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PREFACE 

During the past four decades, computer-based mathemati- 
cal models of watershed hydrology have been widely used for 
a variety of applications including hydrologic forecasting, 
hydrologic design, and water resources management. These 
models are based on general mathematical descriptions of the 
watershed processes that transform natural forcing (e.g., rain- 
fall over the landscape) into response (e.g., runoff in the 
rivers). The user of a watershed hydrology model must spec- 
ify the model parameters before the model is able to properly 
simulate the watershed behavior. 

In this regard, hydrologic models are no different from 
mathematical models of other physical or natural systems. If 
the physical processes governing the system are well under- 
stood, the values for model parameters can often be deter- 
mined to a high degree of precision. In some instances, such 
models gain acceptance as "physical laws," and their param- 
eters are referred to as "physical constants" (e.g., the gravita- 
tional constant in Newton's law of gravity and the gas con- 
stant in the ideal gas law). In hydrology, however, the physi- 
cal processes of concern are complex and not well under- 
stood. Although model parameters are conceptually related to 
characteristic properties of the structure of a landscape, for 
example, these properties have been found to be highly vari- 
able in space, and not easily measurable at the spatial and 
temporal scales required by the models in use. As a result, 
model parameters must be estimated for each specific appli- 
cation of the model. 

There are two main approaches to estimating the model 
parameters. The first (a priori approach) estimates model 
parameters by relying on theoretical or empirical relation- 
ships that relate such parameters to observable (measurable) 
characteristics of the watershed, such as soil and vegetation 
properties, watershed geomorphology, topographical fea- 
tures, and more. The second approach (model calibration) 
adjusts model parameter values, so that the model input-out- 
put (e.g., rainfall-runoff) response closely matches the 
observed (measured) input-output response of the watershed 
for some historical period for which data have been collected. 
When adequate amounts and quality of calibration data are 
available, hydrologists have typically preferred the model cal- 
ibration approach, or some combination of the two. 

Unfortunately, past experience has shown the profound 
complexity of estimating values for hydrologic model param- 

eters, either by the a priori or model calibration approaches. 
Because all models are approximations of the real world, 
model equations and associated parameters are idealized rep- 
resentations which are not directly (unambiguously) related 
to measurable watershed properties. Furthermore, there is a 
variety of errors in the model structure and uncertainties in 
the data used for parameter estimation, which introduce con- 
siderable inaccuracy into model behavior. These factors have 
made it difficult to develop reliable procedures for model 
parameter estimation, and to provide suitable estimates of 
uncertainties in the resulting model predictions. 

During the past several decades, scientists and practitioners 
have devoted considerable research effort to the model 

parameter estimation problem, leading to a variety of differ- 
ent approaches. In a process analogous to the proverbial blind 
men studying the elephant, different perspectives and opin- 
ions have arisen that are energetically debated and which do 
not enjoy universal acceptance. Nonetheless, each perspec- 
tive is based on a different approach to the problem and, 
therefore, points to important "truths" that call for assimila- 
tion into a more complete understanding of the "beast" (the 
watershed modeling problem). 

Despite imperfect knowledge and understanding, scientists 
recognize the progress made, and a degree of consensus has 
begun to emerge. The study of the problem has been greatly 
facilitated by advances in computing power, advances in 
measurement technologies (including remote sensing), and 
by improved mathematical and statistical theories. 

Here, then, is a monograph that broadly reflects the state of 
the art in the methods and philosophies for model calibration 
now available from leading researchers worldwide. A broad 
range of topics are discussed within the context of the fol- 
lowing questions: (1) what constitutes the best estimates for 
the parameters of a watershed model?; (2) what computation- 
al procedures are necessary to ensure proper model calibra- 
tion and meaningful evaluation of model performance?; (3) 
how are calibration methods developed and applied to water- 
shed models?; (4) what calibration data are needed, and how 
are these data obtained and analyzed, in order to obtain reli- 
able parameter values?; and (5) how can model parameters be 
estimated using a combination of expert knowledge of the 
model physics and a priori knowledge of land surface char- 



The papers in the monograph are organized into seven sec- 
tions: (1) Introduction, (2) Advances in Calibration 
Methodologies, (3) Optimization Algorithms for Parameter 
Estimation, (4) Interactive Strategies for Parameter 
Estimation, (5) Automatic Strategies for Parameter 
Estimation, (6) Methods for Developing a priori Parameter 
Estimates, and (7) Process Representation, Parameter 
Sensitivity, and Data Informativeness. The introduction by 
John Schaake presents a historical perspective on watershed 
model calibration, a brief overview of each chapter, and a dis- 
cussion of emerging opportunities and future directions in 
watershed model development and calibration. Section 2 cov- 
ers a range of perspectives and philosophical approaches to 
model calibration, arising from different emphases and com- 
putational approaches. In some cases, similar arguments are 
made, and this redundancy has been consciously retained to 
reflect the consensus now emerging (due in no small measure 
to improved global communication technologies). Section 3 
presents a number of state-of-the-art optimization algorithms 
that can be used to find optimal estimates (and uncertainty 
bounds) for model parameters, when the watershed model cal- 
ibration problems are posed as optimization problems. Section 
4 reviews various interactive calibration procedures that incor- 
porate human expert experience and knowledge, while taking 
advantage of modem computational and graphical tools such 
as GIS and Graphical-User-Interfaces (GUIs). Section 5 illus- 
trates the applications of automatic calibration to various prac- 
tical hydrological applications including rainfall-runoff mod- 
eling, hydrochemical modeling and land surface modeling. 
Section 6 discusses how a priori parameter estimates can con- 
tribute to the frae-tuning of parameters. Finally, Section 7 
addresses factors critical to the success of model calibration, 

including data requirements, process representation and inter- 
pretation of model parameters. 

Despite more than forty years of experience with digital 
watershed modeling, a book that focuses on the achievements 
and advances in calibration of watershed models has yet to be 
published. This monograph is intended to fill that void. It is 

suitable for both didactical and reference purposes, and should 
prove valuable to a wide audience, including university 
researchers and graduate students, practicing hydrologists, civil 
and environmental engineers, and water resources managers. 
We particularly hope that the materials contained herein will 
motivate generations of students to bring new and broader per- 
spective to the "study of the elephant," leading to resolution of 
the many problems that still command our attention. 

The monograph derives from a special session, "Advances 
in Calibration of Watershed Models," held at the 2000 Fall 

Meeting of the American Geophysical Union (AGU) in San 
Francisco, Califomia. The excitement generated by the pre- 
sentations, discussions, and posters at this special session, 
along with strong encouragement from the AGU Books 
Department, led to the suggestion that the papers be compiled 
into an AGU Monograph as part of the Water Science and 
Application Series. It also contains invited papers by a num- 
ber of leading researchers who were unable to attend the 
AGU meeting. 

The editors wish to acknowledge many of our colleagues 
who contributed to the volume by reviewing individual chap- 
ters, thereby ensuring the scientific integrity of the mono- 
graph as a whole. We also gratefully acknowledge support 
from our respective institutions. In particular, we appreciate 
the partial support provided for editors Duan, Gupta and 
Sorooshian by SAHRA (Sustainability of semi?Add 
Hydrology and Riparian Areas), under the STC Program of 
the National Science Foundation, Agreement No. EAR- 
9876800. Finally, we express our gratitude to our AGU acqui- 
sitions editor, Allan Graubard, and AGU production editor, 
Terence Mulligan, for their editorial guidance, cooperation, 
and patience in publishing this volume. 

Qingyun Duan 
Hoshin V. Gupta 

Soroosh Sorooshian 

Alain N. Rousseau 

Richard Turcotte 



Introduction 

John C. Schaake 

NOAA/NWS, Hydrology Laboratory, Office of Hydrologic Development, Silver Spring, Maryland 

HISTORICAL PERSPECTIVE 

Conceptual hydrologic models that account for the con- 
tinuous dynamics of hydrologic processes were introduced 
in the early 1960's. The Stanford Watershed Model 
(Crawford and Linsley, 1962) was the first integrated 
attempt to take advantage of the advent of digital comput- 
ers to describe quantitatively the hydrologic processes that 
take place in a watershed "within the limitations of current 
understanding and the limitations of the computer". 

The limitations of our hydrologic understanding and the 
limitations of the computer both have evolved since 1960's. 
Computing power is at least a billion times what it was then. 
But computing still may pose practical limits for hydrologic 
modeling and parameter estimation today. Hydrologic under- 
standing remains limited in several ways that are scale 
dependent. A great challenge in hydrology is to make predic- 
tions and test hypotheses at space and time scales of practi- 
cal interest. Understanding depends on: knowledge of the 
physics of hydrologic processes at different scales, knowl- 
edge of soils, vegetation and topographic characteristics and 
knowledge of water and energy forcing that varies in time 
and space. Knowledge of all of these factors is both limited 
and imperfect. In the end it is not possible to resolve every 
detail of every aspect of the hydrology of the "real" word. 
So, effective hydrologic modeling is both the art and the sci- 
ence of applying limited and imperfect understanding. 

These issues were well understood by Crawford and 
Linsley (1966) who wrote: 

A hydrologic model is nothing more than a 
collection of quantitative hydrologic concepts 
that are given mathematical representations. If 
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each of these concepts is a well established phys- 
ical law that has an exact mathematical repre- 
sentation, and if every physical component of the 
watershed is present in the model, the entire 
model structure would be unique and all physi- 
cal processes in the watershed could be accu- 
rately simulated. Prohibitive amounts of input 
data would be required, far beyond practical 
limitations even for small watershed plots. 

Since most of the action in hydrology occurs under- 
ground where it cannot be directly observed, this asõess- 
ment remains valid today. Nevertheless, Crawford and 
Linsley's Stanford Watershed Model was a remarkably 
successful attempt to achieve an acceptable level of 
complexity using physically relevant components and a 
moderate number of quantitative components to repre- 
sent a broad range of hydrologic behavior. A variant of 
the original model, but with the addition of water quali- 
ty components, is used today as EPA's Hydrological 
Simulation Program. 

Since the advent of the Stanford Watershed Model, a 

plethora of hydrologic models have been proposed and 
many are being used for a variety of different applica- 
tions. Twenty-six of the world's most popular computer 
models of watershed hydrology were documented 
recently by Singh (1995). More recently Singh and 
Frevert (2002a,b) put together a 2-volume book that 
gives a comprehensive account of 38 mathematical mod- 
els of large and small watershed hydrology not included in 
Singh's 1995 book. Some notable models that have been 
widely used throughout the word include: the Tank model 
(Sugawara, 1995) that was a contemporary of SWM; the 
Sacramento model in the National Weather Service River 

Forecast System (Bumash, 1995); the Precipitation Runoff 
Modeling System (PRMS) developed by the United States 
Geological Survey (Leavesley and Stannard, 1995); the HBV 
model developed in Sweden (Bergstrom, 1995) and the SHE 
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model developed in Europe (Bathurst, et al, 1995) that also 
has several widely used variants. 

A comprehensive review of what has happened in hydro- 
logic modeling since the 1960's was prepared by Beven 
(2001). Interest in hydrologic models initially was focused on 
solving practical engineering problems. Models were often 
explained in terms of how they could be used. There was 
much more interest in how they performed than in why. 
Although engineering interest in hydrologic models contin- 
ues, there also has emerged a more reflective, scientific inter- 
est in hydrologic models. This has been enhanced during the 
last decade by a rapidly growing collaboration of hydrolo- 
gists and atmospheric scientists to develop improved repre- 
sentations of the role of the land surface as a lower boundary 
in weather and climate models. There is renewed interest in 

hydrologic prediction for ungaged basins, and this is calling 
attention to the importance of parameter estimation. 

The first comprehensive attempt to intercompare different 
hydrologic models was the World Meteorologic 
Organization (WMO) hydrologic model intercomparison 
study (WMO, 1975). Subsequently, WMO led intercompar- 
ison studies of snowmelt models (WMO, 1986) and real- 
time applications of hydrologic models (WMO, 1988). 
Recently there has been a number of intercomparison stud- 
ies of models used to represent the land surface in atmos- 
pheric models (Henderson-Sellers et al., 1993). 

Every conceptual model has parameters that are the coef- 
ficients and exponents in the model equations. These param- 
eters must be estimated for a given catchment and for each 
computational segment of the model. They must be estimat- 
ed either by some relationship with physical characteristics 
or by tuning the parameters so that model response approxi- 
mates observed response, a process known as calibration. 

The process of model calibration is quite complex 
because of limitations of the models, limitations of the input 
and output data, imperfect knowledge of basin characteris- 
tics, mathematical structure of the models and limitations in 

our ability to express quantitatively our preferences for how 
best to fit the models to the data. As a result of these limita- 

tions, it is not clear that a unique set of values exists for the 
model parameters for a given watershed. And there is a 
degree of uncertainty about which parameter values may be 
"best". When comparing model outputs to observations, a 
basic question is what causes the differences. Are they 
because of limitations in the model structure, limitations in 

the parameter set, errors in the forcing data or errors in the 
output measurements? Improvements in the calibration 
process are needed to deal better with this issue. 

There are two primary parts to the calibration process. The 
first is to decide how to judge whether one set of parameter 
values is preferred over another set. In the case of automatic 

calibration this means to specify an objective function or a set 
of objective functions. The second part is to find preferred 
sets of parameters and possibly select one of these to apply 
the model. This may be done manually, automatically using 
an optimization technique or by some combination. It may 
also involve a hierarchical process or other strategy to esti- 
mate different parameters at different stages in the process. 

In the early days of hydrologic modeling, the existing 
optimization techniques would tend to converge on local 
optimal solutions and would not reliably find the global 
optimum. Objective functions for hydrologic model calibra- 
tion are notorious for having many local optima. Therefore 
it was not clear if the limitations of a given model applica- 
tion to a particular watershed were due to poor calibration 
or to limitations in the model or the input data. The opti- 
mization part of the calibration problem, though yet to be 
solved completely, was no longer a major limiting factor 
with the development of the Shuffled Complex Evolution 
(SCE-UA) optimization method, a highly reliable technique 
at finding global optimal solutions even for difficult objec- 
tive functions with many local optima (Duan et al., 1992 & 
1994; Duan, this volume). 

Now it is possible to focus attention much better on the most 
important aspects of the model calibration process. Two 
aspects of this that are receiving increased attention are analy- 
sis of uncertainty and consideration of multiple objectives. 
Uncertainty in models and data leads to uncertainty in model 
parameters and model predictions. Bevin and Binley (1992) 
proposed a method called generalized •elihood uncertainty 
estimation (GLUE) that uses prior distributions of parameter 
sets and a method for updating these distributions, as new cal- 
ibration data become available, to make probabilistic esti- 
mates of model outputs. Other recent studies of parameter 
uncertainty include Kuczera (1997), Kuczera and Parent 
(1998), Thiemann et al. (2001), Bates and Campbell (2001). 
Bevin (2001) notes that the GLUE methodology provides one 
way of recognizing the possible "equifinality" of models and 
parameter sets. Bevin introduced the term equifinality to rec- 
ognize there may be no single, correct set of parameter values 
for a given model and that different parameter sets may give 
acceptable model performance. Multi-objective approaches to 
calibration that recognize there may be no single, optimal set 
of model parameters, have been pioneered by Gupta et al 
(1998) and Yapo et al (1997). 

This book presents an interesting view of the state-of-the 
art in model calibration. The contributions presented herein 
are organized into the following six sections: 

a) Advances in Calibration Methodologies; 
b) Optimization Algorithms for Parameter Estimation; 
c) Interactive Strategies for Parameter Estimation; 
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d) Automatic Strategies for Parameter Estimation; 
e) Methods for Developing A Priori Parameter 

Estimates; 
f) Sensitivities of Model Calibration to Various 

Factors. 

ADVANCES IN CALIBRATION METHODOLOGIES 

Gupta et al. (this volume, "Advances...") offer an inter- 
esting reflection on recent advances in automatic calibration 
of watershed models. The goal of calibration strategies 
should be to explicitly account for all of the following - a 
priori model uncertainty, input, state, structure parameter 
and output uncertainties, and multiple sources and types of 
information, while allowing recursive processing of data as 
they become available. They suggest that a multi-objective 
approach offers a way forward by emulating the ability of 
manual-expert calibration to employ a number of comple- 
mentary ways to evaluate model performance and to extract 
greater amounts of information from the data. They raise 
several questions for further investigation. 

Major sources of uncertainty in the modeling process are 
a lack of objective approaches to evaluate model structures 
and the inability of calibration approaches to distinguish 
between the suitability of different parameter sets. 
Therefore, Wagener et al. (this volume), propose a frame- 
work for identification and evaluation of conceptual rainfall- 
runoff models that is based on multi-objective performance 
and a novel dynamic identifiability analysis framework 
(DYNIA). They illustrate their approach with an application 
to a catchment located in the south of England and propose 
several areas of possible application to the modeling process. 

Understanding the nature of data and model errors should 
be an essential part of the calibration process. Kavetski, et 
al. (this volume) discuss shortcomings in existing calibra- 
tion methodologies and outline a Bayesian Approach to 
Total Error Analysis (BATEA) framework that integrates 
model and data uncertainty representations into the calibra- 
tion process. They propose that distinguishing the various 
sources of error will improve our understanding of uncer- 
tainty in both parameter values and model predictions. 

Freer et al. (this volume) apply the Generalized 
Likelihood Uncertainty Estimation (GLUE) approach to 
assess the changing dynamics of a hydrologic model 
applied to data from the 41-ha Panola Mountain Research 
Watershed, Georgia. They conclude that there needs to be a 
more thoughtful approach to specification of performance 
measures and that further development of the model to bet- 
ter represent effects of seasonality is also required. 

Seibert and McDonnell (this volume) suggest that new 
progress in watershed modeling may be possible by comple- 

menting traditional hard data measures used in model cali- 
bration with qualitative process understanding that exists for 
most small research catchments. Their idea is to include soft 

data in automatic calibration procedures using a multi-crite- 
ria approach as a way to mimic hydrologic reasoning that is 
done implicitly in manual calibration approaches. They pres- 
ent a framework to use soft data from the experimentalist 
through fuzzy measures of model simulation and parameter 
value acceptability. They illustrate their ideas for the Maimai 
research catchment in New Zealand. 

OPTIMIZATION ALGORITHMS FOR 

PARAMETER ESTIMATION 

Recent progress in developing robust, global optimization 
techniques is reviewed by Duan (this volume). Three glob- 
al optimization methods commonly used in watershed 
model calibration: simulated annealing; genetic algorithm 
and shuffled complex evolution are presented in detail. The 
relationship between these and earlier classical local search 
methods is discussed. 

Improvements to the original SCE optimization algorithm 
have led to development of the Shuffled Complex Evolution 
Metropolis (SCEM-UA) algorithm (Vrugt et al., this vol- 
ume). Two enhancements have been made that prevent the 
search from becoming mired in a small domain of attraction. 
It is demonstrated that the new algorithm is more efficient 
that alternative approaches to accomplish the same objective. 

Calibration of basins that only recently are gaged and 
therefore have only limited historical data or basins where 
land use may be changing might best be done with a recur- 
sive algorithm. Misirli et al. (this volume) present a Bayesian 
Recursive Estimation (BARE) algorithm that considers uncer- 
tainty associated with model structure, parameters, states and 
the input and output measurements. Comparisons to batch 
calibration using the SCE-UA algorithm show that BaRE is a 
powerful on-line, adaptive calibration tool. 

Model calibration using a single objective function does 
not adequately measure the ways in which a model fails to 
match important characteristics of the observed data. Gupta 
et al. (this volume, "Multiple...") present the MOCOM-UA 
algorithm as an effective and efficient methodology for 
solving the multi-objective optimization problem and illus- 
trate this in a simple hydrologic model calibration study. 

INTERACTIVE STRATEGIES FOR 

PARAMETER ESTIMATION 

The National Weather Service (NWS) uses hydrologic 
models as an integral part of its river and flood forecasting 
system. Experience with calibration of many basins 
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throughout the United States has led to development of a 
comprehensive interactive calibration strategy now being 
used by NWS River Forecast Centers presented by Smith et 
al. (this volume). Data analysis techniques, calibration pro- 
cedures and future enhancements to the calibration process 
are discussed. 

A multi-step automatic scheme (MACS) that emulates the 
thought processes of expert-manual calibration of the 
Sacramento model is described by Hague et al. (this vol- 
ume). Different objective functions are used at different 
steps in the process. Application to three fiver basins in dif- 
ferent climate regimes demonstrates improved quality cali- 
brations comparable to the existing River Forecast Center 
and other automatic calibrations. This method offers a reli- 

able, time-saving approach to obtain quality calibrations. 
An approach to estimate parameters by assigning each 

parameter to one of several objectives is discussed by 
Turcotte et al. (this volume). Parameters affecting objec- 
tives characterized by long time scales are calibrated first 
while those characterized by short time scales are calibrat- 
ed last. Adjustments to parameters estimated earlier are 
considered by repeating the process until satisfactory per- 
formance is attained. Objectives to minimize errors and 
stratify parameter values pertain to: (i) prolonged summer 
drought recessions, (ii) annual and monthly flow volumes, 
(iii) summer and fall high flows, (iv) high flow synchro- 
nization, (v) winter recessions and (vi) spring runoff from 
snowmelt. 

A case study of a fully distributed hydrologic model cali- 
brated with a systematic manual adjustment of parameters 
for the Illinois and Blue river basins in Oklahoma is present- 
ed by Vieux and Moreda (this volume). An ordered physics 
based parameter adjustment (OPPA) procedure is used in 
which parameters are associated with criteria for their esti- 
mation and the order of estimation considers the role played 
by each parameter and its sensitivity to other parameters in 
the model. 

AUTOMATIC STRATEGIES FOR 

PARAMETER ESTIMATION 

A new hybrid multi-criteria calibration approach that 
combines the strengths of automatic and manual calibra- 
tion methods is presented by Boyle et al. (this volume). 
The new approach is used to explore the benefits of dif- 
ferent levels of spatial and vertical representation of 
important watershed hydrologic variables. Suggestions are 
made for further research using this approach to investi- 
gate simultaneously the effects of spatial resolution and 
vertical structural complexity on model performance and 
parameter calibration. 

An approach allowing calibration of hydrologic models 
over a range of time scales using wavelet analysis is pre- 
sented by Parada et al. (this volume). The multi-resolution 
approach can be applied in a similar way as the single-scale 
approach to different objective functions. It is applied to a 
sub-humid basin in northern California where it was found 

that the multi- resolution approach was superior to the sin- 
gle-scale approach and was less sensitive to the representa- 
tiveness of the period selected for calibration. Suggestions 
for choice of optimization criteria also are offered. 

The MOCOM-UA multi-objective approach was used 
by Meixner et al. (this volume) together with sensitivity 
analyses to investigate parameter estimates, model struc- 
ture and natural processes using the Alpine Hydrochemical 
Model (AHM) of the Emerald Lake watershed. The sensi- 
tivity analysis was used to develop four sets of criteria for 
MOCOM-UA. Improved estimates of several hydrologic 
and biochemical process parameters were made and a flaw 
was found in the current representation of mineral weath- 
ering in the AHM. Also, some conflicts were found 
between the kinds of conclusions that might be drawn 
from sensitivity and calibration analyses. 

The relationship between parameter values and the abil- 
ity of a land surface model to simulate surface heat fluxes 
as well as water and energy state variables is discussed by 
Bastidas et al. (this volume). The potential is explored for 
using remotely sensed ground surface temperatures and 
surface soil moisture to bound the parameters of land sur- 
face models and thereby to improve the ability to simulate 
surface heat fluxes to the atmosphere. Although both the 
surface state variables and the surface heat fluxes could be 

simulated accurately, different parameter sets were 
required to do this, raising questions about the adequacy of 
the model structure and how to interpret the relationship 
between observations and model state variables. 

METHODS FOR DEVELOPING 

A PRIORI PARAMETER ESTIMATES 

When neighboring basins are calibrated independently 
there may be far more spatial variability in the calibrated 
parameters than might seem reasonable relative to the vari- 
ability of basin characteristics. Karen et al. (this volume) 
developed an objective estimation procedure that uses a pri- 
ori parameter estimates to initialize the calibration process, 
to provide limits to constrain the feasible parameter space 
for basins being calibrated, and to transfer calibrated param- 
eters to ungaged basins. Tests involving Sacramento model 
applications to a number of headwater watersheds in the 
Ohio river basin suggest that soil derived parameters can 
improve the spatial and physical consistency of estimated 
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parameters while maintaining hydrologic performance of 
both gaged an ungaged watersheds. 

The USGS has been developing an integrated modeling 
framework that can be used to assess objective parameter 
estimation methodologies and process conceptualizations. 
Leavesley et al. (this volume) present methods and results 
from initial testing of the USGS Modular Modeling System 
(MMS) for three major snowmelt regions of the western 
United States. The study is concerned with estimation of 
parameters for distributed models, the application of a pri- 
ori information and the role of calibration in the parameter 
estimation process. The chapter includes a comprehensive 
evaluation of the results and the performance of various 
parts of the MMS. The ability to identify sources of error, 
such as model, data and parameter are needed to provide an 
objective assessment of estimation methodologies and 
model coneptualizations. 

SENSITIVITIES OF MODEL CALIBRATION 

TO VARIOUS FACTORS 

An interesting review of issues important in the develop- 
ment of hydrologic models, estimation of model parameters 
and applications of models is given by Burges (this vol- 
ume). This review is motivated by the author's extensive 
hydrologic research experience and its relationship to 
hydrologic modeling. A wide range of topics needing atten- 
tion are suggested, including need for more and better meas- 
urements and a need to establish "natural laboratories" with 

nested measurements. 

Calibration and validation model results were analyzed 
for 37 sets of conceptual rainfall runoff model experiments 
by Gan and Biftu (this volume). These experiments were 
from five different models applied to five different catch- 
ments from wet, semi-wet and dry climates. Generally more 
dependable results were obtained for wet catchments. 
Model performance was found to depend more on model 
structure and on data quality than on model complexity or 
data length. Because parameter estimates are data depend- 
ent, adequate data are needed for estimation. Although 
hydrologic processes in dry catchments are more complex 
than in wet, good quality hydrologic data can support 
hydrologic modeling of dry catchments. 

Quantification of nutrient loads from nonpoint sources is 
investigated by Baginska and Milne-Home (this volume) 
using the Annualized Agricultural NonPoint Source 
(AnnAGNPS) model for a small rural watershed in New 
South Wales, Australia. Even though all of the model inputs 
can be measured in the field, calibration of model parame- 
ters improves the results and helps to understand uncertain- 
ties and sensitivities. Interdependence of model parameters 

was found to complicate the calibration process. Particular 
attention is needed during the verification process to assure 
that simulated flow volumes match observed so that flow 

volume inconsistencies are not transformed and amplified 
in subsequent water quality simulations. 

Land use changes over a period of years may lead to sig- 
nificant changes in flow peaks, shorter times to peak flows, 
changes in recession characteristics, etc. These hydrologic 
changes may have important societal effects. Loaiciga (this 
volume) discusses the relevance of hydrologic model cali- 
bration within the context of forensic hydrology, a branch of 
hydrology that supports legal investigations and that deals 
with the study of flood events with the objective of deter- 
mining the probable causes and sources of human-induced 
contributions to flood damages. 

REFLECTIONS ON 

THE FUTURE OF MODEL CALIBRATION 

Calibration methodologies must extract as much informa- 
tion as possible from available data. Often, the only available 
measured, endogenous, variable is streamflow. Jakeman and 
Hornberger (1993) argued that only very limited model com- 
plexity involving few model parameters is appropriate if the 
only source of data for model calibration is streamflow. 
Since this usually is the case, improved diagnostic tools are 
needed to extract more information from both the input forc- 
ing data and streamflow data. This would also improve our 
understanding of how the climatic variability of the forcing 
is modified by catchments to control the climatic variability 
of the streamflow. 

Several contributions to this volume use multi-objective 
techniques, sometimes associating subsets of parameters 
with different objectives. If we had improved diagnostic 
tools they could be used to better understand how different 
model structures and parameter values function together to 
approximate the behavior of real catchments. Improved 
diagnostic tools might also be used to develop improved 
approaches to multi-objective calibration. 

There has been an exponentially growing recent interest in 
distributed hydrologic modeling that has been fueled by 
growing availability of GIS-related information. The distinc- 
tion between lumped and distributed hydrologic models is 
simply whether the catchment is represented by a single, 
lumped hydrologic element or a set of spatially distributed 
elements. In any case, the smallest element of all distributed 
models is a lumped model. If there are enough distributed 
elements the size of the smallest area may be small enough 
that models of point physical processes may be reasonable 
representations of local hydrologic processes. Nevertheless, 
a great challenge is to estimate the parameters of distributed 



6 INTRODUCTION 

models. Although there may be a wealth of GIS data to help 
establish model parameters, there is also a great lack of data 
about the detailed physical characterization of the sub-sur- 
face where most hydrologic processes occur. This means that 
detailed, distributed, "physically based" models can be 
improved through calibration of at least some model param- 
eters. Practical application of all hydrologic models require 
data related to how physical processes work to calibrate key 
model parameters. While distributed hydrologic models may 
better represent some aspects of the physical processes in a 
catchment and offer a priori methods to estimate model 
parameters using GIS data, they also present a great chal- 
lenge for model calibration procedures and for improved 
diagnostic tools to use limited streamflow data. 

A key theme of a few authors is to find additional sources 
of endogenous measurements, even qualitative information, 
and then develop ways to use these in the calibration process. 
It was illustrated that this can lead not only to improved 
parameter estimates but to better understanding of limita- 
tions of our models because different sets of parameter val- 
ues may be needed to match different sets of observed data. 
Although some special measurements may only be available 
for brief periods during special research projects, others may 
become available routinely, especially from satellite remote 
sensing. To use additional measurements, more attention is 
needed to the relationship between measured variables and 
related model variables. Such relationships may be very 
complex and may only be possible to define empirically. If 
so, should additional parameters in such relationships be cal- 
ibrated together with the original model parameters? 

Several chapters note that measurement errors have sig- 
nificant effects on the calibration process and propose strate- 
gies to deal with this. Improved understanding of how meas- 
urement errors lead to uncertainty in both parameters and 
predictions requires improved knowledge of measurement 
errors and methods to estimate properties of measurement 
errors. Most existing methods to account for uncertainty do 
not explicitly distinguish between different sources of uncer- 
tainty. More attention is needed to model all of the sources of 
uncertainty explicitly and to estimate how this leads to uncer- 
tainty in model parameters and model predictions. It might be 
interesting to consider how a model would respond to an 
ensemble of equally likely traces of forcing variables that 
might be repeated for an ensemble of equally likely parame- 
ter sets. Could such ensemble approaches assist in various 
aspects of the modeling process? 

More attention is needed to deal with the fact that every 
model is an imperfect representation of a real catchment. The 
goal of the calibration process is to somehow "fit" the model 
to the real catchment. The best approach to the fitting 
process depends on how the model will be used. For exam- 

ple, a model might be used to make probabilistic predictions 
about the occurrence of one or more endogenous variables. 
Or it might be used to make an "optimal" estimate of the 
endogenous variable at various times in the past or future. 
Modeling approaches designed to produce optimal estimates 
may not be the preferred approaches to make probabilistic 
predictions, although they may be related. 

Some of the implications of imperfect models are that 
parameter values do not have exact physical meaning and 
that calibrated parameter values are partly an artifact of the 
model structure. Changing only a part of the model structure 
could lead to changes in all of the resulting calibrated param- 
eter values. This does not mean that parameter values have 
no physical basis. Indeed there may be some relationship 
between parameter values and physical or climatological 
catchment characteristics that could be derived empirically 
using data from many catchments. 

Finally, a key step in improved hydrologic modeling is to 
have good a priori estimates of model parameters and a pri- 
ori estimates of the uncertainty in these parameter estimates. 
This is important to apply models to ungaged or poorly 
gaged areas, to apply distributed models to well gaged areas 
and to constrain the calibration process. An international 
Model Parameter Estimation Experiment (MOPEX) is being 
conducted to develop improved a priori parameter estimates 
and procedures for relating model parameters to physical and 
climatological basin characteristics (Schaake et al., 2001). 
Data sets from hundreds of basins in the United States have 

been compiled and hundreds more from throughout the 
word are being sought. These data sets include model forc- 
ing and model output measurements as well as basin charac- 
teristics data. Many investigators from the international 
hydrologic community are beginning to apply the concepts 
presented in this book to these data, both to improve 
approaches to model calibration and to develop improved 
approaches to a priori parameter estimation. 
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There is an urgent need to develop reliable automatic methods for identification 
of watershed models. The goal of such research should be to develop strategies that 
explicitly account for all of the following• a priori model uncertainty, input, state, 
structure, parameter and output uncertainties, and multiple sources and types of 
information, while allowing recursive processing of data as they become available, 
and providing quantified (perhaps probabilistic) estimates of model output uncer- 
tainty. The "Turing Test" of such a strategy would be its ability to provide reliable 
model performance that is indistinguishable from, or demonstrably superior to 
what can be obtained by an expert hydrologist. Traditional Automatic methods 
based on techniques of non-linear regression fail in this regard. Major weakness 
include their underlying assumption that the model structure is correct, inability to 
handle various sources of uncertainty, dependence on a single aggregate measure 
of model performance, and emphasis on identifying a unique optimal parameter 
set. The multiple-criteria approach offers a way forward by emulating the ability 
of Manual-Expert calibration to employ a number of complementary ways of eval- 
uating model performance, thereby compensating for various kinds of model and 
data errors, and extracting greater amounts of information from the data. The out- 
come is a set of models that are constrained (by the data) to be structurally and 
functionally consistent with available qualitative and quantitative information and 
which simulate, in an uncertain way, the observed behavior of the watershed. This 
chapter explores the historical development of current perspectives on calibration 
and raises questions for further investigation. 

1. INTRODUCTION 

1.1. Conceptual Watershed Models 

A watershed model is a conceptual-numerical representa- 
tion of the dominant processes controlling the transforma- 
tion of precipitation over a watershed into streamflow in the 
river channel. Such models are commonly designed to com- 
pute streamflow at the watershed outlet, but a number of 
models now also attempt to compute the flow at various 
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interior locations. The reasons for wanting to do this vary, 
ranging from the construction of flood frequency curves for 
engineering design, to the simulation of the potential 
impacts of land use change or climate change, to operational 
real-time flood forecasting. Our own research, conducted 
primarily at the University of Arizona, has focused on the 
Sacramento Soil Moisture Accounting Model (SAC-SMA, 
see Figure 1) developed by Burnash et at. [1973; Burnash, 
1995] in the 1970's and extensively used by the US National 
Weather Service (NWS) for flood forecasting at over 4000 
forecast points throughout the United States [Ingram, 1996; 
Smith et at., this volume] (Note: the model is also widely 
used by other hydrologic agencies throughout the world). 

Since the 1960's a variety of "different" conceptual water- 
shed models have been developed, differing somewhat in the 
particular details of their design and equations used, but 
arguably similar to the diagram shown in Figure 1 in terms of 
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their overall structure. Examples of such models are the 
Stanford series of watershed models [Crawford and Linsley, 
1966], the Boughton Model [Boughton, 1965], and the 
Xinanjiang Model [Zhao et al., 1980], to name just a few. The 
above-mentioned models are generally considered to be 
lumped parameter models because they were historically 
designed to represent and be applied at an aggregate (water- 
shed or sub-watershed) scale. Recently, with the advent of 
more powerful computers and access to distributed data at rel- 
atively fine scales, a number of distributed parameter water- 
shed models have been developed, including the MIKE-SHE 
model [Refsgaard and Storm, 1995], TOPMODEL [Beven 
and Kirby, 1976; 1979], KINEROS [Smith et al., 1995], HBV 
[Bergstrom, 1995], and IHDM [Calver and Wood, 1995], to 
name just a few. The latter models attempt (in varying ways) to 
represent the spatial heterogeneity of the inputs, states, water- 
shed properties and outputs at the sub-watershed scale. 

In this paper, we shall focus our attention almost exclu- 
sively on the issue of model calibration for lumped param- 
eter watershed models, hereafter simply called watershed 
models. Further, we shall refer mainly to the research con- 
ducted by our own group at the University of Arizona over 
the past two decades with some reference to the work of 
others; other chapters of this monograph are well represen- 
tative of the important contributions made by eminent 
researchers throughout the world. 

1.2. The Problem of Model Identification 

Watershed models, such as the SAC-SMA, are (for the 
most part) based on the assumption that the dominant 
hydrologic processes controlling the transformation from 
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Figure 1. Conceptual diagram of SAC-SMA model. 

precipitation (over a watershed) to ranoff (at the watershed 
outlet) are structurally similar for all (most) watersheds of 
interest, and that the same (similar) model structure can be 
used at a wide variety of locations throughout the word sim- 
ply by adjusting the values of the model parameters so that 
the model-simulated precipitation-runoff response is similar 
to the observed response of the watershed in question. As 
mentioned before, lumped watershed models are designed to 
represent the aggregate (watershed or sub-watershed) hydro- 
logic response of the watershed (or some sub-region within 
it), and hence the model structure and parameters are "effec- 
tive" conceptual representations of spatially and temporally 
heterogeneous watershed properties. 

This assumption of similar watershed structure and 
behavior works quite well for applications such as engi- 
neering design and flood forecasting concerned with 
streamflow estimates at the watershed outlet. This is 

because physical watersheds are themselves functional 
integrators of the sub-watershed hydrologic processes, 
channeling the precipitation distributed over the basin 
through a relatively small watershed outlet. However, the 
effective (watershed scale, lumped, and time-invariant) 
model representation of the watershed structure and param- 
eters (soil and vegetation properties) makes them difficult, 
if not impossible, to specify by means of direct observa- 
tions conducted in the field. This is because many of these 
properties are not easily observable and measurable, and/or 
because the available measurement technologies are inca- 
pable of providing appropriate measurements at the correct 
(watershed aggregate) scale. 

The general problem of model identification [Gupta and 
Sorooshian, 1985b] therefore involves the selection of 
appropriate structures for the various model components 
and specification of values for the parameters of those 
model components, such that the resulting model provides 
a sufficiently accurate (depending on the application) sim- 
ulation/prediction of watershed response. Historically, due 
primarily to computational limitations, it has been common 
to choose a particular model structure (such as the SAC- 
SMA) based on the recommendations of other people, or 
one's own experience (e.g., James and Burges, [1982], 
offer guidance on hydrologic model selection). The specif- 
ic identification problem, therefore, has been the simpler 
issue of selecting values for the model parameters, given 
the fixed model structure [Gupta and Sorooshian, 1985b]. 

1.3. The Process of Parameter Estimation 

Unfortunately, the problem of parameter estimation has 
not proved to be simple. Many (if not all) of the parameters 
are effective quantities that cannot, in practice, be meas- 



ured in the field, and must therefore be estimated by indi- 
rect means. The typical way to achieve this is to try and 
adjust the parameter values by various means (described 
below) so that the input-output (precipitation-runoff) 
behavior of the model approximates, as closely and consis- 
tently as possible, the observed response of the watershed 
over some historical period of time for which precipitation, 
streamflow, and other relevant measured data are available 

(see Figure 2). The process by which parameters are esti- 
mated in this way has come to be called model calibration. 
A model calibrated by such means can be used for the sim- 
ulation or prediction of events outside the historical record 
used for model calibration, if it can be reasonably assumed 
that the physical characteristics of the watershed and the 
hydrologic/climatic conditions remain similar. 

The manual process of model calibration typically pro- 
ceeds via three steps [Boyle et al., 2000]: 

Step 1. The hydrologist examines the data that are avail- 
able about the watershed characteristics and develops crude 
a priori estimates (guesses) of the range of likely values for 
each of the parameters. Boyle et al. [2000] refer to this as 
Level Zero estimates. For example, the NWS may look at the 
range of parameter values from a number of similar water- 
sheds in the same region to develop Level Zero estimates. 
This process involves little or no use of historical precipita- 
tion-runoff data. In the absence of any other sources of infor- 
mation, the Level Zero range of parameter estimates can be 
defined conservatively, based on the maximum plausible 
ranges for the parameters based on physical reasoning. 

Step 2. More refined (Level One) ranges for some of the 
parameter estimates are computed by identifying and ana- 
lyzing the characteristics of specific segments of the 
observed streamflow hydrograph that are thought to be pre- 
dominantly controlled by a specific parameter (or sub-set of 
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parameters) in isolation from the effects of other parame- 
ters. For example, the estimate of the baseflow rate param- 
eter (that represents the average rate at which the ground- 
water drains into the river) can be refined by analyzing the 
mean slopes of the extended recession segments of the 
hydrograph. The multi-dimensional region of the parameter 
space bounded by the Level One upper and lower ranges 
for the parameters is called the feasible parameter space. 

Step 3. The model is used to simulate the input-output 
response of the watershed using a carefully chosen repre- 
sentative period of historical data (called calibration data) 
and one (or more) representative parameter sets selected 
from within the feasible parameter space that was estimat- 
ed via steps one and two. The simulated and observed out- 
put responses (streamflow hydrographs) are then com- 
pared (as described below) and an incremental, trial-and- 
error process of parameter adjustments is attempted (with- 
in the feasible parameter space) to get the simulated 
response to approach more closely the observed watershed 
response. This step has, in practice, proven to be quite dif- 
ficult to carry out in a reliable and consistent manner, 
because: 

a) there are typically a large number of parameters 
that can be adjusted (the SAC-SMA has 15), 

b) these parameters usually have either similar or 
compensating (interacting) effects on different 
portions of the modeled hydrograph, 

c) there is no uniquely unambiguous way of evaluat- 
ing the closeness of the simulated and observed 
streamflow hydrograph time series, and 

d) the input data, model conceptualization, and out- 
put data are all to some extent imperfect (contain 
errors or uncertainties). 
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Figure 2. Strategy used for model calibration. 
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The resulting model, with this further refined region of 
parameter values, which we call Level Two estimates, is then 
typically evaluated for consistency (and possible violations 
of modeling assumptions) by testing it over one or more 
independent (i.e., not used for calibration) periods of histor- 
ical data to establish some degree of confidence that the cali- 
brated model will continue to provide consistent and reason- 
able simulations when used in practice. This final step is often 
called model verification or validation, although we prefer the 
more accurate term model evaluation. For more details of the 

subtleties of model verification/evaluation, please refer to the 
work of authors such as Klemes [1986a; 1986b] and Yapo et 
al. [1996], mnong others. 

1.4. Level Two Parameter Estimation 

Let us state quite explicitly that we do not consider 
model identification to be a process of "fitting the model to 
the data". The process of model identification consists of a 
series of steps in which the initial (large) uncertainty in the 
model structures and associated parameter estimates is pro- 
gressively reduced in such a way that the model is con- 
strained to be structurally and functionally (behaviorally) 
consistent with the available qualitative (descriptive) and 
quantitative (numerical) information about the watershed. 
Any selected model will be, at best, a structural and func- 
tional approximation to the true (unknown) watershed 
structure and function. Hence, it will be impossible to 
reduce the model uncertainty to zero, even if the input and 
output data were to be perfectly observed. The best we can 
achieve is some minimal representative set of models 
(structures & parameter values) that closely and consistent- 
ly approximates, in an (unavoidably) uncertain way, the 
observed behavior of the watershed. 

The methods for model identification described below 

will refer primarily to estimation of the model parameters 
under the assumption that a specific model structural form 
(set of equations) has been selected. However, with enough 
computational power, these methods are also in principle 
generally applicable to the more general problem of simul- 
taneous structure and parameter estimation [see Boyle, 
2001; Boyle et al., this volume]. 

In general, two general approaches to Level Two parame- 
ter estimation have evolved since the early 1970s. One, the 
Manual-Expert approach, relies on the judgement and expert- 
ise of a trained and experienced hydrologist (see Section III 
of this volume). The other, the Automatic approach, employs 
the power, ability to follow systematic programmed rules, 
and speed (machine intelligence or computer power) of a dig- 
ital computer. In either of these two approaches, the process 
of obtaining Level Two parameter estimates requires: 

a) an estimate of the approximate parameter region to 
be searched (feasible parameter space), 

b) a strategy for evaluating the "closeness" between 
the modeled and historically observed watershed 
responses, and 

c) a strategy (procedure) for making parameter 
adjustments (within the search region) that bring 
the simulated responses closer (as defined by (b)) 
to the observed responses. 

In both approaches, the Level Zero and Level One pro- 
cedures can be used to estimate the feasible parameter 
space. In Manual-Expert calibration the closeness of the 
simulated and observed hydrographs (i.e. model perform- 
ance) is evaluated primarily by subjective visual inspection 
(usually supported by a number of statistical "goodness-of- 
fit" measures) and the parameter adjustments are based on 
expert guesses. In contrast, most strategies for Automatic 
calibration have (till recently) used a single explicitly 
defined measure of closeness (most commonly an aggre- 
gate goodness-of fit statistic such as the mean squared error 
over the simulation period) and the parameter adjustments 
are made by an optimization algorithm. Traditional auto- 
matic calibration strategies, have therefore, strongly bor- 
rowed from the techniques of non-linear regression. 

1.5. The Turing Test of Model Calibration 

Table 1 compares the advantages and disadvantages of 
the Manual-Expert and Automatic approaches. For lumped 
watershed models having 15 or fewer parameters, a care- 
fully executed Manual-Expert approach can give superior 
results, but at the expense of considerable time and energy. 
In contrast, the traditional Automatic approach is both fast 
and relatively simple to apply, but somehow lacks some of 
the sophistication of the Manual-Expert approach and 
tends to give relatively "poor" parameter estimates and 
less "consistent" model performance. We have observed, 
over the past two decades, that NWS hydrologists respon- 
sible for making critical flood forecast decisions are 
unwilling, for a variety of reasons, to rely on models cali- 
brated using traditional automatic calibration procedures. 
It has become apparent, therefore, that improvements to 
the traditional automatic calibration procedures are neces- 
sary, and that the test of these improved procedures should 
be their ability to pass inspection by a team of expert 
hydrologists. Our goal, therefore, is to develop calibration 
procedures that result in parameter estimates and model 
performance that are essentially indistinguishable from 
(comparable to or better than) those obtained by a highly 
trained expert. We think of this as the equivalent "Turing 
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Table 1. Comparative features of Manual-Expert and Automatic calibration. 

Manual Calibration Automatic Calibration 

User Knowledge and Expertise 
Subjective (realistic) 
Complicated and highly labor intensive 
Time Consuming 
Excellent Results 

Speed and power of computer 
Objective (statistics) 
Computer Intensive 
Time Saving 
Results may not be acceptable 

Test" of model calibration. (The test was originally posed 
by Turing [ 1950], in the context of machine intelligence. He 
classified an artificial system as "intelligent", if its response 
to questions cannot be distinguished from that of an intelli- 
gent human being.). The Turing test analogy was first pro- 
posed to us in 2000 at the Federal Interagency Hydrologic 
Modeling Conference in Tucson, Arizona, by a hydrotogist 
whose name we, unfortunately, cannot remember. 

2. ADVANCES IN AUTOMATIC MODEL 

IDENTIFICATION METHODS 

2.1. The Need for Improved Automatic Methods 

Although the Manual-Expert approach to watershed model 
calibration can give very good results when performed by an 
experienced hydrologist with considerable calibration skill and 
knowledge about the watershed, there is an urgent need to 
develop fast and reliable computer-based methods. In particu- 
tar, the NWS has over 4000 forecast points in the U.S.A. for 
which the SAC-SMA model (and its future versions) must be 
calibrated within the next few years [Ingram, 1996]. This 
number severely taxes the capabilities of the existing limited 
number of NWS hydrotogists and forecasters trained in cali- 
bration skills. Further, it may take several hundred hours or 
more of training time to bring a novice model calibrator up to 
a reasonable level of skill [Mike Smith, NWS Office of 
Hydrotogy, Personal Communication, 1999]. The magnitude 
of the problem is growing rapidly with the expanding number 
of forecast points. Another, and perhaps more important rea- 
son, is that the availability of spatialty distributed information 
(NEXRAD radar-based precipitation data) is now encourag- 
ing the use of semi-lumped and distributed watershed model 
representations, having much larger numbers of parameters 
than can be practically handled using the Manual-Expert 
approach. 

2.2. Historical Background 

Research conducted during the past two and a half 
decades has revealed that the traditional Automatic calibra- 

tion methods suffer from a number of serious conceptual 

and practical weaknesses. An overarching problem is that 
the approach is based on classical non-linear regression the- 
ory, which operates under the central assumption that the 
available model structure is true, and therefore seeks to 
identify a unique "optimal" (unbiased, minimum variance) 
set of parameter estimates. In practice, it has proved diffi- 
cult to identify, with confidence, unique parameter esti- 
mates that optimize any of the wide variety of objective 
functions that have been tested by numerous researchers 
[Gupta et at., 1998]. Until the early 1990s the available 
optimization procedures could not even be relied upon to 
find the actual global optimum of an objective function. 
Any parameter estimate obtained in this way was found to 
be very sensitive to the choice of the objective function and 
the data set used for calibration [Gupta et at., 1998; 
Sorooshian et at., 1993]. 

One early response to these problems was to seek a rigor- 
ous statistical footing for the parameter estimation problem. 
Sorooshian and Dracup [1980] pointed out that the output 
measurement data (streamflows) have measurement errors 
that can be considered to be temporally auto-correlated and 
heteroscedastic (non-constant variance) and demonstrated 
that the use of objective functions derived using Maximum 
Likelihood theory reduces the sensitivity of the estimated 
parameters to such errors. The Heteroscedastic Maximum 
Likelihood Estimator they proposed (HMLE, see 
Appendix), based on the form of the rating curve common- 
ly used in the US for deriving streamflow volumes from 
depth measurements, directly countered the previously held 
wisdom that objective functions should provide greater 
weight to peak flow measurements. In parallel work, 
Kuczera [1988] (see also Kavetski et at., this volume) posed 
the identification problem in the context of Bayesian statis- 
tical theory with similar results, thereby also demonstrating 
the value of accounting for the measurement error proper- 
ties of the data, while showing how statistical confidence 
bounds for the parameter estimates could be estimated. 
Based on their work, it has since become common to apply 
a power transformation [Box and Cox, 1964]. We use the 
following version of the transformation: 

Q = [(q+l) x_ 1] / fit (1) 
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with values of;• -- 0.3-0.5 apphed to the observed and simulat- 
ed streamflows q, thereby helping to stabilize the error variance, 
resulting in more stable and consistent parameter estimates. 

A second response was to study how the structural parame- 
terization of the model might contribute to difficulties in 
parameter identification. Gupta and Sorooshian, [1983] 
showed that the representation of percolation in the SAC- 
SMA model could lead to severe interaction among the model 
parameters, contributing significantly to an ill-posed identifi- 
cation problem. They showed that the problem can be partial- 
ly alleviated, but not entirely resolved, by a judicious repara- 
meterization of the model. The results serve to highlight the 
necessary care that must be applied during model design. 

A third early response was to explore the role played by the 
data selected for model calibration. Sorooshian et al. [1983] 
and Gupta and Sorooshian [1985b] showed that the type and 
quality of data is more critical than the amount of data used 
for model calibration. They pointed out that it is more impor- 
tant that the calibration data contain a wide variety of hydro- 
logic behaviors from dry to wet conditions, than that the data 
focus on historical flooding periods (see also Crawford and 
Linsley, [1966]). For example, theoretical analysis was used 
to show that it is the number of times the capacity of a model 
tank component exceeds and drops below its critical thresh- 
old value that controls the identifiability of that component 
parameter, not how long the tank remains in overflow mode 
[Gupta and Sorooshian, 1985a]. Numerous students in 
Hydrologic Modeling classes at the University of Arizona 
have since empirically verified this fact, which was not pre- 
viously obvious. Gupta and Sorooshian [1985b] showed the- 
oretically and empirically that the marginal benefit of addi- 
tional measurement data having similar information context 
diminishes as the reciprocal of the square root of the length 
of the data set, suggesting that in the absence of new infor- 
mation content, no more than three years of daily data should 
be necessary for model calibration. Yapo et al. [1996] how- 
ever, conducted a more comprehensive empirical study for 
the SAC-SMA model using several different objective func- 
tions and 40 years of data for the Leaf River, Mississippi, 
concluding that approximately eight years of daily calibra- 
tion data are necessary to ensure minimal sensitivity to the 
period of record used in model identification. This number is 
consistent with the longstanding claim by NWS hydrologists 
that approximately 11 years of data should be used to cali- 
brate the SAC-SMA. 

The fourth area that was extensively investigated was the 
choice of method for exploration of the objective function 
response surface in search of the "optimal" parameter val- 
ues. It was well known in the Systems Theory (ST) and 
Operations Research (OR) literature that efficient optimiza- 
tion could be carried out using gradient-based optimization 

methods such as the Gauss-Newton family of algorithms. 
However, because it was perceived that the threshold struc- 
tures common to watershed models made the derivation of 

derivatives difficult, early attempts at Automatic Calibration 
used direct-local-search methods such as the Pattern Search 

method of Hooke and Jeeves [1961], the Rotating Directions 
method of Rosenbrock [1960], and the Downhill Simplex 
method of Nelder and Mead [1965]. Johnston and Pilgrim 
[1976] published a seminal paper showing that automatic 
search of the objective function (using such methods) gave 
widely differing "optimal" parameter estimates, when initi- 
ated at different initial guesses. In more than two years of 
extensive investigation, they were unable to confidently 
claim that they had discovered the optimum to their water- 
shed model calibration problem. Ibbitt [1970] tested eight 
different optimization strategies on the Stanford Watershed 
Model IV [Crawford and Linsley, 1966] and was unable to 
find a reliable method for finding the global solution. 
Various researchers investigated this problem on different 
models with similar findings. To make possible the use of 
more powerful optimization strategies, Gupta and 
Sorooshian [1985a] investigated the question of derivative 
computations and showed that watershed model derivatives 
can indeed be easily derived even for threshold structures 
(for any watershed model). However, tests by Gupta and 
Sorooshian [1985a] and Hendrickson et al. [1988] achieved 
no benefit by the application of Gauss-Newton methods to 
the watershed calibration problem. 

The attention then began to shift to the use of global search 
methods, which were still in the infancy of their development 
in the fields of ST and OR. Brazil and Krajewski [1987] test- 
ed the use of the Adaptive Random Search (ARS) strategy 
for finding good initial guesses for the calibration of the 
SAC-SMA model, followed by application of the Pattern- 
Search direct-local-search method, with encouraging results. 
However, Armour [1990] and Weinig [1991] conducted an 
exhaustive investigation of the ARS method and found it to 
be both inefficient and incapable of identifying the region of 
the known global optimum of a watershed model problem 
with a reasonable degree of confidence. 

It was not until the arrival of adequate computational 
resources in the early 1990's that a comprehensive diagno- 
sis of the true nature and difficulty of the watershed model 
optimization problem could be achieved. Duan et al. [1992] 
conducted an exhaustive computer based evaluation of the 
structure of the objective function response surface for a 
typical watershed model, and reported the existence of 
numerous small "local optima" nested within the several 
larger "regions of attraction" (Figure 3). Their research 
finally explained the reasons for convergence problems 
reported by previous studies (Table 2). It also made clear 
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that for any optimization strategy to be suitable for calibra- 
tion of watershed models, it must have the ability to avoid 
being trapped by unpredictable numbers of minor optima 
en route to the global solution, while being insensitive to 
the initial guess. These insights led to the development of 
the Shuffled Complex Evolution (SCE-UA) optimization 
algorithm, with global convergence properties [Duan et at., 
1992; Duan et at., 1993; Sorooshian et at., 1993]. 

The strength and reliability (efficiency and effectiveness) 
of the SCE-UA algorithm have since been independently 
tested and proven by numerous researchers and the algo- 
rithm is now extensively used world-wide [e.g. Sorooshain 
et at., 1993; Gan and Biftu 1996; Luce and Cundy, 1994; 
Tanakamare, 1995; Kuczera, 1997; Franchini et at., 1998, 
Hogue et at., 2000]. The SCE-UA has also been used in 
related areas such as subsurface hydrotogy, soil erosion, 
remote sensing and land surface modeling [Mahani et at., 
2000; Contractor and Jenson, 2000, Scott et at., 2000; 
Nijssen et at., 2001; Walker et at., 2001 ]. 

The SCE-UA has been generally found to be robust, effec- 
tive and efficient. A number of researchers have explored 
possible modifications to the algorithm [e.g., Wang et at., 
2001; Santos et at., 1999]. Yapo et at. [1997] extended the 
SCE-UA to a multi-objective framework [see Gupta et at., 
this volume "Multiple ..."]. For further discussion of the 
SCE-UA and other effective global search algorithms, see 
Duan [this volume]. 

z 

x 
Y 

Figure 3. Three-parameter subspace of a simple conceptual water- 
shed model (SIXPAR), showing locations of multiple local optima 
(dark dots). 

2.3. Current Perspectives 

The availability of the SCE-UA algorithm helped to reduce 
the confusion regarding causes of poor calibration perform- 
ance. One can now have confidence that the global optima of 
an objective function are found. The analysis that led to the 
development of the SCE-UA algorithm also revealed that the 
optimization problem itself is poorly posed. Regardless of the 
objective function, the response surface contains numerous 
very similar solutions (in terms of objective function value) at 
widely differing locations in the parameter space. Therefore, 
in spite of our confidence in the optimization tools now at our 
disposal, uncertainty in the calibrated parameter estimates 
still remains very large. Further, the actual locations of these 
globally optimal solutions are highly sensitive to the choice 
of objective function (i.e., to the hypothesized structure of the 
noise in the input-output data). 

There have emerged at least three responses to this situa- 
tion. One response has been to argue that the phenomenon 
is evidence of a condition named equifinatity [Beven and 
B intey, 1992] in which the available information is insuffi- 
cient to distinguish between a number of alternative models 
(including different parameter sets for a given model struc- 
ture), and therefore one should retain all such models as 
being plausible until evidence to the contrary become avail- 
able. This line of reasoning has been further developed to 
argue that the concept of calibration is itself suspect and that 
we should instead focus on strategies that translate the 
uncertainty in our ability to select a specific model into 
uncertainty bounds on the model predictions. Beven and 
Bintey [1992] [see also Freer et at., 1996; Franks and 
Beven, 1997] promote a strategy for this called the 
Generalized Likelihood Uncertainty Estimation (GLUE) 
method (see Freer et at., this volume). 

A second response has been to suggest that the "equifi- 
natity" phenomenon is evidence of models that are too com- 
plex in relation to the information content of the data avail- 
able for model development and calibration. This line of 
reasoning has encouraged the exploration of various data- 
based-mechanistic modeling approaches which seek to pro- 
vide strategies for developing hybrid metric-conceptual 
watershed models with only as much complexity as can be 
supported by the available data (using rigorous statistical 
testing). Examples of these approaches are proposed by 
Jakeman and Hornberger [1993], Wheater et at. [1993], and 
Young et at. [ 1996]. Models developed in this way typical- 
ly consist of a non-linear component (that partitions the pre- 
cipitation into precipitation excess, additions to soil mois- 
ture, and evapotranspiration), followed by a linear routing 
component (that allows for both fast and slow rates of 
drainage from the watershed). Proponents of these 
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Table 2. Response surface characteristics that complicate the optimization problem in watershed models. 

Characteristic 

Regions of attraction 
Minor local optima 
Roughness 
Sensitivity 
Shape 

Reason for Complication 

More than one main convergence region 
Many small "pits" in each region 
Rough response surface with discontinuous derivatives 
Poor and varying sensitivity of optimum, and nonlinear parameter interaction 
Nonconvex response surface with long curved ridges 

approaches have argued that the evidence suggests that 
lumped watershed input-output data can only support mod- 
els having approximately five parameters [Jakeman and 
Hornberger, 1993]. 

Our own response (at the University of Arizona) has 
been to suggest that the so-called problems of equifinality 
and extreme parameter interdependence (leading to claims 
of model over-complexity) are largely consequences of a 
weakness in the design of the model identification problem 
itself. In support of this assertion, we note that the tradi- 
tional automatic calibration strategy relies on the use of a 
single aggregate measure (such as the RMSE or HMLE 
objective functions) to evaluate model performance (good- 
ness), and that there can be several quite different model 
simulated hydrographs (associated with different model 
structures or sets of parameter values) that give essentially 
equivalent values for the objective function (Figure 4). 
Therefore similar values for an aggregate objective func- 
tion are not necessarily evidence of similar model behavior 
(i.e. equifinality). In fact the lack of ability of a single 
objective function to distinguish between different model 
behaviors is clear evidence that the traditional calibration 

strategy is unable to extract all the information available in 
the data. 

In support of our assertion, we note that the hydrologists 
at the NWS consider a major strength of the Manual-Expert 
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calibration approach to lie in its use of a wide variety of 
subjective ways of evaluating model performance. In par- 
ticular, they pay careful attention to a number of specific 
visual (local) characteristics of the hydrograph during 
storm periods (e.g., the slope of the rising limb, volume of 
runoff, and magnitude and timing of the peak flow), and 
during inter-storm periods (e.g., the rates at which the 
hydrograph recedes during the early quick recession, and 
the later slow recession). To supplement the visual analysis 
of local hydrograph characteristics, they also examine a 
number of overall (global) hydrograph behaviors, summa- 
rized for the entire calibration period using a variety of sta- 
tistical measures (e.g., the total error variance and bias, 
monthly bias, and flow biases in various flow regimes). 
During Manual-Expert calibration, the hydrologist tries to 
get the model to obtain a suitable compromise in matching 
all of the visual hydrograph characteristics as closely as 
possible, while achieving acceptable values for the summa- 
ry statistics. 

We contend, therefore, that the weaknesses in the model 

calibration/evaluation procedures at our disposal must be 
resolved before confident conclusions can be drawn regard- 
ing the overly-complex nature of watershed models or 
the inability to discriminate between alternative model 
hypotheses. One way to do that is to adopt a multiple-criteria 
perspective. 

o 
24o 260 280 300 320 340 360 

Day of Water Year (1952) 

Figure 4. Multiple hydrograph simulations generated using the SAC-SMA model, having similar RMSE val- 
ues (observed values indicated by circles, and simulated values indicated by solid lines). 
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3. THE MULTIPLE CRITERIA APPROACH 

3.1. The Problem of Model Structural Errors 

We mentioned above that during Manual-Expert calibra- 
tion, the hydrologist tries to adjust the parameters of the 
model so as to obtain a suitable compromise in matching (as 
closely as possible) several different local aspects of visual fit 
between the simulated and observed hydrographs, while 
achieving acceptable values for the global summary statistics. 
The reason the hydrologist must seek such a compromise is, 
that the task of simultaneously reproducing all of these local 
and global behaviors of the observed watershed response is 
significantly complicated by inadequacies in the model for- 
mulation (model errors) and the errors in the input-output 
data. However, even if data errors could be ignored (or treat- 
ed using statistical techniques such as Maximum Likelihood), 
the model structural errors make it impossible to match the 
observed hydrograph without having to trade-off the ability to 
match one or more hydrograph behaviors against the 
others. 

The strength of the Manual-Expert calibration approach 
lies, therefore, in the ability of the hydrologist to make judi- 
cious decisions regarding the relative importance of different 
kinds of model (and data) errors and to select one or more 
parameter sets that provide some appropriate compromise 
among the aforementioned different measures of model per- 
formance. On the face of it, this process of balancing objec- 
tives might seem to pose a serious difficulty to the hydrolo- 
gist. In fact, however, each of the competing targets has the 
effect of constraining the parameter space in different ways so 
that, although the space of suitable parameter solutions for 
each objective might be large, the "acceptable region" con- 
sisting of the intersection of solution spaces is much more 
tightly constrained (Figure 5). An important consequence is 
that the "set of acceptable parameters" is less likely to contain 
solutions that result in unbalanced model performance, so that 
forecast performance tends to be more reliable. Further, the 
calibration results are less likely to be overly sensitive to the 
choice of any individual measure of model performance. 

3.2. The Multiple-Criteria Optimization Approach 

Referring back to the "Turing Test" of model calibration, it 
becomes apparent that if an automatic calibration procedure is 
to pass inspection by a team of Experts, it must be capable of 
somehow emulating or improving upon the Manual-Expert 
procedures mentioned above. The Expert is, of course, 
attempting to optimize a number of subjective and objective 
"measures" of model performance. Therefore, in a series of 
papers, Gupta et al. [1998], Yapo et al. [1998] and Boyle et al. 

[2000] have proposed that this process be formalized by 
replacing the subjective visual evaluation of local hydrograph 
behaviors by objective criteria that measure the goodness-of- 
fit for each of those behaviors. 

Drawing upon multiple-criteria methods from the field of 
economic analysis, Gupta et al. [1998] proposed that the 
watershed model parameter estimation problem be reformu- 
lated as a multiple-criteria optimization problem which seeks, 
instead of a single unique solution, a Pareto-set of trade-off 
solutions (see Gupta et al., this volume, "Multiple ...") 

Consider a model having the p-dimensional parameter vec- 
tor t9 = { t9• ..... t9p } which is to be calibrated using time series 
observations (Oj (tj), tj=taj ..... tbj, j=l .... k) collected from 
times taj through tbj on k different response variables. The dif- 
ferent responses represent the different model outputs, e.g., 
sensible heat flux, latent heat flux, ground heat flux, runoff, 
etc. To measure the distance between the model-simulated 

responses Zj and the observations Oj, separate criteriafj (t9) for 
each model response are defined. The criteria and their math- 
ematical form depend on the goals of the users. It is common 
practice to use a measure of residual variance such as the root 
mean square error. For a discussion of this, see Gupta et al. 
[1998]. The multi-criteria model calibration problem can then 
be formally stated as the optimization problem: 

Minimize F(t9) = Ifs(t9) .... ,fk (t9)] subject to t9 C 0 

where the goal is to find the values for t9 within the feasible 
set O that simultaneously minimize all of the k criteria. 

The multi-objective minimization problem does not, in 
general, have a unique solution. Due to errors in the model 
structure (and other possible sources), it is not usually possible 
to find a single point t9 at which all the criteria have their min- 
ima. It is common to have a set of solutions with the property 
that moving from one solution to another results in the 
improvement of one criterion while causing deterioration in 
another. A case with two parameters (t91, t92) and two-criteria 
response functions {f•, f2} is illustrated in Figure 6. In Figure 
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Figure 5. Intersection of solution spaces. 
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6a the feasible parameter space O is shown, and the corre- 
sponding projection of the parameter space into the function 
space (shaded area) is shown in Figure 6b. Criterion j• is min- 
imized at point t7, and criterion f2 is minimized at point fl. The 
thick line indicates the set P of multi-criteria minimizing 
points to the function [j•, j•]. If ?,•:P and 6•P are points 
selected arbitrarily, then every point 2, is superior to every 
point d in a multi-criteria sense because each point has the 
property thatfj(?,) <.•(d), forj = 1,2. However, it is not possi- 
ble to find another point y*• P such that F* is superior to 27 
instead F* will be superior to 2' for one criterion but inferior for 
at least one other criterion. The set P of solutions is variously 
called the trade-off set, non-inferior set, non-dominated set, 
efficient set or Pareto set. Here, we call it the Pareto set. 

Because the solution of the multiple-criteria optimization 
problem is not unique, but consists of a Pareto region of the 
parameter space, classical optimization algorithms (includ- 
ing the SCE-UA) that seek a single point in the parameter 
space are not well suited. Yapo et al. [1998] therefore adapt- 
ed the population-based global search strategies of the SCE- 
UA to handle multiple-criteria and developed the Multiple- 
Objective Complex Optimization Method (MOCOM-UA) 
that converges to an approximation of the Pareto solution set. 

To implement the automatic multiple-criteria approach so 
that it emulates the Manual-Expert calibration of watershed 
models, one must select a set of objective (mathematical cri- 
teria) that formally represent the subjective visual methods 

by which various local hydrograph behaviors are evaluated. 
Boyle et al. [2000; 2001] therefore proposed the use of three 
"local" criteria (see also Boyle [2001], and Boyle et al., [this 
volume]), one each to represent the errors in matching of the 
rising limb of the hydrograph (precipitation driven 
response), the early recession (quick, non-driven relaxation 
response), and the late recession (slow, non-driven relax- 
ation response) (Note the correspondence of this proposal 
and the three model components identified by the data- 
based-mechanistic approach mentioned earlier m nonlinear 
precipitation partitioning, quick recession and slow reces- 
sion). They further proposed the use of two additional glob- 
al criteria, the overall error variance and overall error bias, 
to further constrain the solution set. 

The result of a watershed model calibration using multi- 
ple-criteria and the MOCOM-UA optimization algorithm is 
a discrete set of possible parameter sets that represent trade- 
offs between different optimal ways of constraining the 
model to be consistent with the observed data. This comput- 
erized approach is (in principle) superior to the Manual- 
Expert approach, because it quickly searches and rejects 
"bad regions" of the entire parameter space (as defined by 
the criteria) and identifies the limited "good regions" of the 
parameter space for which the model is consistent with the 
data [Figure 7a]. The hydrologist is then left with the rela- 
tively minor task of selecting a final "solution" from the 
sample of Pareto-optimal solutions. This last step allows for 

(a) Parameter Space (b) Criterion Space 
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Parameter 01 f• 
Figure 6. Example showing the Pareto Solution set for a two-parameter problem (01,02) and two criteria (fl,f2): (a) fea- 
sible parameter space and (b) criterion space. Point tz minimizes fl, and point/5' minimizes f2- The thick line indicates 
the Pareto set P of multi-criteria minimizing points to the function { fl,f2 }; 7 •P is superior to any 6 •P. 
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the application of additional criteria that were not included in 
the automated approach, or simply for the selection of a solu- 
tion that satisfies one's own personal preference. However, 
even if a single solution is to be selected, the Pareto-solution 
set can be used to generate a Pareto-ensemble of simulated 
hydrographs, displayed as a Trade-off-uncertainty region on 
the hydrograph plots (Figure 7b), which shows the uncer- 
tainty in the model simulations due to different possible ways 
of trading-off the model (and data) errors. 

The use of Pareto parameter sets to represent model struc- 
tural uncertainty and Pareto-ensemble simulations to repre- 
sent model prediction uncertainty provides useful new ways 
for evaluating models and their performance. For example, 
Figure 7b shows that by allowing trade-offs between different 
aspects of model performance, the calibrated watershed 
model tends to provide biased under-estimates of the hydro- 
graph recession suggesting structural problems with the 
model. Further, because better (more accurate) models would 
have smaller model errors, they would be expected to result 
in both smaller Pareto solution sets and smaller values for the 

objective functions. To illustrate this, Figure 8 (a & b) shows 
that the more complex SAC-SMA model provides a better 
(more accurate and less uncertain) representation of the Leaf 
River hydrograph when compared to the simpler HyMod 
model. Figure 9 illustrates how the multiple-criteria analysis 
also has the potential to reveal varied strengths among mod- 

.N o•- 

E o•- 

z 
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els. Models A and B are Pareto-equivalent in the sense that 
each is better (worse) than the other with regard to one of the 
criteria, while both are Pareto-superior to model C. 

Boyle et al [2000, 2001] have tested their automatic multi- 
ple-criteria (AMC) approach on several watershed data sets 
and compared the results with traditional single-criteria cali- 
bration using SCE-UA and with Manual-Expert calibrations 
conducted by NWS hydrologists. The AMC approach was 
found to provide better solutions than the traditional automat- 
ic approach when applied to a lumped calibration of the Leaf 
River watershed [Boyle et al., 2000]. In a comparison with 
NWS Manual-Expert calibrations, the AMC provided superi- 
or solutions when applied to a more complex semi-lumped 
(multiple sub-watershed) calibration for the Blue River water- 
shed [Boyle et al., 2001]. They have also demonstrated that 
AMC provides a quick and powerful tool for evaluating and 
comparing alternative model structures and components 
[Boyle et al., 2001, Boyle et al., this volume]. 

In the past few years, several other researchers have also 
developed and tested various formulations of the multiple- 
criteria approach for watershed calibration and have report- 
ed good results [see Beldring, 2002; Franks et al., 1999; 
Hogue et al., 2000; Madsen, 2000; Madsen et al., 2002; 
Seibert, 2000; Sen et al., 2001; Wagener et al., 2001c, 
among others]. Also, a robust multiple-criteria sensitivity 
analysis procedure has been developed by Bastidas et al. 
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Figure 7. a) Normalized parameters for Pareto Solutions obtained with the automatic multi-criteria approach. 
b) Hydrograph range associated with the Pareto solution set in logarithmic scale. Observed values indicated by solid dots. 
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[1999] based on extensions of the Regional Sensitivity 
Analysis (RSA) procedure of Spear and Hornberger [1980]. 
Finally, it should be mentioned that applications of the mul- 
tiple-criteria approach to hydro-chemistry models [Meixner 
et al., 1999; 2000] and to water-energy-carbon balance land- 
surface models [Bastidas et al., 1999; Gupta et al., 1999; 
Leplastrier, 2001; Pitman et al., 2001, Zeng et al., 2001] are 
also being developed and explored. For further discussion 
and applications of the multiple-criteria philosophy see 
Wagener et al. [this volume], Boyle et al. [this volume], 
Meixner et al. [this volume], Bastidas et al., [this volume], 
and Hogue et al., [this volume]. 

4. LOOKING TOWARDS THE FUTURE 

4.1. Emerging Model Structures 

Two technological developments are now exerting a major 
influence on the development of watershed modeling and 
calibration procedures. The first is, of course, the ever- 
increasing pace of desktop computational power. The second 
is the availability of distributed data, driven primarily by the 
boom in radar and satellite based remote sensing. In particu- 
lar, watershed modeling in the USA is now being strongly 
influenced by the interest in using NEXRAD Stage IV radar 
precipitation data that are available at 4x4 km resolution 
every 60 minutes for much of the country. This has promot- 
ed greater interest in the development of semi-lumped- and 
distributed-parameter watershed models. For example, the 
NWS is sponsoring the Distributed Model Intercomparison 
Project (DMIP) to encourage a community wide dialog on 
this topic, with a view to influencing the next generation of 
flood forecast models for the USA [Smith et al., 1999]. A 
related project, the Model Parameter Estimation experiment 
(MOPEX) is seeking to encourage community collaboration 
on the issue of how to parameterize distributed models, par- 

ticularly using distributed soils and vegetation data, for 
regions where precipitation-runoff data may not be readily 
available for calibration [Schaake et al., 1998]. In this 
regard, Koren et al. [2000] (see also Koren et al., this vol- 
ume) have proposed a procedure, based on the use of soil 
data, for computing approximate sub-watershed scale esti- 
mates of the parameters of the SAC-SMA (thereby allowing 
the SAC-SMA to be applied in semi-lumped mode). 

A number of modeling toolboxes are beginning to 
become available, with a view to facilitating the use of 
appropriate (different) model components based on the 
unique hydrology of a place. For example, the Modular 
Modeling System [Leavesley et al., 1996; Leavesley et al., 
this volume] developed by the USGS provides a sophisti- 
cated drag-and-drop environment to make model develop- 
ment relatively simple, along with integrated tools for 
parameter estimation via both a priori methods (using dis- 
tributed soils and vegetation data sets) and automatic cali- 
bration (the most recent version under testing now includes 
both the SCE-UA and MOCOM-UA algorithms). 

A simultaneous counter-move is also underway, in which 
some researchers (influenced by the databased-mechanistic 
movement and philosophy of equifinality) are investigating 
methods for developing simpler watershed models, which 
are only as functionally complex as can be supported by the 
hydrologic data available. For example, Young et al. [1997] 
and Young and Beven [1994], show that accurate, hydro- 
logically consistent, but simply structured conceptual 
watershed models suitable for streamflow forecasting can 
be developed using precipitation and ranoff data. Wheater 
et al. [1993] and Wagener et al. [2001a] are investigating the 
simplest possible conceptual model structures that are able 
to provide accurate streamflow predictions for UK water- 
sheds, while having well determined (low uncertainty) 
parameter estimates, so that rules for regionalization (i.e., 
extrapolating model structures and parameter values to 
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Figure 8. Comparison of SAC-SMA (black points) and simpler HyMOD (gray points) models in objective function space. 



GUPTA ET AL. 21 

B 

Figure 9. Multi-criteria objective space for three pareto sets (A, B, 
and C) in two dimensions (F l and F2). 

ungaged watersheds) might be developed. The Rainfall Runoff 
Modeling Toolbox (RRMT) and the Monte Carlo Analysis 
Toolbox (MCAT) being developed at Imperial College, 
London, are designed to facilitate parsimonious lumped water- 
shed models with a high level of parameter identifiability 
[Wagener et al. 2001a,b; Wagener et al., this volume]. 

Finally, there is an increasing interest in the development of 
models that compute multiple types of interacting fluxes. 
These include hydro-chemical models such as the Alpine 
Hydrochemical Model [Bales et al., 1993; Wolford and Bales, 
1996; Wolford et al., 1996; Meixner, 1999; Meixner et al., 
2000] and the Birkenes Model [De Grosbois et al., 1988; 
Hooper et al., 1988; etc] and hydro-meteorology models 
which describe the interdependence of water, energy, and var- 
ious environmental chemicals (such as carbon) [Dickinson et 
al., 1998; Liang et al., 1994; Mitchell et al., 1999; Sellers et 
al., 1996]. These ever more complex descriptions of the 
hydrologic environment will continue to demand evolution- 
ary developments in model identification technology. 

4.2. Methods for Model Identification 

we should put the notion of calibration aside, and instead 
focus on the problem of identifying all models (structures and 
parameter sets) that cannot be rejected by the input-output 
and other watershed data at our disposal, and on translating 
this uncertainty into probabilistic streamflow forecasts. 

There is no fundamental inconsistency between the equi- 
finality view and our own notion of model calibration as 
discussed here. If calibration is viewed as a progressive 
process of reducing the uncertainty regarding which model 
structures and parameter sets are consistent with the avail- 
able data, then the end result is a family of plausible models 
(not a single one), which can (and should) be used to gener- 
ate uncertain streamflow forecasts. In support of this, Vrugt 
et al. [this volume] have recently developed the Shuffled 
Complex Evolution Metropolis optimization algorithm 
(SCEM-UA; a modified version of the SCE-UA method) 
that converges to a stationary approximation of the posteri- 
or distribution of the parameter values. The SCEM-UA 
therefore provides both an estimate of the mode of the pos- 
terior parameter distribution (the traditional "best" param- 
eter set) and a sample set of parameter values describing 
the probabilistic representation of remaining parameter 
uncertainty. This posterior description of parameter 
(model) uncertainty is used to produce probabilistic model 
forecasts (most likely forecast and 95% confidence inter- 
vals at each time step). The method does not exclude the 
use of multiple model structures, although this has not yet 
been explicitly demonstrated. Our view on calibration is 
also reflected in the BaRE algorithm for Bayesian 
Recursive Estimation of watershed model parameters 
which begins with a family of plausible models (in princi- 
ple various structures and their feasible parameter spaces 
can be included) and seeks to reduce progressively the 
model and hence the forecast uncertainty through stepwise 
recursive (in time) processing of the input-output data as 
they become available [Theimann et al., 2001]. For further 
discussion of the BaRE approach, see Misirli et al., [this 
volume]. 

On the issue of parameter estimation strategies, there is 
currently a tension between the school that suggests that if a 
watershed model is constructed to be structurally consistent 
with the kinds of (distributed) data now available, then little 
or no calibration (i.e. parameter adjustments using input-out- 
put data) should be necessary [e.g., Leavesley et al., 1996], 
and the view (which we ourselves subscribe to) that useful 
models are conceptual simplifications of reality and therefore 
the need for some degree of calibration will likely still remain 
for the foreseeable future. Also, the concept of "calibration" 
has been questioned by proponents of the philosophy of equi- 
finality (in particular the GLUE strategy). They suggest that 

4.3. Two Important Issues That Need Addressing 

While both the GLUE and the BaRE strategies are (in dif- 
fering ways) rooted in Bayesian mathematics, neither has 
succeeded in providing a complete description of the model 
identification problem. To be comprehensive, future strate- 
gies for model identification should seek to account explic- 
itly for all of the following sources of uncertainty: 

a) input uncertainty (observation error) 
b) state uncertainty 
c) structural uncertainty, 
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d) parameter uncertainty, and 
e) output uncertainty (observation error) 

which could (we think) be treated within a Bayesian frame- 
work (something for ambitious graduate students to think 
about!). 

A related (and perhaps more interesting) issue that also 
remains to be addressed, is how to resolve the Bayesian 
uncertainty framework, which is based on the computation 
of a single aggregate measure of model performance with 
the multiple-criteria philosophy which argues for multiple 
non-commensurable measures of model performance to 
enhance identifiability. One strategy that contributes 
towards ways to address this dilemma is the DYNIA 
(Dynamic Identifiability Analysis) method [Wagenet and 
Wheater, 2001; Wagenet et al., 2001c; and Wagenet et al. 
this volume] which combines the multiple-criteria approach 
with a recurslye strategy for identifying data periods of high 
information content (A feature of the DYNIA method is its 
ability to detect violations of the assumption that the param- 
eter values are constant with respect to time). A goal of 
future model identification research should be to develop a 
strategy that: 

a) allows for descriptions of a priori model uncertainty 
b) explicitly incorporates reasonable descriptions 

of input, state, structure, parameter and output 
uncertainties 

c) incorporates multiple sources and types of information 
d) permits recursive processing of data as they become 

available, and 
e) provides probabilistic estimates of the model outputs 

(e.g., "most likely" values and 95% confidence 
intervals). 

5. SUMMARY 

Watershed models are conceptual-numerical descriptions 
of the dominant hydrologic processes occurring in a water- 
shed. Since the 1960's there has been a progressive evolu- 
tion of watershed model structures ranging from lumped to 
semi-lumped, distributed and now multi-flux descriptions. 
In each case, application of the model to a specific water- 
shed required that estimates for the model parameters be 
provided. The general problem of model identification 
involves the selection of appropriate structures for the vari- 
ous components of the model and specification of the val- 
ues of the parameters for those components, such that the 
resulting model provides a sufficiently accurate simula- 
tion/prediction of the watershed response. 

The problem of model identification (both structure and 

parameter values) has proved to be difficult. In most cases a 
single model structure is selected and various strategies are 
employed to adjust the parameter values so that the modeled 
input-output response approximates, as closely as possible, 
the observed response of the watershed for some historical 
period of data. Parameter estimation proceeds through three 
stages (Levels Zero, One, and Two) that progressively 
reduce the initial uncertainty in the parameter values. The 
resulting model is then evaluated for consistency and accu- 
racy using an independent period of data. 

Model identification is a process that seeks to constrain a 
model to be structurally and functionally consistent with 
the available qualitative and quantitative information about 
the watershed. Because there are many sources of uncer- 
tainty, including data error and conceptual model error, the 
best possible outcome of model identification is some min- 
imal set of models (structures and parameter values) that 
closely and consistently approximate, in an uncertain way, 
the observed behavior of the watershed. The two main 

strategies for parameter estimation are the Manual-Expert 
approach and the Automatic approach. While the Manual- 
Expert approach relies on the subjective judgement of a 
trained hydrologist, the Automatic approach has tradition- 
ally been based on techniques of non-linear regression. 

Hydrologists responsible for calibrating the SAC-SMA 
model of the NWS have eschewed the traditional Automatic 

approach in favor of the Manual-Expert approach, because 
they find the latter to provide more accurate and consistent 
model calibrations. However, there is an urgent need to 
develop reliable Automatic calibration methods because of 
the large number of watersheds that must be calibrated for 
flood forecasting purposes, and because the Manual-Expert 
procedures may be unable to handle the increasing com- 
plexity of emerging models. 

A major problem with traditional Automatic calibration 
methods is their underlying assumption that the available 
model structure is correct, leading to the elusive goal of 
finding a unique optimal parameter set. Although global 
optimization algorithms, such as the SCE-UA, allow us to 
find the global optimum of an objective function with a high 
degree of confidence, research has indicated that there are 
typically large regions of the feasible parameter space for 
which the objective function values are very similar. There 
have been at least three responses to this finding. One is that 
this phenomenon is evidence of equifinality among models, 
a condition in which the available data is insufficient to dis- 

tinguish between competing models. Another is that the 
phenomenon is evidence of models that are too complex in 
relation to the information content of the data, leading to the 
contention that watershed input-output data can typically 
only support models with approximately five parameters. 
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While issues of equifinality and over-complexity exist, 
these phenomena result partly as a consequence of inherent 
weaknesses in the design of the model identification prob- 
lem. One major weakness lies in the dependence of the 
identification process on a single aggregate measure of 
model performance that is unlikely to constitute a rigorous 
test from which differences in model performance can be 
inferred. In contrast, the Manual-Expert calibration 
approach uses a number of complementary, although sub- 
jective, ways of evaluating model performance. This allows 
the hydrologist to compensate for various kinds of model 
and data errors, and to extract greater amounts of informa- 
tion from the data. 

We contend that it is necessary to resolve the deficiencies 
of the automatic approach, before jumping to the conclu- 
sions of equifinality and/or over-complexity, and that single 
criteria identification methods are fundamentally inade- 
quate for the identification of hydrologic models. The mul- 
tiple-criteria approach offers a way to improve the power of 
the Automatic approach, by emulating the procedures used 
in Manual-Expert calibration. The approach identifies a 
Pareto-region of the parameter space, which represents the 
trade-offs that can be made between different "optimal" 
ways of constraining the model to be consistent with the 
data in the presence of model and data error. By using the 
Pareto-solution set one can generate a Pareto-ensemble of 
simulated outputs, so that the uncertainty in the model sim- 
ulations due to different ways of trading-off the model and 
data errors can be examined. This provides new and useful 
ways to evaluate competing models and their performance. 
Numerous researchers have demonstrated the value of the 

multiple-criteria approach for watershed modeling, and 
extensions to multiple-flux, hydro-chemical, and hydro- 
meteorological models have also been explored. 

The relentless pace of technological development is pro- 
moting increasing interest in models that provide spatially 
distributed predictions of multiple interdependent fluxes 
(including water, energy and various chemical substances). 
These more complex descriptions of the hydrologic envi- 
ronment will, no doubt, continue to demand evolutionary 
developments in model identification technology. While 
there have been suggestions that the increasing availability 
of various kinds of spatially distributed data will soon obvi- 
ate the need for calibration technologies, it is our view that 
the need for model calibration methods remains. Further, 

there is a growing need for procedures that provide reliable 
estimates of the confidence in the model forecasts. 

The goal of future model identification research should be 
to develop a strategy that allows for descriptions of a priori 
model uncertainty, explicitly incorporates descriptions of 
input, state, structure, parameter and output uncertainties, 

incorporates multiple sources and types of information, per- 
mits recursive processing of data as they become available, 
and provides probabilistic estimates of the model outputs. 
The outcome of this strategy should be able to pass the 
"Turing Test" of model identification; i.e., model perform- 
ance that is either indistinguishable, or demonstrably supe- 
rior to what can be obtained by a highly trained expert. 

6. SOME CLOSING COMMENTS AND 

CONJECTURES 

We close with five comments and conjectures that build 
on our earlier work [Gupta, 2001 ]. 

1. All model identification problems are inherently 
multi-criteria in nature. Every modeling assump- 
tion implies a criterion that could (in principle) be 
testable. It is self-evident, therefore that we should 

be careful to acknowledge and carefully examine 
all assumptions. 

2. It is not clear that identification methods based on 

traditional statistical approaches are powerful 
enough to facilitate extraction of all relevant infor- 
mation from hydrologic data, particularly as model 
complexity continues to grow. Is it really useful to 
strive for model residuals that have the properties 
of being "homogeneous, uncorrelated, and inde- 
pendently identically distributed", and that 
"belong to a Gaussian distribution?" 

3. We will be unable to establish confidence in the 

emerging generation of sophisticated watershed 
models if our model identification procedures are 
weak. Nor can we make inferences about the 

"information content of the data", or "amount of 

supportable model complexity", by using a single 
aggregate measure of model performance. 

4. The observation by some researchers that only 
model structures having approximately five 
parameters can be confidently estimated from 
hydrologic input-output data is an artifact of the 
single criteria strategy rooted in traditional regres- 
sion theory. We conjecture that a single aggregate 
measure of model performance only has the 
"power" to identify approximately 3 to 5 parame- 
ters of a conceptual dynamic model. We suggest 
that the number of criteria (Ncrit) necessary to iden- 
tify a model having Npa• parameters must satisfy 
the condition Ncrit < Npa r , and that a rule of thumb 
may be Ncrit •- Npa r / 5 This is supported by Boyle 
et al., [2000] who obtained good results using three 
criteria for the 15 parameter SAC-SMA model. 
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o There is no "best" way to select the criteria for a 
multiple-criteria analysis. The selected criteria 
should measure different, complementary, attrib- 
utes of system behavior. It is likely that there may 
be several functionally equivalent ways to define 
these. When setting up a model identification prob- 
lem with multiple criteria there can be interde- 
pendence among criteria (in a fashion dual to the 
problem of interdependence among parameters). 
More insight into this issue is needed. 

As always, we invite open discussion and collaboration 
on these and related issues. It is through the free and unfet- 
tered exchange of ideas that rapid progress is accomplished. 
We have had the good fortune to collaborate with numerous 
researchers from around the world, and for those opportuni- 
ties we are extremely grateful. 

APPENDIX 

The HMLE estimator is the maximum likelihood, mini- 

mum variance, asymptotically unbiased estimator when the 
errors in the output data are Gaussian, zero mean, uncorre- 
lated and have variance related to the magnitude of the out- 
put (streamflows). Nonstationary variance errors are 
believed to be common in streamflow data. The HMLE is 

related to the SLS (Simple Least Squares): it reduces to the 
SLS function in the special case when the streamflow meas- 
urement errors have equal variance. The HMLE estimator 
has the form: 

cedure at present, it should be noted that use of qt,obs will 
cause some degree of bias in the estimate of;t [Gupta, 1984]. 

The HMLE is solved in two stages. First, given a set of 
model parameters, the residuals of the model are obtained. 
Next, an estimate of ;t must be obtained; Sorooshian [1978] 
showed that this could be done by solving the implicit 
expression A.3 to obtain an estimate of the parameter •, 
using an interative numerical procedure: 

t=l t=l t=l 

(A.3) 

The value of;t is substituted into eqs. A. 1 and A.2 to com- 
pute the value of the HMLE function. Duan [ 1991] devised 
an equivalent, but more stable procedure, for estimating, by 
rearranging eq. A.3, as follows: 

•- 1 - O (A.4) 

where /-•d = Z w tœ 2 t (A.5) 
t=l 

R h -ZwtœZtat (A.6) 
t=l 

In(ft ) 
at • d (A.7) 

l •wtœt2 1• minHMLE= n t=l ad --- ln(ft ) (A.8) 1 (A. 1) n t=l 

w t With this arrangement of terms, the HMLE function value 
t=l Can be computed as: 

Where E t = qt,obs -- qt(0) is the model residual at time t; 
qt,obs and qt(0) are observed and simulated flows, respective- 
ly; w t is the weight assigned to time t, computed as: 

Wt = ft 2(,•- 1) (A.2) 

Where ft = qt,true is the expected true flow at time t, n is the 
number of data points, and ;t is the unknown transformation 
parameter which stabilizes the variance. The expected flow 
qt,true is approximated using either qt, obs or qt(0) [Sorooshian 
et al., 1983]. Fulton [1982] showed that the estimator can 
become unstable when qt(0) is used to approximate ft and 
recommends using qt,obs. While this is the recommended pro- 

1 

H3/ILE = exp[2(2- 1)ad] (A.9) 

The revised procedure for estimating ;t and computing 
HMLE, given qt, o•,• and qt(rI)), is as follows: 

a) Select ft = qt, o•,s or qt(•) or (•z qt, o•,s + ,15' qt(•)), 
where •z + fl = 1; •z, fl _> O; t = 1,2 ..... n; 

b) Compute a d, using eq. A.8, and at (for t = 1,2 .... n) 
using eq. (A.7) 

c) Use an iterative procedure (e.g. Golden Section, or 
Fibonacci Method) to estimate ;t such that the R = 
0 in eq. (A.4). If the procedure requires an initial 
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d) 
value, use it = 1. 
Compute HMLE using eq. (A.9). 
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Conceptual modeling requires the identification of a suitable model structure 
and, within a chosen structure, the estimation of parameter values (and, ideally, 
their uncertainty) through calibration against observed data. A lack of objective 
approaches to evaluate model structures and the inability of calibration proce- 
dures to distinguish between the suitability of different parameter sets are major 
sources of uncertainty in current modeling procedures. This is further complicat- 
ed by the increasing awareness of model structural inadequacies. A framework for 
the identification and evaluation of conceptual rainfall-runoff models is present- 
ed, based on multi-objective performance and identifiability approaches, and a 
novel dynamic identifiability analysis (DYNIA) method which results in an 
improved use of available information. The multi-objective approach is mainly 
used to analyze the performance and identifiability of competing models and 
model structures, while the DYNIA allows periods of high information content 
for specific parameters to be identified and model structures to be evaluated 
with respect to failure of individual components. The framework is applied to a 
watershed located in the South of England. 

1. INTRODUCTION 

Many if not most rainfall-runoff model structures currently 
used can be classified as conceptual. This classification is based 
on two criteria: (1) the structure of these models is specified prior 
to any modelling being undertaken, and (2) (at least some of) the 
model parameters do not have a direct physical interpretation, in 
the sense of being 'rodependently measurable, and have to be esti- 
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mated through calibration against observed data [Wheater et al., 
1993]. Calibration is a process of parameter adjustment (auto- 
matic or manual), until observed and calculated output time- 
series show a sufficiently high degree of similarity. 

Conceptual rainfall-runoff (CRR) model structures com- 
monly aggregate, in space and time, the hydrological 
processes occurring in a watershed (also called catchment), 
into a number of key responses represented by storage com- 
ponents (state variables) and their interactions (fluxes). The 
model parameters describe aspects such as the size of those 
storage components, the location of outlets, the distribution 
of storage volumes etc. Conceptual parameters, therefore, 
usually refer to a collection of aggregated processes and 
they may cover a large number of sub-processes that cannot 
be represented separately or explicitly [Van Straten and 
Keesman, 1991]. The underlying assumption however is 
that these parameters are, even if not measurable properties, 
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at least constants and representative of inherent properties 
of the natural system [Bard, 1974, p.11]. 

The modeller's task is the identification of an appropriate 
CRR model (or models) for a specific case, i.e. a given 
modelling objective, watershed characteristics and data set. 
A model is defined in this context as a specific parameter set 
within a selected model structure. Experience shows that 
this identification is a difficult task. Various parameter sets, 
often widely distributed within the feasible parameter space 
[e.g. Duan et al., 1992; Freer et al., 1996], and sometimes 
even different conceptualisations of the watershed system 
[e.g. Pi•ol et al., 1997; Uhlenbrock et al., 1999], may yield 
equally good results in terms of a predefined objective func- 
tion. This ambiguity has serious impacts on parameter and 
predictive uncertainty [e.g. Beven and Binley, 1992], and 
therefore limits the applicability of CRR models, e.g. for the 
simulation of land-use or climate-change scenarios, or for 
regionalisation studies [Wheater et al., 1993]. 

Initially it was thought that this problem would disappear 
with improved automatic search algorithms, capable of 
locating the global optimum on the response surface [e.g. 
Duan et al., 1992]. However, even though powerful global 
optimisation algorithms are available today, single-objective 
calibration procedures still fail to completely replace manu- 
al calibration. One reason for this is that the resulting hydro- 
graphs are often perceived to be inferior to those produced 
through manual calibration from the hydrologist's point of 
view [e.g. Gupta et al., 1998; Boyle et al., 2000]. It has been 
suggested that this is due to the fundamental problem that 
single-objective automatic calibration is not sophisticated 
enough to replicate the several performance criteria implicit- 
ly or explicitly used by the hydrologist in manual calibration. 
This problem is increased by indications that, due to struc- 
tural inadequacies, one parameter set might not be enough to 
adequately describe all response modes of a hydrological 
system. Therefore, there is a strong argument that the process 
of identification of dynamic, conceptual models has to be 
rethought [Gupta et al., 1998; Gupta, 2000]. 

Three reactions to this problem of ambiguity of system 
description can be found in the hydrological literature. The 
first is the increased use of parsimonious model structures 
[e.g. Jakeman and Hornberger, 1993; Young et al., 1996; 
Wagener et al., 2001b], i.e. structures only containing those 
parameters, and therefore model components, that can be 
identified from the observed system output. However, the 
increase in identifiability is bought at the price of a decrease 
in the number of processes described separately by the 
model. There is therefore a danger of building a model 
(structure) which is too simplistic for the anticipated pur- 
pose. Such a model (structure) can be unreliable outside the 
range of watershed conditions, i.e. climate and land-use, on 

which it was calibrated, due to the restriction to 'justifiable' 
components [Kuczera and Mroczkowski, 1998]. It is also 
particularly important that the data used has a high infor- 
mation content in order to ensure that the main response 
modes are excited during calibration [Gupta and 
Sorooshian, 1985, Yapo et al., 1996]. 

The second reaction is the search for calibration methods 

which make better use of the information contained in the 

available data time-series, e.g. streamflow and/or ground- 
water levels. Various research efforts have shown that the 

amount of information retrieved using a single objective 
function is sufficient to identify only between three and five 
parameters [e.g. Beven, 1989; Jakeman and Hornberger, 
1993; Gupta, 2000]. Most CRR model structures contain a 
larger number. More information can become available 
through the definition of multiple objective functions to 
increase the discriminative power of the calibration proce- 
dure [e.g. Gupta et al., 1998; Gupta, 2000]. These measures 
can either retrieve different types of information from a sin- 
gle time-series, e.g. streamflow [e.g. Wheater et al., 1986; 
Gupta et al., 1998; Dunne, 1999; Boyle et al., 2000; 
Wagener et al., 2001 a], or describe the performance of indi- 
vidual models with respect to different measured variables, 
e.g. groundwater levels [e.g. Kuczera and Mroczkowski, 
1998; Seibert, 2000], saturated areas [Franks et al., 1998], 
or measurements of streamflow salinity [Mroczkowski et al., 
1997; Kuczera and Mroczkowski, 1998]. However, the use- 
fulness of additional data can depend on the adequacy of the 
model structure investigated. Lamb et al. [1998] found that 
the use of groundwater levels from one or only a few meas- 
urement points as additional output variable(s) helped to 
reduce the parameter uncertainty of Topmodel [Beven et al., 
1995]. The use of many (>100) groundwater measurement 
points however, leads to an increase in prediction uncer- 
tainty indicating structural problems in the model. Seibert 
and McDonnell [this volume] show in a different approach 
how the parameter space can be constrained when soft data, 
i.e. qualitative knowledge of the watershed behaviour, is 
included in the calibration process. The soft data in their 
case included information, derived through experimental 
work, about the contribution of new water to runoff and the 
restriction of parameter ranges to a desirable range. The 
result is a more realistic model, which will however yield 
sub-optimal performances with respect to many specific 
objective functions, in their case the Nash-Sutcliffe effi- 
ciency measure [Nash and Sutcliffe, 1970]. Chappell et al. 
[1998] give another example of how expert knowledge of 
internal catchment dynamics (e.g. saturated areas) can be 
used to constrain the parameter space. 

Thirdly, some researchers abandoned the idea of a 
uniquely identifiable model in favour of the identification of 
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a model population [e.g. van Straten and Keesman, 1991; 
Beven and Binley, 1992; Gupta et al., 1998]. This can for 
example be a population of models with varying degrees of 
(some sort of) likelihood to be representative of the water- 
shed at hand, the idea behind the Generalized Likelihood 

Uncertainty Estimation (GLUE) approach [Freer et al., this 
volume]. Or an approach based on the recognition that the 
calibration of a rainfall-runoff model is inherently a multi- 
objective problem, resulting in a population of non-domi- 
nated parameter sets [Goldberg, 1989, p.201] in the pres- 
ence of model structural inadequacies [Gupta et al., 1998]. 

Here, we seek to increase the amount of information made 

available from an output time-series and to guide the identi- 
fication of parsimonious model structures, consistent with a 
given model application as explained below. We use multi- 
objective approaches to performance and identifiability 
analysis and a novel dynamic identifiability analysis 
(DYNIA) method for assumption testing. These can be inte- 
grated into a framework for model identification and evalu- 
ation. An application example at the end of this chapter 
shows the use of the framework for a specific case. 

2. IDENTIFICATION OF CONCEPTUAL 

RAINFALL-RUNOFF MODELS 

The purpose of identifiability analysis in CRR modelling 
is to find (the) model structure(s) and corresponding param- 
eter set(s) which are representative of the watershed under 
investigation, while considering aspects such as modelling 
objectives and available data. This identifiability analysis 
can be split into two stages: model structure selection and 
parameter estimation, which can, however, not be treated as 
completely separate [Sorooshian and Gupta, 1985] (in order 
to evaluate model structures fully, one has to analyse their 
performance and behaviour which requires some form of 
parameter estimation). 

Traditional modelling procedures commonly contain, 
amongst others, an additional third step [e.g Anderson and 
Burt, 1985]. This is a validation or verification step often 
used to show that the selected model really is the correct rep- 
resentation of the watershed under investigation. This results 
in the following three steps as part of a longer procedure: 

(1) Selection or development of a model structure, and 
subsequently computer code, to represent the concep- 
tualisation of the hydrologic system which the hydrol- 
ogist has established in his or her mind for the water- 
shed under study. 

(2) Calibration of the selected model structure, i.e. esti- 
mation of the 'best' parameter set(s) with respect to 
one or more (often combined) criteria. 

(3) Validation or verification of this model by (success- 
fully) applying it to a data set not used in the calibra- 
tion stage. 

It is important to stress that the original meanings of the 
words validation and verification are different. Verification 

is the stronger statement, meaning to establish the truth, 
while validation means to establish legitimacy [Oreskes et 
al., 1994]. In the context of hydrological modelling, these 
terms are often used synonymously, describing a step to jus- 
tify that the chosen model is an acceptable representation of 
the real system. An in-depth discussion on this topic can be 
found in Oreskes et al. [1994]. 

These three steps are similar to the logic of induction 
often used in science. This idea of induction is founded on 

the underlying assumption that a general statement can be 
inferred from the results of observations or experiments 
[Popper, 2000, p.27]. It includes the assumption that a 
hypothesis, e.g. a chosen model structure, can be shown to 
be correct, i.e. a hypothesis can be validated or verified, 
through supporting evidence. The steps taken in this tradi- 
tional scientific method are [for example modified from 
Magee, 1977, p. 56]: 

(1) Observation and experiment; 
(2) inductive generalization, i.e. a new hypothesis; 
(3) attempted verification of hypothesis, i.e. proof or 

disproof of hypothesis; 
(4) knowledge. 

However, the logical error in this approach is, (as Magee 
[1977, p. 20] derives from statements by the philosopher 
Hume), that no number of singular observation statements, 
however large, could logically entail an unrestrictedly gen- 
eral statement. In rainfall-runoff modelling this is equivalent 
to the statement that, however often a model is capable of 
reproducing the response of a particular watershed, it can 
never be concluded that the true model has been found. It 

could for example be that future measurements will capture 
more extreme events, exciting a response not captured by 
earlier data and therefore not included in the model. 

Similarly, Popper concluded that no theory or hypothesis 
could ever be taken as the final truth. It can only be said that 
it is corroborated by every observation so far, and yields bet- 
ter predictions than any known alternative. It will however, 
always remain replaceable by a better theory or turn out to 
be false at a later stage [Popper, 2000, p.33]. 

The idea that a model can be verified (verus, meaning true 
in Latin [Oreskes et al., 1994]) is therefore ill-founded and 
alternative modelling frameworks have to be found. One 
such alternative approach was suggested by Popper [2000]. 
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He realised that, while no number of correctly predicted 
observations can lead to the conclusion that a hypothesis is 
correct, a single unexplained observation can lead to the fal- 
sification of the hypothesis. Hence he replaced the frame- 
work of verification with a framework of falsification, 

allowing the testing of a hypothesis. 
This framework of falsification as suggested by Popper can 

be outlined as follows [modified from Magee, 1977, p.56]: 

(1) The initial problem or question, often resulting from 
the fact that an existing hypothesis has failed; 

(2) one (or more) proposed new hypothesis(es); 
(3) deduction of testable propositions from the new 

hypothesis; 
(4) attempted falsification of the new hypothesis by test- 

ing the propositions; 
(5) preference established between competing hypotheses. 

The procedure is repeated as soon as the new hypothesis 
fails. It is thus possible to search for the truth, but it is not 
possible to know when the truth has been found, a problem 
which has to be reflected in any scientific method. 

Additionally, Beven [2000, p.304] pointed out that it is 
very likely, at least with the current generation of CRR 
models, that every model will fail to reproduce some of the 
behaviour of a watershed at some stage. However, even if 
one knows that the model is inadequate, one often has to use 
it due to the lack of alternatives. And for many cases, the use 
of this inadequate model will be sufficient for the selected 
purpose. Or as Wilfried Trotter put it more generally: In sci- 
ence the primary duty of ideas is to be useful and interest- 
ing even more than to be 'true' [Beveridge, 1957, p. 41]. 

How this general idea of hypothesis falsification can be 
put into a framework for CRR modelling is described 
below. 

2.1. Identification of Model Structures 

A large number of CRR modelling structures is currently 
available. These differ, for example, in the degree of detail 
described, the manner in which processes are conceptu- 
alised, requirements for input and output data, and possible 
spatial and temporal resolution. Despite these differences, a 
number of model structures may appear equally possible for 
a specific study, and the selection process usually amounts 
to a subjective decision by the modeller, since objective 
decision criteria are often lacking [Mroczkowski et al., 
1997]. It is therefore important to deduce testable proposi- 
tions with respect to the assumptions underlying the model 
structure, i.e. about the hypothesis of how the watershed 
works, and to find measures of evaluation that give some 

objective guidance as to whether a selected structure is suit- 
able or not. However, Uhlenbrock et al. [1999] have shown 
that it is difficult to achieve this using single-objective 
Monte-Carlo-based calibration approaches. They were able 
to derive good performances with respect to the prediction 
of streamflow, from sensible, as well as incorrect conceptu- 
alisations of a watershed. Mroczkowski et al. [1997] 
encountered similar problems when trying to falsify one of 
two possible model structures, including and excluding a 
groundwater discharge zone respectively, to represent two 
paired watersheds in Western Australia. This was impossi- 
ble for both watersheds when only streamflow data was 
used. The additional use of stream chloride and groundwa- 
ter level measurements allowed at least for the falsification 

of one of the model structures in case of the second water- 

shed which had undergone considerable land-use changes. 
Testable propositions about a specific model structure can 

be either related to the performance of the model or its com- 
ponents, or they can be related to its proper functioning. 

A test of performance is the assessment whether or not the 
model structure is capable of sufficiently reproducing the 
observed behaviour of the natural system, considering the 
given quality of data. However, an overall measure of per- 
formance, aggregating the residuals over the calibration 
period, and therefore usually a number of response modes, 
hides information about how well different model compo- 
nents perform. It can be shown that the use of multiple- 
objectives for single-output models, measuring the model's 
performance during different response modes, can give 
more detailed information and allows the modeller to link 

model performance to individual model components [e.g. 
Boyle et al., 2001; Wagener et al., 2001 a]. Additional infor- 
mation will also be available in cases where the model pro- 
duces other measurable output variables, e.g. groundwater 
levels or hydro-chemical variables, as mentioned earlier. 

Evaluation of the proper functioning of the model means 
questioning the assumptions underlying the model's struc- 
ture, such as: Do the model components really represent the 
response modes they are intended to represent? And is the 
model structure capable of reproducing the different domi- 
nant modes of behaviour of the watershed with a single 
parameter set? A model structure is usually a combination 
of different hypotheses of the working of the natural system. 
If those hypotheses are to be individually testable, they 
should be related to individual model components and not 
just to the model structure as a whole [Beck, 1987; Beck et 
al., 1993]. 

One, already mentioned, underlying assumption of concep- 
tual modelling is the consideration of model parameters as 
constant in time, at least as long as for example no changes in 
the watershed occur that would alter the hydrological 
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response, such as land-use changes. Different researchers 
[e.g. Beck, 1985; 1987; Gupta et al., 1998; Boyle et al., 2000; 
Wagener et al., 2001 a] have shown that this assumption can 
be tested, and that the failure of a model structure to simulate 
different response modes with a single parameter set suggests 
inadequacies in the functioning of the model. 

Beck used the Extended Kalman Filter (EKF) extensive- 
ly to recursively estimate model parameters and to utilize 
the occurrence of parameter deviation as an indicator of 
model structural failure [e.g. Beck, 1985; 1987; Stigter et 
al., 1997]. For example, in the identification of a model of 
organic waste degradation in a river, changes in optimum 
parameter values in time from one location in the parameter 
space to another were identified [Beck, 1985]. Beck con- 
cluded from this observation that the model hypothesis had 
failed, i.e. the parameters were changing to compensate for one 
or more missing aspect(s) in the model structure. The subse- 
quent step is to draw inference from the type of failure to devel- 
op an improved hypothesis of the model structure. However, 
there are limitations to the EKF approach. Beck concluded 
with respect to the use of the EKF for hypothesis testing that 
the performance of the EKF is not as robust as would be desir- 
able and, inter alia, is heavily compromised by the need to 
make more or less arbitrary assumptions about the sources of 
uncertainty affecting the identification problem [Beck, 1987]. 

A trade-off in the capability to simulate different response 
modes can occur, as shown by Boyle et al. [2000] for the 
example for a popular complex rainfall-runoff model 
(Sacramento with 13 calibrated parameters [Smith et al., 
this volume]), thus it was not possible to reproduce (slow) 
recession periods and the remaining system response modes 
simultaneously. Their multi-objective analysis suggests that 
the cause for this problem is mainly an inadequate repre- 
sentation of the upper soil zone processes. 

There are therefore ideas to address the problem of model 
structure identification in a more objective way. However, 
they are not without weaknesses, as the Beck statement 
about the use of EKF showed earlier in the text. These need 

to be addressed to derive more suitable approaches. 

2.2. Identification of Parameters 

The second stage in the model identification process is 
the estimation of a suitable parameter set, usually referred to 
as calibration of the model structure. In this process, the 
parameters of a model structure are adjusted until the 
observed system output and the model output show accept- 
able levels of agreement. Manual calibration does this in a 
trial-and-error procedure, often using a number of different 
measures of performance and visual inspection of the 
hydrograph [e.g. Gupta et al., 1998; Smith et al., this vol- 

ume]. It can yield good results and is often a good way to 
learn about the model, but it can be time consuming, 
requires extensive experience with a specific model struc- 
ture and an objective analysis of parameter uncertainty is 
not possible. Traditional single-objective automatic calibra- 
tion on the other hand is fast and objective, but will produce 
results which reflect the choice of objective function and 
may therefore not be acceptable to hydrologists concerned 
with a number of aspects of performance [Boyle et al., 
2000]. In particular the aggregation of the model residuals 
into an objective function leads to the neglect and loss of 
information about individual response modes, and can result 
in a biased performance, fitting a specific aspect of the 
hydrograph at the expense of another. It also leads to prob- 
lems with the identification of those parameters associated 
with response modes which do not significantly influence 
the selected objective function [Wagener et al., 2001a]. 
Selecting, for example, an objective function which puts 
more emphasis on fitting peak flows, e.g. the Nash-Sutcliffe 
efficiency value [Nash and Sutcliffe, 1970], due to its use of 
squared residual values [Legates and McCabe, 1999], will 
often not allow for the identification of parameters related 
to the slow response of a watershed [e.g. Dunne, 1999]. 

An example to demonstrate this problem is briefly pre- 
sented. It uses a simple model structure consisting of a 
Penman two-layer soil moisture accounting component 
[Penman, 1949] to produce effective rainfall and a linear 
routing component using two conceptual reservoirs in paral- 
lel to transform it into streamflow. A comparison of hydro- 
graphs produced by different parameter sets within the 
selected structure, which yield similar objective function 
values, shows that these hydrographs can be visually differ- 
ent. Figure 1 shows a hundred days extract of six years of 
daily streamflow data, where the observed time-series (black 
line) is plotted with seven different realisations (grey lines), 
i.e. using the same model structure, but different parameter 
sets. The objective function used during calibration is the 
well known Root Mean Squared Error (RMSE). Each of the 
models presented yields a RMSE of 0.60mm/d when the 
complete calibration period (6 years) is considered. 
However, the hydrographs produced are clearly visually dif- 
ferent. The added dotty plots of the two residence times of 
the (linear) routing component show that while the quick 
flow residence time, k(quick) is very well identified, the 
slow flow residence time, k(slow), is not. This is consistent 
with the observation that the main difference between the 

hydrographs can be observed during low flow periods. This 
effect is due to the use of squared residuals when calculating 
the RMSE. 

This result demonstrates that traditional single-objective 
optimisation methods do not have the ability to distinguish 
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Figure 1. Hundred days extract of six years of daily streamflow data. Observed flow in black, seven different model 
realizations in gray. Inlets show dotty plots for the time constants k(quick) and k(slow) with respect to the Root Mean 
Squared Error (RMSE). The model structure used consists of a Penman soil moisture accounting and a parallel routing 
component of linear reservoirs with fixed flow distribution (see application example for details). 

between visually different behaviour [Gupta, 2000]. The 
requirement for a parameter set to be uniquely locatable 
within the parameter space, i.e. to be globally identifiable, is 
that it yields a unique response vector [Kleissen et al., 1990; 
Mous, 1993]. The unique response vector, in this case a 
unique (calculated) hydrograph, might be achievable, but 
this uniqueness is often lost if the residuals are aggregated 
into a single objective function. Such problems cannot be 
solved through improved search algorithms. They are rather 
inherent in the philosophy of the calibration procedure itself. 

Clearly, the complex thought processes which lead to success- 
ful manual calibration are very difficult to encapsulate in a single 
objective function. This is illustrated by the requirements defmed 
by the US National Weather Service (NWS) for the manual cal- 
ibration of the Sacramento model stmcmre [NWS, 2001]: 

(1) Proper calibration of a conceptual model should result 
in parameters that cause model components to mimic 
processes they are designed to represent. This requires 
the ability to isolate the effects of each parameter. 

(2) Each parameter is designed to represent a specific portion 
of the hydrograph under certain moisture conditions. 

(3) Calibration should concentrate on having each param- 
eter serve its primary function rather than overall 
goodness of fit. 

It can be seen from these requirements that manual cali- 
bration is more complex than the optimisation of a single 
objective function, and that traditional automatic calibration 
procedures will in general not achieve comparable results. It 
is for example often not possible to isolate the effects of 
individual parameters and treat them as independent entities 
as done in the manual approach described above. Another 
aspect is that the goal of single-objective optimisation is 
purely to optimise the model's performance with respect to a 
selected overall goodness of fit measure which is very dif- 
ferent from requirement three. This is not to say that tradi- 
tional 'single' objective functions are not important parts of 
any model evaluation. The point is rather that they are not 
sufficient and should be complemented by a variety of meas- 
ures. 

Gupta et al. [1998] review this problem in more detail and 
conclude that a multi-objective approach to automatic cali- 
bration can be successful. Boyle et a/.[2000] show how such 
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a procedure can be applied to combine the requirements of 
manual calibration with the advantages of automatic cali- 
bration. A multi-objective algorithm is used to find the 
model population necessary to fit all aspects of the hydro- 
graph. The user can then, if necessary, manually select a 
parameter set from this population to fit the hydrograph in 
the desired way. This will however, in the presence of model 
structural inadequacies, lead to a sub-optimal performance 
with respect to at least some of the other measures [Boyle et 
al., 2000; Seibert and McDonnell, this volume]. The result- 
ing trade-off of the ability of different parameter sets to fit 
different aspects of the hydrograph usually leads to a com- 
promise solution [Ehrgott, 2000] in cases where a single 
parameter set has to be specified. The procedure of Boyle et 
al. [2000] for example, analyses the local behaviour of the 
model additionally to its global behaviour [Gupta, 2000]. 
The global behaviour is described through objective func- 
tions such as overall bias or some measure of the overall 

variance, e.g. the Root Mean Squared Error (RMSE). The 
local behaviour is defined by aspects like the timing of the 
peaks, or the performance during quick and slow response 
periods [Boyle et al., 2000; 2001 ]. 

Recent research into parameter identification has thus 
moved away from simply trying to improve search algo- 
rithms, but has taken a closer look at the assumptions under- 
lying (automatic) calibration approaches [e.g. Gupta et al., 
1998]. This has lead to the use of multi-objective (Me) auto- 
matic approaches which so far have given promising results 
[Boyle et al., 2000; Wageher et al., 200 l a]. Further investi- 
gations are required to make MO optimization a standard 
method for parameter estimation. For example questions 
such as the appropriate number and derivation of OFs with- 
in a Me approach must be resolved, and will probably 
depend on model structure and watershed characteristics 
[Gupta, 2000]. 

3. EVALUATION OF CONCEPTUAL 

RAINFALL-RUNOFF MODELS 

It was established earlier that the idea of calibration and 

validation of CRR models is in principle ill-founded, i.e. to 
establish a model as the true representation of a hydrological 
system. The model identification problem is therefore seen 
here as a process of model evaluation. Within this process, 
models and model structures are evaluated with respect to 
different criteria and those that fail, in whatever way, are 
rejected as possible representations of the watershed under 
investigation. This will usually result in a population of fea- 
sible models or even model structures which can then be 

used for a (combined) prediction, which will result in a pre- 
diction range, rather than a single value for each time-step. 

This evaluation should be at least with respect to three 
dimensions: 

(1) Performance, with respect to reproducing the behav- 
iour of the system. 

(2) Uncertainty in the parameters, which is assumed to be 
inversely related to their identifiability. 

(3) Assumptions, i.e. are any assumptions made during 
the development of the model (structure) violated. 

The smaller the population of models (or even model 
structures) that survives this evaluation, i.e. those that are 
corroborated by it, the more identifiable is the representa- 
tion of the natural system in mathematical form. Approach- 
es to test models with respect to these three criteria are 
described below. 

3.1. Evaluation of Competing Model Structures--Multi- 
objective Performance and Identifiability Analysis 

Multi-objective (Me) approaches can be applied to estab- 
lish preferences between competing model structures or even 
model components, i.e. competing hypotheses, with respect 
to their performance and their identifiability. A Me approach 
is advantageous because the use of multiple objective criteria 
for parameter estimation permits more of the information 
contained in the data set to be used and distributes the impor- 
tance of the parameter estimates among more components of 
the model. Additionally, the precision of some parameters 
may be greatly improved without an adverse impact on other 
parameters [Yan and Haan, 1991]. More detailed descriptions 
of Me model analysis can be found in the chapters by Gupta 
et al. and Boyle et al. [this volume]. 

3.1.1. Measures of performance and identifiability. It was 
already established earlier in the text that it is advantageous 
to evaluate the global and the local behaviour of models to 
increase the amount of information retrieved from the resid- 

uals in the context of single output rainfall-runoff models. 
Global behaviour is measured by traditional eFs, e.g. the 
RMSE or the bias for the whole calibration period, while 
different eFs have to be defined to measure the local behav- 

iour. One way of implementing local measures is by parti- 
tioning the continuous output time series into different 
response periods. A separate OF can then be specified for 
each period, thus reducing the amount of information lost 
through aggregation of the residuals, e.g. by mixing high 
flow and recession periods. 

Partitioning schemes proposed for hydrological time 
series include those based on: (a) Experience with a specif- 
ic model structure (e.g. the Birkenes model structure in the 
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case of Wheater et al., 1986), i.e. different periods of the 
streamflow time series are selected based on the modeller's 

judgement. The intention of Wheater et al. [1986] was to 
improve the identifiability of insensitive parameters, so 
called minor parameters, with respect to an overall measure. 
Individual parameters, or pairs of parameters, are estimated 
using a simple grid search to find the best values for the 
individual objective functions. This is done in an iterative 
and sequential fashion, starting with the minor parameters 
and finishing with the dominant ones. (b) Hydrological 
understanding, i.e. the separation of different watershed 
response modes through a segmentation procedure based on 
the hydrologist's perception of the hydrological system 
(e.g. Harlin, 1991; Dunne, 1999; Boyle et al., 2000; 
Wagener et al., 2001a). For example, Boyle et al. [2000] 
propose hydrograph segmentation into periods 'driven' by 
rainfall, and periods of drainage. The drainage period is 
further subdivided into quick and slow drainage by a sim- 
ple threshold value. (c) Parameter sensitivity [e.g. Kleissen, 
1990; Wagner and Harvey, 1997; Harvey and Wagner, 
2000], where it is assumed that informative periods are 
those time-steps during which the model outputs show a 
high sensitivity to changes in the model parameters 
[Wagner and Harvey, 1997]. Kleissen [1990] for example 
developed an optimisation procedure whereby only data 
segments during which the parameter shows a high degree 
of first order sensitivity are included in the calibration of 
that parameter (group) utilising a local optimisation algo- 
rithm. (d) Similar characteristics in the data derived from 
techniques like cluster analysis [e.g. Boogard et al., 1998] 
or wavelet analysis [Gupta, 2000] can be used to group 
data points or periods based on their information content. 
The different clusters could then be used to define separate 
objective functions. 

