ones). Consider two normal sections S1 and S2, as in Fig. 1.16. Call v1
and v2 the velocities of the fluid in the two sections.

As the mass is conserved and as no mass can go through the lateral surface, the
mass that crosses the section S1 in any time interval dt must be equal to the mass
crossing S2 in the same time interval. Call it dm. The mass that crosses S1 in dt is the
mass contained in the volume having S1 as the base and υ1dt as height, hence,
dm = ρυ1dt. Similarly, through S2, it is dm = ρυ2dt. Hence,

qS1t1dt ¼ qS2t2dt: ð1:26Þ

Considering that this equality holds for every pair of sections of the tube, the
quantity Qm = ρSυ is constant on all the sections of the tube. Its physical meaning is
to be the fluid mass crossing any section in one second and is called the mass flow
rate

Qm ¼ qSt: ð1:27Þ

When, as we are assuming, the density is constant, the quantity

QV ¼ St: ð1:28Þ

is constant too. It is the fluid volume crossing the section per second, and is called
the volumetric flow rate.

S1

S2
dm

dm

υ1dt

υ2dtFig. 1.16 A section of an
infinitesimal flow tube
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A consequence of the invariance of the flow rate along a flow tube is that, if the
section of the tube shrinks, the velocity increases, as shown in Fig. 1.17.
Graphically, this implies that the flow lines are denser where the velocity is larger.

1.8 Bernoulli Theorem

In this section, and in the next one, we shall consider the dynamics of the ideal
fluid. This is defined as having constant density and zero viscosity, in other words,
being incompressible and inviscid. Obviously, ideal fluids do not exist. However,
real fluids can often be considered as almost ideal ones.

We shall consider the motion of an ideal fluid in the field of weight force. In
absence of viscosity, the forces are conservative, and we can use the mechanical
energy conservation principle. We shall find an important result established in 1738
by Daniel Bernoulli (1700–1782), known as the Bernoulli theorem. We shall see a
few examples in the next section.

The Bernoulli theorem is based on the assumptions that the fluid is ideal and the
regime is stationary.

Figure 1.18 represents a portion of a flow filament between two sections AA and
BB. The z-axis is vertical upward. The first section has area dS1 (which is
infinitesimal). Its height is z1. The pressure at that point is p1 and the fluid velocity
is υ1. Similarly, the second section has area dS2; the height is z2, the pressure is p2
and the fluid velocity is υ2. Let us consider the mass of fluid laying between the two
sections at the instant t and call it Δm. Soon after, at the instant t + dt, the mass
Δm has moved and is now between the two sections A′A′ and B′B′. The distance
between AA and A′A′ is obviously υ1dt, and the distance between BB and B′B′ is
υ2dt. The mass dm that crosses both sections in dt is the same, and consequently, as
we already saw in the preceding section,

dm ¼ qdS1t1dt ¼ qdS2t2dt: ð1:29Þ

It will be useful to observe that the two volumes are also equal, given that the
density is constant. Namely

small section
high velocity

large section
small velocity

Fig. 1.17 Varying section
flow tube
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dV ¼ dS1t1dt ¼ dS2t2dt: ð1:30Þ

We now apply the kinetic energy theorem to the motion of the mass Δm from the
first section to the second. The mass moves under the action of the following forces:

• the weight, which is a conservative volume force
• the pressure forces on dS1 and dS2, which are normal to those surfaces and

consequently parallel to the displacement
• the pressure forces on the lateral surface of the filament, which are normal to the

displacement (because the fluid is non-viscous) and consequently do not do
work.

The work, say dWg, done by the weight is easily calculated observing that the
mass of fluid between the sections A′A′ and BB is the same before and after the
displacement. All goes as if the mass dm had moved from position z1 to the position
z2. Hence,dWg ¼ g z1 � z2ð Þdm:

The work of the pressure forces on the section dS1 is equal to the magnitude of
the force, p1 dS1, times the displacement υ1dt. Force and displacement are in the
same direction. This is similar for the work on section dS2, taking into account that
here force and displacement have opposite directions. Hence, we have

dWp ¼ p1dS1t1dt � p2dS2t2dt:

The sum of the works is equal to the variation of the kinetic energy. To find the
latter, we can again imagine that everything goes as if the mass dm would have
changed velocity from υ1 to υ2. Hence,

dUK2 � dUK1 ¼ 1
2
t22dm� 1

2
t21dm:

dS2

dS1

dm

dm

υ
2dt

υ
1 dt
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Fig. 1.18 Fluid motion in a
flow filament
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We simplify the three expressions we just found, all of them having the volume
dV occupied by dm = ρdV and using Eq. (1.30), obtaining

dWg ¼ qgz1dV � qgz2dV

dWp ¼ p1dV � p2dV

dUK2 � dUK1 ¼ 1
2
qt22dV � 1

2
qt21dV :

The kinetic energy theorem states that

dUK2 � dUK1 ¼ dWg þ dWp:

Substituting the above expression and simplifying dV everywhere, we have

1
2
qt22 �

1
2
qt21 ¼ qgz1 � qgz2 þ p1 � p2

and, then, moving the quantities relative to the same section to the same side

p1 þ qgz1 þ 1
2
qt21 ¼ p2 þ qgz2 þ 1

2
qt22: ð1:31Þ

Finally, considering that the two sections in question are arbitrary, we can state
that in all the sections of a fluid filament

pþ qgzþ 1
2
qt2 ¼ constant: ð1:32Þ

In other words, the Bernoulli theorem states that, in a stream filament of an ideal
fluid in a stationary regime, the sum of the pressure, the potential energy per unit
mass (ρgz) and the kinetic energy per unit mass (ρυ2/2), is constant. Notice,
however, that this sum may be different in different stream filaments of the same
fluid.

1.9 Applications of the Bernoulli Theorem

In this section, we shall study several applications of the Bernoulli theorem.
The Torricelli theorem. Figure 1.19 shows a tank of section S containing an

ideal liquid. On the lower part of its wall, there is a hole O, whose section is small
compared to S. The height of the free surface above the hole is h. The liquid exits
from the hole with velocity υ, which is a function of h. The atmospheric pressure pa
acts on the free surfaces of the liquid, both on the horizontal one inside the tank and
on the jet outside O. The velocity field can be considered stationary. The velocity of
the fluid elements near the upper surface is small relative to υ. Consequently, the
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flow lines are sparse in the upper part, becoming denser close to the hole (see
Fig. 1.19). We apply the Bernoulli theorem to any of these flow lines between any
points on the upper free surface, like A in the figure, and O. We take the origin of
the heights in O and write

pa þ qgh ¼ pa þ 1
2
qt2

or

t ¼
ffiffiffiffiffiffiffiffi
2gh

p
: ð1:33Þ

Notice that the velocity of outflow is independent of the density of the liquid,
being equal to the velocity of a body free falling along the drop h from rest. This is
obviously a consequence of energy conservation in absence of dissipative forces,
which we have neglected.

One might think to calculate the rate of liquid outflow simply as the product of
the velocity in the jet and the area of the hole. This is not true, because the velocities
of the fluid elements in the jet have a component inwards toward the axis of the
stream. Consequently, the section of the jet decreases in the initial part. After that,
the velocities become parallel and the jet section becomes constant. The distance at
which the contraction ceases, and the ratio between the jet cross-section there and
the area of the hole, known as the contraction coefficient, depends on the shape of
the discharge tube. The product of the area of this section and the velocity gives the
rate of outflow.

The Venturi effect was discovered by Giovanni Battista Venturi (1746–1822).
The effect offers a practical method to measure the average speed of a gas or a
liquid in a duct. It is based on the measurement of the pressure change due to a
change in the diameter of the duct. To this aim, one inserts into the duct a segment,
as shown in Fig. 1.20, called a Venturi tube. The standard section S1 of the pipe is
reduced to S2 and then brought back to the initial value. The shape is designed so as
not to alter the flow in the duct. A manometer measures the difference between the
pressures p1 and p2 at the two sections.

0

z

h Spa

pa v

O

A

Fig. 1.19 The Torricelli
theorem
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Considering a horizontal tube, there is no contribution of the weight force, and
the Bernoulli theorem gives

p1 þ 1
2
qt21 ¼ p2 þ 1

2
qt22

or

p1 � p2 ¼ q
2

t22 � t21
� �

:

The velocity increases when the section of the pipe shrinks from S1 to S2,
because the flow is constant, as t2 ¼ t1S1=S2. We use this relation to eliminate υ2,
obtaining

t1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1� S21=S

2
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p1 � p2ð Þ

q

s
: ð1:34Þ

This relation gives the velocity υ1 of the unperturbed fluid from the measurement
of the pressure drop p1–p2, being the sections and the fluid density known. To be
precise, the velocity of the fluid is somewhat different at different points of the
sections, and we want to measure the mean values of υ1 and υ2. Consequently,
Eq. (1.34) is not exact and, in practice, the instrument must be calibrated.

As a matter of fact, the Venturi effect is more general. It is summarized in
Fig. 1.21. When the section of a duct decreases, the velocity of the fluid increases.
This is a consequence of the conservation of the mass. The Bernoulli theorem
allows us to add that, if the velocity increases, the pressure decreases. This is a
consequence of energy conservation.

The Pitot tube, invented by Henri Pitot (1695–1771), is used to measure the
velocity of a fluid current, or of an object moving in a fluid, like an airplane. It is
shown in Fig. 1.22. It consists of a thin tube parallel to the current flow.

The flow lines, not altered upstream of the tube, open up when they meet its
rounded head and then lap the lateral surface. In the center of the head, O, there is a
hole that communicates through a narrow tube with one of the inputs of a differ-
ential manometer (an instrument, not shown in the figure, that measures the

S1
S2

p1

p2

v1
v2

p1 p2

Fig. 1.20 The Venturi tube
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difference between the pressures at its two inputs). The flow line on the axis ends in
O, where the velocity reduces to zero. Such a point is called a stagnation point.

In A, which is sufficiently far from O on the side of the tube, the fluid moves
practically, at unaltered speed. This is consequently the velocity we want to mea-
sure; let us call it υ. The pressure is also the undisturbed one p. A few small holes
are drilled into the sides of the tube. In this way, the pressure inside the large tube is
also p. It is connected to the second input of the differential manometer.

We now apply the Bernoulli theorem to the fluid flow filament in O, between
point O and any point upstream where the fluid is undisturbed. There, the pressure
is p and the velocity υ. Let pO be the pressure in O. The Bernoulli theorem then
gives

pþ 1
2
qt2 ¼ p0:

As we said, we measure the pressure difference, that is

p0 � p ¼ 1
2
qt2;

which is called the stop pressure, from which we find the velocity

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pO � pð Þ

q

s
: ð1:35Þ

The device, as described, was the product of Ludwig Prandtl (1875–1953). It is
commonly used to measure the velocity of fluid currents or of objects moving in a
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Fig. 1.21 The Venturi effect
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Fig. 1.22 The Pitot-Prandl
tube
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fluid. Notice that, for example, in the case of the plane, the measured velocity is
relative to the air, not to the ground. The effects of viscosity are, in general,
negligible.

Hydrodynamic paradox. We conclude with a final example, which, in contrast
with the previous ones, is only a curiosity. Figure 1.23 shows the section of a
device made of two parts. The upper part is a tube to which a perforated disk is
attached. The tube is connected to a pump blowing air at speed v. The lower part is
another disk, equal to the first one and kept parallel at a close distance from it. The
disks are horizontal. One would think that the air blowing should push away the
lower disk. However, just the opposite happens. The lower disk is attracted and
reaches an equilibrium position at a certain distance from the upper one.

The explanation is simple. The high-speed air jet that comes out of the tube
expands between the two disks. The fluid elements follow radial trajectories
towards the periphery. Their velocity decreases, becoming practically zero on the
rim of the disks. Now, we apply the Bernoulli theorem to two points of a radial flow
filament, one on the axis, one on the rim. Call p the pressure and υ the velocity at
the first point. At the second point, the pressure is the atmospheric one pa and the
velocity is zero. We have

pþ 1
2
qt2 ¼ pa:

Hence, p ≪ pa. The pressure difference attracts the disk, and the corresponding
force equilibrates the weight (provided this is not too large).

1.10 D’Alembert Paradox

Consider a solid sphere fully immersed in a perfect fluid flowing with horizontal
velocity v. The diameter of the sphere is small compared to the extension of the
current. The velocity field is stationary and, where not perturbed by the sphere,
uniform. Figure 1.24 shows the flow pattern around the sphere. Suppose the weight
to be balanced by the buoyancy, so that the sphere is in equilibrium in the vertical
direction.

pa

v

Fig. 1.23 Hydrodynamic
paradox
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The streamlines that are parallel and equidistant upstream and downstream then
open and close again symmetrically around the body. The middle streamline
upstream terminates at the point A. The fluid stops at this point, which is the
forward stagnation point. Let pA be the pressure in A and p the pressure upstream in
the undisturbed region along the same streamline. For the Bernoulli theorem, we
have

pA ¼ pþ 1
2
qt2: ð1:36Þ

Namely, the pressure in A is larger than in the unperturbed flow by qt2=2. The
overpressure produces a force pushing the body in the direction of the current.
However, we must also look at the downstream side. At point C, which is sym-
metric to A and is the backward stagnation point, the pressure is, say, pC.
Downstream, in the unperturbed region along the same streamline, the pressure is
p. The Bernoulli theorem applied along this streamline gives

pC ¼ pþ 1
2
qt2: ð1:37Þ

We see that pC is equal to pA. Namely, the pressure forces on the middle plane
balance each other. The resultant is zero. We should also consider, however, the
effects of the pressure forces all around the body. Let us fix our attention on one
streamline. Being the flow stationary, this is also a path line, namely the trajectory
of the fluid elements. Being the trajectory curved, the fluid element accelerates. The
acceleration is due to a force exerted by the body. The force is normal to the surface
because there is no viscosity. The fluid elements exert a force on the body that is
equal and opposite, for the action and reaction law. In conclusion, a force normal to
the surface acts at every point of the surface of the body. Both the magnitude of the
force and whether it is directed towards or outside the surface depend on the flow
pattern. Clearly, the resultant pressure force in the forward part of the body BAD is
in the direction of the current, and the resultant of the backward part BCD is
opposite to the current. In the present case, the flow pattern is perfectly symmetric,
and consequently, the magnitudes of the two resultants are equal; they balance each
other. The sphere does not move.

The argument we have just developed was developed in 1752 by Jean le Rond
D’Alembert (1717–1783). To be sure, he proved the theorem for the equivalent case
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υ
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Fig. 1.24 Streamlines
around a sphere in an
inviscous and incompressible
fluid
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of a sphere moving in a fluid at rest. He proved that the drag force on a symmetric
body moving at constant velocity in an inviscous and incompressible fluid is zero.
The conclusion looks to be in conflict with evidence and is known as the
D’Alembert paradox. We know that all solid bodies immersed in a current are
subject to a drag force, which can be larger or smaller, but is never zero. This is due
to viscosity, which is neglected in the D’Alembert theorem, but is always present.
Viscosity has two consequences. First, the forces exerted by the fluid elements
lapping the body have components tangent to the surface. The tangent components
are in the direction of the current, both in the forward and in the backward parts of
the body. Second, the flow pattern becomes forward backwards asymmetric, with
the effect that the pressure forces do not balance any more. We shall study these
phenomena in Sects. 1.13 and 1.14.

1.11 Laminar Viscous Flow

We shall now study fluid motions in the presence of viscosity. We start by con-
sidering a geometrically simple case. An incompressible fluid of viscosity η is
included between two parallel horizontal plates, AA and BB in Fig. 1.25. We keep
BB still and have AA moving with velocity v0 parallel to its plane. The fluid layer in
immediate contact with AA remains adherent to the plate and moves with its con-
stant velocity v0. Similarly, the layer in contact with BB has zero velocity. We can
imagine the rest of the fluid divided into parallel layers, the velocities of which vary
continuously from zero to v0. Under these conditions, the motion is said to be
laminar. The situation is realized, for example, when two parallel metallic surfaces
slide one over the other, being separated by a lubricant. Another example of laminar
flow is in the viscometer we considered in Sect. 1.6. In this case, the fluid layers are
concentric cylinders, which rotate about the axis.

The geometry we have just considered is simple to describe but difficult to put
into practice. The condition most usually met, and that which we shall now study, is
the flow of a fluid within a cylindrical duct, of radius R. In this case, we can imagine
the fluid divided in cylindrical layers, moving in the direction of the axis, each at a
possibly different speed. In particular, the layer in contact with the wall is at rest.
The velocity of the layers increases while moving inside, and is at a maximum at
the axis. The flow we are considering is laminar.

h
v(x)

x

0

v0A A

B B

Fig. 1.25 Laminar flow
between two plane surfaces
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As a matter of fact, the laminar flow is not the only possible one. It is the flow
occurring for velocities below certain limits, which depend on the geometrical
dimensions of the solid bodies immersed in or limiting the flow. As we shall see in
the following sections, when the velocity becomes higher than these limits, the
regular layers’ stratification is destroyed by the formation of vortices, which mix up
the fluid. This regime is called a turbulent flow. In this section, we shall study the
laminar plane and cylindrical flows.

The plane laminar flow is the simplest geometrically. With reference to
Fig. 1.25, we call x the distance from the plate AA. Consider two fluid elements,
namely two infinitesimal portions of two adjacent layers of infinitesimal area dS.
They exert one on the other equal and opposite forces directed to slow down the
relative motion, as we discussed in Sect. 1.6. The force per unit surface, the shear
stress, is, for Eq. (1.23)

s ¼ dF Sð Þ

dS
¼ g

@t
dx

: ð1:38Þ

The symmetry of the problem requires the stress to be the same in all the
separation surfaces between the layers, in other words, τ to be independent of
x. Then, for Eq. (1.38), the gradient of the velocity should be independent of x too,
namely @t=dx ¼ constant. Through integration, we have t ¼ axþ b, where a and
b are the integration constants. We find them imposing the boundary conditions
υ = 0 for x = 0 and υ = υ0 for x = h. In conclusion, we have

t ¼ x
h
t0: ð1:39Þ

The velocity varies linearly with the distance from the plate, as shown in
Fig. 1.25.

We shall now consider the flow in a cylindrical duct. From the historical point of
view, we observe that, even if the existence of two types of flow, laminar and
turbulent, was known, the first precision experiments were performed by the
German engineer Gotthilf H.L. Hagen (1797–1884), who published his results in
1839. The same results were independently obtained by the French physicist and
physiologist Jean L.M. Poiseulle (1797–1869), who published in 1840.

Consider the motion of a fluid in a horizontal cylindrical duct, of circular section
of radius R, in a laminar regime. Consider a length l of the tube and the pressures p1
and p2 at the two extremes. The fluid moves under the action of the pressure
difference Dp ¼ p1 � p2, called the pressure loss. The fluid element’s velocity
v being parallel to the axis of the tube, its magnitude υ is a function of the distance
r from the axis. We call υm its mean value. In practice, one measures the volumetric
flow rate QV, which is the volume of fluid going through a section in a second. The
mean velocity is the volumetric flow rate divided by the section.

Hagen used copper tubes a few meters long and with diameters of a few mil-
limeters. Poiseuille, who was interested in blood flow through the capillary veins,
experimented with smaller diameters, of a few tenths of a millimeter (that is, the
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diameter of a capillary vein). Both authors established that the volumetric flow rate
is directly proportional to the pressure drop and to the fourth power of the radius
and inversely to the length of the tube. The Hagen-Poiseuille law is

QV ¼ Dp
l

p
8g

R4 ð1:40Þ

where η is the fluid viscosity. Intuitively, one might expect QV to be proportional to
the tube section, namely to the second power of the radius. We shall understand the
reason for the fourth power with the following analysis.

As we have already stated, we can consider the fluid to be divided in coaxial
layers, moving with different velocities. As a consequence of the symmetry of the
problem, the magnitude of the velocity is a function of the distance from the axis
r alone. This is the function, call it υ(r), we now want to find. We can write
Eq. (1.23) for the shear stress as

s ¼ dF Sð Þ

dS
¼ g

@t rð Þ
dr

: ð1:41Þ

Consider the fluid volume in the cylinder coaxial with the tube of radius r and
length l. The force acting on its surface has magnitude equal to the shear stress τ,
Eq. (1.41), times its surface, 2πrld, and direction parallel and opposite to the
velocity. As the regime is stationary, the velocity is constant and the resultant force
must be zero. The equal and opposite force is due to the pressure difference
Δp between the two faces of the cylinder. Its magnitude is Δp times the area of a
face πr2. We can write

pr2Dp ¼ �2prlg
@t rð Þ
@r

or

@t
@r

¼ � Dp
2lg

r:

Through integration, we get

t ¼ � Dp
4lg

r2 þ const:

We determine the integration constant from the boundary condition that the
velocity is zero on the surface of the tube, namely υ(R) = 0. Finally, we have

t rð Þ ¼ Dp
4lg

R2 � r2
� �

: ð1:42Þ
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We have thus found that the velocity field has a parabolic profile, as shown in
Fig. 1.26. The velocity varies from zero on the surface to a maximum value on the
axis, equal to Dp

4lgR
2.

Let us now determine the volumetric flow rate QV. We must take into account
the dependence of the velocity on the distance from the axis, which we have just
found. Consider the circular zone with its center at the axis and radiuses r and
r + dr. Its area is 2πrdr. The volume of fluid crossing this area in one second is the
volume of a cylindrical annulus with that area as the basis and height equal to the
velocity of the fluid at r, namely dV ¼ t rð Þ2prdr. Using Eq. (1.42) for υ(r), we
have

dV ¼ pDp
2lg

R2 � r2
� �

rdr:

The volumetric flow rate is the integral of this expression between 0 and R,
namely

QV ¼ pDp
2lg

ZR
0

R2 � r2
� �

rdr ¼ pDp
2lg

ZR
0

R2 � r2
� �

dr2:

The integral on the right hand side is immediately done, giving Eq. (1.40), the
Hagen-Poiseuille law. We now understand that the reason why the volumetric flow
rate is proportional to the fourth power of the radius of the duct is the parabolic
profile of the velocity field. Increasing the radius, the flow rate increases faster than
the section, because the central portion, in which the velocities are larger, becomes
a larger fraction of the total.

We now express the mean velocity υm. The flow rate being the product of υm and
the area of section πR2, we have

tm ¼ Dp
l

1
8g

R2; ð1:43Þ

which tells us, in particular, that the mean fluid velocity is proportional to the
pressure gradient Dp=l.

R v(r)r

Fig. 1.26 The velocity field
for a laminar flow in a
cylindrical duct
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A simple demonstration of the pressure drop in a fluidmoving through a horizontal
tube is shown in Fig. 1.27. If we take into account thatQV is the same at all the points
of the tube, the Hagen-Poiseuille law tells us that the pressure decreases along the tube
proportionally to the distance. The device is a glass tank full of water (colored to be
easily seen) up to the height h. A horizontal tube is connected to the tank near its
bottom. A few vertical tubes at equal distances allow for visual evaluation of the
pressure along the horizontal tube, from the heights of the water columns (h1, h2, h3).
The pressure at the bottom of the tank is pa + ρgh (pa is the atmospheric pressure) and
pa at the end of the tube. One observes that the pressure decreases linearly along the
tube. To be precise, there is always a small pressure drop between the bottom of the
tank and the beginning of the tube. For this reason, the line joining the heights of the
columns extrapolates a bit below the free surface in the tank.

It is sometimes interesting to know the mass crossing a section of the duct per
unit time, called mass flow rate Qm. This is simply the volumetric flow rate mul-
tiplied by the density ρ, because this is constant

Qm ¼ Dp
l
q
p
8g

R4: ð1:44Þ

This expression and the Hagen-Poiseuille law contain quantities depending on
the geometry of the tube and on the applied pressure drop, which are the same for
both expressions, a quantity that depends on the fluid, which is the viscosity η for
QV, the ratio η/ρ, for Qm. The latter enters into several fluid dynamics expressions
and is called kinematic viscosity or relative viscosity

m ¼ g
q
: ð1:45Þ

To avoid confusion when necessary, η is called dynamic viscosity. The units of
the kinematic viscosity are the m2s. In terms of kinematic viscosity, Eq. (1.45) is
obviously

Qm ¼ Dp
l

p
8m

R4 ð1:46Þ
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Fig. 1.27 Demonstration of
the linear pressure drop
foreseen by the
Hagen-Poiseuille law
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1.12 Turbulent Flow. Reynolds Number

The flow of a fluid in a pipe is laminar, as we have considered so far, only if the fluid
velocity is small enough. If the velocity exceeds certain limits, which we are going to
discuss, the flow becomes turbulent. We begin by discussing a simple experiment.
Figure 1.28 shows a tank containing a liquid, say water, connected at its lower
portion to a horizontal tube, through which we have the water running. A second
vessel, at a higher position, also contains water, colored to distinguish it. Its bottom
is connected to a tube of small cross-section, which is used to inject an axial flow into
the principal water current from the bigger tank. A tap R can be used to reduce or
increase the flow rate. All the parts are made of glass to allow for easy observation.

Initially, R is closed. If we open it a bit, we observe a colored water filament
flowing at the axis of the horizontal tube. It keeps its identity, without mixing with
the main current, even if the tube is rather long. If we gradually open the tap further,
the velocity of the colored filament continually increases, becoming larger and
larger than the speed of the main current, with which it is in contact. Still, the
filament maintains its identity. The flow is laminar. The situation is stable under
these conditions; if, for example, we give a shock to the device, creating spurious
motions in the two fluids and causing them to mix, we observe that, after a while,
the flow readjusts automatically to the previous condition; the two flows separate.

However, when the relative velocity of the two fluids reaches a well-determined
value (we can control the stability of this value with repeated experiments), the
regime changes. The first change is that the colored filament is no longer straight; it
develops oscillations, which are more or less periodic and advance with the fila-
ment. The regime is no longer stationary. If the relative velocity increases further,
the oscillations become faster and more chaotic, then vortices develop and the two
fluids get mixed. The regime becomes turbulent. In the turbulent flow, the velocity
of the fluid elements varies in an irregular and chaotic way. In the description of this
motion, we shall use a mean velocity, mediated over periods long enough to smooth
the chaotic fluctuations.

As opposed to that of the laminar flow, the description of the turbulent flow
presents enormous mathematical difficulties, which cannot be handled with

R

Fig. 1.28 Experiment to
observe the laminar to
turbulent flow transition

34 1 Fluid Dynamics



analytical methods, even in the simplest cases. The flow patterns in several relevant
situations can be found with numerical computations using very powerful com-
puters. Even so, the methods based on the physical dimensions of the parameters
are important and we shall exploit them in the following.

Consider once more the flow through a horizontal tube. Figure 1.26 shows the
velocity field in the laminar regime. To characterize the transition to the turbulent
flow, we shall develop simple arguments based on the physical dimensions of the
quantities of the problem. Clearly, the flow regime depends on the characteristics of
the fluid and the duct, and on the relative velocity.

The fluids have two physical properties, the density ρ and the viscosity η. The
relevant quantity of the tube is its diameter D, while the relative velocity is the mean
velocity υ of the fluid (its mean value, as stated above). Hence, we must deal with
four physical quantities with the dimensions

q½ � ¼ kgm�3; g½ � ¼ kgm�1 s�1; t½ � ¼ ms�1; D½ � ¼ m: ð1:47Þ

We observe that the quantities that characterize the regime, for example, the
transition from a linear to a turbulent flow, are complicated functions of our four
quantities. Consequently, their arguments must be pure numbers. Let us thus search
a dimensionless combination of the four quantities. First, we observe that the
dimension of the mass can be eliminated only by taking the ratio between viscosity
and density, namely the kinematic viscosity ν = η/ρ. Its dimensions are
m½ � ¼ m2 s�1. Once more, we have only one way to eliminate the dimension of time,
namely dividing υ by ν: t=m½ � ¼ m�1. Finally, we eliminate the length, multiplying
by the diameter D. We have thus found the unique dimensionless combination of
the four quantities

Re ¼ tD
m

¼ qtD
g

; ð1:48Þ

which is called the Reynolds number, after Osborne Reynolds (1842–1912).
Our simple arguments cannot tell us the values of the Reynolds number at which

the flow regimes change. These values must be determined experimentally, as we
shall soon see. The above arguments, however, tell us that, if we consider different
fluids, in cylindrical ducts of different sections and with different velocities, the flow
regime is the same if the Reynolds number has the same value. Consequently, for
example, the velocity of a regime change is inversely proportional to the radius of
the tube; it is twice as large in a tube twice as thin. That velocity is, in addition,
proportional to the viscosity; thicker fluids maintain the laminar flow up to larger
velocities.

As we have seen, in the laminar flow of a fluid in a tube, the velocity profile is
parabolic, as in Fig. 1.26. The layer in contact with the wall adheres to it and is at
rest; the velocity gradually increases, moving inwards and becoming maximized at
the axis. In the turbulent flow, the layer in contact with the wall is still at rest, but
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the mixing due to the vortices and chaotic motions is a much more efficient
mechanism for increasing the mean velocity receding from the walls. Consequently,
the mean velocity profile is as shown in Fig. 1.29. The mean velocity is indepen-
dent of the distance from the axis in the largest section of the tube. It goes to zero in
a thin layer, called the boundary layer, which has a thickness δ and is represented in
a shaded tint in Fig. 1.29. The thickness of the boundary layer is always much
smaller than the tube radius and, as we shall see in Sect. 1.14, decreases with an
increasing Reynolds number.

An important consequence of what we have just stated is that the relation
between pressure gradient Δp/l and the mean velocity of the fluid is independent of
viscosity, as opposed to the laminar flow. Once more, the argument, which follows,
is based on the dimensions of the physical quantities.

The physical dimensions of the pressure gradient are Dp=l½ � ¼ kgm�2 s�2. We
must find a combination of the other physical quantities having the same dimen-
sions. We can do that with the density, mean velocity and diameter of the tube. We
do not need the viscosity. Their unique combination with the right dimensions is
qt2=D. It is standard to divide it by two, and we shall use 1

2 qt
2=D (that is, the

kinetic energy per unit mass divided by the tube diameter). We can conclude that

Dp
l

¼ f Reð Þ qt
2

2D
ð1:49Þ

where f is a dimensionless coefficient, called the Darcy friction factor after Henry
Darcy (1803–1858). The friction factor is a function of the unique dimensionless
quantity of the problem, namely the Reynolds number.

Written explicitly, the Darcy friction factor defined by Eq. (1.49) is

f Reð Þ ¼ 2DDp
lqt2

: ð1:50Þ

We notice here that, even if the viscosity does not have an effect on the relation
between the pressure gradient and flow velocity, its effects are relevant within the
boundary layer. Within this layer, in fact, the velocity varies very rapidly, and
consequently, the shear stresses are sizeable.

R
v(r)

r

δFig. 1.29 The mean velocity
field for a turbulent flow in a
cylindrical duct. Boundary
layer is the shaded area
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In the laminar flow, when the Hagen-Poiseuille law holds, the friction factor is
inversely proportional to the Reynolds number. If we substitute Eq. (1.42) for the
flow velocity and Eq. (1.48) for the Reynolds number in Eq. (1.50) we have

f Reð Þ ¼ 64
Re

ð1:51Þ

a very simple expression indeed.
We shall now discuss the main characteristics of the friction factor as a function

of the Reynolds number. These are the result of a series of experiments starting with
those conducted by G. Hagen between 1839 and 1869.

Figure 1.30 shows the behavior of the friction factor in cylindrical tubes with
two types of internal surface. The continuous curve is for a smooth surface, the
conditions under which the above discussion applies, the dotted curve is for rough
surfaces, like in a concrete duct, with a particular value of roughness, taken as an
example. Notice that both scales are logarithmic.

Firstly, notice that a constant friction factor, which, graphically, is a horizontal
line in the diagram, would mean a pressure drop proportional to the square of the
flow velocity. When the Hagen-Poiseuille law holds, the friction coefficient is
inversely proportional to the Reynolds number, Eq. (1.51). This function is rep-
resented in the log-log diagram by a straight line of slope −1. Experiments show
that this is really the case for Re < 2000 (approximately). Under these conditions,
the flow is laminar. If the Reynolds increases, the flow enters into a chaotic and
unstable regime, called the critical zone or transition region. This is defined as the
interval 2000 < Re < 4000. In this region, it is not even possible to find a single
curve representing f(Re), because the friction factor does not only depend on the
Reynolds number, but also on the tube diameter and fluid viscosity. For still higher
Reynolds numbers, Re > 4000 (approximately), the flow becomes turbulent. The
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friction factor can again be represented by a universal curve, provided the surface is
smooth.

If the surface of the tube is not smooth, a further quantity with the physical
dimensions of a length enters the game, the roughness ε, which is defined as the
mean size of the surface irregularities. The corresponding dimensionless parameter
is the ratio ε/D. The roughness has important influence on the boundary layer and,
as a consequence, on the friction factor. The case of ε/D = 0.02 is shown, as an
example, as the dotted curve in Fig. 1.30. We see that in the turbulent region, f is
roughly constant, at the value of 0.05. The pressure drop is proportional to the
square of the flow velocity.

1.13 Drag at Small Reynolds Numbers

We shall now consider the uniform motion of a solid body in a fluid at rest in an
inertial frame. We might consider the same problem in a frame moving with the
body, in which the fluid moves at constant speed. For the relativity principle, the
drag force acting on a body moving in a fluid or on a body in a flowing fluid should
be the same. Notice, however, that this conclusion holds as long as the influence of
the walls containing the fluid can be neglected, namely if they are far enough
apart. Indeed, relative to the walls, the body that moves in one case is at rest in the
other.

In our discussion, we shall always consider a body completely immersed in a
homogeneous fluid to have a sufficiently large extension. We assume that the
vertical forces, buoyancy and weight, balance each other. In the case of the
D’Alembert paradox discussed in Sect. 1.10, the acting forces were the pressure
forces. In addition, we now have the viscous force.

The problem is similar to that of the flow in a duct and we shall treat it similarly,
using dimensional arguments. The physical quantities of the game are, once more,
the density ρ and the viscosity η of the fluid, the velocity υ and one geometric
dimension of the body. For the simple shape we shall consider, which will be a
sphere, we shall take the diameter D. Clearly, the only dimensionless combination
is, again,

Re ¼ tD
m

¼ qtD
g

; ð1:52Þ

which is also called the Reynolds number.
Consider this question: under which conditions are the flow patterns about two

geometrically similar bodies geometrically similar? Consider, for example, two
spheres of different radiuses immersed in two different fluids, say, a gas and a
liquid. The question is: under which conditions do the streamlines in the two cases
have the same shape? When these conditions are satisfied, we speak of dynamic
similarity. The answer, which we give without demonstration, is that in any pairs of
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geometrically similar points in the two cases, the ratio of the two acting forces, the
pressure drag (that is normal to the surface of the element) and the viscous drag
(that is the shear stress tangent to the surface), should be the same. This, indeed,
happens for equal values of the Reynolds number, for completely immersed bodies.
This is an important conclusion that has relevant practical applications. For
example, we can determine the behavior of an airplane wing without having to
build the airplane. Rather, we can test a model of reduced dimensions at a velocity
that gives the same Reynolds number. For this purpose, wind tunnels are used to
test small-scale airplanes and cars. The method works as long as the compressibility
of the fluid can be neglected.

Let us now consider situations in which the viscous drag is comparable or equal
to the pressure drag. This happens for Reynolds numbers less than or roughly equal
to one (we shall be more precise below). These conditions can be satisfied in
various ways; the density of the fluid is large enough (a body moving in honey or
molasses, for example), or the motion is very slow, or the size of the body is very
small (for example, the fog droplets moving in air). Under these conditions, the
body must, so to speak, open up its way, deforming the fluid elements. The medium
appears to be more solid than the fluid, with a tendency to maintain its shape. The
resistance to motion is mainly due to the forces necessary to deform the fluid
elements. The resulting drag force is proportional to the velocity. We observe, in
addition, that for the small values of the Reynolds number, we are considering, the
stress field that develops in the medium extends to large distances from the body.
Contrastingly, for large Reynolds numbers, as we shall see, the deformation of the
fluid is mainly limited to the boundary layer, very close to the object. As a con-
sequence, for small Reynolds numbers, the influence of the surrounding walls can
be neglected only if they are at rather large distances.

The fluid dynamics differential equation, which is called the Navier-Stokes
equation after those who discovered it, cannot, in general, be solved analytically.
However, the solution is known in the case of the sphere. Consider a spherical rigid
body of radius r and of perfectly smooth surface, moving in a fluid with constant
velocity υ. The expression of the viscous drag in the laminar regime was theoret-
ically determined by George Gabriel Stokes (1819–1903) in 1851. It is called the
Stokes law. Its expression is very simple, namely

R ¼ 6prtg: ð1:53Þ

We shall now discuss its limits in regard to validity and its experimental
verifications.

We preliminarily state that Stokes derived his law according to the following
assumptions:

1. The medium is homogeneous; in practice, the non-homogeneities, if present,
should be much smaller than the diameter of the sphere. While this condition is
satisfied in liquids, it is not necessarily so in gases. In a gas, the mean distance
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travelled by a molecule between two collisions with another one is called the
mean free path. For the atmospheric gases at normal temperature and pressure
(to which it is inversely proportional), the mean free path is about l = 70 nm.
Robert Millikan experimentally determined in 1913 that the corrections to the
Stokes law for spheres of radius r are of the order of r/l. This is, for exam-
ple, <1 % for radiuses >5 µm.

2. The medium is unlimited; in practice, the surrounding walls must be far enough
apart to have negligible effects.

3. The sphere is rigid and its surface is smooth.
4. The fluid does not slip, but remains adherent to the sphere surface.
5. The velocity of the sphere is small, such that the resistance to motion is due only

to viscosity.

Under these hypotheses, the Stokes theory predicts Eq. (1.53) to be rigorously
valid. An accurate experimental verification only came about more than half a
century later, in 1910, when Harold De Forest Arnold (USA, 1883–1933) under-
took a series of measurements on the fall velocity of small spheres in water and in
alcohol. The forces acting on the sphere are the weight directed vertically down
4=3ð Þpr3q0g, where q0 is the density of the sphere, the buoyancy vertical upwards
4=3ð Þpr3qg, and the viscous drag, opposite to motion, hence vertically upwards.
During their fall, the spheres soon reach the regime velocity, in which the resultant
force is zero, namely

6prtg ¼ 4
3
p q0 � qð Þgr3: ð1:54Þ

We can verify the Stokes law by measuring the velocity, the two densities and
the radius.

Arnold found an ingenious method for producing small, perfectly spherical,
droplets. He used the so-called Rose alloy, a metal that melts at 82 °C and is
consequently liquid at the boiling water temperature.

Arnold put some of this metal into a vertical glass tube terminating at its lower
end with a long capillary tip. He suspended the capillary segment in a second
vertical tube about 70 cm long and 3 cm in diameter. He filled the larger tube with
water and heated the water in such a way that its upper surface was maintained at
100 °C, with the lower part being about 60 °C. Using compressed air, he produced
pressure in the small tube, pushing the melted metal down so as to exit through the
capillary tip in the hot water. He obtained droplets that cooled down enough to
become solid before reaching the bottom of the larger tube. Observed with a
microscope, they had perfectly spherical shapes and smooth surfaces. The success
of the Arnold method is due to the rather slow motion of the droplets and to the
gradual decrease of the temperature of the water through which they fall. The
uniform cooling tends to produce a homogeneous structure, while the small velocity
allows the drops to keep the spherical shape they have taken when liquid. The
measured radiuses were between 20 µm and 1 mm.
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Arnold measured the velocities of a number of falling spheres of different
diameters and compared the results with the predictions of the Stokes law, with a
few per mille accuracy.

Are the five assumptions in Stokes satisfied in Arnold’s experiments? This is
certainly the case for the first, third and fourth hypotheses. The second assumption
is satisfied for the smaller spheres, but only approximately for the larger ones. For
these, however, Arnold used a correction formula that had been experimentally
established by Landenburg. In conclusion, the first four conditions are satisfied.
Through his experiments, Arnold verified that the Stokes law, Eq. (1.55), is exactly
verified when the fifth condition is also satisfied, namely for a small enough
Reynolds number, up to Re < 1.2.

1.14 General Expression of Drag

In the vast majority of situations, the Reynolds number is not as small as that
considered in the previous section. In general, the pressure forces are larger or much
larger than the viscous force. Consider that the kinematic viscosity of the air at
normal temperature and pressure is about m ffi 1:5� 10�5 m2 s. For example, for a
sphere of 5 cm radius moving in the air at 1 m/s, the Reynolds number is about
7000. Under these conditions, the pressure drag is much larger than the viscous drag.

One should not think, however, that the effects of viscosity are negligible. On the
contrary, they are crucial. Indeed, in the absence of viscosity, the fluid elements lap the
surface of the body and freely move relative to it. Contrastingly, in the presence of
viscosity, the shear stresses make the fluid elements adhere to the surface of the body.
This is always the case, even for extremely small values of viscosity. This means that
the fluid particles in contact with the body are at rest; the farther and farther the
particles are from the body, the more their velocities increase, up to the point of
equalling the velocity of the unperturbed fluid. The change takes place, for a Reynolds
number above a few units, in a thin layer near to the surface, which is the boundary
layer. One sees that the boundary conditions of the velocity fields are completely
different for a real fluid, compared to an ideal fluid. As a consequence, the flow pattern
is different from the one in Sect. 1.10 and the pressure forces are different as well. In
particular, their resultant is not zero and is, indeed, the resistance to motion. The
inviscous flow is not the limit of the viscous one for viscosity tending to zero.

The boundary layer has a fundamental role in the behavior of the flow. Even if
its thickness δ cannot be precisely defined on general grounds, it is, however, found
that it is a decreasing function of the Reynolds number. It can be shown with
dimensional arguments that it is approximately

D 	 a=
ffiffiffiffiffiffi
Re

p
ð1:55Þ
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where a is a linear dimension of the body. For example, for a boundary layer of a
sphere of diameter a = 10 cm immersed in an airflow of υ = 30 m/s, the Reynolds
number is Re = 2 × 105 and the thickness of the boundary layer is δ ≈ 0.2 mm.

As stated above, in the boundary layer, the velocity changes from zero to the
undisturbed value. The velocity gradient in the boundary layer is very large and the
viscous forces, which are proportional to the velocity gradient, are intense.

Equation (1.55) also tells us that, for Reynolds numbers of the order of one, the
thickness of the layer becomes comparable with the size of the body. The very
concept of the boundary layer loses its meaning, because the changes of velocity
gradually take place in a wide volume, as we have seen in the previous section.

For Reynolds numbers larger than one, the effects of viscosity are twofold.

(a) the development in the boundary layer of forces parallel to the surface of the
body opposite to the direction of motion, directly due to the friction between
fluid elements. Their resultant is the viscous drag;

(b) a modification of the geometry of the streamlines, which, in turn, changes the
pressure forces and so contributes to the total drag with a force that we shall
call the pressure drag.

The resistance of the fluid, the total drag, is the sum of the two contributions; the
ratio between the second and the first contribution increases with the Reynolds
number.

We shall now discuss the total drag as a function of the Reynolds number. We
start, once more, with a dimensional argument. The physical quantities of the
problem are

q½ � ¼ kgm�3; g½ � ¼ kgm�1 s�1; t½ � ¼ ms�1; A½ � ¼ m2 ð1:56Þ

where A is the transverse cross-section of the body. The dimensions of the drag
force are R½ � ¼ kgm�1 s�2. Again, there is one combination with these dimensions,
qt2A. The drag must be expressed as this quantity multiplied by a function of null
physical dimensions. The latter must be a function of the sole dimensionless
quantity, which is the Reynolds number, and we can state that the general
expression of the drag is

R tð Þ ¼ CD Reð Þ qt
2

2
A ð1:57Þ

where we introduced the 1/2 factor to follow the costumes. The function CD is the
drag coefficient. It must be determined experimentally. The drag coefficient depends
on the shape of the body and on the status of its surface, smooth or with different
degrees of roughness.

We shall limit the discussion to a smooth surface sphere. Figure 1.31 shows the
drag coefficient as a function of the Reynolds number. Notice that both scales are
logarithmic.
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We shall now examine, in a qualitative way, how the flow pattern around the
sphere changes as the Reynolds number increases. These changes can be subdi-
vided into several flow regimes . The changes from one regime to the next are
gradual and cannot be sharply defined. Figure 1.32 shows a series of cartoon flow
patterns with increasing Re. The corresponding positions on the drag coefficient
curve are marked with the same letters in Fig. 1.31.

Figure 1.32a shows the flow pattern for Re < 1. The drag coefficient curve in
Fig. 1.31 is a straight line with a slope equal to −1. In a log-log diagram, this means
that the ordinate is inversely proportional to the abscissa. This is just what we
expect, because the drag is proportional to the velocity when the Stokes law holds
(for shapes other than a sphere, the drag force in this regime is proportional to the
velocity and to the linear dimensions of the body anyway). Indeed, if we substitute
the Stokes Eq. (1.52) for the drag in Eq. (1.57) and A = πD2/4 for the cross-section
of the sphere of diameter D, we obtain

CD Reð Þ ¼ 24=Re: ð1:58Þ

Under these conditions, as we have seen, the drag force is almost completely a
viscous drag. The streamlines are qualitatively similar to the inviscous flow of
Fig. 1.24. Although not shown in the figure, the velocity increases only gradually
away from the surface of the sphere. There is no well-defined boundary layer at
these very small Reynolds numbers.

Figure 1.32b shows the flow pattern for Re = 2–5. We shall use as an example
here and for the following regimes the velocity of a 1 cm diameter ball in the air at
normal conditions with m ffi 1:5� 10�5 m2 s. Its velocity is between 3 and 7.5 mm/s
in this range of Reynolds numbers. The boundary layer has developed; the pressure
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Fig. 1.31 The drag coefficient for a smooth sphere versus a Reynolds number. Letters mark the
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drag is a few times larger than the viscous drag. The flow is laminar, boundary layer
included. The streamlines are denser near the points B and D on the transverse
section. Here, the velocity is larger and the pressure smaller than in the undisturbed
fluid. On the backside of the sphere, the streamlines rarefy, the velocity decreases
and the pressure increases. In other words, when a fluid element passes from the
forward side to the section BD, it is pushed forward by a pressure difference that
increases its kinetic energy. When it goes to the back region, it moves against an
increasing pressure, losing kinetic energy. In the absence of dissipative forces, the
kinetic energy gained in the first phase would be exactly what is needed to over-
come the pressure increase in the second phase. In practice, the shear stresses, due
to viscosity, reduce the kinetic energy during all the phases of the motion. This
happens mainly in the boundary layer in which the shear stresses are large.
Consequently, the flow velocities at points in front of the sphere are always larger
than at the symmetric points on the back. The streamlines are more sparse and
straighter at the backside of the sphere. The pressure forces are smaller at the back
than at the front. The resulting difference is the pressure drag. This increases with
the Reynolds number faster than foreseen by the Stokes law.

As the Reynolds number increases, the velocity gradient increases for two
reasons: because the difference of the velocity of the fluid in contact with the
surface and in the main stream increases and because the thickness of the boundary
layer, in which the change happens, diminishes. The shear stresses, which are
proportional to the velocity gradient, consequently increase in the boundary layer.
These stresses act on the fluid elements, slowing them down considerably, espe-
cially near to the sphere. As Re increases, the fluid elements near the sphere slow
down so much as to become at rest or even invert their velocity. Immediately after
the sphere, the fluid ascends, relative to the main flow, separates from it and,
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Fig. 1.32 Cartoon showing the flow patterns around a sphere in different regimes
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reached a certain distance, turns back in the forward direction. Eddies, or vortices,
start to form around Re = 25, causing the separation of the streamlines of the main
flow.

Figure 1.32c shows the flow pattern between Re ≈ 10 and Re ≈ 150. The
velocity of our example ball in the air is between 1.5 and 20 cm/s. Two quite
regular vortices are present, which remain stably attached to the rear surface of the
sphere (if the sphere moves, the vortices move with it), up to Re ≈ 100. The
streamlines outside the boundary layer go around the vortex region and join back
together further downstream. The point of flow separation is close to the rear of the
sphere. Notwithstanding the vortices, as these are stationary, the flow is still
laminar.

As Re further increases, the vortices become unstable and begin to oscillate. The
point of separation moves to the side of the sphere. For 100 < Re < 150, the
vortices stay close to the sphere, but for Re > 150, they detach, alternatively on one
side and then the other, and move downstream. A vortex trail is formed, which
extends considerably far downstream, symmetrically populated of eddies, which
decay as another form. This is called a Kármán vortex street after Theodore von
Kármán (1881–1963). Figure 1.32d shows a typical pattern for Re between 150 and
a few thousand. The flow in the wake is no longer stationary and becomes turbulent.
However, outside the trail, upstream and downstream of the sphere, the flow is
laminar and stationary, namely the streamline pattern does not vary in time.

Figure 1.31 shows that the drag coefficient is roughly constant, at a value of
about 0.5, in this range of Reynolds numbers and up to Re = 2 × 105 (corre-
sponding to 7.5 m/s for our example ball). This means that the drag is roughly
proportional to the velocity squared. We talk of wake drag. The turbulent wake
forbids the main current streamlines from joining back together at the rear of the
sphere. The detachment point is near the diameter at 90°. The pressure forces are
completely unbalanced. In the forward region, the streamline pattern is similar to
the one for the inviscous fluid, with the corresponding pressure forces on the
sphere. At the rear part, contrastingly, the streamlines practically do not touch the
surface. The pressure force in the downstream region is close to zero.

The situation changes once more when Re reaches values of a few thousand
(Fig. 1.32e). The boundary layer is still laminar. The entire wake is filled with
turbulent eddies. The larger vortices contain smaller vortices and these, in turn,
contain even smaller ones. The drag coefficient remains substantially constant at
about 0.5. The drag force is proportional to the square velocity. Recall that in the
D’Alambert paradox, the pressure at the front stagnation point is qt2=2. It can be
shown that the pressure at the front is, in any case, proportional to qt2=2. The
pressure force is then proportional to Aqt2=2, where A is the cross-section of the
sphere. In conclusion, the pressure-dominated drag can be expressed as

R tð Þ ¼ const A
1
2
qt2 ¼ const r2

1
2
qt2: ð1:59Þ
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At very high Reynolds numbers, around Re = 300,000, the drag coefficient
suddenly drops, as shown in Fig. 1.31. Figure 1.32f shows the new flow pattern;
the wake appears contracted compared to Fig. 1.32e. The consequence is a decrease
in the wake cross-section and, see Eq. (1.59), a decrease in the pressure drag. The
reason for the phenomenon, sometimes called the drag crisis and discovered by L.
Ludwig Prandtl (1875–1953) in 1914, is as follows. At the values of Reynolds
number we are considering, turbulence starts to develop in the boundary layer. This
turbulence extends somewhat at the rear part of the boundary layer. The flow
turbulent separation takes place downstream on the rear of the surface of the sphere
at a position of 120°–130° from the front stagnation point.

This interpretation has been checked with a vertical cylinder, for which the
situation is very similar to the sphere, by placing two thin sheets on the generators
in the plane normal to the motion, forcing the streamline to detach from them and,
consequently, the section of the wake to be independent of the Reynolds number.
Under these conditions, the drop of the drag coefficient is not observed.

In the discussion of this section, we have assumed the surface of the sphere (or,
more generally, of any object moving in a fluid) to be perfectly smooth. Indeed, the
roughness and the structure of the surface at the sub-millimetric scale have strong
effects on the boundary layer, and consequently on the drag. We have already seen
similar effects for the flow in a pipe, in Sect. 1.12. As a matter of fact, a surface
looking smooth to the naked eye might reveal consequential roughness at the
microscopic level.

Golf balls are a good example of (visible) roughness. Their surfaces are covered
with small dimples. A ball hit by a skilled golfer can leave the tee at a typical speed
of υ ≅ 80 m/s. The corresponding Reynolds number (D = 41.1 mm in the UK,
42.7 mm in the USA) is Re = 2.2 × 105, which is below, but not too far from, the
drag crisis for a sphere of smooth surface. The dimples help to trigger the transition
from a laminar to a turbulent boundary layer, bringing it down to Re ≈ 6–8 × 104,
well within the range of a good golfer. The resulting drag reduction doubles the
distance flown by the ball over what can be achieved with a smooth ball. Another
example is the skin of fast-swimming sharks. It exhibits riblet structures aligned in
the direction of flow that are able to reduce skin friction drag in the turbulent-flow
regime by up to 10 %. Certain types of Olympic swimsuits are made of a material
that mimics shark skin. The opposite effect has been measured with tennis balls. No
drag crisis is observed in experiments in wind tunnels. This is due to the fuzz
elements that cover their surfaces. If the ball is shaved, taking away the fuzz, the
drag crisis appears. These examples show how the drag, for a given Reynolds
number, can be very different for different types of surface. Indeed, the roughness
and the structure of the surface at the sub-millimetric scale have strong effects on
the boundary layer, and consequently on the drag.

Notice also that, especially at high Reynolds numbers, the drag force strongly
depends on the shape of the body, especially its rear part. The narrower the wake is,
the smaller the drag. One then searches for aerodynamic profiles, to minimize the
drag. Typically, as shown in Fig. 1.33, the forward part should be rounded, while
the rear is smoothly tapered. The streamlines then follow the shape of the body
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without strong variations of their density and direction. In this way, the pressure
drop at the back part is strongly reduced. The production of vortices is also reduced.
The detachment of the streamline, which is at the origin of vortex formation, takes
place only in the neighboring parts of the tail of the body and the section of the
wake is strongly reduced.

We notice, in conclusion, that even when we have talked of high velocities, we
have always meant them to be small compared to the speed of sound, in order that it
might be possible to consider the fluid, even if it is a gas, to be incompressible.

Problems

1:1. We want to weigh 10 g of water with a precision balance with an error
smaller than 1 mg. Do we need to correct for the buoyancy?

1:2. Two iron spheres of different dimensions are simultaneously dropped into the
sea from the surface. Which one reaches the bottom first?

1:3. Consider the force due to the atmospheric pressure on the plane of a table of
1 m2 area. We lay on the table a weight equal to that force. How much is its
mass (in order of magnitude)?

1:4. A composite pendulum is made of a metal bar pivoted about an axis outside
the center of mass. We know its mass m, its moment of inertia I and its period
T. If we sink it completely in water, how does the period vary?

1:5. A wooden ball floats on the surface of a body of water. If we sink it to a
depth equal to its radius and we abandon it, it will oscillate up and down. Are
the oscillations harmonic?

1:6. In a Pitot tube immersed in a flow of density q ¼ 1:1� 103 kgm�3, we
measure the pressure difference Dp ¼ 4:95� 103 Pa . Find the fluid velocity.

1:7. A thin tube folded as in Fig. 1.34 is immersed in a water current, with its
opening on the side of the flow. The water rises in the vertical part of
h = 150 mm. Find the velocity of the current.

Fig. 1.33 Aerodynamic
profile

h

v

Fig. 1.34 The device of
problem 1.7
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1:8. A container is full of water to the height h = 50 cm. The water viscosity is
g ¼ 1:3� 10�3 Pa s. A horizontal tube is connected to the lateral wall of the
tank at the height of its base. The tube has a radius r = 1 mm and length
l = 1 m. A tap at the beginning of the tube is initially closed. Then, the tap is
opened and the water starts flowing. Assuming the pressure at the beginning
of the tube to be equal to that at the bottom of the tank, determine if the initial
flow (before the level in the tank is diminished appreciably) is laminar or
turbulent and then determine the volumetric flow rate.

1:9. An air current, above a hot ground area, flows vertically up with velocity
υa = 0.2 m/s. The airflow transports powder particles, which we consider to
be spherical with radius r. The particle upwards velocity is constant and
smaller than that of the air, υp = 4 cm/s. The density of the air is qa ¼
1:3 kgm�3 and that of the particles qp ¼ 5� 103 kgm�3. The air viscosity is
g ¼ 1:7� 10�5 Pa s. (a) Assuming the flow to be laminar, calculate the
radius of the particles. (b) Verify if the assumption is correct.

1:10. The initial velocity of a tennis ball hit by a champion is υ = 60 m/s, its
diameter being D = 6.5 cm; the velocity of a football/soccer ball after the
kick of a top player is υ = 30 m/s, its diameter being D = 22 cm. How much
are the Reynolds numbers?
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Chapter 2
First Law of Thermodynamics

Thermodynamics developed historically after mechanics, mainly in the XIX cen-
tury. Development was motivated by two main needs, both outside of pure physics.
The first motivation was the search to understand how the leaving creature “pro-
duces” energy; the second was the desire to develop engines capable of trans-
forming heat, generated, for example, by the burning of coal, to produce mechanical
work which otherwise had to be done by humans or animals. However, thermo-
dynamics is not important for engineering and biology alone, but represents one of
the fundamental chapters in physics.

In the first volume of this course, dealing with mechanics, we saw that, for an
isolated system, the total energy, or, more precisely, the total mechanical energy,
namely the sum of potential and kinetic energy, is conserved, i.e., remains constant,
only if all acting forces are conservative. If dissipative forces are present, the energy
appears not to have been conserved. However, this non-conservation is only
apparent due to the fact that other forms of energy exist beyond the mechanical
energy that we did not include in the balance. Thermodynamics shows us that all
physical bodies contain energy, called internal or thermal energy, which does not
depend on their velocity (like kinetic energy) or position (like potential energy) but
on other variables, like temperature and pressure, which are called thermodynamic
coordinates. Thermal energy can be exchanged between systems in two ways: one
is work, which we already know, and the other is heat, which we shall learn about
in this Chapter. Figure 2.1 shows the life spans of the major contributors to ther-
modynamics, starting with the theory of gases.

In 1824, the French engineer N.L. Sadi Carnot published the brief but funda-
mental article “Reflections on the motive force of heat”, in which he made com-
pletely clear the limits within which heat can be transformed into work, or, more
precisely, the limit on the efficiency of any heat engine. Carnot developed his
theory, which became the second law of thermodynamics, when heat was still
believed to be a fluid, called “caloric”. Notwithstanding that, his arguments are
completely correct. Forty years after his death in 1832 from the plague, his notes
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were published. Reading these notes, one can understand how the young genius had
already understood the equivalence of heat and work.

Twenty-one years after Carnot’s article, in 1845, R.J. Mayer published the paper
in which he fully established the equivalence between heat and work. This is the
first law of thermodynamics, which is the law of energy conservation. In the very
same year, J.P. Joule published his simple and ingenious experiment, which we
shall discuss in Sect. 2.7.

Thermodynamics is closely linked to mechanics. Indeed, all thermodynamic
phenomena can be interpreted through statistical mechanics, as we shall see in
Chaps. 5 and 6. All bodies are made of molecules, which are matter particles whose
motion follows the laws of mechanics. However, the number of molecules is so
huge that it is practically impossible to describe the motion of each of them in
detail. But even if it were possible, such a description would be useless. As we have
seen in the previous chapter, several of the motions of fluids have already proven
incapable of being analytically treated with mechanics equations. Similarly,
statistical mechanics considers suitable mean values of the kinematic quantities
(velocity, kinetic energy, etc.) Historically, the development of statistical mechanics
is mainly due to Maxwell and Boltzmann in the second part of the XIX century.

It is important to realize that thermodynamic and statistical mechanics points of
view are different and complementary. The fundamental laws of thermodynamics
are established by inference starting from the experiments. They are then assumed
to be axioms; their consequences are logically deduced and experimentally con-
trolled. The method is powerful because it allows for obtaining very precise results,
while statistical mechanics is sometimes forced to introduce simplifying assump-
tions in order to be able to proceed. In addition, thermodynamic laws are general.
They also hold for systems not composed of molecules, like electromagnetic
radiation in a metal box. As a matter of fact, the discovery of quantum mechanics by
Planck happened during the study of the thermodynamics of the electromagnetic
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field. On the other hand, statistical mechanics unifies thermodynamics and
mechanics by showing which elementary mechanical processes are at the basis of
heat exchanges and, more generally, of all thermodynamic processes.

In this chapter, we shall start by introducing the concept of the thermodynamic
system and the main thermodynamic variables, or coordinates, the pressure, the
temperature and the volume. We shall define the thermodynamic state and discuss
the different types of processes from one state to another and the equations that
govern them. We shall then discuss the experiments and arguments that led to the
establishment of the first law of thermodynamics and discuss its consequences.

2.1 The Thermodynamic State

Consider a certain amount of gas contained in a box. The constituent particles, i.e.,
the molecules, are free to move about inside the box and may have any velocity.
There are no constraints, as there are for rigid bodies, limiting the degrees of
freedom of the system. If we then want to know the mechanical state of the system,
we need to know 6 N parameters, the three coordinates and the three components of
the velocity of each molecule. The number N of molecules being huge, this is
impossible in practice.

In thermodynamics, the concept of the state of a system is different from that of
the same system in mechanics. The thermodynamic state is defined by a small
number of variables, which are different from the mechanical ones. We shall start
with a few cases.

Homogeneous fluid of only one chemical species at rest contained in a box.
Think, for example, of a bottle of nitrogen under pressure, of a balloon full of

helium, of a pot of water, etc. The quantities that we can easily measure are: the
mass of the fluid m, its volume V, its pressure p and its temperature θ. We have
considered the volume to be small enough so that the pressure and temperature may
be the same at all points of the system. If the system were, for example, the earth’s
atmosphere, this would not be true. We have already defined the pressure; we shall
subsequently define the temperature in the next section. For the moment, just
consider what you would measure with a common thermometer.

We might think that the volume would not be enough to characterize the geo-
metrical properties of the system. We might also think that we need to know its
shape. The container of the water might be, for example, spherical or cubic, or taller
than it is wide, etc. Why did we not include, for example, the area of the surface
amongst the variables? Only the experiment can give the answer. As a matter of
fact, we have experimentally found that the largest fraction of the thermodynamic
properties of a fluid is independent of its shape. However, when the surface to
volume ratio is large, as in fog droplets or soap bubbles, the surface must also be
considered. We shall do that in Chap. 4.
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Homogeneous solid body of only one chemical species.
In this, case we must consider, beyond the variables considered for a fluid, the

shear stresses, and the pressures and tensions that can be present in the bulk of the
body. Think, for example, of a metal parallelepiped subject to external tension
along one axis and pressure on the perpendicular faces. Such situations quickly
become complicated, and we shall not discuss them.

Rubber band.

The thermodynamic variables are the length and the temperature of the band.
System composed of one chemical species in different states (or aggregation

phases).
Consider, for example, a system composed of liquid water and ice in a container

at °C, or an alcohol and its vapor. To specify the thermodynamic state, we now need,
beyond the already mentioned variables, the fraction of ice and water, or of alcohol
liquid and vapor, etc., for each of the phases. This variable is called concentration.

System composed of more than one chemical species.
The thermodynamic state is defined by the variables: total mass, volume, pres-

sure, temperature and concentrations of the different chemical species.
More complex to describe is the non-homogeneous system, in which some of the

variables, for example, the temperature or the pressure, vary from point to point. To
study them, one must divide the system into parts that are small enough to be able
to be considered homogeneous. We shall not deal with any of these problems.

We shall always assume, as we have already implicitly done, that all of the
system’s parts are at rest, or moving so slowly that their kinetic energies can be
neglected. Notice that the thermodynamic state of a system does not change if it
moves all together. For example, the thermodynamic state of a pot of water at a
certain temperature is the same whether it is on the ground or on a train moving at
300 km/h.

From what we have established, it is clear that knowledge of the thermodynamic
state of a system gives very little to no information on the mechanical state of its
molecules. Consider a gas contained in a box. The mass, volume, pressure and
temperature are constant; its thermodynamic state does not vary. But its molecules
move continuously, and their coordinates and velocities change. The mechanical
state varies, while the thermodynamic one is constant.

Particularly important amongst the thermodynamic states are the states of ther-
modynamic equilibrium. These are the states that remain unaltered as long as the
external conditions do not change. A state is of thermodynamic equilibrium when
the following conditions are satisfied:

(a) mechanical equilibrium.

If, as is usually the case, pressure is one of the thermodynamic variables, it must
be equal in all the parts of the system. Otherwise, movements would happen inside
the system. Consider, for example, a gas inside a cylinder closed by a piston of
surface S, which is movable without friction, as in Fig. 2.2. If p is the pressure of
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the gas, the force exerted by the gas on the piston is pS, directed vertically up. Let
us call the external force on the piston directed down Fa. This is the resultant of the
force due to the atmospheric pressure, the weight of the piston and, possibly, of
another weight that we laid on the piston. The mechanical equilibrium is reached
when the gas pressure force is equal to Fa. If there is no weight on the piston and
the weight of the piston itself is negligible, the internal pressure is equal to the
external pressure at mechanical equilibrium. If the gas is enclosed in a rigid bottle,
its pressure can be completely different from that which is external.

Going back to Fig. 2.2, suppose now that there is friction between the piston and
the cylinder, as is always the case in practice. In this case, the mechanical equi-
librium can exist, even if the pressure of the gas is larger or smaller than that which
is external, as long as the force resulting from the pressure difference is smaller than
the maximum static friction force.

As a second example, consider a rubber band fixed at one extreme and hanging
vertically down, as in Fig. 2.3. If we apply a force Fa to the other extreme, the rubber
band will stretch up to the deformation at which the elastic force T is equal to Fa.

(b) thermal equilibrium.

The first necessary condition is that all the parts of the system have the same
temperature. Otherwise, temperatures tend to become equal and we do not have
equilibrium. The second condition is that temperature should not vary due to the
external environment. Suppose that, as is usually the case, the environment has a

Fa

p

Fig. 2.2 A gas in a cylinder
closed by a movable piston

T

Fa

Fig. 2.3 Rubber band in
equilibrium
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definite constant temperature. Clearly, if the temperatures of the system and the
environment are equal, the system is in thermal equilibrium. However, this is not a
necessary condition. If the walls surrounding the system are thermally insulating,
the temperature of the system does not vary even if different from that which is
external. Walls having this property are said to be adiabatic, from the Greek words
a (not), dia (through) and bainein (to go). Even if perfectly adiabatic conditions
cannot be realized in practice, for example polystyrenes boxes or dewars make for
good approximations.

(c) chemical equilibrium.

If there are more chemical species with thermodynamic equilibrium, the con-
centrations of the different species must be constant in time. The same is true if
there is only one species, in different phases (liquid and solid, liquid and vapor, etc.)

2.2 Temperature

The concept of temperature is linked in the common sense of the world to the
feeling of hot or cold. In physics, the concept must be precisely defined. We shall
define temperature operationally, namely as the set of operations needed to measure
it. We state immediately that we shall proceed by approximations, gradually
increasing the precision of the definition. The reason for this is that the most precise
definitions of temperature require thermodynamic concepts, which, in turn, require
some knowledge of temperature. There is no risk of circular arguments, as we shall
always rely on experiments.

Our simpler definition stems from the following considerations. We start from
our own perception of “temperature” as a state in which an object is perceived as
being either colder or hotter. We take two bodies of different temperature and put
them in contact. We feel both temperatures and determine that they vary with time
but, after a while, both become stationary. We conclude that the two bodies are in
thermal equilibrium. Can we state that they have the same temperature? Not yet.
We must pay attention to the fact that equality enjoys the transitive property; if A is
equal to B and B is equal to C, then A should be equal to C. We need to check if the
property is satisfied through experiment; we cannot state it through logic.
Experimentally, we find that, if body A is in thermal equilibrium with body B and,
separately, body B is in equilibrium with body C, then, if we put A and C in contact,
their temperatures do not vary; they are in thermal equilibrium as well.

We can now define temperature as follows. We take two bodies, one, say A, is
the thermometer, the other, B, is the body the temperature of which we want to
measure. We put them in contact and wait for thermal equilibrium. If we now have
a third body, C, which is in thermal equilibrium with B, the transitory property we
have found insures that the thermometer A will measure the same temperature when
put in contact with C as it did with B.
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The traditional thermometers consist of a glass bulb containing a liquid con-
nected to a capillary tube several centimeters long. When in contact with a warmer
body, the liquid expands; the higher the temperature, the higher it rises in the
capillary. Mercury was in standard use as thermometer liquid until the 1990s, when
it was judged to be too risky to handle, being poisonous and thus potentially
dangerous in cases of the glass accidentally breaking. Mercury was subsequently
replaced as a thermometric liquid by colored alcohols. These thermometers, in turn,
were soon replaced by so-called electronic thermometers. We shall come back to
their working principles at the end of the section, and base our discussion on
liquid-in-glass thermometers, which are conceptually simpler.

For quantitative measurement, we need a scale. To have a scale, we must fix two
values, the zero and the step or degree of the scale, namely the unit. For that, we
need two systems having a well-defined temperature. We observe that a mixture of
pure water and ice always has the same temperature provided it is at the same
pressure. We can check with our thermometer, even if we still lack a scale, by
observing that it always sets at the same level when in contact with the mixture. The
same is true for a mixture of water and its vapor in equilibrium at the same pressure.
On the Celsius scale, zero (0 °C) is defined as the water-ice equilibrium temperature
at the standard atmospheric pressure. It is named after Anders Celsius (Sweden,
1701–1744). The standard atmospheric pressure is defined as p = 1.013 × 105 Pa.
A temperature of one hundred degrees (100 °C) is defined as the water-vapor
equilibrium temperature at the standard atmospheric pressure.

We can proceed as follows. We emerge our thermometer in the ice-water
mixture at atmospheric pressure and mark a line on the capillary at the level of the
thermometer liquid, writing a 0 on the tube. We do the same with the water-vapor
mixture, and mark 100. We still need the degree. The best we can do is to divide the
length between the two marks into one hundred equal parts. We can continue with
the same step above 100 and below 0.

Pay attention, however. In dividing the length into equal parts, we have
implicitly assumed that the length of the liquid in the capillary does vary linearly
with temperature. Is that true? One way to check is to build, following the above
procedure, a number of thermometers, say several made of different glasses, with
different diameters, containing different liquids, etc. Then, we measure the tem-
perature, which should be different from 0 and 100, of a reference body with all of
them. We find that the readings of the thermometers are equal only upon first
approximation. We can find differences of a few tenths of a degree between ther-
mometers with the same liquid and up to a few degrees if the liquid is different. As a
matter of fact, the thermal dilatation of the bodies is not exactly a linear function of
temperature. In addition, the temperature reading depends on the glass as well and,
even if only weakly, on the age of the glass.

In conclusion, the liquid-based thermometers are very simple, cheap and easy to
use. They are particularly useful for somewhat imprecise measurements. However,
in physics, temperature is a very important quantity, and must be defined as
accurately as possible (as usual, infinite accuracy does not exist). The method is the
ideal gas thermometer.
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We preliminarily observe that the gas thermometer measures the absolute tem-
perature. As a matter of fact, the Celsius scale (and the Fahrenheit scale as well) is
arbitrary; it is not based on a physical law. However, a temperature exists that must
necessarily be considered to be zero on a physical basis. This is called absolute
zero. The most direct experimental evidence comes from the laws experimentally
established by Alessandro Volta (Italy, 1745–1827), Joseph Louis Gay-Lussac
(France, 1778–1850) and others. These heuristic laws were later included in the gas
law that we shall discuss in the next section. We anticipate here that these authors
found both the pressure of a gas at constant volume and its volume at constant
pressure to be linear functions of the temperature, which was measured on the
Celsius scale. An important observation was that both the pressure and the volume
tend towards zero when the temperature tends towards the same well-defined value,
which is −273.15 °C. The same laws predict both pressure and volume to be
negative below that temperature. This fact being meaningless, the temperature of
−273.15 °C is the absolute zero. It is physically impossible to reach temperatures
lower than that. The zero of the absolute temperature scale is the absolute zero.

We now need the unit of temperature, which is called the kelvin1 (K), after Lord
William Thomson, Baron of Kelvin (UK, 1824–1907). The definition of kelvin is,
as for the other units, the responsibility of the Bureau International des Poids et
Mesures (BIPM, for short). The BIPM has changed the definition over time to make
it as precise as possible, taking advantage of technological progress. The kelvin is
defined by establishing the temperature of a fixed point. A mixture of the three
phases of a substance, water in particular, is in equilibrium at a certain temperature
and a certain pressure only. This is called the triple point. The water triple point
temperature (water, ice and vapor in equilibrium) is by definition 273.16 K. The
number has been chosen to have one kelvin be almost equal to the pre-existing one
degree Celsius.

As we have already stated, the gas thermometer is a precision instrument. As
such, it is not of simple use. Accurate procedures are required to reduce systematic
errors as much as possible. We shall not enter into such issues, being interested here
in the operation principles.

The thermometer, schematically shown in Fig. 2.4, consists of a bulb (made of
quartz or metal) containing a gas, which is connected through thin tubing to a
mercury manometer, so as to measure the gas pressure. All the pressure measure-
ments are done at constant volume. We have also prepared the water, ice, and vapor
mixture in equilibrium at the triple point. We are going to measure the temperature
of a reference system, say a mixture of water and vapor in equilibrium at atmo-
spheric pressure.

We put into the bulb a certain quantity, say m1, of a gas, say nitrogen. We then
put the bulb in contact with the triple point bath. The auxiliary container R, which is
connected to the manometer by a flexible rubber tube, is used, lifting or lowering it
according to need, to ensure that the level of the mercury in the branch of the

1Notice that the name is “kelvin”, not “degree kelvin” and that the symbol is K, not °K.
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manometer on the side of the gas is always at the same level, for every measure-
ment. The position is marked by the index I. In such a way, we guarantee that the
volume of the gas will always be the same. The measurement of the height h gives
the difference between atmospheric and gas pressures, and the latter when the
atmospheric pressure is known. Let us call it ptr. It is convenient to choose a mass
m1 small enough to have a rather low ptr compared to the atmospheric pressure.

We now put the bulb in contact with the water vapor mixture. We measure the
pressure as before and we call it p. We now preliminarily define the temperature of
the mixture, assuming it to be proportional to the pressure, namely as

T pð Þ ¼ p
ptr

273:16K ð2:1Þ

where we anticipated in the notation that the so-defined temperature might depend
on the pressure p.

The definition can be accepted only if we find the same result using another gas.
In practice, this is not so. We perform three measurements with bulbs full of,
respectively, nitrogen, oxygen and helium. We regulate the quantities of the dif-
ferent gases to obtain the same pressure at the triple point. It is equal to 80 kPa in
this case. We find that the three pressures measured with the bulb in contact with
the water-vapor mixture are a bit different. Consequently, the temperatures given by
Eq. (2.1) are also a bit different. They are shown in Fig. 2.5 at the abscissa of
80 kPa. The differences are of a few tenths of a degree. They are small, but
nonetheless tell us that the definition Eq. (2.1) is not sufficiently accurate.

We proceed, introducing into the bulb smaller quantities of the gases. The
pressure measured at the triple point is now ptr = 40 kPa for all the gases. We
repeat the operations and find the three temperatures in Fig. 2.5 at the abscissa of
40 kPa. The values are now closer to one another. We perform a third set of
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measurements, again halving the pressures to ptr = 20 kPa. We find that the mea-
sured temperatures get still closer. But Fig. 2.4 shows us more. If we linearly
extrapolate the measurement made with each gas to zero ptr, all of them lead to the
same value! The extrapolated value does not depend on the gas we use. The
behavior of the gases tends to be the same at zero pressure. The gas having this limit
behavior is called an ideal gas.

In conclusion, we define ideal gas temperature, which is also the absolute
temperature, as

T pð Þ ¼ lim
ptr!0

p
ptr

� �
273:16K: ð2:2Þ

In practice, the procedure just discussed is very delicate and requires weeks of
work. The measurements are done in metrological laboratories. The temperatures of
the triple points and, at a definite pressure, the fusion and boiling points of a number
of pure substances are accurately measured. These points are then employed to
calibrate secondary thermometers that are simpler to use.

The gas thermometer does not allow for measuring very low temperatures,
because all gasses liquefy at low enough temperatures. The lowest liquefaction
temperature is for He, at 4 K at atmospheric pressure. In practice, the lowest
measurable temperature with the gas thermometer is about 1 K. Below that, the
ideal gas temperature is not defined. We shall see in Sect. 3.5 how a temperature
scale based on thermodynamic arguments can be defined. This is called thermo-
dynamic temperature and is meaningful at all temperatures. In the interval of def-
inition of both, the two scales coincide.

Many types of thermometers are commercially available. They are based on a
number of temperature-dependent physical processes, work in a certain temperature
range, and have different accuracies, depending on the use for which they are meant
(medical, room, laboratory, etc.). Here, we recall only the already mentioned and
very common electronic thermometers, also called digital because they display the
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temperature on a digital screen. The majority of them are based on the thermo-
electric effect; the electric resistance of some metal varies almost linearly with
temperature. The resistance of the metal sensor is measured by means of an elec-
tronic circuit and displayed. The thermometers are calibrated by the production
company. The accuracy is typically a few tenths of a degree (±0.1°–0.2° for medical
models). Better accuracy can be obtained with thermistors, which employ the
temperature dependence of the electric resistance of semiconductors.

We add a final consideration. In any temperature measurement, whatever the
thermometer may be, the temperature of the thermometer is what is measured.
Consequently, we must always ascertain that the thermometer is in thermal equi-
librium with the object whose temperature we are measuring. In practice, the
thermal contact between the two must be good, and one must wait for the equi-
librium to be reached. In this process, there is always some heat transfer from body
to thermometer, or vice versa. As a consequence, both temperatures vary. However,
if the mass (or, even better, the heat capacity, which we shall define) of the ther-
mometer is much smaller than that of the body, the temperature change of the latter
is negligible.

Lastly, we notice that the water-ice equilibrium temperature at normal atmo-
spheric pressure, namely 0 °C, is equal to 273.15 K.

2.3 State Equation

Consider a homogeneous fluid made of a single substance. As we said, the ther-
modynamic coordinates of the system are the occupied volume V, the pressure
p and the absolute temperature T, which we take in the kelvin scale. In order for the
coordinates to have definite values, the system must be in thermodynamic
equilibrium.

In our study, we shall consider only closed systems. Consequently, in its pro-
cesses, the mass of the fluid does not vary. The state variables are then three: p,
V and T. A system described by these variables is called a hydrostatic system. It is
experimentally found that the three variables are not independent; only two of them
are as such. For example, if a gas is enclosed in a given volume and we exert a
certain pressure, then it assumes a well-defined temperature. Similarly, if we take a
defined volume of a gas at a certain temperature, its pressure assumes a definite
value. The relationship amongst the three values is called a state equation and can
be expressed as

f p;V ; Tð Þ ¼ 0: ð2:3Þ

Every hydrostatic system is characterized by its own state equation. No real
system has a state equation that can be expressed analytically. It is, however, always
possible, and extremely useful, to determine the equation experimentally. To do
that, we put the system in a sufficiently large number of different states and measure
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the thermodynamic coordinates in each of them. We have limited our considera-
tions to hydrostatic systems for simplicity. Notice, however, that all the thermo-
dynamic systems are ruled by a state equation that connects its state variables. We
shall see an example at the end of the section.

As a consequence, two thermodynamic variables are sufficient to define any
equilibrium state of a hydrostatic system of given mass. The most often used pair is
volume and pressure. The equilibrium states are represented as points on the p,
V Cartesian plane, with V as abscissa and p as ordinate. Clearly, only the positive
part of the V axis is meaningful. The pressure is almost always positive too, but it
may exceptionally be negative.

Several scientists in the XVII and XVIII centuries were responsible for devel-
oping the physics of gases and, in particular, their thermodynamics. We have
graphically represented the life spans of the main contributors in Fig. 2.1. They are:
Edme Mariotte (France, 1620–1684), Robert Boyle (UK, 1627–1691), Alessando
Volta (Italy, 1745–1827), John Dalton (UK, 1766–1844), Amedeo Avogadro (Italy,
1776–1856) and Joseph Louis Gay-Lussac (France, 1778–1850).

The results of their work can be summarized as follows. If we change the
volume of a gas, keeping its temperature fixed, the pressure varies in almost inverse
proportion to the volume. In other words, the product of pressure and volume
remains nearly constant at constant temperature. If the temperature varies, the
product of pressure and volume vary proportionally to it, provided it is the absolute
temperature. The proportionality constant is, in turn, proportional to the mass of the
gas. The state equation of the gas we are considering is thus

pV ¼ rmT

where r is the proportionality constant, which is different for different gases. The
equation is very simple and, as we shall now see, contains a lot of information. But
there is more to it.

A quantity of a well-defined substance can be measured in two units: the kilo-
gram, which measures its mass, and the mole, which measures its number of
molecules, which are of one species only because the substance is defined. The
symbol of the mole is mol. A mole of a substance is an Avogadro number of
molecules of that substance. When the mole was defined, and originally called a
gram molecule, the unit of mass was the gram. The molecular masses were defined
in grams as well. A mole is the number of grams of the considered substance that
contains an Avogadro number of molecules. For example, a mole of hydrogen has a
mass of one gram. The Avogadro number is one of the fundamental constants of
physics. Its first digits should be remembered by heart. It is very large, namely

NA ¼ 6:02214129� 0:00000027ð Þ � 1023 mol�1: ð2:4Þ

Coming back to the gas equation, let us express the quantity of gas in number of
moles, n ¼ m� 10�3=M, where M is the molar mass of the substance and the 10−3

factor is due to the fact that m is in kilograms. The state equation becomes
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PV ¼ nRT ð2:5Þ

where R is a new constant (R = rm/n). Up to now, we have simply re-defined the
proportionality constant. However, what matters is that experiments show that R is
a universal constant, namely that it is the same for all gases. This is called the gas
constant. Its value is

R ¼ 8:3144598� 0:0000048 Jmol�1 K�1: ð2:6Þ

Rigorously spiking, no gas follows Eq. (2.5) exactly. However, the most com-
mon gases, such as the gases in the atmosphere, behave approximately according to
that equation in a large interval of pressures and temperatures. The approximation is
better the higher the temperature and the lower the pressure. The ideal gas is defined
as a gas that rigorously obeys Eq. (2.5). This is called the ideal gas equation, but also
the Boyle law and Boyle-Mariotte law. We can see now that the definition of absolute
temperature given in the preceding section was based on this law.

A fundamental implication of the gas law was established in 1811 by Amedeo
Avogadro. The Avogadro law states that equal volumes of different (ideal) gases
with the same conditions of temperature and pressure contain the same number of
molecules. Today, we see that this is an immediate consequence of the universality
of the R constant. A useful quantity is the molar volume, which is the volume
occupied by a mole of (ideal) gas at, as it is called, STP, meaning standard tem-
perature and pressure. These are defined as T = 273 K (about 0 °C) and p = 105 Pa
(about one atmosphere). The molar volume of ideal gases is

Vm ¼ 0:0224m3 ¼ 22:4 L: ð2:7Þ

The gas equation Eq. (2.5) contains several heuristic laws that were discovered
by different researchers, as mentioned in the previous section. Very importantly, it
contains the law discovered in 1801 by John Dalton, called the Dalton law after him,
and also the law of partial pressures. The law states that: “In a mixture of different
gases the partial pressure of each of them is the pressure it would exert if it occupied
all the volume alone.” It is as if each gas was kept unto itself without any interaction
with the other ones. The Dalton law is rigorously valid for the ideal gases.

We close this section considering an example of a non-hydrostatic thermody-
namical system; the rubber band represented in Fig. 2.3. The thermodynamical
variables are the length l and the tension τ, which depends at equilibrium on the
applied force Fa, and the temperature T. The elastic constant of rubber depends on
the temperature, increasing as the temperature increases. The rubber becomes
“harder” if heated. In other words, for a fixed length, the tension depends on
temperature. We can also find that stretching the band causes its temperature to
increase, while relaxing the band causes it to diminish. Even in this case, there is a
state equation, linking the three thermodynamical variables. Only two of them are
independent. However, this equation of state cannot be expressed analytically.
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2.4 Processes

A thermodynamic process, or thermodynamic transformation (the two terms are
synonyms), happens when a thermodynamic system changes from an initial to a
final state. Generally speaking, each of them can be an equilibrium state or not.
However, we shall only consider the former case. The states of the system during
transformation can never be rigorously of equilibrium, because an equilibrium state
is stationary. We shall now define different types of processes.

Quasi-static processes. A process is said to be quasi-static if the states taken by
the system differ from stationary states by infinitesimal quantities. In practice, the
coordinates of the system should vary very slowly, allowing it the time to adjust to
the changed conditions before the coordinates change again. The initial and final
states of a quasi-static process are necessarily equilibrium states.

Consider, for example, a gas in a cylinder closed by a piston. If we want to increase
its pressure in a quasi-static manner, we must move the piston slowly. At each small
displacement of the piston, the pressure of the gas increases in a layer immediately
under the piston. The other parts of the gas still have the initial pressure. Soon, the
pressure increase propagates gradually throughout the volume. The pistonmust move
slowly enough to allow the pressure throughout the gas volume to reach (close to) the
same value. If we lay a heavyweight on the piston and abandon it, the pistonwill move
down quickly and the process will not be quasi static. Contrastingly, if we gradually
pour some sand on the piston, the process will be quasi-static.

Reversible processes. A process is reversible if it is quasi-static and if dissipative
forces are negligible. Consider a generic state P in a certain instant of a quasi-static
process. P is almost an equilibrium state. Immediately before that instant, an
infinitesimal variation of the external conditions, the system was in a state infinitely
near to P. If the process is reversible, when we invert the infinitesimal variation of
the external conditions with the system in P, the system goes back to the state it was
in immediately before P.

Let us again consider the gas contained in a cylinder, as in Fig. 2.6. Suppose
friction to be present between the piston and the cylinder. The force Fa is applied
externally to the piston, normally downward. To have a quasi-static expansion
process, we slowly decrease the applied force. Assume a friction force Fr to be
present. Its direction is opposite to that of the motion. The gas exerts a force pS on
the piston directed vertically upward. To have the piston moving up, it should be
Fa\pS� Fr, as in Fig. 2.6a. If we want the motion to be slow, the inequality
should be just satisfied.

The process is quasi-static but not reversible. Indeed, if we want to invert the
process, namely to compress the gas and have the piston moving down, we must
increase Fa, but not only by an infinitesimal quantity. This is because the friction
force, which always opposes the motion, changes signs and is finite, not
infinitesimal. The condition becomes Fa [ pSþFr, as in Fig. 2.6b.
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We see that, in order to pass from expansion to compression, changing the
external conditions by an infinitesimal quantity (the force Fa in the example), the
friction must be zero, as in Fig. 2.6c.

Rigorously speaking, quasi-static processes do not exist, and even less so the
reversible ones. However, we can often operate in conditions that are close enough.

Irreversible processes. All the processes that are not reversible (all the natural
ones), namely when dissipative effects are present, or the system goes through
states that do not only differ by infinitesimals from equilibrium states (or both), are
irreversible.

Cyclic processes. A process is cyclic if initial and final states coincide. Clearly, a
reversible process can be quasi-static, reversible or irreversible.

We now define the adiabatic wall. Consider two systems A and B at different
temperatures, TA and TB, respectively. If we put them in contact, both temperatures
vary until they become equal. We make a series of experiments with plates of
different materials introduced between the two systems, as shown in Fig. 2.7. We
find that the time necessary to reach thermal equilibrium, starting from the same
temperatures, are different for different materials. If the plate is metallic and thin,
the time is very short; if it is foamed polystyrene and thick, the time is very long.
Other materials give intermediate results. The materials of the first type are called
good thermal conductors, those of the second, good thermal insulators.

Fa

S p

Fr

S p

Fr

S p

(a) (b) (c)
Fa Fa

Fig. 2.6 Forces on the piston. a Expansion, with friction, b compression, with friction,
c reversible, no friction

TA TB
TA TB

(a) (b)Fig. 2.7 Thermodynamic
systems at different
temperatures separated by
(a) diathermic wall,
(b) adiabatic wall
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Two idealized cases are considered. We call walls perfectly permeable to heat
diathermic walls and walls that completely block the heat transfer adiabatic walls.
When two systems are separated by a diathermic wall, the temperature equilibrium
is reached exactly as if the wall was not present; if the wall is adiabatic, each system
keeps its temperature indefinitely.

Figure 2.8 represents two thermodynamic systems closed in a single container.
The walls of the container are adiabatic; the two systems can interact with one
another, but not with the environment.

A system is closed if it does not exchange matter with the surrounding envi-
ronment. A pot of water boiling on the fire is not a closed system (even with a
cover), because vapor exits; water in a pressure cooker, before it whistles, is a
closed system.

A thermodynamic system is isolated if it can exchange neither mass nor energy
with the environment. A necessary condition is for it to be completely enclosed in
adiabatic walls. The condition forbids energy exchanges as heat (see discussion in
the following section), but not as work. Consequently, the condition is not
sufficient.

An isolated system in an equilibrium state remains indefinitely in that state. To
move it out of that state, it is necessary to add energy to it or subtract energy from it,
which is not possible by definition. If, contrastingly, the system is initially in a
non-equilibrium state, it spontaneously performs a process that brings it to an
equilibrium state. The processes of this type are called spontaneous processes.
Consider, for example, the two parts of a system, isolated from the external envi-
ronment, in thermal contact at different temperatures in Fig. 2.7a. They are not in an
equilibrium state. The system spontaneously evolves towards the equilibrium state
in which the temperatures are equal.

Consider a container with adiabatic and rigid walls. A diaphragm with a tap
divides the container into two halves. The half on the left-hand side contains a gas;
the half on the right-hand side is empty. This is an equilibrium state, but ceases to
be one when we open the tap. The system then spontaneously evolves until the
point when the gas occupies the entire volume with uniform pressure. The system is
now in equilibrium and its state no longer changes.

Obviously, all spontaneous processes are irreversible.

(a) (b)

Fig. 2.8 A gas in an adiabatic and rigid box. a All the gas on the left-hand side, tap closed, b gas
in all the box, tap open
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As we already mentioned in the previous section, we can represent any equi-
librium state of a hydrostatic system with a point on a Vp plane. In Fig. 2.9, points
A and B represent equilibrium states. The non-equilibrium states cannot be repre-
sented by points, because at least some of their thermodynamic coordinates are not
defined. In this case, only V is defined, because the system is in a rigid container,
while the pressure and the temperature are not defined. A quasi-static process is
represented on the Vp plane by a curve; the points of the curve are the equilibrium
states crossed by the system. The curve Γ in the figure is an example of a
quasi-static process from A to B. If the process is not quasi-static, even if it joins
two equilibrium states, it cannot be represented by a curve. In Fig. 2.9, we have
schematically drafted such a process with a grey area, to indicate the lack of
definition of the intermediate states.

2.5 Work

Any hydrostatic system has a definite volume bounded by surfaces that may be the
surrounding walls of a container, the free surface of a liquid, etc. The system can
interact with the surrounding environment by exchanging energy through its sur-
faces. External forces may be present and exert work, as defined in mechanics, on
the system. The following convection is adopted in thermodynamics: work is
positive if exerted on the system, negative if exerted by the system. The underlying
reason for this is the fact that thermodynamics began historically as the science of
engines.

The forces with which the system exchanges work with the surroundings act on
its surfaces. They can do work only if their application points move, meaning that at
least part of the surface must move. Movement of the surface is, however, not
sufficient. To have work, the volume of the system must also change, as we shall
now see.

Consider the simple system of Fig. 2.10, which is a gas contained in a cylinder
with mobile piston of area S. Let p be the pressure and Fa the external force,
perpendicular to the piston. Suppose that the friction between piston and cylinder is
negligible. Consider a reversible expansion. The piston moves very slowly. The

p

V

B

A

Γ

Fig. 2.9 A and B are
equilibrium states of a
hydrostatic system. Of the
two processes, Γ is reversible,
the grey area is not
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forces on the piston are Fa and the pressure of the gas Sp. The latter is larger than
the former by a mere infinitesimal quantity. The work done by the pressure forces
of the gas for an elementary displacement dx of the piston is

dWg ¼ pSdx ¼ pdV ð2:8Þ

where, at the last member, we have taken into account that S dx is the volume
variation dV. The work of the external force Fa is

dWe ¼ Fadx: ð2:9Þ

Notice that in both expressions, we have used the symbol δW rather than dW,
because these are infinitesimal quantities but are not, in general, the differentials of
any function, namely they are not exact differentials.

The two works we have expressed are equal in magnitude, because the two
forces are equal. Notice, however, that if the friction is not negligible, and the
process is quasi-static but not reversible, the two works are different. In this case,
the work of the pressure force is larger, because it acts against the sum of Fa and the
friction force (see Fig. 2.6). If the process is not even quasi-static, the gas goes
through non-equilibrium states, in which the pressure is not even defined.
Equation (2.8) loses its meaning. However, we can calculate the external work
made by the gas on the surroundings even if the process is irreversible. Indeed, the
motion of the piston very often takes place to produce a useful work (raising a
weight, rotating the axis of an engine, etc.). In all these cases, an external force, Fa,
acts against the motion and we can use Eq. (2.9) to calculate the work done. If
friction is present, the work against the friction force must be added.

Within the mentioned limitations, the expression of the elementary work of the
pressure force for a variation of the volume can be generalized to surfaces of any
shape. Consider a hydrostatic system with pressure p enclosed in a surface Σ of
arbitrary shape (see Fig. 2.11). Consider an infinitesimal quasi-static process in
which the surface changes to Σ1. The process being quasi-static, the pressure

Fa

p

dx

Fig. 2.10 Forces acting on
the piston, in absence of
friction
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remains definite and independent of the position. Let dΣ be an infinitesimal surface
element and dn the magnitude of its displacement, measured normally to the sur-
face. The pressure force of the gas on the surface element is p dΣ. Its work is p dΣ
dn. We obtain the total work by integration on the surface. p being constant, we
have dW ¼ p

R
R dn dR. As we see in the figure, the quantity

R
R dn dR is the volume

variation dV, and we thus get

dWg ¼ pdV : ð2:10Þ

The work done by the gas in a quasi-static process Γ, from state A to B, is
obtained by integration

WAB;C ¼
Z B

A;C
pdV : ð2:11Þ

In general, the work depends not only on the initial and final states, but also on
the particular process joining them.

Consider the quasi-static process Γ of a hydrostatic system from the initial state
A to the final state B. In the plane Vp, the process is represented by an oriented
curve, which we also call Γ, as in Fig. 2.12. In the process, the system goes through
states having definite values of pressure and volume. We can then consider the
pressure to be a certain function p(V) of the corresponding volume. The curve in the
Vp plane represents this function. The work in the process is

dn
dΣ

Σ

Σ1

p

Fig. 2.11 Infinitesimal
expansion of a hydrostatic
system

p

V

VA VB

B

A

Γ

Γ1

Fig. 2.12 Two quasi-static
processes between the same
initial and final states
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WAB;C ¼
Z VB

VA;C
p Vð ÞdV ð2:12Þ

where VA and VB are the volumes of the initial and final states. Graphically, the
work is the area under the curve, which is grey in the figure. The work is positive if
the final volume is larger than the initial one, and negative in the opposite case. We
easily understand how, if the process between the same states is changed, the work
changes too, in general. The work for a different process, as with Γ1 in the figure, is
the area under this curve, which is different from the area under Γ.

Up to now, we have implicitly assumed the process to be such that the system
has a certain state only once. Only in this case, the function p(V) is single-valued. If
this is not the case, it is always possible to divide the process into parts, for which
p is the single valued function of V. Let us look at an important example.

In a cyclic process, the system starts from a state, goes through the process and
then returns to its initial state. A cyclic quasi-static process of a hydrostatic system
is represented by a closed curve in the pV plane. Figure 2.13 shows such a process
starting from the initial state I and eventually coming back to it.

The work generated by the system in the cycle is, geometrically, the area enclosed
within the cycle taken with the positive sign if the direction is clockwise, and negative
if it is anti-clockwise. Let A and B be the states of minimum and maximum volume
reached through the process, respectively. Let Γ1 be the section of the process from
A toB andΓ2 the section fromB toA. Thework done in sectionΓ1 is the area under this
curve and is positive. The work done in section Γ2 is the area under it and is negative.
The total work is the difference between the two areas, corresponding to what we have
stated. It is immediately understood that the work would have been negative if the
sense was anti-clockwise. Notice that work is a definite quantity when the cycle is
given; it does not depend on the initial and final state I.

Isochoric process. A process is said to be isochoric if the corresponding external
work is zero. When the work can be expressed by Eq. (2.10), we must have dV = 0
for all the elements of the process, namely the isochoric processes must take place
at constant volume. As a matter of fact, that is the meaning of the name (in Greek,
iso means equal, and choros means space). However, the definition is more general.
A process may also be isochoric when Eq. (2.10) does not hold.

Isobaric process. This is a process at a constant pressure.

p

V

VA VB

B

A

Γ2

I Γ1

Fig. 2.13 Cyclic quasi-static
process of a hydrostatic
system
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Let us calculate the work of a hydrostatic system in an isobaric process. This is
immediate. The pressure being constant, we can take it out of the integral and write

WAB ¼
Z B

A
pdV ¼ p VB � VAð Þ: ð2:13Þ

Isothermal process. This is a process at a constant temperature.
The isothermal curves for a gas in the Vp plane are hyperbolas having asymp-

totes on the axes. Let us calculate the work of n moles of an ideal gas in an
isothermal process from A = (pA, VA, T) to B = (pB, VB, T), represented in Fig. 2.14.
Using the gas state equation Eq. (2.5), we have

WAB ¼
ZB
A

pdV ¼
ZB
A

nRT
V

dV ¼ nRT
ZB
A

dV
V

¼ nRT lnVB � lnVAð Þ:

The last member looks strange, because the arguments of the mathematical
functions should always be dimensionless. But it is just a matter of writing it.
Indeed, the difference between two logarithms is the logarithm of the ratio of their
arguments. It is better for us to write the expression in the form

WAB ¼ nRT
VB

VA
: ð2:14Þ

2.6 Heat

We have mentioned several times that if two systems at different temperatures are
brought into thermal contact, their temperatures will vary until they become equal.
In this type of process, the two systems exchange energy. The form of exchange is
not work, because nothing is moved mechanically; rather, the form of exchange is
heat. Heat is an energy exchange between two systems at different temperatures, as
we shall now discuss.
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VA VB
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A
pA
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T

Fig. 2.14 Isothermal process
in a gas
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We warn the reader that the common linguistic use of the word “heat” might
generate confusion in this case. Indeed, the common language often uses the words
“heat” and “temperature” interchangeably. In physics, however, they have very dif-
ferent meanings. We have already discussed temperature; we shall now discuss heat.

The physical dimensions of heat are the same as those of energy. However, heat
is NOT energy. Similar to work, heat is an ENERGY EXCHANGE. Heat, as work,
cannot be “owned” by a system. If one moves a book that is on the floor up onto a
shelf, one does work on the book. Nobody would think that the book now “has”
that work. It has potential energy, relative to the floor, which is equal to that work.
In the common language, we say that friction “produces” heat. For example, brakes
become hot when they act. But no heat has been produced. Even more to the point,
no heat has been exchanged. Instead, the friction forces have done work, the kinetic
energy of the car has decreased and the temperature of the brakes has increased. As
we shall see, the temperature increase corresponds to an increase in the internal
energy of the brakes.

Another example of confusion is sentences like: “I have been in Texas and the
heat was unbearable”. What was unbearable was the temperature, not the heat. The
very word “hot” tends to induce confusion, as it comes from heat. However, a body
is hot not when it “has” a lot of heat, but when its temperature is high. In physics,
we repeat, heat is always an exchange. To talk of heat, at least two systems must be
present, not only one.

Let us now precisely define heat. We will give an operational definition, namely
we define the set of operations needed to measure heat. The instruments used to
measure heat are calorimeters. By definition, heat is the physical quantity measured
with a calorimeter. We must thus define the calorimeter.

In thermodynamics, by convention, heat is positive if absorbed, negative if
released by the system. The reader will note that the conventions on the sign for
heat and work are opposite. This is a consequence of the fact that thermodynamics
was developed to build engines able to absorb heat and produce work.

The calorimeter is itself a thermodynamic system. It is made of a substance,
called the calorimetric substance, sealed inside a container. The substance is often
pure water or ice or a mixture of the two. The masses of the substance are known,
having been measured. To measure a heat exchange, we need a second system, a
body that gives out or absorbs the heat to be measured. The exchange must take
place with the calorimeter alone. Consequently, the calorimeter and the body must
be enclosed in an adiabatic container, to forbid, as much as possible, any heat
exchange with the surroundings.

We know that heat exchanges produce temperature changes. The simplest,
preliminary choice is assuming the temperature change to be proportional to the
heat exchange, at least for variations of the former that are not too large. We must
then guarantee that no other thermodynamic variable actually varies but tempera-
ture. First, we shall work at constant volume. Consequently, we shall use a liquid or
a solid as the calorimetric substance, whose volume does not vary much with
temperature, and we shall avoid gases. Second, we shall work at constant pressure.
Third, we shall avoid chemical reactions, by using pure substances.
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Let us now build our calorimeter. As an adiabatic container, we shall use a vacuum
flask, technically known as aDewarflask. This type of vessel, called a thermos, greatly
lengthens the time over which its contents remain hotter or cooler than its sur-
roundings. The technique was invented by James Dewar (UK, 1842–1923) in 1892. It
consists of two flasks, one inside the other, joined at the neck. The walls of the flasks
are made of thin glass and are aluminized like mirrors. The gap between the flasks is
evacuated. In this way, the different modes of heat transmission, convection, con-
duction and radiation (which we shall study in Chap. 6) are strongly reduced. The
flask has an opening that can be closed with an insulating plug.

We introduce a certain quantity of pure water into the flask, of which we have
measured the mass, m, and the temperature, Ti. The system that exchanges heat with
the calorimeter can be, for example, a piece of metal that we heat at a temperature
higher than Ti. We introduce the body into the calorimeter and close the plug. In the
calorimeter, we also have a thermometer. We see the measured temperature
increasing and finally becoming constant at a certain value Tf. The heat given out by
the body and the heat absorbed by the water are equal because the system is
isolated. We can say that this heat Q absorbed by the water is proportional to
Tf − Ti.

As one can imagine, the temperature rise Tf − Ti depends, for the same absorbed
heat, on the mass of water. We find experimentally that the product of the water
mass and the temperature difference m(Tf − Ti) is proportional to the absorbed heat.
We finally state that

Q ¼ cm Tf � Ti
� �

: ð2:15Þ

The proportionality constant c depends on the substance. If we had used, for
example, an oil or an alcohol in place of water, we would have found different
values. The constant is called the specific heat of the substance. The measurement
unit for heat, which is the kilocalorie, is defined by fixing the specific heat of the
water, to be exact, at a certain temperature.

The definition is as follows: The kilocalorie is the heat quantity that must be
given to a kilogram of water in order to increase its temperature from 14.5 to
15.5 °C, at the constant pressure of one atmosphere.

The temperature of the exchange must be specified because the specific heat
varies, even if not by much, with the temperature.

We note here that the calorimetric measurements are always very delicate. For
example, the thermal insulation, even if good, is never perfect, and corrections must
be applied to the measurements to take into account heat leaks. What is interesting
here is the principle of operation of the calorimeter.

We finally note that, heat being the physical dimension of energy, its unit in the
SI is the joule. We need the provisional calorimetric unit of the kilocalorie, for the
following discussion.
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2.7 Equivalence of Heat and Work

The equivalence between heat and work was established for the first time by Julius
Robert von Mayer (Germany, 1814–1878) in a paper published in 1845. We shall
specify here what “equivalence” means.

We have seen that both work and heat are forms of energy exchange. The two
quantities are measured in completely different manners and a priori look very
different. However, they are strongly connected. Indeed, engines absorb heat and
produce work. Let us look at two examples.

In the first example (Fig. 2.15a), which is a system we have already considered,
the gas is contained in a cylinder closed by a piston, on which there is a weight,
producing the force Fa. Suppose now that we give heat to the system using a flame
through the bottom of the cylinder, which is diathermic. We observe that the gas
expands and the piston rises, elevating the weight with it. Work is produced. The
process is the constant pressure expansion we considered in Chap. 5.

In the second example, which we have also already considered, we have a
weight hanging on a rubber band (Fig. 2.15b). If we gently heat the band with a
flame, it contracts, because the elastic constant increases with the temperature. The
weight rises. Again, the system absorbs heat and produces work, which is the
product of the tension (that is constant) and the displacement.