While these methods help to retrieve more information, 
they also show some weaknesses. Approaches (a) and (b) 
are subjective and based on the hydrologist's experience, 
and so are not easily applicable to a wide variety of models 
and watersheds. Approach (c), while objective, does not 
recognise the effects of parameter dependencies, and may 
not highlight periods which are most informative about the 
parameters as independent entities, i.e. periods where the 
dependency with respect to other parameters is low. The 
sensitivity of the model performance to changes in the 
parameter is a necessary requirement, but it is not sufficient 
for the identifiability of the parameter. Furthermore, if the 
parameter sensitivity is measured locally [e.g. Kleissen, 
1990], the result is not guaranteed over the feasible param- 
eter space. However, Wagner and Harvey [ 1997] show that 
this problem can be reduced by implementing a Monte 
Carlo procedure where the sensitivity for a large number of 

different parameter combinations is assessed using parame- 
ter covariance matrices. Approach (d) is independent of any 
model structure and links between the results and the model 

parameters still need to be established. 
There is therefore scope to improve the objectivity, appli- 

cability and robustness of approaches to hydrograph disag- 
gregation, with the goal of improving model structure and 
parameter identifiability. 

The evaluation of the model performance should, if pos- 
sible, also include objective functions tailored to fit the spe- 
cific purpose of the model. An example is the use of the 
model to investigate available quantities for abstraction pur- 
poses. Assuming that abstraction can only take place during 
periods when the water level is above a minimum environ- 
mentally acceptable flow and below a maximum water sup- 
ply abstraction rate allows the definition of a specific objec- 
tive function. This measure would only aggregate the resid- 
uals of the selected period and can give important informa- 
tion about how a model performs with respect to the antici- 
pated task. However, it is important to mention that this 
should never be the only evaluation criterion. 

However, how can one estimate the identifiability of the 
individual parameters with respect to the different OFs 
defined? A simple measure of parameter identifiability is 
defined by Wagener et al. [2001 a]. It is based on the param- 
eter population conditioned by the selected measure of per- 
formance (Figure 2). A uniform random sampling procedure 
is performed, and the resulting OF values are transformed 
so that the best performing parameter set is assigned the 
highest value and all measures sum to unity (these are 
termed support values in Figure 2). The best performing 
10% of all parameter sets are selected and the cumulative 
marginal distributions for each parameter are plotted. A uni- 
form distribution would plot as a straight line, while a pop- 
ulation showing a clear peak will show a curved line. The 
stronger the conditioning, the stronger the curvature will be. 
The range of each parameter is subsequently split into M 
containers and the gradient of the cumulative distribution in 
each container is calculated. The highest gradient will occur 
where the conditioning of the distribution is strongest, i.e. at 
the location of a peak. The amplitude of the gradient is also 
indicated by the grey shading of the bar, with a darker 
colour indicating a higher gradient. Other measures of iden- 
tiffability are possible [e.g. Wagener et al., 1999], but this 
one has been shown to be robust and easy to calculate. 

3.1.2. Multi-objective framework. The above described 
multi-objective performance and identifiability approaches 
can be put into an analytical framework to estimate the 
appropriate level of model complexity for a specific case 
[Figure 3, adapted from Wagener et al., 2001a]. 
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The hydrologist's perception of a given hydrological sys- 
tem strongly influences the level of conceptualisation that 
must be translated into the model structure. The importance 
of different system response modes, i.e. key processes that 
need to be simulated by the model, however, depends on the 
intended modelling purpose. Therefore, the level of model 
structural complexity required must be determined through 
careful consideration of the key processes included in the 
model structure and the level of prediction accuracy neces- 
sary for the intended modelling purpose. 

On the other hand there is the level of structural complex- 
ity actually supported by the information contained within 
the observed data. It is defined here simply as the number of 
parameters, and therefore separate model components and 
processes, that can be identified. Other aspects of complex- 
ity [e.g. Kleissen et al., 1990] like the number of model 

x 10 4 x10 4 
1.41 I 1.41 ! 

•1.2 '' ß •%•: ' : •1.2 

• , 

2 4 6 8 20 30 40 

O 1 O• 

04' '• o.4l 

o 

2 4 6 8 20 30 40 

01 0 2 

-•-0.6 

0.4 

0.2 

o 2 4 6 •1 20 30 40 

02 

Figure 2. A measure of identifiability can be defined as follows: 
an initially uniform distribution is conditioned on some OF, the 
resulting dotty plot is shown in the top plots, selecting the top per- 
centile (e.g. 10%) and plotting the cumulative distribution of the 
transformed measures leads to the middle plots, the gradient dis- 
tribution of the cumulative distribution is a measure of identifia- 

bility, see bottom. The plots in the left column show an identifiable 
parameter, while the plots in the right column show a non-identi- 
fiable one. 

states or interactions between the state variables, or the use 

of non-linear components instead of linear ones, are not con- 
sidered here. 

An increase in complexity will often increase the per- 
formance. However, it will also often increase the uncer- 

tainty, for example due to reduction in parameter identifia- 
bility caused by increased parameter interaction. What 
trade-off between performance and identifiability is accept- 
able depends on the modelling purpose and the hydrologist's 
preference. In a regionalisation study, a more identifiable 
model with reduced performance might be adequate, while 
parameter identifiability might be of minor importance for 
extension of a single-site record. 

It was already established earlier in the text that such a 
framework has to use a multi-objective approach to allow 
for an objective analysis. Using various objective functions 
to represent different system response modes is especially 
suitable for comparison studies since it allows us to attribute 
the model performance during different system response 
modes to different model components, for example either 
the moisture accounting or the routing components 
[Wagener et al., 2001a]. Using the segmentation approach 
by Boyle et al. [2000] as described earlier in the text, it is 
possible to establish that a certain model structure might 
perform better during "driven" periods because of a superi- 
or moisture accounting component, while another model 
structure containing a more appropriate slow flow routing 
component could result in higher performance during "non- 
driven slow" periods. A single-objective framework does 
not allow the comparison of model components and conse- 
quently important information relevant to identifying the 
most suitable model structure is lost. Boyle et al. [2001] use 
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Figure 3. Framework for the evaluation of competing rainfall- 
runoff model structures. 
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this to evaluate the benefit of "spatial distribution" of model 
input (precipitation), structural components (soil moisture 
and streamflow routing computations) and surface charac- 
teristics (parameters) with respect to the reproduction of dif- 
ferent response modes of the watershed system. 

This framework will also necessarily be comparative, i.e. 
different models and usually different model structures will 
have to be compared to identify a suitable model or models. 
The reason is that the level of performance that can be 
reached is unknown, due to unknown influences of data 
error and of natural randomess. Those models and model 

structures that severely under-perform can be refuted and 
excluded from further consideration. In cases where all 

models fail, one has to go back and relax the criteria for 
under performance [Beven, 2000, p. 304]. 

Model structures producing more than a single output 
variable, e.g. groundwater levels or water quality parame- 
ters, can be tested with respect to all of those variables if 
measurements are available. One could say that the inform- 
ative (or empirical) content of these structures is higher and 
they have therefore a higher degree of testability or falsifia- 
bility [Popper, 2000, p.113]. However, a hypothesis, or a 
model structure in our case, which has a higher informative 
content, is also logically less probable, because the more 
information a hypothesis contains, the more options there 
are for it to be false [Popper, 2000, p.119; Magee, 1977, p. 
36]. Multi-output models are beyond the scope of this chap- 
ter though. 

3.2. Evaluation of Individual Model Structures--Dynamic 
Identifiability Analysis 

There is an apparent lack of objective procedures to eval- 
uate the suitability of a specific conceptual model structure 
to represent a specific hydrological system. It has been 
shown earlier how different and competing structures can be 
compared. However, it is also possible to analyse individual 
structures with respect to the third criterion mentioned in 
the beginning of section 3, namely the model assumptions. 

3.2.1. Failure, Inference and Improved Hypotheses. 
Recently, Gupta et al. [1998; see also Boyle et al., 2000 and 
Wagener et al., 2001a] showed how a multi-objective 
approach can be applied to give an indication of structural 
inadequacies. The assumption is that a model should be capa- 
ble of representing all response modes of a hydrological sys- 
tem with a single parameter set. A failure to do so indicates 
that a specific model hypothesis is not suitable and should be 
rejected, or preferably, replaced by a new hypothesis which 
improves on the old one. This idea was already the basis of 
some of Beck's work [e.g. Beck, 1985], as described earlier in 

the text. Wagener et al. [2001c] developed a new approach 
based on this assumption. Their methodology analyses the 
identifiability of parameters within a selected model structure 
in a dynamic and objective manner, which can be used to ana- 
lyze the consistency of locations of good performing param- 
eter values in (parameter) space and in time. 

In cases where the variation of parameter optima can be 
tracked in time it will sometimes be possible to directly 
relate changes in a particular parameter to variations in forc- 
ing or state variables [examples in Beven, 2000, p. 93ff.; and 
Bashford and Beven, 2000]. However, in many cases the 
development of improved hypotheses will be more complex 
and depend on the capability of the hydrologist. 
Unfortunately(?), there is no logical way to create new 
ideas; the hydrologist therefore has to apply his depth of 
insight and creative imagination to derive a new hypothesis, 
which can replace the old one, that has failed. 

3.2.2. Dynamic Identifiability Analysis. The DYNamic 
Identifiability Analysis (DYNIA) is a new approach to locat- 
ing periods of high identifiably for individual parameters and 
to detect failures of model structures in an objective manner. 
The proposed methodology draws from elements of the popu- 
lar Regional Sensitivity Analysis [RSA; Spear and 
Hornberger, 1980; Hornberger and Spear, 1981] and includes 
aspects of the Generalized Likelihood Uncertainty Estimation 
[GLUE, Freer et al., this volume] approach, wavelet analysis 
[e.g. GershenfeM, 1999] and the use of Kalman filtering for 
hypothesis testing as applied by Beck [1985]. 

In the original RSA approach, a model population is sam- 
pled from a uniform distribution. This population is divided 
into behavioural and non-behavioural models depending on 
whether a model resulted in a certain response or not [Spear 
and Hornberger, 1980]. Beven and Binley [1992] extended 
the approach by conditioning the model population on a 
likelihood measure, which in their case, can be a transfor- 
mation of any measure of performance. These are the build- 
ing blocks from which a new method of assessing the iden- 
tiffability of parameters is created [Wagener et al., 200 l c]. 

The steps taken in the procedure can be seen in the flow 
chart in Figure 4. Monte-Carlo sampling based on a uniform 
prior distribution is used to examine the feasible parameter 
space. The objective function associated with each parame- 
ter set, i.e. model, is transformed into a support measure, i.e. 
all support measures have the characteristic that they sum to 
unity and higher values indicate better performing parame- 
ter values. These are shown here in form of a dotty plot (Fig. 
4(a)). The best performing parameter values (e.g. top 10 %) 
are selected and their cumulative distribution is calculated 

(Fig. 4(b)). A straight line will indicate a poorly identified 
parameter, i.e. the highest support values are widely distrib- 
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Figure 4. Schematic description of the DYNamic Identifiability 
Analysis (DYNIA) procedure. 

uted over the feasible range. Deviations from this straight 
line indicate that the parameter is conditioned by the objec- 
tive function used. The gradient of the cumulative support is 
the marginal probability distribution of the parameter, and 
therefore an indicator of the strength of the conditioning, 
and of the identifiability of the parameter. Segmenting the 
range of each parameter (e.g. into 20 containers) and calcu- 
lating the gradient in each container leads to the (schematic) 
distribution shown in Fig. 4(d). The highest value, addition- 
ally indicated by the darkest colour, marks the location 
(within the chosen resolution) of greatest identifiability of 
the parameter. Wagener et al. [2001a] show how this meas- 
ure of identifiability can be used to compare different model 
structures in terms of parameter uncertainty, which is 

assumed to be inversely related to identifiability. They cal- 
culate the identifiability as a function of measures of per- 
formance for the whole calibration period and for specific 
response modes, derived using the segmentation approach 
by Boyle et al. [2000] described earlier in the text. It can be 
shown that the identifiability of some parameters, and there- 
fore individual model components, is greatly enhanced by 
this segmentation [Wagener et al., 2001a]. 

Calculating the parameter identifiability at every time step 
using only the residuals for a number of time steps n before 
and after the point considered, i.e. a moving window or run- 
ning mean approach, allows the investigation of the identi- 
fiability as a function of time (Fig. 4(e)). The gradient dis- 
tribution plotted at time step t therefore aggregates the resid- 
uals between t-n and t+n, with the window size being 2n+ 1. 
The number of time steps considered depends upon the 
length of the period over which the parameter is influential. 
For example, investigation of a slow response linear store 
residence time parameter requires a wider moving window 
than the analysis of a quick response residence time param- 
eter. Different window sizes are commonly tested and the 
ones most appropriate are used to analyse individual param- 
eters. A very small window size can lead to the result being 
largely influenced by errors in the data. However, this is not 
a problem where the data quality is very high, for example 
in the case of tracer experiments in rivers [Wagener et al., 
2001d]. Conversely, if the window size is too big, periods of 
noise and periods of information will be mixed and the 
information will be blurred. 

The results are plotted for each parameter versus time 
using a colour coding where a darker colour indicates areas, 
in parameter space and time, of higher identifiability. Care 
has to be taken when interpreting the DYNIA results of time 
steps at the beginning and the end of time-series. Here the 
full window size cannot be established and the result is dis- 

torted. This is an effect similar to the cone of influence in 

wavelet analysis [Torrence and Compo, 1998]. 
While this approach is not intended to evaluate parame- 

ter dependencies in detail, the significance of dependencies 
to the identifiability is implicit in the univariate marginal 
distribution which is structurally represented by Figure 
4(d). A strong dependency during any period would tend to 
inhibit the information of a strong univariate peak, i.e. the 
effect of the involved parameters cannot be singled out. 
Parameter interdependence can be estimated in detail by the 
investigation of the response surface or the variance-covari- 
ance matrix [e.g. Wheater et al., 1986; Hornberger et al., 
1985]. 

A limitation of the proposed measure of identifiability 
arises if any near-optimal parameter values are remote from 
the identified peak of the marginal distribution, as the rele- 
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vance of such values would be diminished. It is therefore 

important that a detailed investigation of the dotty plots is 
used to verify periods of high identifiability. The approach 
also requires that feasible parameter ranges are defined sen- 
sibly and the selected model population (usually the best 
10%) represents only the top of the distributions. 

DYNIA requires that sensible feasible ranges for each 
parameter can be defined and that the number of models (i.e. 
parameter sets) considered reflects the shape of the response 
surface. The procedure can then be applied to separate peri- 
ods that do and those that do not contain information about 

specific parameters, and track parameter variations in time. 
The subjective decision for a particular objective function 

in this procedure is usually not critical for the result and the 
mean absolute error criterion is usually adopted. 

3.3. A Combined Framework of Corroboration and 
Rejection 

The earlier introduced multi-objective framework 
[Wagener et al., 2001a] can be extended to incorporate the 
DYNIA approach as an additional step in order to derive a 
framework of corroboration and rejection (Figure 5). Similar 
frameworks are for example proposed by Beven [2000, 
p.297ff.], and, more generally, by Oreskes et al. [1994]. 

The initial steps are similar to those in the multi-objective 
framework described earlier. The hydrologist selects (or 
develops) model structures that seem suitable for the given 
modeling purpose, watershed characteristics and data. 

One can then apply a multi-objective procedure to estab- 
lish preferences between the competing model structures, or 
preferably structural components. Under-performing struc- 
tures (components) can be rejected at this stage, based on 
their performance and/or uncertainty. 

During the next stage, the DYNIA approach can be used 
to further analyze the remaining model structures. Further 
rejections might be possible. The suitability of a model struc- 
ture not failing is further corroborated. A model structure is 
(temporarily) accepted when no better performing structure 
can be found and no underlying assumption is violated. 

In the last stage, the parameter space 'within' the remain- 
ing model structures can be analyzed to find all those mod- 
els, i.e. parameter sets that are in line with the behavior of 
the natural system. It is very likely that such a procedure 
will result in a range of acceptable or 'behavioral' models or 
even model structures. The appropriate response is to com- 
bine the predictions of all models to derive an ensemble pre- 
diction of the systems behavior. A popular approach to do so 
is the GLUE approach [Freer et al., this volume], however, 
other methods to combine the predictions of different mod- 
els are possible [e.g. Shamseldin et al., 1997]. Within the 

GLUE approach, a likelihood value is derived for every 
model. The models are usually drawn from a uniform dis- 
tribution. Basically any measure of performance which can 
be transformed so that higher values indicate better models 
and all measures add up to one, can be used as a likelihood 
measure in this approach. The likelihoods are then used to 
weight the prediction of every model at every time step. The 
cumulative distribution of the weighted streamflow values, 
even for different models, allows the extraction of per- 
centiles, e.g. 5% and 95%, to derive the, in this case, 90% 
confidence limits for the predictions. The likelihoods of dif- 
ferent models could be combined through simple addition. 

4. APPLICATION EXAMPLE 

4.1. Modelling Tools and Selected Model Structures 

The Rainfall-Runoff Modelling Toolbox (RRMT) and 
Monte-Carlo Analysis Toolbox (MCAT), developed at 
Imperial College, are used here for calculation and visuali- 
sation of results [Wagener et al., 1999; 200lb]. 

The RRMT has been developed in order to produce parsi- 
monious, lumped model structures with a high level of 

Figure 5. The proposed modeling procedure. 
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parameter identifiability. It is a generic modelling shell 
allowing its user to implement different model structures to 
find a suitable balance between model performance and 
parameter identifiability. Model structures that can be 
implemented are spatially lumped, relatively simple (in 
terms of number of parameters), and of conceptual or hybrid 
metric conceptual type. Hybrid metric-conceptual models 
utilise observations to test hypotheses about the model 
structure at watershed scale and therefore combine the met- 

ric and the conceptual paradigm [Wheater et al., 1993]. All 
structures consist of a moisture accounting and a routing 
module. 

MCAT is a collection of analysis and visualisation func- 
tions integrated through a graphical user interface. The tool- 
box can be used to analyse the results from Monte-Carlo 
parameter sampling experiments or from model optimisa- 
tion methods that are based on population evolution tech- 
niques, for example, the SCE-UA [Duan, this volume] or 
the MOCOM-UA [Gupta et al., this volume, "Multiple ..."] 
algorithms. Although this toolbox has been developed with- 
in the context of ongoing hydrological research, all func- 
tions can be used to investigate any dynamic mathematical 
model. Functions contained in MCAT include an extension 

of the Regional Sensitivity Analysis [RSA, Spear and 
Hornberger, 1980] by Freer et al. [1996], various compo- 
nents of the Generalised Likelihood Uncertainty Estimation 
method [GLUE, Freer et al., this volume], options for the 
use of multiple-objectives for model assessment [Gupta et 
al., 1998; Boyle et al., 2000], and plots to analyse parame- 
ter identifiability and interaction. 

Both toolboxes are implemented in the Matlab 
[Mathworks, 1996] programming environment. 

A large variety of lumped parsimonious model stmctures 
can be found in the literature [e.g. Singh, 1995]. However, the 
range of components on which these structures are based is 
relatively small. Some of the most commonly found compo- 
nents are selected here in a component library shown in Figure 
6. Further details about these components can be found in 
Wagener et al. [200lb; and in the references given here]. 

The soil moisture accounting components used are: 

ß The catchment moisture deficit [cmd, Evans and 
Jakeman, 1998]. A conceptual bucket with a bottom 
outlet to sustain drainage into the summer periods. 

ß The catchment wetness index [cwi, Jakeman and 
Hornberger, 1993]. A metric approach based on the 
Antecedent Precipitation Index [API, e.g. Shaw, 1994]. 

ß The probability distributed soil moisture stores [pd3 
and pd4, Moore, 1999]. A probability distribution of 
conceptual buckets based on a Pareto distribution. 
Evapotranspiration is either at the potential rate, as 

long as soil moisture is available, or at a rate declin- 
ing linearly with soil moisture content. 
A simple bucket type structure (buc), evaporating at 
the potential rate as long as soil moisture is available. 
The Penman storage model [Penman, 1949]. A lay- 
ered structure of two conceptual buckets connected by 
an overflow mechanism. Evapotranspiration occurs at 
potential rate from the upper layer, similar to the root 
zone, and at a reduced rate, 12% of PE, from the bot- 

tom layer. An additional bypass mechanism diverts a 
fraction of the rainfall from the SMA component to 
contribute to the effective rainfall at time-steps where 
rainfall exceeds PE. 

The routing components used are: 

Conceptual reservoirs in various combinations and in 
linear and non-linear form [e.g. Wittenberg, 1999]. 
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Figure 6. Table showing the soil moisture accounting 'component 
library' used in the application example. The components are: (a) 
catchment wetness index (cwi), (b) simple bucket (buc), (c 1) and 
(c2) Penman structure (ic 1), (d) catchment moisture deficit (cmd), 
and probability distribution of soil moisture stores (pdX). 
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4.2. Data 

The river selected for this study is the Lower Medway at 2 

Teston (1256.1 km ) located in South Eastern England. Six 
years (10/04/1990- 14/07/1996) of data (daily naturalised 
flows, precipitation, potential evapotranspiration (PE) and 
temperature) are available. The Medway watershed is char- 
acterised by a mixture of permeable (chalk) and imperme- 
able (clay) geologies subject to a temperate climate with an 
average annual rainfall of 772 mm and an average annual 
PE of 663 mm (1990-1996). 

4.3. Methodology 

Multi-objective (MO) analysis and DYNIA are performed, 
based on the results of Monte Carlo sampling procedures. For 
the MO analysis, 20000 parameter sets, i.e. models, are ran- 
domly sampled from the feasible parameter space for each 
individual model stmcture, based on a uniform distribution. 

For each of these models, five OFs are calculated. These 
are the overall RMSE and four OFs derived for different 

response modes of the watershed. The segmentation applied 
is based on an approach by Wagener and Wheater [2001] 
which uses the slope of the hydrograph and an additional 
threshold as segmentation criteria to split the hydrograph 
into different response modes. The slope separates periods 
when the watershed is wetting up or is "driven" [Boyle et al., 
this volume] by rainfall, i.e. positive slope, and when the 
watershed is draining, i.e. falling slope. A threshold is used 
to separate periods of high and low flow, i.e. the mean flow 
during driven and 50% of the mean flow during drainage 
periods. Four OFs are therefore derived when the residuals 
during the different periods are aggregated separately using 
the RMSE criterion: FDH, "driven" flow during high flow, 
FDL, "driven" flow during low flow, FQ, quick drainage 
(high flows), and FS, slow drainage (low flows). This is a 
modification of the initial approach by Boyle et al. [2000], 
which was based on the analysis of flow and rainfall. 
However, the approach presented here has been shown to be 
more suitable for British watersheds as modelled in the 

example presented here. These OFs are based on the 
assumption that different processes are dominant during 
periods of high and low flow, and during periods of water- 
shed wetting-up and drainage. The residuals, i.e. the differ- 
ences between observed and simulated flows are calculated 

and summarised in form of the root mean squared error for 
each period. The performance and identifiability analysis is 
based on these measures. 

The resulting parameter populations are used to rank all 
models or model structures, with respect to their perform- 
ance and identifiability, using the measures introduced ear- 

lien The best model stmctures are retained and a more thor- 

ough analysis using DYNIA is performed. DYNIA is based 
on a random sampling procedures using 2500 parameter sets 
collected from a uniform distribution. The smaller sample 
size is due to computational limitations of the current DYNIA 
application in the Matlab [Mathworks, 1996] environment. 
4.4. Results and Discussion 

The main results of the MO analysis as shown in Figure 
7 are as follows: 

ß At a general level for the SMA modules (Figure 7, top): 
the probability distributions of storage elements (pd3 
and pd4) seem to perform best, followed by the simple 
bucket (buc), and the cmd and cwi modules. 

ß The cml, i.e. a cmd that always evaporates at the poten- 
tial rate, performs much more poorly than the rest with 
respect to those objective functions which mainly 
describe periods of high flow, RMSE(total), FDH and 
FQ. This is also the case for the cmd module, but not as 
pronounced. However, the cmd and cml modules do 
very well during low flow periods. This is caused by 
the bottom outlet of the bucket, which sustains the pro- 
duction of effective rainfall even during periods of 
severe moisture deficits in the SMA module. 

ß The overall result of the performance analysis is that the 
pd3 and pd4 SMA modules in combination with 2pll or 
2pln routing modules are superion The cmd is a useful 
component when the modelling purpose demands the 
accurate prediction of low flow periods and periods of 
high flows are of minor importance. 

ß A detailed analysis of the routing components shows 
that the use of a non-linear conceptual reservoir in par- 
allel with a linear one (2pln), performs better at the 
peaks (RMSE(total) and FDH), see Figure 7(top). 

ß The uncertainty analysis (Figure 7, bottom) however 
reveals that the identifiability of the cmd parameters is 
very low and this module is rejected here on this basis. For 
some applications, this aspect might be of minor impor- 
tance, howeven 

The pd3 and the pd4 SMA components are retained for fur- 
ther analysis with the DYNIA approach. Assuming that our 
interest is in low flows, e.g. for water resources purposes, only 
a linear parallel routing structure (2pll) is considered. A non- 
linear component would be advisable for high flow periods. 

The results of the DYNIA are shown in Figures 8 and 9, 
for the structures pd3-2pll and pd4-2pll. This reveals some 
problems with the pd3 SMA module. 

Figure 8 shows the dynamic identifiability of the five 
parameters of the pd3-2pll structure. These are: (1) cmax, the 
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Figure 7. Results of the model structure comparison. 

maximum storage capacity, (2) b, the shape parameter of the 
Pareto distribution of storage capacities, (3) k(quick), the res- 
idence time of the quick linear reservoir, (4) alpha, the frac- 
tion of flow going through the quick flow component, and (5) 
k(slow), the residence time of the slow flow linear reservoir. 

The plot for the parameter cmax exposes some ambigu- 
ity about the optimum values for this parameter. The con- 
fidence limits (cfls) narrow into two different parts of the 
parameter space, towards low values after wet periods and 
towards high values during periods of wetting up, indicat- 
ing inadequacies within the model structure. Similarly, 
but much less pronounced, the parameter b shows a slight 
shift of optimum after the wet period, i.e. the lower cfls 
go up. It is mainly identifiable during low flow events 
(e.g. dark areas just before time step 700). The residence 
times of the routing component show the expected behav- 
iour, i.e. the cfls of k(quick) narrow down on the quick 
falling limbs of the hydrograph, while darker areas appear 
for k(slow) during the long recessions. The cfls for 
k(slow) hardly narrow during periods of identifiability, 

suggesting that the peaks on the response surface are quite 
small, and that the difference between different values for 

this parameter is not large. Values for this parameter are 
therefore still widespread, since the top 10% are selected 
here. The example of the two residence times also demon- 
strates the need for different window sizes. A small size 

(11 time steps) is required for k(quick), whose influence 
is only very local, while a much larger window (81 time 
steps) is need to capture the effect of k(slow). Finally, the 
parameter alpha is most identifiable during periods where 
the split between quick and slow response is occurring. 
However, further investigations, which are outside the 
scope of this example, are required to explain the behav- 
iour of this parameter. In general, this structure is too sim- 
plistic to reproduce all aspects of the hydrograph with one 
parameter set. This is especially reflected in the results for 
cmax. 

The difference between pd3 and pd4 is that, while pd3 
always evaporates at the potential rate, pd4 decreases the 
evapotranspiration with decreasing soil moisture content in 
a linear manner. However, without adding an additional 
(scaling) parameter, i.e. 

AEt=St/Smax'PE t (1) 

The effect of this change can be seen in the dynamic 
results shown in Figure 9. The ambiguity with respect to 
cmax is removed and the cfls only narrow towards larger 
values indicating a better structure. 

It is interesting to remember that the MO performance 
analysis had shown that the pd3 component actually per- 
formed better. The reason is that the pd4 component puts an 
additional constraint on the behaviour of the watershed sys- 
tem. The result is that the structure becomes less flexible. 

The pd3 component can therefore perform better with 
respect to the different OFs. However, this is due to the 
expense of a larger variation in parameter values as shown 
in the dynamic analysis. This indicates that pd4 is actually 
the better SMA component and should be retained, while 
pd3 should be rejected. This result supports the statement by 
Gupta et al. [2001] that consistency in a model is more 
important than optimality. 

5. SUMMARY AND CONCLUSIONS 

Test everything. HoM on to the good. Avoid every kind of evil. 
1 Thessalonians 5, 21:22, New International Version 

The identification of suitable conceptual rainfall-runoff (CRR) 
models is a difficult problem. It has been increased by the recent 
awareness of the influence of model structural inadequacies. 
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Figure 8. DYNIA results for pd3-2pll. 

A framework of corroboration and rejection is present- 
ed to embed the identification problem into a scientific 
method as outlined by Popper [2000]. The framework 
uses multi-objective and novel dynamic approaches to 
the evaluation of CRR models and model structures. The 

window size: 41 [d] 
•5.•,':• ..... '"*:.':.-'.,,•.•':•-:•t'.•..,•,'•½,,.•,•. •:'.'-<½. ..... ---: ....... •-?,-.-.--.•.-,' • ............ •:,• .... ß -.,- ................... •-• .... •:. ' " .... P•2•::::::'""'•" -' .... :•'•.:,•'" '"•.%:•:'"•::: •'""'•::'•:. ........ e:.:.J: ................. •'•••9:•*P 

o.8 •'•-:•-' ::-,- ............ •;•x•:•s½'"•":-•-•'•':•':•t;• ............ :•:::•:d• ••.-••••.•••.:.•,•t-•;•:::. ...... .::•:,... :•:.•-:½• ;½•::•:•e•½•'•:•'*•:•:½½•d6-•½•g• •½•;9•e•:<**:•'"•-.•j•P:•'•{• •::::•'•.,.,•½;:::S•:.•"•'•.• 

0.4 ";• •dJ•F•N:;::': .:.:•:• :.P½•..S;%•;•: {::. :; ................. ' •.?:•';•. -•:":•;•': 
. ::';"?."":::-•½ :; ....:::::-::::....:. •.. ?• ':?.'--{:-.-:-.;•:•.• •;. :'• . ,•- ?;-"•;- 

'-:.::": -U" 
1 O0 200 300 400 500 600 700 800 

time step [d] 

window size: 41 [d] 

i•.,•-'-,,'-'-'-•'-•,..-'••{.; ......... , ............................................................................ •.,,,.,,.•.•••••..:,•.•.:.•......_._•....._,.• ................._ .--•••••i•;•. • •.•:.....•:] 

• ; :•:::•7i?. ?•?" •::P:•:::•:::::;:':::-:::•i;• • :?P' :. •,,•:.•d'"'SS•':•r•?•P::•:•:: ...... ½• ..... 

I?;..:;. '"'. .. :. :•;•?•:•'•;•i 2:::::-::..'-.: •..'-,' ::....: ::::'.::-:;:: - ........... •:-..27• ............ ;:•' ';•:::'•::-::-,-;':' :..:.:: 

100 200 300 400 500 600 700 800 
time step [d] 

Ei•are 9. D•N•A results •or pd4-2pll. 

theory a•d methods u•dcrlyi• this &amcwork arc 
described a•d a• applicatio• example is prcscmcd. It 
demonstrates that a ra•c o• approaches is required •or 
a• objective a•a]ysis o• the suitability o• models a•d 
model structures. 



WAGENER ET AL. 45 

DYNIA is an attempt to develop an approach to comple- 
ment traditional calibration methods resulting in increased 
discriminative power. Advantages of the approach are its 
simplicity and its general applicability (for example, an 
application to a solute transport model can be found in 
Wagener et al. [2001d]). Possible areas of application of 
DYNIA are [see Wagener et al., 2001c for details]: (1) the 
pure estimation of parameters, (2) the analysis of model 
structures, (3) relating model parameters and response 
modes, and (4) to investigate data outliers and anomalies. 

Current work is focusing on the extension of this frame- 
work to include the identification of CRR models at 

ungauged sites, using parameter regionalisation approaches. 
The RRMT and MCAT toolboxes are available for down- 

load free of charge for non-commercial use from the 
Environmental and Water Resource Engineering Section 
Web-site on http://ewre.cv. ic.ac.uk/software. 
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Confronting Input Uncertainty in Environmental Modelling 

Dmitri Kavetski, Stewart W. Franks, and George Kuczera 

School of Engineering, University of Newcastle, Callaghan, New South Wales, Australia 

The majority of environmental models require calibration of some or all of their 
parameters before meaningful predictions of catchment behaviour can be made. 
Despite the importance of reliable parameter estimates, there are growing concerns 
about the ability of objective-based inference methods to adequately calibrate envi- 
ronmental models. The problem lies with the formulation of the objective or like- 
lihood function, which is currently implemented using essentially ad-hoc methods. 
We outline limitations of current calibration methodologies, including least 
squares, multi-objective, GLUE and Kalman filter schemes and introduce a more 
systematic Bayesian Total Error Analysis (BATEA) framework for environmental 
model calibration and validation. BATEA imposes a hitherto missing rigour in 
environmental modelling by requiting the specification of physically realistic 
uncertainty models with explicit assumptions that can and must be tested against 
available evidence. Distinguishing between the various sources of errors will 
reduce the current ambiguity about parameter and predictive uncertainty and 
enable rational testing of environmental model hypotheses. A synthetic study 
demonstrates that explicitly accounting for forcing errors leads to immediate 
advantages over traditional least squares methods that ignore rainfall history cor- 
ruption and do not directly address the sources of uncertainty in the calibration. We 
expect that confronting all sources of uncertainty, including data and model errors, 
will force fundamental shifts in the model calibration/verification philosophy. 

INTRODUCTION 

Hydrological and environmental modelling has benefited 
from significant developments over the last decade. The 
growing understanding of environmental physics, combined 
with dramatic increases in computing power, has allowed 
progressively more realistic representation and simulation 
of catchment dynamics, in many cases solving hitherto 
intractable analysis and prediction problems. 

Paradoxically, these advances have increased the need for 
improved model calibration and validation methods. 
Hydrological models invariably require calibration before 
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predictive use to ensure consistency with observed data. In 
recognition of the limitations of visual and manual model 
calibration, several methodologies have been developed for 
automatic calibration of hydrological models, including clas- 
sical Bayesian methods (e.g., NLFIT of Kuczera [1994]); 
multi-objective calibration methods (e.g., MOCOM of 
Sorooshian et al. [1993] and Gupta et al. [1998]); the GLUE 
framework of Beven and Binley [1992]; and, less common- 
ly, Kalman filters [Bras and Rodriguez-Iturbe, 1985]. As we 
shall see, these methodologies struggle to properly charac- 
terise the fundamental problem of calibration and validation, 
let alone cope with the ever-increasing number of competing 
environmental models (see, e.g., Beven and Binley [1992] 
and Singh [1995]). Due to a lack of widely accepted methods 
for addressing data uncertainty and model verification (i.e., 
hypothesis testing) in hydrology, it is difficult to rationally 
discriminate between competing models and assess trade- 
offs between model performance and complexity. 

49 
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This chapter focuses on the calibration paradigms cur- 
rently in use and on the paradigms that need to be devel- 
oped in the future. We examine sources of uncertainty in 
hydrological modelling, survey current calibration meth- 
ods and then outline a new systematic methodology for 
hydrological model calibration and validation. We expect 
that the ideas and concepts presented here are also applica- 
ble to other branches of environmental science and engi- 
neering, where observations of global system behaviour 
are inexact and are made on a local scale, and where the 

system itself is so complicated that its simulation requires 
considerable approximation. 

MATHEMATICS OF ENVIRONMENTAL MODELS 

Regardless of whether an environmental model M is con- 
ceptual or physical, it has the following functional form 

Y 

The term Y = {Yn; n=l...N} is the response matrix of the 
catchment. It contains one or more directly observable 
hydrological quantities at one or more locations within the 
catchment at a series of times t = { tn; n=l...N}r. In the sim- 
plest and most common context, Yn is a vector of stream 
flows at several locations within the catchment. However, 

the definition of Yn is more general, e.g., it may also con- 
tain water table depths at selected locations, saturated 
areas, etc. 

The catchment responds to forcing inputs denoted by the 
matrix X = {Xn; n=l...Nx}, where the vector Xn contains one 
or more directly observable quantities at a series of times. 
The forcing vector typically comprises rainfall, but evapo- 
transpiration, pumping and injection data can also be 
included. The dimension N x need not equal N, but, for time 
stepping rainfall-runoff models, often N x - N. 

The functionf ,u(.) represents the hydrological model itself 
and describes the response Y of the system to the inputs X, 
e.g., the routing of rainfall into streamflow. The vector 0 = 
{On; n=l...P} r contains the conceptual and physical hydro- 
logical parameters of the catchment model. Parameters are 
constants that quantify the hydrological behaviour of the 
catchment (given a particular mathematical model) and 
determine the response Y for a given forcing X. We identify 
"physical" parameters as those parameters that can be 
inferred using procedures that are independent of observable 
catchment responses Y, e.g., local permeability estimates 
obtained using core samples or slug tests. Conversely, "con- 
ceptual" parameters (e.g., discharge coefficients) have no 
formal physical interpretation and can only be inferred by 
matching the simulated catchment behaviour f2u (X, 0) to the 

observed data {X,Y}. The tilde over X and Y emphasises 
that these quantities are estimated and hence subject to sam- 
pling and measurement error. The procedure of matching 
observed data and simulated system behaviour by adjusting 
the parameters 0 is termed calibration and forms the basis 
for model validation and predictive use in hydrology. 

Catchment models are commonly classified into concep- 
tual or physical models. While this distinction is valuable 
for many purposes, the functional behaviour of successful 
hydrological models is mathematically similar, since they 
all simulate the same physical phenomenon (e.g., rainfall- 
runoff routing). In particular, all hydrological models 
include quickflow and slowflow simulators. The quickflow 
is invariably related to the rainfall in the immediately pre- 
ceding time steps, while slowflow behaviour obeys stor- 
age-discharge relationships. The importance of the differ- 
entiation of slowflow and quickflow processes will 
become apparent when the error propagation properties of 
hydrological models and their impact on parameter estima- 
tion are considered. 

UNCERTAINTY IN HYDROLOGICAL MODELLING 

Although at first glance a simple exercise in optimisation, 
the calibration of hydrological models is nontrivial and sub- 
tle. Most hydrological models are nonlinear and contain 
multiple parameters. Reliable multi-dimensional nonlinear 
optimisation is challenging, since it is usually prohibitively 
difficult to exhaustively analyse the entire parameter space. 

Considerable research has been dedicated to the develop- 
ment of robust optimisation methods (stochastic and deter- 
ministic, local and global search algorithms). One popular 
optimisation method in hydrology is the Shuffled Complex 
Evolution (SCE) algorithm, which makes use of a popula- 
tion of simplexes, the vertices of which are shuffled to 
improve (although not guarantee) its global convergence 
properties [Duan et al., 1992]. 

However, the calibration of hydrological models is 
profoundly affected by sources of uncertainty complete- 
ly unrelated to the numerical difficulties of multi-dimen- 
sional optimisation: 

1. Uncertainty in observed system inputs and responses. 
For example, rain gauges offer only point estimates of 
precipitation, while the rating curves used to estimate 
streamflow are also inexact, particularly when the rat- 
ings are extended beyond the data. Observational uncer- 
tainty can be further split into two categories: a) uncer- 
tainty in forcing inputs (e.g., rainfall, evapotranspira- 
tion); and b) uncertainty in output responses (e.g., 
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streamflow, piezometer responses). The convenience of 
separating observation error into two categories is due to 
the causal structure of environmental models and will 

become clear later, when parameter estimation methods 
that take account for uncertainty in observations are con- 
sidered. 

2. Inherent uncertainty in the model hypothesis. Indeed, 
even the most elaborate model is at best a simplification 
of the natural environment. Although most models are 
based on valid physical principles (typically derived at 
the laboratory scale), they nevertheless remain simplifi- 
cations of reality, particularly if the grid scale is orders of 
magnitude larger than the laboratory scale. 

Figure 1 shows a schematic of the propagation of errors 
through environmental models. In general the observations 
of external forcing (inputs) X, are corrupted by measure- 
ment and sampling error, which propagates through the cal- 
ibrated catchment model to corrupt the simulated responses 
(output) Y. In addition, Y will be affected by model and 
response sampling error. 

It is our view that these sources of uncertainty and their 
propagation characteristics are currently overlooked or 
misunderstood and a rigorous modelling framework is 
necessary to provide: 

a) An ability to meaningfully account for observa- 
tional uncertainty and model errors; and 

b) Parameter estimates with realistic confidence lim- 
its, which can then be used for prediction with 
meaningful uncertainty bounds; 

Accurate parameter inference is necessary for meaningful 
prediction of flows and parameter regionalisation (allowing 
transfer of parameters from gauged to ungauged catch- 

i I True forcing inputs I Forcing data errors I 
Observed førcing data I 

I Model structure errors 

I True responses Simulated response 
I Response data errors ! Observed response data 

Figure 1. Error propagation in catchment modelling. 

ments). We shall see that common calibration methods 
introduce un-predictable bias into the parameters estimates, 
confounding regionalisation attempts. 

Moreover, it is perhaps ironic that, despite extensive 
research of environmental physics, relatively little is known 
about the uncertainty operating in environmental modelling. 
As a consequence, we often naively combine sophisticated 
environmental models with simplistic Gaussian error mod- 
els. Such mismatch weakens the entire modelling process 
and undermines the validity of its predictions. 

In the following sections the significance of data uncer- 
tainty in hydrological modelling is examined, with specific 
references to existing calibration techniques. We then artic- 
ulate a conceptual framework for model calibration that 
addresses the two aims described above. 

CALIBRATION: A CRITIQUE OF CURRENT 
PARADIGMS 

The calibration of conceptual parameters (e.g., discharge 
coefficients) is required since, by definition, these parame- 
ters cannot be independently measured. In practice, despite 
advances in instruments and measuring devices, even phys- 
ical parameters (e.g., soil permeability) often require cali- 
bration. The heterogeneity of environmental systems makes 
even the most accurate probe measurement only a point esti- 
mate, perhaps correct for a particular location, but often 
invalid as a representative average over the model grid cell, 
let alone the entire domain. 

The difference between parameters estimated using vari- 
ous methods is often considerable. For example, Chappell et 
al. [1998] found orders of magnitude differences between 
permeability estimates based on core samples, inverted 
model and hillslope transect estimates. In the light of these 
differences, calibration is an important model verification 
procedure, since parameter estimates are site-specific and 
area-effective at the catchment scale. If a model cannot 

reproduce observed events, it is unlikely to provide accurate 
predictions of future events. 

Least Squares Calibration 

Traditionally, calibration is posed as an optimisation 
problem: obtain estimates of system parameters that, given 
the model at hand, achieve the best agreement between sim- 
ulated and observed responses. Many calibration methods 
have been proposed and used, ranging from visual assess- 
ment of hydrographs to sophisticated search algorithms. 
Before providing a critique of current calibration para- 
digms, we consider the following case study [Kavetski et 
al., 2000] based on the well-known hydrological model 
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TOPMODEL [Beven and Kirkby, 1979; Beven et al., 
1995]. 

Figure 2 shows a portion of observed and simulated 
hydrographs (at this point we do not disclose the origin of 
the data- the reason for this will become apparent in a 
moment) obtained by calibrating TOPMODEL using the 
standard least squares (SLS) objective function. 

Table 2.- True TOPMODEL parameters and SLS errors, reported 
as e=( Otrue- OSLS)/ O'SL S. 

Parameter True value SLS Error e 

m-exponent, m 0.016 71.2 
Log-Transmissivity, In(m) 1.0 0.99 
Root zone storage, m 0.1 24.7 
Stream velocity, m/hr 3000 3.94 

SSLS (O)-- •(.•n -- fn (•,O)) 2 (2) 
n=l 

where 0 are the parameters, •n is the observed streamflow at 
time tn, X is the observed rainfall time series and f(o) 
denotes TOPMODEL. We used several years of data, per- 
haps more than normally employed in such calibrations, to 
ensure statistical averaging of parameter estimates. 

The calibrated parameters are shown in Table 1. They have 
been obtained using the SCE algorithm with a fight conver- 
gence tolerance. The standard deviations have been estimated 
using the inverse negative Hessian matrix at the maximum of 
the objective function. The negative inverse Hessian matrix at 
the mode of probability density functions (pdfs) converges to 
the covadance matrix as the probability distribution converges 
to the Gaussian form [Gelman et al., 1997]. As a large data set 
has been used, the distribution is sufficiently Gaussian. 

Visually, the calibration is successful- the fit is gener- 
ally good in all areas, the coefficient of determination R 2 
of the observed vs predicted responses is close to unity - 
what else could we hope for? In practical hydrology, far 
less appealing calibrations are routinely accepted. 

Appearances are deceptive, however, and it is now time to 
reveal the origin of the data. In fact, the streamflow was gen- 
erated synthetically using TOPMODEL with a pre-deter- 
mined set of parameters and no streamflow error. The set of 
"exact" parameters is listed in Table 2, which shows that the 
fitted parameters are actually quite far from the true values 
and, more disconcertingly, the uncertainty estimates signifi- 
cantly underestimate the actual errors. So what went wrong? 

In fact, we have corrupted the observed rainfall depth of 
each storm used in the calibration using log-normally dis- 
tributed error multipliers with an expected value of 1 and a 
coefficient of variation of 0.2. Note that the mean of the 

multipliers is 1, i.e., the rainfall estimates are on average 
unbiased. So why have the parameter estimates become 

Table 1.- SLS calibration of TOPMODEL. 

Parameter SLS value + St.deviation 

m-exponent, m 0.00746 _+ 0.12x10 -3 
Log-Transmissivity, In(m) 0.879 + 0.122 
Root zone storage, m 0.0555 + 0.18x10 -2 
Stream velocity, m/hr 2840 + 40.9 

biased? Could it be because the asymmetric lognormal dis- 
tribution was used? It tums out that the symmetry of the 
error corruption is not at fault- using symmetrically dis- 
tributed multipliers does not remove the bias in parameter 
estimates. The real culprit is the inadequate error model 
underlying the standard least squares objective function (2). 

Indeed, although least squares fitting dates back to Gauss 
(who used the method to calculate solar system orbits), it is 
often misunderstood that the "objectiveness" of the criteri- 
on of the sum of squared residuals is not guaranteed. 
Instead, it corresponds to an assumption that the response 
series contains additive uncorrelated Gaussian noise, 

(3) 

•- N (0, Cry 2 ) (4) 

where Cry2 is a scalar covariance. Bayesian and maximum- 
likelihood estimators then obtain the most probable value of 
0 by minimising the sum of squared residuals with respect 
to 0 [Box and Tiao, 1973]. Note that the simulated results 
are obtained using the observed forcing series X. 

4.2. Introducing Total Least Squares Calibration 

It is not widely recognised that, if error is contained in 
both the x and y series, the fitting procedure must be modi- 
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Figure 2. Portion of calibrated TOPMoDEL hydrograph. 
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fled. Fitting functions with errors in both x and y data is not 
a new research area and dates back decades (see, e.g., 
Deming [1943] and Macdonald and Thompson [1992]). 
Indeed, Jefferys [1980] shows that, even when fitting a 
straight line through the origin, the use of the SLS criterion (2) 
when both X and Y series are corrupt yields biased esti- 
mates of the slope coefficient: 

E[bs• s ]- b 1- (5) 

where E[.] is the expectation, bsm is the SLS estimate of the 
true slope b, cr x is the standard deviation of errors in the x 
data and 7 is the mean of the observations. The parameter 
bias is proportional to the error in x. 

More importantly, however, equation (5) shows that the 
bias is independent of the quantity N of data used and, since 
var[bsr s] -- O(N-i), the SLS method yields progressively 
more misleading parameter estimates as more data is 
included in the analysis. This somewhat surprising result is 
a serious shortcoming of the SLS method and can be 
removed by adjusting the objective function, now termed 
the total least squares (TLS) function 

STL s (0)= Z mn (Yn -bx; qt'(X n --'•n (6) 
n=l 

where X n is an estimate of the true value x n and m n is a 
weighting factor dependent on the relative uncertainty in x 
and y data (typically, m n = O'x2(n)/O'y2(n)). The minimisation of 
(6) lies is at the heart of TLS methods, also referred to as the 
"Error in Variables Method" (EVM). The variance of the TLS 
estimates decays at the same asymptotic rate as the SLS vari- 
ance, Var[brLs] --- O(N-i), but unlike the SLS parameter esti- 
mates, the TLS estimates converge on the true values, i.e., 
E[btt•] = b. 

Although (6) remains a sum of squared residuals, it is 
fundamentally different from (2), as it contains N addi- 
tional unknowns X' = {x" ,,n = 1...N} •, which are referred 
to as hidden or nuisance variables [Gull, 1989], latent 
variables, or incidental variables [Zellner, 1971]. Due to 
the form of the model f(o), the true values of x are neces- 
sary before the simulated values of y can be computed. 
This requirement has significant implications for the cal- 
ibration algorithm, increasing the dimensionality of the 
problem. 

We stress that the parameter bias (5) has been derived for 
the simplest 1-parameter linear model. Although analytical 
results are unavailable, it is unduly optimistic to expect that, 
when the model is nonlinear and contains many parameters, 
the bias in parameter estimates will disappear or decrease- 
indeed, the opposite is far more likely. 

Structure of Hydrologic Models: The Slowflow Blues 

Another factor that affects parameter inference is the 
structure of hydrological models - they represent physical 
systems with storage components. Baseflow Qb (slow 
release of water from storage S) is governed by first-order 
ODEs, with solutions of a recursive auto-correlated form. 

Qb =f(S) (7) 

and hence 

d-•-= f (S) (8) 

A discretised solution of (8) takes the following form 

Qb (tn): f•Qb (tn-1)• (9) 

All time stepping hydrological models implement some varia- 
tion of (9) as they step through time from tn_• to tn. A f'n:st-order 
Taylor series approximation suggests that, due to the recursive 
form of (9), a perturbation of baseflow at t n by e n will lead, after 
K time steps At, to an accumulated error œn+k of the form 

g(df ) n+k = nll(; +O(d) k=l 

where n + k denotes t n + kAt. The perturbation œn could 
arise, for example, due to observation error in the rainfall, 
which would propagate into the storage and hence alter the 
initial conditions for (10). Mathematically, the auto-correla- 
tion (10) vanishes at stationary points. In a physical context, 
this corresponds to the catchment drying out, when the stor- 
age is at a minimum and is, in a sense, "reset". 

The auto-correlation in the residual error series violates the 

independence assumption of least squares schemes, decreases 
the informational content of the data accessible to SLS cali- 

bration and leads to additional distortion of the inferred 

parameters by portions of data dominated by baseflow. In con- 
trast, quickflow processes, which rapidly respond to rainfall, 
induce little, if any, auto-correlation in the error series. The 
implication of (10) is that calibration of hydrological phenom- 
ena at the time scale of quickflow (within the storm) will not 
satisfy the independence assumption of least squares methods 
(2). It is emphasised that auto-correlated residuals present an 
additional problem (in addition to input errors) - even if there 
was no auto-correlation in the response series, the presence of 
input errors would lead to parameter bias similar to (5). 

Finally, a third factor must be considered when calibrat- 
ing environmental models - the environment is not (always) 
Gaussian. Although central limit theorems indicate conver- 
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gence of arbitrary distributions to the Gaussian pdf, they 
remain limit theorems that may have limited applicability in 
realistic environmental modelling. Due to their relation to 
Gaussian error models (quadratic forms in (6)), even TLS 
methods cannot account for this problem. What is needed, 
therefore, is a general and systematic calibration framework 
for dealing with various sources of error in modelling that 
allows scrutiny of its various underlying assumptions. 
Although we cannot hope to develop an assumption-free 
framework for system analysis, we can make these assump- 
tions maximally evident. 

BAYESIAN METHODS IN HYDROLOGY 

We have alluded to statistical methods when discussing 
least squares methods. Although calibration can be viewed 
as an optimisation problem, the interpretation of calibration 
as statistical analysis is arguably more useful, since, as well 
as identifying the most likely parameters, it is essential to 
assess the uncertainty associated with these estimates. Error 
estimates are not easily available within the optimisation 
paradigm, yet are a natural product of proper statistical 
inference. In addition, Bayesian statistical analysis allows 
the combination of both quantitative and qualitative infor- 
mation, i.e., combine rainfall-runoff data with the intuitive 
knowledge and experience of hydrological practitioners (via 
prior distributions). Finally, there is a wealth of applications 
of Bayesian methods in areas ranging from artificial intelli- 
gence to pattern recognition and some techniques could 
migrate to hydrologic analysis. 

When applied to rainfall-runoff modelling, Bayes equa- 
tion yields the posterior pdfp(0 [•, •) of the model param- 
eters, conditioned on the observed data 

p(01 •,•) = p(•,• 10)p(0) (11) 

where the denominator p(X, Y) ensures that the pdf inte- 
grates to 1. Typically, it is not necessary to explicitly evalu- 
ate p(X, Y) and any factors independent of 0 in the likeli- 
hood function p(•, •10 ) can be absorbed into the propor- 
tionality constant, giving 

p(01 •,•) o• L(•,• I 0)p(0) (12) 

or, if a non-informative prior is imposed 

p(01 •,•) o• L(•,• I 0) (13) 

Although the prior pdf has an important role in classic 
Bayesian analysis, hydrological applications tend to use 
non-informative priors, with the justification that this "lets 
the data speak for itself'. Since prior knowledge of model 
parameters is usually case-specific, we will also use uniform 
priors, although nothing in the analysis precludes the use of 
informative prior distributions on 0. 

In equations (12) and (13), L(.) is a likelihood function. 
This function must contain all functional dependencies of 
p('•, • [ 0,2) o_n 0. It represents the likelihood of observing 
the data { X, Y} given the model parameters 0 and the model 
hypothesis. The form of L(.) must reflect the way error and 
uncertainty enter and propagate through the system. It is not 
necessary for L(.) to be a proper pdf and it does not have to 
integrate to unity- any constant factor can be absorbed into 
the proportionality relation in (12). 

BAYESIAN ANALYSIS OF DATA UNCERTAINTY 

Traditional Regression Methods: Hiding the Dirac Delta 

Standard Bayesian regression ignores input uncertainty 
and lumps observed response error and model error into a 
single white noise term œ according to eqns (3) and (4). The 
likelihood function is then 

msLs (O,O'y ) =-•-ex p --•-•I yn -- fn 14) O'y O'y n=l 

Assuming the non-informative invariant Jeffrey's prior 
2 out of the posterior density p(tyy 2) cz 1/tyy 2 and integrating IVy 

yields the posterior pdf for the system parameters 0 [Box 
and Tiao, 1973 ] 

PsLs(01•,•)o• •IYn-- fn(•,O)l 2 (15) 
n=l 

In practice, it is easier to maximize the logarithm of the pos- 
terior density, i.,e, 

IN-1)log(•IYn- fn(•,O)121(16) logpsta (olSr,)o- 2 n:l 
The variance of Y errors can then be estimated using 

2 1 •[•n_fn(•,O)l 2 (17) 
where 0 is the most probable parameter set. 

Since the extrema of the posterior pdf (16) are identical to 
those of the SLS objective function (2), maximising (16) is 
equivalent to minimising the sum of squared errors. In fact, 
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the input error model hidden in the classic least squares 
regression is the Dirac delta function d(.), which assigns all 
the probability mass to the observations X: 

p(XI •)- p(•l X)- c•(X- •) (18) 
or, in other words, X - X. Indeed, assuming that forcing uncer- 
tainty is statistically independent from the hydrological model 
parameters, i.e., p('• I 0 ) = p(•), substituting the Dirac func- 
tion (18) and integrating over the support ff•(X) of X yields 

p(•,•f[0) = p(•f [ •,0)p(•) 
=C I p(•lx, 0)p(X[•:,0)dX 

f•(x) 

=C I p(•[X,0)•(X-g:)dX 
f•(x) 

= Cp(• I X,o) = Cp(e l X, o) 

(19) 

where the fourth line follows from the properties of the 
Dirac function and C = p(X) is independent of 0. 

Since the response noise e is assumed to be normally dis- 
tributed according to (4), the likelihood function simplifies 
to (14). It follows that, since Bayesian SLS regression dis- 
regards input uncertainty via (18), it inherits all the weak- 
nesses of SLS optimisation, in particular, parameter bias 
when error is present in both X and Y data, as well as non- 
robustness with respect to non-Gaussian errors. To a certain 
extent, however, the auto-correlation in the residuals can be 

addressed using AR methods. 

Auto-Regressive (AR and ARMA) Methods 

Auto-regressive (AR) and the more general ARMA mod- 
els attempt to remove the auto-correlation structure from the 
residuals and reduce the latter to white Gaussian noise ½n ~ 
N(O, Cr•R) by introducing additional parameters, e.g., for the 
AR1 model, œn ---- alœn-1 + ½n' K-order generalisations are 
readily obtained, e.g., the AR-K model 

K 

•On = • ak •On-k -1[' •n (20) 
k=l 

The correlation in the residuals can then be addressed by 
inferring the K parameters { ak;k = 1...K} of the AR model in 
addition to the model parameters 0. 

However, AR and ARMA models have the conceptual 
limitation that they do reflect the physical mechanism that 
induces the auto-correlation in model residuals in the first 

place. In rainfall-runoff modelling, the auto-correlation 
depends strongly on the process dominating the hydrologi- 

cal response (quickflow or slowflow) and it is cumbersome 
to introduce AR models that account for such distinctions 

(e.g., the AR parameters { ak;k = 1...K} are effectively time- 
and process-dependent). Furthermore, since standard AR 
and ARMA methods do not explicitly introduce input error 
models, they suffer the same shortcomings as SLS methods 
when errors are present in both the X and Y data. 

Total Least Squares Methods: A Bayesian Perspective 

The Bayesian likelihood function corresponding to TLS 
methods is obtained by assuming Gaussian error models for 
both X and Y data 

$[ - X + Zx ex - N(0, Crx 2 ) (21) 

'•r = y _•. •y ey -- N(0, O'y 2 ) (22) 

The limitation of TLS methods in hydrological modelling 
is that they assume that both input and output uncertainty 
can be described by independent Gaussian distributions, 
which is not always appropriate. Since the error models (21) 
and (22) are embedded in the TLS framework, the latter is 
not robust against deviations from normality and additive 
error forms (21) and (22). In addition, since TLS methods 
introduce one latent variable per each data point, the com- 
putational cost of a calibration may become prohibitive 
even with modern computer power. 

However, TLS methods are significant in that they explic- 
itly recognise input uncertainty and its impact on parameter 
estimation. A modern application of Bayesian TLS methods 
in pattern recognition [Nestares et al., 2000] shows similar- 
ities to hydrological calibration, although the linearity of the 
models used in that study considerably simplifies the analy- 
sis and the approach is hence not readily applicable to non- 
linear hydrological modelling. 

Zellner [1971] offers an interesting Bayesian analysis of 
TLS methods (which he refers to as the Error-In-Variables 
Method, EVM). In particular, useful insights can be 
obtained by considering special cases of the EVM. Zellner 
[1971] shows that, even for linear models, the attempt to 
infer both the input variance and output variances leads to 
an ill-posed problem due to the likelihood function becom- 
ing unbounded. This implies that, in the hydrological con- 
text, TLS methods cannot estimate the variances of forcing 

2 and 2 However, the inference of and response errors crx Cry. 
2/cry2 is well posed given an the ratio of the variances/• = crx 

2 2 These results show the informative prior on either crx or cry. 
subtlety of the apparently straightforward problem of data 
modelling, even using linear functions. 
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MULTI-OBJECTIVE CALIBRATION 

An alternative approach to model calibration is to employ 
a composite objective function that contains terms corre- 
sponding to several distinct objectives. This approach mim- 
ics the manual calibration of hydrologists and is termed 
multi-objective (or multi-criteria) calibration. The following 
objectives are normally considered [Sorooshian et al., 1993; 
Gupta et al., 1998; Madsen, 2000]: 

a) Correct flow volumes over the simulation, i.e. 
correct water balance; 

b) Agreement in shape between the observed and 
predicted hydrographs; 

c) Agreement of the peak flow characteristics: 
timing, rate, volume, etc.; 

d) Agreement of recession limbs and low flow periods; 

These objectives are expressed in numerical form and can 
be used to obtain Pareto solutions, reflecting various trade- 
offs between parameters and calibration criteria. Weighting 
factors can be used to obtain a composite objective function 
if a "globally optimal" single parameter set is required. 

Multi-objective calibration is intuitive and conceptually 
simple. It recognises that different parts of the hydrograph 
can be subject to different error processes; hence it consti- 
tutes a conceptual advance compared with crude single- 
objective calibration methods such as SLS schemes. 

However, we feel that multi-objective calibration meth- 
ods have certain limitations: 

1. The trade-off between various objectives is often 
unclear and there are no theoretical guidelines for the 
selection of weighting factors. The use of the entire 
Pareto front in a way circumvents the need for a single 
optimal parameter set, yet if predictions are necessary, 
particular parameter sets still have to be selected. A 
related pitfall is the possible correlation between the 
objectives. For example, minimising the discrepancy 
between observed and simulated responses would gen- 
erally also improve the mass balance; 
2. Multi-objective calibration is typically response 
focused and does not explicitly consider the influence of 
input errors. As a result, if the input history is corrupt 
and the model imperfect, this approach cannot in princi- 
ple provide good fits and unbiased parameter estimates; 
3. A fundamental limitation of multi-objective cali- 
bration from a Bayesian viewpoint is that it does not 
articulate an identifiable error model. It is therefore 

more difficult to appraise the validity of the inference 
procedure and provide uncertainty bounds on the 

parameter estimates (as these are strongly related to spe- 
cific error models). 

These shortcomings, in particular, the difficulty in obtain- 
ing confidence limits on parameters that can be used to 
obtain prediction limits on future events, undermine the 
range of application of multi-objective methods in hydro- 
logical modelling and forecasting. 

GENERALISED LIKELIHOOD UNCERTAINTY 

ESTIMATION (GLUE) 

The Generalised Likelihood Uncertainty Estimation 
(GLUE) methodology [Beven and Binley, 1992] was devel- 
oped as a method for calibration and uncertainty estimation 
using generalised likelihood measures, and is related to the 
Generalised Sensitivity Analysis of Spear and Hornberger 
[1980]. The GLUE methodology explicitly recognises the 
fundamental limitations of simulating rainfall-runoff 
processes with contemporary hydrological models in data- 
sparse and data-corrupt applications. Its application so far 
has been predominantly in rainfall-runoff modelling [Beven 
and Binley, 1992], but GLUE has also been used to assess 
the uncertainty associated with predictions of land surface 
to atmosphere fluxes [Franks and Beven, 1997], geochemi- 
cal modelling [Zak et al., 1997] and flood inundation stud- 
ies [Romanowicz et al., 1994]. 

GLUE is based on Monte Carlo simulation, generating a 
large number of model runs with parameter sets sampled 
from a uniform probability distribution on prior parameter 
bounds. The likelihood of the parameter sets is then evalu- 
ated using a user-defined pseudo-likelihood measure, 
parameters with a pseudo-likelihood below a threshold are 
rejected, and the remaining likelihoods normalised to add 
up to 1. Next, at each time step, the predicted output from 
the retained runs are likelihood-weighted and ranked to 
form a cumulative distribution of response variables, 
from which quantiles can be selected to represent pre- 
dictive uncertainty. 

While GLUE is based on Bayesian conditioning, it does 
not articulate a specific error model structure - instead it 
embeds an unknown implicit error model within a suitably 
lenient pseudo-likelihood measure. As a result, all sources 
of uncertainty in GLUE manifest themselves as parameter 
uncertainty, giving rise to the concept of parameter equifi- 
nality, which admits multiple disjoint parameter sets that fit 
the observed data equally well. In the GLUE framework it 
is difficult to scrutinise and improve the uncertainty model 
underlying the inference. GLUE therefore lacks the concep- 
tual rigour to address the challenges posed by error struc- 
tures typified in Figure 1. 
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KALMAN FILTERS 

The Kalman filter is a method widely used in electrical 
engineering and system analysis, primarily for linear 
Gaussian dynamics [West and Harrison, 1997], and has seen 
some use in hydrology [Bras and Rodriguez-Iturbe, 1985]. 
Kalman filters, at least in principle, explicitly specify the 
uncertainty in the system states that arises from imperfect 
process approximation and from data uncertainty. 

The state-space formulation underlying Kalman filters is 
general and applicable to almost arbitrary models and uncer- 
tainty distributions. However, to obtain analytical closed- 
form solutions to the state estimation equations, the process 
is assumed to be linear with respect to the state variables and 
all errors are assumed to have a Gaussian distribution. A 

Bayesian interpretation of the classic Kalman filter follows. 
Consider the discrete time stepping state-space model 

I]/n+l = Anl]tn + LnUn + ¾n (23) 

where •[•n is the state vector at step n, A n is the transfer 
matrix, Un is a control vector, L n is the control matrix and Vn 
represents model error. When the Kalman filter is used for 
simulation, • contains model state variables, e.g., simulated 
streamflow and internal fluxes. When used for calibration, 

• is augmented with the model parameters 0, giving rise 
to extended Kalman filters. Often • -- 0, with the transfer 
matrix reduced to the identity matrix. 

In addition, consider the observation equation 

Z n+l -- Hn+l •n+l q- W n (24) 

where Zn+ 1 contains system observations (e.g., observed 
forcing inputs and responses), Hn+ 1 is the observation matrix 
and Wn+• represents observation error. 

If the observation history up to and including step n is 
stored in Z n = {zi;i = 1...n} and a (prior) pdf p(l•[ n I Zn) of 
the state vector along with the pdf of the noise terms Vn and 
Wn are known at step n, the posterior pdf of the state vector 
at consequent steps can be constructed in two stages: 

Prediction Step 

Using total probability, the pdf of the state •[•n+l is 

P(•n'lZn )= I P(•n+,l•nZn)P(•nIZn )d•n(25) 

which, given the Markovian property of (23), simplifies to 

P (lltn+i l Zn ) = I P (lltn+i l lltn ) P (lltn I Zn ) dlltn (26) 

Conditioning Step 

The observation can be processed using Bayesian updating 

p(w,,+, I = P(Zn+l I n+l'Zn)P(n+l I zn) 
P(Zn+IZn) 

(27) 

The Markovian property of the observation equation yields 

P(llln+i I Zn+,) = P(Zn+l Illln+,)P(llln+, I Zn) 
P(Zn+,lgn) 

Analytical Solution of State Estimation Equations 

(28) 

In general, (26) and (28) do not possess closed-form ana- 
lytical solutions. However, if the model and observation 
equations are linear in the state vector • 

3A-•-n = 3A-•-n = 3H-•-n = 0 (29) 
31•n+l 31•n 31•n+l 

and the random variables follow a multi-Gaussian pdf 

l[•n !•n •n 0 0 

V n -- N g , 0 Qn 0 (30) W n 0 0 R n 

it is straightforward to derive stepwise exact solutions to 
(26) and (28) [West and Harrison, 1997]. 

Since data uncertainty in both forcing and response obser- 
vations can be specified through the observation noise w, 
while model error can be specified through v, Kalman filters 
offer a very general framework for the estimation of system 
parameters accounting for all sources of uncertainty. Moreover, 
the Kalman filter requires only matrix multiplications and inver- 
sions and is consequently computationally fast. However, the 
derivation of the classic Kalman filter based on assumptions 
(29) and (30) highlights the limitations of this estimation 
scheme in rainfall-runoff model calibration. 

Limitation 1 -Hydrological Models are Nonlinear 

Selecting sufficiently small time steps in principle reduces 
the effect of model nonlinearity with respect to time and 
forcing- this is the approach used to control discretisation 
error in numerical DE solvers. However, it is the nonlinear- 

ity of the model with respect to the parameters 0 within the 
state vector • that undermines the validity of Kalman ill- 
tering in hydrological calibration. Although statistical and 
Taylor series linearisations of Kalman filters have been pro- 
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posed, they are susceptible to nonlinear divergence, when 
the state estimates converge to incorrect values [Bras and 
Rodriguez-Iturbe, 1985]. 

Limitation 2- Modelling Errors may not be Gaussian 

The Kalman filter equations are derived by substituting 
Gaussian kernels into the forecast-update equations. The 
use of alternative error models requires the re-derivation of 
the Kalman filter equations and analytical solutions are 
unlikely in most cases. 

Limitation 3 - Implementation of Kalman Filters 

specify error structure, yet linearisations and Gaussian 
assumptions undermine their stability properties and hence 
their suitability to environmental modelling. However, 
armed with an understanding of current limitations and 
insights provided by the analysis of TLS and Kalman meth- 
ods, we can use the very general equation (11) and its sim- 
plified variant (13) to develop a family of methods that 
explicitly account for the various sources of system uncer- 
tainty. Whilst we present these methods from a Bayesian 
perspective, the parameter estimation equations become 
identical to those obtained from general maximum-likeli- 
hood theory when non-informative priors on the hydrolog- 
ic parameters are employed. 

Casting hydrological models into the stepwise Kalman 
matrix forms is not always trivial, complicating the devel- 
opment of general model-independent analysis software. 
When using extended linearised Kalman filters, the deriva- 
tives are typically unavailable in closed form and numerical 
differentiation must be used. 

Due to these and other problems, classic Kalman filters do not 
offer a complete solution to the calibration problem in hydrolog- 
ical modelling. However, recent developments in Monte Carlo 
and particle filters [Carter and Kohn, 1994; Fruhwirth-Schnatter, 
1994; Cargnoni et al., 1997] suggest that there is scope for the 
application of these recent methods in hydrological parameter 
estimation. Indeed, the Monte Carlo computational tools allowing 
the generalisation of Kalman filters to nonlinear non-Gaussian 
models are related to the Monte Carlo Markov Chain tools that 

we will use to implement the generalised parameter inference 
with arbitrary error models latter in this chapter (albeit not in the 
stepwise iterated form characteristic of Kalman filters). 

BAYESIAN TOTAL ERROR ANALYSIS (Ba TEA) 

We have now surveyed all the major current calibration 
philosophies and see that, although inherent uncertainty in 
environmental systems is partially recognised (explicitly 
by Bayesian SLS and TLS methods and Kalman filters, 
implicitly by GLUE and MOCOM), limited attempt has 
been made to rigorously define this uncertainty using real- 
istic error models. The (Bayesian) SLS regression avoids 
the specification of input error and suffers a parameter bias, 
TLS schemes account for special cases of input error but do 
not allow for non-Gaussian error models. GLUE offers a 

Monte Carlo algorithm for sampling from posterior param- 
eter probability distributions, but does not make explicit 
the assumptions used to derive the likelihood function. 
Multi-objective calibration methods recognise the multi- 
criteria nature of calibration, yet lack the ability to provide 
confidence limits on parameter values and model predic- 
tions. Kalman filters can, at least in principle, explicitly 

Crude Input Error-Sensitive Approaches 

One possible approach in rainfall-runoff modelling to extend 
the traditional regression framework is to augment the fitted 
parameter vector with rainfall depth multipliers. In the early 
approach of Kavetski et al. [2000], no likelihood function was 
specified for the fitted multipliers m, equivalent to setting 

m•.U(a,b) (31) 

where U(.) denotes the uniform distribution, and a and b are 
positive bounds, e.g., 0.1 and 10.0, reflecting uncertainty in 
the magnitude of precipitation depth errors. 

Error models such as (31) are not new; a similar 
approach is implicitly used by the PDM model [Lamb, 
1999] under the guise of a hydrological parameter (a single 
rainfall multiplier rf for all time steps). Equation (31) 
implies that the informational content of rain gauges is 
limited to hyetograph shape only and that depth measure- 
ments have little or no influence on the hydrological 
parameter estimates, which is clearly an extreme state- 
ment. However, by making error structure assumptions 
such as (31) explicit, it becomes possible (and necessary) 
to scrutinise them, motivating our understanding of data 
corruption mechanisms. 

Expected Likelihood Approach 

When input uncertainty is included into the likelihood 
function, the following expression can be obtained 

p(Y,c I 0) I Y,0) p(Y I 0) 
= I Lp(•lx, O)p(XIX)dX'p(•lo) 

c•(x) 

(32) 

where X, the unknown true input, has been integrated out. 
As shown in (18) and (19), omitting the input error model 



KAVETSKI ET AL. 59 

is a special case of (32), equivalent to assigning 
p(X I '•) = 6(X - '•). It leads to the SLS scheme and biased 
parameter estimates. 

The numerical cost of evaluating (32) can be consider- 
able, due to the high dimensionality of the integral. In 
Bayesian image analysis [Nestares et al., 2000], a similar 
integral is evaluated by taking advantage of the multi-nor- 
mal kernel in the equivalent of p(X I'•) and a linear likeli- 
hood function Lp(.). However, since hydrological models are 
highly nonlinear, there is little hope in obtaining a closed- 
form solution of the integral (32), certainly not for arbitrary 
models. Although classical quadrature schemes based on 
hyper-lattices (e.g., the trapezoidal rule) could be employed 
to obtain approximate solutions of (32), these suffer an 
exponential deterioration of convergence rates in high- 
dimensional spaces and become computationally infeasible 
[Evans and Swartz, 2000]. Equi-distributed (quasi-random) 
numbers such as Sobol and Halton sequences raise the rate 
of convergence to O([lnK]ZVK), where K is the number of 
function evaluations and D is the number of dimensions of 

integration. Although asymptotically this rate is almost as 
fast as O(K-i), it remains impractical in high dimensions 
[Geweke, 1996]. 

Instead, Monte Carlo (MC) schemes could be employed, 
since their asymptotic convergence rate is only weakly 
dependent on the dimensionality of the problem, O(K-m). A 
simple MC integration algorithm for (32) is 

1 K (K -•/2 I I 0, +o ) (33) 

where X k is the k th sample from p(X I The effective 
dimension D of integration (33) depends on the input error 
model and is not necessarily equal to the number of data 
points. For example, if a single multiplier is used for each 
storm, then the dimension of integration will be equal to the 
number of storms in the calibration dataset. 

As vividly illustrated by Hammersley and Handscomb 
[1964], it is possible to reduce the leading constant of the 
Monte Carlo error term by factors of 100,000's through mod- 
ifications such as antithetic variates and sampling from 
orthonormal basis functions. Unfortunately these accelera- 
tion techniques exploit special features in the integrand and 
are cumbersome, if not impossible, in high dimensions. 
Further, there are hybrids of Monte Carlo schemes with 
quadrature methods that achieve the highest possible order of 
convergence, O(K-G/o), where G is the highest bounded 
derivative of the integrand on the domain of integration 
[Bahvalov, 1959], but their efficacy depends on a set of con- 
tinuity and variational constraints on the integrand that are 
hard to verify a priori. In spite of these challenges, adaptive 

Monte Carlo algorithms are available (e.g., the Vegas scheme 
of Lepage [Press et al., 1992] and the stratification scheme 
of Press and Farrar [ 1990]) that could be more efficient than 
(33). Evans and Swartz [2000] and Fishman [1996] offer 
good summaries of stochastic integration methods. 

Finally, although (32) allows the use of explicit input error 
models, it has the disadvantage that, after integrating the 
true input history out of the posterior pdf, it remains difficult 
to assess the suitability of the selected input error model 
p(X I '•), since estimates of the true input history are not be 
explicitly available for inspection. As rigorous calibration 
demands a posteriori verification of its assumptions, we are 
led to reject the use of (32) in favour of a different method 
of incorporating input uncertainty. 

Latent Variables as Subjects of Inference 

An alternative to the integration of the true input history 
via is its Bayesian estimation with the same logical status as 
the hydrological parameters. Consider the Bayesian infer- 
ence equation, closely related to 

p(0, x I $z,•c) o• L($Z,•C I 0, X) p (0, X) (34) 

where L (•, •fl 0 X) is the joint likelihood of observing '• 
and Y given a hydrological parameter vector 0 and the true 
input history X. The advantage of using instead of is that 
the posterior pdf of the true forcing data (e.g., rainfall) 
becomes available and can be used to verify the data and the 
assumed probability models. 

The joint likelihood L (•, •f I 0 X) can be re-formulated to 
maximally separate the probability models for input and 
response error. Conditional probability yields 

(5z, 5cl 0, x) I$z, 0, X)p($zl 0, x) (35) 

Two further simplifications can be made, based on the fol- 
lowing assumptions' 

1. X and Y are statistically independent, i.e., Y depends 
only on the observation error affecting the response 
and on the true forcing (see Figure 1). The errors 
affecting the forcing do not causally affect the true 
response and its associated observation error; 

2. '• is statistically independent of 0, e.g., rainfall sam- 
pling errors are uncorrelated with the hydrological 
model parameters. 

Subject to the above assumptions and allowing for 
un-normalised probability models of forcing uncertainty, 
simplifies to 
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I 0, x) o½ 0, I x) (36) 

Substituting into the posterior pdf yields 

p(0, x I $r,$c) o½ L(Io, X)L($rlX)p(O,X) (37) 

1. Sample {0, X} from a pre-specified symmetric jump 
distribution, here the multi-normal pdf centred on the 
current sample location; 

2. Evaluate p ({ 0 X}i] '•, •) up to a constant; 
3. Accept the new sample with probability given by 

r=min[p(OX}i ] •, •) /p({OX}i_ 11 '•,•), 1. 

Pdf (37) contains the inference of the model hydrological 
parameters and the true rainfall history X. It requires the 
specification of the input error model L ('•, and the 
response error model L ('•, • I 0,X). The analysis of pdf (37) 
is computationally intensive due to the large dimensionality 
of the parameter space (now augmented with the latent vari- 
ables of the forcing error model). 

Computational Implementation--The Metropolis Algorithm 

A couple of decades ago the formulation of a posterior 
pdf such as (32) or (37) would have been satisfying from a 
theoretical viewpoint yet practically useless - there were no 
effective approaches to examine such distributions, let alone 
determine their moments and other characteristics. We sus- 

pect that it is precisely the formidable computational aspect 
of (32) and (37) that has hindered the development of a rig- 
orous parameter estimation framework with realistic uncer- 
tainty models. Indeed, classic sampling methods such as 
acceptance-rejection and importance schemes are difficult 
and inefficient for complicated and high-dimensional pdfs 
[Fishman, 1996]. 

Fortunately, the development of Monte Carlo Markov 
Chain (MCMC) methods offers practical ways to sample 
from probability distributions of considerable complexity 
and dimensionality. Fishman [ 1996], Gelman et al. [ 1997] 
and Evans and Swartz [2000] provide a good overview of 
MCMC methods, which originated in nuclear physics (see 
Metropolis et al. [1953] for historical background) and, in 
the 1990's, enjoyed an explosive growth in areas as diverse 
as econometrics [Geweke, 1996], biology [Gelman et al., 
1997] and hydrology [Kuczera and Parent, 1998; Bates and 
Campbell, 2001 ]. 

In this work, we implement the Metropolis algorithm 
[Chib and Greenberg, 1995; Gilks et al., 1996; Gelman et 
al., 1997] in order to generate samples from pdf and sum- 
marise the posterior parameter pdf using moments and his- 
tograms. It must be emphasised, however, that any other 
sampler can be used, e.g., importance schemes. 

The theory behind MCMC methods is complex and still 
evolving. It has been described in hydrological context by 
Kuczera and Parent [1998] and Bates and Campbell [2001]. 
Our implementation of the Metropolis algorithm follows 

Multiple Markov chains are started at the posterior mode 
of (37) found using the SCE algorithm. After sufficient 
samples have been collected (the termination criteria of 
Gelman et al. [1997] were used), the posterior distribution 
of the hydrological parameters 0 and the true forcing param- 
eters X can be examined using histograms and scatter plots, 
or summarised using moments and quantiles. 

We stress that although the entire input history appears as 
the random variable in the posterior pdf, the actual number 
of additional latent variables will depend on the particular 
error model used. For example, if storm-wise multipliers are 
assumed, the number of latent variables will equal the num- 
ber of storms in the calibration data. It follows that the 

dimensionality of the pdf support is not necessarily prohib- 
itive. The ability to control, to a certain extent, the number 
of latent variables and hence the dimensionality of the state 
space, is an important advantage of the generalised BATEA 
framework over classical TLS schemes, which always intro- 
duce N additional latent variables. 

Block updating of the sampled variables is advantageous 
when strong correlation is suspected between these vari- 
ables [Gelman et al., 1997; Bates and Campbell, 2001]. We 
suspect that considerable computational optimisation can be 
carded out by a judicious selection of jump distributions 
and updating sequences. Given enough sampling, however, 
all these algorithmic variations converge to the same target 
distribution (37). 

CASE STUDY: THE ABC MODEL 

The theoretical arguments calling for the more systemat- 
ic calibration formalism B ATEA can be illustrated by 
numerical experimentation. 

Consider the ABC model, a simple time stepping hydro- 
logical model with three parameters {a, b, c}, two state 
variables (discharge Q and storage S, both per unit catch- 
ment area) and one forcing term (rainfall r). For any time 
step i, the ABC equations are given as 

Qi = (1-a-b) r• + cS i (38) 

Si+l -- ( ] - c ) Si -{- aFi (39) 
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Parameter a represents the fraction of rainfall entering the 
groundwater storage, b is the evaporation fraction and c is a 
constant of linear proportionality between storage and dis- 
charge. In addition, the initial value S 1 is required. 

While the ABC model is simplistic and certainly uncom- 
perifive with more complex models, it does have an ele- 
mentary groundwater store and a quickflow component. We 
employ ABC to illustrate some of the issues common to all 
hydrological models. In addition, we use synthetic data to 
establish the "bona fides" of the calibration methods. If real 

data were used, there would be no way of checking whether 
the parameter estimates converge to the true values and 
whether the confidence limits reflect the actual errors. 

The "true" rainfall data X was generated using the DRIP 
algorithm [Heneker et al., 2001] using parameters corre- 
sponding to the Sydney region in Australia. The "true" 
streamflow Y was generated using the ABC model with the 
"true" parameter set 0 = {0.6 0.15 0.2}. The X, Y and 0 data 
represent the "truth" that will be used to gauge the success 
of the parameter estimation scheme. 

The "observed" rainfall X was obtained by corrupting 
each storm depth r within X using normally distributed 
storm multipliers, yielding the corrupted depth • 

• = mj rj; m - N (0, ry• 2 ) Vj (40) 

where j indexes the storms within the rainfall series. 
The "observed" streamflow was obtained as 

ß 2)Vi (41) •i ---- Yi + œi, œi -- N(O,O'y 

where i indexes the time steps within the simulation. 
The additive response error model (41) is the same as that 

used in the SLS and TLS schemes. The multiplicative input 
error model (40), although related to the additive TLS input 
error model, is nonetheless different. It offers an attractive 

way to parsimoniously parameterise rainfall errors. For 
example, if the storm largely misses a gauge, its overall tem- 
poral pattern will register on the pluviograph, but the true 
strength will be underestimated. Conversely, if the core of 
the storm passed directly over the rain gauge, the effective 
catchment-averaged precipitation would be overestimated. 

It is relatively straightforward to accommodate various 
probabilistic error models within the B ATEA model analy- 
sis formalism. In contrast SLS and TLS methods, as well as 
classic Kalman filters, have embedded error models that can 
not be easily modified. 

Unless stated otherwise, N - 1000 time steps with At - 
1 hr were used (42-day runs with 5 storms). Quantitative 
results forcr2 m =0.05 and Cry2 =0.01 are presented; in general, 
qualitatively similar behaviour occurred for other range of 

or2 m and ay 2. In addition, we found no major qualitative dif- 
ferences in calibration behaviour when using alternative 
input error distributions, e.g., log-normal, instead of normal, 
multipliers. 

The ABC model is calibrated to the "observed" data 

using a) the SLS scheme; and b) the BATEA formalism. 
Comparisons are then made, focusing on i) the accuracy of 
the parameter estimates; and ii) the relation between the 
estimated uncertainty and the actual parameter errors. 
Unless synthetic data were used, these assessments, which 
in our opinion must be applied to any parameter estimation 
scheme, would have been impossible. 

Although typical implementations of SLS schemes are 
limited to fitting the model parameters using an optimisa- 
tion scheme, we have performed the additional step of sam- 
pling from the posterior SLS parameter distribution (15) 
using the Metropolis algorithm. This allows a more com- 
prehensive comparison of the posterior parameter distribu- 
tions inferred by the SLS and B ATEA schemes, since the 
mode of the posterior pdf corresponds to the best-fit param- 
eters, while the shape and spread of the distribution quanti- 
fy the parameter uncertainty. 

Five Metropolis chains with 40,000 samples in each were 
generated and the first 10,000 samples were discarded. The 
r-statistic of Gelman et al. [1997] was monitored to ascer- 
tain the chains' convergence to the target posterior pdf. 
Unless stated otherwise, the posterior covariance matrices 
of the parameters were approximated from the Metropolis 
samples, since inverse finite difference Hessian approxima- 
tions at the posterior mode are more "local" and hence less 
informative. 

We also define a dimensionless error measure (0) for cal- 
ibrated parameters. 

•(0)= 0true -- El01 ry[0] (42) 
where E[ 0 ] and or[ 0 ] are the mean and standard deviation 
of the posterior parameter pdf. 

Bayesian SLS Calibration 

The SLS-fitted response for a 50-hr segment of the data is 
shown in Figure 3. Visually, the fit is good in practically all 
sections of the hydrograph. Undoubtedly the parameter esti- 
mates must be good! However, the reader, by now perhaps 
sceptical of the suitability of SLS schemes in the presence 
of input error, will not be surprised to learn that, while 
parameter c has been fitted quite well, parameters a and 
especially b are poorly identified. Figures 4-5 and Table 3 
summarise the SLS calibration results, showing that the 
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Figure 3. Portion of SLS-calibrated ABC hydrograph. 
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Figure 4. SLS posterior pdf of paramaters a and b. 
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Figure 5. SLS posterior pdf of paramater c. 

SLS estimates of a and b are ten standard deviations away 
from the true values, well outside any meaningful confi- 
dence limits. The convergence of the SCE search to the 
global optimum of the SLS objective (likelihood) function 
was verified by enumerating the parameter space using a 
fine grid. This confirms that the parameter bias is a result of 
the inappropriate likelihood function and is not an artefact 
of the numerical optimisation scheme used. 

We stress that in this study no model error was introduced 
and only moderate unbiased data corruption was used (e.g., 
the actual response noise corresponded exactly to the addi- 
tive Gaussian noise in the SLS response error model). The 
fact that poor estimates were obtained for a and b, while 
good results were obtained for c, illustrates the unpre- 
dietability of parameter inference based on inappropriate 
models. We are forced to conclude that, given 42 days of 
data (1000 data points), the SLS calibration fails to identify 
the correct parameters even when model error is not present. 

Another aspect of the ABC model can be seen in Figure 
4, which shows a moderately strong correlation between the 
fitted parameters a and b. In general, correlation indicates 
that the model is over-determined. A reasonable model val- 

idation question then is: is the correlation between a and b 
an intrinsic feature of the model or a consequence of data 
errors? Due to the simple functional form of the ABC 
model, this question can be answered analytically. 
However, for a more complicated model, the solution to this 
question must be found using some approximate numerical 
or experimental means - i.e., calibration. But if the SLS 
scheme does not even admit the possibility of input errors, 
how can it meaningfully tell the modeller whether parame- 
ter correlation is due to model structure or data uncertainty? 

SLS Calibration - More Data for Accuracy ? 

Parameter errors are often blamed on the limited amount 

of data available for calibration. Indeed, the large parameter 
errors in Table 3 could have been explained by the fact that 
only one month of rainfall-runoff data was used. In this syn- 
thetic case study, however, we are free to test this statement, 
since the "truth" is completely known. Extending the data 
series to 7 months (5000 time steps) and then to 10 yrs 
(100,000 time steps) and calibrating ABC using the SLS 
scheme yield the posterior distributions of parameters a and 
b shown in Figures 6 and 7. 

Table 3.- SLS calibration, N=1000 (42 days). 

Parameter Mean + St. deviation Error r/(0) 
a 0.702 + 0.0106 -9.62 

b 0.0250 + 0.0105 11.9 

c 0.198 + 0.00413 0.484 
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Figure 6. SLS posterior pdf of a and b with N=5000. 
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Figure 7. SLS posterior pdf of a and b with N= 100000. 

Figures 6-7 suggest that large data sets are unlikely to 
resolve the input error problem in SLS calibration. While 
the variance of all three parameters has contracted by two 
orders of magnitude (following the asymptotic O(N-1) vari- 
ance decay rate of SLS schemes), the convergence is to 
incorrect values. Although the optimal parameter values cal- 
ibrated using 10 years of data are closer to the true values 
than those obtained using 1 and 7 months of data, the uncer- 
tainty estimates are extremely misleading and the parameter 
estimates converge to biased values. This bias is a serious 
shortcoming of the SLS scheme- if the approach cannot 
handle simple synthetic data error in such a simple hydro- 
logic model (with N = 105 data points), we must be wary of 
applying it in the real world. However, the non-robustness 
of SLS schemes with respect to input error is not a mystery 

- analytic results dating back to the 1940's show parameter 
bias even for a 1-parameter straight line fit! 

BATEA Calibration Using Diffuse Multiplier Error Model 

In this part of the case study, we deliberately mis-specify 
the input error model, assuming a diffuse uniform likeli- 
hood for all values of storm multipliers between 0.1 and 10, 
as in. The results of the parameter inference are shown in 
Table 4. The Metropolis analysis of the posterior distribu- 
tion failed to converge and the standard deviation reported 
in Table 4 was computed using the inverse finite difference 
Hessian approximation at the posterior mode. 

It can be seen that the introduction of a different incorrect 

input error model led to little if any reduction of the actual 
parameter error for all three parameters of the ABC model 
(although the posterior mode has shifted). These results illus- 
trate potential limitations of ad-hoc approaches that intro- 
duce additional model parameters in an attempt to account 
for rainfall data errors (e.g., the PDM model [Lamb, 1999]). 

The poor performance of the diffuse multiplier model can 
be understood by noting that statistical inference extracts 
information (parameter values) from data (here, rainfall- 
runoff series) using some set of rules (likelihood functions 
and prior distributions). Specifying a diffuse uniform likeli- 
hood on the storm multipliers instructs the inference scheme 
to disregard all information on precipitation depth contained 
in X and limits the use of the rainfall series to relative hyeto- 
graph shape only. The multipliers then become completely 
unconstrained degrees of freedom that at best merely inten- 
sify the computational effort and at worst destabilise the 
inference algorithm. 

The insight of Zellner [1971] into the inability of TLS 
schemes to operate with non-informative prior distribu- 
tions on the parameters of the error models is also valu- 
able. Setting a diffuse uniform likelihood on the storm 
multipliers is equivalent to using the (correct) error model 
(40) with at2 m = o• and is similar to using a non-informa- 
tive prior on Crx2 in the Bayesian TLS scheme. Since the 
prior on response noise variance Cry2 is also non-informa- 
tive, it is little surprise that the parameter accuracy is poor 
and the Metropolis scheme fails to converge- the infer- 
ence is ill-conditioned. 

Table 4. - BATEA calibration, diffuse multiplier model, N= 1000. 

Parameter Mean + St. deviation Error r/(0) 
a 0.636 + 0.00872 -4.13 

b 0.094 + 0.00981 5.71 

c 0.199 + 0.00300 0.153 
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Power of BATEA: Correct Uncertainty Characterisation 

The preceding empirical analysis confirms that simplistic 
treatment of data uncertainty fails to produce accurate and 
reliable parameter estimates. The Bayesian SLS schemes 
assumed input uncertainty is described by the Dirac func- 
tion and the diffuse multiplier model was also incorrect. 
Both these schemes are specific cases of BATEA, but with 
incorrect error models for the particular problem. It was this 
error mis-characterisation that was responsible for the poor 
calibration results - not the data errors themselves, nor the 

quantity of data used, nor the model (which we know is 
exact in this synthetic case study). 

To demonstrate the performance of the B ATEA formal- 
ism, we specify the correct input error model- the Gaussian 
multiplicative depth error at each storm with the correct 
value of •r2 m in the input error model (some additional com- 
ments on selecting and verifying •r2 m are made later). The 
results are shown in Figures 8 and 9, with a summary in 
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Figure 8. B ATEA posterior pdf of a with N=1000. 
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Figure 9. BATEA posterior pdf of b with N= 1000. 

Table 5.- BATEA calibration, correct error model, N=1000. 

Parameter Mean + St. deviation Error r/(0) 
a 0.593 + 0.0528 0.125 

b 0.155 + 0.0751 -0.0625 

c 0.199+0.00305 0.141 
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Figure 10. BATEA posterior pdf of a and b with N=5000. 

Table 5. Figure 10 and Table 6 show the results of applying 
BATEA to the 7-month data set. 

Figures 8-10 confirm that errors and biases in parameter 
estimates obtained earlier were not a product of poor data or 
model inadequacy - they were direct results of applying cal- 
ibration schemes that did not correctly represent the way 
errors enter and propagate through the system. As soon as 
the correct error model is specified, the bias in the parame- 
ter estimates disappears. In fact, Table 5 indicates that the 
parameter estimates inferred by B ATEA with 40 days of 
data are considerably closer to the true values than the 
parameters calibrated with the SLS scheme using 10 years 
of data. Although the B ATEA posterior parameter uncer- 
tainty has increased compared to the SLS case, the mean 
and mode of the posterior pdf are close to the true values 
and the error statistic is of the order of 1.0, much below the 
SLS case. BATEA is hence more "honest" than SLS in 

reporting parameter uncertainty. At least for this test case, 
the trade-off between SLS vs B ATEA could be described as 

"precisely wrong vs probably correct"! 
As discussed previously, the shift in calibration philoso- 

phy from ignoring data errors to rigorously defining and 

Table 6. - BATEA calibration, correct error model, N=5000. 

Parameter Mean + St. deviation Error r/(0) 
a 0.604 + 0.0267 -0.135 

b 0.146 + 0.0376 0.120 

c 0.199 + 0.00150 1.38 
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treating them incurs a substantial computational cost- the 
necessity to estimate the latent variables of the error model 
(in this case, the storm multipliers). This computational 
effort is not at all worthless, however, since we chose to 

implement rather than. Following the calibration using, 
the posterior distribution of the latent variables is available 
for explicit inspection. In particular, fitted distribution of the 
latent variables should resemble the error model that was 

used to describe the corruption process. In our synthetic 
data case, we can go further and compare the posterior dis- 
tribution of the multipliers to the known "true" values. 

Figure 11 shows a 2D histogram of two of the five storm 
depth multipliers. The true values were m4 - 1.34 and m5 - 
1.11. Figure 11 shows that the multipliers have been esti- 
mated with a notable degree of accuracy. The remaining 
multipliers were also estimated with small errors and with 
realistic uncertainty bounds. In a practical context, the values 
of the multipliers (and all other latent variables) must be 
examined to determine whether they are realistic. If the pos- 
terior pdf of latent variables is unreasonable, then either the 
calibration scheme has failed, or the rainfall-sampling net- 
work has produced data inadequate for the calibration of 
rainfall-runoff models, or the model itself is inadequate. 

Another interesting point arises by considering that rainfall 
depth corruption must necessarily disturb the water balance 
of the catchment model. Input error insensitive methods, 
including SLS, GLUE and multi-objective schemes, will 
attempt to restore the mass balance by adjusting (biasing) the 
parameters. By including the depth error into the analysis, it 
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Figure 11. BATEA posterior pdf of multipliers, N-1000. 

becomes possible to directly address the cause of such mass 
balance errors, in a sense implicitly giving the BATEA cali- 
bration methodology multi-objective characteristics. 

We also stress that good fits obtained using the SLS 
scheme (e.g., Figure 3) do not imply that the model predic- 
tions in response to future forcing will be correct. Since 
rainfall data errors were ignored by the SLS scheme, the 
SLS parameter estimates have been adjusted to cancel out 
(to the largest extent possible) the input errors in the partic- 
ular calibration data set. However, it would be naive to 

expect that future predictions in response to different forc- 
ing would benefit from such "cancellation". It is preferable 
to explicitly address (in a probabilistic sense) all sources of 
data uncertainty to maximally remove the influence of data 
errors from the parameter estimates. The reason for biased 
SLS parameter estimates is not the model itself, but rather 
unaccounted rainfall errors distorting the mass balance of 
the calibrated model. 

We are also now in a position to empirically answer one 
of the earlier questions on the ABC model - is the correla- 
tion between a and b an intrinsic feature of the model or an 

artefact of data error? SLS schemes could not reliably 
answer that question, as they do not admit input errors. 
Observing that the correlation between a and b does not 
vanish when the correct error models are specified (Figure 
10), we conclude that the correlation is an intrinsic feature 
of the model. Analytic assessment confirms this empirical 
observation. 

Validation of Data Uncertainty Models 

The reader by now might be asking: the results in Tables 
5 and 6 are promising, but how do we tell when the chosen 
data error model is appropriate? Indeed, a posteriori verifi- 
cation of modelling assumptions is an essential step in 
model calibration: omitting it throws us back to ad-hoc 
modelling techniques. Since there are criteria that can be 
used to reject hypotheses, data uncertainty models can and 
must be scrutinised through seeking invalidating evidence, 
not necessarily used in the inference itself. For example, if 
the rainfall data was collected in a densely gauged catch- 
ment, but the inference suggests large rainfall errors, then a 
flawed data error model must be suspected. 

A powerful rejection criterion is the compatibility 
between the posterior pdf of the latent variables and their 
corresponding likelihood functions. For example, in the 
final BATEA case study we assumed that the multipliers can 
be described by the Gaussian pdf with mean of 1.0 and vari- 
ance of 0.05. We should therefore inspect the posterior dis- 
tribution of the multipliers. Although it is hard to confirm 
trends from 5 and 28 storm multiplier samples, it is reason- 
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able to expect some basic compatibility. The posterior mean 
and variance of the fitted multipliers are 1.01 and 0.052 for 
the 1000-step 5-storm BATEA simulation and 0.99 and 
0.057 for the 5000-step 28-storm BATEA calibration. These 
results are consistent with the rainfall error model used in 

the calibration. A more rigorous test is to examine the dis- 
tribution of the multipliers, e.g., using probability plots. 
Care must be exercised, however, since probability plots 
based on small sample sizes can depart from linearty even 
if the data indeed came from that distribution. Figure 12 
presents a normal probability plot for the posterior means of 
the multipliers in the 28-storm calibration. Its comparison 
with the assumed Gaussian multiplier likelihood function is 
satisfactory. 

The error models do not exist in a vacuum- if the rainfall 

data came from a densely gauged catchment, we would 
reduce the variance of the multipliers and inspect the 
results. In the limit as the rainfall data becomes more exact, 

the multiplier likelihood would approach the Dirac function 
and we would arrive at the original SLS scheme. It is not the 
SLS scheme itself that is faulty; rather, it is its use to cali- 
brate models to corrupt input data that is inappropriate. 

Finally, we note that the input error model is not the only 
model that needs to be assessed. The response error model 
embedded in SLS and also employed in our ABC case study 
using B ATEA is additive white noise, which is not neces- 
sarily appropriate. The verification of the response uncer- 
tainty model is also essential in a holistic calibration and can 
be carded out, e.g., via graphic analysis of residuals. The 
convenience of the additive Gaussian noise for response is 
largely mathematical, as it allows analytical integration of 
the output error vadance try2 from the posterior pdf. Since 
B ATEA employs MCMC methods to infer latent variables, 
the analytical convenience of the Gaussian residual assump- 
tion is useful yet no longer essential. However, since the lit- 
erature describes many response error models (e.g., AR and 
ARMA models), but largely overlooks input uncertainty 
(with the exception of the TLS scheme, which is not used in 
hydrology and, at least in principle, Kalman filters, which 
are rarely used), we have focused on the latter to restore the 
balance. 

A VIEW INTO THE FUTURE 

We recognise that B ATEA is still in its nascency and a 
range of outstanding issues remain: 

a) The current ability to specify probabilistic data and 
model error models is limited: uncertainty functions 
must be chosen to reflect our physical understanding 
of processes contributing to input, response and 
model corruption. Such functions do not yet exist. 

b) Parametric approaches for model error quantification 
are currently lacking. Nonetheless, the recent work by 
Gaganis and Smith [2001] evidences the growing 
recognition that explicit analysis of model error can 
and should be incorporated into environmental stud- 
ies. 

c) The numerical performance of the inference algo- 
rithm is of evident practical importance. Whilst the 
increased number of latent variables can be managed 
using Monte Carlo methods, the theory and practice 
of these algorithms are themselves still evolving. 
Much work remains to be done to refine sampling 
convergence criteria and develop more efficient jump 
rules and state update algorithms. 

However, these issues must be kept in perspective- we 
argue that fundamental and overriding benefits arise from 
developing a framework that explicitly recognises data and 
model uncertainty and that produces greater insight about 
how uncertainty affects our worldview. 

A common concern with hydrological modelling is that 
there appears to be a limit to the model complexity support- 
ed by rainfall-runoff data. However, the informational 
insufficiency of data series to support specific model 
hypotheses should be demonstrated via excessively wide 
confidence limits on calibrated parameters, preferably when 
data uncertainty and its effect on the inference is minimised. 
Although the parameter confidence limits in Bayesian SLS 
methods and GLUE are also indirectly related to model and 
data uncertainty, the lack of explicit error models in these 
approaches makes that link ambiguous, since confidence 
limits obtained using incorrect error models will have erro- 
neous significance levels. BATEA, however, is in no way 
limited to calibration using rainfall-runoff series alone. The 
data matrices X and Y contain all the observations of the 

system- saturated areas, evapotranspiration, piezometer 
heads and so on. The inclusion of this data into the inference 

tends to constrain parameter uncertainty as it provides inde- 
pendent information on the model's internal state variables 
[Franks et al., 1998]. The inclusion of these variables is, in 
fact, an avenue for more stringent model assessment 
[Beven, 1993; Kuczera and Franks, 2002]. 

CONCLUSIONS 

Reliable parameter inference is critical for meaningful 
prediction using environmental models. Yet the calibration 
of these models is currently accomplished using essentially 
ad-hoc approaches. For example, standard least squares cal- 
ibration, although computationally convenient, disregards 
input uncertainty and suffers from a bias in the estimated 
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parameters. GLUE recognises the inherent uncertainty in 
modelling, yet does not treat it explicitly, complicating the 
verification of its underlying assumptions. Multi-objective 
methods attempt to mimic the intuitive multi-criteria 
approach of hydrologists, yet, without specifying explicit 
error models, suffer from subjectivity in the selection of 
objective functions and cannot produce meaningful confi- 
dence limits on their predictions. Currently, only Kalman 
filters allow specification of model and data error, yet their 
reliance on system linearisation and Gaussian error models 
undermines their suitability in hydrological modelling. 

Recognising the necessity to account for all sources of 
uncertainty in environmental modelling, a general Bayesian 
approach for total error analysis (BATEA) was introduced. It 
makes explicit the probabilistic error models used to 
describe the uncertainty in the observed data, notably, in 
forcing inputs such as rainfall (overlooked by current cali- 
bration schemes), as well as in the observed responses. The 
fundamental benefit of the BATEA formalism is that it forces 

the modeller to explicitly specify uncertainty models that can 
and must be verified against available evidence. Ignoring 
data and model uncertainty during calibration not only sub- 
tracts from the veracity of parameter estimates and predic- 
tions, but also may lead to stagnation in rainfall-runoff 
hydrology if hypotheses of catchment dynamics are only 
weakly challenged, with any discrepancies between observa- 
tions and predictions attributed to the currently nebulous 
concept of "data and model error". Conversely, accounting 
for all sources of error leads to an honest assessment of 

parameter and predictive uncertainty of hydrologic models 
and paves the way for rational discrimination between com- 
peting models on the basis of explicit criteria, e.g., model 
error and susceptibility to data uncertainty. 
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The evaluation of model performance within the Generalised Likelihood 
Uncertainty Estimation (GLUE) framework allows the use of multiple qualitative 
and quantitative rejection criteria to identify behavioural model structures and 
parameter sets from a sample of all possible models. A fundamental question with- 
in the GLUE approach (and indeed other calibration / validation methodologies) 
remains the choice of appropriate rejection criteria to assess model performance in 
a way that is consistent with our perception of the catchment dynamics. This paper 
tests the use of seasonal and sub-event performance criteria to assess the changing 
dynamics of a hydrological model, dynamic TOPMODEL, using data from the 4 lha 
Panola Mountain Research Watershed (PMRW), Georgia, USA. The paper explores 
commonly used objective functions (performance measures) as rejection criteria 
within the GLUE procedure. Furthermore the paper shows that it may be difficult 
to propose a consistently parameterised model structure at PMRW due to significant 
variability in the observed seasonal responses (i.e. changes in recession dynamics 
and runoff coefficients). It is possible, given the additional model evaluations used 
here, to reject all the sampled parameter sets for this application of dynamic TOP- 
MODEL, even though many were apparently acceptable when using 'global' per- 
formance measures (PMs) to characterise model performance. There appears to be 
a need for a more thoughtful approach to our use of PMs when using purely numer- 
ical assessments of rainfall-runoff models. 

INTRODUCTION 

The scientific study of hydrology necessarily requires the 
characterisation of a natural system that is, to a greater or less- 
er extent, unknown. Furthermore our perceptual understand- 
ing of the hydrological system far outweighs our ability to 
develop a rigorous theoretical treatment of that system 
[Hornberger et al., 1985; Beven, 2000, 2001a; d]. This is 

Calibration of Watershed Models 

Water Science and Application Volume 6 
Copyfight 2003 by the American Geophysical Union 
10/1029/006WS 05 

exemplified by our representation of hydrological flowpaths 
at the hillslope scale, where we do not have adequate formu- 
lations of processes that are known to involve multiple flow- 
paths with highly non-linear responses and dynamic varia- 
tions in spatial connectivities upslope. Furthermore better 
descriptions of these processes and fluxes at the scale required 
by the model are unlikely to advance significantly in the near 
future due to limitations in our measurement technologies. 
Perhaps we should not be surprised that, given the possible 
range of dynamic output behaviour and the constraints of the 
water balance in applications of typical conceptual rainfall- 
runoff models, we can simulate a rainfall-runoff record, but 

that does not imply that our models are physically correct. 
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There is a growing realisation in the literature that perhaps 
we need to be more thoughtful about the measure/s we use to 
test model performance. The development of modified objec- 
tive formulae has been reported since computer simulations of 
hydrology began and automated routines for calibration used 
[notably Dawdy and O'Donnell, 1965; Nash and Sutcliffe, 
1970; Garrick et al., 1978; Sorooshian and Dracup, 1980; 
Willmott, 1981; Kuczera, 1982; 145Iliams and Yeh, 1983]. 
Interest is increasing in multi-criteria or multi-objective meth- 
ods that attempt to make best use of our limited observations 
or observations other than rainfall-runoff data that may be 
more fuzzy or even qualitative, and which often involve less 
integrated catchment responses [e.g. Moore and Thompson, 
1996; Lamb et al., 1997; Molicova et al., 1997; Seibert et al., 
1997; Franks et al., 1998; Gupta et al., 1998; Yapo et al., 
1998; Guntner et al., 1999; Boyle et al., 2000]. Not only do 
multi-criteria (or multi-objective) methods potentially allow 
more robust analyses of models, they also have the potential 
to aid hypothesis testing of competing model structures 
[Beven, 2001 a, b, c]. In this paper we analyse the similarities 
and differences among different global and seasonal and sub- 
event PMs within a multi-criteria framework for model rejec- 
tion. We propose that a combination of PMs is more effective 
than any global PM in discriminating between behavioural and 
non-behavioural simulations. This type of model rejection 
framework is consistent with the Generalised Likelihood 

Uncertainty Estimation (GLUE) methodology of Beven and 
Binley [1992]. Section 2 gives a discussion of the rationale and 
philosophy of the GLUE methodology, concentrating on 
aspects of the methodology that relate to multi-criteria model 
rejection. Sections 3-4 describe and discuss the methods used to 
analyse seasonal and sub-event model performance from an 
application of Dynamic TOPMODEL [Beven and Freer, 
2001a] applied to the Panola Mountain Research Watershed 
(PMRW) o 

EQUIFINALITY, MODEL REJECTION, AND 
GENERALIZED LIKELIHOOD UNCERTAINTY 

ESTIMATION (GLUE) - A DISCUSSION 

In Section 3 below we will outline a conceptualisation of 
PMRW as three Landscape Units (LUs) within the Dynamic 
TOPMODEL structure as a reflection of the perceptual 
understanding of PMRW gained in the field. The penalty of 
such a distributed conceptualisation (albeit still simple) is 
an increase in the number of parameters that must be speci- 
fied. Paradoxically our results may show that we are unable 
to make definitive statements regarding our 'improved spa- 
tial representations', or that we can only make statements 
associated with significant uncertainty about the nature of 
the distributed responses in the catchment. Accepting that 

our model structures are to some extent in error, suggests 
that multiple possibilities of good (or behavioural) simula- 
tions will exist given the limitations or uncertainties in the 
data, in our perception of important hydrological processes 
and in the mathematical formulation of the conceptual 
model. This belief in multiple possibilities, rejecting the 
concept of searching for a single optimal representation, has 
been termed equifinality [Beven, 1993, 2001a, d; Beven and 
Freer, 200lb] to emphasise that this is not just a problem of 
identifying the "correct" (or even optimal) parameter set 
within a model structure. 

Generalized Likelihood Uncertainty Estimation (GLUE) 

If the concept of equifinality is accepted as a working par- 
adigm, then some way of analysing possibilities for model 
structures and parameter sets must be developed. One such 
technique, and the method of choice for this study, is the 
GLUE methodology of Beven and B inley [1992], which is 
an extension of the Hornberger/Spear/Young Generalised 
Sensitivity Analysis [see Spear and Hornberger, 1980; 
Ratto et al., 2001]. The GLUE procedure is a Monte Carlo 
(MC) based technique that uses different likelihood meas- 
ures to evaluate multiple simulations resulting from differ- 
ent realisations of parameter sets within a given model 
structure. Different model structures can also be evaluated, 
providing that the same likelihood measures can be calcu- 
lated. The likelihood measures are used to define a set of 

acceptable or behavioural models. All other model realisa- 
tions are rejected (given a likelihood of zero). 

In prediction, the predicted variables over the whole set of 
behavioural models are calculated. For each variable a like- 

lihood weighted cumulative distribution is formed as: 

t=l 

where •t,, is the value of variable Z at time t simulated by 
model M(Oi) with associated likelihood L[M(Oi)]. 
Prediction quantiles can then be evaluated from this distri- 
bution. Accuracy in estimating such prediction quantiles 
will depend on having an adequate sample of models to rep- 
resent the behavioural part of the model space. 

Different likelihood measures can be combined within 

this framework by a variety of methods including Bayesian 
multiplication [see for example Beven et al., 2000; Beven 
and Freer, 200lb]. It should be noted that the resulting pre- 
diction quantiles will reflect a belief in the model predic- 
tions but will be conditional on the model structures chosen, 
the ranges (and any prior distribution) of parameter values 
chosen, the sample of models chosen and the choice of like- 
lihood measure(s) and rejection criterion used in evaluation. 
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Any interaction amongst parameter values in producing 
behavioural simulations should be reflected implicitly in the 
likelihood value associated with a model. The errors associ- 

ated with that model are also treated implicitly and are effec- 
tively also assumed to be weighted by the likelihood value. 

The methodology is very flexible in terms of a definition 
of a likelihood measure. The performance measures used in 
this paper can be treated in this way. Formal statistical like- 
lihood functions, based on strong assumptions about the 
error structure, can also be used but are not often justified in 
the face of model structure error. 

GLUE has been shown to be an effective method for 

determining the predictive uncertainty in several environ- 
mental model applications, including simulations of stream 
discharge [Beven and Binley, 1992; Romanowicz et al., 
1994; Fisher and Beven, 1996; Freer et al., 1996; Franks et 
al., 1998; Beven and Freer, 200lb; Mwakalila et al., 2001]; 
ground water dynamics [Feyen et al., 2001]; SVAT model- 
ling [Franks and Beven, 1997; Franks et al., 1997; Beven 
and Franks, 1999]; geochemistry [Zak et al., 1997; Zak and 
Beven, 1999b], flood frequency [Cameron et al., 1999; 
Cameron et al., 2000]; computational fluid dynamics 
[Aronica et al., 1998; Romanowicz and Beven, 1998; 
Hankin et al., 2001]; and soil erosion [Brazier et al., 2000; 
Brazier et al., 2001]. 

Equifinality and Hypothesis Testing 

The concept of equifinality is the basis of the GLUE 
methodology. It comes from a realisation that due to inter- 
actions between physical processes and parameter values 
defined in the model structure, and limitations of the input 
data used to drive the model, multiple and competing repre- 
sentations may be able to give simulations that are consis- 
tent with the observations that are available (i.e. are behav- 
ioural) [Beven and Freer, 200lb; Beven, 2002]. This is not 
an unreasonable concept given the limits that current meas- 
urement technologies place on our ability to characterise the 
surface / subsurface continuum and to define effective 

parameter values. As Naef[ 1981 ] noted, for all hydrological 
models discharge increases with increasing rainfall but 'an 
algorithm is not necessarily physically correct if a concep- 
tual model produces reasonable results'. That sentiment still 
holds today. Although advances have been made in process 
understanding in hydrology, hydrologists today still use 
descriptions of processes that are wrong and are known to 
be wrong (e.g. we still do not yet have a satisfactory descrip- 
tion of flow in a macroporous soil at the hillslope scale?). 
This comes about because our models are not complete rep- 
resentations of reality and there is danger in assuming that 
they are [see discussions in Grayson et al., 1992; Beven, 

1993; Morton, 1993; Beven, 2001a, 2002]. To embrace the 
concept that our models are not necessarily 'true' representa- 
tions but essentially a set of hypotheses [Beven, 1992; 
Addiscott et al., 1995; Beven, 2001a, 2002; Beven and Feyen, 
2002] that can be falsified if there is appropriate data with 
which to do so is to challenge many of the calibration / vali- 
dation methodologies currently employed. The GLUE 
methodology provides a framework for hypothesis testing and 
model rejection that allows a pragmatic approach to many cal- 
ibration / validation problems [Beven, 2001a; Beven, 200lb]. 

Subjectivity in the Specification of an Appropriate Measure 
in Rejecting Non-behavioural Simulations 

GLUE allows the use of multiple performance measures 
(PM) (qualitative or quantitative), in combination or 
sequentially through the application of Bayesian updating. 
The aim is to allow a sensible and justifiable rejection of 
non-behavioural models and to apply a likelihood weight to 
the predictions of the retained behavioural models (a 
'model' in this context is used to define a model structure 

and the associated parameter values). Choice of rejection 
criteria and PMs clearly plays an important role in this for- 
mulation. The methodology can make use of more tradition- 
al likelihood functions where appropriate [see Romanowicz 
et al., 1994, 1996; Beven and Freer, 200lb], but only when 
the error structure can be formally defined. GLUE has been 
criticised for the level of subjectivity in the specification of 
the likelihood measure and behavioural acceptance thresh- 
olds [Melching, 1995; Thiemann et al., 2001] but some sub- 
jectivity would appear to be inevitable for cases where it is 
not possible to make strong assumptions about the error 
structure (and where the error structure might vary for dif- 
ferent behavioural models). In essence, for nearly all likeli- 
hood measures and PM there will be a full range of model 
performance from good (or at least the best that is achiev- 
able given the data and model structures available) to poor. 
There will be no clear boundary between what is a behav- 
ioural model and what is non-behavioural. All that is rec- 

ommended within GLUE is that the PMs and acceptance 
thresholds used should be explicitly defined so that they can 
be evaluated, discussed and criticised if necessary. In fact, 
Freer et al. [1996], in an application of GLUE to a rainfall- 
runoff modelling problem, concluded (from an evaluation of 
the resultant prediction uncertainties for several likelihood 
measures) that the choice of the behavioural acceptance 
threshold was not as critical as previously thought. 

One approach that tries to include a more objective eval- 
uation of model performance is the multi-criteria calibration 
of Boyle et al. [2000] in which the hydrograph record is sep- 
arated into driven and non-driven (quick, slow) flows with 
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individual calculations of performance made for each part 
within a Pareto optimal calibration framework [see also 
Wagener et al., 2001]. Pareto optimisation attempts to find 
the set of models that are optimal in the sense of being non- 
dominated by any other model for all of the criteria consid- 
ered. While resulting in an objectively chosen set of models, 
the results of Boyle et al. [2000] showed that the 500 Pareto 
optimal solutions resulted in prediction limits that did not 
bound the observations for significant periods of the cali- 
bration period (in the sample shown). This approach also 
leads to the rejection of many models that would be consid- 
ered behavioural and might, indeed, be Pareto optimal given 
a different calibration period. 

In addition, the recent paper of Thiemann et al. [2001] 
gives a good demonstration of the results of making strong 
assumptions about the nature of the errors within a formal 
recursive Bayesian methodology. While recognising the 
multiple sources of error in the modelling process, their pro- 
cedure follows standard statistical practice in treating the 
model as if it was the "true" model, lumping all the errors 
together into an additive model error treated as "measure- 
ment error". In their application, this results in a rapid con- 
vergence to a single parameter set, with all the uncertainties 
represented as a combination of a parameter error (negligible 
in this application) and a (large) "measurement" error. The 
GLUE methodology, in contrast, implicitly allows for the 
fact that errors in the data used by the model, the model 
structure and the available observed responses might yield a 
population of behavioural models. The use of two such con- 
trasting approaches to the same environmental modelling 
problem stems from the difficulty of separating these differ- 
ent sources of error in any real application without making 
very strong (and difficult to justify) assumptions about them. 

Previous Use of Measures for the Evaluation Model 
Performance and Model Rejection ? 

Past studies have shown that global numerical indices of 
model performance in predicting discharge are not very 
good in discriminating between feasible models. Many 
papers have shown this to be the case in environmental 
modelling for standard calculations of coefficient of deter- 
mination (R 2) and the Nash and Sutcliffe [1970] Efficiency 
(E) criteria [Willmott, 1981; Gupta et al., 1998; Legates et 
al., 1999], although these measures are still in general use 
today. Legates et al. [1999] concluded "... it is clear that 
correlation-based measures are inappropriate and shouM 
not be used to evaluate the goodness-of-fit of model simula- 
tions", and recommended a combination of statistical meas- 

ures, similar to that suggested by Gupta et al. [1998] and 
Dunn [1999]. It is worth mentioning that Legates et al. 

[ 1999] report improved sensitivity of the efficiency E crite- 
rion by including seasonal variations in the mean discharge 
(called E') to account for 'baseline adjustments' as suggest- 
ed by Garrick et al. [1978]. What seems clear is that the 
application of a single numerical expression that adequate- 
ly summarises model performance for multiple storm 
sequences is not easily achievable and that more robust 
methods should now be sought. 

Attempts to apply more rigorous assessments of hydro- 
logical and coupled hydrogeochemical models have been 
developed with the use of multi-objective (also termed 
multi-signal or multi-response) evaluations of additional 
simulated variables, including contributing area, groundwa- 
ter storage, water table, isotopic and geochemical signals 
[Kuczera, 1983; de Grosbois et al., 1988; Hooper et al., 
1988; Mroczkowski et al., 1997; Franks et al., 1998; Lamb 
et al., 1998; Blazkova et al., 2002]. Such studies have had 
mixed results however, with either little improvement in the 
identifiability of parameter estimates [i.e. Kuczera and 
Mroczkowski, 1998] or that defining appropriate weights for 
data with varying information content was a non-trivial task 
[i.e. Hooper et al., 1988]. Furthermore the use of multi- 
response data will inherently involve observations with dif- 
ferent levels of uncertainty in either the measurement tech- 
niques or in the characterisation of the underlying hydro- 
logical processes and some observations may be incom- 
mensurable with the simulated model responses because of 
scale or model representation problems. The predicted 
quantity and the observed quantity may not mean the same 
thing, even if they have the same name. 

There seems to be little comment in the literature on how to 

deal with differing levels of uncertainty in observations in the 
specification of appropriately formulated likelihood measures, 
except in terms of correlated and heteroscedastic model errors 
within a Gaussian framework [Romanowicz et al., 1994]. In 
the general case for rainfall-runoff modelling, the form (skew- 
ness) of the distribution of uncertain predictions varies 
markedly over the range of streamflow [Freer et al., 1996], 
and that the appropriate error structure might vary with both 
the type of data and the model parameter set. GLUE provides 
a flexible methodology for handling this type of multi-criteria 
model evaluation but still requires the specification of suitable 
criteria, especially for model rejection. 