We cannot conclude from these examples that the work produced by a system is
equal to the heat it absorbs. As a matter of fact, both exchanges also vary the energy
of the system. Here, we mean energy related to the internal, thermodynamic state of
the system, which is different from the mechanical kinetic and potential energies. It
is the internal energy of the system that we shall define in the next section. Before
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Fig. 2.15 a A gas in a cylinder, b a rubber band
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doing that, we shall prove its fundamental property: that the variation of the internal
energy of a system is always equal to the algebraic sum of the heat received and the
work done. This is the first law of thermodynamics.

Indeed, the first law of thermodynamics is the energy conservation law. In
mechanics, the energy of an isolated system is conserved only if all the acting forces
are conservative. The decrease of mechanical energy observed in the presence of
dissipative forces does not really mean that energy is not conserved. The point is that
the mechanical energy is not the only form of energy in the game. As a matter of fact,
the energy that seems to be lost actually did transform into internal energy.

Clearly, what we have just stated needs to be experimentally proven. We shall
now describe the elegant and fundamental experiment conducted by James Prescott
Joule (UK, 1818–1889) in 1845. The experiment establishes what is known as
equivalence between heat and work. More importantly, it establishes the existence
of internal energy.

Figure 2.16 shows a schematic of the experiment, which is performed in two
phases, (a) and (b) in the figure. A thermally-insulated vessel contains water (or
another liquid). A vertical axis with a number of horizontal vanes is placed inside of
the vessel with enough room so that it can rotate under the action of two external
weights linked to a system of pulleys. Other vanes soldered onto the walls are
interleaved with the mobile ones to hinder the common mode motion of the water.
The water is forced to move slowly between the vanes, to maximize the mechanical
energy dissipation in the liquid.

We determine the initial state of the system by measuring its mass M and its
temperature Ti. The mass of each weight is m.

In the first process, we perform the mechanical work W1 on the system with no
heat exchange (Q1 = 0). We take the weights in their higher position and let them
descend. Theymove very slowly andwe can neglect their kinetic energy.Wemeasure
the drop h. The work done on the system (remember the sign convention) is
W1 ¼ �2mgh.

In the second process, we bring the system back into its initial state. We do that
extracting heat without any work being done (W2 = 0). We take the thermal

calorimeter

termo-
meter

(a) (b)

Fig. 2.16 The Joule experiment; (a) the first process; (b) the second process
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insulation off of the bottom of the vessel and we lay it on a calorimeter, as shown
schematically in Fig. 2.16b. While the system gives away heat to the calorimeter,
we measure its temperature, and we stop the process when it is back to the initial
value Ti. Let Q2 be the heat measured by the calorimeter, which is also the heat
given away by the system. Overall, the process is a cycle.

The total work in the cyclic process is W ¼ W1 þW2 ¼ W1 þ 0 ¼ W1 and the
heat exchanged is Q ¼ Q1 þQ2 ¼ 0þQ2 ¼ Q2. We take the ratio between the two
quantities we measured and we find

W
Q

¼ 4186 J/kcal: ð2:16Þ

Up to now, we have not proven anything. Indeed, the ratio of two quantities
must have a value. However, if we repeat the experiment with different quantities of
water, different liquids, different quantities of work, etc., provided that the process
is cyclic, we find that the ratio of total work and total heat always has the value of
Eq. (2.17), within the experimental uncertainties. The symbol for the ratio is J and
we write that, for every cyclic process,

J � W
Q

¼ 4186 J/kcal: ð2:17Þ

J is called the mechanical equivalent of heat. We can also state, in an equivalent
manner, that experiments show that. In any thermodynamic cyclic process, the
equation

JQ�W ¼ 0 ð2:18Þ

holds, where W is the sum of all the works taken as positive if done by the system,
negative if done on the system, and Q is the sum of all the heat exchanges, taken as
positive if absorbed by the system, negative if released by it. Notice that we
established the equation using irreversible processes. The equations we found,
Eq. (2.19) in particular, hold for any cyclic process.

Having shown that heat and work are homogenous physical quantities, we can
measure both of them in the same measurement unit. From now on, we shall
measure the heat in joules. Equation (2.18) becomes

Q�W ¼ 0: ð2:19Þ

2.8 First Law of Thermodynamics

In the previous section, we experimentally established an extremely important law
of physics, the law of energy conservation.
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Let us demonstrate that. Consider two different equilibrium states A and B of any
thermodynamic system and two arbitrary processes 1 and 2 from A to B, as well as a
third one 3, from B to A, as shown Fig. 2.17. The processes 1 + 3 and 2 + 3 are
cyclic. We then apply Eq. (2.19) to both of them, obtaining
Q�Wð Þ1 þ Q�Wð Þ3¼ 0 and Q�Wð Þ2 þ Q�Wð Þ3¼ 0. Subtracting the two
relations, we have Q�Wð Þ1� Q�Wð Þ2¼ 0, or

Q�Wð Þ1¼ Q�Wð Þ2:

Given the arbitrary nature of processes 1 and 2, we can conclude that the
quantity Q − W depends only on the origin and the end of the process and not on
the particular transformation. This quantity can be written as the difference between
the values in the final and initial states of a state function which we call U:

DU ¼ U Bð Þ � U Að Þ ¼ Q�W : ð2:20Þ

State function means that U is a function of the thermodynamic coordinates
(temperature, pressure, volume, chemical species concentration, tension for a rub-
ber band, etc.). With U(A), we mean the value of the function for the coordinates of
the state A. U is the internal energy of the system. Equation (2.20) defines the
internal energy a part of an additive constant, as is the case with energies.

Internal energy is a thermodynamic quantity. As such, it regards the macroscopic
state of the system. Indeed, thermodynamics does not deal with the underlying
microscopic physics. We shall come to that in Chap. 5 when we address statistical
mechanics. We anticipate a few hints here. Consider a system made of only one
chemical species. It is composed of a very large number of identical molecules, on
the order of the Avogadro number. The molecules move at different speeds, which
increase, on average, with increasing temperature. As a matter of fact, their mean
kinetic energy is proportional to the absolute temperature. In addition, the mole-
cules have interactions between them. The internal energy of the system is the sum
of the kinetic energy and potential energies of its molecules (namely their
mechanical energies). If the system is an ideal gas, the molecules are considered
non-interacting and their energy is only kinetic. The molecules of a monoatomic
gas can be considered point-like and their kinetic energies are those of their center
of mass. If the gas is polyatomic, the kinetic energy about the centers of mass must
be considered too. If more chemical species are present, the internal energy can vary
when chemical reactions take place.

We now come back to thermodynamics. Equation (2.20) is the mathematical
expression of the first law of thermodynamics. In particular, if the system is

B

A

1

2

3

Fig. 2.17 Processes from
A to B and from B to A
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isolated, both work and heat exchanges are zero and the internal energy is constant
for any process.

Equation (2.20) has a completely general validity, for whatever process, pro-
vided the initial and final states are equilibrium states. Otherwise, we cannot define
any function of the thermodynamic coordinates, because these coordinates are not
defined.

Consider now the particular case of quasi-static, in which all the intermediate
states, not only those that are extreme, are equilibrium states. Consequently, the
internal energy is defined in the intermediate states as well, and Eq. (2.20) also
holds for any elementary part of the processes, in the form

dU ¼ dQ� dW : ð2:21Þ

Pay attention to the fact that, from the mathematical point of view, dU is the
differential of a function (U), namely an exact differential, while δW and δQ are not.
They are infinitesimal quantities, but there is no function for which they would be
differentials. For this reason, we use the symbol δ rather than d.

We now consider the changes in internal energy for some relevant processes.
Isochoric processes. The work is zero by definition. The variation in internal

energy is equal to the absorbed heat:

DU ¼ Q: ð2:22Þ

This was the case for the second process of the Joule experiment of the previous
section. In general, we can state that the internal energy of a system increases
through heating (namely giving it heat) at constant volume, and decreases through
cooling at constant volume.

Adiabatic processes. The exchanged heat is zero. The variation in internal
energy is the opposite of the work done by the system:

DU ¼ �W : ð2:23Þ

This was the case for the first process of the Joule experiment. In general, when
the system does work on the surroundings W > 0, without heat exchange, as in an
adiabatic expansion, its internal energy diminishes. Contrastingly, the internal
energy increases in any adiabatic compression.

Example E 2.1 A body of mass m falls on the floor from a height h1 and, after the
collision, bounces back to the height h2. Assuming that the body absorbs all the
dissipated mechanical energy, how much does its internal energy vary?

The dissipated mechanical energy is mg h2 � h1ð Þ. This energy is lost in the
collision and corresponds to a mechanical work done on the body. Under the
thermodynamic conventions, it is negative. Indeed, the heat exchanges during the
brief instant of the collision can be neglected. Hence, for the first law, the variation
of internal energy is DU ¼ mg h1 � h2ð Þ.
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As we shall see, the internal energy is an increasing function of temperature.
Consequently, the final temperature of the body is higher than the initial one. If we
wish, we can bring back the body to its initial state by extracting a quantity of heat
equal to ΔU, that is, to the lost mechanical energy. One can find written instances
stating that the process is a transformation of work into heat. This statement is
wrong. The work has transformed into internal energy.h

Example E 2.2 We heat a room having volume V from temperature T1 to tem-
perature T2. Knowing that the internal energy of a gas is U ¼ ncVT (see Sect. 2.12),
where cV is a constant, how much does the internal energy vary? We must pay
attention, because the quantity of air at the end of the process is different from that
at the beginning. Indeed, even if the room is closed, some leakage under the
windows and the doors will always be present. When the temperature of the air
increases, the air expands and becomes less dense, the pressure remaining constant.
We are dealing with a constant pressure process in an open system. Let n1 and n2 be
the numbers of moles in the initial and final states, respectively. We write the gas
equation as pV ¼ nRT and notice that p and V are constant during the process.
Consequently, n1T1 ¼ n2T2 and also U2 ¼ U1.h

2.9 Specific Heats

If a body absorbs the heat δQ, its temperature increases by dT. The ratio of the two
quantities is called the heat capacity of the body.

C ¼ dQ
dT

: ð2:24Þ

As already mentioned in Sect. 2.6, it has been experimentally found that the heat
capacity of a given substance, under the same thermodynamic conditions, is pro-
portional to its mass. We thus define it as specific heat, namely the heat capacity per
unit mass. Thus, if the temperature of a body of mass m of that substance increases
by dT when it absorbs the heat δQ, the specific heat of the substance is

c ¼ C
m
¼ 1

m
dQ
dT

: ð2:25Þ

Note that heat capacity is a characteristic of a body, while specific heat is a
characteristic of a substance.

The definitions we just gave are not sufficiently precise, because the heat
absorbed by a body for a certain increase in its temperature depends on the process
in which the absorption takes place. Consequently, a substance does not have just
one, but indeed many, or even infinite, specific heats.

Consider the case of the hydrostatic system. Figure 2.18 represents two
isothermal transformations of such a system, one at temperature T, and the other at
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T + dT. Starting from a state at temperature T, namely a point on that isothermal
curve, we can pass on the second curve, namely increase temperature by dT, in an
infinite number of different ways (see Fig. 2.18). For each of them, the heat
exchange δQ is different. The system has infinite specific heats.

Particularly important are the specific heats at constant volume and constant
pressure. In the particular case of a hydrostatic system, whose states are represented
by points along the pV plane, all the other specific heats are linear combinations of
those two (see Fig. 2.18). If the temperature of a mass m of a substance increases by
dT when it absorbs the heat δQp or δQV, respectively, at constant pressure and
constant volume, the specific heats of the substance are

cp ¼ 1
m
dQp

dT
; cV ¼ 1

m
dQV

dT
: ð2:26Þ

Other useful quantities are the molar heats, which are the heat capacities of a
mole of the substance. Namely, if the temperature of n moles of a substance
increases by dT when it absorbs the heat δQp or δQV, the molar heats of the
substance are

Cp ¼ 1
n
dQp

dT
; CV ¼ 1

n
dQV

dT
: ð2:27Þ

Consider now a hydrostatic system and suppose that the entire heat exchange
takes place in quasi-static processes. The first law tells us that

dU ¼ dQ� dW ¼ dQ� pdV : ð2:28Þ

If the process is at a constant volume, dV = 0, and consequently δQV = dU. All
the absorbed heat goes towards increasing the internal energy, and we can write for
both the specific and the molar heat

cV ¼ 1
m

dU
dT

� �
V
; CV ¼ 1

n
dU
dT

� �
V

ð2:29Þ

where the subscripts indicate that the derivatives are taken at constant volume
V. This notation, often used in thermodynamics, is necessary because the internal

p

V
A

T

T+dT

δQ
V

δQp

Fig. 2.18 Elementary heat
exchanges at constant volume
and at constant pressure
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energy (and other state functions) does not depend solely on the volume, but also on
the other thermodynamic coordinates.

We now heat (i.e., give heat to) the system at constant pressure. The heat now
goes in part towards increasing the internal energy and in part towards producing
work, because the volume of the system varies. The first law is now

dQp ¼ dUþ pdV ¼ d Uþ pVð Þ ð2:30Þ

where we could write the last member because the pressure is constant. We see that
the heat is now equal to the differential of the function

H ¼ Uþ pV : ð2:31Þ

This is another state function of the system, because U, p and V are such. This is
called the enthalpy of the system. We can write Eq. (2.30) as

dH ¼ dQp: ð2:32Þ

The expression tells us that the heat transferred to the system at constant pressure
determines an equal variation of the enthalpy.

In practice, we often operate at atmospheric pressure and, consequently, the heat
exchanges are at constant pressure. Some examples are the chemical reactions,
which usually take place in open containers. In these cases, the reaction heat is the
enthalpy variation from the initial to the final state.

In conclusion, the specific and molar heats at constant pressure can be expressed
as derivatives of enthalpy:

cp ¼ 1
m

dH
dT

� �
p
; Cp ¼ 1

n
dH
dT

� �
p
: ð2:33Þ

We observe that the specific and molar heats at constant pressure are always
larger than those, of the same substance, at constant volume:

Cp [CV : ð2:34Þ

One might believe this difference to be due simply to the fact that, in the
exchange at constant volume, all the heat goes towards increasing the internal
energy, while at constant pressure, part of it goes towards external work, because
the system expands. However, this is not so. Indeed, we also see that Cp > CV in the
(very few) cases in which the substance contracts, rather than expands, through
heating. This is the case for water between 0 and 4 °C. The property is a conse-
quence of a general law of thermodynamics, the Le Châtelier principle, which we
shall discuss in the next section.
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2.10 Le Chãtelier’s Principle

The Le Châtelier principle, or law of mobile equilibrium, was established by Henry
Louis Le Châtelier (France, 1850–1936) in 1885. It allows us to foresee, in several
cases and without any calculation, the direction in which a thermodynamic system
will change in response to a change in the external conditions. The law states that, if
the conditions external to a thermodynamic system in equilibrium change, the
equilibrium of the system will change in the direction to oppose to the variation.

The law is useful in thermodynamics and chemistry. Suppose we have a con-
tainer with different chemical species (A, B, C, D) that react with the reaction

AþB $ CþD:

The reaction can proceed in both directions. The chemical equilibrium is reached
when the concentrations of the four substances remain constant. Suppose the
reaction from left to right to be endothermic. In this case, if the temperature is
increased, the equilibrium moves to the right side to increase the concentration of
the species C and D. Indeed, this implies the absorption of heat, opposing the
external change in this way (the temperature increase). The opposite happens for
exothermic reactions.

Let us show that a hypothetical system that does not obey the Le Châtelier
principle cannot have equilibrium states. Consider, for example, an exothermic
reaction favored by an increase in the external temperature. In the presence of an
increase in the temperature, even if very small, the reaction of the system would be
an increase in released heat. This would cause, in turn, a further increase in the
temperature and a further increase in the reaction process. The process would not
stop until all the substances that were able to react have completely disappeared.
Such behavior does not contradict any thermodynamic principle, but it does stand in
contrast with the existence of equilibrium states. This argument should make clear
the nature of the Le Châtelier principle. It is not a consequence of the laws of
thermodynamics and, additionally, does not have the same importance. It is,
however, useful, because it characterizes the states of stable equilibrium.

We now use the Le Châtelier principle to show that the specific heat at constant
pressure is always larger than that at constant volume. Let us transfer a certain
quantity of heat to the system at constant volume. Let dTV be the corresponding
temperature increase. As a consequence, the pressure of the system varies too, thus
altering the equilibrium conditions. Notice that the pressure has increased if the
system expands upon heating and has decreased if it contracts. The Le Châtelier
principle tells us that the equilibrium of the system moves in opposition to the
change in conditions. Namely, it has to return to the initial pressure. Its pressure
must decrease in the former case, and increase in the latter. The process must imply
a certain release of heat (it must oppose). This means that the change in temperature
at constant pressure dTp is less than that at constant volume dTV, for the same heat
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quantity δQ. It follows that the specific heat at constant pressure is larger than that
at constant volume.

We shall make further use of the principle in Sect. 4.3.

2.11 Solid Body

In this section, we consider a thermodynamic system consisting of a solid body. Its
shape and volume are practically invariable. Approximately, we can neglect thermal
dilatation. Thus, the only thermodynamic variable is the temperature. The internal
energy is consequently a function of the temperature alone, U(T). Consider a state
A with temperature TA and a generic state P with temperature T. For whatever
process leading from A to P, the first law states that

Q�W ¼ U Tð Þ � U TAð Þ: ð2:35Þ

The work of p dV type is zero because the volume does not vary. In principle,
other types of work might be done on the body, for example, by hammering or
wiping. But we do not have any work of this type in the process we are considering.
Then, the absorbed heat is equal to the variation in internal energy, and we have

Q ¼ U Tð Þ � U TAð Þ: ð2:36Þ

If the process is quasi-static, we can write the same for all its infinitesimal
elements:

dQ ¼ dU: ð2:37Þ

If m is the mass and c the specific heat of the body, we have

dQ ¼ mcdT : ð2:38Þ

Note that, as we have assumed the volume to be invariable, the body has only
one specific heat, namely at constant pressure.

We can then write for the derivative of the energy with respect to the temperature

dU
dT

¼ mc Tð Þ ð2:39Þ

where we have explicitly written that the specific heat might be a function of
temperature. We now obtain the internal energy by integration:
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U Tð Þ � U TAð Þ ¼ m
ZT
TA

c Tð ÞdT : ð2:40Þ

In practice, the temperature dependence of the specific heat of several substances
is modest, provided one considers temperature intervals of several degrees. Under
these conditions, considering the specific heat constant, we have

U Tð Þ � U TAð Þ ¼ mc T � TAð Þ: ð2:41Þ

We shall come back to the specific heats of solids in Sect. 5.3.
Let us now go back to the calorimeter we have considered in Sect. 2.6. It can be

used to measure the specific heat of solid substances. Suppose, for example, we
want to measure the specific heat c of copper. We proceed as follows. We heat a
small block of pure copper of mass M at the temperature TC, higher than that of the
water in the calorimeter. We measure the water temperature Ti. We introduce the
block into the water and close the plug. We read the temperature of the water and
wait for it to stabilize at, say, Tf. Block and water now have the same temperature.
Let us write down that the heat released by the block is equal to that absorbed by the
water, namely

Q ¼ m Tf � Ti
� � ¼ cM TC � Tf

� � ð2:42Þ

where we have remembered that the specific heat of water is equal to 1. From this
equation, we have c. In practice, a number of measures that we did not mention are

Table 2.1 Specific heats of several materials at 25 °C in J kg−1 K−1

Substance Spec. heat (kJ kg−1 K−1) Substance Spec. heat (kJ kg−1 K−1)

Acrylic 1.4–1.5 Hydrogen 14.27

Aluminum 0.90 Ice (0 °C) 2.05

Argon 0.52 Iron 0.44

Beryllium 1.83 Lead 0.13

Bricks 0.85 Mercury 0.14

Calcium 0.65 Neon 1.03

Cesium 0.24 Nitrogen 1.04

Copper 0.39 Oxygen 0.92

Diamond 0.52 Platinum 0.13

Germanium 0.32 Silicon 0.70

Glass (crown) 0.67 Silver 0.24

Glass (flint) 0.50 Sulfur (yellow) 0.73

Gold 0.13 Tungsten 0.13

Graphite 0.71 Zinc 0.39

Helium 5.19 Wood 1.67
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necessary. The most important is taking into account the heat absorbed by the walls
of the calorimeter, by the thermometer and by any other auxiliary equipment that
might be present in the calorimeter, referred to as the calorimeter water equivalent.

Table 2.1 reports the specific heats of several substances at 25 °C temperatures
for several substances in J kg−1 K−1.

2.12 Internal Energy of the Ideal Gas

Consider a hydrostatic system. As we know, for a given mass, only two of the three
thermodynamic variables, p, V and T, are independent. Consequently, its internal
energy is, in general, a function of two variables. Even if their choice is arbitrary, it
is usually convenient to choose volume and temperature. Indeed, at the microscopic
level, the kinetic energy of the molecules is proportional to the temperature, as we
have already mentioned. In addition, the potential energy of their interactions
depends on the distances between molecules, whose mean value obviously depends
on the volume. In conclusion, we shall write the internal energy as U (V, T).

J. Joule conducted an experiment that gave important information on the internal
energy of gases, known as the free expansion experiment. Figure 2.19 shows the
scheme of the experiment. The two vessels A and B have metallic walls.
Consequently, we can consider their volumes to be invariable. The vessels are
connected by a tube that can be closed or opened with the tap R. Joule introduced a
gas at high pressure into vessel A (up to 200 kPa) and pumped the air out of vessel
B (R being closed, obviously). Opening R, the gas expands to fill both vessels.
Notice that no external work is done in the expansion, as the gas expands in a space
that was prepared to accept it. The expansion does not push anything. The external
work is zero, because the total volume in the rigid surrounding walls does not vary.
This process is called free expansion or expansion without external work.

The two vessels, whose walls, being metallic, were diathermic, had been lodged
in a calorimeter. Joule did not measure any temperature change during the
expansion. The following two conclusions can be extracted from the result: (1) the
global heat exchange during the free expansion is zero; (2) the temperatures of the

A B

C

Te

R

Fig. 2.19 The Joule free
expansion experiment
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gas before and after the expansion are the same, considering that the gas is in
thermal equilibrium with the calorimeter before and after the process.

We note here that the sensitivity of the experiment is rather limited, because the
heat capacity of the gas is small. Joule worked with high initial pressures to partially
reduce this limitation. However, in doing so, he moved away from the ideal gas
behavior. The above conclusions should be regarded as valid only in a first
approximation. We shall see in Sect. 4.4 that they are valid only for the ideal gas, as
later established by Joule himself in more sensitive experiments performed in
collaboration with W. Thomson.

Let us now go back to the consequences of the above observations. We can talk
of infernal energy in the initial and in the final states because they are equilibrium
states (the intermediate states are not so, but this does not matter). In the process
leading from the former to the latter, both work and heat exchanges were zero.
Consequently, U Vf ; T

� �� U Vi; Tð Þ ¼ Q�W ¼ 0. Here Vi is the initial volume of
the gas (one vessel), Vf is its final volume (two vessels) and T is the temperature that
does not vary. The internal energy is the same in the two states, while their volumes
are different. Consequently, the internal energy does not depend on the volume. It
can depend only on temperature. For an ideal gas, we can write

U ¼ U Tð Þ: ð2:43Þ

We can reach the same conclusion with a different argument. We start from the
expression of the specific heat at constant volume Eq. (2.29)

CV ¼ 1
n

dU
dT

� �
V

ð2:44Þ

and integrate it between a reference state A and the generic state P, obtaining

U Tð Þ � U TAð Þ ¼ n
ZP
A

CVdT : ð2:45Þ

Here, we need experimental input to know how the molar heat depends on
temperature. Experiments tell us that it is almost constant (exactly constant for ideal
gases) and we have

U Tð Þ � U TAð Þ ¼ nCV T � TAð Þ ¼ mcV T � TAð Þ ð2:46Þ

where, to be complete, we have also included the expression in terms of the specific
heat.

Let us now consider the other state function we have met, enthalpy. For the ideal
gas, it also depends on temperature alone. It is
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H ¼ Uþ pV ¼ Uþ nRT : ð2:47Þ

Taking the derivative with respect to temperature and dividing it by the number
of moles n, we have

1
n
dH
dT

¼ 1
n
dU
dT

þR: ð2:48Þ

There has not been any need to specify whether the derivatives are made at
constant pressure or at constant volume, because neither enthalpy nor internal
energy depends on these variables. We then recognize that the left-hand side is the
molar heat at constant pressure and the first term in the right-hand side is the molar
heat at constant volume, and can write

Cp � CV ¼ R ð2:49Þ

This equation is called the Mayer’s relation for ideal gases. It states that the
difference between the molar heats at constant pressure and at constant volume has
a universal value for all the gases, the gas constant, within the limits they can be
considered as ideal.

We notice that in the case we are considering, the difference between the two
heats is due to the fact that when the gas is heated at constant pressure, it performs
an external work. Contrastingly, no external work is done in the heating at constant
volume. In the latter case, all the heat goes towards increasing the internal energy,
while in the former, part of it goes towards external work. As we know, however,
this is not the reason why Cp > CV.

A further experimental result is the dependence of the molar heats of the gases
on the type of their molecules. All the monoatomic gases have the same molar heat
at constant volume. It is (almost) independent of temperature down to rather low
temperatures. Its value is

CV ¼ 3
2
R ¼ 12:5 Jmol�1 K�1 monoatomic gas: ð2:50Þ

The situation of the diatomic gases is more complicated. However, the larger
fraction of these gases (especially those with less massive molecules), at ambient
temperature and in a rather wide interval of temperatures, have molar heats around
the value

CV ¼ 5
2
R ¼ 20:8 Jmol�1 K�1 diatomic gas: ð2:51Þ

The simplicity of the relations just determined cannot be casual. As a matter of
fact, they are deeply rooted in statistical mechanics, as we shall see in Sect. 5.2.

Let us use them together with the Mayer’s relation. We obtain for the molar
heats at constant pressure
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Cp ¼ 5
2
R monoatomic gas; Cp ¼ 7

2
R diatomic gas: ð2:52Þ

In addition, defining the dimensionless parameter

c ¼ Cp

CV
ð2:53Þ

we have

c ¼ 5
3
¼ 1:67 monoatomic gas; c ¼ 7

5
¼ 1:40 diatomic gas: ð2:54Þ

The above conclusions would be rigorously valid for the ideal gases and
approximately so for many real gases, within large intervals of the thermodynamic
variables. We shall study the real gases in Chap. 4. Here, we report the molar heats
of some gases at room temperature in Table 2.2.

2.13 Adiabatic Processes in Gases

We shall now discuss the quasi-static adiabatic processes of an ideal gas.
For example, we can expand or compress a gas adiabatically and quasi-statically

by enclosing it in a cylinder with a piston. All the surrounding surfaces should be
adiabatic. We shall move the piston very slowly in one or the other direction. In
expanding, the gas delivers external work. In the absence of a heat exchange, all the
work done corresponds to a decrease in internal energy. Internal energy being a
function of temperature, the gas cools down. Contrastingly, temperature increases
in adiabatic compression. You can feel that when you inflate the tire of a bike. We
now seek the quantitative relation between temperature and volume.

Consider, for simplicity, a mole of gas. We apply the first law to an infinitesimal
section of the process, in which, clearly, δQ = 0. We have

Table 2.2 Molar heats of
some gases at 25 °C in
J mol−1 K−1

Cp CV Cp − CV Cp/CV

Monoatomic Ar 20.8 12.5 8.3 1.67

He 20.9 12.5 8.3 1.67

Diatomic Air 29.1 20.8 8.3 1.40

N2 29.1 20.8 8.3 1.40

O2 29.4 21.1 8.3 1.40

H2 28.8 20.4 8.3 1.41

Polyatomic CO2 37.0 28.5 8.5 1.30

NH3 36.8 27.8 9.0 1.32

CH4 35.6 27.2 8.4 1.31
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dUþ pdV ¼ 0:

Using Eq. (2.44) and eliminating p with the state equation, we have

CVdT þ RT
V

dV ¼ 0

namely

dT
T

þ R
CV

dV
V

¼ 0:

Integrating, within the limits in which we can consider CV to be constant, we get

lnTþ R
CV

lnV ¼ 0:

We take the exponential of this expression and obtain

TVR=CV ¼ constant:

We want this expression in terms of the ratio γ of the specific heats, Eq. (2.53),
which we write as

c ¼ Cp

CV
¼ CV þR

CV
¼ 1þ R

CV
:

Hence, the expression we have found is just

TV c�1 ¼ constant: ð2:55Þ

This expression tells us how much a gas cools down in an adiabatic expansion.
Consider, for example, a quantity of air, whose volume doubles adiabatically. The
air is mainly N2 and O2, two diatomic gases. Hence, γ = 1.4. The temperature
decreases by the factor (1/2)0.4 = 0.76.

Equation (2.55) can be written in two other equivalent forms, which are
sometimes useful, using the sate equation pV = RT. As immediately found, they are

pV c ¼ constant ð2:56Þ

and

Tp1=c�1 ¼ constant: ð2:57Þ

Equation (2.56) is the equation of the adiabatic transformations in the pV plane.
Let us compare it with the equation of the isothermal processes, namely
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pV = constant. The adiabatic curves are similar to the isothermal curves, but are
steeper because, in any case, γ > 1.

Figure 2.20 shows two isothermal (dotted) and two adiabatic (continuous)
curves.

2.14 Compressibility and Thermal Expansion

Gases are easy to compress and to expand. A small pressure increase is sufficient to
change their volume considerably. The same is not true for condensed bodies,
namely solids and liquids. However, even those are compressible, if subject to large
enough pressures. As the volume changes if the temperature also varies, com-
pressibility must be defined at constant temperature.

The isothermal compressibility is defined as

j ¼ � 1
V

dV
dp

� �
T
: ð2:58Þ

Note that the derivative is negative, because the volume diminishes when the
pressure increases. The minus sign in the definition is used to have κ be positive.
The dimensions of κ are the reciprocal of a pressure, as immediately seen in
Eq. (2.58).

Let us consider some orders of magnitude. The isothermal compressibilities of
liquids are in the range of 10−11–10−10 Pa−1. Suppose we want to have a relative
variation of volume of one per cent, namely dV/V = 10−2. If κ = 10−10 Pa−1, the
change of pressure must be 1 MPa, which is about ten times the atmospheric
pressure. For example, for water, κ = 5 × 10−10 Pa−1, and for mercury,
κ = 0.4 × 10−10 Pa−1.

The isothermal compressibility of the large majority of solids is even smaller.
For example, it is κ = 0.6 × 10−11 Pa−1 for iron, and κ = 1.4 × 10−11 Pa−1 for
aluminum.

Let us now consider the gases. The state equation can be written as
V = nRT/p. By derivation, we obtain

p

V

Fig. 2.20 Figure shows two
isothermal (dotted) and two
adiabatic (continuous) curves
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j ¼ 1=p: ð2:59Þ

At atmospheric pressure, the compressibility of a gas is κ = 10−5 Pa−1, about
one million times more compressible than a condensed body at the same pressure.

Another quantity employed to characterize the thermal properties of the bodies is
the volumetric thermal expansion coefficient at constant pressure, defined by the
relation

a ¼ � 1
V

dV
dT

� �
p
: ð2:60Þ

The physical dimensions of the coefficient are the reciprocal of temperature, and
are measured in K−1. The large majority of substances expand when heated, hence α
is positive. However, there are exceptions, that is, substances that expand when
cooled. Their α is negative. The most common of these is water between 0 and
4 °C, while others include graphene, some complex compounds, some iron alloys,
etc. Cubic zirconium tingstenate (ZrW2O8) has a negative expansion coefficient in
the largest temperature range, namely all of them up to its fusion.

Figure 2.21 shows the specific volume (which is the inverse of the density) of
water as a function of temperature in °C. The part in the small box near 0 °C in part
(a) of the figure is enlarged in part (b).

We again fix the orders of magnitude. The thermal expansion coefficients of
liquids are on the order of 10−4–10−3 K−1; for example, at ambient temperature, it is
α = 2.1 × 10−4 K−1 for water and α = 1.1 × 10−3 K−1 for alcohol. The coefficients
of solids are smaller, typically by one order of magnitude. For example, iron has
α = 3.5 × 10−5 K−1. In some cases, one needs to build structures whose dimensions
vary as little as possible in regard to temperature. Special alloys have been
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developed for this very purpose. For example, invar, an iron-nickel alloy, has
α = 3.6 × 10−6 K−1.

Let us now compare these with gases. We write the state equation as V = nRT/p,
and take the derivative with respect to temperature, obtaining

a ¼ 1=T : ð2:61Þ

Hence, under normal conditions, T = 293 K, and a gas has α = 3.4 × 10−3 K−1,
which is not much larger than for some liquids.

Problems

2:1 Let us introduce into a calorimeter, which is at a temperature of 80 °C, 300 g
of water at a temperature of 20 °C (and nothing else). We observe that
equilibrium is reached when the water temperature is 60 °C. Can we find the
heat capacity of the calorimeter from these data?

2:2 The air in two rooms of equal volume has the same pressure. If the tem-
peratures are different, which room contains more air?

2:3 If we know the pressure, temperature and volume of a gas, which of the
following quantities can be known: the type of gas; its number of molecules;
its number of atoms?

2:4 Find the number np of molecules per unit volume of air at standard tem-
perature and pressure.

2:5. Find the mass of a cubic meter of air at STP.
2:6 The air composition on the earth’s surface is the following: N2 78.08 %, O2

20.95 %, Ar 0.93 % and other gases 0.04 %. Find the molar mass of air.
2:7 Consider the following processes of an ideal gas: (a) volume increases and

pressure increases proportionally; (b) volume increases and pressure is
constant; (c) the gas expands isothermally; (d) the gas expands adiabatically;
(e) volume increases and pressure decreases more rapidly than in an adiabatic
process. Qualitatively draw the representative curves in the Vp plane and
state the behavior of internal energy in each case.

2:8 A mixture of hydrogen and oxygen gases is enclosed in a container with rigid
and adiabatic walls. We fire a spark (its heat release is negligible) and the
gases violently react, resulting in an increase in pressure and temperature.
How much does the internal energy vary?

2:9 Suppose we want to perform the Joule experiment on the equivalence
between heat and work with a calorimeter containing one liter of water
(m = 1 kg). Each of the two weights has a mass M = 10 kg and the drop is
h = 2.5 m. What is the temperature increase to be measured?

2:10 The heat capacity of a body, in the considered temperature interval, depends
on temperature according to the expression C ¼ 10þ 0:002T þ 3�
10�5T2 J K�1. How much heat is released when the temperature varies from
T1 = 400 K to T2 = 300 K?
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2:11 A system transforms from state A to state C once by process 1, once by
process 2, as shown Fig. 2.22. Find the difference Q1 − Q2 between the
exchanged heats (necessary data are in the figure).

2:12 A certain quantity of a gas passes from state 1 with internal energy
U1 = 500 kJ to state 2 with U2 = 100 kJ, doing the work W = 200 kJ. How
much is the absorbed heat Q if (a) the process is reversible, or (b) the process
is irreversible?

2:13 A certain quantity of an ideal monoatomic gas is compressed adiabatically,
reversibly changing its pressure from p1 to p2 = 10 p1. After that, the gas is
compressed back to its initial volume, in an isothermal, reversible process, to
the pressure p3. Find p3/p1.

2:14 A certain quantity of an ideal monoatomic gas expands in a reversible
process at constant pressure p from the volume V1 to V2. Find the expressions
for: (a) the internal energy variation ΔU, (b) the work done by the gas W and
(c) the absorbed heat Q.

2:15 One mole of an ideal gas heats from T1 = 273 K to T2 = 373 K in a reversible
constant pressure process, absorbing the heat Q = 6.65 kJ. Determine: (a) the
specific heat ratio γ, (b) the internal energy increase ΔU and (c) the work done
W. (See problem 2.14).

2:16 A certain quantity of an ideal gas expands at constant temperature from the
volume V1 = 1 m3 to V2 = 2 m3. The final pressure is p2 = 100 kPa. Find:
(a) the internal energy increase ΔU, (b) the work doneW and (c) the absorbed
heat Q.

A

B

p (kPa)

V (10–2m3)

100

200

1 3

1

2

Fig. 2.22 The two processes
of problem 2.11
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Chapter 3
The Second Law of Thermodynamics

The first law of thermodynamics is the law of energy conservation. The second law
has a very different nature; it establishes the rules for the irreversibility of the
natural processes. If we bring a pendulum out of its equilibrium position and let it
go, its oscillations are ample at the beginning, but gradually decrease in their
amplitude and finally stop after a shorter or longer period. The energy, which was
initially mechanical energy, has not been lost; rather, it became internal energy of
the pendulum and of the surrounding air. The first law does not forbid the inverse
process, namely having a pendulum at rest starting oscillations of increasing
amplitude, while its temperature and that of the air decrease. Similarly, if we leave a
pot of hot coffee on a table, the liquid cools down in time, while the air heats up (not
by too much, obviously). We never observe coffee at room temperature heating up
while the air cools down. As we shall see, the second law forbids both types of
phenomenon.

As we already mentioned, the second law was discovered before the first, in the
historic period during which engineers were developing thermal engines, namely
devices able to perform mechanical work using the heat produced by combustion.
In this case, the work of the engineers, theoretical interpretations included, antici-
pated that of the physicists.

In Sect. 3.1, we state the second law. Both for historical and didactic reasons, we
shall give two statements, one attributed to Clausius, one to Lord Kelvin, and then
prove their equivalence.

All engines operate on cyclic, rather than open, processes. Indeed, an open
process can be performed only once, while a cyclic process can continue indefi-
nitely. The simplest cycle compatible with the second law exchanges heat with two
sources. This is called the Carnot cycle, and we shall study it in the subsequent
three sections, together with the fundamental Carnot theorem.

In Sect. 3.5, we shall introduce the concept of thermodynamic temperature,
which, as we anticipated, allows for extending the scale down to absolute zero.

In Sect. 3.6, we shall demonstrate the fundamental Clausius theorem, which
leads to the definition of a state function, entropy. This is the function directly
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connected to the second law, just as energy is connected to the first one. The second
law is expressed, in its most precise form, as the law of increasing entropy. The
statement is that the entropy of a thermally-isolated system increases if the system
performs spontaneous processes; it stays constant if the system is in an equilibrium
state, which is a state of maximum entropy.

In Chap. 5, we shall see how entropy is a measurement of the disorder of the
internal structure of the system.

3.1 The Second Law of Thermodynamics

The first law of thermodynamics states that the total energy of an isolated system is
constant. A non-isolated system can exchange energy as work or heat, the two
forms of exchange being completely equivalent. For the first law, work can be
transformed into heat and heat into work in a completely symmetric fashion.
However, this symmetry is not present in nature. The second law quantitatively
establishes how this happens.

As a matter of fact, the complete transformation of work into heat is always
possible. For example, we can hammer a piece of metal, increasing its temperature
and its internal energy, and then take it back to its initial temperature, extracting
heat. We have completely transformed work into heat. Contrastingly, it is never
possible to build a cyclic engine able to extract heat from a body and transform it
completely into work. If such an engine were possible, we would have at our
disposal practically infinite energy sources, given the enormous internal energy of
the oceans and of the ground.

We observe a second type of asymmetry in the passage of heat between two
bodies at different temperatures. A hot water pot gradually cools down until its
temperature is equal to that of the room in which it sits. But it never happens that
water at room temperature heats up, taking energy from the cooler environment,
even if the process would not violate the first law.

The second law of thermodynamics precisely states both types of irreversibility.
We shall come to that after having given a few definitions.

A thermal reservoir, or thermal bath or heat source, at temperature T is a
thermodynamic system having all its points at that temperature, able to exchange
heat but not work with another system brought into thermal contact. In addition, the
heat capacity of the reservoir is large enough that, in all the thermal exchanges we
shall consider, its temperature remains effectively constant. It is an effectively
infinite pool of thermal energy at a given, constant temperature.

Which are the thermodynamic coordinates defining the state of a reservoir? At
first sight, one might think that its thermodynamic state should not vary when we
extract or inject a certain quantity of heat Q, because its temperature effectively
remains constant. This argument is, however, wrong. To understand the point, let us
start by considering a source of very large, but not infinite, heat capacity. The heat
Q will produce a certain change of temperature ΔT. If m is the mass of the source
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and c its specific heat (hence the heat capacity is mc), it is Q = mcΔT. The reservoir
is now in a different state, even if one near to its initial state. In particular, its
internal energy has increased exactly by Q because there was no external work. Let
us now increase the heat capacity to the infinite (the mass of the reservoir), keeping
Q fixed. The temperature variation ΔT goes to zero, but the variation of internal
energy remains constant, equal to Q. The two states remain different. In conclusion,
the thermodynamic state of a reservoir, or pool, is defined by a sole coordinate, the
internal energy.

A heat engine, or simply an engine, is a device made of mechanical parts (like
pistons, pulleys, belts, gears, etc.) and a vessel containing a fluid (such as the water
vapor in a steam engine or the gasoline air mixture in a car engine). We are
interested in the fluid, its thermodynamic states and processes, its heat exchanges
with the reservoirs and its external work. Consequently, we can ignore the details of
the mechanical structures. The engine must operate continuously. Consequently, it
must come back to its initial state periodically. The processes of the fluid will
always be cycles. We shall call the engines that produce work using heat (thermal)
motors and the engines that transfer heat from a cooler to a hotter reservoir, using
work, refrigerators.

In practice, the cycle of every engine is always an irreversible process. However,
from the theoretical point of view, it is often useful to consider reversible processes.
Notice that, independently of reversibility or not, the internal energy in a cycle does
not vary. Consequently, the total work done is always equal to the total absorbed
heat (meaning that absorbed less that released). Going forward, when we talk of
absorbed heat and external work done, we shall mean exchanged and done per
cycle. Finally, we shall adopt the usual and already-mentioned convention in regard
to the signs; the heat absorbed by the engine is positive, the heat released is
negative; the work done is positive, the work received is negative.

We shall now give the two statements of the second law and then prove their
equivalence. The two statements have been given by Rudolf Clausius (Germany,
1822–1888) and William Thomson, Lord Kelvin (UK, 1824–1907) In Sect. 3.10,
we shall give a third statement.

Clausius statement. No process is possible whose sole result is the transfer of
heat from a cooler to a hotter reservoir.

We stress the importance of the adjective “sole”. Refrigerators, for example,
transfer heat from their inside, which is cooler, to the outside environment, which is
hotter. But they also absorb work. If one takes the plug out, they do not work any
more (Fig. 3.1a).

Kelvin statement. No process is possible whose sole result is the absorption of
heat from a reservoir and the conversion of all this heat into work.

Once more, the adjective “sole” is important. Consider, for example, the
isothermal expansion of an ideal gas. The internal energy does not vary, because it
is a function of the temperature alone. Consequently, all the absorbed heat is
converted into work. But this is not the sole result; indeed, the final state is different
from the initial one. The Kelvin statement refers to cyclic processes (Fig. 3.1b).
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We shall now prove the equivalence of the two statements. We shall show that if
the Kelvin statement was false, then the Clausius statement would be false as well,
and reciprocally.

Assume the Kelvin statement to be false. We can then transform all the heat, Q,
taken from a single pool at temperature, say TC, into the work W, as shown in
Fig. 3.2a. For the first law, Q = W. We can now, without violating the first or
second laws, build a refrigerator, namely the engine in Fig. 3.2b that employs the
work W, absorbs the heat Q from the pool at TC, and delivers the heat QH to a
reservoir at temperature TH > TC. For the first law, QH = Q + QC. This is positive.
Hence, we have a process for which the sole result is the transfer of heat from a
cooler to a hotter body. The engine composed of the two engines is a refrigerator
working without external work; the Clausius statement would be false.

We shall give the second part of the demonstration of the equivalence between
the two statements after having discussed the simplest process available for
transforming absorbed heat into work, the focus of the next section

(a) (b)

Fig. 3.1 Cartoons for the Clausius and Kelvin statements of the second law

If Kelvin false TH

TC

QC

then Clausius false

Q

W = Q

TC

Q

W = Q
QH = QC + Q

(a) (b)

Fig. 3.2 Cartoon representation of the first part of the equivalence between the two statements
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3.2 The Simplest Heat Engine

For the Kelvin statement, there is no cyclic process capable of transforming the heat
absorbed from a single reservoir into work. The simplest possibility is consequently a
cyclic process that exchanges heat with only two reservoirs, at different temperatures.
Let us call TC the temperature of the cooler pool, TH the temperature of the hotter one
(TH > TC). The following arguments are valid for whatever fluid and for both
reversible and irreversible cycles. However, to be concrete, we shall consider an
engine operating with a gas, whose state can be represented in the Vp plane. However,
our argument will be general; in particular, we shall not use the gas equation.

Consider a gas in a cylinder, closed off by a piston. The lateral walls and the
piston are adiabatic; the bottom is diathermic. We start by putting the cylinder on
the (hot) reservoir at the temperature TH. The initial state is the point A in Fig. 3.3
and is represented in Fig. 3.4, labeled with the same letter. We let the gas expand,
isothermally reaching state B. This and the following processes are not necessarily
reversible. When the gas is in state B, we move the cylinder on an adiabatic base.
We perform a second expansion, now adiabatically. The temperature of the gas
decreases. We stop the expansion when the temperature is at TC (state C). We now
move the cylinder onto the (cold) reservoir at temperature TC and compress the gas
until we reach state D, which is on the same adiabatic curve as A. Finally, we move

A

B

C

D
TH

TC

|QH|

|QC|

p

V

Fig. 3.3 The simplest cycle

TH TH TC

A B C D A

Fig. 3.4 The states of the Carnot cycle
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the cylinder on the adiabatic base and compress the gas adiabatically until we reach
temperature TH. We are back to the initial state; the cycle is complete.

In the isothermal expansion, the gas has absorbed the heat QH from the hot
reservoir. With our sign convention, it is positive. In the isothermal compression,
the gas releases the heat|QC|. With the sign convention, QC is negative.

The total absorbed heat is QHj j� QCj j ¼ QH þQC:. The work W done by the gas
is positive, because the cycle is clockwise. For this reason, the reservoir into which
the heat is released must be the cold one. For the first law, the total absorbed heat is
equal to the work done:

W ¼ QHj j � QCj j:

The process being a cycle, there is obviously no variation of the internal energy.
We see that only a portion of the heat absorbed from the hot reservoir is trans-
formed into heat, while a portion is delivered to the cold reservoir.

The efficiency of an engine operating between two reservoirs is defined as the
ratio between the work done and the heat absorbed from the hot reservoir:

g ¼ W
QHj j ¼

QHj j � QCj j
QHj j ¼ 1� QCj j

QHj j : ð3:1Þ

The efficiency is a pure number, positive and less than one. It would be one,
namely 100 %, only if it were possible not to deliver any heat, i.e., if QC = 0.

We can now complete the demonstration of the equivalence of the two state-
ments. We now assume the Clausius statement to be false. We can then transfer a
certain quantity of heat Q from a cold reservoir at temperature TC to a hotter one at
temperature TH. We use a cycle, respecting the first and second laws, that absorbs
that heat Q from the hot reservoir and releases a portion of it into a cold reservoir.
The cycle does positive external work. The sole result of the complete process is the
transformation into work of heat taken from a unique source (which is in this case
the cold reservoir). The hot source, indeed, absorbs and delivers the same heat. Its
internal energy, namely its state, does not vary. In conclusion, the global process
violates the Kelvin statement (Fig. 3.5).

TH

TC

Q

If Clausius false

Q

then Kelvin false

W

TH

TC

Q

QC

Fig. 3.5 Cartoon representation of the second part of the equivalence between the two statements
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3.3 The Carnot Cycle

The Carnot cycle is a cycle that exchanges heat with only two reservoirs when all its
processes are reversible. It is named after Nicolas Léonard Sadi Carnot (France,
1796–1832), whom we have already met as one of the founders of thermodynamics.
The fluid in the cycle can be of any type; it is not necessarily a gas. In this section,
we shall express the efficiency of the Carnot cycle for an ideal gas and, in the next
section, demonstrate the validity of the found expression for every Carnot cycle.

Figure 3.3 is the diagram of a Carnot cycle for an ideal gas in the pV plane and
Fig. 3.4 shows the sequence of operations necessary to perform the cycle. The four
processes must now be reversible. In practice, we reduce the friction between piston
and cylinder as much as possible and move the piston very slowly; all the inter-
mediate states should be almost equilibrium states. Under these conditions, the
external and internal pressures are always equal and, in the isothermal processes,
the external and internal temperatures are equal too. Notice that no part of the latter
condition is true for irreversible processes. The pressure and temperature of the gas
cannot even be defined in this case. We also recall that heat and work exchanged in
a reversible process are equal and opposite to those exchanged in the inverse
process.

The efficiency of the Carnot cycle is given by Eq. (3.1), which we can write,
considering that QH > 0 and QC < 0, as

g ¼ 1� QCj j
QHj j ¼ 1þ QC

QH
: ð3:2Þ

We now compute the heats exchanged in the isothermal processes. We shall
consider, for simplicity, one mole of gas. The heat QH absorbed on the isothermal
process from the state A to B is, for the first law,

UB � UA ¼ QH �WAB ð3:3Þ

where WAB is the work done in the process and UA and UB are the internal energies
in the two states. Considering that the internal energy of an ideal gas depends only
on the temperature, UB ¼ UA. Hence, the absorbed heat is equal to the work done,
which is given by Eq. (2.14). We obtain

QH ¼ WAB ¼ RTH ln
VB

VA
: ð3:4Þ

Similarly, for QC, we have

QC ¼ WCD ¼ RTC ln
VD

VC
:
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Let us consider the signs. WAB is positive, and consequently QH is absorbed heat;
WCD is negative, and consequently QC is heat delivered by the cycle. In absolute
value, we have

QCj j ¼ �QC ¼ RTC ln
VC

VD
: ð3:5Þ

We now take into account the fact that A and D are on the same adiabatic curve,
and so are B and C. We use the adiabatic equation in the form linking temperatures
and volumes. We have THV

c�1
A ¼ TCV

c�1
D and THV

c�1
B ¼ TCV

c�1
C . Dividing these

two equations, we obtain V c�1
A =V c�1

B ¼ Vc�1
D =Vc�1

C . Finally, raising both sides to
the−γ + 1 power, we obtain VA=VB ¼ VD=VC. From Eqs. (3.4) and (3.5), we get

QHj j
QCj j ¼

TH
TC

: ð3:6Þ

This is a very important result. In other words, the ratio of the absolute values of
the heat exchanged in an ideal gas Carnot cycle is equal to the ratio of the absolute
temperatures at which the exchanges take place. The efficiency is

g ¼ 1� TC
TH

: ð3:7Þ

In conclusion, the efficiency of the ideal gas Carnot cycle depends only on the
temperatures of the two reservoirs between which the cycle takes place. It does not
depend, in particular, on the size of the cycle, i.e., on the work done.

3.4 The Carnot Theorem

We shall now extend the results of the previous section to the Carnot engines
working with an arbitrary fluid. This is the Carnot theorem, which is composed of
the following two statements:

1. The efficiencies of all Carnot engines exchanging heat between the same two
reservoirs are equal, namely they do not depend on the fluid

2. The efficiency of any engine exchanging heat with only two reservoirs cannot be
larger than the efficiency of the Carnot cycle between those reservoirs.

Notice that “any engine” refers to both reversible and irreversible engines, while
the Carnot engine is only reversible.

We demonstrate 2 first, through a reduction ad absurdum, and then 1. Let us call
E the generic engine and C the Carnot engine. To simplify the arguments, assume
that the heats absorbed at the higher temperature by the two engines are equal. With
the obvious meaning of the symbols, the efficiencies η of C and η′ of E are
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g ¼ W
QH

¼ QHj j � QCj j
QH

; g0 ¼ W 0

QH
¼ QHj j � Q0

C

�� ��
QH

: ð3:8Þ

Let us assume η′ > η (to reduce it ad absurdum). It follows that

W 0 [W ; Q0
C

�� ��\ QCj j: ð3:9Þ

The Carnot engine being reversible, we are free to have it working backwards,
namely as a refrigerator. The heats and the work simply change their signs. The
Carnot engine now needs to absorb the work W. For that, we use part of the work
W′ > W produced by E. The complex of engine E and backwards C is still a cyclic
engine. It produces the external work W′ − W > 0, taking heat from only one
reservoir, the one at temperature TC. Indeed, at every cycle, the hot reservoir
receives the same energy from the two engines that it releases. Consequently,
everything goes on as if it did not exist. Indeed, we might also think to pass the heat
from one machine to the other directly (Fig. 3.6). This conclusion does not agree
with the Kelvin statement. This demonstrates point 2. Let us now demonstrate the
same for point 1.

If the cycle E is reversible as well, the above argument can be inverted, showing
that the assumption η′ < η is also false. It must then be η′ = η.

In conclusion, we have shown that the efficiencies of all the Carnot cycles
between the same two temperatures are equal. The efficiency Eq. (3.7) that we
found for the ideal gas is valid for all the Carnot cycles, with whatever substance.
We have also shown that the efficiencies of all the irreversible cycles between two
reservoirs are less than or equal to the efficiency of the Carnot cycle between the
same temperatures.

Therefore, the Carnot theorem establishes the upper limit for the efficiency of the
thermal engines operating between two given temperatures. As one sees in
Eq. (3.7), the closer the limit efficiency is to one, or 100 %, the smaller the ratio
between the lower and higher temperatures. Very often, the lower temperature is the
air temperature or, in the case of ships, the seawater. Consequently, TC is not
usually under our control. We might play with TH. To have an idea of the orders of
magnitude, take, in round figures, TC = 300 K (27 °C). The maximum theoretical
efficiency is, for example, 50 % for TH = 660 K (327 °C) and 70 % for
TH = 960 K (627 °C). For this reason, thermal power stations operate close to the

TH

TC

Q’C

W '

QC

QH QH

W '– W

E C

Fig. 3.6 Two engines
working between the same
two reservoirs, a generic one
E and a Carnot one
C (working as a refrigerator)
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maximum practical steam temperature, which is about 600 °C. Their efficiency is
35–40 %, namely 50–60 % of the theoretical maximum.

In practice, the efficiency of any real engine is always less than, never equal to,
the efficiency of the Carnot cycle between the same temperatures. The reasons for
that are threefold. To fix the ideas, think of a piston moving up and down in a
cylinder containing a fluid (this happens, for example, in our car engines).

1. Part of the work is lost against frictions that are always present.
2. In the heat exchange at the higher temperature, the mean temperature of the fluid

is less than the temperature of the reservoir, TH;fl\TH . We have used the term
“mean temperature” because the states are not of equilibrium. The opposite is
true for the exchange at the lower temperature, where TC;fl [ TC.

3. The external pressure is less than the internal one during the expansions, and
consequently the (positive) work done is smaller than that in the reversible case.
During the compressions, the external pressure is smaller than the internal. The
work done is larger in absolute value than that in the reversible case, and is
negative. Both effects reduce the total work.

In general, a thermal engine can exchange heat with several sources at different
temperatures. The efficiency of a cycle is still defined as the ratio between the work
done W and the absorbed heat. The total work W is the algebraic sum of the works
relative to all the processes composing the cycle taken as positive if done, negative
if received. Let Qin be the sum of all the absorbed heats and Qout the sum of all the
delivered heats. As usual, Qin is positive and Qout is negative. The efficiency is
defined as

g ¼ W
Qin

¼ Qin þQout

Qin
: ð3:10Þ

Let TH be the highest temperature and TC the lowest. We shall show in Sect. 3.8
that the efficiency of an engine exchanging heat with more than two reservoirs
cannot be larger than the efficiency of a Carnot cycle working between the extreme
temperatures. We give an example below.

Example E 3.1 Figure 3.7 shows the Stirling cycle, which is a reversible cycle
made of two isothermal transformations, at TH and TC, respectively, and two iso-
choric transformations, made by an ideal gas (n moles). It is named after Robert
Stirling (UK, 1790–1878). The cycle absorbs heat in the isochoric process DA (at
temperatures gradually growing from TC to TH) and in the isothermal expansion AB
(at TH). It releases heat in the isochoric transformation BC and in the isothermal
compression CD.

The heats exchanged in the isothermal processes are QAB ¼ RTH ln VB=VAð Þ,
which is positive, and QCD ¼ RTCln VD=VCð Þ, which is negative. The heats
exchanged in the isochoric processes, in which the works are zero, are equal to the
variations of internal energy. Clearly, one is the opposite of the other. Assuming the
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molar heat to be constant, they are QDA ¼ nCV TH � TCð Þ ¼ �QBC. The efficiency
of the Stirling engine is then

g ¼ QAB þQDA þQCD þQBC

QAB þQDA
¼ QAB þQCD

QAB þQDA
¼ W

QAB þQDA
:

This is smaller than the efficiency of the Carnot cycle between the same tem-
peratures, which is

g ¼ W
QAB

because QDA > 0. ∎
A thermal cycle can be used as a refrigerator, to move heat from lower to higher

temperatures, rather than as a motor. From the theoretical point of view, this is just a
motor working backwards. The cycle in this case absorbs work. The efficiency of a
refrigerator is defined as the ratio between the heat absorbed from the low tem-
perature reservoir and the work spent to do that,

n ¼ QCj j
Wj j ¼

QCj j
QHj j � QCj j : ð3:11Þ

which, we note, is always larger than one. If the cycle is a Carnot cycle, we can also
write

n ¼ TC
TH � TC

: ð3:12Þ

A

B

C

D
Tc

Tf

QAB

p

V

QCD

QBC

QDA

Fig. 3.7 The Stirling cycle
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3.5 Thermodynamic Temperature

Let us start from the conclusion of the preceding section that the efficiency of any
thermal engine working between two temperatures cannot be larger than the effi-
ciency of the Carnot engine between those temperatures. We can write

QH þQC

QH
� TH � TC

TH

or

1þ QC

QH
� 1� TC

TH

and also

QC

TC
þ QH

TH
� 0: ð3:13Þ

In other words, the sum of the ratios of the exchanged heats over the temper-
atures of the exchange is less than or equal to zero. It is equal to zero if the cycle is
reversible, namely for the Carnot cycle.

Equation (3.13) is an important relation that we shall use in the following. Here,
we use it for a new definition of the absolute temperature. Considering a reversible
cycle, Eq (3.13) gives

TC
TH

¼ �QC

QH
ð3:14Þ

where the meaning of the minus sign is that the two heats have opposite signs (one
is absorbed, the other is released).

We want to measure the temperature T of a body. We have a reservoir at the
reference temperature of the water triple point Ttr = 273.16 K. We build a Carnot
engine, as in Fig. 3.8, working between the body at the temperature to be measured,
used as the cold source, and the hot source at Ttr. We measure the heats absorbed by
the cycle, say Q = QC and Qtr = QH.

We now define the temperature of the body as

T ¼ �Ttr
Q
Qtr

ð3:15Þ

where, as you may notice, the two heats have opposite signs. The so-defined
temperature is called the absolute thermodynamic temperature. It coincides with the
ideal gas temperature that we defined in Sect. 2.2 in the interval where both
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definitions are meaningful, but it is also valid at the lowest temperatures, where the
gas temperature does not work (below about 1 K).

The thermodynamic definition does not require measuring temperatures. We can
measure only heats. For example, we can use a melting ice calorimeter to measure
Q. In such a calorimeter, the heat is measured by measuring the mass of ice that
melts. Similarly, we can measure how much ice melts at Ttr. In both cases, we
weigh using balances, not thermometers. However, building a reversible engine is
impossible. We must try to reduce the frictions as much as possible and apply to the
measurements the corrections needed to eliminate the effects of the remaining ones.

3.6 The Clausius Theorem

We shall now demonstrate the Clausius theorem, which has a central importance in
thermodynamics. We start from Eq. (3.13), valid for a cycle working between two
sources, and we generalize the result to any number of reservoirs.

Consider a thermal engine, which we call M. To be concrete, we consider a
motor, meaning that its W is positive. The cycle is completely general: it may be
reversible or not, and it may exchange heat with any number of sources. If this
number is infinite, we can approximate the system with a finite number of sources
N, provided N is large enough.

Let Ti be the temperature of the generic reservoir and Qi the heat absorbed from
it by the cycle. With the usual sign convention, Qi is positive if absorbed by the
engine, negative if released. Notice that Ti is the temperature of the source. This is
equal to the temperature of the fluid only if the process is reversible. Otherwise, the
temperature of the fluid might not even be defined, because the fluid is not in an
equilibrium state.

We are going to show that the sum of the ratios between absorbed heats and
temperatures of the exchanges is equal to or smaller than zero. We imagine the
“super-engine”, shown in Fig. 3.9. Beyond the engine M, we have an additional

|QH|

TH = Ttr

T = ?

|QC|

R

Fig. 3.8 Scheme to define
the thermodynamic
temperature
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reservoir at the temperature T0 and Carnot cycles N. The ith Carnot cycle Ci works
between the source at T0 and the source at Ti, to which it delivers the same heat, Qi

(meaning that it absorbs—Qi) that is absorbed by M. Let Qi0 be the heat absorbed
by Ci at T0. Consider now the super-engine made of M and all the Cis. At every
cycle, all the engines are back to their initial state, and all the sources at Ti have
received and delivered the same heat, so that they are in their initial state as well.
The only component of the system that has changed is the source at T0.

The work done by the super-engine is the sum of the works of M (positive) and
of all the Ci (some positive, some negative). Considering that the super-engine
performs cycles too, the work it does is equal to the sum of the absorbed heats. As
we have just seen, all the exchanges take place with a unique source, the reservoir at
T0. It cannot be positive, for the Kelvin statement.

Q0 ¼
XN
i¼1

Qi0 � 0: ð3:16Þ

On the other hand, each Ci is, by construction, a Carnot cycle; hence, it is
reversible. As we showed, it absorbs heat −Qi from the source at Ti and Qi0 from the
source at T0. Equation (3.13) holds with the equal sign, namely

Qi0

T0
� Qi

Ti
¼ 0

or

Qi

T1

C2
Q2

C1

Ti

Qi0

Qi

T0

Q1

Q1

T2
Q2

Q10 Q20

M

Ci

W

Fig. 3.9 The “super-engine”
for the Clausius theorem
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Qi0 ¼ T0
Qi

Ti
:

Substituting in Eq. (3.15), we get

T0
XN
i¼1

Qi

Ti
� 0:

Finally, taking into account that T0 > 0, we have the desired result

XN
i¼1

Qi

Ti
� 0: ð3:17Þ

We can tell more if the engine M is reversible. In this case, the super-engine is
reversible too, and we can have it working backwards. The work done is exactly the
opposite, −W (the engine absorbs work), and all the absorbed heats are opposite
too, namely −Qi. All the Cis are now working backward and absorb the heats −Qi0

from the source at T0. We conclude that

XN
i¼1

�Qi

Ti
� 0:

Both this relation and Eq. (3.17) hold for a reversible engine. We conclude that,
for such an engine,

XN
i¼1

Qi

Ti
¼ 0: ð3:18Þ

If the engine absorbs heat from an infinite number of sources, each exchange is
infinitesimal, and Eqs. (3.17) and (3.18) become, for an arbitrary cycle,

I
dQ
T

� 0 ð3:19Þ

and, for a reversible cycle,

I
R

dQ
T

¼ 0: ð3:20Þ

In other words, the Clausius theorem states that the sum of the ratios of the heats
absorbed by a cyclic engine and the absolute temperatures of the sources from
which the heats are absorbed is less than or equal to zero. The equality holds if the
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cycle is reversible; the R footer in Eq. (3.20) stands to recall that it applies to a
reversible cycle only.

3.7 Entropy

As we have remarked several times, the infinitesimal heat exchange δQ is not an
exact differential, independent of the process being reversible or not.
Equation (3.20) implies, however, that, for a reversible process, δQ divided by the
temperature T, say (δQ/T)R, is an exact differential. Notice that we have not cur-
rently specified that T is the temperature of the source, because, the process being
reversible, the temperatures of the engine and the source are equal. We can express
the conclusion in other words; given two equilibrium states A and B of any ther-
modynamic system, the integrals of (δQ/T)R in all the reversible processes between
them are equal. We can also say that the integral of (δQ/T)R in a reversible process
depends on both the origin and the end of the process, but not on the process itself
that occurs between them. The demonstration proceeds exactly as in other similar
cases. We shall give it here anyway, to be complete.

Consider, as shown in Fig. 3.10, two reversible processes, 1 and 2, between the
equilibrium states A and B. The sum of process 1 and the inverse of process 2 are a
reversible cycle. Hence,

ZB
1A

dQ
T

þ
ZA
2B

dQ
T

¼ 0

or

ZB
1A

dQ
T

¼ �
ZA
2B

dQ
T
:

Process 2 being reversible, we can invert the limit and we get

ZA
2B

dQ
T

¼ �
ZB
2A

dQ
T
:

A

B
1

2

Fig. 3.10 Two reversible
processes from A to B
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Finally, we have

ZB
1A

dQ
T

¼
ZB
2A

dQ
T
: ð3:21Þ

The integral from A to B in a reversible process can then be written as the
difference of the values in B and A of a state function, which we call entropy and
indicate with S, namely

S Bð Þ � S Að Þ ¼
ZB
AR

dQ
T
: ð3:22Þ

This is the definition of entropy, or, better still, of entropy differences. As the
internal energy, the entropy is defined modulo and additive constant. The units of
entropy are heat divided by temperature, namely J/K.

For the vast majority of thermodynamic systems, entropy is an additive quantity.
Consider, for example, a thermodynamic system s composed of two subsystems s1
and s2. Suppose the internal energy of s to be the sum of the internal energies of
subsystems s1 and s2. This is usually, but not always, the case. It is not so in the
presence of energy associated with surfaces. Consider, for example, two drops of
water. The internal energy of a drop is the sum of two terms, one proportional to the
volume and one proportional to the surface. The latter is due to the surface tension,
as we shall see in Sect. 4.9. We anticipate that the surface tension corresponds to the
work that is needed to move a molecule from the bulk of the drop to its surface. If
we put the two drops together, a larger drop forms; its volume is the sum of the two
volumes, but its surface is smaller than the sum of the two surfaces. The internal
energy of the composite system is not the sum of the internal energies of its
components. In the majority of systems, however, the dimensions are large and the
surface energy can be neglected in comparison with that of the volume. For them,
the internal energy of the system is the sum of the internal energies of its parts.

We now suppose, as is often the case, that the work done on the system is equal
to the sum of the works done on its parts. Then, for the first law, the heat absorbed
by the system is also equal to the sum of the heats absorbed by its parts. In addition,
in the reversible processes we are considering, the temperatures of all the parts are
equal. The entropy is additive for the systems having these characteristics.

Equation (3.22) should be used whenever we want to calculate the entropy
difference between two given equilibrium states A and B of a thermodynamic
system. In general, one deals with a system performing a given process from A to
B and is needed to find the corresponding entropy variation. The reader should be
very careful not to be deceived by the words “corresponding variation” or similar
terms. Indeed, the entropy variation corresponds to the fact that the system was
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initially in equilibrium state A and, after the process, is in equilibrium state B. It
does NOT “correspond”, in general, to the process actually performed. If, for
example, the system performed a spontaneous process, which is irreversible, the
integral of δQ/T, called the Clausius integral, in that process has nothing to do with
the “corresponding” entropy variation. We shall see that immediately through a few
examples.

The correct procedure for calculating entropy differences is as follows:

1. Fix your attention on the initial and final states only, forgetting the process
performed by the system.

2. Consider all the reversible processes between the two states and choose the one
that makes calculation easiest.

3. Do the calculation.

We shall now give a few examples.

Example E 3.2 Free expansion of a gas. A container of volume Vt with rigid walls is
divided into two parts by a septum. Initially, one of the parts, of volume Vi, is filled
with n moles of a gas, which can be considered to be ideal, at the temperature T; the
other part is empty (Fig. 3.11). We open an orifice in the septum and the gas expands
to occupy the entire container. Calculate the corresponding variation of entropy.

If one falls into the trap and calculates the Clausius integral of δQ/T in the actual
process, considering that there is no heat exchange, he/she finds

ZB
A; free expansion

dQ
T

¼ 0 ð3:23Þ

and claims that entropy does not vary. This is wrong. The Clausius integral is not
the entropy variation because it is in an irreversible process. To calculate the
entropy variation, we take the above-specified steps.

1. The initial state is A = (pi, Vi, T). We know the volume and temperature, and we
can calculate the pressure with the gas equation, if we need it. The final state is
B = (pf, Vt, T); we know this volume and temperature too, and we can again
calculate the pressure if needed.

2. Considering that the two states have the same temperature, it is clearly conve-
nient to take, for the calculation, the reversible isotherm process between them.

Vi

Vf
T

T

Fig. 3.11 Free expansion of
a gas. Initial and final states
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3. As the internal energy does not vary in an isothermal process of an ideal gas, the
absorbed heat is equal to the work done dQ ¼ dW ¼ pdV ¼ nRTdV=V . Hence,
dQ=T ¼ nRdV=V . Finally, integrating, we have

S Bð Þ � S Að Þ ¼
ZB

A; isothermal

dQ
T

¼ nR
ZB

A; isothermal

dV
V

¼ nR ln
Vf

Vi
: ð3:24Þ

We see, in particular, that entropy increases during the process. This is the case
for all spontaneous processes of isolated systems, as we shall see (Fig. 3.12). ∎

Example E 3.3 Spontaneous heat transfers from a hotter to a colder body. Consider
two solid bodies, of masses m1 and m2, specific heats c1 and c2, and temperatures T1
and T2, with T1 < T2. We lodge the two bodies in a thermally insulated container
and put them in thermal contact. Heat passes from the hotter to the colder body until
the two temperatures are equal. The equilibrium temperature Tf can be easily
calculated.

We calculate the entropy variation following the rules. We first notice that the
system consists of two parts. Its entropy is the sum of the entropies of its parts. The
state of each part is identified by the only thermodynamic variable of a solid,
namely temperature. Indeed, we can consider the volume of a solid as invariable.
Body 1 passes from T1 and Tf. We need a reversible transformation between the two
states. We can think to put the body into contact with a series of sources having
temperatures between T1 and Tf. When the body (that we are heating) has reached
the generic temperature T, we put it into contact with the source of temperature
T + dT. The body then reversibly absorbs the heat δQ = m1c1 dT from the source.
The entropy variation of the body is then

Vi
Vf

T

A

B

V

p

pi

pf

free espansion

Fig. 3.12 A free expansion
and isothermal processes
between two equilibrium
states of a gas
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DS 1ð Þ ¼
ZTf
T1

dT
T

¼ m1c1 ln
Tf
T1

and, analogously, the entropy variation of the second is

DS 2ð Þ ¼ m2c2 ln
Tf
T2

:

The total entropy variation is, in conclusion,

DS ¼ m1c1ln
Tf
T1

þm2c2 ln
Tf
T2

: ð3:25Þ

We can make a couple of observations. First, notice that if we had calculated the
entropy variation as the integral of δQ/T in the actual process, we would have
followed a faulty procedure, because that process is not reversible. However, the
result would have been the correct one. This is a more of a unique than a rare case.
The second observation is that the process is spontaneous and the variation of
entropy is positive, as in E. 3.2. ∎

Example E 3.4 Consider a pendulum enclosed in an adiabatic container with air at
atmospheric pressure. In the initial state, the pendulum is moved out of its
mechanical equilibrium position and is let go (Fig. 3.13a). The temperatures of the
pendulum and the air are both Ti. The pendulum will oscillate for a while, with
oscillations of decreasing amplitude, due to the resistance of the air. Consider as the
final state Fig. 3.13b, the state in which the pendulum is at rest and its temperature
and that of the air are equal. The final temperature, Tf, is obviously larger than Ti.

The thermodynamic system is composed of two subsystems: a gas, which we
shall consider as ideal, and a solid. The entropy variation of the system is the sum of
the entropy variations of its parts. Let m be the mass and c the specific heat of the
pendulum. Its initial and final states are identified by their temperatures. Indeed, the

(a) (b)

Fig. 3.13 A pendulum in an adiabatic container. a Initial state; b final state
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initial motion is thermodynamically irrelevant. Let n be the number of moles of the
air and CV its molar heat. The initial and final states of the air are identified by their
pressures, volumes and temperatures. As the initial and final states have the same
volume, we choose a reversible isochoric process, in which dQ ¼ dU ¼ nCVdT .
Hence,

DS airð Þ ¼ nCV

ZTf
T1

dT
T

¼ nCV ln
Tf
T1

where we have considered CV to be constant.
The entropy variation of the pendulum is what we just calculated for a solid

body:

DS pendulumð Þ ¼ mc ln
Tf
Ti

:

In conclusion, the entropy variation of the system is

DS ¼ nCV þmcð Þ ln Tf
Ti

: ð3:26Þ

Once more, we see that, in a spontaneous process, the entropy variation is
positive, being Tf > Ti. ∎

3.8 Engines Exchanging Heat with More Than Two
Sources

We already mentioned in Sect. 3.4 that the efficiency η of an engine, reversible or
not, which exchanges heat with more than two sources having temperatures
between a minimum TC and a maximum TH, is smaller than the efficiency ηC of a
Carnot engine working between TC and TH. We now demonstrate that statement,
using the Carnot theorem.

Let us first consider a reversible cycle. In that case, Eq. (3.20) holds. Now, let us
explicitly consider the contribution of the absorbed heats, namely the positive ones,
which we shall call δQin, and the released ones (negative), δQout, and write

I
dQin

T
�
I

dQoutj j
T

¼ 0: ð3:27Þ

We wrote the left-hand side as a difference between two positive terms.
Considering that TH is the highest temperature, we can state that
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I
dQin

T
[

I
dQin

TH
¼ Qin

TH

and, similarly,

I
dQoutj j
T

\
I

dQoutj j
TC

¼ Qoutj j
TC

:

Then, for Eq. (3.27) it must be

Qin

TH
� Qoutj j

TC
\0

or

TC
TH

\
Qoutj j
Qin

and finally

g ¼ 1� Qoutj j
Qin

¼ 1� TC
TH

\gC: ð3:28Þ

that proves the statement.
If the cycle is irreversible, Eq. (3.19) holds in place of Eq. (3.20) and the same

arguments are valid a fortiori.

3.9 Entropy of Remarkable Systems

In this section, we shall express the entropy variations of some remarkable systems.
The infinitesimal heat absorbed in a generic reversible process is

dQ ¼ dUþ dW ¼ dUþ pdV

and the infinitesimal entropy variation is

dS ¼ dQ
T

¼ dUþ pdV
T

: ð3:29Þ

The entropy difference between two equilibrium states A and B is
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S Bð Þ � S Að Þ ¼
ZB
A

dUþ pdV
T

: ð3:30Þ

Solid body. We have already found this expression in the previous section. We
repeat it here for completeness. If m is the mass, c is the specific heat and TA and TB
the initial and final temperatures, the entropy variation is

S Bð Þ � S Að Þ ¼ mc ln
TB
TA

: ð3:31Þ

Ideal gas. Let TA and TB be the initial and final temperatures, and VA and VB the
initial and final volumes. We have dU ¼ nCVdT and pdV ¼ nRT dV

V . Hence, for
Eq. (3.30),

S Bð Þ � S Að Þ ¼ nCV ln
TB
TA

þ nR ln
VB

VA
: ð3:32Þ

Reservoir. A reservoir is an ideal heat source with infinite heat capacity.
Whatever heat it absorbs or delivers, its temperature does not vary, however, its
internal energy does vary, and its state as well. As we know, the only thermody-
namic coordinate of a reservoir is its internal energy. The initial and final states,
A and B, are identified by the internal energies U(A) and U(B). We consider a
reversible transformation in which the reservoir absorbs infinitesimal heat quantities
δQ, such that their integral is equal to the total absorbed heat Q = U(B) − U(A). All
these heats are exchanged at the same temperature. The entropy change is then
simply

S Bð Þ � S Að Þ ¼ Q
T
: ð3:33Þ

Isentropic processes. Any reversible adiabatic process is a process at constant
entropy, and is said to be an isentropic (meaning at equal entropy) process. Indeed,
in such a reversible process, all the heat exchanges are zero and so are, conse-
quently, all the δQ/T and their integral between the initial and the final state. We
here repeat that entropy is not constant, but rather increases, in an irreversible
adiabatic process.

Consider now a hydrostatic system of a given mass. As we know, two ther-
modynamic coordinates are necessary and sufficient to define its equilibrium states.
The choice of the couple of coordinates in a given problem should be done
according to convenience. As a matter of fact, we can use not only pressure,
temperature and volume, but also any state function (as we did for the reservoir).
An often-useful choice is the entropy, temperature pair. The processes are repre-
sented in the TS plane, as shown in Fig. 3.14.
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Figure 3.14a shows a reversible process from A to B. The area under the curve,
grey in the figure, has the physical meaning of absorbed heat Q. Indeed, the area is
the integral

ZB
A

TdS ¼
ZB
A

T
dQ
T

¼Q: ð3:34Þ

This is positive (absorbed) in the example. It would have been negative (re-
leased) if the process was in the opposite direction.

The TS diagram of the Carnot cycle is particularly simple. Being composed of
two isothermal and two isentropic processes, it is just a rectangle, as in Fig. 3.14b.

In general, for whatever cycle, the area enclosed in the TS diagram represents the
absorbed heat and consequently also the work done.

In Sect. 3.8, we showed that the efficiency η of any engine that exchanges heat
with more than two sources between a minimum TC and a maximum TH is smaller
than the efficiency ηC of a Carnot engine working between TC and TH. The
demonstration is extremely simple on the TS plane. Consider a reversible cycle,
which is represented by the closed curve in Fig. 3.15. The rectangle is the Carnot
cycle between the extreme temperatures. We have profited from the fact that the
efficiency of the Carnot cycle does not depend on the “length” of the isothermal
transformations, but only on their temperatures, to draw the Carnot cycle tangent to
the generic one. The heat input (which is positive) in the generic cycle QG,in takes
place on the segment ABC; the heat input in the Carnot cycle QC,in is on the
isothermal transformation at TH. A look at the figure is enough to conclude that QG,

T

S

SA SB

B

A

Γ

T

S

S1

Tc

S2

Tf

(a) (b)

Fig. 3.14 Diagrams in the TS plane. a A reversible process, b a Carnot cycle

B

A

T

S

TH

TC

C

D

Fig. 3.15 A generic
reversible cycle and a Carnot
cycle
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in < QC,in. Similarly, one sees for the output heat, in absolute values, that
QG;out

�� ��[ QC;out

�� ��. These observations are enough to prove the statement.

3.10 Principle of Maximum Entropy

In Sect. 3.7, we saw three spontaneous processes in which the entropy of the system
increases. These are just examples of a fundamental general property of thermo-
dynamics that we shall now prove.

Consider a thermodynamic system spontaneously transforming from the equi-
librium state A to the equilibrium state B. In Fig. 3.16, the process is labeled IR for
“irreversible”. Consider also a reversible process (R in the figure) taking the system
back to A. The cycle composed of these two transformations is irreversible, because
it contains an irreversible process. The Clausius theorem states that

ZB
A;IR

dQ
T

�
ZB
A;R

dQ
T
:

The right-hand side is the entropy variation, being the integral in a reversible
process. We have

ZB
A;IR

dQ
T

� S Bð Þ � S Að Þ: ð3:35Þ

We see once more that the Clausius integral of δQ/T is equal to the entropy
variation if the process is reversible; otherwise it is smaller than it.

Consider now a generic adiabatic process from the equilibrium state A to the
equilibrium state B. The Clausius integral is zero. These processes may be rever-
sible or not and Eq. (3.35) gives

S Bð Þ � S Að Þ� 0: ð3:34Þ

This very important relation establishes that the entropy of a thermally-isolated
system can never decrease. As a consequence, any thermally-isolated system
spontaneously evolves towards its state of maximum entropy. Once having reached
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B

R

IRFig. 3.16 Cycle composed of
a spontaneous process from
A to B and a reversible one
from B to A
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this state, the system remains there indefinitely (in absence of external
perturbations).

The conclusion is very general. Indeed, a non-isolated system exchanges heat
with a certain number of sources. It is always possible to locate these sources,
which are in the neighboring space of the system. We shall call the environment of
the system the set of sources with which it can exchange heat. Then, the system
composed of the system we are considering and its environment is thermally iso-
lated, and Eq. (3.34) holds for it. The conclusion is called the principle of maximum
entropy, which can be formulated as “the entropy of the sum of any thermodynamic
system and its environment can never decrease.”

This is clearly still another way to state the second law of thermodynamics.
The principle of maximum entropy expresses the irreversibility quantitatively.

The spontaneous processes of an isolated system, or of any system plus its envi-
ronment, always lead to an entropy increase. As a matter of fact, it distinguishes the
arrow of time, the arrow that moves from the past to the future. If we know two
states of an isolated system, or of a system plus its environment, and we do not
know which came sooner and which later, we just have to look at their entropies.
The state of larger entropy is the one that came later.

Before concluding, we note that one can find the principle of maximum entropy
stated as being that the entropy of the Universe cannot decrease. This statement
does not really have any meaning in physics, considering that nobody can measure
the entropy of the Universe.

Problems

3:1. A Carnot engine that operates with a cold source at 7 °C has the efficiency
η = 40 %. To what temperature should the hot source be raised to have the
efficiency η′ = 45 %?

3:2. Two vessels of 1 and 2 m3 volumes contain equal masses of an ideal gas at
the same temperature. What is the difference between the two internal
energies? If any, which is larger? What is the difference between the two
entropies? If any, which is larger?

3:3. A gas performs a reversible cycle made of two isochoric and two isothermal
processes, as in Fig. 3.17a. Which are the signs of the variations (a) of the
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Fig. 3.17 The cycles of problems a 3.3 and b 3.4
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internal energy, and (b) of the entropy in each process of the cycle. (c) Under
which conditions is the heat positive? (d) Under which conditions is the work
positive?

3:4. An ideal gas performs the cycle in Fig. 3.17b made of two isobaric and two
adiabatic processes. Which are the signs of the variations (a) of the internal
energy, (b) of the entropy in each process of the cycle, and (c) in which the
heat is positive? (d) Under which conditions is the work positive?

3:5. Consider the Carnot cycle in Fig. 3.3. The fluid is oxygen, to be considered
an ideal gas. Its mass is m = 0.4 kg. In the warmer isothermal process at
TH = 500 K, the gas expands from the volume VA = 10−2 m3 to
VB = 2 × 10−2 m3. The work done in a cycle is 14.4 kJ. The molar heat
CV = (5/2) R is constant. Calculate the work WDA.

3:6. How does the entropy of an ideal gas behave in the following reversible
expansions: (a) adiabatic, (b) isobaric, (c) isothermal processes?

3:7. Can the entropy of a system increase in a process in which the system
delivers heat to the environment?

3:8. A certain quantity of gas goes from state A to B, both of equilibrium: (a) once
through a reversible adiabatic process, and (b) once through an irreversible
process. Which are the corresponding entropy variations? (c) Can the second
process also be adiabatic?

3:9. A system passes from the equilibrium state A to the equilibrium state
B through a certain process. Subsequently, it passes to the equilibrium state
C. Knowing that the entropy variations are the opposite of each other, which
is the relation between states A and C?

3:10. A certain quantity of ideal gas passes from the equilibrium state A to the
equilibrium state B through a reversible isothermal process at T = 300 K,
making the workWAB = 3 kJ. Subsequently, it passes to the equilibrium state
C through a reversible transformation. A and C are on the same reversible
adiabatic transformation. What is the entropy variation when the system goes
from B to C?

3:11. A mole of an ideal monoatomic gas is reversibly heated from 0 to 273 °C.
Find the entropy variation if the process takes place: (a) at constant volume,
and (b) at constant pressure.

3:12. An ideal gas expands in a reversible isothermal process at T = 300 K, pro-
ducing the work W = 6 kJ. Find the entropy variation.

3:13. An ideal gas expands in a reversible isothermal process at the temperature
T from a state of entropy S1 to a state of entropy S2. How much is the work?

3:14. The heat capacity of the elements near absolute zero varies with temperature
as C = α T3, where α is a constant. Find the expression of the entropy.
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Chapter 4
Thermodynamic Properties of Real Fluids

The ideal gas that we have studied up until now is a very important idealization
with which to study the basic laws of thermodynamic. An ideal gas does not exist,
but real gases behave approximately as such for low enough pressures and high
enough temperatures. In the real world, gases are made of molecules that are small
but have non-zero dimensions and exert forces upon one another called van der
Waals forces. The ideal gas would be made of point-like non-interacting molecules.
As we shall see in the next chapter, the molecules move continuously with an
average kinetic energy that is proportional to the absolute temperature.
Consequently, a real gas better approximates an ideal one at higher temperatures,
when the potential energy of the intermolecular forces is a smaller fraction of the
kinetic energy. Also, if the pressure of a given gas mass is lower, the average
intermolecular distance is larger and the intermolecular forces are weaker.
However, when the temperature of a gas decreases or its pressure increases, its
behavior differs more and more from that of the ideal gas. At low enough tem-
peratures, the fluid condensates, and the gas becomes a liquid. At even lower
temperatures, the liquid becomes solid. A substance can be in different aggregation
states (or phases). We shall discuss that in Sect. 4.1.

In Sect. 4.2, we shall see how the isothermal curves, for different temperatures,
on the p,V plane for a fluid (gas or liquid) are measured and then discuss the results.
In the subsequent section, we shall see how a state equation, the van der Waals
equation, is able to give an approximate description of the data.

While in an ideal gas, the internal energy is a function of the temperature alone,
for the real ones, it depends on the volume as well (namely on the average distance
between molecules). We shall see how this was experimentally established by Joule
and Thomson in a famous experiment in Sect. 4.4. We shall then deal with the two
important state functions, the internal energy and the enthalpy.

In the next three sections (Sect. 4.6–4.8), we shall deal with the aggregation
phase transitions, in particular, between liquid and vapor.

In the final three sections of the chapter (Sects. 4.9–4.11), we shall study the
capillary phenomena, which appear at the interfaces between different aggregation
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phases, a liquid and a gas, a liquid and a solid, and a gas and a solid. In particular, a
liquid and its own vapor are always present in boiling and vaporization phenomena.

4.1 States of Matter

In this section, we shall give some basic hints on the structure of matter. Our main
interest is in understanding the orders of magnitude of the relevant physical
quantities. All macroscopic bodies are made of very small particles: molecules and
atoms. Atoms characterize the elements, molecules the chemical substances. The
number of atoms in a molecule ranges from a single one (monoatomic molecule,
which is just an atom) up to hundreds of millions. The idea that observed differ-
ences between substances are due to the behavior of elementary objects was
developed by the Greek philosophers. The origin of the atomic theory is credited by
Aristotle to Leucippus, who flourished in the Vth century BC in Miletus, a Greek
island near the coast of Asia Minor. Unfortunately, only a few fragments of
Leucippus’s writing remain. The theory was fully developed, in philosophical
terms, by his pupil Democritus of Abdera (460–370 BC). The question posed by
Democritus was as follows. One can divide a piece of matter, for example, a piece
of iron, into two parts, obtaining two pieces of iron. One can then break one of the
pieces in half, and in half again, and in half again. Can the process continue
forever? His answer was no, the process must end at some point when the smallest
bit of matter is reached. This bit is indivisible, “atom” in Greek. Atoms move
continually in a vacuum and are able to aggregate in different configurations cor-
responding to all the substances we observe. This was indeed a very brilliant idea,
but still a philosophical one, which lacked experimental control. Only 23 centuries
later, the existence of atoms was experimentally established. It was not a single
discovery, but rather the result of a gradual process. The first important finding was
by John Dalton (UK, 1766–1844) who, performing experiments with various
chemical species, showed, in 1803–1808, that matter is made of “elementary”
objects, the atoms, taking place in the chemical reactions. His conclusions are
summarized in the Dalton law of multiple proportions. The law states that, if two
elements form more than one compound between them, then the ratios of the masses
of the second element that combine with a fixed mass of the first element will be
ratios of small whole numbers. Soon after, in 1811, Amedeo Avogadro (Italy,
1776–1878) formulated the law we mentioned in Sect. 2.3, establishing that gas
behaves as if composed of molecules. In 1897, Joseph John Thomson (UK, 1856–
1940) discovered the electron.

We know, however, that the atoms, even if they are the elementary objects in the
chemical reactions, have an internal structure. Atoms are composed of a central
nucleus, which has a positive electric charge, and electrons, which are negative, and
which form a “cloud” around the nucleus. Atoms are electrically neutral; the
binding force is electromagnetic. The atomic nucleus has an internal structure as
well; it is made of protons and neutrons. The force keeping the nucleus together is
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called the nuclear force. Protons and neutrons are composite objects too; they are
made of quarks, bound by the so-called color force, for which “color” is a funny
name given by physicists, one which has nothing to do with color as we know it.
The nuclear force, to be precise, is a consequence of the color force. The physical
laws at the atomic and sub-atomic scales are quantistic and cannot be discussed at
the level of this course. However, we are interested here in giving the information
that is necessary to interpret the macroscopic behavior of matter, the thermody-
namic phenomena. The smallest scale objects that intervene in these phenomena
(such as in the chemical reactions that we have mentioned) are molecules and
atoms.

The geometrical dimensions of atoms, different from one atomic species to
another, are the dimensions of this negative “cloud”. The order of magnitude is the
tenth of a nanometer, or 10−10 m. The diameters of the nuclei are four orders of
magnitude smaller, between 1 and 10 fm (10−15–10−14 m). If we were to magnify a
nucleus to the size of the dot above an “i” on this page, the size of the atom would
be on the order of meters.

The number of electrons (symbol e), called Z, characterizes the element, and
varies from 1 for hydrogen to 92 for uranium (Mendeleev table). Electrons inside
atoms behave according to quantum, not classical, laws. In particular, electrons do
not have well-defined trajectories; we cannot properly speak of electron orbits
around the nucleus (even this is found in many books). Atomic electrons move very
quickly compared with macroscopic objects; their speeds are on the order of
104 m/s, which, however, are much smaller than the speed of light. The charac-
teristic times of electron motion are much smaller than the resolving times of our
instrument and, consequently, we observe an average configuration of the atom. We
see the electron charge as continuously distributed in a region around the nucleus,
in a greater density where the probability of finding one electron is larger and a
more sparse assemblage where the probability is smaller. We can then think of a
cloud of charge, even if there is only one electron.

The atomic nucleus is made of protons (p) that are positive and neutrons (n) that
are neutral. Different electric charge apart, protons and neutrons are very similar and
are collectively called nucleons. For every element, the number of protons is equal
to the number of electrons. Protons and electrons have equal and opposite charges;
atoms, as we said, are globally neutral.

The proton and electron electric charge is the smallest existing free charge in
nature, and is called an elementary charge. As a matter of fact, quarks have smaller
charges. Nucleons contain two types of quark, called up (u) and down (d). Their
charges are 2/3 and −1/3 of the elementary charge, respectively. The proton con-
tains 2 u and 1 d, the neutron 1 u and 2 d. However, quarks are never free; they live
inside the nucleons and other particles of the same category. The charges of all the
other objects are integer multiples of the elementary charge. One might think to
adopt the elementary charge as the unit, but this is not convenient because enor-
mous numbers would represent all the usual charges. The unit of electric charge in
the SI is the coulomb (C). We shall give the precise definition of the coulomb in the
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3rd volume of the course; it is not relevant to our discussion here. The value of the
elementary charge, in round numbers, is

qe ffi 1:60� 10�19 C: ð4:1Þ

This value is commonly used to define an energy unit at the scale of the atomic
and molecular energies, the electronvolt. The electornvolt is the kinetic energy
gained by an electron falling under the potential difference of one volt. As such, its
numerical value in joule is equal to the elementary charge, namely

1 eV ffi 1:60� 10�19 J: ð4:2Þ

The presence of neutrons in the nucleus is necessary to guarantee its stability.
Inside the nucleus, the repulsive electric force between protons tends to destroy it.
The nuclear force is, however, attractive and, under the same conditions, has the
same intensity between protons, between neutrons, and between a proton and a
neutron. The balance between electric and nuclear forces is realized when the
number of neutrons is somewhat larger than the number of protons. The nucleon
excess increases with increasing nuclear size. The number of neutrons is indicated
with N, and the total number of nucleons (protons plus neutrons) with
A (A = N + Z), which is called the atomic number. For a given atomic species
(namely a given Z), more than one nuclear species may exist, with different values
of N and, consequently, of A. All of them have the same chemical properties and are
lodged in the same box of the Mendeleev table. For this reason, they are named
isotopes (meaning “same place” in Greek). The percentages of the different stable
isotopes of the same element are fixed in nature.

For example, hydrogen has two stable isotopes: 1H (the superscript is A), the
nucleus of which is simply the proton, and 2H, the deuteron, the nucleus of which is
made of a proton and a neutron. A third isotope, the tritium 3H, exists but is
unstable, having a half-life of 12.32 year. It is continuously produced by cosmic ray
collisions in the atmosphere. The second element is helium, which has two stable
isotopes, 3He (2p,1n) and 4He (2p,2 n), and so on.

The masses of electron and nucleons are known through many significant fig-
ures. Here, we give values with a few digits only. The electron mass is

me ffi 9:11� 10�31 kg: ð4:3Þ

The proton mass is about 1836 times larger:

mp ffi 1:673� 10�27 kg: ð4:4Þ

The neutron mass is very close to the proton mass, but a bit larger.
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mn ffi 1:675� 10�27 kg: ð4:5Þ

From the above values, we see that the largest fraction of the atom mass, and
with them, of the mass of matter, is concentrated in the nucleus. The electrons’
contribution is only a few parts in ten thousand. One might think that the atomic
masses of the elements are integer multiples of the proton mass. This is so only in a
rough approximation, for three reasons. First, every element is a mixture of different
isotopes with different values of A, in some proportions; second, the proton and
neutron masses are almost, but not exactly, equal; third, the mass of the nucleus is
not equal to the sum of the masses of its nucleons; it is smaller than that due to the
binding energy, as we have seen in Chap. 6 of the 1st volume.

The mass of the u and the d quarks are about 2/1000 and 4/1000 of the nucleon
mass, respectively. This is really surprising. From where does the largest fraction of
the mass of the nucleons, and consequently of the nuclei, of the atoms, or of matter
in general, come? The answer is in the very peculiar behavior of the quantistic,
color force. On one side, it increases with the distance so much that quarks cannot
be taken apart; on the other, its binding energy is positive and very large.
Consequently, instead of a mass defect, such as in atoms and nuclei, in the
nucleons, there is a mass excess. Namely, the mass of the nucleon is much larger
than the sum of the masses of its components. This excess is the largest fraction of
the mass of matter.

As far as we know, electrons and quarks do not have an internal structure and are
point-like. Namely, their sizes, if any, are smaller than the experimental resolution,
which is of the order of the attometer (10−18 m). Nucleons have a radius smaller
than, but comparable to, nuclei, of a few femtometers, and, as we have already
mentioned, are composed of quarks. The internal structure of the nuclei, and even
more, the structure of the nucleons, does not have any influence on the thermo-
dynamic processes we are discussing. Consequently, we shall not enter into any
further detail.

In conclusion, matter is made of an enormous number of very small, charged
elementary constituents, with electric charges of both signs, which are so intimately
and precisely mixed that their effects, which are enormous inside the atoms, almost
disappear outside of them. Some effect, however, remains outside the atom.

Two or more atoms, depending on their species, may form a molecule. The
nature of the several different existing molecular bonds is, in all cases, quantistic.
We can only give a few hints here. The simplest molecules are made of two atoms.
The simplest types of bond are the ionic bond and the covalent bond. There are
atoms, such as, for example, Na, that are happy to lose an electron and to become
positive ions (Na+), and there are those that can capture an electron, like Cl,
becoming a negative ion (Cl−). Two opposite charged ions bind together, forming a
molecule (NaCl, in the example) in an ionic bond. The quantum binding interaction
corresponds to the macroscopic electrostatic attractive force between opposite
charges. The two atoms in molecules like H2, O2, HCl and many others are bound
by a different interaction that has no classical analogue, called a covalent, because
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both partners have the same chemical valence. The two nuclei share some of the
electrons and the resulting common part of the electron cloud binds the two part-
ners. The common electron cloud is thicker in the region between the two nuclei,
opposing, in this way, the repulsive force between the two nuclear positive charges.

Figure 4.1a gives an example of the interaction of potential energy in a covalent
bond, the HCl molecule. This is just an example for the purpose of discussing the
general features in a semi-quantitative form. Keep in mind that there is a quanti-
tatively important difference between different molecules. The potential energy
Up is given in an electronvolt as a function of r, which is one half of the distance
between the nuclei. The function has a rather deep minimum at a certain value, r0.
At smaller distances, the curve grows rapidly. The force is the derivative of the
potential, which is the slope of the curve in the figure. For r < r0, the force is strong
and negative, meaning that the two atoms repel each other. This is due to the
electric action of the two electron clouds that become compressed. The two atoms
behave almost the same as two rigid spheres. The distance r0 is the stable equi-
librium distance and is, in general, on the order of tenths of a nanometer (0.12 nm
for HCl in the figure). The depth of the potential minimum Up0 characterizes the
strength of the bond between the two atoms. Indeed, Up0 is the minimum energy we
must give to the system in order to break the molecule. We can do so, for example,
by hitting it with another molecule. Typical values of Up0 are on the order of the
electronvolt (−4.5 eV for HCl).

An important characteristic of the forces binding the molecules, which we shall
call chemical forces, is the saturation. This means that, once the molecule has been
built, the chemical force will not act on another atom that may pass nearby.

Molecules interact with each other through a force called the van der Waals
force, after Johannes Diderik van der Waals (The Netherlands, 1837–1910), who
gave it its expression in 1873. These forces are different from chemical forces.
Rigorously speaking, they are rather complicated; for example, they depend on the
relative orientation of the interacting molecules. We are interested, however, in the
average value of all possible orientations. Figure 4.1b shows a typical mean van der
Waals potential (the force is obviously its derivative) as a function of half of the
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Fig. 4.1 a Interaction potential in the HCl molecule. b van der Waals potential
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distance between the molecular centers r. At first sight, its behavior is qualitatively
similar to the potential of the chemical force, in particular, with a minimum at,
using the same symbol, r0. However, there are also very important differences. The
similarity is that the van der Waals force is also repulsive and rapidly growing at
short distances (r < r0) and attractive and slowly decreasing at large distances
(r > r0). The molecules can be roughly approximated with small rigid bodies of
radius r0 as well. Notice that the “radius” r0 of the molecules is larger than the
“radius” r0 of the atoms, even for the simplest molecules. For the diatomic ones,
such as HCl, r0 = 0.3–0.4 nm.

The (feeble) attractive force between molecules gradually vanishes at large
enough distances. We can consider that a molecule acts only within a certain
distance, which we call the molecular action radius and indicate with ra. This
cannot be defined very rigorously, but we can think of it as being a few times
greater than r0, typically less than 1 nm.

We did not show any energy scale in Fig. 4.1b, because the energy values vary
by more than an order of magnitude for different molecules. In any case, however,
the depth of the potential minimum of the intermolecular force is much smaller than
that of the chemical ones. It typically ranges between 10 meV and a few 100 meV.

Another very important difference is that van der Waals forces, as opposed to
chemical ones, do not saturate. Two nearby molecules interact with other molecules
as well. As a result, all molecules that are closer than the action radius attract each
other. This feature is at the origin of the liquid and solid states, which we shall now
briefly describe.

In a gas, the typical distance between neighboring molecules is much greater
than the molecular size. Their motion is completely disordered. It is called thermal
motion. The average kinetic energy of the molecules in a gas is considerably larger
than the potential energy of the van der Waals force, and, as we shall see, increases
with temperature. We shall study the microscopic interpretation of thermodynamics
in more detail in Chaps. 5 and 6.

Let us evaluate the order of magnitude of the distance between molecules. As the
reader will remember, a mole of any gas, considering it to be ideal, occupies the
same volume under the same conditions of temperature and pressure. The molar
volume at STP is 22.4 L. The average distance between molecules 〈r〉 is the cubic
root of the average volume available to one molecule, which is the molar volume,
divided by the Avogadro number. Hence,

rh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22:4� 10�3 m3=NA

3
p

¼ 3:3� 10�9 m ¼ 3:3 nm:

The mean distance at STP is substantially larger than the molecular action
radius, and the van der Waals force is weak and can be neglected in a first
approximation; the gas behaves approximately as an ideal one. If the pressure
increases, however, the distances between molecules become smaller and smaller,
and the van der Waals force effects come into play. The state equation becomes,
approximately, the van der Waals equation, which we shall study in Sect. 4.3.
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If the average intermolecular distance further decreases, due to increasing
pressure, or the kinetic energy decreases, due to decreasing temperature, the
attractive van der Waals force effects become more and more important. Finally, the
gas liquefies. This is the second aggregation phase, different from the gas, in which
the molecules are, so to speak, touching one another. The average distance between
molecules is substantially 2r0. The repulsive force becomes very strong if we try to
further reduce the distance. Consequently, the volume of a liquid is almost constant.
On the other hand, the molecules in a liquid are free to slip one over the other.
Consequently, a liquid has no definite shape, taking the shape of the container. The
inter-molecular distances are one order of magnitude smaller than for a gas at
STP. Consequently, the density of the liquid is three orders of magnitude larger than
that of a gas at STP. As a rule of thumb, the density of a liquid is 10 % smaller than
that of the corresponding solid.

If we further decrease the temperature, the average kinetic energy of the
molecules decreases too and the substance, under certain conditions, becomes solid.
This is the third phase, or aggregation state, of matter. In the solid state, the
constituent particles, which may be ions, atoms or molecules, are closely packed
together. The van der Waals forces are so strong that the particles cannot move
freely. They can, and do, vibrate around fixed positions. As a result, the solid not
only has a (almost) fixed volume, like the liquid, but also a (almost) fixed shape. In
the properly-named solid state, the particles arrange themselves in symmetric
structures, forming a crystal. In this structure, a unit cell repeats itself periodically.
The shape of the cell depends on the constituent ions, atoms or molecules and may
be a cube, a prism, a tetrahedron, etc. The vertices of the periodic structure are the
equilibrium positions around which the particles oscillate. The distances between
particles are on the same order as those in the liquids. As already mentioned, the
densities are similar, some 10 % larger in solids. Figure 4.2 shows two examples of
crystalline structures: (a) represents 12 (not rectangular) parallelepiped cells;
(b) represents three cells that are hexagonal section prisms, with an atom at the
center of the face.

Crystallography is the branch of physics that studies crystals and their sym-
metries experimentally and theoretically. The existing shapes are many, but we

(a)
(b)

Fig. 4.2 Crystal structures with a parallelepiped cell; b face centered hexagonal prismatic cell
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shall not deal with them. We will only mention that the symmetry rarely appears at
the macroscopic level. In these fascinating cases, one talks of crystals in the
common language as well. Much more frequently, the crystal structure, which
exists, does not appear. This is the case with metals, for example. In these cases, the
macroscopic body is an aggregate of microcrystals. Their sizes are on the order of
the micrometer, which is too small to be seen with the naked eye, but very large
compared to the atomic sizes. The microcrystals can be easily seen with a micro-
scope. Their arrangement appears to be completely disordered. Consequently, the
body does not have a symmetric structure at the macroscopic level.

Several bodies exist, like plastic materials and glasses, which are solid in the
common language, as they have a fixed shape. They are not properly solid,
according to the definition given in physics. Indeed, they do not have, even at the
microscopic level, any symmetrical structure. As a matter of fact, they are liquid,
with an extremely high viscosity.