Since Beven and Binley [ 1992] first suggested using both 
quantitative and qualitative (in effect soft or fuzzy) infor- 
mation in the GLUE procedure, only a few studies have 
used such information within a MC calibration methodolo- 

gy. Franks et al. [1998] found that using fuzzy saturated 
area estimates from remotely sensed data helped signifi- 
cantly constrain parameter estimates [see also Guntner et 
al., 1999; Seibert, 2000]. More recently Seibert and 
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McDonnell (this issue) have called such fuzzy data 'soft 
information'. This terminology used by Seibert and 
McDonnell (this issue) is somewhat ambiguous. In reality 
there is no clear threshold between what is 'hard' informa- 

tion and what is poorly defined or 'soft' information in terms 
of utility in evaluating the predictions of a model. In reality 
different types of data have varying degrees of uncertainty 
associated with them including runoff and groundwater 
information. Furthermore variations in the certainty of val- 
ues for a single data series will be time variant, for example 
that reported by Ambroise et al. [ 1996] in relation to the tim- 
ing of a significant snowmelt event that caused prediction 
errors for all the models considered throughout the whole 
summer recession period. The effect of the snowmelt event 
on the models would not normally be a sufficient reason to 
reject all the models, which until that event had been con- 
sidered behavioural (because no models would then be left). 

Sampling the Parameter Hyperspace 

Environmental models are often highly non-linear and 
demonstrate complex interactions between the effects of differ- 
ent model parameters in producing acceptable simulation results. 
These complexities are often revealed in the shape of the 
response surface for any likelihood or PM in the parameter 
hyperspace. Ideally, we want to examine this surface completely 
for several different measures, but for high dimensional spaces 
this can be computationally demanding and difficult to visualise. 

For surfaces that show relatively simple forms, density 
dependent sampling such as Monte Carlo Markov Chain 
(MCMC) methods can be used [e.g. Tarantola, 1987; Kuczera 
and Parent, 1998]. For parameter spaces for which there is 
strong prior information available, Latin Hypercube sampling 
can be used to increase the sampling efficiency. For highly 
complex surfaces, techniques such as Regression Trees [e.g. 
Spear et al., 1994] can be used to concentrate sampling densi- 
ties in areas where behavioural model responses are expected. 

Generally, however, our experience has been that response 
surfaces for the practical application of models are complex, 
and often exhibit an upper limit of model performance that is, 
presumably, related to errors in the input data as well as errors 
in the model structure. Models that reach this upper limit may 
be scattered widely through the model space (it is the param- 
eter set that gives a behavioural simulation rather than values 
of individual parameters). In this situation, it may be suffi- 
cient to obtain an "adequate sample" of behavioural models. 
Thus, a uniform sampling strategy is often used in GLUE for 
sampling parameter values from reasonably wide parameter 
distributions, particularly where there is a lack of strong prior 
information about effective parameter values and their 
covariation. The strategy is easy to implement and makes 

minimal prior assumptions regarding the nature of the 
response surface, but will be inefficient in identifying behav- 
ioural models for some problems. However, increasing avail- 
ability of cheap powerful parallel computing resources has 
meant that many sample model realisations can be run for an 
increasingly wide variety of model types. 

Parameters good at simulating one set of data will not nec- 
essarily be good at simulating another (note we are extending 
this here to say that measures that show a model to be good 
at simulating an entire record are not necessarily compatible 
with the same measure calculated for a seasonal response). 
We should also not forget that we could generally reject all 
models on the basis of our perceptual model of the flow 
processes. Thus, criteria for rejection will always be, some- 
what relaxed so that one or more behavioural models will be 

retained. Within an optimisation framework this was not an 
issue, i.e. the best model found was retained since it repre- 
sented the "best estimate". This is unrealistic, however, if we 

wish to evaluate the risk of different possible outcomes. 
However, there remains the issue of what should then consti- 

tute an acceptable or behavioural model. The question of 
when to reject a model, given the problems that we have with 
our input forcing data and that some data types are likely to 
be more erroneous than others, is not an easy one. 

THE STUDY SITE 

The Panola Mountain Research Watershed (PMRW) is a 
41-ha forested catchment, 25-km south east of Atlanta, 

Georgia, USA [Peters et al., 2000]. The catchment, which is 
in the piedmont physiographic region, is 90% forested, 
dominated by hickory, oak, tulip poplar, and loblolly pine, 
and 10% partially vegetated (lichens and mosses) bedrock 
outcrops (Figure 1). The basin relief is 56 m and slopes 
average 18%. The forested area varies from 100% decidu- 
ous to 100% coniferous [Cappellato and Peters, 1995]. The 
bedrock is predominantly Panola Granite (granodiorite 
composition). The bedrock contains pods of amphibolitic 
gneiss particularly at lower elevations. Soils are predomi- 
nantly ultisols developed in colluvium and residuum inter- 
grading to inceptisols developed in colluvium, recent allu- 
vium, or in highly eroded landscape positions. Typical soil 
profiles are 0.6 to 1.6 m thick grading into saprolite of vari- 
able thickness. The saprolite typically is 0 to 5 m thick over 
granodiorite and 5 to 20 m over the amphibolite; the valley 
bottom generally contains the deepest regolith and is the 
primary surficial aquifer. 

The climate is humid continental to sub-tropical. For the 
period of record, i.e., water years (WY: October through 
September) 1986-2001, annual precipitation averaged 1,220 
mm and ranged from 760 to 1,580 mm. The annual runoff 
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averaged 380 mm and ranged from 150 to 700 mm. The 
annual water yield averaged 30% and ranged from 16% to 
50% with most of the runoff occurring during the winter and 
early spring from December through April (Figure 2). A 
breakdown of the WY based on the hydrological state of the 
catchment by season (Dry, Wetting, Wet and Drying) used 
for the Monte Carlo simulations, is also summadsed in 

Table 1. A long growing season, warm temperatures, and 
many sunny days result in a high evapotranspiration 
demand, particularly during the summer. During the spring 
and summer from April through September, rainstorms are 
convective (high intensity and short duration), whereas the 
remainder of the year precipitation is dominated by synop- 
tic weather systems (low intensity and long duration). 
During 1951-75, the average number of days in the year 
with thunderstorms was 47, of which 38 were during the 
summer [Court and Griffiths, 1985]. Less than 1% of the 
precipitation falls as snow or sleet. High soil moisture 
deficits can limit runoff from summer rainstorms to a few 

percent of rainfall. During WY1993, which was chosen for 
the study herein, the annual precipitation was slightly less 
than average at 1,120 mm, but runoff was well above aver- 
age at 560 mm and the annual water yield was the highest 
of the entire period of record. Most of the precipitation fell 
during the dormant season (750 mm fell during November 

through March), during which the evapotranspiration 
demand is low and the runoff and water yield are high. 
WY 1993 was chosen for modeling because annual precipi- 
tation was similar to the long-term average (the monthly 
precipitation and runoff generally bracket the range for the 
period of record), but seasonality in precipitation and runoff 
was pronounced causing the watershed to be both dry and 
wet for extended periods with distinct wetting up and dry 
out periods. 

Stormflow is flashy and is attributable to runoff generat- 
ed from bedrock outcrops in the headwaters (Figure 1). 
Although streamflow decreases rapidly during recession, 
baseflow is sustained throughout the year, even during 
droughts. When sufficient runoff is generated by rainfall on 
the bedrock outcrop, which typically occurs during convec- 
tive rainstorms with greater than 15 mm of rainfall, a flood 
wave develops, which propagates rapidly downstream from 
the base of the 3.6-ha bedrock outcrop. Discharge from the 
flood wave typically peaks at the upper streamflow gage 
(250 m downstream from the outcrop and draining the 10- 
ha sub-catchment, Figure 1) 15 to 20 min after initiation of 
flow in the channel at the base of the outcrop, and at the 
lower gauge (200 m downstream from the upper gage) 
about 20 min later. The time to maximum flow is less when 

the watershed is wet than when it is dry. 
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Figure 1. Map of the forested 41-ha Panola Mountain Research Watershed, Georgia showing the spatial connectivity of 
the three main landscape-units (LU) as used in Dynamic TOPMODEL. LU areas have distinct hydrological functional 
forms. For PMRW, the LUs were grouped by regolith depth, 0 m for the bedrock outcrop, <1 m for the hillslope, and 
<5 m for the riparian zone. 
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Figure 2. Distribution of monthly precipitation and runoff at the Panola Mountain Research Watershed (A) for each 
water year (October through September) from 1986 to 2001. Note the data for water year 1993, with the box around 
them, was used for the analysis herein and (B) for each month for 1986-2001. 

Table 1. Panola 1993 Observed Data Set- The different calibration periods used in evaluating different 
model realisations. 

Start Sum P Sum Q Peak Q Mean Q POT 
Period Date End Date (mm) (mm) Q/P (mm/hr) (mm/hr) (mm) 

All Year 01/10/92 01/10/93 1116.4 561.8 0.503 3.608 0.064 1091.0 

Dry 01/10/92 30/10/92 49.0 22.6 0.461 0.541 0.033 70.2 

Wetting 30/10/92 03/01/93 362.7 142.8 0.394 3.608 0.092 62.5 
Wet 03/01/93 31/03/93 370.6 207.1 0.559 0.926 0.099 130.0 

Drying 31/03/93 30/05/93 122.7 116.2 0.947 0.622 0.081 249.2 

METHODS 

The Hydrological Model 

Dynamic TOPMODEL [Beven and Freer, 2001a] is a 
new version of TOPMODEL that relaxes some of the 

assumptions of the original form [Beven and Kirkby, 1979] 
following critiques of TOPMODEL by [Barling et al., 
1994], Beven [1997], and [Wigmosta and Lettenmaier, 
1999]. This new formulation allows for local accounting of 
hydrological fluxes and storages, relaxing the quasi steady 
state assumption of a water table parallel to the local surface 
slope expressed through the derivation of the ln(a/tanfl) 
index of Kirkby [ 1975]. Therefore the seasonal dynamics of 
the subsurface saturated zone (expanding and contracting) 
can be simulated. Furthermore the spatial organisation and 

connectivity of different landscape units (LUs), each having 
potentially different functional forms of hydrological 
(and/or other) responses, are readily accommodated. It is 
only necessary to know the appropriate conceptual form! 

In a comparison of TOPMODEL structures, Dynamic 
TOPMODEL simulations of streamflow for several years at 
PMRW improved over that obtained using the Original TOP- 
MODEL form [Peters et al., 2001]. Dynamic TOPMODEL is 
briefly described below to allow the reader to understand the 
spatial context of the model structure and associated parame- 
ters applied to PMRW. The reader is referred to the paper by 
[Peters et al., 2001] and to the original paper on Dynamic 
TOPMODEL by Beven and Freer [2001 a] for a more detailed 
treatment of the model application and model theory. 

Peters et al. [2001] conceptualised Dynamic TOPMoDEL 
to include the spatial variability of distinct landscape units 
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(LUs), primarily though the distribution of regolith depths 
(depth of unconsolidated material including the soil). These 
LUs were assumed to have different hydrological / physical 
characteristics that were controlling hydrological response 
and therefore required the definition of different parameter 
ranges and/or model structure. The distribution of bedrock 
depths for the catchment was developed from a detailed (10- 
m grid) survey of the 10-ha sub-catchment, which contains 
the 3.6-ha bedrock outcrop [Zumbuhl, 1998], together with 
seismic-refraction transects and well installations. 

Knowledge of the deep riparian zone gained from the derailed 
data of the 1 O-ha sub catchment was transferred to the whole 

41ha using depths from other wells and from considering 
geomorphologically similar landscape positions. This analy- 
sis resulted in the identification of three distinct LUs per- 
ceived as having notable differences in hydrological respons- 
es (see Figure 1). For the hydrological extremes, the relative- 
ly deep (> 5m) riparian zone is important for sustaining base- 
flow (Figure 1, areas C & D) and the bedrock outcrops, i.e., 
with little or no regolith, are important for generating storm- 
flow (Figure 1, area E). Furthermore, stormflow from the 
largest bedrock outcrop (3.6 ha) recharges the riparian storage 
through the channel bottom while the flood wave propagates 
down the channel. Finally the hillslopes, the majority of the 
catchment, and the area thought to have the most potential for 
a seasonally expanding and contracting sub surface saturated 
zone, and have an average regolith depth of 0.6 m (Figure 1). 
The variations in regolith depth and the downslope connec- 
tivity of flows over a variable bedrock surface might be 
more important in controlling local hydrological function at 
PMRW than the soil classification alone [McDonnell et al., 
1996; Freer et al., 1997]. In what follows the spatial vari- 
ability of regolith depths is treated in the simplest possible 
way (i.e. one depth from a distribution of possible depths 
that are different for each LU for each simulation), but it 
would be possible to allow for the change in cross-section- 
al area for downslope flow arising from a distribution of 
depths in each LU. Local accounting of fluxes allows for 
dynamically varying upslope contributing areas 'a' (as pre- 
viously noted) by the introduction of the additional param- 
eter Smax (the maximum effective deficit of subsurface satu- 
rated zone), which in a simple form, as in this example, 
restricts down slope flow only to areas where the local 
deficit si -> Smax Areas with shallow regolith depths (small 
Smax) and areas near the catchment divide, would be more 
likely to 'disconnect' upslope areas during recession peri- 
ods. The introduction of a dynamically varying 'a' relaxes 
the much criticised quasi-steady state assumption in the der- 
ivation of a relationship between mean storage deficit or 
water table depth and local water table depth [Barling et al., 
1994; Franchini et al., 1996]. Previously Beven and Freer 

[2001 a] found the best behavioural simulations of discharge 
at Slapton Wood catchment occurred with a dynamically 
varying upslope contributing area (i.e. when Smax became 
active). However, good / acceptable (behavioural) simula- 
tions also were obtained for simulations where no change in 
the upslope contributing areas was predicted. 

The functional differences in the LUs are here expressed 
by the differences in the parameter ranges for each unit (see 
Table 2), i.e., the same functional form is retained for each 
LU, including the assumption of an exponential decline in 
transmissivity with depth. The 3-LU model has 17 parame- 
ters (CHV and SRinit are sampled once for each simulation, 
then assumed constant for all LUs), and, for the bedrock-out- 
crop LU, the parameter values were either fixed or the ranges 
narrowed to reflect the absence of regolith (Table 2). The 
bedrock outcrop is covered with lichens and mosses and con- 
tains some solution pits and small vegetation islands. As a 
result, more than 1 mm of rainfall is needed to generate 
runoff on the outcrop [Peters, 1989], which accounts for the 
minimal values of SRmax and Smax for this LU. 

The catchment was divided using digital terrain analyses 
(2 m 2 DEM) into 130 Hydrologically Similar Units (HSUs) 
for the model simulations. HSUs are sub divisions within 

each of the 3 LUs using classifier matrices of 'a' and Totanti 
defining hydrological similarity between points (upslope 
contributing area 'a' is included to ensure a general conti- 
nuity of downslope fluxes between HSUs but is not 
assumed constant in the predictions of the new model). 
Transfers between HSUs are calculated using a kinematic 
wave approximation, where both the upslope (for inputs) 
and local (for outputs) storages are required. Flux volumes 
are a function of the storages and the Totanti values in each 
case [Beven and Freer, 2001 a]. Additional subdivisions into 
different vegetation types were not considered at this stage 
to avoid adding even more parameters and when the runoff 
response characteristics were not thought to be so sensitive 
to variations in the vegetation for this catchment. 

GLUE Simulations - Multi-Criteria Likelihood Measures 

Using Seasonal Periods 

In the recent paper by Peters et al. [2001] simulations of 
PMRW using the new Dynamic TOPMODEL were 
analysed for several water years (WY93, WY94, and 
WY98) using global likelihood measures. This paper 
extends this analysis by assessing the multi-criteria season- 
al variations in model performance expressed using several 
performance definitions for WY93 within the GLUE 
methodology. For each simulation run all parameters listed 
in Table 2 were randomly assigned a value appropriate to 
the ranges specified for each LU (where appropriate). The 
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Table 2. Monte Carlo Sampling - Parameter Ranges 

Parameter Description 

Landscape Unit Parameter Ranges 

Hillslope Valley Bottom 

SZM [m] 

ln(To) [m 2 h -1] 

SRma x [m] 

SR init [m] 

CHV [m h -1] 

Ta [m h -1] 

Form of the exponential decline 
in transmisivity 

Bedrock 

Outcrop 

Effective lateral saturated 

transmissivity 

0.01 - 0.08 same same 

Maximum root zone storage 

-7- 1 same -2- 3 

Initial root zone deficit 

0.005 - 0.05 

Channel routing velocity 

0.0 - 0.05 

Unsaturated zone time delay 
per unit deficit 

same 0.002 - 0.012 

Sma x [m] 
Maximum effective deficit of 

subsurface saturated zone 

same same 

n/a n/a 250 - 1500' 

1 - 40 same 1 - 10 

0.2 - 0.7 0.5 - 1.5 0.0 - 0.03 

* One sampled CHV value is applied to the whole river channel network. 

model streamflow predictions for the entire WY93 (known 
as the global PMs) were compared to the observed stream- 
flow using the six PMs defined in Table 3. PMs identified in 
Table 3 were calculated separately for each seasonal period 
identified in Table 1, which were based on the general mois- 
ture status of the catchment (Dry, Wetting, Wet and Drying). 
Differences among behavioural parameter sets were evalu- 
ated for each seasonal period, using the rejection criteria or 
behavioural thresholds shown in Table 3. 

The GLUE simulations were conducted on the Hydrology 
and Fluid Dynamics Group parallel LINUX PC system at 
Lancaster University. The system consists of 33 nodes having 
a combination of AMD 800MHz and 1500MHz processors. 
The topology used was a simple master slave combination via 
100Mbps Ethernet using basic batch processing scripts for job 
submissions (one job per slave unit). The 500,000 simulations 
took 3 days to complete for WY93 (17,520 time steps). 

RESULTS AND DISCUSSION 

Relationships Between Global PMs 

The different definitions of PMs shown in Table 3 were 

chosen to reflect their sensitivity to different hydrologic 
characteristics of the simulated period. MEt r is biased 
towards reflecting large errors associated with peak dis- 
charges, MLo G is biased towards recession flows, MSA • is a 
compromise between Met r and MLo •, MInA s is the bias for 
the simulation period and MRise and MrA66 are the biases 
during the rising and falling limb of the hydrograph, respec- 
tively. Relationships among these PMs for the behavioural 

simulations calculated for the entire WY93 (global set) are 
shown in Figure 3 as dotty plots, where each point signifies 
a model simulation having a randomly chosen set of param- 
eters from within the set parameter ranges in Table 2. Figure 
3 shows that correlations between PMs of the behavioural 

simulations are quite variable, often having a lot of scatter 
for one PM, when compared with another PM. Furthermore 
the behavioural simulations identified by one PM are not 
necessarily behavioural for another Characteristics of the 
total compatible sets between PMs are summarised in Table 
4 (Table 5 also lists the total number of behavioural param- 
eter sets for each PM). A comparison of the results for MInA s 
with the other PMs suggests that the model as currently for- 
mulated generally over-predicts total streamflow (negative 
MinAS) whilst obtaining good simulations of the larger storm 
events. Figure 3(a3) clearly identifies this with the top sim- 
ulations defined using Met r giving large negative MInA s val- 
ues (Mms • and MrA66 show similar results as presented in 
Figures 3(e4) and 3(f4)) that are outside the range of the 
behavioural simulations for this PM shown in Figure 3(dl- 
5). In contrast, the distributions of behavioural simulations 
for MSA E and MLo • are symmetrical around MBiAS = 0, tend- 
ing towards a positive MInA s in each case (see Figures 3(b3) 
and 3(c3)). Only 585 (5%) of the parameter sets for behav- 
ioural simulations were compatible between the MEt r and 
MInA s global PMs (Table 4). However behavioural simula- 
tion parameter sets of MInA s differ markedly from those for 
the other global PMs. The significant scatter between the 

Merr, MRiSE and MFALL PMs are also interesting, in that 
some of MrA66 behavioural results are clearly not compati- 

ble with the behavioural results from M•rr, or Minsq. 
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Table 3. GLUE - Performance Measures Analysed 

Performance Description 
Measure 

Formulation* Behavioural 

Threshold 

MEFF 

MLOG 

MSAE 

MBIAS 

Nash r 2 likelihood measure 

Nash r 2 likelihood on log 
transformed flows 

Likelihood based on the sum 

of the absolute errors 

Likelihood based on the sum 

of the errors (BIAS) 

mLoG[m(o,(I))]•O-o'12oge/O'12ogo; 

MBIAs [M ((•)' (Jf) )] : E Qobs - Qsim 

0.6 

0.6 

30% Total Period 

Discharge** 

+/-10% Total Period 

Discharge*** 

Nash r 2 likelihood measure Mms•:[M(©,(I))]= O-cr•2/Cro2) •v for calculated during the rising 0.6 
limb of the hydrograph timesteps where Q(t) -> Q(t-1) 

Nash r e likelihood measure Mr.4zz[M(©,(i))]=O_cr•2/Cro2; for calculated during the falling 0.6 
limb of the hydrograph timesteps where Q(t) < 

* Where M (©, (I)) is the model output given a set of parameter values © and a given error model with parameters (I) [see 
Beven and Freer, 200•], •r• is the error variance (log transformed o-•2og • ), o-02 is the variance of the observations (log 

2 

transformed o-logo ), Qobs is the observed streamflow, Qs, m the simulated streamflow, Q(t) is the observed streamflow at 
timestep t. 

**The best results for Msim were the lowest values, *** The best results for MinAs were those sets identified as being 
closest to zero bias 

Relationships Between PMs for Different Seasonal Periods 

Analysis of the multi-criteria seasonal PMs, rather than 
just using the global measures can be rewarding for two rea- 
sons. One reason was to assess the sensitivity of global 
measures in characterising model performance for the entire 
period of record. The second reason was that the under- 
standing the inter-relationships of measures during these 
periods should give a greater understanding of the model 
dynamics and potentially help in the future development of 
the model structure. The use of seasonal PMs increases our 

ability to perform a test on various model structure hypothe- 
ses. Behavioural model parameter sets for each global PM 
are compared for the same measure for the four individual 
seasonal periods (Dry, Wetting, Wet and Drying in Table 1) 
in Figure 4. In general, these plots show that there is a con- 
siderable amount of scatter in the relationship between the 
seasonal periods and the global period for each type of PM 
calculated. Relationships become more scattered and less 
correlated for most measures (except MinAs) during the drier 
periods (Dry and Drying). The most scatter between PMs 
are found for MLo G for the Dry and Drying periods (Figure 
4(e, h)) and Mms E also for the Dry period (Figure 4(q)). The 
global MErr PM is most highly correlated with the PM dur- 
ing the Wetting period which was expected due to the high 
maximum flow during this period (Figure 4(b) and Table 1). 
However given that the Wet period overall has 31% more 

discharge and the runoff coefficient is significantly higher 
than the Wetting period, the high sensitivity of M•v r to this 
more extreme event during the Wetting period is perhaps 
undesirable and further questions the use of the Merr as a 
global PM. Interestingly Mms e and MrAL• show more scat- 
ter between the seasonal period relationships and have less 
compatible behavioural parameter sets than Met r for most 
seasonal periods (Figure 4(q-x), Table 5). 

M•o • and Ms• e show similar relationships among the 
seasonal periods (except for the Dry period). Generally 
Mm• s global has the lowest correlation with Mm• s for each 
seasonal period, reflecting the potential for the model 
dynamics to compensate for over- and under-predictions. 
The range of the seasonal Mm• s when compared with the 
global MatAs varies markedly among the different season- 
al periods. The behavioural simulations generally under- 
predict (positive bias) discharge during the Dry and Drying 
periods (Figure 4(m,p)), and over-predict discharge during 
the Wet period (Figure 4(0)). The transition from under- to 
over-prediction occurs during the Wetting period (Figure 
4(n)). 

To examine the results of the global and seasonal periods 
for each PM further, the behavioural sets of results for each 

seasonal period were evaluated for their compatibility with 
the global set. The compatibility of the behavioural sets 
were determined by sequentially rejecting the sets for each 
PM starting with the global set and working through the 
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Figure 3. The relationship between the values of the six global performance measures defined in Table 3 from Dynamic 
TOPMODEL simulations of WY93. For all behavioural simulations identified using each global performance measure 
(x axes) corresponding values of the other global performance measures for the same simulated parameter sets are 
shown (y axes) whether they themselves are classed as behavioural or non-behavioural. 

individual periods, and also by identifying the union 
between the four seasonal periods and the global set indi- 
vidually. Results of each type of assessment are summarised 
in Table 5. By sequentially updating the behavioural sets, 
the number of compatible parameter sets for each PM (Table 
5) decrease markedly. The extreme cases are the PMs Ms,•e, 

Mai,• s and M/_.oo where there are no parameter sets compati- 
ble with the behavioural global sets after updating through 
two (or three) periods. For Mai,• s this further reflects the 
poor correlations shown for this PM in Figure 4(m-p). 
Surprisingly Merr has the most compatible sets (besides 
Mt, oo ) after updating on the Dry period, and the largest 
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Table 4. The number of compatible behavioural parameter sets between each performance measure 
for the 'All Year' global period. Results are listed as both the total number of compatible parameter 
sets (italics) and the equivalent percentage of possible parameter set combinations (i.e. a percentage 
of the lowest population of behavioural parameter sets being compared for each case). 

M•o G 65% 

Ms• 12% 

Mms 5% 

MR•s• 85% 

MVALL 85% 

Performance Measures 

M•v• M,•oG Msn • Mms M•ts• M•nLL 

7088 1278 585 9243 4385 

100% 

16129 40304 15673 3723 

11752 1528 852 

66% 73% 1597 288 

32% 10% 3% 3299 

72% 16% 6% 64% 

Table 5. The reduction in the number of behavioural parameter sets for each performance measure by 
conditioning sequentially through the seasonal periods. The initial population of behavioural parameter 
sets is that calculated for the 'All Year' global period in each case. 

Likelihood Conditioning Period 

Measure All Year Dry Wetting Wet Drying 

Mgrr 10858 (2) 3939 (36) 3370 (85) 295 (8) 222 (75) 

{36} {82} {10} {51} 

MLoa 155572 (31) 14390 (9) 7 (0.05) 0 0 

{9) {2} {1} {17} 

Ms,•r 16159 (3) 1493 (9) 0 0 0 

{9} {0} {71} {94} 

Mm,•s 61110 (12) 1448 (2) 61 (4) 0 0 

{2} {36} {11} {40} 

Mms•r 49352 (10) 1033 (2) 723 (70) 456 (63) 433 (95) 

{2} {63} {11} {31} 

MFALL 5186 (1) 2544 (49) 1956 (77) 35 (2) 31 (86) 

{49} {68} {3} {30} 

{}'s Denote the percentage of parameter sets for each seasonal period compatible with the 'All Year' 
behavioural parameter sets without conditioning on other seasonal periods, O's give the percentage 
retention in the number of parameter sets after conditioning on each seasonal period. 

reduction of sets during the Wet period (the total number of 
behavioural sets for MErr>0.6 during this period was only 
2898). The increased sensitivity of the MEt r criterion by 
taking into account the seasonal variations of the baseline 
flow is comparable to that noted by Legates et al. [1999]. 
For the union of all seasonal periods with the global period 
generally the best correlation between PMs for all seasonal 
periods is given by M•r r (Table 5). However MSA E has the 
highest percentage of compatible sets during the Wet and 
Drying periods (Table 5). The Wet and Drying periods have 

both the highest percentage of total discharge (72%) and 
constitute 61% of the total time period considered for the 
seasonal analysis. The later result is consistent with other 
GLUE papers, which report that the 90% prediction limits for 
this measure span the observations for more of the 
time when compared to those of other PMs. However, MSA • 
highlights the difficulties of applying a globally applied 
threshold for all seasonal periods having no parameter set 
combinations that are classed as behavioural for the Wetting 
period. 
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Figure 4. The relationship between the values of the global and seasonal periods for the six performance measures 
defined in Table 3. For all behavioural simulations identified using each global performance measure (x axes) corre- 
sponding values of the same performance measures for each season for the same set of parameters are shown (y axes) 
whether they themselves are classed as behavioural or non-behavioural. For objective functions MSA E and MBZAS a shad- 
ed box has been added to show the range of behavioural simulations for each seasonal period. 

Compatibility of Parameter Ranges for PMs and Seasonal 
Periods 

The multi-criteria seasonal results also show changes to 
the behavioural model parameter distributions for different 
periods of the year and for different PMs. Results showing 
the variability of parameter distributions for the Hillslope 
LU are shown in Figure 5 and results for the Valley Bottom 
LU in Figure 6 (as noted above, there are no behavioural 

simulations for MSA E for the Wetting period, see Table 5). 
Importantly most parameters of the behavioural simulations 
shown in Figure 5 are highly variable for each PM and for 
each seasonal period. The low overlap among distributions 
for the inter quartile range (the range of the box in Figure 5) 
for most parameters demonstrates the need to introduce a 
greater range of seasonal dynamic behaviour into the model 
to reduce the incompatibility of parameter sets. This vari- 
ability between PMs and seasonal periods is not well 
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Figure 5. Behavioural Hillslope LU parameter distributions shown for each different performance measure calculated 
for each different seasonal period. 

defined for the Valley Bottom LU (Figure 6). Furthermore 
the variability of parameter distributions for the Bedrock 
Outcrop LU (not plotted) showed almost no sensitivity. The 
area associated with both these LUs is significantly smaller 
than that of the Hillslope LU (Hillslope 85.5%, Valley bot- 
tom 9% and Bedrock Outcrop 5.5% of the total catchment 
area, see Figure 1), but the low sensitivity is still a surpris- 
ing result because these LUs were perceived to have impor- 
tant hydrological response characteristics. 

For the Hillslope LU parameter results, SZM varies the 
most seasonally, highlighting the previously reported sensi- 
tivity of this parameter. The variability in SZM characteris- 
es the changing shape of the observed recession form dur- 
ing the year requiting higher values (less steep recessions) 
during wetter periods (consistent with observations of 
changes in recession characteristics). In(TO) also shows a 

general sensitivity for each season for all measures, with the 
largest range of In(TO) values occurring during the wettest 
periods. The smallest inter-quartile range of In(TO) for both 
MroG and MSA œ occurs during the Dry period. CHV is sensi- 
tive for the MœFj, PM (Figure 5), perhaps compensating for 
the LUs rapidly responding to rainfall inputs that result from 
timing errors on the rising limb of the hydrograph (note this 
is not important for the M•/AS results). Smax has the lowest 
values for M•/AS for the global period, corresponding to the 
most potential for spatial dynamic variability in the sub-sur- 
face saturated zone contributions. Although SRma x generally 
is the least sensitive of the parameters with respect to the dif- 
ferent PMs, the distribution of this parameter is the most 
constrained for the M•AS during the Drying period. Finally 
the variability between parameter distributions for MRisœ and 
MFALL deserve some comment. Generally the rising limb of 
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Figure 6. Behavioural Valley Bottom and Bedrock Outcrop LU parameter distributions shown for each different per- 
formance measure calculated for each different seasonal period. 

the hydrograph requires steeper recessions, or lower SZM; 
reduced ln(TO) values (except for the Wetting period) and a 
similar pattern of CHV, with the latter two highlighting 
changes in the model dynamics associated with time to peak 
responses (and the difficulties involved in simulating the 
Wetting period in catchments with marked seasonality using 
models with time invariant parameter sets). 

Constraining Model Simulation Responses 

As well as assessing the variability in the model parame- 
ter distributions for the PMs and the seasonal periods simi- 
lar analyses can be conducted for the distributions and sta- 
tistics of the model output responses. Figure 7 shows the 
minimum, maximum, 5 th and 95 th percentile and mean sta- 
tistics of three summary model simulation outputs including 
total simulated discharge (Qsum), maximum discharge 
(Qpeak) and maximum surface saturation (SATmax). The sta- 
tistics were calculated using the results of the behavioural 
simulations for each PM and for each seasonal period. 

These results show that there is significant variability in 
model responses between measures (especially for maxi- 
mum simulated discharge). Furthermore, the variability in 
the model responses for each behavioural set of different 
PMs are high, i.e., total discharge simulated for the entire 
water year ranges from -400 to 800mm for most PMs). 
MBiAS is poor at discriminating between model dynamics 
which would be rejected qualitatively as inconsistent with 
our perception of the catchment hydrological dynamics at 
Panola, i.e., a maximum saturated area response of 90% of 
the catchment area. The results of Figure 7 demonstrate the 

potential of using multi-criteria methods in further discrim- 
inating between behavioural simulations, but here clearly 
shows that the improved model formulation still has defi- 
ciencies, despite providing optimal simulations for the com- 
plete WY93 period that would normally be considered 
acceptable. 

CONCLUSIONS 

This paper demonstrates that several global performance 
measures are poor at discriminating between seasonal 
behavioural simulations (especially MEFF), especially, as in 
this case, where there is substantial variability in the 
observed seasonal discharge responses. However, all model 
simulations are rejected by a multi-criteria combination of 
all seasonal PMs, even though the rejection criteria are not 
too strict (indeed all models are rejected for a combination 
of globally applied PMs). Effectively, the successful param- 
eter sets for different PMs and different seasons are not con- 

sistent. This is not the only time that all models have been 
rejected within the GLUE framework using multi-criteria 
evaluation [see also Zak and Beven, 1999a]. This is not a 
problem, of course in optimisation or in multi-criteria 
Pareto optimisation since there will always be a "best" 
model, or a set of models at the Pareto front. It does, how- 

ever, raise the question of whether these "optimal" models 
will always be acceptable in all aspects. 

Perhaps this research has shown that we require a combi- 
nation of PMs (or different PMs) to highlight both the sea- 
sonal variability in performance and different aspects of the 
forcing responses for hydrographs [i.e. Boyle et al., 2000]. 
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Figure 7. Distributions of summary model responses (cumulative discharge, maximum discharge and maximum satu- 
rated area) calculated for each different seasonal period (each row of the plot). Each plot shows for behavioural simu- 
lations the variations in the minimum, 5 th percentile, mean, 95 th percentile and maximum points in the respective model 
response distribution obtained for each different performance measure calculated for each different seasonal period. 

Initially the multi-criteria rejection of models identified 
acceptable PMs for the global period (e.g. maximum 
MEFr>0.8), which raises the question of what definition 
should be applied to calibrate dynamic TOPMODEL. This 
criteria also would need to reflect the knowledge that that 
there is variable error in the input data, error in the observa- 
tions that are used to evaluate the models, and error in the 

model structure. Furthermore, the complexity of the model 

dynamics and the effectiveness of observed data to represent 
processes at the model scale should properly result in rejec- 
tion criteria that reflect the characteristics of different data or 

different periods of data. It may be that by imposing even rea- 
sonably strict performance criteria, most if not all hydrologi- 
cal models might be rejected. Another way of looking at the 
results presented here is that the seasonal variation in param- 
eter distributions and model responses suggest that Dynamic 
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TOPMODEL as applied to PMRW, needs further develop- 
ment to improve the model structure (e.g. to introduce more 
seasonality into the responses and/or develop better spatial 
representations of processes for different LUs). 

This is not a pessimistic conclusion. It is necessary to 
have reasons to reject concepts in order for the science to 
progress. The interesting research question that follows, 
however, is how to learn from the relative success or failure 

of the model for different PMs in structuring the process of 
making improvements to the model structure. Does model 
failure add to understanding of the system? Or is it simply 
better to revisit the perceptual model of PMRW in trying to 
refine the model structure. We will be trying to do both in 
future papers. 
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Optimization methods have been used widely to calibrate the parameters of 
watershed models since the very beginning of the digital watershed modeling era. 
Over the years, much progress has been made in both optimization theory and 
practice, especially in the area of global optimization methods for use in watershed 
model calibration. This chapter looks back at the past experience of watershed 
modelers in their endeavor to estimate the proper parameters of watershed models 
by relying on optimization methods. The many trials and tribulations with classi- 
cal local search methods are discussed. Recent progress in utilizing the more pow- 
erful and robust global optimization methods is reviewed. A survey of the state-of- 
the-art global optimization methods is provided. Three global optimization meth- 
ods commonly used in watershed model calibration: Simulated Annealing, Genetic 
Algorithm and Shuffled Complex Evolution, are described in detail. 

1. INTRODUCTION 

The need to find the optimal solution to a problem is 
encountered in virtually every area of human endeavor. In 
areas such as mathematics, engineering designs, economics, 
medicine, telecommunications, postal delivery, river fore- 
casting, manufacturing and control, among others, the prob- 
lem may be represented in the form of a mathematical func- 
tion, known as the objective function. Solution strategies 
based on the theory of function optimization can be used to 
find the optimal solution, typically one that minimizes (or 
maximizes) the objective function. If the objective function 
is unimodal (i.e., it has a single minimum (or maximum)), 
the optimization problem is very well understood, and many 
successful solution strategies have been developed (see 
Luenberger, 1984; Fletcher, 2000; etc.). 

In practice, a great number of the optimization problems 
have more than one local solution, of which only one may rep- 
resent the global or "true" optimum. One class of problems 
involves finding the parameter values of a dynamical model 
that optimally represents the time-varying output behavior of 
some physical system. When the model is significantly non- 
linear in its input-to-state and/or state-to-output representa- 
tions, the problem of finding the global solution to the param- 
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eter optimization problem can be quite difficult. Such is the 
case for the calibration of many conceptual watershed models. 

Conceptual watershed models are formulated using 
empirical relationships between hydrological variables 
observed in nature or field experiments or derived based on 
abstract conceptualization of physical processes. Concep- 
tual watershed models (or simply watershed models) gener- 
ally have many constants and exponents called model 
parameters. The performance of a watershed model depends 
to a great degree on how its parameters are estimated. Even 
though there is some physical basis for these parameters, 
they are usually not directly measurable, especially at the 
scales of our interest (from 10's to 1000's of km2). To obtain 
the best match between simulated outputs from the model 
and observed outputs from the watershed, these parameters 
need to be tuned. The process of tuning model parameters is 
called model calibration. 

There are two broad approaches to watershed model cali- 
bration: manual and automatic. In manual approach, a trial- 
and-error procedure is used to estimate model parameters. 
Model knowledge and a multitude of model performance 
measures (i.e., objective functions), along with human judg- 
ment and visual aids, combine to determine the best guess- 
es for model parameters. This process is less prone to the 
effect of noises in calibration data. But it demands a high 
level of understanding of the model physics and the inner 
exchanges among model components. The advent of the 
interactive graphic-user-interface (GUI) software has made 
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this process much easier. Still it is tedious and labor-inten- 
sive and a novice user needs extensive hands-on training to 
be proficient. Further, manual calibration procedures take 
years to develop and are model-specific. For example, the 
Interactive Calibration Program (ICP) of the National 
Weather Service (NWS) River Forecast System (NWSRFS) 
was designed specifically to calibrate the Sacramento Soil 
Moisture Accounting (SAC-SMA) model (see Bumash et 
al., 1973; Smith et al., this volume) and it is not easily trans- 
ferrable for use on another model. 

In automatic approach, model calibration problem is for- 
mulated as an optimization problem so computer-based 
optimization methods can be employed to locate the optimal 
model parameters. This process takes advantages of a myr- 
iad of optimization methods available and relies on com- 
puter speed and power to perform the mundane task of find- 
ing the optimal parameters with respect to a given objective 
function(s). Automatic calibration procedures can be gener- 
alized for use on different models and can be easily grasped 
by novice model users. However, automatic calibration is 
by no means a trivial exercise at all. The success of auto- 
matic calibration depends heavily on four factors: model 
structure, calibration data, calibration criteria and optimiza- 
tion methods. Much research has been done to study one or 
more of these factors (Ibbitt, 1972; Sorooshian et al., 1983; 
Kuczera, 1983a&b; Gupta and Sorooshian, 1983 &1985; 
Duan et al., 1992; Yapo et al., 1997; Gan and Biftu, 1996; 
Kuczera and Mroczkowski, 1998; among others). The chap- 
ters throughout this book examine the effects of one or more 
of these factors on watershed model calibration. This chap- 
ter focuses only on the optimization methods. 

The main purpose of this chapter is to review the use of 
optimization methods for watershed model calibration 
purpose. Special attention is paid to the use of global opti- 
mization methods to estimate the parameters of conceptu- 
al watershed models. The chapter is organized as follows. 
Section 2 discusses the use of local search optimization 
methods for watershed model calibration. Section 3 takes 

a historical perspective on the use of global optimization 
methods in watershed model calibration. Section 4 surveys 
the state-of-the-art methods in global optimization. 
Section 5 presents three popular global optimization meth- 
ods that have been used widely in watershed model cali- 
bration. Section 6 summarizes this chapter. It also issues a 
few words of cautions on the limitations of relying on opti- 
mization methods to calibrate watershed models. 

2. LOCAL OPTIMIZATION METHODS 

Sophisticated optimization methods have been used wide- 
ly to calibrate the parameters of watershed modes since the 

very beginning of the digital watershed modeling era. Most 
early attempts to calibrate watershed models have been 
based on local-search optimization methods (see Dawdy 
and O'Donnell, 1965; Nash and Sutcliff, 1970; Chapman, 
1970; Ibbitt, 1970; Monro, 1971; Johnston and Pilgrim, 
1976; Pickup, 1977; Sorooshian et al., 1983; Gupta and 
Sorooshian, 1985; Hendrickson et al., 1988; etc.). The pop- 
ularity of local-search methods is mostly due to the fact that 
the computer capability then was very limited and local- 
search methods required relatively small computer process- 
ing units (CPU). In contrast, global optimization methods 
from that time placed relatively high demand on computa- 
tional resources. Besides, early global optimization theory 
was not advanced enough to be of practical utility. 

There are two broad categories of local search methods: 
direct-type and gradient-type. Direct type methods (e.g., the 
Axis-Rotating method of Rosenbrock, 1960, the Pattern 
Search (PS) method of Hooke and Jeeves, 1961, and the 
Simplex method of Nelder and Mead, 1965) place few lim- 
itations on the form of model equations, and require only 
that knowledge of the objective function values be available 
over the feasible parameter space. Gradient type methods 
require that model equations be continuous to second order, 
and that knowledge of the values of the objective function 
as well as the gradient (and sometimes the hessian matrix) 
be available. The large family of Newton and Quasi-Newton 
methods belongs to gradient type approach. Gradient type 
methods usually have faster convergence rate than the direct 
type methods, but may not perform well when the assump- 
tions of function and derivative continuity are violated. 

Ibbitt (1970) conducted the first comprehensive compara- 
tive study of different optimization methods for calibration 
of the Stanford Watershed Model (SWM) (Crawford and 
Linsley, 1966) and the O'Donnell Model (Dawdy and 
O'Donnell, 1965). Eight local-search optimization methods 
and one global-search method were included in the study. 
The local search methods included direct type methods such 
as the Rosenbrock Method (Rosenbrock, 1960) and gradient 
type methods such as Powell's conjugate gradient direct 
search method (Powell, 1964) and the Levenberg-Marquardt 
method (Levenberg, 1944; Marquardt, 1963). The global- 
search method was a simple random search method 
(Karnopp, 1963). He reported that the effectiveness of local 
search methods was highly dependent on the choice of initial 
search points. With reasonable starting points (i.e., within 
30% range of the "true" optimum), the Rosenbrock method 
was the most effective among the different local search 
methods he tested. He pointed out that Karnopp's random 
search method was unable to obtain good estimates of the 
global optimum, even though it might be helpful in finding 
good starting points for a subsequent local search. 
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Johnston and Pilgrim (1976) used the Simplex method of 
Nelder and Mead and a gradient method known as the 
Davidon method (Fletcher and Powell, 1963) to calibrate the 
Boughton model (Boughton, 1965). They reported that both 
methods failed to locate a "true" set of optimal parameters 
after more than two years of full-time work concentrated on a 
single watershed. Many other calibration studies echoed the 
findings cited above (Monro, 1971; Sorooshian and Dracup, 
1980; Sorooshian et a1.1983; and Hendrickson et a1.,1988) 

The experience with gradient-type approach for watershed 
model calibration has been mostly unfavorable. This is due 
to the difficulties and tedium involved in evaluating the 
derivatives of model equations, caused by the implicit nature 
of model equations and the existence of threshold parame- 
ters. Some researchers have tried to deal with this problem 
by approximating the derivatives with finite differences 
(Ibbitt, 1970; Johnston and Pilgrim, 1976; Pickup, 1977). 
They reported poor algorithmic performance due to numeri- 
cal inaccuracies. Goldstein and Larimore (1980) investigated 
a modified version of the SAC-SMA model, in which the 

thresholds were replaced by smoothing functions, and the 
derivatives were explicitly computed. They employed the 
gradient-type Levenberg-Marquardt Method for estimation 
of the parameters and reported that good convergence could 
be achieved if the search was started in the region close to the 
optimum. However, they also pointed out that the 
Levenberg- Marquardt Method would be ineffective in cases 
where the response surface is highly non-quadratic (as is 
often the case with many watershed models (Sorooshian and 
Gupta, 1983)). Using a different approach, Gupta and 
Sorooshian (1985) developed a procedure for explicitly eval- 
uating the derivatives of watershed models with threshold 
parameters and tested a Newton-Raphson method on a sim- 
ple watershed model known as the SIXPAR model. 
Hendrickson et al. (1988) implemented this explicit deriva- 
tive procedure on the SAC-SMA Model and then compared 
the calibration performance of two methods: the gradient- 
type Levenberg-Marquardt method and the direct- type PS 
method. The gradient-type approach performed poorly in 
comparison to the direct-type approach, and the evidence 
presented suggests that this was due to discontinuities in the 
derivatives of the objective function response surface. 

Duan et al. (1992) conducted a detailed investigation into 
the problems associated with optimizing watershed model 
parameters. They employed an exhaustive gridding method to 
examine the objective function and derivative surfaces of the 
SIXPAR model. Their findings are summarized as follows: 

The parameter space contains several major 
regions of attraction into which a search strategy 
may converge; 

ii. Each major region of attraction contain numerous 
local minima (stationary points where the first 
derivatives are zero and the Hessian matrices are 

positive definite or positive semi-definite); 
iii. The objective function surface in the multi-parameter 

space is not smooth and may not even be continuous. 
The derivatives are discontinuous and may vary in an 
unpredictable manner throughout the parameter 
space; 

iv. The parameters exhibit varying degree of sensi- 
tivity and a great deal of nonlinear interaction 
and compensation near the region of global 
optimum. 

The combination of these features makes local-search 

methods inherently incapable of finding the global optimal 
parameters for watershed models such as SWM and SAC- 
SMA. Since the performance of watershed models is high- 
ly sensitive to how model parameters are estimated (Duan 
et al., 2001), the need to have methods capable of obtain- 
ing optimal model parameters is real and pressing. Recent 
research has therefore been directed towards evaluating the 
suitability of global-search optimization procedures for the 
calibration of watershed models. Indeed much progress 
has been made over the last fifteen years in the theory and 
practice of global optimization for watershed model 
calibration. This progress has been further facilitated by 
the fact that computer technologies have rapidly improved, 
making computationally intensive methods much more 
practical and affordable. The next section discusses the 
use of global optimization methods in watershed model 
calibration. 

3. GLOBAL OPTIMIZATION METHODS 

Previously it was pointed out that local search procedures 
are not designed to handle the presence of multiple regions 
of attraction, multi-local optima, discontinuous derivatives, 
insensitivities and parameter interdependency, and other 
problems encountered in the calibration of watershed mod- 
els. It is therefore imperative that global optimization proce- 
dures that are capable of dealing with these various difficul- 
ties be employed. To deal with multiple regions of attrac- 
tion, a search procedure must necessarily possess global 
convergence properties. It must be able to avoid being 
trapped by the minor optima. It must not require the avail- 
ability of explicit analytic expressions for the objective 
function in terms of its parameters or for the derivatives. It 
must be robust in the presence of parameter interaction and 
non-convexity of the objective function surface. Finally, 
because watershed models usually have a large number of 
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parameters, the algorithm must be efficient in the presence 
of high dimensionality. 

Ibbitt (1970) was probably the first to examine the use of 
a global search strategy for watershed model calibration. He 
used a simple, brute-force random search method that can 
be applied repeatedly to different portions of the feasible 
space (Karnopp, 1963). This approach is neither efficient 
nor effective and provides little confidence that the global 
solution can be found this way. Brazil (1988) proposed the 
use of the Adaptive Random Search (ARS) method (Masri 
et. al., 1978, 1980; Pronzato et. al., 1984) to calibrate the 
SAC-SMA model. The ARS method improves the simple 
random search method by focusing attention on the promis- 
ing regions. He reported that ARS method, in conjunction 
with some heuristic approaches for identifying initial 
parameter estimates and ranges, was capable of producing 
promising results. Armour (1990) and Weinig (1991) tested 
the ARS method extensively on SAC-SMA with both syn- 
thetic and real data. They found that, even with synthetic 
data where the "true" parameter set for the model was 
known, the ARS method was unable to find the true param- 
eter values if the search space was not confined to a narrow 
range around the optimum. Their results suggest that ARS 
method is not well suited to solving multi-optimum problem 
encountered in watershed model calibration. Those findings 
were later supported by Duan et al. (1992). 

Wang (1991) was the first to use Genetic Algorithm (GA), 
a random search procedure based on evolutionary principles 
(Holland, 1975), to calibrate watershed models. He reported 
that GA was able to consistently locate global optimal 
parameters of the Xinganjiang Watershed Model (XWM) in 
10 random trials. He also indicated that subsequent 
tuning with a Simplex procedure produced only marginal 
improvement. 

Many other researchers have also used GA to calibrate 
watershed models (Franchini, 1996; Franchini and Galeati, 
1997; Seibert, 2000). Franchini (1996) employed GA, in 
conjunction with a local search procedure called Sequential 
Quadratic Programming (SQP), to calibrate the ADM 
(acronym for A Distributed Model). He reported that GA- 
SQP achieved an 100% success rate in identifying the exact 
global optimum when synthetic data were used. In real data 
study, however, he found that several parameters converged 
to consistent values, while other parameters scattered over 
the feasible ranges. He attributed the non-convergency of 
those parameters to imperfect model structure and data error. 
In a later study, Franchini and Galeati (1997) compared the 
performance of a few variants of GAs, along with the a local 
search method - the PS method, in optimizing the parameters 
of ADM. They reported a surprising finding that showed the 
PS method outperforming all GA schemes they tested. 

Duan et al. (1992, 1993, 1994) developed a globally based 
search method known as the Shuffled Complex Evolution 
(SCE-UA) method. SCE-UA was designed to combine the 
strengths of existing global and local search methods such as 
GA and the Simplex method with newly conceived concepts 
of complex partition and complex shuffling. SCE-UA was 
compared against the Multi-start Simplex (MSX) method 
and the ARS method on numerous standard test problems as 
well as on watershed calibration problems. SCE-UA was 
shown to be a much superior method than MSX and ARS 
methods and ARS method was found to be totally ineffective 
in locating the global optimum in multiple random trials 
(Duan et al., 1992; Sorooshian et al., 1993). 

Numerous researchers have investigated the use of SCE- 
UA for watershed model calibration purpose (see Luce and 
Cundy, 1994; Gan and Biftu, 1996; Tanakamura and 
Burges, 1996; Abdulla et al., 1996; Kuczera, 1997; 
Franchini et al., 1998, Eckardt and Arnold, 2001; Hogue et 
al., 2001). SCE-UA was found to be consistently more effi- 
cient and robust when it was compared against a variety of 
search methods. For example, Gan and Biftu (1996) com- 
pared SCE-UA, Simplex and MSX methods. They conclud- 
ed that both MSX and SCE-UA were able to locate global 
optima, but MSX could not compete against SCE-UA in 
computational efficiency. They pointed out that for the 
Simplex method to be effective, model parameters must be 
divided into groups and be estimated in multiple stages. 
Kuczera (1997) compared SCE-UA to GA and a few multi- 
start local search methods. He also found SCE to be more 

efficient and robust than other methods. Franchini et al. 

(1998) investigated SCE-UA, GA and PS methods, with the 
latter two methods coupled with SQP (i.e., GA-SQP and PS- 
SQP). They reported that SCE-UA was the most reliable of 
the three methods. 

Thyer et al. (1999) and Abdulla and A1-Badranih (2000) 
studied the use of Simulated Annealing (SA) method in 
watershed model calibration. SA is based on the analogy to 
crystallization process of metal in thermodynamics. 
Annealing refers to the process in which molten metal is 
cooled at a slow, deliberate pace, mixed with occasional 
brief re-heating, to attain the most stable crystal state. 
Thyer et al. (1999) coupled SA with Simplex method (SA- 
SX) and compared SA-SX to SCE-UA. They found that 
both SA-SX and SCE-UA were able to identify the optimal 
parameters for a modified version of the Boughton model, 
but SCE-UA was six times faster than SA-SX. 

The next sections survey the state-of-the-art methods in 
global optimization and describe in details some of the 
commonly used global optimization methods in watershed 
model calibration, including Simulated Annealing, Genetic 
Algorithm and Shuffled Complex Evolution methods. 
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4. REVIEW OF GLOBAL OPTIMIZATION METHODS 

Work on the global optimization problem has been report- 
ed since the 1950s and 1960s (Brooks, 1958; Bocharov and 
Feldbaum, 1962; Kamopp, 1963; Mockus, 1963; Hill, 1969; 
and others). The first books which were fully devoted to 
global optimization methods are by Dixon and Szeg6 (1975; 
1978a). Over the last 15 years, numerous books on global 
optimization have been published (see Ratschek and Rokne, 
1988; T6m and Zilinskas, 1989; Floudas and Pardalos, 
1997; Horst and Pardalos, 1995; Horst et al., 1995; Bomze 

et al., 1996; among others). Some of the books focus on spe- 
cific approaches. For example, books by Goldberg (1989), 
Davis (1991), and Michalewicz (1996) focus on the theory 
and applications of the Genetic Algorithm (GA). Books by 
Ratchek and Rokne (1988) and Hansen (1992) concentrate 
on the interval method approach to global optimization. 
Books by van Laarhoven and Aarts (1987) and Aarts and 
Korst (1989) describe the Simulated Annealing (SA) 
method. Mockus' book (1989) discusses the Bayesian 
approach to global optimization. Various survey papers 
addressing global optimization methods have been pub- 
lished (Dixon and Szeg6, 1978b; Archetti and Schoen, 
1984; Rinnooy Kan and Timmer, 1984&1989; Pinter, 1996; 
T6m and Viitanen, 1999). Some web sites are excellent 
resources on various topics in global optimization (see 
http://solon.cma.univie.ac.at/-neum/glopt.html by Neumaier 
and http://www. cs.sandia.gov/opt/survey by Gray et al.). 

A wide variety of global optimization methods have 
emerged during the last three decades. Many researchers 
have attempted to classify these methods based on a variety 
of criteria, but none of the classification schemes have 

received universal acceptance (see T6rn and Zilinskas, 
1989). So rather than following a strict classification 
scheme, paragraphs below provide a survey of the global 
optimization methods commonly available in the literature. 
The methods are presented in no particular order with 
respect to their classifications and origins. All of them are 
applicable to continuous optimization problems. The meth- 
ods used exclusively for integer or combinatorial optimiza- 
tion are not covered. Three commonly used global optimiza- 
tion methods in watershed model calibration: Simulated 

Annealing, Genetic Algorithm, and Shuffled Complex 
Evolution are described more comprehensively in Section 5. 

Generalized Gridding Methods 

Generalized Gridding (GG) methods are brute-force 
methods that sample the entire feasible space exhaustively 
at pre-specified grids. The most basic approach is to use a 
rectangular shaped, regularly spaced grid. But the grid 

spacing need not be uniform. For instance, the grid spacing 
can be related to the local rate of change of the objective 
function. Without mathematical verification, it is easy to see 
that if the density of gridding is high enough, the global 
optimum can be uncovered with a pre-specified accuracy. 
Duan et al. (1992) used a uniform gridding method to exam- 
ine the distribution of local optima in the sub-spaces of a 
simple watershed model. A local search method may be 
coupled with GG method and be applied at each grid point 
to refine the optimal solution. GG is extremely computa- 
tionally inefficient and is impractical for high-dimensional 
problems even with today's computational resources. 

Interval Methods 

Interval methods are based on the idea of finding subre- 
gions which contain, or do not contain, the global mini- 
mum. For example, through interval mathematics, those 
regions where the function value is larger than current 
estimate of global minimum, or where the gradient has 
non-zero value, or where the second derivative is negative 
(concave), can be removed from consideration. Pijavskij 
(1972) and Shubert (1972) independently developed meth- 
ods using an approximation of the Lipschitz constant to 
eliminate subregions which do not contain global mini- 
mum. Their approach produces a piecewise linear approxi- 
mation of the lower bound to the objective function. The 
approximating function is then used to eliminate non- 
promising regions. Brent (1973) used a quadratic approxi- 
mation of the lower bound on objective function to elimi- 
nate non-optimal regions. This approach apparently 
depends on accurate second derivative information. Basso 
(1982) proposed the use of an adaptive bound instead of a 
global Lipschitz constant over the entire interval of inter- 
est. Other algorithms have been developed using similar 
approaches to those described above (Evtushenko, 1973; 
Wood, 1985). Interval methods are amenable to methods of 
classical analysis, and some interesting theoretical proper- 
ties have been developed (e.g., convergence guarantees, 
optimal algorithms, etc.) (T6rn and Zilinskas, 1989; 
Archetti and Schoen, 1984; and Horst and Tuy, 1987). 
However, they are generally computationally inefficient 
and are not suitable for solving high dimensional problems. 
See Ratchek and Rokne (1988) and Hansen (1992) to learn 
more on Interval methods. 

Trajectory Methods 

Trajectory methods are based on modifications to the sys- 
tem equations describing the local descent trajectory. One 
method is to search for the global minimum by switching 
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between descent (to minima) and ascent (to maxima) trajec- 
tories so that the trajectories pass through saddle points 
(Fiodorova, 1978). Another method can be best described 
by using an analogy to classical mechanics: 

m(t) • (t) - n(t) it(t) = -V f (y (t)) (1) 

which represents a moving mass m(t) pushed by a field of 

method is a Pure Random Search, which randomly samples 
the parameter space, choosing the best point found as an 
estimate of the global minimum (Brooks, 1958). A slight 
modification to this procedure, known as the Single-Start 
Random Search, adds a local search procedure starting from 
the best point found. In contrast, the Multi-Start Random 
Search method employs a local search from each random 
point (Hartman, 1973). This, of course, usually leads to 

forces (a potential f and a dissipative force n(t) x(t)). By a ' detection of the same local minimum many times. Duan et 
proper choice of m(t) and n(t), the trajectory can be made to 
escape from local minima and converge to the global mini- 
mum under inertial momentum (Griewank, 1981). Branin 
and Hoo (1972) proposed a method which uses trajectories 
stemming from the gradient of the objective function. Their 
method attempts to find the global minimum by searching 
for the roots of the gradient functions. Trajectory methods 
are handicapped by the fact that there exist regions of non- 
convergence. They become impractical when the function 
has a large number of local minima. Further, their applica- 
bility to problems whose analytical derivatives are unavail- 
able is questionable. 

Penalty Methods 

Penalty methods attempt to find successively lower min- 
ima by applying a penalty to the objective function in the 
region of each local minimum already found. Goldstein and 
Price (1971) proposed a method using successive polyno- 
mial functions to find progressively lower minima. Levy 
and Gomez (1985) developed the so-called Tunneling 
Method in which each minimum found thus far becomes a 

pole in the modified objective function. Ge (1983) proposed 
the Filled Function Method which tries to fill the regions of 
attraction of the local minima found so far. Penalty methods 
are easy to implement because they basically use standard 
local search methods applied to penalty functions. A major 
problem with the Penalty methods is that it can be difficult 
to control the extent and severity of penalty so that false 
minima will not be introduced or the global minimum will 
not be missed. Penalty methods are ineffective when the 
number of local optima is large. 

al. (1992) and Gan and Biftu (1996) have tested Multi-Start 
Random Search methods on watershed model calibration 

problems. RS methods are generally crude and computa- 
tionally inefficient. 

Adaptive Random Search Methods 

Adaptive Random Search (ARS) methods utilizes various 
heuristic strategies to distribute search points non-uniformly 
in the feasible space, with greater density in promising 
regions. This approach includes three phases: Exploration, 
Decision, and Adaptation. One ARS procedure was present- 
ed by Masri et al. (1978; 1980) and was slightly modified by 
Pronzato et al. (1984). The procedure basically consists of 
repeated random sampling in different ranges of parameter 
space. The first round of sampling is conducted over several 
successively smaller ranges of the parameter space, centered 
on the initial range. The best point found is assumed to be in 
the region of the global minimum. Another round of random 
sampling is then carded out centered on this best point. This 
procedure is repeated a user specified number of times. 
Brazil (1988) employed Pronzato's ARS algorithm in an 
attempt to calibrate the SAC-SMA model, and reported that 
ARS method was capable of producing promising results. 
His results were disputed by Armour (1990), Weinig (1991) 
and Duan et al. (1992) (see Section 3). There are other ARS 
methods which are based on heuristic and adaptive use of 
various algorithms in different stages of search process (see 
T6m and Zilinskas, 1989; Resende and Ribeiro, 2001). 

Methods Based on a Stochastic Model of the Objective 
Function 

Random Search Methods 

Random Search (RS) methods have been the most wide- 
ly used global optimization procedure for three reasons. 
First, they are easy to implement on a computer and easy to 
modify. Second, they are robust, i.e., they are insensitive to 
discontinuities and irregularities in the objective function. 
Third, RS methods can theoretically guarantee convergence 
to global optimum with a probability of 1. The simplest RS 

In this method, the values of the objective function are 
treated as random variables. The method attempts to find 
the expected location and value of the global minimum. 
Several different methods have been proposed. Archetti 
(1975) proposed an approach which approximates the prob- 
ability distribution P(•) of the objective function f(x) (i.e., 
P(•)=Prob•(x)<•)) using an n-th order polynomial. The 
estimate of the root of P(•) = 0 is chosen as an approxima- 
tion of global minimum. A more precise estimate of global 
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minimum is then obtained by using a local search procedure 
to refine the best point obtained so far. According to 
Gomulka (1978) this method is able to identify the region of 
global minimum well, provided the minimum region is not 
relatively flat. However, Dixon and Szeg6 (1978b) state that 
this approach requires a very large number of function eval- 
uations to succeed. 

Kushner (1964) treated the objective function as a Wiener 
process. His method was developed for one-dimensional 
problems. Using the theory of Wiener processes, the expec- 
tation of the minimum value of the objective function over 
an interval (x 1,x2) can be computed conditioned on the func- 
tion values f(x•) and f(x2). By eliminating the intervals 
whose expected minima are greater than the current estimate 
of global minimum, the location of the interval containing 
the global minimum can be detected. The procedure stops 
when the probability of finding a better minimum is signifi- 
cantly small. Rinnooy Kan and Timmer (1989) stated that this 
method is analytically attractive but requires very cumber- 
some computations even in the case of a one-dimensional 
problem. The extension of this method to multi-dimensional 
problem is thought to be very difficult, if not impossible. 

Bayesian Methods 

Mockus proposed a Bayesian procedure to determine the 
expected estimate of global minimum (see Mockus, 1989). 
In this approach, the a-priori distributions of the parameters 
are pre-specified. These are updated to posterior distribu- 
tions based on the outcome of sampling procedure. The 
sampled points are chosen such that the expected value of 
objective function is minimized. This method strives for best 
expected results under a limited number of function evalua- 
tions. Rinnooy Kan and Timmer (1984) commented that this 
method yields an estimate of the global minimum which 
may be too crude for practical purposes. T6rn and Zilinskas 
(1989) pointed out that this method is attractive theoretical- 
ly but is too complicated for algorithmic realization. 

Clustering Methods 

A clustering method is one that attempts to group a sam- 
ple of points into clusters around local minima. Once the 
clusters are constructed, the local minima can be identified 

by converging one point from each cluster by means of a 
local search algorithm. There are three main steps in clus- 
tering methods: (i) sample the feasible search space, (ii) 
group the points around local optima, and (iii) perform clus- 
tering analysis to find clusters in the neighborhoods of local 
optima. If this procedure successfully identifies groups that 
represent neighborhoods of local minima, then redundant 

local searches can be avoided by simply starting a local 
search for some point within each cluster. Clustering meth- 
ods are an improvement over the Multi-Start Random 
Search method because it finds each local minimum only 
once. Clustering methods, like other random methods, 
guarantee that the location of global minimum will be 
found with probability 1 as the sample size is increased. 
Clustering methods are most effective for low- dimension- 
al problems only. To learn more Clustering methods, refers 
to T6rn and Zilinskas (1989) and T6rn and Viitanen (1994). 

Complex Evolution Methods 

Box (1965) introduced the term "Complex" to describe a 
geometric polyhedron with k vertices in R n where k must be 
greater than or equal to n+ 1, where n is the dimension of the 
problem. The k points constituting the complex may be 
selected randomly or so as to construct a geometric figure of 
particular structure. Complex Evolution methods interac- 
tively adjust the positions of the individual points so as to 
move the entire group in the direction of global improve- 
ment. Price (1978, 1983, 1987) introduced a Complex 
Evolution Method which he called the Controlled Random 

Search (CRS). There are two main steps in the CRS: (i) 
exploration of the space, and (ii) replacement of the worst 
point in the sample with a better point. The exploration 
phase is implemented by randomly (or deterministically) 
sampling a predetermined number of points from the entire 
parameter space. The second phase is implemented by ran- 
domly selecting "simplexes" of n+l points from the com- 
plex, and using the Nelder and Mead (1965) strategy to 
evolve each simplex by one step in an improvement direc- 
tion. Each new point found in this manner is used to replace 
the current worst point of the complex. The second phase is 
continued until all the points in the complex have converged 
to within a pre-specified distance of each other. Price (1983) 
modified the algorithm to always include the best point in 
the complex in each randomly selected simplex. Later he 
included a local search phase (Price, 1987). Ali and Storey 
(1994) made further modifications to CRS method and 
reported improved performance over its predecessor. CRS 
was sometimes classified as Clustering method (T6rn and 
Zilinskas, 1989). An advantage of CRS methods over other 
Clustering methods is that it combine random search and 
mode-seeking into a continuous process. 

5. GLOBAL OPTIMIZATION METHODS COMMONLY 

USED IN WATERSHED MODEL CALIBRATION 

In the previous section, brief capsules on some of the glob- 
al optimization methods commonly available in the literature 
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are presented. This section describes three of the commonly 
used global optimization methods in watershed model 
calibration: Simulated Annealing, Genetic Algorithm and 
Shuffled Complex Evolution. In presentation below, all 
optimization problems are assumed to be minimization 
problems. 

Simulated Annealing Methods 

Simulated Annealing (SA) method was introduced by 
Metropolis (1953). The name is drawn from an analogy to 
the cooling process employed in metallurgy. Molten metal is 
cooled slowly with intermittent reheating to allow a stable 
crystal structure to develop. Eventually a thermal equilibri- 
um state is reached. SA method resembles this process in 
that it accepts both beneficial and detrimental steps along the 
way towards global minimum. The detrimental steps are 
accepted probabilistically according to Boltzmann distribu- 
tion exp(- Vf/T), where Vfis the relative potential of the steps 
and T is a parameter analogous to the temperature. Thus, SA 
can basically be regarded as a form of biased random walk 
that migrates through a sequence of local minima and even- 
tually converges to the global minimum. Many applications 
of SA have been in the field of combinatorial optimization 
(Kirkpatrick et al., 1983; Bonomi and Lutton, 1965; 
Lundy, 1985; etc.). Generalizations of SA to continuous 
problems have been provided by Vanderbilt and Louie 
(1984), Bohachevsky et al. (1986) and Lucidi and Piccioni 
(1989). There are many variants of SA algorithms. A sim- 
ple SA algorithm for continuous optimization is presented 
below. 

i. Set i=0. Initialize the maximum number of func- 

tion evaluations per equilibrium cycle, N, the min- 
imum number of successful trials required to con- 
tinue optimization search,/½min, the maximum step 
size, D, initial temperature, Ti, and temperature 
scaling factor, a (0<a<l) and minimum tempera- 
ture, Tmin; 

ii. Randomly sample a point, x i, in the feasible space 
and compute the corresponding objective function 
value, f(xi). Set to=0, Xbest =X i and fbest=f(xi); 

iii. Set i=i+l. Generate a random vector, •, (-1 <•,< 1). 
Set x i = Xbest q- D•. Compute f(xi); 

iv. If f(xi) < fiXbest ), set to=to+l, Xbest=Xi and 
f(Xbest)=f(xi). Go to step vi. Else go to step v; 

v. Compute Vf=f(xi)-f(Xbest ) and Boltzmann proba- 
bility, P=exp(Vf/Ti_l). Generate a random number, 
• (0<•<1). If P>•, set Xbest =X i and fbest=f(xi). 
Continue to step vi; 

vi. If i=N, go to step vii. Else go to step iii; 

vii. If Ti<Tmi n and/c</Cmin, stop. Else, set Ti= ct ß Ti_ 1 
and i=0. Go to step iii. 

Obviously the selection of algorithmic parameters N,/Cmin, 
D, T 0, Tmi n, and a impacts on the effectiveness and conver- 
gency speed of SA. Many studies have been done to find the 
best ways to determine these parameters (see van Laarhoven 
and Aarts, 1987; Aarts and Korst, 1989). By manipulating the 
Boltzmann probability function, the convergency speed can 
be controlled (Ingber, 1993). How to choose step size D and 
to generate new points have been investigated by many 
(Vanderbilt and Louie, 1984; Parks, 1990). Obviously initial 
temperature T O should be high enough to ensure a "molten" 
state at the start. Or in optimization phrase, T O should be high 
enough to allow a sustained search in parameter space. T i 
should be decreased at a rate so a stable crystallization pro- 
cess can take place. The algorithm presented above reduces T i 
linearly. Alternative methods have been proposed by many 
researchers (Kirkpatrick et al., 1983; Randelman and Grest, 
1986). Random number generators are used frequently 
throughout the search process and attention should be paid to 
ensure that they have proper probabilistic properties. 

SA methods are very easy to implement algorithmically 
and are suitable for parallel computer programming.. This 
method has been shown to be able to converge to global 
minimum with probability 1 (Faigle and Schrader, 1988). 
Like many random search algorithms, however, SA meth- 
ods have been criticized as being slow. Therefore, they are 
most effective when they are coupled with local search 
methods (Desai and Patil, 1996, Thyer et al., 1999). For 
learn more on SA methods, see van Laarhoven and Aarts 
(1987) and Aarts and Korst (1989). 

Genetic Algorithm 

Holland (1975) presented a procedure named Genetic 
Algorithm (GA) which is based on analogies to the principles 
of genetics and natural selection. Evolution is viewed as a 
process of reproduction. First, parents are selected that have 
high probability of generating "fit" offspring. The offspring are 
then generated by means of information taken from each par- 
ent in a process analogous to the sharing of genetic informa- 
tion. Below the steps in a basic implementation of GA are pre- 
sented: 

i. Generate a population (N points) randomly in fea- 
sible space, x •, x 2 .... , x m . Compute corresponding 
objective function values, f(xi), i =l,2,...,N; 

ii. Rank the N points in order of increasing objective 
function values, f*(xi), i=1,2, ..., N, where f*(x •) has 
the lowest objective value and f*(xN) the highest; 
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iii. Assign a probability value to each point using the 
following probability function: 

2(N+ 1 - i ) 
Pi = , i = 1 ..... N (2) 

N(N+ 1) 

Here Pl corresponds to f*(x 1) and PN to f*(xN). 
iv. Select two "parents", x a and xb, from the popula- 

tion according to the probability function, Pi , i 
=1,2 ..... N; 

v. Generate the "offspring", x a* and xb*, randomly 
using the genetic operators (to be described later)' 

vi. Replace the worst points in the population by the 
two newly generated "offspring"; 

vii. Repeat steps iv-vi until one of the convergency cri- 
teria is satisfied. 

GA can be implemented numerically in binary-coding or in 
real-coding. In binary-coding, each sample point is represent- 
ed by a binary string (analogous to a chain of chromosomes). 
For continuous problems, real variables must be discretized 
and be approximated by integers. The precision of the optimal 
solution by GA is predicated by the encoded bit length of the 
integers. The binary representation of an n-dimensional real 
variable is illustrated below (from Wang, 1991). 

Consider a n-dimensional parameter x =(x 1, x 2 ..... Xn_ 1, 
Xn), where ai -< xi -< bi , ai and b i are the lower and upper 
bounds for x i , i = 1, 2 ..... n. Let an/-bit string to represent 
x i. This string ranges from 0 to 2t- 1 and can be mapped tin- 
early to parameter range, [ai, bi]. The parameter range is dis- 
cretized into 2t points and the discretization interval is 

bi-a i 

2/-1 

Table 1 illustrates how any value for x i can be approxi- 
mated by a 7-bit binary string. Parameter x = { x 1, x 2 ..... x n_ 
1, Xn} can thus be represented by connecting the strings of 
all parameters: 

1000101 0010100 ... 0101001 1101001 

X 1 X2 Xn- 1 Xn 

Table 1. Example of Parameter Coding for 1=7 

Binary Code Integer Value Parameter Value 

0000000 0 

0000001 1 

0000010 2 

1111110 

1111111 

126 

127 

ai 

a i + Axi 
a i + 2 Ax i 

a i + 126 Ax i 
a i + 127 Ax i = b i 

To select parents, a trapezoidal probability function (Eq. 
2) is used to favor better points (i.e., points with lower func- 
tion values) in the reproductive process. Reproduction is 
realized by using a variety of genetic operators. The most 
basic genetic operator is the crossover operator. Crossover is 
accomplished by exchanging all the bits following a ran- 
domly selected location on the strings. For example, if 
crossover occurs after position 5 between two strings: 

11111111 

and 

00000000, 

the resulting offspring are 

1 1 1 1 1 000 

and 

00000 1 1 1 

A slightly more complex crossover operator has two ran- 
dom crossover location. De Jong (1989) reported that too 
many crossover location may result in loss of genetic infor- 
mation, even though more diversity is introduced. How to 
select the crossover location and how to recombine string 
segments have been the subject of extensive research 
(Davis, 1991; and Franchini and Gateati, 1997). 

Another genetic operator is the mutation operator. 
Mutation is realized at a given probability through bit 
changes on the strings (i.e., 0 to 1 or 1 to 0). Crossover and 
mutation operators are the pillars of all GAs. There are other 
less used genetic operators which allow more than two pairs 
of parents in reproduction process, or introduce multi-com- 
munities (or sub- population) and allow interbreeding 
between communities (see Goldberg, 1989; Duan et at., 
1992, 1993 & 1994). 

Binary-coded GAs are best suited for combinatoriat or 
integer optimization problems. It has been criticized for hav- 
ing only limited precision for continuous problems and for 
having redundance in the coding of parameters (Herrera et 
at., 1998). An alternative approach to implement GA is to use 
real-coding (Wright, 1991; Michatewicz, 1996; Herrera et 
at., 1998). In real-coding, a sample point or a chromosome is 
represented by a vector of floating point numbers, x = (x 1, x 2, 
.... Xn), where ai < xi < bi, i = 1, 2 ..... n. The precision of 
a real-coded point is limited only by that of the computer. 

As in binary-coding, crossover and mutation are the main 
genetic operators in real-coded GA. Let x a = (xla, x2a ..... 
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Xna ) and xb = (x•b, x2• ..... Xnb ) be the 2 parents. A simple 
crossover similar to the binary coded implementation 
described above is illustrated as follows: (1) randomly 
select a location, 0 _< 1 _< n; and (2) form the 2 offspring xa* 
and x •* as follows: 

rithm method is theoretically and empirically proven to pro- 
vide robust search in complex spaces". The idea of compet- 
itive evolution has motivated the development of other 
algorithms (Schwefet, 1981; Jarvis, 1975). One of them is 
the Shuffled Complex Evolution method, described below. 

X a* = (Xla , x2a, ..., xia, Xi+l b, ... , Xnb) Shuffled Complex Evolution Method 

and 

X b* = (Xlb , x2b ..... Xlb, Xi+i a ..... Xna ) 

There are many other ways to perform crossover opera- 
tions. For example, the discrete crossover operator 
employed by Seibert (2000) and Seibert and McDonnell 
(this volume) generates offspring x*=(x•*,x2* ..... Xn*) by 
assigning xi* to a value randomly chosen from the set { xia, 
xib }. A large class of crossover operators generate offspring 
x*=(x•*,x2* ..... Xn*) by calculating xi* based on random or 
linear combination of xia and xib. To learn more about real- 
coded crossover operations, see Herrera et at. (1998), who 
have described 11 different crossover operators. 

Like crossover operators, there are numerous ways to 
implement real-coded mutation operators. The random 
mutation operation is executed with a given probability by 
assigning xi* to a value randomly selected from the feasible 
domain [ai, bi]. A mutation operator known as the Real 
Number Creep is realized at a given probability by random- 
ly assigning xi* to a value located in the close neighborhood 
of the local optimum found so far (Davis, 1991). Readers 
are referred to Herrera et at. (1998) for more discussion on 
real-coded mutation operators. 

There are several important algorithmic parameters in 
GA: population size N, crossover probability Pc and muta- 
tion probability PM. Many studies have appeared in the lit- 
erature on selection of these parameters (see Grefenstte, 
1986; Franchini and Galeati, 1997). 

The offspring resulted from genetic operations such as 
crossover and mutation retain the gene characteristics of 
their parents. Because "fit" parents are favored in the repro- 
duction process, the offspring tend to be healthier than gen- 
eral population. After healthier offspring displace the 
"unfit" members in the population, the whole population 
thus evolves to a healthier state. 

GA is a widely popular method among many disciplines, 
including hydrotogy. It has been reported to have excellent 
initial convergency toward the neighborhood of global opti- 
mum. However, it has been found to have difficulties con- 

verging onto the global solution itself and to be computa- 
tionally inefficient (Kuczera, 1997; Franchini et at., 1998). 
Nevertheless, Goldberg (1989) remarked that "genetic algo- 

Shuffled Complex Evolution (SCE-UA) method was devel- 
oped by Duan et al. at the University of Arizona (Duan, 1991; 
Duan et al., 1992). SCE-UA was originally designed to deal 
with the peculiarities encountered in calibration of conceptual 
watershed models. The method is based on a synthesis of four 
concepts: a) combination of deterministic and probabilistic 
approaches; b) systematic evolution of a "complex" of points 
spanning the parameter space, in the direction of global 
improvement; c) competitive evolution; and d) complex shuf- 
fling. The first three concepts are drawn from existing 
methodologies that have been proven successful in the past 
including GA, Simplex and CRS methods (Price, 1978, 1983; 
Netder and Mead, 1965; Holland, 1975), while the last con- 
cept was newly introduced (Duan et at., 1992,1993 & 1994; 
Sorooshian et al., 1993). A general description of the steps of 
the SCE-UA method is given below (for a more detailed pres- 
entation of the theory underlying the SCE-UA algorithm, refer 
to Duan et at., 1992; 1993 and 1994): 

a. Generate sample: Sample s points randomly in the 
feasible parameter space and compute the criterion 
value at each point. In the absence of prior infor- 
mation on the approximate location of the global 
optimum, use a uniform probability distribution to 
generate a sample. 

b. Rank points: Sort the s points in order of increas- 
ing criterion value so that the first point represents 
the smallest criterion value and the last point rep- 
resents the largest criterion value. 

c. Partition into complexes: Partition the s points into 
p complexes, each containing m points. The com- 
plexes are partitioned such that the first complex 
contains every px(k-1)+l ranked point, the second 
complex contains every px(k-1)+2 ranked point, 
and so on, where k=1,2 ..... m. 

d. Evolve each complex: Evolve each complex 
according to the Competitive Complex Evolution 
(CCE) algorithm (The CCE algorithm is elaborat- 
ed below). 

e. Shuffle complexes: Combine the points in the 
evolved complexes into a single sample popula- 
tion; sort the sample population in order of increas- 
ing criterion value; shuffle (i.e. re-partition) the 
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go 

sample population into p complexes according to 
the procedure specified in step c. 
Check convergence: If any of the pre-specified 
convergence criteria is satisfied, stop; else, contin- 
ue. 

Check the reduction in the number of complexes: If 
the minimum number of complexes required in the 
population, Pmin, is less than p, remove the complex 
with the lowest ranked points (or randomly remove 
a complex); set p=p-1 and s=pxm; and return to 
step d. If Pmin-P, return to step d. 

One key component of SCE-UA method is the 
Competitive Complex Evolution (CCE) algorithm refer- 
enced in step d. The CCE algorithm, based on the Nelder 
and Mead (1965) Simplex downhill search scheme, is 
briefly presented as follows: 

i. Construct a sub-complex by randomly selecting q 
points from the complex (community) according to 
a trapezoidal probability distribution. The probabil- 
ity distribution is specified such that the best point 
(i.e., the point with the best function value) has the 
highest chance of being chosen to form the sub- 
complex while the worst point has the least. 

ii. Identify the worst point of the sub-complex and 
compute the centroid of the sub-complex without 
including the worst point. 

iii. Attempt a reflection step by reflecting the worst point 
through the centroid. If the reflected point is within 
the feasible space, go to step iv. Else go to step vi. 

iv. If the reflection point is better than the worst point, 
replace the worst point by the reflection point. Go 
to step vii. Else go to step v. 

v. Attempt a contraction step by computing a point 
half way between the centroid and the worst point. 
If the contraction point is better than the worst 
point, replace the worst point by the contraction 
point and go to step vii. Else go to step vi. 

vi. Randomly generate a point within the feasible 
space. Replace the worst point by the randomly 
generated point in the feasible space. 

vii. Repeat step ii through step via times, where a > 
1 is the number of consecutive offspring generated 
by the same sub-complex. 

viii. Repeat step i through Step vii fi times, where fi > 
1 is the number of evolution steps taken by each 
complex before complexes are shuffled. 

What differs SCE-UA from traditional GAs is the parti- 
tion of the population into several communities to facilitate 

a freer and more extensive exploration of the feasible space 
in different directions, thereby allowing for the possibility 
that the problem has more than one region of attraction. The 
shuffling of communities enhances the survivability by a 
sharing of the information (about the search space) gained 
independently by each community. 

In the CCE algorithm, each point of a complex is a poten- 
tial "parent" with the ability to participate in the process of 
reproducing offspring. A sub-complex functions like pairs of 
parents, except that it may comprise more than two mem- 
bers. Like GAs, a trapezoidal probability distribution is used 
to favor better points over worse points in the reproduction 
process. The Simplex method is utilized to generate off- 
spring because it is insensitive to non-smoothness of the 
response surface and enables the algorithm to make use of 
response surface information to guide the search toward the 
improvement direction. Step vi in CCE generate an off- 
spring at random location under certain conditions to ensure 
that the evolution process is not interrupted due to some 
unusual conditions encountered in the search space. This is 
somewhat analogous to mutation operator in GAs in 
response to stress in biological evolution. 

SCE-UA method contains many probabilistic and deter- 
ministic components that are controlled by some algorith- 
mic parameters. For the method to perform optimally, these 
parameters must be carefully chosen. These parameters are: 

m • 

Pmin = 

number of points in a complex 
number of points in a sub-complex 
number of complexes 
minimum number of complexes required in 
the population 
number of consecutive offspring generated by 
each sub-complex 
number of evolution steps taken by each com- 
plex 

Duan et al. (1994) conducted a detailed study on the selec- 
tion of SCE-UA algorithmic parameters suggested default 
values for parameters m, q, a, fi and Pmin' They reported that 
the most important parameter in SCE-UA is the number of 
complexes, p, which is dependent on the complexity of the 
problem. For a 13 parameter optimization problem, they 
recommended a value of 4 for p. The recommended values 
for SCE-UA algorithmic parameters were derived based on 
the experience with the calibration of the 13-parameter 
SAC-SMA model. Therefore the users of SCE-UA should 

experiment with the selection of the algorithmic parameters 
on their own problems. 

SCE-UA method has been widely used in watershed 
model calibration (Sorooshain et al., 1993; Havn0 et al., 
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1995; Kuczera, 1997; Gan and Biftu, 1996; Franchini et at., 
1998; Madsen, 2000; Hogue et al., 2001; among others). It 
has also been used in other areas of hydrotogy such as soil 
erosion, subsurface hydrotogy, remote sensing and land sur- 
face modeling (Mahani et at., 2000; Contractor and Jenson, 
2000, Scott et al., 2000; Nijssen et al., 2001; Walker et al., 
2001). SCE-UA has been generally found to be robust, effec- 
tive and efficient. A number of researchers have explored 
modifications and enhancements to the original SCE-UA 
(Wang et at., 2001; Santos et at., 1999). Vrugt et at. (this vol- 
ume) develop the Shuffled Complex Evolution Metropolis 
(SCEM) algorithm, which combines the elements from both 
SCE-UA and SA. A major advantage of SCEM is that it pro- 
vides uncertainty information about the optimal solution. 
Yapo et at. (1997) extended SAC-UA to multi-objective 
framework (see Gupta et al., this volume, "Multiple ..."). 

6. SUMMARY AND A FEW WORDS OF CAUTION 

This chapter reviewed the use of optimization methods as 
a tool to calibrate conceptual type watershed models. It 
traced back the historical trails on which watershed model- 

ers have struggled with local search methods and started to 
favor the more powerful global optimization methods. A 
survey of the state-of-the-art methods in global optimization 
was presented. Three of the more popular methods com- 
monly used by watershed modelers (i.e., Simulated 
Annealing, Genetic Algorithm and Shuffled Complex 
Evolution) are discussed comprehensively. The manner in 
which the presentation was made was quite informal. No 
attempts were made to include stringent theoretical treatment. 
This approach was intentional since most watershed model- 
ers are only interested in the application aspect of the global 
optimization methods. For those interested in more vigorous 
treatment, many references were given. It is worthy to point 
out that as the theory and practice of global optimization con- 
tinue to evolve, new theories and improved methods are 
bound to emerge. This trend is made inevitable because of 
continued investment in research and development of global 
optimization methods and because of the rapid progress in 
computational technology (both hardware and algorithms). 
The watershed modeling community, being always on the 
cutting edge in developing and applying optimization meth- 
ods, should stand to benefit from these new developments. 

It has to be emphasized that optimization methods serve 
only as a tool to facilitate the search of the optimal model 
parameters. It should not be regarded as a panacea which can 
solve the model calibration problem all by itself. This is 
because any optimization method, no matter how advanced it 
is, gives only the optimal solution with respect to the objective 
function used in a specific case. Any objective function is only 

a single measure of the difference between the model and the 
real world aggregated over a long period of time. It can not 
possibly capture all phases of the hydrograph equally well and 
is highly impacted by errors, systematic or otherwise, in cali- 
bration data. Further, poorly defined model structure leads to 
insensitive parameters and parameter interdependence. Unless 
proper care is taken to reduce the effects of data errors on 
objective functions and to enhance the idenfiability of model 
parameters, unrealistic or even unphysical model parameters 
may be resulted from use of automated optimization methods. 
Another related issue is how many parameters can one possi- 
bly estimate by relying on optimization methods for a given 
set of calibration data. This issue is especially relevant if 
watershed model calibration is based solely on fitting the sim- 
ulated streamflow discharge to the observed streamflow dis- 
charge (Jakeman and Hornberger, 1993). Much advantage can 
be gained by studying the type, quantity and quality of cali- 
bration data used for model calibration (Sorooshian et at., 
1983, Burges, this volume, Gan and Biftu, this volume). A 
hierarchical strategy that isolates hydrologic processes and 
associated sub-sets of parameters with different processes may 
be useful (Harlin, 1991, Turcotte et al, this volume). Use of mul- 
tiple criteria to calibrate watershed models has been gaining 
favor in the last few years and many of the chapters in this vol- 
ume have taken such an approach (Yapo et al., 1997; Boyle et al., 
Freer et al., Gupta et al., "Multiple ...", Meixner et al., Parada et 
al., Seibert and McDonnell, among others, this volume). Finally, 
given the uncertainties associated with model structure, calibra- 
tion data and model parameters, any optimal solution is more 
meaningful if the uncertainties in the parameter estimates and in 
the model behavior can be quantified (see Kavetski et al., Freer 
et al, Misirli et al., and Vrugt et al., this volume). 

How to deal with various issues related to the use of opti- 
mization methods in watershed model calibration has 

received much attention in the watershed modeling commu- 
nity. A detailed discussion of those topics is beyond the 
scope of this chapter. Interested readers should refer to the 
related literature and to other chapters throughout this vol- 
ume for more in-depth discussion and analysis. 
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Practical experience with hydrologic model calibration suggests that it is generally 
impossible to f'md a single best parameter set whose performance measure differs sig- 
nificantly from other feasible parameters sets. While considerable attention has been 
given to the development of automatic calibration methods which aim to successfully 
find a single best set of parameter values, much less attention has been paid to a real- 
istic assessment of parameter uncertainty in hydrologic models. In this paper, we pres- 
ent the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA), which is suit- 
ed to infer the most likely parameter set and its underlying posterior probability distri- 
bution within a single optimization run. The algorithm is related to the successful SCE- 
UA global optimization algorithm and merges the strengths of the Metropolis Hastings 
algorithm, controlled random search, competitive evolution and complex shuffling in 
order to evolve to a stationary posterior target distribution of the parameters. The fea- 
tures and capabilities of the SCEM-UA algorithm are illustrated by means of a hydro- 
logic case study in which the Sacramento Soil Moisture accounting model is calibrat- 
ed using historical data from the Leaf River watershed near Collins, Mississippi. 

1. INTRODUCTION 

To calibrate a hydrologic model, the hydrologist must 
specify values for its parameters in such a way that the 
behavior of the model closely matches the real system it rep- 
resents. While some of the parameters can be derived 
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through direct measurements conducted on the real system, 
others can only be meaningfully inferred by calibration to a 
historical record of input-output data. Because of the time 
consuming nature of manual trial-and-error model calibra- 
tion, there has been a great deal of research into the devel- 
opment of automated (computer based) calibration methods 
[see e.g., Gupta and Sorooshian, 1994; Yapo et at., 1998; 
Boyle et at., 2000]. Automatic methods for model calibra- 
tion seek to take advantage of the speed and power of com- 
puters, while being relatively objective and easier to imple- 
ment than manual methods. 
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In the development of suitable automatic calibration 
approaches, we must consider the fact that the hydrologic 
model optimization problem suffers from the existence of 
multiple optima in the parameter space (with both small and 
large domains of attraction), discontinuous first derivatives 
and curving multi-dimensional ridges. These considerations 
inspired Duan et at. [1992] to develop a powerful robust and 
efficient global optimization procedure, entitled, the 
Shuffled Complex Evolution (SCE-UA) global optimiza- 
tion algorithm. By merging the strengths of the Downhill 
Simplex procedure [Netder and Mead, 1965] with the con- 
cepts of controlled random search, systematic evolution of 
points in the direction of global improvement, competitive 
evolution [Holland, 1975], and complex shuffling, the SCE- 
UA algorithm represents a synthesis of the best features of 
several optimization strategies. Numerous case studies have 
demonstrated that the SCE-UA global optimization algo- 
rithm can reliably find the global minimum in the parame- 
ter space for a variety of hydrologic models [e.g., Duan et 
at., 1992, 1993; Sorooshian et at., 1993; Luce and Cundy, 
1994; Gan and Biftu, 1996; Tanakamaru, 1995; Kuczera, 
1997; Hogue at at., 2000; Boyle et at., 2000; among many 
others]. However, it still remains typically difficult, if not 
impossible, to identify a unique 'best' parameter set, whose 
performance measure differs significantly from other feasi- 
ble parameter sets within this region. Estimates of hydro- 
logic model parameters are subject to uncertainty, because 
the calibration data contain measurement errors, and 

because the model never perfectly represents the system or 
exactly fits the data. 

Only recently have methods for realistic assessment of 
hydrologic parameter uncertainty begun to appear in the lit- 
erature. These include the traditional use of first-order 

approximations to parameter uncertainty [Kuczera and 
Mroczkowski, 1998], evaluation of likelihood ratios [Beven 
and B intey, 1992; Thiemann et at., 2001; see also Misirti et 
at., this volume], and parametric bootstrapping or Markov 
Chain Monte Carlo (MCMC) methods [e.g. Tarantota, 
1987; Kuczera and Parent, 1998]. In view of the inevitably 
complicated nature of the hydrologic model an explicit first- 
order expression for the posterior distribution of the param- 
eters is often not adequate [Kuczera and Parent, 1998; Vrugt 
and Bouten, 2002]. Therefore, MCMC algorithms have 
become increasingly popular as a class of general-purpose 
approximation methods for complex inference, search and 
optimization problems [Gitks et at., 1996]. Recently, 
Kuczera and Parent [1998] used the Metropolis-Hastings 
(MH) algorithm [Metropolis et at, 1953; Hastings, 1970], in 
a Bayesian inference framework to assess parameter uncer- 
tainty for a conceptual watershed model. In fact, the MH 
algorithm, the earliest and most general class of MCMC 

samplers, has proven to be effective in assessing the poste- 
rior distribution of the model parameters for a variety of 
problems. However, the algorithm is fully probabilistic and 
does not optimatty utilize the information gained about the 
response surface during the evolution process. As a conse- 
quence, convergence to the stationary posterior distribution 
can be slow [Gitks et at., 1996]. An important challenge, 
therefore, is to design a class of samplers that rapidly con- 
verges to the global minimum but resists becoming trapped 
along the way in a local basin of attraction. 

A major weakness of the MH sampler is that it does not 
share response surface information gained by the individual 
parallel sequences of points generated during the process of 
evolving towards a stationary posterior distribution. In 
examining ways to increase information exchange between 
the parallel sequences it seems natural to consider the con- 
cept of periodic shuffling introduced by Duan et at. [1992] 
in developing the SCE-UA global optimization strategy (see 
also the chapter by Duan in this book). Shuffling has been 
found to have desirable properties, which significantly 
enhance the efficiency and effectiveness of the SCE-UA 
search procedure. 

In this paper, we describe the Shuffled Complex 
Evolution Metropolis global optimization algorithm 
(SCEM-UA). The algorithm is related to the SCE-UA 
method, but uses the Metropolis Hastings strategy instead of 
the Downhill Simplex method for population evolution, and 
is therefore able to infer both the most likely parameter set 
and its underlying posterior probability distribution within a 
single optimization run. By merging the strengths of the 
MH algorithm, controlled random search, competitive evo- 
lution and complex shuffling, the SCEM-UA is designed to 
evolve to a stationary posterior target distribution of the 
parameters. The stochastic nature of the MH annealing 
scheme avoids the tendency of the SCE-UA algorithm to 
collapse into a single region of attraction (i.e. the global 
minimum), while the information exchange (shuffling) 
between parallel sequences allows the search to be biased in 
favor of better regions of the solution space. The following 
sections present a description of the SCEM-UA algorithm, 
followed by a hydrologic case study in which the features 
and capabilities of the algorithm are illustrated by calibrat- 
ing the Sacramento Soil Moisture accounting model (SAC- 
SMA) using historical data from the Leaf River watershed 
near Collins, Mississippi. 

2. GENERAL BACKGROUND AND OUTLINE 

OF THE SCEM-UA ALGORITHM 

A hydrologic model aims at assessing the relationship 
between the watershed response or output variable •, subject 
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to measurement error e, and the input variables X. The hydro- 
logic model r] can be cast in a general statistical framework, 

•- r/(X It9)+ e (1) 

where •(•, •2 ..... •/v) denotes a N x 1 vector of model out- 
puts, X = (X•,..., XNn) is an N x n matrix of input values, 0 
= (0•, 02 ..... On) is a vector of n unknown parameters and e is 
a vector of statistically independent errors with zero expec- 
tation and constant variance a 2. 

We assume that the mathematical structure of the model is 

fixed and that we can define a uniform prior distribution on 
the feasible parameter space (e.g. between upper and lower 
bounds on each of the model parameters). Taking a 
Bayesian perspective, the aim of model calibration is to 
infer the posterior probability distribution, p(01y), which 
describes what is known about the model parameters 0 
given the observed data y and the prior information. 

2.1. Traditional First-Order Approximation 

Lets assume that little is known a-priori about the model 
parameters 0 relative to what the experimental data will tell 
us, i.e. p0(01y) is uniform on the parameter space. The tradi- 
tional first-order approximation method is based on a first 
order Taylor series expansion of the non-linear model equa- 
tions evaluated at the globally optimal parameter estimates 
0op t. The estimated posterior distribution of 0 is then 
expressed as [Box and Tiao, 1973], 

p(Oly)•exp[_ l•(O_Oo•t )r jr j(O_Oo•t )l (2) 2o .:• 

where J is the Jacobian or sensitivity matrix evaluated at 
0 = 0op t. 

If the hydrologic model is linear (or very nearly linear) in 
its parameters, the posterior probability region estimated by 
equation 2 will give a good approximation of the actual 
parameter uncertainty. However, for non-linear models (e.g. 
conceptual rainfall runoff models such as SAC-SMA), with 
strong parameter interdependence, this approximation can 
be quite poor [Kuczera and Parent, 1998; Vrugt and Bouten, 
2002]. Besides exhibiting strong and non-linear parameter 
interdependence, the surface of the posterior parameter dis- 
tribution p(01y) can deviate significantly from the multi-nor- 
mal distribution. It may also have multiple local optima and 
discontinuous derivatives [Duan et al., 1992]. Moreover, the 
ellipsoid region, defined by equation (2) may represent a 
very poor approximation of parameter uncertainty, as for 
example in the case of a strongly hyperbolic banana-shaped 
curvature in the p(01y) surface. 

2.2. Monte Carlo Sampling of Posterior Distribution.' The 
SCEM-UA Algorithm 

The Markov Chain Monte Carlo (MCMC) method for 
assessing parameter confidence intervals in nonlinear models 
is based on the idea that instead of explicitly computing the 
probability distribution, p(01y), it is sufficient to approximate 
the form of the density by drawing a large random sample 
from p(01y). Diagnostic measures of central tendency and 
dispersion of the posterior distribution can be estimated by 
computing the mean and standard deviation of the sample. 
This directly leads to the question of how to efficiently sam- 
ple from p(01y). To address this question we have developed 
a new algorithm, which merges the sampling strategy of the 
Metropolis Hastings algorithm with the strengths and effi- 
ciency of the SCE-UA population evolution method. 

The goal of the original SCE-UA algorithm [Duan et al., 
1992] is to find a single best parameter set in the feasible 
space. The SCE-UA begins with a random sample of points 
distributed throughout the (bounded) feasible parameter 
space, and uses an adaptation of the Downhill Simplex 
search strategy to continuously evolve the population 
toward better solutions in the search space, progressively 
relinquishing occupation of regions with lower posterior 
probability. This genetic drift, where the members of the 
population drift towards a single location in the parameter 
space (i.e. the mode of p(01y)), is typical of many evolution- 
ary search algorithms. By replacing the adapted Downhill 
Simplex strategy with a Metropolis Hastings strategy, the 
tendency of the algorithm to collapse into the relatively 
small region containing the "best" parameter set is avoided. 
The new algorithm, entitled the Shuffled Complex 
Evolution Metropolis (SCEM-UA) is developed in collabo- 
ration between the University of Arizona and the University 
of Amsterdam and is presented below. 

SETUP 

1. To initialize the process, choose the population size s and 
the number of complexes q. Compute the number of 
points m in each complex (m = s/q). The algorithm tenta- 
tively assumes that the number of sequences is identical to 
the number of complexes. 

2. Generate s samples from the prior distribution 
{ 0•,02 ..... Os} and compute the posterior density 
{ pl,p2 ..... ps } of each point using a Bayesian inference 
scheme [Misirli et al., this volume]. 

3. Rank the points in decreasing posterior probability and 
store them in array D[ 1 :s, 1 :n+ 1 ] so that the first row of D 
represents the highest posterior density. The extra col- 
umn stores the posterior density. 
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4. Initialize the starting points of the parallel sequences, 
Sl,S2,...,S q, such that S k is D[k,l:n+l] where k = 
1,2 ..... q. 

5. Partition D into q complexes CI,C2,...,C q, each containing m 
points, such that the first complex contains every 
q (j- 1 ) + 1 ranked point of D, the s•ond complex contains 
every q (j-1 )+2 ranked point, and so on, wherej = 1,2 ..... m. 

SEQUENCE EVOLUTION: DO evolve = 1,2,...,q 
(Loop over all complexes - sequences): 

DO • =l,2,...,L 
(Loop within complex) 
a). Calculate the mean g0 and covariance •k of the 

parameters of C k. 
b). Draw a uniform label Z between 0 and 1. 
c). If Z _> 0.50, compute a new candidate point 

according to, 

0 (t+l) ---- N(0(t),Cn2Z k) (3a) 

Otherwise if Z < 0.50, 

0(t+l) = N(•t0,Cn 2y.k) (3b) 

where 0(t) is the current draw of S k associated 

with posterior density p(0(t)) and c n is a prede- 
fined scaling parameter. 

d). If 0(t+•) is within O, compute p(0(t+•)) and go 
to Metropolis step; otherwise return to step (b) 

METROPOLIS STEP: DO 

I). Evaluate the ratio a = p(0( t+ •)) / p(0(t)). 
II). If Z _< a then accept the candidate point. If 

Z > a then remain at the current position, 
that is 0 (t+l) .- 0(t). 

END METROPOLIS STEP 

e). Sort the m points in C k in decreasing posterior 
density and assign a trapezoidal weight 
distribution 60) to C k, 

2(m+l-i) (4) , i= 1,2,...,m P'= m(m+l) 
f). Randomly replace a member of C k with 0(t+•) 

according to the trapezoidal weight distribution 
defined in Equation (4). 

END L DO 

END SEQUENCE - COMPLEX EVOLUTION 

6. Unpack all complexes C back into D and rank the points 
in order of decreasing posterior probability. 

7. Check Gelman and Rubin (GR) convergence statistic 
(Appendix A). If convergence criteria are satisfied stop, 
otherwise return to step 5. 

To summarize, the SCEM-UA algorithm begins with an 
initial population of points (parameter sets) randomly dis- 
tributed throughout the feasible parameter space. For each 
parameter set, the posterior density is computed using a 
Bayesian inference scheme such as the one presented by 
Misirti, et at., [this volume]. The population is partitioned 
into q complexes, and in each complex k (k=l,2 .... ,q) a 
parallel sequence is launched from the point that exhibits 
the highest posterior density. A new candidate point in each 
sequence k is generated using a multivariate normal distri- 
bution either centered around the current draw of the 

sequence (k) or the mean of the points in complex (k) aug- 
mented with the covariance structure induced between the 

points in complex k. The Metropolis-annealing [Metropolis 
et at., 1953] criterion is used to test whether the candidate 
point should be added to the current sequence. 
Subsequently the new candidate point randomly replaces 
an existing member of the complex using the trapezoidal 
weight distribution defined in Equation (4). Finally, after a 
certain number of iterations (q'L) new complexes are 
formed through a process of shuffling. This series of oper- 
ations results in a robust MCMC sampler that conducts a 
robust and efficient search of the parameter space. As a 
basic choice we have adopted the value of the scaling 
parameter as cd=2.4A/-n [Gelman et at., 1996]. For more 
information about the SCEM-UA algorithm please refer to 
Vrugt et at. [2002]. 

The only variable that needs to be specified by the user 
is the population size s, which in turn also determines the 
number of points within each complex (m = s/q). The 
SCEM-UA algorithm employed for the case study report- 
ed in this paper used the values of q = 10 and L = (m/10). 
Preliminary sensitivity of the SCEM-UA algorithm 
demonstrated that the number of sequences - complexes 
and adapted relationship between the number of points 
within each complex (m) and the number of evolutionary 
steps before reshuffling (q'L) works well for a broad 
range of applications. 

3. APPLICATION OF THE SCEM-UA ALGORITHM 

We illustrate the application of the SCEM-UA algorithm 
to hydrologic modeling by using it to calibrate the 
Sacramento Soil Moisture Accounting model (SAC-SMA) 
of the National Weather Service River Forecasting System 
(NWSRFS) using historical data from the Leaf River water- 
shed (1944 km2) located north of Collins, Mississippi. 
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Approximately 11 years (28 July 1952 to 30 September 
1963) of hydrological data from the Leaf River basin were 
used for model calibration. Because the SAC-SMA model 

and the Leaf River Basin have been discussed extensively in 
the literature [e.g. Burnash et at. 1973; Peck, 1976; 
Kitanidis and Bras, 1980a,b; Thiemann et at., 2001; Boyle 
et at., 2000; Misirti et at., this volume], the details of these 
will not be described here. To reduce sensitivity to errors in 
initialization of the model states, a 365-day warm-up period 
was used, during which no updating of the posterior density 
was performed. We used a populations size s of 500 and 
assumed that the output errors have a heteroscedastic (non- 
constant) variance that is related to flow level and which can 
be stabilized using the transformation, z = [(y+l)•-I ]/• with 
• = 0.3. The measurement error standard deviation of the 
runoff was chosen to be identical to the RMSE value of the 

most optimal fit (18.00 m3/s) derived by Boyle et al. [2000]. 
The algorithm converged to a stationary posterior distri- 

bution after 30000 iterations (function evaluations). Figure 
1 displays the SCEM-UA estimates of the posterior uncer- 
tainty associated with the SAC-SMA parameter estimates 
given the 11 years of Leaf River calibration data. The 
parameters ranges in this plot have been normalized accord- 
ing to their prior uncertainty ranges defined as level zero 
estimates in Boyle et at. (2000). The most likely parameter 
set is indicated with the dark line. It is interesting to note 
that almost all of the SAC-SMA parameters are fairly well 
defined by calibration to the 11-year data set. In particular, 
the capacity parameters UZTWM, UZFWM, LZTWM, 
LZFSM and LZFPM are very precisely determined, while 
parameters ZPERC and REXP (that control percotation), 
ADIMP (additional impervious area), and the rate parame- 
ters LZSK and LZPK are less well determined. 

Unfortunately, direct comparison of these findings with the 
result presented in Boyle et al. [2000] is difficult, because 
the results presented here are obtained using the trans- 
formed streamflow data. Inspection of the covariance struc- 
ture induced in the SCEM-UA generated parameter sets 
revealed that parameter correlations are typically low, con- 
firming that most of the parameters are well determined by 
calibration to streamflow data. These results seem to con- 

tradict the arguments by Jakeman and Hornberger [1993] 
that only approximately four to five conceptual watershed 
model parameters can be well defined from rainfall-runoff 
data. However, it is not clear whether their results are sensi- 

tive to the fact that they used only one year of data. 
The advantages of the SCEM-UA algorithm over the 

original SCE-UA algorithm are further demonstrated in 
Table 1, which compares the "most likely" parameter set 
found by the SCEM-UA (estimated mode of the posterior 
distribution) with the optimal parameter values derived 

using the SCE-UA global optimization algorithm developed 
by Duan et at. [1992]. The results show that the SCEM-UA 
algorithm is able to conveniently derive the posterior distri- 
bution of the model parameters, while also successfully 
identifying the globally optimal parameter values. 
Comparative testing of the SCEM-UA and SCE-UA algo- 
rithms has shown that the SCEM-UA method is less effi- 

cient than the SCE-UA (in locating the globally optimal 
parameter values) for low dimensional problems (n < 6) but 
provides comparable efficiency when searching higher 
dimensional parameter spaces. 

Finally, the Figures 2a and b present the residuals from the 
most probable parameter set and the 95% hydrograph predic- 
tion uncertainty intervals for the SAC-SMA simulated stream- 
flows associated with the posterior parameter estimates (dark- 
gray region) and the residual model uncertainty (light gray 
region), respectively for a portion of the wet calibration year 
1953. The solid circles correspond to the observed streamflow 
data. Note that the 95% streamflow prediction uncertainty 
ranges (light gray) bracket the observed flows during the 
entire period, but are quite large. Further, the prediction uncer- 
tainty associated with the posterior parameter estimates (dark 
gray) does not include the observations and displays bias (sys- 
tematic error) on the long recessions. These indicate that the 
model structure is in need of further improvements. 

Table 1. Most likely parameter sets for the SAC-SMA model 
derived with the SCE-UA global optimization and SCEM-UA 
algorithm using 10 years of runoff data (1952-1962) for the Leaf 
River watershed. Also included are three overall statistics for the 

calibration period for the selected parameter sets and the 95% 
Confidence Intervals of the parameters (CI) obtained using the 
SCEM-UA algorithm. 

SAC-SMA 

Parameter SCE-UA SCEM-UA CI 

UZTWM 16.40 16.21 12.69 19.74 

UZFWM 30.03 30.97 29.27 32.67 

LZTWM 263.8 261.6 247.5 275.7 

LZFPM 93.58 96.05 79.29 112.8 

LZFSM 29.91 25.68 16.24 35.14 

ADIMP 0.133 0.118 0.090 0.145 

UZK 0.499 0.498 0.479 0.500 

LZPK 0.018 0.019 0.017 0.021 

LZSK 0.203 0.215 0.181 0.250 

ZPERC 249.9 247.8 228.3 267.2 

REXP 3.197 3.188 2.515 3.861 

PCTIM 0.0002 0.0002 0.0000 0.0004 

PFREE 0.148 0.149 0.132 0.165 

Bias, % 3.82 3.97 
RMSE, m3/s 19.38 19.40 
R 2 0.90 0.90 



11 o SCEM-UA: EFFICIENT ALGORITHM FOR ESTIMATING PARAMETER UNCERTAINTY 

E 0.6 

ß 'o 0.4. 

._N 

E o.2 
o 

z 
o 

UZTWM UZFWM UZK PCTIM ADIMP ZPERC REXP LZTWM LZFSM LZFPM LZSK LZPK PFREE 

SAC-SMA parameter 

Figure 1. Normalized uncertainty ranges of the SAC-SMA parameters obtained after assimilating and processing 11 
years of calibration data of the Leaf River basin with the SCEM-UA algorithm. The most likely parameter set is indi- 
cated with the dark line. 

4. CONCLUSIONS 

We have presented a robust, effective, and efficient 
Markov Chain Monte Carlo algorithm, which is designed to 
estimate the most likely parameter set and its underlying 
posterior probability distribution within a single optimiza- 
tion run. The sampler, entitled the Shuffled Complex 
Evolution Metropolis algorithm (SCEM-UA), merges the 
strengths of the Metropolis Hastings algorithm, with con- 
trolled random search, competitive evolution and complex 

shuffling. An illustrative application of the SCEM-UA algo- 
rithm to the Sacramento Soil Moisture accounting model 
(SAC-SMA) has shown that the model parameters can be 
reasonably well determined by calibration to streamflow 
data. Our experience with the SCEM-UA algorithm sug- 
gests that the method is less efficient than the SCE-UA algo- 
rithm in locating the globally optimal parameter values for 
problems of low dimension, but shows comparable efficien- 
cy when searching high dimensional parameter spaces 
(n>=6). Research aimed at further improvements of the 
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Figure 2. a) Streamflow uncertainties associated with the most probable parameter set derived using the SCEM-UA 
algorithm. The light gray region denotes model uncertainty, whereas parameter uncertainty is indicated with the dark 
gray-region. The dots correspond to the observed streamflow data, b) Hydrograph prediction uncertainty associated with 
the uncertainty in the model (light gray) and parameter estimates (dark-gray region) for the WY 1953 
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Shuffled Complex Evolution Metropolis approach, includ- 
ing extensions to multi-criteria problems, is ongoing. These 
results will be discussed in future papers. 

APPENDIX 

Many authors have addressed the problem of drawing 
inferences from MCMC samplers. Gelman and Rubin 
[1992] demonstrated that it is generally impossible to 
monitor convergence of an MCMC sampler using a sin- 
gle sequence (one random walk). A strategy recommend- 
ed by Gelman and Rubin [1992] is therefore to generate 
several independent parallel sequences, with starting 
points, 0(0)s sampled from the proposal distribution. 
Convergence of the MCMC sampler can then be moni- 
tored using between sequences as well as within 
sequence information. 

Mathematically we proceed in five steps, 

1. Independently simulate q _> 2 sequences with the SCEM- 
UA algorithm outlined in section 2.2, each of length 2T, 
with starting points drawn from the proposal distribution. 
To diminish the effect of the initial draws, discard the first 
T draws of each sequence, and focus the attention on the 
last T. 

2. For each parameter of interest, calculate the mean value, 
Oi. ., using the q. T drawn values for parameter 0i, 

3. For each parameter 0i of interest, calculate the vari- 
ance between the q sequence means, 0i., each based on 
T samples 0i 

;=• q -1 

and calculate the average of the q within-sequence vari- 
ances, s 2 o,, each based on T-1 degrees of freedom, 

j//z•• S2 
j-1 q 

(A.2) 

4. Monitor convergence of the MCMC sampler by estimat- 
ing the factor by which the scale of the current distribu- 
tion of 0 i might be reduced if T -> oo. This potential scale 
reduction is estimated by 

• IT-1 q+l B T qT 14 z 
(A.3) 

and declines to 1 as T -> oo. R is the ratio of the current 

variance estimate, V, to the within-sequence variance, W. 
Due to its minor contribution, the factor to account for the 
extra variance of the Student's t distribution is omitted 

from equation (A.3). If the potential scale reduction is 

high, then we have reason to believe that proceeding with 
further draws may improve our inference about the poste- 
rior target distribution. 

5. Once R is near 1 for each of the parameters 0 i, we can 
conclude that each of the q sequences of T draws is close 
to the target distribution, p(01y). Since a score of 1 is typ- 
ically difficult to achieve, Gelman and Rubin [1992] rec- 
ommended using a value of 1.2 and less to declare con- 
vergence. 
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In any model of a hydrologic system, there is always some uncertainty associ- 
ated with model structure, parameters, states, and the input and output measure- 
ments. Therefore, it is essential to represent this uncertainty in calibration efforts. 
Bayesian Recursive Estimation (BARE) is an algorithm being developed towards 
considering these uncertainties for parameter estimation and prediction within an 
operational setting. This paper evaluates the current version of the algorithm and 
provides an application to a watershed for comparison with a conventional deter- 
ministic approach. BaRE is tested with different error models and transformation 
factors. We also introduce a measure called Forecast Range Error Estimate 
(FREE) to evaluate the model efficiency. Comparison to batch calibration using 
the Shuffled Complex Evolution (SCE-UA) optimization method indicates that 
the on-line calibration technique is a powerful tool, especially useful where basins 
are recently gauged and hydrologic data are not well accumulated. The analyses 
for this study were done using the HYdrologic MODel (HYMOD) applied to the 
Leaf River basin in Mississippi. 

1. INTRODUCTION 

The calibration of conceptual rainfall runoff models is of 
major interest due to the continual demand for more timely 
and accurate river forecasts. The goal of model calibration is 
to adjust the parameter values so that the model is con- 
strained to be consistent with the observed hydrologic data 
(e.g., streamflow). Because manual calibration is time-con- 
suming and requires unique expertise, automatic calibration 
techniques have been investigated as an effective alterna- 
tive. Many studies have focused on finding a unique param- 
eter set which gives the best match of the simulated model 
output to the observation values (e.g., Duan et al., 1992, 
1993; Sorooshian et al., 1993). There are both mathematical 
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and practical difficulties for finding this "best set", given 
that there is no perfect model to simulate nature. Therefore, 
various recent studies have been exploring efficient and reli- 
able ways to summarize the uncertainty in the estimates of 
parameter values and the subsequent output predictions, 
while obtaining estimates of the most likely parameter val- 
ues (e.g., Beven and Binley, 1992; Franks and Beven, 1997; 
Kuczera and Mroczkowski, 1998; Bates and Campbell, 
2001; Thiemann et al., 2001; Kavetski et. al., This book). 
The uncertainty in model simulations is due to several 
sources: imperfect model structure, incorrect parameter 
identification, uncertainties in the states, and erroneous 
input and output measurements. Although batch calibration 
methods have been shown to provide acceptable calibration 
results, they do not account for these uncertainties in a sat- 
isfactory way. 

One other arising issue is the overwhelming number of 
watersheds without accumulated historical data, which 
remain to be calibrated for operational flood forecasting. 
Conventional batch calibration methods assume time- 

invariant model parameter values and require a considerable 
amount of data to be used, typically 8-10 years. On-line cal- 

113 
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ibration methods can overcome this drawback by allowing 
forecasts to be generated soon after the first observation 
becomes available. Although this brings some additional 
computational cost, advances in computer technology 
lessen this concern. 

In response to these issues, Thiemann et al. (2001) devel- 
oped a Bayesian formulation, which permits the hydrologist 
to quantify uncertainty about prediction and parameter esti- 
mation in an on-line fashion. The method is called Bayesian 
Recursive Estimation (BARE). BaRE uses three sources of 
information for quantifying uncertainty in hydrologic pre- 
dictions in selecting a suitable parameter set for the model 
(i.e., model calibration); measured data, physical laws 
(model), and statistical methods. 

In this chapter, we discuss the work of Thiemann et al. 
(2001), explore how to select error model parameters, and 
conduct a comparison with the batch calibration approach. 
In the following sections, a brief summary of the Bayesian 
analysis, description of the BaRE method, and its applica- 
tion to an operational basin will be provided. 

2. BAYESIAN ANALYSIS 

In Bayesian analysis, uncertainty is quantified probabilis- 
tically. Berger (1985) gave an excellent review of the 
Bayesian approach. Assume that we are trying to estimate 
sample observation y, given the inputs •, using a model hav- 
ing an unknown parameter 060_C•k(•kdenotes k-dimen- 
sional Euclidean space). Bayesian analysis is performed by 
combining the prior information (p(0)) and the sample 
information y into what is called the posterior distribution of 
0 given y, from which all inferences are made. 

2.1. Prior Information 

An important element of Bayesian analysis is prior infor- 
mation concerning 0. The main idea of introducing prior 
probability is to reflect "before-the-fact" expectations of 
chance occurrences of an event. It typically does not depend 
on any currently available inputs or outputs. Characteriza- 
tion of prior probability can be achieved through careful 
analysis of historical data from another system having simi- 
lar characteristics. There might be a concern that the prior 
may dominate and distort the information in data. However, 
by careful choice of the model structure and appropriate pri- 
ors, Bayesian analysis can use the information from the data 
very effectively. When little or no prior information is avail- 
able, non-informative priors are suggested so as not to favor 
any possible value of O over others. When parameter set O 
has n discrete members, one possible non-informative prior 
is probability of 1/n assigned to each member. 

2.2. Posterior Distribution 

Posterior distribution p(O[y) is the conditional probabili- 
ty distribution of 0 given the sample observation y. Noting 
that 0 and y have the joint (subjective) density: 

h(y,O)= p(O)pO, 1O) (1) 

and y has the marginal (unconditional) density: 

m(y)- I p(y IO)dO (2) 

providing that m(y);e0: 

p(O [y)= h(y,O) (3) 

p(O]y) reflects the updated beliefs about 0 after observing 
the sample y. 

In discrete situations, the formula for p(O[y) is com- 
monly known as Bayes' theorem, which was introduced by 
Bayes (1763). If there exists a sequence of discrete events 
A t ..... A n with prior probabilities P(Ai)>O , and another 
event B such that p(B)>O, then Bayes' theorem states that: 

P (•' lB ) = p (B [,4 i ).V(zt i) (4) 

Here p(AilB ) is the conditional distribution of Ai, given that 
B has occurred. Replacing A i by 8 and B by y, the formula 
becomes equivalent to the one for posterior distribution. 

Although it is simple, this theorem is very useful and is 
widely used in many statistical applications. 

3. BAYESIAN INFERENCE 

The idea of Bayesian inference is that the posterior distri- 
bution is constructed to summarize all available information 

about g (both sample and prior information); therefore, 
inferences concerning g could be made solely in terms of 
the features of this distribution. 

3.1. Prediction 

To predict the values of yr+•, as yet unobserved outputs, we 
compute the predictive density of yr+• based on the previous 
observations (i.e., marginal posterior density of yr+•) as follows: 

p(yr+x I½:,y)= .[ p(y•+•;o I•,y)dO (5) 
Prediction is done by computing meaningful summary 

statistics of this density from the region of highest probabil- 
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ity density (HPD). A subset of R of the domain of p is called 
the HPD region of content 1-a if P(R)=l-a and P(Yl)->P(Y2) 
for any yl G R and y2 • R. 