4.2 Isothermal Transformations of Real Fluids

As we know, isothermal transformations of the ideal gas on the plane Vp are
hyperbolae with the coordinate axes as asymptotes, corresponding to the state
equation pV = const. In the real world, this law is approximately valid for gases at
high enough temperatures and small enough pressures. The knowledge of the
isothermal curves of a gas is equivalent, for any practical point of view, to the
knowledge of its state equation, even if the latter cannot be expressed in an ana-
lytical form. An isothermal curve of a gas can be determined experimentally by
measuring the pressure as a function of the volume, keeping the temperature
constant. We enclose the gas in a cylinder with a piston, so as to be able to change
its volume. Clearly, we must eliminate the air from the cylinder, producing a
vacuum with a pump, before introducing the gas. We put the cylinder into thermal
contact with a bath at the desired temperature and proceed slowly, varying the
volume and measuring volume and pressure. Then, we draw the isothermal curve
through the points we have measured. We repeat the process for many
temperatures.

To be concrete, let us consider carbon dioxide. The systematic measurements
were done by Thomas Andrews (Ireland, 1813–1885) in the 1860s and are shown in
Fig. 4.3. Consider working with one mole. At high temperatures, say above 80 °C,
the curves are similar, but not identical, to those of an ideal gas. The similarity is
closer the higher the temperature. At lower temperatures, the curves develop an
inflection point, at which the slope is negative. These curves—such as the one of
40°—resemble hyperbolae at large volumes, i.e., small pressures, but behave very
differently at small volumes. The curve has a vertical asymptote, which is not, as in
the ideal gas, the ordinate axis.

Going further down in temperature, we meet an important isothermal, charac-
terized by having zero slope at its inflection point. It is drawn thicker in the figure
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and is called a critical isothermal. The inflection point is the critical point, K in the
figure. Its coordinates are the critical temperature (Tc = 31.04 °C for CO2), critical
pressure and critical volume (molar because we are dealing with one mole). As we
shall now see, gases can condensate only at temperatures lower than that which is
critical for each one. Under these conditions, the gas is said to be a vapor.

Consider a temperature lower than the critical one, 20 °C, for example. Let us
start from a large volume, hence from a low pressure. Decreasing the volume, when
the pressure reaches a well-defined value (point B), which is about 6 MPa (60 atm)
for CO2, the pressure ceases to vary, even if the volume decreases. The represen-
tative point moves on a horizontal line, i.e., at constant pressure. In this segment,
the isothermal process is isobaric as well. At the end of the horizontal segment
(point A), the pressure suddenly increases and it is practically impossible to further
decrease the volume. The substance that was easy to compress at larger volumes
has become incompressible.

Let us look inside the cylinder. We see that beyond the point B, part of the gas is
liquid. The gas to liquid phase transition is called condensation. In the segment BA,
both liquid and gas are contemporarily present. The two phases coexist in equi-
librium. For a given substance at a given temperature, this can happen only at a
certain pressure, which is called the saturated vapor pressure. Let us make clear
that the equilibrium between the two phases can be reached only if the following
conditions are satisfied. First, the fluid must be in a closed container; otherwise, the
vapor dissipates. Second, there must be no other gas (air, for example) present in
the container; otherwise, the pressure of the liquid is equal to the pressure of the
vapor plus the foreign gas. We will also notice that the saturated vapor pressure
depends on the temperature, but not on the volume. If we repeat the experiment
with a different quantity of CO2, we find the same pressure, at a different volume.

The lengths of the parts PB and PA, in which the representative point P divides
the line AB, are proportional to the fractions of liquid and vapor, respectively. In A,
all the substance is liquid. Its volume cannot be further reduced. The slope of the
isothermal curve becomes almost infinite.
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At still lower temperatures (for example, at 0 °C), we observe similar behavior,
but the horizontal stretch gets longer, with much more on the larger volume side
than on the smaller volume side. This is because the volume of the liquid has only a
small dependence on temperature. During condensation, the thermal bath absorbs
heat from the substance. The heat absorbed for the complete condensation is a
well-defined quantity proportional to the mass, characteristic of the substance. An
equal heat is delivered to the bath, rather than absorbed, in the inverse process,
which is the vaporization. The heat for the phase transition of the unit mass is called
the specific latent heat of vaporization. For a mole of the substance, it is called the
molar. The heat of vaporization depends upon temperature, being smaller for higher
temperatures and becoming zero at the critical temperature.

The critical temperature Tc is the maximum temperature at which the substance
can be liquid. At higher temperatures, only the gas state is possible, for whatever
pressure. The critical point, K in the figure, is particularly interesting. In its
neighborhood, infinitesimal variations of pressure or temperature make the sub-
stance change from liquid to vapor or vice versa. The vapor heat is zero at the
critical temperature. As a matter of fact, under these conditions, the vapor pressure
is high and the density is very close to the liquid density. The difference between
the two phases is vanishingly small.

In summary, inside the bell-shaped curve, grey in the figure, called the coexis-
tence curve, the saturated vapor and liquid phases are in equilibrium. On the
left-hand side of the coexistence curve and of the critical isothermal, the substance
is in the liquid phase (darker grey in the figure). On the right-hand side of the
coexistence curve, below the critical isothermal, the substance is non-critical vapor,
or overheated vapor; this is a vapor at a pressure smaller than the saturated vapor
pressure (at the given temperature).

The behavior we have described for carbon dioxide is similar for the other fluids,
once the values of the critical constants, which are different for different substances,
are considered. As a matter of fact, the approximate validity of the law of the
corresponding states has been experimentally established. We must use the
so-called reduced variables, which are pressure, volume and temperature divided by
their critical values, namely

p ¼ p
pc

; / ¼ V
Vc

; s ¼ T
Tc

: ð4:6Þ

If we draw the reduced temperature isothermal curves (τ = cost) on the plane π,
ϕ, we find that the same curves approximately represent the behavior of all the
fluids.

Table 4.1 reports the critical parameters of several substances.
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4.3 Van der Waals Equation

As we have seen in Sect. 4.2, when the density of a gas increases, its behavior
differs more and more from that of an ideal gas, finally becoming liquid. These
phenomena depend upon the forces between molecules. It is not possible to take
into account analytically the effects of these interactions and theoretically establish
a precise state equation. We can find it experimentally, as we have seen in Sect. 4.2.

It is, however, possible to take into account the main characteristics of the
intermolecular forces and write a state equation describing approximately the
behavior of a real fluid. This is the van der Waals equation. We shall find it starting
from the ideal gas equation, which we write as

p ¼ nRT
V

ð4:7Þ

and introduce the necessary correction terms.
We have already discussed the intermolecular forces in Sect. 4.1. We recall their

principal characters: the force is repulsive and rapidly increases when the distance
between the centers decreases below a certain value 2r0, while it is weakly attractive
and decreases with increasing distance above 2r0.

The rapid increase at small distances makes it possible to consider, in a first
approximation, the molecules as rigid spheres of radius r0. The volume of the fluid
cannot be reduced below the volume taken by the molecule. This volume is called
the covolume, which is, substantially speaking, the volume of the liquid, which we
will indicate with b. We correct the ideal gas law Eq. (4.7) to take into account that
the available volume is only V–b and write

Table 4.1 Critical parameters of several substances

Substance Tc (K) pc (MPa) Vc (cm
3mol−1) ρc (kg m−3)

Helium 5.3 0.23 58 69

Hydrogen 33.3 1.3 64.5 31

Nitrogen 126.2 3.39 90 311

Argon 150.9 4.91 85.0 531

Oxygen 154.8 5.08 74.4 430

Methane 191 4.64 98.8 162

Ethylene 283.1 5.19 124 225

Ethane 305.4 4.88 143 211

CO2 304.2 8.1 95.6 460

Propane 369.9 4.2 200 220

Ammonia 405.6 11.4 72.4 235

Water 647.3 22.12 45 400
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p ¼ nRT
V � b

:

We see, in particular, that the pressure diverges when V tends towards b.
We now have to take into account the attractive part of the intermolecular force.

We start by observing that the pressure of the gas on the surrounding walls is due to
the collisions, enormous in number, of the molecules. We shall come back to that in
Sect. 5.1. The pressure is higher for larger momenta of the colliding molecules
(hence, of the impulse they produce) and for larger numbers of molecules. The
attractive interaction between molecules reduces the momenta and consequently the
pressure.

A molecule far from the walls feels the attraction of the other molecules in a
sphere of radius ra, the molecular action radius. The distribution of the molecules is
uniform, and consequently, the resultant of the forces is zero (Fig. 4.4a). When the
molecule is near a wall, it feels the attraction of the molecules in half of the sphere
only (Fig. 4.4b). The resultant is a force directed away from the surface. This force,
which slows down the molecule, is proportional to the number of molecules in the
half sphere, and hence to the density of the gas. On the other hand, the pressure is
proportional to the number of molecules hitting the wall per unit time, hence also to
the gas’s density. In conclusion, the pressure very near the wall is lower than the
pressure in the bulk by a quantity that is proportional to the square of the gas’s
density, or, in an equivalent manner, inversely to the square of its volume. Notice
that whenever we measure the pressure, we introduce an instrument into the fluid, an
external body. The pressure we measure is the one close to the surface of the
instrument (even if we put it in the middle of the fluid). In conclusion, the measured
pressure p is the pressure near to an external surface, not the pressure in the bulk. We
take this effect into account, adding to p the term a/V2, where a is another constant

pþ a
V2 ¼

nRT
V � b

;

(a) (b)

Fig. 4.4 a A molecule in the
bulk of the fluids and its
action sphere; b a molecule
near a surface

4.3 Van der Waals Equation 133

http://dx.doi.org/10.1007/978-3-319-30686-5_5


which can also be written as

pþ a
V2

� �
V � bð Þ ¼ nRT : ð4:8Þ

This is the van der Waals equation. The constants a and b are different for different
fluids. They also depend on the mass of fluid, as we shall see at the end of the
section. The constants cannot be obtained from theory, but are rather free param-
eters to be determined in the manner best suited to reproduce the experimental data.

Notice that, if the gas is very rarefied, i.e., if its volume is large, the correction
terms we introduced become negligible and Eq. (4.8) goes back to the ideal gas
law. But Eq. (4.8) can also describe phenomena at the opposite limit, at high
density and high pressure levels. Let us study the shape of the isothermal curves in
the plane Vp. To this aim, we write Eq. (4.8) as

V3 � bþ nRT
b

� �
V2 þ a

p
V � ab

p
¼ 0: ð4:9Þ

On the isothermal curves, obviously, T is a constant, and we interpret Eq. (4.9)
as the relation giving V as a function of p. This is an algebraic equation of the third
degree in V. Such equations have three roots, which can be real and different, real
and coincident, or have one that is real and two that are complex. Only real roots
have a physical meaning. (To be precise, to have physical meaning, they must also
be positive; however, it can be shown in the present case that if a solution is real, it
is also positive, provided that p > 0). Consequently, the isothermal curves are cut
by the horizontal lines p = const at three points or just one. For the higher tem-
peratures (only one real root), the shapes of the curves are not very different from
the hyperbolae of the ideal gas. At lower temperatures (three real roots), the
isothermal curves become completely different. The curve corresponding to the
temperature at which the three roots coincide separates the two cases. It has an
inflection point with a horizontal tangent. These are the critical isothermal and the
critical point, respectively.

Figure 4.5 shows the van der Waals isothermal curves. Comparison with the
empiric examples of Fig. 4.3 shows that, in the region of the permanent gas, which
lays above the critical isothermal, in the region of the liquid, and in the region of the
super-heated gas, the van der Waals equation follows the experimental data rea-
sonably well (provided the constants a and b are properly chosen), but not perfectly,
as we shall see. In the region of the saturated vapor, under the coexistence curve,
the empirical isothermal curves have a horizontal segment, while the van der Waals
are S shaped.

Let us follow an isothermal process in detail, using the one represented in
Fig. 4.5b. We start from a low density (large volume). In segment AB, the substance
is over-heated vapor. As we have mentioned, the behavior of the van der Waals
curve approximately reproduces the real one. Below B, the van der Waals curve
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continues smoothly, while the experimental curve shows the horizontal segment
BF, corresponding to the condensation.

As a matter of fact, the first part of the segment BC is also experimentally
recheable. Indeed, provided that the vapor and its container are very clean, we can
take the gas pressure above the saturated vapor pressure (at the given temperature)
without condensation. As we shall see in Sect. 4.11, the condensation process needs
to be initiated by so-called condensation nuclei, which are, in fact, impurities in the
volume or roughness of the walls. However, the states represented by the segment
BC are not stable (they are said to be metastable); any small perturbation is suffi-
cient to take the system on the horizontal segment suddenly and irreversibly: the
two phases have formed.

On the other side of the coexistence curve, the segment GF represents the liquid.
We now start from a high pressure state on GF and gradually expand. If we proceed
smoothly enough, we are able to experimentally reach part of the segment FE,
provided the liquid and the walls are very clean. In fact, one can take the pressure
below the saturated vapor pressure for some time without the liquid beginning to
boil. As we shall see in Sect. 4.11, boiling is also triggered by the presence of nuclei
(powder, irregular points on the walls, ions, etc.). The segment FE corresponds to
the superheated liquid. The corresponding states are metastable. The smallest
perturbation causes the representative point to “jump” onto the horizontal segment:
suddenly, the liquid boils.

There are also isothermal curves in the part of the segment FE that can reach
negative pressures. In these states, the liquid is expanded. Some of these states can
be reached, for example, as follow. We put the liquid in a capillary tube, closed at
one extreme and open at the other. We fix the capillary horizontally at a vertical
axis passing through the closed extreme and put the system in rotation with a high
angular velocity. In the reference frame of the rotating capillary, the centrifugal
force (pseudo force in the non-inertial frame) pulls the free extreme of the liquid
column outside. Cohesion forces forbid the column from breaking (as long as the
centrifugal force is not too strong) and the pressure goes negative.

The segment EC, on the other hand, does not correspond to any physically
achievable state, not even in principle. This segment is indeed anomalous, in
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Fig. 4.5 a Isothermal curves of the van der Waals equation. b An isothermal below critical
temperature
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contradiction to Le Chãtelier’s principle, because pressure would increase when the
volume increases. Assume an equilibrium state to exist on this segment. Then, the
response of the system in reaction to a change in the volume would be to enhance,
rather than to decrease, the variation. Indeed, suppose that the volume of a small
portion diminishes momentarily under the effect of fluctuations, which are always
present (the molecules in the small volume have approached each other for a
moment at a little more than the average rate). The decrease in the volume implies a
reduction of the pressure, which, in turn, causes a further reduction of the volume,
and so on. The zone becomes smaller and smaller indefinitely. There is no equi-
librium, and the state is so completely unstable, they cannot exist.

When temperature increases, the three roots of the van der Waals equation
approach each other and become coincident at the critical temperature. All the states
represented by the van der Waals equation above the critical temperature are
reachable, although some do not exist below it. In this way, the van der Waals
equation interprets the necessity of the phase separation below the critical
temperature.

In conclusion, the van der Waals equation gives an approximate description of
the behavior of the real fluids. It does that, however, only in a first approximation.
Let us compare the van der Waals equation predictions with reality.

The two parameters a and b in the van der Waals equation must be determined
through the experimental data. The simplest way to do this is to start imposing on
the van der Waals critical isothermal at Tc so as to go through the experimentally
determined critical point (Vc, pc). In this way, we determine two unknowns of a
problem with three degrees of freedom. We (arbitrarily) take the gas constant R as
the third unknown without giving it a priori the value for the ideal gases.

The van der Waals critical isothermal curve is the solution with three real
coincident roots. We take the relations amongst them from a book of algebra and
have

Vc ¼ 3b; pc ¼ 1
27

a
b2

; Tc ¼ 8
27

a
bR

: ð4:10Þ

We now invert these expressions to have the constants a, b, and R as functions of
the critical variables and get

a ¼ 3pcV2
c ; b ¼ Vc

3
; R ¼ 8

3
pcVc

Tc
: ð4:11Þ

The first two equations give the constants a and b on the basis of the experi-
mental values of the molar critical pressure and volume. The third equation is,
contrastingly, a relation amongst the critical constants of any fluid that should
satisfy if the van der Waals equation is correct. Here, we find the first failure of the
theory: the values of R calculated with the third Eq. (4.11) are different for different
fluids and different from the gas constant (R = 8.3 J mol−1 K−1). For example, for
Nitrogen and Oxygen, one gets values around 6.5 J mole−1 K−1, for Helium and
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Hydrogen, values around 6.7 J mol−1 K−1, for Ammonia, 5.4 J mol−1 K−1, for
water, 4.1 J mol−1 K−1, and for Argon, 7.3 J mol−1 K−1.

Even having treated R as a free parameter, the result is only approximately
satisfactory. Figure 4.6 shows, as an example, three isothermal curves for Argon;
the true ones as continuous lines, the van der Waals ones (with the three parameters
determined as above) as dotted lines. As we can see, even outside the coexistence
curve, the theory fails by several percentage points.

Before concluding, we observe that the van der Waals constants a and b depend
not only on the fluid but also on its mass, say on the number of moles. The values
for a mole, which we indicate now with amol and bmol [as they are indicated in
Eq. (4.11)], depend only on the fluid. These are the values you usually find in the
tables of the manuals. The constant b is the total volume of the molecules, and
consequently is proportional to the number of moles. From the van der Waals
equation, one also sees that the constant a is proportional to the square of the
number of moles. Hence, in formulas, for n moles,

a ¼ n2amol b ¼ nbmol: ð4:12Þ

The units of the van der Waals constants for an arbitrary quantity of fluid and for
one mole are

a½ � ¼ Pa m6; amol½ � ¼ Pa m6 mol�2; b½ � ¼ m3; bmol½ � ¼ m3 mol�1: ð4:13Þ

4.4 Joule-Thomson Effect

In Sect. 2.12, we saw that the Joule free expansion of a gas takes place at a constant
temperature. As a consequence, the internal energy of an ideal gas does not depend
on the volume. As we have already noticed, however, the Joule experiment has a
low sensitivity, because the heat capacity of the gas is small compared to the heat
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capacity of its container. The conclusion can consequently be considered as valid
only in a first approximation. As already mentioned, Joule himself, along with W.
Thomson, designed and performed the far more sensitive experiment that we shall
now describe.

We start with a logically simplified scheme of the Joule-Thomson apparatus, as
shown in Fig. 4.7. It consists of two cylindrical sections, each closed by a piston
and separated by a porous wall. The function of the separator is to let the gas
through with a very small velocity, when there is a pressure difference between its
sides. Let us call these pressures p1 and p2. The walls and the pistons are thermal
insulators.

Initially, all the gas is in the left container, as in Fig. 4.7a. Its volume is V1. We
move piston 1 to the right to push the gas into the second container, constantly
keeping pressures p1 and p2 on the pistons. Finally, all the gas is in the second
compartment with the volume, say, V2 and the pressure p2, as in Fig. 4.7b.

In both compartments, the process was at a constant pressure. Consequently, the
work done by piston 1 to push the gas out has been p1V1; while the work done by
piston 2 is—p2V2. There has been no heat exchange, because the system is isolated.
Hence, the total work is equal to the variation of the internal energy U2–U1 of the
gas:

U2 � U1 ¼ p1V1 � p2V2; ð4:14Þ

which we can write as

U1 þ p1V1 ¼ U2 þ p2V2 ð4:15Þ

or

H1 ¼ H2 ð4:16Þ

where H = U + pV is the enthalpy. In conclusion, the enthalpy is conserved in the
Joule-Thomson experiment.

In practice, for better sensitivity, the operation is a bit different. The pistons are
not present. Rather, we force a continuous gas flow through the porous separator,
maintaining a constant pressure difference p1–p2 with a pump. We measure the
temperatures T1 and T2 of the gas on the two sides of the separator. If the gas were
ideal, the temperature would be equal. Indeed, the enthalpy of the ideal gas, like its

p1
p2

V2
p1

p2
V1

1 2 1 2

(a) (b)

Fig. 4.7 The Joule-Thomson experiment. a initial state, b final state
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internal energy, depends only on the temperature. The experiment shows that the
temperatures are different. The majority of the gases, around STP, cools down in the
expansion, namely T1 > T2. Air at room temperature, for example, cools 0.3 °C,
expanding from p1 = 2 atm to p2 = 1 atm, and 45 °C, expanding from 200 to
1 atm. Hydrogen and oxygen are exceptional; at room temperature, they heat up in
an adiabatic expansion.

To be precise, all the gases heat up in Joule-Thomson if the temperature is high
enough and cool down if it is low enough. A, pressure dependent, inversion tem-
perature exists, at which the temperature variation in the Joule-Thomson expansion
changes sign. For hydrogen, the inversion temperature at atmospheric pressure is
about 200 K, while for helium, it is about 40 K.

The Joule-Thomson effect shows that the enthalpy of the real gases, and con-
sequently their internal energy, does not depend on their temperature alone, but also
on their volume. This is a consequence of the attraction of the van der Waals forces
between molecules. When the volume increases, the mean distance between
molecules increases as well. The potential energy decreases in absolute value, and
the internal energy increases, being the potential negative energy.

The Joule-Thomson effect is used, in practice, to liquefy gases. The gas is
cooled, pushing it through a narrow orifice. The process is repeated until the point
when the condensation temperature is reached. Hydrogen and helium must be
preliminary cooled with a service gas below the inversion temperature.

4.5 Internal Energy and Entropy of Gases

The Joule-Thomson effect has shown us that the internal energy of a real gas
depends not only on temperature but also on volume. We shall now see how the
equation of state of a fluid contains the information on the dependence or not of its
internal energy on the volume. Our arguments will be general, valid for any
homogeneous thermodynamic system, the state of which is identified by pressure,
volume and temperature. We shall find a general expression for the internal energy
in terms of measurable quantities. We shall then apply that expression to the ideal
gas and to the van der Waals fluid.

Consider such a thermodynamic system of n moles. The three state variables are,
in all cases, linked by a state equation, which, for the moment, we do not specify.
The independent variables are two. We choose the temperature T and the volume
V. The internal energy is a function, U(T,V), of the two variables, which we gen-
erally do not know. Its total differential is

dU ¼ @U
@T

� �
V
dT þ @U

@V

� �
T
dV ð4:17Þ

where, as usual, the subscript near the derivative symbol specifies the variable that
is kept constant. We know that the derivative with respect to the temperature is
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@U
@T

� �
V
¼ nCV : ð4:18Þ

We shall now find that the other partial derivative, the derivative with respect to
the volume, is

@U
@V

� �
T
¼ �pþ T

@p
@T

� �
V
: ð4:19Þ

To show that, we start from entropy, which is also a function of state, of the two
variables V and T, S(V, T). Being a function of two variables, S has two mixed
second derivatives. One is obtained deriving with respect to V first and then with
respect to T, the other proceeding in the opposite order. Calculus shows that the two
derivatives are equal:

@2S
@V@T

¼ @2S
@T@V

: ð4:20Þ

We shall use this relation shortly. The total differential of S is

dS ¼ @S
@T

� �
V
dT þ @S

@V

� �
T
dV : ð4:21Þ

On the other hand dS ¼ dQ=T , and, for the first law, dQ ¼ dUþ pdV . Using
Eq. (4.17) for dU, we obtain

dS ¼ 1
T
@U
@T

dT þ 1
T

@U
@V

þ p

� �
dV ð4:22Þ

where we did not write the subscripts, because, in this section, we shall always use
the variables T and V. Comparing with Eq. (4.21), we have

@S
@T

¼ 1
T
@U
@T

;
@S
@V

¼ 1
T

@U
@V

þ p

� �
: ð4:23Þ

We now take the partial derivative with respect to V of the first equation and that
with respect to T of the second and make them equal. Considering that the mixed
partial derivatives of U are also equal and simplifying, we immediately get
Eq. (4.19).

We shall now use this for the two cases in which we have the equation of state in
analytical form, the ideal gas and the van der Waals fluid.

Ideal gas. The equation of state is
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p ¼ nRT
V

: ð4:24Þ

Equation (4.19) gives us

@U
@T

� �
V
¼ �pþ T

nR
V

¼ �T
nR
V

þ T
nR
V

¼ 0: ð4:25Þ

We have found what we already knew, that the internal energy of the ideal gas
does not depend on the volume. We have learnt that this fact is included in the
equation of state.

van der Waals fluid. The equation of state is

p ¼ nRT
V � b

� a
V2 : ð4:26Þ

We proceed as in the case of the ideal gas. We take the derivative of the pressure
with respect to the temperature (at constant V) and we substitute the result along
with p as given by Eq. (4.26). We find

@U
@V

� �
T
¼ a

V2 : ð4:27Þ

As we expected, the internal energy depends on the volume as well.
We want now to find the expression of the internal energy. We start by inte-

grating Eq. (4.27) on the volume

U ¼
Z

@U
@V

� �
T
dV ¼

Z
a
V2 dV ¼ � a

V
þC Tð Þ: ð4:28Þ

The quantity C(T) on the right hand side is the integration “constant”. Notice that
it is constant relative to V, but not necessarily relative to T. On the other hand,

@U
@T

� �
V
¼ nCV ¼ dC Tð Þ

dT
:

We cannot proceed further if we do not know how CV depends on the tem-
perature. Let us assume, as usual, that we can consider it to be constant (which is
true in limited temperature intervals). Under this hypothesis, we get

C Tð Þ ¼ nCVT þ const

where const is the integration constant. In conclusion, the internal energy of the van
der Waals fluid is
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U T ;Vð Þ ¼ nCVT � a=V þ const: ð4:29Þ

Let us discuss what we have found. The energy of a van der Waals fluid is the
sum of two terms. The first term is equal to the unique term of the ideal gas. As we
shall see in Chap. 5, in both cases, it is the kinetic energy of the molecules, which is
proportional to the absolute temperature. The second term is negative and inversely
proportional to the volume. It includes the potential energy of the interaction
between molecules, and is not present in the ideal gas, in which the interaction
between molecules is neglected.

Let us now find the expressions for the entropy. We already know it for the ideal
gas (Eq. 3.32). The entropy difference between state f and state i is

Sf � Si ¼ nCV ln
Tf
Ti

þ nR ln
Vf

Vi
: ð4:30Þ

For the van der Waals fluid, we proceed as we did for the ideal gas in Sect. 3.7.
For a reversible process from i to f, we have

Sf � Si ¼
Z f

i

dUþ dW
T

:

The total differential of the internal energy is

dU ¼ @U
@T

� �
V
dT þ @U

@V

� �
T
dV ¼ nCVdT þ a

V2 dV :

The elementary work for the equation of state Eq. (4.26) is

dW ¼ pdV ¼ nRT
V � b

� a
V2

� �
dV

We substitute and simplify, obtaining

dS ¼ dUþ dW
T

¼ nCV
dT
T

þ nR
dV

V � b
:

Integrating this expression, we get

Sf � Si ¼ nCV ln
Tf
Ti

þ nR ln
Vf � b
Vi � b

: ð4:31Þ

The expression is very similar to that of the ideal gas. The only difference is that
the volumes diminished by the covolume appear in place of the volumes. This takes
into account the fact that the volume occupied by the molecules is not available.
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Notice that the term a/V2, which takes into account the interaction between
molecules in the van der Waals equation, does not have any effect. The entropy
does not change when one introduces the intermolecular force. The microscopic
interpretation that we shall discuss in Sect. 5.11 will explain this effect too.

4.6 Clapeyron Equation

In Sect. 4.2, we saw that the vapor-liquid phase transition of a substance at a given
pressure takes place at a certain temperature. In a closed container, maintained at
constant temperature, with no other gas present, the vapor above the free surface of
the liquid naturally reaches the pressure at which the two phases are in equilibrium:
the saturated vapor pressure at that temperature. The same is true for the other
transitions between aggregation phases; they are in equilibrium at a given tem-
perature only at a certain pressure. In an equivalent manner, we can say that the
aggregation phase transitions take place at a constant, well-defined temperature,
once the pressure has been fixed. As we have seen in the case of vaporization,
throughout the aggregation phase transition, a certain quantity of heat is absorbed
by, or delivered to, the substance. These quantities are called latent heats of va-
porization, fusion and sublimation, for the liquid-vapor, the solid-liquid and
solid-vapor phase transitions. The latent heats are specific if referred to a kilogram,
molar if referred to a mole. Notice that by solid phase, we mean the crystalline
phase. Amorphous solids like wax, black tar, glass, etc., are not really solids, but
liquids with extremely high viscosity. These materials become softer and softer
with increasing temperature. There is no latent heat in these cases.

For completeness, we mention that additional phases exist along with the
aggregation phases. Some substances can crystallize in different forms, which are
called allotropic phases. Allotropy is a rather common phenomenon. For example,
carbon has four allotropes: the diamond (in which the lattice is tetrahedral), the
graphite (in which the carbon atoms are arranged in sheets of hexagonal cells), the
grapheme (a single graphite sheet) and fullerene (in which the atoms are in a closed
surface at the vertices of 20 hexagons and 12 pentagons, as in a soccer ball).
Another example is ice, of which nine allotropic phases are known. Latent heats
also exist for the transitions between two allotropic phases.

The phase transitions usually take place at constant pressure. Consequently, the
heat corresponding to the transition between phases 1 and 2, Q12, is equal to the
enthalpy difference between the two states. For this reason, the latent heats are also
called latent enthalpies. Indeed, we have Q12 ¼ U 2ð Þ � U 1ð Þþ p V 2ð Þ � V 1ð Þ½ � ¼
U 2ð Þþ pV 2ð Þ � U 1ð Þþ pV 1ð Þ½ �, which is also

Q12 ¼ H 2ð Þ � H 1ð Þ: ð4:32Þ

The enthalpy being a function of state, the heat exchange in the opposite phase
transition is equal and opposite, namely
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Q21 ¼ H 1ð Þ � H 2ð Þ ¼ �Q12: ð4:33Þ

We shall now find a relation between the derivative of the equilibrium pressure
with respect to temperature, the latent heat and the change of volume in the cor-
responding transition. The equation holds for any transition between any pair of
aggregation phases. It was found in 1834 by Benoît Paul Émile Clapeyron (France,
1799–1864) and is called the Clapeyron equation. It was later rediscovered by R.
Clausius in 1857, and is sometimes called the Clapeyron-Clausius equation.

To be concrete, we consider the liquid to vapor transition. Figure 4.8 shows two
isothermal curves, one at T and one at the infinitesimally higher temperature
T + dT.

We consider a unit mass, 1 kg, of the substance. Its volume is the specific
volume. In the initial state, it is liquid (point A in the figure) at the saturated vapor
pressure, in thermal contact with a bath at temperature T. We deliver heat, and the
fluid starts to evaporate, at constant pressure. The system has two phases, liquid and
vapor, in equilibrium. The representative point in the diagram moves along the line
AB. When it is in B, the absorbed heat is Q12.

Once the system is in B, we move it into contact with a bath at the temperature
T + dT. The state is point C in the figure. We now subtract heat, moving the point
to D. This is, again, an isobaric transition at the saturated vapor pressure p + dp
corresponding to T + dT. We close the cycle by taking the system back to T. We
performed all the processes reversibly.

The process can be considered a Carnot cycle. Indeed, it is composed of two
isothermals (AB and CD) and the two other processes (BC and DA). Rigorously
speaking, the latter are not necessarily adiabatic. However, the corresponding
exchanged heats are infinitesimal, the temperature difference being infinitesimal,
and can be neglected in comparison with the finite heats exchanged in the
isothermal transformations. The efficiency is consequently dT/T.

The work is given by the area of the cycle, which is (V2–V1)dp, higher order
infinitesimals apart, where V1 is the volume of the liquid and V2 the volume of the
vapor. This work is equal to the absorbed heat Q12 times the efficiency. We have

T

T+dT

p

V

p+dp

p

V1 V2

Q12

CD

BA

Fig. 4.8 Two isothermal
curves in the liquid-vapor
transition at infinitesimally
small temperature difference
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V2 � V1ð Þdp ¼ Q12
dT
T

;

from which we obtain

dp
dT

¼ Q12

T V2 � V1ð Þ : ð4:34Þ

This is the Clapeyron equation.
We observe that the volumes of the phases and the latent heat are functions of

the temperature. Consequently, Eq. (4.34) is generally not sufficient to know the
function p(T). However, it contains a lot of information. Let us see.

First, we observe that the slope of the equilibrium curve p(T) is inversely pro-
portional to the difference of the volumes of the phases. Consequently, it is small
for the vaporization (because the volume of the vapor is much larger than that of the
liquid) and very large for the fusion (because the volumes of liquid and solid do not
differ much).

Consider the important example of water. At T = 273 K (0 °C), the specific vol-
umes of the solid (ice) and liquid are Vsol = 1.09 � 10−3 m3/kg and
Vliq = 1.0 � 10−3 m3/kg, very close indeed. The specific fusion heat of ice at 273 K is
Qf = 335 kJ/kg. The slope of the equilibrium curve given by the Clapeyron equation
is, then, dp=dT ¼ �1:4� 107 Pa K�1 � �140 atm K�1. This value agrees very
well with the experimental one. The curve is extremely steep. For example, to
change the ice fusion temperature by one degree only, we must change the pressure
of 140 atmospheres. Notice the minus sign. It means that the equilibrium pressure
diminishes with increasing temperature. This behavior is exceptional and charac-
teristic of water (and a few other substances), corresponding to the fact that water
expands when cooling (Vliq − Vsol < 0) between 0 and 4 °C (see Fig. 2.21b).

This property is the cause of the regelation phenomenon, in which ice melts
under pressure and freezes again when the pressure is reduced. Regelation helps the
glaciers to flow under the effect of their weight. Consider, for example, a narrow in
the valley of the glacier. The pressure in the ice near the bottom in contact with the
rocks of the narrow is particularly high due to the weight of the upstream part of the
glacier. The fusion temperature is consequently lower than the ice temperature,
which might be around −10 °C, and some ice melts. The resulting water flows
beyond the narrow, where the pressure is lower, and refreezes. The glacier can flow
in its bed, overtaking curves and narrows somewhat, as if it were plastic.

We can make a qualitative demonstration looping a thin metal wire over an ice
block and attaching two heavy metallic weights to its ends. The weights have two
functions. They give a tension to the wire, which exerts a constant pressure on the
ice, and they act as heat reservoirs providing the melting heat, through the con-
ductive wire. Under pressure, the ice under the wire melts; the wire descends a bit
through the resulting water, which refreezes behind the wire, and so on. The result,
after several minutes, is that the wire has passed through the ice, leaving the ice
block apparently intact.
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At T = 373 K (100 °C), the volume of the water vapor is about 1600 times the
liquid volume and, for a kilo, is Vvap = 1.7 m3/kg. The condensation heat at 373 K
is Qcon = 2250 kJ/kg. The Clapeyron equation gives the slope of the equilibrium
pressure as dp=dT ¼ 3:5� 103 Pa K�1 � 3:5� 10�2 atm K�1, in good agreement
with the experimental value. To change, for example, the equilibrium temperature
by one degree, it is enough to change the pressure by 3.5 hundredths of atmosphere.

Table 4.2 reports the fusion temperatures, in °C, of the molar and specific fusion
heats for several substances.

4.7 Vaporization

The Clapeyron equation for vaporization of one mole of fluid is

dp
dT

¼ Qvap

T Vg � Vl
� � ð4:35Þ

Table 4.2 Fusion
temperature and specific and
molar latent heats

Substance Fusion temp. (°C) Qfm (kJ mol−1) Qf (kJ kg
−1)

Aluminum 658.5 10.68 395.6

Argon –190.2 1.21 30.4

Calcium 851 9.34 233.2

Cesium 28.3 2.09 15.5

Cobalt 1490 15.24 260

CO2 –57.6 7.95 180.9

Copper 1083 13.02 205.1

Hydrogen –259.25 0.12 57.8

Iodine 112.9 15.28 59.9

Iron 1530 14.9 266.7

Lead 327.3 5.12 24.7

Mercury –39 2.33 11.3

Nitrogen –210 0.72 25.7

NaCl 800 30.23 517.1

NaFl 992 29.31 697.9

Oxygen –218.8 0.45 13.8

Potassium 63.4 2.4 61.1

Silicon 1427 39.65 1410.9

Silver 961 11.3 104.7

Tin 231.7 7.2 60.3

Tungsten 3387 35.25 191.8

Water 0 6.01 335.0
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where Qvap is the molar vaporization heat and Vg and Vl are the molar volumes of
the gas and liquid phases, respectively. The three quantities are functions of the
temperature. For the liquid-gas transformation, it is possible to find an approximate
expression of the saturated vapor pressure function p(T).

We have already noted that the volume of the liquid is usually much smaller (a
few per mille) than the volume of the gas. Consequently, we neglect Vl in the above
equation. At temperatures substantially lower than the critical temperature, the
saturated vapor pressure is rather low and the vapor behaves, in first approximation,
as an ideal gas. In this approximation, we can write Vg ¼ RT=p. Equation (4.35)
becomes

dp
dT

¼ pQvap

RT2 : ð4:36Þ

The next approximation is to consider the vaporization heat independent of
temperature. To have an idea of its variations, consider that, for example, the
vaporization heat of water varies by about 10 % between 0 and 100 °C. In these
approximations, we can separate the variables and write

dp
p

¼ Qvap

R
dT
T2 ; ð4:37Þ

which is immediately integrated into ln p ¼ � Qvap

RT þ const and, taking the
exponentials,

p ¼ C exp �Qvap

RT

� �
ð4:38Þ

where C is now the integration constant. Notice that T is in the denominator of the
negative exponent. The saturated vapor pressure increases very rapidly in tem-
perature (and exponentially decreases with the inverse of the temperature). We shall
learn the physical reason for that in Chap. 5.

Here, we observe that the molecules in a liquid are subject to the van der Waals
forces, which are practically irrelevant in the vapor. This means that, in the
vaporization process, work must be done against these forces to bring each mole-
cule from the liquid to the vapor. This work is equal to the potential difference of
the molecule in the vapor and in the liquid, which is the molar vaporization heat
divided by the Avogadro number Qvap/NA. Then, by measuring Qvap, we can
evaluate the depth of the minimum of the van der Waals potential. One obtains
values ranging, for the different gases, from a few tenths of an electronvolt to a few
electronvolt. These are the values we mentioned in Sect. 4.1.

Table 4.3 gives the vaporization temperatures and specific heats for several
substances.
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4.8 Pressure-Temperature Dyagrams

The Clapeyron equation Eq. (4.34) expresses the derivative of the equilibrium
pressure p(T) between any two phases. We shall now discuss more of its properties
in the plane p,T, as in Fig. 4.9.

Consider Fig. 4.9 a. The three branches of the diagram, 1, 2 and 3 in the figure,
represent the function p(T) for the equilibrium pressure between the three pairs of
phases. We repeat that the substance under study must be in a closed container, with
no other foreign substance, air, in particular, being present. Otherwise, the vapor
pressure is the partial pressure of the mixture, while the liquid, or the solid, are at
the total pressure, which is the sum of the vapor and extraneous gas pressures. Let
us consider the state A in Fig. 4.9b, where, according to the diagram, the substance
is completely liquid. In practice, the piston, with which we exert the pressure (pA),
must be in direct contact with the liquid. Indeed, assume that some air is present
between the free surface of the liquid and the piston, which still exerts the (total)
pressure pA. Under these conditions, part of the liquid vaporizes. The equilibrium
between the two phases is reached when the (partial) pressure of the vapor is the
saturated vapor pressure at the existing temperature TA (psv) in the figure. The two
phases are in equilibrium at a total pressure different from the saturated vapor
pressure.

Table 4.3 Vaporization
temperatures Tv and heats
Qev of several substances

Substance Tv (°C) Qev (kJ kg
−1)

Water 100 2250

CO2 –60 365

Ammonia –33.4 1369

Ethyl alcohol 78.3 854

Benzene 80.2 395

Oxygen –182.9 213

Nitrogen –195.6 199

Hydrogen –252.8 452

Helium –268.6 25
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Fig. 4.9 The coexistence curves between the aggregation phase couples
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Consider now branch 1 in Fig. 4.9a, which is the curve of the saturated vapor
pressure as a function of temperature. We have found the approximate expression of
this function of Eq. (4.38). When the temperature increases, the saturated vapor
pressure, and consequently the density, grows very rapidly. The vapor density
becomes closer and closer to the liquid density. When the state reaches the critical
point, the vapor has the same density as the liquid and the two phases are indis-
tinguishable. In other words, the liquid-vapor equilibrium curve ends in the critical
point (K in the figure).

Consider two states at the same temperature, A in the liquid phase, B in the vapor
phase. Figure 4.10a shows the situation in the p,T plane, Fig. 4.10b in the V,
p plane. We can pass from A to B, compressing the fluid at constant temperature, as
shown by the continuous line in Fig. 4.10a. During the process, the two phases
separate, becoming different from one another. However, we can go from A to B in
another way too, which is the dotted curve in Fig. 4.10a and b. We start by
compressing the gas, increasing its temperature, in a way that does not liquefy it.
Once we are above the critical temperature, we continue the compression, but now
decreasing the temperature. In this way, as shown in the figures, we go around the
critical point. In this process, there is no sharp change of phase; the substance
always remains homogeneous and it is impossible to determine where the vapor
became liquid.

An important difference between the solids (crystals) and the liquids is the
anisotropy of the crystals. In a solid, as opposed to a liquid, privileged directions
exist. Consequently, the transition between liquid and solid cannot in any way take
place continuously as is the case between vapor and liquid. As a consequence, no
critical point exists on the solid-liquid coexistence curve. The curve continues
indefinitely, as indicated with an arrow on branch 2. Also notice that, as already
discussed in Sect. 4.7, the liquid-solid coexistence curve (branch 2) is much steeper
than the liquid-vapor curve (branch 1).

T

p

liquid

vapor

K

Pt
A

B

V

K

A
B

p

solid

(a) (b)

Fig. 4.10 Two processes for the condensation from state A to state B. a on the p, T plane, b on the
p, V plane
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In Fig. 4.10, the liquid-solid coexistence curve is represented in the most
common situation of bodies that expand when melting. As we noticed in Sect. 4.6,
the opposite is true in a few cases, such as water, for which the density of the solid
is smaller than the density of the liquid. The slope of the coexistence curve is
opposite, as in Fig. 4.11.

The equilibrium state between the three phases must lay contemporarily on all
the coexistence curves. The three curves intersect at a point, which is the triple
point, Pt in the figures. The equilibrium of the three phases exists only at
well-defined values of the three variables: temperature, pressure and, for a given
mass, volume.

Consider the example of water. The equilibrium between ice, water and water
vapor is only at a pressure of about a 600 Pa (about 6 thousandths of an atmo-
sphere) and the temperature of +0.01 °C. The temperature of the triple points being
completely determined, in particular, independent of pressure, they are extremely
useful as standards of the temperature scale. As we have seen, the temperature unit,
the kelvin, is defined by fixing the water triple point temperature at 273.16 K.

Consider now the solid-vapor coexistence curve, branch 3 of the diagrams. At
temperatures lower than the triple point temperature (or a little less than that for
water), the liquid phase does not exist. Heating (giving heat to) the solid, it passes
directly into the vapor phase, and vice versa when taking out heat. The former
process is called sublimation, the latter deposition.

For example, the triple point of carbon dioxide is at the pressure of 510 kPa
(about 5.1 atm) and at the temperature of—56.6 °C. Under normal conditions, the
solid CO2 does not melt, it sublimates. For this reason, it is called dry ice. Similarly,
snow and ice in the glaciers and elsewhere sublimate when the atmospheric tem-
perature is below 0 °C. An example of deposition is the formation of snow in the
clouds and frost on the ground.

For the same reasons discussed for the liquid-solid, continuous transition
between vapor and solid phases is impossible. The solid-vapor coexistence curve
does not have an end point.
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Fig. 4.11 The coexistence
curves for water
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4.9 Surface Tension

Up to now, we have studied three-dimensional thermodynamic systems. The rel-
evant geometrical quantity was the volume. The free surfaces of the bodies are the
sites of another class of phenomena, the surface phenomena, which we shall study
in this section and the following two.

Consider, for example, water in a glass, filled close but not all the way to the rim.
Its volume is limited by an upper surface in contact with the air, which is almost a
horizontal plane, but not completely so, as we shall soon see, and by the lateral and
bottom surfaces that are in contact with the glass. The water-glass and the water-air
contact surfaces intersect along a line, which is a circle in this case. Similarly, the
air volume in the glass above the water is limited by the same water-air contact
surface and by a glass-air contact surface. The three contact surfaces meet in the
intersection circle.

In the surface phenomena, only the molecules near enough to the surfaces
intervene. Surface phenomena are important in two different, and correlated, cases
that we shall now discuss: when a liquid is in a capillary tube (a tube of millimetre
scale diameter) and for a drop on a solid surface.

The conditions of a molecule at a distance from the surface smaller than the
molecular action radius are different from those in the bulk. The latter are sur-
rounded by equal molecules in all directions, the former only on one side. Suppose
now that we want to bring a molecule located in the bulk of the volume to the
surface. We shall need to perform a positive work against the resultant of the van
der Waals forces, which is directed inside. This work is equal to the difference
between the energy of the molecule on the surface and in the bulk of the fluid.

We have already discussed this issue in Sect. 4.3; let us repeat the argument
more precisely, also taking into account the molecules of the medium that limits the
fluid (for example, the walls of the container or the air). Figure 4.12 shows the
molecular action sphere of a molecule on the surface; half of the sphere contains
molecules from the fluid, half molecules from the external medium, which are

Fig. 4.12 Cartoon showing
the van der Waals forces
exerted by the molecules of
two media in contact on a
surface molecule and their
resultants
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generally different and have different density. The force on the molecule is the
resultant of the forces of the two types of molecules. To take a molecule to the
surface, we must work against this resultant. Consequently, the surface energy of a
molecule depends on both media.

The number of molecules on a surface, or better yet, in a thin layer one
molecular action radius thick, of area A is proportional to A. And so, obviously, is
their energy, which is called surface energy and which we indicate with Usur,
writing

Usur ¼ sA: ð4:39Þ

The proportionality constant τ is the surface energy per unit area and is called
surface tension. It depends, as we mentioned, on both media in contact and is a
function, in general decreasing, of temperature.

The presence of the surface energy is evident in the drops. A small quantity of
liquid spontaneously takes a spherical shape, because this is the shape that mini-
mizes the surface area for a given volume (of liquid). As a matter of fact, drops are
perfectly spherical only in absence of other forces, in particular, of weight. As an
illustration, this is what happens in a spacecraft. The shape of a drop of mercury, for
example, lying on a plane is somewhat flattened. This is now the condition of
minimal total energy, which is the sum of the surface and volume (weight) energies.
We shall come back to this phenomenon later on. Here, we observe that it follows
from the above considerations that the surface energy cannot be negative. If that
were the case, two media in contact could not exist separately; the separation
surface would tend to increase indefinitely and the two media would mix
completely.

We now consider a simple experiment showing the action of the surface tension.
Figure 4.13 represents a small metal frame with three fixed sides; one of the short
sides is free to slide. We momentarily block the mobile side and dip the frame in
soapy water. If we take it out smoothly we are able to have a film inside the frame
like those of the soap bubbles. We can evaluate the order of magnitude of the
thickness of the film, which is clearly very thin, with a simple argument. The

A
s

0 1 2 3 4 5

Fig. 4.13 Measuring the force on a side of a soapy water film
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beautiful colors of the soap bubbles are due to the interference of light reflected at
the forward and backward surfaces of the film. The phenomenon will be explained in
the 4th volume of the course. It happens when the thickness of the film is on the
order of half a wavelength, which is a few hundredths nanometers. In conclusion, the
film thickness is two orders of magnitude larger than the molecular action radius.

If we now unblock the mobile side, we notice the presence of a force exerted by
the film, which tends to reduce its area as much as possible. We can measure this
force by inserting a spring between the mobile and a fixed side, as in the figure, and
measuring its stretch. We find that the force is proportional to the length s of the
side:

F ¼ 2s0s: ð4:40Þ

We have introduced the factor two, because the soapy water film has two free
surfaces, one on each side. Consequently, the proportionality constant s0 is the force
per unit length tangent to the film.

Let us now move the mobile side by an infinitesimal distance dx, increasing the
total free surface by dA = 2sdx. The work to be done against the force F is equal to
the increase in the surface energy due to this increase of surface. Notice that the
surface increases but the volume of the liquid remains constant; an increasing
number of molecules pass from the interior to the surface of the film. In formulae,
we have Fdx ¼ 2s0sdx ¼ 2sdA ¼ 2ssdx. Hence, it is just s0 ¼ s.

We see that the surface tension has two physical meanings; it is the surface
energy per unit area and the tension force on the surface per unit length. This force
is present at all the surface points, not only on the borders. It is the two-dimensional
analogue of the pressure in a fluid, which is present at all its points, not only on the
surface. On the borders, the surface tension force is directed perpendicularly toward
the interior (this is equivalent to saying that τ > 0).

We can see that we have a very simple experiment. We spread a film of soapy
water on a metallic frame. We lay on it a sewing thread the ends of which we had
joined together to make a loop (see Fig. 4.14a). The thread forms an irregular shape.
We now break the film with a pin inside the loop. The thread immediately becomes a

(a) (b)Fig. 4.14 A soapy water film
a with a wire loop, b after
breaking the film in the loop
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circle (see Fig. 4.14b). Indeed, all its elements are pulled by the surface tension.
Before the film was broken, they were pulled by equal and opposite forces on both
sides.

The physical dimensions of the surface tension, on the basis of its two meanings,
are of an energy divided by an area or of a force divided by a length,
s½ � ¼ J m�2 ¼ N m�1.
As we mentioned, the surface tension depends on the two media in contact.

However, we also speak of surface tension of one liquid, meaning of the liquid and
its vapor. The surface tension of a liquid decreases with increasing temperature,
reaching zero at the critical point. Here, we know, there is no difference between
liquid and vapor and no separation surface can exist.

To get an idea of the orders of magnitude, at 20 °C, the surface tension of water
is 73 mN/m, of mercury, 480 mN/m. Table 4.4 gives the values of the surface
tension for several combinations of media and, for the water-air pair, at a number of
temperatures.

Table 4.4 Surface tension τ
for several combinations of
media

Media T (°C) τ (mN/m)

Water-air 0 75.6

10 74.22

20 72.75

30 71.18

40 69.56

50 67.91

60 66.18

70 64.4

80 62.6

100 58.9

Benzene-Mercury 20 357

Benzene-Water 20 35

Water-Ethyl ether 20 10,7

Water-Mercury 20 375

Argon liquid-vapor –188 13.2

Hydrogen liquid-vapor –255 2.31

Nitrogen liquid-vapor –183 6.6

Oxygen liquid-vapor –183 13.2

Ethyl alcohol liquid-vapor 20 17.01

Benzene-Air 20 28.88

Ethyl alcohol-Air 20 17

Ethyl ether-Air 20 17
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4.10 Capillary Phenomena

Consider a liquid in a container; let us stick with water in a glass. We are dealing
with three media, the solid of which the container is made (medium S), the liquid
(medium L) and the gas or vapor above the liquid (medium G) (glass, water and air
in the example), and with three surfaces separating the three combinations of media.
We shall call them SSL, SSG and SLG. We observe that the free surface of the liquid is
not flat 1 mm or so near its border (where the water touches the glass) but slightly
deformed. The water rim is higher than the free surface. The rim is called the
meniscus, specifically the concave meniscus, because it rises. It is shown magnified
in Fig. 4.15a. For mercury in glass, the rim is turned downward, and is called the
convex meniscus (Fig. 4.15b. Water in a Teflon container behaves in the same way
as mercury in glass; its meniscus is convex.

The border of the liquid is the curve where the three separation surfaces SSL, SSG
and SLG meet. It cuts the plane of the figures at point O. The border of the liquid is
also the border of each separation surface. Consequently, along each segment of the
border, the forces resulting from the three surface tensions are present. They are all
perpendicular to the segment, each on the plane of the corresponding surface
toward the inside. The magnitudes of the three forces per unit length are the surface
tensions relative to the two media in contact (τSL, τSG, τLG). This situation is shown
in Fig. 4.15. The shapes of the solid-liquid and solid-gas surfaces SSL and SSG are a
priori defined because medium 1 is solid, while the shape of the liquid-gas interface
SLG is not because both media are deformable. This surface adjusts itself at the
angle with the solid wall θ at which the equilibrium of the forces is reached. This is
called the contact angle.