3.2. Estimation 

In Bayesian estimation of a real valued parameter 
we must specify a loss function, L(•7,tz) where tzGO is the 
true value. The estimate of •7 is tzGO that minimizes the 

posterior expected loss: 

f(a)= I L(0, a)p(O i•:, y)dO (6) 
o 

where, p(Ol •,y) is marginal posterior density of •7 given as 

p(o I•,y)= lp(y•+•;o I•, y)dy•+• (7) 
Often, analyses of decision rules are carried out for certain 

standard losses such as squared-error loss, (a-t g) 2. 
However, this simple loss function does not typically reflect 
a useful measure for the calibration of hydrologic models 
because large errors are penalized too severely. 

The robustness of loss functions is questionable. However, 
because the decisions are functions of uncertain assumptions, 
this robustness problem is inevitable. Any loss used in the 
analysis will be uncertain to a degree. It is impossible 
to obtain a completely accurate specification of the loss 
function. 

3.3. Bayesian Recursive Inference 

Thiemann et al. (2001) derived a practical recursive for- 
mula for updating information about •7. Supposing that we 
are at time t = T and that all of the input and output data, y 
and •, are collected up to the current time, the recursive for- 
mula was presented as: 

p(o I•r+x,•,yr+x,y)o• P(.Yr+x I•r+x,•:;O)P( o I•,y) (8) 

Considering time steps, we can write: 

Yr+• - •7(•: 10)+ (11) 

which is a standard formulation for nonlinear regression. 

4.2. Assumptions 

There exists a one-to-one and invertible transformation: 

= = gO) (•2) 

such that the measurement errors in the transformed space, 
given by' 

• = g(y)- g(5) ( 

are mutually independent each having the exponential 
power density E(o',b') described by Box and Tiao [1973, 
Section 3.5]; 

p (v I O', r)= (O(0•)tY -1 expl-c (,fl)l v / O'12/(l+fl) 1 (14) 

where: 

{ r [3(•+ ?)/2]•/(1+?) (15) 

{F [3(1+ fl)/2 ]}1/2 
(O(fl)= (l+)fl {F[(I+/0)/2]} 3/2 (16) 

The shape parameter fiG(-1,1] is fixed and the standard 
deviation of the measurement errors o'>0 is assumed to be 

unknown but constant with respect to time. As/5' approaches 
-1, function approaches uniform distribution. On the other 
hand,/5' =1 corresponds to double exponential function. 

4.3. Recursive Formulation 

4. BAYESIAN RECURSIVE ESTIMATION (BARE) 
ALGORITHM 

4.1. Basic Formulation 

Let •7 be a mathematical model used to predict an obser- 
vation y by i• using input • and parameter •7 as' 

5 = r/(•: I 0) (9) 

and error given by: 

e= Y-i• (10) 

Following Box and Tiao (1973), Thiemann et al. (2001) 
derived the following relationship for the maximum likeli- 
hood estimate of the measurement error: 

%(0)2/(1+fi) T-1 ̂ (0)2/l(l+fi) c(.fl) ] 12/l(l+fl) = •rr + -- VT(O T T-1 T (l+fl) (17) 
(17) 

A recursive formulation for estimating the posterior den- 
sity for •7 was given as follows: 

p(•l &zr+•,z fl)o• N•(•) l •,z;•) (18) 
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where: 

1 •exp - c(fl t VT(O) 2/(1+ r) fiT (o) (19) 
4.4. BaRE Algorithm 

To approximate the posterior and conditional densities, 
Thiemann et al., (2001) used a Monte Carlo simulation 
approach as described in the following algorithm: 

Preparation: 
Select 

ß System model •=r/(• I 
ß Transformation model z=g(y) 
ß Error model 
ß Kurtosis parameter fl (Section 3.5. of Box and 

Tiao, 1973) 
ß Initial estimate for •0 of the error model 
ß Upper and lower limits for each t9 
ß Prior probability distribution for parameters Po(• 

Sampling 
ß Sample n different parameter sets 8i, = i=l .... n 

from a uniform distribution on O. 

Initialization: 

ß Set time to zero (T = 0) 
ß Initialize prior p(t•l$,z;fl)=po(8) and error model 

^ i variance estimate, tro(8 )=fro;i= 1 ...... n 

Prediction of the Output: (Considers only the model param- 
eter uncertainty at this stage): 

ß Compute transformed model output for each 
parameter set, •r+l(t9i)=g(•](•7il•));i=l .... n 

ß Sort outputs in ascending magnitude, 
ß Compute cumulative distribution function of the 

predicted output in the transformed space. 
ß Compute appropriate percentiles to define the 

HPD region for the transformed output and un- 
transform these back to the original output space. 

Prediction of the Output Measurement: (Includes the addi- 
tional uncertainty due to structural error and output meas- 
urement error as estimated by the error model) 
(No observation available yet) 

ß Define output region of interest 
- Find minimum and maximum of transformed 

zr+•(t• ) and zr+•(t• ) respectively. output, ̂ l ^ u 

[ min max • - Extend the output range to at+l, ar+l 

i.e., min ^l l ar+l ---- •T+I -- 2•(0 ) and 
max ,,u 

aT+ 1 = ZT+ 1 + 2t3(0 u ). 

- Discretize new range into na (e.g.,100) equally 
spaced points bk, k - 1,..na. 

ß Compute probability density 

i=1 Zr+l=b• 

and the cumulative probability density of the as- 
yet-unobserved output measurement in the trans- 
formed space: 

P(•+• < • I•:,y) = • P(•+• = • I•:,y) 
i=1 

where C is a constant that normalizes the total 

probability mass to 1. 
ß Compute appropriate percentiles to define the 

HPD region for •r+• and un-transform these to the 
original output space. 

Updating: (When the observation Yr+• becomes available) 
ß Compute transformed measurement. 

zr+•=g(Yr+•) 

ß Update estimates of error model variance 
t•r+•(•),i=l ..... n according to Equation (17). 

ß Compute posterior density and set it as the prior for 
the next time step 

p(O9$,z, zr+•)-C. Nr+•(Oil$,&r+•,•lzr+• p(6•l$,y), i= 1 .... ,n 
ß Set T = T + 1 and resume with prediction of out- 

put. 

MATLAB version of the algorithm is available upon request. 

5. APPLICATION 

5.1. Case Study: Leaf River Basin 

The BaRE method was applied to calibration of a conceptual 
rainfall-mnoff model of the Leaf River basin, a test basin used for 

many studies in the literature (e.g. Sorooshian et al., 1983; Brazil, 
1988; Boyle et al., 2000; Thiemann et al., 2001). This humid 
watershed is 1944 km 2 and located north of Collins, Mississippi. 

A relatively simple, five-parameter conceptual rainfall- 
runoff model named HYMOD, first introduced by Boyle et 
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Slow Flow Tank 

Qt 

Figure 1. Conceptual diagram of hydrologic model HYMOD. 

al. (2000), was used to test the algorithm. Figure 1 shows a 

diagram of the model. Model parameters are Cma x and bex p 
which are the maximum capacity and shape factor of the 
main soil water storage tank, a, the ratio determining the 
rate of water flowing through slow and quick flow tanks, 
and R s and Rq, referring to the recession constants of the 
slow flow and quick flow tanks, respectively. Parameter 
bounds are shown in Table 1. 

One year of hydrologic data, Water Year (WY) 1953, was 
used to test the algorithm and ten years (WY 1954 to 1964) 
were used for model evaluation. Figure 2 shows the precip- 
itation input for Water Year 1953. One thousand random 
parameter sets were sampled from the feasible parameter 
space. A non-informative prior probability of 1/n (n is the 
sample size, i.e., 1000 in this case) was assigned to each 
parameter set to initialize the algorithm. Transformation 
shown in equation (20) was used to deal with heteroscedas- 
tic (non-constant) variance of the measurement errors asso- 
ciated with streamflow (Hogue et al., 2000) and the struc- 
tural errors associated with the model 

focused on two model performance criteria: accuracy and 
precision. To represent the uncertainty in an efficient way 
we would ideally like to have the width of prediction 
bounds as small as possible while containing the streamflow 
data. For the accuracy measure, we used the simple Daily 
Root Mean Square (DRMS) error and percent Bias (% Bias) 
criteria defined as follows: 

DRMS- tqt - qt 
t=l 

• r comp obs) -q, 
%Bi•s: •=• 

• r obs kq t ) 
t=l 

(21) 

ß 100 (22) 

where qt øbs is the observed streamflow value at time t and 
qtcømp is the computed streamflow value at time t. 

5.2. Measure of Precision: Forecast Range Error Estimate 
(FREE) 

We refer to precision as a characteristic related to the effi- 
ciency of the prediction uncertainty bounds in representing 
the actual distribution of the observed output data. We 
defined an efficiency criterion called Forecast Range Error 
Estimate (FREE) to summarize the model performance in 
terms of both the inclusion of the observed data (desirable 
as large as possible) and the width of the prediction bounds 
(to be as small as possible while maximizing inclusion). 

g(y)=f(y+ 1)•- 1 ] //• (20) 
Table 1. Parameter bounds and best parameter sets. 

2 is referred as the transformation factor. The initial vari- 

ance of the measurement error was assumed to be 12, twice 
the variance of the streamflow values (in the transformed 
space) for the selected water year, for illustrative purposes 
only (Thiemann et al., 2001). 

To provide an objective tool to decide which transforma- 
tion factor and shape factor to use for the error model, we 

Parameter 
BaRE SCE-UA 

Bounds 

Cmax 1-500 181.91 282.51 

Bexp 0.1-2.0 0.150 0.251 
Alpha 0.1-0.99 0.667 0.861 
Rs 0.00002-0.10 0.0295 0.0100 

Rq 0.1-0.99 0.4783 0.465 

6O 

40 

20- 

0 
0 50 100 150 

I I I I 

200 250 300 350 

Day of Water Year 1953 

Figure 2. Precipitation input for Water Year 1953. 
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A positive deviation, FREE_POS, refers to the distance to 
the prediction boundary if the observation is within the pre- 
diction bounds and a negative deviation, FREE_NEG, refers 
to the same distance if the point is outside the boundary. 
FREE is the sum, over all time steps, of the absolute values 
of these two distances. 

In mathematical terms, 

obs mlh 

dt - qt - qt 

max95 obs 7 • dist t = qt - qt , at - 0 (under prediction) 
.obs _. min95 d < 0 (over prediction) ut ut • t 

(23) 

; t= 1,..n 

(24) 

If dist t, >0 -' ot, s is outside the bounds -- ,c/t 

otherwise, qt øbs is within the bounds 

I mum of negative disttl 
FREE_ NEG = (25) 

Number of negative dist t 

Sum of positive dist t 
FREE POS- (26) 

Number of positive dist t 

FREE= FREE_NE G + FREE_P O S (27) 

where q mlh is the maximum likelihood value of streamflow 
predicte•t by the BaRE algorithm at time t and q max 95 and 

t 

q?in95 are upper and lower values of 95 percentile confidence 
interval at time t, respectively, n is the total number of time 
periods. 

Smaller FREE_NEG means that more points are included 
within the bounds. Similarly, we desire FREE_POS to be 
smaller too, such that the bounds are not too wide while con- 

taining the data. 

5.3. Selection of Output Transformation Factor 

Deciding which value of the transformation factor ;t to use 
is critical because we do not know the exact nature of the 

measurement errors except that the higher the streamflow, 
the larger is the measurement error. To determine the appro- 
priate degree of transformation, we varied • between 0.1 and 
1.0 with an increment of 0.1 (1.0 refers to the un-trans- 
formed case) and plotted the changes in FREE, DRMS and 
%Bias. Figure 3 shows the variation of FREE and its posi- 
tive and negative components with transformation factor •. 
As can be seen from these plots, the results are sensitive to 
the selection of transformation factor •. Figure 4 shows that 
the accuracy measures DRMS and %Bias are relatively 
insensitive to the selection of,•. 

o FREE-POS • 

l0 

0.1 0,2 0•,3 014 015 0•,6 0•.7 d8 0•,9 
Lambda 

Figure 3. FREE measure and its components for different values 
of transformation factor,• using the BaRE algorithm for WY 1953 
(first 50 days are ignored in calculations). 

100• 
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r• 40 

DRMS 
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2(; 

lO 

(I. 1 0.2 0,3 0,4 0,5 0.6 0.7 0,8 0.9 
Lambda 

Figure 4. DRMS and % Bias with respect to different values of 2 
for WY 1953 (first 50 days are ignored in calculations). 

Figure 5 provides a visual comparison of the streamflow 
predictions made using three different transformation fac- 
tors: 0.1, 0.3, and 1.0. The transformation factor controls 

both the accuracy of the maximum likelihood prediction of 
streamflow and the width of the uncertainty bound. Not sur- 
prisingly, as ;t increases the width of the uncertainty bound 
decreases for high flows and increases for low flows. 
However, we know physically that lower flows are associat- 
ed with smaller measurement uncertainties. 

Based on this analysis, we selected a value of 0.3 for the 
transformation factor ;t, which gives the lowest FREE while 
still being relatively accurate. 
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Figure 5. Probabilistic streamflow predictions made using the HYMOD model for the Leaf River basin, Mississippi, 
(WY 1953). Solid dots denote the measured streamflow, dark regions and light- shaded region indicate the 95% confi- 
dence intervals for prediction of "true" streamflow and measured streamflow in the original output space, respectively. 
•, changes as 0.1, 0.3, 1.0, in order from (a) to (c). (b set to 0 for all cases) 

5.4. Selection of Error Model Parameter/5' 

A similar analysis was carried out to determine the appro- 
priate shape parameter,/5, of the power density function of 
the measurement errors in the transformed space. The value 
of fl was varied in the interval (-1 1], it being fixed at the 
value of 0.3. 

Figure 6 shows the variation of the FREE measure and its 
components with changing fl. The change in accuracy in 
terms of DRMS and % Bias for several values of fl is illus- 
trated in Figure 7. Plots of streamflow prediction bounds for 
four different fl values (-0.95, -0.5, 0, 1.0), in the trans- 
formed space, are shown in Figure 8. 

When fl is very close to-1.0 (corresponding to uniform 
distribution), the prediction bound of streamflow is extreme- 
ly wide. However, the prediction bound decreases to a rea- 
sonable range very quickly and differs only slightly going 
towards fl equal to 1.0. This is important because it shows 
that the results are not overly sensitive to a wide range of val- 
ues for the error model's shape factor. Analyses of these plots 
and the FREE measure suggest that values of fl between 0.0 
and 0.5 are reasonable. We chose fl equal to 0.0, correspon- 
ding to normal distribution for illustration purposes. 

uJ 
uJ 

15 

10 

5 

-o.•' -o.• _0.4 -o.• o 

Beta 

- FREE 
= FREE-POS 
: FREE-NEG 

• ,,, __; 

•' 0,4 0,6 0,8 I 

Figure 6. FREE measure and its components for different values 
of transformation factor/• using the BaRE algorithm (WY 1953, 
first 50 days are ignored in calculations). 
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Figure 7. DRMS and % Bias with respect to different values oft 
for WY 1953 (first 50 days are ignored in calculations). 

5.5. BaRE Results 

Application of BaRE using HYMOD on the Leaf River 
basin data results in the 95% confidence interval prediction 
uncertainty bounds shown in Figure 9. Figure 10 illustrates 
the uncertainty of the streamflow predictions relative to the 
maximum likelihood value of streamflow. These plots are 
shown in the original (un-transformed) output space. It can 
be seen that the 95% Bayesian confidence intervals for the 
prediction of the streamflow measurement are relatively nar- 
row while containing most of the observed data. Uncertainty 
bounds are larger for peak flows and smaller for recessions. 

The evolution of the posterior probability distributions for 
the five model parameters is shown in Figure 11. Note that 
the probability bounds reduce quickly with the incoming 
information and, within a short time period (230 days), col- 
lapse to a single line. Given the structural simplicity of the 
HYMOD model, this indicates a major problem of algo- 
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Figure 8. Probabilistic streamflow predictions made using the HYMOD model for the Leaf River Basin, Mississippi, 
(WY 1953). Solid dots denote the measured streamflow, dark region and light shaded region indicate the 95% confi- 
dence intervals for prediction of "true" streamflow and measured streamflow in the original output space, respectively. 
j• changes as -0.95, -0.5, 0., 1.0, in order from (a) to (d). (,;L set to 0.3 for all cases). 
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Figure 9. Probabilistic streamflow predictions in the original output space fl = 0 and •[ = 0.3. 
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Figure 10. Streamflow uncertainties relative to the most probable forecast. (fl = 0; $[ = 0.3) 

rithm overconfidence, which we believe to be related to not 

explicitly accounting for model structural error and placing 
too much confidence in the observed output data. Our on- 
going research is directed at resolving this problem, with 
one strategy being to impose an entropy factor on either the 
prior or the likelihood, thereby attenuating the strength of 
the information either from the observation itself or from the 

model simulation up to that time step. 

5.6. Comparison With Batch Calibration 

To compare the performance of BaRE with conventional 
calibration using this limited amount (one-year) of data, the 
SCE-UA method developed by Duan et al. (1992, 1993) 
was applied to the same watershed using HYMOD with 
DRMS as the objective function. For both cases, the trans- 
formation factor $t was set to 0.3. The calibrated model 

parameters selected by the SCE-UA algorithm are shown by 

stars at day 365, in Figure 11. Even though BaRE uses only 
a discrete sample of 1000 parameters sets in the feasible 
parameter space, it is promising that its maximum likeli- 
hood parameter set is very close to the SCE-UA set at the 
end of the water year. 

Comparative values are shown in Table 1 and the criteri- 
on statistics are shown in Table 2. Again, DRMS and %Bias 
are used as measures of accuracy. The DRMS estimate of 
model residual standard deviation is also used to construct 

the 95% confidence interval prediction uncertainty bounds 
explicit to the SCE-UA algorithm. The streamflow hydro- 
graph corresponding to the optimal parameter set along with 
the prediction uncertainty bounds is plotted in Figure 12. 

5.7. Model Evaluation 

For evaluation purposes the best parameter set chosen by 
SCE-UA method and the most likely parameter set selected 
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by BaRE water year 1953 were used to evaluate the model 
performance over an independent 1 O-year period (WY 1953 
to WY 1964) for the Leaf River basin. The residual variance 
estimate (in the transformed space) from the calibration 
period was used to compute the 95% confidence intervals 

for the forecasts. Figure 13 and 14 shows these forecasts for 
the wettest year (WY 1961) within the 10-year evaluation 
period. Comparative statistics are shown in Table 2. Note 
that the model performance is quite similar for both cases. 
Although BaRE was not developed to provide a single point 
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Figure 11. Evolution of parameter probabilities for the HYMOD parameters Cmax, bexp, a, Rs, Rq Shades from dark- 
er to lighter correspond to 99, 95, 68, and 10 percentile confidence intervals, respectively. (* shows the location of SCE- 
UA optimal parameter set). 
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Figure 12. Leaf River basin calibration for Water Year 1953 using the Shuffled Complex Evolution (SCE-UA) algorithm. 
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Figure 13. Hydrograph for WY 1961 as a part of 10-year evaluation period (WY 54 to WY 64) generated by BaRE 
method's most likely parameter set et the end of calibration period. 
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Figure 14. Hydrograph for WY 1961 as a part of 10-year evaluation period (WY 54 to WY 64) generated by SCE-UA 
method's best parameter set at the end of calibration period. 

estimate of the parameters for forecasting, this analysis indi- 
cates that the maximum likelihood parameter set provides 
an acceptable deterministic forecast. 

6. SUMMARY AND DISCUSSION 

In this paper, we have discussed a Bayesian recursive 
parameter estimation and output uncertainty prediction 
approach based on the work of Thiemann et al. (2001). To 
reduce the subjectivity of the algorithm, we used accuracy 
and precision criteria to select the output transformation fac- 
tor and the shape factor of the error model. The Daily Root 
Mean Square (DRMS) and the percent Bias (% Bias) meas- 
ures were used as measures of accuracy. For precision, we 
proposed a new measure called the Forecast Range Error 
Estimate (FREE). The performance of different shape and 
transformation factors were evaluated with respect to accu- 
racy and precision. The confidence interval estimates of the 

forecast prediction were found to be quite sensitive to the 
choice of transformation factor, ,•, whereas it showed litre 
sensitivity to the choice of shape factor,,b', within reasonable 
values (except when approaching a uniform distribution). 

The approach was applied to a real watershed streamflow 
prediction problem, using a relatively simple hydrologic 
model called HYMOD (Boyle et al., 2000). Despite the use 
of a simple model, the BaRE algorithm was successful at 
providing flow predictions close to the observed stream- 

Table 2. Summary of statistics. 

Calibration Evaluation 

BaRE SCE-UA BaRE SCE-UA 

DRMS 25.96 19.77 28.11 27.79 

% Bias 7.92 3.67 6.12 15.31 
FREE 12.86 7.47 7.35 6.73 

FREE_POS 10.7 3.54 2.66 2.01 
FREE NEG 2.16 3.93 4.69 4.72 
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flow, with reasonable uncertainty estimates. The accuracy 
of the results compares well with the popular SCE-UA 
batch calibration method. 

The BaRE algorithm can serve as a very useful tool, espe- 
cially in cases where not enough historical hydrological 
data have been accumulated or the data have gaps that make 
conventional batch calibration methods difficult to apply. 
We are investigating improvements of the algorithm that 
will provide better estimates of the uncertainty of the hydro- 
logic model parameters and streamflow forecasts by explic- 
itly accounting for the model structural error, and by using 
progressive re-sampling of the HPD parameter space. The 
goal is to improve sampling of the HPD parameter space 
while not collapsing to single point estimates. These 
improvements will be discussed in future papers. 
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The goal of model calibration is to achieve a reduction in model uncertainty by 
efficiently extracting information contained in the calibration data. Gupta et al. 
[1998] noted that several complementary criteria should be used to extract infor- 
mation about different model components or parameters, thereby enhancing the 
overall identifiability of the model. The traditional multiple criteria approach has 
been to select several different criteria and then merge them together into a single 
function for optimization. However, Gupta et al., [1998] proposed that there is 
significant advantage to maintaining the independence of the various performance 
criteria and that a full multi-criteria optimization should be performed to identify 
the entire set of Pareto optimal solutions. This paper presents a brief overview of 
the MOCOM-UA algorithm [Yapo et al., 1997] that uses a population evolution 
strategy (similar to that employed by the SCE-UA algorithm) to converge to the 
Pareto set via a single optimization run. The abilities of the MOCOM algorithm 
to identify an approximation of the Pareto solution set are illustrated via a simple 
hydrologic model calibration example. 

1. INTRODUCTION 

The goal of model calibration is to efficiently extract the 
information contained in the calibration data, so as to 

achieve a reduction in the model uncertainty. The process of 
extracting this information should result in the identification 
of a smaller parameter region (contained within the feasible 
parameter space). The greater the information content of the 
calibration data, and the more efficient the calibration pro- 
cedure, the smaller the reduced parameter space is expected 
to be, resulting in a smaller range of possible values on each 
model forecast. In the limit, however, the size of the 
reduced parameter space will only approach a unique 
"point" if there is simultaneously an absence of model struc- 
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tural error (model is perfect) and the measured data are free 
of systematic biases; in the usual case, the reduced parame - 
ter space will remain of finite size. 

It has been argued that, in general, many popular concep- 
tual watershed models are over-parameterized and that only 
a limited subset of their parameters can be identified by 
means of optimization procedures [Beck et al., 1993; Beck, 
1994, Beven, 1989; Jakeman and Hornberger, 1993; among 
others]. In other words, it has been suggested that several 
parameter sets can yield very similar results in terms of the 
objective function value. This phenomenon has been termed 
"equifinality" by Beven and Binley [ 1992], "equally proba- 
ble parameter sets" by van Straten and Keesman [ 1991 ], and 
"acceptable sets" by Klepper et al. [1991 ]. Such arguments 
are based on the probabilistic representation of parameter 
uncertainty. 

However, others have argued that significant improve- 
ments in the model calibration can be achieved by using 
additional kinds of information for calibration and/or vali- 

dation [for example, De Grosbois, 1988; Yan and Haan, 
1991;Mroczkowski et al., 1997] and by exploiting the data 
in better ways. This view, as stated in Gupta et al. [1998], 
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raises the issue of complementarity of information; i.e., to 
improve the identification of the optimal parameter sets it is 
necessary to identify optimization criteria (objective func- 
tions) that measure different (complementary) aspects of 
system behavior. In principle, different criteria can be 
selected that are better able to extract information about dif- 

ferent model components or parameters, thereby enhancing 
the overall identifiability of the model. 

Of course, the use of multiple objectives within the con- 
text of hydrologic modeling and hydrologic model calibra- 
tion is not new. A common approach has been to establish 
several different criteria and then merge them together into 
a single function for optimization [e.g. Emsellem and de 
Marsily, 1971; Neuman, 1973; Yan and Haan, 1991a,b; 
etc.]. This is often supplemented by the use of additional 
observed fluxes and/or state variables to verify the result 
[Kuczera, 1983a,b; De Grosbois et al., 1988; Hooper et al. 
1988; Woolhiser et al., 1990; Ambroise et al., 1995; 
Mroczkowski et al., 1997, etc.]. However, Gupta et al., 
[1998] proposed that there is significant advantage to main- 
taining the independence of the various performance crite- 
ria and that a full multi-criteria optimization should be per- 
formed to identify the entire set of Pareto optimal solutions 
[see also Gupta et al., this volume, "Advances ..."]. By ana- 
lyzing the tradeoffs among the different criteria, the hydrol- 
ogist is able to better understand the limitations of the cur- 
rent hydrologic model structure, and gain insight into possi- 
ble model improvements. One way of obtaining an approx- 
imation of the Pareto solution set is to construct a weighted 
sum of the different criteria and to run a number of inde- 

pendent single criteria optimization runs for different values 
of the weights. This procedure is quite inefficient. Yapo et 
al. [1997] presented an alternative procedure that uses a 
population evolution strategy (similar to that employed by 
the Shuffled Complex Evolution (SCE-UA) algorithm) to 
converge to the Pareto set via a single optimization run. The 
algorithm, entitled Multi Objective COMplex evolution 
(MOCOM-UA) was developed at the University of Arizona 
and has been applied successfully in numerous hydrologic 
and hydrometeorologic model calibration and evaluation 
studies [see Gupta et al., 1998, 1999; Yapo et al., 1997; 
Bastidas et al. 1999, 2001, 2002; Boyle et al., 2000, 2001; 
Wagener et al., 2001;Xia et al., 2002; Meixner et al., 2002; 
Laplastrier et al., 2001; among many others]. 

This paper presents a brief overview of the MOCOM-UA 
algorithm and discusses some of its properties. The abilities 
of the MOCOM algorithm to identify an approximation of 
the Pareto solution set are illustrated via a simple hydrolog- 
ic model calibration example. For further examples of its 
application, please see the references mentioned above and 
also other chapters in this book [Boyle et al., this volume, 

Parada et al., this volume, Meixner et al., this volume, and 
Bastidas et al., this volume]. 

2. MULTICRITERIA EVALUATION OF 

HYDROLOGIC MODELS 

Consider a system S for which a hydrologic model H is to be 
identified. Assume that the mathematical structure of the model 

is essentially predetermined and fixed and that physically real- 
istic upper and lower bounds on each of the model parameters 
can be specified a priori (thereby def'ming the feasible parame- 
ter space- i.e., the initial uncertainty in the parameters). Assme 
also that measurement data on several of the system states 
and/or output fluxes (say D• through Dk) may be available 
which can be used to evaluate the performance of the model. 
The goal of model calibration now becomes that of finding val- 
ues for the model parameters 0 so that the model-simulated 
fluxes match all k of these (non-commensurable) measurement 
data of state variables and/or fluxes as closely as possible. 

The following development follows Gupta et al. [1998]. 
Construct the extended data vector D = {D• ..... Dk] and let 
y(O) = {y•(O) ........ yk(O) } represent the corresponding vec- 
tors of estimated model output fluxes generated using the 
parameter values 0. The difference between the model-sim- 
ulated fluxes and the measurement data can be represented 
by E(O) = G(y(O)) - G(D) = {e•(O) ........ edO)], where the 
function G allows for various user-selected linear or non- 

linear transformations (such as log, power, weighting, max, 
min, median, mean, etc.). The goal, therefore, is to find val- 
ues for the parameters 0 so that E is, in some sense, made as 
close to "zero" as possible. The standard approach is to 
define some measure L of the "length" of vector E and to 
then find the values of the model parameters 0 that mini- 
mize L. However, given that the individual vector compo- 
nents ek(0 ) are not directly commensurable (i.e., each repre- 
sents the model's ability to simultaneously match a different 
model state variable or output flux), there is no unambigu- 
ously "correct" (objective) way in which to minimize the 
"length" of the error E(O). In fact, because the model will, in 
general, be unable to simultaneously match all aspects of 
observed system behavior, there will generally be several 
feasible solutions - each of them reflects a different trade-off 

in the matching of the various aspects of observed behavior. 
Formally, the problem can be posed as a multi-objective 

optimization problem: 

minimize F(0) = minimize { f1,1(0) ....... , fk,m(0 ) } 
wrt 0 wrt 0 

where rn different norms can be ascribed to each flux simulta- 

neously in an attempt to extract additional information from a 



GUPTA ET AL. 127 

single signal. (In the example presented in this paper, m = 1). 
The solution to this problem consists of P(O), a "Pareto 
Optimum" set of solutions in the feasible parameter space 
which defines the minimum parameter uncertainty that can be 
achieved without stating a subjective relative preference for 
minimizing one specific component of F(O) at the expense of 
another. The Pareto set is defined such that any member 0i of 
the set has the following properties: (1) For all non-members 
0j, there exists at least one member 0i such that F(0i) is strictly 
less than F(0j), and, (2) it is not possible to find 0j within the 
Pareto set such that F(0•) is strictly less than F(0i) (by "strictly 
less" it is meant fq(0•) < fq(0i) for all q = 1 ..... k). 

The multi-objective formulation results, therefore, in the 
partitioning of the feasible parameter space into "good" 
solutions (Pareto solutions) and "bad" solutions. In the 
absence of additional information, it is not possible to dis- 
tinguish any of the "good" (Pareto) solutions as being 
objectively better than any of the other "good" solutions 
(i.e., there is no uniquely "best" solution). Further, every 
member 0i of the Pareto set will match some characteris- 
tics of the system behavior better than every other member 
of the Pareto set, but the trade-off will be that some 

other characteristics of the system behavior will not be as 
well-matched. A powerful advantage of this approach is 
that it includes the "best" solution for each error compo- 
nent of the vector F, e.g., the classical single objective 
optimum value for each separate function is an element of 
the Pareto set. 

3. MULTICRITERIA OPTIMIZATION 

The multi-criteria optimization problem defined above 
has been studied extensively in the field of optimization the- 
ory [see e.g., Goicoechea et al., 1982; Haimes et al., 1975]. 
Because the Pareto set typically consists of an infinite num- 
ber of solutions, most multi-criteria techniques attempt to 
identify a countable number of distinct solutions distributed 
within the Pareto region. Classical methods for obtaining 
such solutions can be categorized as a posteriori methods, a 
priori methods, and interactive methods. Examples of a pos- 
terior methods (also called generating techniques) include 
the weighting method [Zadeh, 1963], the g-constraining 
method [Marglin, 1967], and the goal attainment method 
[Gembicki, 1974]. Examples of a priori methods include the 
goal programming and the compromise programming meth- 
ods [Zeleny, 1974]. Examples of interactive techniques 
include the surrogate worth trade-off method [Haimes et al., 
1975] and the trade-off development method (TRADE) 
[Goicoechea et al., 1976]. Presentations and discussions of 
these methods and others can be found in textbooks 

[Goicoechea et al., 1982; Szidarovsky et al., 1986] and in 

review papers [Hipel, 1992; Szidarovsky and Szenteleki, 
1987; Yapo et al., 1992; Hendricks et al., 1992]. 

Although the classical approach is simple to implement, it 
carries a heavy price: for each discrete Pareto solution, a 
complete single-criterion optimization problem must be 
solved. If as in Sorooshian et al. [1993], each single-objec- 
tive optimization run requires as many as 10,000 function 
evaluations, a hundred Pareto solutions will require in the 
neighborhood of a million function evaluations! The 
MOCOM-UA algorithm provides a much more efficient 
approach, capable of providing 100 or more Pareto solutions 
within a single optimization run using only about 10,000 to 
20,000 function evaluations. 

The MOCOM-UA is a general-purpose global multi- 
objective optimization algorithm that does not require sub- 
jective weighting of the criteria, and provides an efficient 
estimate of the Pareto solution space with only a single opti- 
mization run. The algorithm is related to the SCE-UA pop- 
ulation evolution method reported by Duan et al. [1993; see 
also the chapter by Duan in this book]. For a detailed 
description and explanation of the method, please see Yapo 
et al. [ 1997a,b]. In brief, the MOCOM-UA method involves 
the initial selection of a "population" of p points distributed 
randomly throughout the rl-dimensional feasible parameter 
space 19. In the absence of prior information about the loca- 
tion of the Pareto optimum, a uniform sampling distribution 
is used. For each point, the multi-objective vector E(O) is 
computed, and the population is ranked and sorted using a 
Pareto-ranking procedure suggested by Goldberg [1989]. 
Simplexes of r]+l points are then selected from the popula- 
tion according to a robust rank-based selection method 
[Whitley, 1989]. The MOSIM procedure, a multi-objective 
extension of the Downhill Simplex method [Nelder and 
Mead, 1965], is used to evolve each simplex in a multi- 
objective improvement direction. Iterative application of the 
ranking and evolution procedures causes the entire popula- 
tion to converge towards the Pareto optimum. The proce- 
dure terminates automatically when all points in the popula- 
tion become non-dominated. The final population provides 
a fairly uniform approximation of the Pareto solution space 
P(O). The MOCOM-UA algorithm is presented below: 

1. To initialize the process, choose a population size s >> 
n where n is the dimension of the problem (experience 
suggests that s should be at least 100 and can be as 
large as 500 to get acceptable results). 

2. Generate a population D of s points randomly (uni- 
formly) distributed over the feasible parameter space. 
Compute the function vector F at each point. 

3. Sort the s individuals using Pareto ranking (described 
later) and store the corresponding ranks in R = { ri, i= 1, 
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.... s}. Set Rma x to be equal to the maximum rank 
obtained. 

4. If Rma x --1, then all the points have become mutual- 
ly non-dominated, so stop. Otherwise evolve the 
sample population using the multi criteria complex 
evolution procedure outlined below and return to 
step 3. 

The multi criteria complex evolution algorithm is 
presented below: 

1. Assign a selection probability Pi to each member of the 
population according to: 

Pi = (Rmax - ri + 1)/([Rmax + 1]. s - sum{ri, i=l ..... s}) 
2. Construct A to be the set of points having largest rank, 

such that A = { xi • D I ri = Rmax} and store the relative 
position of xi in D in L. Set n^ equal to the number of 
points in A. 

3. Select one point j, from A (without replacement) and n 
remaining points from D according to the probability 
distribution Pi , i=l ..... s with Pj = 0 and form sim- 
plex Sj. Let wj = xL0) = A0) = point to be evolved. Do 
this for all j = 1, ... , n^. 

4. Then evolve each simplex { Sj }, j=l, ... , n^ independ- 
ently using the MOSIM algorithm presented below. 
Replace wj, j=l, ..., n^ into A. 

5. Replace A into D using the indices stored in L and return 
to step 4 of the MOCOM-UA algorithm presented 
above. 

The MOSIM algorithm used by the multi criteria complex 
evolution procedure is presented below: 

1. Sort the simplex { S }, so that the points are in order of 
increasing rank. Set S w to be the member of the simplex 
having the largest rank and assign Fw = F(Sw). This is 
the "worst" point and has been target for evolution. 

2. Compute the centroid Sg of the simplex after excluding 
S w . 

3. Attempt a reflection step by computing the reflection 
point S ref: •/Sg q- (1-7)S w using 7=2 and compute F ref = 
F(Sref). Perform a test for dominance among the points 
S 1 .... S ref. If S ref is non-dominated by the other points 
set Snew=S ref and Fnew--F ref and proceed to step 5. 
Otherwise proceed to step 4. 

4. Compute a contraction step S con = •,Sg + (1-7)S w using 
7=0.5 and compute F cøn = F(Scøn). Set Snew=S cøn and 
Fnew=F cøn and proceed to step 5. 

5. Replace the worst point S w in { S } by S new and store its 
associated function value F new. Return to step 4 of the 
complex evolution algorithm presented above. 

Like the SCE-UA method, MOCOM-UA treats the glob- 
al search as a process of natural evolution. The s sampled 
points constitute a population. Each member of the popula- 
tion is a potential parent with the ability to participate in 
reproduction. To ensure that the evolution process is com- 
petitive, we require that "better" parents have a higher prob- 
ability of contributing to the generation of offspring, by 
using a triangular probability distribution function for par- 
ent selection. The MOSIM procedure is applied to each sim- 
plex to generate the offspring, using the information con- 
tained in the simplex to direct the evolution in an improve- 
ment direction. Each new offspring replaces the worst point 
of the current simplex. 

Because in a multi-criteria problem several criteria are to 
be considered simultaneously, ordered ranking of the popula- 
tion by conventional scalar sorting is not possible and the 
concept of inferiority-superiority is used instead. The special 
sorting used in MOCOM-UA is called "Pareto ranking" 
[Goldberg, 1989]. It begins by identifying all non-dominated 
individuals in the population and assigning them rank "one". 
These points are then set aside, and the non-dominated points 
of the remaining set are assigned the rank "two". This proce- 
dure is repeated until every point has been assigned a rank. 
Thus, the smallest ranked points are closest to the Pareto set 
while the largest ranked points are furthest away. 

To illustrate these concepts, Figure la shows a set of 
points sampled from a two-dimensional model parameter 
space (at the initiation of the MOCOM-UA algorithm), plot- 
ted in a two-dimensional function space where the aim is to 
simultaneously minimize both functions F^ and FB. The 
shaded region bounded by the dashed line indicates the 
actual region in the function space that maps from the entire 
feasible parameter space. The solid line labeled AB indi- 
cates the theoretical Pareto set of solutions. Note that point 
A minimizes function F^ while point B minimizes function 
FB and all other points on the solid line represent different 
trade-offs in simultaneous minimization of the two func- 

tions. All points in the shaded region that do not belong to 
the Pareto frontier AB are "inferior" or "dominated" points. 
The best-ranked points in the population are indicated by 
closed circles and the worst ranked points are indicated by 
closed squares. Figure lb illustrates the distribution of the 
points at the termination of the MOCOM-UA procedure. 
The points are now all mutually non-dominated and provide 
an approximation to the location of the Pareto frontier. It 
should be noted that due to use of a finite number of sample 
points in the population, it will be typically impossible 
for the MOCOM-UA to place the points exactly on the 
Pareto frontier, but the solution can be made to asymptoti- 
cally approach the theoretical solution with increasing 
population sizes. 
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b) 

Figure 1. Two-dimensional (F^, FB) function space, with shaded region corresponding to the feasible parameter space. 
a) Solid line AB indicates the theoretical Pareto solution set. Closed circles indicate best-ranked points. Closed squares 
indicate worst-ranked points. b) Distribution of mutually non-dominated points at the termination of the MOCOM-UA 
procedure, providing an approximation to the Pareto frontier. 

4. A SIMPLE MULTICRITERIA MODEL 

CALIBRATION CASE STUDY 

We illustrate the use of the MOCOM-UA algorithm by 
means of a simple case study involving calibration of the 
HyMOD conceptual watershed model using data from the 
Leaf River watershed near Collins, Mississippi (1950 km2). 
The illustrative study presented here uses approximately 2 
years (28 July 1952 to 30 September 1954) of hydrological 
data for model calibration. The data, obtained from the 

Hydrologic Research Laboratory (HRL), consists of mean 
areal precipitation (mm/day), potential evapotranspiration 
(mm/day), and streamflow (m3/s). Because the HyMOD 
model and Leaf River data have been discussed extensively 
in previous work [Sorooshian et al., 1993; Duan et al., 
1993, 1994; Yapo et al., 1996; Boyle, 2000; Vrugt et al. 
2002; Misirli et al. in this book], the details will not be 
described here. To reduce sensitivity to state value initial- 
ization, a 65-day warm-up period was used. 

Bezause any conceptual rainfall-nmoff model will, in general, 
be unable to match all the different aspects of the watersheds 
behavior observed in the measured hydrograph, we follow Boyle 
et al. [2000] and partition the hydrograph into a driven (D) and 
non-driven (ND) part, based on information from the measured 
hyetograph. A pair of Root Mean Squared Error (RMSE) crite- 
ria were computed, FD to measure the ability of the model to sim- 
ulate the driven portion of the hydrograph response, and FND to 
measure the ability of the model to simulate the non-driven por- 
tion. The MOCOM-UA optimization algorithm was used to esti- 
mate the Pareto set of parameters that simultaneously minimize 
both FD and FND USing a population size of 500 points. Figure 2 
shows the 500 MOCOM-UA solutions plotted (using dots) in the 
two-criterion FND versus FD criterion space. The trade-off in abil- 

ity of the model to simultaneously match the driven and non- 
driven portions of the hydrograph is clearly illustrated by the 
Pareto solution set, pointing to structural inadequacies in the 
model. Figure 2 also shows the individual single-criterion solu- 
tions (indicated using the dark circle symbols), obtained by sep- 
arately calibrating the model to only the driven or the non-driv- 
en portions of the hydrograph using the SCE-UA global opti- 
mization algorithm [see chapter by Duan in this book]. These 
represent the theoretical end points of the Pareto solution set. 
Note that the final population of parameter sets obtained by 
MOCOM-UA provides a fairly uniform estimate of the middle 
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Figure 2. F D versus FND Pareto solutions estimated by the 
MOCOM-UA algorithm. For explanation see the text. 
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region of the Pareto frontier, but does not represent the two ends 
well. We have found this inability to uniformly cover the extreme 
parts of the Pareto region to be a characteristic failing of the cur- 
rent version of MOCOM-UA algorithm. Methods to improve the 
algorithm are being investigated. 

The MOCOM-UA algorithm has one parameter (the pop- 
ulation size s) that must be specified by the user. Figure 2 
illustrates the sensitivity of the MOCOM-UA solution to 
this parameter. The figure shows the Pareto frontier esti- 
mates obtained using the four different population sizes of 
20, 50, 100 and 500. The population size of s=20 (triangle 
symbols) provides a very poor approximation to the Pareto 
frontier, and the Pareto estimates move closer to the origin 
with increasing population size. However, the improvement 
in the estimate of the Pareto set when increasing s from 100 
to 500 members (open circle symbols and dot symbols 
respectively) is marginal, while resulting in a considerable 
increase in the number of function evaluations (from 1907 
to 14994) required for algorithm convergence. In other stud- 
ies we have generally found that a population size of 250 
works well for most multi-criteria optimization problems 
having between two and four optimization criteria. 

For completeness, Figure 3 shows a plot of the trade-off 
uncertainty in the simulated hydrographs associated with the 
500 Pareto solutions (light-gray region) and the observed 
data (circles) for a portion of the Water Year 1953. Although 
the model generally simulates the variations in the observed 
hydrograph very well, the inability of the model to properly 
simulate portions of the data, particularly the long slow 
recessions (even for parameter sets on the Pareto frontier 
that give the smallest values for Fmr)) indicates that attention 
may need to be given to improving the model components 
that control this portion of the simulated response. 

5. SUMMARY 

Significant improvements in model calibration can be 
achieved by using multiple sources of information and by 
exploiting the data in better ways. We, among others, have 
suggested (see also Gupta et at., the first chapter of this 
book) that the identification of model parameters can be 
improved by using multiple optimization criteria that meas- 
ure different (complementary) aspects of system behavior. A 
common approach has been to establish several different 
criteria and then merge them together into a single function 
for optimization. However, there is significant advantage to 
maintaining the independence of the various performance 
criteria, since a full multi-criterion optimization will allow 
an analysis of the tradeoffs among the different criteria and 
enable the hydrotogist to better understand the limitations of 
the current hydrologic model structure. This chapter pres- 
ents a brief overview of the MOCOM-UA algorithm [Yapo 
et at., 1998] and discusses some of its properties. The algo- 
rithm uses a population evolution strategy, similar to that 
employed by the SCE-UA algorithm, to converge to the 
Pareto set via a single optimization run. The abilities of the 
MOCOM algorithm to identify an approximation of the 
Pareto solution set were illustrated via a simple hydrologic 
model calibration example. In general the algorithm per- 
forms well, but fails to properly approximate the extreme 
ends of the Pareto frontier, suggesting that further improve- 
ment of the methodology is warranted. For problems having 
between two and four optimization criteria, we recommend 
using a population size of approximately 250. The 
MOCOM-UA code can be obtained by contacting the 
authors. 

Water Year 1953 

400 - ' ' ' • ' I ii•. I , 

80 100 120 140 160 180 200 220 240 260 

Day in water year 
Figure 3. Hy&ograph uncertainty ranges (shaded region) associated with the P•eto solution set for p• of Water Ye• 
1953. Circles comespond to the obse•ed strea•ows. 
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Hydrologic Model Calibration in the National Weather Service 

Michael B. Smith •, Donald P. Laurine 2, Victor I. Koren •, Seann M. Reed •, 
and Ziya Zhang • 

Comprehensive procedures have been developed by the NWS for calibration of 
the conceptual hydrologic models used in river forecasting. These procedures are 
designed to achieve model parameters that are consistent between calibration and 
operational forecasting. Using these procedures, model parameters are derived 
using calibration data sets in a way that minimizes biases and errors when used in 
operational forecasting using real time estimates of precipitation, temperature, 
and evaporation. An overview of the data analysis techniques and manual cali- 
bration steps for rainfall-runoff models is presented. Future enhancements to the 
calibration process will also be discussed. 

1. INTRODUCTION 

The National Weather Service (NWS) has a mandate to 
provide forecasts for the Nation's rivers. To fulfill this mis- 
sion, the NWS uses its River Forecast System (NWSRFS) at 
13 River Forecast Centers (RFCs) to provide daily stage fore- 
casts at over 4,000 points. Research and development to sup- 
port the NWSRFS is conducted within the Hydrotogy Lab 
(HL) of the NWS Office of Hydrologic Development (OHD). 
Within the NWSRFS are algorithms for hydrologic and 
hydraulic models as well as procedures for data ingest, dis- 
play and analysis of results, and other functions. Interested 
readers are referred to Stallings and Wenzet [1995], Larson et 
at., [1995], Fread et al., [1995], and Monroe and Anderson 
[1974] for more information regarding the structure and mis- 
sion of the NWS fiver forecasting program. 

While calibration of hydrologic models is widely consid- 
ered a standard step in any application, the mandate 
assigned to the NWS to forecast the Nation's rivers has 
immense implications regarding the calibration and imple- 
mentation of hydrologic and hydraulic models on a national 
scale. Since the introduction of calibration procedures over 
two decades ago, [Brazil and Hudlow, 1981 ], a great deal of 
effort has been directed toward improving and streamlining 
the calibration procedures. The purpose of this paper is to 
present an overall view of the current NWS hydrologic 
model calibration process, from deriving the input data sets 

Calibration of Watershed Models 

Water Science and Application Volume 6 
Copyright 2003 by the American Geophysical Union 
10/1029/006WS 10 

to incorporating the calibrated parameters and other infor- 
mation into the operational forecasting system. Contained 
within the NWSRFS are also hydrologic and hydraulic 
channel routing algorithms. However, the calibration of 
these models is beyond the scope of this paper. 

Figure 1 presents the major components of the NWSRFS 
and shows that the Calibration System (CS) is a significant 
component of the entire functional structure. In the CS, time 
series of historical forcings are prepared and model param- 
eters are calibrated. In the Operational Forecast System 
(OFS), real time data are used with the calibrated hydrolog- 
ic and hydraulic models to produce forecast river stages sev- 
eral days into the future. The Interactive Forecast Program 
(IFP) allows the hydrotogist to make run-time adjustments 
to account for non-standard conditions. The historical time 

series of precipitation, temperature, and potential evapora- 
tion are used to generate a suite of long term probabitisitic 
forecasts weeks or months into the future in the Ensemble 

Streamflow Prediction system (ESP). Statistical procedures 
are used to quantify the uncertainty of these forecasts with- 
in a designated window. 

The primary rainfall-runoff model used for operational 
forecasting in the NWS is the Sacramento Soil Moisture 
Accounting (SAC-SMA) model. Methods described in this 
paper will address the calibration of the parameters of the 
SAC-SMA. Interested readers are referred to Koren et at., 
[this volume], Burnash et at., [1973], Burnash [1995] and 
Finnerty et at., [1997] for more complete descriptions and 
applications of the SAC-SMA model. 

Basically, the SAC-SMA is a two layer conceptual model 
of a soil column, with several modifications to account for 
the spatial variability of certain processes. Six types of 
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Figure 1. Main Components and Data Flow within the NWSRFS (adapted from Johnson et al., [1999]) 

runoff can be generated to form a complete runoff hydro- 
graph. Each of the two layers in the SAC-SMA contains a 
tension water and free water component. Rain falling on 
the soil column first encounters the upper zone. Here, rain 
falling on any impervious areas generates impervious area 
runoff, while rain falling on the non-impervious areas of 
the basin first encounters the upper tension water storage. 
After filling this reservoir, excess soil water enters the 
upper zone free water. Water in this free water storage can 
percolate into the lower zone storages or flow out as inter- 
flow. If the upper zone free water fills completely, then 
excess soil water flows out as surface runoff. Most perco- 
lated water flows into the lower zone tension water storage, 
although some can go directly to free water storages in the 
lower zone. Upon filling the lower zone tension water stor- 
age, all soil water moves into the two lower zone free water 
storages. These two free water storages generate fast and 
slow responding base flow. The combination of these two 
base flows is designed to model a variety of hydrograph 
recessions. The SAC-SMA also has a variably-saturated 
area component from which saturation excess runoff is 
generated. 

The snow model within NWSRFS is the snow accumula- 

tion and ablation model (Snow-17) developed by Anderson 
[1973]. Snow-17 is a conceptual model of a point snow col- 

umn with an areal depletion curve used to determine the por- 
tion of the area being modeled that has snow cover. Snow- 
17 uses temperature as an index for the amount of energy 
exchange at the snow-air interface with separate equations 
for rain-on-snow and non-rain melt and for heat transfer dur- 

ing periods when melt is not occurring. The major Snow-17 
parameters that are calibrated include those that control the 
seasonal variation of non-rain melt events, and areal deple- 
tion curve parameters. Overall results from Snow-17 com- 
pare favorably to those obtained with a complete energy bal- 
ance model except during unusual meteorological situations 
such as periods with high dew-points and wind speeds 
[Anderson, 1976]. Further research is underway in HL to 
compare Snow-17 with energy balance models. 

2. THE VALUE OF CALIBRATION IN THE NWS 

Model calibration leads to obvious major benefits for oper- 
ational forecasting. With a well calibrated model, real time 
simulations should more closely follow observed streamflow, 
resulting in more accurate forecasts with a longer lead-time 
into the future. Such well-calibrated models should require 
fewer run-time modifications to keep the models on track. 
Also, models that can simulate historical conditions with a 

known degree of accuracy allow for reliable probabilistic 
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forecasts to be made for predictions of streamflow and other 
variables weeks or months into the future. 

In addition, the manual calibration process also allows the 
user to develop a much deeper understanding of the data and 
the models and their limitations. This process is a chance for 
the calibrator to develop an understanding of the sensitivity 
of model parameters, interactions between parameters, 
effects of hydrologic inputs, and the knowledge of system 
mechanics. Calibration is an important evolutionary step in 
the development of an effective hydrologic forecaster who 
will be better able to apply the models for operational use. 

Operationally, the forecaster is often required to make 
many adjustments to the hydrologic model to account for 
model and data errors. These adjustments are critical to the 
ability of the system to properly forecast future events. 
There are many options available for the forecaster to 
accomplish the same result in simulating the forecast hydro- 
graph. Through guided interactive trial and error calibration, 
the hydrologist gains knowledge and experience to be used 
in selecting the proper adjustment. 

Another important value gained through calibration is an 
understanding of the physical process occurring in the water- 
shed and how well the calibrated model simulates those 

processes. Most fiver basins are very complex. For example, 
a typical basin in the western U.S. can be affected by reser- 
voir operations, diversions, agricultural consumptive use, 
return flows, and basin geographical variability. Many of the 
current hydrologic models can only approximate these phys- 
ical processes. Through calibration, the forecaster can build 
an awareness of model limitations and basin processes. The 
information gained provides the level of confidence the fore- 
caster places on the forecast procedure. 

Two basic approaches exist for the calibration of model 
parameters. The first is a manual trial-and-error method 
[Anderson, 2002], and the second involves the use of auto- 
mated optimization programs. For the conceptual models cur- 
rently in use in the NWS, interactive manual calibration that 
follows a logical strategy is recommended in order to pre- 
serve the physical basis of the model parameters and an 
appropriate variability of the parameters among watersheds in 
a basin. Automatic optimization can be used in conjunction 
with the manual steps. At various points in the calibration 
process, many tools including geographic information system 
(GIS) based programs are available to assist the hydrologist. 

3. REGIONAL APPROACH FOR CALIBRATING 

A RIVER BASIN 

It is usually recommended that data analysis and calibra- 
tions be performed on a large area or river basin basis rather 
than on an individual watershed for several reasons. Details 

of this procedure can be found in publications by Anderson 
[2002] and a comprehensive calibration training video 
developed by the NWS in conjunction with the Hydrologic 
Research Center [Hydrologic Research Center, 1999]. First, 
the meteorologic processes that control the development of 
precipitation, temperature, and evaporation variations occur 
on a scale much larger than a typical watershed, especially 
in mountainous areas. In order to properly understand these 
processes, the data analysis should be performed on a 
regional and not watershed scale. Such an approach also 
facilitates more efficient historical data retrieval and analy- 
sis since many precipitation, temperature, and other stations 
are common to several watersheds in a basin. If historical 

data analysis is performed on a watershed by watershed 
basis, then redundant downloading and processing of station 
data occurs. 

Second, it is much more likely to achieve a realistic and 
consistent set of parameters using a strategy that examines 
the spatial variability of physiographic features and hydro- 
graph response to guide the variation of parameters among 
watersheds within a basin. Physiographic features which 
affect model parameters such as topography, type of soils, 
and vegetation can be viewed to note areas of significant 
similarity or difference. Such qualitative information can be 
used to subjectively determine how model parameters can 
be expected to vary across a basin. If such physiographic 
features appear to be spatially invariant, the analyst can 
expect that the calibrated parameters from one watershed 
can be used as reasonable starting points for calibration of a 
neighboring watershed, resulting in a more efficient calibra- 
tion effort. 

Observed streamflow data show the integrated effects of 
all basin features and can also be used to qualitatively assess 
the spatial variability of hydrologic model parameters across 
watersheds in a basin. Observed discharges can be scaled to 
the drainage area of one of the watersheds and then plotted 
on semi-log scale. Hydrographs that show similarities in 
base flows and storm runoff indicate that the hydrologic 
model parameters could be quite similar to one another. 

4. SOURCES OF DATA FOR MODEL CALIBRATION 

The primary source of historical data for model calibra- 
tion is the National Climatic Data Center (NCDC), which 
collects and maintains an archive of measurements of pre- 
cipitation, temperature, evaporation, and other meteorologic 
variables. Data in digital form are readily available starting 
in 1948, with recent efforts underway to convert the entire 
period to digital format. In HL, recent work has begun to 
develop direct Internet links to the NCDC archive through 
web servers [G. Bonnin, NWS HL, personal communica- 
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tion, 2001]. Such efforts should alleviate the need for the 
NWS to maintain its own archive of the NCDC data sets. 

Streamflow data have traditionally been available from 
the United States Geological Survey (USGS) in the form of 
mean daily flow. For many years, these were the only 
observed streamflow data available for hydrologic model 
calibration in the NWS. Mean daily flow data are derived 
from hourly or sub-hourly streamflow measurements (unit 
values) that have been quality controlled. Recently, the 
USGS has been making available unit value streamflow 
data from its local field offices for research and calibration 

needs. These data are provisional in that no quality control 
procedures have been performed on them. Calibration at 
sub-daily time steps is critical as the NWS moves to hydro- 
logic modeling at finer spatial and temporal time scales as 
part of its distributed modeling efforts for river and flash 
flood forecasting [Zhang et al., 2001; Smith et al., 1999]. 
Other data available from the USGS are limited peak flow 
data, as well as reservoir pool elevation data. 

An emerging source of data for model calibration is the 
archive of operational real time data collected each day at the 
13 RFCs. As part of their operations, RFCs can receive thou- 
sands of observations of temperature, precipitation, and 
streamflow each day. These data are stored in custom data 
bases within NWSRFS and are processed to generate daily 
river forecasts. On a regular basis, a copy is made of these 
data and stored in the NOAA Hydrologic Data System 
(NHDS) to become available for future calibration efforts and 
research studies [Pan et al., 1998; Bonnin, 1996]. Data from 
the NWS series of WSR-88D Next Generation Radar plat- 
forms (NEXRAD) are also included in the NHDS archive. 
Individual RFCs often maintain their own archive of their 

operational data files. A limited set of utilities are available 
for converting these data from an operational format to a stan- 
dard format used in the calibration system. Currently, efforts 
are underway to develop a consistent RFC archive data base 
design [D. Page, NWS HL, personal communication, 2002]. 

Other sources of data used for calibration include the 

Natural Resources Conservation Service (NRCS) and its 
Snowpack Telemetry (SNOTEL) system. SNOTEL provides 
year round temperature and precipitation data in remote, 
mountainous areas primarily in the western United States. 

5. MAJOR STEPS IN THE CALIBRATION PROCESS 

The calibration process is comprised of the following 
three general steps: 

1. Analysis of historical data and derivation of time 
series of observed precipitation, temperature, and 
potential evapotranspiration. 

2. Calibration of hydrologic model parameters so that 
simulated streamflow agrees with observed data. 

3. Implementing the calibrated parameters and data 
analysis information into the operational forecast 
system. This step will not be explicitly discussed 
here. The interested reader is referred to Anderson 

[2002] for details on this important issue. 

5.1. Analysis of Historical Data 

5.1.1. Overview. Analysis of historical data to derive 
multi-year time series of mean areal precipitation, tempera- 
ture, and potential evaporation proceeds according to the 
steps shown in Figure 2. Time series of precipitation are 
derived using the Mean Areal Precipitation preprocessor 
(MAP) while corresponding mean areal time series of tem- 
perature and potential evaporation are produced using the 
MAT and MAPE preprocessors, respectively. These time 
series are then used as forcings in the calibration of hydro- 
logic model parameters. Henceforth, the acronyms MAP, 
MAT, and MAPE will denote both the times series of data 
as well as the preprocessor that computes them. 

As shown in Figure 2, different analysis procedures are 
available for each variable depending on whether the area is 
non-mountainous or mountainous. For precipitation, an area is 
non-mountainous if the long term annual or seasonal station 
means are within a range of _+5%. If the range is greater than 
this, the mountainous area analysis should be used. Similarly, 
this criteria applies to the analysis of temperature and evapora- 
tion as well. In non-mountainous areas, it is assumed that any 
station can be used to estimate missing data at another station 
without making any adjustments for differences in magnitude. 
Moreover, spatial averages of the variables can be computed 
using station weights that are based solely on their location in 
the x,y plane. In non-mountainous areas, the station weights 
always sum to a value of 1.0. 

Terrain differences are usually the main factors requiting 
the use of mountainous area procedures for analyzing precip- 
itation, temperature, and evaporation. In these procedures, 
long term station means are accounted for in the estimation of 
missing data and information other than simple station loca- 
tion is used to derive station weights for the computation of 
areal averages. Station weights in mountainous areas usually 
sum to a value greater than 1.0. In mountainous areas, water- 
sheds are frequently sub-divided in order to properly model 
the accumulation and ablation of the snow cover. 

The HL-developed Calibration Assistance Program 
(CAP) contains data sets and tools that are primarily used 
for the analysis of mountainous areas. CAP is a national 
ArcView GIS- based suite of tools that facilitates the deri- 

vation of basin sub-divisions, model parameters, potential 
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Figure 2. Historical Data Analysis Steps and NWSRFS Programs. 

evaporation estimates, and mean areal estimates of precipi- 
tation and temperature. Moreover, CAP also contains satel- 
lite snow cover maps that can be used in conjunction with 
observed streamflow hydrographs and area elevation curves 
to identify different regimes that occur over the watershed. 
CAP also contains vegetation maps to help identify such 
regimes. The Appendix provides more details about the 
functions available in CAP. 

It is very important that the resultant time series of pre- 
cipitation, temperature, and evaporation are properly scaled 
to accurately represent what actually occurred in nature. 
Tests have shown that 10% variations in MAP time series 

can result in variations in simulated streamflow volumes of 

nearly 25% [Anderson, 2002]. Similar results have been 
reported for biases in the MAT time series. Even a bias of 
a few degrees can cause a significant shift in the timing of 
snowmelt. Parameters calibrated using such biased forc- 
ings will be distorted and lead to sub-optimal forecasts. 
Also, the MAP, MAT, and MAPE time series derived in 

calibration are used for ensemble forecasting, so biases in 
these time series can lead to degraded ensemble forecasts. 

5.1.2. Station selection. Analysis begins with the selec- 
tion of stations to be used to derive the historical time 

series of mean areal precipitation, temperature, and in 
some cases evaporation. For precipitation, it is advisable to 

look for hourly and daily stations with at least 5 and prefer- 
ably 10 or more years of complete data. Since precipitation 
can be quite spatially variable, all stations located in the 
basin having good quality data are selected, as well as some 
outside the basin. For each daily station, it is important to 
note the location of hourly stations so as to have informa- 
tion needed to disaggregate the daily values. In mountain- 
ous areas, stations further out from the basin may need to be 
used to adequately represent higher elevations. In the current 
NWSRFS, only daily max/min temperature observations are 
used to generate historical MAT time series. Given that tem- 
perature is generally less spatially variable than precipita- 
tion, fewer temperature stations are required. Generally, all 
stations within and near the basin with long records are 
selected for analysis. Additional stations outside the basin 
with shorter periods of record are used if needed to properly 
represent high elevations. In contrast to precipitation sta- 
tions, temperature stations with a long period of record are 
needed due to limitation in the current processing programs. 
Pan evaporation sites and stations with meteorological data 
to compute potential evaporation are selected to properly 
represent the variation in evaporation over the basin. 

5.1.3. Quality control. Quality control procedures are 
applied to the station data prior to the derivation of time 
series of mean areal values of the variables. These proce- 
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dures are necessary to avoid having a bias between one 
period of the calibration record and another. If an individ- 
ual station receives considerable weight in the computa- 
tion of the mean areal value, then inconsistencies in the 
station data will be translated to the mean areal value 

time series. Parameters calibrated from a period before 
the inconsistency will not be the same as parameters cal- 
ibrated using the period after the inconsistency. If the 
period used for calibration does not reflect the current 
status of the station, then operational results will be 
biased. 

The main quality control procedure for precipitation, 
temperature and potential evaporation data is to check the 
consistency of a station using double mass analysis. 
Double mass analysis can be performed in the MAP, MAT, 
and MAPE programs. Inconsistences appear as long term 
shifts in the general slope of the station accumulation 
curve. Such inconsistencies can result from man-made 

changes in station location, changes in equipment (e.g., 
addition of a shield to a rain gage), or changes in station 
exposure due to surrounding vegetation. Shifts due to 
such changes should generally be corrected. Thus, station 
history information is critical to identifying man-made 
effects that must be corrected. Double mass plots are dis- 
played of stations grouped geographically, so that any 
shifts in one station can be compared to nearby stations. 
Such grouping helps identify when natural climatic 
changes occur in a region. Shifts such as these should not 
be corrected. Sharp discontinuities in double mass plots 
often indicate bad raw data values. In general, if there is 
any doubt as to whether a consistency correction is neces- 
sary, it is advisable not to make the correction. Pan et al., 
[1998] have developed the Interactive Double Mass 
Analysis (IDMA) tool, which is a graphical user interface 
to automate the generation of double mass plots and cor- 
rection factors. 

5.1.4. Generation of mean areal precipitation time 
series. As seen in Figure 2, non-mountainous and moun- 
tainous area procedures can be used to derive time series 
of mean areal values of precipitation. In non-mountainous 
areas, any station can be used to estimate missing data at 
other stations. Also, simple station weighting schemes 
such as Thiessen polygons or inverse distance squared 
weighting can be used to compute time series of mean 
areal precipitation values using the MAP program. 

For analysis of precipitation in mountainous areas, addi- 
tional steps are needed that require the use of the 
Preliminary Precipitation Processing Program (PXPP). 
The primary function of PXPP is to relate precipitation sta- 
tions having different periods of record by generating 

monthly means of all stations. These monthly means are 
then used to condition the estimates of missing data. The 
basic equation for missing data estimation in both PXPP 
and MAP is' 

p•= i=1 i=n (1) 

i=1 

where Px is the precipitation at the station being estimated, 
Pi is the precipitation at the estimator station, n is the num- 
ber of estimating stations, i is the station being used as an 
estimator, Px is the mean monthly precipitation for station 
x, Pi is the mean monthly precipitation for station i, and Wi,x 
is the station weight, computed as: 

w•.,• d. 2 (2) 

where di,x is the distance from station x to estimator i. 
The use of monthly means in Equation 1 attempts to 

account for orographic effects in areas having significant 
elevation range. In non-mountainous areas it is assumed that 
there is little spatial variability in long term station means. 
Hence, the ratio of station monthly means drops out of 
Equation 1 in such cases. Other functions in PXPP include 
double mass analysis and the generation of consistency cor- 
rections. In addition, PXPP also contains correlation analy- 
ses to aid in the determination of station weights in moun- 
tainous areas. 

In mountainous areas, an isohyetal analysis is needed to 
compute a long term mean areal precipitation value over a 
watershed in order to understand the relationship between 
the precipitation measured at stations and that which usual- 
ly occurs over an area. The long term mean areal value is 
used to derive weights for stations that are used to compute 
not only the historical MAP time series but also weights for 
stations that are used operationally but were not in the his- 
torical data set. This procedure helps ensure that biases are 
not introduced between the calibration and operational sys- 
tems when different stations are used. 

Isohyetal maps are available from several sources. In 
some rare cases, such maps may have been developed as 
part of a previous study. The method outlined by Peck and 
Brown [1962] to create isohyetal maps can also be used 
using some of the output from PXPP. Recently, monthly dig- 
ital isohyetal maps for large parts of the country have been 
developed by Oregon State University for the Natural 
Resources Conservation Service (NRCS) as part of the 
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Precipitation- elevation Regressions on Independent Slopes 
Model (PRISM) project [Daly et al., 1994]. Data from 
PRISM are contained in CAP. 

Once an isohyetal map is obtained or derived, the map is 
analyzed and modified to ensure that it is appropriate for the 
period of analysis and computation of the MAP time series. 
Water balance analyses for the watershed in question and 
surrounding watersheds can also be used to validate the iso- 
hyetal map. 

After any elevation zones or sub-divisions are derived, 
annual or seasonal mean areal precipitation values need to 
be computed for each watershed or zone using the proce- 
dures described above. These means are then used in the 

computation of station weights. For this computation, 
Equation 3 is used: 

s 

S ' •S 
5=1 

where W is the station weight, i is the station whose weight 
is being computed, s is the season of the year, N is the total 
number of stations with weight, R is the relative station 
weight, A is the long term areal mean precipitation, and S 
is the station long term mean precipitation. 

The determination of the relative weights R is a subjec- 
tive process and is based on the user's knowledge of the 
basin as well as types, coverage, and directions of storms, 
and station intercorrelation. Typically, station weights W 
sum to a value greater than one to reflect the fact that the 
gages tend to catch less than the basin as a whole. Both sea- 
sonal and annual station weights can computed. 

Equation 3 provides the user with a method of calibrating 
a basin with data from one set of precipitation stations and 
then operationally forecasting with a potentially different 
set of stations. Because of the use of the term A derived 

from the isohyetal analysis, stations that were not part of the 
historical network can be added to the operational network 
without introducing a bias into the computations. New sta- 
tions can be added to the operational network after an esti- 
mate of the long term station mean S is derived. 

After using PXPP to perform consistency checks and 
compute monthly means, program MAP is used with the 
station weights Wi,s to compute a time series of mean areal 
precipitation values. Usually, a 6 hour time step is selected, 
although other time steps can be specified. 

The use of gridded precipitation estimates from the 
NEXRAD platforms presents similar challenges. Research 
in the NWS and elsewhere has shown that hydrologic model 
parameters calibrated using rain gage data are most likely 

not directly applicable for use with radar data [Johnson et 
al., 1999; Smith et al., 1999; Bradley and Kruger, 1998, 
Finnerty et al., 1997]. As a result, re-calibration of rain- 
gage based model parameters should be considered for use 
with radar precipitation estimates. However, the period of 
NEXRAD data available for calibration is not long enough 
for effective calibration in most areas of the country. Also, 
changes in processing algorithms may have contributed to 
time-dependent inconsistencies in the data, making calibra- 
tion of continuous hydrologic models a difficult task. 
Consequently, use of NEXRAD data for calibration and 
forecasting continues to be an active area of research. 

5.1.5. Generation of mean areal temperature time series. 
Time series of temperature are primarily needed for use 
with Snow-17 as well as frozen ground computations in the 
SAC- SMA. The main program for computing time series of 
mean areal temperature is the MAT program. MAT contains 
procedures for computing missing data and for computing 
consistency corrections. Using observed daily maximum 
and minimum temperatures and station weighting schemes, 
MAT computes a 6-hour time series of mean areal tempera- 
tures for a watershed. An assumed diurnal variation is used 

to convert the daily maximum-minimum temperatures into 
a 6 hour time series. Equation 4 is the general equation for 
estimating missing maximum and minimum temperatures 
within the MAT program for both non-mountainous and 
mountainous areas: 

Tx-- Ti q- T i ' wx, i 
Tz = i=1 (4) i=rt 

i=1 

where T is the computed maximum or minimum temperature 
value, T is the mean value, x is the station being estimated, i 
is the estimator station, n is the number of estimator stations, 

and w is the weight applied to each estimator, computed as: 

1.0 
= (5) 

wx'i dx, i + Fe ' A Ex, i 
where dx, i is distance, AEx, i is elevation difference and F e is 
the elevation weighting factor. In non-mountainous areas, 
distance is the dominant factor in determining which sta- 
tions are used as estimators of missing data, so a value of 
zero is used for F e in Equation 5. For the computation of 
time series of mean areal temperature, station weights in 
non- mountainous areas are automatically computed using 
an inverse distance scheme. 
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In order to compute mean areal values of temperature 
over a mountainous watershed or sub-area of a watershed, 

seasonal variations of maximum and minimum temperature 
with elevation are developed on a regional basis. These 
temperature-elevation relationships are developed using the 
program TAPLOT program as shown in Figure 2. Straight 
line relationships are generally fitted to the data for each 
month which should represent physically realistic lapse 
rates, generally in the range of 0.3 to 0.8 øC/100m. 
Temperature-elevation relationships are primarily used to 
extrapolate temperatures from lower to higher elevations 
due to a general lack of high elevation data in most basins. 

The computation of time series of MAT in mountainous 
areas centers around the use of a synthetic station estab- 
lished at the mean elevation of each watershed or zone. A 

synthetic station is one with no observed data. All data for 
the station is estimated from surrounding real stations. and 
the synthetic station is assigned a predetermined weight of 
1.0. Mean monthly max and min temperatures for the syn- 
thetic station are derived from the temperature-elevation 
plots and are used in Equations 4 and 5 to estimate missing 
data for the synthetic station. Using this method, an MAT 
time series is derived that reflects the average conditions 
within each elevation zone. As with precipitation, proce- 
dures are used to minimize biases between the calibration 

and operational station networks. The same synthetic sta- 
tions and corresponding mean monthly temperatures must 
be defined in the operational system and given full weight. 
New stations can be added to the operational network after 
computing a best estimate of the long term mean monthly 
maximum and minimum temperatures. 

% 

5.1.6. Generation of evapotranspiration data. The SAC- 
SMA requires evapotranspiration demand (ET Demand) as 
input. ET Demand is the evaporation that occurs given that 
moisture is not limiting and considering both the type and 
activity of vegetation. Thus, while PE is defined for an 
actively growing grass surface, ET Demand is based on the 
actual vegetation in the area and how active that vegetation 
is given the time of the year and other factors. As shown in 
Figure 2, two methods for generating estimates of ET 
Demand for calibration and operational forecasting are 
available. In the first method, the SAC-SMA will accept a 
daily PE value in conjunction with a seasonal adjustment 
curve. The second method uses mean monthly values of PE 
and a seasonal adjustment curve. 

In the first approach, daily estimates of potential evapora- 
tion demand are computed using meteorological data from 
synoptic stations and the Penman [1948] equation. In this 
case, the net radiation is estimated from sky cover data 
according to the method of Thompson [1976]. In these 

cases, time series of mean areal estimates of potential evap- 
oration are computed using the MAPE program using a 
simple distance weighting scheme or user defined station 
weights. However, skycover measurements at some stations 
have recently been discontinued so that reliable values of 
daily PE can no longer be computed. In light of this, 
research is underway in HL to investigate new methods of 
computing PE. One requirement for a new method is that 
any data used for calibration must have the same statistical 
properties as the data used for operational forecasting. 

In the second method, monthly estimates of PE are devel- 
oped from published tables of evaporation pan measurements 
and other information [Farnsworth and Thompson, 1982]. 
Average monthly pan evaporation values from stations in and 
around the basin are used to derive an average monthly curve. 
The pan coefficient is applied to create an evaporation 
demand curve. Finally, the curve is adjusted to show the aver- 
age effects of transpiration, resulting in an ET Demand curve. 
Traditionally, vegetative effects were estimated based on a 
users knowledge of the type of vegetation in the basin. 
Recently, a methodology to derive these monthly adjustment 
factors based on Normalized Difference Vegetative Index 
(NDVI) greenness fraction data has been developed in HL. 
This procedure has been incorporated into CAP. 

In non-mountainous areas, estimates of PE are adjusted to 
the evaporation maps derived by Farnsworth and Peck 
[ 1982]. In mountainous areas, these maps aren't of sufficient 
detail to determine PE for individual watersheds or sub- 

watersheds. In these areas, the recommended approach is to 
derive a basin-wide relationship between PE and elevation. 
Water balance computations are then performed and the MAP 
time series is adjusted to achieve a correct water balance. 

With either method of computing evapotranspiration, pro- 
cedures are designed to ensure that the long term mean areal 
value of potential evapotranspiration used in calibration is 
the same used in operational forecasting. This is accom- 
plished by using the free water surface evaporation maps 
published in Farnsworth and Peck [ 1982] as a standard. 

5.2. Hydrologic Model Calibration 

The next major step is to use the MAP and MAT time series 
and PE estimates as observed forcings to calibrate the hydrol- 
ogic model parameters. Primarily, manual techniques are 
used and a systematic and proven strategy is followed for cal- 
ibrating each of the parameters within the SAC-SMA and 
SNOW-17 models [Anderson, 2002; Hydrologic Research 
Center, 1999]. While at times intensive, manual calibration 
provides the user with an opportunity to learn the inner work- 
ings of the hydrologic models. Consequently, the user will be 
better equipped to use the models in an operational setting. 
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The primary program used for model calibration is the 
Manual Calibration Program (MCP). MCP is basically the 
same as the OFS with the main exception being that the 
hydrologic models are executed over multi-year calibration 
periods rather than multi-day or multi-week forecast peri- 
ods. MCP allows for the computation of a number of good- 
ness-of- fit statistics. A significant enhancement to the man- 
ual calibration process has been the recent development of 
the Interactive Calibration Program (ICP). This tool is a 
powerful graphical user interface for executing MCP. ICP 
displays the simulated and observed hydrographs for the run 
as well as the SAC-SMA and Snow-17 model states and 

runoff components for the entire run period. Plate 1 shows 
the main displays within ICP. In this display, the hydrograph 
from February 1, 1979 to April 28, 1979 is presented, along 
with the corresponding SAC-SMA runoff components and 
states in the various SAC-SMA storages. In the extreme 
upper pane is displayed the rainfall hyetagraph with the 
computed runoff. Below that, the 6 runoff components from 
the SAC-SMA are displayed as a percentage, allowing the 
user to clearly see which components comprise a stream- 
flow response at any time. Below that is a pane that shows 
the states of the tension and free water storages in the SAC- 
SMA. Lastly, the bottom pane shows the computed and 
observed hydrographs. A similar display is available for the 
Snow- 17 model. 

ICP has the capability to display previous simulations so 
that the effects of an individual parameter change can be eas- 
ily identified. With ICP, parameter changes and subsequent 
model runs and output displays can be performed in seconds. 
In spite of this high turnaround speed, it is advised that the 
user pause before displaying the new simulation and ask him- 
self: "What effect should I see with this change?" If the 
expected result is not achieved, the user is encouraged to 
investigate potential causes rather than quickly making anoth- 
er parameter change. In this way, the process of manual cali- 
bration produces a set of optimum parameters and gives the 
user more expertise with the inner workings of the models. 

Along with visual inspection fa the hydrographs, good- 
ness-of-fit statistics are computed to guide the process as 
well as to determine when the calibration phase is complet- 
ed. While a large number of statistics are computed, the 
dominant statistics are overall, seasonal, and flow interval 
biases. Also, the accumulation of the differences between 
simulated and observed flows over time should be exam- 

ined. A check of the statistics as well as visual evaluation of 

the simulated hydrographs are performed after parameter 
changes to help guide the user through the process. A vari- 
ety of statistical measures are available for evaluating the 
final results, but these are not usually helpful when makfng 
individual parameter changes. 

Before parameter calibration begins, calibration and veri- 
fication periods need to be selected. Experience has shown 
that the SAC-SMA needs at least an 8 year period for param- 
eter calibration in wet areas. In drier regions, a longer peri- 
od may be necessary in order to obtain enough events to 
consistently force all the model components. If possible, a 
calibration period is identified that contains a number of 
large precipitation events as well as several extended peri- 
ods where base flow is dominant. Such a period is necessary 
to ensure that all the SAC-SMA components are activated a 
number of times. For verification, an independent period 
containing flows outside of the range in the calibration peri- 
od is selected. Such a period allows the user to understand 
how the model might behave in an operational setting with 
extreme events. 

A suggested strategy for calibrating watersheds within a 
basin has been developed by Anderson [2002]. Generally, 
the watershed with the best data and fewest complications is 
calibrated first. Next, other headwater areas with minimal 

complications, as well as downstream local areas where a 
good local hydrograph can be generated, are calibrated. 
These calibrations use the spatial assessment information to 
determine which previously calibrated parameters should be 
used as initial values. Here, only parameters that need to be 
changed are adjusted. Lastly, parameters are assigned to 
remaining watersheds from a calibrated area with similar 
hydrologic conditions. Minor adjustments to parameters are 
sometimes possible to remove biases, but a full calibration 
is not possible for these basins. 

Anderson's [2002] proposed strategy should not only 
result in realistic and spatially consistent parameters, but 
should also greatly reduce the amount of time required for 
calibration. After the initial headwater calibrations, subse- 

quent calibrations should require less effort because the 
process is generally one of making adjustments to only a 
few parameters and not performing a full calibration. 

Initial values for some of the SAC-SMA model parameters 
can be derived through analysis of the observed streamflow 
data [Anderson, 2002; Burnash, 1995; Peck, 1976]. Typically, 
good initial values of the base flow withdrawal coefficients 
can be reliably obtained through hydrograph analysis, as can 
the size of the upper zone tension water storage. In some cases, 
initial values of the sizes of the lower zone baseflow storages 
can be obtained. Alternatively, initial SAC-SMA parameters 
derived using the method discussed in Karen et al., [this vol- 
ume] can be used. (The interested reader is referred to Karen 
et al., [2000] for more details, while the work of Duan et al., 
[2001] discusses an application of these initial parameters). 
The NWS also provides guidelines for selecting initial param- 
eter values for the snow model based on forest cover, typical 
amount of snow experienced, and other information. 
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Once initial values of the SAC-SMA and SNOW-17 mod- 

els are obtained for the first headwater area, manual calibra- 

tion with ICP proceeds according to a systematic strategy 
developed by Anderson [2002]. Without a systematic proce- 
dure and knowledge of the model, parameters could be 
derived that are out of a reasonable range yet still provide 
acceptable statistics [Burnash, 1995]. Examples of the 
effects of changing each of the SAC-SMA and Snow-17 
model parameters have been developed to help the user 
understand how the hydrographs change [Hydrologic 
Research Center, 1999]. 

The main steps in this strategy are summarized as follows: 

1. Remove gross overall errors, usually volume errors. 
The annual percent bias statistic should be within _+10 
percent before continuing ( _+ 20 percent in areas with 
small amounts of annual runoff). Large volume errors 
are usually caused by initial parameter values way out 
of range, or large errors in the MAP, MAT or MAPE 
time series. Errors such as these should be corrected 

because they will mask the effect of any subsequent 
parameter changes and will hinder the calibration 
process. 

2. Obtain reasonable simulation of observed baseflow. 

Even though the models will be used primarily for 
flood forecasting, the best calibration results are 
obtained when the entire model is calibrated properly, 
starting with baseflow. Since the volume of storm 
runoff is linked to the percolation of water to the 
lower zone in the SAC-SMA, the proper simulation of 
baseflow will result in an improved simulation of fast 
response storm runoff. The size of the two baseflow 
storages are adjusted as well as the withdrawal coeffi- 
cients. At this point it is advisable to check for the 
existence of riparian vegetation effects. Important 
considerations here are the proper division between 
fast and slower baseflow responses. 

3. Adjust major snow model parameters. Here, parame- 
ters governing the melt rates and volume of snowmelt 
runoff are examined. Also, if a significant number of 
events where the form of precipitation is not typed 
correctly (i.e., rain vs. snow), it may be necessary to 
change the MAT time series so that the major events 
have the correct form of precipitation. These changes 
are sometimes necessary due to deficiencies caused by 
the use of a constant diurnal temperature variation and 
only daily maximum and minimum temperatures. 
Model parameters cannot be adjusted to account for 
mistyping of events. 

4. Examine SAC-SMA tension water capacities. These 
two storages act as thresholds to govern the timing of 

runoff generation as well as the size of soil moisture 
deficits that can occur in response to evapotranspira- 
tion. To determine the proper values of these parame- 
ters, one looks at the time when the deficits are great- 
est, and then how the model responds when the 
deficits are filled. 

5. Adjust parameters governing the generation of fast 
response or storm runoff. The proper separation 
between baseflow and fast response runoff is examined 
under a wide range of soil moisture conditions. In addi- 
tion, parameters affecting the separation of fast response 
runoff into interflow and surface runoff are adjusted. 

6. Final adjustments. These involve changes to the unit 
hydrograph, adding in riparian vegetation effects, and 
adjustments to the evapotranspiration demand function. 

Often the user will need to return to a previous step and 
refine a parameter value that was previously adjusted. Due 
to the interactions of many of the SAC-SMA parameters, 
adjustments to one parameter to achieve a primary effect 
will also result in a secondary effect that must be corrected 
through subsequent interactive parameter adjustment. 
Following the calibration of the initial headwater area, the 
strategy described earlier for calibrating the remaining 
watersheds in the basin is followed. 

A common question regarding model calibration is 'when 
is the calibration finished?' The NWS recommends several 

criteria for evaluating when a calibration is finished: 

1. All biases between the simulated and observed hydro- 
graphs have been removed such that only random 
error remains. There should be no seasonal trends. 

Also, there should be no trends in peak flow estima- 
tion, as well as trends at low and intermediate levels. 

2. Each parameter properly models the intended portion 
of the streamflow hydrograph. In such cases, the mod- 
els should have a better chance of operationally simu- 
lating events outside the calibration period. 

3. Parameter sets should have a logical spatial pattern 
among watersheds. Calibrated parameter sets for the 
watersheds in a basin should logically follow the 
assessments derived by examining the spatial varia- 
tion of physiographic features and hydrologic 
response across a basin. 

RFCs are encouraged to derive statistical criteria of their 
own in order to assess the quality of their calibrations to 
meet program goals. The following statistical criteria are 
also suggested as targets: 

1. Overall percent bias within _+5% 
2. Random variation in monthly biases (ie, no positive or 
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negative seasonal trends greater than _+5%, especially 
during periods of high flows.) 

3. Flow interval biases within _+ 5%. 

Certainly, there are many cases in which the calibration 
cannot achieve the suggested criteria. To a large degree, this 
is governed by the availability and quality of the historical 
data [Burnash, 1995] and the variability of the meteorolog- 
ical conditions. In such cases, it is recommended that poten- 
tial causes for the final statistics be documented. These data 

are then retained and made available during operational 
forecasting to assist the forecaster. Moreover, it should be 
expected that some trends exist simply due to the limitations 
of lumped modeling and the use of an index to compute 
snowmelt. 

HL is heavily engaged in the development of distributed 
models to take advantage of spatial variability of precipita- 
tion and physiographic features. Approaches including 
semi- lumped (i.e., sub-basins) [Boyle et al., 2001; Smith et 
al., 1999] have been developed that show improvement in 
hydrograph simulation is some cases. Recently, a gridded 
distributed model has been developed and tested [Zhang et 
al., 2001]. Accompanying the continuing development of 
distributed approaches and increasing availability of spatial 
data sets comes the corresponding problem of parameter 
estimation and calibration. To a large extent, the calibration 
problem centers on the need to adjust the parameters in each 
computational element when observed streamflow is avail- 
able only at the basin outlet. 

Within HL, several approaches for distributed model cal- 
ibration are being evaluated. One approach scales the a- 
priori estimates for each element using a ratio of the spa- 
tiatty averaged a-priori estimates to the calibrated lumped 
parameters. 

6. AUTOMATIC CALIBRATION 

Long standing collaboration with university research has 
led to a successful integration of automatic optimization 
procedures into the NWS calibration system. These efforts 
have tried to remove the subjectivity and reduce overall 
time required by manual calibration. Research by Duan et 
al., [1992] and Sorooshian et at., [1993] has led to the 
incorporation of the shuffled complex evolution (SCE) 
scheme into the suite of available optimization procedures. 
Also, an adaptive random search algorithm developed by 
Brazil [1989] has been made available. These methods 
optimize a single objective function, such as the daily root 
mean square error (DRMS). Gupta et at., [1999] conclud- 
ed that automatic calibration methods have progressed to 
the point where they may be expected to perform with a 

level of skill approaching that of a well-trained hydrolo- 
gist. This does not mean that the skill of the hydrotogist is 
no longer necessary, but rather that more confidence may 
be placed in the use of these automatic tools to assist in the 
calibration process. 

Automatic optimization has been used in NWS field 
offices in several ways. In some cases, automatic calibration 
is used to fine tune a parameter set after manual calibration 
is complete. Other field personnel use automatic methods to 
evaluate the parameters at an existing stage in the manual 
calibration process. Cooperative research between the NWS 
and the University of Arizona has led to the development of 
a step-wise procedure that mimics the steps recommended 
for manual calibration [Hague et al., this volume; Hague et 
al., 2000]. In the Multi-Step Automatic Calibration Scheme 
(MACS) procedure, base flow parameters are first opti- 
mized by minimizing the log objective function. In step 
two, the optimized base flow parameters are fixed and the 
parameters governing the generation of fast response runoff 
are optimized using the Root Mean Square Error (RMSE) 
criteria. Lastly, the fast response parameters optimized in 
step two are fixed and the base flow parameters are adjust- 
ed. Results with the MACs procedure have shown to be 
comparable or slightly better than results from manual cali- 
brations in certain cases [Hague et al., this volume]. The 
MACS approach also somewhat addresses the limitation of 
using one objective function for all parts of the hydrograph. 

In spite of the advances in more efficient and powerful 
search algorithms, several drawbacks have limited the use 
of automated methods. One of the main limitations of auto- 

matic approaches is that no one objective function to be 
minimized works well with all parts of a streamflow hydro- 
graph [Boyle et al., 2000]. Also, Burnash [1995] and Boyle 
et at., [2000] stated that automatic calibration may tend to 
result in parameters that have conceptually invalid values. 
Yet another concern is that unlike the approach developed 
by Anderson [2002], current automatic calibration tech- 
niques cannot be guided to produce spatialty consistent 
parameter sets among watersheds in a basin. To address this 
concern, Koren et at. [this volume] propose a method of 
conditioning the parameter search space using a-priori esti- 
mates of model parameters. 

7. MODEL CALIBRATION AT THE RIVER 

FORECAST CENTERS 

While the development of strategies and tools is critical 
to the efficiency of model calibration, the success of any 
effort also hinges on the organizational structure within an 
RFC. Through the use of guidelines, teams, and peer 
review, calibrations are better and more consistent across 
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basins. As an example, the Northwest RFC (NWRFC) will 
be used to illustrate how the calibration effort can be organ- 
ized to meet objectives in an efficient manner and generate 
consistent results. 

Prior to any work, the calibration team first determines 
how to split the region into calibration areas. Hydrologic 
similarities, basin soil characteristics, common geological 
attributes, and meteorological considerations are used to 
define regions. Actual river locations to calibrate are deter- 
mined by availability of data, user requests, and complexity 
of hydrologic processes. 

Specialists in data analysis then use the techniques 
described earlier to create data files that are used by all cal- 
ibrators. Template files for MAP and MAT are produced for 
the calibrators. A TAPLOT is run to provide common tem- 
perature-elevation plots for deriving means for the MAT 
synthetic station. Evaporation data are summarized. 

The calibration group then reviews data, basin hydrology, 
geological factors, and lists of perspective calibration points 
in each region. A set of guidelines is prepared and distrib- 
uted to each calibrator. These guidelines provide limits for 
model parameters, basin splits, model selection, and criteria 
for determining when a calibration is complete. These 
guidelines are reviewed and possibly modified during the 
course of the calibration process. All forecasters are then 
assigned calibrations from the list of prospected sites. 

The calibrator follows the procedures outlined in this 
paper. Upon completion of a calibration, it is submitted to a 
peer review group for acceptance. The calibrator can sit in 
these reviews and often benefits from the experience and 
dialog presented during these meetings. The review group is 
made up of 2 to 3 of the most experienced calibrators. 

Experience has shown that the review process has ensured 
consistency and hydrologically sound calibrations. 

The final step in the process is to transfer the calibration 
into operations. Considerable knowledge has been gained 
during the one to two week period the calibrator has spent 
calibrating. It is during this phase, parameter sensitivities 
and specific or unique hydrologic processes are discussed. 
The calibrator and the review team provide new forecast 
point training before a point is placed into operations. 

8. ILLUSTRATION OF THE CALIBRATION PROCESS 

As an illustration, the procedures outlined in this paper 
were applied to the Oostanaula River above the USGS gage 
in Rome, Georgia, and used to develop an NWS calibration 
training video [Hydrologic Research Center, 1999]. Figure 
3 shows that the watershed contains several headwater and 

local basins. The letters indicate the sequence in which the 
basins are calibrated. The watersed boundaries define the 

areas draining to RFC forecast points. While the USGS 
maintains streamflow gages at points 1 and 2 in Figure 3, 
these points are not currently forecasted by the RFC and 
thus are not explicitly modeled. 

Observed streamflow data from the basins were normal- 

ized and plotted to note similarities in response amongst the 
watersheds. Historical data analysis was performed for the 
basin as a whole, rather than as separate steps for each 
watershed. A network of 31 daily and 11 hourly raingages 
was used in the analysis of precipitation. An MAT time 
series was not developed as snow is not hydrologically 
important in this region. Given the spatial variability of long 
term precipitation station means, a mountainous area analy- 

Basins 
Rivers 

USGS dyer gage stations 
Holly Creek nr Chatswod Conasauga River nr Tigon 

C•wa•e River at C•ers 0oo•wa•e River nr EI!ijay 
Talking Rock creek nr Hinton C•wa•e River nr Pine Cha•l 
Oo•anaula River at Re.ca Oostanaula River at Rome 

Sequence of calibration 
0 15 Kilometers 

Figure 3. The Oostanaula River Basin above the USGS Gage at Rome, Georgia. 
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sis was performed. An isohyetal map was derived using the 
method of Peck [1962] and subsequently integrated to 
derive the long term mean areal precipitation value A in 
Equation 3 for each watershed. Using Equation 3, precipita- 
tion station weights were derived for each of the watersheds 
and 6-hour MAP time series were developed. USGS mean 
daily flow data were retrieved for the calibration process. 

Following the strategy proposed by Anderson [2002], the 
Coosawatte River above the USGS gage near Ellijay, Ga. 
was selected as the watershed to calibrate first, as it had the 

best data and fewest complications. Initial values of the 
SAC-SMA were derived from analysis of the observed 
hydrographs and appear in Table 1. 

As discussed earlier, Step 1 in the calibration process is to 
remove large errors in the simulation which might mask 
needed parameter changes. Examining the hydrograph plots 
in ICP revealed that the model greatly over-simulated the 
high flows and underestimated the low flows. This indicat- 
ed that too much surface runoff was being generated and too 
frequently. Thus, the UZFWM parameter was changed from 
40mm to 80mm. After running the model with this parame- 
ter change, the ICP display revealed that the amount of sur- 
face runoff was indeed reduced. Seasonal bias statistics for 

this simulation appear in column 1 of Table 2. These results 

Table 1. Initial SAC-SMA Parameter Values for the Coosawattee 

River above the USGS Gage in Elijay, Georgia 

Parameter Initial Value 

Size of Upper Zone Tension Water Storage, 
mm (UZTWM) 

Size of Upper Zone Free Water Storage, mm 
(UZFWM) 

Upper Zone Free Water Withdrawal 0.2 
Coefficient (UZK) 

Percent of Basin that is Impervious (PCTIM) 0.04 

Percent of Basin that is Variably Impervious 0.0 
(ADIMP) 

Size of Lower Zone Tension Water Storage, 
mm (LZTWM) 

Size of Primary Baseflow Storage, mm 
(LZFPM) 

Size of Supplemental Baseflow Storage, mm 
(LZFSM) 

Primary Baseflow Withdrawal Coefficient 
(LZPK) 

Supplemental Baseflow Withdrawal 0.04 
Coefficient (LZSK) 

Percolation Function Parameter (ZPERC) 25.0 

Percolation Function Parameter (REXP) 2.0 

100.0 

40.0 

150.0 

600.0 

125.0 

0.002 

indicate a rather large bias in November, December and 
January. To reduce this bias, changes were made in the ET 
Demand curve. The resulting statistics shown in column 2 
of Table 2 indicate that the bias was reduced by this change. 

Step 2 of the calibration process is to adjust the base flow 
parameters. Visual examination of the hydrographs at this 
point in the process revealed that too much primary base- 
flow and not enough supplemental baseflow was being gen- 
erated. To correct these tendencies, the primary baseflow 
storage was decreased from 600mm to 480mm, and the 
supplemental baseflow storage was increased from 125mm 
to 250mm. The PFREE parameter was changed from 0.1 to 
0.4 to increase the amount of baseflow recharge, and the 
value of LZSK was reduced from 0.04 to 0.02 to slow down 

the withdrawal of supplemental baseflow. After these 
parameter changes were made, the model was re-run and the 
bias statistics in column 3 of Table 2 were generated. These 
results and a visual examination of the simulation in ICP 

revealed a closer agreement of the simulated and observed 
hydrographs. 

Step 3 in the process is to examine the size of the upper 
and lower tension water storages. As before, visual exami- 
nation of the hydrograph plots and storage components in 
the ICP displays revealed the needed changes. The size of 
the upper zone tension water storage, UZTWM, seemed 
appropriate, but the size of the lower zone storage, 
LZTWM, needed to be increased from 150 to 250mm. 

After making this change, the ICP plots revealed that the 
lower zone was filling up at the appropriate time in the fall 
and that base flow recharge during the winter was being 

Table 2. Monthly Percent Bias Statisctis for the Calibration of the 
Coosawattee River at Ellijay, Georgia. 

Percent Bias 

Trial 

Mon. 1 2 3 4 5 6 
Oct. 20.5 15.5 7.9 2.6 -1.1 -3.2 

Nov. 38.5 27.5 11.4 8.6 6.2 -0.1 

Dec. 51.4 36.2 21.1 17.7 17.0 10.1 

Jan. 39.5 26.8 15.6 11.9 12.9 7.2 

Feb. 27.0 13.5 12.8 9.4 11.0 7.4 

Mar. 12.0 -0.6 -3.3 -5.0 -2.8 -3.2 

April -4.8 - 11.4 -7.2 -9.3 -8.9 -6.5 

May -15.7 -18.5 -6.7 -9.1 -9.5 -4.9 
June -26.6 -28.9 -9.2 -13.0 -13.6 -8.3 

July -8.4 -10.8 1.3 -1.5 -3.0 1.5 

Aug. -5.0 -7.3 2.8 -1.3 -4.0 0.1 

Sept. 9.0 6.4 10.3 6.15 2.4 4.6 
Overall 11.4 2.9 3.3 0.4 0.2 0.0 
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modeled appropriately. Column 4 of Table 2 shows the sea- 
sonal bias statistics at this point in the calibration process. 

The fourth step in the calibration strategy is to examine 
the division of fast and slow response portions of the hydro- 
graphs. Primarily, this involves an analysis of the parame- 
ters controlling the percolation function, or the potential rate 
at which water moves from the upper zones to the lower 
zones. The flow interval bias figures in column 1 of Table 3 
indicate that at this point in the process, the model was over- 
predicting low flows and underpredicting the larger events. 
To mitigate these effects, the percolation parameters were 
changed to reduce percolation during the wetter periods and 
increase percolation during the drier periods. Also during 
this step, the size of the variable impervious area was 
changed from 0 to 5% of the total basin area to increase 
peak flows during intermediate rainfall events. After mak- 
ing these changes, the flow interval bias statistics in column 
2 of Table 3 indicate that while the model still over predicts 
the low flows, the simulation of intermediate and large 
events was more appropriate. Visual analysis of the simula- 
tion also showed a better division of fast and slow runoff. 

Column 5 in Table 2 indicates an improvement in the over- 
all bias statistic. 

To finish the calibration of the Coosawattee River head- 

water basin, final adjustments are made to reduce seasonal 
and overall biases. Column 5 of Table 2 shows that at this 

point in the calibration process, large positive biases existed 
in the winter with large negative biases occurring in the 
early summer. The ET-Demand curve was adjusted to 
increase evapotranspiration demand in the fall, winter, and 
spring while reducing this demand in April, May, and June. 
The final seasonal bias statistics in column 6 reveal reason- 

able monthly biases with a very good overall bias. 
Table 4 presents final values of the bias and correlation 

coefficient for the calibration and verification periods for 
the Coosawattee Riven These statistics quantify the good- 

Table 3. Monthly Percent Bias Statisctis for the Calibration of the 
Coosawattee River at Ellijay, Georgia. 

Percent Bias 

Trial 

Flow Interval. cms. 1 2 
0.0- 3.5 8.9 9.5 

3.5- 5.5 1.0 0.3 

5.5 - 10.0 - 1.5 -3.3 

10.0- 20.0 2.1 0.4 

20.0- 50.0 2.7 2.8 

50.0 - 140.0 -7.0 -2.3 

> 140.0 - 17.3 -8.3 

ness of fit that was also apparent in a visual examination of 
the simulated and observed hydrographs. 

Following the sequence in Figure 3, the calibrated Ellijay 
parameters were used as starting values for the calibration 
of Talking Rock Creek at Hinton, Ga.. In this calibration, 
only the parameters that needed adjustment were changed to 
produce an acceptable fit. Column I of Table 5 shows the 
flow interval bias statistics that resulted by using the Ellijay 
parameters as initial values for the Hinton basin. As expect- 
ed from the analysis of the normalized observed flows, 
these results indicate that the Ellijay parameters oversimu- 
lated the lower flows and under-estimate the high flow 
events for the Hinton basin. As a first step to correcting 
these biases, the percolation curve was lowered to generate 
more fast response runoff. The LZFSM parameter was 
changed from 400mm to 285mm while the LZFPM param- 
eter was adjusted from 480mm to 340mm. Both a visual 
examination of the computed and observed hydrographs 
and the results in Column 2 of Table 5 indicate these 

changes to the percolation curve produced a better fit. After 
these percolation changes, visual examination of the com- 
puted and observed hydrographs for the Hinton basin 
showed that more surface runoff needed to be generated. To 
achieve this, the size of the upper zone free water storage 
(UZFWM) was reduced from 80mm to 55mm. The result- 

Table 4. Statistics for the Cazlibration and Verification Periods for 

the Coosawattee River at Ellijay, Georgia. 

Period 

Statistic Calibration Verification Verification 
WY a 75-84 WY 64-74 WY 95-93 

Bias (%) 

Correlation 

(daily flows) 

-0.6 3.5 -3.5 

0.940 0.935 0.914 

awy denotes Water Year, i.e., October 1 to September 30. 

Table 5. Flow Interval Bias Statistics for the Calibration of Talking 
Rock Creek at Hinton, Georgia. 

Flow 

Interval, cms 

Percent Bias 

Trial 

1 2 3 4 

0.0 - 1.8 64.2 39.1 45.6 4.4 

1.8 - 2.8 21.9 3.55 8.2 -8.6 

2.8- 5.0 16.0 4.05 7.1 -4.9 

5.0- 10.0 7.2 5.91 5.0 -2.35 

10.0 - 25.00 -4.6 11.0 4.4 6.7 

25.00- 75.00 -23.7 -10.5 -15.2 -7.2 

>75.00 -46.1 -30.8 -4.0 -5.9 

1 - Initial run using Ellijay Parameters 
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ing flow interval bias statistics are shown in column 3 of 
Table 5 and show improvement in the bias figures for large 
events with a corresponding degradation in the bias statis- 
tics for medium flow levels. A visual examination of the 

hydrographs also confirmed the use of a smaller value of 
UZFWM for large events. 

To complete the calibration of the Hinton basin, the value 
of upper zone free water withdrawal coefficient, UZK, was 
increased from 0.2 to 0.3 to generate a faster interflow 
response. Also, the RIVA parameter was increased to model 
the effects of riparian vegetation evaptranspiration in the 
dry summer months. In addition, the amount of constant 
impervious area was reduced so that the model did not 
respond as much to every rainfall event. Column 4 of Table 
5 presents the final flow interval bias statistics after these 
last parameter changes were made. 

Calibration of the entire watershed continues according to 
the sequence shown in Figure 3. In this step, the final 
Hinton parameters are used as the initial parameters for the 
Conasauga River at the USGS gage in Tilton, Ga.. As 
before, only the parameters which need to be changed are 
adjusted. For this watershed, the analysis of the simulated 
and observed hydrographs revealed that more fast response 
runoff was needed. The statistics for the initial run in Table 

6 also show that the base flows were greatly overpredicted 
and the larger events were underpredicted. 

To generate more fast response runoff, the percolation 
function was reduced to 40% of its initial value by reducing 
the LZFSM parameter from 285mm to 115mm and the 
LZFPM parameter from 340mm to 135mm. Also during this 
step, the value of UZK was increased from 0.3 to 0.4 to 
speed up the generation of interflow. After these changes, 
the subsequent simulation improved both visually and sta- 
tistically. However, the hydrographs showed that subse- 
quent changes to the supplemental base flow needed to be 
made. These included changing the LZSK parameter from 
0.02 to 0.03 and increasing the size of the supplemental base 
flow storage, LZFSM, from 115mm back to 135mm. As 
seen in column 2 of Table 6, the flow interval bias statistics 
for the second trial have been reduced across all flow 

ranges. The corresponding seasonal bias statistics for this 
simulation are shown in column 1 of Table 7. 

Visual examination of the hydrographs after these 
changes revealed that the summer events were being 
overpredicted, indicating that the size of the upper zone ten- 
sion water storage parameter UZTWM need to be increased 
from 100mm to 150mm. In addition, the ET-Demand curve 

was adjusted to reduce the seasonal bias shown in column 1 
of Table 7. After these changes were made, improved sea- 
sonal bias statistics resulted and are shown in column 2 of 

Table 7. Visual inspection of the simulations also showed 

improvement from these changes. However, as seen in col- 
umn 2 of Table 7, a large bias still remained for the summer 
months. The shape of the simulated and observed hydro- 
graphs during this period indicated that riparian vegetation 
evapotranspiration effects were present. To model these 
effects, the value of the RIVA parameter was increased from 
0.0 to 0.05, indicating that 5% of the basin area was affect- 
ed by riparian vegetation. 

After making the change to the RIVA parameter, the 
model was re-run and the flow interval statistics in column 

3 of Table 6 were generated. The corresponding seasonal 
bias statistics for this simulation are shown in column 3 of 

Table 7. These results show acceptable levels of bias. Along 
with a visual examination of the simulation, these statistics 

showed that the calibration of the Tilton basin was complete. 

Table 6. Flow Interval Bias Statistics for the Calibration of the 

Conasauga River at Tilton, Georgia. 

Percent Bias 

Flow Interval, cms. Trial 

1 2 3 

0.0 - 5.0 180.8 23.7 3.1 

5.0 - 15.0 88.5 3.2 -4.1 

15.0- 50.0 19.5 1.5 4.0 

50.0 - 100.0 -8.9 9.0 8.3 

100.0- 200.0 -27.4 -2.2 -2.2 

200.0 - 400.0 -33.7 - 1.9 -2.7 

>400.0 -34.2 -5.5 -5.7 

1 - Initial run using Hinton Parameters 

Table 7. Seasonal Bias Statistics for the Conasauga River at Tilton, 
Georgia. 

Month Percent Bias 

Trial 

1 2 3 

Oct. 29.5 10.8 7.3 

Nov. 7.25 0.5 -0.3 

Dec. 1.0 1.5 1.4 

Jan. -0.6 4.9 4.9 

Feb. -7.4 -0.5 -0.6 

Mar. -6.5 -0.2 -0.3 

April -3.4 1.9 1.8 

May 4.5 3.6 2.6 
June 8.8 4.3 1.0 

July 11.6 -2.8 -7.6 
Aug. 21.2 -0.2 -7.9 

Sept. 43.6 14.3 -7.8 
Overall 1.7 2.2 1.9 
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Following the calibration sequence shown in Figure 3, the 
local area above the USGS gage in Rome, Ga. was calibrat- 
ed. In Figure 3, this is the area between points 8 and 9. To 
begin this calibration, the calibrated parameters from the 
most hydrologically similar basin were used as initial val- 
ues. The Tilton parameters were used as this basin was most 
similar to the Rome local area. To define the local area 

hydrograph, the unit hydrograph from Tilton was used but 
scaled to reflect the drainage area of the Rome local area. 
The channel routing parameters were obtained from the 
RFC operational files. The steps involved in calibrating this 
local area were also applied to the calibration of the local 
area between points 6 and 7 in Figure 3. 

After minor modification to the channel routing parameters, 
it was clear that the Tilton SAC-SMA parameters worked 
quite well in the simulation of the Rome local area. Only a 
decrease in the RIVA parameter from 0.05 to 0.0 was required 
as the Rome local area showed no evidence of 

evapotranspiration from riparian vegetation. The final flow 

Table 8. Final Flow Interval Bias Statistics for the Calibration of 

the Local Area above Rome, Georgia. 

Flow Interval, cms. Final Percent Bias 

0.0- 1.0 4712.1 

1.0 - 10.0 20.3 

10.0 - 20.0 -3.2 

20.0- 75.0 -5.14 

75.0- 150.0 -10.0 

150.0 - 300.0 - 13.9 

>300.0 -2.0 

Table 9. Seasonal Bias Statistics for the Calibration of the Local 

Area above Rome, Georgia. 

Month Percent Bias 

Oct. 2.3 

Nov. 2.6 

Dec. -1.0 

Jan. -4.4 

Feb. -7.6 

Mar. -5.6 

April -2.2 

May 8.14 
June 13.4 

July 2.6 

Aug. -4.6 

Sept. 4.2 
Overall -2.0 

interval bias statistics in Table 8 and the final seasonal bias sta- 

tistics in Table 9 show the adjustment to the RIVA parameter 
resulted in good statistics. The large bias in the lowest flow 
interval of Table 8 reflects the noise in the derived local area 

observed hydrograph. The local area at Rome, Ga. represents 
only about 25% of the total drainage area above this point. 

As stated earlier, the final step in the calibration of a 
watershed is to assign calibrated parameters to remaining 
areas. These final areas are usually local areas that are too 
small compared to the total drainage area to generate a rea- 
sonable local area observed hydrograph against which to 
calibrate. The regions labeled D in Figure 3 were treated in 
this manner. 

Table 10 presents the parameters that resulted from the 
calibration of the Oostanaula watershed. It can be seen that 

after the initial calibration of the Ellijay basin, only a few 
parameters were adjusted in the subsequent calibration of 
neighboring basins. 

This example shows the efficiency of the regional 
approach to calibration in that only the Ellijay watershed 
required a significant amount of manual calibration effort. 
Far less time was required to calibrate the other watersheds 
due to the use of calibrated parameters as starting points for 
hydrologically similar watersheds. Equally important is the 
fact that the final calibrated parameters exhibit a spatial pat- 
tern that is quite reasonable considering the spatial variation 
in physiographic features as well as the comparison of 
observed streamflow hydrographs. 

Table 11 presents two of the summary statistics for the 
entire period of record. It can be seen that in all basins, the 

Table 10. Parameter Summary for the Calibration of the 
Oostanaula River Basin. 

Ellijay Ellijay Hinton Tilton Rome 
Parameter Initial Final Local 

Final Final 
Value Value Area 

UZTWM, mm 100.0 100.0 100.0 150.0 150.0 

UZFWM, mm 40.0 80.0 55.0 55.0 55.0 

UZK 0.2 0.2 0.3 0.4 0.4 

PCTIM 0.04 0.04 0.02 0.02 0.02 

ADIMP 0.0 0.05 0.05 0.05 0.05 

LZTW, mm 150.0 250.0 250.0 150.0 150.0 

LZFPM, mm 600.0 480.0 340.0 135.0 135.0 

LZFSM, mm 125.0 400.0 285.0 135.0 135.0 

LZPK 0.002 0.002 0.002 0.002 0.002 

LZSK 0.04 0.02 0.02 0.03 0.03 

ZPERC 25.0 80.0 80.0 80.0 80.0 

REXP 2.0 3.0 3.0 3.0 3.0 

PFREE 0.1 0.4 0.4 0.4 0.4 
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bias statistic is well within the recommended target criteria. 
Good values of the correlation coefficient were also 

obtained. 

9. SUMMARY 

The National Weather Service has continued to develop a 
comprehensive set of procedures and tools to facilitate the 
calibration of hydrologic models. A logical and systematic 
strategy has been developed for manual calibration of the 
SAC-SMA and Snow-17 models for an individual water- 

shed. Moreover, an efficient strategy for calibrating the 
additional watersheds within a river basin has been devel- 

oped. This strategy leads to sets of parameters that make 
sense considering the spatial variability of physiographic 
features amongst the watersheds in a basin. In addition, the 
use of guidelines, teams, and peer reviews at RFCs has 
proven to generate quality calibrations in an efficient man- 
nen 

Through manual calibration, the hydrologist is able to 
learn the inner workings of the model and understand the 
sensitivities to different forcings and model parameters. In 
this way, the hydrologist is better prepared for the forecast- 
ing environment in which unusual conditions may be 
encountered. A thorough understanding of the model func- 
tion is important when a user is making short term and long 
term forecasts. 

10. RECOMMENDATIONS 

While a number of tools and recommended procedures 
have been developed and fielded in the NWS, numerous 
enhancements to the existing programs should be made. 
Past efforts such as the development of ICP and IDMA have 
proven that significant reductions can be realized in the 
amount of time required for calibration. Additional 
enhancements are critical considering the national scope of 
the model calibration and implementation efforts in the 
NWS. 

Perhaps what is most needed is a re-design of the 
Calibration System so that the functions of the MAP, MAT, 

Table 11. Statistical Summary of the Calibration of the Oostanaula 
River Basin: Percent Bias and Correlation Coefficient R. 

Statistic 

Watershed and Period 

Ellijay Hinton Tilton Rome 
WY WY WY WY 

64-93 75-93 49-93 49-93 

Bias (%) -0.2 -1.5 -1.1 -0.1 

R (daily flows) 0.928 0.941 0.951 0.988 

MAPE, PXPP, TAPLOT, MCP/ICP, CAP and other pro- 
grams are retained but more efficiently linked, perhaps 
under the umbrella of one parent tool. Such a re-design 
would incorporate the latest data handling and display tech- 
niques. Currently, the programs mentioned exist as stand- 
alone entities, requiring a good bit of data manipulation on 
the part of the user. Also, some of the functional redundan- 
cy could be eliminated. For example, each of the MAP, 
MAT, MAPE, and PXPP programs contains a double mass 
analysis capability. A re-designed Calibration System might 
need to have only one such capability. 

In addition to software enhancements, continued research 
in several areas is also needed. Research related to auto- 

matic optimization is necessary, especially in the develop- 
ment of multi-objective calibration strategies. More objec- 
tive methods could be developed for deriving station 
weights in mountainous areas, as well as determining the 
need to make consistency corrections to station data. In 
addition, refined methods of computing estimates of evapo- 
transpiration are needed. The use of instantaneous tempera- 
tures to compute an MAT time series for calibration would 
greatly reduce the errors resulting from the use of a fixed 
diurnal variation in conjunction with daily maximum and 
minimum temperature values. 
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Hydrology Lab. 

APPENDIX: 

CURRENT CAPABILITIES AND DATA SETS 

AVAILABLE IN THE CALIBRATION ASSISTANCE 

PROGRAM (CAP) 

1. CAPABILITIES 

The CAP is an Arc/View application. Its capabilities 
include the following. 

1. Derive area-elevation curves 

2. Sub-divide basins based on elevation zones 

3. Derive elevation-precipitation plots 
4. Display defined zones on top of other data layers (e.g. 

precipitation, elevation) 
5. Compute basin mean, max, and min values of: (may 

also compute for each elevation zone defined within a 
basin) 

5.1 precipitation (monthly, annual, and seasonal) 
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5.2 potential evaporation (monthly, annual, and seasonal) 
5.3 potential evaporation adjustment factors 
5.4 percent forest 
5.5 percent of each forest type 
5.6 soil-based estimates for 11 SAC-SMA parameters 

6. Display selected NOHRSC historical snow images 
from (1990-1995) 

2. DATA SETS 

1. Digital Elevation Model (DEM) 4km resolution 
2. Percent of forest cover on lkm grid 
3. Forest type on lkm grid 
4. PRISM annual and monthly precipitation grids. 
5. Annual and monthly potential evaporation grids 
6. Soil type, depth, and texture for 11 layers 
7. Snow cover grids for 1990-1995 
8. State boundaries 

9. EPA River Reach Files (RF1) 
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The Quebec Hydrological Expertise Center and Hydro-Quebec are developing 
an operational forecasting system for 3-hour stream flow predictions using a dis- 
tributed hydrological model. The system will be implemented on several southern 
Quebec basins characterized by quick response times and requiting timely fore- 
casts for dam management. This paper introduces the first steps toward the gen- 
eral development of a calibration strategy using a processes-oriented, multiple- 
objective, approach accounting for model structure. The calibration objectives are 
used to sequentially minimize errors between observed and modeled: (i) pro- 
longed summer drought recessions, (ii) annual and monthly flow volumes, (iii) 
summer and fall high flows, (iv) high flow synchronization, and (v) spring runoff 
resulting from snowmelt. Specific groups of parameters are assigned to each one 
of these objectives. Parameters affecting objectives characterized by long time 
scales are calibrated first while those characterized by short time scales are cali- 
brated last. Any loss in model performance is compensated by readjusting previ- 
ously calibrated parameters. Repeating the process until a satisfactory model per- 
formance is reached. A preliminary, manual, application with the distributed 
hydrological model HYDROTEL clearly illustrates the need to pursue our work 
as all underlying concepts and theories withstood this first test. 

1. INTRODUCTION 

There exists an increasing demand for stream flow fore- 
cast systems based on distributed and, as much as possible, 
physically-based hydrological modeling. In Quebec, 
Canada, two of the major organizations involved in real- 
time hydrological forecasting, the Centre d'expertise 
hydrique du Qudbec (CEHQ: the Quebec Hydrological 
Expertise Center) and Hydro-Qudbec (HQ) have undertaken 
the development of an operational forecasting system for 

Calibration of Watershed Models 

Water Science and Application Volume 6 
Copyright 2003 by the American Geophysical Union 
10/1029/006WS 11 

several basins located in the southern part of the province. 
These basins have quick hydrological responses (less than 2 
days) and dam systems which need timely stream flow fore- 
casts for management purposes. To meet this requirement, 
the forecasting system relies on a distributed, and physical- 
ly-based (with some conceptual approaches remaining), 
hydrological model- HYDROTEL [Fortin et al., 2001 a]. To 
facilitate the implementation of the forecast system on these 
basins, there is a need to develop and implement a model 
calibration procedure that requires minimal labor involve- 
ment while accounting for hydrological processes, multiple 
objectives, and model structure. 

A calibration strategy accounting formally for model 
structure and, hence, modeled processes and their mathe- 
matical representations, is likely to improve our under- 
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standing of the origins of the embedded parameter inter- 
actions and ultimately reduce computational require- 
ments. This latter goal is highly important since the com- 
putational requirements associated with the use of 
HYDROTEL are somewhat larger than those of other 
models used operationally for hydrological 
forecasting-particularly if a calibration procedure requir- 
ing several simulation runs were used (e.g., the multi- 
ple-objective formulation of Madsen [2000] or Gupta et 
at. [this book]). Moreover, like other researchers [e.g., 
Boyle et at., 2000; Madsen, 2000], we believe that an 
automatic calibration strategy based on a single objective 
does not necessarily lead to satisfactory hydrological cal- 
ibrations. Indeed, during a manual calibration, hydroto- 
gists frequently and spontaneously adjust their calibration 
strategy with respect to more than one objective without 
formally documenting their approach. 

This paper is organized in three sections (sections 2-4). 
Section two puts into perspective our work with respect to 
recent developments on calibration strategies. Section three 
lays down the concepts and theoretical foundations behind 
the proposed calibration strategy. It is noteworthy to point 
out that this paper solely focuses on the development of the 
proposed calibration strategy within the context of a manual 
calibration and that the development of a more automatic yet 
interactive calibration, including an optimization procedure, 
will be reported in a future publication. Finally, section four 
focuses on a preliminary application of the proposed calibra- 
tion strategy with the hydrological model HYDROTEL. 

2. BACKGROUND 

Over the course of the last decade, a great deal of research 
and development has been done to answer the challenges of 
model calibration. Mathematical optimization strategies 
based on genetic algorithms [e.g., Wang, 1991 ] or a combi- 
nation of these with a direct search method such as the shuf- 

fled complex evolution (SCE-UA) algorithm of Duan et at. 
[1992], stochastic approaches such as the simulated anneal- 
ing approach of Sumner et at. [1997], and Bayesian 
approaches such as those of Bates and Campbell [2001] and 
Thiemann et al. [2001] were developed. Intercomparison 
studies of some of these strategies highlighted the strengths 
and advantages of SCE-UA, when applicable [Sorooshian et 
at., 1993; Gan and Biftu, 1996; Kuczera, 1997; Thyer et al., 
1999]. Other studies focused on assessment criteria or good- 
ness-of-fit measures [Legates and McCabe, 1999] and con- 
vergence criteria [Isabel and Vitteneuve, 1986]. General cal- 
ibration methods based on maximum likelihood functions 

[Sorooshian et at., 1983; Beven and Bintey, 1992], multiple 
objective strategies [Yapo et at., 1998; Madsen, 2000; Boyle 

et at., 2000], process oriented strategies [Harlin, 1991; 
Zhang and Lindstr6m, 1997], and a priori estimation of 
model parameters [Eckhardt and Arnold, 2001 ] were devel- 
oped. Moreover, specific problems and issues related to dis- 
tributed models were discussed by Refsgaard [1997] and 
Ambroise et at. [ 1995]. Regionatization techniques based on 
regression analyses between watershed characteristics and 
model parameters were also studied by Fernandez et at. 
[2000] and Yokoo et at. [2001 ]. 

In our view, there exist at least two promising strategies 
in model calibration that need to be exploited and based 
on: (i) formal multiple objectives, and (ii) hydrological 
processes Regarding multiple objectives the works of 
Yapo et at.[ 1998], Madsen [2000], and Boyle et at. [2000], 
among others discussed in this book (e.g. Gupta et at. [this 
volume]; Boyle et at.[this volume]; Meixner and Bastidas 
[this volume]) are worth examining at this point. These 
authors proposed calibration strategies based on optimiza- 
tion of multiple objectives. These strategies provide a set 
of Pareto optimal solutions that are all equally good solu- 
tions in the sense they either provide an optimal solution 
for one of the objectives or a particular combination of 
objectives. This means that the ensuing forecasting of 
stream flows must be done according to a potential ensem- 
ble (or scenario) of parameter values included in the 
Pareto set. This may not meet the requirements of several 
operational forecasting systems which normally produce a 
single forecast not an ensemble of potential forecasts. The 
other problem we can point out is that these methods are 
computationally intensive. 