At equilibrium, the component of the resultant of the three tension forces tangent
to the solid surface must be zero. Otherwise, the border would move up or down.
Notice that the normal component can be and is different from zero, being equi-
librated by the adhesion forces.
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In formulae, we have sSG ¼ sSL þ sLG cos h, or

cos h ¼ sSG � sSL
sLG

: ð4:41Þ

This is the Young equation, after Thomas Young (UK, 1773–1829), who
established it in 1804. One sees how the contact angle depends on all three pairs of
media. Somewhat surprising, it also depends on τSG, the solid-gas (glass-air in the
example) surface tension. To understand the reason for this, let us find the Young
equation in a different way, using the virtual works principle.

Consider each separation surface in turn. Let us start with the liquid-solid
interface (SSL). The work needed to take a molecule from inside the liquid to the
contact surface with the solid depends on the nature of both media, namely on the
van der Waals forces of the molecules of both of them. The surface energy per unit
area of SSL, which is the surface tension τSL, consequently depends on both as well.
Similarly, the work needed to take a molecule from inside the gas to the contact
surface with the solid, namely to build SSG, depends on the gas and the solid. And
so it is for τSG. The liquid-gas interface SLG is a bit more complicated. In this case,
to build a piece of surface, we must take molecules from inside the liquid to the
surface as well as gas molecules from inside the gas to the surface, because both
must increase. The surface energy per unit area τLG includes both works. Note that a
similar problem did not exist in the other two interfaces because the solid molecules
did not move.

We now use the virtual works principle to establish the equilibrium conditions of
the meniscus. Let z be a coordinate vertically directed upward through point O in
the figure. Consider a segment of the border of length Δl near O and its virtual
displacement dz. The corresponding variations of the three surfaces are
dSSL ¼ Dldz, dSSG ¼ �Dldz and dSLG ¼ Dldzcosh. Notice that, in particular, the
area of the contact surface of the gas with the solid wall varies too; hence, the
energy of the SSG surface varies. This explains why the equilibrium conditions must
include τSG. The necessary condition for equilibrium is that the total virtual work be
zero, namely sSLDldz� sSGDldzþ sLGcoshDldz ¼ 0. This immediately gives
Eq. (4.41).

We now discuss the principal consequences of the Young equation for the cases
of the menisci (Fig. 4.15) and of a liquid drop on a solid surface (Fig. 4.16). We
call the ability of the liquid to maintain contact with the solid surface wetting. If the
solid-gas surface energy is larger than that of the solid-liquid, τSG > τSL, then
cos θ > 0 and the angle θ is acute. We talk of high wettability. The meniscus is
concave, as in Fig. 4.15a. A drop of liquid on a solid surface has a shape as shown
in Fig. 4.16a. The extreme case, cos θ = 1, is called complete wetting. In
Fig. 4.16b, the wetting is almost complete.

If the solid-gas surface energy is smaller than the solid-liquid surface energy,
τSG < τSL, then cosθ < 0, and the angle θ is obtuse. We talk of low wettability. The
meniscus is convex, as in Fig. 4.15b; the form of the drop is as shown in Fig. 4.16c.
For example, the mercury-glass contact angle in the air is θ * 150°. The extreme
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case, cos θ = –1, is called perfect non-wetting. Particularly important is the case in
which the gas is air and the liquid is water. Solid surfaces are called hydrophobic
(from the Greek words for “fearing water”) if the contact angle with water in air is
θ > 90°, and hydrophilic (from the Greek for “loving water”) if θ < 90°.

We notice that the Young equation assumes a perfectly flat and rigid solid
surface. In practice, the surface tensions, and consequently the contact angle,
strongly depend on the structure of the surface at microscopic and nanoscopic
levels. For example, the water-glass contact angle in the air depends on the treat-
ment of the glass surface and on the purity of the water. Untreated glass is
hydrophilic for pure water, the contact angle being in the range θ = 25°–30°. As
another example, Teflon is hydrophobic, the contact angle with water in the air
being θ * 110°. The study of these properties is an important chapter in con-
temporary research. Microscopic and nanoscopic architectures are used by nature
on the surfaces of vegetables and animals and, once understood, can be used by
man to produce new products. One example is the use of a nano-structure to
minimize the droplet’s adhesion to the surface (superhydrofobicity) by the lotus
flower (Nelumbo nucifera and N. lutea) for self-cleaning. Water droplets do not
remain on these surfaces stably. They spontaneously roll off with only a slight
tremble, picking up and removing any dust particles they may touch. Water striders
are insects using superhydrofobicity to walk on water. Figure 4.17 shows a gerridae
(Aquarius paludum), on a pond surface. The insect has four long legs used to walk
and two short ones to catch prey. The surfaces of the long legs are covered with

(a) (b)
(c)

Fig. 4.16 A drop on a solid surface in air with wettability a high; b almost perfect; c low

Fig. 4.17 Aquarius paludum.
Photo of Andrej Gogala, by
kind permission
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specialized tiny hairs, spaced by a several micrometres, resulting in a hydrophobic
surface.

As we saw in Sect. 1.4, a consequence of the Stevin law is that the free surfaces
of a homogeneous liquid in communicating vessels in equilibrium have equal
heights. This is not true if one of the containers is a capillary, namely if its section is
small, on the order of one millimeter. Consider two communicating vessels, one
capillary and one not. If we fill them with a wetting liquid, the level of the free
surface in the capillary is higher than the level in the wide vessel. Contrastingly, if
the liquid does not wet, the level of the free surface in the capillary is lower. This
phenomenon, called capillary ascension, is shown in Fig. 4.18. It is found that the
level difference h is larger the smaller the diameter of the capillary. Let us try to
understand these phenomena.

Let us start by considering a spherical water drop of radius r in air. The surface
tension tends to reduce the free surface as much as possible (to minimize the surface
energy) and consequently the volume. The pressure inside the drop becomes higher
than the pressure of the air outside. Let us call pdif the overpressure, namely the
difference between the internal and external pressures. To calculate this quantity, we
observe that the work done by the surface forces to decrease the free surface by a
generic dS is τLG dS, where the water-air surface tension is. The same work can be
expressed as the work to reduce the volume by dV, namely pdif dV. In formulae, we
have

sLGdS ¼ pdifdV : ð4:41Þ

The surface of the spherical drop of radius r is S = 4πr2, and its volume is
V = 4π r3/3. Differentiating and using Eq. (4.41), we obtain

pdif ¼ 2sLG=r; ð4:42Þ

which is called the capillary pressure. We can also say that Eq. (4.42) gives the
overpressure under a surface of radius r relative to the pressure under a flat surface
(r = ∞). The argument is still valid for a bubble of gas in liquid; the pressure is
larger in the bubble than in the liquid. In general, there is an over-pressure under
any concave surface. Contrastingly, there is an under-pressure under a convex

hh

(a) (b)

Fig. 4.18 Capillary ascensions. a Concave meniscus, b convex meniscus
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surface. Equation (4.42) is valid, in absolute value, in both cases. Note that pdif is
inversely proportional to the curvature radius. As we have already noticed, when
r → ∞, when the surface becomes flat, the pressure difference goes to zero. The
equilibrium pressures on the two sides of a flat separation surface are equal. The
tendency of the surface tension to reduce the surface exists in this case as well, but
the forces are parallel to the surface, with no component towards the interior.

To get an idea of the orders of magnitude, consider an air bubble in pure water at
25 °C. The surface tension is τ LG = 72 mN/m (see Table 4.2). The overpressure in
a bubble of 2r = 1 mm diameter is negligible (288 Pa), but it is already 96 kPa
(i.e., almost one atmosphere) for a diameter 2r = 3 µm and 960 kPa (almost 10
armpsphere) 2r = 0.3 µm.

Let us come back to the capillary ascensions. Observations show that, when the
radius a of the capillary is small enough, the free surface of the liquid is a spherical
cap (“meniscus” comes from the Greek for crescent). The geometrical relation
between the radius of the cap and a is immediately found looking at Fig. 4.19 (for a
concave meniscus), namely

a ¼ r cos h: ð4:43Þ

From Eq. (4.42), we then have

pdif ¼ 2sLG cos h
a

: ð4:44Þ

The pressure in the liquid in the capillary beyond a concave separation surface
from the air is smaller than the air pressure by pdif in Eq. (4.44). The atmospheric
pressure, on the other hand, is the same in the capillary and in the wider vessel.
Consequently, the liquid in the capillary must rise to a height h such that the weight
of the liquid column equilibrates the pressure difference, i.e., ρgh = pdif, where ρ is
the liquid density (Fig. 4.18a. Equation (4.44) gives

h ¼ 2sLG cos h
qga

: ð4:45Þ

r
θ

a

θ

Fig. 4.19 Geometry of a
concave meniscus in a
capillary
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If the meniscus is convex, the internal pressure in the liquid is larger than the
atmospheric pressure, and the height of the meniscus in the capillary is lower than
that in the wider vessel (Fig. 4.18b).

Notice that Eq. (4.44) also correctly foresees the ascension h to be inversely
proportional to the capillary diameter.

Resolving Eq. (4.45) for τLG, we have

sLG ¼ hqga
2 cos h

; ð4:46Þ

which can be used for a simple determination of the surface tension, by measuring
the capillary ascension h and the contact angle θ and knowing the other quantities
by construction.

4.11 Boiling and Condensation

In this section, we consider the boiling and condensation phenomena. In the first
case, we have a liquid containing bubbles of its vapor, in the second, a vapor
containing droplets of its liquid. In both cases, we must take into account that the
saturated vapor pressure under a curved liquid-vapor interface is different from that
under a flat surface. The overpressure is given by Eq. (4.42), with the gas being the
saturated vapor.

A supersaturated vapor in contact with its liquid on a flat surface immediately
condensates. Consider, however, a closed container with only the supersaturated
vapor phase inside. The condensation must initiate with the formation of droplets.
Very small droplets do indeed form spontaneously by local fluctuations. They are,
however, unstable, and soon re-evaporate, because the vapor that is supersaturated
relative to a flat surface is not even saturated relative to the curved surface of the
droplets, whose radius is very small. To be able to expand, rather than evaporate,
the radius of the droplet must be larger than the so-called critical radius. This is the
radius relative to which the vapor, under the given conditions of temperature and
pressure, is saturated. When this happens, the drop starts growing and growing, and
the condensation proceeds. The drop has acted as a condensation nucleus. If the
vapor is extremely clean, the condensation nuclei form only for random thermal
fluctuations. These are very rare, all the more so the larger the droplets. The boiling
does not start immediately.

If the vapor is not very clean, and, for example, contains thin powder grains,
these can act as condensation nuclei. The small drops that spontaneously form, and
that are too small to imitate the condensation alone, now wet the grains, forming a
liquid layer on their surface. The curvature radius of the so-formed liquid surfaces
may be larger than the critical radius, and the condensation proceeds. For example,
the fog one sees over a boiling water pot under certain conditions is formed by the
supersaturated vapor condensing on tiny powder particles. A similar condition
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occurs, if the surfaces of the container are not very smooth, at the micrometric scale.
The under-critical droplets form a liquid film on the small asperities, triggering the
condensation.

Ions are another class of condensation nuclei. When present, they attract the
vapor molecules, strongly facilitating the formation of large enough droplets. This
phenomenon was discovered by Charles Thomas Rees Wilson (Scotland, 1869–
1959), and was used to develop the cloud chamber. The chamber makes the tracks
of charged particles, like cosmic rays and those originated by radioactive decays,
visible. The cloud chamber consists of a vessel containing a vapor, with a glass
window to see inside and a piston to expand the volume when needed. The pressure
is initially higher than that of the saturated vapor. When a charged particle goes
through, it produces a trail of ions in its path. If we now expand the chamber,
namely reduce the pressure moving the piston, the vapor becomes supersaturated
and the ions act as condensation nuclei. The “track” of the particle is materialized in
a trail of droplets. After a fraction of a second, the droplets are big enough. We
shoot a flash of light and take a picture. The cloud chambers have made vital
contributions to cosmic ray and particle physics.

Consider now a liquid at a certain pressure. If we increase its temperature, when
it reaches the value at which the pressure of the liquid is equal to the saturated vapor
pressure, the liquid boils. However, if the liquid is very pure and the walls of the
container extremely smooth, it will not begin to boil. The fluid is in the state of
superheated liquid. Again, in this case, the beginning of the phase transition
requires the presence of boiling nuclei. In the liquid, small vapor bubbles sponta-
neously form due to fluctuations. The pressure is less than that of the saturated
vapor above a flat interface surface but not above the concave interface of the small
bubble. Consequently, the vapor in the bubble re-condenses, and the bubble dis-
appears. Additionally, the boiling can now start only if bubbles with a radius larger
than a critical value form. These will grow, because the liquid evaporates inside
them. However, the process is rare. Impurities like powders and, more often, dis-
solved extraneous gases that form large enough bubbles trigger the boiling.

In this case as well, ions work as boiling nuclei. The energetic charged particles
tracks can be detected by devices similar to the cloud chamber, which are bubble
chambers. These instruments have also made fundamental contributions to particle
physics.

Problems

4:1. How would the pressure of a fluid change if the intermolecular forces were
suddenly to disappear?

4:2. An airtight vessel of one-liter volume is completely full of water at 27 °C.
How would the pressure change if the intermolecular forces were suddenly to
disappear?

4:3. A certain quantity of nitrogen is enclosed in a container with rigid walls of
volume V. Its temperature is T = 173 K. Suppose the gas follows the van der
Waals equation. Find its pressure p and compare it with the pressure pid the
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gas would have if ideal in the following cases: (a) V = 1 L, n = 1 mol,
(b) V = 0.1 L, n = 1 mol, (c) V = 1 L, n = 2 mol, (d) V = 0.1 L, n = 2 mol.
The molar values of the van der Waals constant for nitrogen are:
amol = 0.135 Pa m6 mol−2 and bmol = 3.9 × 10−5 m3 mol−1.

4:4. A van der Waals gas (n moles) expands at constant temperature from the
volume Vi to the volume Vf. Find the expression of the work done, if the
constants are a and b.

4:5. A mole of nitrogen adiabatically expands in a vacuum (Joule free expansion).
Its volume passes from Vi = 10−3 m3 to Vf = 10−2 m3. How much does the
temperature vary? Suppose that nitrogen follows the van der Waals equation
with amol = 0.135 Pa m6 mol−2.

4:6. We want to expand, at constant temperature, 2 mol of hydrogen in a vacuum
from Vi = 10−3 m3 to Vf = 10−2 m3. How much heat should be supplied to
the system? Suppose that hydrogen follows the van der Waals equation with
amol = 0.024 Pa m6 mol−2.

4:7. A mole of oxygen that has the initial volume Vi = 0.5 × 10−3 m3 expands at
the constant temperature of –100 °C to Vf = 10−2 m3. Suppose that oxygen
follows the van der Waals equation with amol = 0.136 Pa m6 mol−2 and
bmol = 3.2 × 10−5 m3 mol−1. Calculate and compare with the case of an ideal
gas: (a) the variation of internal energy ΔU, (b) the work W, (c) the
exchanged heat Q, (d) the entropy variation ΔS.

4:8. What are the characteristics of the substances, the solid and vapor phases of
which can be in equilibrium at the atmospheric pressure?

4:9. Find the specific volume of liquid water and of its vapor, considered as an
ideal gas, at STP.

4:10. The mercury-saturated vapor pressure at the temperatures T1 = 373 K and
T2 = 393 K are, respectively, p1 = 36 Pa and p2 = 99 Pa. What is the molar
latent heat of vaporization in this temperature interval?

4:11. The boiling temperature of benzene (C6 H6) at atmospheric pressure is
T1 = 80.2 °C. Find the pressure p1 of its saturated vapor at T1 = 75.6 °C,
knowing that the latent vaporization heat in this interval is Q = 400 kJ/kg.

4:12. Consider, in the plane V,p, the horizontal segment of the isothermal curve at
the temperature T of a certain fluid, corresponding to the equilibrium
between liquid and vapor. Beyond the temperature, we know the saturated
vapor pressure ps, the mass of the substance m, the specific volumes Vl and
Vv of the liquid and vapor and the vaporization heat Qv. Call 1 and 2 the
states at the extremes of the line (all liquid and all vapor, respectively).
Express for the transition from 1 to 2: (a) the work W12, (b) the heat Q12,
(c) the internal energy variation U2–U1, (d) the entropy variation S2– S1,
(e) the enthalpy variation H2–H1.

4:13. Consider, in the plane V,p, the horizontal segments of the isothermal curves
at the temperature T of a certain fluid, corresponding to the equilibrium
between liquid and vapor. What does correspond to them in the plane p,T?

4:14. The films of soapy water are similar to rubber films. How do their surface
tensions differ?

162 4 Thermodynamic Properties of Real Fluids



4:15. On the bottom of a vessel, there are holes of radius a = 50 µm. Which is the
maximum height h to which we can fill the vessel with water before it begins
to pour out of the holes? Water wets the bottom of the vessel. The water
surface tension is τ = 73 mN m−1.

4:16. One end of a straight glass capillary tube, of internal radius a = 0.5 mm, is
vertically immersed in a water bath to the height h = 2 cm. What pressure
must we apply, blowing from the upper extreme, to blow out an air bubble?
The water surface tension is τ = 0.073 N m−1.

4:17. A capillary tube, of internal diameter d = 0.5 mm, is vertically immersed in a
water bath. The length of the external part of the capillary is 10 cm. How
much does the water rise in the capillary? The water completely wets the
walls.

4:18. A small cubic box of side a = 3 cm and mass m = 5 g floats on water. What
is the distance h under the water surface of the bottom of the box if (a) the
water completely wets the walls of the cube (contact angle = 0°), or (b) the
water does not wet the walls (contact angle = 180°)?
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Chapter 5
Microscopic Interpretation
of Thermodynamics

Thermodynamics and statistical mechanics give complementary descriptions of the
same physical processes, from different points of view, the former macroscopic, the
latter microscopic. When observed at nanometric dimensions, matter appears to be
composed of an enormous number of molecules. Molecules move according to
mechanical laws, but there are so many that it would be impossible to solve the
problem of motion for any single one. Thermodynamics deals with this issue using
global variables, like volume, pressure, temperature, concentrations, etc. This
approach is powerful, allowing us to describe considerably different systems, including
those that are not made of molecules, like the electromagnetic radiation in a box.

Statistical mechanics starts from the laws of mechanics to extract the equations
governing the mean values of the kinematical quantities and their statistical dis-
tributions. A rigorous treatment of statistical physics requires knowledge of
mathematical tools that are beyond those available to the reader. It will, however, be
possible to understand the phenomena clearly in their essential aspects, if not in
their fine details. We shall be able to understand the physical meanings of the
thermodynamic variables, pressure, temperature, internal energy, entropy and, in
the next chapter, viscosity.

In the history of physics, the biggest steps forward happen when previous,
apparently completely separate fields become “unified” in a single theory. The first
historical unification is credited to Galilei and Newton, who unified terrestrial and
celestial mechanics. The second one, in the second half of the XIX Century, is
credited to James Clerc Maxwell (Scotland, 1831–1879) and Ludwig Boltzmann
(Austria, 1844–1906), who developed statistical mechanics, leading to a unified
description of mechanics on one side and thermodynamics, along with the chem-
istry that can be considered a part of it, on the other.

As is always the case, they had predecessors. The most important was Daniel
Bernoulli (Switzerland, 1700–1782), who laid down the basis for the kinetic model
of gases. In 1738, he not only developed the hydrodynamic theorem that we studied
in Sect. 1.8, but he also put forward the hypothesis that gases consist of an
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enormous number of molecules moving in chaotic motions. He advanced the
fundamental proposals that the pressure of a gas is due to the impact of molecules
and that heat exchanges correspond to variations in the molecules’ kinetic energy.

The velocity distribution function of molecules was determined by James Clerc
Maxwell in 1859, using, for the first time, statistical concepts in a physical law.
Inspired by Maxwell, Ludwig Boltzmann started his lifelong study of statistical
mechanics a few years later. This monumental contribution, composed of papers
published over a number of years, eventually reached some 2000 pages. In 1902,
Josiah Willard Gibbs (USA, 1839–1903) published a book in which he gave a
complete formal treatment of statistical mechanics, both for microscopic and
macroscopic systems. His beautiful brand of mathematics falls beyond the limits of
this course.

Two years before that, in 1900, Max Planck had employed statistical mechanical
methods to interpret the energy spectrum of the black body (electromagnetic
radiation in a box). Classical physics proved inadequate for this particular endeavor,
and Planck was consequently led to advance the hypothesis that energy is not
continuous, but rather quantized in discrete minimum quantities. The development
of quantum statistics followed with the work of several scientists in the first decades
of the XX Century.

Figure 5.1 shows the life spans of the major contributors to classical statistical
mechanics in graph form.

In the first two sections of this chapter, we shall develop the kinetic model of the
(ideal) gas and see the physical meaning of pressure and internal energy. We shall
control the predictions of the model on the molar heats of the monoatomic and
diatomic gases and see how, for the latter (and, more generally, for the polyatomic
varieties), classical mechanics reaches its limits of validity. This fact leads to
quantum mechanics, which, however, is beyond the aims of this book. In Sect. 5.3,
we shall deal with the molar heats of the elemental solid, meeting a similar limit.

Statistical mechanics does not deal with the means of the quantities alone, but
also with the distributions of the probabilities for their different values. We shall
study such distributions of kinetic energy and velocity in Sects. 5.4–5.7. Following
that, we shall consider the always necessary experimental control of the laws of
probability distributions.

The probability distribution of the different forms of energy follows, in a first
approximation, the universal law according to Boltzmann. The corresponding
Boltzmann factor is capable of describing, broadly but in their essential physics, a
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Fig. 5.1 Life spans of the
main contributors to classical
statistical mechanics
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large number of phenomena. As such, its importance cannot be over-evaluated. We
shall discuss a few examples in Sect. 5.9.

In the final two sections, we shall demonstrate physical reasons why microscopic
phenomena are reversible, while macroscopic are not. We shall thus understand the
physical meanings of entropy and the second law of thermodynamics.

5.1 Kinetic Model of Ideal Gas

In this section, as a first step towards the unification of thermodynamics with
mechanics, we shall demonstrate the state equation of the simplest thermodynamic
system, the ideal gas, starting from the Newton equation.

We start by defining a molecular model of the monoatomic ideal gas, assuming
the following hypotheses:

1. The gas is made of molecules, which can be considered point-like. This property
is well satisfied for the monoatomic gases, but not for the polyatomic ones. In
addition, the density, hence the pressure, should be low enough to guarantee that
the average distances between molecules is much larger than their action radius.
Consider on purpose that the total volume of the molecules is substantially the
volume of its liquid, the covolume.

2. Molecules do not interact except when they collide. The collision time is very
short compared to the average time between one collision and the next. In the
real gases, molecules interact with the van der Waals force, which, however, can
be neglected in a first approximation, all the better the more rarefied the gas,
namely the lower its pressure.

3. Collisions between molecules are elastic. This property is also well satisfied by
the real gases (if the temperature is not extremely high).

4. The motion of the molecules is completely random; there is no privileged
direction. This property is also well satisfied by the real gases.

We assume the gas to be enclosed in a container with the form of a rectangular
parallelepiped, with rigid and perfectly plane walls. We choose a reference frame
having its origin in a vertex and axes on the three perpendicular edges joining at the
vertex, as in Fig. 5.2. We assume the collisions of a molecule with the walls to be

v

A

L x

y
Fig. 5.2 The motion of a
molecule in a container
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elastic too. Consequently, the velocities of a molecule before and after a collision
with one of the walls are equal in magnitude, and their directions form equal and
opposite angles with that normal to the wall. In other words, the component of
velocity normal to the wall inverts in the collision, while the parallel component
does not vary.

Note that the last hypotheses we introduced, on the elasticity of the
molecule-wall collisions and the perfect planarity of the walls, are not included in
the molecular model of the ideal gas. In practice, the walls always have some
roughness much larger than the molecular dimensions. However, the wall proper-
ties cannot have any influence on the state equation. As a matter of fact, these
supplementary hypotheses are not logically necessary; we have assumed them to
simplify the demonstration.

Let us start with the physical meaning of pressure. In the collision of a molecule
with a wall, the normal component of its momentum changes sign. The change of
momentum is equal to the impulse given to the wall. The impulse is the integral of a
force over the time of the collision. It is very small, but the number of molecules is
enormous. The number of collisions is very large in any area, even if very small
compared to the macroscopic dimensions, and in every time interval, even if very
small compared to the macroscopic times. As a consequence, the effect does not
appear macroscopically as a sequence of small impulses, bong, bong, bong,… but
as constant in time and uniform at all the points along the walls.

We now mathematically express what we have stated in words. Consider the two
walls normal to the x-axis, one at x = 0, one at x = L (the length of the relevant
side). Let us indicate its area with A. Let mi be the mass of a molecule and v its
velocity just before a collision with the wall at x = L (see Fig. 5.2). In the collision,
the x component of the velocity inverts, while the other two components do not
change. The impulse given to the wall is then 2 miυx. The force exerted by that
molecule on that wall is the impulse delivered in the unit time. We must consider
that the molecule hits that wall many times in a second. How many? After the first
collision, the molecule moves away, hits some other wall and then, after a while,
comes back. We can find the time interval recalling the principle of independence of
motions. We can forget the components of motion in the y and z directions and
think of the motion in the x direction only with velocity υx. To go back and forth, it
takes 2L/υx seconds. The number of collisions per second is then υx/2L and the
impulse delivered per unit time is 2miυx

2/2L. If the total number of molecules is N,
the force in the x direction due to their entire contribution is

Fx ¼ 1
L

XN
i¼1

mit
2
xi: ð5:1Þ

The sum represents all the gas molecules. Note that, in general, the gas might be
a mixture of gases with different molecules. This is why we did not take the mass
out of the sum. We now observe that the addends are, by a factor of ½ a part, the
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kinetic energies of the molecules. Then, the sum in the right-hand side of Eq. (5.1)
is just the average of the summed quantity times the number of molecules, namely

mt2x
� � � 1

N

XN
i¼1

mit
2
xi: ð5:2Þ

On the other hand, the motion being completely random, we have

mt2x
� � ¼ mt2y

D E
¼ mt2z

� �
, and, being t2 ¼ t2x þ t2y þ t2z , it is also

mt2x
� � ¼ 1

3
mt2
� �

and then, calling UKh i ¼ 1
2 mt2
� �

, the average kinetic energy of the molecules is

Fx ¼ 1
L
N
3

mt2
� � ¼ 1

L
2
3
N UKh i: ð5:3Þ

Here, we notice that we considered our molecule going back and forth as if it
were alone. This is not so, and collisions with other molecules do change its
velocity. However, this is statistically irrelevant, because when a molecule changes
velocity, there is always, on average, another one that takes that velocity, and, so to
speak, takes its place. We now continue the demonstration. To find the pressure, we
just have to divide the force we found by the area on which it is exerted, which is
A. Taking into account that the volume of the gas is V = LA, we write

p ¼ Fx

A
¼ 1

AL
2
3
N UKh i ¼ 1

V
2
3
N UKh i:

The number N of molecules is the number of moles n times the Avogadro
number, and we finally have the equation

pV ¼ 2
3
nNA UKh i: ð5:4Þ

This is the state equation of the ideal gas of our model, obtained from the
Newton mechanics with statistical arguments, namely with statistical mechanics.
The equation we found says that the product of pressure times the volume is
proportional to the average kinetic energy of the molecules. In thermodynamics,
this product is proportional to the absolute temperature, namely

pV ¼ nRT : ð5:5Þ

We must conclude that the absolute temperature is proportional to the average
kinetic energy of the molecules. We might even go further and state that it is the
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average kinetic energy. It would be enough to change the measurement unit from
kelvin to joule. This, however, is not practical. Keeping the SI units, we write

UKh i ¼ 3
2
R
NA

T ¼ 3
2
kBT ð5:6Þ

where, on the right-hand side dove, we have introduced the Boltzmann constant kB,
after Ludwig Boltzmann (Austria, 1844–1906), one of the main creators, with
Maxwell, of statistical mechanics. This is a fundamental constant of physics; it is
universal because the gas constant and the Avogadro number are such. Its value is

kB ¼ R
NA

¼ 1:38� 10�23 J K�1: ð5:7Þ

The result we found is valid, in particular, for a monoatomic gas. In this case, the
kinetic energy of its molecules, which we considered to be point-like, is the center
of mass kinetic energy. Indeed, there cannot be any kinetic energy relative to the
center of mass for a point. In a polyatomic gas, the structure of the molecules must
be considered and the average kinetic energy relative to the center of mass must be
added to mt2

� �
=2. We shall come back to this point later in the chapter.

We will now discuss the result we found. First, we notice that we have given a
clear mechanical meaning to a purely thermodynamic quantity, such as the absolute
temperature. Notice that only the absolute scale, the scale based on the gas ther-
mometer, has a clear physical meaning, not the Celsius, the Fahrenheit or others.
This is because a physical temperature of zero exists. One might think this would
happen when the motion of molecules ceases. However, things are not so simple.
Indeed, when one gets very close to absolute zero, classical mechanics, which we
have used, no longer correctly describes nature. Quantum mechanical phenomena
appear. In particular, at absolute zero, a well-defined non-zero kinetic energy
remains, called zero-point energy. This is a purely quantum phenomenon, not
understandable through classical physics. However, the zero-point energy is
extremely small and completely negligible at the usual temperatures. This is true
because the motions we have considered take place on very large geometrical scales
compared to the atomic ones. Under these conditions, classical mechanics works
well down to very low temperatures. But this is not the case when the motions are
on molecular scales, like the vibrations of molecules. We shall come back to that in
a later portion of the chapter.

We still should check whether temperature and average molecule kinetic energy
have the same properties. Otherwise, we cannot identify them and the theory loses
meaning. While this is certainly true, the demonstration is not simple and we shall
not go into it here. Rather, we shall look at an interesting consequence. In a mixture
of gases, all the components have the same temperature and, consequently, the
different molecules have the same average kinetic energy.

Let us consider a mixture of monoatomic ideal gases, respectively, with N1

molecules of the first gas, N2 of the second, and so on. The total number of
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molecules is N = N1 + N2 +…Recalling that we have shown Eq. (5.4) without
assuming all molecules to be equal, that result is still valid and we can write

pV ¼ N1kBT þN2kBT þN3kBT þ � � � ð5:8Þ

This tells us that the different gases are independent from one another. This is a
consequence of the assumption that their molecules do not interact outside colli-
sions. Defining the partial pressure of the ith pi gas as the pressure it would have if it
were taking up the entire volume of the container by itself, we reach the conclusion
that

p ¼ p1 þ p2 þ p3 þ � � � ð5:9Þ

which is the Dalton law: the total pressure of a (ideal) gas is the sum of the partial
pressures of its components. We have seen that this is also a consequence of the
laws of mechanics.

We now summarize the physics contained in the ideal gas equation. The pressure
of a gas in a container is due to the collisions of its molecules with the surrounding
walls. The pressure is proportional to the average square velocity. One of the
powers comes from the impulse delivered in a collision, the second from the rate at
which the molecule collides. The average square velocity is proportional to the
average kinetic energy and the latter is proportional to the absolute temperature.

5.2 Meaning of the Internal Energy. Specific Heats
of Gases

The internal energy state function of a thermodynamic system is the sum of the
kinetic and potential energies of the constituent molecules, namely their mechanical
energies. The kinetic energy we are talking about is the internal energy, namely the
energy in a frame in which the system is at rest. For example, the internal kinetic
energy of a gas in a bottle is the same whether the bottle is at rest or on a train
moving at 100 km/h, or if it is rotating on a merry-go-round. Indeed, the temper-
ature of the gas is the same in these different situations. The potential energy to be
considered is also the internal one. It is the same whether the bottle is at sea level or
on the top of a mountain. It is the potential energy of the van der Waals forces
between molecules. The potential energy is zero for and only for the ideal gas. The
first law of thermodynamics states that the internal energy is conserved if the system
does not exchange heat or work. This implies that the intermolecular forces are
conservative. As a matter of fact, at the microscopic level, dissipative forces do not
exist.

The van der Waals force is attractive at the intermolecular distances that are
characteristic of gases. Consequently, the internal potential energy is negative. If
the gas expands, the average distance between molecules increases and the internal
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energy decreases in absolute value, remaining negative. We observe that, under the
usual conditions, the variation of internal energy of gases with varying volume is
modest, but it is very important with varying temperature. We must conclude that
the kinetic energy is much larger than the potential energy. As a matter of fact, it is
found that Eq. (5.6) also holds for the monoatomic real gases, not only for the ideal
ones.

Notice that the factor 3 on the right-hand side is just the number of mechanical
degrees of freedom of a point object, such as a monatomic molecule. The number of
degrees of freedom of a body is the number of parameters we must know to know
the mechanical state of the body. Indeed, when we know the three coordinates, we
know the mechanical state of the point. We conclude that, in a monoatomic gas, the
average internal kinetic energy is kBT/2 per degree of freedom. This conclusion is
very important because a theorem of statistical mechanics states its general validity.
The energy equipartition theorem states that, in a system in thermodynamic equi-
librium, the average kinetic energy is “equiparted”, equally divided, amongst the
degrees of freedom of the molecules. If, for example, the molecule is diatomic, we
must add a kBT/2 contribution for each independent rotation (two) and vibration
(one) degrees of freedom.

The measurable quantities that are more directly related to the internal energy are
the specific or molar heats. We shall see in this section and the next the predictions
by statistical mechanics for the molar heats of the polyatomic gases and of the solid,
and we will compare them with the measured values.

Let us start with the measurement of the gas molar heats, or, better yet, because it
is easier, of their ratio γ = Cp/CV. Nicolas Clément (France 1779–1842) and Charles
Desormes (France; 1771–1862) measured the heat ratio with the simple experiment
shown in Fig. 5.3 (Clément-Desormes experiment) in 1819. The gas is initially in
the S container. We transfer some gas in the spherical bottle to the pressure p0,
which is smaller than the pressure in S. Once the equilibrium is reached, we
measure p0 with the manometer M. The volume of the gas is the volume of the
bottle, which we know. Let us call it V0. The temperature is the (known) ambient
temperature T0. This is our thermodynamic system.

We now open the valve F for a short time, admitting some more gas into the
bottle. We can consider that the gas originally present, our system, now takes only a
fraction, say V, of the total volume. Its temperature changes to a new value too, say
T. We do not know V or T, but, as we shall see, we do not need them. We

F

S
V0

M

Fig. 5.3 Sketch of the
Clément-Desormes
experiment
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immediately read the new pressure, say p1. The process from the initial state (p0, V0,
T0) to the final one (p1, V, T) has been very fast and the heat exchange has been
negligible. We can use the adiabatic equation:

p0V
c
0 ¼ p1V

c: ð5:10Þ

The temperature of the gas in the bottle now gradually changes to reach equi-
librium at T0. The volume of the originally present gas, our system, remains V,
because neither the volume of the bottle nor the fraction it occupies vary. The
pressure does vary, reaching the new value p2, which we measure. This third state is
(p2, V, T0). It is on the same isothermal as the initial state, and we can write

p0V0 ¼ p2V : ð5:11Þ

We raise both sides of this equation to the power γ and divide by those of
Eq. (5.10), obtaining

p2
p0

� �c

¼ p1
p0

: ð5:12Þ

Solving for γ, we have

c ¼ p1
p0

� �
= ln

p2
p0

� �
: ð5:13Þ

Let us now see what statistical mechanics foresees. Let us start with the ideal
monoatomic gases. The noble gases at STP behave almost as such. The molecules
have three degrees of freedom. Hence, the average kinetic energy is
UKh i ¼ 3=2ð ÞkBT . There is no potential energy between molecules (the gas is ideal)
or inside the molecules (that we consider point-like). The internal energy of a mole
of gas is then

U ¼ 3
2
NAkBT ¼ 3

2
RT : ð5:14Þ

The molar heats, taking into account the Mayer’s relation, Eq. (2.49), are
foreseen to be

CV ¼ 3
2
R; Cp ¼ 5

2
R: ð5:15Þ

We finally foresee that

c ¼ 5
3
¼ 1:666: ð5:16Þ
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Experiments find very similar values, for example, 1.668 for Ar and 1.666
for He.

Consider now a diatomic gas (oxygen or hydrogen, for example). We can think
of the molecule as being made of two point-like atoms of masses m1 and m2 (they
might be different, as, for example, in the CO). The two atoms interact with a force
that, in a good approximation, we can think of being elastic, with an elastic constant
that we call κ. This is a harmonic oscillator with proper angular frequency (see
Sect. 6.2 of the 1st volume),

x ¼
ffiffiffiffiffiffiffiffi
j=l

p
ð5:17Þ

where µ is the reduced mass. This is the oscillation angular frequency of the
molecule.

We need six quantities to define the mechanical state of the molecule. It has six
degrees of freedom. Three degrees of freedom characterize the translator motion,
namely the motion of the center of mass. Two degrees of freedom correspond to the
rotations about the central axes. We do not count the rotation about the axis joining
the atoms, because there is no kinetic energy associated with the moment of inertia
about this axis. The last degree of freedom, the distance between atoms, is internal
to the molecule and corresponds to its oscillation at the angular frequency we
found. For the equipartition theorem, the average kinetic energy is
UKh i ¼ 6=2ð ÞkBT .
We should still add the average potential energy of the harmonic oscillation. We

know from mechanics (see Sect. 3.2 of the 1st volume) that the average for a period
of the potential and kinetic energy are equal in a harmonic oscillator. We must be
careful, however. Those are time averages while we now need statistical averages,
namely averages for all the elements of the system at a certain instant. For the
systems in thermodynamic equilibrium we are considering, all the statistical aver-
ages are independent of time. Fortunately, for our system, the two, conceptually
different averages have the same value. This is, indeed, the case for the majority of
statistical ensembles, but not for all of them. We can understand that the statement
is likely by thinking about taking a rapid sequence of ideal shots of a certain
molecule. We shall “see” the atoms, sometimes closer, sometimes farther away,
sometimes with one orientation, sometimes with another. The set of these photos
cannot be different from the set of photos of many molecules at the same instant. As
a matter of fact, all the molecules of a given species are identical. We can conclude
that the statistical average is equal to the time average and that the average potential
energy of the harmonic oscillators is equal to their average kinetic energy, namely
kBT/2. Finally, statistical mechanics foresees the internal energy of a mole of dia-
tomic gas to be

U ¼ 7
2
NAkBT ¼ 7

2
RT :
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For the molar heats, it foresees

CV ¼ 7
2
R; Cp ¼ 9

2
R ) c ¼ 9

7
¼ 1:286: ð5:18Þ

The experimental values at STP for common gases like O2, H2, N2, are around
γ = 1.40, in clear disagreement with statistical mechanics. For gases with more
massive molecules, like iodine I2 or bromine Br2, the experimental values are
around γ = 1.30, close to the theoretical one. This is true at the ambient tempera-
ture. Experiments show that both molar heats and their ratios vary with temperature.
At high enough temperatures, the γ’s of all the diatomic gases tend toward the
statistical mechanics value of 9/7.

The following attempt to “save” (classic) statistical mechanics has been done.
We observe that the measured value at STP γ = 1.40 is just 7/5, which is the value
foreseen for 5 degrees of freedom. It looks like two degrees of freedom would be
missing, likely the internal to the molecule ones (the vibration). In this case, the
internal energy would be U ¼ 5=2ð ÞRT . We can think of the molecule, rather than
being two material points linked by a force, as being a small rigid stick. Such a stick
indeed has five degrees of freedom: the three coordinates of the center of mass and
the two angles fixing the direction of the stick. The angle about the stick axis is
irrelevant, because we can consider its section negligible. This argument is known
as the freezing out of degrees of freedom.

This argument (which is often made) is, however, wrong. Indeed, the rigid stick
is the limit of the system shown in Fig. 5.4, when the spring constant goes to
infinite. But the average energy in the internal to the molecule degree of freedom,
the potential plus kinetic vibration energy, is kBT however large the spring constant
might be. Consequently, such is its value in the infinite limit, when the molecule
becomes a rigid stick.

In 1859, James Clerc Maxwell (UK; 1831–1879) published a fundamental
article, the foundation of statistical mechanics. It was the unification of previously
separated fields of knowledge, mechanics, thermodynamics and chemistry. At the
end, he summarized the extraordinary successes of the theory. He had explained
many known relations, such as the gas laws, the diffusion processes, and the vis-
cosity of gases. We shall discuss the latter in the next chapter. However, he honestly
concluded:

Fig. 5.4 The scheme of a
diatomic molecule

5.2 Meaning of the Internal Energy. Specific Heats of Gases 175



Finally, by establishing a necessary relation between the motions of translation and rotation
[he is talking about the equipartition theorem] of all particles not spherical, we proved that
a system of such particles could not possibly satisfy the known relation between the two
specific heats.

For the first time in history, classical mechanics had to face a problem that was
going to determine its limits of validity. The problem of the specific heats would
remain open and worry the most brilliant scientists for the entire second half of the
XIX century. The next difficulty was discovered in the last decades of the century. It
was again in statistical mechanics, this time in the mechanics of the photon gas. It
was the problem of the black body radiation. It was solved by Max Planck
(Germany, 1858–1947) in 1900, opening the way for a very deep scientific revo-
lution, quantum mechanics.

We now briefly consider the polyatomic molecule gases. Take, for example,
ethane (C2H6). Having 8 atoms, the molecule has 3 × 8 = 24 degrees of freedom,
namely 12kBT alone of kinetic energy. The internal to the molecule potential energy
should be added. It is clear that γ must be very close to 1. However, the measured
value is 1.22. Once more, the theory fails.

We notice that quantum effects are relevant for the motion inside the molecules,
but not for the motion of the molecule center of mass in the container. This is an
example of what we stated in the introduction; quantum effects, which in any case
increase with decreasing temperature, are more important the more the motion is
limited. The center of mass is essentially free and quantum effects on its motion
appear only at extremely low temperatures. At the end of Sect. 5.9, we shall give
some hints as to how quantum mechanics explains the observed values of the
specific heats.

5.3 Specific Heats of Solids

The equipartition theorem holds for every system, including the condensate bodies.
Even for them, the average kinetic energy is kBT/2 per degree of freedom. The
calculation of the contribution of the potential energy is, in general, very difficult. It
is rather simple for the elemental solids, namely for the crystals having only one
type of atom, which we will now discuss. The measured quantity is the specific
heat. Generally, it is measured at constant (atmospheric) pressure. Note, however,
that the differences between constant pressure and constant volume heats are very
small for solids (for example, for Fe, it is γ = cp/cV = 1.02). This is because the
dilatation coefficients of solids are small.

Table 5.1 gives, in the second column, the specific heats of several elemental
solids at room temperature. They are very different from one another. If we,
however, compare molar heats, reported in the 4th column, we see that they are
rather similar. In a round figure, we can write
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c ¼ 25 J K�1 ffi 3R: ð5:19Þ

This property was discovered in 1819 by Pierre Loius Dulong (France, 1785–
1838) and Alexis Thérèse Petit (France, 1791–1820) and is known as the Dulong-
Petit rule. They also discovered the important exception of the diamond, whose
molar heat is about one fourth of the others. The statistical mechanical interpretation
was given by Ludwig Boltzmann in 1871. We can consider a crystal as an array of
point-like atoms that oscillate about stable equilibrium positions, as we described it
in Sect. 4.1. Each atom can be considered a harmonic oscillator, which can oscillate
in three independent directions. For each of them, the average kinetic energy is kBT/
2. In addition, we must include the potential energy.

As we did for the gases, we can identify temporal averages with statistical
averages. The average potential energy of each oscillation direction is equal to the
average kinetic energy, namely kBT/2. In conclusion, the total average mechanical
energy, kinetic plus potential, of the oscillators is 6kBT/2. The internal energy of a
mole of solid is then

U ¼ NA3kBT ¼ 3RT ð5:20Þ

and the molar heat is

c ¼ dU
dT

¼ 3R ð5:21Þ

which is the Doulong Petit rule. We have seen that, based on the Newton laws,
particularly the energy equipartition, this rule is what statistical mechanics foresees.
However, at an ambient temperature, the rule is not valid for diamond. This
problem worsened when experiments at low temperatures by James Dewar (UK,
1842–1923) and Walther Nernst (Germany, 1864–1941) showed that molar heats
are not constant. They increase with temperature. The Dulong-Petit rule holds for
all elemental crystals, including diamond, if the temperature is high enough.

When temperature decreases, the molar heats’ decrease is initially slow.
However, below a certain temperature, characteristic of the solid, it becomes much

Table 5.1 Specific and molar heats and molar masses for crystals of several elements

Element Specific heat (kJ kg−1 K−1) Molar mass (g mol−1) Molar heat (kJ mol−1 K−1)

Carbonium 0.50 12 6.0

Aluminum 0.89 27 24.1

Copper 0.38 63.4 24.4

Iron 0.44 55.8 25.0

Zinc 0.39 65.4 25.3

Tungsten 0.134 183.9 24.6

Lead 0.13 197 25.2
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faster. This is the Debye temperature θD. Plotting the molar heats of different
elemental solids versus the ratio of the temperature and the Debye temperature (T/
θD), one finds an almost universal curve, as shown in Fig. 5.5. The correct,
quantum explanation of the phenomenon was formulated by Peter Debye (The
Netherlands, 1884–1966) in 1912. The theory foresees, in particular, in perfect
accord with the data, that the specific heats tend towards zero proportionally to the
third power of temperature:

c / T=hDð Þ3: ð5:22Þ

Roughly speaking, the Debye temperature is the temperature below which
classical mechanics fails. To give some examples, values of θD are 2230 K for
diamond (atomic mass of C is A = 12), 428 K for Al (A = 27), 470 K for Fe
(A = 55.8), 327 K for Zn (A = 65.4), 164 K for Au (A = 197) and 105 K for Pb
(A = 207). One sees that the Debye temperature tends to decrease with an
increasing atomic number. In particular, the Debye temperature of Carbonium is
much higher than room temperature. For such light elements, quantum effects are
already important at room temperature.

Classical mechanics failure happens for solids at temperatures much higher than
those for the translatory motions in gases. This is because the oscillatory motions in
a crystal are confined within much smaller dimensions. We also see that the larger
the atom mass, the lower the temperature at which classical mechanics fails.

At temperatures close to absolute zero, all substances are in a condensed phase;
no gas exists. Nernst postulated in 1905 the Nernst heat theorem. This can be
formulated by stating that, at low enough temperatures, the thermodynamic state
functions of condensed bodies tend to be independent of temperature. The
derivatives relative to temperature of, in particular, internal energy and enthalpy,
which are the molar heats Cp and CV, go to zero. We have already noticed this
behavior.

25
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0

T/θD
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c (kJ mol–1 K–1)Fig. 5.5 Molar heat of
elemental crystals versus
absolute temperature
normalized to the Debye
temperature
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5.4 Distribution Functions

Up to now, we have considered the mean values of mechanical quantities, such as
kinetic energy, over all the molecules of a macroscopic system. Obviously, the
kinetic energies of molecules are different from one another. They are casually
distributed. So are the positions, the velocities, etc. We shall now find the strictly
connected distributions of kinetic energies and of velocities of an ideal monoatomic
gas. We shall then see how the results can be compared with experiments.

We start by considering how the molecules are distributed in space, independently
of their velocity. In general, density might vary with position in the gas. Let q(r) be
the gas density at the generic point with position vector r = (x, y, z). All the mole-
cules of our ideal gas are equal, point-like and have mass m. A relevant quantity for a
system composed of equal particles is the number density, which is the number of
particles per unit volume. We shall indicate this with np. The relation between
number and mass densities is simply

np rð Þ ¼ q rð Þ=m: ð5:23Þ

The number dnp of molecules in the elementary volume between x and x + dx,
y and y + dy and z and z + dz is

dnp ¼ np rð Þdxdydz: ð5:24Þ

The function np(r) informs us as to how the molecules are distributed in space,
or, in other words, where it is more probable and where less probable for us to find
molecules. Note that the question as to know exactly how many molecules are in a
given position is meaningless, because the position is a continuous variable with
infinite values, while the number of molecules is enormous, but finite. The medium
is often homogeneous, for example, a liquid in a container. Then, np(r) is inde-
pendent of r. But this is not always so. Consider, for example, the atmosphere. Its
density becomes smaller and smaller with increasing height, due to the weight. We
shall study that in the next section.

We now consider the distribution of the magnitude of the velocity. Again, the
question of exactly how many molecules have that velocity is meaningless (How
many cars pass at a given kilometer of a freeway in a day traveling at exactly
100,000,000… km/h?). The more meaningful question to ask is how many cars
have velocities in a small interval around the value we are interested in, for
example, between 199 and 101 km/h.

Let N be the number of molecules per unit volume and ΔN the number with
velocity in magnitude between υ and υ + Δυ. We define the function

np tð Þ ¼ lim
Dt!0

Dnp
Dt

¼ dnp
dt

: ð5:25Þ
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To understand the meaning of this equation, suppose that the function n(υ) has,
for example, the behavior shown in Fig. 5.6. The shaded area represents the number
dN of molecules per unit volume with velocity between υ and υ + dυ. From
Eq. (5.25), we have, obviously,

dnp ¼ np tð Þdt; ð5:26Þ

which, geometrically, is the shaded area in the figure (consider that the ordinate, N,
varies only by infinitesimals inside the interval dυ that is itself infinitesimal).

If we know np(υ), we know several details of the system. For example, if we
want the number of molecules (per unit volume) with velocities between υ1 and υ2,
we just have to calculate the integral

R t2
t1
np tð Þdt, if we want the number of

molecules with velocity larger than υ1, we calculate the integral
R1
t1

np tð Þdt, and so
on. Notice, in particular, that the total number of molecules per unit volume, namely
with whatever velocity, is

N ¼
Z1
0

np tð Þdt: ð5:27Þ

np(υ) being a number per unit volume and unit velocity interval, its physical
dimensions are np

� � ¼ 1
L3 L/Tð Þ ¼ L�4T.

The velocity distribution function is defined as np(υ) divided by the number of
molecules per unit volume, namely

f tð Þ ¼ np tð Þ=N: ð5:28Þ

Clearly, it is

Z1
0

f tð Þdt ¼ 1: ð5:29Þ

n
p
(υ)

υ υυ+dυ

Fig. 5.6 A velocity
distribution function
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We say that the function is normalized, meaning that its integral over its entire
domain is one. The quantity f(υ) dυ has two meanings that are strictly connected
with one another. The first meaning is to be the fraction of molecules with velocity
between υ and υ + dυ. We recall that, by definition, the probability of an event is
the ratio between the number of cases favorable to the event and the total number of
cases. Then, we ask what the probability is that a molecule chosen at random has
velocity between υ and υ + dυ. We immediately see that the probability of this
event is just f(υ)dυ. The function f(υ) becomes a probability when multiplied by dυ.
For this reason, it is said to be a probability density. Its physical dimensions are the
reciprocal of velocity.

5.5 The Ideal Gas in a Force Field

In this section, we shall consider a gas in thermal equilibrium in the field of the
weight force. The mass and number densities are larger at lower altitudes than at
higher. We shall find the distribution of the molecules in elevation, assuming
temperature to be the same at all points of the gas. This is not really so in the earth’s
atmosphere, where the temperature diminishes with increasing altitude, and in
which winds exist. However, up to altitudes of 10 km, the temperature usually
decreases by about 6 K/km, or, in relative terms, about 3 %/km, which we can
neglect in limited elevation intervals in absence of strong winds.

Let us consider a vertical isothermal column of section S of ideal gas under the
action of its weight. The system is in thermodynamic equilibrium (in particular,
there is no wind). We consider a gas of equal molecules of mass m. We take a
vertical coordinate axis z vertically upward. The gravity acceleration is g (directed
as −z). The number of molecules per unit volume in the generic layer between z and
z + dz is the numeric density at z, say n(z), times the volume of the layer, S dz.

The layer is in equilibrium. Consequently, the resultant force acting on it is zero.
The forces are: (1) the weight, which is the number of molecules in the layer n(z)
Sdz, times the mass of a molecule m times gravity acceleration, namely n(z)Sm gdz
directed vertically downward. (2) The pressure force on the lower face (elevation
z) Sp(z), vertically downward, (3) the pressure force on the upper face (elevation
z + dz) S p(z + dz), vertically downward. At equilibrium: �Sp zþ dzð Þþ Sp zð Þ�
np zð ÞSmgdz ¼ 0. We immediately get

dp
dz

¼ �mgnp zð Þ: ð5:30Þ

The two functions, numeric density np(z) and pressure p(z), are linked by the
state equation. Indeed, let us consider a generic volume V and indicate with n the
number of moles it contains. The number of molecules per unit volume is np(z) = n
(z)NA/V. The state equation of the ideal gas
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pV ¼ nRT ð5:31Þ

can be then written as

p zð Þ ¼ n zð Þ
V

RT ¼ np zð Þ
NA

RT

or

p zð Þ ¼ np zð ÞkBT :

We substitute this equation in Eq. (5.30), obtaining

dnp zð Þ
dz

¼ � mg
kBT

np zð Þ: ð5:32Þ

This differential equation can easily be integrated into separating variables,
namely writing it as

dnp zð Þ
np zð Þ ¼ � mg

kBT
dz; ð5:33Þ

which only contains, on the left-hand side, the function np(z). Integrating, we have

ln np zð Þ ¼ �mgz
kBT

þ const ð5:34Þ

where const is the integration constant, which we do not need to specify now.
Finally, taking the exponential of both sides, we get

np zð Þ ¼ np0e
�mgz

kBT ð5:35Þ

where np0 is now the integration constant. We immediately see that its meaning is to
be the numeric density at z = 0, namely np0 = np(0).

Figure 5.7 shows the numeric density distributions in elevation for two gases of
different molecular mass, H2 and O2, at the same temperature. Both distributions are
exponential. With increasing elevation, the gas of larger molecular weight rarefies
sooner. The real atmosphere cannot be considered isothermal in such an elevation
interval, but the ratio of hydrogen to oxygen density does diminish with increasing
elevation.

We notice that the expression mgz in Eq. (5.35) is just the potential energy of a
single molecule, in the field force of the weight. The argument we made to reach
Eq. (5.35) is valid for any field of forces with potential energy Up(z). The numerical
density is given by

182 5 Microscopic Interpretation of Thermodynamics



np zð Þ ¼ np0e
�Up zð Þ

kBT ð5:36Þ

where np0 = np(0) is the integration constant. This is a particular case of a general
and very important expression, called a Boltzmann distribution, of position, in this
case. We shall encounter more cases in the subsequent sections.

Number density cannot be easily measured, but the pressure, which is propor-
tional to it, can. Clearly, the elevation dependence on pressure is

p zð Þ ¼ p0e
�Up zð Þ

kBT ð5:37Þ

with p0 = p(0). We finally observe that np(z) is proportional to the probability of
finding a molecule at elevation z, which we call f(z), namely the position distri-
bution function. In practice, one is often interested in the ratio of probabilities,
namely, in this case, the ratio of the probabilities of finding a molecule at two
different elevations, say z2 and z1. This is given as

f z2ð Þ
f z1ð Þ ¼

e�
Up z2ð Þ
kBT

e�
Up z1ð Þ
kBT

¼ e�
Up z2ð Þ�Up z1ð Þ

kBT ð5:38Þ

which is the ratio of the Boltzmann factors or (last term) e raised to the power equal
to the opposite of the potential energy difference divided by kBT.

As we have already noted, the atmosphere is not isothermal at all. In addition, as
is well known, temperature and pressure continuously change over time. However,
their average values are assumed to define the so-called standard atmosphere.
Table 5.2 reports the values of temperature, pressure and density of the standard
atmosphere as functions of elevation.

H2

O2

elevation (km)

n
p
(z)/n

p0

1.0

0.5

0
0 20 40 60 80

Fig. 5.7 Numeric density
relative to sea level of H2 and
O2 versus elevation in an
isothermal atmosphere
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Notice that, in the table, pressures are given in hPa. This unit is commonly used
in meteorology, because it is rather close to the torr = 1.33 hPa. The torr is the
pressure of a mercury column 1 mm in height and is also called the “mm Hg”. It is
an old unit, recalling when pressures were measured with mercury barometers. It is
still used, in particular, for blood pressure.

Consider now the general case in which the potential energy of the molecule is a
function of the three coordinates, say Up(r), where r is the position vector. The
distributions at the x and y coordinates are obtained with arguments identical to
those we have just developed. We can say that the probability of finding a molecule
in the infinitesimal volume dx dy dz at the position vector r is given by

f rð Þdxdydz ¼ f0e
�Up rð Þ

kBT dxdydz: ð5:39Þ

The function f(r) is the probability per unit volume (probability density) of
finding a molecule in the given position or, equivalently, with a given potential
energy.

5.6 The Boltzmann Law for Kinetic Energy

In the last section, we found the molecules’ position distribution function in a force
field. We shall now find their velocity distribution function, which we indicate with
f(v) or, more explicitly, f(υx, υy, υz). This function is the probability of finding in the
unit volume a molecule with an x-component of velocity between υx and υx + dυx, a
y-component between υy and υy + dυy and a z-component between υz and υz + dυz.
Similar to the case of the potential energy, such a molecule has a definite kinetic
energy, Uk vð Þ ¼ 1

2m t2x þ t2u þ t2z
	 
 ¼ 1

2mv
2. The relationship between velocity

distribution function and kinetic energy is equal to that between position

Table 5.2 Standard atmosphere temperature, pressure and density versus elevation

Elevation (km) Temperature (°C) Pressure (hPa) Density (kg m−3)

0 15 1013 1.225

1 8.5 899 1.111

2 2 795 1.007

3 −4.5 701 0.909

4 −11.0 617 0.82

5 −17.5 540 0.737

6 −24.0 472 0.66

7 −30.5 412 0.591

8 −37.0 357 0.527

9 −43.5 308 0.467

10 −50.0 264 0.414
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distribution function and potential energy Eq. (5.39). We shall now prove the
probability of finding a molecule in the infinitesimal volume in the “velocity space”
between υx and υx + dυx, υy and υy + dυy and υz and υz + dυz

f vð Þdtxdtydtz ¼ f0e
�Uk vð Þ

kBT dtxdtydtz ð5:40Þ

where, as usual, f0 is a constant.
Equations (5.39) and (5.40) show that both probabilities are proportional to the

Boltzmann factor. Its exponent is, in both cases, the relevant energy, potential or
kinetic, divided by the same quantity (with the dimensions of energy).

We continue considering an ideal gas in thermodynamic equilibrium at tem-
perature T. We start by finding the distributions of the vertical component of
velocity, υz. We once again consider a vertical column of gas of section S under the
action of weight. Equation (5.36) gives the position (elevation) distribution n(z).
The motion of the molecules is completely disordered. In particular, there is no
privileged direction. As is well known, the projections of the motion of a molecule
on the axes are independent of one another. We then fix our attention on the motion
along z and forget about the other components, which exist but are irrelevant.

We ask how many molecules per unit volume at a given height z have the
z component of their velocity between υz and υz + dυz. This number divided by the
total number per unit volume is f(υz)dυz, where f(υz) is the distribution function. An
important theorem of statistical mechanics, of which we will not give a demon-
stration, states that the distribution function f(υz) depends only on temperature, and
not, in particular, on z. At higher elevations, for example, the density of molecules
diminishes, but their velocity distribution does not vary.

We now express the (obvious) fact that the probability of finding a molecule with
any velocity is one. In formulae,

Zþ1

�1
f tzð Þdtz ¼ 1: ð5:41Þ

Let us now consider a horizontal plane cutting the column at the height z. Let us
fix our attention on the molecules with velocity between υz and υz + dυz, with υz > 0
(going up). How many of these molecules will cross the plane in the time interval
between t and t + dt? These are the molecules that, at time t, are below the plane at
a distance less than or equal to that which they can cross in dt. This distance is υzdt.
The volume containing them is Sυzdt. Their number is, thus, this volume times the
number per unit volume at the considered height [n(z)] times the fraction of them in
the considered velocity interval [f(υz)dυz], namely Sυzdt n(z)f(υz)dυz.

Let us follow our molecules for a while. After some time, they are at a greater
height, say z′. Their velocity is smaller, say, t0z, and the velocity interval is changed
to dt0z. The number of molecules crossing upward through the horizontal plane at z′
in dt, according to the argument we just made, is St0zdtnðz0Þf ðt0zÞdt0z. But these are
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just our molecules, because we are at the statistical equilibrium; how many are
arrivals and how many are departures, np zð Þf tzð ÞdtzStzdt ¼ np z0ð Þf t0z

	 

dt0zSt

0
zdt.

We can simplify and write

np zð Þf tzð Þdtztz ¼ np z0ð Þf t0z
	 


dt0zt
0
z: ð5:42Þ

We now apply the energy conservation principle. Considering that the x and
y components of the velocity do not vary, we write

1
2
mt2z þmgz ¼ 1

2
mt02z þmgz0: ð5:43Þ

Differentiating both sides with z and z′ fixed, we have

tzdtz ¼ t0zdt
0
z: ð5:44Þ

Equation (5.42) becomes

np zð Þf tzð Þ ¼ np z0ð Þf t0z
	 


: ð5:45Þ

But we do know n(z), Eq. (5.36), and can write

np z0ð Þ
np zð Þ ¼ f t0z

	 

f tzð Þ ¼ e�

mg z0�zð Þ
kBT : ð5:46Þ

But, for the energy conservation, the potential energy difference is equal and
opposite to the kinetic energy difference, and we can write

f t0z
	 

f tzð Þ ¼ e�

1
2mt

2
z�1

2mt
02
z

kBT ð5:47Þ

and finally

f tz
	 
 ¼ f0e

�
1
2mt

2
z

kBT ð5:48Þ

where, as usual, f0 is a constant that we do not need to determine now.
Notice that gravity acceleration does not appear in the final result. Indeed, the

velocity distributions are completely independent of the force field, which might not
exist at all. In our argument, the weight field played a purely ancillary role in
helping us to establish a relation between the elevation distribution, which we
knew, and the velocity distribution, which we wanted to find. The physical
mechanism determining the velocity distribution at equilibrium has nothing to do
with the field, being the result of the collisions between molecules.
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Also note that we implicitly assumed that molecules passing from z to z′ do not
collide. This hypothesis can be held because, the motion being disordered, if a
molecule changes velocity, there is, on average, another one taking its place.

Clearly, the distributions of the other velocity components are identical, namely

f txð Þ ¼ f0e
�

1
2mt

2
x

kBT ; f ty

� �
¼ f0e

�
1
2mt

2
y

kBT : ð5:49Þ

We see that the velocity component distributions are Gaussian with zero mean
value. Indeed, the number of molecules in one direction is equal to those in the
opposite one.

We can now, finally, determine the (composed) probability of finding a molecule
with an x-component of velocity between υx and υx + dυx, a y-component between
υy and υy + dυy and a z-component between υz and υz + dυz in the unit volume. It is
simply the product of the three, independent probabilities:

f tx; ty; tz
	 


dtxdtydtz ¼ F0e
� mt2x

2kBTe�
mt2y
2kBTe�

mt2z
2kBTdtxdtydtz

¼ F0e
� mt2

2kBTdtxdtydtz:

ð5:50Þ

Notice, in particular, that the velocity component distribution is independent of
the direction, as it should be. Otherwise, if some direction were more probable, we
should observe a collective motion in that direction.

5.7 Velocity Magnitude Distribution of Molecules

We shall now find the distribution of the velocity magnitude f(υ) of our gas
molecules. In other words, we must look for the fraction of molecules with speeds
between υ and υ + dυ is f(υ)dυ. We work in the “velocity space”, in which the axes
are the velocity components. We consider an infinitesimal element, as shown in
Fig. 5.8.

0

v

dυ
z

dυ x

dυ
y

υ
x

υ
y

υ
z

Fig. 5.8 An infinitesimal
element in the velocity space
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In the velocity space, the molecules having velocity in magnitude between υ are
υ + dυ are those whose representative vector has its head in the spherical shell of
radiuses υ and υ + dυ. The volume of the shell is 4πυ2dυ. From Eq. (5.50), the
number of molecules it contains is

dnp ¼ ae�
mt2
2kBTt2dt ð5:51Þ

where α is a constant, called the normalization constant, in which we have included
the factor 4π. The normalization condition is the condition that the total number of
molecules per unit volume must have a certain value. Let it be np. We must solve
the equation in α

np ¼
Z

dnp ¼ a
Zþ1

0

t2e�
mt2
2kBTdt:

The integral is a classic one, which can be found in the books in the form

Zþ1

0

x2e�x2dx ¼ ffiffiffi
p

p
=4: ð5:52Þ

Immediately, we obtain α and substitute in Eq. (5.51), obtaining

dnp ¼ 4pnp
m

2pkBT

� �3=2

t2e�
mt2
2kBTdt: ð5:53Þ

Dividing by the number of molecules np, we have the probability that a molecule
has a velocity between t and t + dt

f tð Þdt ¼ 4p
m

2pkBT

� �3=2

t2e�
mt2
2kBTdt:

This corresponds to the velocity distribution function

f tð Þ ¼ 4p
m

2pkBT

� �3=2

t2e�
mt2
2kBT : ð5:54Þ

This is the Maxwell-Boltzmann distribution and is shown in Fig. 5.9.
Let us discuss this distribution. It is the product of the square velocity υ2 and of

the Boltzmann factor of kinetic energy. The latter is the probability per unit velocity
space volume, the former is proportional to the available velocity space volume for
a given elementary interval of velocities dυ. This volume is very small when its
velocity is small, and grows with it. The factor υ2 dominates at small velocities,
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corresponding to an almost parabolic growth in probability. At higher velocities, the
decreasing exponential factor gradually takes over. The probability has a maximum,
υp in the figure, which is the most probable velocity (it is the mode of distribution).
Its value is obtained through the usual methods of calculus, which gives us

tp ¼
ffiffiffiffiffiffiffiffiffiffi
2kBT
m

r
: ð5:55Þ

The mean values of the velocity components are obviously zero, as we have
already noticed. Such is not the root mean square velocity (r.m.s. velocity, for
short), which is the square root of the mean of the square velocity. This important
quantity is obtained by computing the integral

trms ¼ 1
np

Zþ1

0

f tð Þt2dnp
2
4

3
5
1=2

¼ 4p
np

m
2pkBT

� �3=2 Zþ1

0

t4e�
mt2
2kBTdt

2
4

3
5
1=2

:

The result is

trms ¼
ffiffiffiffiffiffiffiffiffiffi
3kBT
m

r
: ð5:56Þ

Comparing this with Eq. (5.55), we see that the r.m.s. velocity is larger than the
most probable velocity. This is a consequence of the asymmetry of the distribution
function that has a long “tail” on the higher velocity side. Notice that both averages
are inversely proportional to the square root of the molecule mass. Consider two
gases at the same temperature, N2 and He, for example. The smaller mass mole-
cules (He) move faster than the heavier ones (N2). The average kinetic energies are
the same for the two gases at the same temperature.

Let us consider the orders of magnitude. A relevant quantity is kBT, which has the
dimension of energy. Its value at room temperature, T = 300 K in a round figure, is

kBT ¼ 4:1� 10�21 J: ð5:57Þ

rsm

f (υ)

υυp
υ0

0

Fig. 5.9 The
Maxwell-Boltzmann velocity
distribution of ideal gas
molecules
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This is an atomic scale quantity and is convenient to express in electronvolts. We
defined it in Sect. 4.1. We recall its value in joules:

1 eV ¼ 1:6� 10�19 J: ð5:58Þ

In this unit, at room temperature, we have

kBT ¼ 25:6 eV ffi 1=40 eV: ð5:59Þ

This is an important value to remember. Another relevant number is the tem-
perature at which kBT = 1 eV. Calling it T(1 eV), it comes out as

T 1 eVð Þ ¼ 11; 600 K: ð5:60Þ

Let us evaluate, in order of magnitude, the r.m.s. velocity at the room temper-
ature of the lightest gas, H2. Neglecting the electron contribution, the mass of the
molecule is two proton masses, Eq. (1.5), namely

mH2 ffi 3:3� 10�27 kg ð5:61Þ

and thus we have tH2
rms ¼ 3� 4:1� 10�21= 3:3� 10�27ð Þ½ �1=2¼ 1:9 km/s.

If we want the r.m.s. velocity for another gas at another temperature, we just
have to scale it with the root of the temperature to mass ratio. For example, for
silver (monoatomic molecule, A = 107.9) at 1000 °C (1273 K), we have
tAgrms ¼ 560 m/s.

Consider now a mixture of two or more gases in equilibrium. The average
kinetic energies of the molecules of the different gases are equal, but the r.m.s.
velocities are different, as our examples have just shown us. This is also true for a
particulate suspended in a gas. This can be approximated with a “gas” of micro-
scopic particles. In equilibrium, their average kinetic energy is the same as that of
the molecules, but, their masses being much larger, their r.m.s. velocities are much
smaller.

Question Q 5.1. Consider a particulate of equal spherical particles of 10 µm
diameter and density of 2000 kg/m3 in air at room temperature. Calculate the r.m.s.
velocity.

5.8 Experimental Controls

The results of the previous sections have been reached through theoretical argu-
ments. The conclusions can be considered valid only after having been checked by
the experiment. The experimental controls have been many. We shall discuss two of
them now.
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As we noticed at the end of the previous section, the thermal equilibrium
between two mixed “gases” may exist even if one of them is really a powder, a set
of microscopic corpuscles. At equilibrium, these particles have the same average
kinetic energy as the gas molecules. If the particle sizes are on the order of the
micrometer, they can be seen with a microscope and some characteristics of their
motion can be measured. In 1827, the botanist Robert Brown (Scotland, 1773–
1858) was using a microscope to observe grains of pollen of a plant (Clarkia
pulchella, to be exact) suspended in water. He observed minuscule particles, ejected
by the pollen grains, executing a continuous, chaotic, jittery motion. He thought, at
first, that he was observing living beings, but was soon able to exclude that pos-
sibility after observing the same phenomenon in inorganic particles of similar size.
This is called Brownian motion.

Brownian motion was theoretically studied by Albert Einstein (Germany 1879—
USA 1955) in 1905 and Marian Smoluchowski (Austria, 1872–1917) in 1905-1906.
We summarize the interpretation as follows. The diameters of the particles in sus-
pension, on the order of a micrometer, as we mentioned, are still enormous, four
orders of magnitude larger when compared to water molecules, which are about half
a nanometer across. Each of the Brown particles is continuously hit by the water
molecules at the considerable rate of about 1020 per second. The received impulses
have all the directions, but their effects do not always average out at zero if taken in
short enough intervals of time. In this case, there might be more collisions on one
side than on the other and the particle will jump in the unbalanced direction. These
fluctuations become more important the smaller the size of the particle in suspension.

This phenomenon was quantitatively studied by Jean Baptiste Perrin (France,
1870–1942) in 1908. To this purpose, he had to prepare micrometer-size particles,
all with the same diameter and the same mass. He succeeded by rubbing gamboge
(a pigment extracted from the resin of tropical plants of the genus Garcinia)
between his hands under water. He obtained an emulsion that, under a microscope,
appeared to contain particles of different sizes. To produce a uniform emulsion
(consisting of equal grains), he used a process of fractional centrifugation, profiting
off the fact that the parts that settle out first are richer in larger grains. This was not
at all an easy process. Indeed, after several months of careful work, Perrin was only
able to obtain a few decigrams of particles of the desired size from one kilogram of
gamboge. Experiments could then start. With the microscope, he observed a
completely disordered motion, which never slowed down nor stopped. He defined it
as eternal and spontaneous. He also observed that the smaller spheres moved faster
than the larger ones.

Perrin designed and performed a series of experiments to check whether or not
the system of particles behaved as foreseen by statistical mechanics. In the first
experiments, he studied the equilibrium distribution of the emulsion of spherules
under the action of gravity. It was exactly what was foreseen in Eq. (5.35).
Knowing the mass of the spherules and the temperature, he could extract a value of
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the Boltzmann constant from the data and hence of the Avogadro number. Perrin
repeated the experiment, changing the mass of the granules, the intergranular liquid
and the temperature. In all of them, the resulting value of the Avogadro number was
the same, within the experimental uncertainties.

Further tests had to be done on the velocity distribution. He knew, however, that
these could not be directly measured, because the granules were changing velocity
in extremely short time periods. To get around the problem, Perrin put the method
theoretically proposed in 1905 by Einstein into practice. Let us fix our attention on
one spherule. We fix a certain time interval Δt and measure the distances Δl between
the positions of the particle in a sequence of such intervals. Notice that these are not
the distances traveled by the spherule in those intervals, because, during this time, it
moved in a random zigzag, rather than straight. Perrin projected the microscope
image onto a sheet of paper with the so-called camera lucida technique. He worked
with an assistant, one of them marking the paper with a “dot” to indicate the
position of the spherule under observation every, say, 30 s whenever the other, who
was looking at the chronometer, would call out for him to do so. One such “dotting”
is shown in Fig. 5.10. The radius of the spherule was 0.53 µm. The positions were
taken every Δt = 30 s. Einstein had given the relation between the velocity distri-
bution and Δl distribution, and Perrin was able to show that the gamboge particles
suspended in “gas” behaved as foreseen by statistical mechanics. Once more, the
value of the Avogadro number extracted from the data was the correct one.

Thanks to further developments in the technique, Perrin was also able to
experimentally verify the energy equipartition between translational and rotational
kinetic energy. The difficulty was that the Einstein’s formula predicted a mean
rotation of approximately 8° per 1/100 of a second for a sphere of 1 µm diameter.
This is too rapid to be measurable. Perrin overcame the difficulty by producing
bigger spheres of mastic of about 12 µm in diameter. They were limpid like glass
spheres. The rotation was not observable. Some of them, however, contained a
visible defect that could be used as a mark by which the rotational Brownian
movement could be perceived. He noted at equal intervals of time the successive

50 μm

50
 μ

m

Fig. 5.10 Positions of a
0.53 µm diameter spherule in
water every 30 s
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positions of a certain defect, from which it was possible to find the orientation of the
sphere at each of these moments and to calculate its rotation from one moment to
the next. He found the average rotation kinetic energy per degree of freedom to be
equal to the translational one within the experimental accuracy of about 10 %.

The direct experimental verification of the gas kinetic model became possible
starting in 1911, when Lois Dunoyer (France, 1880–1963) produced the first
molecular rays or molecular beams. The possibility itself of producing the beams is
a direct proof of one fundamental assumption of the theory, namely that, in gases,
the molecules move in straight lines until they collide with another molecule or a
wall of the containing vessel.

The next step, credited to Otto Stern (Germany, 1892–1969), was the direct
measurement of the velocities. A typical arrangement is shown in Fig. 5.11. The
oven F contains the gas under study at a high temperature T. A small aperture in the
wall of the oven emits molecules in a range of directions. A second aperture, selects
one direction and produces the molecular beam. The beam is in a vacuum, to avoid
its molecules hitting any environmental gas molecules. After the second slit, there is
a velocity selector. In its simplest form, this is made out of two disks, one separated
from the other at a distance l of several centimeters. The disks are on the same axis,
have two slits out of phase by an angle h, and rotate with angular velocity x. The
detector R placed beyond the slits, can be reached only by the molecules whose
velocity is such that the time taken to go through the distance l is exactly the same
as that taken by the disks to rotate by the angle h. Namely, it should be x/h = t/l. In
other words, only the molecules with speed t = lx/h, within an interval determined
by the width of the slits, are detected.

The experiment is done taking data with a series of angular velocity values,
corresponding to the same number of molecule velocities, in the above-mentioned
(small) interval. In the next section, we shall discuss a detector for a particular type
of molecule, the alkali metals. In any case, the detector delivers an electric current,

ω

l

F

T R

To pump

θ

Fig. 5.11 Molecular beam
experiment for measuring the
molecular speeds
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whose intensity is proportional to the number of molecules on the detector per unit
time. This number is proportional to the number of molecules per unit volume with
velocities in the selected interval, multiplied by the velocity itself. If kinetic theory
is correct, the detector’s current intensity I should then be

I tð Þ ¼ at3e�
mt2
2kBT : ð5:62Þ

where α is a proportionality constant that we do not need to determine. Notice the
extra power of velocity in front of the exponential.

Figure 5.12 shows the results of a precise measurement made by R.C. Miller and
P. Kausch in 1955.1 They developed a velocity selector based on the same principle
as the one we described. In brief, instead of two disks, they used a cylinder with a
helical slit, as if it were a continuous series of disks instead of two at a distance. The
detector used a hot tungsten wire, based on the surface ionization effect, which we
shall describe in the next section. The curve in the figure is Eq. (5.54) (normalized
to the data) as a function of the selected velocity divided by its most probable
calculated value υp. The temperature was T = 466 ± 2 K, and the pressure reported
in the insert in the figure is the pressure of the K gas in the oven. The calculated
value of the most probable velocity was υp = 628 ± 2 m/s, while the measured one
was υp = 630 ± 2 m/s. As one can see, the agreement between theory and data is
excellent. However, looking carefully, one notices that, at the lowest velocities, the
measured points are systematically a bit below the curve. This is an instrumental
effect, due to the collisions of the potassium molecules when they are in the oven.
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Fig. 5.12 Velocity
distribution measure by R.C.
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beam

1R.C. Miller and P. Kausch, Phys. Rev. 99 (1955) p. 1314.
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5.9 Applications of the Boltzmann Law

The Boltzmann law states that, in a macroscopic system in equilibrium at the
temperature T, the ratio between the number of microscopic components (molecules
or others) per unit volume np1 with energy U1 and number per unit volume np2 with
energy with energy U2 is

np1=np2 ¼ e�
U1�U2
kBT : ð5:63Þ

The Boltzmann law is extremely important, because it appears ubiquitously in all
the statistical systems at equilibrium. In a number of circumstances, the Boltzmann
factor, as the exponential on the right-hand side is called, is enough to describe the
orders of magnitude of a problem. If one considers the details, this factor might be
multiplied by some function of temperature. However, in practice, the exponential
varies with temperature much quicker than any other function, dominating the
behavior of the system. We shall now consider several examples. Some of them
involve rather complicated situations, but we shall limit ourselves to rough eval-
uations. This type of evaluation is often extremely useful, especially in a complex
problem.

Evaporation of a liquid.

Consider a liquid and its vapor in a container in equilibrium at the temperature
T. We have already discussed the problem from the thermodynamic, hence
macroscopic, point of view. Let us discuss it now from the mechanical statistical,
namely microscopic, point of view. We shall find that the Clapeyron equation is a
consequence of classical mechanics.

Let npg and npl be the number of molecules per unit volume in the vapor and
liquid phases, respectively. In a closed system, their sum, npg + npl, is obviously a
constant. The system is in statistical equilibrium. At any time interval, some
molecules in the liquid have enough kinetic energy and are close enough to the
surface to skip into the vapor (winning the attraction of their “liquid sisters”), while
quite a few vapor molecules, on average, fall into the liquid.

Let W be the work necessary to take a molecule, with zero kinetic energy, from
inside the liquid to outside of it. This is the energy difference between outside and
inside. The Boltzmann law says that the ratio of the numbers of molecules per unit
volume outside and inside is the Boltzmann factor:

npg=npl ¼ e�
W
kBT : ð5:64Þ

If we want to be rigorous, this expression does not tell us very much. Suppose,
for example, we want to know the details of the dependence on temperature of npg,
and consequently of the vapor pressure to which it is proportional. We then write
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npg Tð Þ ¼ npl Tð Þe� W
kBT :

where the temperature dependence has been explicitly written. On the right-hand
side, npl is the number of molecules in the liquid phase per unit volume. This
quantity depends on temperature, because the volume of the liquid depends on
temperature and the Boltzmann law does not tell us how. However, if we are far
from the critical point (where gas and liquid densities are equal), then it is npg ≪
npl, namely the exponential factor is very small. To put it another way, the exponent
is large in absolute value

W
kBT

� 1: ð5:65Þ

Under these conditions, a small variation in temperature makes the Boltzmann
factor vary strongly, dominating, in this way, the temperature dependence of ng.
Consider water, for example. Its vaporization molar heat is 40.5 kJ/mole. This
means that 40.5 kJ are needed to take an Avogadro number of molecules outside
the liquid. The work W for a single molecule is then 40.5 kJ/NA. Expressing energy
in electronvolts, we find W = 0.4 eV. Notice that W is substantially the depth of the
van der Waals potential. The exponential factor in Eq. (5.65) at room temperature is

e�
W
kBT ¼ e�17 ¼ 4:1� 10�8: ð5:66Þ

which is very small.
In practice, if we are interested in the behavior of the system in broad terms, we

can consider nl constant, at least in a limited temperature range, and write

npg Tð Þ ffi const e�
W
kBT : ð5:67Þ

Let us now look at what thermodynamics specifically says. This is the Clapeyron
equation for one mole. If p is the saturated vapor pressure, Vg and Vl the molar
volumes of vapor and liquid, respectively, and QV the molar latent heat of vapor-
ization, the equation is

dp
dT

¼ QV

T Vg � Vl
	 
 : ð5:68Þ

Under the conditions discussed in Sect. 5.7, the equation can be (approximately)
integrated, obtaining

p ¼ p0e
�QV

RT ¼ p0e
� QV

NAkBT : ð5:69Þ

Considering that the vapor pressure is proportional to the numeric density of the
molecules in vapor gas npg, we see that Eqs. (5.67) and (5.69) say the same, with
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QV ¼ WNA: ð5:70Þ

Namely, the molar vaporization heat is the work to be done against the van der
Waals forces to take an Avogadro number of molecules (one mole) out of the liquid
in the gas. Let us now compare the two approaches, thermodynamic and statistical
mechanic, which led to the same result. Thermodynamics allows us to find the
Clapeyron equation Eq. (5.68), which is exact. In addition, it holds for the entire
phase transition, using the proper parameters. The latter, namely the molar volumes
of the two phases, cannot be foreseen, not even in principle. Statistical mechanics,
on the other hand, has given us, with very simple arguments starting from
mechanics, the approximate Eq. (5.67). In such a way, it has shown the physical
meaning of the equation. In addition, it allows us to calculate, at least for simple
systems, QV and Vg–Vl starting from knowledge of the intermolecular forces. The
two approaches are complementary. Thermodynamics is more powerful, especially
for complex systems, but it tends to hide the physical meaning.

Thermionic emission.

As we have already stated, metals are solid bodies having microcrystalline
structure. Namely, they are aggregates of microcrystals that are invisible to the
naked eye but can be seen with a microscope. The atoms of the microcrystals are
not neutral, but ionized, because some (one or two, in general) of their electrons are
not bound to “their” atom, but are free to move about inside the crystal. They
cannot, however—at least in a large majority as we shall now see—abandon crystal
entirely, being globally attracted by the ions. All these electrons form a sort of gas,
which makes the metal a good conductor, both of heat and electricity. They are,
consequently, called conduction electrons.

The work that is necessary to take an electron from inside to outside the metal, at
zero kinetic energy, is the work function, which we shall again call W. It is char-
acteristic of the metal. Its magnitude is on the order of the electronvolt.

Consider the metal at temperature T. This is also the temperature of the con-
duction electrons’ gas. Some of these, those hotter and closer to the surface, may be
able to jump out. To have equilibrium, as in the case of evaporation, the system
must be closed inside a container and no other gas must be present. We can make a
wire of the metal, close it inside a glass envelope and evacuate it. A gas of free
electrons, namely those not bound to the metal, forms inside the envelope. Their
density is extremely small at normal temperatures but increases as the temperature
increases, as we shall see. In every time interval, there are electrons coming out of
and electrons falling inside the metal. The two rates are equal at the statistical
equilibrium. This situation is very similar to evaporation. We can say that the
number density of electrons in the “gas” npg depends upon temperature according to
the Boltzmann law
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npg Tð Þ ffi np0 e�
W
kBT ð5:71Þ

where np0 is the number of electrons in the metal per unit volume. Once more, it is
approximately constant, namely its variations in regard to temperature are much
smaller than those of the Boltzmann factor. To be precise, np0 is not rigorously
constant because the volume depends on temperature. The effect we are considering
is called the thermionic effect. It is exploited in the electronic valves.

We can do an experiment to control Eq. (5.71) as follows. We make a thin wire
of the metal under study, a few centimeters long and a couple of millimeters in
diameter, we fold it and position it on the axis of the structure, as in Fig. 5.13. We
place the folded wire inside of a metallic cylinder. We enclose the structure in a
glass envelope, having two conductors joined to the wire and cylinder coming out
of the glass container, as shown in Fig. 5.13. We evacuate the air and seal the
envelope hermetically. We have thus built a thermionic diode. We get an electric
current through the wire to heat it at a high temperature, on the order of 1000 K.
The work functions are typical, on the order of 1 eV corresponding to
kBT = 11,600 eV. The Boltzmann factor is on the order of e−10. Consequently, in
this case as well, it dominates the temperature dependence.

In our experiment, we do not establish the equilibrium. Instead, we apply a
potential difference between the wire (the cathode) and the small tube (the anode),
generating an electric field in the space between them. The corresponding force
accelerates the electrons as soon as they exit the wire and brings them to the anode.
We measure the current leaving the cathode. In this cylindrical geometry, which is
used in practice, the electron density in the gas npg is not the same as in the entire

Fig. 5.13 Thermionic diode
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volume, but is a decreasing function of the distance from the cathode. To make the
argument simpler, let us assume a plane geometry, namely that the cathode and
anode are two parallel planes of area A. Assume also that all electrons have the
same velocity υ. The number of electrons leaving the cathode in one second is their
number in a parallelepiped of base A and height υ, namely npgυA. The current
intensity is this number times the electron charge qe. In reality, electrons have
different velocities, as we know, and we must take a suitable average 〈υ〉, which we
do not need to specify. Finally, we can write for the current intensity

I ¼ const qe th iAe� W
kBT : ð5:72Þ

Once more, the equation does not tell us everything, because < υ > is an
unknown function of temperature. The corresponding experimental law was found
by Owen Williams Richardson (UK, 1879–1959) in 1901. This was only four years
after the discovery of the electron by Joseph John Thomson (UK, 1856–1940). The
Richardson law is

I ¼ const AT2e�
W
kBT ð5:73Þ

which contains an extra factor T2. This factor is important if we are looking at the
details, but its temperature dependence is much slower than that of the Boltzmann
factor.

Surface ionization.

The detection of an atomic or molecular beam (such as the ones we have
mentioned in Sect. 5.8) presents some difficulties. These are due not only to the fact
that molecules are neutral, but also to the fact that the characteristics of the beam
molecules do not differ much from those of the residual gas that is always present,
even in an evacuated apparatus. To understand the orders of magnitude, consider
that the beam densities might be typically on the order of 1014 atoms/m3 and that
velocities are on the order of 500 m/s, which is on the same order of the residual gas
molecules’ velocity. If the vacuum residual pressure is, for example, 10−9 Pa, the
molecule density is 3 × 1015 molecules/m3, which is on the same order as the
beam.

A particularly lucky case is that of alkali metals, which can be detected with
efficiency close to 100 %. This is due to the circumstance that, for them, one of the
electrons is only weakly bound to the atom (for this reason, they are monovalent, as
we already mentioned). This is called valence electron. The binding energy, namely
the work to be done to take the electron off, is of a few electronvolts. This is the
ionization energy I (for example, I = 5.2 eV for Li, 5.1 eV for Na, 4.3 eV for K).

On the other hand, the work function W of certain metals, like tungsten and
platinum, is particularly large (W = 6 eV for W), larger than the ionization energy
of the alkalis. As a consequence, if an alkali atom is very close on the atomic scale,
namely by a fraction of nanometers, to the tungsten surface, it becomes
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energetically favorable for its valence electron to jump into the metal. This happens
with a certain probability, which is, once more, given by the Boltzmann factor. In
other words, the ratio between the number of atoms that ionizes n p1 and the atoms
that remain neutral n p0 is

np1=np0 ¼ e�
I�W
kBT : ð5:74Þ

Notice that, in this case, W > I; hence, the exponent is positive and the larger
part of the electrons goes to the tungsten. This is the surface ionization
phenomenon.

To detect an alkali atom beam, we prepare a tungsten wire with a very clean
surface and bring it to a high temperature (otherwise, the atoms get absorbed). We
position a small metallic plate near to the wire and give it a negative electric
potential. The beam atoms hit the wire, a large majority leaving an electron and
bunching back as positive ions, and are attracted by the plate. The effect is an electric
current that we can measure. Let us evaluate the order of magnitude of its intensity.
Assuming 100 % efficiency, the current intensity is the number of ions of the beam
per unit volume times the velocity of the ions times the area of the detecting wire
times the charge of the ion. With the above mentioned values of density and velocity
and a wire of 0.1 mm diameter 1 cm long (area 10−6 m2), we have
I = 1014 atoms/m3 × 5 × 102 m/s × 10−6 m2 × 1.6 × 10−19 = 8 nA, which, as a
current intensity, is small but not difficult to measure.

Gas molar heats

We conclude the section by giving a few hints as to the quantum mechanical
explanation of the freezing out of the degrees of freedom and consequently of the
molar (or specific) heats we discussed in Sect. 5.2. Let us fix our attention on the
diatomic molecule, specifically on its oscillations. We represent the molecule as a
harmonic oscillator. Classically, with continuity, the oscillation energy can have
any value from a certain minimum, say E0, and 0. The minimum energy occurs
when the two atoms stand with zero velocity at the distance at which the potential
energy is a minimum, and the maximum energy, zero, occurs when they break
apart. Quantum mechanics tells us that this is not true. Energy is “quantized”. The
total energy of the oscillator can only have discrete values differing one from the
next by the well-defined quantity ΔU. In other words, the energies the quantum
harmonic oscillator can have are in the sequence

U0; U1 ¼ U0 þDU; U2 ¼ U0 þ 2DU; . . . ð5:75Þ

The Boltzmann law, however, still holds. Let us consider the state of minimum
energy U0 and that of energy U1 immediately following it. The ratio of the prob-
abilities of a molecule being in the two states is, once more, given by the Boltzmann
factor, namely
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f1
f0
¼ e�

U0 þDU
kBT

e�
U0
kBT

¼ e�
DU
kBT : ð5:76Þ

If the temperature is low enough, such that

DU � kBT ð5:77Þ

then the absolute value of the negative exponent on the right-hand side of
Eq. (5.76) is large and the exponential is extremely small. Consequently, the
probability that the oscillator can have the smallest energy larger than the minimum
is extremely small. Clearly, this is even truer for the higher energies. If we now
consider a set of a large number of identical oscillators, we see that practically all of
them must be in the lowest energy state. The degrees of freedom internal to the
molecule cannot be excited, because they are “frozen”.

Let us look more closely at the processes. The energy can also “equipart” to the
internal motion only if energy can be transferred in the collisions from translation or
rotation energy to vibrations. But, for quantum mechanics, there is a minimum
energy transfer, a quantum of energy, which is ΔU. Clearly, if the mean kinetic
energies of the translational and rotational motions, i.e., kBT, are much smaller than
the energy quantum, this, in practice, cannot happen. Classically, on the contrary,
energy can be transferred in any quantity, even minuscule, and equipartition always
happens. We see how the problem is in the very nature of classical physics, in
which natural quantities are continuous. Some of them, including energy, are not.
According to a Latin proverb, Natura non facit saltus = Nature does not make
jumps. But Nature does what she likes and indeed, facit saltus.

On the other hand, if the temperature is high enough, such that

DU 	 kBT ð5:78Þ

then kBT is much larger than the energy quantum ΔU and quantum mechanics tends
toward classical mechanics. The latter then gives correct predictions. We under-
stand now how classical mechanics predictions work better at high enough tem-
peratures. We profit from a very general statement. Quantum mechanics does not
show that classical mechanics is wrong. Quantum mechanics is valid over a much
wider range, but it includes classical mechanics, tending toward it under
well-defined conditions.

We have seen that the temperature limits of classical mechanics, the Debye
temperature, are different for different gases. The reason is that the energy quantum
ΔU is different for different gas molecules. This quantity is proportional (by a
fundamental constant called the Planck constant) to the proper oscillation frequency
of the molecule, given by Eq. (5.17) for a diatomic molecule. As a matter of fact,
the interatomic forces, and consequently the effective spring constant κ, do not
differ very much from one gas to another. However, the atomic masses, and con-
sequently the reduced mass µ, change considerably. As a consequence, the proper
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frequency is lower for the heavier gases and classical mechanics gives correct
predictions for them down to lower temperatures. The explanation of the limits of
classical mechanics for the molar heats of solids (Sect. 5.3) is similar.

5.10 Nature of Irreversibility

All thermodynamic processes can ultimately be reduced to the motions of their
molecules and atoms, namely to mechanical processes. We have learnt that, at the
microscopic level, all forces are conservative. As a consequence, all mechanical
processes at the molecular level are reversible. This seems to stand in contradiction
to the fact that the real thermodynamic processes are irreversible. We shall now see
that the contradiction is only apparent. Let us start by discussing two examples.

We build a simple pendulum, attaching a small sphere to a thin wire that we fix
to the ceiling of a box with adiabatic walls, as in Fig. 5.14a. The box, which is
closed off by insulating walls, also contains air. The system is in mechanical and
thermodynamic equilibrium. In particular, pendulum and air have the same tem-
perature. We take the pendulum out of its mechanical equilibrium position and let it
go. The system is no longer in equilibrium. The oscillations continue for a while,
but their amplitude gradually decreases, and finally, the pendulum comes to rest.
The system is back in mechanical and thermodynamic equilibrium. Measuring with
a sensitive thermometer, we find that the final temperature of the system is higher
than when we began.

Let us now consider the pendulum as a system of molecules, and compare its
status at its first passage through the equilibrium position, when all the macroscopic
energy is kinetic, with that at the final position. The macroscopic kinetic energy of
the body has disappeared, having transformed in the kinetic energy of the disor-
dered thermal motion of its molecules, as certified by the increase in temperature. If
we only consider the (macroscopic) mechanical energy, we think that the process
has dissipated energy, but when we consider the microscopic motion as well, we
see that energy was conserved. This is the first law of thermodynamics. Let us look

(a) (b)

Fig. 5.14 Statistical non-equilibrium states of systems of molecules. a Partially ordered motions
in a pendulum, b ordered motion in a box
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at the process from the point of view, so to speak, of the pendulum molecules.
Initially, their motion has two components, an ordered one in which all of them
have the same velocity due to the motion of the pendulum and a disordered one
corresponding to the internal kinetic energy. In the final state, the “ordered” kinetic
energy has transformed into kinetic energy of the disordered motion of the pen-
dulum and air molecules. Clearly, the initial energy can be distributed amongst the
huge number of molecules in an incredibly large number of equivalent ways. In
other words, the final state in which the motion of the pendulum has ceased can be
realized in a number of molecular states much, much larger than the initial state in
which a large fraction of energy is in the ordered motion.

The second example is a thought experiment, shown in Fig. 5.14b. A beam of
molecules enters through a hole in the wall of a container in which we had created a
complete vacuum. This is impossible in practice, but we are dealing with a thought
experiment. In the initial state, all the molecules move orderly in the same direction,
one after the other. The state is not of thermodynamic or statistical equilibrium.
After a certain number of molecules have entered, we close the hole. The molecules
will repeatedly hit the walls of the container. At the nanometric scale, any real
“plane” wall is not a plane at all, but shows bumps and hollows of different sizes,
shapes and directions. Consequently, each collision changes the direction of the
incoming molecule casually and unpredictably. Soon, the motion of the molecules
is completely disordered. They move around the entire container in all directions in
the chaotic motion of the ideal gas. If we repeat the experiment, we always obtain
the same result. The initial state can only be realized in a few molecular arrange-
ments, the final one in an enormous number of molecular positions and velocities.

The described processes are completely compatible with the mechanical
reversibility. Suppose we can operate on the system at a certain instant by leaving
all the molecules in their position and inverting all their velocity vectors. The
subsequent motion will be the exact original one running inversely. We might,
ideally, have shot a movie of the first process. If we were to play it backwards, we
would see the second process. Molecules will hit one another and the walls, but
after the exact same time that was passed since we closed the hole, all the molecules
would be moving in order in the same direction, exiting the hole one after the other.

The conclusion, a theorem proved by Boltzmann, is that the transition from a
thermodynamic non-equilibrium to the equilibrium state corresponds to the tran-
sition from a state that can be realized at the microscopic level in a small number of
ways to one that can be realized in an enormous number of ways. The thermo-
dynamic equilibrium state is the state with the maximum possible microscopic
realizations. We see that the second law of thermodynamics has a probabilistic
nature. In principle, the passage of heat from a colder to a hotter body and the
spontaneous transformation of internal energy into mechanical macroscopic energy
(and no other effects in both cases), are not rigorously impossible, but they are
extremely improbable. The irreversibility of the thermodynamic processes is ulti-
mately due to the enormous number of molecules.

The number of molecules in the macroscopic bodies is really enormous. As a
consequence, the words “extremely improbable” do effectively mean “impossible”.
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Let us look at an example: the free expansion of an ideal gas. We have an adiabatic
container divided into two halves by a wall. Initially, the gas is in one half, while
the other half is empty. We open a small hole in the separating wall and the gas
expands to occupy the entire container. Its volume has doubled and, as we know,
the temperature has not changed. In the final state, each molecule in its disordered
motion, on average, spends half of the time in the half volume on the left, half of the
time on the right. As a consequence, the probability of it being in the initial volume
is ½. The gas being ideal, its molecules are independent of one another. Hence, the
probability of finding N molecules on the same side is (1/2)N = 2–N. The number of
molecules in a mole is the Avogadro number. Its order of magnitude is 1023. The
probability of finding all of the molecules on one side is then 2�1023 , an incon-
ceivably small number. This means that we might be able to see all of the gas in half
of the container once in 2þ 1023 experiments. If we were able to do such an
experiment in one second, this would happen every one million times the age of the
universe.

However, if the number of molecules in the system is not so huge, spontaneous
displacements from equilibrium are observable. These are small and last for only
brief intervals of time. They are called fluctuations. As a matter of fact, we have
already seen an example; the Brownian motion. Consider one of the Perrin
spherules a few micrometers in diameter suspended in water. The number of col-
lisions per second of a water molecule with a particle is huge, on the order of 1020.
Sometimes, the momentum that the particle receives from the collisions, for
example, on its left are larger than that from those on its right. It then starts moving
to the right. A bit of thermal energy has transformed into kinetic energy of an
ordered motion of a micrometer-size body. Locally, a small transformation from
disorder into order has taken place. At this scale the phenomenon is not impossibly
improbable. However, for particles a little larger, the process is not observable.

Other examples are the temperature and density fluctuations. In any small region
of a body, these quantities are not rigorously constant, but change a bit, going both
up and down. However, these fluctuations are extremely small. For example, in a
milligram of water at room temperature, the temperature fluctuations are on the
order of 10−8 K (or 10 nK).

Boltzmann noticed, with reference to these phenomena, that

…the existence of such cases does not disprove our theorem. On the contrary the theory of
probability itself shows that the probability of such cases is not mathematically zero, only
extremely small.

5.11 Entropy and Thermodynamic Probability

We shall now translate the arguments of the preceding section into mathematical
equations. The second law of thermodynamics says that the non-equilibrium states
of any isolated thermodynamic system evolve spontaneously towards states of
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larger entropy. This corresponds, from the statistical point of view, to the transition
to a state that can be realized in a much larger number of ways. Clearly, the
thermodynamic state function entropy is connected to the number of possible
microscopic realizations. To express this connection, we must distinguish, for a
given system, its thermodynamic state, called its macrostate, and its microscopic
state, called its microstate. A macrostate is defined by the values of the thermo-
dynamic variables (volume, temperature, pressure, concentration, etc.).
A microstate is a mechanical state of molecules, defined by the coordinates and
velocities of all the molecules (6N variables in total, if N is the number of mole-
cules). Obviously, if we specify the macrostate of the system, we do not define its
microstate. In other words, a given macrostate corresponds to a certain number of
microstates that realize it. This number is called the statistical weight or thermo-
dynamic probability of the macrostate. The adjective “thermodynamic” is used
because the quantity is a number larger than one, while the mathematical proba-
bility is normalized to 1, namely it is between 0 and 1. We shall indicate ther-
modynamic probability with Γ. The macrostates of isolated systems spontaneously
evolve towards macrostates of larger entropy S and larger Γ. The relationship
between the two quantities is

S ¼ kB lnC: ð5:79Þ

This very important equation in physics was found by Boltzmann, starting from
the laws of classical mechanics and probability theory. It has been engraved on the
Boltzmann tombstone. We cannot prove the equation here, but we can justify the
logarithmic dependence. Consider a system made of two parts. The number of its
realizations Γ is equal (assuming the two parts to be independent) to the product of
the numbers of realizations of each part separately, say Γ1 and Γ2. Hence, Γ = Γ1
Γ2, and Eq. (5.79) gives us

S ¼ kB lnC ¼ kB ln C1C2ð Þ ¼ kB ln C1ð Þþ kB ln C2ð Þ ¼ S1 þ S2: ð5:80Þ

Indeed, the entropy of a system is the sum of those of its (independent) parts, the
thermodynamic probability is the product of the probabilities of its parts, and the
logarithm of a product is equal to the sum of the logarithms of the factors.
Logarithm is the only function with this property.

The definition we gave of the thermodynamic probability of a macrostate being
the number of microstates that realize it presents a difficulty. Consider a certain
microstate. If we vary the position or velocity of a molecule a little, the macrostate
does not vary. But coordinates and velocity are continuous variables, which can
assume an infinite number of values. It looks like the thermodynamic probability is
infinite. We avoid the difficulty as follows.

To define a microstate, we need 6N quantities. We can then represent the
microstate with a point in a 6N-dimensional space. This is called the phase space.
We arbitrarily define an elementary cell as a portion of the phase space of small, but
arbitrary, size and we define as being indistinguishable from the microstates whose
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representative points fall within the same cell. When we calculate the thermody-
namic probability, we count them as one. The arbitrary choice of the elementary
cell does not have consequences, as long as we consider entropy differences, as we
did in our study of thermodynamics. Indeed, if we change the volume of the cell by
a factor, the number of microstates corresponding to a given macrostate changes by
the same factor. As a consequence of the logarithmic dependence, entropy changes
by an additive constant while entropy differences remain unaltered. In other words,
the consequence of the arbitrary size of the elementary cell is that entropy is defined
up to an additive constant. We will only mention here that quantum mechanics
gives a precise prescription for the size of the elementary cell and, consequently, of
the entropy constant.

We have seen how thermodynamics defines the infinitesimal entropy variation as
dS = δQ/T, where δQ is the heat reversibly received by the system and T is the
temperature of the source (which is also that of the system, because the process is
reversible). Let us now look at the physical reason for that. When we give heat to a
system, we increase the thermal motion of its molecules. Namely, we increase the
disorder or the number of microstates that realize the new macrostate. It is also clear
that, for the same received heat, the disorder increase is inversely proportional to the
thermal energy that already exists, i.e., the absolute temperature. This explains the
thermodynamic definition.

We conclude by calculating the entropy variation in the free expansion of an
ideal gas by the factor of 2 that we considered above, using the Boltzmann equation
Eq. (5.79). We have already found that the ratio between the numbers of micro-
states corresponding to the final and initial macrostates is 2N, if N is the number of
molecules. The entropy variation is then

DS ¼ kB ln
C2

C1
¼ kB ln 2N ¼ NkB ln 2 ¼ nR ln 2 ð5:81Þ

where, in the last term, n is the number of moles. We have found the relation known
from thermodynamics.

In Sect. 4.5, we found the expression of the entropy difference between two
states f and i of a van der Waals gas, namely

Sf � Si ¼ nCV ln
Tf
Ti

� �
þ nR ln

Vf � b
Vi � b

� �
: ð5:82Þ

Then, we observed that this expression differs from the one valid for an ideal gas
only for the volumes being diminished by the covolume rather than the total vol-
umes. We observed that, in both cases, we deal with the volume available to the
molecules. Finally, we noticed that the term a/V2, representing the molecular
interactions in the van der Waals equation, does not appear. We can now under-
stand the reason for this. The thermodynamic probability of a macrostate, at a given
temperature, depends only on the volume available to the molecules, not on the
presence or not of interactions amongst them.
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Problems

5:1. Evaluate the number of molecules in a glass of water.
5:2. What is the mass of a mole of electrons?
5:3. How can one find the molecule number density np of a substance of known

density ρ and molecular mass µ?
5:4. How many molecules are there in a cubic meter of air at 0 °C at one

atmosphere pressure (take it in round numbers 100 kPa)?
5:5. A gas flow is made of equal molecules of mass m, with a numeric density N/

V, that move at the same velocity v. The flow hits a wall of unit area at the
angle θ with the normal. Evaluate: (a) the number of collisions per unit time;
(b) the pressure exerted by the gas.