On the other hand, Hartin [ 1991 ], Zhang and Lindstr6m 
[1997] and Khu [1998] developed process-oriented calibra- 
tion strategies for the HBV and NAM hydrological models, 
respectively. Hartin [ 1991] directly linked the period of the 
year where specific processes, and their corresponding 
parameters, dominate, and evaluated for these periods spe- 
cific statistics. Meanwhile, Zhang and Lindstr6m [1997] 
modified Hartin's strategy by further accounting for rela- 
tionships between parameters (and the equations that 
include them) and by considering impacts on simulated 
hydrographs. We think that these strategies represent a good 
starting point and something to build on. Nevertheless, nei- 
ther Hartin [1999], Zhang and Lindstr6m [1997] or Khu 
[1998] provided specific instructions on how to navigate 
between objectives. As mentioned by Gan and B iftu [1996] 
and briefly tested by Khu [ 19981, the subdivision of the cal- 
ibration exercise into several sub-problems, allows for the 
use of simple optimization methods. The underlying 
hypothesis of the proposed calibration strategy assumes that 
it is possible to meet multiple objectives using a 
process-oriented calibration approach. 



TURCOTTE ET AL. 155 

3. PROPOSED CALIBRATION STRATEGY 

3.1. Basic Concepts 

The goal of the proposed strategy is to simultaneously, 
and as closely as possible, satisfy a certain number of objec- 
tives while accounting in an optimal way for model struc- 
ture. A hydrological model simplifies to a certain extent 
real-world processes and, thus, it would be wise to exploit 
them during the calibration exercise as long as these simpli- 
fications are integral parts of the model. 

For this presentation, we shall identify calibration objec- 
tives under two groups: (i) those related to model responses 
with respect to characteristic time scales of modeled 
processes and (ii) those related to periods of the year where 
specific processes dominate. It is likely that some parame- 
ters may affect more than one objective while others may 
have a limited impact. For example, increasing soil water 
storage capacity will affect total water balance, while mod- 
ifying surface roughness will solely affect hydrograph 
shape. Following these observations, it would make sense to 
calibrate first those parameters affecting the largest numbers 
of objectives while keeping for last the least impacting 
parameters. This strategy assumes that earlier adjustments 
will not be disrupted by the last series of adjustments and if 
so they will not significantly compromise the earlier objec- 
tives that were met. Therefore, we believe that a sequential 
adjustment of model parameters is promising; starting with 
those affecting objectives characterized by long time scales 
and terminating with those characterized by short time 
scales. For those parameters affecting intermediate 
time-scale objectives, we propose to end with those related 
to the snowmelt process. 

3.2. Hydrologic Processes and Model Parameters 

Numerous calibration objectives have been reported in 
the literature. For example, calibration of the well known 
HSPF model is usually obtained after the following objec- 
tives are met [see Jacomino and Fields, 1997]: (i) annual 
water balances, (ii) monthly water balances, and (iii) other 
short time scale objectives. This approach includes the 
main calibration objectives. Having mentioned that, it 
might be interesting to further detail these objectives to 
cash in, in an optimal way, on the possibilities of the 
model. 

It is noteworthy that, in general, the number of objectives 
is less than the number of model parameters. This means 
that there is a group of parameters for each sought after 
objective. 

3.2.1. Prolonged summer drought recessions. Under the 
hydrometeorological conditions of southern Quebec, the 
characteristic time scales of prolonged summer droughts are 
of the order of a few weeks. Prolonged summer droughts 
undeniably affect large-scale water balances that are mostly 
controlled by the evapotranspiration process (see section 
3.1.2). Hence, the intensity of the corresponding base flows 
will have an impact on available soil moisture. The more 
intense summer base flows are the larger the large-scale 
water balances will be and the smaller the soil moisture level 

and evapotranspiration will be. The necessity of matching 
observed and simulated base flows to close large-scale water 
balances has been systematically addressed by Szilagyi and 
Parlange [1999]. Madsen [2000] also showed using numeri- 
cal simulations that small departures from observed 
large-scale water balances resulted in small differences 
between observed and simulated low flows. 

3.2.2. Annual and summer flow volumes. The evapotranspi- 
ration process is linked to short time scales but its overall 
influence is generally felt on flows characterized by large 
time scales. Evapotranspiration depends, among others, on 
variables related to available soil moisture and meteorolog- 
ical conditions - where the later conditions can change very 
quickly. This is why we prefer to calibrate first those 
parameters related to prolonged summer drought recessions 
since this directly affects available soil moisture. However, 
as far as summer high flows (i.e., summer runoffs) are con- 
cerned, the indirect effect of evapotranspiration is too 
important to contemplate the idea of calibrating the param- 
eters related to these flow conditions before adjusting the 
parameters controlling the evapotranspiration process. 
Thus, calibration of the evapotranspiration process is the 
focus of this second calibration objective. 

3.2.3. Summer and fall high flows. During the summer, the 
bulk of high flows is mostly controlled by the infiltration 
capacity and the total soil water content-where the later 
depends on large time-scale water volumes already adjust- 
ed with prolonged summer drought recession and evapo- 
transpiration. This means we can separately calibrate those 
parameters controlling individual high flows (e.g., soil 
water profile and infiltration capacity) by analyzing summer 
and fall high flow events. It is important to underline that a 
large variety of high flow intensities be part of this analysis. 

3.2.4. High flow synchronization. The differences between 
the shape of observed and simulated hydrographs can be 
reduced by adjusting the parameters controlling the transfer 
or routing of water within a watershed. Short time scales 
usually characterize this transfer which is strongly influ- 
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enced by surface roughness. This adjustment tends to be 
performed once large time-scale objectives are met and, 
thus, the related parameters may be quasi optimal at the 
beginning of this calibration step. 

3.2.5. Winter recessions. In general, it is possible to build on 
the calibration of other parameters affecting the snow-free 
periods of the year (and related processes) to adjust inde- 
pendently the parameters controlling snowmelt. Soil water 
contribution and melting at the snow-soil surface interface 
represent the two processes governing winter recessions. In 
theory, it should be possible to reduce the errors between 
observed and simulated winter low flows by solely adjust- 
ing the parameters controlling melting at the snow-soil sur- 
face interface while keeping in mind that measured winter 
flows are usually inaccurate. This is primarily due to the 
phenomena of ice formation and movement which strongly 
disrupt flow measurements. For this reason, we have decid- 
ed to forego this calibration step, although a winter reces- 
sion objective remains a sound objective from a theoretical 
point of view. 

3.2.6. Spring runoffs resulting from snowmelt. Once the cal- 
ibration of the parameters controlling the shape of the 
hydrographs and the melting at the snow-soil interface is 
completed successfully, we can start the calibration of those 
parameters controlling the melting of the overall snowpack. 
The degree of soil saturation resulting from the melt is a 
function of how much snow has melt up to that point in time 
(i.e., the so called memory of the watershed). It does not 
depend on the areal distribution of the melt itself. Therefore, 
it is easy to separate the evolution of the snowmelt, on a 
computational time-step basis, from other modeled 
processes. 

3.3. Objective Functions. The proposed calibration strategy 
requires selection of an objective function to compute a 
numerical measure of the error between simulated output 
and observed watershed output for each objective. This 
approach allows for a continuous assessment of model per- 
formance throughout the calibration process. 

For prolonged summer drought recessions, we propose the 
use of an objective function that assesses the relative differ- 
ences between simulated and observed flows over the course 

of the summer period. Furthermore, within the summer peri- 
od, we only consider time intervals where daily stream flows 
are continuously decreasing (e.g., seven days) and less than 
a specified watershed threshold value. An interactive choice 
rather than a fully automatic selection of recession intervals 
is preferable. The objective function which we refer to as 
RV-R (recession volume residuals) must converge towards 

zero. Similarly, we propose the use of such an objective 
function to evaluate the relative differences between simu- 

lated and observed annual and summer flows. We refer to 

these functions as AV-R and SUV-R, respectively. 
For the assessment of high flow objectives, we select the 

square root of the mean square error (RMSE). For summer 
and fall high flows, we only consider time intervals of the 
snow-free period where daily stream flows are larger than a 
specified watershed threshold value but again this automat- 
ic choice must be validated interactively by the user. These 
objective functions are referred to as SUF-RMSE (sum- 
mer/fall) and WSP-RMSE (winter/spring). 

Calibration of high flow synchronization represents the 
final step in the calibration of summer and fall objectives. 
At this point, calibration of all other summer and fall objec- 
tives should be quasi optimal. The RMSE could then be 
used for the overall calibration period. As pointed out by 
Legates and McCabe [ 1999], this kind of coefficient is more 
sensitive to high-flow errors than low-flow errors, hence, 
well suited to highlight synchronization problems. 

4. PRELIMINARY APPLICATION OF THE PROPOSED 

STRATEGY WITH HYDROTEL 

4.1. HYDROTEL 

HYDROTEL [Fortin et al., 2001a] is a physically-based, 
distributed, hydrological model which was designed to use 
available remote sensing and GIS data. The model consists of 
six computational modules which are run in a cascade (i.e., in 
a decoupled manner) at each time step. These modules are: 
estimation of meteorological variables, snow accumulation 
and melt, potential evapotranspiration, vertical water budget, 
flow on relatively homogeneous hydrological units (RHHUs), 
and channel routing. The RHHU, which is the computational 
unit used to calculate the vertical water budget, corresponds to 
a very small drainage unit, delineated using a digital elevation 
model (DEM) and a digital fiver and lake network [Turcotte et 
al., 2001]. Although Fortin et al. [2001a] provide a detailed 
description of the model, we herewith take a few paragraphs 
to describe key modules and their calibration parameters. 

Two options are available for interpolation of meteorolog- 
ical variables on each RHHU: Thiessen polygons and weight- 
ed mean of three nearest meteorological stations with due 
care for vertical gradients. Where a threshold air temperature 
which is used for separation between solid and liquid precip- 
itations is considered as a calibration parameter (see Table 1). 

A mixed, degree-day-energy-budget, approach is used to 
simulate daily variations of mean snowpack characteristics 
(thickness, water equivalent, mean density, thermal deficit, 
liquid water content, and temperature). This approach 
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Table 1. Selected algorithms and model parameters for operational stream flow forecasting in southern Quebec. 

Modules 

Interpolation of 
meteorological 
variables 

Snowpack evolution 

Algorithms 

Weighted mean of three 
nearest meteorological 
stations 

Mixed degree-day- 
energy-budget 
approach 

Potential 

evapotranspiration 

Vertical water budget 

Flow on RHHUs 

Channel routing 

Hydro-Qu6bec (Fortin, 
2000) 

(BV3C) 

Kinematic wave 

equation 

Diffusive wave 

equation 

Calibration parameters 

- Threshold air temperature for separation between solid and 
liquid precipitations (TPPN) 

- Melt factors for open areas, deciduous forests and coniferous 
forests (FF-O, FF-F, FF-R) 

- Threshold air temperatures for melt for open areas, deciduous 
forests and coniferous forests (SF-O, SF-O, SF-R) 

- Melt rate at the snow-soil interface (TFSN) 
- Compaction coefficient (CC) 

- PET multiplication factor (FETP) 

- Depth of the lower boundaries of the three soil layers (Z1, Z2, 
Z3) 

- Recession coefficient (CR) 

- Manning's roughness coefficient for forest areas, open areas, 
and water (n-F, n-O, n-E) 

- Manning's roughness coefficient for rivers (n-R) 

requires melt factors, compaction coefficients, and thresh- 
old air temperatures for melt. They are considered calibra- 
tion parameters. 

An empirical equation developed by Hydro-Quebec 
which solely requires air temperatures [Fortin, 2000] may be 
used to estimate potential evapotranspiration (PET). This 
equation is particularly useful in cases where only air tem- 
peratures are available. Despite this crude approximation, 
this equation has withstood remarkably well the test of time 
under Quebec conditions. A multiplication factor is current- 
ly used as calibration parameter to adjust PET values. 

The vertical water budget allows for partitioning between 
surface runoff, soil water redistribution, and actual evapo- 
transpiration (AET). The computational algorithm requires 
division of the soil column of a RHHU into three layers (see 
Figure 1) where each soil layer may be considered as a 
reservoir with physical proprieties such as saturated 
hydraulic conductivity; wilting point and drainage capacity 
in terms of soil water content; porosity; and matrix potential 
at saturation. Note that each RHHU is also characterized 

with physiographic properties such as slope and land use 
percentages. All these characteristics are not generally 
adjusted. Soil water redistribution and surface runoff 
strongly depends on soil layer depths. These depths along 
with the base flow recession coefficient are, thus, consid- 
ered as calibration parameters. 

The downstream transfer of available water at each time 

step within a RHHU, as computed by the vertical water 
budget, is simulated using a geomorphological unit hydro- 

graph (GUH) accounting for the internal drainage structure of 
each RHHU. The shape of this unit hydrograph is determined 
by routing a reference depth of water over all DEM cells of a 
RHHU according to a kinematic wave model. The model 
accounts for the topographic and land use characteristics of 
the RHHU. Channel routing is performed using a diffusive 
wave model. When the river segment associated with a 
RHHU is a lake or reservoir, the continuity equation is used 
along with stage-discharge relationships for water routing. All 
these flows are strongly dependent on values of the Manning's 
roughness coefficient and these values are calibrated. 

4.2. Customization of the Proposed Calibration for HYDROTEL 

As mentioned earlier, there is no coupling in HYDRO- 
TEL between the downstream surface transfer of available 

water and the vertical budget on a RHHU. Moreover, the 
effect of snow and the calibration of snow characteristics 

can be easily circumscribed to a short period of the year. 
However, the calibration of prolonged summer drought 
recessions, annual and summer flow volumes, and summer 

and fall high flows strongly depends on those parameters 
controlling the evapotranspiration process and the vertical 
water budget (Z1, Z2, Z3 and CR). Despite this inherent 
coupling, we think it is possible to assign specific groups of 
parameters to each one of the above calibration objectives. 

Without loss of continuity - detailed explanations will 
follow- the recession coefficient (CR) is associated with 
the prolonged summer drought recession objective; the 



158 PROCESS-ORIENTED, MULTIPLE-OBJECTIVE STRATEGY 

Z3 

Z1 

Z2-Z1 

Z3-Z2 

AET1.2.3 

Layer 2 02 Q2 

Layer 3 
03 

Z 1, Z2 and Z3: depths of the lower boundary of soil layers 1, 2 and 3 
Q2 and Q3: outflows of soil layers 2 and 3 
Q•-2 and Q2-3: water fluxes between soil layers 1-2 and 2-3 
0•, 02and03: water content of soil layers 1, 2 and 3 

R: surface runoff 

S: slope 
I: infiltration 

AET•,2,3: actual ET of soil layers 1, 2, and 3 

Figure 1. Schematic diagram of the vertical water budget algorithm. 

depth of the third soil layer and the multiplication factor for 
PET (Z3 and FETP) are associated with the annual and sum- 
mer flow volume objective; the depths of the first and second 
soil layers (Z1 and Z2) are associated with the summer and 
fall high flow objective. Note that any gain in model per- 
formance obtained through adjustments of CR must be con- 
served. Hence, any loss in model performance due to adjust- 
ments to Z3 and FETP should be compensated by readjusting 
CR. Similarly, any loss in model performance due to adjust- 
ments to Z1 and Z2 should be compensated by readjusting 
Z3, FETP and CR. Repeating this calibration process until a 
satisfactory model performance is reached. The computation- 
al requirements associated with this iterative process which 
aims at a simultaneous attainment of multiple objectives are 
somewhat minimized through the fact that it is not necessary 
to globally iterate over all objectives. Figure 2 introduces a 
schematic representation of the proposed approach. 

4.2.1. Prolonged summer drought recessions. A theoretical 
analysis and several ad-hoc simulation trials have shown 
that the summer recession is mostly controlled by flows out 

of the second and third soil layers. These flows are governed 
by the following equations: 

Q3 = CR (Z3-Z2) /•3 (1) 

where 

Q3: flow out of the third soil layer [L2.t -1] 
CR: recession coefficient [L.t -1] 
Z2: depth of the lower boundary of the second soil: layer [L] 
03: water content of the third soil layer at saturation [L.L -l] 
ZI: depth of the lower boundary of the first soil layer (i.e., 

soil layer thickness) [L] 

Q2 = K (02) sin(tan -1) (S) (Z2-Z1) (2) 

where 

Q2: flow out of the second soil layer [L2ot -1] 
K: hydraulic conductivity as a function of soil water 

content [L.t -1] 
Z3: depth of the lower boundary of the third soil layer [L] 
t92: water content of the second soil layer at saturation 
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OBJECTIVES 

ß -'"" Prolonged summer drought 
recessions 

Annual and summer flow 

volumes 

Summer and fall high flows 

ß "'--" High flow synchronization 

\! 

Spring runoffs resulting 
from snowmelt 

CALIBRATION STEPS 

Calibration i Adjustment 
of CR i of •R 

.:: 

..... :-'!':.::.G•:..•libration of I 
FE.TP and Z3 1 

•:•. 

.... "::': :' Calibration 
o'f:Z2 and Z1 

.......... 

3 

Adjustment 

of •R• 

Adjustment 
of Z3 or 

Calibration 

Main iterations to determine the indicated parameter(s). 

•i•':'•• i Calibration ..... of • ....... :a,:.::..i snow 
: ........ }i::i!:.::ii':"•...:.. 

........ . .......................... 

ß Required iterations to adjust the indicated parameter(s) and to conserve previously met 
objectives following modifications of the parameter values of the current objective. 
The parameters associated with each objective are as much as possible independent to 
minimize the number of iterations. 

Figure 2. Schematic diagram of the proposed calibration approach. 

[DL -1] 
S' slope of the RHHU [L.L -1] 

problem, the thickness of the second layer should be bound- 
ed as well. 

Calibration of the recession period should be obtained by 
simultaneous adjustments of the above parameters in equa- 
tions (1) and (2), that is CR, Z1, Z2 and Z3. The flow inten- 
sity also depends, albeit to a smaller extent, on the soil water 
contents of these two soil layers which depend themselves 
on evapotranspiration and, thus, on FETP. In principle, the 
calibration could be performed by determining one or sev- 
eral combinations of parameter values all equally good. 
However, this is nothing but an over parameterization of the 
recession. A close look at equation (1) reveals that perhaps 
the recession could be calibrated by solely adjusting CR. 
This should always be the case except for cases where the 
contribution of the second layer is too important, that is, 
when the soil thickness of the second layer is too large so 
the flow can in no way be compensated by reducing CR. 

To circumvent this problematic situation, we suggest to 
start the calibration by choosing representatives values of 
Z1, Z2, Z3 and FETP with respect to other model applica- 
tions [Fortin et al., 1998, 1999, 200lb]. In other words, this 
means that Z3 should correspond to the depth actually con- 
tributing to summer base flow. To avoid the aforementioned 

4.2.2. Annual and summer flow volumes. As previously 
mentioned, the depth of the third soil layer and the multipli- 
cation factor for PET (Z3 and FETP) are associated with the 
annual and summer volume objective. Since the proposed 
calibration strategy requires iteration by definition, we must 
also add that this objective also depends on CR, Z2 and Z1 
values. These affect the base flow rate and, indirectly, the 
available soil moisture needed for the evapotranspiration 
process. Nevertheless, FETP and Z3 represent the primary 
parameters for this second calibration objective with the 
former parameter having a more significant effect than the 
latter parameter. Now as far as FETP is concerned, it raises 
a peculiar problem since it is impossible to increase summer 
PET while reducing winter PET. It is so because the actual 
algorithm does not offer this possibility yet. It only allows 
for global and systematic, time independent, adjustments. 
This is why we recommend to find combinations of optimal 
values of FETP and Z3 that will minimize the residuals dur- 

ing summer months only. This usually produces reasonable 
and satisfactory intra-annual modulations of the evapotran- 
spiration process. In passing, to preserve earlier gains in 
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model performance for the recession objective, it is note- 
worthy any adjustments of FETP and Z3 values will require 
a posteriori adjustments on CR. 

4.2.3. Summer and fall high flows. In addition to the depths 
of the first and second soil layers (Z1 and Z2), the hydraulic 
conductivity of the second soil layer at saturation represents 
the other parameter affecting summer and fall high flows. 
This soil property is used as an upper bound for water infil- 
tration in the second layer as long as the soil water content 
of the soil surface is not too restricting. Following this con- 
ceptualization, a reduction or increase of the first soil layer 
thickness will create the bottleneck effect that arises when 

saturation takes place or near saturation conditions occur at 
the soil surface. On the other hand, the thickness of the sec- 

ond layer affects directly interflow intensity. An amplified 
influence of the second layer will have a tendency to produce 
an increased drying rate and, consequently, favor increased 
water infiltration in the first soil layer. Note that in HYDRO- 
TEL, the hydraulic conductivity at saturation is a soil prop- 
erty obtained from soil texture surveys (i.e., database). It is 
not currently considered as a calibration parameter. At this 
point we can not isolate or assign these parameters to specif- 
ic sub-objectives and, thus, we must consider they are tight- 
ly coupled. This means the summer and fall high flow objec- 
tive will be met in a two-dimensional parameter space. 

4.2.4. High flow synchron&ation. The downstream transfer 
of available water through RHHUs and river segments 
depends on the value of Manning's roughness coefficient 
for various land uses and river beds. We propose a multidi- 
mensional search within the lower and upper bounds values 
of the Manning's roughness coefficient. For example, the 
value of the Manning's roughness coefficient for forest 
should always be larger than that for open areas. Calibrated 
values must also be closed to those found in the literature. 

4.2.5. Spring runoff resulting from snowmelt. All parame- 
ters related to the evolution of the snowpack, including the 
threshold air temperature for separation between solid and 
liquid precipitation (TPPN), are calibrated within this objec- 
tive, although the melt rate at the snow-soil interface may 
be calibrated under another objective (see section 3.2.5). It 
is true that a deeper analysis could lead to the identification 
of sub-objectives related to snow accumulation and melt. 
Nevertheless, at this point, we favor a simultaneous calibra- 
tion approach under a single objective. The search for a set 
of parameters must be done within the lower and upper 
bounds of physically meaningful values. For example, the 
melt factor for open areas must always be larger than that 
for deciduous and coniferous forests. 

4.2. Synthesis and Preliminary Calibration Results. Table 2 
summarizes the conclusions reached in sections 3 and 4. 

These conclusions and the following calibration results rep- 
resent a first step toward a complete definition and valida- 
tion of the calibration strategy proposed in this paper. These 
results are preliminary as they illustrate the strengths of the 
underlying hypotheses and theory. 

Table 3 presents preliminary calibration results of an 
HYDROTEL application on the Chaudiere river basin, 
southern Quebec, north of the border between Maine and 
Quebec [Fortin et al., 200lb]. More specifically, this first 
test was performed for the sub-basin having for outlet the 
Sartigan dam (see Figure 3). This test is not indicative of the 
overall model calibration on the Chaudiere river basin. 

Nevertheless, it was used as a means of exploring the poten- 
tial of the proposed calibration strategy. A daily computa- 
tional time step was used for this application. The calibra- 
tion was performed using three-year long meteorological 
series (1997-1999) recorded at three stations (Hilaire, 
Beauceville, and Lac-M6gantic). Without loss of continuity, 
we present the calibration of the first three groups of param- 
eters. The relative independence between the two other 
groups of parameters is such that it was not deemed neces- 
sary to include their numerical calibration in a first crack at 
the proposed strategy. 

For the first step, we manually calibrated the recession 
coefficient with a relative residual criteria on summer flow 

volumes of 1%. This objective was met after five trials. The 
second step consisted in the manual calibration of Z3 and 
FETP. True to our theoretical analysis, adjustments of FETP 
allowed for significant gains in model performance. Minor 
adjustments to Z3 improved to a lesser extent the 
intra-annual modulations which resulted in a marginal 
overestimation of annual volumes (1%). Meanwhile, these 
adjustments could not lower below 5% an overestimation of 
summer volumes. Note that each new combination of FETP 

and Z3 values required posteriori adjustments of CR which, 
in passing, required two or three trials. Finally, at the third 
step, only one iteration was done to improve model per- 
formance with respect to summer high flows. This iteration 
led to FETP and CR values which preserved gains in model 
performance obtained in steps one and two. 

These preliminary numerical results are quite acceptable 
and illustrate a need to pursue our developmental work as 
all foundation hypotheses passed this first application test 
with HYDROTEL. 

5. CONCLUSION AND FUTURE WORK 

This paper introduced the first steps toward a 
process-oriented, multiple objectives, hydrological calibra- 
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Table 2. Calibration objectives and parameters for HYDROTEL and corresponding objective functions 

Steps Objectives Parameters Objective functions 
1 Minimize the errors in Recession parameter (CR) RV-R: residuals between observed and 

prolonged summer simulated flow volumes for the summer 
drought recessions time steps for stream flows less than Qe 

and included in N-day period of 
continuous decreasing flows 

2 Minimize the errors in Parameters controlling flow volumes AV-R: residuals between observed and 
annual and monthly (FETP, Z3) simulated flow volumes throughout all 
flow volumes periods of the year 

SUV-R: residuals between observed and 

simulated flow volumes during the 
summer 

3 Minimize the errors in Parameters partitioning of surface SUF-RMSE: square root of the mean 
summer and fall high runoff, water redistribution and square error of summer and fall stream 
flows fluxes within the soil (Z1, Z2) flows greater than Qc 

4 Minimize the high Parameters governing transfer rates RMSE: square root of the mean square 
flow synchronization (n) error of the overall calibration period 
errors 

5 Minimize the errors in Parameters governing snow melt WSP-RMSE: square root of the mean 
spring runoff resulting (FF, SF, CC) and winter recession square error of winter and spring stream 
from snow melt (TFSN) flows 

Qe' 
Qc' 
N ß 

Threshold stream flow for recession conditions 

Threshold stream flow for high flow conditions 
Number of continuous days where stream flows meet strong recession conditions 

Chaudi•re River 

Sartigan Dam 

Meteorological 
stations 

.. 

M•gantic Dam 

Figure 3. Geographic location of the Sartigan Dam, Chaudiere 
river basin. 

tion strategy accounting for model structure. A preliminary 
application of the proposed strategy with the hydrological 
model HYDROTEL [Fortin et al., 2001a] was presented. 
Test results clearly illustrated the need to pursue our devel- 
opmental work as all foundation hypotheses withstood this 
first application with HYDROTEL. Indeed, calibration of 
the first three groups of parameters associated with the first 
three objectives (i.e., prolonged summer drought recessions; 
annual and monthly flow volumes; and summer and fall 
high flows) was successfully achieved. 

In future work, we will further test the proposed groups of 
calibration parameters. Because the proposed calibration 
strategy is linked to the characteristic time scales of the 
modeled hydrological processes, we will conduct a sensitiv- 
ity analysis in the frequency domain of each parameter. 
Short time scale parameters should solely affect the high fre- 
quencies of the signal. Moreover, for each calibration 
parameter we will validate the sensitive periods of the year. 
Following these tests, we will conduct a complete manual 
calibration of HYDROTEL This exercise will help identify 
all hidden pitfalls associated with the proposed strategy and 
understand the general behavior of the chosen objective 
functions as well as the number of iterations actually 
required to preserved earlier model performances. As a first 
guess, we pretend that this number will remain relatively 
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Table 3, Preliminary 'test results of a first application of the proposed calibration strategy 
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* A I% tolerance level on. residuals was arbitrarily chosen.. 
** For testing purposes only one iteration was. done. 
*** In. a first approximation, calibration of the other parameters can be done indepet•ntly. 

small. Finally, based on the experience gained through these 
tests, we will implement an automatic version of the pro- 
posed calibration strategy. It is clear that this automatic pro- 
cedure will need some interaction with the user in order to 

choose, for example, the right time periods to evaluate a 
specific objective. To facilitate this interaction, a graphical 
user interface will be designed. 
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As evidenced by the papers presented within this monograph, optimization 
methods have advanced significantly over the last few decades. Although used 
extensively by the research community, operational hydrologists have been hesi- 
tant to implement improved automatic calibration techniques due to previously 
reported problems with single-step, single-objective optimization. A Multi-step 
Automatic Calibration Scheme (MACS) is presented which utilizes varying 
objective functions in a step-by-step approach to optimize parameters for NWS 
rainfall-runoff models, specifically the Sacramento Soil Moisture Soil Moisture 
Accounting (SAC-SMA) and SNOW-17 models. Results are presented for oper- 
ational basins within three National Weather Service (NWS) River Forecast 
Center (RFC) regions. The Leaf River in Mississippi, the South River in Iowa, 
and the Flint River in Georgia are calibrated with the MACS procedure and com- 
pared against RFC manual calibration. Additionally, the MACS procedure is com- 
pared against previously reported calibration methodologies on the Leaf River 
basin. Parameters obtained with the MACS procedure demonstrate improved, 
quality calibrations, comparable to RFC simulations and other existing optimiza- 
tion methods. The RFCs are currently in the process of calibrating numerous 
watersheds to the SAC-SMA and SNOW-17 models. The MACS procedure offers 
a time-saving, reliable approach for obtaining quality calibrations for forecast 
points within their area of responsibility. 

1. INTRODUCTION 

The National Weather Service (NWS), under the direction 
of the National Oceanic and Atmospheric Administration, is 
charged with "providing accurate and timely hydrologic 
information and forecasts for watersheds and rivers through- 
out the United States" [Brazil and Hudlow, 1981]. The NWS 
River Forecast Centers (RFCs) are the responsible parties for 
this federal mandate. Thirteen RFCs issue fiver forecasts for 

approximately 4,000 locations located throughout the United 
States [Ingram, 1996]. The NWS RFCs are currently in the 

1 Now at the Department of Management Science and Engineer- 
ing, Stanford University, Stanford, California. 
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midst of a national modernization effort, with the goal of 
improving their hydrologic forecasts and mitigating the loss 
of life and property caused by flooding. Congress has allo- 
cated funding for this modernization through the Advanced 
Hydrologic Prediction System (AHPS). As part of AHPS, the 
RFCs are implementing the NWS River Forecast System 
(NWSRFS), which includes the Sacramento Soil Moisture 
Accounting Model (SAC-SMA) and the SNOW-17 model 
[Anderson, 1973] as the main routines for the rainfall-runoff 
modeling of fiver systems. As part of the implementation of 
AHPS, the hydrologic models within NWSRFS (SAC-SMA 
and SNOW-17) must be calibrated to the numerous fiver 
forecast points within each of the RFCs. 

Traditional calibration within the NWS has included a 

sophisticated, highly interactive manual procedure to esti- 
mate parameter values. The NWSRFS includes an 
Interactive Calibration Program (ICP) [NWS, 1999] for 
modelers to evaluate these calibrations both visually and 
statistically. The hydrologist endeavors to match hydrograph 
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characteristics such as peak flow, flood volumes, recessions, 
and base flow. This highly interactive process is time-con- 
suming and labor-intensive, with a typical calibration taking 
from a few days to a few weeks for an experienced calibra- 
tor with thorough knowledge of the watershed system and 
the rainfall-runoff model. While manual calibration has been 

the norm in most operational settings, automatic optimiza- 
tion routines have seen extensive use by the research com- 
munity over the last two to three decades. Several reasons 
exist for the hesitation by modelers to implement automatic 
calibration procedures within operational hydrology, 
including conceptually unrealistic parameter values, poor 
model performance upon evaluation of the parameters (vs. 
the calibration period), and the inability of the algorithms to 
find a "single" optimum parameter set [Gupta and 
Sorooshian, 1994; Duan et al., 1993; Gupta et al., 1998]. 
Research within the last few years has resulted in the devel- 
opment of global search procedures and multi-objective 
optimization routines that have resulted in more reliable 
tools for hydrologists to estimate model parameters via 
automatic routines [Brazil, 1988; Duan et al., 1992, 1993; 
Sorooshian et al., 1993; Gupta et al., 1998; Yapo et al., 
1998]. The Multi-step Automatic Calibration Scheme 
(MACS) presented here uses these tools. The procedure 
incorporates the global search algorithm, Shuffled Complex 
Evolution-University of Arizona (SCE-UA) developed by 
Duan et al. [1992, 1993], and a step-by-step process, all 
within the NWSRFS, to obtain a "best" parameter set for 
use in NWS rainfall-runoff models. The goal of the devel- 
opment of the MACS procedure is to provide a time-saving, 
reliable, automatic calibration technique that is comparable 
in quality to current RFC practices, and which is available 
to operational hydrologists as an alternative to the time-con- 
suming manual calibration procedure. With a typically 
MACS calibration taking 3-4 man hours, the savings in time 
are significant, allowing the hydrologists to perform other 
necessary RFC responsibilities. The remaining topics of this 
chapter include development of the MACS procedure, 
application of MACS to several operational basins within 
the NWS RFCs, and a discussion of results and conclusions. 

2. DEVELOPMENT OF MACS 

2.1 Models 

The models calibrated as part of this study are within the 
NWSRFS and include the SAC-SMA model and the SNOW- 

17 model (where relevant). The SAC-SMA is a conceptual 
rainfall-runoff model utilizing 16 parameters (13 of which 
are typically calibrated) to describe the flow of water 
through the soil zone (Table 1). The model has been 

Table 1. SAC-SMA and SNOW-17 parameter descriptions. 

SAC-SMA Description 
UZTWM Upper zone tension water max. storage (mm) 
UZFWM Upper zone free water max. storage (mm) 
LZTWM Lower zone tension water max. storage (mm) 
LZFPM Lower zone free water primary max. storage (mm) 
LZFSM Lower zone free water suppl. max. storage (mm) 
UZK Upper zone free water lateral depletion rate (day -1) 
LZPK Lower zone prim. free water depletion rate (day -•) 
LZSK Lower zone suppl. free water depletion rate (day 4) 
ADIMP Additional impervious area (decimal fraction) 
PCTIM Impervious fraction of the watershed (fraction) 
ZPERC Maximum percolation rate (dimensionless) 
REXP Exponent of the pefco. equation (dimensionless) 
PFREE Fraction of water percolating directly to lower 

zone free water storage (%) 
RIVA Riparian vegetation (decimal fraction) 
SIDE Ratio of deep recharge to channel baseflow 

(fraction) 
RESERV Fraction of lower zone free water not transferable 

to lower zone tension water (%) 

SNOW-17 Description 
SCF Snow correction factor (dimensionless) 
MFMAX Maximum melt factor (mrn/C/6 hr) 
MFMIN Minimum melt factor (mm/C/6 hr) 
UADJ Wind function factor (mrn/mb/6 hr) 
SI Water equivalent maximum (mm) 
Areal Depletion Curve 
MBASE Melt base temperature (C) 
NMF Maximum negative melt factor (mrn/mb/6 hr) 
TELEV Elevation of temperature series (m) 
DAYGM Average daily ground melt (mm) 
PLWHC Percent liquid water-holding capacity (%) 
PXTEMPRain/Snow temperature index (C) 

Additional Parameters (usually not optimized) 
EFC Effective forest cover (decimal fraction) 
PXADJ Precipitation adjustment factor (dimensionless) 

described extensively in the literature [Burnash, 1995; 
Hogue et al., 2000; Sorooshian et al., 1993] and is also illus- 
trated in other studies throughout this volume [Smith et al., 
this volume; Boyle et al., this volume]. The SNOW-17 
model was originally developed by Anderson [1973, 1998] 
and is used to model snow accumulation and ablation. The 

model is conceptual, using temperature as an index to the 
energy exchange occurring in a snowpack and, subsequent- 
ly, the amount of snowmelt that will occur within a basin. 
The SNOW-17 model contains 12 parameters, six of which 
are considered major, having the most impact on snow 
processes, and six of which are considered minor, having 
less of an effect on snowmelt (Table 1). The calibration algo- 
rithm used for the MACS procedure is the SCE-UA, a search 
algorithm that has been demonstrated to be effective and 
efficient in finding the global optimum within the parameter 
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space [Duan et al., 1992, 1993; Sorooshian et al., 1993; Gan 
and Bifiu, 1996; Kuczera, 1997; Cooper et al., 1997; 
Franchini et al., 1998; Freedman et al., 1998; Thyer et al., 
1999]. The algorithm typically searches for the minimum of 
the response surface for a single criterion, resulting in a sin- 
gle "best" set solution. Because the SCE-UA has been dis- 
cussed extensively in previous publications [Duan et al., 
1992, 1993], specifics of the search algorithm will not be 
presented here [Duan, this volume]. The SCE-UA is one of 
six search algorithms available in the automatic 
OPTimization program [OPT3] within the NWSRFS. OPT3 
also contains several choices of objective functions, includ- 
ing Daily Root Mean Square Error (DRMS), sum of the 
squares of the LOGarithms (LOG), and Heteroscedastic 
Maximum Likelihood Estimator (HMLE), among others. In 
development of the MACS procedure, the limitations 
(specifically, a 16-parameter single calibration maximum) 
of the existing OPT3 code defined the process that was 
developed for calibration within the NWSRFS system. 
Revisions are underway within the OPT3 code to allow 
for simultaneous calibration of more than the current 16 

parameters. 

2.2 Methodology 

Because the OPT3 system is a single-objective optimiza- 
tion system, a step-by-step process was developed using var- 
ious objective functions for different parameters (or hydro- 
graph characteristics) to emulate a multi-criteria/multi-objec- 
tive approach. There are 28 parameters that need to be esti- 
mated when calibrating both the SAC-SMA and SNOW-17 
models. Given the constraints of the current NWSRFS, only 
16 parameters can be optimized in one calibration run. Of the 
16 SAC-SMA parameters, three of the parameters, RIVA, 
SIDE, and RSERV, can typically be set to established values 
[Burnash, 1995]. The PCTIM parameter also can be estab- 
lished from regional maps and local hydrologic information. 
For the SNOW-17 model, the minor parameters, along with 
the areal depletion curve, were set at values obtained from 
the RFC and were not optimized. These parameters can also 
be estimated from model documentation [Anderson, 1973, 
1978] or obtained from historical snow data for the basin. 
This left the four major parameters (SCF, MFMAX, 
MFMIN, SI) for calibration. Three additional miscellaneous 
parameters: EFC, PXADJ and UADJ, were not optimized 
and set to pre-established literature values. In summary, a 
total of 16 parameters: 12 from the SAC-SMA model and 
four from the SNOW-17 model were considered for opti- 
mization in this study. The parameters used at each of the 
MACS steps, along with the objective function chosen for 
optimization, are detailed in Table 2. 

where LOG (Eq. 1) and DRMS (Eq. 2) are defined as: 

LOG = •(LOGQsi,n, t - LOGQot, s,t )2 (1) 

where Qsim,t = simulated flows, and Qobs,t = observed 
flows at time step t. 

The multi-step approach of MACS was designed to follow the 
NWS manual calibration approach and is described as follows: 

Step 1 
In the initial calibration phase of a basin, the NWS mod- 

eler typically attempts to estimate lower zone (primarily 
baseflow) parameters of the SAC-SMA. MACS imitates 
this process by running the initial optimization with the 
LOG objective function to model recessions and lower flow 
values. All 16 parameters, 12 of the SAC-SMA and four of 
the SNOW-17 model (Table 2), are calibrated in this first 
run. The use of the LOG criterion places strong weighting 
on the low-flow portions of the hydrograph to provide good 
estimates of the lower zone parameters. However, by com- 
puting the criterion over the entire hydrograph and optimiz- 
ing all of the parameters, this step also helps to loosely con- 
strain the remaining (upper zone) model parameters into the 
region that provides coarse fitting of the peaks. 

Step 2 
The second step of the MACS process emphasizes the 

estimation of parameters that influence higher flow events. 
Table 2. Parameters optimized during MACS. 

Model 

SAC-SMA 
Stepl Step 2 Step 3 
UZTWM UZTWM -- 

UZFWM UZFWM -- 

UZK UZK -- 

ADIMP ADIMP -- 

ZPERC ZPERC -- 

REXP REXP -- 

LZTWM -- LZTWM 

LZFSM -- LZFSM 

LZFPM -- LZFPM 

LZSK -- LZSK 

LZPK -- LZPK 

PFREE -- PFREE 

SNOW-17 SCF SCF 

MFMAX MFMAX 

MFMIN MFMIN 

SI SI 

OBJ. FX. LOG DRMS LOG 
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Lower zone parameters estimated in the first step are held 
constant, and a second optimization is run using the DRMS 
function with ten of the model parameters (Table 2). The 
DRMS objective function is used to provide stronger 
emphasis on reproduction of the peak flows. Once these 
upper zone and snow parameters are estimated, they may be 
fine-tuned manually or held as estimated, but they are not 
optimized further. This second step significantly decreases 
overall percent bias on the study basins. 

Step 3 
Once parameters are obtained in Step 2, a third calibration 

is run to fine-tune baseflow parameters with the new upper 
zone and snow parameters. Only the six SAC-SMA lower 
zone parameters are optimized again using the LOG objec- 
tive function (holding the ten parameters from step 2 con- 
stant). Once the optimized values are obtained for the 
parameters, the modeler may fine-tune the estimates manu- 
ally using local expertise and knowledge of the system. 

Step 4 
As a final but optional step, a check of monthly biases 

may reveal trends that call for an adjustment of previously 
estimated ET parameters. The current version of OPT3 does 
not allow for automatic optimization of the ET demand 
curve. A manual fine-tuning or adjustment of these parame- 
ters, using monthly errors as a guide, may produce more 
accurate streamflow during all seasons. 

3. APPLICATION OF MACS 

3.1 Study Basins 

The MACS procedure was originally developed and test- 
ed on basins within the North Central River Forecast 

Center (NCRFC). The watersheds in this region are mod- 
eled using both the SAC-SMA along with the SNOW-17 
model for snowmelt and are represented as a lumped sys- 
tem (1-elevation band) with a single set of parameters used 
for the entire basin. The MACS procedure has since been 
tested by this research group on several operational RFC 
forecast points within the U.S. representing various hydro- 
logic regimes, including the Southeast River Forecast 
Center (SERFC), Lower Mississippi River Forecast Center 
(LMRFC), Colorado Basin River Forecast Center 
(CBRFC), and Alaska River Forecast Center (AKRFC). 
The CBRFC and AKRFC watersheds tested with MACS 

represent a distributed-type modeling system with multi- 
tiered watersheds (2-3 elevation bands or zones) for a sin- 
gle forecast point. Each elevation band in these systems is 
represented with its own SAC-SMA and SNOW-17 mod- 

els, increasing the dimensionality of the calibration prob- 
lem three-fold. These results, along with results for all the 
RFC basins tested to date, are discussed further in Hogue et 
al., [2002]. Results from the application of MACS to sev- 
eral "lumped" RFC forecast points are presented here, 
including the Leaf River near Collins, Mississippi 
(LMRFC), the South River at Ackworth, Iowa (NCRFC), 
and the Flint River at Culloden, Georgia (SERFC). The 
Flint and Leaf rivers involve calibration of the SAC-SMA 

model only, while the South River (headwater of the Des 
Moines River) involves calibration of both the SAC-SMA 
and SNOW-17 models. Basin area, mean daily flow, and 
the time periods used for calibration and evaluation are 
shown in Table 3 for the study watersheds. 

3.2 Results 

All three watersheds in this analysis were modeled using 
a split-sampling technique. A selected period (based on pre- 
vious analyses of basin climatology and consultation with 
the RFC) of approximately 11 years was used for optimiza- 
tion, and a final "best" parameter set was obtained. This 
parameter set was then tested over a longer period of data to 
evaluate the performance of the calibration methodology. 
When using the MACS procedure, ranges for parameter 
bounds are obtained from the RFCs to ensure the calibration 

procedure obtains values that are "physically realistic", 
appropriate to the regional hydrology. Along with visual 
inspection of the hydrograph, several statistics were evalu- 
ated, including overall DRMS (Eq. 2), Percent Bias (%Bias) 
(Eq. 3), and correlation coefficient (Rcoeff) (Eq. 4). Similar 
to the NWS RFC calibration procedures, monthly %Bias 
and flow group %Bias were also assessed. 

% Bias = Qsirn,t - Qobs,t ) Qobs,t * lOO 
/=1 /=1 

(3) 

Rcoeff : O'Qøbs'Qsim (4) 

The Leaf River basin in Mississippi has been used exten- 
sively by this research group (and others) in testing and 

Table 3. Basin statistics and data periods used for study. 

Calib. Eval. Area Mean Daily 
Basin Period Period (km 2) Flow (cms) 

Leaf River 1953-63 1956-93 1944 32.41 

South River 1971-81 1948-93 1192 7.28 
Flint River 1977-88 1950-92 4880 62.80 



HOGUE ET AL. 169 

evaluating calibration techniques with the SAC-SMA 
model [Brazil, 1988; Yapo et al., 1996; Boyle et al., 2000; 
Thiemann et al., 2001]. The LMRFC also has a forecast 
point at this location and has calibrated the basin using 
RFC manual calibration techniques. The performances of 
parameter values obtained from previous calibration meth- 
ods were also analyzed to compare with MACS and the 
current RFC parameters, including Brazil's three-stage 
interactive multi-level calibration procedure [Brazil, 1988], 
the BaRE (Bayesian Recursive Estimation) "maximum 
likelihood" parameters [Thiemann et al., 2001; Misrili et 
al., this volume], and the SCE-UA parameter values 
[Thiemann et al., 2001]. Three of the methods (MACS, 
SCE-UA, and Brazil-IMC) were all calibrated using the 
same data period (WY 1953-63), while the BaRE procedure 
typically uses less data and was calibrated using approxi- 
mately 1.5 years of this same data period (WY 1953). Table 
4 displays parameter values obtained from the various 
methods, along with the DRMS value for the calibration 
period. As illustrated, different combinations of parameters 
have resulted from the various methods. While all of the 

schemes present acceptable solutions and show similar 
DRMS values during the calibration period, the SCE-UA 
and MACS obtain slightly lower errors (%Bias and 
DRMS). The parameters obtained from the various calibra- 
tion methods were then tested over a longer timeseries to 
analyze performance of the parameters. 

Evaluating these parameters over a longer historical time 
frame allows a better indication of overall calibration per- 
formance and detection of model divergence [good model 

Table 4. Comparison of parameters for the Leaf River Basin. 

SCE- 

Parameter RFC MACS UA Brazil BaRE 

UZTWM 45 52.9 14.089 9.00 33.61 

UZFWM 20 55.1 63.825 39.8 76.12 
UZK 0.310 0.345 0.100 0.20 0.332 

ADIMP 0.05 0.108 0.363 0.250 0.266 

LZTWM 120 179 238 240 236 

LZFSM 40 71.5 3.19 40 132 

LZFPM 100 142 99.8 120 124 

LZSK 0.06 0.042 0.019 0.200 0.089 
LZPK 0.0065 0.005 0.021 0.006 0.015 

ZPERC 55 250 250 250 117 

REXP 2.50 4.44 2.46 4.270 4.95 
PCTIM 0.005 0.007 0.00 0.003 0.016 

PFREE 0.30 0.196 0.021 0.024 0.146 
RIVA * 0.01 0.01 0.01 0.01 0.01 

SIDE * 0.30 0.30 0.30 0.30 0.30 

RESERV * 0.00 0.00 0.00 0.00 0.00 

DRMS ** 19.6 a 18.2 a 20.3 a 21.8 b 
* Set to fixed value 

** Calibration period not applicable for RFC calibration 

performance during calibration period and poor perform- 
ance during evaluation]. Table 5 displays the statistics for 
the evaluation period (WY 1956-93) for all calibration 
methods. The MACS and BaRE methodologies exhibit bet- 
ter performances over this given time period. The MACS 
has the lowest %Bias (and DRMS) and the highest correla- 
tion between simulated and observed streamflows (Rcoeff). 
BaRE is similar in performance, which is actually quite 
notable, given that the on-line recursive method used only 
-1.5 years of data to find a reliable parameter set [Thiemann 
et al., 2001]. The SCE-UA, Brazil-IMC, and RFC are all 
similar in performance, with slightly higher DRMS and 
%Bias, but still fairly good correlation of modeled and 
observed flows. 

Along with overall %Bias, performance of the calibrated 
parameters was also evaluated by analyzing %Bias for 
selected streamflow ranges or intervals (NWSRFS STAT- 
QME program). As illustrated in Figure 1, all of the cali- 
bration methods select parameters that are not as precise at 
the lower flow interval (1.02-3.25 cms), although the BaRE 
algorithm performs fairly well in this range. As the flows 
increase, all of the methods perform fairly consistently and 
lower %Bias to typically less than ___10%. Figure 2 also 
shows monthly %Bias for all calibration methods for the 
Leaf River basin. Again, all of the methodologies show con- 
sistency during the late winter and into the early summer 
months, with lower %Biases (also higher flow season). As 
the year progresses, it is observed that all of the models 
have trouble predicting flow (over-simulating) during the 
late summer and fall months. This is consistent with the 

flow interval biases seen in Figure 1. This is typically the 
drier season for this region, and the model [and selected 
parameters] has difficulty simulating these low flows. 

Hydrographs for a portion of one water year (days 180- 
280) of the Leaf River basin are displayed in Figures 3 and 
4. Figure 3 displays the RFC and MACS calibrations 
against observed flows, while Figure 4 displays SCE, 
BARE, and Brazil parameters against observed flows. All of 
the methods show similar visual performance for most of 
the evaluation period, including this water year (WY 1962). 
The RFC and MACS show very similar performance. The 
RFC over-predicts a flow event around day 210, and both 
methods under-simulate the event around days 185 and 
190. However, both methods catch the general trend of the 

Table 5. Statistics for the Leaf River (WY 1956-93). 

RFC MACS SCE Brazil BaRE 

DRMS 36.72 23.75 28.05 28.88 24.93 
%Bias 10.42 3.20 4.08 6.78 3.43 
Rcoeff 0.879 0.936 0.911 0.911 0.928 
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Figure 1. Flow Group %Biases for the Leaf River (WY 1956-93). 
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Figure 2. Monthly %Biases for the Leaf River (WY 1956-93). 

rising limbs and recessions and match other flow events 
throughout the year fairly well. In Figure 4, all presented 
methods (SCE, BARE, and Brazil) under-simulate the event 
at day 185. The Brazil and BaRE methods slightly over- 
predict on day 210. The Brazil parameters tend to catch the 

long recession from day 220 to 240 slightly better than the 
BaRE or SCE. The SCE generally captures peak flows well, 
but as noted in other automatic single-step batch calibration 
methods, tends to over-simulate on nearly all recessions. All of 
these issues become relevant to the hydrologist who uses these 
parameters in forecasting future flow events with the model. 

The South River in Iowa and the Flint River in Georgia 
were calibrated with only the MACS as part of an overall 
evaluation of this automated procedure within operational 
basins (CBRFC, AKRFC, SERFC, and NCRFC). Table 6 
displays overall DRMS and %Bias for the evaluation peri- 
ods for RFC and MACS. Statistical comparisons were not 
made between RFC and MACS for the calibration period 
because different time periods were used for calibration. On 
both the South River and the Flint River, the MACS cali- 

bration performs well as compared to the RFC calibrations 
(similar DRMS values) with MACS having a significantly 
lower %Bias on the South River basin. 

Figures 5 and 6 display flow interval %Bias and monthly 
%Bias on the South River (headwaters of the Des Moines 
River in Iowa). Generally, both the RFC and MACS over- 
simulate on low flows and perform better on higher flow 
groups (13.8 cms and higher). Both calibrations also tend to 
over-simulate flow in the wet, spring months. This is proba- 
bly due to inadequate snowmelt representation within the 
basin. Other than the months of January and September, the 
MACS calibration has slightly better performance through- 
out the year. Figure 7 displays days 100-300 for one year of 
runoff simulation for the South River (WY 1973). Both the 
RFC and MACS tend to under-simulate on some peak flow 
events (days 130 200), but catch the general trend of the 
flows fairly well. The MACS procedure tends to do a better 
job of simulating the falling limb and recessions of the most 
flow events. 

I I I ' I I I I I I 

u 15 o d• Obs o - 

• ø d \ RFC-- i o •,• MACS - 

"11 - i• øo/•x•/ '••o.o._] •' ::•-• 
• øøo 

• ø ø • 

0 I I m I I i m I I 
180 lgO 200 210 220 230 240 250 2•0 270 280 
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Figure 3. Leaf River basin RFC and MACS calibrations for days 180-280 (WY 1962), where: 

Transformed flow -- (flow + 1) • -1 
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Figure 4. Leaf River basin SCE, BARE, and Brazil calibrations for days 180-280 (WY 1962), where trans- 
formed flows are as described in Figure 3. 

Table 6. Statistics for the South and Flint rivers (eval. period). 

DRMS % Bias 

Basin RFC MACS RFC MACS 

South River 18.72 15.94 17.84 4.55 

Flint River 33.61 29.03 -1.65 -0.63 
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Figure 5. Flow Group %Biases for the South River (WY 1948-93). 
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Figure 6. Monthly %Biases for the South River (WY 1948-93). 

The MACS procedure was also run on the Flint River 
within the SERFC (near Culloden, Georgia). Only the SAC- 
SMA model was calibrated in this region, as snowfall is not 
a normal part of the region climatology. Figures 8 and 9 
show flow interval %Bias and monthly %Biases, respec- 
tively, for both the MACS and RFC calibrations. Again, 
both the MACS and RFC over-simulate on very low flows 
(1.81-5.65 cms), but perform much better on higher flow 
intervals (Figure 8). Looking at the performance of the two 
calibrations throughout the year, except for the fall months 
of September and October, the MACS calibration performs 
slightly better and produces lower %Bias throughout the 
seasons. The hydrograph for days 100-300 from WY 1983 
is depicted in Figure 10, and it is evident that both the RFC 
and MACS perform very well in this basin. Both sets of cal- 
ibrated parameters catch nearly all of the peak flow events 
and also simulate recessions better than on the South River 

in the NCRFC. 

4. DISCUSSION AND CONCLUSIONS 

The analysis presented in this paper demonstrates the 
success and applicability of an automated step-wise 
approach for use in the calibration of watershed systems. 
The MACS procedure established parameters for the Leaf 
River, South River and Flint River that provided compara- 
ble, and sometimes improved, calibrations to the RFC man- 
ual parameters. Of the five calibration methods tested for the 
Leaf River, the MACS actually provided the lowest overall 
%Bias and DRMS and the highest correlation between 
observed and simulated flows. MACS also showed 

improved overall %Bias and DRMS on the South and Flint 
rivers. Hydrographs for the South, Flint, and Leaf River cal- 
ibrations illustrate similar quality simulations with RFC and 
MACS parameters. The MACS procedure has been tested on 
several basins within various NWS RFC regions and demon- 
strates consistency in finding parameter sets that provide 
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Figure 7. South River basin RFC and MACS calibrations for days 100-300 (WY 1973), where transformed flows are 
as described in Figure 3. 
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Figure 9. Monthly %Biases for the Flint River (WY 1950-92) 
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Figure 10. Flint River basin RFC and MACS calibrations for days 100-300 (WY 1983), where transformed 
flows are as described in Figure 3. 

quality, comparable calibrations to RFC manual calibrations, 
in both lumped and multi-tiered watershed systems. 

Under the NWS AHPS modernization effort, the RFCs 
are under increased pressure to provide timely, quality cali- 
brations for implementation of the SAC-SMA model into 
the NWSRFS. The obvious advantage of MACS, and other 
automated technologies, is the savings in time for the oper- 
ational hydrologist. A typical MACS calibration takes 3-4 

hours of personnel time, while a manual calibration may 
take as long as 2-3 days (or more) for an experienced 
hydrologist [Holz, 1999, Personal Communication]. MACS 
can be used to help fine-tune an existing set of parameters 
or can be used to find an initial set of parameters that can 
than be fine-tuned using RFC expertise to arrive at a final 
set of parameters. The MACS procedure was developed 
within the existing NWSRFS, with current limitations of the 
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coding incorporated into the methodology (specifically the 
16-parameter optimization limit). Changes in the coding of 
OPT3 are underway within the Office of Hydrologic 
Development, and adaptations in MACS will be tested and 
reported in due course 

The MACS procedure provides reliable, quality calibra- 
tions, comparable to the RFC manual calibrations. With 
over 4,000 river forecast points within the United States to 
calibrate, MACS is an available, straightforward proce- 
dure that can be used as a tool in this task. With the 

advancement and improvement of automatic calibration 
techniques and the nearly exponential growth in available 
computing power, there is little reason for operational 
hydrologists not to take advantage of existing technology 
to aid in their calibration efforts. Several studies [Boyle et 
al., 2001; Hogue et al., 2000] have now shown that auto- 
matic procedures can produce comparable, sometimes 
improved, calibrations to traditional manual calibration 
techniques. Implementation of these methods into opera- 
tional hydrology has been slow. It is time for automated 
calibration technology to become a part of operational 
hydrologic forecasting routines. Feedback and dialogue on 
the ongoing development and application of automated 
calibration procedures to operational watershed systems is 
encouraged. 
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Impacted Flood Plain: Forensic Hydrology 
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Hydrologic models contain parameters that are critical to their predictive accu- 
racy. Calibration is a procedure aimed at determining model parameters that 
reproduce measured variables over a wide range of hydrologic conditions: aver- 
age, dry, and wet. Four decades of experience in hydrologic model calibration has 
produced a bounty of experience, and frustration, about the models' limited abil- 
ity to predict accurately in the presence of highly variable and/or extreme hydro- 
logic inputs and spatially heterogeneous watersheds. Special challenges to effec- 
tive model calibration and testing arise when the hydrologic system under con- 
sideration, be it a watershed or flood plain, undergoes changes so that its input- 
response characteristics become transient. This situation raises interesting theo- 
retical and practical challenges to the calibration and implementation of a hydro- 
logic model across non-steady hydrologic regimes. This chapter reviews the prob- 
lem of hydrologic-hydraulic calibration in impacted flood plains and provides an 
example of the possibilities available and the obstacles posed to hydrologists in 
this unique setting. The relevance of effective hydrologic model calibration and 
the testing of its predictive skill are demonstrated within the context of forensic 
hydrology, a branch of hydrology that supports legal investigations and that deals 
with the study of flood events with the objective of determining probable causes 
and sources of human-induced contributions to flood damages. 

CHANGING WATERSHEDS 

Consider a watershed where stream flow is measured at a 

specific location. Suppose that land use changes during a 
time span of twenty years caused by vegetation removal and 
by conversion of a portion of the watershed from cropland 
to other functions that render its surface less permeable. The 
effect of land-use change on the stream flow hydrograph at 
the gauging location may manifest itself as depicted in 
Figure 1. For the same rainfall intensity, duration, and spa- 
tial coverage, it is seen in Figure 1 that land-use change pro- 
duces (1) an increasing flow peak, (2) steeper rising and 
falling hydrograph limbs, and (3) shorter times to peak 
flows. Although not evident from Figure 1, the type of land- 
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use change being entertained usually produces a larger total 
volume of stream flow passing through the gauging loca- 
tion. From a water-resources management point of view, the 
cited land-use raises challenges. For example, the flood 
stage (h) at any location may rise over time for the same 
level of stream flow. This is illustrated in Figure 2 by an 
upward shift of the rating curve (i.e., the flood stage vs. flow 
function). Likewise, the flood-frequency function is also 
shifted upwards, as it is shown in Figure 3, wherein the 100- 
yr flood peak increases from Q*100 to Q100' Upwards 
shifts of the rating and flood frequency curves of the types 
shown in Figures 2 and 3, respectively, generally heighten 
the flood risk [Loaiciga, 2001 ]. 

TRANSIENT HYDROLOGIC RESPONSE 

From a hydrologic modeling perspective, a transient inter- 
mediate rainfall-runoff response--such as that shown in 
Figure 1--poses potentially serious difficulties for model 
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Figure 1. Assumed stream-flow hydrographs at a gauging station 
at various stages of flood-plain development. 
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Figure 2. Upward displacement of the rating curve caused by 
flood-plain development. 

calibration and testing (see Lapointe et al. [ 1998]).Consider 
the upper branch of the schematic of Figure 4. A (vector, in 
bold face) input (v, say, rainfall) induces a system response 
(the vector x, say, the stream flow hydrograph), in which the 
transformation of v into x is effected by the system response 
function J, or prototype. Under transient conditions caused 
by land-use changes, the system response J is time-depend- 
ent. Thus, for two times (or time periods, in which case time 
would be a vector-valued variable) t• and t 2, t 2 unequal to t•, 
the same input v would produce unequal responses; that is, 
x 1 = J•(v) which differs from x2 = J2(v) in some suitably 
defined sense. Taking into account the stochastic uncertain- 
ties in inputs and in hydrologic response, the existence of a 
transient hydrologic response may be stated in probabilistic 
terms (P[ ] denotes the probability of an argument; a is a 
positive closure criterion): 

lim P•J1 (v)- J2 (v)l <- a]-• 0 (1) 
a-->0 
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Figure 3. The flood-frequency function is displaced upwards by 
flood-plain changes. 

in which I I denotes a norm (for example, the root mean 
square error defined by the hydrographs x• and x 2, see 
Arnorocho and Espildora [1973] for a review of closure 
norms in hydrology). 

MODEL CALIBRATION 

Hydrologists work with models (H) of the system proto- 
type (J). The former produces an approximate hydrologic 

A 

response x = H(v ̂ ) from the error-corrupted measurement 
v ̂  (= v + e, where e is measurement noise) of the input v 
(see the lower branch of Figure 4). In addition, the system 
response x is measured with some error. The measurement 
operator M converts the system response x into the meas- 
ured value x*, i.e., x* = x + e = M [x] in the upper branch 
of Figure 4. A hydrologic model H is considered calibrated 
whenever the following condition holds' 

lim P[Ix*-H(v +e) I <_a ]--> 1 (2) 
e----> 0 

in which a is a positive closure criterion. 
Calibration is carried out based on measured inputs and 

outputs that contain a certain amount of error in them. 
Rainfall fields are particularly difficult to measure accurately 
over space and time [Larson and Peck, 1974; Groisrnan et 
al., 1994]. The same is true of high flows that exceed cali- 
brated rating curves and overflow into adjacent flood plains. 
Therefore, the hydrologist may be faced with the task of cal- 
ibrating a hydrologic model when the input data (e.g., rain- 
fall) are biased. A probable outcome is that the model param- 
eters must be assigned unrealistic values in order to match 
model predictions to measured watershed response. Models 
that are calibrated in this fashion perform poorly when used 
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to predict watershed response with rainfall or other stress or 
state conditions that depart from those used during calibra- 
tion. In practice, it is common to see the representation of 
hydrologic processes, the parameterizations of constitutive 
and empirical relationships, as well as the parameter values 
themselves, be subject to change during calibration. 
Although the refinement of a model's structure is necessary 
during model building, it is not acceptable once the model 
has been identified. To do so during calibration introduces a 
faulty circular logic [Demeritt, 2001] and raises questions 
about the model's intrinsic validity. In some instances a 
hydrologic model may be properly structured, yet, the quali- 
ty of the input (and/or output) data to the model may be so 
compromised that calibration becomes an exercise in futility. 

MODEL VALIDATION (OR TESTING) 

A hydrologic model that is calibrated at time t I (= Hi) is 
validated if it approximates the prototype's response (= x*) 
at a time t2 unequal to h. Mathematically: 

lira P[Ix*-H(v2 1 
e2--> 0 

(3) 

in which a is a positive closure criterion and e 2 is measure- 
ment error. 

Under transient watershed conditions, the prototype (or 
watershed) changes over time. Although the model can 
undergo successive calibrations with data measured at spe- 
cific times, model validation as defined in equation (3) is not 
possible because of the changing nature of the watershed 
response system. Depending on the degree of change in the 
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system response, the predictive skill at time t 2 of a model 
calibrated at time tl may be seriously degraded. For exam- 
ple, if the following condition holds, the model's successful 
predictions would become a type of Bernoulli process: 

lim P[I x*-Hl(v 2 0.5 
e2-•0 

(4) 

Equation (4) implies that there is at best a 50 % chance of 
meeting the desired predictive skill. The reader may find a 
more in-depth analysis of model calibration and validation 
in Loaiciga et al. [ 1996], as well as a critique of model test- 
ing in the earth sciences in Oreskes et al. [1994]. Demeritt 
[2001] provides a lucid analysis of model calibration under 
climate-change forcing. 

FORENSIC HYDROLOGY 

Forensic hydrology was defined in Loaiciga [2001] as "a 
branch of hydrology that supports legal investigations and 
that deals with the study of flood events with the objective 
of determining probable causes and sources of human- 
induced contributions to flood damages". Forensic flood 
studies are becoming commonplace in the United States as 
its flood plains continue to be modified in various ways, 
with more frequent and severe damages to property being 
the typical outcome. The following sections summarize a 
forensic hydrology study that deals with increasing flood 
damages in an impacted flood plain. Model calibration and 
testing under transient conditions in an impacted flood plain 
are illustrated via the case study. 

THE STUDY AREA 

On March 10, 1995, intense rain fell on the San Luis 

Obispo Creek watershed of California causing property 
damages at several sites within the Creek's flood plains and 
margins. We focus our attention on the lower reach of the 
San Luis Obispo Creek, where several buildings were dam- 
aged by water levels that exceeded the 100-yr flood stage. 
The San Luis Obispo Creek watershed has a mean annual 
precipitation of 559 mm and a mild west-coast 
Mediterranean climate with warm and dry summers (June 
through September) and wet, cool, season (November 
through March). There is high inter-annual precipitation 
variability characterized by unusually intense storms during 
strong E1 Nifio phenomena and by protracted droughts that 
may last a decade [Loaiciga et al., 1993]. The drainage area 
is 217 km 2 and ground elevations range from sea level to 
about 800 m. The lower San Luis Obispo Creek underwent 
numerous physical changes between 1969 -the year of the 
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historical flood on record- and 1995. Those changes includ- 
ed: (1) flood-plain filling (in Avila Farms and RV Park), (2) 
orchard planting (Avila Farms), (3) levee construction 
(Avila Farms), (4) greater vegetation density in the creek 
channel, and (5) bridge construction (Ontario Bridge). 
Other possible flood-impact factors were considered but 
ruled out as implausible. One such factor was the possible 
contribution of tidal backwater effects to high water levels. 
It turned out that the highest flood level on March 10, 1995, 
occurred during low fide. A 1994 brush fire was entertained 
as a likely contributor to increased runoff in March of 1995. 
It was established, however, that that fire burned only 3% of 
the watershed, in a remote region in the San Luis Obispo 
Creek's headwaters. The next section presents a forensic 
analysis of the contributions of the various flood-plain 
changes to high water levels on March 10, 1995, and of the 
procedure to calibrate and test a hydraulic model of the 
impacted flood plain. 

HYPOTHESES 

Two hypotheses were put forward to explain the dam- 
age-causing flood levels in the lower San Luis Obispo 
Creek watershed. According to the first one, unusually 
intense rainfall and wet antecedent conditions caused the 

high water levels on March 10, 1995. All the buildings 
that were damaged were located outside the 100-yr flood 
zone for the lower San Luis Obispo Creek. Thus, accord- 
ing to this hypothesis, the flood of March 10, 1995, 
exceeded the 100-yr event. The second hypothesis was 
that the flood of March 10, 1995, was not nearly as large 
as the 100-yr event, but, rather, that flood-plain changes 
modified the hydraulic properties of the channel and the 
right and left overbanks (or terraces, in geomorphologic 
jargon), thus causing high water levels for a moderate 
flow peak. 

Compounding matters in this case was the fact that there 
were no paired stream gage records (i.e., time-discharge 
records) at any location in the study area. The estimated 
100-yr flow at the point of interest in the lower San Luis 
Obispo Creek was estimated to be between 580 and 700 m 3 
s -1 in a study by the U.S. Army Corps of Engineers [1974] 
following the floods of March 1969. The March 1969 flood 
was rated as a 100-yr event by the U.S. Corps of Engineers 
[1974]. Waananen and Crippen [1977] compiled regional- 
ized statistical equations that predict the 100-yr flood peaks 
(as well as flood peaks with various other return periods) in 
terms of drainage area, mean annual precipitation, and ele- 
vation index. These equations estimated a 100-yr flood 
peak equal to 544 m 3 s -1 for the lower San Luis Obispo 
Creek. 

RAINFALL ANALYSIS 

The maximum 3-hr and 24-hr rainfalls on March 10, 
1995, were 28.4 mm and 124.8 mm, respectively. The 3-hr 
rainfall depth is relevant because the time of concentration 
in the lower San Luis Obispo Creek is about 2.5 hours. It is 
not surprising then that the flood peak on March 10, 1995, 
occurred about 17:30, the center point of the maximum 3-hr 
rainfall depth. The 24-hr rainfall depth was calculated to 
provide another reference about the statistical nature of the 
rainfall events that affected the San Luis Obispo Creek on 
March 10, 1995. The maximum historical 3-hr and 24-hr 

rainfalls are 45.7 mm and 155.0 mm, respectively, which 
occurred in March 1969. It is evident that the damage-caus- 
ing storms of March 1969 were more severe than those of 
March 1995. Antecedent conditions were wet in both 

instances. The National Oceanic and Atmospheric 
Administration-NOAA- [1972] estimated the 5-yr, 3-hr, 
rainfall depth in the San Luis Obispo Creek to be 41.8 mm, 
while the 10-yr, 24-hr, rainfall was estimated at 124.3 mm. 
These NOAA [1972] data indicate that the March 10, 1995, 
3-hr maximum rainfall was less than the 5-yr return event, 
while the 24-hr maximum rainfall on that same date had a 

return interval of about 10 years. Although no impossible, it 
is unlikely that rainfall with a return interval of less than 
five years could have caused a flood peak in excess of the 
100-yr event. This is important evidence against the (first) 
hypothesis that the peak flood of March 10, 1995, was an 
extremely rare event, an "act of God" in legal parlance. Let 
us pursue the testing of this hypothesis with a hydrologic- 
hydraulic model. 

FLOOD SIMULATION: A HYDROLOGIC MODEL 

The Hydrologic Modeling System (HMS, Hydrologic 
Engineer Center of the U.S. A rmy Corps of Engineers, 
[2001]) was used to simulate floods in the lower San Luis 
Obispo Creek. Rainfall was estimated from radar-reflectivi- 
ty data and adjusted with rain-gage data. The radar-estimat- 
ed rainfall was averaged over 2 km x 2 km cells in a grid that 
extended throughout the entire study area with a 15-minute 
temporal resolution and input to HMS. The rain gages were 
sparsely scattered throughout and on the vicinity of the 
watershed and several were not recording, thus reporting 
total depths only. Therefore, there was uncertainty in the 
accuracy of the radar estimated, spatially-distributed, rainfall 
input to the model (see Legates [2000] for further analysis of 
the accuracy of radar-estimated rainfall). Another shortcom- 
ing in carrying out the HMS simulations was the fact that 
there were no stream-flow measurements with which to cal- 

ibrate the model parameters. Instead, soil, hydrograph, and 
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routing HMS parameters were assigned (using professional 
judgment) from observed or inferred hydrologic/hydraulic 
basin characteristics for March 1995. The San Luis Obispo 
Creek was subdivided into 59 sub-basins, each of which was 

assigned soil, hydrograph, and routing HMS parameters. 
This produced a large parameter set that had to be inferred to 
carry out the HMS stream flow simulations. 

The HMS-simulated flow for March 10, 1995 had a peak 
flow equal to 595 m 3 s -1 and was timed at 18:00, only min- 
utes after the actual peak-flow time (17:30). The HMS-sim- 
ulated flow peak would put the March 1995 on the order of 
a 100-yr event, if the U.S. Army Corps of Engineers [1974] 
estimates quoted earlier were accepted. 

A second HMS simulation was carried out, whereby the 
inferred 1969 watershed conditions were used to assign a 
new set of parameters (soil, hydrograph, flood routing) and 
the March 10, 1995, radar-estimated rainfall was used to 

drive the model. Similar wet antecedent conditions pre- 
vailed in March 1969 and March 1995. Recall also that the 

flood of March 1969 was considered a 100-yr event. The 
simulated hydrograph for March 1969 watershed conditions 
was essentially equal to the March 10, 1995, simulated 
hydrograph. It was stated in the previous section that the 
maximum 3-hr rainfall was 28.4 mm in March 1995, while 

it was 45.7 mm in March 1969. Is it possible that the lighter 
rain of March 10, 1995, could have produced a 100-yr flood 
peak just as the heavier rain of March 1969 did with 1969 
watershed conditions? This would be plausible only if the 
rainfall losses were large enough in 1969 to exact the same 
effective rainfall from more intense storms events than 

those of March 10, 1995. This is unlikely given the wet 
antecedent conditions that prevailed in all of March 1969, 
part of a wet E1 Nifio year. Instead, the previous results 
obtained with HMS suggest that the assigned HMS param- 
eters for 1969 and 1995 conditions were poorly chosen in 
the absence of complete rainfall-stream flow data with 
which to carry out thorough model calibration. 

The first hypothesis could not be substantiated via mod- 
eling in view of the inconsistencies that arose from model 
simulations with uncertain parameters and rainfall esti- 
mates. Therefore, we pursued the second hypothesis, which 
relies on hydraulic changes (and heavy rain) in the flood 
plain to explain the high water levels on March 10, 1995. 

CALIBRATION OF A HYDRAULIC MODEL 

dering, and other observable features that determine hydraulic 
roughness. It was decided then to implement a hydraulic 
model--The U.S. Army Corps of Engineers' HEC-2 model 
[U.S. Army Corps of Engineers, 1990]--to simulate water lev- 
els with the roughness conditions of March 1969 and those of 
March 1995. The flood peak on March 10, 1995, was 
unknown. Therefore, a series of HEC-2 simulations had to be 

run until a flood rate was found that reproduced the measured 
water levels. This is tantamount to model calibration as 

described above. March 1995 hydraulic roughness was used 
for that purpose. The identified flood rate was considered the 
best estimate of the March 10, 1995, flood peak. Subsequently, 
that same flood rate was simulated in HEC-2 with the March 

1969 hydraulic roughness conditions. The difference in water 
levels between March 1969 and March 1995 were then attrib- 

uted to increasing hydraulic roughness between those two peri- 
ods. The line of reasoning followed was that had the 1969 
flood-plain (pre-development) hydraulic roughness persisted 
through 1995, then, the flood levels would have been much 
lower in the latter year. Once the March 10, 1995, flood peak 
was estimated (see next section for actual flood-peak values), 
the change in hydraulic roughness was apportioned among the 
various impact factors identified earlier (i.e., vegetation, flood- 
plain filling, etc.). Finally, the contributions of impact factors to 
changes in flood levels between March 1969 and March 1995 
were determined by HEC-2 simulations. 

The approach outlined in the previous paragraph has an 
appealing simplicity. It involves a low number of parame- 
ters to be estimated. Those are limited to flood-plain 
hydraulic roughness. It bypasses the need to estimate the 
1969 flood peak. In addition, it does not involve rainfall 
estimates, always a major obstacle in watersheds with low- 
density rain gage networks. By its simplicity, this approach 
complies with the principle of parsimony, or Occam's razor 
(after William of Ockham, c. 1285 -c. 1349, a philosopher): 
"given several possible alternative explanations to an event, 
the best explanation is the simplest one". The following sec- 
tion presents the results of this parsimonious approach, 
which, by the way, strengthened our second hypothesis-- 
stated earlier•as the most reasonable explanation to the 
high flood levels that occurred on March 10, 1995. Recall 
that such hypothesis proposed that a combination of heavy 
rain and flood-plain changes in the lower San Luis Obispo 
Creek between 1969 and 1995 induced the damage-causing 
water levels on March 10, 1995. 

The only reliable and accurate data measured in March 
1995 were water levels recorded at various points along the 
lower San Luis Obispo Creek. Channel and flood plain 
hydraulic conditions have been estimated for 1969 and 1995 
conditions from surveys of vegetative cover, degree of mean- 

RESULTS OF THE HYDRAULIC SIMULATIONS 

Table 1 shows the hydraulic roughness coefficients 
(Manning's N) used in the HEC-2 hydraulic simulations of 
water levels in the lower San Luis Obispo Creek. Pre-devel- 
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opment (March 1969) and post-development (March 1995) 
coefficients are reported in Table 1. Table 2 contains the 
HEC-2-calculated water levels (in m, above mean sea level) 
at all cross-sections. It also shows that the estimated flow 

rate downstream of cross section 27+54 was 405 m 3 s -1 
while it was 377 m 3 s -1 upstream of that location, as seen in 
Table 2. A tributary to the San Luis Obispo at that cross sec- 
tion accounted for the change in stream flow there. These 
estimated stream flows are much lower than the U.S. Army 
Corps of Engineers [1974] and the Waananen and Crippen 
[1977] estimates of the 100-yr flood peak. Loaiciga [2001 ] 
argued that they were more consistent with a 50-yr flood 
magnitude. The post-development (March 1995) water lev- 
els reported in Table 2 within cross sections 30+96 and 
36+38 were within _+ 2 cm of the recorded flood levels on 

March 10, 1995. The resemblance between calculated and 

measured water levels confers a reasonable degree of confi- 
dence that the estimated flood peak for March 10, 1995, is 
fairly close to the actual--yet unknown---one. Thus, our 
second hypothesis concerning the cause of flood damages 
on March 10, 1995, appears well substantiated by the avail- 
able evidence and our hydraulic calculations. 

Most of the damage that took place on March 10, 1995, 
along the lower San Luis Obispo Creek was concentrated 
within cross sections 30+96 and 36+38. Of particular inter- 
est is cross-section 36+38, which was chosen as the reference 
cross section with the purpose of calculating the individual 
contributions to flood hazard (posed by heightened flood lev- 
els) by several impact factors (or flood-plain changes) cited 
earlier. Valuable property and significant flood damages 
occurred at and in the vicinity of cross section 36+38. 

The pre-development (March 1969) water levels reported 
in Table 2 provide a baseline from which to ascertain the 
human-induced rises in flood level between March 1969 and 

March 1995. If flood-plain conditions had not changed from 
their pre-development status, the water levels that would 
have occurred on March 10, 1995 would have not caused 

damages. For example, the non-damaging water level at 
cross section 36+38 is 7.68 m. This elevation is slightly 
below the lower floor level of buildings at that location. 
Table 2 indicates that if pre-development flood-plain condi- 
tions had persisted through March 1969, the water level at 
cross section 36+38 would have been 6.91 m on March 10, 
1995, well below the damage threshold elevation. Instead, 

Table 1. Values of N (Manning's N) hydraulic roughness for pre- and post-development 
conditions in the lower San Luis Obispo Creek, California. 

•'Sectio n N •alues, pre-dev•løPme nt, 1969' ' N"•alues, pOst-deVelopment, 
LOB a Channel ROB b 1995 

LOB Channel ROB 

22+86 0.025 0.025 0.025 0.11 0.11 0.11 
24+78 0.025 0.025 0.025 0.11 0.11 0.11 

25+95 0.025 0.025 0.025 0.11 0.11 0.11 

26+69 0.025 0.025 0.025 0.11 0.11 0.11 
27+29 0.025 0.025 0.025 0.11 0.11 0.11 

27+30 0.025 0.025 0.025 0.11 0.11 0.11 

27+39 0.025 0.025 0.025 0.11 0.11 0.11 

27+40 0.025 0.025 0.025 0.11 0.11 0.11 

27+54 0.025 0.025 0.025 0.11 0.11 0.11 

28+65 0.035 0.035 0.035 0.13 0.13 0.13 

30+96 0.035 0.035 0.035 0.14 0.14 0.14 

33+68 0.035 0.035 0.035 0.15 0.15 0.15 
35+40 0.035 0.035 0.035 0.15 0.15 0.15 

36+38 0.035 0.035 0.035 0.15 0.15 0.15 
39+11 0.035 0.035 0.035 0.15 0.15 0.15 

40+91 0.035 0.035 0.035 0.15 0.15 0.15 

41+51 0.035 0.035 0.035 0.15 0.15 0.15 

42+71 0.035 0.035 0.035 0.15 0.15 0.15 
43+41 0.035 0.035 0.035 0.15 0.15 0.15 

43+42 0.035 0.035 0.035 0.15 0.15 0.15 
43+51 0.035 0.035 0.035 0.15 0.15 0.15 

43+52 0.035 0.035 0.035 0.15 0.15 0.15 

44+84 0.035 0.035 0.035 0.15 0.15 0.15 

46+76 0.035 0.035 0.035 0.12 0.12 0.12 

LOB: left overbank; ROB: 'ri•h'i 0verba 'x•k; cross2section locatio n is measured in ml ............ 
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Table 2. Calculated water levels (above mean sea level) in the lower San Luis Obispo 
Creek, California, pre- and post-development conditions. 

,, 

X-section pre-develøpment, 1969 a Post-•development, 1995 

Flow Q Water level Flow Q Water level 
(m3s -1) (m) (m3s -1) (m) 

22+86 405 4.96 405 7.47 

24+78 405 4.98 405 7.73 

25+95 405 5.48 405 7.88 

26+69 405 5.62 405 7.98 

27+29 405 5.61 405 8.05 
27+30 405 5.57 405 8.03 

27+39 405 5.61 405 8.14 
27+40 405 5.75 405 8.22 

27+54 405 5.89 405 8.30 

28+65 377 6.02 377 8.45 

30+96 377 6.51 377 8.75 
33+68 377 6.83 377 8.95 

35+40 377 6.88 377 9.02 

36+38 377 6.91 377 9.06 

39+11 377 6.97 377 9.18 

40+91 377 7.05 377 9.28 

41+51 377 6.99 377 9.35 

42+71 377 7.90 377 9.66 

43+41 377 8.07 377 9.79 

43+42 377 8.07 377 9.79 

43+51 377 8.08 377 9.88 

43+52 377 8.08 377 9.89 

44+84 377 8.19 377 10.16 

46+76 377 8.64 377 10.47 

apre-development and post-development conditions were defined by channel roughness in Table 1. 

with the hydraulic conditions that prevailed on March 10, 
1995, the actual water level was 9.06 m, or 1.38 m above the 
damage threshold elevation of 7.68 m. 

CONTRIBUTIONS TO FLOOD HAZARD' "BEFORE 

OR AFTER" VS. "WITH OR WITHOUT" 

It was stated above that flood-plain changes between 
1969 and 1995 caused a water-level rise from 6.91 m to 

9.06 m, or 2.15 m. Of this level rise, 1.38 m was above the 
damage threshold. These elevations correspond to cross 
section 36+38, the reference location. The hydraulic 
roughness coefficients were subjected to an incremental 
analysis based on the flood-plain changes that modified 
the lower San Luis Obispo Creek between 1969 and 1995. 
Those changes or impact factors included (1) farming 
operations (levee, filling in of farm land, orchard planta- 
tion, fencing, induced greater vegetation density in the 
creek channel), and (2) non-farming impacts (bridge con- 
struction, filling in for a recreational vehicle park). 
Farming impact factors were located within the same geo- 

graphical area. They also preceded non-farming factors in 
time, which allowed their separate treatment in the appor- 
tionment of their contributions to flood hazard as outlined 

below. As the roughness coefficients were varied, the pre- 
dicted HEC-2 water levels increased accordingly. The 
flood-level variation associated with each increment in 

hydraulic roughness (and hence, with the identified 
impact factors) was noted and used to calculate the pro- 
portional contributions of the impact factors to the flood- 
level rise. 

Table 3 summarizes the results obtained by means of the 
incremental analysis. It is seen there that 53 % and 47 % of 
the total water-level change were apportioned to farming 
and non-farming impact factors, respectively. These contri- 
butions were produced by a hydraulic analysis of flood- 
plain changes that took place between 1969 and 1995. 

This type of analysis relied on the "before or after" 
approach, whereby flood impacts are ascertained starting 
with a baseline condition (pre-development) and then with 
post-development conditions following a chronological 
pathway of flood-plain changes. One could calculate the 
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contributions to flood-level changes using the "with or 
without approach", whereby the post-development condi- 
tion is considered a baseline. Impact factors are then 
dropped one at a time, and new water levels are calculated 
after a factor is dropped. The percentage contributions of 
the various impact factors can then be calculated. The 
"before or after" and the "with or without" approaches yield 
the same percentage contributions when the sequence in 
which impacts factors are added in the former equals that in 
which factor are dropped in the latter. Otherwise, the 
approaches produce different percentage contributions. 
Therefore, the chronology of flood-plain changes as well as 
the geographical locations of those changes, that is, the abil- 
ity to cluster individual impact factors or the need to sepa- 
rate them in the hydraulic analysis are paramount to the out- 
come of the flood-hazard analysis. 

MODEL TESTING 

The testing (or "validation") of the implemented HEC-2 
model is beset by the transient nature of the flood plain 
under consideration, as discussed in earlier sections of this 

article. In March of 2001, however, there was heavy rainfall 
in the San Luis Obispo Creek watershed and water levels 
were measured accurately at two locations in the study area. 
Furthermore, a newly installed stream gauging station 
measured the stream flow at a cross section located a few 

meters above the discharge point of See Creek into the San 
Luis Obispo Creek. This allowed, for the first time, to test 
the validity of the HEC-2 model calibrated with the 1995 
flood event. To this end, the 1995 hydraulic roughness was 
adjusted to year 2001 conditions by conducting field obser- 
vations of the creek's channel and overbanks as of March of 

that same year. Hydraulic roughness had changed from 

March 1995 conditions by several improvements that took 
place between 1995 and 2001 (e.g., vegetation and debris 
removal, tree cutting in the farm orchard). The independ- 
ently measured stream flow rate and the adjusted hydraulic 
roughness were input into the HEC-2 model and water lev- 
els were simulated and compared with the measured water 
levels. Table 4 shows results. It is seen there that at the two 

cross sections where water levels were measured (33+68 
and 36+38), the HEC-2 calculated and the measured levels 
are equal. This suggests that with the hydraulic roughness 
adjustments made in March 2001, the hydraulic model has 
excellent predictive skill. If the March 2001 flood-plain 
conditions are maintained, the calibrated and tested model 
can be reliably used to predict flood levels associated with 
large stream flows. 

SUMMARY AND OTHER IMPORTANT ISSUES 

The previous considerations on the type of approach 
adopted to sort out the contributions to flood hazard by var- 
ious impact factors cannot be divorced from the view that 
the Courts have on issues bearing on these type of cases. For 
example, case law may establish precedents that dictate 
which approach is likely to prevail in a legal context. 
Statutory law plays an important role also on what types of 
hydraulic-hydrologic analyses may be viable in Court. The 
quality of data, key to determine the weight of evidence, 
takes a leading role in legal proceedings. 

Notice, in addition, that the analysis of flood-hazard con- 
tributions presented above does not translate necessarily 
into liabilities to the various impact factors (or their agents) 
associated with flood damages caused by the specific flood 
event considered in this case. That is, the proposed contri- 
butions to flood-level rise do not necessarily translate into 

Table 3. Flood factors and their contributions to flood level rise, March 10, 1995 (cross 
section 36+38). 

Impact fac tor Hydra'•lic Wate r level, h Change in h 
roughness 

(rn) (rn) 

% contfii•utio n to 
change in h 

Pre-development 
condition 

(1969) 

0.035 6.91 

Faro'ting factors 0.085 8.04 1.13 (= 8.04-6.91) 53 

Non-framing 0.15 
factors 

9.06 1.02 (= 9.06-8.04) 47 

Total 2.15 (= 9.06-6.91) 100 
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Table 4. Calculated water levels for March 2001 flood, with new N values. 
, , 

N, hydraulic roughness values, March Flow and water level, 
2001 March 2001 

Cross- 

section a LOB b Channel ROB c Flow Water level 

calculated (measured) 
(m3s -1) (m) 

22+86 0.09 0.09 0.09 269 4.78 
24+78 0.09 0.09 0.09 269 5.78 
25+95 0.09 0.09 0.09 269 6.17 
26+69 0.09 0.09 0.09 269 6.37 
27+29 0.09 0.09 0.09 269 6.50 
27+30 0.09 0.09 0.09 269 6.50 
27+39 0.09 0.09 0.09 269 6.56 
27+40 0.09 0.09 0.09 269 6.59 
27+54 0.09 0.09 0.09 269 6.68 
28+65 0.11 0.11 0.11 269 6.95 
30+96 0.10 0.10 0.10 252 7.46 
33+68 0.10 0.10 0.10 252 7.65 (7.65) 
35+40 0.10 0.10 0.10 252 7.70 

36+38 0.10 0.10 0.10 252 7.73 (7.73) 
39+11 0.10 0.10 0.10 252 7.82 
40+91 0.10 0.10 0.10 252 7.90 
41+51 0.10 0.10 0.10 252 7.94 
42+71 0.10 0.10 0.10 252 8.32 
43+41 0.13 0.13 0.13 252 8.51 
43+42 0.13 0.13 0.13 252 8.51 
43+51 0.13 0.13 0.13 252 8.53 
43+52 0.13 0.13 0.13 252 8.53 
44+84 0.14 0.14 0.14 252 9.01 
46+76 0.12 0.12 0.12 252 9.57 

aCross-section location is measured in m; b LOB: left overbank; c RoB i right overbank;. 

Court-accepted contributions to flood-damages. Not only 
can the proposed contributions be challenged on technical 
grounds, but on legal grounds as well. Besides legal con- 
straints-such as statues of limitation, the intentional or acci- 
dental nature of an impact factor, waivers of liability to cer- 
tain types of agricultural activities, etc.- the ultimate out- 
come of a civil (or criminal) case related to flood damages 
rests with juries, and how they perceive the totality of the 
evidence in any particular set of circumstances. 
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The level of spatial and vertical detail of important hydrologic processes with- 
in a watershed that needs to be represented by a conceptual rainfall-runoff (CRR) 
model in order to accurately simulate the streamflow is not well understood. The 
paucity of high-resolution hydrologic information in the past guided the direction 
of CRR model development to more accurately represent processes directly relat- 
ed to the vertical movement of moisture within the watershed rather than the spa- 
tial variability of these processes. As a result, many of the CRR models currently 
available are so complex (vertically), that expert knowledge of the model and 
watershed system is required to successfully estimate values for model parame- 
ters using manual methods. Newly available, high-resolution hydrologic informa- 
tion may provide insight to the spatial variability of important rainfall-runoff 
processes. However, effective and efficient methods to incorporate the data into 
the current modeling strategies need to be developed. In this work, we use a new 
hybrid multicriteria calibration approach to investigate the benefits of different 
levels of spatial and vertical representation of important watershed hydrologic 
variables with CRR models. 

1. INTRODUCTION AND BACKGROUND 

Conceptual rainfall-runoff (CRR) models have become 
widely used for streamflow forecasting as the demand for 
timely and accurate forecasts has increased. CRR models 
provide an approximate, lumped description of the domi- 
nant sub-watershed scale processes that contribute to the 
overall watershed scale hydrologic response of the water- 
shed system. In their most basic form, CRR models trans- 
form rainfall into runoff with two main components, precip- 
itation excess generation and flow routing. Precipitation 
excess is generated as a function of the vertical movement 
of moisture (precipitation, evaporation, transpiration, and 
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losses to the system) into and out of the watershed. The flow 
routing component involves the movement of the excess 
precipitation over the land surface and along stream and 
channel networks to the outlet of the watershed. 

The variability of the excess generation process within the 
watershed is related to the level of spatial variability of the 
soil properties, vegetation type, and precipitation rates 
throughout the watershed. In the past, high-resolution infor- 
mation describing these characteristics was not readily 
available. As a result, performance improvements of CRR 
models were primarily focused on improving the represen- 
tation of processes directly related to the vertical movement 
of moisture within the watershed rather than the spatial vari- 
ability of these processes. Now that remotely sensed, high- 
resolution, hydrologic data are now becoming available in 
the United States through a variety of different sources, The 
incorporation of these high-resolution data sets, in particu- 
lar, the NEXRAD stage III data, into current modeling pro- 
cedures is considered highly desirable by hydrologists. The 
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development of efficient and effective methods for doing so 
is an active area of research. 

A simple method to incorporate the high-resolution data 
into the modeling process is to average the information over 
the entire area of the watershed and proceed with the current 
lumped model application. The main advantage of this 
approach is that the existing modeling structure does not 
need to be modified to use the new data. The main disad- 

vantage is clearly the loss of the spatial distribution of 
information as well as the potential for further modeling 
improvement and understanding. Another, strategy is the 
"semi-distributed" approach in which the watershed is par- 
titioned into a network of hydrologic units based on the spa- 
tial variability of the precipitation. The main disadvantage 
of this strategy is the increase in model complexity and 
parameters parallel to the increase in partitioning. For com- 
plex, highly parameterized models, as the number of hydro- 
logic units is increased, the calibration procedure quickly 
becomes intractable. Further, many of the parameters may 
not be supported (identifiable) by the information contained 
within the observed data, remotely sensed or otherwise. 

The hydrologic modeling problem can be partitioned into 
three main components; hydrologic model structure, hydro- 
logic data, and parameter estimation procedures. Successful 
development and application of any hydrologic model 
requires careful consideration of each component and its 
relevance to the overall modeling problem. In the following 
sections, a new hybrid multicriteria calibration approach 
that combines the strength of automatic and manual calibra- 
tion methods is presented and used to investigate the bene- 
fits of representing different levels of spatial and vertical 
representation of important watershed hydrologic variables 
within CRR models. 

2. MUTICRITERIA PARAMETER ESTIMATION 

METHODOLOGY 

The multi-criteria approach to calibration presented in 
detail by Boyle et al. [2000] combines the strengths of both 
automated and manual calibration methods. The approach 
involves the identification of several characteristic features 

of the observed streamflow hydrograph, each representing a 
distinct (preferably unique) aspect of the behavior of the 
watershed. In brief, the hydrograph is partitioned into three 
components based on the reasonable assumption that the 
behavior of the watershed is inherently different during 
periods "driven" by rainfall and periods without rain. 
Further, the periods immediately following the cessation of 
rainfall and dominated by interflow can be distinguished 
from the later periods that are dominated by baseflow. The 
streamflow hydrograph can, therefore, be partitioned into 

three components (Figure 1), which we call "driven" (Qo), 
"non-driven-quick" (QQ), and "non-driven-slow" (Qs). The 
time steps corresponding to each of these components are 
identified through an analysis of the precipitation data and 
the time of concentration for the watershed. The time steps 
with non-zero rainfalls, lagged by the time of concentration 
for the watershed, are classified as driven. Of the remaining 
(non-driven) time steps, those with streamflows lower than 
a certain threshold value (e.g., mean of the logarithms of the 
flows) are classified as "non-driven-slow", and the rest are 
classified as "non-driven-quick". For each of the compo- 
nents, the closeness between the model outputs and the cor- 
responding observed values is estimated separately using 
the RMSE statistic, resulting in three evaluation criteria, 
designated as FD (driven), FQ (non-driven quick), and FS 
(non-driven slow), respectively. 

An important characteristic of the multi-objective prob- 
lem is that it does not, in general, have a unique solution. 
Because of errors in the model structure (and other possible 
sources), it is not usually possible to find a single unique 
solution that simultaneously minimizes all of the criteria. 
Instead, it is common to have a "Pareto set" of solutions 

with the property that moving from one solution to another 
results in the improvement of one criterion while causing a 
deterioration in one or more others. The Pareto set repre- 
sents the minimum uncertainty that can be achieved for the 
parameters via calibration, without subjectively assigning 
relative weights to the individual model responses. The size 
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Figure 1. Partitioning of the observed hydrograph into three com- 
ponents: QD, QQ, and Qs. The dashed line shows how the observed 
hydrograph can be used to estimate the recession constant, K. 
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and properties of this set are related to errors in the model 
structure and data. In this work, we used the Multi- 

Objective COMplex evolution (MOCOM-UA) algorithm 
[Yapo et al., 1998; Bastidas et al., 1999] to solve the multi- 
criteria optimization problem. MOCOM is a general-pur- 
pose multi-objective global optimization algorithm that pro- 
vides, in a single optimization run, a set of points that 
approximate the Pareto set. For details, the reader is referred 
to Gupta et al. [1998] and Yapo et al. [1997, 1998]. 

3. INCORPORATING SPATIAL INFORMATION 

3.1. Overview 

The focus of this section is to provide an assessment of 
the potential improvements in rainfall-runoff model per- 
formance that can be achieved by semi-distributed modeling 
of a watershed using radar-based (NEXRAD) remotely 
sensed precipitation data. Boyle et al. [2001] examined the 
relative benefits of spatially distributing the model input 
(precipitation), structural components (soil moisture and 
streamflow routing), and surface characteristics (parame- 
ters). The CRR model used was the NWS Sacramento Soil 
Moisture Accounting (SAC-SMA) model [Burnash et al., 
1973] applied to the Blue River watershed near Blue, 
Oklahoma. The study was designed to complement the 
NWS semi-distributed studies on the Blue River by expand- 
ing our understanding of the specific benefits associated 
with different levels of spatial representation of the model. 
The multi-criteria framework presented in Section 2 for 
application to lumped hydrologic models was used to cali- 
brate the semi-distributed model in terms of three objective 
measures designed to reflect the different observable char- 
acteristics of watershed behavior (peak flow and timing, 
quick recession, and baseflow). Multi-criteria performance 
comparisons among the different model applications were 
used to evaluate the benefits of various types and degrees of 
spatial complexity. Results from an independent manual cal- 
ibration conducted by the NWS were used in the study as the 
basis for an evaluation of the strengths and weaknesses of 
the automatic multi-criteria calibration approach [Gupta et 
al., 1998; Boyle et al., 2000]. 

3.2. Methods 

The NWS created a digital elevation model (DEM) of the 
Blue River watershed from 100 meter (cell size) elevation 
data. The watershed was partitioned into eight subwater- 
sheds based on an analysis of DEM stream connectivity data 
(stream channel structure), and the variability of the high- 
resolution soil property information available from the 

USDA State Soil Geographic Database (STATSGO) for the 
resulting subwatersheds. Mean Areal Precipitation (MAP) 
values for each of the eight subwatersheds were estimated 
from the 4 x 4 km NEXRAD Stage III hourly precipitation 
data. Unit hydrographs for each subwatershed were devel- 
oped in conjunction with the DEM, using the methodology 
described by Smith et al. [1999], to route the simulated 
channel inflow to the outlet of the watershed. For the 

lumped conceptualization, the unit hydrograph was derived 
from the subwatershed unit hydrographs. 

The NWS applied the SAC-SMA model in both lumped 
and semi-distributed (eight subwatersheds) forms to the 
Blue River watershed. In the lumped case, the channel 
inflow was computed at each time step for the entire water- 
shed and then routed to the outlet with a single unit hydro- 
graph. In the semi-distributed case, the soil-moisture com- 
putations were made separately for each subwatershed, and 
the resulting simulated channel inflows were then routed 
independently to the outlet of the watershed and combined 
to compute the total simulated streamflow for the entire 
watershed. The NWS used a sophisticated, highly interac- 
tive manual procedure to estimate values for 13 of the SAC- 
SMA parameters (four were set to default values) 
[Anderson, 1997] for the lumped watershed case and values 
for 104 parameters (13 for each of the eight subwatersheds) 
for the semi-distributed case. The reader is referred to Boyle 
et al. [2000] for a detailed description of the NWS parame- 
ter estimation procedure. 

A series of lumped and semi-distributed applications of 
the SAC-SMA model to the Blue River watershed was made 

to investigate the improvements in model performance asso- 
ciated with various levels of spatial representation of model 
input (precipitation), structural components (soil moisture 
and streamflow routing computations), and surface charac- 
teristics (parameters). Each model application was designed 
to isolate the effects of the different levels of spatial repre- 
sentation in terms of specific desirable watershed behaviors 
(driven flow-"peaks and timing", non-driven quick 
flow-"quick recession" responses, and non-driven 
slow-"baseflow" responses). The calibration data set (pre- 
cipitation, PET, and streamflow) used was the same as that 
used in the NWS manual calibration approach for the 
lumped and 8 subwatershed cases. Model calibration and 
evaluation of the performance improvements for each appli- 
cation were performed using the multi-criteria approach 
described above. For each case, the Pareto optimal solution 
space for the three criteria (FD, FQ, and FS) was estimated 
by 500 solutions generated using the MOCOM algorithm. 

In Case 1, (LUMP-ALL) the SAC-SMA model was 
applied in a lumped configuration (precipitation P, soil 
moisture computations S, and streamflow routing computa- 
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tions R, were all lumped) to the Blue River watershed. This 
case served as a benchmark for performance comparisons 
with the other cases, in which the SAC-SMA model was 

applied in varying levels of spatial distribution to the 8-sub- 
watershed configuration used by the NWS. 

In Case 2 (DIST-PS), the precipitation and soil-moisture 
computations were spatially distributed among the subwa- 
tersheds, but the routing was treated as lumped. In this appli- 
cation, soil-moisture computations were performed separate- 
ly to compute separate channel inflow sequences for each 
subwatershed, but these were combined into a total channel 

inflow for the entire watershed before routing to the outlet of 
the watershed using a single unit hydrograph. In Case 3 
(DIST-PSR), the precipitation, soil-moisture computations, 
and streamflow routing computations were spatially distrib- 
uted among the subwatersheds to assess the additional bene- 
fit of distributed routing. In this application, the channel 
inflow computed for each subwatershed was independently 
routed to the outlet of the watershed with separate unit 
hydrographs and then combined to estimate the total runoff 
from the watershed. Note that, in Cases 2 and 3, the model 

parameters were treated as lumped (all the subwatersheds 
were assigned the same values of the 13 calibration parame- 
ters) and only the spatial distribution of the model input and 
structural components was investigated. Other cases, not 
covered here, were also tested to investigate the value of spa- 
tially distributed precipitation and model parameters. The 
reader is referred to Boyle et al. [2001] for details. 

Finally, to further investigate the effects of spatial repre- 
sentation, all cases were repeated using a smaller number of 
subwatersheds (i.e., the entire watershed was partitioned into 
a 3-subwatershed configuration). In this new configuration 

(also provided to us by the NWS), the original subwatersheds 
1, 2, and part of 3 were combined to form the new subwater- 
shed 1 of the 3-subwatershed configuration. Similarly, 4, 5, 
and parts of 3 and 6 were combined to form the new subwa- 
tershed 2, while 7, 8, and part of 6 were combined to form the 
new subwatershed 3. The mean areal precipitation and PET 
for each of the three new subwatersheds were estimated by 
the NWS using the same methods mentioned previously. 

3.3. Results 

Main text is 10 point type, single column width at 8.5 cm, 
with full justification on both left and right margins. Use 
hyphenation. The NWS manual calibration studies were 
used as benchmarks for evaluation of the automatic calibra- 

tion studies described above. The manual calibration results 

are shown in the multicriteria format in Figure 2a-c. Figures 
2a-c present the results for each case using two-dimension- 
al projections of the three-criteria solution space (NWS 
lumped case = large open square and NWS semi-distributed 
case = large open circle). Clearly, the semi-distributed appli- 
cation results in an improvement in the model's ability to 
simulate the observed flow in terms of FQ and FS, as com- 
pared with the lumped application. There is a slight 
decrease, however, in the model's ability to simulate the 
driven flows measured by FD. 

The results of the multi-criteria automatic calibration of 

Case 1 (LUMP-ALL) are also shown in Figures 2a-c, as a 
three-criteria trade-off surface represented by the set of 500 
Pareto optimal solutions (indicated by the light-gray dots). 
The inability of the model to simultaneously match all three 
aspects of the hydrograph is clearly illustrated. For exam- 
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ple, Figure 2b illustrates the smoothly varying trade-off 
between the model's ability to match the driven (QD) and 
the non-driven-slow (QS) portions of the hydrograph (simi- 
larly see Figure 2c and, to a lesser extent, Figure 2a). 

A visual comparison of the 500 Pareto solutions with the 
NWS lumped solution (open square) in Figures 2a-c shows 
that the automatic approach provides a closer fit of the base- 
flow responses (FS) and, to a lesser extent, the quick reces- 
sion responses (FQ). In terms of the peaks and timing (FD), 
however, most of the 500 Pareto solutions are inferior to the 

NWS lumped solution. 
The results of the multi-criteria automatic calibration of 

Case 2 (DIST-PS) are shown in Figures 2a-c. Note that, in 
this case, the channel inflows for all the sub-watersheds are 

lumped together and routed to the outlet using a single unit 
hydrograph. The results for the 8-subwatershed configura- 
tion did not give better results than the 3-subwatershed con- 
figuration. Therefore, the results presented here will draw 
primarily from the results of the 3-subwatershed study. 
Comparison of the solutions for this case (dark-gray dots) 
with the lumped case (Case 1, LUMP-ALL, light-gray dots) 
indicates a significant benefit to allowing the precipitation 
input and the soil-moisture computations to be distributed. 
In particular, the ability of the model to simulate the quick 
recession responses (FQ) and, to a lesser extent, the 
peaks/timing (FD) has been improved. However, there 
appears to be no additional impact on the model's ability to 
simulate the baseflow responses (FS). 

A visual comparison of the DIST-PS results with the NWS 
lumped solution in Figures 2a-c clearly shows that the auto- 
matic approach provides a closer fit to the observed data in 
terms of all three criteria FD, FQ, and FS. Further, compari- 
son of the DIST-PS results with the NWS semi-distributed 

solution shows that most of the 500 Pareto solutions provide 
a better fit to the baseflow (FS) and peaks/timing (FD), while 
providing a comparable fit to the quick recession (FQ). 

The results of the multi-criteria automatic calibration of 

Case 3 (DIST-PSR) are also shown in Figures 2a-c. In this 
case, the precipitation, soil-moisture computations, and 
channel routing are all treated separately for each subwater- 
shed. Again, the results for the 8-subwatershed configura- 
tion did not give better results than the 3-subwatershed con- 
figuration, and results are therefore only presented for the 
latter configuration. The 500 Pareto optimal parameter sets 
(black dots) show that routing the channel inflow independ- 
ently from each subwatershed to the outlet of the watershed 
improves the model's ability to simulate both the quick 
recession responses (FQ) and the peaks/timing (FD). Once 
again, there is no additional improvement in the model's 
ability to simulate the baseflow responses (FS). A visual 
comparison of the 500 Pareto solutions for this case with the 

NWS lumped and semi-distributed solutions (Figures 2a-c) 
clearly shows that the automatically calibrated semi-distrib- 
uted model DIST-PSR provides a much better reproduction 
of the watershed response, in terms of all three criteria FD, 
FQ, and FS. 

4. INCORPORATING VERTICAL INFORMATION 

4.1. Overview 

The focus of this section is to provide an assessment of 
the potential improvements in streamflow simulation that 
can be achieved through various levels of representation of 
the vertical movement of moisture through the watershed 
using CRR models in lumped applications. The relative 
benefits of different levels of vertical model structure (direct 
runoff, upper soil moisture storage, and the percolation 
process) are examined with a simple hydrologic model, 
HYMOD [Boyle, 2001; Wagener et al., 2001]. HYMOD 
consists of a variety of different excess generation (inter- 
ception storage, tension storage, free storage, etc.), percola- 
tion, and streamflow routing functions that can be put 
together in different combinations to describe the different 
hydrologic behaviors of the watershed system. The multi- 
criteria approach described in Boyle et al. [2000] (see 
Section 2 above) for application to hydrologic models was 
used to calibrate each CRR model in terms of three objec- 
tive measures designed to reflect the different observable 
characteristics of watershed behavior (peak flow and tim- 
ing, quick recession, and baseflow). Multicriteria perform- 
ance comparisons among the different model applications 
were used to evaluate the benefits of various types and 
degrees of vertical model complexity. Results obtained from 
a lumped application of the SAC-SMA model were used as 
a benchmark for comparison with results from this study. 

4.2.Methods 

The automatic multicriteria approach outlined in Section 
2 was used to estimate values for the parameters of the 
SAC-SMA flood forecast model using an l 1-year period 
(WY 1952-1962 inclusive) of historical data from the Leaf 
River watershed (1950 km 2) located north of Collins, 
Mississippi. Forty consecutive years of data (WY 1948-88) 
are available for this watershed, representing a wide variety 
of hydrologic conditions. The details of the Leaf River data 
have been discussed previously in the literature [e.g., 
Burnash et al., 1973; Peck, 1976; Brazil and Hudlow, 1981; 
Sorooshian and Gupta, 1983; etc.]. 

The general configuration of HYMOD for the purposes of 
this study is shown in Figure 3. The watershed is partitioned 
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into two areas, pervious and impervious, by means of a sin- 
gle parameter, percent impervious area (PCTIM). 
Precipitation (rainfall) falling on the impervious portion of 
the watershed becomes direct runoff available for routing 
along with the surface runoff component, to the outlet of the 
watershed. Precipitation falling on the pervious portion of 
the watershed enters the upper soil moisture zone (UZ). The 
UZ consists of two components, tension water storage and 
free water storage. Tension water storage must be complete- 
ly satisfied before moisture can move to the free water por- 
tion of the UZ. Soil moisture within the UZ tension and free 

water storages is available to satisfy the potential evapo- 
transpiration (PET) demand. Saturated excess is generated 
from the free water storage and then combined with the 
direct runoff to estimate the quick (or surface) runoff. The 
surface runoff is then routed through a series of NUMQ lin- 
ear reservoirs, each with the same recession coefficient, KQ, 
to the outlet of the watershed. Soil moisture percolates from 
the UZ free water storage to the lower soil moisture zone 
(LZ) free water storage. The moisture in the LZ free water 
is routed through a single linear reservoir, with recession 
coefficient KS, to estimate the slow (or baseflow) runoff at 
the outlet of the watershed. The quick and slow flows are 

then combined to estimate the total streamflow at the outlet 

of the watershed. 

Boyle [2001] examined sixty different applications (or 
cases) of HYMOD to the Leaf River watershed to investi- 
gate the improvements in model performance associated 
with various levels of vertical detail describing the move- 
ment of moisture through the soil (UZ tension and free 
water storages, percolation process, and pervious area). 
Each model application was designed to isolate the effects 
of different levels of vertical model complexity in terms of 
specific desirable watershed behaviors (driven 
flow-"peaks and timing", non-driven quick flow-"quick 
recession" responses, and non-driven slow-"baseflow" 
responses). The multi-criteria approach described in 
Section 2 was used to calibrate each of the different appli- 
cations of HYMOD in terms of the three objective meas- 
ures driven flow (FD), non-driven quick flow (FQ), and 
non-driven slow flow (FS). For each modeling case, the 
Pareto optimal solution space for the three criteria (FD, 
FQ, FS) was estimated by 500 solutions generated using 
the MOCOM algorithm. 

In Cases 1-30, presented here, a simple bucket loss (BL) 
model (see Figure 4) was used to describe the functional 
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relationship of the UZ free water storage. In Cases 31-60 
(not presented here) the Moore loss model, described in 
detail by Moore [1985], was substituted for the simple 
bucket. The BL model generates saturated excess when the 
soil moisture level in the tank is greater than parameter 
FMAX. Ten different functional relationships describing the 
percolation between the UZ and LZ free water storages 
were also tested in this study. The ten functions are 
described by the following five equations: 

PERC(t)•_ 2 = min(contents), PMAX ) 

PERC(t)3_ 4 = PFRAC*contents(t) 

PERC(t)5__ 6 = min(PFRAC*contents(t), PMAX ) 

PERC(t)7_ 8 = min(BETA(1 + ZETA(LZDR(t)) RExP, 
1.0)) * contents( t ) 

PERC(t)9_lo = min(BETA(X_FREE(t)/FMAX) 
(1 + ZETA(LZDR(t))•xP, 

1.0) )*contents(t) 

where contents(t) is the UZ saturated excess at time t 

(PERC(t)•,3,5,7,9) or the free water storage at time t 
(PERC(t)2,4,6,8,•o), LZDR(t) is the lower zone deficiency 
ratio (1-contents of lower zone free water storage/maximum 
contents of LZ free water storage) at time t, X_FREE(t) is 
the UZ free water contents, FMAX is the maximum con- 
tents of UZ free water storage, and PMAX, PFRAC, BETA, 
ZETA, and REXP are calibration parameters. 

Each of these ten functions provides a unique conceptual- 
ization of the relationship between the UZ and LZ free 
water contents and the percolation process. In general, the 
complexity of the conceptual relationships ranges from low 
in PERC(t)•_ 2 and PERC(t)3_ 4 to high in PERC(t)7_ 8 and 
PERC(t)9_•o. The functional relationships in PERC(t)•_ 2 and 
PERC(t)3_ 4 describe the amount of UZ free water storage 
that can be percolated to LZ free water storage as a maxi- 
mum amount and fraction, respectively, of the contents. 
PERC(t)5_ 6 describes the percolation process as a fraction of 
the UZ free water storage that can be percolated to LZ free 
water storage with a maximum value for a given time step. 
PERC(t)7_ 8 and PERC(t)9_•o approximate the complex per- 
colation process used in the SAC-SMA model. The primary 
difference between the latter two being that the function 
PERC(t)9_•o allows the UZ free water storage contents 
(X_FREE(t)/FMAX) and the lower zone (LZDR(t)) to 
influence the percolation rate while PERC(t)7_ 8 is influ- 
enced by the lower zone (LZDR(t)). 
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Figure 4. Representation of Upper Zone free water with simple 
bucket model. 

The influence of the UZ tension water storage and the per- 
cent impervious area of the watershed were also investigated. 
In Cases 1-10, the bucket loss representation of the UZ free 
water storage was combined, separately, with each of the ten 
percolation functions (see Table 1). In each of these cases, the 
size of the tension water storage tank and the percent imper- 
vious area of the watershed were set to zero (no UZ tension 
water storage and no impervious area in the watershed). In 
Cases 11-20, Cases 1-10 were repeated with the UZ tension 
water storage component but no impervious area. Finally, in 
Cases 21-30, the UZ tension water storage and the impervi- 
ous area components of HYMOD were considered. 

4.3. Results 

The results obtained with the SAC-SMA model (Case 0) 
were used as a benchmark for comparison with the studies 
described above. The ranges of the 500 Pareto solutions for 
the SAC-SMA model, in terms of the three criteria FD, FQ, 
and FS, are shown as black dots with the corresponding 
gray shaded area in the multi-criteria format in Figure 5a-c. 

Figure 5a-c presents the results for Cases 1-30 (applica- 
tion of HYMOD using the simple bucket representation of 
the UZ free water storage). Notice that in terms of the crite- 
ria FD, the results for all the Cases (except Case 10) are 
inferior to all of the solutions obtained with the SAC-SMA 

model. In addition, the results for many of the cases are 
inferior to all of the solutions obtained with the SAC-SMA 

model in terms of FQ. These results indicate that the model 
structures in Cases 1-30 are not representing hydrologic 
processes important to the simulation of the larger flows in 
the same way that the SAC-SMA model does. On the other 
hand, all of the thirty of the cases contain solutions that are 
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Table 1: Modeling Cases 1-30 using the simple bucket loss (BL) 

Case # 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Y = Yes 

N=No 

Percolation 

(1-10) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

1 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

1 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

UZ Tension 

(T) 
N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Impervious 
Area. (I) 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

superior to those obtained with the SAC-SMA model in 
terms of the FS criterion. This result indicates that the LZ 

representation used by each of the Cases 1-30 may be ade- 
quate to represent the important hydrologic processes 
required to simulate the lower flows. 

The results for Cases 1-10 (simple bucket loss represen- 
tation of UZ free water storage with no UZ tension water 
storage or impervious area) are also shown in Figures 5a-c. 
A visual comparison of the results shows that Cases 1,3, 5, 
and 7 are superior to Cases 2, 4, 6, and 8 in terms of both 
FD and FQ indicating that the model performs better (at 
least in this configuration) with the percolation source as the 
saturated excess rather than the UZ free water storage con- 
tents. Notice that the results for Cases 7 and 9 (as well as 17 
and 19, and 27 and 29) appear to be identical for all three 
criteria, FD, FQ, and FS. The fact that these results are not 
unique is a consequence of combining the simple bucket 
model with percolation relation PERC(t)9-10. When the 
contents(t) variable is set to be the saturated excess (as it is 

in Cases 7, 9, 17, 19, 27, and 29) the only time there can be 
percolation is at times when there is saturated excess (when 
X_FREE(t)/FMAX = 1.0). This effectively makes 
PERC(t)7_ 8 = PERC(t)9_10 for all thirty of the simple bucket 
applications. This was not a relevant issue in Cases 31-60 
(not shown) since saturated excess can occur in the Moore 
loss representation without X_FREE(t)/FMAX = 1.0. 

From visual inspection of Figure 5a-c it can be clearly 
seen that the results for Case 10 are superior in terms of fit- 
ting the FD and FQ criteria than the results for any other of 
the Cases. Figure 6a-c presents the results for Cases 9 and 
10 and the SAC-SMA model in two-dimensional projec- 
tions of the three-criteria solution space. The SAC-SMA 
solutions (black dots) are clearly superior in terms of FD to 
most of the solutions in Case 10 (dark gray dots) and all of 
the solutions in Case 9 (light gray dots). Many of the solu- 
tions for Case 10, however, are at least as good as the SAC- 
SMA solutions in terms of the FQ and FS criteria (the 
lower values of FS criteria for Case 10 are out of the plot- 
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Figure 5. 500 Pareto solutions obtained with the automatic multi-criteria approach (black dots) to calibrate Cases 1-30 
using the simple bucket model: (a) objective function FD, (b) objective function FQ, (c) objective function FS. The gray 
shading represents the SAC-SMA results. 
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ting range indicating a very large trade-off between the fit- 
ting of the FD and FS criteria). Many of the Case 9 solutions 
are superior to both the SAC-SMA and Case 10 solutions in 
terms of the FS criteria. Also note that the solutions for Case 

9 have much less trade-off in fitting the FD and FS, and FQ 
and FS criteria, although the fit to both FD and FQ is infe- 
rior compared with Case 10 and the SAC-SMA model. 

A visual inspection of Figures 5a-c indicates that the addition 
of the tension water storage in Cases 11-20 has generally 
improved the results slightly in terms of FD and FQ. In addi- 
tion, the differences between Cases 1,3, 5, and 7 and Cases 2, 
4, 6, and 8, in terms of both FD and FQ, have been significantly 
reduced. Further improvement is made in Cases 21-30, in 
terms of FQ criteria, when the pervious area component is 
added to the model. In none of these cases, however, did the 

addition of the UZ tension water storage or the impervious area 
component substantially improve the fitting of the FS criterion. 

The three cases that appear to have the "best" solutions 
for each of the three main model configurations are Case 10 
(Cases 1-10), Case 19 (Cases 11-20), and Case 30 (Cases 
21-30). Figures 7a-c present the results for Case 10 (light 
gray dots), Case 19 (dark gray dots) and Case 30 (black 
dots) in two-dimensional projections of the three-criteria 
solution space. Notice that the solutions for these cases have 
very little trade-off in terms of the FD and FQ criteria. From 
the figure it can clearly be seen that many of the solutions 
for Case 10 are superior to those in Cases 19 and 30. The 
trade-off range, however, is dramatically different for Cases 
19 and 30 compared to that of Case 10 (improvement is FS 
is possible with very little cost in terms of FD and FQ). 

5. SUMMARY AND CONCLUSIONS 

Many of the CRR models used to simulate streamflow con- 
sist of highly complex functional relationships to describe the 

movement of moisture vertically through the soil. These 
models are often very difficult to calibrate due to the large 
number of parameters and complex relationships within the 
model. Further, the large number of parameters may limit the 
manner in which newly available high-resolution (spatial) 
hydrologic information can be incorporated into the hydro- 
logic modeling process, thereby limiting the actual benefit(s) 
of the potential added information contained within the new 
data. As a result, there is a real need to understand the specif- 
ic benefits associated with increased representation of the 
movement of moisture vertically through the soil. With this 
new understanding, new models can be developed from new 
and existing modeling concepts, with parsimonious model 
structures that represent only those response modes that are 
identifiable within the available data. 

The primary objective of this chapter was to present a 
new hybrid multi-criteria calibration approach that com- 
bines the strength of automatic and manual calibration 
methods and use the new approach to investigate the bene- 
fits of different levels of spatial and vertical representation 
of important watershed hydrologic variables with conceptu- 
al rainfall runoff models. This chapter explores the specific 
improvements in streamflow simulation that can be 
achieved through various levels of vertical model structure 
(direct runoff, upper soil moisture storage, and the percola- 
tion process). This was accomplished through application 
and calibration of two CRR models, SAC-SMA and 

HYMOD, with a variety of different combinations of excess 
generation (interception storage, tension storage, free stor- 
age, etc.), percolation, and streamflow routing functions. 