5:6. The average kinetic energy of the molecules of an ideal monoatomic gas is
〈kBT〉 = 6 × 10−21 J, the pressure is 100 kPa. Find: (a) temperature. (b) the
molecules’ numerical density.

5:7. Consider the probability density functions in Fig. 5.15 and determine, in
both cases, the value of A to have f(x) normalized and the root mean square
value of x.

5:8. Calculate the most probable and the root mean square velocities of the N2
molecules at 20 °C.

5:9. Calculate the root mean square rotation angular velocity of N2 at 20°C. The
distance between nuclei is a = 0.37 nm. Use classical physics.

5:10. An ideal gas is in a conservative and central force field. The potential energy
of a molecule at the distance r from the center is Up(r). Write the expression
of the number dN of molecules per unit volume between r and r + dr as a
function of r, knowing that the numerical density at r0 is n0.

5:11. In a gas in thermal equilibrium, what are the fractions of the molecules with
kinetic energy larger than (a) the mean, and (b) three times the mean?

5:12. Consider the experiment by Perrin on the height distribution of equal
spherical particles suspended in water. The density of his particles was
ρp = 1250 kg m−3 and their radius r = 0.21 µm. The temperature of the
suspension was T = 293 K. Looking through the microscope, he counted the
number of particles per unit volume at the heights z1 and z2 separated by
z2 – z1 = 30 µm. He found that, at the higher level, the number was smaller
than at the lower by a factor of 2.1. Find NA.

x

A

–a a0

x

0–a a

A
f (x) f (x)(a) (b)Fig. 5.15 Two probability

density functions
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5:13. Considering an isothermal atmosphere at T = 20 °C with a sea-level pressure
p0, find the pressure at altitudes: (a) h = 5000 m (about the top of Mont
Blanc), (b) h = 9000 m (about Mount Everest); (c) in a mine 2000 m
deep. Take the molar mass of air equal to 29.

5:14. A container divided into two equal parts contains a gas of 6 molecules. Find:
(a) the thermodynamic Γ and mathematic P probabilities of the states with the
following numbers of molecules in the two halves: (0, 6); (1, 5); (2, 4), (3, 3);
(b) the probabilities of finding the system in the states (2, 4), (3, 3), (4, 2).

5:15. A thermodynamic system passes from one state to another, having twice the
thermodynamic probability. What is the entropy variation?

5:16. Calculate the entropy variation ΔS and the ratio of the thermodynamic
probabilities Γv/Γl for the evaporation of a liter of water at T = 373 K. The
vaporization heat is Qlv = 2256 kJ/kg.

5:17. A milligram of water at T = 293 K passes into a new thermodynamic state
with a thermodynamic probability 1000 times larger. (a) Calculate the
entropy variation ΔS. (b) Can we detect the variation measuring ΔT?

5:18. What is the behavior of the thermodynamic probability of a system making
an adiabatic process?
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Chapter 6
Transport Phenomena

Up to now, we have mainly studied the properties of thermodynamic systems in
equilibrium. In this chapter, we shall consider important examples of processes that,
starting from non-equilibrium, lead to the establishment of equilibrium conditions.
These are called kinetic processes and are spontaneous and, obviously, irreversible.

Suppose, for example, we have a pot of water in thermal equilibrium with the
environment. We insert an electric immersion heater in the middle of the pot, and
after a few moments, we take it back out. The temperature in the central zone is now
higher than in the peripheral parts. The system is no longer in thermal equilibrium.
It will evolve towards a new equilibrium state spontaneously. Thermal energy, or
heat, will diffuse from the hotter to the cooler parts until the temperature is uniform
everywhere. This is a thermal energy diffusion process (in absence of convective
motions).

As another example, let us drop a sugar cube into a hot cup of tea. Just after the
sugar has completely melted, the sugar concentration in the tea is much higher in
the region of tea where the cube was dropped, decreasing with increasing distance.
The system is not in equilibrium. The sugar diffuses all through the liquid, until its
concentration is uniform, i.e., equal throughout the teapot. Similarly, if we intro-
duce a quantity of gas into one portion of a room, for example, by spraying a
perfume, with time, its molecules will diffuse throughout all the air in the room.

These are simple examples of two transport phenomena, the propagation by
conduction of heat, or of thermal energy, and the diffusion. In the first case, the
transported physical quantity is kinetic energy of molecules, in the second, the
molecules themselves (of sugar or perfume). We shall also consider a third case, the
transport of a vector quantity, the linear momentum (or, in an equivalent manner,
velocity). Let us consider an example.

Suppose we can work on a canal in which water flows with velocity constant in
time and uniform, namely equal at all the points of the fluid. The speed is not high,
a few centimeters per second. We place a wood tablet on the surface of the liquid
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and give it a different velocity, say higher, from that of the liquid. After a while, we
raise the tablet. In a zone near where the tablet was, water has a velocity, and a
linear momentum, different from that of the rest of the liquid. In the previous
example, we had injected thermal energy or an extraneous gas; now we inject linear
momentum. Also in this case, the injected quantity, which is the excess of linear
momentum, gradually diffuses throughout the system until the linear momentum is
uniform. The phenomenon, as we shall see, is directly connected to viscosity.

The three diffusion phenomena that we have just exemplified will be treated in
the first three sections. All of them are due to the chaotic motion of the molecules
and their collisions. In Sect. 6.4, we shall define two important correlated quantities
needed for a description of collisions, the cross-section, which measures the
probability of a collision, and the mean free path, the mean distance crossed by a
molecule between two collisions. Having these concepts, we shall come back, in
Sect. 6.5, to a further discussion of the transport phenomena and see their similarity
when considered at the molecular level.

6.1 Heat Conduction

Consider a body isolated from heat sources, with temperature different from point to
point. The system spontaneously evolves towards a state of uniform temperature.
Heat flows, or is transferred, from the hotter to the colder regions until temperature
is uniform, independent of position. If two (or more) regions of the body are in
contact with heat sources at different temperatures, heat flows from the higher
temperature to the lower temperature source. The processes are different, but the
underlying physics is the same. In both cases, we have a thermal energy transfer,
which is also called a heat transfer.

Thermal energy can be transferred in three different ways: by conduction, by
convection and by radiation

In a solid, heat transfer is (mainly) by conduction. If we put one end of an iron
rod into a flame and hold the other in our hand, after a while, we feel it burning. If
we then move the bar to a table, one end will still be hotter than the other. But
shortly after, the temperature will be uniform. The thermal heat has been trans-
ferred, in both cases, from the higher to the lower temperature regions by con-
duction. The underlying physics phenomenon is the diffusion of the internal kinetic
energy.

If the system is a fluid, heat is transferred by conduction and by convection.
Convection takes place because regions of different temperature also have different
density, and are not in mechanical equilibrium under their weights. As a conse-
quence, motions arise inside the system, in which hotter and colder liquid masses
mix with one another. The thermal energy travels together with the fluid masses in
their macroscopic motions, as opposed to molecular motions. This process is called
convection, from the Latin words for “taking with”. The importance of the con-
vective motion depends on the direction of temperature gradient relative to the
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vertical. Consider, for example, a pot of water on a stove. The water elements on the
bottom of the pot have the highest temperature and the smallest density.
Consequently, they rise toward the surface while colder elements descend. The
mixing action is very efficient. Contrastingly, if the heat source is above the con-
tainer, those portions of liquid warming first, and decreasing in density, are already
above the colder ones and do not move much.

Thermal energy transfer also takes place in a vacuum. Consider a box in which
we have created a vacuum containing two metallic plates facing one another at
different temperatures. As a matter of fact, the space between the plates is empty of
matter but does contain something. It contains the electromagnetic radiation emitted
by the hot plate and (partially) absorbed by the cold one. The process is the
radiation transfer.

Having mentioned, for the sake of completeness, the three thermal energy
transfer mechanisms, we shall now study only the first one, conduction. As we have
already mentioned, thermal conduction means the diffusion of the internal kinetic
energy.

Heat conduction phenomena, in general, take place in three-dimensional media,
in which the temperature varies from point to point and as a function of time. We
shall limit our discussion to the simplest situation, in which temperature depends,
beyond time, on one coordinate only. Consider a plate of surface large enough for
any edge effect to be negligible. Suppose the temperatures on each side of the plate
to be uniform. Let them be T1 and T2, with T1 > T2. In general, the temperatures
may vary over time.

We take a reference frame with the origin and the y and z axes on the face at
higher temperature, and the x-axis toward the second face as in Fig. 6.1. The
temperature at the points of the plate is a function of x and time, say T(x, t).
Consider a surface element dS at a generic point of the system, taken normal to the
direction of the heat flow, which is the x-axis in our case.

Fig. 6.1 Heat transfer by
conduction in one dimension
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Let dQ be the heat flowing through dS in the elementary time interval dt. It is
evident that dQ is proportional to both dS and dt. The proportionality coefficient
depends on the material. In 1807 (published in 1822), Jean Baptiste Joseph Fourier
(France, 1768–1830) theoretically found the following law that was subsequently
experimentally verified. It is called Fourier’s law

dQ ¼ �j
@T x; tð Þ

@x
dS dt; ð6:1Þ

where κ is the thermal conductivity of the substance. Thermal conductivities of
different substances range over several orders of magnitude with continuity. At the
two extremes, as already mentioned in Sect. 2.4, we have the good thermal con-
ductors and the good thermal insulators. We shall give some values at the end of the
section. We see that dQ is also proportional to the space derivative, namely the
gradient, of temperature. The more quickly the temperature varies along the x-axis,
the larger the heat transmission. The negative sign means that the heat flow is in the
direction of decreasing temperature.

The heat crossing a given surface taken perpendicularly to the flow in the unit
time is called heat flux or thermal flux. The heat flux density, or thermal flux density,
is the flux per unit area. We shall call it ΦQ. For Eq. (6.1), it is obviously

UQ ¼ �j
@T x; tð Þ

@x
: ð6:2Þ

Heat conductivity is then the proportionality constant between heat flux density
and temperature gradient. The physical dimensions of heat flux density are

UQ½ � ¼ Js�1m�2 ¼ Wm�2 ð6:3Þ

and those of thermal conductivity are

j½ � ¼ Js�1m�1K�1 ¼Wm�1K�1: ð6:4Þ

Consider a body initially at non-uniform temperature in absence of external heat
sources. The temperature tends to become uniform in any case, but the time needed
for that depends on thermal conductivity. It will be shorter the higher the con-
ductivity. In addition, the temperature variation for a given received heat is
inversely proportional to the specific heat and the density. Such is also the tem-
perature leveling speed. Let us see this in formulae.

Let us take two surfaces dS1 and dS2 of the same area dS perpendicular to the
x-axis at the same y and z. One of them is at x, the other at x + dx, as in Fig. 6.2.
Consider the element between the two surfaces (in evidence in the figure). It
receives and gives off heat through the two faces. The heat through the first face (in
the positive x direction) in the time interval dt is dQ2 ¼ �j @T=@xð Þx dS dt,
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where we have indicated with @T=@xð Þx the partial derivative of the temperature
with respect to x at the position x. Similarly, the heat through the second face
(always in the positive x direction) in dt is dQ2 ¼ �j @T=@xð Þxþ dxdS dt. The first
heat enters, the second exits; hence, the heat absorbed by the element is

dQ ¼ dQ1 � dQ2 ¼ j
@T
@x

� �
xþ dx

� @T
@x

� �
x

� �
dS dt ¼ j

@2T
@x2

dx dS dt:

Upon absorption of dQ, the temperature of the elements increases by, say, dT. If
ρ is the density and cp the specific heat (we operate at constant pressure), we write

dQ ¼ cp q dS dx dT:

Putting together the two equations just found, we get

j
@2T
@x2

dt ¼ cp q dT;

which, collecting the constants together, can be written as

@T
@t

¼ v
@2T
@x2

; ð6:5Þ

where the constant χ is

v ¼ j
cp q

: ð6:6Þ

Fig. 6.2 Heat transfer
through an infinitesimal
element
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The differential equation Eq. (6.5) tells us that the rate of change in time of
temperature is proportional to its second spatial derivative, namely the rate of
change with position of the temperature gradient. The proportionality constant χ
tells how quick the process of temperature equalization is. This is called thermal
diffusivity and is equal (we had anticipated a proportionality) to the thermal con-
ductivity divided by the product of specific heat and density. The measurement
units are

v½ � ¼m2s�1: ð6:7Þ

We shall come back to its physical meaning in Sect. 6.3. We simply anticipate
here that the physical mechanism of heat transmission is the following. If in a zone
of the body, the temperature is higher than in the adjacent zones, the molecules in
that zone have larger on average kinetic energies than those in the other. Part of this
kinetic energy in excess is transferred to the “colder” molecules through collisions.
The excess kinetic energy diffuses in this way throughout the body. Equation (6.5)
quantitatively describes how the molecular mean kinetic energy diffusion mecha-
nism takes place.

Table 6.1 reports the values of thermal conductivity at ambient temperature for
several substances. Metals have typically high conductivity. (349 Wm−1K−1 for Cu,
209 Wm−1K−1 for Al, 58 Wm−1K−1 for Fe). Rocks have generally low conduc-
tivity, typically a few Wm−1K−1. A good thermal insulator like polyurethane foam
has a thermal conductivity of 0.026 Wm−1K−1, which is four orders of magnitude
smaller than aluminum.

The physical reason for the high thermal conductivity of metals is that heat in
them is transmitted through the thermal motion of electrons, rather than of mole-
cules, as in the largest fraction of other materials. As we have already mentioned,
metals are aggregates of microcrystals made of ions of the element. In a micro-
crystal, each atom has lost one or two electrons, depending on the metal. These
electrons, called conduction electrons, are free to move, like a gas, inside the
crystal. They are responsible for the heat conduction. Their kinetic energy is

Table 6.1 Thermal conductivity of different materials at room temperature

Material
κ (Wm−1K−1)

Material
κ (Wm−1K−1)

Material
κ (Wm−1K−1)

Metals Various Insulators

Aluminum 209 Slate 1.98 Asbestos 0.2

Iron 58 Ceramic 1.1 Rockwool 0.04

Brass 99 Granite 3.14 Perlite 0.04

Copper 349 Plasters 0.8-1.5 Polystyrene 0.035

Zinc 110 Bricks 0.8 Polyurethane 0.026

Terracotta 0.9

Dry ground 0.8

Wet ground 2.3
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proportional to the absolute temperature. At a given temperature, the mean kinetic
energy of the electron gas is equal to that of the molecules of a “normal”
monoatomic gas. Consequently, the ratio between the root mean square velocities in
the two cases is equal to the reciprocal of the square root of the ratio of the masses.
The molecular masses are typically four orders of magnitude larger than the elec-
tron mass. As a consequence, the root mean square speed of electrons is two orders
of magnitude larger than that of molecules at the same temperature. This is why the
heat transmission is much faster.

Consider again the plate in Fig. 6.1 in the particular case in which the temper-
atures of the two sides T1 and T2(T1 > T2) are constant in time, namely in stationary
conditions. This is the case, for example, for a wall in a house. In winter, the
temperature outside is lower and heat flows from inside to outside. Equation (6.5)
simplifies it as

@2T
@x2

¼ 0: ð6:8Þ

Integrating it twice, we find the solution T ¼ AxþB, where A and B are the
integration constants. We determine the constants by imposing the boundary con-
ditions. At x = 0, it must be T = T1, and at x = h, it must be T = T2. We imme-
diately find A ¼ T2 � T1ð Þ=h and B = T1, and we get

T xð Þ ¼ T1 � T1 � T2ð Þ x=h: ð6:9Þ

The solution says that, under stationary conditions, the temperature decreases
linearly from one face to the other.

The heat transmitted per unit time through a surface area S is obtained from
Eq. (6.1) by integration. We get

dQ
dt

¼ j T1 � T2ð Þ S=h: ð6:10Þ

The heat transmitted through the wall per second is proportional to the tem-
perature difference between its two sides, directly to the surface and inversely to the
thickness of the wall. The proportionality constant is the conductivity.

6.2 Diffusion

Consider now a solution, for example, sugar (solute) in water (solvent). If the
concentration is not uniform, molecules of solute tend, on average, to move, in their
disordered thermal motion, from sites of higher to those of lower concentration.
Equilibrium is reached when concentration is uniform. The phenomenon is called
(once more) diffusion. As a matter of fact, the phenomenon is similar to the free
expansion of the gas we discussed in Chap. 5. It is the transition between
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macrostates of smaller to higher thermodynamic probabilities. The difference is that
diffusion is a much slower process.

Also now, we consider, for simplicity, a one-dimensional situation. We suppose
that the concentration, which we call c, depends on time and on one coordinate
only, say x. Let Φc be the solute mass passing in one second through a one meter
square surface normal to the x-axis, called the mass flux density. The flux direction
is from higher to lower concentration, namely the direction opposite to the
derivative of concentration @c=@x, which is the concentration gradient. Clearly,
there is no flow for uniform concentration, namely @c=@x ¼ 0.

The relation between concentration flux density and gradient is the same as in
the case of thermal energy, Eq. (6.2), namely

Uc ¼ �D
@c x; tð Þ

@x
; ð6:11Þ

where D is the diffusion coefficient, which depends on both solvent and solute and
on temperature. The flowing solute quantity can be expressed as a mass, as a
number of molecules or as a number of moles. The choices are obviously equiv-
alent, but the physical dimensions of the diffusion coefficient depend on them. If we
measure the concentration in moles per cubic meter, the flux density will be in
mol m−2s−1 and the dimensions of the diffusion coefficient D are m2s−1.

What we have stated is also valid in the case of the diffusion of a gas in another
gas and also of a gas in itself (different regions having different densities), which is
called self-diffusion.

The differential equation describing the evolution of concentration in the solu-
tion is completely analogous to the case of thermal energy diffusion (with con-
centration in place of temperature) that we found in Eq. (6.5). What we said there is
valid here, with the obvious changes, and we shall not discuss it any further. We
observe, however, that, as in the case of thermal energy diffusion, the equation is
valid only if the fluid is in mechanical equilibrium and the equalization of con-
centration is due to the thermal disordered motion of the molecules only. In other
words, there are no convective motions.

Consider, for example, two liquids, water and alcohol, the first with a larger
density than the second. We put alcohol in a container and then we slowly inject
water with a small tube at the bottom of the container. If we are careful enough, we
can produce a layer of water under the alcohol. The convective motion will be
practically absent and water molecules will mix with alcohol molecules through
their collisions, namely by diffusion. If we proceed in the opposite way, filling the
container with water and then injecting the (lighter) alcohol at the bottom, the
liquids will mix by convection.

The reason for the similarity of the heat conduction and matter diffusion is very
clear when looked at from the microscopic point of view. In the first case, an excess
of average kinetic energy of molecules, or of conduction electrons, diffuses to reach
the equalization of kinetic energy. In the second case, the excess of solute molecular
density in a region diffuses to reach the equalization of molecular density.
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Consequently, the differential equations ruling the two processes Eqs. (6.2) and
(6.11) are equal.

There is, however, a small difference. While in Eq. (6.11), the flux and the
gradient are both of the concentration, namely the same physical quantity, in
Eq. (6.2), flux and gradient are of two different quantities. However, we can easily
have the same quantity on both sides in the latter case as well. It is just a matter of
dividing both sides by qcp. The resulting quantity on the left-hand side, UQ=qcp, is
the flux density of mean molecule kinetic energy, which we can call ΦT. We have

UT ¼ �v
@T x; tð Þ

@x
: ð6:12Þ

So, we understand why thermal diffusivity and diffusion coefficient have the
same physical dimensions (m2s−1). The values of the two quantities are also similar
for gases. For example, the thermal diffusivity of air at 0 °C is
χ = 1.9 ⨉ 10−5 m2s−1, while the diffusion coefficient of water vapor in air is
D = 2.3 ⨉ 10−5 m2s−1.

The diffusion coefficients in air of a few gases at different temperatures are
reported in Table 6.2.

In liquids, diffusion is much slower than in gases. For example, the diffusion
coefficient of sugar in water is 0.3 ⨉ 10−7 m2s−1, while that of common salt (NaCl)
in water is 1.1 ⨉ 10−7 m2s−1. These are two orders of magnitude smaller than for
gases.

6.3 Viscosity

In Chap. 1, we studied the viscosity phenomena from the macroscopic point of
view. There, we considered a liquid (or a gas) contained between two solid plane
horizontal sheets at a distance h. We considered the higher sheet moving at constant
speed υ0, and the lower one at rest. The liquid layers in contact with each sheet
remain adhered to them and have their velocities. Inside the liquid, the velocity
decreases linearly with increasing depth from υ0 to 0 at the bottom, as shown in
Fig. 6.3, which is equal to Fig. 1.11.

Table 6.2 Diffusion
coefficients in air

Substance T (°C) D (10−5 m2s−1)

Alcohol (vapor) 40 1.37

CO2 0 1.39

CS2 20 1.02

Ether (vapor) 20 0.89

Hydrogen 0 6.34

Oxygen 0 1.78

Water (vapor) 8 2.39
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We have chosen the x-axis vertical downward with origin on the upper surface.
Forces due to viscosity act in the direction opposite to the relative motion, between
fluid layers. The shear stress, namely the force per unit surface, is given by
Eq. (1.23), which we reproduce here for convenience:

s ¼ dF Sð Þ

dS
¼ g

@t
dn

: ð6:13Þ

We shall now see the physical meaning of viscosity. The situation we are
considering is particularly simple because the velocity vector has the same direction
everywhere. Only its absolute value varies and does so as a function of one
coordinate only, υ = υ(x). Indeed, as we mentioned, the system is a fluid layer
between two planes, ideally of infinite extension, at the distance h between them.

The relevant physical quantities of the problem are velocity and linear
momentum of the fluid elements. As we are dealing with a continuous system, we
must talk of linear momentum density, which is the linear momentum of an ele-
mentary volume divided by the volume. Let us consider a fluid element of volume
dV with mass dm ¼ qdV . If v is its velocity, its momentum is dp ¼ v dm. The
momentum density is then

dp
dV

¼ v
dm
dV

¼ qv:

In our simple case, the momentum density varies only as a function of the height
and does so linearly in absolute value between ρ υ0 and 0, while the direction is a
constant. The situation is then completely analogous to the one considered in
Sect. 6.2, where we had a layer of matter between two planes at different tem-
peratures. In both cases, the regime is stationary. In that case, we had a thermal
energy flow from the hot to the cold plate through all the sections of the layer.
Similarly, in this case, we have a flow of momentum density from the face at higher
speed to the one at lower speed.

We now want to find an expression of the linear momentum flux, which we
indicate with Φp, and which is, by definition, the linear momentum going through
the normal surface unit in the unit time. In our problem, momentum flow is in the
direction of the x-axis in Fig. 6.3. Let us then take the surface element dS of
Eq. (6.13) perpendicular to the x-axis. The linear momentum going through dS in a
second is Φ p dS. This is the decrease of momentum per unit time above dS and its

Fig. 6.3 Laminar flow
between two surfaces
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increase below dS. But the rates of change of momentum are equal to the forces.
The forces are the shear stresses with which the fluid layers act on one another. In
conclusion, the momentum flux is equal to the share stress

Up ¼ s: ð6:14Þ

Notice that the regime of our fluid is laminar. If there were vortices, their effect
would have been to quickly mix the fluid elements, equalizing the momentum
density. The latter mechanism is similar to the heat and mass transport by con-
vection. We shall limit our discussion to the transport, of momentum in this case,
through molecular collisions.

Having found Eq. (6.14), we can write Eq. (6.13), which we already encoun-
tered in hydrodynamics, as

Up ¼ �g
@t
dn

; ð6:15Þ

where the minus sign means, as usual, that the direction of the flow is opposite to
that of the velocity gradient. We can say that the dynamic viscosity η measures the
rapidity of the transmission of linear momentum from one place to the other.

Equation (6.15) is, in fact, very similar to Eqs. (6.11) and (6.12). It is similar but
not identical, because in the latter equations, we have, on the right-hand side, the
rate of change and, on the left-hand side, the flux density of the same physical
quantity. We would like to have, on the left-hand side of Eq. (6.13), the velocity
flux density Φυ. Velocity is momentum divided by the mass. As we are dealing with
the unit volume, we should divide by the density ρ. The velocity flux density is
Φυ = Φp/ρ. It is now convenient using the kinematic viscosity to find

m ¼ g=q ð6:16Þ

and Eq. (6.15) becomes

Ut ¼ �m
@t
dn

: ð6:17Þ

Equation (6.17) is now identical to Eqs. (6.11) and (6.12). The proportionality
coefficient between flux density and gradient is the kinematic viscosity ν; and it
determines the speed at which the velocity field, left alone, becomes uniform. The
physical dimensions of the kinematic viscosity are

m½ � ¼ m2s�1; ð6:18Þ

which are the same as those of the diffusion coefficient D and of the thermal
diffusivity χ. The values of the kinematic viscosity are also similar to those of D and
χ. Let us take back the example of air we have seen in the preceding section
(thermal diffusion coefficient at 0 °C and normal pressure χ = 1.9 ⨉ 10−5 m2s−1;
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diffusion coefficient of water vapor in air is D = 2.3 ⨉ 10−5 m2s−1). The kinematic
viscosity of air is ν = 1.5 ⨉ 10−5 m2s−1. As one sees, the values are very similar.

In conclusion, a system in which temperature, concentration or velocity are not
uniform is not in a thermodynamic equilibrium state. The system, left alone, will
spontaneously evolve towards equilibrium. The non-uniform quantity will tend to
become uniform. In all three cases, the process takes place by redistributing
amongst the molecules the physical quantity of the game. The redistribution takes
place through molecular (or conduction electrons) collisions. These are called
molecular transport phenomena. Notice that even in an ideal gas, the molecules
collide and redistribution takes place. The role of the weak intermolecular attraction
forces present in the real and absent in the ideal gases is completely secondary.
Consequently, even ideal gases are viscous, as we have just seen in the example of
air. Indeed, the kinematic viscosity of air is larger than that of water, which is
ν = 10−6 m2s−1. The opposite is true for the dynamic viscosities, which are
η = 10−3 Pa s for water and η = 1.8 ⨉ 10−5 Pa s for air.

The difference between the present case and those of diffusion and thermal
conduction is due to the fact that temperature and concentration are scalar quan-
tities, while velocity and momentum are vectors. As a matter of fact, we obtained
the simple Eq. (6.17) considering the simple geometry in which the velocity has the
same direction throughout the fluid. The equation is valid only in this situation, not
in more general ones. We can easily see that Eq. (6.17) cannot work if v has
different directions at different points, considering a liquid in a cylindrical container
uniformly rotating around the axis of the cylinder, as in the viscometer we con-
sidered in Sect. 1.6. The velocity, and momentum, of the fluid elements increase
with increasing distance from the axis. That fact notwithstanding, there is no
momentum flux, or, in other words, there is no action by an internal friction force.
The rotation of the liquid does not take the system out of its thermodynamic
equilibrium. It might, in fact, continue forever without any equalization of
velocities.

6.4 Mean Free Path

The phenomena we studied in the last section depend on the interactions between
molecules. In a gas at STP, the average distance between molecules is much larger
than their diameter. Consequently, for the largest fraction of time, they interact only
very weakly, or not at all if the gas is considered to be ideal. They do interact during
the short time intervals during which they are close enough to collide. In the
aggregate phases, liquid and solid, the situation is completely different. Molecules
always interact and it is impossible to talk of single collisions. In this and the next
section, we shall further study some properties of gases. Two important quantities
are the collision cross-section and the mean free path between collisions.

Let us start by analyzing what a collision is. We chose a reference frame in
which one molecule is at rest. When an incoming molecule is still farther than the

220 6 Transport Phenomena

http://dx.doi.org/10.1007/978-3-319-30686-5_1


molecular action radius, say a few nanometers, it moves along a straight line. The
distance of this line from the center of the target is called the impact parameter, b,
as shown in Fig. 6.5. In other words, and from hereon in any reference frame, b is
the smallest distance between the two colliding molecules that could be attained if
they moved without interacting in straight lines with the velocities they had before
the collision.

Let us consider, in an extremely rough approximation, a molecule as a rigid
sphere of radius r0. Then, the collision happens if the centers of the two molecules
approach one another by at least twice the radius, namely if b� 2r0. Let us consider
a plane perpendicular to the direction of the incident molecule and draw a circle
about the center of the standing one of radius 2r0. The collision happens if the
incident molecule’s direction before interacting crosses this area. This circle is
called the cross-section, which we indicate with σ.

This is not, however, a correct description of the collision. Two molecules also
interact with one another at distances between centers larger than their diameter, up
to the molecular action radius ra (see Sect. 4.1). Up to this distance, the van der
Waals force changes the momenta of the two molecules. This is also considered a
collision. Let us consider, as an example, an asteroid approaching a planet. When it
is far away, its trajectory is almost straight, but getting close to the planet, it will
describe an arc of hyperbola, to finally move away in a direction different from the
original one. This, if between molecules, is also a collision. We consider any
process in which the impact parameter is small enough that the velocities of the two
molecules change significantly to be a collision.

To be more precise, we recall that we are dealing with a statistical process. Thus,
we must think not of one, but of many incident molecules moving in the same
direction but at different impact parameters. Their flux density, Φ, is their number
crossing the unit area normal to their motion per unit time. The cross-section is
defined as the ratio between the number of collisions on the target molecule per unit
time, R, and the flux density

r ¼ R=U: ð6:19Þ

In other words, the cross-section is the collision rate on one molecule per unit
incident flux density (one particle per square meter per second). The cross-section is

Fig. 6.4 Impact parameter
and cross-section for rigid
spheres
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not a geometrical quantity, as its name suggests, but rather a measure of collision
probability, and it depends on the complete behavior of the van der Waals force, not
only on r0. However, the value of the cross-section obtained considering the
molecules as rigid spheres gives a reasonable estimate of the order of magnitude.
It is

r ¼ 4p r20; ð6:20Þ

which is four times the area of the section of a molecule. In Sect. 4.1, we mentioned
that the radiuses of the simpler diatomic molecules, like N2 and O2, are on the order
of one tenth of a nanometer, r0 ≈ 0.1 nm. In correspondence, Eq. (6.20) gives
σ ≈ 10−19 m2. This is the correct order of magnitude. For example, the
cross-section in air of those molecules is σ = 5 × 10−19 m2.

Collisions between molecules are completely random processes. In particular,
the distance between one collision and the next is a random variable. Its mean value
is called the mean free path (between collisions). We shall indicate it with l.

Clearly, the larger the cross-section, the smaller the mean free path. To find their
relation, consider a one meter long path of a molecule. Imagine the molecule
sweeping a cylinder of section σ. It hits all the molecules in this cylinder. The
volume of the cylinder is just σ because we took its height to be unitary. If np is the
number density, in the cylinder, there are np σ molecules. Our molecule then hits np
σ molecules per meter along its path, or, we can say, one collision every 1/(np σ)
meters. This is the mean free path:

l ¼ 1
np r

: ð6:21Þ

In other words, the mean free path is inversely proportional to the cross-section
and to the molecule number density, and consequently to the gas pressure. It does
not appear to depend on temperature, namely on molecular velocities. This is true
only if the cross-section is constant, independent of velocity, as we implicitly
assumed. If the temperature is high, the molecular speeds are large and the velocity
change in the collision is substantially due to the short distance repulsive force. If,
however, the temperature is low, and consequently the velocities are smaller, the
time during which two molecules are nearby is larger. The collision takes more time
and molecules at larger impact parameters can deviate. We conclude that
cross-sections in a gas should increase with decreasing temperature. This indeed
happens, but variations are mild. For example, the collision cross-section between
oxygen molecules vary by 30 % between 100 °C and −100 °C.

Let us now estimate the order of magnitude of the mean free path for the N2 and
O2 gases at STP, for which we found the cross-section above. Recalling that a mole
of gas at STP has the volume of 22.4 L, we find that the number density is
np = 3 × 1025 m−3. With σ ≈ 5 × 10−19 m2, the mean free path is l ≈ 70 nm.
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In conclusion, at the molecular level, there are three relevant quantities with the
dimension of a length, the radius r0, the mean distance between them d, and the
mean free path. Typical values at STP are

r0 ffi 0:1 nm, d ffi 3 nm, l ffi 70 nm: ð6:22Þ

The mean square velocity of, for example, air molecules is υ ≃ 500 km/s, and
consequently the mean time between collisions is s � t l ¼ 0:2 ns.

6.5 Transport Properties in Gases

In Sect. 6.3, we saw how the diffusion coefficient, the thermal diffusivity and the
kinematic viscosity have similar underlining physical processes, the same dimen-
sions and similar values. We shall now exploit the concept of the mean free path to
understand the reasons for that, to estimate their values approximately and to clarify
their dependence on the gas state. We shall give order of magnitude evaluation
only, focusing on the physical concepts and neglecting details.

Let us start with diffusion. Consider two gases in a container. The pressure is
uniform, but the composition, namely the ratio between the densities of the gases,
depends on position. For simplicity, we assume that the dependence is on one
coordinate only. Let this be x. Let the two number densities be np1(x) and np2(x).
The state is not of equilibrium. The densities tend to become uniform moving, on
average, in the x direction. This is a diffusion process.

Consider the molecules of one gas, the first one, for example. Suppose that its
density decreases with increasing x, say from left to right. Consider the plane
perpendicular to the x-axis at the coordinate x. An average number of molecules
crosses the unit area surface of this plane in a second from left to right and another
number from right to left. The difference between these numbers is the diffusion
flux density Φc. Let us evaluate it in order of magnitude.

In the case we are considering, there are more molecules crossing the plane in
the positive x direction than in the opposite one, because there are more molecules
per unit volume on its left that on its right. If all the molecules were to have the
same velocity υ, the molecules crossing a section in the unit time would be those
contained in a volume having that section as base and υ as height. As the velocities
are different, υ is a suitable average, which we shall take as the root mean square
υrms. We need not to be very precise, because we are evaluating orders of magni-
tude. The number of molecules per unit volume varies with x and we must decide
where to consider it. It looks reasonable to take it at a distance on the left of the
surface equal to the mean free path, because it is there that, on average, the last
collision took place. The flux from left to right is then υrms np1(x–l). Similarly, the
flux of molecules from right to left at x + l is υrms np1(x + l).

In conclusion, the net flux density is Uc ffi trms np1 x� lð Þ � trms np1 xþ lð Þ.
Considering that the mean free path is very small, we can write
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Uc ffi �2l trms
dnp1
dx

:

Comparing it with Eq. (6.11), we can write it in the form

Uc ffi �D
dnp1
dx

:

We immediately see that

D ffi l trms; ð6:23Þ

where we have neglected the factor 2, as we are considering orders of magnitude. In
other words, the diffusion coefficient is, in order of magnitude, equal to the product
of the mean free path and root mean square velocity. For example, for air at STP,
we have estimated a mean free path, in round numbers, of l ≈ 100 nm, and
υrms ≈ 500 m/s. With Eq. (6.23), we evaluate D ≈ 5 × 10−5 m2s−1, which has the
correct order of magnitude (remember, we quoted diffusion of water vapor in air of
1.8 × 10−5 m2s−1 in Sect. 6.4). In Sect. 6.4, we stated that diffusion is slower in
liquids typically by two orders of magnitude. Even if the above arguments do not
rigorously hold for liquids, they are sufficient to explain the difference. In liquids,
the mean free path is on the order of the molecular radii, two orders of magnitude
smaller than in gases at STP.

We can write Eq. (6.23) in terms of the cross-section using Eq. (6.21)

D ffi trms

np r
: ð6:24Þ

Considering the gas as ideal, the state equation is p V ¼ nNA kB T , where n is the
number of moles. We write it as

p ¼ kB T np: ð6:25Þ

Solving for np and substituting in Eq. (6.24), we have

D ffi trms kB T
pr

: ð6:26Þ

We now notice that we have neglected our consideration of two different gases
and have reasoned that they were equal. Consequently, it is not clear to what l and σ
refer. However, these quantities are similar for different simple molecules with
comparatively similar masses and sizes.

From Eq. (6.26), we learn that the diffusion coefficient in gas is inversely pro-
portional to pressure. As for the temperature dependence, we must consider that the
root mean square velocity (as any other mean) is proportional to the square root of
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the temperature. As a consequence, the diffusion coefficient varies as T3/2, in the
limits in which the cross-section can be considered constant.

Consider now the thermal diffusion. Considering the analogy of the diffusion
processes, we can directly write

v ffi trms l: ð6:27Þ

For Eq. (6.6), the thermal conductivity is j ¼ v cV q, assuming a process at
constant volume. It is convenient to have the molar heat instead CV ¼ cV NA m,
where m is the mass of the molecule, and we have j ¼ v cV q ¼ v cV mnp ¼
v Cp=NA
� �

np.
For Eqs. (6.27) and (6.21), we get

j ffi trms l CV np
NA

¼ trms CV

rNA
: ð6:28Þ

The result is, at first sight, surprising; as neither the cross-section nor the molar
heat depends on density, the thermal conductivity of a gas is independent of den-
sity, hence of pressure. The reason is the following. When the density decreases, the
number of molecules contributing to diffusion decreases, but their mean free path
increases and with it the contribution to diffusion of each molecule. One might take
this argument to the conclusion that if the conductivity is independent of pressure, it
should be the same even at zero pressure, when there is no gas. This is not so,
because in our arguments, we have always neglected the presence of confining
walls. This is correct if, as is usually the case, the mean free path is much smaller
than the distances between walls, but not in the limit above.

Equation (6.28) tells us that, in a first approximation, the thermal conductivity
increases with increasing temperature as the root mean square velocity, namely as
T1/2. Actually, the increase is somewhat more rapid, because, generally, the molar
heat increases and the cross-section decreases with increasing temperature.

Finally, we consider viscosity. Once more, we do not need calculation and can
exploit the analogy we observed for kinematic viscosity, writing directly

m ¼ g=q ffi trms l: ð6:29Þ

For dynamic viscosity, we have

g ffi np m trms l ffi m trms=r: ð6:30Þ

We see that, similar to thermal conductivity, dynamic viscosity of gases does not
depend on pressure (as long as the mean free path is smaller than the size of the
container). Again similarly, dynamic viscosity increases with temperature as T1/2, if
the cross-section is constant, a little more rapidly when the cross-section decreases.

As we have seen, the diffusion coefficient, thermal conductivity κ and dynamic
viscosity η are strongly correlated quantities. Two (approximate) relations between
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them are found, one from Eqs. (6.24) and (6.30) and one from Eqs. (6.28) and
(6.30). They are

j ffi g cV ; g ffi D q: ð6:31Þ

We finally observe that the viscosity of liquids generally decreases, in a different
way than in gases, for increasing temperature. This is a consequence of the relative
motions of the molecules being easier at higher temperatures. The viscosity
decrease is small, but appreciable, in the low viscosity liquids like water, while
being much larger for viscous liquids, like honey and oils.

Problems

6:1. Two equal bodies, each with thermal capacity C = 500 J/K, are connected by
a bar of length l = 1 m, section S = 5 cm2 and thermal conductivity
κ = 20 WK−1m−1. The system is thermally insulated. The temperatures are
initially different. Find the time τ at which the temperature difference became
1/e times the initial difference.

6:2. The mean free path at STP of the oxygen molecules is, in round numbers,
l = 100 nm. What is the mean time between collisions? Use rms velocity.

6:3. A vessel initially containing air is emptied to the pressure of 1.3 × 10−4 Pa.
The air temperature is T = 290 K. Assuming a collision cross-section of the
molecules σ = 5×10−19 m2, find, in order of magnitude, the molecule num-
ber density np and the mean free path l.

6:4. A spherical vessel of one liter volume contains air. What are the maximum
pressure and density at which the mean free path (assume l = 70 nm) is
larger than the diameter of the vessel?

6:5. Find the thermal conductivity of hydrogen gas if, under the same conditions,
its dynamic viscosity is η = 8.6 µPa s.

6:6. The coefficient of self-diffusion of nitrogen under normal conditions is
D = 1.4 × 10−5 m2s−1. Find the values of viscosity and thermal conductivity
under the same conditions.

6:7. Consider carbon dioxide (molecular mass m(CO2 = 44) and nitrogen
(molecular mass m(H2 = 28) at the same temperature and pressure. Find the
ratios between their self-diffusion coefficients, dynamic viscosities and
thermal conductivities. Assume the ratio of collision cross-sections to be
rCO2=rN2 ¼ 1:5 and the molar heats to be CV ;CO2 ¼ ð6=2ÞR and
CV ;N2 ¼ ð5=2ÞR.

6:8. The diffusion coefficient of carbon dioxide in air is D = 1.4 × 10−5 m2s−1.
What is its value at 100 °C? Consider the cross-section constant.

6:9. The thermal conductivity of carbon dioxide at 0 °C is
κ = D = 1.45 × 10−2 Jm−1K−1 1.45 × 10–2 J/(mK). What is its value at
100 °C? Consider cross-section and specific heat to be constant.

6:10. The dynamic viscosity of air at 20 °C is η = 18 µPa s. What is its value at
−20 °C? Consider the cross-section constant.
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Answers

1:1. The buoyancy on any quantity of water in air is about one thousandth of the
weight, because the density of water is almost one thousand times the density
of air. On 10 g, this makes about 10 mg. We must do the correction.

1:2. The larger moves faster, because weight and buoyancy are proportional to
the third power of the radius, while the viscous drag is proportional to its
square.

1:3. 10 t.
1:4. The period decreases, as the buoyancy diminishes the weight, and we have

T ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I
mg�FAð Þh

q
instead of T ¼ 2p

ffiffiffiffiffiffi
I

mgh

q
.

1:5. They are periodic but not harmonic because the resultant force, weight plus
buoyancy, is not proportional to the displacement

1:6. υ = 3 m/s.
1:7. υ = 1.7 m/s.
1:8. We tentatively assume the flow to be laminar. The mean velocity on the

section, given by Eq. (1.42), is υ = 0.6 m/s, corresponding to Re ≈ 600.
Hence, the hypothesis of laminar flow is correct. The volumetric flow rate is
Q ¼ 1:9� 10�6 m3 s�1.

1:9. (a) The resultant force is zero because the velocity is constant. The acting
forces are: the weight, vertical downward, the drag, vertical upward, and the
buoyancy. The latter is negligible, because the density of the air is much
smaller than that of the particles. The force equilibrium equation is then
4=3ð Þpr3qpg ¼ 6p ta � tp

� �
g. Solving for r, we have r = 15.8 µm. (b) The

Reynolds number is Re = 0.19, hence, the regime is laminar and the Stokes
law, which we have used, holds.

2:1. The heat released by water is cm (60°–20°), where c is the known specific
heat of water, and is equal to the heat absorbed by the calorimeter ccal (80°–
60°). From here, we get ccal. This is the standard procedure for obtaining the
so-called water-equivalent of the calorimeter.

2:2. In the colder room.
2:4. np ¼ nNA=V ¼ pNA= RTð Þ ¼ 2:69� 1025 m�3.
2:5. ρ = 1.29 kg m−3.
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2:6. µ = 28.9 g/mol.
2:7. The internal energy grows in processes (a) and (b), is constant in (c), and

decreases in (d) and (e).
2:8. The heat exchange with the environment is zero, and the external work is

zero, hence the internal energy does not vary.
2:9. 2Mgh = cmΔT, where c is the water specific heat (c = 4186 J kg−1 K−1).

ΔT = 1.16 × 10−2 K. This is very small. In practice, the drop of the weights
must be repeated many times.

2:10. Q = −2.1 kJ.
2:11. The sum of process 1 and of the inverse of 2 is a cycle. Process 2 being

reversible, the heat exchanged in the inverse process is −Q2. The internal
energy does not vary in the cycle and we have Q1 � Q2 ¼ W1 �W2 ¼ 2 kJ.

2:12. (a) and (b) Q = −200 kJ.

2:13. p3=p1 ¼ V1=V2ð Þc�1¼ p2=p1ð Þc�1
c ¼ 1:51:

2:14. DU ¼ p V2 � V1ð Þ= c� 1ð Þ, DU ¼ p V2 � V1ð Þ, Q ¼ cp V2 � V1ð Þ= c� 1ð Þ.
2:15. (a) c ¼ Q=DU ¼ Q= nCV T2 � T1ð Þ½ �; c= c� 1ð Þ ¼ Q= nR T2 � T1ð Þ½ � ¼ 4:03

and γ = 1.33. (b) ΔU = 5 kJ, (c) W = 1.65 kJ.
2:16. (a) ΔU = 0; (b) W = 139 kJ; (c) Q = 139 kJ.

3:1. g ¼ 1� TH=TC ¼ 0:40, g0 ¼ 1� T 0
H=T

0
C ¼ 0:45. Hence, T

0
H � TH ¼ 42:4 K.

3:5. The number of moles is n = 400/32 = 12.5. WDA ¼ �DU ¼ nCV TC � THð Þ.
We know all but TC. To find it, start from the efficiency. The absorbed heat is
QAB ¼ nRTln VB

VA
¼ 36 kJ and η = W/QAB = 0.4. Hence, TC ¼ TH 1� gð Þ ¼

300K and WDA = −52 kJ.
3:6. (a) and (b) increases; (c) constant.
3:7. Yes, if the process is irreversible.
3:8. (a) The entropy variation is the same; (b) No.
3:9. A and C are on the same adiabatic curve.

3:10. S Cð Þ � S Bð Þ ¼ S Að Þ � S Bð Þ ¼ QAB
T ¼ WAB

T ¼ �10 J/K.
3:11. (a) 8.6 J/K, (a) 14.4 J/K.
3:12. It increases by 20 J/K.
3:13. W ¼ T S2 � S1ð Þ.
3:14. S Tð Þ ¼ R T

0
CdT
T ¼ a

R T
0 T2dT ¼ 1

3 aT
3 ¼ C

3.

4:1. Pressure would increase.
4:2. Water would transform into an ideal gas. The number of moles is

n = 1000 g/(18 mol/g) = 55.6. Hence, the pressure p = nRT/V = 138 MPa.
4:3. (a) pid ¼ 1:44� 106 Pa; 1:36� 106 Pa = 0:95 pid

(b) pid ¼ 1:44� 107 Pa; 1:0� 107 Pa = 0:70 pid;

(c)
a ¼ 0:54 Pam6 mol2; b ¼ 7:8� 10�5 m3 mol�1;

pid ¼ 2:88� 106 Pa; p ¼ 2:59� 106 Pa = 0:90 pid:
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4:4. W ¼ nRTðVf � bÞ= Vi � bð Þþ a 1=Vf � 1=Vi
� �

.
4:5. Q = 0 and W = 0 Hence, 0 ¼ DU ¼ nCVDT � a 1=Vf � 1=Vi

� �
. With

CV = (5/2)R, ΔT = −5.8 K.
4:6. DU ¼ �a 1=Vf � 1=Vi

� �
; Q = ΔU = 86.4 J (a = 4 amol).

4:7. (a) ΔU = 0.26 kJ (0 for an ideal gas); (b) 4.14 kJ (96 % of the ideal gas);
(c) Q = 4.4 kJ; (d) ΔS = 25.4 JK−1 (1.02 than the ideal gas).

4:8. The substances with triple point pressure larger than the atmospheric
pressure.

4:9. The specific volumes are the reciprocals of the densities.
(a) Vl = 10−3 m3 kg−1; (b) VV = 1.25 m3 kg−1 Vv = 1.25 m3/kg.

4:10. QV ¼ R T1T2
T2�T1

ln p2=p1ð Þ ¼ 61 kJmol�1.
4:11. The molar latent heat for vaporization is Qev=31.2 kJ mol−1. P2 = 86 kPa.
4:12. (a) W12 ¼ ps Vv � Vlð Þ, (b) Q12 = mQv, (c) U2 � U1 ¼ mQv � mps V2 � V1ð Þ,

(d) S2 � S1 ¼ mQv=T , (e) H2 � H1 ¼ mQv.
4:13. One point on the liquid-vapor coexistence curve.
4:15. A hole can be considered a capillary. Let r be the curvature radius of the drop

forming under a hole. The drop detaches when the capillary pressure 2τ/
r balances the hydrostatic pressure ρgh. The maximum internal pressure
corresponds to the minimum possible radius, which is the radius of the hole.
Then, hmax ¼ 2s= qgað Þ ¼ 60mm.

4:16. The applied overpressure p must be at least equal to the sum of the hydro-
static pressure ρgh and the capillary pressure 2τ/a. Then p > 488 Pa.

4:17. h ¼ 2s= qgað Þ ¼ 60mm (OK, it is less than the length of the capillary).
4:18. The vertical forces are the weight mg downward, the buoyancy a2ρgh

upward and the force due to the surface tension 4as cos h, where θ is the
contact angle. In both given cases, its magnitude is 4aτ; in case (a), it is
downward and h = 6.5 mm, in case (b), upward and h = 4.6 mm.

5:2. M = 0.54 mg.

5:3. np m�3ð Þ ¼ NAq kgm�3ð Þ
l g/molð Þ1000

5:4. N/V = 2.7 ⨉ 1025 m−3.
5:5. (a) N=Vð Þt cos h, (b) p ¼ 2 N=Vð Þmt2 cos2 h,
5:6. (a) T = 290 K; (b) N/V = 2.5 ⨉ 1025 m−3.
5:7. (a) A ¼ 2a=

ffiffiffiffiffi
12

p
; (b) A ¼ 2a=

ffiffiffiffiffi
24

p
.

5:8. υp = 417 m/s; υrms = 510 m/s.
5:9. Classically, there are two rotational degrees of freedom. Hence, I x2

� �
=2 ¼

kBT and, if mN2 is the mass of the nitrogen molecule, we haveffiffiffiffiffiffi
x2

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
8kBT

2mN2a2

q
¼ 2:3� 1012 s�1.

5:10. dN rð Þ ¼ n0e
� Up rð Þ�Up r0ð Þ½ �=kBT4pr2dr

5:11. (a) 37 %; (b) 5 %.
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5:12. Use Eq. (5.35), modified to take into account the presence of water, i.e.,

np z2ð Þ=np z1ð Þ ¼ exp � 4=3ð Þp qp�qwð Þr3g z2�z1ð Þ
kBT

� �
. We get

NA ¼ RT

4=3ð Þp qp � qw
� �

r3g z2 � z1ð Þ lnnp z2ð Þ=np z1ð Þ ¼ 6:2� 1023:

5:13. p ¼ p0 exp � mgh
kBT

	 

¼ p0 exp �1:2� 10�4h mð Þð Þ, (a) p = 0.55p0; (b) p = 0.34p0;

(c) p = 01.27p0;
5:14. (a): (0, 6): Γ = 1, P = 1/64 = 0.6 % (64 is the sum of all probabilities Γ); (1,

5): Γ = 6; P = 9.4 %; (2, 4): Γ = 15; P = 23.4 %; (3, 3): Γ = 20;
P = 31.3 %; (b) P = 8.1 %.

5:15. DS ¼ 0:96� 10�23 J K�1

5:16. DS ¼ 6050 JK�1, Cv=Cl ¼ 101:9�1026

5:17. (a) DS ¼ 9:5� 10�23 J K�1; (b) No, it is too small, DT ¼ 6:7� 10�18 K
5:18. It does not vary if the process is reversible, but increases if it is irreversible.

6:1. τ = (Cl)/(2κS) = 6.94 h.
6:2. τ = 150 ps.
6:3. np 4 × 1016 m−3, l 100 m.
6:4. ρ = 3 × 10−7 kg m−3, p = 0.03 Pa.
6:5. κ = 0.090 W/(m K).
6:6. η = 18 µPa s, κ = 1.3 × 10−2 W m−1 K−1.
6:7. DCO2=DN2 ¼ rN2=rCO2ð Þ trms;CO2

=trms;N2

� � ¼ 1=1:5ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mN2=mCO2

p ¼ 0:53
gCO2

=gN2
¼ DCO2=DN2ð Þ qCO2

=qN2

� � ¼ 0:53 mCO2=mN2ð Þ ¼ 0:83.
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