In this work, it has been demonstrated how multi-criteria 

methods provide a useful framework for the systematic 
investigation of appropriate model complexity. In addition, 
the applicability of the multi-criteria automatic calibration 
methods to the calibration of CRR models with increased 

model complexity has been demonstrated in this study. 
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Figure 6. Pareto solutions obtained with the automatic multi-criteria approach to calibrate the HYMOD model: (a-c) 
two-dimensional projections of objective space. Marked points correspond to, respectively, 500 Pareto solutions for 
Case 9 (light-gray points), Case 10 (dark-gray points), and SAC-SMA model (black points). 
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Figure 7. Pareto solutions obtained with the automatic multi-criteria approach to calibrate the HYMOD model: (a-c) 
two-dimensional projections of objective space. Marked points correspond to, respectively, 500 Pareto solutions for 
Case 10 (light-gray points), Case 19 (dark-gray points), and Case 30 (black points). 

Manual calibration of the different model structures would 

have required a significant effort since little was known (no 
"expert" knowledge) about the behavior and performance of 
many of the model structures prior to testing. Instead, the 
automatic approach allowed efficient and "consistent" esti- 
mation of parameters (and hence model performance) with 
a minimal amount of effort (5-10 minutes for each case on a 
Sun workstation). 

The effectiveness and efficiency of the automatic approach 
allowed rapid investigation of the specific benefits associat- 
ed with different levels of vertical and spatial model struc- 
tural complexity, including impervious area contribution, UZ 
tension and free water storage, and percolation computa- 
tions. Based on the results from this study, the next logical 
research direction should include an investigation in which 
the spatial resolution and vertical structural complexity of the 
CRR model application is investigated simultaneously. 
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Multi-Resolution Calibration Methodology for Hydrologic Models: 
Application to a Sub-Humid Catchment 

Laura M. Parada, Jonathan P. Fram, and Xu Liang 

Department of Civil and Environmental Engineering, University of California, Berkeley, California 

Wavelet analysis allows for calibration of hydrologic models at multiple tempo- 
ral scales, thus accounting for the time-variant fluctuations imbedded in stream- 
flow data. This investigation further evaluates the incorporation of a multi-resolu- 
tion framework for construction of objective functions to the shuffled complex 
evolution (SCE-UA) optimization algorithm. One routing and six soil parameters 
of the Variable Infiltration Capacity (VIC-3L) hydrologic model were optimized 
to fit daily streamflow observations for a mid-sized sub-humid catchment in 
Northern California. Calibration was performed with Root Mean Square Error 
(RMSE) and Heteroscedastic Mean Likelihood Error (HMLE), and over two peri- 
ods consisting of 1024 and 2048 days, respectively. Our evaluation suggests that 
multi-resolution optimization is likely to yield better results during validation than 
its single-scale counter-part, and it may, at least, perform equivalently. Moreover, 
the improvements obtained by the multi-resolution approach during validation are 
observed in terms of RMSE and HMLE regardless of which of these was selected 
for calibration. In this regard, the multi-resolution paradigm constitutes a more 
robust alternative for calibration than its traditional single-scale counter-part since 
it may render better or equivalent results during validation regardless of the choice 
of cost function or calibration period. 

1. INTRODUCTION 

Reliable predictions of water and energy budgets at the 
land surface are central to water resource planning, climate 
simulation, and numerical weather forecasting. Macroscale 
hydrologic models provide these predictions by simulating 
surface water and energy fluxes at scales ranging from small 
watersheds to large continental river basins. However, many 
of these models are based on abstract conceptual represen- 
tations of watershed characteristics or the physical process- 
es inherent to the water and energy budgets. Therefore, their 
performance tends to depend on parameter optimization. 
This task is not a trivial one since the parameters of interest 
have a tendency to interact in a highly non-linear and com- 
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plex manner, which results in feasible spaces that are usual- 
ly non-convex, rough, and exhibit multiple local as well as 
global optima [Duan et al., 1992, 1994]. 

Effective and efficient techniques have been developed in 
the past decade that make automatic calibration a viable 
option. These include the shuffled complex evolution (SCE- 
UA) [Duan et al., 1992, 1994; Sorooshian et al., 1993] and 
multi-objective complex evolution (MOCOM-UA) [Gupta et 
al., 1998; Yapo et al., 1998] global optimization algorithms, 
as well as the Bayesian generalized likelihood uncertainty 
estimation technique [Beven and Binley, 1992; Cameron et 
al., 1999; Freer et al., 1996] among others. Generally, the 
success of optimization methodologies depends critically on 
the length and quality of the observed time series, and on the 
choice of the objective function used to evaluate the proxim- 
ity of the simulated and observed time series. In particular, the 
Root Mean Square Error (RMSE) and Heteroscedastic Mean 
Likelihood Error (HMLE) objective measures have been 
extensively used and inter-compared in the literature [e.g. 
Gupta et al., 1999; Sorooshian et al., 1993; Yapo et al., 1998]. 
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Wavelet analysis is a powerful tool for processing non- 
periodic multi-scaled signals. Smith et al. [1998] and Saco 
and Kumar [2000] applied it successfully to the categoriza- 
tion of streamflow response modes over several time-scales 
in the United States. They determined that large, wet regions 
with high snowfall respond to climatological variables and 
physiological characteristics in distinctly identifiable ways 
over time spans ranging from one and a half months to a 
year. On the other hand, catchments with opposite qualifica- 
tion do so over shorter time scales on the order of one week 

to a month. 

Liang et al. [manuscript 2002] developed a new scheme 
to construct objective functions for model calibration by 
applying the multi-resolution framework of wavelet theory. 
They incorporated wavelet analysis into the objective func- 
tion formulation scheme of the SCE-UA optimization algo- 
rithm, and tested it using the Three-Layer Variable 
Infiltration Capacity (VIC-3L) hydrologic model. 

In this paper, we further explore and evaluate the use of 
multi-resolution optimization [Liang et al., manuscript 
2002], as incorporated to the SCE-UA optimization algo- 
rithm, with the VIC-3L model for a mid-sized (510-km 2) 
sub-humid catchment with annual precipitation on the order 
of 900 mm. The multi-resolution optimization approach is 
compared to the single-scale one with RMSE and HMLE 
used as objective measures. Calibration is performed over 
two distinct periods consisting of 1024 and 2048 observa- 
tions, respectively. 

2. MULTIRESOLUTION OPTIMIZATION 

METHODOLOGY 

The multi-resolution analysis of wavelet theory allows for 
a signal, such as streamflow time-series, to be decomposed 
into various resolutions (e.g. time scales) so that the scale- 
variant fluctuations imbedded in it may be captured and ana- 
lyzed. In particular, orthogonal wavelet transforms have been 
evaluated and successfully applied in the literature to describe 
the variability present in geophysical time series at various 
temporal scales [e.g. Kumar and Foufoula-Georgiou, 1994; 
Liang et al., manuscript 2002; Saco and Kumar, 2000]. 
Daubechies [1988] and Mallat [1989a,b] provide a mathe- 
matically rigorous description of these techniques. To keep 
this paper self-contained, the general framework of the multi- 
resolution optimization approach presented by Liang et al. 
[manuscript 2002] is briefly described and summarized here. 

2.1. Concepts of Multiresolution Analysis with Wavelets 

Orthogonal wavelets are the building blocks of a series- 
decomposition similar to the more familiar Fourier trans- 

formation. They permit the behavior of a signal at the orig- 
inal, finest scale, with index m = 0, to be represented by its 
behavior at a coarser scale (m = M, M > 0) plus some 
details arranged hierarchically from scale M to zero. The 
approximation at scale 2 m contains all the information 
needed to represent the signal at the next coarser scale, 
2 m+l. If fm is used to approximate the original signal fit) 
(e.g. daily streamflow) at scale 2 m, this representation can 
be expressed as: 

fm = Z <f,q•m,n>q•m,n; (1) 
n=--oo 

where m and n are scale and location parameters, respec- 
tively. The inner products <f,½m,n > give the approxima- 
tions at the scale with index m and are called smooth coef- 

ficients. ½m,n denote basis functions, which are dilations 
and translations of the scaling function ½(t), and can be 
expressed as: 

q•n•n(t) = 2-•q• (2-mt -- n). (2) 

The scaling function satisfies: 

l•(t)dt=l. (3) 

In going from any given scale to the next (coarser) aggre- 
gation level, some information about the signal is lost. This 
information is called details and can be expressed as: 

< f, ll/m,n > II/m, n , (4) 
n=--oo 

where the inner products <f,•0m,n> give the "details" that 
appear at scale 2 m-1 (i.e., a finer scale than 2 m) and are called 
wavelet coefficients. •0m, n denote basis functions, which are 
translations and dilations of the wavelet function, and can 
be expressed as: 

•n•n(t) = 2-•!P(2-mt - n). (5) 

The wavelet function satisfies: 

lw(t)dt =0. (6) 

Thus, the signal approximated at scale 2 m-1 can be expressed as: 

fm-1 = fm + fm'. (7) 

Details from all scales are necessary for complete recon- 
struction of the original signal. The Filter Banks Algorithm 
[Mallat 1989a, 1989b] is an efficient technique, which 
allows for hierarchical decomposition or reconstruction of a 
given signal into or from its wavelet representation at vari- 
ous time scales. 
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2.2. The Haar Scaling Function 

Wavelet transforms have the capability to accurately 
locate irregular features in both the time and frequency 
domains. However, a trade-off exists such that improved 
localization in the time domain leads to a poorer localization 
in the frequency domain. The choice of wavelet function 
determines which of the two domains is given more empha- 
sis. Therefore, its selection is crucial and should be dictated 
by the application at hand. 

Smith et al. [1998] evaluated several wavelet functions. 
They determined that single-peaked wavelets, such as Haar, 
provide a good approximation to streamflow records at the 
daily scale since these are usually single-peaked as well. 
The Haar wavelet is employed in this study. The Haar scal- 
ing and wavelet functions are given by: 

1 0_<t<l (8a) •t)= 0 otherwise 

_1 0_<t <1/2 •(t)= 1 1/2_<t<l 
0 otherwise 

(8b) 

2.3. Description of the Multi-Resolution Optimization 
Methodology 

The hydrologic processes driving the water and energy 
fluxes of interest occur within distinct time frames. 

Previous work by Smith et al. [1998] and Saco and Kumar 
[2000] evinces that streamflow responds in distinctly iden- 
tifiable ways at different time scales due to the influence of 
climatological (e.g. snow fall, and precipitation type) and 
physiographic (e.g. topography and soil characteristics) 
variables. 

Wavelet analysis allows for calibration to be performed 
at multiple temporal scales, thus accounting for the time- 
variant fluctuations imbedded in streamflow data. The 

framework for multi-resolution optimization presented by 
Liang et al. [manuscript 2002], which is based on wavelet 
theory, is briefly described and summarized here, with fur- 
ther modifications incorporated into their original work. 

For the case in which L time series of observations (e.g. 
evaporation, runoff, and net radiation), indexed by j, are to 
be used simultaneously for optimization, each with its cor- 
responding set of Nj objective functions, {f j(0)}, with 
respect to a set of model parameters, 0, the general form of 
the cost function, F, is given by: 

min (with respect to 0) F(0)={f•(0),...,fi•(0)}; (9) 

Each objectiv.e function,Gi, in the set fj(0) is optimized by 
considering kJi wavelet scales: 

min (with respect to 0) fj(0) = {GJ• (0), ..., GJNj (0)}; (10) 
ki 

Oi(0)-' • •i, rngi, rn(0); (11) 
m=0 

where the summation in (11) is over temporal scales, such that 
•,m(0) is the objective function value corresponding t.o G i (0) 
evaluated at scale 2 m. is the weighing coefficient for J gi,m(0) at 
that same scale. The weighing coefficients are such that: 

ki 

•; aJ =• (12) 
m=0 

The multi-objective complex evolution (MOCOM-UA) 
optimization technique allows for (9) and (10) to be evalu- 
ated for several time-series and objective functions [Gupta 
et al., 1998; Yapo et al., 1998]. The shuffled complex evo- 
lution (SCE-UA) methodology permits this evaluation to be 
performed with a single time-series of observations and one 
objective function [Duan et al. , 1992, 1994; Gupta et al. , 
1999; Sorooshian et al., 1993]. The use of wavelet trans- 
forms introduces multiple time frames into the problem, as 
outlined in (11) and (12). 

3. CASE STUDY 

The multi-resolution paradigm described in section 2 was 
implemented to the objective function formulation of the 
SCE-UA optimization technique. It was then applied for the 
simultaneous calibration of one routing and six soil param- 
eters of the Three-Layer Variable Infiltration Capacity (VIC- 
3L) hydrologic model [Cherkauer and Lettenmaier, 1999; 
Lian g and Xie, 2001; Lian g et al., 1994, 1996a, 1996b, 
1999; Wood et al., 1997] to fit streamflow observations for 
a sub-humid catchment at multiple time scales. This section 
describes the application of the multi-resolution approach 
and provides an analysis of the results. 

3.1. Three-Layer Variable Infiltration Capacity (VIC-3L) 
Model 

VIC-3L may be operated in full energy and water balance 
mode or in water balance mode only. In both cases, the 
model is at least driven by precipitation, maximum and min- 
imum daily temperature (daily time-step) or temperature for 
every sub-daily time step. The full energy and water balance 
mode, which is employed in this study, additionally requires 
wind speed as an input. This mode results in the prediction 
of soil moisture states at different soil layers, as well as land 
surface water and energy fluxes. 
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The VIC-3L model characterizes the soil column as con- 

sisting of three soil layers denoted layer 0 or thin surface 
layer, layer 1 or upper layer, and layer 2 or lower layer. 
Layer 0 is a thin surface layer (--10 cm) that captures the 
rapid dynamics of the upper soil layers by allowing for 
quick bare soil evaporation following small rainfall events 
[Liang et al., 1996a]. The upper soil zone (layer 1) is 
designed to represent the dynamic behavior of the soil col- 
umn responding to rainfall events. The lower layer (layer 
2) characterizes the slower dynamics of inter-storm deep 
soil moisture and baseflow processes. Baseflow from the 
lower soil layer is determined by the nonlinear Arno model 
formulation (Figure 1). Vegetation exerts important con- 
trols on the exchange of water and energy at the land sur- 
face and is therefore explicitly incorporated into the model 
in a simple yet reasonable manner. VIC-3L also has the 
ability to simulate frozen soils [Cherkauer and 
Lettenmaier, 1999]. 

A distinguishing characteristic of this model is that it can 
represent sub-grid scale heterogeneity in soil properties and 
precipitation, and hence evaporation, soil moisture, and 
runoff due to its application of variable moisture and infiltra- 
tion capacities [Liang and Xie, 2001; Liang et al., 1994, 
1996b]. Spatial probability distributions of the beta form are 
used to characterize the available soil moisture capacity and 
infiltration capacity rate as functions of the relative saturated 
and unsaturated areas of a grid cell respectively as shown in 
Figure 2 [Liang et al., 1994]. When precipitation plus the 
amount of soil moisture is in excess of the soil moisture 

capacity, saturation-excess runoff occurs. The version of 
VIC-3L used for this study also includes a new feature to 
dynamically simulate the generation of infiltration-excess 

ranoff such that the effects of soil heterogeneity are considered 
and the parameterization is consistent with the model's repre- 
sentation of samration-excess nmoff [Liang and Xie, 2001]. 

The VIC-3L model has been extensively tested and suc- 
cessfully applied to basins of various sizes [e.g. Liang and 
Xie, 2001; Liang et al., 1994, 1996a; Lohmann et al., 1998a; 
Nijssen et al., 1997, 2001; O'Donnell et al., 2000; Wood et 
al., 1997]. It has been shown to perform quite well in humid 
climate environments, and consistently well in the Project 
for Intercomparison of Land-surface Parameterization 
Schemes (PILPS) [e.g. Chen et al., 1997; Liang et al., 1998; 
Lohmann et al., 1998b; Wood et al., 1998]. 

3.2. Description of Optimized Parameters 

One routing and six soil parameters of VIC-3L were opti- 
mized. These are listed in Table 1, together with their corre- 
sponding physical meanings and feasible ranges. 
Illustrations for the six soil parameters are provided in 
Figures 1 and 2. Smaller values of b imply decreased het- 
erogeneity. Typical values for this parameter are usually less 
than 2. 

3.3. Implementation of Multi-Resolution Optimization 
Approach and Formulation of Objective Functions 

Since calibration was performed with a single time series, 
i.e. streamflow, (L = 1), and only one objective function was 
minimized at a time (N1 = 1), the general form of the multi- 
resolution optimization problem, given by (9), (10) and (11) 
reduces to: 

k 

min (with respect to 0) F(0) = • O•mg m(0); (13) 
m=0 

w•w] w• 

Layer2 Soil Moisture, Wz 

Figure 1. Baseflow curve: D s, Dm, and W s are as defined in Table 
1. W 2 is the total soil moisture capacity over a grid cell for layer 2. 
It is given by the product of the depth of this layer and the soil 
porosity. 

As Fraction of Area 

Figure 2. Variable moisture capacity curve: A s represents the frac- 
tional grid cell area that is saturated, i and i m are the point moisture 
and maximum point moisture capacity for a grid cell respectively, 
and i o is the point moisture capacity corresponding to grid areas that 
are just saturated. Thus, the saturated area of a grid cell has a mois- 
ture capacity i _< i o while the remaining non-saturated area has i_>i o. 
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Table 1. Description of optimized Darameters. 
Parameter Units Physical meaning 

N/A 

Fraction 
mm/day 
Fraction 

D• Meters 
D 2 Meters 
K .... N/A 

Feasible range 
Variable moisture capacity curve parameter 
Fraction of D m where non-linear baseflow begins (baseflow curve) 
Maximum velocity of baseflow (baseflow curve) 
Fraction of maximum soil moisture where non-linear baseflow occurs 

(baseflow curve) 
Thickness of soil moisture layer 1 
Thickness of soil moisture layer 2 
Routing parameter 

0to5 

0to 1 

1 to 40 

0.001 to 1 

0.1 to 1 

0.5 to 4 

0.5 to 20 

where the summation in (13) is over temporal scales, such 
that gm(0) is once again the objective function evaluated at 
scale 2 m, and k is the number of wavelet scales considered. 

Two objective functions were chosen for optimization, 
Root Mean Square Error (RMSE) and Heteroscedastic 
Mean Likelihood Error (HMLE). These are defined as fol- 
lows for the single time-scale approach: 

1 sim __ RMSE(0)= Z[qn (0) q•bs(0)]2 ; 
• .t ß n=l 

(14) 

tions for the multi-scale optimization problem correspon- 
ding to (15) and (16) become: 

FRMSE(0) = k , g__RMSE, m gRMSE, m ; (17) 
mr--ø 

gHMLE, m ' (18) FHMLE(0'•) = • k gHMLE, m , 
m=0 m•=0 gHMLE, m 

1 • Wn(30 [q}im(0) _ q•bs(0)]2 
HMLE(0,)0 = N n=l ' (15) 1 • 

where N denotes the number of observations available, n 

indexes the time step, and q Snim and q ?s are the model sim- 
ulated and observed streamflow, respectively. In (15), Wn(it) 
is the weight assigned to the data value at time n, and is 
given by the observed streamflow at that time raised to the 
2(it-1) power, where it is a parameter associated with 
HMLE. In this study, it was fixed to 0.5. Sorooshian and 
Dracup [ 1980] provide a thorough definition of the HMLE 
cost function. The RMSE criterion tends to focus on mini- 

mization of peak flow errors, while HMLE is more consis- 
tent across all flow regimes [Yapo et al., 1998]. 

A normalized form of (11) is introduced for the multi- 
scale approach as in Liang et al. [manuscript 2002]: 

1 . 

gRMSE,m(0 ) = RMSEm(0) = Nm-Slh •m - 1 

Nn:•l sim obs 2 = (qm, n-qm, n) 

:V 

(16) 

where N m provides the number of observations available at 
scale 2 m. If the objective function value computed at each 
temporal scale is weighed by its fractional contribution to 
the total objective function value by ascribing the weighing 
coefficients in (13) as fractional errors, the total cost func- 

where gHMLE,m denotes the HMLE cost function given in 
(15) evaluated at scale 2 m. 

3.4. Site Description & Data Sources 

The VIC-3L model in full energy and water balance mode 
was applied to the 510-km 2 drainage area upstream of U.S. 
Geological Survey (USGS) gauging station near Lower 
Lake, California (site number 11451500). The streamflow 
records for this station were used for calibration and valida- 

tion of the VIC-3L model. Calibration was performed on 
two periods of different duration. The first period (denoted 
period 1 from here on) extends from October 21, 1952 
through August 10, 1955 (1024 observations). The mean 
annual precipitation for the study area in this period is 780 
mm, and the corresponding observed runoff ratio is 0.447. 
The second period (denoted period 2 from here on) extends 
from January 1, 1950 through August 10, 1955 (2048 obser- 
vations). The mean annual precipitation and observed 
runoff ratio for the study area during this period are 880 mm 
and 0.442, respectively. Figure 3 displays the mean month- 
ly precipitation and observed mean monthly streamflow 
corresponding to period 2. Validation was conducted from 
August 11, 1955 through March 19, 1961 (2048 observa- 
tions). During this time interval, the mean annual precipita- 
tion and runoff ratio for the study area were 940 mm and 
0.445, respectively. Figure 4 displays the mean monthly 
precipitation and observed mean monthly streamflow for 
the validation period. Most of the precipitation in the catch- 
ment of interest occurs during winter cyclonic storms. 
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Figure 3. Mean monthly precipitation (a) and streamflow (b) for calibration period 2 (1/1/1950 through 08/10/1955, 
2048 days). 

Rainfall events usually begin in November and occur fre- 
quently through mid-April. Surface runoff is observed dur- 
ing this period. Runoff becomes negligible as the rainfall 
season ends. During the rest of the year, dry conditions pre- 
vail and streamflow is very low. 

Daily gridded meteorological data (precipitation, wind 
speed, and minimum and maximum daily temperature) to 
one-eighth degree were obtained from the web site 
(http://www. hydro.washington.edu/Lettenmaier/gridded_da 
tad of the Surface Water Modeling group at the University 
of Washington. Maurer et al. [2001 ] describe the methodol- 
ogy used to compile and process this data set. Soil and veg- 
etation parameters to the same resolution were also acquired 
through the same source. 

Ten grid cells were partially included within the study 
area. The runoff from each of these cells was obtained and 

weighted by the area of each cell located within the catch- 
ment divided by the total catchment area. The runoff from 
all cells was aggregated and routed to the outlet point by 
within-catchment routing. Two to four vegetation classes 
were assigned to each cell within the catchment, the pre- 

dominant ones being woodland, wooded grassland, and 
evergreen needle-leaf forest. The range of mean-cell eleva- 
tion for the area of interest is 477 to 1127 meters. 

3.5. Evaluation of Multi-Resolution Optimization Approach 

To evaluate the benefits and robustness of the multi-reso- 

lution optimization procedure, calibration of the VIC-3L 
model was performed on two periods of different duration, 
as described in section 3.4, with both RMSE and HMLE as 

given by single scale formulations (14) and (15) and the cor- 
responding multi-resolution ones (17) and (18). For the 
multi-resolution approach, the eighth wavelet scale (i.e. m = 
8) was the coarsest resolution considered for optimization. 
Tables 2 and 3 list the optimal parameter sets obtained 
through single and multi-scale calibration with RMSE and 
HMLE during periods 1 and 2 respectively. Validation for 
all cases was conducted during a single period consisting of 
2048 observations. 

The percent improvement (I) measure shown below was 
utilized to establish several comparisons: 
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Figure 4. As in Figure 3 but for the validation period (08/11/1955 through 03/19/1961, 2048 days). 

sirn, a obs I= F(obl{q•r•b}'{q•s})-F(0al{qm }'{qm})x100; (19) 
q•S 

where F is given by (14) or (15) evaluated for the scale with 
index m, given the time series of observed streamflow values, 
{q•S}, and those of simulated ones, {qSmim'a }and {q•m,b}, at 
that resolution. qømbS is the mean observed streamflow at the 

Table 2. Optimal parameter values for calibration 
during period 1 (10/21/1952 through 08/10/1955, 1024 
days). SS and MS denote single-scale and multi-scale 
optimization, respectively. 

Parameter RMSE RMSE HMLE HMLE 

(SS) (MS) (SS) (MS) 
b 0.196 0.260 0.106 0.104 

D s 0.022 0.029 0.998 0.991 
D m 7.903 10.455 7.221 7.012 
W s 1.000 0.980 0.001 0.001 
D• 0.819 0.733 1.000 1.000 
D 2 0.591 0.846 0.527 0.524 
K .... 1.291 1.363 1.001 1.000 

same scale. This equation yields the improvement, if positive, 
obtained by simulating the observed process with {q•rn,a}, 
and its corresponding parameter set 0 a, over simulating it with 
{q•m,b}, and its parameter set 0 b. 

3.5.1. Evaluation of Multi-Resolution Paradigm 

Tables 4 and 5 list improvements for the entire validation 
period obtained by the use of the multi-resolution approach 

Table 3. As in Table 2 but for calibration during 
period 2 (1/1/1950 through 08/10/1955, 2048 days). 

Parameter RMSE RMSE HMLE HMLE 

(SS) (MS) (SS) (MS) 
b 0.202 0.226 0.091 0.213 

D s 0.003 0.014 0.950 0.009 
D m 8.599 9.870 31.544 9.876 
W s 1.000 1.000 0.001 1.000 
D• 0.727 0.620 1.000 0.692 
D 2 0.661 0.789 2.973 0.795 
K .... 1.328 1.400 1.002 2.525 



204 MULTI-RESOLUTION CALIBRATION METHODOLOGY FOR HYDROLOGIC MODELS 

for calibration during periods 1 and 2 respectively. That is, 
{q•m,a} in (19) is the model-simulated discharge for the vali- 
dation period obtained using the parameters derived by 
means of multi-resolution optimization and {qsim,b} is the 
equivalent for the parameters derived using single-scale cali- 
bration (i.e. the conventional approach). Improvements were 
computed with both RMSE and HMLE regardless of which 
of these cost functions was minimized during calibration. 

Multi-resolution optimization yields improvements dur- 
ing validation in three of the four study cases, namely when 
calibration is performed with RMSE and 1024 observations, 
and when it is conducted with RMSE and HMLE with 2048 

observations. When calibration is performed with HMLE 
and 1024 observations, the implementation of the multi-res- 
olution paradigm performs equivalently to its single scale 
counter-part. These statements hold regardless of whether 
the objective functions used to compute the improvements 
are the same as those minimized during optimization. 
Figure 5 illustrates the performance of VIC-3L during three 
different rainfall seasons in the validation period when the 
parameters obtained by single and multi-scale calibration 
with RMSE and 1024 observations are used. This study case 
is the one for which improvements can be more easily 
noticed by visual inspection since they correspond to better 
representations of peaks as well as recessions. For all other 
cases, improvements were seen to result mainly from better 
characterizations of recession periods. 

There are two main conclusions to draw from these obser- 

vations. First, the use of multi-resolution optimization 
appears likely to yield better results during validation than 
its single scale counter-part, and it may, at least, perform 
equivalently. Second, when improvements are obtained in 
validation with the multi-resolution approach, these are 
observed in terms of RMSE and HMLE regardless of which 
of these objective measures was selected for calibration. In 
terms of the multi-objective optimization terminology com- 
monly used in the literature [Gupta et al., 1998; Yapo et al., 
1998], this implies that the multi-resolution methodology 
may define an optimal Pareto front that is better, in terms of 
both objective functions, than the optimal Pareto front 
obtained by traditional single-scale optimization. 

3.5.2. Evaluation of Objective Functions 

Tables 6 and 7 list improvements for the entire validation 
period obtained by the minimization of HMLE rather than 
RMSE in calibration during periods 1 and 2 respectively. 
That is, hm,q in (19)is the model-simulated discharge for 
the validation period obtained using the parameters derived 
by optimization with HMLE, and {qsirn,b} is the equivalent 
for the parameters derived by calibration with RMSE. For this 

comparison, both and correspond to parameter sets derived by 
using either single-scale or multi-scale optimization. 

The validation improvements obtained by single-scale 
optimization with HMLE as an objective measure during 
periods 1 (Table 6) and 2 (Table 7) are negative if comput- 
ed with RMSE and positive for the daily (m = 0) and two- 
day (m = 1) scales if determined with HMLE. This indicates 
that with the single-scale approach a trade-off exists at the 
daily and two-day scales between the use of parameters 
derived by optimization with RMSE and HMLE. Conver- 
sely, the validation improvements obtained by multi-resolu- 
tion optimization with HMLE as a cost function during peri- 
od 1 are negative for all scales regardless of whether RMSE 
or HMLE are used to compute them. The validation 
improvements obtained by multi-resolution optimization 
with HMLE during period 2 are, in turn, predominantly pos- 
itive regardless of whether they are computed with RMSE 
or HMLE. This implies that no tradeoff exists between the 

Table 4. Percent improvements, if positive, during 
validation obtained by the use of multi-resolution 
optimization for calibration during period 1 
(10/21/1952 through 08/10/1955, 1024 days). Column 
headings indicate the objective measures used for 
calibration, as well as those employed to evaluate 

improvements (shown with Italics and in parenthesis). 
Scale RMSE RMSE HMLE HMLE 

index (RMSE) (HMLE) (RMSE) (HMLE) 
(m) 
0 67.4 18.8 -0.18 0.01 

1 57.2 15.7 -0.20 0.01 

2 32.8 10.3 -0.15 0.01 

3 10.1 4.23 -0.10 0.01 

4 2.82 -2.14 -0.09 0.01 

5 -3.58 -7.12 -0.05 0.01 

6 1.20 -6.32 -0.01 0.01 

7 -1.57 -7.38 0.00 0.01 

8 -3.67 -6.78 0.00 0.01 

Table 5. As in Table 4 but for calibration during 

period 2 (1/1/1950 through 08/10/1955, 2048 days). 
Scale RMSE RMSE HMLE HMLE 

index ( RMSE) ( HMLE) ( RMSE) ( HMLE) 
(m) 
0 13.6 5.22 73.4 10.9 

1 13.3 4.62 80.7 11.5 

2 8.50 3.15 73.5 14.1 

3 5.99 1.28 73.6 17.4 

4 3.70 -0.48 79.2 23.7 

5 -0.45 -3.29 62.3 29.9 

6 -1.28 -3.79 54.1 30.8 

7 -2.07 -3.44 46.5 34.3 

8 -1.61 -2.93 38.5 33.4 
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Figure 5. Validation results for the case in which calibration was performed with RMSE and during period 1 (10/21/1952 
through 08/10/1955, 1024 days). Subplots display 90-day periods starting December 1, 1955 (a), February 1, 1958 (b), and 
January 1, 1959 (c). SS and MS denote single-scale and multi-scale optimization respectively. 

use of parameters derived by multi-scale calibration with 
RMSE and HMLE. The parameters obtained by multi-reso- 
lution optimization with RMSE yield the best results in val- 
idation if calibration is performed during period 1. On the 
other hand, if multi-scale calibration is conducted during 
period 2, the parameter set derived by minimization of 
HMLE yield the best results during validation. Figure 6 
illustrates the performance of VIC-3L for three rainfall sea- 
sons in the validation period when the parameters obtained 
by multi-scale calibration with RMSE during period 1 and 
HMLE during period 2 are used. The model performance is 
equally good in both cases. 

Tables 8 and 9 list improvements for the entire validation 
period obtained by conducting calibration with 2048 obser- 

vations (i.e. during period 2) instead of 1024 observations 
(i.e. during period 1) with RMSE and HMLE used as objec- 
tive measures respectively. That is, {q•in,a } in (19) is the 
model-simulated discharge for the validation period 
obtained using the parameters derived through optimization 
during period 2, and {qsiin,b} is the equivalent for the param- 
eters derived by calibration during period 1. For this com- 
parison, both h• m,a }andh sim'b} correspond to parameter 
sets derived by using the same cost function (i.e. RMSE or 
HMLE) and either single-scale or multi-scale optimization. 
As shown in Table 8, the validation results obtained by 
using the parameter sets derived through optimization with 
RMSE and 2048 observations are worse than the corre- 

sponding results for calibration with the same objective 
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Figure 6. Validation results for the case in which multi-resolution calibration was performed during period 1 
(10/21/1952 through 08/10/1955, 1024 days) with RMSE and during period 2 (1/1/1950 through 08/10/1955, 2048 days) 
with HMLE. Subplots display 90-day periods starting December 1, 1955 (a), February 1, 1958 (b), and January 1, 1959 
(c). MS denotes multi-scale optimization. 

measure and 1024 observations regardless of whether the 
single-resolution or multi-resolution approach are used. 
On the contrary, Table 9 shows that the results obtained by 
the use of parameters derived with HMLE improve if cal- 
ibration is conducted with 2048 instead of 1024 observa- 

tions. Figures 7 and 8 depict the performance of VIC-3L 
for three rainfall seasons in the validation period with the 
parameters obtained by multi-scale calibration during 
periods 1 and 2 with RMSE and HMLE respectively. 
These confirm the results presented in Tables 8 and 9. 

The results exposed thus far indicate that it is possible for 
multi-scale calibration with either RMSE or HMLE to yield 
optimal parameter sets, as determined during validation, 

even if a trade-off between the two was associated with the 

corresponding parameter sets obtained by single-scale opti- 
mization. Whether optimal parameter sets are derived by 
multi-scale minimization of RMSE or HMLE is seen to 

depend on the period over which calibration is conducted. 
In practice, validation results are not available prior to the 
choice of a period and a cost function for use in optimal 
parameter estimation. In spite of this, the multi-resolution 
paradigm constitutes a more robust alternative for calibra- 
tion of hydrologic models than its traditional single-scale 
counter-part since it seems likely to yield better results dur- 
ing validation regardless of the chosen cost function or cal- 
ibration period. 
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4.0. Summary and Conclusions 

Wavelet analysis was incorporated into the SCE-UA opti- 
mization algorithm and applied to the calibration of one 
routing and six soil parameters of the VIC-3L hydrologic 
model for a sub-humid catchment in Northern California. 

The full energy and water balance mode of VIC-3L was uti- 
lized at a daily time step. Calibration was preformed based 
on two objective functions, Root Mean Square Error 
(RMSE) and Heteroscedastic Mean Likelihood Error 
(HMLE), and over two periods consisting of 1024 and 2048 
days respectively. Validation for all cases was conducted 
over a period of 2048 days. 

The results obtained indicate that it is possible for multi- 
scale calibration with either RMSE or HMLE to yield opti- 
mal parameter sets for validation in terms of both objective 
measures even if a trade-off between the two was associat- 

Table 6. Percent improvements, if positive, during 
validation obtained by using HMLE versus RMSE as an 
objective measure for calibration during period 1 
(10/21/1952 through 08/10/1955, 1024 days). Column 
headings indicate whether single scale or multi-scale 
results are being compared, as well as the objective 
functions employed to evaluate improvements (shown 

with Italics and in parenthesis). 
Scale Single Single Multi- Multi- 
index scale scale scale scale 

(m) (RMSE) (HMLE) (RMSE) (HMLE) 
0 -9.40 3.91 -77.0 -14.8 

1 -22.1 0.60 -79.6 -15.1 

2 -42.6 -5.80 -75.5 -16.1 

3 -67.7 -13.8 -78.0 -18.0 

4 -77.5 -21.1 -80.4 -19.0 

5 -63.9 -27.4 -60.4 -20.3 

6 -55.7 -28.2 -57.0 -21.8 

7 -47.6 -31.9 -46.0 -24.5 

8 -38.3 -31.3 -34.6 -24.5 

ed with the corresponding parameter sets obtained by sin- 
gle-scale optimization. Whether optimal parameter sets are 
derived by multi-scale minimization of RMSE or HMLE is 
seen to depend on the period over which calibration is con- 
ducted. In practice, validation results are not available prior 
to the choice of a period and a cost function for use in opti- 
mal parameter estimation. In spite of this, the multi-resolu- 
tion paradigm constitutes a more robust alternative for cali- 
bration of hydrologic models than its traditional single-scale 
counter-part since it appears likely to yield better results 
during validation, and it may, at least, perform equivalently. 
Moreover, when improvements are obtained in validation 
with the multi-resolution approach, these are observed in 
terms of RMSE and HMLE regardless of which of these 
objective measures was selected for calibration. 

Table 8. Percent improvements, if positive, during 
validation obtained by conducting calibration during 
period 2 (1/1/1950 through 08/10/1955, 2048 days) 
versus period 1 (10/21/1952 through 08/10/1955, 
1024 days) with RMSE as an objective measure. 
Column headings indicate whether single scale or multi- 
scale results are being compared, as well as the 
objective functions employed to evaluate improvements 

(shown with Italics and in •arenthesis). 
Scale Single Single Multi- Multi- 
index scale scale scale scale 

(m) (RMSE) (HMLE) (RMSE) (HMLE) 
0 -5.60 -5.29 -59.4 -18.8 

1 -5.23 -4.63 -49.1 -15.7 

2 -5.23 -3.60 -29.6 -10.7 

3 -4.26 -1.73 -8.40 -4.68 

4 -2.56 0.36 -1.67 2.02 

5 0.16 3.27 3.30 7.10 

6 0.39 4.05 -2.09 6.58 

7 1.16 3.66 0.66 7.60 

8 1.47 3.13 3.54 6.98 

Table 7. As in Table 6 but for calibration during 

perio, d,, ,2 ,(1/1/1950 throug,,h,.,0,,..8./10/1955, 2048 days). , 
Scale Single Single Multi- Multi- 
index scale scale scale scale 

(m) (RMSE) (HMLE) (RMSE) (HMLE) 
0 -3.86 9.28 55.9 14.9 

1 -17.0 5.31 50.4 12.2 

2 -37.7 -2.12 27.3 8.85 

3 -63.7 - 11.9 3.92 4.19 

4 -75.2 -21.4 0.27 2.80 

5 -64.2 -30.6 -1.49 2.66 

6 -56.1 -32.1 -0.72 2.46 

7 -48.7 -35.5 -0.18 2.28 

8 -39.7 -34.3 0.41 1.95 

Table 9. As in Table 8 but for calibration with 

HMLE. 

Scale Single Single Multi- Multi- 
index scale scale scale scale 

(m) (RMSE) (HMLE) (RMSE) (HMLE) 
0 -0.06 0.08 73.5 10.9 

1 -0.15 0.09 80.8 11.6 

2 -0.33 0.09 73.3 14.2 

3 -0.25 0.11 73.5 17.5 

4 -0.29 0.12 79.0 23.8 

5 -0.16 0.08 62.2 30.0 

6 -0.01 0.09 54.1 30.9 

7 0.06 0.07 46.5 34.4 

8 0.08 0.07 38.5 33.4 
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Figure 7. Validation results for the case in which calibration was performed during periods 1 (10/21/1952 through 
08/10/1955, 1024 obs) and 2 (1/1/1950 through 08/10/1955, 2048 obs) with the multi-resolution methodology and 
RMSE as an objective measure. Subplots display 90-day periods starting December 1, 1955 (a), February 1, 1958 (b), 
and January 1, 1959 (c). MS denotes multi-scale optimization. 
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Challenges in developing an accurate and precise parameter estimation method 
for catchment hydrochemical models have been a persistent roadblock to improv- 
ing model performance. We investigate the use of generalized sensitivity analysis 
and multi-criteria calibration techniques to investigate parameter estimates, 
model structure, and natural processes using the Alpine Hydrochemical Model 
(AHM) of the Emerald Lake watershed (ELW), Sequoia National Park, 
California. A traditional generalized sensitivity analysis was conducted. The 
results of this sensitivity analysis were used to develop four subsets of criteria 
used to apply a multi-criteria parameter estimation algorithm to the AHM model 
of ELW. The sensitivity results revealed that mass flux measures of model error 
permitted focusing on the spring snowmelt period of time while concentration cri- 
teria focused on important processes throughout the year. This result led us to 
believe that a combination of mass flux and concentration criteria would be a pro- 
ductive approach in selecting the criteria to combine in a multi-criteria calibration 
of the model. In multi-criteria calibration we improved estimates of several 
hydrologic and biogeochemical processes in addition to identifying a flaw in the 
current representation of mineral weathering within the AHM, as applied to the 
Emerald Lake watershed. However, the calibration results also indicated that sen- 
sitivity analysis and model calibration evaluation procedures are useful in differ- 
ent ways for developing knowledge about watershed water quality models. 

1. INTRODUCTION 

For the past two decades there has been robust develop- 
ment of parameter estimation and calibration methodologies 
in conjunction with rainfall-mnoff models. However, while 
improved parameter estimation and calibration methodolo- 
gies as applied to catchment water quality models has been 
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seen as a needed research goal [Kirchner et al., 1996; 
Christophersen et al., 1993; Beck, 1987] little progress has 
been made in applying the robust methods often applied to 
rainfall-runoff models to models of surface water quality. 
This inability to develop better parameter estimation, model 
calibration and model uncertainty methods for use with 
water quality models also limits the application of these 
models to important social issues, such as how to improve 
surface water quality [National Academy of Sciences, 2001]. 
We believe that one of the reasons for this lack of improve- 
ment is the absence of suitably developed methodologies to 
deal with the problems inherent in catchment water quality 
modeling. 
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Past studies with watershed water quality models have 
shown the promise of using multi-criteria methods to better 
define model structure and estimated parameters [Hooper 
et al., 1988; De Grosbois et al., 1988; Mroczkowski et al., 
1997; Kuczera and Mroczkowski, 1998]. Still these studies 
have focused on using multiple criteria to better identify 
parameters and structure for the purely hydrologic compo- 
nents of watershed hydrologic and water quality models 
while ignoring the parameters that directly affect water 
quality (e.g. cation exchange and mineral weathering 
parameters). This approach presents a problem; on the 
one hand we know that chemical concentrations can give 
us information about watershed hydrologic properties, 
but on the other we know that chemical concentrations 

give information useful for parameterizing our models 
for watershed chemical properties. We present here a 
case study looking at the application of multi-criteria 
methods for parameter sensitivity analysis and parameter 
estimation of both chemical and hydrologic properties. 
We also consider how these methods can be used to 

investigate model structure and determine how the exist- 
ing structure of a water quality model could be improved. 
This study is divided into two parts. For both parts we use 
the Alpine Hydrochemical Model (AHM) to simulate 
stream chemical composition for the Emerald Lake water- 
shed (ELW). The first part deals with a general sensitivity 
analysis that we use to investigate the importance of cer- 
tain model parameters to the model fluxes in our study 
[Meixner et al., 1999]. The second part deals with using 
the results of the sensitivity analysis to investigate differ- 
ent combinations of criteria for use in developing parame- 
ter estimates and determining model structure [Meixner et 
al., 2002]. We sought to answer two questions with the 
sensitivity analysis. First, what can differences in parame- 
ter sensitivity tell us about the information content of dif- 
ferent objective functions? Second, what do the parameter 
sensitivity results tell us about the processes occurring in 
the real watershed? 

In the second part of our study we addressed two main 
questions. First, what subset of criteria is necessary for 
AHM parameter estimation and model evaluation, and 
what methodology is best suited to selecting those criteria? 
Second, what do the calibration results imply about the 
hydrologic and hydrochemical processes that control 
stream chemical composition in the ELW, versus what the 
results imply about model structure? Also addressed are the 
broader implications of the results for the multi-criteria cal- 
ibration of hydrologic and hydrochemical models. Finally, 
we address the implications of the differences and similar- 
ities in our sensitivity analysis and parameter estimation 
results. 

2. METHODS 

2.1 Site Description 

ELW is a 120 ha headwater catchment located in the 

Sierra Nevada (36 ø 35' N, 118 ø 40' W), with elevation rang- 
ing from 2800 m at the lake to 3416 m at the summit of Alta 
Peak [Wolford et al., 1996; Tonnessen, 1991] (Figure 1). The 
watershed is 48% covered by exposed granite and granodi- 
orite, 23% by soil, and 23% by talus, and includes a 2 ha 
lake. On average, snowfall represents 95% of total annual 
precipitation. Streamflow is dilute with conductivity rang- 
ing from 2 to 10 !.rs cm -• and alkalinity ranging from 15 to 
50 geq L-•. The watershed is considered to be sensitive to 
changes in climate and atmospheric deposition due to thin 
soils, dilute waters, and snow dominated hydrology. The 
1986 water year (October 1985 to September 1986) had sig- 
nificantly above normal snowfall and in 1987, significantly 
below normal snowfall. A simulation over the two years 
thus represents a robust test of the model since it must per- 
form well in both wet and dry periods. 

2.2 Model 

AHM is a lumped conceptual model for alpine watersheds 
that requires the parameterization of the hydrologic and bio- 
geochemical processes occurring in a watershed [Wolford et 
al., 1996]. The model has been applied at several watersheds 
and has been found to perform well [Meixner et al., 2000; 
Meixner et al., 1998]. For ELW, the watershed was parti- 
tioned into three terrestrial subunits (rock, talus, and soil), a 
stream, and a lake (Figure 2). Each terrestrial subunit is 
made up of different compartments representing the snow- 
pack, snowpack free water, snowmelt, surface runoff, and 
interception by trees and litter, and may contain multiple soil 
horizons. Stream and lake subunits have compartments for 
the snowpack, snowpack free water, snowmelt, strear•ake 
ice, and (as appropriate) streamflow or a stratified lake. 
Within this structure, a set of parameters defines the routing 
of flow from the rock subunit to the talus and soil subunits, 

and from there sequentially into the stream, the lake, and out 
of the watershed. AHM adjusts hydrologic and chemical 
inputs, outputs, and state variables for 13 separate compart- 
ments representing snow, vegetation, infiltration, and soil 
processes. AHM calculates chemical equilibrium and moves 
water and chemicals between compartments on a daily time 
step, with some processes calculated on a sub-daily time 
step. Model output can include detailed descriptions of all 
chemical calculations, tracking of both chemical and hydro- 
logic storage and changes in storage within the watershed, 
soil chemical concentrations, and stream concentrations. 
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Figure 1. Elevation and location map of ELW. 
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Figure 2. Schematic of AHM Model of the Emerald Lake water- 
shed. A represents precipitation and evapotranspiration. B repre- 
sents flow routed from rock subunit onto soil and talus subunits. C 

is surface and subsurface flow to stream from soil and talus. D is 

inflow to lake. E is lake outflow. Each subunit contains represen- 
tations of major biogeochemical and hydrologic processes. For 
example, mineral weathering, cation exchange, unsaturated flow, 
and snowpack processes are represented in the soil subunit. Used 
with permission from Meixner et al. [2002]. 

2.3 Sensitivity Analysis Methods 

A total of 20,000 Monte-Carlo simulations of ELW 
response were conducted for the sensitivity analysis. Each 
simulation was conducted by uniformly selecting values for 
the 24 model parameters from the ranges specified in Table 
1:10 of them are hydrologic parameters (five for the soil 
subunit and five for the talus subunit), and 14 are chemical 
parameters (4 cation exchange coefficients on each of the 
soil and talus subunits and 6 chemical parameters that are 
constrained by model structure to be the same for all sub- 
units). For each simulation, 21 different objective functions 
were calculated, each being the sum of squared error (SSE) 
between a model simulated output and its associated value 
measured at the Emerald outflow (discharge and the 10 
measured chemical species Ca 2+, Mg 2+, Na +, K +, Si, CI-, 
NO3-, SO4 2-, pH, and acid neutralizing capacity (ANC)). 
For each of the 10 chemical species, 2 objective functions 
were calculated: i) the SSE between the measured and mod- 
eled concentration and ii) the SSE between the measured 
mass and the modeled mass flux. Differences between the 

concentration and mass flux objective functions can be 
understood qualitatively as concentration errors giving 
equal weight to errors throughout the year, and mass flux 
errors giving extra weight to model errors during the high- 
est flow periods of the year during spring and summer 
snowmelt [Meixner et al., 1999]. 

The 20,000 Monte-Carlo simulations were used as the 
basis for a multi-objective generalized sensitivity analysis 
(MOGSA) [Bastidas et al., 1999; Spear and Hornberger, 
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Table 1. Parameters Varied and Range Relative to Values 
by Wolford et al. [1996] 

Parameter a Range 
ET • 0-1 
Soil - depth c 0.5-1.5 
N c 0.8-1.8 

KCsat 0.2-4 
Csa t 0.5-1.5 

Elution (D d) 0.5-1.5 
K-Ca 2+e 0.5-1.5 
K-Mg 2+e 0.5-1.5 
K-Na +e 0.5-1.5 
K-K +e 0.5-1.5 

K-SO 2 f 0.5-1.5 
4 

K-Si t 0.5-1.5 
0.5-1.5 Soil P g 

co 2 
h 0.5-.5 

•Z h 0.5-1.5 

a The hydrologic parameters and cation exchange coefficients 
were varied independently for the soil and talus subunits. 

b ET represents the fraction of potential evapotranspiration 
permitted to occur. 

c The parameter soil-depth represents total depth of soil on a 
subunit. Other hydrologic parameters are in the equation for 
unsaturated hydraulic conductivity' 

K u = rsat4[,•[I-(I-Wn)l/n] 2 
where Ku is the unsaturated, and Ksat is saturated hydraulic conductiv- 
ity, W is (0- Or)/Osat- Or), n is a drying curve coefficient that defines 
the relationship between 0 and Ku, 0 is soil water content, Or is the 
residual water content, and Osat is the saturated soil water content. 

d The equation used to represent snowpack elution is' 

C =ABe (•x)+(1 A) D e (-Dx) 
C, ve 

where C is the snowmelt solute concentration, Cave is the initial 
concentration in the snowpack, coefficients A, B, and D define the 
magnitude and shape of the ionic pulse, and x is the fraction of 
already melted snowpack. 

e The log K is used in the exchange reaction as shown for Ca 2+' 
Ca 2+ + 2(XH) CaX2 + 2H + 

2- and H2SiO4 exchange as: f Log K for adsorption of SO 4 

S042 + Y + 2H + YH2804 
H2SiO4 + Z Z - H2SiO4. 
g The partial pressure of carbon dioxide PCO2 was varied 

simultaneously for both subunits. 
The weathering coefficients K and a were varied independ- 

ently of each other but uniformly for all species. They contribute to 
weathering via the equation' Mol = A K [H+] r• where Mol is moles 
added to the subunit, A is total area of the surfaces involved in 
reactions, [H +] is hydrogen ion concentration, and K and a are 
constants. The total surface area is determined as the product of the 
soil depth, area, bulk density, and specific surface area for soil 
particles. 
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1980]. In MOGSA a subset of a population of 2000 samples 
was calculated using bootstrap methods. Sample popula- 
tions smaller than 2000 resulted in fewer sensitive parame- 
ters while larger sample populations did not reveal addi- 
tional sensitive parameters [Meixner et al., 1999]. The sam- 
ple population is then classified into behavioral (B) (i.e., 
having desired qualities) or non-behavioral (B) (i.e., not 
having desired qualities) sets; typically the desired quality 
is a low value for an objective function. The discrimination 
into behavioral and non-behavioral sets is entirely subjec- 
tive and depends on the selection of a threshold "accept- 
able" value for the objective function. Here the 50% quan- 
tile was chosen as the threshold. For each parameter (Ok) 
the empirical cumulative distribution function is computed 
for both behavioral, F(0 k lB) and non-behavioral, F(0 k lB) 
outcomes. The Komolgorov-Smirnov (K-S) statistic 
[Stephens, 1970] was used to discern whether the sampling 
distributions belong to the same underlying population dis- 
tribution or not. If not, the parameter in question is deemed 
to be sensitive. A significance level a of 0.05 for the K-S 
test was used to discriminate sensitive from insensitive 

parameters, i.e., a < 0.05 means that the behavioral and 
non-behavioral distributions of a parameter are not drawn 
from the same population and therefore the parameter 
being tested is sensitive. 

2.4 Multi-Criteria Parameter Estimation Methodology 

A thorough discussion of the application of multi-criteria 
theory to calibration of conceptual physically based models 
can be found in Gupta et al. [this volume, "Multiple..."]. 
The following is a brief summary of that methodology. 
Consider a model with parameters O - {0•, ..... On) that is 
to be calibrated with observations (O j) over m simulated 
model output variables. For each simulated response X 1, it is 
possible to define a criterion 2•(O) that represents the dis- 
tance between the simulated value X• and the observation 
Oj. The criterion f• may be defined with any number of 
measures of model error or residual. The root mean squared 
error (RMSE) is a commonly used measure of model error. 
RMSE can be represented as: 

RMS•5(q)= I• • (0 t -- Xt (0)) 2 t=l 

(1) 

where q is discharge, t9 the set of model parameters, n the 
total number of observations O, and X the simulated value 

at time step t. The multi-criteria model calibration problem 
can formally be stated as: 

Minimize F(tg)= {f1(6• .... fm(t9)} subject to t9 C O (2) 

where the goal is to find values for t9 within the feasible set 
O that minimize all of the criteria (fj(O), j=l ..... m) 
simultaneously. 

In practice it is not possible to minimize all criteria simul- 
taneously. Instead, a set of solutions is commonly found, 
which have the property that it is necessary to deteriorate 
performance of one criterion in order to improve the per- 
formance of a second criterion within the set of solutions. 

The Pareto set represents the set of solutions that can objec- 
tively be considered better than all other possible solutions. 
However, objective comparisons within the set of solutions 
are not possible and therefore all of the solutions must be 
compared as a whole to other possible Pareto set solutions 
for a given model. The Pareto set represents the best solu- 
tion available through model calibration without incorporat- 
ing the subjective judgment stating that one or more of the 
criteria are more important than the others. The size of the 
Pareto set is related to errors in model structure and the cal- 

ibration data set. 

Yapo [1996] presented an efficient population-based 
optimization strategy that provides an approximate repre- 
sentation of the Pareto set with a single optimization run. 
This algorithm, Multi-Objective Complex Evolution 
(MOCOM-UA), is based on the Shuffled Complex 
Evolution (SCE-UA) optimization method [Duan et al., 
1993; Duan et al., 1992]. The MOCOM-UA method 
begins by sampling the feasible space • at a number of 
locations. At each location the multi-criteria vector F(•) 
is computed, and the population is ranked and sorted using 
Pareto rank [Goldberg, 1989]. Simplexes of n+l points 
are then selected using a rank-based method. Each sim- 
plex is evolved in an improvement direction using a multi- 
criteria extension of the downhill simplex method. 
Iterative application of the ranking and simplex evolution 
steps causes the population to converge towards the Pareto 
set. The algorithm terminates automatically when all 
points in the sample become mutually non-dominated 
[Yapo et al., 1998]. 

2.5 Applying MOCOM-UA to AHM 

The varied parameters and their feasible ranges were the 
same as the sensitivity analysis (Table 1). We developed 
four sets of complementary criteria and each set contained 
four criteria; using more than four criteria or fewer than four 
criteria gave inferior results [Meixner, 1999]. The first set 
was chosen on the basis of a correlation analysis of the 
observations of stream chemical composition at the 
Emerald outflow. The correlation analysis showed that the 
four least correlated time series, referred to as the data cor- 

relation case, were discharge (Q), and the concentrations of 
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H +, Mg 2+, and Si (< 0.6 for each pair). A second set of four 
criteria was determined by using the four species with the 
least correlated RMSE values (< 0.05 for each pair). This set 
of four criteria, referred to as the criteria correlation case, 

were Q, ANC concentration, SO42- mass, and C1- mass. 
The remaining two sets of criteria were selected on the 

basis of information gained from the sensitivity analysis. 
The two sets were chosen based on which criteria shared the 

least number of sensitive model parameters. These two sets 
consisted of Q, Ca 2+, SO42-, and C1- criteria. In the concen- 
tration case, the concentration criteria of 8042- and C1- were 
used; in the other case, the mass flux case, the mass flux cri- 
teria for SO42- and C1- were used. The concentration criteri- 
on for Ca 2+ was used for both of these sets. 

For each of these sets of criteria, the Pareto set was esti- 

mated using the MOCOM-UA algorithm. We selected a 
population size of 250 for the multi-criteria search; larger 
populations did lead to significantly better algorithm per- 
formance [Meixner, 1999]. Each calibration case thus has 
250 different final parameter sets that are considered 
acceptable. Calibration success was compared using the 
Nash-Sutcliffe values [Nash and Sutcliffe, 1970] for all 
criteria. The Nash-Sutcliffe statistic is: 

N 

v,=l (3) 

where O is the observation, O the mean observation, P the 
predicted value, Oi the observation or prediction in question 
and N the total number of observations. 

A Nash-Sutcliffe value greater than zero indicates that 
the model is superior to the observational mean as a pre- 
dictor of stream chemical composition [Legates and 
McCabe, 1999]. The calibration results for each of the 
four sets of criteria used in the MOCOM-UA algorithm 
will be viewed in four different ways: parameter space, cri- 
teria space, comparisons of the model results to the mean 
(using the Nash-Sutcliffe statistic) and comparisons 
between the calibration cases. Each model realization was 

given a rank from 1 to 1000 with a rank of 1 indicating the 
best possible simulation for a given model criteria. The 
ranks for each of the 4 cases were summed for each and 

every criterion and divided by 1000. In this situation a 
value of 31 for a given calibration case indicates that all 
250 simulations for that case are superior to all simulations 
for other cases while a value of 219 indicates that all 250 

simulations of a given case are inferior to all of the simu- 
lations from the other cases. The set of criteria that per- 
forms best is the one that has the smallest variation in esti- 

mated parameters, gives a calibrated model that is superi- 

or to the mean observations, and is superior to the other 
available model calibrations. 

3. RESULTS 

3.1 Sensitivity Analysis Results 

There were more sensitive hydrologic parameters than 
sensitive chemical parameters for concentration objective 
functions (Table 2). The PCO 2 in the subsurface, two weath- 
ering parameters, and the elution parameter, D, were sensi- 
tive for the largest number of concentration objectives. 
Exchange coefficients for the cations, Si and SO42- were 
important for the species they are associated with and few 
other species. 

The sensitivity analysis for the mass flux objectives tells 
a different story (Table 2). While more sensitive ion 
exchange parameters were found for mass flux objective 
functions, there were fewer sensitive hydrologic parameters. 
For example, only the elution parameter D was sensitive for 
C1- mass flux, while there were several sensitive hydrologic 
parameters for C1- concentration. in total, there were 40 sen- 
sitive chemical parameters for the 10 mass flux objective 
functions, while there were 41 sensitive chemical parame- 
ters for the concentration objective functions. However, the 
sensitive chemical parameters for concentration and mass 
flux were different. Fewer weathering parameters (15 
weathering parameters for concentration, 7 for mass flux) 
but more exchange parameters (13 exchange parameters for 
concentration, 22 for mass flux) were found to be sensitive 
for mass flux objective functions. 

For hydrologic parameters, using mass flux as opposed to 
concentration greatly decreased the number of sensitive 
parameters. There were 63 sensitive hydrologic parameters 
for chemical concentration as opposed to only 44 for mass 
flux. There were fewer sensitive hydrologic parameters for 
each of the chemical species except for Si, which saw no 
change, and SO42-, which had 6 sensitive hydrologic param- 
eters for mass flux as opposed to 2 for concentration. The 
evapotranspiration parameters (ET) for both of the subunits 
were important parameters for concentration objective func- 
tions, with a total of 10 sensitive ET parameters either on the 
soil or on the talus subunit; however, when mass flux was 

used, ET was only sensitive once. 

3.2 MOCOM Results 

Parameter space results indicate that the data correlation 
case contained little information about the processes repre- 
sented by the model. The criteria correlation case, the con- 
centration case, and the mass flux case resulted in relatively 
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Parameters Objective Functions 

ANC Ca 2+ C1- K* Mg 2+ Na* NO 3- H* Q Si SO4 2- 
ET (soil) C • 

Soil-D (soil) C C 

N (soil) C 

Ksa t (soil) CM • CM 
sat (soil) C 

ET (talus) 

Soil-D (talus) CM CM 

N (talus) C CM 

Ksa t (talus) M 
•a, (talus) CM CM 

Elution (D) C 

K-Ca 2' (soil) CM 

K-Mg 2' (soil) 

K-K* (soil) M 

K-Na* (soil) 

K-SO42- (both) M1 M 
K-Ca 2' (talus) M CM 

K-Mg 2' (talus) M 
K-K* (talus) 

K-Na* (talus) 

K-S i (both) 

K-H2CO 3 (both) CM CM 
(all species) C C 

all species) CM CM 

C 

CM 

C 

CM 

CM 

CM 

CM 

C 

C 

CM 

CM 

CM 

C CM C M C 

CM CM C M C C 

C M C M M 

CM CM C CM M CM M 

CM CM C M M M 

C C M 

CM CM CM CM M M CM 

C M C CM M M 

M M CM C M M M 

CM CM CM M C M 

C CM CM C M 

CM M M 

CM 

M 

CM 

CM 

M 

CM 

CM 

CM 

CM 

CM CM CM M CM 

C CM C C 

C CM CM M CM C 

1 A C in a box indicates that the concentration version of that objective function was affected by 
changes in the parameter value, an M indicates that the mass flux objective function was affected and CM 
indicates that both the concentration and the mass flux criteria are affected. 

small parameter spaces for the final 250 Pareto set results. 
The parameter values from the data correlation case 
spanned the entire parameter space (Figures 3 and 4), while 
the other three methodologies occupied a smaller fraction of 
the parameter space. The coefficient of variation (CV, the 
standard deviation of the Pareto set parameter values divid- 
ed by the mean of the Pareto set parameter values) for all of 
the parameters can be used as a summary statistic of the pre- 
cision of the parameter estimates for each case. The criteria 
correlation and concentration cases each had CVs of 0.077, 

the mass flux results registered an even lower 0.043, and the 
data correlation case had a CV of 0.2. 

The criteria-space results for the four cases provide addi- 
tional information on how each of the cases performed 
(Figure 5). The criteria correlation case results show 
improvement over the results of the initial parameters for 
ANC, Na +, C1- and Si, while this set of criteria was signifi- 
cantly worse for Mg 2+ either as mass flux or concentration. 
There is little coherence for the data correlation case results 

and they are similar to what would result from using 250 
sets of random parameter values [Meixner, 1999]. The 
results for both sensitivity analysis cases have some inter- 
esting contrasts. The case using only concentration criteria 
improved the simulations for several criteria, but with Mg 2+, 
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Figure 3. Hydrologic parameter ranges for four different calibra- 
tion cases. See Table 1 for a description of the parameters. Soil and 
Talus labels refer to soil and talus subunits in the AHM model of 

Emerald Lake (Figure 2). Each panel of the figure is for a single 
criteria case that we investigated. A thick black line represents the 
initial parameter values [Wolford et al., 1996]. Gray lines represent 
the 250 Pareto solutions for each calibration case. Y-Axis value is 

a multiple of the initial parameter value [Wolford et aL, 1996]. 
Used with permission from Meixner et al. [2002]. 
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Figure 4. Chemical parameter ranges for four different calibration 
cases. Description of figure is the same as for Figure 3 except 
ranges for the 14 chemical parameters are shown. Used with per- 
mission from Meixner et al. [2002]. 
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Concentration Criteria 

Figure 5. Concentration criteria Nash-Sutcliffe values for the four 
calibration cases investigated. The thick black line indicates the 
Nash-Sutcliffe values for the parameter values determined by 
Wolford et al. [1996]. Boxed criteria indicate those criteria used to 
calibrate the model for each case. Criteria boxed with a dashed 

line were calibrated with mass flux form of criteria as opposed to 
the concentration criteria form. Used with permission from 
Meixner et al. [2002]. 

Na+, NO3-, and H+ predictions were not improved in any 
significant way over the initial parameter results. The 
results for the mass flux case were not nearly as good, with 
several criteria not being improved with respect to the ini- 
tial parameter results. These results indicate that choosing 
criteria using the correlation or lack thereof of observations 
is not a good methodology for selecting the criteria used for 
multi-criteria calibration since results for the data correla- 

tion case were inferior to those of the other three cases. 

First, comparing the overall results for each of the 
methodologies to the mean indicates that based on several 
criteria, model performance is inadequate at best (Table 3). 
In particular, the mean is a superior predictor for Cl-, Si, 
Na+, and NO 3- for all but a few of the 1000 "best" simula- 
tions (250 parameter sets for each set of criteria) between 
the four sets of criteria used here. In general, the model does 
a good job of simulating the mass flux of all species except 
C1-. The model is expected to perform much better than the 
mean mass flux since mass flux varies by several orders of 
magnitude due to wide variations in flow while observed 
concentrations vary by a maximum of one order of magni- 
tude. Among the four sets, the concentration case does the 
best on a mean basis with the average model prediction 
superior to the observational mean 178 out of 250 times. 
The worst of the four is the data correlation case, with the 
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model being better than the mean as a predictor of stream 
chemical composition only 150 out of 250 times. 

Comparing the 4 different calibration cases with the sum 
of their ranks according to each criterion gives a different 
perspective on the results (Table 4). Of note is the fact that 
the data correlation case performs the worst of the four 
cases when looking at the ranking results of the criteria for 
which it was calibrated (average rank of 112). The mass flux 
case performs very poorly with respect to those objective 
functions for which it was not calibrated (average rank of 
163) and thus performs relatively poorly overall (average 
rank of 132) when compared to the other criteria selection 
methods. These results indicate that the data correlation 

case performed worst overall (average rank of 135) with the 
mass flux case being the second worst overall. The criteria 
correlation case and concentration case both end up per- 
forming relatively well compared to the other two cases 
(average ranks of 119 and 116 respectively) with the con- 
centration case performing marginally better mostly 
because in relative terms it does a better job in improving 
model performance for those criteria used to calibrate the 
model (average rank of 70). 

4. DISCUSSION 

4.1 Implications of Sensitivity Analysis Results 

The results show systematic differences in parameter sen- 
sitivity for chemical concentration objective functions as 
opposed to mass flux objective functions. Using concentra- 
tion as an objective function revealed parameter sensitivi- 
ties that are important all year such as the fraction of poten- 
tial evapotranspiration (ET) and the mineral weathering 
parameters (tc and a). Using mass flux as the objective func- 
tion revealed parameters that can have a large effect for a 
short period of time, and especially during higher flows, 
like ion exchange and snowpack elution parameters. 

Differences for hydrologic parameters other than ET are 
more mixed. Hydrologic parameters that determine soil 
pore-water volume 0sa t, soil depth, and residence time in 
that volume (Ksa t and N) are important year round. These 
parameters determine the mixing volume of the subsurface 
and the rate of exchange between surface and subsurface 
water respectively. 

These results indicate that mass flux and concentration 

objective functions contain different information about 
watershed processes. In particular, mass flux emphasizes 
parameters (e.g. exchange coefficients and snow elution 
parameters) that have a faster response within the model 
and possibly within the watershed. These processes are 
important in determining stream chemical composition dur- 

ing spring snowmelt, the period of greatest sensitivity to 
acid deposition for alpine catchments [Williams et al., 
1993]. Using concentration as an objective function high- 
lighted sensitivities to evapotranspiration and mineral 
weathering parameters, which affect model output through- 
out the year and influence the mean model output. Thus, for 
investigating model error and structure with the goal of 
improving catchment models, it would be important to 
include measurements of model error that incorporate both 
mass flux and concentration objective functions. 

Finally, our results indicate that the volume of talus and 
residence time of water in the soil subunit are among the 
most important hydrologic parameters in determining 
model output. Each subunit has two parameters that repre- 
sent soil water holding capacity (0sa t, and soil depth) and 
two parameters that represent rate of flow through that 
water holding volume (Ksa t and N for unsaturated flow). A 
summary of the results from Table 2 shows that for soil, 22 
flow rate parameters and 24 soil volume parameters were 
sensitive for chemical (concentration or mass flux) objec- 
tive functions. For talus, 18 flow rate parameters and 32 
talus volume parameters were sensitive for chemical objec- 
tive functions. These results indicate that the AHM model 

of ELW is more sensitive to talus volume than it is flow rate 

through the talus. These results also indicate that flow rate 
through soil is more important than is flow rate through 
talus. Our results indicate that field efforts should focus on 

estimating the reactive volume of talus fields. This result 
confirms other previous studies identifying the importance 
of talus in alpine catchments [Campbell et al., 1995; Mast et 
al., 1995; Williams et al., 1997]. 

4.2 Implications of Multi-Criteria Calibration Results 

According to the current analysis, the four criteria that are 
best suited for multi-criteria analysis are Q and the concen- 
tration of Ca 2+, SO4 2-, and C1-. The companion set of crite- 
ria using the mass flux of SO4 2- and C1- was inferior because 
it did not improve model results for all criteria as much as 
the concentration case did. Both the data correlation case 

and criteria correlation case were inferior to the concentra- 

tion case (Figures 3, 4, and 5; Tables 3 and 4). The criteria 
correlation results had inferior simulations of the 21 criteria 

modeled using either the mean or the initial parameters as 
the benchmark for model comparison, but was only slightly 
inferior when comparing the 4 cases using the sum of ranks. 

Criteria selected using multi-criteria sensitivity analysis 
resulted in the best-calibrated models, suggesting selection 
should consider the criteria that give the most independent 
parameter sensitivity results. Selecting criteria using sensi- 
tivity analysis results incorporates information contained in 
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the data, model, and user's intuition. The sensitivity analy- 
sis incorporates information from the data since the data are 
used to determine which simulations are considered behav- 

ioral and which are considered non-behavioral. Information 

from the model is obviously incorporated since the purpose 
of the sensitivity analysis is to determine which criteria are 
sensitive to which model parameters [Bastidas et al., 1999]. 
The user's intuition is involved since the user must deter- 

mine which criteria contain information about the model 

form and the processes represented by the model. The user 
does this by using the sensitivity results and their physical 
understanding of the important processes to determine 
which set of criteria would be best. 

Further improvements in criteria selection should be 
sought, since the current method of selecting criteria is still 
rather subjective. Preliminary results with a cluster analysis 
of the criteria values from the 20,000 Monte-Carlo simula- 

tions supported the four criteria selected using the sensitiv- 
ity analysis. However, the cluster analysis did not provide a 
single unique result. Using other sets of criteria that would 
be acceptable according to the cluster analysis did not result 
in superior model simulations. 

4.3 Natural Process 

The calibration results reveal several things about the 
processes controlling stream chemical composition in the 
Emerald Lake watershed. First, the results indicate that 

evapotranspiration is less than currently modeled (Figure 3) 
using the initial parameters. Field and modeling exercises 
should focus on summertime estimates of ET, since model 

predictions of stream chemical composition are insensitive 
to ET parameters during spring snowmelt [Meixner et al., 
1999]. Second, the results indicate that the hydraulic con- 
ductivity (Ksat) of the soil should be higher than the current 
value, for the talus results were mixed as they related to Ksa t 
(Figure 3). Finally, the results point to a deeper talus and a 
larger saturated water holding capacity (0•at) than in the ini- 
tial parameters. These results indicate the need for a larger 
reactive volume for the talus subunit than currently used in 
the model. They also corroborate the earlier results from the 
sensitivity analysis that these two processes, rate of flow 
through soil and the volume of talus, are the key hydrolog- 
ic processes in the AHM representation of ELW. For the 
chemical parameters, there are fewer clear-cut examples of 
the analyses' ability to limit the parameter space and to 
understand the processes controlling stream chemical com- 
position. One exception is that all cases except the data cor- 
relation case indicated a lower elution parameter (EL). 

Finally, the two correlation cases indicated a slower 
weathering rate while the two sensitivity analysis cases 

indicated a higher rate. These results might be caused by 
parameter interaction between ct and tc. However, there is no 
discernible relationship for all four cases between the two 
parameters, for the 250 parameter sets for each case (p< 
0.02). The mixed results may arise because the criteria 
behave differently. Silica, Na +, and ANC would be better 
simulated by a lower value for the weathering rate parame- 
ter ct while cations Ca 2+, Mg2+, and K+ need a higher a. 

4.4 Model Structure 

This conflict represents a problem within the current 
model structure for mineral weathering. Three criteria, 
ANC, Si, and Na + had mean, median, and at times maxi- 
mum Nash-Sutcliffe values (out of the 250 Pareto results) 
less than zero for most of the cases; thus for these three cri- 
teria the mean is a better predictor of stream chemical com- 
position than is the model. This result, together with the 
conflict between modeling ANC, Si, and Na + vs. Ca 2+, 
Mg 2+, and K+, points to a flaw in model structure. This con- 
flict might also be the reason for the relatively poor results 
using the criteria selected by correlation of the observed 
data. Three other sets of criteria simulated based on a clus- 

ter analysis of criteria values gave similar results. For these 
other calibration cases, the only good results were for those 
cases that included only non-weathering product criteria 
and either ANC, Na +, and Si criteria or Ca 2+, Mg2+, and K + 
criteria. For example, when calibrating on Q, Cl-, Ca 2+ and 
K+, results were poor for ANC, Na +, and Si. 

These results indicate a mistake in model structure either 

in the temporal variability or stoichiometry of mineral 
weathering. Currently weathering is assumed to occur even- 
ly throughout the year, which was confirmed by Shaw 
[1997]. However, a different representation of weathering, 
such as equilibrium dissolution of kaolinite into solution as 
suggested by Campbell et al. [1995] might be a better 
approach than the current simple kinetic approach adopted 
by Wolford [ 1992]. 

4.5 Broader Implications for Multi-Criteria Analysis 

Our results illustrate the problems that need to be 
addressed to successfully apply multi-criteria analysis for 
water quality models. First, our method shows that criteria 
not used in the calibration can be used to determine the suc- 

cess of the calibration procedure. In our case, this method- 
ology was successful in determining which combination of 
criteria was best suited for use in a multi-criteria analysis. 
Second, our results illustrate that in addition to the classic 

problem of parameter interaction and parameter correlation; 
there is now the problem of correlation of criteria and crite- 
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ria interaction. This problem may explain some of the diffi- 
culties others have had in using multi-criteria analysis. For 
example, some of the problems De Grosbois et al. [1988] 
and Hooper et al. [1988] had in their analysis of the 
Birkenes model may have been solved if they had tools such 
as MOCOM-UA available and if they had investigated the 
interaction of criteria more fully (incorporating several geo- 
chemical criteria, e.g. ANC or Ca2+). Such an analysis may 
have prevented the later conflicts between the improve- 
ments they made to model hydrologic structure and the 
deterioration in simulating stream chemical composition 
when their results were extended by others [Stone and Seip, 
1989; Lundquist et al., 1990]. Our results also indicate that 
scientific intuition played a role in several of the past suc- 
cesses with multi-criteria model analysis [De Grosbois et 
al., 1988; Hooper et al., 1988; Uhlenbrook and Leibundgut, 
1999]. These previous investigations all used external infor- 
mation from the literature or from their personal experience 
with the data set and model at hand to select the multiple 
criteria they used for calibration. 

Comparing the results of Mroczkowski et al. [1997] and 
Kuczera and Mroczkowski [1998] to ours we might infer 
that groundwater stage and stream discharge data contain 
conflicting information about watershed processes as repre- 
sented by their model. As they stated, there is a danger in 
"assuming that augmenting streamflow data with other 
response time series data will significantly reduce parame- 
ter uncertainty." This warning should be expanded to 
include hydrochemical models and biogeochemical models. 
Due to the cost of acquiring time series other than stream- 
flow, they recommended better studies a priori of the worth 
of additional time series of data. We would add to this cau- 

tion that different combinations of criteria may improve 
results in different and possibly conflicting ways and that 
these combinations can be used to investigate model struc- 
ture and the relative worth of data time series. 

In addition, these multi-criteria calibration results can 
assess the validity of existing manual calibration method- 
ologies that use median parameter values from multiple 
manual calibrations. To answer this question we compared 
simulation results using the median parameter values of the 
250 parameter sets for the four cases we studied to the 250 
criteria space results for each case. The results by case and 
criteria are summarized in Table 5, which shows the fraction 
(0.0-1.0) of Pareto results that performed worse than the 
median for each of the 21 criteria and each of the four cases 

we investigated. A value of 0 indicates that the median 
parameter values performed worse than every member of 
the Pareto set; a value of 1.0 means that the median param- 
eter values performed better than all members of the Pareto 
set. On average, the median parameter values cases per- 

formed better than the Pareto solutions 43 percent of the 
time. This result indicates that the median of the parameter 
values for each case typically performed a little worse than 
the median of the Pareto results. The median does not per- 
form equally well for all criteria. For example, the median 
is significantly inferior to the Pareto results for NO 3- but 
significantly superior to the Pareto results for Si. 

The two cases that had the best performance for the medi- 
an parameter values were the data correlation case and the 
concentration case. The result for the data correlation case 

is expected since the parameter and criteria value results for 
that case were so poor. The concentration case results indi- 
cate that for a properly conducted multi-criteria calibration 
(either automatic or manual) the median represents a rea- 
sonable way to arrive at a preferred solution from the Pareto 
set results. Therefore, in circumstances where a competent 
multi-criteria calibration has been conducted (e.g. the con- 
centration case in the current study), using the median is an 
acceptable means of determining a single preferred solution 
to be used for simulations of perturbed conditions. 

4.6 Contrasts Between Sensitivity Analysis and 
Multi-Criteria Calibration 

Sensitivity analysis techniques and multi-criteria calibra- 
tion reveal different things about our model and more 
broadly indicate different aspects of the AHM. However, 
the contrasts between the two offer an additional lesson on 

the utility of the two methods. In our traditional approach to 
applying parameter sensitivity analysis we learned useful 
things about the model and about the watershed we were 
trying to model. For example, we found out that the volume 
of talus was important but the rate of flow through soil was 
also important. We learned about the relative seasonal sen- 
sitivity of mineral weathering and ion exchange. 

However, we also used the sensitivity analysis to give us 
information as we went forward and investigated our model 
using multi-criteria calibration techniques. In this applica- 
tion we see interesting contrasts that might be helpful in the 
joint application of these methods. From the sensitivity 
results alone we argued that incorporation of mass flux and 
concentration objective functions would be the best 
approach. Our calibration results indicate that this was not 
the case. Looking at the sum of rank results (for the mass 
flux case) it is noticeable that incorporating mass flux crite- 
ria improved simulations of stream discharge (Q) resound- 
ingly over the other calibration cases (average rank of 35). 
This result is not too surprising since improving simulations 
of discharge would improve all simulations of mass flux. 
However, improving simulations of discharge appears to 
have decreased model performance with respect to simulat- 
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ing non-calibrated concentrations and mass flux (average 
rank of 163, worst performance of any case) (Table 5). The 
reason for these poor simulations for the non-calibrated cri- 
teria may be that mass flux criteria put too much weight on 
getting discharge fight. By weighting discharge more heav- 
ily, the hydrologic parameters in the model are optimized 
more for discharge than for chemical species. 

This result indicates that an alternative weighting 
methodology should be developed for trying to better esti- 
mate appropriate chemical parameter values during the 
spring snowmelt period. This statement is supported by a 
combination of the sensitivity analysis results and the cali- 
bration results. The calibration results tell us that using mass 
flux measures is a poor way to estimate model parameters. 
However, the sensitivity analysis results indicate that focus- 
ing on the spring snowmelt period permits better identifica- 
tion of model parameters related to short time period prop- 
erties. An alternative may be to use a weighting scheme 
focused on the period of snowmelt as opposed to mass flux 
error for each chemical species. Such an approach might 
remove the conflicts that appear to be present in our results. 

5. CONCLUSIONS 

The two investigative tools we used to dissect the AHM 
model of the Emerald lake watershed, MOGSA and 

MOCOM-UA, revealed different aspects of model struc- 
ture, model parameters, and the natural processes control- 
ling stream chemical composition in the Emerald Lake 
watershed. Each tool is suited to specific questions and with 
the combination of the two tools we were able to draw addi- 

tional conclusions. Mass flux objectives proved more sensi- 
tive to snowpack elution and ion exchange parameters while 
concentration criteria were more sensitive to mineral weath- 

ering and evapotranspiration parameters. On the physical 
process side our results indicate that future field efforts for 
alpine basins should be concentrated on talus and soil 
hydrologic properties. 

Using a multi-objective algorithm to estimate model 
parameters and investigate model structure enabled us to 
reach several conclusions. First, the model being used, the 
data, and the user's intuition (knowledge of each criteria's 
connection to processes represented by the model) must be 
combined to determine what set of criteria to use in a multi- 

criteria analysis. Second, fluxes not used in calibration are 
useful for evaluating calibration results and are an alterna- 
tive to the traditional split sample method of evaluating cal- 
ibration results. Third, multi-criteria calibration uncovered a 

flaw in the representation of mineral weathering. The abili- 
ty of multi-criteria methods to improve model performance 
shows much promise, but caution should be used in pro- 

ceeding as not all criteria contain information useful for 
improving model performance. Finally, our results confirm 
an existing simple practice for using a single compromise 
solution (the median parameter value of several manual cal- 
ibrations) to make extrapolative model simulations. 

The combination of the sensitivity analysis and multi-cri- 
teria parameter estimation results revealed some additional 
information about the model. While the sensitivity analysis 
results indicated that better estimates would be achieved by 
combining mass flux and concentration objective functions, 
the calibration results lead us to the opposite conclusion. 
The conflict is probably due to an overemphasis on getting 
stream discharge right when conducting parameter estima- 
tion including mass flux criteria. The results also indicate 
that sensitivity analysis results are only useful for revealing 
information as to whether a parameter is important or not in 
affecting model predictions, while model calibration is bet- 
ter at identifying conflicts between criteria and the informa- 
tion contained in them. It is recommended that similar sen- 

sitivity analysis and multi-criteria calibration methodolo- 
gies be used to investigate model structure and parameteri- 
zation, during model code verification, prior to broad use of 
a water quality model. 
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We explore the potential of multi-criteria methods for identifying and quantify- 
ing the sources of error in land surface models (LSMs). Using observations of 
state variables (ground temperature and soil moisture) and heat fluxes (sensible 
and latent heat), we bound the parameters of land surface models to achieve opti- 
mal performance via multi-objective calibration. The optimizations are carded 
out using, simultaneously, the sensible heat, the skin temperature, and the near 
surface soil moisture content. The quantification of the data error is achieved via 
estimation of the different series using an artificial neural network approach. The 
parameter related error is identified using optimization and the model associated 
error is estimated by difference. The parameter related error for the heat fluxes is 
in the order of 15 to 20% of the total error and about 45% for the near surface soil 

temperatures. The model error is or the order of 45 to 50 % of the total error for 
the heat fluxes and 30% for the soil temperatures. We also explore the consis- 
tency in the model performance by using output series not included in the opti- 
mization processes. The additional series used are of soil temperatures and mois- 
ture content at different depths and the ground heat fluxes. We found that the 
model performance is consistent but the statistics of the model performance dete- 
riorate with depth. This problem is relevant because of the possible use of remote 
sensing information on skin temperature and soil moisture for data assimilation 
and/or parameter estimation. 

1. INTRODUCTION 

Land surface modeling is a fundamental tool in the study 
of climate and hydrology. The reliance on this tool is 
increasing as hydrologists endeavor to examine large-scale 
phenomena, predict the hydrologic effects of climate vari- 
ability, and/or examine land-surface-atmosphere hydrologic 
and energetic interactions. It is generally recognized that the 
validity of model simulations can be no better than model 
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assumptions, and no more reliable than model inputs, initial 
conditions, and parameter values. Field measurements, prior 
information, and calibration are three techniques used in 
parameter estimation. With the availability of remote-sens- 
ing technology, the use of measurements is gaining impor- 
tance. However, practical experience indicates that virtually 
all models will continue to require calibration of at least 
some parameters. 

It is recognized that improving calibration techniques will 
not solve all of our hydrologic modeling problems. 
However, in most situations, there will be considerable 

value in being able to improve our estimates of the preferred 
parameter values (or region of the parameter space) for a 
given model given some observational data. If preferred 
parameters (within the constraints of the available data) can 
be identified, then there will be a clearer understanding of 
the uncertainties in the subsequent model simulations. 
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A great deal of the current focus in hydrology is on the 
emerging generation of models designed to represent the 
hydrologic and energetic interactions between the land-sur- 
face and atmosphere. While traditional hydrologic models 
are typically characterized by a single output flux (stream- 
flow at the watershed outlet), the new land-surface represen- 
tations have multiple output fluxes and large numbers of 
parameters. 

The last 30 years have witnessed the development of 
numerous models that attempt to represent the surface- 
atmosphere interactions. There is a wide variation in the 
complexity of the representation of the processes 
involved, from the simple bucket-type models [Manabe, 
1969] to complex multilayered vertical representations 
such as BATS [Dickinson et al., 1986], OSU-LSM 
[Mahrt and Pan, 1984], SiB [Sellers et al., 1986], VIC 
[Wood et al., 1992], and many others. The models have 
been subjected repeatedly to improvements that include 
better representations of the vegetation physiology and 
attempts to represent surface heterogeneity at the GCM 
subgrid scale. Furthermore, new versions of some of the 
models have been developed, e.g., VIC-2L [Nijssen et 
al., 1997], SiB2 [Sellers et al., 1996], BATS2 [Dickinson 
et al., 1998], NOAH-LSM [Mitchell et al., 2000], and 
others. The increase in complexity of the process repre- 
sentation has resulted in large numbers of model param- 
eters. However, the manner in which model parameter 
values are assigned has changed very little, namely, look- 
up tables based on literature review and ascribed to dif- 
ferent vegetation and soil characteristics are still widely 
in use. 

The large number of models currently in use led to the 
Project for Intercomparison of Land-Surface Parameterization 
Schemes (PILPS) •e.g., Henderson-Sellers and Brown, 1992; 
Henderson-Sellers et al., 1995; Pitman and Henderson- 

Sellers, 1998]. Originally, PILPS assumed that the param- 
eters having the same physical interpretation should have 
the same value in all the models because some of them may 
be subject to measurement and/or estimation. It has been 
suggested, however, that this is not necessarily the case 
because LSMs are used on a GCM grid scale and, hence, 
effective values are required •e.g., Bastidas, 1998; Beven, 
1995; Brewer and Wheatcraft, 1994; Gupta et al., 1999b; 
Sorooshian et al., 1999]. These effective values are, by their 
very nature, dependent on the particular parameterization. 
The fact that they might share the name and conceptual rep- 
resentation does not mean that they have the exact same 
meaning under different parameterizations. This difference 
in meaning and, thus, difference in the parameter value, 
should specifically be accounted for when carrying out a 
model intercomparison. 

Remote sensing has the potential to provide information 
about the space-time variations of the land-surface process- 
es. This is of particular relevance because this kind of infor- 
mation can be used to parameterize LSMs and to derive esti- 
mates of the latent heat flux/see, for example, Bastiaansen 
et al., 1994; Kustas and Humes, 1996; Lakshmi, 2000, 

Pelgrum and Bastiaanssen, 1996; Wood and Lakshmi, 
1993]. 

Available observational data can be used to constrain the 

models, i.e., to bound the parameter values so that the model 
outputs are consistent with the field observations. This con- 
sistency with observations provides the means not only to 
evaluate and test the model performance but also to help in 
the identification of proper parameter values. The assign- 
ment of values to the model parameters should provide con- 
sistency between the model outputs and the observational 
data. Only when this consistency is achieved can the mod- 
els be properly compared to each other. To attain this con- 
sistency, different parameter sets should be obtained for dif- 
ferent environmental conditions, hence the need for multi- 

ple observational data sets from different environments. 
Methodologies for a proper assignment of LSM parame- 

ter values by constraining the models with observational 
data, based on a multi-criteria calibration framework 

[Gupta et al., 1998], are being developed •e.g., Bastidas et 
al., 1999; Gupta et al., 1999b]. The multi-criteria methods 
are specially suited for the calibration of the LSM because 
of their multiple output nature. 

In this chapter, we illustrate and discuss how multi-crite- 
ria methods can be used not only to constrain the models 
with observations but to evaluate the consistency between 
model outputs and observations. We also describe some of 
the limitations of the models associated with the quality and 
availability of the information. 

2. MODELS AND DATA 

For this work we used the NOAH Land Surface Model 

(National Centers for Environmental Prediction, Oregon 
State University, Air Force, National Weather Service-Office 
of Hydrology) version 2.1 [Mitchell et al., 2000], and the 
BATS (Biosphere-Atmosphere Transfer Scheme) version l e 
[Dickinson et al., 1993] available from the BATS home page 
(www'atmø'arizøna'edu/faculty/research•ats/batsmain'html)' 

Two data sets are used. One from station El3 (Central 
Location) of the Atmospheric Radiation Measurement 
Cloud and Radiation Testbeds (ARM-CART) program in 
the Southern Great Plains site (SGP) in Oklahoma. The data 
set covers the period April-July 1995. The second data set is 
from an agricultural site south of Champaign, Illinois, 
(40.01 N, 88.37 W) collected by T. Meyers of NOAA/ARL, 
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and covers the entire year 1998. Both data sets have a time 
interval of 30 minutes and include all the necessary atmos- 
pheric forcings for the model and observational information 
on sensible heat (H in W/m 2) and latent heat fluxes 
W/m2). The ARM-CART site includes soil temperature (Tg 
in K) as the average of five sensors that integrate the tem- 
perature over the top 5 cm, and the average of five soil- 
moisture content measurements (Sw in weight of water per 
weight of dry soil) at a depth of 2.5 cm. The Champaign data 
has measurements of soil skin temperature and soil temper- 
ature and soil moisture at 5, 20, and 60 cm depths. The data 
are representative of the local- (small) scale hydrometeorol- 
ogy. All of this information is used to constrain the model 
parameters. 

3. ESTIMATING LSM PARAMETERS USING 

MULTI-CRITERIA METHODS 

3.1. Multi-Criteria Approach 

Gupta et al. [1998] presented a framework for the appli- 
cation of the multi-criteria theory to the calibration of con- 
ceptual physically-based models. In Gupta et al. [1999b], 
the methodology is extended to LSMs. The method is also 
described in Gupta el al., Chapter 9 this volume. In general, 
due to the multiple output nature of the LSMs the multi- cri- 
teria methodology is extremely well suited for the problem 
of calibration of this type of models. In fact, it is, arguably, 
the only appropriate way to carry out a calibration for such 
models. 

To carry out the calibrations we have used the MOCOM- 
UA (Multi-Objective COMplex evolution) which is a gener- 
al purpose global multi-objective optimization algorithm 
that provides an effective and efficient estimate of the Pareto 
solution space within a single optimization run and does not 
require the commonly used subjective weighting of the dif- 
ferent objectives. MOCOM-UA is based on an extension of 
the SCE-UA population evolution method reported by Duan 
et al. [1993]. A detailed description and explanation of the 
method are given by Yapo et al. [1997] and Gupta et al., 
Chapter 9 this volume. 

The implementation of the procedure outlined above 
requires the specification of a set of relatively unrelated 
objective functions F ("unrelated" in the sense that they 
measure different aspects of the differences between the 
observed data D and the model simulations y(t•)) that extract 
the useful information contained in the data and transform it 

into estimates of the parameter set. In the systems theoretic 
sense, useful "information" can be viewed as that which 
enables one to test a hypothesis. There are two important 
issues to be considered here. 

First, it should be noted that the hypothesis to be tested is 
always a subjective consequence of the interaction between 
the context of the problem and what the modeler considers 
to be important. In the context of SVATS modeling, the 
modeler must determine the important characteristics of the 
modeled behavior to be reproduced by the calibrated model 
and what constitutes an effective measure of that behavior. 

For example, during manual calibration, the modeler may 
examine the values of several, if not all, of the fluxes com- 

puted by the model. It might well be the case that two dif- 
ferent fluxes provide redundant information. Another con- 
sideration could be the temporal scale at which the objec- 
tive function is computed; for instance, yearly values of 
latent heat or the absolute temperature minimum over a 
year or the average monthly streamflow. This is important 
because a model could perform well on an annual or 
monthly basis but still be unable to match the high- fre- 
quency fluctuations (daily and/or hourly) of the observed 
variables. The final outcome of manual calibration is a 

result of attempting to strike a balance in optimizing (min- 
imizing or maximizing, as appropriate) all of these meas- 
ures. The hypothesis is that it is possible to find values for 
the model parameters that can achieve acceptable values of 
the measures under consideration. 

Second and equally important is the fact that a hypothesis 
typically involves several underlying assumptions that must 
be tested as part of the hypothesis testing procedure. In the 
context of hydrological modeling, this might involve a rigor- 
ous analysis of the residuals to verify that they belong to some 
a priori assumed distribution, are unbiased, are homogeneous, 
and have non-systematic components. For example when 
applying the maximum likelihood theory to the calibration of 
a SVATS model the hypothesis might be that it is possible to 
find a set of parameters such that the variance of the residuals 
can be minimized and belong to some distribution, typically 
having zero mean and insignificant autocorrelation. When 
optimizing on different fluxes, several different measures can 
be ascribed to the different observed fluxes. Hence, the num- 

ber of objectives can be significantly higher than the number 
of observed fluxes. Gupta et al., [1999b] and Bastidas et al., 
[2001] showed that the inclusion of series that contain infor- 
mation of the energy and water budgets is required to obtain 
a good calibration. In particular they suggest the use of sensi- 
ble heat, soil temperature, and soil moisture, as the series to 
be included in any calibration process. This suggestion is used 
in the context of the present work and only the root mean 
square error is used as the objective function ascribed to each 
of the observed series. 

Every optimization procedure requires the definition of 
the feasible parameter space, i.e., maximum and minimum 
allowable parameter values. In the present case, the values 
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prescribed in the BATS model description [Dickinson et al., 
1993] and in the NOAH model description [Mitchell, 2000] 
were used for the definition of the feasibility region. To pre- 
serve the physical soundness of the parameterization, addi- 
tional constraints such as successively increasing thickness- 
es of the soil layers with depth were imposed. 

4. CASE STUDIES 

4.1. Error Estimation 

A very important question to be addressed within the con- 
text of the model performance evaluation is the issue of the 
error of the simulation. The usual assumption is that the 
error is the difference between the observed and the com- 

puted series and that it has two sources: observation errors 
and model errors. The model error is the combined result of 

the model structural error and the error due to improper 
identification of the parameter set: 

model parameter 
Total data 

= + structured + specification (1) 
error error 

error error 

The identification and elimination of the latter error is one 

of the goals of the current work. The reduction of the model 
structural error (the total elimination of this error would not 
be feasible) is a task for the developers of the models and 
has not been attempted here. However, suggestions regard- 
ing the areas of possible improvement are made. Some of 
the troubles in the model structure are identified as a result 

of a proper calibration procedure. 
The data error is related to the way the information is col- 

lected and to the instrumentation used. For example, it is a 
well-known fact that rain gauges underestimate the actual 

amount of rainfall. An additional error is introduced due to 

the precision of the instrument. When using a model, the 
data error existing in the input data induces an error in the 
modeled output sequences. The observed output sequences, 
used for contrasting with the modeled outputs, also have an 
error. In general, the identification of these errors is a diffi- 
cult task. One approach to try estimate the data error is the 
use of artificial neural networks (ANN) because they do not 
have a dependence on model structure. 

The ability of the ANN for finding the relationship 
between output and input series is well established. In fact, 
unless there is an error in the observations, the ANNs are 

capable of matching the output series very closely. 
Therefore, after carrying out the training procedures for fit- 
ting the outputs from the inputs, the remaining error in the 
matching can be ascribed to an error in the data (input or 
output). A particular ANN model, named self-organized lin- 
ear output (SOLO) model, developed by Hsu et al., [2002], 
was applied to the input and output series of the ARM- 
CART site. An estimate of the RMSE smaller than that of 

the optimization procedures was found and assumed to be 
representative of the data error. 

The equally-weighted compromise solution for {H, Tg, 
$w} (calibration performed on those variables) is used as 
representative of the optimization procedures for estimating 
the error due to the improper parameter specification. The 
error difference represents the possibility of improvement 
by enhancements in the model parameterization. It is worth 
noting that, for a compromise solution, the weighting coef- 
ficient assignment is important due to the unit dependency 
of the errors. Therefore, either a lot of weighting coeffi- 
cients combinations need to be optimized or, as was done, a 
prior normalization of the error functions needs to be per- 
formed. The latter can be done only if there is available 
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Series 

Table 1. Root Mean Square Error Distribution. 
BATS Model at ARM-CART E13 site. 

Error 

Data Model Param. 

(ANN) Struct. Ident. 

Total 

(a priori) 
Sensible Heat [w/m 2] 22.86 25.67 10.47 59.00 
Latent Heat [w/m 2] 22.91 29.85 8.24 61.00 
Ground Temp [K} 0.67 0.72 1.11 2.50 
Soil moisture 0.0185 0.0008 0.0467 0.0660 

Sensible Heat [w/m 2] 39% 44% 18% 100% 
Latent Heat [w/m 2] 38% 49% 14% 100% 
Ground Temp [K] 27% 29% 44% 100% 
Soil moisture 28% ? 1% ? 71% 100% 

knowledge about the ranges of the optimal values. This is 
not usually the case and could be done here only because a 
set of Pareto optimization results (obtained with MOCOM) 
were already available. 

Figure 1 presents the results for the ARM-CART site using 
the BATS model. The circle represents the existing total 
error and corresponds to the error when the default parame- 
ter set (a priori information embedded in the model) is used. 
The square is the compromise solution. The distance 
between the circle and the square represents the error due to 
the improper parameter set. The diamond represents the 
error of the ANN fitting. As explained before, this estimates 
the error in the observation data. The distance between the 

diamond and the square represents the model structural error. 
Table 1 presents the numerical values of the error estima- 

tions. The reduction in the total error due to the optimization 
procedures for the heat fluxes is between 15 and 30%. For 
the ground temperature the error reduction is on the order of 
45%. The reduction in the soil moisture error is 70%. The 

BATS model structural error is therefore on the order of 30- 

50% of the total error for the fluxes, and 20-30% for the 

temperature. The model error for the soil moisture is uncer- 
tain. Generally, a high degree of error is associated with soil 
moisture observations. 

4.2. Output Series Evaluation 

In several previous studies, where the calibration 
approach was used, it has been a customary assumption to 
consider the latent heat time series as the most important 
•e.g., Sellers et al., 1989; Rocha et al., 1996] and in some 
others as the sole consideration for calibration •e.g., Franks 
and Beven, 1997]. 

In this work, however, we are focusing our attention on 
how uncertain are the outputs from the models even after a 
multi-criteria calibration process has been carded out. It 
should be noted that the uncertainty presented here is not 
associated with any probability value, it is associated with 

the "trade-off uncertainty" of the optimal region, as defined 
in Gupta et al., Chapter 9, this volume. 

As before, we have used the MOCOM algorithm for the 
identification of the Pareto optimal region. The calibrations 
were carded out for the NOAH model at the Illinois site, 
according to Bastidas et al., [2001] recommendations, i.e. 
sensible heat, ground skin temperature, and soil moisture at 
5 cm were used for the calibration purpose. The objective 
function used for minimization was the root mean squared 
error. To span the optimal surface and be sure that we are 
close enough to it, 250 points were used as the complex 
size, following Bastidas, [1998]. The whole set of 250 solu- 
tions was run, i.e. we have 250 trajectories for each of the 
time series analyzed. The gray areas observed in Figures 2- 
4 represent the set of all the different trajectories for a peri- 
od of 30 days. It should be noted, however, that the entire 
period of 365 days was used for the error computation and 
the analysis. To have an idea of how different the trajecto- 
ries are, and where the majority of them lie, the average 
value of those 250 trajectories, at each time step, is also 
plotted. The scatter plots shown are of the average values 
versus the observed ones, and correspond to the entire 365 
days period. Table 2 presents the values of different error 
functions for different outputs. 

The results for a chosen 50-day period of the heat fluxes 
are presented in Figure 2. The best results are arguably those 
for the sensible heat, despite the error statistics reported in 
Table 2, which are based on the average value of the range. 
This behavior has been observed at other sites and with other 

models, e.g. Bastidas [1998], Bastidas et al., [2001], and 
confirms the assertion made there that sensible heat is the flux 

that provides the most consistent information for calibration 
purposes. The results for the latent heat are similar to those 
obtained for the sensible heat, both in terms of the statistics 

and the width of the trade-off uncertainty. The ground heat 
flux has the most trade-off uncertainty, and the biggest rela- 
tive errors when compared with the magnitudes of the fluxes. 

Table 2. Errors for different outputs. 
NOAH model at Illinois site. 

Error 

Series Cor. Coeff. RMSE Bias 

Sensible Heat [w/m 2] 0.85 31.95 1.09 
Latent Heat [w/m 2] 0.94 33.16 -6.66 
Ground Heat [w/m 2] 0.72 39.75 -1.16 
Ground Skin Temp [K] 0.99 1.75 0.56 
Ground Temp @ 5 cm[K] 0.96 2.77 0.11 
Ground Temp @ 20 cm [K] 0.98 1.90 -0.35 
Ground Temp @ 60 cm [K] 0.98 1.47 0.39 
Soil Moisture @ 5 cm 0.60 0.05 -0.01 

Soil Moisture @ 20 cm -0.29 0.09 -0.08 

Soil Moisture @ 60 cm -0.21 0.07 -0.07 
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Figure 2. Observed (dots) and simulated (lines delimiting gray area) sensible, latent, and ground heat 50-day time series 

by using the parameter sets obtained from the {H, Tg, S w} calibration. 

The soil moisture series for the entire year 1998 are pre- 
sented in Figure 3. Only the soil moisture value for the 5 cm 
depth was used for calibration. Most of the observations at 
that particular depth are bracketed by the Pareto trajectories. 
However the trade-off uncertainty has an almost constant 
value throughout of around 20%. This same uncertainty is 
observed for the moisture at 20 and 60 cm depths but the 
observations are not bracketed by the model outputs. The 
soil moisture variation in the model outputs at 20 cm depth 
is somewhat similar to that at 5 cm depth. However that is 
not the case with the observational data, which remains 

almost constant for the whole year with values bigger than 
40%. These values, close to saturation, for the entire year 
cast some doubts into the quality of the data. The same is 
observed for the depth of 60 cm. 

The soil temperature values are presented in Figure 4. As 
stated before, only the skin temperature was used for cali- 
bration purposes. At the different depths the behavior of the 
model is consistent, the trade-off uncertainties also are con- 

sistent. However, we should note that the temperature 
observations at the depths of 5 and 20 cm between days 195 
and 225 are of dubious quality because of a sudden drop in 
the amplitude of the daily temperatures (not shown here). 
The multi-criteria methods allow for an evaluation of the 

model and the calibration procedure, not only by using the 
standard split-sample test, which is not necessarily the best 
way to proceed (see for example Gupta el al., 1999a). In the 
present case, a trade-off uncertainty of around 5 K is observed 

for all the depths. However, we can clearly see that the 
model has troubles tracking the daily amplitude variation 
in temperatures at the different depths. 

5. DISCUSSION 

The use of the multi-criteria approach implies that there is 
not a single or unique solution to the calibration problem. 
Rather, the best that one can obtain using multi-objective 
procedures is a model set, specifiable as a region of the 
parameter space. In the context of multiple measures of 
model performance, this model set defines the Pareto solu- 
tion set (which is also a minimal estimate of the parameter 
uncertainty) in which it is not possible to objectively select 
a specific parameter set (model) as being superior to any 
other parameter set (model). This Pareto solution translates 
into a trade-off uncertainty in the model predictions. The 
size and properties of this model set and the sizes and prop- 
erties of the trade-off uncertainty in the model predictions 
help in the evaluation of the adequacy or inadequacy of the 
model. The additional sources of information that are incor- 

porated into the model identification by using multi-objec- 
tive techniques allow for a better way of identifying diffi- 
culties associated with the model structure. 

From the results presented in the previous section it is 
possible to say that the models are capable of reproducing 
the observed quantities, both fluxes and state variables, with a 
high degree of accuracy, if the proper parameter sets are cho- 
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sen. This conclusion, however, is limited to the model outputs 
close to the surface. The performance is not as good when eval- 
uating the modeled quantities against observed at different 
depths within the soil. This is important for the hydrology of the 
site. In general, the model has a better ability to reproduce the 
fluxes than it does to reproduce the state variables. A proper 
matching of the soil-moisture and soil temperature time series 
may be possible if those series are included in the optimization. 
That could not be done in the present work due to the dubious 
quality of the observations, particularly at deeper depths. 
However, the general pattern is good, which suggests that spa- 
tially distributed remotely sensed information on ground tem- 
perature can be used to identify parameter sets that will simulate 
the flux series reasonably well. Some attempts in this direction 
have already been made •e.g. Franks and Beven, 1999]. This is 
particularly relevant in the context of four-dimensional data 
assimilation (4DDA) techniques because the identification of 
proper parameter values will significantly enhance the useful- 
ness of such techniques. One, has to be aware that, as suggest- 
ed by the results and at the present stage, the predictive ability 
of the models decreases with the depth within the soil. 

The default parameter set model error was reduced by 30%, 
on average, by using the automatic optimization procedures. 
This finding is of importance for the comparison of different 
models. A fair comparison is possible only if the best solutions 
from different models are compared. Only the elimination of 
the improper parameter identification-induced error allows for 
the comparison of the model structural error. 

The flux measurements represent an integrated response 
to surface characteristics over a relatively large area, unlike 
the measurements of soil moisture and soil temperature that 
can be considered point measurements, or representative of 
an area of a few square meters. The deterioration of the 
model predictive ability with depth may be explained by a 
lack of sufficient correspondence between what is observed 
and what is actually being modeled. The quality of the 
observations seems to decrease also with the depth, and 
therefore more efforts have to be devoted to the improve- 
ment of such observations. 

The multi-criteria calibration approach was found to be 
effective at bounding the parameter values within physical- 
ly meaningful ranges. Calibration provides a way to gain 
insight into what the best values for the model parameters 
are. However, calibration requires observational data that 
are not available at many sites. There is a need to develop 
methodologies to transfer the knowledge gained by means 
of calibration to places where no data are available. 
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Figure 4. Observed (dots) and simulated (lines delimidng gray area) ground temperatures at different depths 50-day 
time series by using the parameter sets obtained from {H, Tg, Sw} calibration. 
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It is well known that hydrologists rely much on trail-and-error process in esti- 
mating conceptual model parameters. While there has been a great deal of 
research into the development of automatic calibration methods, subjective expert 
judgment still plays a significant role in the selection of 'optimal' parameter sets. 
Any technique for calibrating rainfall-runoff model parameters requires many 
years of historical hydrometeorological data, and usually performs a single basin 
analysis. The quality and quantity of historical data can vary significantly for dif- 
ferent regions, and even for different fiver basins in the same region. These incon- 
sistencies can lead to non-optimal calibration results, and consequently significant 
and inappropriate randomness in the spatial patterns of model parameters. 
Therefore, an objective estimation procedure is needed that can produce spatially 
consistent and physically realistic parameter values. This paper investigates the 
possibility of using a priori parameter estimates to improve the calibration/esti- 
mation process. A set of physically based relationships between the Sacramento 
Soil Moisture Accounting model parameters and soil properties were developed 
to estimate a priori parameter values. Two tests, model parameter transferability 
to ungaged basins and constrained automatic calibration, were performed for a 
number of headwater watersheds in the Ohio fiver basin. The results suggest that 
the use of soil derived parameters can improve the spatial and physical consis- 
tency of parameter estimates while maintaining hydrological performance. Soil 
derived parameters provide a quantitative measure of possible differences 
between parameters of neighboring basins that allow one to 'rescale' calibrated 
parameters to ungaged watershed. Use of constrained calibration reduces inap- 
propriate randomness in the spatial pattern of model parameters. 

1. INTRODUCTION 

The successful application of any rainfall-runoff model 
greatly depends on its parameterization. It is well known 
that hydrologists rely much on trail-and-error process in 
estimating of conceptual model parameters because their 
parameters generally are not directly observable [Duan et 
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al., 2001]. Even if model parameters are related to observ- 
able physical properties (e.g., parameters of so-called 'phys- 
ically-based' models), some fine tuning or calibration of a 
priori parameters would still be required because basin- 
scale heterogeneities of physical properties and data uncer- 
tainties could significantly affect on an estimation process 
[Carpenter et al., 2001]. While there has been a great deal 
of research into the development of automatic calibration 
methods (e.g., see Rajaram and Georgakakos, [1989]; 
$orooshian and Gupta, [1995]; Yapo et al., [1998]), subjec- 
tive expert judgment still plays a significant role in the 
selection of 'optimal' parameter sets [Hogue et al., 2000]. 
Existing calibration techniques tend to produce 'noisy' 



240 USE OF A PRIORI PARAMETERS 

parameter estimates. As stated by Burnash, [1995], "This 
could occur because the data set was not stable, the historic 
sequence did not include an adequate sequence of events to 
exercise some of the model's characteristics, or the opti- 
mization function was not sensitive to the discrete functions 

associated with the proper use of particular parameters." 
Implementation of fully distributed models increases 
requirements to the calibration system to preserve a physi- 
cally reasonable spatial pattern of model parameters 
[Refsgaard, 1997]. 

Without a systematic approach, spatial inconsistencies 
can enter the calibration process at several points. For 
example, any technique for calibrating rainfall-runoff model 
parameters requires many years of historical hydrometeoro- 
logical data, including precipitation, temperature, stream- 
flow discharge, etc. The quality and quantity of these data 
can vary significantly for different regions, and even for dif- 
ferent river basins in the same region. In addition, it is com- 
mon for each river basin to be calibrated independently. 
Moreover, parameters can sometimes be given values that 
cause the process they represent to be simulated improper- 
ly, even though the overall statistical results indicate a good 
fit. These inconsistencies can lead to non-optimal calibra- 
tion results, and consequently significant and inappropriate 
randomness in the spatial patterns of model parameters. 
Therefore, an objective estimation procedure is needed that 
can produce spatially consistent and physically realistic 
parameter values. The procedure should be constrained so 
that parameter adjustment takes place within a range of val- 
ues which retains conceptual consistency. This paper inves- 
tigates the possibility of using a priori parameter estimates 
to improve the calibration/estimation process. Section 2 
contains a brief overview of the Sacramento Soil Moisture 

Accounting (SAC-SMA) model that was used in analysis, 
and an approach by Koren et al., [2000] to generate a priori 
estimates of the SAC-SMA model parameters from soil- 
vegetation data. Section 3 discusses a practical procedure of 
estimation of soil derived SAC-SMA model parameters, 
and the experimental design for testing the use of these esti- 
mates in the derivation of spatially consistent parameters. 
Test results are presented in Section 4. Section 5 contains a 
summary and recommendations for future work. 

2. SOIL-BASED ESTIMATES OF SAC-SMA MODEL 

PARAMETERS 

Parameters of conceptual models such as the SAC-SMA 
model are usually derived from input-output data analysis 
using automatic or manual calibration procedures, but are 
not readily derived from physical basin characteristics. This 
deficiency restricts the application of these models (e.g., 

limited use in ungaged basins, high spatial resolution appli- 
cations, etc.) significantly. Improvements in quality and 
quantity of high resolution GIS data have stimulated devel- 
opments of regional relationships between basin properties 
and model parameters which could be used in a priori 
parameter estimation. Abdulla et al., [1996] derived empir- 
ical equations which correlate the VIC-2L LSM parameters 
to easily determinable basin characteristics for the GCIP 
Large Scale Area-Southwest. Duan et al., [1996] correlated 
the parameters of the Simple Water Balance (SWB) model 
and basin characteristics for the southeast quadrant of the 
US. In both cases, model parameters were calibrated for 
selected basins prior to the derivation of regression equa- 
tions. The disadvantage of this approach is that the calibra- 
tion procedure can introduce significant uncertainties in the 
'optimal' parameter set, and subsequently into the regres- 
sion equations because the input/output data are noisy. 
Recently, soil/vegetation data were explicitly used to derive 
physically-based analytical relationships between soil prop- 
erties and conceptual model parameters. Knowles, [2000] 
developed such relationships for the Bay-Delta Watershed 
Model (BDWM). The BDWM structure is similar to the 
conceptual structure of the SAC-SMA model. Koren et al., 
[2000] developed analytical relationships for the most SAC- 
SMA model parameters. In this study, we adopted an 
approach developed by Koren et al., [2000] that uses high 
resolution soil and vegetation data. 

2.1. SA C-SMA Model Structure and Parameters 

A detailed description of SAC-SMA can be found in 
Burnash et al., [1973] and Burnash, [1995]. The basic 
design of the SAC-SMA model centers on a two layer struc- 
ture: a relatively thin upper layer, and usually a much thick- 
er lower layer which supplies moisture to meet the evapo- 
transpiration demands. Each layer consists of tension and 
free water storages that interact to generate soil moisture 
states and five runoff components. The free water storage of 
the lower layer is divided into two sub-storages: the LZFSM 
which controls supplemental (fast) base flow, and the 
LZFPM which controls primary (slow) ground water flow. 
Partitioning of rainfall into surface runoff and infiltration is 
constrained by the upper layer soil moisture conditions and 
the percolation potential of the lower layer. No surface 
runoff occurs before the tension water capacity of the upper 
layer, UZTWM, is filled. After that, surface runoff genera- 
tion is controlled by the content of the upper layer free water 
storage, UZFWM, and the deficiency of lower layer tension 
water, LZTWM, and free water storages. Each free water 
reservoir can generate runoff depending on a depletion coef- 
ficient of the reservoir, namely the UZK coefficient for the 



upper layer, and LZSK and LZPK for the lower layer sup- 
plemental and primary free water storages, respectively. The 
percolation rate into the lower layer, Iperc, is a nonlinear 
function of the saturation of lower layer reservoirs, WL• and 
the upper layer free water reservoir, Wt•zr: 

I perc - Io [ 1 + ZPERC '( 1 - WI_2 ) •zrr• ] WVZF (1) 
LZWM UZF WM 

where ZPERC is a ratio of maximum and minimum perco- 
lation rates, REXP is an exponent value that controls the 
shape of the percolation curve, LZWM=LZTWM+LZFSM 
+LZFPM is a total capacity of the lower layer, and I o is the 
minimum percolation rate under fully saturated conditions 
in the upper and lower layers which equals the maximum 
rate of drainage from lower layer free water storages: 

I o = LZFSM ß LZSK + LZFPM ß LZPK (2) 

Percolated water into the lower layer is divided among 
three storages of the layer. A parameter PFREE is used to 
express the fractional split of percolated water between ten- 
sion and free water storages of the lower layer. 

There are five minor parameters that control impermeable 
area runoff and riparian evapotranspiration. Table 1 lists all 
SAC-SMA model parameters. 

Although there are strong physical arguments to support 
the model [Burnash, 1995], 16 model parameters can not be 
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measured. Some helpful rules were suggested for estimating 
of initial values of SAC-SMA parameters using hyetograph- 
hydrograph analysis [Burnash, 1995]. These initial esti- 
mates play a key role in the manual calibration procedure of 
the National Weather Service River Forecast System (NWS- 
RFS) [Smith et al., this volume]. However, this procedure is 
based on trial-and-error approach and depends much on 
expert experience. 

Recent developments by the University of Arizona 
research group [Boyle et al., 2001; Boyle et al., 2000; Hogue 
et al., 2000; Yapo et al., 1998; Sorooshian and Gupta, 1995] 
have significantly improved the automatic calibration 
process of the SAC-SMA model. However, limitations on 
the selection of an objective function, structural problems of 
the model, and uncertainties in input/output data reduce the 
ability of automatic calibration to obtain unique and con- 
ceptually realistic parameter estimates. On the other hand, a 
single basin calibration approach limits the analyses of the 
spatial pattern of model parameters, and can lead to inap- 
propriate spatial randomness of calibration results. 

2.2. Soil Texture and SA C-SMA Model Parameter 

Relationships 

Koren et al., [2000] developed a physically based 
approach to quantify the relationships of 11 major parame- 
ters of the SAC-SMA model with soil properties (these 
parameters are highlighted in Table 1). As defined in Section 

Table 1. SAC-SMA model parameters and their feasible ranges. 

No Parameter 

1 UZTWM 

2 UZFWM 

3 UZK 

4 ZPER½ 

5 REXP 

6 LZTWM 

7 LZFSM 

8 LZFPM 

9 LZSK 

10 LZPK 

11 PFREE 

12 P C TIM 

13 ADIMP 

14 RIVA 

15 SIDE 

16 RSER V 

Description 

The upper layer tension water capacity, mm 

The upper layer free water capacity, mm 

Interflow depletion rate from the upper layer free water storage, day -• 
Ratio of maximum and minimum percolation rates 

Shape parameter of the percolation curve 

The lower layer tension water capacity, mm 

The lower layer supplemental free water capacity, mm 

The lower layer primary free water capacity, mm 

Depletion rate of the lower layer supplemental free water storage, day -• 
Depletion rate of the lower layer primary free water storage, day '• 
Percolation fraction that goes directly to the lower layer free water storages 

Permanent impervious area fraction 

Maximum fraction of an additional impervious area due to saturation 

Riparian vegetation area fraction 

Ratio of deep percolation from lower layer free water storages 

Fraction of lower layer free water not transferrable to lower layer tension 
water 

Ranges 

10-300 

5-150 

0.10-0.75 

5-350 

1-5 

10-500 

5-400 

10-1000 

0.01-0.35 

0.001-0.05 

0.0-0.8 
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2.1, the SAC-SMA model is a typical storage type model 
that assumes that all rainfall losses are allocated in the upper 
and lower storages of a conceptual soil profile. Each layer 
consists of fast components (free water) driven mostly by 
gravitational forces, and slow components (tension water) 
driven by an evapotranspiration and diffusion. According 
the soil moisture property definition, Koren et at., [2000] 
assumed that slow component storages of the SAC-SMA 
model are related to available soil water, and that fast com- 

ponent storages are related to gravitational soil water. 
Available soil water and gravitational soil water were 
derived from soil properties such as the saturated moisture 

content, 0•, field capacity, Ore, and wilting point, Owl t. These 
soil properties can be estimated from STATSGO dominant 
soil texture grids available for eleven soil layers (from 
ground surface to 2.5m beneath) for the conterminous 
United States [Miller and White, 1999]. The combined 
thickness of the upper and lower layers (as a water depth) 
was assumed to be equal to the total thickness of gravita- 
tional and available water storages to the soil profile depth, 
Zma x. A concept of an initial rain abstraction [McCuen, 
1982] was used to split the soil profile into the upper and 
lower layers. The Natural Resources Conservation Service 
(NRCS) (formerly, Soil Conservation Service (SCS)) devel- 
oped an approach to estimate the initial rain abstraction 
based on soil and vegetation type, as well as on soil mois- 
ture conditions [McCuen, 1982]. In the method by Koren et. 
at., [2001 ], it was assumed that under the average soil mois- 
ture condition stipulated by NRCS, the upper layer tension 
water storage is full and the free water storage is empty. In 
this case, the initial rain abstraction should satisfy the upper 
layer free water capacity. The upper layer thickness can then 
be calculated based on a SCS curve number, CN, for the soil 

profile. Under these assumptions all SAC-SMA storages 
(UZTWM, UZFWM, LZTWM, LZFSM, LZFPM) defined in 
water depth units can be estimated as functions of soil 
porosity, field capacity, wilting point, soil depth, and SCS 
curve number [Koren et al., 2000]. 

A relationship for the depletion coefficient of the lower 
layer primary free water storage was obtained from the 
solution of Darcy's equation for an unconfined homoge- 
neous aquifer [Dingman, 1993] that required estimation of 
the saturated hydraulic conductivity, K•, and the specific 
yield of soil, •. The percotation parameter ZPERC was esti- 
mated from other known SAC-SMA parameters as follows. 
From Eq. 1, it can be seen that the maximum percotation, 
Ima x, occurs when the upper layer is fully saturated and the 
lower layer is dry: 

Ima x = I o ' (1 +ZPERC) (3) 

It, therefore, was assumed that the maximum percolation rate 
is the maximum contents of the lower layer storages released 
per time interval At. Using these assumptions, an expression 
for ZPERC parameter can be obtained from Eq. 3: 

ZPERC = (LZTWM + LZFSM + LZFPM ) /At-I o (4) 
io 

Empirical relationships were suggested for other SAC- 
SMA parameters, UZK, LZSK, REXP, and PFREE. Ratios 
of field capacity (0f•d/0s) and wilting point (0w•t/0s) were 
used as integrated indexes of soil properties. A few coeffi- 
cients of these relationships were estimated using calibra- 
tion results from a number of well calibrated headwater 

basins. Relationships for the 11 SAC-SMA parameters are 
presented in Appendix. 

3. USE OF A PRIORI PARAMETERS FOR 

ESTIMATING SPATIALLY CONSISTENT 

PARAMETER SETS FOR HEADWATER BASINS 

Limited tests of a priori parameters of the SAC-SMA 
model were presented in Koren et at., [2000] and Duan et at., 
[2001]. While overall statistics showed that a priori parame- 
ters compared well to carefully calibrated parameter sets for 
a few fiver basins, it was found that these derived relation- 

ships could not account for some specific local fiver basin 
conditions. Consequently, the accuracy of a priori parameters 
can vary for different regions. As an example, the estimated 
parameters of the lower layer free water storages may not be 
reliable in regions with deep ground water because the NRCS 
soils information is only defined to a depth of 2.5m. The split 
between the upper and lower layers based on the SCS curve 
number can also contribute to a priori parameter uncertain- 
ties. Other limitations arise because the approach is based on 
physical assumptions regarding relationships between model 
parameters and soil properties, and between soil properties 
themselves. Although most assumptions are obvious, some 
quantitative expressions were assigned empirically using 
SAC-SMA calibration results from a limited number of fiver 

basins. Another limitation of the approach relates to available 
soil and SCS curve number data. STATSGO data consist of 

soil texture data derived from 1:250000 scale soil maps and 
interpolated into lxl km grids for 11 soil layers. This intro- 
duces some limitations on the reliability of a priori parame- 
ters due to possible spatial sampling of soil texture over large 
areas (100-200 km2 in some regions). Therefore, a priori 
parameters should be adjusted if there are observed rainfall- 
discharge data. The main objective of these relationships is to 
give reasonable initial values, and to reduce uncertainties in 
parameter ranges. Another benefit is that these relationships 
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are based on available physical properties of soils and can be 
used on ungaged basins. 

3.1. Estimation of Soil Based Parameters for Selected 
River Basins 

STASGO dominant soil texture grids [Miller & White, 
1999] for 11 soil layers were used in this analysis. Hydraulic 
soil properties Os, K•, and q•s (the saturation matrix poten- 
tial) and b (the slope of the Campbell's, [1974] retention 
curve) for each USDA texture class were calculated using 
regression equations from Cosby et al., [1984]: 

Os = - 0.00126 Fsand q' 0.489 (5) 

Ws = -7.74e-O.0302Fsana, kPa (6) 

b = 0.159 Fclay + 2.91 (7) 

The percentages of sand, Fsand , and clay, Fclay, were 
obtained from midpoint values of each textural class [Cosby 
et al., 1984] using the USDA textural triangle. Field capac- 
ity and wilting point estimates were calculated from the 
Campbell's matric water potential function using parameter 
values from Equations 5-7 

Ofid -- •s (Wl! fid[ltYs) 'lIb (8) 

Owlt = Os (lY/ffwlt•s)'l/b (9) 

Matric potential at the field capacity, Wfl,•, was assumed to 
be-10 kPa for the 1-3 sandy soil classes (see Table 2), and 
-20 kPa for all other soil classes [ASCE, 1990]. Matric 

potential at the wilting point, 1Yi-lwlt, was assumed to be 
- 1500 kPa. 

Saturated hydraulic conductivity, K s, stream channel den- 
sity, D s, and specific yield, #, values for each soil texture 
class are required to estimate the depletion rate of the lower 
layer primary free water (see Appendix, Eq. A8). 
Experimental data [Li et al., 1976] reported by Clapp and 
Hornberger, [ 1978] were adopted for the saturated hydraulic 
conductivity. Stream channel density does not vary much 
depending on soil properties, and a constant value of 2.5 
was assumed in this analysis. Since there are no systematic 
data of the specific yield of different soils, an empirical rela- 
tionship was developed for this analysis using limited data 
reported by Armstrong, [1978]: 

3.5 (O s - Ofid) 1'66 (10) 

Results from Eq. 10 for all soil texture classes and 
Armstrong's estimates are plotted in Figure 1. A 1.6 value of 
parameter n (see Appendix, Equations A3, A5-A7, A9) was 
used to maintain an average ratio between the supplemental 
and primary storage capacities close to 1/3 [Koren et al., 
2000]. The values of physical soil properties used in this 
analysis are given in Table 2. 

The NRCS developed a classification system to estimate 
a curve number, CN, based on soil type, land use, agricul- 
tural land treatment class, hydrologic condition, and 
antecedent soil moisture [McCuen, 1982]. To assess these 
factors, soil surveys and site investigations are recommend- 
ed in addition to the use of soil-land use maps. Some of the 
factors could not be assessed in this study because only 
STATSGO grids were available for analyses. In light of this 
limitation, we utilized a simplified approach in which curve 
numbers were estimated based on USDA Hydrologic Soil 

Table 2. Physical properties of different soil classes defined for this analysis. 

No Texture class % sand % clay Oma x Ofid Owl t 

1 Sand 92 3 0.37 0.15 0.04 

2 Loamy sand 82 6 0.39 0.19 0.05 

3 Sandy loam 58 10 0.42 0.27 0.09 

4 Silty loam 17 13 0.47 0.35 0.15 
5 Silt 9 5 0.48 0.34 0.11 

6 Loam 43 18 0.44 0.30 0.14 

7 Sandy clay loam 58 27 0.42 0.29 0.16 

8 Silty clay loam 10 34 0.48 0.41 0.24 

9 Clay loam 32 34 0.45 0.36 0.21 

10 Sandy clay 52 42 0.42 0.33 0.21 

11 Silty clay 6 47 0.48 0.43 0.28 

12 Clay 22 58 0.46 0.40 0.28 

633.6 

562.6 

124.8 

25.9 

20.0 

25.0 

22.7 

6.1 

8.8 

7.8 

3.7 

4.6 

0.29 

0.23 

0.15 

0.10 

0.12 

0.13 

0.12 

0.04 

0.07 

0.07 

0.02 

0.03 
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Figure 1. The specific yield (At) as a function of the free water 
capacity (O s - Oft, i). Armstrong's estimates are shown with circles. 

entire USA is displayed in Figure 2 as an example. These 
grids are now available in an ArcView application called the 
Calibration Assistance Program (CAP) [Reed et al., 2001] 
that is designed to assist the calibrator in deriving initial 
parameter estimates. The CAP computes mean, maximum 
and minimum values of these parameters for basins and/or 
elevation zones of interest, and presents the results in a 
tabular format. 

3.2. Tests Design and Data 

Two tests, model parameter transferability to ungaged 
basins and constrained automatic calibration, were per- 
formed for a number of headwater watersheds in the Ohio 

river basin, Table 3. Rainfall-runoff simulations were gener- 
ated in a lumped mode assuming that input data and model 
parameters were uniform over each basin. A priori SAC- 
SMA parameters for each watershed were estimated as an 
arithmetic averages from Ixl •'n resolution parameter grids 
generated as described in Section 3.1. 

Group grids (HSG) [Miller & White, 1999] assuming 'pas- 
ture or range land use' under 'fair' hydrologic conditions for 
the entire region [McCuen, 1982]. 

Eleven SAC-SMA parameter grids having a Ixl •'n reso- 
lution were generated for the conterminous United States 
using data from Table 2 and HSG-based SCS curve num- 
bers. The lower layer tension water capacity map for the 

3.2.1. Parameter transferability test. First, a test of SAC- 
SMA parameter transferability is performed on a number of 
neighboring headwater basins of the Upper Monongahela 
River, West Virginia (see Figure 3, watershed numbers 1-6). 
These watersheds are located in the southeastern portion of 
the Upper Monongahela basin. Slight differences in mean 
basin elevation exist. Comparison of observed hydrographs 
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Figure 2. The lower layer tension water capacity derived from soil data for the conterminous US. 



KOREN ET AL. 245 

Table 3. List of basins selected for the analysis. 

No. Watershed name 
Basin 

Latitude Longitude Elevation, ft. area, ml 2 

First group of basins 

1 Dry Fork at Hendricks, WV 
2 Buckhannon R. at Hall, WV 

3 Middle Fork R. at Audra, WV 

4 Blackwater R. at Davis, WV 

5 Tygart Valley R. at Dailey, WV 

6 Shavers Fork below Bowden, WV 

39.072 

39.051 

39.040 

39.127 

38.809 

38.913 

Second group of basins 

7 Tygart Valley R. at Belington, WV 
8 Middle Island C. at Little, WV 

9 Bluestone R. nr Pipestem, WV 

10 Greenbrier R. at Buckeye, WV 
11 Ohio Brush C. nr West Union, OH 

12 SF Licking R. at Cynthiana, KY 

13 Stillwater R. at Englewood, OH 

14 White R. at Noblesville, IN 

15 Big Blue R. at Shelbyville, IN 

16 Sugar C. nr Edinburgh, IN 

17 French Broad R. at Blantyre, NC 
18 French Broad R. at Asheville, NC 

-79.623 349.0 3240 

-80.115 277.0 2060 

-80.068 148.0 2850 

-79.469 85.9 3350 

-79.882 185.0 2840 

-79.771 151.0 3120 

39.029 -79.936 408.0 1679 

39.475 -80.997 458.0 631 

37.544 -81.011 394.0 1527 

38.186 -80.131 540.0 2086 

38.804 -83.421 387.0 511 

38.391 -84.303 621.0 689 

39.869 -84.282 650.0 700 

40.047 -86.017 858.0 738 

39.529 -85.782 421.0 738 

39.361 -85.998 474.0 646 

35.299 -82.624 296.0 2060 

35.609 -82.579 945.0 1950 

shows much similarity in the response of the watersheds 
with some variations that are primarily related to elevation. 
The 'best' SAC-SMA parameter sets for all basins were 
available from the Ohio River Forecast Center (OHRFC). 
OHRFC hydrologists used the NWSRFS calibration proce- 
dure [Smith et al., this volume] which is based on visual fit- 

; 13•: 

Indiana• •., q• - • /• • 

Tennessee 

Figure 3. Location of outlets for the first (shown with circles) and 
second (shown in triangles) groups of test watersheds. 

ting of simulated and observed hydrographs, and compar- 
ing different statistics. While this procedure is rather sub- 
jective, it provides physically reliable and robust estimates 
of the SAC-SMA model parameters. Time series of mean 
areal six-hourly precipitation and air temperature values, 
and daily discharges were available from the OHRFC. 25- 
45 year time series were generated for most basins. 
However, only eight years of historical data were available 
for the Shavers Fork below Bowden. 

Control simulations for the entire historical period (when 
input/output data were available) were first performed using 
two parameter sets for 6 selected watersheds: 1) 'best' 
OHRFC manually calibrated parameters for each basin, and 
2) soil derived parameters for the same basins. These results 
provide an objective evaluation of the performance of soil 
derived parameters compared to OHRFC parameters. 
Because OHRFC parameters were derived using a subjec- 
tive procedure, a simple comparison of just parameter val- 
ues can not provide conclusive information. 

To test parameter transferability, it was assumed that only 
one basin had historical time series to perform model cali- 
bration. The Dry Fork at Hendricks watershed was selected 
as representative and the best calibrated for the first group 
(based on the OHRFC expert judgment [Tom Adams, per- 
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sonal communication]). All SAC-SMA parameters for five 
other watersheds of this group were assumed to be equal to 
calibrated parameters for the Dry Fork basin, XorH, ca•t,.. This 
approach is usually used when calibration is performed on a 
large fiver basin with a number of ungaged watersheds. 

Other parameter sets for these watersheds were generated 
by scaling of soil derived parameters for each basin, Xi, soi•, 
based on the ratio of calibrated, XorH, ca•O ., and soil derived, 
XDFH, soil, parameters for the Dry Fork basin: 

X. = XDFH'mlb' X. 
•,* XDFH,soi I t, soil (11) 

where Xi,. are scaled parameters for a basin j. It assumes 
that soil information represents reasonably well the spatial 
pattern of model parameters while their magnitudes may be 
not optimal. 

3.2.2. Use of soil derived parameters in an automatic 
calibration. This test involves automatic calibration of a 

larger number of basins representing different climatic and 
hydrological conditions. The second group of 12 headwater 
watersheds are spread through the Ohio-Tennessee River 
basin including Ohio, Indiana, Kentucky, West Virginia, and 
North Carolina states, see Figure 3, and represent different 
climatic and hydrological conditions. Annual precipitation 
varies from 500mm in the northwest portion of the region to 
1500mm in the southeastern portion [Schaake et al., 2000]. 
Potential evaporation varies much less throughout the 
region. Consequently, significant differences in annual 
runoff for the northwest (200mm) and southeastern 
(900mm) portions of the basin are present. Daily precipita- 
tion, air temperature, and discharges for 45-50 years period 
were obtained from the Model Parameter Estimation 

Experiment (MOPEX) [Schaake et al., 2001] project data- 
bases. 

First, automatic calibration was performed for all select- 
ed basins without the use of soil derived parameters. 
Parameters were allowed to vary in a broadly defined feasi- 
ble space [Brazil, 1989; Boyle et al., 2001]. Table 1 lists 
parameter ranges used in this study. The second set of cali- 
bration runs were conducted using soil derived parameters 
to define parameter ranges that are tied to basin physical 
characteristics. 25 percent bounds from soil derived param- 
eters were used in these runs, i.e. 

(1-0.25) Xi, soil< X i < (1+0.25) Xi, soil (12) 

The University of Arizona Shuffled Complex Evolution 
(SCE-UA) calibration technique [Duan et al., 1992] was 
used in this test. The SCE-UA method is a global search pro- 

cedure that uses concepts from random search algorithms, 
along with the strength of the downhill simplex method. It 
has been tested extensively in the last few years and is found 
to be efficient and consistent in finding the global optimum 
of multi-parametric nonlinear problems encountered in the 
calibration of conceptual watershed models. A weighted 
error function was selected as a minimization criterion: 

F = a' MVRMS + (l-a) DRMS (13) 

where MVRMS is a mean square error of monthly runoff vol- 
umes, DRMS is a mean square error of daily discharges, and 
a is a weight parameter; 0.8 value was selected for this test. 
A 15 year period was used in the calibration process, and the 
rest of data (usually 25-28 years) were used for validation. 

4. RESULTS AND DISCUSSION 

4.1. Parameter Transferability Test Results 

Some accuracy statistics of hydrographs simulated 
using calibrated and soil-derived parameters are shown in 
Table 4. These statistics include a daily discharge root 
mean square error, DRMS, a monthly volume root mean 
square error, MVRMS, a daily discharge root mean square 
error during flood events only, FDRMS, percent of total bias 

Table4. Accuracy statistics of hydrographs simulated using 
calibrated and soil derived parameters for the Upper Monongahela 
basin 

Basin DRMS MRMS, FDRMS, BIAS, % R 2 
# cms mm % 

Calibrated parameters 
1 16.9 17.8 3.2 47 0.86 

2 10.2 12.5 1.3 32 0.91 

3 6.5 14.1 -0.9 40 0.89 

4 4.7 20.8 2.0 49 0.84 

5 7.9 12.5 1.6 43 0.89 

6 8.1 18.3 -0.6 43 0.87 

Avg. 9.1 16.0 1.6 1 42 0.88 
Soil derived parameters 

1 18.2 17.6 2.3 50 0.84 

2 11.3 12.9 -2.7 40 0.89 

3 7.0 14.5 -4.6 40 0.88 

4 5.1 20.5 -0.5 47 0.82 

5 7.9 12.4 -5.3 44 0.89 

6 9.9 18.7 -1.1 51 0.81 

Avg. 9.9 16.1 2.7 1 45 0.86 

1 - Estimated as the average of absolute biases for 6 watersheds. 



KOREN ET AL. 247 

of simulated and observed hydrographs, BIAS, and a corre- 
lation coefficient of daily discharges, R. As seen in Table 4, 
calibrated parameters usually produce higher accuracy 
although the gain is not as significant as compared to use of 
soil-derived parameters. As an example, simulated and 
observed hydrographs are plotted in Figure 4 for the Middle 
Fork River at Audra. Both parameter sets lead to good sim- 
ulations of the observed hydrographs. The semi-log scale 
plot in Figure 4b suggests that base flow recessions are not 
well simulated by the soil-derived parameter sets. A possi- 
ble reason for this was discussed earlier in Section 3. 

Accuracy statistics from the transferability test simula- 
tions are shown in Table 5. The values suggest that scaled 
parameters improved simulation accuracies for 5 'ungaged' 
watersheds. Furthermore, the accuracy statistics are close to 
those obtained when each watershed was calibrated independ- 
ently (compare Tables 5 and 4). While the overall statistics 
from a single watershed calibration (the Dry Fork at Hendricks 
watershed) are not greatly different from those derived from 
the scaled parameter version, there are significant degrada- 
tions in bias (BIAS) and flood (FDRMS) statistics for some 
outlets, specifically for the Middle Fork River at Audra and the 

Buckhannon River at Hall. The reason for this is that most soil 

derived parameters do not differ much for selected watersheds 
excluding the Middle Fork and Buckhannon river basins, see 
Figure 5, and, as a result, scaled parameters will produce sim- 
ilar results. However, the lower zone tension water (LZTWM) 
and supplemental free water (LZFSM) storages as well as the 
depletion rate of the primary free water storage are much 
lower for mentioned two watersheds (see Figure 5, thick 
lines). As a result, scaled parameters produced more runoff for 
these watersheds, and lead to improved bias and flood statis- 
tics compared to the constant parameter case. 

4.2. Automatic Calibration Test Results 

Calibration and validation results are presented in Figures 
6 and 7. Daily runoff errors (DRMS) and monthly volume 
errors (MVRMS) from unconstrained and constrained cali- 
bration/validation, and soil derived parameter simulations 
are plotted for 10 watersheds in the Ohio basin. Results from 
two watersheds in the Tennessee basin were excluded from 

these plots, and will be discussed later. As seen from Figures 
6 and 7, unconstrained calibration leads to slightly better sta- 
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Figure 4. Observed hydrograph and hydrographs simulated using calibrated and soil derived parameters for the Middle 
Fork River at Audra, February - June 1967. 



248 USE OF A PRIORI PARAMETERS 

Table 5. Statistics for the parameter transferability test, the Upper 
Monongahela river basin. 

Basin 4/ DRMS, MRMS, BIAS, % FDRMS, R2 
cms mm % 

Parameters calibrated for the Dry Fork at Hendricks 
(basin #1) 

2 10.8 13.4 -2.0 38 0.90 

3 7.2 14.9 -5.3 42 0.87 

4 4.6 20.8 1.1 45 0.85 

5 7.9 12.2 -3.5 43 0.88 

6 8.8 18.6 -0.3 47 0.85 

Avg 7.9 16.0 2.4 • 43 0.87 
'Scaled' soil derived parameters 

2 10.5 13.2 -0.5 36 0.91 

3 7.6 14.1 -2.5 34 0.86 

4 4.6 21.0 0.4 46 0.85 

5 8.1 12.5 -3.5 45 0.88 

6 9.0 18.8 -0.1 44 0.85 

Av• 8.0 15.9 1.4 • 41 0.87 
1 - Estimated as the average of absolute biases for 5 watersheds. 

tistics compared to constrained calibration on the calibration 
data sets, however, this gain was practically eliminated on the 
validation data sets. While the use of soil-derived parameters 
alone provides reasonable simulation results, minor parame- 
ter adjustments can improve the overall performance. 

The major benefit of use of soil derived parameters as 
calibration constraints is in generating spatially consistent 
parameter sets. The spatial variability of one SAC-SMA 
parameter, UZFWM, derived from unconstrained and con- 
strained (values in parentheses) calibration can be seen in 

Figure 8. It can be seen that overall, constrained and uncon- 
strained results are consistent for most outlets. However, 
UZFWM values from unconstrained calibration can differ by 
3-5 times for neighboring watersheds (highlighted values in 
italic). Figure 9c shows that the same behavior can be seen 
for most of the other parameters, which vary over the entire 
feasible parameter ranges. On the other hand, constrained 
calibration generates more consistent parameter sets while 
maintaining hydrological performance as shown in Figure 
9b. Comparison of Figures 9a and 9b confirms that the spa- 
tial pattern of parameters derived by constrained calibration 
is consistent with soil derived patterns slightly adjusted to 
local physical properties and possibly data uncertainties. 

Figure 10 shows that the most affected parameters from 
unconstrained calibration were the percolation parameters 
ZPERC and REXP, the upper layer free water storage 
UZFWM, and the lower layer tension water storage 
LZTWM. Deviations of these parameters from soil-based 
parameters were more than 60%. At the same time, devia- 
tions of constrained calibration parameters were much less 
than the allowed constraints of 25%. Overall constrained 

calibration results suggest that only 12% of the final param- 
eter values were constrained by the specified search bound- 
aries. Of these, 65% were values of the least identifiable 
from soil data parameters LZPK and LZTWM. 

5. SUMMARY AND FUTURE WORK 

This study illustrates the benefit of using soil-derived 
parameters to estimate conceptual model parameters for 
ungaged watersheds, and to improve results of automatic 
calibration. The results suggest that the use of soil derived 
parameters can improve the spatial and physical consisten- 
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Figure 5. Soil derived normalized model parameters for the transferability test watersheds. The Middle Fork and 
Buckhannon river watersheds are shown with thick lines. In this Figure and later on, parameters were normalized based 
on their ranges for the unconstrained optimization. 
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Figure 6. Constrained and unconstrained calibration results for the second group of watersheds: 
Calibration period. 
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cy of estimated model parameters while maintaining hydro- 
logical performance. When transferring model parameters 
from well-calibrated watersheds to ungaged watersheds, RFC 
experts rely on qualitative information such as soil, vegeta- 
tion, etc. Soil derived parameters provide a quantitative meas- 
ure of possible differences between parameters that allow one 
to 'rescale' calibrated parameters to ungaged watershed. 

Use of constrained calibration reduces non-regularities in 
the spatial pattern of model parameters. RFC forecasters rou- 
tinely make run-time adjustments to the hydrologic model 
states and certain parameters in order to keep the forecast 
models in close agreement with observed streamflow data. 
On a practical level, spatially consistent hydrologic model 
parameters should allow RFC forecasters to more efficiently 
make these run-time modifications, especially in the case of 
non-standard conditions during a rainfall event. With spa- 
tially consistent parameter sets, the forecaster can expect to 
use similar adjustments throughout a basin, thus saving time 
and allowing for the evaluation of more scenarios. 

A simple approach was used to incorporate soil derived 
parameters into the automatic calibration procedure. Search 
regions of parameters were constrained by some percentage 
of soil-derived parameters. However, the percentage can 
vary for different regions depending on the accuracy of soil 
derived parameters and the quality of input/output data. 
Large uncertainties of soil derived parameters complicate the 
calibration procedure and in some cases can eliminate the 
benefit of using constrained calibration. This problem was 
encountered when constrained calibration was performed on 
two watersheds in the Tennessee basin, the French Broad 

River at Blantyre and Asheville. Daily and monthly statistics 
from constrained calibration were degraded significantly for 
both calibration and validation data sets as shown in Table 

6. Large uncertainties in the soil derived parameters of the 
lower layer free water storages are the main reason for this. 
As discussed above, the soil-based approach does not 
account for a deep ground water aquifer, and as a result, 
underestimates the lower layer free water storages. 
Unconstrained calibration generated much higher values of 
the lower layer free water parameters for these two basins, 
LZFSM=270mm and LZFPM=950mm compared to 25mm 
and 124mm respectively for the soil derived parameters. To 
deal with this problem, constrained calibration should 
account for large uncertainties of soil derived parameters. 
One possibility would be to use an explicit measure, Dx, of 
the deviation of calibrated parameters, X i, from soil derived 
parameters, Xi*, in the automatic calibration procedure: 

, 

N X i -X i 
Ox _ ( •( )2)0.• 

i=1 X -X 
max,i min,i 

(14) 

where Xmax, i and Xmin, i are maximum and minimum param- 
eter values in a feasible space, and N is the number of cali- 
brated parameters. A single objective function can be select- 
ed that will weight the gain in simulation accuracy versus 
the increase in D x. However, estimation of a weight func- 
tion may be a real challenge of this approach. Another pos- 
sibility would be to incorporate a parameter deviation meas- 
ure into multi-criteria calibration [Boyle et al., 2000]. 

As stated in Section 3, there are weaknesses in the deriva- 

tion of soil-based SAC-SMA parameters. Future research 
should be conducted to include more data sources in the 

estimation technique. Specifically, ground water informa- 
tion and hydrograph analysis may be helpful in estimating 
lower layer free water storages and depletion coefficients. 
New developments in generating more consistent SCS 
curve number grids can also lead to better estimates of fast 
runoff parameters. 

APPENDIX: 

SOIL BASED RELATIONSHIPS FOR ESTIMATING A 

PRIORI PARAMETERS OF THE SAC-SMA MODEL 

Below there are SAC-SMA parameter and soil property 
relationships as they appeared in Koren et al., [2000]. Two 
printing errors in the original paper were fixed here: a coef- 
ficient 4 in the denominator was removed and a basic time 

step, At, (in the SAC-SMA model it equals 24 hours) was 
added in Eq. A8, and a coefficient 50.8 in Eq. A12 was 
replaced by 5.08. Parameter and soil property notations are 
consistent with Table 1 and Section 3. 

Upper layer parameters: 

UZrWM: Owt,) ' (A1) 

(Os- om) . Zuv (A2) 

UZK: 1-(Ofid/Os) n (A3) 

Lower layer parameters: 

LZTWM = (Ofl a - Owt t) ' (Zma x - Zup ) (A4) 

LZFSM = (O s - Ofid) ' (Zma x - Zup ) '(Owlt/Os) n (AS) 

LZFPM = (O s - Ofid) ' (Zma x - Zup ) '[1-(Owtt/Os) n] (A6) 

1- (Ofld /Os) n LZSK : (A7) 
1 + 2(1-{}wlt) 
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Table 6. Daily, DRMS, and monthly, MVRMS, statistics for two 
watersheds of the French Broad river from automatic calibration test 

Basin 

# 

DRMS, cms MVRMS, mm 
Uncon- Con- Soil Uncon- Con- Soil 

strained strained derived strained strained derived 

17 

18 

17 

18 

Calibration period 
4.35 7.39 13.61 16.73 31.66 36.95 

10.79 15.39 24.67 10.88 21.97 26.37 

Validation period 
4.08 5.65 10.30 18.62 31.11 38.21 

10.20 13.47 20.75 9.73 19.47 25.11 

•KsDs(Zmc•- Zup)at 
_ 

LZPK= 1- e it 
(AS) 

PFREE = (Owl/Os) n (A9) 

ZPERC = LZTWM + LZFSM.(1-LZSK) 
LZFSM.LZSK+ LZFPM. LZPK 

LZFPM.(1-LZPK) 

LZFSM.LZSK+ LZFPM. LZPK 

Percolation parameters: 

REXP = [Owlt/(Owlt,sand - 0.001)]0.5 

Upper layer thickness: 

Zup = 5.08 
1000/CN-10 

Os-O• 

(A10) 
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Use of a Priori Parameter-Estimation Methods to Constrain 

Calibration of Distributed-Parameter Models 

G. H. Leavesley, L. E. Hay, R.J. Viger, and S. L. Markstrom 

U.S. Geological Survey, Denver, Colorado 

Over-parameterization, ungauged basins, and the assessment of the impact of 
land-use and climate change are a few of the problems that limit the use of cali- 
bration techniques for distributed-parameter models. One approach to addressing 
these problems is the use of a priori parameter-estimation procedures to minimiz- 
ing the number of parameters to be calibrated, or to obtain parameter values where 
calibration is not possible. A set of modeling and analytical tools is being devel- 
oped using the US Geological Survey's Modular Modeling System to facilitate the 
development and evaluation of objective a priori methods. Initial testing of these 
tools was conducted on basins in the Rocky, Sierra-Nevada, and Cascade Mountain 
Regions of the United States. a priori parameter estimates were made for the 
USGS distributed-parameter model PRMS using available digital datasets of ter- 
rain, soils, vegetation type and density, and climatological data. Only the Rocky 
Mountain basin had an acceptable uncalibrated performance. Model performance 
for all basins improved as the parameters calibrated were increased incrementally 
from none, to those affecting the water balance, then hydrograph timing, and then 
all soils and vegetation related parameters. Problems were identified in the use of 
the forest-density dataset as a surrogate for forest cover density. A full evaluation 
of the soils dataset for determining available water-holding capacity was not pos- 
sible due to the insensitivity of the model to this parameter in these snowmelt 
basins. Key issues in a priori parameter estimation for this limited application were 
identified to include regional climatic and physiographic differences, dataset limi- 
tations, and selection of measures of parameter and model performance. These will 
be addressed in an expanded research effort using tens of basins in different cli- 
matic and physiographic regions of the United States and the world. 

INTRODUCTION 

A major difficulty in the use of distributed-parameter mod- 
els is the general lack of objective methods to estimate the val- 
ues of distributed parameters. Calibration techniques are typi- 
cally used to compensate for various sources of uncertainty in 
these estimates. However, the transferability of calibrated 
results to other basins is often an issue due to the over-para- 
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meterization of many distributed-parameter models and the 
incorporation of model and data errors in fitted parameter val- 
ues. The application of calibration techniques to problems 
such as ungauged basins, or assessing the impact of land-use 
and climate change, is further limited because there are typi- 
cally no measures of system response against which to cali- 
brae. Estimating parameters where calibration is not possible, 
and addressing the over-parameterization problem by mini- 
nilzing the number of parameters to be fitted, requires the 
development of methods that relate parameter values to meas- 
urable climatic and basin characteristics. 

The development of methodologies to relate selected model 
parameters to climatic and basin characteristics has been con- 
ducted by a number of disciplines in the field of hydrology. 
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Studies at the point and plot scale have typically been used to 
define these relations. For example, in the area of soil 
physics, RawIs and Brackensiek (1983) developed a method- 
ology to estimate soil water-holding capacities and Green- 
Ampt infiltration-model parameters using soil-texture infor- 
mation. More recent work by Schaap et al. (1998) has 
focused on the use of soil-properties data to develop pedot- 
ransfer functions for the estimation of water-retention and 

hydraulic properties. Similar efforts are being conducted in 
other areas with regard to a variety of hydrologic and climat- 
ic processes (e.g. Koren, et al., this volume). However, the 
application and evaluation of such techniques over larger 
areas have been limited. The ability to define the most appro- 
priate parameter-estimation methods for use with different 
models in different climatic and physiographic regions, and 
to specify the robustness and reliability of these methods and 
their associated datasets, are major knowledge gaps. 

The increasing availability of high-resolution spatial and 
temporal datasets of climatic and basin characteristics now 
provides the opportunity to investigate and develop a priori 
estimation procedures for distributed model parameters. To 
facilitate the development, testing, and evaluation of a pri- 
ori parameter-estimation methods for a variety of models 
and datasets, a set of tools is being developed using the US 
Geological Survey's Modular Modeling System (MMS) 
(Leavesley et al., 1996; 2002). MMS is an integrated system 
of computer software that provides a common flamework 
for multidisciplinary research and operational efforts to 
develop, evaluate, and apply a wide range of modeling 
capabilities and analytical tools. The long-term objectives 
of this research effort are to (1) develop and evaluate objec- 
tive a priori parameter-estimation methods using available 
spatial and temporal datasets, and (2) evaluate and identify 
the most robust process-model conceptualizations and 
parameters for both uncalibrated and calibrated applications 
in different climatic and physiographic regions. 

This paper focuses on the first objective. It describes the 
initial development and testing of a set of methodologies 
and tools for use with available digital datasets in three 
snowmelt regions of the western United States. The effort 
was limited to applications in mountainous regions where 
snow accumulation and melt processes dominate the hydro- 
logical cycle. This provided a focus on common hydrologic 
processes but in different climatic regimes. As the first step 
in a larger, more comprehensive effort, the study was further 
limited to only one model and a single basin in each of the 
three snowmelt regions. The next steps in this research will 
be the application of the tools and knowledge developed in 
this study to ten's of basins in the study regions and the 
development of a fully integrated set of models, methods, 
and tools to address both research objectives given above. 

STUDY BASINS 

Snow-dominated, mountain basins were chosen in the 

Rocky, Sierra Nevada, and Cascade Mountain Ranges in the 
United States. The basins selected (Fig. 1) were (1) the 
Animas River basin, which has a drainage area of 1820 km2, 
and elevation that ranges from approximately 2000 to 
4000m; (2) the East Fork of the Carson River basin (here- 
after referred to as the Carson River basin), which has a 
drainage area of 920 km2 and elevations that range from 
approximately 1600 to 3000m; and (3) the Cle Elum River 
basin, which has a drainage area of 526 km2 and elevations 
that range from 600 to 2000m. Vegetation on all the basins 
is predominantly coniferous forest with a mix of alpine tun- 
dra and bare rock occurring on areas above timberline. 

MODEL 

The USGS Precipitation-Runoff Modeling System 
(PRMS) (Leavesley et al., 1983; Leavesley and Stannard, 
1995) is a distributed-parameter, physical-process water- 
shed model. Distributed-parameter capabilities are provided 
by partitioning a watershed into units, using characteristics 
such as slope, aspect, elevation, vegetation type, soil type, 
and precipitation distribution. Each unit is assumed to be 
homogeneous with respect to its hydrologic response and to 
the characteristics listed above. Each unit is termed a hydro- 
logic response unit (HRU). A water balance and an energy 
balance are computed daily for each HRU. The sum of the 
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Figure 1. Study basin locations. 



responses of all HRUs, weighted on a unit- area basis, pro- 
duces the daily watershed response. 

Snow is the major form of precipitation in the Animas, 
Carson, and Cle Elum River basins, and the major source of 
streamflow. The snow components of PRMS simulate the 
accumulation and depletion of a snowpack on each HRU. A 
snowpack is maintained and modified both as a water reser- 
voir and as a dynamic heat reservoir. A water balance is 
computed each day and an energy balance is computed for 
two 12-hr periods each day. The energy-balance computa- 
tions include estimates of net shortwave and longwave radi- 
ation, the heat content of precipitation, and approximations 
of convection and condensation terms. 

PRMS uses daily inputs of solar radiation and the variables 
precipitation (PRCP), maximum air temperature (TMAX), and 
minimum air temperature (TMIN). Solar radiation was distrib- 
uted to each HRU as a function of HRU slope and aspect. Solar 
radiation data were not available on a daily basis and so were 
computed using existing algorithms in PRMS. Estimates of 
daily shortwave radiation received on a horizontal surface were 
computed using air temperature, precipitation, and potential 
solar radiation. A list of PRMS parameters referred to in this 
paper and their definitions are provided in Table 1. 

Table 1. Definition of selected PRMS parameters. 
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TOOLS 

The GIS Weasel 

The GIS Weasel is a geographic information system (GIS) 
interface for applying tools to delineate, characterize, and 
parameterize topographical, hydrological, and biological 
basin features for use in a variety of lumped- and distrib- 
uted-modeling approaches. It is composed of Workstation 
ArcInfo (ESRI, 1992) GIS software, C language programs, 
and shell scripts. 

Parameter-estimation methods are implemented using 
ARC Macro Language (AML) functions applied to avail- 
able digital datasets. A library of parameter-estimation 
methods is maintained in a similar fashion to the library of 
process modules in MMS. For a given model, a recipe file 
of AML functions can be created and executed to estimate 

a selected set of spatial parameters. This recipe file can 
also be modified to change the parameter-estimation 
method associated with a selected parameter, thus enab- 
ling the evaluation of alternative parameter-estimation 
methods. 

Group 

GIS W easel 

Parameter 

covden_w in 

jh_coef_hru 

rad tmcf 

Definition 

Winter vegetation cover density for the major vegetation type on an 
HRU 

Air temperature coefficient used in Jensen-Haise potential 

evapotranspiration computations for each HRU. 
Transmission coefficient for short-wave radiation through the winter 

vegetation canopy 

soil_moist_max Maximum available water holding capacity of soil profile 

Meteorological adjmix_rain Monthly factor to adjust rain proportion in a mixed rain/snow event 

bias 

tmax allrain 

tmax_allsnow 

Precipitation adjustment factor to account for gage catch efficiency and 
other sources of measurement error 

Maximum daily temperature above which all precipitation is assumed to 
be rain 

Maximum daily temperature equal to or below which all precipitation is 
assumed to be snow 

Runoff Timing emis_noppt Average emissivity of air on days without precipitation 

gwflow_coef 

soi12gw_max 

Groundwater reservoir routing coefficient 

Amount of the soil water excess for an HRU that is routed directly to the 

associated ground-water reservoir 

ssrcoef_sq Non-linear subsurface-reservoir routing coefficient 
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XYZ Precipitation and Temperature Distribution 

Recent research has resulted in the development of a new 
distribution methodology for daily values of PRCP, TMAX, 
and TMIN (Hay et al., 2000a,b). Significant geographic fac- 
tors affecting the spatial distribution of PRCP, TMAX, and 
TMIN within a river basin are latitude (x), longitude (y), 
and elevation (z). Multiple linear regression (MLR) equa- 
tions are developed for each dependent climate variable 
(PRCP, TMAX, TMIN) using the independent variables of 
x, y, and z from available climate stations. The general form 
of the MLR equation for precipitation at a given HRU is 

PRCP(HRU ) = b 0 + b• X(HRU ) 4- b 2 Y(HRU) + b3 Z(HRU) (1) 

The resulting fit from equation 1 describes a plane in 
three-dimensional space with slopes b•, b 2, and b3 intersect- 
ing the PRCP axis at b 0. Similar equations are used for 
TMAX and TMIN. Use of the station x and y coordinates in 
the MLR provides information on the local-scale influences 
on the climate variables that are not related to elevation (for 
example, the distance to a topographic barrier). To account 
for seasonal climate variations, MLR equations are devel- 
oped for each month using mean values of PRCP, TMAX, 
and TMIN (dependent variables) and station x, y, and z 
(independent variables) from a set of stations selected from 
regional National Weather Service and Snow Telemetry 
(SNOTEL) stations that fall within and outside the selected 
basins. The monthly MLRs are computed to determine the 
regression surface that describes the spatial relations 
between the monthly dependent variables and the indepen- 
dent variables. Note that for each month the best MLR rela- 

tion does not always include all the independent variables. 
Estimates of daily PRCP, TMAX, and TMIN for each 

HRU are computed using the following procedure: (1) mean 
daily values of PRCP (TMAX and TMIN) and correspon- 
ding mean x, y, and z values from a selected station set 
(described in the Exhaustive Search analysis below) are 
used with the slopes of the monthly MLRs to compute a 
unique b0 for that day and (2) the MLR equation is then 
solved using the x, y, and z values of the HRUs. 

The regional MLR equations, typically developed for 
areas thousands to tens-of-thousands of square kilometers in 
size, may under- or over-estimate the mean precipitation (or 
temperature) in smaller basins typically used for hydrologic 
simulations. These smaller basins often range in size from a 
few hundred to a few thousand square kilometers. Also, 
measurement errors associated with precipitation, particu- 
larly precipitation gage under-catch of snow, may lead to 
significant errors in hydrologic simulations. To address 
these issues, an Exhaustive Search (ES) analysis is used to 

(1) determine the optimal precipitation- and temperature-sta- 
tion sets to anchor the xyz distribution methodology; (2) pro- 
vide an estimate of bias associated with the selected precip- 
itation stations; and (3) define a separate precipitation-sta- 
tion set to determine daily precipitation frequency. 

Precipitation and temperature stations are selected inde- 
pendently since the best precipitation station choice general- 
ly differs from the best choice for temperature distribution in 
a basin. For every combination of these precipitation- and 
temperature-station sets, a precipitation bias and a station set 
to indicate precipitation frequency are also tested. The range 
of the bias correction is from 0 to 50 percent and the correc- 
tion is applied only to snowfall events. The correction actu- 
ally compensates for the net effect of a number of biases 
related to precipitation measurement, such as gauge under- 
catch, gage location, and/or lack of gauges at high elevation. 
It may also correct for other sources of bias in PRMS. 

The ES analysis is run to test all single stations and pos- 
sible combinations of two, three, and four station groups 
comprising the xyz-station sets. For each ES analysis, the 
best station sets for temperature and precipitation, along 
with an associated precipitation bias and frequency, are 
determined by comparing the sum of the absolute value of 
the difference between measured and simulated runoff. The 

ES analysis ends when the sum of the absolute errors asso- 
ciated with the above combinations shows no significant 
improvement from one station group to the next. 

Analysis Tools 

Optimization and sensitivity analysis tools are provided 
in MMS to analyze model parameters and evaluate the 
extent to which uncertainty in model parameters affects 
uncertainty in simulation results. Two optimization proce- 
dures are available to fit user-selected parameters. One is 
the Rosenbrock technique (Rosenbrock, 1960), as it is 
implemented in PRMS. The second is a hyper-tunnel 
method (Restrepo and Bras, 1982). 

Several methods for parameter sensitivity analysis are also 
provided. One is the method described in the PRMS user's 
manual (Leavesley et al., 1983), which allows the evaluation 
of a variety of measures including relative parameter sensi- 
tivity, error propagation, and parameter correlation. A second 
method evaluates the sensitivity of any pair of parameters 
and develops the objective function surface for a selected 
range of these two parameters. To address the question of 
parameter uncertainty, a Monte Carlo procedure is available 
to evaluate alternative combinations of model parameters. 

The basic measures of model and parameter performance 
used in this study were the comparisons of measured to sim- 
ulated daily streamflows. One measure was expressed in 
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terms of the sum of the absolute values of the differences 

between measured and simulated daily streamflow. This 
measure was used as the objective function in all model cal- 
ibrations and was used for comparison of individual param- 
eter sensitivity and performance. A second measure was the 
Nash-Sutcliffe coefficient of efficiency (CE) (Nash and 
Sutcliffe, 1970). It was used as a measure of model per- 
formance for alternative parameter sets. 

METHODOLOGY 

Parameter Estimation 

PRMS HRUs were delineated and characterized using the 
GIS Weasel. The Animas, Carson, and Cle Elum River 
basins were divided into 121, 96, and 124 HRUs, respec- 
tively. Spatially distributed topographic, vegetation, and 
soils parameters on each HRU were estimated using avail- 
able digital datasets. The datasets used were: (1) USGS 3- 
arc second digital elevation models (DEMs); (2) 1-km grid- 
ded version of the State Soils Geographic (STATSGO) soils 
data (U.S. Department of Agriculture, 1994); (3) Forest 
Service 1-km gridded vegetation type and forest-density 
data (U.S. Department of Agriculture, 1992): and the USGS 
GIRAS land-use/land-cover gridded coverage. A composite 
of GIRAS Land Cover and the Forest Type Groups was cre- 
ated. In this composite, the GIRAS data was only used 
where the Forest Type Group data described "non-forest". 
The resulting Land Cover dataset has a total of 44 classes. 

Topographic parameters such as elevation, slope, and 
aspect were computed for each HRU using the USGS 3-arc 
second DEM. Elevation was calculated as the median of the 

distribution of the DEM grid-cell elevations. Slope was cal- 
culated as the mean of the distribution of the grid-cell 
slopes. Grid-cell aspect values were reclassified into one of 
eight aspect classes that represent the eight cardinal points 
of the compass. HRU aspect was calculated as the aspect 
class having the dominant number of grid cells. 

The vegetation type and density datasets were used to 
estimate vegetation-type and vegetation-cover-density 
parameters on each HRU, as well as the associated parame- 
ters of interception-storage capacity and the transmission 
coefficient for solar radiation. HRU vegetation type was 
reclassified into one of four classes defined as forest, shrub, 

grass, and bare. HRU vegetation type was then determined 
as the dominant reclassified vegetation type in an HRU. 
Vegetation cover density was defined as the percentage of 
the area of the HRU covered by the dominant vegetation 
type canopy. For forest vegetation types, the canopy densi- 
ty was assumed to be equal to the mean of the forest-densi- 
ty values for the forest types found in the HRU, expressed 

as a percentage of the entire HRU area. For example, an 
HRU with 60 percent of its area in forest having a mean for- 
est density of 50 percent would have a vegetation cover den- 
sity of 30 percent. 

Interception-storage capacity was calculated by multiply- 
ing the computed HRU vegetation cover density times the 
average depth of precipitation storage per unit area of the 
cover type. A table of interception-storage-capacity values 
for all vegetation types was created using values from the 
literature. For deciduous vegetation types, cover density and 
its associated interception-storage capacity were calculated 
for two periods, one with and one without leaves. The trans- 
mission coefficient was calculated using the "cover density 
- transmission coefficient" relation provided in the PRMS 
user's manual (Leavesley et al., 1983). For deciduous vege- 
tation, the cover density for the period without leaves was 
used in this computation. 

Soil type in PRMS is categorized as sand, loam, or clay, 
and was calculated for each HRU using the soil texture data 
in the STATSGO soil dataset. Soil type was calculated as 
the dominant soil type on the HRU. The available water- 
holding capacity of the soil on each HRU is a function of the 
water-holding characteristics of the soil and the average 
rooting depth of the dominant vegetation. Calculation began 
with the identification of the dominant vegetation type. 
Average rooting depth for each vegetation type was esti- 
mated from the literature and a table of rooting-depth values 
was linked to the vegetation-type dataset. Available water- 
holding capacity values in the STATSGO dataset were 
processed to provide an average water-holding capacity 
value per unit depth of soil. This value was multiplied times 
the average rooting depth of the HRU vegetation type to 
calculate the HRU water-holding capacity. 

Climate-related parameters were estimated using daily 
data obtained from the National Weather Service and the 

SNOTEL data network. Precipitation- and temperature- 
distribution relations were computed using the xyz method- 
ology. A threshold temperature parameter (tmax_allsnow) is 
used to determine precipitation form (rain, snow, or a com- 
bination of both). The estimate of tmax_allsnow was based 
on the assumptions that a precipitation event will have a 
cloud base 305 m above the ground and that a temperature 
at the cloud base of 0 ø C will produce snow. The 0 ø C cloud- 
base temperature was assumed to provide a near-surface air 
temperature of 1.7 ø C for tmax_allsnow. 

PRMS parameters related to the partitioning of water 
among processes related to surface, subsurface, and ground- 
water flow, as well as all remaining parameters, were esti- 
mated from the results of other model applications in these 
mountainous regions and were provided as a common set 
for all the basins. 
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Parameter Evaluation 

Evaluation of the a priori parameter-estimation methods 
and their use in constraining parameter calibration was con- 
ducted by examining model performance at four levels of 
parameter fitting. At the first level, the model was run using 
all estimated parameters. No calibration was conducted. HRU 
and meteorological parameters were estimated using the GIS 
Weasel and the regional MLR relations of the xyz methodol- 
ogy. The subset of precipitation and temperature stations used 
consisted of all stations within or immediately adjacent to the 
modeled basin. No exhaustive search was conducted. 

The second level focused on the calibration of those 

parameters related to obtaining reasonable monthly and 
annual water-balances. The parameters fitted were those 
controlling the magnitude and distribution of precipitation 
and potential evapotranspiration (PET). PET was computed 
using a modified Jensen-Haise method (Jensen et al., 1969) 
with a parameter value that was varied by month. The 
monthly PET parameter values were calibrated to monthly 
estimates of PET for each region based on values obtained 
from the literature. Then the exhaustive search was applied 
in the xyz method to determine the optimal station set, bias 
correction, and precipitation frequency station set. 

At the third level, the fitted values obtained at level two 

were retained and the additional parameters that affect the 
timing of streamflow were optimized. These included 
parameters affecting precipitation form, snowmelt rates, and 
the rates and timing of surface, subsurface, and ground- 
water flow processes. 

At the fourth level, the fitted values obtained at level three 

were retained and the most sensitive spatial and non-spatial 
PRMS parameters were calibrated. This included several of 
the parameters estimated using the GIS Weasel. Level 4 was 
considered comparable to a full model calibration of all sen- 
sitive parameters. 

With the exception of the xyz methodology, all parameter 
calibrations were conducted using the Rosenbrock optimiza- 
tion technique. The procedure used to fit distributed parame- 
ters was to adjust all values of a specific parameter simulta- 
neously. The assumption was made that all the values of a 
distributed parameter were correct relative to each other and 
to their spatial location. The mean value of the parameter and 
the deviation from the mean for each HRU was computed. 
The mean was then adjusted and the deviations were used to 
recompute the individual HRU values. In the recomputation 
procedure, the HRU values can be increased or decreased by 
the same magnitude or by the same percentage of their initial 
value. An upper and lower bound were specified for each 
parameter, and individual HRU values were reset to the 
boundary value if they exceeded the specified bound. 

Meteorological and streamflow time-series data were 
available for the period 1978-1996 in the Animas and 
Carson basins and 1978-1994 in the Cle Elum basin. 

Parameter calibration was conducted using the period 1978- 
1988 and all analyses of parameter sensitivity and model 
performance were conducted using the period 1989 to the 
end of the record or selected years within this period. 

RESULTS 

Parameter Sensitivity 

A first step in the evaluation of parameter-estimation 
methods was to determine if the model had any sensitivity 
to the parameters being estimated. Parameter sensitivities 
were determined using the PRMS sensitivity analysis proce- 
dures. For comparative purposes the parameters were 
grouped into the general categories of (1) GIS Weasel com- 
puted, (2) meteorological process, and (3) runoff timing 
process. A selection of the most sensitive parameters in each 
group is shown in Table 2. 

Comparing differences among the parameter groups for 
all basins showed that the meteorological parameters, in 
most cases, were about an order of magnitude more sensi- 
tive than those in the other two groups. Tmax_allsnow is a 
scalar value but was applied to each HRU and thus affected 
the spatial distribution of rain and snow through the effect of 
the temperature-distribution relations determined using the 
xyz-method. 

Differences among the basins within parameter groups 
reflected the differences in the climatic and physiographic 
characteristics of the three mountain regions. The most sen- 
sitive GIS Weasel estimated parameters were (1) winter 
cover density (covden_win) and solar radiation transmission 
coefficient (rad_trncf) which affect the snowpack energy 
balance relations, and (2) the Jensen Haise HRU ET coeffi- 
cient (jh_coef_hru) and available soil-water storage 
(soil_moist_max) which affect the water-balance relations. 
The higher sensitivity of rad_trncf in the Animas basin 
reflects the somewhat larger effect of shortwave radiation on 
the snowpack energy balance in the Rocky Mountains as 
compared to the Sierra Nevada and Cascade ranges. The 
most sensitive parameter in the meteorological group in all 
basins was tmax_allsnow, which delineates precipitation 
form between snow and rain. It was most sensitive in the 

Carson and Cle Elum basins where rain-snow combinations 

and rain-on-snow events are much more common than in the 

Animas basin. 

The most sensitive runoff-timing parameters were the 
emissivity term in the longwave energy equation 
(emis_noppt) and the daily flux rate of water movement 
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Table 2. Percent change in model standard error for a 10 percent 
increase in selected parameter values. 

Group Parameter Animas E F k Carson Cle Elum 

GIS Weasel covden_win .02 1.01 .02 

jh_coef_hru .58 .28 .07 

rad_trncf 2.66 .82 .17 

soil_moist_max .41 .15 .05 

Meteorological adj mix_rain 2.80 .95 .39 

bias .61 .02 .01 

tmax allrain 7.31 2.13 .02 

tmax_allsnow 8.51 30.45 21.67 

Runoff Timing emis_noppt .78 3.14 .59 

gwflow_coef .09 .18 .01 

soi12gw_max .63 .38 .05 

ssrcoef_sq .05 .09 .10 

from the soil zone to the ground-water reservoir 
(soi12gw_max). The emis_noppt parameter affects the long- 
wave energy balance computation for days with no precipi- 
tation. Soi12gw_max affects the distribution of runoff 
between more rapid subsurface and slower ground-water 
flow sources. Comparing the sensitivity of rad_trncf to 
emis_noppt within each basin indicates the relative effects 
of shortwave and longwave energy on the total energy bal- 
ance for snowmelt computations in each basin. Rad_trncf is 
more sensitive than emis_noppt in the Animas basin but less 
sensitive in the Cle Elum basin, which is again indicative of 
a greater effect of shortwave energy in the Animas basin. 
The smaller sensitivity of rad_trncf in the Carson basin may 
be anomalous and is related to a problem of the underesti- 
mation of rad_trncf discussed in the next section. 

Uncalibrated Parameters 

Evaluation of the performance of selected a priori param- 
eter estimates was conducted using a Monte Carlo analysis 
procedure. A test case was constructed to evaluate a selected 
set of sensitive parameters that were estimated from the spa- 
tial and climatic datasets. One thousand model runs were 

made using parameter sets with randomly generated values 
for the four parameters estimated by the GIS Weasel (Table 
2) and the tmax_allsnow and the bias parameters. The results 
for the rad_trncf, soil_moist_max, and tmax_allsnow param- 
eters on each basin are shown as dotty plots in Figure 2. 
These plots reflect the concept of equifinality where a num- 
ber of different parameter sets may be suitable for reproduc- 
ing observed basin streamflow (Beven and Freer, 2001). The 
arrows indicate the dots that represent the uncalibrated 

model parameter set and objective function values of the ini- 
tial uncalibrated run. For a distributed parameter, the x-axis 
value is the mean of all HRU values weighted by HRU area. 
The objective-function values for the uncalibrated runs are 
larger than the objective-function values for the best-fit runs 
by about 45 percent in the Animas basin, 85 percent in the 
Carson basin, and 30 percent in the Cle Elum basin. 

The parameter sets containing the best-fit values for 
rad_trncf were reasonably well constrained on the Animas 
and Carson basins but less so on the Cle Elum. This reflects 

in part the sensitivity of each basin to shortwave energy 
input. The mean of the a priori estimate of rad_trncf was 
overestimated in the Animas basin and underestimated in 

the Carson basin but had a value with a less clearly defined 
error in the Cle Elum basin. The higher estimate of 
rad_trncf in the Animas basin produced an overestimate of 
shortwave energy available for snowmelt while the lower 
estimate in the Carson and Cle Elum produced an underes- 
timate of shortwave energy available for snowmelt. 

The a priori estimates of rad_trncf were computed using 
the HRU winter vegetation cover densities computed from 
the forest-density dataset. The estimated mean value of the 
winter cover-density parameter covden_win was about 35 
percent in the Animas basin and about 71 percent in the 
Carson and Cle Elum basins. The mean value of 71 percent 
for covden_win in the Carson basin appeared high. An 
examination of the forest density dataset for the Carson 
basin showed a large number of grid cells with the value of 
100 percent forest density. The forest density values were 
based on the coregistration of Advanced Very High 
Resolution Radiometry (AVHRR) data and Landsat 
Thematic Mapper (TM) and on regression analysis of sta- 
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Figure 2. Monte Carlo analyses for the parameters rad_tmcf, soil_moist_max, and tmax_allsnow on the Animas, 
Carson, and Cle Elum basins. (Arrows indicate uncalibrated parameter set values and results.) 

tistical relations between the two data types (Zhu, 1994). 
The forest density was the percentage of forested TM cells 
within one AVHRR cell. There were about 1,225 TM cells 
in an AVHRR cell and a TM cell was considered forested if 

it contained a classified forest type. 

Thus, 100 percent forest density from the dataset does not 
necessarily mean 100 percent cover of the land surface, only 
that 100 percent of the TM cells had some forest cover. 
However, covden_win is defined as one minus the percent- 
age of the sky visible from the land or snow surface. A value 
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of 100 percent forest cover effectively eliminates shortwave 
energy from the snowpack energy-balance computation. 
The forest-density dataset was used as an index of coy- 
den_win in this application and some adjustment for the dif- 
ference in interpretation will be needed to better estimate 
covden_win and rad_trncf. 

The soil_moist_max parameter was computed from the 
STATSGO soils dataset. It shows a much larger degree of 
uncertainty when compared to the other two parameters 
shown (Figure 2). This reflects the fact that in the snowmelt 
regions selected, the soil typically remains at or near field 
capacity during most or all of the snowmelt-runoff period 
and thus its storage capacity has only a small effect on 
streamflow. The snowmelt period is the major source of the 
annual streamflow in these basins. Consequently, the value 
of the STATSGO dataset for estimating soil_moist_max 
cannot be fully evaluated in these basins. 

The relative insensitivity of tmax_allsnow in the Animas 
basin reflects the fact that there are few winter rain or rain- 

snow mixed events and that most snow events occur at tem- 

peratures well below 1.7 ø C. In the Carson and Cle Elum 
basins, winter rain and rain-snow mixed events are more 
common and the threshold effect of tmax_allsnow is more 

evident. The large increase in the objective function at 
tmax_allsnow values less than about 0 ø C results from the 
associated increase in the proportion of rain versus snow. 
This response provides some confidence that the model 
responds correctly to physically unrealistic values of 
tmax_allsnow. Smaller increases in the objective function 
for tmax_allsnow values greater than 0 ø C may indicate less 
sensitivity to decreases in the proportion of rain versus 
snow, or that rain events occur at temperatures much 
warmer than 0 ø C. 

Constrained Calibration Performance 

Calibrated model performance at each level of parameter 
fitting was measured using the Nash-Sutcliffe CE (Table 3). 
The uncalibrated parameters produced the poorest perform- 
ance of all the levels of fitting. At this level, the best simu- 
lation results were obtained in the Animas basin with less 

satisfactory results in the other basins. 
At the second level, calibrating the PET parameter and 

applying the exhaustive search procedure in the xyz 
methodology provided improved results in all basins. The 
increases in the CE were 0.26 in the Carson basin and 0.05 

in the Animas and Cle Elum basins. The smaller levels of 

improvement in the Animas basin implies that the initial 
selection of climate stations in and near the basin was rea- 

sonable but that improvement in model performance is pos- 
sible. A similar statement can be made for the Cle Elum 

basin but only after observing the results from level 3 which 
indicated that timing was a larger source of error than the 
water balance. 

The fitted bias corrections, associated with gauge-catch 
error for snow, were 30, 0, and 10 percent for the Animas, 
Carson, and Cle Elum basins respectively. These values 
appear reasonable, with the exception of the Carson basin. 
As with any parameter fitting exercise, the station-set selec- 
tion and bias correction may be adjusting for biases in the 
data as well as biases in other parameters or model concep- 
tualizations. 

Calibrating the runoff-timing parameters at level three 
increased the CE by 0.17 for the Cle Elum basin but only 
0.05 and 0.02 for the Carson and Animas basins respective- 
ly. Calibrating the GIS Weasel estimated parameters at level 
four increased the CE an additional 0.05 in the Animas and 

Carson basins but only 0.01 in the Cle Elum basin. 
The stepwise fitting provided a mixed picture of the value of 

the estimated parameters in each group. Improvement in 
model performance varied among the basins with the fitting of 
each group. Improvement in the Animas was about the same 
for each fitting step, while the meteorological parameter fitting 
on the Carson and timing parameter fitting on the Cle Elum 
provided the greatest improvement in model performance. 

DISCUSSION AND CONCLUSIONS 

The results presented have provided an overview of the 
initial methods and tools that are being integrated into a 
modeling framework for use in the development, testing, 
and application of a priori parameter-estimation methodolo- 
gies. While limited in scope, the results raise a number of 
issues that need to be addressed in the continued develop- 
ment and enhancement of the methods and tools. These 

issues relate to the general categories of datasets, parameter- 

Table 3. Nash-Sutcliffe coefficient of efficiency for four levels of 
parameter fitting. 

Level Animas East Fork Cle 

Carson Elum 

1. Uncalibrated .73 .47 .52 

. 

2. Exhaustive search xyz .78 .73 .57 

, 

3. Optimize timing .80 .78 .74 

4. Full optimization .85 .83 .75 
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estimation methods, and measures of model performance. 
Dataset issues include concerns of dataset consistency, 

areal extent, and value. The datasets used in this study were 
selected because they were available for the entire United 
States and each was produced with a consistent methodolo- 
gy. This enabled the comparison of parameter estimation 
methods and the information content of the dataset among 
different regions of the United States. The value of a dataset 
relates to measures that include the accuracy of the data and 
the effect of the data on improved model performance. The 
value of the STATSGO soils dataset was shown to be limit- 

ed in the basins tested because of the insensitivity of the 
model to the computed available water-holding capacity 
parameters. To get a more complete measure of the value of 
the STATSGO dataset, basins with rain as a more dominant 

precipitation form will need to be included in the study. 
Expanding the study to all regions of the United States will 
enable a comparable evaluation of the value of other avail- 
able datasets for a range of models and process parameteri- 
zations. 

Alternatively, parameters calculated using the vegetation 
type and density datasets had a much higher sensitivity but 
raised another concern that leads into the issue of appropri- 
ate parameter-estimation methodology. An attempt was 
made to use the forest density dataset as a surrogate for the 
forest cover density parameter in PRMS. However, incon- 
sistencies in the interpretation of these two physical meas- 
ures were a major source of parameter and model error. 

An alternative approach to using dataset values directly in 
parameter computation is to first calibrate spatially distrib- 
uted parameters on a typical set of basins within a region of 
interest. Then regression equations, relating the calibrated 
parameter values to values in the dataset, are developed. 
The resulting regression equations and original datasets are 
then used to estimate distributed parameters on other basins 
in the region (Abdulla and Lettenmaier, 1997; Xu, 1999). 
While the referenced examples used modeling approaches 
different from PRMS, the method should be applicable to a 
wide of variety of lumped and distributed models. One con- 
cern, however, is that fitted parameters may be biased by 
other sources of error, thus the value of this approach com- 
pared to other approaches needs more evaluation. It also 
requires a reasonable number of gauged basins with suffi- 
cient spatial variability to address the full range of related 
basin characteristics and parameter values. 

Methods to define the distribution of precipitation and 
temperature are key to being able to accurately simulate dis- 
tributed hydrologic processes and streamflow. While this is 
a problem in all regions, it is most pronounced in areas of 
complex and mountainous terrain. In the Animas basin, the 
uncalibrated xyz methodology using precipitation and tem- 

perature stations in and near the basin produced reasonable 
model performance. Application of the xyz exhaustive 
search procedure brought model performance in the Carson 
basin to an acceptable level and improved performance in 
the Animas basin further. The testing and development of 
the xyz methodology began in mountainous regions and has 
only recently begun testing in other regions of the United 
States. It should be applicable for temperature distribution 
in all climatic and physiographic regions. For precipitation 
distribution, it is most applicable for frontal type precipita- 
tion events that occur over an entire watershed. Modifica- 

tions to the current xyz method as well as other techniques 
are being evaluated for use with more localized, convective- 
type storms. 

In the Cle Elum basin the effects of the xyz methodology 
on model performance was masked to some degree by the 
errors associated with poor estimates of the runoff-timing 
parameters. This observation identifies two issues. One is 
the general lack of a regional or global dataset for geologi- 
cal and hydrogeological characteristics that could be used to 
assist in the estimation of runoff-timing parameters related 
to the apportioning of the surface and surface components 
of streamflow generation. These parameters were estimated 
from model application to other basins in this region and the 
results reflect some of the potential difficulties in transfer- 
ring parameters from one basin to another. 

The second issue is the question of how to best identify 
and measure the sources of error, such as data, parameter, 
and model error, and what measures are most appropriate 
for objectively defining parameter and model performance. 
The Animas and Carson model results were described above 

as being acceptable. The level of acceptability is typically a 
subjective judgment and needs to be more clearly defined in 
terms of what specific measures are most appropriate and 
what are acceptable magnitudes of those measures. 

Measures of model performance are also needed to com- 
pare uncalibrated performance versus the calibrated model. 
Appropriate measures could be used to provide confidence 
limits for simulation results on ungauged basins. Such 
measures would also provide a consistent way to compare 
other methodologies and models. Defining the appropriate 
measures of performance is a question that still needs to be 
addressed. 

Historically the measure most typically used for calibrat- 
ing and evaluating distributed parameters has been stream- 
flow. However, streamflow integrates the spatial variability 
of the process parameters being fitted. Thus it is possible to 
obtain a reasonable simulation for the wrong reason. A more 
appropriate measure of distributed parameter performance 
would be spatial measures related to the process being sim- 
ulated. Increasing availability of remotely sensed data is 
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now making it possible to begin to develop some independ- 
ent measures of distributed parameter model performance. 
One such measure currently available is snow-covered area. 

The ability of PRMS to adequately simulate streamflow 
and the spatial and temporal distribution of snow-covered 
area has been demonstrated in the Carson basin (Leavestey 
and Stannard, 1990) and in five basins adjacent to the 
Animas basin (Leavestey et at., 2002). A comparison of the 
model simulated snow-covered area with that measured by 
satellite, throughout the melt season, showed that the spatial 
and temporal distribution of snowpack accumulation and 
melt agreed well with the satellite data for the basins in both 
regions. Concurrently, simulated streamflow agreed well 
with the volume and timing of measured streamflow. The 
agreement in simulated snow-covered area and streamflow 
volume and timing infer a measure of confidence in the 
parameter estimation methods applied and in the transfer- 
ability of the methods to ungauged basins. The Carson and 
Animas basins were selected for this study in part based on 
the results of these previous studies. 

To address the issues raised in this study and to build on 
its results, the parameter-estimation methodologies will be 
tested and enhanced using tens of basins in a number of cli- 
matic and physiographic regions of the United States using 
a variety of process conceptualizations. Test basins provid- 
ed by the Model Parameter Estimation Experiment 
(MOPEX) project (http://www. nws.noaa.gov/oh/mopex/), 
which is a cooperative activity of the international scientific 
community, will be used to expand the study to basins in 
other regions the world. 

To facilitate this, the GIS Weasel and xyz methods will be 
enhanced to operate in a batch mode. User-specified recipe 
files in the GIS Weasel will define the delineation, charac- 

terization, and parameterization procedures to be applied to 
the select basins in each region. Alternative recipe files will 
be developed for each model and each set of parameter esti- 
mation methods and datasets to be evaluated. The Shuffle 

Complex Evolution Optimization algorithm (Duan et at., 
1993) and the Multi-Objective COMplex Evolution atgo- 
rithm (Yapo et at., 1998; Gupta et at., this volume, "Multiple 
Criteria Global Optimization for Watershed Model 
Calibration"), which is capable of solving multi-objective 
optimization problems, are also being incorporated in to 
MMS. The Monte Carlo methodology is being expanded to 
incorporate the Generalized Likelihood Uncertainty 
Estimation (GLUE) procedure (Beven and Binley, 1992; 
Beven and Freer, 2001; Freer et at., this volume). 

This research effort is not unique. A variety of systems 
and tools to address the issues of parameter estimation and 
uncertainty analysis are being developed by other investiga- 
tors using approaches that include multi-criteria optimiza- 

tion, sensitivity analysis, and generalized likelihood uncer- 
tainty analysis techniques (Beven and Bintey, 1992; Beven 
and Freer, 2001; Yapo et. at., 1998; Wagener et. at., 1999; 
Wheater and Lees, 1999). What separates MMS from these 
other systems is the Open Source software system approach 
in which all members of the scientific community can par- 
ticipate in the design and development of the system frame- 
work, process modules, and analysis and support tools. The 
resulting toolbox will facilitate the multidisciplinary, sys- 
tematic approach that is needed to 1) identify the most 
appropriate estimation methods for use with different mod- 
els in different climatic and physiographic regions, and 2) 
define the robustness and reliability of these methods and 
their associated datasets. 

Further information on MMS and the GIS Weasel can be 

found at: 

http://wwwbrr. cr. usgs.gov/mms 
http://wwwbrr. cr. usgs.gov/weasel 
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Distributed hydrologic models based on conservation laws have identifiable 
optimal values and expected behavior and interaction during calibration. This 
paper describes a calibration method that exploits these model characteristics and 
presents results for two fiver basins: the Illinois River (2300 km2) and Blue River 
basins (1142 km2) in Oklahoma. Distributed parameter watershed models that are 
physics-based offer distinct advantages over conceptual rainfall-runoff models. 
Spatially distributed parameters derived from soil properties, land use/cover, 
topography, and input from radar rainfall require new methods for adjustment in 
order to minimize differences between simulated and observed hydrographs. The 
scheme presented is an ordered physics-based parameter adjustment (OPPA) 
method. Two fiver basins are simulated with volume errors with good agreement 
in volume for a series of eight storm events over each basin. The calibrated sim- 
ulations for the Blue are within 1.5 mm average difference, 6.9% average error, 
with a root mean square error (RMSE) of 9.7 mm. The calibrated simulations for 
the Illinois are within 2.5 mm average difference,-12.5% average error, and 
RMSE=3.6 mm. Realistic parameter values are obtained for both basins based on 
soil properties and land use/cover maps. Equivalent calibration factors are 
obtained for the two basins even though they are simulated at differing resolutions 
and are located in different geographic-climatic regions. 

INTRODUCTION 

The goal of distributed modeling of streamflow is to bet- 
ter represent the spatio-temporal characteristics of a water- 
shed governing the transformation of rainfall into runoff. 
Thus, the motivation for development of distributed hydro- 
logic modeling. A number of modeling approaches exist that 
rely on conservation equations for the routing of runoff 
through a distributed representation of a watershed. Such 
models, termed physics-based or physically-based distrib- 
uted models (PBD), include r. water. fea (l•eux and Gauer 
1994; l•eux 2001), a parallel version of r. water. fea called the 
distributed hydrologic model (DHM); CASC2D [Julien and 
Sagharlan, 1991; Ogden and Julien 1994; Julien et al. 
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1995], Systeme Hydrologique European (SHE) (Abbott et 
al. 1986a; b) and the Distributed Hydrology Soil Vegetation 
Model (DHSVM) [Wigmosta et al. 1994]. These models for- 
mulate runoff generation and routing based on conservation 
equations to various degrees. 

Because the parameters are derived from physical proper- 
ties, prior knowledge exists for starting points in the cali- 
bration process, and may be applied to ungauged water- 
sheds. PBD models are well suited to simulating specific 
events at locations where streamflow records may not exist 
or are relatively short. Conceptual rainfall-runoff (CRR) 
models include Precipitation-Runoff Modeling System 
(PRMS) by Leavesley et al. [1983], the Sacramento Soil 
Moisture Accounting Model (SAC-SMA) [Burnash et al. 
1973]. The SAC-SMA model simulates runoff generation 
with 16 conceptual parameters and routes the runoff using 
unit hydrographs to an outlet. Deriving these conceptual 
parameters from soil properties may help extend the appli- 
cation of the SAC-SMA model to ungauged watersheds 
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[Koren et al. 2000]. Both CRR and PBD models require ini- 
tial parameter estimates, which are then refined through cal- 
ibration (see Koren et al. this volume). 

CRR models are not physics-based by definition, but may 
be considered semi-distributed by subdividing the water- 
shed into sub-basins. Assessment of performance improve- 
ments associated with subdivision of the Blue River basin 

from a single lumped basin to 8-subbasins is described by 
Boyle et al. [2001]. This approach was tested along with 
various combinations of lumped versus distributed parame- 
ters, soil moisture, routing, and precipitation inputs. 
Improved model predictions were found by using semidis- 
tributed parameters with three subbasins, but little improve- 
ment when the subdivision was extended to eight. The semi- 
distributed model performed significantly better than the 
lumped representation of parameters. Current efforts to 
transform the SAC-SMA model into a semi-distributed rep- 
resentation are underway at the US National Weather 
Service (NWS) [Koren et al., 1999; and Boyle et al. 2001]. 
Motivation for this stems from a desire to improve per- 
formance of the lumped SAC-SMA by subdividing it into 
subbasins or grids. 

Development of automated computer-based calibration 
methods has focused mainly on the development of 1) 
mulitcriteria objective functions [Boyle et al., 2001; Bolye 
et al. this volume], and 2) optimal value search algorithms 
[Sorooshian and Dracup, 1980; Duan et al., 1992, 1994]. 
Yapo et al. [1998] extended the single-objective function 
method to a multi-objective complex evolution (MOCOM- 
UA) capable of exploiting the observed time series. Boyle et 
al. [2000] compared automatic with manual methods of cal- 
ibration to develop a multicriteria approach to optimization 
that combines features from both. Regardless of the search 
algorithms used to calibrate CRR models, parameter inter- 
action, convergence and interstorm/interannual stability are 
still problematic. 

PBD models are parameterized by deriving estimates of 
parameters from physical properties, viz.; databases of soil 
properties used to derive infiltration parameters. Besides 
uncertainties in parameters and inputs, model prediction 
accuracy depends on how well the model structure represents 
physical conditions. Balance between model complexity and 
number of parameters, given limited streamflow observations 
is a significant concern [Jakeman and Hornberger, 1993; 
Hornberger and Spear, 1981; and Freer, et al. this volume]. 
Because of the common experience with CRR models that a 
number of parameter sets give equal performance, the con- 
cept of multiple models with no optimal parameter set (equi- 
finality) has been advanced by Beven and Freer [2001]. 

Vieux [2001] used a distributed model to investigate the 
hydrologic worth of distributed data. Considerable sensitiv- 

ity to spatially averaged (lumped) parameters in a fully dis- 
tributed model is found. Two effects of lumping calibrated 
parameters were noted: 1) a bias in simulated results caused 
by delayed and attenuated peaks and reduced volume, and 
2) degraded prediction accuracy resulting in poorer per- 
formance in volume and peak discharge. Scale effects intro- 
duced through discretization can introduce bias requiting 
re-calibration [Finnerty et al., 1997; Obled et al. 1994]. 
Better parameter representation of watershed characteristics 
generally improves model prediction accuracy whether it is 
a PBD or CRR model. The degree or extent of improvement 
likely depends on the particular model structure used to 
investigate the importance of the spatial variability affecting 
the process. 

Distributed Model Calibration 

PBD model calibration differs from CRR calibration in 

two important ways. First, some scheme must be devised to 
adjust the grid cell parameters affecting the output. Second, 
as a result of the governing equations derived from the 
physics of conservation of mass and momentum, the param- 
eters should exhibit expected behavior. Because of the 
known behavior of the model, a sequence of adjustment is 
possible that identifies the optimal parameter set. This 
method is termed as ordered physics-based parameter adjust- 
ment (OPPA). The OPPA method described herein capital- 
izes on the expected behavior of a physics-based model. 

Automated retrieval of the optimal set can be implement- 
ed using a cost surface to search out the optimal parameter 
values. Manual methods involve making the adjustment to 
model parameters and inspecting each hydrograph individ- 
ually, or inspecting the cost surface formed from many 
events and identifying the optimal parameters. Automatic 
retrieval involves search algorithms that find the minimum 
or optimal values on a cost surface. One automated tech- 
nique is the adjoint equation, which is the inverse of a par- 
tial differential equation subject to minimization of a cost 
function. Finding the solution that minimizes the objective 
function constitutes an optimal control problem using 
scalars to multiply maps of parameters [•eux et al., 1998; 
Vieux, 2001; White et al., 2001a,b]. Because there are 
underlying differential equations in PBD models, we can 
form an adjoint of the forward model and invert in the pres- 
ence of data to find if there is a unique solution. A unique 
solution exists if the model is invertible. Existence of iden- 

tifiable optimal parameter sets can be demonstrated mathe- 
matically through the adjoint method, or through direct 
computation of a cost surface as described in this chapter. 

Several aspects of the PBD model calibration are of par- 
ticular importance: 1) Maps of parameters derived from 



geographic information system or remote sensing (GIS/RS) 
data provide spatial distribution, 2) Parameters may be scale 
dependent because of sampling characteristics of the 
GIS/RS source, 3) Slope and drainage length are dependent 
on DEM resolution, and 4) Calibration is used to adjust ini- 
tial parameter estimates from soil properties, DEM, and land 
use/cover. 

The agreement between the observed and simulated vol- 
ume and peak flow may be expressed in terms of bias and 
departures. The bias indicates systematic over or under pre- 
diction. The departure, whether expressed as an average dif- 
ference, percentage error, coefficient of determination, or as 
a root-mean-square error, serves as a measure of the predic- 
tion accuracy. Three objective functions may be considered: 

1)Square of errors between observed and simulated 
volume; 

2) Square of errors between observed and simulated peak 
flow; 

3) Sum of the normalized errors of volume and peak flow. 

A physics-based model has the advantage of having 
expected parameter response and interaction. Calibrating 
such a model profits from the physical relationship, physical 
significance, and expected response to adjustment of param- 
eters derived from physical properties. To summarize the 
approach taken for distributed rainfall-runoff calibration, the 
following list may be enumerated. 

1)Estimate the spatially distributed parameters from 
physical properties; 

2)assign channel hydraulic properties based on 
measured cross-sections where available; 

3)study the sensitivity of each parameter: 
a. Identify response sensitivity to each parameter; 
b. run the model for a range of storms from small, 

medium, to large events; 
c. observe the characteristics of the hydrograph over 

the range of storm sizes; 
d. observe any consistent volume bias; 
e. identify seasonal effects that may influence radar 

estimation of rainfall, land use/cover, or other 
factors; 

f. identify any systematic bias due to radar, soil 
moisture, or hydraulic conductivity; 

g. derive range of response for a given change in a 
parameter, e.g., soil moisture; 

h. categorize parameters according to response 
magnitude. 

4) the optimum parameter is that set which minimizes the 
respective objective function; 
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5)volume should be adjusted first, followed by 
parameters affecting timing and peak; 

6)re-adjust hydraulic conductivity if necessary to 
account for changes due to parameter interaction. 

Table 1 shows the expected response and the parameter 
affecting the model response. This table can be read as: 
increasing the volume of the hydrograph (+) is achieved by 
decreasing hydraulic conductivity (-). Similarly, increasing 
peak flow (+) is achieved by decreasing hydraulic rough- 
ness (-). Channel parameterization should be applied 
according to measured cross-sections, and measured or 
visual estimates of hydraulic roughness. If this is unavail- 
able, then channel hydraulic characteristics may be estimat- 
ed from similar channels, geomorphic relationships or local 
knowledge and then adjusted. Channel hydraulics primarily 
affect the timing, and to some degree the peak discharge. 
Multiple gauging stations within a river basin helps resolve 
timing problems associated with channel hydraulics and 
aids in the adjustment process. Consistent bias in timing 
may be related to the channel or the overland flow 
hydraulics, or both. In either case, these parameters are esti- 
mated, and then adjusted to minimize the objective function. 

The OPPA method is described and demonstrated for two 

watersheds located in Oklahoma and Arkansas. The remain- 

ing sections describe the model structure, study watershed 
locations and data, results and discussion showing the 
results of the OPPA method, and conclusions. 

MODEL DESCRIPTION 

The model used herein was first developed by lAeux 
[1988] and applied to a small agricultural watershed without 
channel routing, which was later added. The solution using 
linear, one-dimensional elements presented by Vieux et al. 
[1990] uses a single chain of finite elements for solving 
overland flow. lAeux and Gauer [1994] extended this finite 
element solution to a network of elements representing a 
watershed domain with channels within a GIS. The resulting 

Table 1. OPPA Method Parameter and Response. 

Response 
Runoff Volume 

(+) 
Runoff Volume 

(+) 
Runoff Volume 

(+) 
Peak flow 

(+) 
Time to peak 

(+) 

Parameter 

Hydraulic cOnductiVity ...... 
(-) 

Initial degree of 
saturation (+) 

Radar rainfall bias, G/R 
(+) 

Hydraulic roughness 
(-) 

Hydraulic roughness 
(+) 
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model was the distributed hydrologic model r. water. fea, 
developed in 1993 for the U.S. Army Corps of Engineers, 
Construction Engineering Research Laboratory, 
Champaign, Illinois (USA-CERL). The initial development 
of the model is a part of the public domain GIS called 
GRASS (Geographic Resource Analysis Support System). 
Several derivative models now exist. The r. water. fea model 
was ported from Unix to a Windows version that runs as an 
ArcView Extension, called Arc. water. fea [Vieux, 2001]. The 
r. water. fea model accesses a map database for various 
parameters controlling the hydrologic process. For example, 
rainfall rates derived from radar or other sources are sam- 

pled over each grid cell as input to the model. Integration of 
the r. water. fea model with GIS routines requires that the 
model be run within either the GRASS or ArcView GIS. 

Other versions are modifications to run in special environ- 
ments. The DRUM (distributed runoff model) is coupled 
with the SHEELS model for soil moisture modeling 
[Crosson et al. 1999]. A parallel version is also being devel- 
oped as a part of the Environmental Hydrology Applications 
Team (EHAT) project at the National Center for 
Supercomputing Applications [NCSA-EHAT, 2001]. 

A recent version of the finite element approach written in 
Java TM, takes advantage of client-server applications within 
a real-time operational context. Due to the computational 
efficiency of the finite element method (described below), 
large watershed domains may be simulated in real-time 
using precipitation from radar updated every 5 or 6 minutes. 
This model, called Vflo TM, is a new implementation of the 
finite element approach with many improvements related to 
ease of operation and stream routing options. It is currently 
operational for real-time hydrologic prediction for the 
Central Weather Bureau, Republic of China (Taiwan), in the 
U.S. over the coastal Carolinas, and the intermountain 
Southwest in the Salt and Verde watersheds in Arizona for 

the Salt River Project. The family of models' r. water. fea, 
arc. water. fea, and Vflo TM are network models capable of 
utilizing widely available digital datasets describing topog- 
raphy, land use/cover, soils, and radar rainfall. In the fol- 
lowing sections, the mathematical analogy, numerical solu- 
tion, and implementation are described. 

The connectivity between grid cells in a digital elevation 
model is used to develop a system of equations for solving 
the kinematic wave analogy (KWA). Figure 1 shows the 
grid cell scheme used by r. water. fea to define the finite ele- 
ments connecting overland flow and channel elements. 
Because overland flow in the KWA is in the direction of 

principal landsurface slope, it relies on a drainage direction 
map derived from a digital elevation model (DEM). This 
scheme is efficient since cross-drainage gradients are not 
present in the KWA and therefore, need not be computed. 

The mathematical formulation and computer implementa- 
tion are not burdened from computing unneeded terms pro- 
vided the model is correctly applied in situations where the 
land surface gradient dominates. The KWA assumption is 
appropriate whenever backwater effects are not important, 
or with some error in hydraulically mild slopes. 

Mathematical Formulation 

The KWA for overland flow is a simplification of the con- 
servation of mass and momentum equations wherein the 
dominating principle gradient is the land surface slope. The 
conservative form of the full dynamic equations relates the 
temporal and x-direction gradients of flow depth, y and 
velocity, V as: 

•)t 
r av-(So+S )-o (1) 

If all other terms are small or an order of magnitude less 
than the bed slope, S o, or friction gradient, Sf, the KWA is 
an appropriate representation of the wave movement down- 
stream in many practical watershed applications [Singh 
2002; Chow et al., 1988]. The simplified momentum equa- 
tion and the continuity equation comprise the KWA. The 
one-dimensional continuity equation for overland flow 
resulting from rainfall excess is expressed by: 

I = R- I (2) 
3t 3x 

where R is rainfall rate; I is infiltration rate; h is flow depth; 
and u is overland flow velocity. In the KWA, we equate the 
bed slope with the friction gradient, which amounts to the 
uniform flow assumption. Using this fact together with an 
appropriate relationship between velocity, u, and flow 
depth, h, such as the Manning equation, we obtain: 

1/2 
"-'o h2/3 (3) 

where S o is the bed slope or principal land surface slope, 
and n is the hydraulic roughness. Velocity and flow depth 
depend on the land surface slope and the friction induced by 
the hydraulic roughness. Hydraulic roughness is derived 
from land use/cover or remotely sensed vegetation maps. 
Both overland and channel flow are represented by Eqs. 2 
and 3 with suitable adaptation for channel characteristics. 
This eliminates the need to assign time of travel explicitly 
for each cell as in DHSVM or the HEC-HMS ModClark 

method, because timing and the effects of drainage network 
configuration are accounted for implicitly as defined by the 



,, 
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Rainfall 

:Runon/ '"• Infiltration 

Figure 1. Schematic representation of r. water. fea. 

drainage network, slope, and hydraulic roughness in the 
drainage network comprised of overland and channel 
cells. 

Two of the most important parameters in this model are the 
saturated hydraulic conductivity, k, controlling infiltration, I, 
in Eq. 3 and the roughness, n. Hydraulic conductivity con- 
trols the total amount of water that will be partitioned into the 
surface runoff and the subsurface, whereas the hydraulic 
roughness mainly affects the peak flow and the time to peak. 
Model results obtained from Eqs. 2 and 3 are adjusted by 
scalars applied to spatially distributed parameters: 

1/2 5/3 c•h s 
+ fl : yR- (4) 

c9t n 

where the three scalars a, 7, fl and are multipliers control- 
ling t•e infiltration rate,/, rainfall rate, R, and hydraulic 
roughness, n, respectively. The flow depth, h and slope, s is 
the principal land-surface slope at the center of each grid 
cell. The slope and hydraulic roughness are spatially vari- 
able, while rainfall, infiltration, and flow depth are spatially 

and temporally variable. If we consider the rainfall as accu- 
rately known, i.e., no bias, then 7 is equal to one. 

The OPPA method relies on the scalars in Eq. 4 as adjust- 
ments of the PBD model. When viewed as controls of the 

solution in the adjoint formulation, an optimal control 
scheme results [Vieux et al., 1998; Vieux, 2001; White et al., 
2001a,b]. The fact that Eq. 4 may be inverted indicates that 
there is a unique solution and that the parameters are iden- 
tifiable. For a distributed-parameter model, existence of a 
set of unique controls (scalar multipliers) is predicated on 
knowing the spatial pattern of the parameter. Knowing the 
spatial pattern reduces the distributed parameter in two- 
dimensions to simple adjustment of the scalars. Without 
knowledge of the spatial pattern, a uniform value may be 
used, which is a special case of spatial variability. Whether 
manual or adjoint methods are used, an optimal parameter 
set is found where the cost surface is a minimum. 

Finite element solution. The finite element solution to the 

KWA for a watershed is described in detail by Vieux [2001]. 
Linear one-dimensional elements are laid out in the eight 
principal directions of slope connecting each grid cell. 
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There is no reason that the lengths must be of equal length 
except that the drainage network connectivity is derived 
from GIS maps of drainage direction, which are generally of 
constant resolution. Using 1-D linear elements to solve the 
KWA equations is described by Vieux, [1988], V/eux et al., 
[1990], V/eux and Segerlind [1989], V/eux and Gauer [1994] 
and Vieux [2001]. The finite element method is based on 
forming the elemental residual, R(e) and then minimizing 
this over the domain represented by a system of equations. 
For the overland flow case, and replacing uh with the unit- 
width flow rate, q in Eq. 2 becomes: 

- + 
t 3x 

= 0 (5) 

Using weighting functions N r that are the same as linear 
shape function approximations for h(e) and q(e) in Eq. 5, the 
elemental residual is obtained. This forms the basis for 

assembling the elemental contribution into a system of ordi- 
nary differential equations in time, which are then solved 
with an explicit finite difference scheme. 

Computational efficiency of the finite element method. The 
limitation to widespread use of a fully distributed hydrolog- 
ic model was thought to be the computation time that limits 
model utility for real-time flood forecasting. Johnson [2000] 
tested the finite difference model CASC2D for the 130 km2 

Buffalo Creek watershed in Colorado, and found a 1:1 simu- 
lation:rainfall computational time. This means that for a 
CASC2D simulation for a basin receiving 20 hours of rain- 
fall takes 20 hours of computational time. It was also found 
that the CASC2D model was sensitive to, and produced vari- 
able results depending on the resolution and timestep used. 

The efficiency in the finite element method of diagonaliz- 
ing the time dependent matrix permits sufficient computa- 
tional efficiency to solve large watersheds over days of 
response in just minutes or seconds on a single processor. 
Simulation time on a PC, 500 mHz, Intel Pentium-3 proces- 
sor and 1-Gb RAM takes 5-6 minutes to simulate 8 days of 
runoff at a 100-second time step for the storm events tested 
over the 2400 km2 Illinois River basin at 1-km resolution. 

Simulation time from event to event depends on the vari- 
ability of the precipitation in each subbasin. Because of the 
efficiency of the finite element model, it is possible to per- 
form many sensitivity studies by direct computation of the 
parameter combination permutations. 

The prospects for using a distributed-parameter model in 
operational flood forecasting are possible because of this 
efficiency. Computational efficiency of the finite element 
method implemented in the Vflo TM model is the main reason 
that real-time applications are practical. If the model cannot 

complete the simulation before the next input from the radar 
scan, say every 5 or 6 minutes, then the model never arrives 
at a solution until the rainfall is over, and quite possibly, not 
until after the flood has occurred. 

Surface Runoff Generation 

Infiltration excess (IE) is treated by the model as the 
source of runoff. The model represents overland flow as a 
uniform depth over a computational element. From hillslope 
to stream channel, there may be areas of IE and Saturation 
Excess (SE), however, the model treats runoff generation as 
solely IE. Simulation of IE requires soil properties and ini- 
tial soil moisture conditions. The well-known Green-Ampt 
equation is used to account for the effects of initial degree of 
saturation on infiltration rate. The rate form of the Green- 

Ampt equation for the one-stage case of initially ponded 
conditions and assuming a shallow ponded water depth is 

f(t)- (6) 

where ½(t)=dF(t)/dt infiltration rate; K e = effective saturated 
hydraulic conductivity, estimated from soil properties or 
measured in the laboratory; Wf = average capillary potential 
(wetting front soil suction head); A • = moisture deficit; and 
F(t)= cumulative infiltration depth. The soil-moisture 
deficit can be computed as: 

AO = ½tot• - O, (7) 

where •total is the total porosity; and •/is initial volumetric 
water content. Eq. 6 is solved for cumulative infiltration 
depth, F for successive increments of time using a Newton 
iteration to obtain the instantaneous infiltration rate which 

when subtracted from the rainfall rate, R, becomes rainfall 
excess for routing through the finite element drainage net- 
work. Run-on from upslope is added to the rainfall vector 
making it possible for downslope areas to infiltrate runoff 
even though rainfall has ceased over any particular cell. This 
concludes the description of the relevant model compo- 
nents. Following sections describe the study area and results 
of the model calibration for the Illinois and Blue River 

basins. 

STUDY AREA AND DATA SOURCE 

Watershed Location 

The Illinois River watershed straddles the Okla- 

homaYArkansas border with approximately 54% of the 
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2,400 km2 drainage area at Tahlequah located in Oklahoma 
as shown in Figure 2. The basin spans Delaware, Adair, 
Cherokee, and Sequoyah counties on the Oklahoma side. 
The average annual flow of the Illinois River as it enters 
Oklahoma near Watts is 20 m3/s, which increases at 
Tahlequah to 29 m3/s, after which it flows into Tenkiller 
Ferry Lake. Both rivers are designated by the Oklahoma 
Scenic Rivers Commission as Scenic Rivers, and are not 

controlled by reservoirs. Rocky soils and outcrops tend to 
remain in either forest or pasture, whereas cropland is con- 
centrated in the more fertile soil in the lowlands or flatter 

slopes in the watershed. The dominant industry in the basin 
is agriculture in both the Blue and Illinois. 

Hydroclimatology of the Blue and Illinois Rivers 

The Oklahoma Climate Survey reports that over the coun- 
ties encompassing the Blue River, between 70-74 days are 
expected to have measurable precipitation. Normal annual 
precipitation ranges from 914 mm to over 1016 mm with 
fewer than 4 days of snow expected. The mean annual tem- 
perature is 16 C and between 80-89 days >32C are expect- 
ed. The South Central region of Oklahoma only has a mean 
annual runoff estimated to range from 152-203 mm [Ryder, 
1996]. The Illinois River typically receives measurable pre- 
cipitation between 80-90 days annually. Normal annual pre- 
cipitation ranges from 1066 to 1219 mm with 10-14 days of 
snow expected. The mean annual temperature is 14-15 C 
and less than 49 to 59 days >32C are expected. Mean annu- 
al runoff in the East Central region of Oklahoma is estimat- 
ed to range from 304 to 508 mm [Ryder, 1996]. Mean annu- 

Oklahoma {• • 
Illinois Rh er 

Blue River Arkansas 

Figure 2. Location of the 2,400 km 2 Illinois River Basin, sub- 
basins and USGS stream gauging stations in Oklahoma and 
Arkansas. 

al runoff in the region encompassing the Illinois River is 
roughly twice that of the Blue Riven 

The USGS 07332500 Blue River near Blue, OK has been 
in operation since 1936. It has a drainage areas 1142 km2. 
Hourly and daily streamflow hydrographs reveal that the 
hydrograph peaks increase rapidly and then return to flow 
around 5-10 m3/s. The maximum discharge is 1300 cms with 
a daily mean of 9 cms. Baseflow is a minor component com- 
pared to peaks of individual hydrographs. 

Since 1935, The USGS 07196500 Illinois River near 

Tahlequah, OK has been in operation. At this location, the 
drainage area is 2300 km2. Hourly and daily streamflow 
hydrographs reveal the hydrograph peaks increase rapidly 
and then return to low flow around 20-30 m3/s. The maxi- 

mum discharge is 2583 cms with a mean of 27 cms and 90% 
of being equal to or less than 4 cms. Baseflow though high- 
er than the in the Blue River, is small compared to hydro- 
graph peaks. Milder temperatures along with higher annual 
precipitation produce more annual runoff and consistently 
higher baseflow in the Illinois River than in the South 
Central region of Oklahoma where the Blue River is located. 

Digital Elevation Model (DEM) 

In the Illinois basin, the 1:24,000 USGS 30-m resolution 
DEM is re-sampled to obtain a 960-m resolution map of ele- 
vation. In the case of the Blue River basin, the 1:250,000 
USGS 3-arc second DEM is resampled to 270-meter resolu- 
tion. The Blue DEM consists of 16,900 grid cells (270 meter), 
whereas, the Illinois DEM consists of 2,700 grid cells (960 
meter). The finite element representation is a network of ele- 
ments and does not require subwatersheds. The DEM is used 
to delineate the watershed into three sub-basins in the Illinois 

and 16 sub-basins in the Blue as listed in Table 2. 

Subdivision of the river basins into subwatersheds is done 

for organizing the simulations. This has particular impor- 
tance in achieving load balance in a parallel computing 
environment. The number of basins affects the number of 

channels and the efficiency at which runoff arrives at the 
outlet. The coarser resolution chosen for the Illinois River is 

consistent with a 1-km resolution DEM used by the NWS 
River Forecast Center in Tulsa, Oklahoma to delineate river 
basins and forecast locations. The finer resolution chosen 

for the Blue was based on earlier studies on resampling of 
the 3-arc second DEM. The 270-meter resolution is simply 
a 3x3 kernel aggregation used to smooth irregularities, 
pits/peaks present in the USGS DEM. 

Choosing differing resolutions is also a test of the robust- 
ness of the model. That is, can comparable results be 
achieved even though widely differing resolutions are cho- 
sen for each basin? Grid cell resolution may change model 
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Table 2. Sub-Basin Properties and Channel Hydraulic Characteristics for the Two Basins 

Basin Area Stream width 

(km 2) (m) 
Illinois 

1 950 66 

2 670 50 

3 700 50 

Channel properties 
Channel slope Channel roughness 

, 

0.5 0.04 

0.15 0.04 

0.15 0.04 

Blue 

1 19 18 

2 72 15 

3 11 12 

4 43 10 

5 51 8 

6 112 5 

7 254 8 

8 35 8 

9 117 5 

10 172 5 

11 58 5 

12 38 5 

13 35 5 

14 47 5 

15 98 5 

16 44 5 

0.0008 0.05 

0.0009 0.05 

0.0017 0.05 

O.OOO4 O.O5 

0.0006 0.05 

0.0021 0.05 

0.0026 0.05 

0.005 0.05 

0.0023 0.05 

0.0015 0.05 

0.0018 0.05 

0.0047 0.05 

0.0047 0.05 

0.0025 0.05 

0.0011 0.05 

0.0063 0.05 

results due to resampling because slope decreases with 
increasing grid cell size as described by Vieux [1993] and 
Vieux [2001]. Drainage length also shortens with increase 
grid cell size and can compensate for the effect of slope flat- 
tening. Thus, calibrations may be resolution specific as 
other researchers have found [Obled et al., 1994]. Ongoing 
studies are addressing this dependency. 

Channel Characteristics 

Data for Illinois River channel cross-sections were taken 

from those surveyed and reported by Harmel [1997] in the 
lower reaches above Tahlequah. USGS stream gauging 
measurements supplemented surveyed data. For the Blue 
River, cross-sections were estimated from USGS measure- 

ments at the outlet then proportionally distributed upstream. 
Trapezoidal cross-sections are interpreted from the surveyed 
cross sections to obtain average values for the three streams 
corresponding to the three basins. These were further adjust- 
ed to achieve a better fit between observed hydrograph peaks 
timing and travel between Watts and Tahlequah. It should be 
noted that each stream reach is represented using a single 
finite element in r. water. fea and arc. water. fea. Whereas, the 
Vflo TM model has as many channel finite elements as there 
are grid cells traversed by the channel reach. Different cali- 
brated channel characteristics are expected to result given 
different levels of discretization. 

Rainfall 

Hourly rainfall maps as input are obtaiqned from Stage III 
NEXRAD rainfall at a nominal 4 x 4 km resolution. As list- 

ed in Table 3, eight storms are used for the Illinois and Blue 
River basins. The rainfall is re-sampled to obtain a resolu- 
tion corresponding to the DEM resolution. Comparison 
with rain gauge accumulations show a mean field bias aver- 
aged over eight storms to be within 10% for the Illinois. 
Further, since the implementation of the so-called P1 adjust- 
ment at the Arkansas-Red River Basin Forecast Center 

(ABRFC) in December 1996, the bias is close to 1.0 for 
most events over the Illinois and Blue basins compared to 
gauge. In the results reported herein, no attempt is made to 
adjust the Stage III estimates of rainfall. 

Discharge 

The simulated hydrographs for each storm are compared 
to the USGS observed hydrographs at USGS stream gage 
07196500, located along the Illinois River near Tahlequah, 
OK, and gauging station 078332500 located at Blue, 
Oklahoma. Currently, the model simulates the direct runoff 
component requiring base flow separation by the straight- 
line method [Chow et. al., 1988]. Because any of the mod- 
els at present only simulate the direct surface runoff com- 
ponents, simulation results are compared to the runoff sep- 
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arated from the base flow. Because we are focusing on the 
storms that have generated substantial flow, the base flow 
components are normally less than 10 percent of the flow 
during these events. Table 3 shows the runoff coefficient, 
RC, computed as the ratio of the Stage III radar rainfall and 
observed USGS runoff, after baseflow separation, averages 
RC=0.36 for the Blue and 0.39 for the Illinois. The range of 
RC is from 0.23 to 0.56 for the Illinois and 0.21 to 0.60 for 

the Blue basin. Thus, the two basins have relatively similar 
partitioning of rainfall into runoff. 

Infiltration and Roughness Parameters 

The Green and Ampt soil parameter maps are calculated 
using the Brooks and Corey [1964] equations that relate to 
estimate the infiltration parameters to based on soil properties 
such as clay, sand content, bulk density, and pore size distri- 
bution and others. These soil properties are then used in 
Rawls and Brakenseik relationships to estimate the Green and 
Ampt infiltration parameters [Rawls et al. 1983a,b.]. The soil 
properties of for soils over in the Illinois River basin are 
obtained from the Map Information Assembly and Display 
System (MIADS). MIADS is a soils database compiled at 
200-meter resolution by the USDA-Natural Resources 
Conservation Service for the State of Oklahoma from county- 
level soil surveys. The Manning coefficient maps are obtained 
by relating LULC maps to the corresponding roughness coef- 
ficients. Coefficients of roughness are estimated based on the 
dominant land use/cover classification based on the Anderson 

Classification system and Manning hydraulic roughness 

[Vieux, 2001]. Table 4 shows the range of values for the 
parameter maps input to the r. water. fea model. 

Soil Moisture 

For the Illinois and Blue events, antecedent soil moisture 

is modeled using the Green and Ampt equations and is 
entered into the model as a spatially variable map or as a 
lumped degree of saturation. Except for the Illinois 
November-December 1996 and February-1997 events, a pro- 
longed dry spell resulted in dry conditions, which are mod- 
eled with 20% initial degree of saturation. This assumption 
was further supported by prolonged low flow in the river for 
a month or more antecedent to the event. Inspection of rain- 
fall records for the November-December 1996 and February- 
1997 events revealed that while there was minimal stream 

flow, there had been precipitation. The initial degree of satura- 
tion was increased to 70%. Simulations using the model, 
SHEELS, reported by Crosson, et al. [2001], and applied to the 
Blue River basin by Martinez and Duchon [2001] confumed 
this value as 71% [personal communication]. Sensitivity stud- 
ies for this basin show little variation in rainfall-runoff response 
at initial degrees of saturation below 50%. Sensitivity to soil 
moisture is part of the research supported herein using the 
DRUM version of r. water. fea coupled with SHEELS. 

RESULTS AND DISCUSSION 

The OPPA method may be applied in both automatic and 
manual modes. OPPA capitalizes on known behavior of the 

Table 3. Storm Event Radar Rainfall and Observed Runoff for the Illinois and Blue Basis 

Illinois 

Event Rainfall (mm) Runoff (mm) RC 
4-Mar-95 30.4 9.7 0.32 

10-May-96 32.5 12.2 0.38 
20-Apr-96 80.4 18.2 0.23 
4-Nov-96 75.7 21.0 0.28 

8-Jun-95 68.8 23.0 0.33 

13-Jan-95 71.4 26.4 0.37 

25-Nov-Dec-1996 53.3 29.6 0.56 

19-Feb-97 76.1 33.1 0.43 

Mean 61.1 21.7 0.36 

Blue 

Event Rainfall (mm) Runoff (mm) RC 
26- S ep- 1996 52.74 10.9 0.21 
21-Apr- 1996 64.81 13.7 0.21 
12-Nov-1994 103.37 31.0 0.30 

19-Feb- 1997 95.25 35.4 0.37 

14-Mar-1998 83.84 35.4 0.42 

06-Nov-1996 67.42 40.5 0.60 

19-Oct- 1996 89.83 48.1 0.54 

06-May-1995 100.52 49.2 0.49 
Mean 82.2 33.0 0.39 
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physics-based model and parameters. Certain features of the 
cost surface and of PBD models make the order of parame- 
ter identification important. First, we address the overall 
performance achieved for the two basins. Secondly, we 
address the features of the cost surfaces obtained. 

Calibration Performance 

The model performance in terms of reproducing the total 
volume of flow is excellent for the eight storm events shown 
in Figure 3. The result of calibration is encouraging given 
that several storms during different seasons were well repro- 
duced with high accuracy with a single adjustment to 
applied to all storms. There is good agreement between sim- 
ulated and observed for the February 1997 and April 1996 
hydrographs shown in Figures 4a and b, respectively. In this 
case, the rising limb and peak flow would have been accept- 
able for flood forecasting without adjustment (a=l and fl 
= 1). Similar results are observed for the other storms except 
for the March 1995 storm, which is not reproduced as well. 
It is noted that the March 1995 storm has the lowest rainfall, 
30 mm, among the storms considered producing only 10 
mrn of runoff averaged over the watershed. By taking the 
best-fit-line slope to the simulated and observed volume and 
peak discharge, the prediction accuracy achieved is within 
11% in volume and 20% in peak flow for the 8 storm events 
simulated. Peak discharge performance could be improved 
with better channel parameterization. Some of the flashy 
model behavior can be attributed to the runoff generation 
method (infiltration excess), the channel routing method 
(kinematic wave), and because only three finite elements 
are used to represent the channels in r. water. fea for the 
Illinois River basin. In the Blue basin, 16 elements (as many 
as the number of sub-basins) are used to represent the chan- 
nels. In both cases, trapezoidal cross-sections are used to 
represent natural channels, which may not properly repre- 
sent out-of-bank flow at high discharge rates. 

Cost Surface Shape 

Typical approaches to calibration of CRR models are to 
apply a wide range of parameter values and then contour the 

objective function or otherwise search out the minima. 
Applying the same methodology to this event-based model, 
the objective function may be comprised of volume, peak 
flow, or a normalized composition of the two. Following the 
OPPA scheme of adjusting for volume, then for peak mag- 
nitude, we present the results for the Illinois River Basin 
and the Blue River basin. Figures 5 and 6 show the contours 
of the square of volume differences for the two basins sim- 
ulated as a function of parameter scalars multiplying 
hydraulic conductivity and hydraulic roughness. 

Forming an objective function in terms of volume, the 
cost surface is computed for 64 parameter pairs. Figures 5 
and 6 show such a surface for a range of scalar multipliers 
a =0.5 to 4 and fl =0.5 to 4 for the Illinois and Blue, respec- 
tively. The contours are the squares of the volume differ- 
ences in cubic meters summed over the eight storm events. 
In the case of the Illinois River basin, Figure 5 reveals the 
elongated trough traced by the l e+15 contour extending 
from fl =0.75 to 2.75 with its axis centered over a =0.5. 
Given a reasonable estimate of fl and initial estimates of 
hydraulic roughness, n, the optimal value for a may be 
retrieved. Optimal solutions will be retrieved more effi- 
ciently when starting with hydraulically smooth and imper- 
vious scalar values. The shape of the cost surface has a sin- 
gle minimum where the hydraulic roughness multiplier 
causes the cost surface to be minimized. For peak flow, we 
see that the surface is complex with a relatively flat area that 
is sickle shaped and has a minimum in and around fl=2. 
Given the flatness of the response, r= 1.5 to 2.5 yield rough- 
ly equivalent error. Because the optimal parameter set may 
be indistinguishable at small distances around a minimum, 
inspection of hydrographs may be used to resolve which 
parameter set to use. From inspection of individual hydro- 
graphs, a value of fl =1.5 is selected together with a=0.5 
yielding good agreement. 

The shape of the cost surface is interesting because it 
shows that the optimal solution may be more difficult to 
automatically retrieve depending on the direction of search. 
Starting at large multipliers, say a =3 and fl =3, would place 
the solution in a relatively flat region making it difficult for 
any automatic search algorithm to retrieve the optimal set. 
If the starting point is at say a =0.1 and fl =0.1, then the 

Table 4. Green and Ampt Infiltration and Hydraulic Roughness Parameters for Illinois and Blue River Basins 

Parameter (map) Illinois Blue Units 

Manning roughness coefficient 
Soil saturated hydraulic conductivity 
Soil suction at wetting front 
Soil porosity 
Soil degree of saturation 

0.01-0.09 0.01-0.09 m 1/6 
0.0-6 0.0-6 cm/hr 

32-50 32-50 cm 

0-0.35 0-0.35 - 

20-70 20-70 % 
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Figure 3. Calibrated volume for the eight storms for the Illinois basin. (With permission, Kluwer Academic 
Press, Vieux [2001]). 

search algorithm will find a region of steep descent. This 
results in a faster retrieval of the optimal set and is more 
important to automatic retrieval. 

The shape of the cost surface is not uniform in all direc- 
tions. In fact, it is ill-conditioned from a mathematical view- 

point which can slow automatic retrieval. The trough shape 
indicates that there is more sensitivity to hydraulic conduc- 
tivity than roughness when considering volume, as would be 
expected. This ill-conditioned aspect has the advantage in 
that hydraulic conductivity may be easily retrieved with any 
close value of hydraulic roughness. Once hydraulic conduc- 

800 

(a) 

,x• 1.5n 0.5k (Adjusted) 600 

/ 
400 

200 

0 

1440 2880 4320 5760 7200 8640 10080 
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tivity is retrieved, hydraulic roughness is retrieved using a 
peak flow objective function. Some interdependency 
between the two parameters is expected for pervious water- 
sheds. If at the region of minimal errors, individual hydro- 
graph inspection can be used to resolve which parameters 
sets to use. 

The Blue basin behaves similarly in terms of the shape of 
the cost surface as shown in Figure 6. The volume cost 
surface presents an elongated trough traced by the 2e+15 
contour that extends between/5 =0.5 to 2.75, with its axis 
centered over a =0.5. Turning to the cost surface for peak 
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Figures 4a,b. Comparison of observed stream flow with simulated initial and adjusted estimates of 6n and ak, 
(a) February 1997, and (b) April 1996. (With permission, Kluwer Academic Press, Vieux [2001]). 
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Figure 5. Cost surface for the volume-only objective function and 
the hydraulic conductivity and roughness multipliers, and for 
the Illinois River. 

flow, we again find a relatively flat area that is sickle shaped 
and a minimum traced by the 1 e+5 contour focused on fl =2. 
From these simulations, t= 2.0 is selected together with 
a=0.3 yielding excellent agreement of an average difference 
of simulated to observed volume difference of-1.5 mm. 

Tables 5a and b summarize errors between simulated and 

observed volumes for the Blue and Illinois River basins and 

storms tested. The calibrated simulations for the Blue are 

within 1.5 mm average difference, 6.9% average error, with 
a root mean square error (RMSE) of 9.7 mm. The calibrat- 
ed volume simulations for the Illinois are within 2.5 mm 

average difference, -12.5% average error, and RMSE=3.6 
mm. Figure 7 shows the cost surface for the combined 
objective function for the Illinois basin. The viewing angle 
reveals a small dip or minimum at the optimal parameter set 
of a=0.5 and fl=2 where both volume and peak flow errors 
are a minimum. Note that there is an identifiable optimal 
parameter set for the storms tested. 

The larger errors are associated with smaller storm events. 
The 26-Sep-1996 event over the Blue has a simulated vol- 
ume of 18 mm compared with 10 mm observed runoff, 
which is a 69% overestimate. Compared to the Blue River, 
the Illinois River basin has a better RMSE of 3.6 mm. 

Experiments with radar calibration, scaling issues, and other 
parametric studies can be accomplished with such a water- 
shed model given the accuracy and computational efficiency. 

Reasons for underestimation may be due to the location 
of the basin in relation to the radars used to generate the 

Stage III rainfall estimates. The distal end of the Blue is at 
~200 km from KTLX and lies along a radial of the radar. 
KFRD is at the same distance around •-150 km to the mid- 

point of the basin. Stage III is a mosaic of these two radars. 
Given the distance of the Blue River basin from KTLX and 

KFRD, low-level precipitation processes may be below the 
beam of the radar. Larger convective events typically have 
higher cumulus cloud tops with improved detection by the 
radar at these distances. The largest underestimate is for the 
14-Mar- 1998 event over the Blue with -45.91% error in vol- 

ume, which is a -16.24 mm difference. This event falls dur- 

ing the winter and may not be adequately sampled due to the 
height of radar in relation to stratiform precipitation 
processes. It is also noteworthy that the smaller magnitude 
runoff events have the largest errors when they are on the 
order of the errors associated with calibration of 9.7 mm 

RMSE for the Blue. The same holds true for the Illinois basin 

that has an RMSE of 3.6 mm. Resolution of the possible 
causes of under/over estimation is part of on-going studies 
involving radar corrections and model improvements. 

The relatively similar behavior between the Illinois and 
Blue River basins is striking. Both present a relatively flat, 
sickle-shaped area in the peak flow cost surface with optimal 
scalar values adjusting hydraulic roughness of/• =1.5 and 2.0, 
for the Illinois and Blue, respectively. Similarly for volume, a 
trough is traced with optimal scalar values adjusting volume 
of a=0.5 (Illinois) and of a=0.3 (Blue) yielding excellent 
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I•PeakFlowError I I • 
Figure 6. Cost surface for the peak flow-only objective function 
and the hydraulic conductivity and roughness multipliers, and 
for the Blue River. 



Table 5a. Calibrated Volume for the Blue River Basin ct =0.3 [• = 2.0 
Simulated Observed 

Event (mm) (mm) 
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Diff Error RMSE 

(ram) (%) (ram) 

26-Sep-1996 18.47 10.88 
21-Apr-1996 19.66 13.74 
12-Nov- 1994 40.58 31.02 

19-Feb-1997 26.05 35.36 

14-Mar-1998 19.13 35.37 

6-Nov-1996 48.52 40.54 

19-Oct-1996 39.33 48.08 

6-May-1995 40.47 49.22 

Table 5b. Calibrated Volume for the Illinois River Basin ct = 0.5 [• = 1.5 
Simulated Observed 

(ram) (ram) 
4-Mar-95 4.3 9.7 

10-May-96 14.4 12.2 
20-Apr-96 18.5 18.2 
4-Nov-96 18.5 21.0 

8-Jun-95 21.5 23.0 

13-Jan-95 22.9 26.4 

25-Nov-Dec- 1996 23.5 29.6 

19-Feb-97 29.3 33.1 

7.6 69.7 

5.9 43.1 

9.6 30.8 

-9.3 -26.3 

-16.2 -45.9 

8.0 19.7 

-8.8 -18.2 

-8.8 -17.8 

-1.5 6.89% 9.7 

Diff Error 

(ram) (%) 
-5.4 -55.7 

2.2 18.0 

0.3 1.6 

-2.5 -11.9 

- 1.5 -6.5 

-3.5 -13.3 

-6.1 -20.6 

-3.8 - 11.5 

RMSE 

(mm) 

-2.5 -12.5 3.6 

agreement in both cases. Stability of these values with the 
addition of more storm events are being tested. 

The model is robust because roughly equivalent calibra- 
tion factors are achieved for both basins regardless of reso- 
lution and differing geographic-climatic regions where the 
basins are located. Comparable results are achieved, even 
though widely differing resolutions are chosen. In both 
cases, volumes are estimated to within 1.5-2.5 mm for the 

suites of eight storms over each basin, and peak flow is esti- 
mated to within 20% for each basin. These are encouraging 
results especially when considered in the light of CRR 
model results that require considerably more historical data 
to calibrate. 

CONCLUSIONS 

Physics-based models have important characteristics dis- 
tinguishing themselves from CRR models. Whether auto- 
matic or manual search algorithms are used, the order of 
parameter adjustment is important to ensure that timing and 
peak discharge are retrieved for the correct volume of runoff 
water in the watershed. Hydraulic conductivity is retrieved 
from the volume-only objective function. Hydraulic rough- 
ness is retrieved from the peak-only objective function and 
is sensitive to hydraulic conductivity demonstrating the 
advantage of for an ordered search in the OPPA method. 

Computational efficiency permits retrieval of optimal 
parameters with reasonable expenditure of time using 
direct computational approaches. Beginning with param- 
eters derived on a physical-basis realistic results requiring 
only minor adjustment is obtained. Compared with CRR 
models which rely on empirical equations, parameters 
may take on a wide range of values making search algo- 
rithms particularly inefficient compared to the minor 
adjustments necessary in the physics-based model pre- 
sented herein. 

lOO 

•o 

Figure 7. Illinois combined cost surface, peak flow and volume. 
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Calibrated volume estimates simulated for the Blue basin 

are within-1.5 mm average difference, 6.9% average 
absolute error, and with an RMSE of 9.7 mm. Small storms 
on the order of 10 to 20 mm total runoff are more difficult 

to simulate given that the total runoff volume is on the order 
of the simulation RMS error. Though such errors have 
importance in longer-term water resources applications, 
they are of less interest from the flood-forecasting view- 
point. Volume simulated for the Illinois basin has similar 
agreement to within 11%. Both errors are comparable even 
though the Illinois is roughly twice the size of the Blue and 
was simulated with 16,900 grid cells (270 meter), whereas, 
the Illinois simulation employed 2,700 grid cells at 960- 
meter resolution. In both cases, the excellent agreement in 
volume was achieved with a scalar multiplier a =0.5 and 0.3 
for the Illinois and Blue, respectively. Peak flow was simu- 
lated to within 20% for the Illinois and the Blue for/5 =2.0. 
The eight storms were chosen for each basin independently 
(not the same storms) and represent different seasons over 
different geographical regions in Oklahoma. 

Improved rainfall-runoff prediction benefits a wide range 
of users within governmental and private sectors. The PBD 
model presented herein shows promise given the accuracy 
achieved through calibration with relatively few storm 
events compared with CRR models. Capitalizing on the 
unique characteristics of a PBD model, the OPPA method 
is proven to be an effective means for adjusting physics- 
based models using spatially distributed initial estimates 
based on soil properties, land use/cover, and digital eleva- 
tion data. Performance of r. water. fea shows exceptionally 
good prediction accuracy for the two basins simulated. 
Considering accuracy and computation efficiency of the 
finite element network model approach, real-time flood 
forecasting using a PBD model coupled with radar inputs is 
achievable. 
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Process Representation, Measurements, Data Quality, and Criteria 
for Parameter Estimation of Watershed Models 

Stephen J. Burges 

Department of Civil and Environmental Engineering, University of Washington, Seattle 

A short review of procedures used to calibrate lumped continuous simulation 
hydrologic models is given to provide a starting point for considering the hydro- 
logic features to include, how those features can be represented, and data required 
for calibrating distributed continuous simulation models. Most calibration proce- 
dures have concentrated only on attempting to match simulated and recorded 
streamflow time series without any explicit recognition of data errors. Model cal- 
ibration procedures should be designed to accommodate data uncertainty and 
errors, and the nature and amount of the various signals that are used to effect cal- 
ibration. Spatial models necessitate use of multiple objectives. Examples ranging 
in scale from the hillslope, to a small zero order basin, to a larger basin are used 
to illustrate the need for different data and objective measures to calibrate the fit- 
ted model, assess parameter uncertainty, and to provide model predictions that 
incorporate explicitly parameter uncertainty. 

INTRODUCTION 

The major focus of this paper is on the quality of long- 
term continuous simulations to describe existing or prior 
conditions, and to predict the water balance for changed 
catchment conditions or climatology. 

I start by providing seven fundamental requirements of 
hydrologic modeling, introduced by James and Burges 
[1982], and provide general guidelines for calibrating and 
testing continuous hydrologic simulation models. Issues of 
data quality assurance and quality control are then discussed 
briefly. This is followed by a discussion of hillslope and 
channel features that need to be included in models. I pro- 
vide a short chronology of the development of hydrologic 
models and model components starting with processes and 
leading to complete continuous simulation models. This 
leads to a discussion of the additional needs of spatial 
hydrologic models and is followed by data needs for all con- 
tinuous simulation models with emphasis on systematic 
errors in data and the need for nested measurements within 

catchments. Model parameter estimation schemes are dis- 
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cussed as well as objective measures and summary per- 
formance statistics and time series displays. Finally, the 
propagation of data, model, and parameter estimation errors 
into model predictions is discussed and several potentially 
productive approaches are identified. 

HYDROLOGIC MODELING 

Much has been written about how to build models of the 

hydrologic cycle at scales that range from a few square 
meters to continental scale in plan area. James and Burges 
[1982] discussed in detail the basic requirements of a hydro- 
logic model as well as how to select, calibrate and test a 
model that is suitable for a particular application. 

Modeling requires [James and Burges, 1982]: 

ß Identification of the hydrologic quantifies important 
to the user 

ß Identification of the hydrologic processes that need to 
be modeled 

ß Selection of equations to represent each process 
ß Synthesizing equations into a computational framework 
ß Determining model parameters that best represent the 

catchment hydrologic response 
ß Testing the adequacy of model estimates, and 
ß Communicating results to decision-makers. 

283 
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Communication of results to decision-makers is receiving 
much needed attention. There are many opportunities here 
for using sophisticated geographic information systems 
(GIS) and all forms of moving film and computer based ani- 
mations. 

Guidelines to Continuous Simulation Model Calibration 

and Testing 

Crawford and Linsley [1966], particularly in Chapter 5, 
offered some of the earliest (known to me) guidelines for 
model calibration and testing. One of the earliest compre- 
hensive tests of unit hydrograph based "event models" was 
done by Hoyt et al [1936], soon after Sherman [1932, 1949] 
developed the unit hydrograph approach for describing the 
basin outflow hydrograph. Clarke [1973] provided one of 
the most complete published categorizations of hydrologic 
models. There have been specific guidelines provided for 
calibrating particular models e.g., Peck [1976], for the 
"Sacramento Model", and Sugawara et. al. [1984], for the 
"Tank Model". 

Model calibration Guidelines have been summarized by 
James and Burges [1982]: 

1) Simulated and recorded flow values should agree for 
the: 

ß Annual flow volume for each water year 
ß Seasonal flow volumes for each water year 
ß Weekly and daily volumes 
2) Simulated and recorded hydrographs for a given 

storm should have: 

ß Similar shapes 
ß The same peak values 
ß The same time of peak flow 
3) Predicted evapotranspiration (ET) should be less 

than or equal to potential ET for the region. 
4) Modeled hillslope stored water should fluctuate with 

precipitation patterns 
5) Model parameters must be consistent with observed 

catchment properties 
6) The relative amounts of "surface" and "base" flow 

must be consistent with soil and geological conditions. 
7) All comparisons must be consistent with the accuracy 

and errors of the recorded data! 

The seven requirements for model calibration must hold at: 
ß a small spatial element, and 
ß the catchment as a whole 

The requirements dictate the spatial scale for modeling in 
any particular application. 

DATA QUALITY ASSURANCE 
QUALITY CONTROL (QAQC) 

The profession has evolved to a state where most of those 
who use data are not involved in the collection of the data 

or in quality assurance and quality control. Three illustra- 
tions of data QAQC follow. 

Streamflow Data 

It is essential that the data user know all shortcomings of 
the data that are being used. In the United States, the U.S. 
Geological Survey provides quantitative descriptions for the 
quality of the reported streamflow (excellent, good, etc.,). 
For the best stream gauge stations (excellent) there is an 
approximately 95% chance that the streamflow rate that has 
been reported is within + or - 5% of the reported quantity. 
(This is valid for a stable "stage-discharge" rating curve. 
Rating curves usually change during a flood when the 
riverbed form or the channel-section changes or both 
change. It is difficult to determine the actual time when the 
bed change occurs unless fiver gauging was ongoing at the 
time of change). Any model that attempts to reproduce the 
measured hydrograph should include explicitly uncertainty 
bounds on the modeled streamflow hydrograph. More 
hydrologists attempt to show such information now that we 
have enormous computing power available (see, e.g., 
Kuczera and Parent [1998]). 

Precipitation Data 

Documentation of QAQC for precipitation data is less 
complete than documentation for streamflow. It is not 
always clear when a record has been "filled in" when a 
recording device was inoperable or if there were other prob- 
lems in recording precipitation. In most situations there is 
no way for correcting for variable systematic bias created 
by wind influences on precipitation gauges. Duchon and 
Essenberg [2001] provide a sharp reminder of this ubiqui- 
tous problem. We have to document our precipitation 
data more completely and provide QAQC flags for each 
reported value. 

Radiant Energy Data 

An example of the documentation for some of the most 
carefully collected environmental data in the US is given by 
Augustine et al (2000) in which they describe their efforts to 
collect and make available the data for six SURFRAD sites 

across the US. In this work the authors state the accuracy for 
a pyranometer as +or- 2 to 5%, pyrgeometer as + or- 9 Wm -2, 
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and a pyrheliometer as + or- 2 to 3%. This has considerable 
implications for global climate change. These data are the 
best available; measurements were started in 1996. Baker 

(2001) indicates that the "change in flux due to CO2 
increase over the past 200 years is less than 2 Wm -2". 
Various assumptions used in global climate models for the 
presence of ice in the upper-troposphere clouds is as much 
as 17 Wm -2 of flux entering or leaving the earth. These 
quantities are within the measurement errors of some of the 
earth-based devices that are needed to document them. 

LAND SURFACE MECHANISMS TO INCLUDE 

IN MODELS 

Figure 1 (Figure 3.1 from Hillslope Hydrology, M. J. 
Kirkby ¸ 1978 John Wiley & Sons Limited. Reproduced 
with permission.) shows schematically what has to be repre- 
sented at the hillslope hydrology scale. The various features 
shown in the figure are absolutely crucial for getting flow 

z 

paths correct. Representing hillslope elements such that the 
main flow paths that are influenced by the indicated geolog- 
ical, soil, root, burrowing animals, and vegetation features 
are included, is necessary to get the hillslope hydrology 
approximately correct. It will be of even greater importance 
when hillslope hydrologic processes are coupled more 
closely with hillslope bio-geochemical processes. 

Flow Paths and Fluxes 

Figure 1 shows that water reaches the receiving stream 
by a few ribbon paths on a seepage face. Of all the ways 
that water moves through, over, and below the soil, few 
measurements of them are made or are available. Our meas- 

urements of the input (precipitation more realistically, 
throughput) are sparse. Even when radar measurements are 
at their best, they will be available at a relatively crude 
scale of 1 km 2 or more. The smallest time increments will 

likely be about 15 minutes. A dense network of "good" rain 
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Figure 1. Flow routes followed by subsurface runoff on hillslopes [Figure 3.1 from Atkinson (1978)]. 
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gauges will likely be more useful in many situations. It is 
rare that there are any measurements of the vertical state of 
soil water or perched ground water. Few measurements are 
available to permit locating relatively impermeable subsur- 
face layers that define the flow field. In short, the bound- 
aries are poorly defined (if at all) for the "boundary valued" 
hillslope flow situation. It is extremely unusual for stream- 
flow to be measured at locations along a channel at dis- 
tances closer than 10 km or so. How then will it be possi- 
ble to get the flow paths and fluxes approximately correct 
except in a gross, areally averaged way? There are many 
challenges for the future. 

Spatial Variation in Hillslope Properties and Fluxes 

We should also consider the orientation of the hillslope in 
Figure 1 to incoming sunshine and to the direction of the pre- 
vailing wind fields. Consider the simplest situation of rain- 
fall and non-freezing soils. If the hillslope is exposed to 
much of the prevailing wind, there will be greater evapora- 
tion from intercepted rainfall than from a sheltered hillslope. 
For the same rainfall input more water will reach the ground 
for the protected hillslope than for the exposed hillslope. 
This means that the permeability and nature of the underly- 
ing soil and rock in the "wetter" location is likely to be high- 
er than in the "dryer" location. The biogeochemistries and 
"hydroecologies" [Rodriguez-Iturbe, 2000] are likely to dif- 
fer. A similar situation exists for solar driven evaporation. 
This means that our models, even when using crude hillslope 
averages, need to have different "hydraulic" properties to 
reflect the actual state. Seyfried and Wilcox [1995] report on 
the influence of snowdrifts and the resulting spatial differ- 
ences in land-surface infiltration properties. Crawford and 
Linsley [1966] approximated these features explicitly by 
using uniform probability distributions across the landscape 
for infiltration and evaporation. 

Influence of Temperature on Soil Water Movement 

Water temperature as it moves over and through the land- 
scape is largely ignored in most models. Figure 2, from 
Musgrave [1955, p158], shows the relationship between the 
infiltration rate and near surface soil temperature. This clas- 
sic figure for a 72-hour long infiltration test demonstrates 
the importance of the viscosity of water on infiltration. The 
fluctuations in infiltration rate are diurnal and the rate 

increased by more than a factor of 2 as the soil temperature 
changed from about 2øC to about 20øC. (There are other 
"apparent" viscosity influences with air-water flow in soil, 
particularly with flood irrigation practice). 

Flow Over Hillslopes 

How does the water move across the landscape? Water 
movement has been approximated as shallow water wave 
flow across assumed plane surface hillslopes in some fluid 
mechanics based schemes. This might give approximately 
the right answer for the timing and bulk delivery of water to 
the channel but is incorrect everywhere on the hillslope. 
There is much evidence of the movement of roll waves on 

hillslopes that produce partial to complete overland flow. 
There are transitions from viscous to turbulent flow as the 

flow deepens. The infiltration rate for overland flow 
increases as the flow rate increases in many situations. This 
has been documented and explained by Dunne et al [1991] 
and qualitatively by Seyfried and Wilcox [ 1995]. The impor- 
tance of representing the detailed hydraulic geometry prop- 
erties of overland flow in models has been discussed by 
many. The need to include the influence of centimeter-scale 
topography in the representation of hillslope surface flow 
characteristics was demonstrated by Zhang [ 1990]. Grayson 
et. al. [1992] demonstrated the critical importance of repre- 
senting small-scale surface hydraulic geometry and rough- 
ness features when modeling overland flow. 

Energy Transfers to the Atmosphere 

Water (vapor) and energy transfers from and to the atmos- 
phere pose many challenges of measurement and represen- 
tation. The physics and bio-physics are fairly well under- 
stood. The difficulty is in implementation. I am hopeful that 
we will eventually develop some form of "observation 
mechanism" that will augment and enhance what we now 
do with expensive to install, maintain, and operate instru- 
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Figure 2. Temperature and infiltration in a 72-hour continuous test 
near Colorado Springs, where infiltration is proportion to viscosi- 
ty of water [from Musgrave (1955)]. 
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ment towers that sample far too little of the domain. I men- 
tioned this hope and challenge in Burges [1986]. 

Approximations of Hydrologic Processes 

How do we approximate the various hydrologic process- 
es in our models? We have learned to include the mecha- 

nisms and mass balance dynamic schemes associated with 
the names Horton, Hursh, Betson, Hewlett, Dunne, Darcy, 
Richards, Thomthwaite, Dalton, Penman, and Bowen and a 
few others. Excellent summaries and illustrations of these 

approaches are given in the collection of papers in the book 
"Hillslope Hydrology", [Kirkby, 1978]. I particularly appre- 
ciate the papers by Betson and Ardis [1978], Chorley 
[1978], Dunne [1978], and Freeze [1974], and the book by 
Montieth and Unsworth [1990]. Brutsaert's [1982] cover- 
age of evaporation into the atmosphere is essential reading. 

Channel Flow 

One part of modeling that is done relatively well is move- 
ment of water in the main stream and river channels in the 

absence of channel losses to infiltration or river aquifer inter- 
actions. There is still room for considerable work, however, in 

this part of hydrologic modeling. Much needs to be done con- 
ceming the interaction of river flow with the flood plain and 
flood plain vegetation. Much greater coupling of river flow 
with sediment action is needed. In many situations, river water 
temperature is not given much consideration. In others it is 
essential to consider water temperature to represent diurnal 
fluctuations in river flow rates associated with temperature 
influenced infiltration of water to the riverbed. Ronan et. al. 

(1998) describe careful field measurements and a sophisticat- 
ed approach to thermal influences on riverbed infiltration. 

MODELS AND MODEL COMPONENTS 

Surface water hydrologic models have components and 
approaches that have evolved from ideas and principles that 
have been introduced over about the last one hundred and 

fifty years. The principle of runoff equilibrium was intro- 
duced by Mulvaney [1851 ]. His thoughtful work formed the 
basis for the widely misused "rational method". Sherman 
[1932] introduced the unit hydrograph concept of the time 
distribution of runoff from a landscape. Comprehensive 
tests of the unit hydrograph approach were done by Hoyt et 
al [1936]. Their work showed that the use of the then avail- 
able daily rainfall amounts for hydrologic modeling had 
numerous limitations. 

Quantitative description of the movement of unsteady 
flow through a reach of a river was provided by McCarthy 

[1938] whose work in the Muskingum River basin gave rise 
to what we know as the "Muskingum Method" for hydro- 
logic flow routing. Important understanding about the 
"time-contributing area" response of a catchment was pro- 
vided by Clark [1945] with the introduction of the "time- 
area" diagram. His approach has been adopted in part or in 
whole (often without attribution) in large-scale hydrologic 
models. The dynamics of water movement across a rela- 
tively plane surface was quantified in careful laboratory 
experiments by Izzard [1946]. Izzard provided a key repre- 
sentation of outflow rate indexed against the volume of 
water that remained on the land surface. Dooge [1992] 
reported that Izzard's indexing scheme was based on princi- 
ples introduced by Robert Horton for the description of the 
movement of water across a landscape. Woolhiser and 
Liggett [1967] formalized the approach for modeling water 
movement across an assumed plane surface using shallow 
water wave approximations to the 1-D equations for mass 
and momentum. 

The movement of water into the soil is usually modeled 
with some approximation to Richards [1931] formulation of 
flow in partially saturated soil. The most common approxima- 
tions are the Horton [1933], and Philip [1954], [see complete 
details in Philip, 1969], 1-Dimensional vertical infiltration 
models. Saturated flow movement is represented by means of 
approximate solutions to "Darcy" saturated flow dynamics. 
Subsurface flow is represented in many models as input to and 
release from conceptual linear or non-linear reservoirs. 

Empirical models based on a co-axial correlation for 
"runoff depth" production in humid areas were developed 
by the US Weather Service [see, e.g., Kohler and Linsley, 
1951]. The variables, "antecedent precipitation index", 
"week of year", "rainfall duration", and "rainfall amount", 
were used to estimate "basin recharge" from which "runoff 
depth" could be obtained by difference from the rainfall 
depth. These main variables captured, to first order, the 
important variations in catchment vegetation, soil-water state, 
solar radiation input, and the influences of agricultural and 
silvicultural practice and the influence of burrowing animals. 
The best modem attempts to model the hydrologic cycle do 
not capture all of these variables and states explicitly. 

CONTINUOUS HYDROGRAPH SIM•ATION MODELS 

The earliest developments of continuous hydrologic mod- 
eling that I know about in the pre- digital computer era were 
by Linsley and Ackerman [1942], where they approached 
modeling of runoff production for the Valley River Basin in 
North Carolina by a procedure of moisture accounting. 
Sugawara [1961] published a description of what is now 
known as the "Tank Model". Linsley and Ackerman [1942] 
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examined numerous storms and noted that they were suffi- 
ciently uniform in intensity that they could approximate the 
rainfall that way. Linsley knew that there were many other sit- 
uations where runoff response was related to rainfall intensi- 
ty but had to wait until hourly data and digital computers were 
available before he could take the procedure forward. 

With the advent of digital computers the earliest models 
were what Clarke [1973] described as "lumped". The devel- 
opment that most influenced the field was made by Linsley 
and Crawford [1960] with the forerunner to the moisture 
accounting "Stanford Watershed Model", and Crawford and 
Linsley [1962, 1963, and 1966], the last being the "Stanford 
Watershed Model IV". Burnash et al [1973] worked along an 
independent path to produce the well known "Sacramento 
Model" used by the US National Weather Service. Professor 
Sugawara continued to refine the Tank Model and a full 
description of the model and approaches to its calibration and 
use was presented in English by Sugawara et al [ 1984]. There 
have been numerous other models developed and used. 

There have been many spatially distributed models devel- 
oped. One example of a Soil-Vegetation-Atmosphere- 
Transfer (SVAT) type of continuous simulation model is that 
developed by Wigmosta et al [1994]. The SVAT models 
explicitly include both atmospheric vapor fluxes and energy 
accounting at the land surface. In distributed models, the 
landscape is usually broken into pixels that range in size 
from 5 m to 10 Km depending on the desired model appli- 
cation. Beven [2001 ] has posed the critical question: how far 
can we go in distributed hydrologic modeling? 

All of these models need some form of calibration to 

match up recorded time series with modeled time series, 
usually daily streamflow volumes. Distributed models can 
in principle be calibrated against measured and pixel pre- 
dicted states. The candidate states are those that are 

observed from remote platforms and typically include some 
pixel averaged near surface moisture depth and fraction of 
snow covered area. There are many challenges in the devel- 
opment, calibration, and use of such models. 

DATA CONSIDERATIONS FOR SPATIAL MODELS 

Most developers and users of spatial hydrologic models have 
relied on streamflow measurements at a few locations along 
rivers to check parts of their models for plausibility. This prac- 
tice is fraught with difficulties. There is an infinity of ways that 
a distributed model could be set up and "calibrated" to emulate 
approximately a streamflow time series. It is essential that data 
be available at a range of nested spatial scales to support devel- 
opment, calibration, and testing of spatial models. Three exam- 
ples are provided to emphasize the need for nested hydrologi- 
cal measurements at a range of spatial and temporal scales. 

Example 1 

Figure 3, which is Figure 10.3 from Dunne and Leopold 
[1978], emphasizes the importance of, and need for, flow 
measurements at a range of nested scales. The figure shows 
the 15-hour duration hydrograph for locations along the 
Sleepers River in Vermont corresponding to nested basins 
having drainage areas of 0.2, 3.2, 16.6, and 43 square miles 
for three storm pulses that occurred over the first six hours. 
The data for the 0.2 square mile catchment reflect the strong 
rain signal and permit the greatest opportunity for repre- 
senting major flow producing hillslope processes. It would 
be a more difficult problem to represent the processes well 
if data were available at the 3.2 square mile catchment scale. 
I do not know of any way to identify the processes if data 
were only available at the 16.6 square mile scale. 

The channel attenuation influences on the hydrograph 
shown in Figure 3 mask the hillslope input patterns to the 
channels. Few streams are gauged at even the largest catch- 
ment scale of 43 square miles. It is rare to have information 
at this level of detail, but this is representative of the level of 
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Figure 3. Changes in hydrograph shape at a series of stations 
along the Sleepers River near Danville, Vermont over a 15-hour 
period-Figure 10-3 from Dunne and Leopold (1978). 



nested catchment measurements that are needed to support 
distributed modeling. 

Example 2 

A second example is for nested catchments in the Evans 
Creek basin of Western Washington. Hydrologic data were 
recorded for four water years for the small (0.37 km 2) 
Novelty Hill Catchment at location A in Figure 4. A longer 
record is available for Evans Creek, location B in Figure 4. 
A detailed description of the hydrologic setting and moni- 
toring (soil depth, rainfall, and piezometer depth, and weir 
flow measurements) for the 0.37 km2 till-plateau Novelty 
Hill is given in Wigmosta and Burges [ 1997] and Burges et 
al [ 1998]. 

Figure 5 shows the four years of measured data. The low 
flow patterns in Figure 5 are completely different. The small 
upland catchment recharges ground water through a till 
layer and yields less hillslope flow to channels than occurs 
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at the larger 37 km 2 scale. The delayed flow from the upland 
recharge zones, similar to location A, is crucial to baseflow 
production at the larger scale and for the ecological health 
of the larger creek. The ability to represent the hydrologic 
processes at the scale of Novelty Hill is particularly impor- 
tant when land use changes are planned or have occurred. 

Figure 6 further emphasizes the differences in flow pro- 
duction patterns. Evans Creek drains to Bear Creek (area 
123 km2). The accumulated runoff, expressed as mm over 
the catchment, is shown for Novelty Hill, Evans Creek, and 
Bear Creek. The cumulative runoff depths for Bear and 
Evans Creeks are almost indistinguishable. Their cumula- 
tive flow patterns are substantially different from Novelty 
Hill. If the gauged data were available for Bear Creek, it 
might be possible to model the gross hydrologic features for 
the smaller Evans Creek. There is no known, or scientifical- 
ly testable, way that the hydrologic fluxes from Novelty Hill 
could be elucidated from the Evans Creek gauge data alone. 
It is unusual to have data recorded at the relatively small 
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Figure 4. Location map for Novelty Hill catchment (A) nested within the Evans Creek (B) basin in Washington State. 
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Figure 5. Daily rainfall, and daily runoff depth for Novelty Hill and Evans Creek, Washington, for October 1, 1990 to 
July 2, 1993. 

scale of Evans Creek (37 km2), let alone the rare case of 
Novelty Hill (0.37 km2). 

The Novelty Hill and Evans Creek data provide an impor- 
tant illustration of the need for nested data over scales rang- 
ing from a fraction of a square kilometer to tens and hun- 
dreds of square kilometers if we are to model hydrologic 
balances properly. Such data and additional measures that 
permit closure of the water and energy balances at the hill- 
slope scale provide the level of detail needed to determine 
the flow paths and fluxes that are critical for both sharpen- 
ing estimates of the water balance and modeling bio-geo- 
chemical states and fluxes. 

Example 3 

A third example is included to indicate the importance of 
soil and vegetation at the scale of a sub pixel used in the 
finest resolution distributed hydrological models (less than 
10m by 10 m). Figure 7, from Kolsti et al [1995], shows 
hydrographs for two plots, (Plot 1 and Plot 2), at an experi- 
mental site, located at the Urban Horticulture Center 

(Latitude 47 ø 39' 29" N, Longitude 122 ø 17' 31" W) at the 
University of Washington, Seattle, campus. 

Each plot has dimensions: length, L = 9.75 m, width, W = 
2.44 m, and depth, D = 0.30 m. The slope is 5%. The length 
and depth were chosen to be representative of typical sub- 
urban lawns in the Seattle region. The plots have imperme- 
able liners and subsurface and surface flow rates are meas- 

ured using tipping bucket gauges. The gauges are calibrated 
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Figure 6. Accumulated runoff depth (mm) for Novelty Hill (0.37 
km2), Evans Creek (37 km2), and Bear Creek (123 km2), 
Washington, for October 1, 1990 to September 30, 1991. 
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at least annually; the measured flow data are accurate to 
approximately 1%. The choice of 0.3 m for depth was based 
on advice from landscape architects of the feasible depth of 
soil development after houses had been built. Plot 1 consists 
of till with grass. Plot 2 consists of till amended with com- 
post and grass. The grass root structures differ significantly 
in Plots 1 and 2. Both surfaces are planar, but there is exten- 
sive centimeter-scale variation in surface topography and 
roughness created by the grass. Details of plot construction 
and soil properties are given in Kolsti et al (1995). 

Figure 7, shows, at one-hour time increment, the four-day 
runoff response to two storms in December 1994. We show the 
equivalent rainfall input rate (without convolution) as rainfall 
rate multiplied by plot area (to illustrate when water is being 
stored in the plots) and the outflow rate. It is likely that the 
rainfall amounts are understated because the gauge used is 
wind influenced. This is discussed in more detail below. 

The soil in Plot 1 is less permeable than in Plot 2. There 
is a more rapid response of plot water outflow to rainfall and 
at a higher rate for Plot 1 than for Plot 2 during the first 
storm (22-mm rain). The compost amended soil and denser 
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grass root structure for Plot 2 is more effective initially at 
storing water than the unamended plot. (Do we know how to 
model with fidelity such a soil-grass root system using soil 
physics methods with some kind of a Richards equation 
approach? The earthworms are active at different levels at 
different times of year too). The attenuated patterns are sim- 
ilar for the second storm, but as time progresses and the 
plots have exhausted their soil water storage capacities, the 
hydrographs become similar. This is the case even though 
the outflow mechanisms are quite different. 

If one had the rare opportunity to have carefully measured 
data at the small scale of Plot 1, would there be any possi- 
bility of predicting the hydrologic response of Plot 2, even 
if the geometry was known completely? I do not know of 
any soil-vegetation classification scheme that would permit 
accurate modeling of this situation. If measurements were 
made that collected the combined outflow from Plots 1 and 

2, I do not know of any scheme that would permit deconvo- 
luting the signal to yield the component hydrographs. I 
included this small-scale example so we can think construc- 
tively about issues of spatial modeling. 
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Figure 7. Hourly rainfall and runoff from Plots 1 and 2, Center for Urban Horticulture, University of Washington, 
Seattle for December 24-28, 1994. 
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A Note on the "Rational Method" 

For those who use the "Rational Method" (it is still wide- 
ly used), Figure 7 shows, at the most favorable small scale, 
that the fundamental requirement of the method -- local 
equilibrium--is not satisfied. What would one use for a 
"runoff coefficient"? We have not observed any significant 
"overland" flow. This is fortunate because the centimeter- 

and sub-centimeter-scale surface roughness variations 
would pose modeling problems for simplistic solutions to 
continuity and momentum equations for assumed properties 
of shallow surface flow. 

RAINFALL DATA MEASUREMENT UNCERTAINTIES 

I have spent a considerable amount of time since mid 1995 
concentrating on measurement of rainfall with the aim of 
sharpening and describing the uncertainties of measurements 
of this major input to any rainfall-runoff model. I have cho- 
sen to illustrate here some issues of determining point- and 
area-rainfall for use in models, or in simple mass balance 
calculations based on measurements, that are needed to close 
the water balance for a given catchment. If the rain input has 
variable systematic errors, the model outputs lack credibili- 
ty, and it is impossible to get the water balance correct. 

Many thoughtful investigators have addressed the issue of 
errors and biases in rainfall measurement and how those 

measurements influence rainfall-runoff model results. Three 

examples illustrate the range of approaches that have been 
taken. Crawford and Linsley [1966] built into the Stanford 
Watershed Model a rain gauge scaling factor as a calibration 
parameter. In many calibrations of that model, modelers 
have elected to multiply the recorded rainfall time series by 
factors that range up to about 1.1. This largely accounts for 
wind influences on gauge catch, but simple scaling does not 
hold over all storms. For cases where rain is recorded at low 

elevation, larger upward adjustments are made to approxi- 
mate orographic influences. 

Crawford and Linsley [1966] include illustrative exam- 
ples on "weather modification" and show sensitivity results 
for runoff production for three "model calibrated" basins to 
uniform increases of 10% in precipitation and 10% potential 
evapotranspiration. Dawdy and Bergmann [ 1969] presented 
one of the pioneering investigations to assess the effects of 
data errors on rainfall-runoff model simulation results. 

More recently Faures et al [ 1995] demonstrated the model- 
ing consequences of using a selection of gauges from a 
small basin. Their work is representative of some of the 
most careful ground based rainfall measurements. They 
used a dense network of rain gauges; the catch of each 
gauge, however, had an unknowable wind influence. Their 

work demonstrated the critical nature of representing spatial 
and temporal rain patterns correctly in a small arid basin 
that experiences convective rainfall. 

POINT RAINFALL MEASUREMENT 

Figure 8 shows daily measured rainfall for a 203 mm 
Belfort rain gauge (funnel rim height 30 inches (0.76 m)) and 
a 193 mm buried rain gauge located at the University of 
Washington Center for Urban Horticulture site. The data were 
recorded in the autumn and winter months of 1999 to 2001 

when daily maximum air temperatures were typically below 
12 ø C, so any evaporation that might occur from the collector 
bucket in the surface Belfort gauge would be negligible. On 
days when winds were light to negligible, the two gauges 
indicated almost the same rainfall depth. In all cases the 
buried gauge had a higher catch than the wind exposed gauge. 

Is the buried gauge representative of rainfall? There is a 
second 193-mm buried gauge located approximately 7 m to 
the west. The storm rainfall depths measured in the two 
buried gauges seldom differ by more than 0.2 mm. 

The surface Belfort rain gauge "under catch" is a function 
of wind pulse patterns and raindrop size. For a given turbu- 
lent burst pattern (or steady uniform flow pattern), the under 
catch for small drops is greater than for larger drops. I do 
not have disdrometer data at the site, but drops are usually 
on the smaller size. Figure 8 indicates that the rain recorded 
in the wind-exposed gauge has a variable systemic error. 
There is no known way to correct the data. 

I recommend use of buried rain gauges to measure point 
rainfall. The experience in Seattle has been reinforced by 
our observations in Mississippi where the rainfall is much 
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Figure 8. Daily rain depth recorded by a wind-influenced Belfort 
gauge and a buried gauge, Center for Urban Horticulture, 
University of Washington, Seattle, winter 1999 and autumn-win- 
ter 2001-2002. 
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more intense and larger raindrops are more usual. Duchon 
and Essenberg [2001] provide data for buried and above 
ground rain gauges in Oklahoma. They found that even with 
1-minute time increment wind data at the gauge rim height 
they had no way to correct for wind under catch of exposed 
rain gauges because they did not have drop size data. The 
largest difference they recorded for a squall line storm was 
15% under catch for wind exposed gauges relative to buried 
"pit" gauges. 

SPATIAL RAINFALL MEASUREMENT 

What are our prospects for spatial rainfall measurement? 
Based on my experience, I have concluded that a "point rain 
fall" measurement can best be determined from measure- 

ments from at least three rain gauges located approximately 
a few to ten meters apart. My preference is for two appropri- 
ately drained buried "pit" gauges and one surface gauge in 
the rare case that a "pit" gauge floods. All gauges must have 
the capability to record accumulated rainfall with the accu- 
mulated rainfall stored to permit an independent volume or 
weight measurement. At least one gauge has to have the 
capability of recording both rate and accumulated amount. 

Accurate point measurements can be used with remotely 
sensed spatial rainfall to provide improved spatial rainfall 
depth estimates. Steiner et al [1999] reported on a detailed 
investigation of the comparison of NEXRAD Radar (WSR 
88 radar system) measured rainfall against a dense network 
of surface rain gauges at the 21.4 km 2 Goodwin Creek, 
Mississippi, experimental watershed. (The experimental 
facilities at Goodwin Creek are maintained by staff from the 
US Department of Agriculture, National Sedimentation 
Laboratory, located in Oxford, Mississippi). The radar used 
was located at Memphis, Tennessee, (35ø20'41"N, 
89ø52'24"W), and 121.2 km to the north of the centrally 
located Goodwin Creek climate station, (34ø15'16" N, 
89052'26" W). 

Spatial rainfall patterns are illustrated using information 
from the storm of May 27, 1997 that moved across the 
Goodwin Creek basin. Figure 9, which is parts b and c of 
Figure 2 from Steiner et al [ 1999], shows the rainfall inten- 
sity and accumulated rain for the storm as measured at the 
central climate station. The rainfall rate is given every 
minute from data recorded by a Joss-Waldvogel RD-69 type 
disdrometer and every six minutes from processed radar 
reflectivity data from the Memphis, Tennessee WSR 88 
radar. The original radar reflectivity data (1-km range and 1 
degree azimuth) were used to create rainfall pixels at a scale 
of 1 km by 1 km. Figure 9 b shows the rainfall rate for the 
approximately 5-hour duration storm. The accumulated 
rainfall is shown in Figure 9c for the radar, disdrometer, and 

surface tipping bucket rain gauge. Disdrometer information 
is essential for complete interpretation of the radar derived 
rainfall information. Inspection of Figure 9c indicates that 
the surface tipping bucket gauge and the disdrometer 
recorded almost identical rainfall totals. The radar under- 

reported rainfall for the heaviest part of the storm, but the 
storm total from all three measuring systems was quite 
close. That was not the situation for other storms analyzed 
in Steiner et al [1999]. 

Figure 10 shows radar-estimated rainfall for a 10 km by 
10 km region centered around the climate station for the 
May 27, 1997 storm. Two numbers are shown for each of 
five rain gauges located throughout the catchment. The 
upper number is the accumulated rain gauge measured rain- 
fall in mm. The lower number is the radar determined accu- 

mulated rainfall in mm for the 1 km by 1 km pixel that con- 
tains the rain gauge. Three numbers are shown for the cli- 
mate station. They are the accumulated disdrometer, rain 
gauge, and radar rainfall depths, respectively, in mm. 

There are numerous striking features in Figure 10. The 
rain gauge in the SW comer, located at the outlet of 
Goodwin Creek, recorded 36.8 mm and the radar estimate 

was 52.5 mm. The gauge catch is likely low. The radar esti- 
mated depth is likely high because a single Z-R relationship 
was used to convert radar reflectivity to rainfall rate. Figure 
3 in Steiner et al [1999] shows how the rainfall intensity- 
radar reflectivity relationship varied during the storm for the 
pixel centered over the climate station. There is a consider- 
able difference in the gauge measured depth and radar depth 
for the eastern most gauge location. In this situation the 
gauge funnel became clogged during the storm; this prob- 
lem was identified when subsequent storms were analyzed. 

Figure 10 shows the radar estimated spatial variation to be 
significant. There are variable and systematic spatial meas- 
urement errors. No single ground based measuring station 
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Figure 9. Rainfall rate (b) and accumulated rainfall depth (c) for 
the storm of May 27, 1997, at the climate station, Goodwin 
Creek, Mississippi. Figure extracted from Steiner et al (1999), 
Figure 2. 
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Figure 10. Spatial radar determined rainfall depth in mm for a 
10 km by 10 km region centered about the Goodwin Creek, 
Mississippi climate station. Numbers show measured point rain- 
fall (above) and radar estimated rainfall (below) for the associated 
1 km by 1 km radar pixel. 

would be sufficient to represent the average depth for the 
storm let alone variations in intensity. No three gauges 
located across the basin describe the spatial variability ade- 
quately. It is essential to capture the degree of variability in 
spatial rainfall-runoff modeling. There are many opportuni- 
ties for combining radar-based measurements with a net- 
work of ground based recording rain gauges and disdrome- 
ters to sharpen the estimate of rainfall. I have made this case 
less completely in Burges [1998]. 

MODEL PARAMETER ESTIMATION SCHEMES 

Single Objective 

Calibration can be done manually where a skilled hydrol- 
ogist adjusts parameters until the model outputs agree with 
recorded information to some desired level or by using 
organized computer search optimization schemes. Nelder 
and Mead [1965] developed a Simplex scheme, one of the 
most widely used approaches. This scheme is effective for 
situations when up to five to seven parameters need to be 
estimated. Gupta and Sorooshian [ 1985] showed derivative 
based Maximum Likelihood (MLE) schemes to be effective 
for calibrating models of limited complexity. Duan et. al. 
[1992] developed the most effective tool currently available 
for deterministic optimization, the Shuffled Complex 
Evolution (SCE-UA) method. This algorithm makes clever 
use of different starting locations in parameter space and a 
Nelder-Mead scheme. Tanakamaru and Burges [1996] 
demonstrated the power and utility of the SCE-UA algo- 

rithm with the Tank Model where they calibrated twelve 
model parameters and four initial states. The obvious exten- 
sion is to use multiple objectives in model fitting. Madsen 
[2000] presented an application of the Multi-Objective ver- 
sion (Pareto Optimality combined with the SCE-UA algo- 
rithm). A discussion of multi-objective calibration issues is 
given in the following section. 

What is the best that can be achieved with an automatic 

calibration scheme and "error free" data? Gan and Burges 
[1990a] posed this question and devised tests for a situation 
when all hydrologic states and fluxes were postulated to be 
error free. Table 1 shows geometric, hydraulic properties, 
and the hydrologic response to two years of 6-minute time 
increment rainfall for two hypothetical small hillslopes. 
Gan and Burges [1990b] produced hillslope like hydrology 
using a plausible soil-physics based model [Smith and 
Hebbert, 1978] (S-H). The S-H model created time series of 
evapotranspiration, soil moisture distribution throughout the 
hillside, and surface and subsurface flow that were "hydro- 
logic like". They treated these series as if they had been 
observed with an extensive array of error free instruments. 
The error free rainfall and resulting hydrographs shown in 
Figures 11 and 12 correspond to Cases 1 and 2, respectively, 
in Table 1. These hydrographs are not unlike natural systems. 
These time series could have been provided to any third 
party with the challenge to fit any hydrologic model of 
choice to these realistic appearing "data". A complete dis- 
cussion of the approach is given in Gan and Burges [1990a]. 

Both hillslopes in Table 1 have slope of 10%, length 500 
m, and width 100m. Both overly a relatively impermeable 
layer having saturated hydraulic conductivity, KL = 5x10 '6 
m/hr. The hillslopes are postulated to be homogenous and 
isotropic and have uniform root structures such that exfil- 
tration can occur from the full depth of the soil column. 

The hydrologic response for the shallow hillslope in Case 1 
(depth 0.8 m, saturated hydraulic conductivity K u = 0.02 m/hr, 
porosity 0.40), is shown in Figure 11. This hillslope produces 
principally saturated overland and Horton overland flow. The 
subsurface flow is 12% of the total flow. The modeled hydro- 
logic response for the deeper and highly permeable hillslope 
in Case 2 (depth 1.6 m, saturated hydraulic conductivity K u 
= 0. 2 m/hr, porosity 0.44) is shown in Figure 12. This hills- 
lope produces principally subsurface flow (93% of the total 
flow). The evapotranspiration differs between the two cases 
with different initial- and end-state soil moisture accounting 
for the apparent mass balance differences. 

The Sacramento model [Burnash et. al, 1973] (SMA) was 
calibrated to the streamflow signals in Figures 11 and 12 
using automatic and manual calibration. The Nelder-Mead 
Algorithm was used with comparisons of "recorded", (S-H) 
and "simulated", (SMA) runoff made at a time step of 1 day. 
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Table 1. Geometry, hydraulic properties, and hydrologic responses of two hypothetical hillslopes [extracted from Gan and Burges 1990b) 

Width Depth Slope Length K L K u 

tn tn tn m/hr m/hr 

Porosity Rain ET ET Total Sub Surface Flow 
%Rain Flow %Total Flow 

mm mm mm mm 

Casel 100 0.8 0.1 500 5X10 '6 0.02 0.40 
Case2 100 1.6 0.1 500 5X10 '6 0.2 0.44 

5790 996 17% 4850 580 12% 

5790 1088 19% 4874 4556 93% 

The quality of the calibrations for the two water years of 
data is evident in the residual time series plots shown in 
Figures 11 and 12. In the less permeable, shallower hillslope 
(Figure 11), the maximum daily flow volume was slightly 
less than 0.16 cmsd. The maximum error shown is approxi- 
mately 0.02 cmsd. The maximum errors occur when the 
hillslope is in a relatively dry state when a storm arrives. For 
the deeper and highly permeable hillslope (Figure 12), the 
maximum daily flow volume was approximately 0.08 cmsd. 
The maximum residual error was approximately 0.03 cmsd. 

Summary statistics do not illustrate the strengths and 
weaknesses of simulated hillslope responses as completely 
as residual time series plots. The Nash and Sutcliffe [ 1970] 
coefficient of efficiency, equation 7 in Gan and Burges 
(1990a), was calculated at the model time step increment of 
six minutes as well as at the daily summary level. For Case 
1 (Figure 11), the corresponding efficiencies were 0.825, 
and 0.976, respectively. For the deeper more permeable sit- 
uation (Figure 12), the efficiencies were 0.527, and 0.869, 
respectively. Several large simulation errors caused the 
decreased efficiencies in Case 2. 

We deliberately plotted the time series of rainfall, hills- 
lope output flow, and the residual daily flow volume error 
time series to highlight any apparent systematic errors as 
well as to show how well or poorly the calibrated model 
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Figure 11. Time series of "observed error free" daily rainfall and 
runoff and the residual time series of simulated and "error free" 

runoff for a shallow hillslope (case 1: properties are given in Table 
1 and the text). The figure was extracted from Figure 2a, Gan and 
Burges [ 1990b]. 

performed. We also did this to encourage others to display 
their modeling results as plainly and clearly as possible. 
James and Burges [1982] had recommended displaying 
error time series as well as providing several summary sta- 
tistics for them. I am pleased to see more colleagues have 
since adopted this approach and would be delighted to see 
all time series results displayed this way. 

Multiple Objectives 

For many applications there will remain a major need to 
have models represent aspects of measured time series, par- 
ticularly streamflow. Given timing errors in instruments and 
variable systematic bias in rainfall measurements, it appears 
that attaining a "good" solution for several objectives might 
be a profitable approach. One such illustration is provided 
in Figure 13. 

Figure 13 shows the measured hydrograph for Plot 2 
(shown previously in Figures 7) as well as a "simulated" 
hydrograph. The simulated hydrograph was produced by 
making a time shift of minus one hour for the first storm 
hydrograph and a plus one hour time shift for the second 
storm. The "simulated" hydrograph time series looks identi- 
cal to the measured time series with the exception of the time 
shifts. Most modelers have chosen to be "slaves to time" and 
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Figure 12. Time series of "observed error free" daily rainfall and 
runoff and the residual time series of simulated and "error free" 

runoff for a shallow hillslope (case 2: properties are given in Table 
1 and the text). The figure was extracted from Figure 2b, Gan and 
Burges [1990b]. 
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Figure 13. Measured hourly rainfall and runoff and hypothetical "simulated" runoff from Plot 2, Center for Urban 
Horticulture, University of Washington, Seattle. 

compare modeled and recorded information for a specified 
time increment. In the situation in Figure 13, this approach 
leads to huge differences between modeled and recorded 
flow rates (as a function of time) for the rising and falling 
limbs. An alternative approach would bypass this problem, a 
problem identified immediately by the human eye. 

I suggest that we should create appropriate time series for 
comparing "modeled" and "recorded" hydrographs. Two 
time series would suffice: series "i" contains the flow volume 

(or melt volume) associated with principal storms; series "j" 
contains peak flow rates above some specified threshold. The 
series "i", and "j" need not be of equal length. In the illustra- 
tion in Figure 13 there are two volumes and three peak flow 
rates for the two principal storms. This approach permits 
identifying storms where measurement errors are thought to 
be serious. The corresponding data could be readily removed 
from the comparison scheme. The simplest automatic scheme 
to partition the recorded and modeled time series into volume 
and peak series would be one volume and one peak per storm 
or melt episode. It is important in hydrologic modeling to 
have peak flow rates and volumes correct. Sub series can be 
constructed from the volume and peak series. For example 
we could choose mid level peaks and corresponding volumes, 
lower magnitude and corresponding volumes, and so on, to 
permit testing features of models subject to threshold flow 
production conditions where greatest sensitivity to measure- 
ment errors might be expected. 

Gupta et al [1998] provided an extensive discussion of 
issues in multi-objective calibration. They developed a 
multi-objective complex evolution scheme (MOCOM-UA) 
that built on the earlier shuffled complex evolution 
approach (SCE-UA). They provided in their Table 1 a list of 
calibration schemes that they and colleagues have used at 
the National Weather Service. Monthly flow volumes were 
one of the "volume" series that have been used. Given their 

observations, I suggest that the time series of volumes and 
peaks from Figure 13 be used in a two-objective (Pareto 
optimal) approach. This approach should overcome many 
existing limitations of data, particularly measurement and 
timing errors of rapidly changing states or fluxes. 

TREATMENT OF PARAMETER AND 

INPUT UNCERTAINTY 

Dawdy and Bergmann [1969] were among the earliest 
investigators to address explicitly parameter and input 
uncertainty effects on simulated streamflow time series. It is 
in relatively recent times that the computational demands 
for complete parameter and input uncertainty propagation 
could be accommodated. A formal Kalman Filter approach 
was used by Kitanidis and Bras [1980 a, b, c] to quantify 
model and parameter uncertainty in forecasts made with the 
Sacramento model. They assumed in their pioneering work 
aspects of parameter error structure and the form of the error 
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distribution. 

Garen and Burges [ 1981] sought the simplest scheme pos- 
sible to propagate assumed parameter error through a cali- 
brated Stanford Watershed model. They used both simple 
first-order uncertainty propagation and Monte Carlo uncer- 
tainty propagation and showed that the first-order approach 
was a good approximation to the more complete and com- 
putationally intensive Monte Carlo approach. They demon- 
strated the relative influence of parameter uncertainty on 
modeled hydrograph response for a given storm input for a 
hydrologically dry and a hydrologically wet initial state. 
The relatively uncertainties in hydrograph ordinates were 
completely different for the two cases. A much more com- 
prehensive approach needs to take into account explicitly 
model and parameter errors, including bias, and data uncer- 
tainties. 

The work of Kuczera and Parent [1998] is representative 
of the most complete schemes for calibrating a model with 
erroneous data and providing error bound predictions for 
model simulations. The direction of their work is particular- 
ly appealing because they predict uncertainties for a variety 
of states and variables. I think their general approach using 
the Metropolis algorithm, has much to recommend it. They 
used a daily hydrologic model with its attendant limitations, 
but they provide a format for using multiple signals for cal- 
ibrating and testing any general model. The approach offers 
a powerful tool to demonstrate model structure inadequacy. 
For example, if measurements fall outside of prediction 
bounds there is need to question both data adequacy and 
model structure. 

The general approach of Kuczera and Parent [1998] 
needs to be explored in considerably more detail. Bates and 
Campbell [2001] have introduced a fully Bayesian parame- 
ter estimation scheme that has additional potentially appeal- 
ing features that also needs further exploration. An alterna- 
tive parameter estimation scheme that explicitly considers 
uncertainties has been introduced by Freer et al [1996]. 
Works contained in this book that address these and related 

issues are the chapters by Kavetski et al, Freer et al, Vrugt 
et al, and Misirli et al. 

SUMMARY 

I have emphasized the need to focus on process details in 
our models. For most catchments, where there are no lakes, 
approximately 98 to 99% of the landform is the "hillslope". 
We have to get the details of water and energy balance right 
at the individual hillslope element before we can use any 
model for serious prediction applications. We would all 
hope to use a calibrated model to make useful predictions 
for all components of the hydrologic cycle for changes in 

precipitation and evaporation patterns and land use change. 
We need to include more information that would satisfy the 
flow paths and fluxes in multiple elements of the form 
shown schematically in Figure 1. We need to establish more 
"natural laboratories" and make appropriate nested meas- 
urements that address issues that I have raised with the 

material displayed in Figures 3 to 7. We need to address 
biases in point rainfall. (I have dodged the thorny issue of 
measuring snowfall, melt, and ablation). We need to estab- 
lish rain measuring networks that reduce wind influenced 
under catch in whatever point measurement clusters we 
adopt to gain the most complete information we can from 
radar (or other remote observation devices) to describe spa- 
tial precipitation patterns. 

Modeling has to be consistent with the measurement 
scale. There is little support for distributed modeling if only 
one "rain gauge" and one "streamflow measuring location" 
are available for the land unit of interest if it exceeds a small 

area. We need increased emphasis on measuring the vapor 
exchange with the atmosphere and with measuring recharge 
to ground water. This is essential to close the water budget 
at whatever spatial scale we model. We also need a renewed 
emphasis on data quality assurance and quality control so 
we can propagate errors appropriately and with confidence. 
When we have such information we can address algorithms 
for obtaining model parameters and parameter error struc- 
tures. It is likely that multi-objective optimization schemes 
that blend features of the work of Gupta et al [1998] and 
Kuczera and Parent [1998] and Bates and Campbell [2001] 
will prove to be effective. 

The overall objective in all this work is to sharpen consid- 
erably the measured and modeled mass and energy balances 
for catchments of all sizes. The data networks and models, that 
have been adequate for most prediction of hydrologic 
extremes and forecasting and water and land use decision 
making when there were fewer pressures on these resources, 
are no longer adequate for the needs of modem hydrology. 
Modem needs include hydrologically- and ecologically-based 
decision making and hydrologic hazard prediction for increas- 
ingly populated regions subject to flooding and drought. 
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Multi-criteria calibration of runoff models using additional data, such as ground- 
water levels or soil moisture, has been proposed as a way to constrain parameter 
values and to ensure the realistic simulation of internal variables. Nevertheless, in 

many cases the availability of such 'hard data' is limited. We argue that experi- 
mentalists working in a catchment often have much more knowledge of catchment 
behavior than is currently used for model calibration and testing. While potential- 
ly highly useful, this information is difficult to use directly as exact numbers in the 
calibration process. We present a framework whereby these 'soft' data from the 
experimentalist are made useful through fuzzy measures of model-simulation and 
parameter-value acceptability. The use of soft data is an approach to formalize the 
exchange of information and calibration measures between experimentalist and 
modeler. This dialog may also greatly augment the traditional and few 'hard' data 
measures available. We illustrate the value of 'soft data' with the application of a 
three-box conceptual model for the Maimai catchment in New Zealand. The 
model was calibrated against hard data (runoff and groundwater-levels) as well as 
a number of criteria derived from the soft data (e.g., percent new water, reservoir 
volume). While very good fits were obtained when calibrating against runoff only 
(model efficiency = 0.93), parameter sets obtained in this way showed, in gener- 
al, poor internal consistency. Inclusion of soft-data criteria in the model calibra- 
tion process resulted in lower model-efficiency values (around 0.84 when includ- 
ing all criteria) but led to better overall performance, as interpreted by the experi- 
mentalist's view of catchment runoff dynamics. 

INTRODUCTION 

Many different conceptual models of catchment hydrolo- 
gy have been developed during the last few decades [Singh, 
1995]. These models have become valuable tools for water 
management problems (e.g., flood forecasting, water bal- 
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ance studies and computation of design floods). The increas- 
ing awareness of environmental problems has given addi- 
tional impetus to hydrological modeling. Runoff models 
have to meet new requirements when they are intended to 
deal with problems such as acidification, soil erosion and 
land degradation, leaching of pollutants, irrigation, sustain- 
able water-resource management or possible consequences 
of land-use or climatic changes. Linkages to geochemistry, 
ecology, meteorology and other sciences must be considered 
explicitly and realistic simulations of internal processes 
become essential. 

301 
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Despite much effort [Hornberger and Boyer, 1995], 
hydrological modeling is faced by fundamental problems 
such as the need for calibration and the equifinality of dif- 
ferent model structures and parameter sets (i.e., the phe- 
nomenon that equally good model simulations might be 
obtained in many different ways, Beven, 1993). These prob- 
lems are linked to the limited data availability and the natu- 
ral heterogeneity of watersheds [e.g., Beven, 1993; 
O'Connell and Todini, 1996; Bronstert, 1999]. Problems 
also can be related to the procedures used for model testing. 
Traditional tests such as split-sample tests are often not suf- 
ficient to evaluate model validity or to assess the pros and 
cons of different model approaches. More powerful and rig- 
orous methods for model calibration and testing are clearly 
required [Kirchner et al., 1996; Mroczkowski et al., 1997, 
Kavetski et al., this issue]. 

Multi-criteria Model Calibration 

Manual calibration of a model by trial and error is a time- 
consuming method and results may be subjective. This is 
particularly true when calibrating against more than one 
hydrological variable. Therefore, various automatic calibra- 
tion methods have been developed [Sorooshian and Gupta, 
1995; Gupta et al., this volume, Duan, this volume]. In gen- 
eral, these methods allow for a quick and 'objective' cali- 
bration. On the other hand there is the danger that model 
calibration becomes a 'dumb' curve fitting exercise. By this 
we mean that unlike the manual calibration process where 
the hydrologist will implicitly make use of his/her process 
knowledge (e.g. by examining different aspects of the 
hydrograph or the simulation of internal variables), in the 
automatic approach, only explicitly stated criteria are con- 
sidered. Thus, there appears to be a need for methods to 
infuse hydrological reasoning into the automatic calibration 
process. 

Two 'ways forward' on the equifinality issue include: (1) 
making more detailed use out of the comparison between 
simulated and observed runoff series [e.g., Boyle et al., 
2000; this volume; Burges, this volume, Freer, this volume] 
or (2) incorporating additional data into the model calibra- 
tion procedure. Boyle et al. [2000; this volume], followed 
the first approach and proposed a method to combine the 
strengths of manual and automatic calibration methods. 
Recognizing that one goodness-of-fit measure is not suffi- 
cient to judge the fit of observed and simulated runoff 
series, they examined different parts of the hydrograph sep- 
arately. Our work, and this chapter, complements the work 
of Boyle et al. [2000; this volume] by exploring the second 
approach: i.e., the utilization of additional data in the model 
calibration process. 

The need to utilize additional data for model calibration 

and testing has been emphasized by others in the recent 
years [de Grosbois et at., 1988; Ambroise et at., 1995; 
Refsgaard, 1997; Kuczera and Mroczkowski, 1998; Seibert, 
1999; Meixner and Bastidas, this volume]. Testing runoff 
models against variables other than simply catchment-outlet 
runoff is important for two main reasons: (1) in many 
hydrological questions, and for other sciences such as ecol- 
ogy, it may be of much more interest to know what happens 
within a catchment than at the outlet, and (2) to have confi- 
dence in model predictions, which are often extrapolations 
beyond the testable conditions, it must be ensured that the 
model not only works, but also does so for the fight reasons. 

Most parameters of conceptual runoff models need to be 
determined by calibration. Some parameters may have a 
physical basis but they are effective parameters on the catch- 
ment or subcatchment scale. The typical problem is that the 
information contained in the rainfall-runoff relationship 
usually does not allow the identification of one unique 
parameter set. Reducing the number of parameters is an 
unattractive option because it might transform the concep- 
tual gray-box representation of the rainfall-runoff process 
into a pure black-box description. Another more attractive 
way to reduce parameter uncertainty is the use of addition- 
al data. Franks et al. [1998] demonstrated that the known 
percentage of saturated areas in the catchment helped to 
constrain calibrated parameter values and model predictions 
in an application of TOPMODEL. Seibert [2000] found for 
an application of the HBV model, that groundwater-level 
data helped to constrain the parameters of the groundwater 
routine. However, the worth of additional data varies 
depending on the kind of data, but also on the structure of 
the applied model. For instance, Kuczera and Mroczkowski 
[1998] found that groundwater levels helped little to reduce 
the parameter uncertainty in a hydrosalinity model, where- 
as stream salinity data more substantially reduced the uncer- 
tainties. Blazkova et at. [2002] mapped saturated areas and 
found that this information influenced optimized parameter 
values for TOPMODEL, but also that the additional infor- 
mation had only limited effect on constraining prediction 
bounds for stream discharge. 

The Concept of Soft Data 

In many cases the amount of available additional data is 
limited. However, a hydrologist might have a perceptual 
model [Beven, 1993], which is a highly detailed yet qualita- 
tive understanding of dominant runoff processes even in sit- 
uations with limited field measurements. Thus, there exists 

in addition to hard data (streamflow hydrograph, well 
record) 'soft data' about catchment hydrology and its inter- 
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nal 'behavior'. While some groups have used the perceptu- 
al model to guide the construction of the model elements, 
little has been done to use this kind of data in the model cal- 

ibration. The few to do this include Franks et al. [1998] who 
used maps of surface saturated area to constrain parameter 
ranges for TOPMODEL runs and Franks and Beven [1997] 
who used related fuzzy measures for evapotranspiration. 
Soft data can be defined as qualitative knowledge from the 
experimentalist that cannot be used directly as exact num- 
bers but that can be made useful when transformed into 

quantitative data through fuzzy measures of model-simula- 
tion and parameter-value acceptability. Soft data may be 
based on 'hard' measurements but these measurements 

require some interpretation or manipulation by a hydrologist 
before being useful in model testing. While fuzzy, these soft 
measures can be exceedingly valuable for indicating 'how a 
catchment works'. Fuzzy measures, which implement the 
concept of partial truth with values between completely true 
and completely false, have been found to be useful in hydro- 
logical model calibration [Seibert, 1997; Aronica et al., 
1998; Franks et al., 1998; Hankin and Beven, 1998]. 
Aronica et al. [1998], for instance, used a fuzzy-rule based 
calibration for a system containing highly uncertain flood 
information. A fuzzy measure varies between zero and one 
and describes the degree to which the statement 'x is a mem- 
ber of Y' or, in our case, 'this parameter set is the best pos- 
sible set' is true. 

Different methods are available for automatic optimiza- 
tion. Evolution-based optimization methods have been 
found to be suitable tools for the calibration of conceptual 
runoff models [Wang, 1991; Duan et al. 1992; Franchini, 
1996; Kuczera, 1997; Yapo et al., 1998, Duan, this volume]. 
Genetic algorithms are one class of these methods. The goal 
of genetic algorithms, originally suggested by Holland 
[1975; 1992], is to mimic evolution. Parameter sets are 
encoded to chromosome-like strings and different recombi- 
nation operators are used to generate new parameter sets. 
The optimization starts with a population of randomly gen- 
erated parameter sets. These are evaluated by running the 
model; those sets that give a better simulation according to 
some objective function, are given more chances to generate 
new sets than those sets that gave poorer results. Seibert 
[2000] used a genetic algorithm to find the true parameter 
values for a theoretical, error-free test case with synthetic 
data. For a real-world case, with calibration against 
observed runoff, he found that parameter values varied con- 
siderably for different calibration trials. However, approxi- 
mately the same model efficiency was achieved in almost 
every thai. This possibility for different parameter sets in 
the case of a flat goodness-of-fit surface allows one to uti- 
lize the genetic algorithm to evaluate parameter uncertainty 

using the variation of calibrated parameter values as a meas- 
ure of parameter identifiability [Seibert, 2000]. The genetic 
algorithm can, thus, provide an indication of parameter 
uncertainty and serve as an alternative to Monte Carlo 
approaches like, the Generalized Likelihood Uncertainty 
Estimation (GLUE) techniques of Freer et al. [ 1996]. 

In this chapter we present a method for how to use the 
additional data that often exists in experimental catchments 
for the calibration of conceptual runoff models. We present 
a number of 'soft data' measures as means to improve the 
dialog between modeler and experimentalist. We describe 
and use the implementation of a genetic algorithm for cali- 
bration, as proposed by Seibert [2000], and illustrate these 
methods for the Maimai watershed in New Zealand. Our 

main message in this chapter is that additional soft data may 
be a useful way to ensure that a model of catchment hydrol- 
ogy not only works (for runoff simulation), but also does so 
for the right process reasons. 

MATERIAL AND METHODS 

Soft Data 

We define soft data as knowledge from the experimental- 
ist that cannot be used directly for model calibration and 
testing but that can be made useful through fuzzy measures 
of model-simulation and parameter-value acceptability. It is 
important to note that soft data may be based on 'hard' 
measurements that require some interpretation or manipula- 
tion by a hydrologist before being useful in model testing. 
Model simulations may be judged in more process-based, 
ways when soft data is used compared to when only the hard 
data is considered For instance, the experimentalist might 
have some observations concerning the range in which 
groundwater levels fluctuate within a given zone of the 
catchment, or conceptual model box (based on field cam- 
paign information or observations made over some irregular 
time periods) or the contribution of rainfall or 'new' water 
[McDonnell et al., 1991] to peak flow (from event-based 
isotope tracing studies). Soft data can be used to constrain 
the calibration by: (1) evaluating the model with regard to 
simulations for which there might be no hard data available 
for comparison, and (2) assessing how reasonable the 
parameter values are, based on field experience. This range 
of 'reasonable' parameter values might be wide, especially 
when the parameter values are effective values at some larg- 
er scale. 

When comparing model simulations or parameter values 
with soft data, there may be a relatively wide range of 
acceptable simulations or values. Furthermore, there might 
be a range of values that fall between 'fully acceptable' and 
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'not acceptable', based on the experimentalist's experience 
in the field and other synoptic measurements. Fuzzy meas- 
ures of acceptance can be used to consider these ranges 
[Franks et al., 1998]. For each soft data type, a trapezoidal 
function (Eq. 1), where the experimentalist is asked to 
assign values to the variables ai, is used to compute the 
degree of acceptance, it, from the corresponding simulated 
quantity or parameter value x. This trapezoidal function is a 
simple way to map experimentalist experience into a quan- 
tity, which then can be optimized (Fig. 1). Other functions 
with different shapes might be used instead of the trape- 
zoidal function. 

'0 • z_< a• 
x-- a 1 

/of ai <- x < a 2 
a2--al (1) 
1 ifa2Nx<a 3 
a4 -- x 

/fa3-<x<a 4 
a 4 - a 3 

0 •z>a4 

An important point is that that uncertainty exists in the 
experimentalist's view of the catchment and that data col- 
lected in the field have their related uncertainties [Sherlock 
et al., 2002]. Thus, the trapezoidal function provides a way 
for the experimentalist to also provide his or her uncertain- 
ty bounds on the delivered rules to the modeler. 

The general acceptability of a parameter set was defined 
by three components: (1) the goodness-of-fit measures for 
the hard data such as the model efficiency [Nash and 
Sutcliffe, 1970] for runoff (At), (2) the goodness of the 
model simulations with regard to soft data (e.g., maximum 
groundwater levels) as quantified using Eq. 1 (A2), and (3) 
the acceptability of the parameter values based on the 
experimentalist's experience (As). For all three components, 
a value of one for A i corresponds to a perfect fit (or com- 
plete acceptability). 

The overall acceptability, A, of a parameter set is com- 
puted as a weighted geometric mean with the weights n•, n2, 
and n s (Eq. 2). A can then be used as optimization criterion. 

'4n2 '4n3 with rt 1 + rt 2 + rt 3 --1 (2) 

The selection of the weights in Eq. 2 nj, n2, and ns deter- 
mines which solution along the pareto-optimality sub-space 
will be found. The weights allow placement of more (or 
less) emphasis on the different types of data. A higher value 
for n•, for instance, might be justified if there is much use- 
ful and accurate hard data, whereas a smaller value might be 
appropriate if the hard data consists of only runoff. 

Evaluation rules 

Values for evaluation 

rules 

Degree of 
acceptability 

a2 03 

I a 
Simulated variable or 

parameter value 

Figure 1. Framework for formalized dialog between experimen- 
talist and modeler using a trapezoidal function as a means of 
assigning values to the soft data. 

Description of the Genetic Algorithm 

A genetic algorithm utilizes an evolution of parameter 
sets with elements of selection and recombination to find 

optimized parameter sets [Duan, this volume]. An initial 
population of n (set to 50) parameter sets is selected ran- 
domly within the parameter space. The 'fitness' of an indi- 
vidual set is quantified as the value of an objective function. 
A new population (generation) is generated from this popu- 
lation by n times combining two parameter sets, which are 
chosen randomly but with a higher chance of being picked 
for sets with a higher 'fitness' (i.e., objective function). 
From the two parent sets (sets A and B) the new parameter 
set is generated by applying for each parameter randomly 
(with some probability, Pi), each of the following four rules: 
(1) value of setA (p•=0.41), (2) value of set B (p2=0.41), (3) 
random value between the values of set A and set B (alter- 
natively, if both values were equal, a random value close to 
this value) (p3=0.16), or, (4) random value within the limits 
given for the parameter (mutation) (P4=0.02). The first two 
rules preserve the values of the preceding generation, 
whereas the other two rules provide an amount of random 
search. A balance between these rules is important for the 
success of the algorithm. However, within reasonable 
ranges adjustments to the probabilities for the different rules 
have only minor effects on the performance of the algo- 
rithm. Finally the fitness of each set in the new population 
is evaluated and the new generation replaces the old one. 
However, the best set is retained if there is no better set in 

the proceeding generation. This process is repeated for a 
number of generations. 

The results of a genetic algorithm can be improved by 
combination with a local search method [Wang, 1991]. For 
instance the parameter set found by a genetic algorithm can 
be used as starting point for a local optimization [Franchini, 



1996]. In addition to this form of subsequent 'fine-tuning', 
a local search approach can also be implemented during the 
'evolution' process [Seibert, 2000]. At a small probability 
(p=0.02), the new parameter set is not found by the param- 
eter-by-parameter combinations as described above; instead 
the new parameter set is the result of a one-dimensional 
optimization along the line determined by the two parame- 
ter sets using Brent's method [Press et al., 1992]. In this 
chapter we divide the total number of 2500 model runs into 
2000 runs for the genetic algorithm and 500 runs for the 
subsequent local optimization. We use Powell's quadratical- 
ly convergent method for this multidimensional, local opti- 
mization, as described in Press et al. [1992]. 

Our genetic algorithm includes stochastic elements such 
as the randomly generated initial set of parameter sets and 
the partly random generation of offsprings during the 'evo- 
lution' of parameter sets. Thus, the calibrated parameter val- 
ues may vary for different calibration trials, when different 
parameter sets result in similarly good simulations accord- 
ing to the goodness-of-fit measure. This makes this opti- 
mization algorithm suitable to address parameter uncertain- 
ty using the variation of calibrated parameter values as a 
measure of parameter identifiability. For the results present- 
ed in this study, sixty calibration trials were performed for 
each goodness-of-fit measure and the best 50 parameter sets 
were used for further analysis of model performance and 
parameter identifiability. 

The Maimai Watershed 

Maimai M8 is a small 3.8 ha headwater catchment located 

to the east of the Paparoa Mountain Range on the South 
Island of New Zealand. Slopes are short (<300 m) and steep 
(average 34 ø) with local relief of 100-150 m. Stream chan- 
nels are deeply incised and lower portions of the slope pro- 
files are strongly convex. Areas that could contribute to 
storm response by saturation overland flow are small and 
limited to 4-7 % [Mosley, 1979; Pearce et al., 1986]. Mean 
annual precipitation is approximately 2600 mm, producing 
an estimated 1550 mm of runoff. There were 11 major runoff 
events during the period of record used for model simulation 
in this study (August-December, 1987) with a maximum 
runoff of 6 mm/h. Additional to rainfall and runoff data, 

groundwater levels extracted from the tensiometer data in 
McDonnell [1989, 1990], were available for two locations 
(one in the riparian and one in the hollow zone). Mean 
monthly values of potential evaporation estimated by L. 
Rowe [1992, pers.comm.] were distributed using a sine 
curve for each day [J. Freer, 2000, pers. comm.]. 

The Maimai M8 watershed is a well-studied watershed 

with ongoing hillslope research by several research teams 
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since the late 1970s. During these studies a very detailed 
yet qualitative perceptual model of hillslope hydrology 
evolved (for review see McGlynn et al. [2002]). 

Conceptual Three-box Model 

While this chapter focuses on soft data for multi-criteria cal- 
ibration, the soft data first helped guide the box-model con- 
stmction. Our conceptual model is based on the three reser- 
voirs identified from the experimental studies at M8: riparian, 
hollow and hillslope zones (Fig. 2, Table 1). These zones (or 
model boxes) display very different groundwater dynamics 
[McDonnell, 1990] and group clearly based on their isotopic 
characteristics [McDonnell et al., 1991]. Water is simulated to 
flow from the hillslope zone into the hollow zone and from the 
hollow zone into the riparian zone. Outflow from the riparian 
zone forms the flow in the stream. Most importantly, and most 
novel for this model, is the formulation used to model the 

unsaturated and saturated storage. Due to the shallow ground- 
water (groundwater levels 0- 1.5 m below the ground sur- 
face) growth of the (transient) saturated zone occurs at the 
expense of the unsaturated zone thickness. Thus, a coupled 
formulation of the saturated and unsaturated storage was used, 
as proposed by Seibert et al. [2002]. In this formulation, the 
amount of saturated storage determines the maximum space 
for unsaturated storage. For a more detailed description and 
equations of the three-box model the reader is referred to 
[Seibert and McDonnell, 2002]. 

Table 1. List of parameters used in the three-box model. 

Parameter Description Unit 

Zmax 

I,rtparmn 
k l , hollow 

k2, hollow 

l, htllslope 
Zthreshold 

p 

f rtpartan 
f hollow 

Soil depth a [mm] 
Parameter corresponding to water [-] 
content at field capacity divided by 
porosity 
Parameter corresponding to water [-] 
content at wilting point divided by 
porosity 
Shape coefficient determining [-] 
groundwater recharge 
Outflow coefficient, riparian box [h-) 
Outflow coefficient, hollow box, lower [h -•] 
outflow 

Outflow coefficient, hollow box, upper [h -1] 
outflow 

Outflow coefficient, hillslope box [h 4] 
Threshold storage for contribution from [mm] 
upper outflow in the hollow box 
Porosity a [-] 
Areal fraction of the riparian zone [-] 
Areal fraction of the hollow zone [-] 

a Different values were allowed for riparian, hollow and 
hillslope box 
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Figure 2. Structure of the three-box model developed for the Maimai M8 watershed including hillslope, hollow and 
riparian zone reservoirs. (P: precipitation, E: evaporation, z: groundwater level above bedrock, U: unsaturated stor- 
age). See also Table 1. 

As for any model, several simplifications and assump- 
tions are made to derive this conceptual three-box model 
[Seibert and McDonnell, 2002]. The model structure is guid- 
ed by experimental findings at Maimai. Obviously these 
simplifications and assumptions are not universally applica- 
ble; for other watersheds, a different model structure may be 
more appropriate (perhaps different box configurations, dif- 
ferent number of boxes or different sizes and connections of 

boxes). The dialogue between experimentalist and modeler 
using the soft-data framework might guide this construction 
of conceptual models for particular catchments. 

Application of the Soft-Dam Framework 

For presentation in this chapter we include a subset of the 
available soft data for demonstration purposes: groundwater 
levels in the three boxes, the new-water contribution to peak 
runoff, and some other parameter values. Evaluation rules 
were developed using Eq. 1 to judge model performance 
with regard to minimum and maximum groundwater levels 
as well as the frequency of levels being above a specified 
level (Table 2). The values for these rules were motivated by 
field studies reported in McDonnell [1990], McDonnell et 
al. [1991] and Stewart and McDonnell [1991] for the same 
August-December 1987 period where groundwater response 
in the riparian and hollow zones were quantified with 
recording tensiometers that show distinctly different wet- 
ting, filling, draining behavior. Riparian zones were charac- 
terized by rapid conversion of tension to pressure potential 

(i.e., rapid conversion of unsaturated zone to a saturated 
zone by storage filling and water table rise from below). 
Water tables were sustained in this zone for 1-2 days fol- 
lowing the cessation of rainfall. These data provided the soft 
data measures for minimum and maximum groundwater 
levels and frequency of levels above a specified level (listed 
in Table 2). The hollow zone response was much more sen- 
sitive to rainfall inputs: conversion of unsaturated zone to 
transient saturation occurred within the few hours of the 

hydrograph rising limb and pore pressure recession rates 
closely matched stream and subsurface-trench hydrograph 
recession rates. Soft data for the hillslope positions were 
gathered from previous throughflow pit analysis by Mosley 
[1979] including continuously recorded pit outflow from a 
number of distinct linear hillslope segments. Hillslope sec- 
tions (unlike hollows and riparian zones) show very infre- 
quent water table development--when water tables were 
present, they were restricted vis-h-vis the soft data measure 
trapezoidal function classification (see numbers in Table 2). 
The soil catena sequences in the Maimai catchment as 
mapped by McKie [ 1978] confirm these interpretations. 

Hillslope soils show no evidence of any gleying whereas 
gleying appears in the hollow zone and is most dominant in 
the riparian zone. We view this as a long-term expression of 
the spatial delineation of boxes and water table longevity 
applied in this study. Table 2 includes also a number of soft- 
data rules including isotope hydrograph separation-derived 
new-water estimates (at peakflow). Values for these rules 
were based on results from hydrograph separations reported 
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Table 2. Evaluation rules based on soft data used for model calibration (the values for a, define the trapezoidal function used 
to compute the degree of acceptance, see Eq. 1). 

Type of soft Specific soft information a• a 2 a s a 4 Motivation 
information 

New water 

contribution to peak 
runoff [-] 

Range of groundwater 
levels, min./max. 
fraction of saturated 

part of the soil [-] 
Frequency of 
groundwater levels 
above a certain level 

(as fraction of soil) [-] 

Parameter values 

870930 18.00 0.03 0.06 0.12 0.15 McDonnell etal. [1991] 
8710083.00 0.05 0.13 0.31 0.40 " 

87101017.00 - 0 0.03 0.06 " 

871013 11.00 0.17 0.23 0.35 0.41 " 

871113 19.00 - 0 0.03 0.06 " 

871127 8.00 0.04 0.07 0.13 0.16 " 

Maximum hillslope 0 0.2 0.5 0.7 Mosley [ 1979] 
Maximum hollow 0 0.5 0.75 1 McDonnell [ 1990] 
Minimum hollow 0 0.05 0.1 0.2 ,, 

Minimum riparian 0.05 0.1 0.3 0.5 ,, 
Hillslope, above 0.5 during events - 0 0.1 0.3 Mosley [1979] 
Hollow above 0.7 during events - 0 0.1 0.2 McDonnell [1990] 
Hollow above 0.9 during events - - 0 0.1 " 
Riparian above 0.2 0.6 0.8 1 1 " 
Riparian above 0.9 during events 0 0.25 0.75 1 " 
Fraction of riparian zone [-] 0.01 0.03 0.07 0.10 Mosley [1979] 
Fraction of hollow zone [-] 0.05 0.10 0.15 0.20 McDonnell [1990] 
Porosity in hillslope zone [-] 0.45 0.6 0.7 0.75 McDonnell [1989] 
Porosity in hollow zone [-] 0.45 0.55 0.65 0.75 " 
Porosity in riparian zone [-] 0.45 0.5 0.6 0.75 " 
Soil depth for hillslope zone [m] 0.1 0.3 0.8 1.5 McDonnell et al. [1998] 
Soil depth for hollow zone [m] 0.5 1 2 2.5 " 
Soil depth for riparian zone [m] 0.15 0.4 0.75 1 " 
Threshold level in hollow zone, 0 0.1 0.4 1 McDonnell [ 1990] 

fraction of soil depth [-] McDonnell et al. [1991] 

in McDonnell [1989] and McDonnell et al. [1991]. These 
evaluation rules allowed computation of degree of accept- 
ance with respect to the simulated new-water. New water 
percentage is a very useful integrated measure of the relative 
contribution of rainfall versus displaced stored water contri- 
butions at various times through the storm hydrograph. 
Unlike the point-based water level measures and rules, the 
new water percentage subsumes point scale variability into 
an integrated measure of catchment runoff dynamics. In our 
dataset, the new-water percentages varied, from event to 
event, and some storms did not have rain isotopic concen- 
tration suitable for application of the two-component mass 
balance separation technique. The flexibility of the soft data 
is such that even for isolated measures from field campaigns 
or experiments (or when hydrograph separation was possi- 
ble) rules may be developed to guide the model calibration 
process, even if this information is derived from periods out- 
side the simulated calibration period. 

We computed degrees of acceptance for a number of 
parameters using the soft data evaluation rules. Acceptance 
in this instance is defined as the degree to which model 
parameter values agree with the field experience and the 
perceptual model of the catchment runoff process. These 
acceptance values varied from one, if the value was within 

the desirable range and decreased towards zero with 
increasing deviations from this range (Table 2). For exam- 
ple, we allowed values from 1 to 10 percent for the areal 
fraction of the riparian zone (i.e., the variable source area in 
this case), but the degree of acceptance was one, only for 
values between 3 and 7 percent (based on mapped saturated 
areas in the M8 catchment reported in Mosley [1979]). 
Based on the individual parameters the acceptability of a 
certain parameter set was computed as the geometric mean 
of the respective degrees of acceptance. 

We quantified the acceptability of calibrations using hard 
data (At) using a combination of the efficiency measure, 
Reff, and the relative volume error, VE, (=accumulated dif- 
ference divided by sum of observed runoff) for the runoff 
simulations as proposed by Lindstrrm [1997] (Eq. 3). 
Following Lindstrrm [ 1997], a value of 0.1 was used for the 
weighing coefficient, w, which determines the relative 
emphasis on the volume error. The coefficient of determi- 
nation, r2, was used to assess the performance of the simu- 
lations for the groundwater levels in the riparian and the 
hollow zone, and At is computed as average of these differ- 
ent goodness-of-fit measures (Eq. 3). 

•1 = • gw hollow gw rtpartan 
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Figure 3. Three different types of relations between goodness-of-fit measures for the best realizations: a) a strong pos- 
itive correlation, b) no correlation, and c) a negative correlation. Each dot represents one realization (or parameter set), 
the dashed line represents the pareto-optimality and the gray circle indicates the region in which the 'best' parameter 
sets are found. 

Using the coefficient of determination, r 2, we did not 
force the model to exactly fit the observations, but allowed 
for an offset and a different amplitude. We argue that it is 
the dynamics, rather than the exact levels, that should be 
used from this kind of data where we compare the point 
observation from the field with a simulated average behav- 
ior of an entire zone (i.e., box within the model). By also 
utilizing soft data, there is no need to 'over fit' the model to 
the levels obtained from tensiometer observations at a few 

observation locations - in our case, one point in the hollow 
zone and another mid-way up the main valley bottom in the 
riparian zone (see McDonnell [1990] for field details). 

Acceptability of the model simulations using soft data (A2) 
was computed as the arithmetic mean of 15 evaluation rules 
of the soft data for groundwater levels and contribution of 
new water (Table 2). The arithmetic mean was used in this 
instance since the geometric mean is less suitable when val- 
ues can become zero. Acceptability of the parameter values 
based on soft data (A 3) was computed as the geometric mean 
of nine evaluation rules of the different parameters (Table 2). 

When plotting two different goodness-of-fit measures 
against each other for a number of realizations (parameter 
sets), the relations for the best realizations can be grouped 
into three basic cases: (1) a strong positive correlation, (2) 
no correlation, and (3) a negative correlation (Fig. 3). In 
case 1 the second criterion does not contribute with addi- 

tional information and only one of the goodness-of-fit 
measures needs to be calculated. The situation is different 

for the case 2, where the both criteria provide different 
information. However, in both cases it is quite apparent 
from which region one would choose parameter sets to 
achieve optimal model performance, i.e., from a region 
where one can find realizations that are optimal for both cri- 
teria (see gray circle in Fig.3). In case 3 the two criteria also 
provide different information, but here the two criteria are 

not unrelated and "conflict' one another. In other words, a 
good solution according to one criterion can only be 
obtained at the price of a poor performance according to the 
second criterion. It is therefore not possible to find a solu- 
tion that is optimal according to the two criteria simultane- 
ously, since the best values for the two criteria are negative- 
ly correlated. The best solutions are found along a pareto- 
optimality line (i.e., 'compromise-solutions'). If the 'com- 
promise-solutions' are too poor compared to the individual 
best solutions, this might indicate a problem with the model 
structure [Seibert, 2000]. As mentioned above, the selection 
of the weights n/, n 2, and n 3 in Eq. 2 determines which solu- 
tion along the pareto-optimality sub-space (lines in Fig. 3) 
will be found. 

We tested different combinations to examine the relations 

between the different criteria. We quantified the value of the 
soft data by testing how the measures helped in ensuring 
internal model consistency and reducing parameter uncer- 
tainty. First we examined how model performance, as judged 
by the various criteria, varied when the model was calibrated 
considering different sets of criteria. Second, we compared 
the magnitude of parameter uncertainty when calibrating 
against runoff only and when calibrating against different 
combinations of criteria. For this part of the analysis we used 
values of 0.4, 0.4 and 0.2 for the weights in Eq. 2 n•, n2, and 
n3 respectively to place more emphasize on the acceptability 
with regard to the simulations (both hard and soft data) and 
less weight on the acceptability of the parameter values. 

RESULTS 

Model Performance 

The model was able to reproduce observed runoff very 
well. When calibrated with runoff data only, the model was 
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able to simulate the observed runoff with values of 0.93 for 

the model efficiency [Nash and Sutcliffe, 1970]. 
Notwithstanding, while high model efficiency was obtained 
with the runoff-only (hard data) calibration, goodness-of-fit 
statistics for percent new water and soft groundwater meas- 
ures for example, were very poor (Fig.4, shaded area). If one 
examines the simulated groundwater levels for each of the 
three boxes for the runoff-only calibration, several different 
response patterns are produced---each with a high model 
efficiency for runoff (Fig. 5a-c). In Fig. 5a, the riparian and 
hollow box fail to behave like observed reservoir dynamics 
reported in McDonnell [ 1990], with too much water remain- 
ing in the hollow box, especially between events. Fig. 5b is 
an example where each of the three boxes filled and drained 
too quickly during events. Fig. 5c shows an appropriate 
riparian box response but poor representation of the hollow 
zone where the zone is drained too quickly. This is a com- 
pelling example of how relying only on the traditional sin- 
gle-criterion, hard-data model calibration, can produce 
'fight answers for the wrong reasons'. It each case, without 
the insight of soft data, one may have been tempted to 
assume that the model 'worked well' given the high model 
efficiency for any of the very similar runoff simulations. 

As additional hard and soft data were entered into the 

model calibration, the model efficiency for runoff decreased 
(from the 0.93 value to 0.84) but goodness-of-fit for the 
process description (i.e., soft data on groundwater, percent- 

new-water and parameter values) increased dramatically 
(Fig. 4 and 6). The combined objective function A (Eq. 2) 
increased from 0.46 to 0.79 when adding A 2 and As to the 
optimization criterion. In general, the variability in the vari- 
ous goodness-of-fit measures decreased when more criteria 
were included into the calibration. Most importantly per- 
haps, the groundwater dynamics simulated with a parameter 
set obtained by this multi-criteria calibration are in keeping 
with experimental observations on reservoir response. The 
goodness-of-fit of the groundwater level simulations 
increased from 0.53 to 0.82 for the hard data and from 0.34 

to 0.60 for the soft data, for parameter sets optimized using 
the combination of all criteria compared to the simulations 
using parameter sets calibrated to only runoff. Furthermore, 
the range of objective-function values generally decreased 
when a criterion was considered during calibration. 

The simulation with the best overall performance caused 
a somewhat reduced model efficiency for runoff but dis- 
played more 'realistic' internal dynamics (Fig. 6). Fig. 6 also 
shows the decrease of unsaturated storage through the event, 
indicative of the coupled formulation of saturated and unsat- 
urated storage. We argue that this formulation is an impor- 
tant and new feature of the three-box approach because it is 
a more realistic conceptualization of the unsaturated-satu- 
rated storage interactions given the shallow groundwater. 
While application of the model to other catchments might 
involve different arrangements and numbers of boxes, the 
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Figure 4. Goodness-of-fit measures for runoff, groundwater levels, new water ratios, soft groundwater measures, and 
parameter-value acceptability for calibrations against various combinations hard and soft information (see text for def- 
inition of the different optimization criteria). The symbol shows the median of 50 calibration trials and the vertical lines 
indicate the range of these trials. The shaded area relates to the traditional calibration approach using only runoff data 
and highlights the problem of internal consistency when calibrating against only runoff. 
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Figure 5. Three model runs with different parameter sets resulting in different groundwater dynamics (levels in [m] 
above bedrock). All three parameter sets had been calibrated to observed runoff and gave an almost similar goodness- 
of-fit (model efficiency -0.93). None of the three sets of groundwater time series agrees with the perceptual model of 
the watershed. 

coupled saturated-unsaturated zone formulation is one that 
is common to many headwater catchment conditions. 

Relation between Optimization Criteria 

Different parameter sets will be found through calibration 
if different weights (ni) are used for the overall acceptabili- 
ty in Eq. 2. Using different combinations of A• and A2 as 
well as A• and A 3 demonstrated that both soft-data criteria 
(A2 and A3) gave different information than the hard data 
(A•) (Fig. 7). There is no conflict between the hard data and 
the soft data on parameter values (A3) (Fig. 7b), i.e., the cal- 
ibrated solutions all follow the 'no-correlation'-pattern 
(compare Fig. 3b). On the other hand, there is a trade-off 
between the hard data and the soft data on model simula- 

tions (A2) (Fig. 7a), i.e., it is not possible to find a solution 
that is optimal according to both criteria simultaneously. 
The solutions form a curve that lies in between the 'nega- 

tive-correlation' and the 'no-correlation'-patterns (compare 
Fig. 3 b,c) indicating that there is some conflict between the 
criteria, but not total disagreement. 

Parameter Uncertainty 

For each parameter, 50 different values were obtained by 
the different calibration trials. The range between the 0.1 
and 0.9 percentile divided by the median was computed for 
each parameter as measure of parameter uncertainty. The 
ratio between the values obtained from multi-criteria soft 

data calibrations and those derived from runoff-only hard 
data calibrations indicated a general reduction of parameter 
uncertainty (i.e., the variation of calibrated parameter val- 
ues decreased) when adding different criteria, but results 
varied from model parameter to model parameter. When 
optimizing the combination of all criteria (A•, A2 and A3) 
the ratio varied between 0.03 and 0.65. The median was 
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Figure 6. Simulation with best overall performance. Accumulated rainfall, simulated unsaturated storage and sim- 
ulated groundwater levels (m above bedrock), as well as observed and simulated runoff. The model efficiency for 
runoff is 0.84 and the simulated groundwater dynamics agree in general with the perceptual model. 
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Figure 7. Relations between model performance according to a) A 1 and A 2 as well as b) A1 and A 3. Each point repre- 
sents the results with a parameter sets which was calibrated using different combinations of the two respective criteria 
as objective function (i.e., the combined acceptability measure with different weights n i (using a value of zero for n 3 (a) 
and n 2 (b)). 

0.4, implying that using all criteria helped to reduce param- 
eter uncertainty on average by 60% relative to the single 
criterion calibration against only runoff. The reduction of 
parameter uncertainty was most obvious for the coeffi- 
cients of the linear outflow equations, despite the fact that 
no 'desirable' parameter ranges were specified for these 
parameters. Including hard groundwater data or soft data 
for new-water contribution to peak runoff also reduced 
parameter uncertainty, but not as significantly as for the 
combination of all criteria. 

DISCUSSION 

Soft Data to Improve Model Performance 

When a model is calibrated against different criteria, the 
overall 'best' parameter set often is a compromise between 
the different criteria. In other words, when the model is cal- 

ibrated against several criteria, the value of an individual 
goodness-of-fit measure will be lower than when the model 
is calibrated against only this criterion. If this decrease in 
goodness-of-fit is large, then one might have to reject or 
reconsider the model structure. Seibert [2000] presents an 
example where the difficulty in simulating both runoff and 
groundwater levels with the same parameter set indicated a 
major problem in the model structure. With a modified 
model structure, it was less problematic to optimize the 
model against the two criteria. 

In addition to the reduced parameter uncertainty, the 
multi-criteria calibration is assumed to provide parameter 
sets that are a more appropriate representation of the catch- 

ment, than a calibration against only runoff. Runoff will be 
simulated slightly worse during the calibration period, but 
the internal variables come into much better agreement with 
the conditions in the catchment. It seems reasonable that 

this improved internal consistency is associated with more 
reliable predictions outside the calibration domain. This 
assertion has to be tested in future studies using validation 
periods during which the hydrological conditions differ 
from those during calibration. 

There exists a trade-off between model complexity and 
parameter uncertainty. It is difficult to test very parsimo- 
nious models with, for instance, only 3-6 parameters against 
data other than runoff, since measurable quantities have no 
clear counterparts in the model. In general, the testability of 
models increase with increasing model complexity. On the 
other hand, incorporation of additional variables used for 
calibration and validation often require extending the 
model, and the number of parameters may increase faster 
than the amount of additional information. Additional infor- 

mation may help improve the identifiability of parameter 
values, as demonstrated in this study, but if the only aim is 
to improve parameter identifiability, reducing the number of 
parameters might be a more efficient method. However, too 
parsimonious a model might be of limited usefulness if one 
intends to use the model for more than simply the simula- 
tion of runoff. 

Relation between Optimization Criteria 

The fact that the model performance decreases when the 
model is also calibrated against soft data shows that there is 



some conflict between the criteria. This was also indicated 

by the results of the calibrations with different weights (Fig. 
7). This conflict might be caused by errors in the hard or soft 
data. More probably, however, it reflects the fact that the 
model structure is not perfect. Nevertheless, in our study the 
disagreement between hard and soft data was not tremen- 
dous and one might conclude that the model structure thus 
is an appropriate approximation. We are now implementing 
this approach in other well-studied experimental catchments 
to better understand these relations. 

Types of Soft Data 

The soft data measures used in this paper vary from stat- 
ic measures (e.g., the spatial extent of the riparian zone) to 
data on groundwater level variations and highly integrated 
measures like the percent of new water at peakflow. The 
results of isotopic hydrograph separations have the advan- 
tage that the new-water contribution is an integrated meas- 
ure of catchment response and offers much constraint on the 
preceptual model of runoff generation. Few studies to date 
have used isotope data in model calibrationsdespite the 
now common use of this in watershed analysis [Kendall and 
McDonnell, 1998]. Hooper et al. [1988] used continuous 
stream O-18 to calibrate the Birkenes modelsanother sim- 

ple conceptual box model of runoff response. Similarly, 
Seibert et al [2001] have used continuous stream O-18 for 
model testing. In the present study, we use the new water 
ratio for discrete events rather than a continuous time series 

of O-18. Unlike higher latitude Scandinavia where previous 
attempts have been made, the Maimai catchment shows sev- 
eral periods of rainfall 'cross-over' with stream baseflow 
and ground water because of the lower amplitude of the sea- 
sonal O-18 variations (due primarily to lower annual tem- 
perature range)•making continuous time series modeling 
less valuable. Nevertheless, the new-water soft-data meas- 

ure is an example of making the most of data available for 
a given situation. We advocate that in many catchment stud- 
ies, additional (soft) data may be available that can, and 
should, be used to constrain model simulations. In snow- 
dominated environments, for instance, snow cover informa- 
tion may be used. In cases where the expansion and con- 
traction of surface-saturated areas is important (and consid- 
ered in the model), knowledge of the maximal portion of the 
catchment that might become saturated can be used. Franks 
et al. [1998] derived information on the extent of saturated 
areas at a certain time step from remote sensing and this 
information helped to constrain parameter values of TOP- 
MODEL. In most cases measurements on the extent of sat- 

urated areas are not available, but hydrological reasoning 
and field experience might allow specifying a range of rea- 
sonable values (e.g. based on topography or vegetation 
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types). Mapped subsurface moisture distribution form one- 
the-ground remote sensing using non-invasive geophysical 
techniques may be another for useful soft data in the future. 
Sherlock and McDonnell [2002] showed that groundwater 
levels and soil water content could be mapped using elec- 
tromagnetic induction at the hillslope scale, such techniques 
become applicable at the catchment scale, such pattern data 
may be a useful constraint on model parameters. At larger 
watershed scales, residence time of water in different boxes 

might be a useful soft data measure [Uhlenbrook et al. 
2000]. 

CONCLUDING REMARKS 

Today, obtaining some 'acceptable' fit between observed 
and simulated runoff is not such a difficult task, even in 

cases where the model structure is not necessary physically 
reasonable. Such models abound in the literature and in 

practice [Singh and Frevert, 2002]. By using one simple 
goodness-of-fit measure, such as the model efficiency for 
runoff, the calibration of a runoff model often becomes 

nothing more than a curve fitting exercise. Given the num- 
ber of experimental watersheds around the world, the data 
and perceputal understanding of catchment hydrology gath- 
ered by experimentalists should be utilized much more in 
catchment modeling than it is done today. Given that addi- 
tional data might allow for assessing internal model consis- 
tency, we advocate that this represents an important way 
forward towards more realistic conceptual models. We 
argue that the use of soft data may be a useful philosophy 
and approach in this regard, as an important complement to 
the use of traditional hard data measures, normally are used 
in model calibration. The concept of soft data together with 
a multi-criteria calibration, is a way to mimic hydrological 
reasoning (which exists implicitly in manual calibration 
approaches) in automatic calibration procedures. Obviously 
the exact numbers for the fuzzy evaluations (Eq. 1) and the 
weighing of the three components of the overall acceptibil- 
ity that we describe (Eq. 2) are, to some degree, subjective 
decisions. However, these decisions, even if they are sub- 
jective, are more reasonable than ignoring all the qualitative 
process understanding that exists for most small research 
catchments. The soft-data framework might lead towards 
more reasonable model calibrations and more realistic 

model simulations. This dialog, that links the experimental- 
ist and the modeler might, thus, be the needed catalyst for 
new progress in watershed modeling. 
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and Data on Watershed Modeling 
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On the basis of the calibration and validation results obtained from 37 sets of 

CRR model-data experiments formulated out of 5 CRR (conceptual rainfall- 
runoff) models and 5 catchments of wet, semi-wet and dry catchments, it is clear 
that parameters optimized automatically are data dependent. Global optimum 
parameters are impossible to obtain but conceptually sound parameters are possi- 
ble if adequate calibration data is available, even for dry catchments based on 
standard CRR of 10 to 20 parameters. On a whole, more dependable results are 
expected from wet than dry catchments. Further, model performance depends 
more on the model structure and data quality than model complexity or data 
length. Parameters explicitly "coupled" to other parameters generally exhibit 
stronger interactions (which likely mean more identifiability problem), but cali- 
bration data could also cause some of the parameter interactions observed. 

1. INTRODUCTION 

Dry and mountainous catchments are generally more dif- 
ficult to model than, say, temperate or wet catchments 
because their hydrologic processes are more complex and 
variable. Jakeman and Hornberger (1993) found that wet 
catchments could be well represented by a four-parameter, 
linear model of two components, which respectively repre- 
sent a "slow" and a "fast" response modes. This simple 
approach is likely inappropriate for dry catchments with 
extended dry spells that often change drastically to wet sea- 
sons when torrential rain pours. Furthermore, the hydrolog- 
ic processes of dry catchments should be distinct between 
high grounds where patchy and sparse vegetation dominate 
and valleys or areas covered with denser vegetation. The 
more abrupt and heterogeneous changes of dry catchments 
cause their hydrologic data to be generally noisy, unrepre- 
sentative or even erroneous. 

Majority of the deterministic, lumped-parameter concep- 
tual rainfall-runoff models (CRR) have been built for tem- 
perate or wet catchments where the hydrologic responses 
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only involve a subset of the processes that occur in dry 
catchments. CRR models conceptualize hydrologic process- 
es in inter-related conceptual storages defined by model 
parameters. Rates of recharge to or withdrawal of water 
from these storages are a function of exponents, state vari- 
ables, storage capacities and water balance principles, rather 
than a combination of energy and water balances. Even then, 
because the rainfall-runoff transformation process is highly 
complex, CRR models that incorporate major hydrologic 
processes often have more than half a dozen of parameters 
(see Tables 2, 5, 9), which could result in an over-parame- 
terization problem. This is partly because of the limited 
information contained in most of our standard hydrologic 
data available for calibrating (manual or automatic or both) 
non-measurable model parameters that govern the approxi- 
mate mathematical functions for the soil moisture account- 

ing phase of basin hydrology. 
As long as the conceptual base of a model 'captures' the 

essential hydrologic processes of a catchment, past studies 
show that complex models do not necessarily perform better 
than simpler models (e.g., Loague and Freeze, 1985). With 
an ever increasing computing power, and the availability of 
powerful optimization algorithms, such as the SCE-UA 
(Duan et al., 1992), the danger of over-parameterization 
may be growing ever bigger. 

What should be the recommended level of model com- 

plexity for dry catchments, given that dry catchments under- 
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go a wider range and more complex hydrologic process- 
es than temperate or wet catchments, yet usually have 
only worse data sets for model calibrations? Will the 
majority of traditional CRR models built for temperate 
catchments suffer from over-parameterization if applied 
to dry catchments? Will CRR models suffer from more 
identifiability problems and parameter interactions when 
applied to dry catchments? What impact will the choice 
of calibration data have on calibrating CRR models to 
dry catchments, given that the standard rainfall-runoff 
data are point measurements which contain errors and 
only the input-output, instead of the rainfall-runoff trans- 
formation information? Research objectives are outlined 
in Section 2, CRR models in Section 3, research proce- 
dures in Section 4, discussions of results in Section 5, 
and conclusions in Section 6. 

2. RESEARCH OBJECTIVES 

The primary objectives are to study the effects of model 
complexity and structure of five major CRR models, the 
wetness and climatic conditions of catchments selected 

from different continents, data length and variability on 
conceptual hydrologic modeling. The influence of param- 
eter identifiability and parameter interactions on the opti- 
mized parameters obtained via automatic calibration is 
also addressed. Input data to the five CRR models are rain- 
fall and potential evapotranspiration (ET). The basis of 
model calibration is the streamflow at the basin outlet 

(Table 1). The credibility of the optimized parameters is 
validated using data sets independent of the calibration 
experience. 

3. CONCEPTUAL RAINFALL-RUNOFF MODELS 

The five deterministic, lumped-parameter, conceptual 
rainfall-runoff (CRR) models used were: (i) the soil mois- 
ture accounting and routing model (SMAR) model of 
Ireland, (ii) the Xinanjiang model (XNJ) of China, (iii) the 
Nedbor-Afstromnings Model (NAM) model of Denmark, 
(iv) the Sacramento model (SMA) of the US, and (v) the 
Pitman (PTM) of South Africa. SMAR was developed in the 
University of Galway (O' Connell et al., 1970), while XNJ 
was developed in 1973 by the East China College of 
Hydraulic Engineering (now the Hohai University) to fore- 
cast floods in large humid basins where the infiltration rate 
is high, making surface runoff small and interflow or sub- 
surface flow high (Zhao, 1992). NAM, developed at the 
Technical University of Denmark (Danish Hydraulic 
Institute, 1982), operates by continuously accounting for 
moisture content in five mutually interrelated storages. The 

Sacramento model (SMA) is the US National Weather 
Service model for operational river forecast (Burnash et al., 
1973). The Pitman model (Pitman, 1976) is widely used 
throughout southern Africa. 

These five deterministic CRR models have similar 

model structure but they differ in model complexity and 
the functions used to represent various hydrological sub- 
processes (see Table 1). SMAR is the simplest (9 parame- 
ters), SMA is the most complicated (21 parameters), while 
PTM (16 parameters), XNJ (15 parameters) and NAM (15 
parameters) are comparable to each other. The actual num- 
ber of parameters calibrated for each model is shown in 
Table 1. 

3.1. Calibration of CRR Models 

Model calibration is a major aspect of hydrologic modeling. 
We could obtain erroneous results out of conceptually realis- 
tic models if they are not properly calibrated. Models are 
either calibrated manually, automatically or a combination of 
manual and automatic procedures. Manual calibration 
includes assigning parameter values through past experience 
and field data, and guidelines given in the literature. Model 
parameters obtained from an automatic procedure will 
depend on six elements: (i) optimization algorithm, (ii) 
objective function, (iii) calibration data, (iv) model structure 
and complexity, (v) parameter identifiability, and (vi) param- 
eter interactions. The paper's focus is on the third to the sixth 
elements. 

The Shuffle Complex Evolution Method (SCE-UA) of 
Duan et al. (1992) is a global, probabilistic optimization 
method that evaluates the objective function at randomly 
spaced points in a feasible parameter space. SCE-UA was 
chosen for this study because it represents a synthesis of the 
best features of several methods. It combines the strength of 
Simplex (Nelder and Mead, 1965) and the concept of a con- 
trolled random search, a systematic evolution of points in the 
direction of global improvement, competitive evolution 
(Holland, 1975), and complex shuffling. Duan et al. (1992) 
compared the independent global search in the feasible space 
without sharing information as giving a number of competent 
people a difficult problem to solve without conferring with 
each other. The idea is for people to first work independently 
(individually or in small groups called complexes), and later 
gets together now and then to share information about their 
progress (shuffling). For the limited point measurements we 
have for these test catchments, we do not see any advantage in 
using the multi-objective extension of SCE-UA, the 
MOCOM-UA based on the Pareto solution space (Yapo et al., 
1997). SCE-UA is likely the most advanced optimization 
algorithm we can justifiably use. 
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Table 1. Main Model Features of SMAR, Xinanjiang (XNJ), NAM, Sacramento (SMA), and the Pitman 
(PTM) models 

Classification SM AR XNJ NAM SMA PTM 

USA(North South Africa Origin Ireland(Europe) China(Asia) Denmark(Europe) America) 
Rainfall Rainfall Rainfall Rainfall Rainfall 

Input Pot. Evap. Pot. Evap. Pot. Evap. Pot. Evap Pot/Pan Evap 
DOF DOF DOF DOF DOF 

SOF SOF SOF SOF SOF 

Output ITF ITF ITF ITF Horton OF 
GWF GWF GWF GWF GWF 

Time steps Daily Daily Daily 1 hr, 6 hr, daily Daily, monthly 
No parameter/ 
No parameters 9/6 15/15 15/13 21/13 16/9 
optimized 
No. of soil 

5 Maximum 3 2 2 1 
moisture zone 

Snow storage Upper zone 

Surface storage Upper, lower (optional) tension & free 
Conceptual Maximum 5 soil & deep Surface water water Interception Lower zone soil Lower zone Soil moisture 
storage types moisture tension zones 

moisture tension, primary Groundwater Groundwater Free water 
Upper & lower & secondary free 
groundwater water 

Potential rate PET x linear 

Potential rate from from upper Potential rate ratio of state vs. 

Actual upper storage & a storage & a multiplied by the capacity of Linear function 
fraction of fraction of relative water tension storages of soil moisture Evaporation potential rate from potential rate content in the & upper zone 
lower storage from lower lower zone free water 

storage storage 
Unit 

Nash' s method of hydrograph Linear reservoirs Simple lag for overland flow, functions for 
Sub-basin cascade of for surface interflow, upper Unit hydrograph groundwater 
routing reservoirs flow & linear and lower for all flows and surface 

reservoir for 
baseflow flow 

baseflow 

Channel Muskingum Muskingum and Muskingum 
Routing Linear reservoir or Nash Linear reservoir variable lag method for Method methods surface flow 

The objective function used for the generation of the 
response surface was a simple,daily root mean square 
(DRMS) objective function (= 1/nx/SLS, where n is the num- 
ber of data, and SLS = simple least square) that assumes the 
presence of Gaussian, independent homogeneous variance 
error. Unlike the objective function based on the maximum 
likelihood for the heteroscedastic error (HMLE), this approach 
does not involve data transformation and so it places more 
weight on high flows than on low flows. Using DRMS may 
not be desirable when most of the data comprise of low flows 
with a few large events because the latter tend to exert exces- 
sive influence on the calibration, leading to unrepresentative 
parameters estimated. The search of SCE-UA was either 
stopped after 20 shuffling iterations, or if the change in objec- 
tive function and that in parameter values were both less than 
0.0001, or if the number of iterations was greater than 50,000. 

4. RESEARCH PROCEDURE 

The research procedure adopted to fulfill the objectives 
outlined in Section 2 is given below. 

4.1 Test Catchments 

As one of the primary emphases of this study is to compare 
CRR's performance between dry and wet catchments, five 
catchments of different climatic conditions are chosen, repre- 
senting one wet (Sunkosi 2), one semi-wet (Shiquan 2) and 
three dry catchments (Ihimbu, Bird Creek and Great Usuthu). 
In terms of rainfall, the mean rainfall of these catchments 

ranges from about 2.5 to 5 mm/day (Table 2). However, the 
streamflow/rainfall ratios of the dry catchments are relatively 
low (about 0.2) compared to that of Sunkosi2 of 0.86 and 
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Shiquan2 of 0.42. Figure 1 that shows the daily averages of 
rainfall, discharge and pan evaporation also reveals signifi- 
cant differences in climatic and hydrologic conditions among 
these catchments. Other than a wide range in climate, these 
catchments also represent a wide range in size, from about 
14,000 km2 (Shiquan2) to 2,300 km2 (Bird Creek). 

4.2. Effects of Data Variability and Length on Model 
Calibration 

Generally for model calibration it is recommended to use 
3 to 5 years of data that include average, wet and dry years 
so that the data encompass a sufficient range of hydrologic 

16 
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I I -- 

0 100 200 300 400 
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events to activate all the model parameters during calibra- 
tion. Other than the Great Usuthu catchment, all catchments 
were calibrated with 5 to 6 years of data and validated with 
2-year (Sunkosi2, Shiquan2 and Bird Creek) or 3-year 
(Ihimbu) of data. Since the Great Usuthu catchment has 21 
years of data, the effects of data variability and length on 
model calibration are separately investigated (Section 5.2). 

4.3. Effects of Parameter Interactions on Model Calibration 
(Xinanjiang Model) 

To study the effects of parameter interactions on the auto- 
matic calibration of CRR models, the strategy adopted is to 
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Figure 1. Plots showing daily averages of multi-year rainfall, discharge, and the pan evaporation in mm/day for the 
five test catchments. 
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Data Mean Mean Mean 
Catchment - Catchment 

Length Rainfall Evaporation discharge Country 
Symbol Area (km 2) (days) (mm/day) (mm/day) (mm/day) 

Sunkosi 2-Sun2 10,336 2922 4.91 3.35 4.21 Nepal 
Shiquan 2 -Shi2 14,192 2922 2.43 2.50 1.03 China 

Ihimbu -Ihim 2,480 3287 2.66 4.06 0.61 Tanzania 
Bird Creek -BC 2,344 2922 2.66 3.58 0.61 USA 
Great Usuthu-GU 2682 7670 2.53 3.5 0.41 Swaziland 

Wetness 

(Discharge/ 
Rainfall) 

Wet (0.86) 
Med (0.42) 
Dry (0.23) 
Dry (0.23) 
Dry (0.16) 

first "contaminate" the streamflow data of a river basin with 

white noise of mean zero and variance equal to the sample 
variance of observed streamflow data by Monte Carlo sim- 
ulation. Over 100 sequences of such "contaminated" 
streamflow data were simulated, and each data set differs 

from others only slightly. For each "contaminated" stream- 
flow data set, we obtained the optimized parameters of XNJ 
by SCE-UA. We then computed the correlation matrix of 
over 100 sets of optimized parameters for each test case to 
assess the parameter interaction problem. From the 
mean/median and standard deviation of each parameter, we 
also study the range of optimized parameter values obtained 
from the "contaminated" streamflow. 

5. DISCUSSIONS OF RESULTS 

Three statistical indices selected to compare the perform- 
ance of the five models applied to the five catchments are 
the root mean square error (RMSE), bias (BIAS) and the 
coefficient of Efficiency (El) (Nash-Sutcliffe, 1970). With 
each case representing one model-catchment combination, 
37 test cases were conducted. The discussion of results is 

mainly given in terms of Ef instead of all three statistics, 
partly because the three statistics gave similar results. 

5.1. Comparisons of Model Performance 

At the calibration stage, the difference in the per- 
formance between the 5 models for wet, semi-wet and 

dry catchments are mostly marginal, except for the Great 
Usuthu where the effect of data variability and length were 
tested (Figure 2). Since PTM was applied only to Bird 
Creek and the Great Usuthu, its overall performance is hard- 
er to assess. To realistically assess a calibration, validation 
runs were based on data sets independent of those used dur- 
ing calibration. As expected, model performance at the val- 
idation stage is generally lower than at the calibration stage. 
The drop in model performance at the validation stage is rel- 
atively modest for the wet and semi-wet catchments than for 
the 3 dry catchments, especially for Ihimbu whose data is 
deemed unreliable since all 5 models performed poorly at 
the validation stage. 

On a whole, XNJ seems to be slightly but consistently 
more versatile than other models in handling a wide range 
of catchment conditions. Among the eight test cases (Figure 
2) the only poor performance with XNJ was with the vali- 
dation stage for Ihimbu (El '• 45%). It is believed that XNJ 
did better than other models likely because it is the only 
model that considers the uneven distribution of runoff pro- 
ducing area to simulate the runoff. In addition to Ihimbu, 
SMA also performed poorly for Bird Creek at the validation 
stage (El '• 30%). SMAR did badly for the Ihimbu catch- 
ment (El -• 38%) but did reasonably well with Bird Creek. 
NAM did not model well Ihimbu and Bird Creek (El '• 41% 
and 56%) at the validation stage. 

By comparing the performance of the five CRR under wet 
versus dry catchments, we could offer some possible expla- 
nations to the results obtained in terms of catchment condi- 

tions, model structure and complexity, parameter identifia- 
bility, and parameter interactions. 

As the simplest model, SMAR (9 parameters) has a more 
restricted model structure. For example, even though it can 
operate up to five soil moisture zones, the capacity for each 
soil layer is set at 25 mm except for the lowest layer (lower 
zone groundwater). Further, it is only when all the soil layer 
zones are saturated will there be any runoff from the soil 
layers. This runoff, divided into surface runoff and ground- 
water by only one parameter G, has a ratio of surface runoff 
to groundwater that is more or less fixed by G. This rela- 
tively simple approach may work well with wet catchments 
but it is probably too restrictive for dry catchments, which 
experience a wide range of flow scenarios. However, its 
performance is comparable and sometimes better than that 
of NAM, PTM and SMA. 

Surprisingly XNJ has been doing marginally better than 
other models even though XNJ was built for humid and 
semi-humid regions with rich vegetation, well-developed 
soil zone, low surface runoff and high interflow in China. 
This is likely because while other models assume a uniform 
distribution in soil moisture in the catchment, XNJ consid- 

ers a nonuniform spatial distribution of soil moisture deficit 
and tension storage capacity in the catchment. By so doing, 
the runoff producing area is also simulated in terms of a 
nonuniform distribution. Further, the total runoff is separat- 
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Figure 2. Calibration (C) and validation (V) results in terms of Ef(%), RMSE (mm) x 10, and BIAS (%) of 37 
CRR/data test cases. 
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Table 3. Test Strategies Based on Calibration and Validation 
Data Types and Length for the Great Usuthu 
Catchment (Section 5.2). 

Test Period 

Test Data Length C=Calibration Plot Symbol of 
No. & Type V=Validation Figure 2 

I 5- yr wet 1953-1958 (C) GU5yrW 
5- yr dry 1963-1968 (V) GU5yrD 
11-yr mixed 1963-1974 (V) GU1 lyrMx 

II 2- yr wet 1954-1956 (C) GU2yrW 
2- yr dry 1963-1965 (C) GU2yrD 
11-yr mixed 1963-1974 (V) GU1 lyrMx 

III 2- yr dry 1963-1965 (C) GU2yrD 
2- yr wet 1954-1956 (V) GU2yrW 

IV 10-yrmixed 1953-1963 (C) GU10yrMx 
11-¾r mixed 1963-1974 (V) GU1 lyrMx 

ed into three components based on free water storage dis- 
tributed in a parabolic manner. 

Since the runoff producing areas of dry catchments are 
probably more unevenly distributed than humid catchments, 
and as the only model that takes this into consideration, XNJ 
generally did better than other models in all five catchments, 
particularly at the calibration stage. At the validation stage, it 
still did well but at times marginally inferior to other models. 
This could be partly attributed to XNJ assuming the soil 
moisture deficit and the storage capacity to be uniformly dis- 
tributed in simulating the evaporation, which is inconsistent 
with the assumption used in simulating runoff. 

The performance of NAM is better than SMA and PTM 
but slightly behind that of XNJ and SMAR. Despite of not 
considering tension and free water like SMA and XNJ, it 
accounts for soil moisture through 5 mutually inter-related 
storages. The snow storage was not used since there was no 
snowfall in the data. It did better than SMA partly because 
it uses separate linear reservoirs for overland flow, interflow 
and baseflow, instead of a unitgraph like SMA. It did not do 
as well as XNJ probably because it did not account for spa- 
tial variability in soil moisture and in its conceptual stor- 
ages, even though it also has 15 parameters as XNJ. 

Even though SMA is a relatively complex model (21 
parameters), its performance was not satisfactory, and 
sometimes even poorer than the simplest, SMAR model 
partly because of to its non-standard unit hydrograph (unit- 
graph) used to convert the computed channel inflow into the 
catchment outflow. This unitgraph more or less matches the 
traditional unit hydrograph if surface runoff is the dominant 
runoff. The difference between the SMA unitgraph and the 
traditional unit hydrograph increases as the flow regime 
becomes more and more dominated by mixed flow instead 
of surface flow. Since the dry catchments have a short wet 
season and a long dry season, it is unlikely that one set of 
unit hydrograph ordinates will work well. 

SMA's unitgraph ordinates were first derived through 
model calibration. Because of parameter interactions and 
the presence of two distinct seasons, it was not possible to 
get a realistic set of unitgraph ordinates from this approach. 
In a separate attempt, streamflow data (dependent variable) 
were regressed against rainfall data (independent variable). 
The performance of SMA based on the unitgraph ordinates 
derived from this approach turned out to be worse than 
before. Perhaps as a more plausible approach, two sets of 
unitgraphs, one for routing low flows and one for routing 
high flows, will improve SMA's performance. We believe 
SMA's performance on Sunkosi2 and Shiquan2 are compa- 
rable to other models partly because the unitgraph approxi- 
mated the traditional unit hydrograph reasonably well in 
these two cases. Because complex models may have one or 
more components that sometimes do not function properly, 
such as SMA's unitgraph, complex models may perform 
poorer than simpler models (e.g., Loague and Freeze, 1985). 

PTM that was initially developed for southern African 
catchments has three unique features compared to other four 
models. First, other than simulating direct and saturation 
overland flows, PTM is also designed to simulate Horton 
overland flow not considered in other models. Even then, 

PTM still has problems simulating high flows partly 
because data of time steps finer than daily (used in this 
study) to adequately reflect major storms undergoing sig- 
nificant changes within hours was not available. 

Second, PTM breaks down daily rainfall depths to hourly 
increments according to a regression of the form, Duration 
(hours) = a +/5(rainfall) (mm), where a and/5 are regression 
parameters. Pitman derived a and/5 parameters for Pretoria, 
South Africa. This approach has two potential pitfalls. The 
relationship between storm duration and rainfall depths for 
a geographical location may not necessarily be linear and 
hourly rainfall data are needed to derive a and/5 for that 
location. Since no actual hourly rainfall data was available 
for the Great Usuthu or Ihimbu, the a and/5 values derived 
for Pretoria were also used for the Great Usuthu catchment. 

For Ihimbu, it was necessary to derive new a and/5 values 
through model calibration. 

Third, PTM uses a variable recession constant to compute 
the baseflow while other models use fixed recession con- 

stants. Given the prolonged dry spell of dry catchments, the 
former is probably more realistic than the latter. Even with 
this additional feature, PTM could not do better than XNJ, 

or NAM in the low flows, perhaps partly the approach that 
PTM used to convert the daily to hourly rainfall was not 
applied properly since there was no hourly rainfall data to 
accurately determine a and/5. 

Since complex models can either do better or worse than 
a simple model, it seems that model complexity is less cru- 
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cial than the model structure in modeling dry and wet catch- 
ments. On a whole, other than a few inappropriate features 
identified in this study, traditional CRR models with 9 to 15 
parameters are generally applicable to dry and wet catch- 
ments if good calibration data are available, even though 
results from dry catchments are less predictable and are not 
expected to be as good as for temperate or wet catchments. 
Further tests on the dry Great Usuthu catchment were car- 
ded out. 

5.2. Effects of Data Variability and Length based on the 
Great Usuthu 

For the Great Usuthu, the five models were calibrated 

with different numbers of wet years and validated with dry 
years and vice versa, or calibrated and validated with mixed 
year data based on four sets of tests. In Test I all CRR were 
calibrated with five relatively wet years (1953 to 1958) and 
the calibrated models verified with five relatively dry years 
(1963 to 1968). Test II is the same as Test I except that two 
years of data were used instead of five. Test III, which was 
used to investigate the effect of dry versus wet calibration 
data, was a repetition of Test II except that the calibration 
was carded out using two relatively dry years of data (1963 
to 1965). In Tests I and II, models calibrated from five and 
two years of data were also validated with 11 years of mixed 
(wet, dry and average) data (1963 - 1974). Finally, in Test 
IV, models calibrated with 10 years of mixed data (1953 - 
1963) were validated with 11 years of data (1963 - 1974). 
These test strategies are summarized in Table 3. 

For the calibration run in Test I, the Ef for PTM, XNJ, 
NAM, SMAR and SMA are about 66%, 79%, 76%, 66% and 
69% respectively, while the Ef at the validation stage is 
65%, 77%, 73%, 66% and 75% respectively. These Ef val- 
ues show that the calibrations achieved are mainly moder- 
ate. For the calibration and validation runs in Test II, the 

results are generally better than that of Test I, but compara- 
ble to that in Test IV. Overall, the results obtained for Test 
III are also better than that for Tests I and IV. Tests II and III 

results are better than that of Tests I and IV partly because 
of shorter calibration and validation data sets used. Figure 2 
shows that moving from the calibration to the validation 
runs, the drop in model performance (in terms of Ef) ranges 
from less than 1% to over 25%. Given that the Ef obtained 

can vary over a wide range for the Great Usuthu (and also 
for other two dry catchments), the success of a model cali- 
bration likely depends heavily on the calibration data and 
the model used. Apparently dry catchments are harder to 
calibrate than wet or temperate catchments (Gan and Biftu, 
1996) and the outcome of calibrating dry catchments can be 
unpredictable. 

In many calibration runs, XNJ generally performed 
slightly better than the other four models, especially at the 
calibration stage, even though XNJ was developed for 
humid catchments of China. NAM also did reasonably well, 
while SMA did badly in both calibration and validation 
stages, while SMAR and PTM are in-between. 

Logically, we would expect a longer set of calibration 
data to achieve a better calibration because by going 
through a longer calibration experience, model parameters 
should be more accurately calibrated. This philosophy is 
generally not true, as shown by the results of Tests I, II and 
IV on the Great Usuthu, which used calibration data lengths 
of 2, 5, and 10 years respectively, and which were tested 
with a common, 11-year validation run (1963-74). For 
example, of the 2 and 5 wet years and a 10 mixed-year cal- 
ibration cases, the PTM model produced an Ef of about 
66%, 58%, and 71% for the 11 year validation runs respec- 
tively (Figure 2). The SMAR had Ef of about 69%, 58% and 
61%, while XNJ's Ef was about 66, 64, and 69%. Therefore 
there is no obvious indication that model performance is 
related to the calibration data length. In some instances, 
models calibrated with two years of data could out-perform 
models calibrated with ten years of data. It seems that the 
data length is not that crucial, as long as it is not less than 
one hydrological year, and as long as the data used contain 
enough information for calibrating the parameters. 

5.3 Effects of Model Structures and Data on Optimized 
Model Parameters based on SMA and PTM 

As a mean to study the effects of different calibrating data 
and model structure on automatic CRR calibration, we used 

SCE-UA to derive the optimized model parameters of SMA 
(Table 4) for four different catchments, while that of PTM 
was based on only one catchment (Great Usuthu) but of dif- 
ferent calibration data length and wetness (Table 5). 

Among the four sets of optimized parameters obtained for 
SMA, it seems that upper zone parameters (UZTWM, 
UZFWM, and UZK) are more consistent than lower zone 
parameters (LZTWM, LZFSM, LZFPM, LZPK and LZSK) 
that tend to vary more widely. Apparently model structure 
exerts a larger influence than data on the model parameters 
optimized by SCE-UA. Further, for SMA, upper zone 
parameter are generally set to be of much smaller values than 
lower zone parameters, irrespective of what catchments 
(location) and the climatic conditions (dry or wet) we deal 
with. 

Among SMA parameters, upper zone parameters are also 
more sensitive to the calibration data because their values 

are influenced largely by attempting to match recorded and 
simulated peak flows that can vary substantially over a short 
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period of time. Also, with fewer parameters than the lower 
zone counterparts (3 versus 6), the formers are probably 
subjected to less parameter interactions, have less identifia- 
bility problems, and so their "optimum" parameters are 
either easier to detect by SCE-UA or more dependable. 

Lower zone parameters rely mainly on the recession limbs 
of runoff hydrographs and most of these limbs decay slow- 
ly in an exponential manner. It may be surprising to obtain 
much higher lower zone free water values for Ihimbu (212.9 
and 651.6 mm), a dry catchment, than Shiquan 2 (27.73 and 
55.07mm), a semi-wet catchment, or another dry catchment, 
Bird Creek (60.89 and 52.10mm). However, being less sen- 
sitive parameters, driven primarily by low flows which do 
not change much for long periods of time, and with possibly 
strong parameter interactions, we could get lower zone 
parameters that vary a wide range, even though some such 
values may not adequately reflect the physical soil moisture 
capacities of the three catchments. Another example of an 
insensitive parameter is PFREE, for Sunkosi2, Shiquan2 
and Ihimbu have almost identical PFREE. In other words, 

for SMA, it seems less sensitive parameters also suffer from 
more parameter interactions, and more parameter identifia- 
bility problem. Such problems are more of a result of model 
structure than climatic conditions, even though dry catch- 
ments are more prone to getting erroneous final parameters, 
such as Ihimbu. 

Herein, to study the influence of data length and data con- 
tent on CRR calibration, the four optimized parameter sets 
of PTM were derived by SCE-UA for the Great Usuthu 

Table 4. Comparisons of optimized parameter values 
obtained by SCE-UA for SMA. 

Bird 
Parameters # Sunkosi2 Shiquan2 Ihimbu Creek 

UZTWM 6.267 19.25 5.074 37.84 

UZb'WM 29.02 14.68 12.60 13.46 

UZK 0.659 0.424 0.608 0.973 

ZPERC 10.20 31.43 42.68 54.64 

REXP 1.010 1.233 2.038 2.93 

LZTWM 54.22 153.1 153.5 190.5 
LZFSM 150.4 27.73 212.9 60.89 

LZFPM 310.5 55.07 651.6 52.10 
LZSK 0.077 0.095 0.10 0.055 

LZPK 0.097 0.006 0.007 0.014 

PFREE 0.595 0.568 0.595 0.107 

PXADJ 1.20 0.853 0.640 0.923 

PEADJ 0.463 0.415 0.409 0.638 

#LZ and UZ = Lower and Upper Zones; TWM and FWM = 
Tension and Free Water Maximum; UZK, LZSK and 
LZPK = Upper, Lower Secondary and Primary Zones 
runoff depletion coefficients; ZPERC and REXP = 
Maximum and shape of percolation curve; PFREE = % of 
free water that follows paths through cracks and faults; 
PXADJ and PEADJ = Precipitation and potential 
evaporation adjustment factors. 

catchment based on four combinations of calibration data 

(Test I, II, III, and IV in Table 3). Except for ZMINN, which 
in a few instances took on the preset lower limits of 0.0, the 
four parameter sets are clearly different from each other, 
and the degree of differences vary from parameter to 
parameter (Table 5). Since different calibration data for the 
same catchment lead to different optimized parameters, it 
shows that optimized parameters and the calibration results 
(El, RMSE and BIAS) are data dependent. The Ef ranges 
from 63 to about 90%, which shows that some calibrated 

parameters are probably more realistic than others but most 
likely none of the parameter sets is of the global-optimum 
quality. 

Ideally, if model parameters estimated are unique and real- 
istic, the estimated parameters should be independent of the 
calibration data. In other words, if another calibration data 

set is used, the parameters estimated by the optimization 
method should be more or less the same (within the numeri- 
cal accuracy and round-off errors). The concept of unique- 
ness used here is analogous to what Sorooshian and Gupta 
(1985) referred to as, "a model structure M parameterized by 
0 is globally identifiable, if and only if different parameter 
values of M give rise to different model output (stream- 
flow)." In practice, because calibration involves adjusting 
the parameters until the difference between the simulated and 
observed streamflows is minimized, the final parameters are 
inevitably related to the calibration data. This data depend- 
ency feature is further complicated by the presence of insen- 
sitive parameters. If model parameters are insensitive or 
poorly identifiable, then different sets of parameters could 
essentially produce the same model output (Gan and Biftu, 
1996). Sorooshian and Gupta (1985) attributed the parameter 
identifiability problems to model structure, which we have 
demonstrated through SMA (Section 5.3.1). 

Table 5. Comparisons of optimized PTM parameters 
derived by SCE-UA for the Great Usuthu catchment 
using 4 sets of calibration data (Tests I, II, III and IV 
of Table 3). 

Par I II III IV 

ST 396.6 354.3 162.1 354.3 
FT 0.690 1.000 0.460 0.934 

ZMIN 0.788 0.055 0.00 0.00 
XMAXN 12.46 13.66 13.30 13.01 

TL 8.269 3.074 4.169 4.957 
LAG 1.634 1.279 1.169 0.644 

GL 0.056 0.285 17.830 0.039 

DIV 0.842 0.444 0.997 0.561 

OBSQ 2.500 3.116 1.341 0.504 
Ef(Cal) 65.8 89.1 86.5 73.5 
Ef(Val) 64.6/58.4 # 81.1/66.2 63.1 70.8 

4/For Test I, 64.6% corresponds to the 5-year dry while 
58.4% corresponds to the 11-year mixed data sets. 
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Comparisons of Tests II and III results (Figure 2) indi- 
cate that to model the Great Usuthu catchment, wet years 
are preferred over dry years as calibration data because dry 
years may not contain enough high flows to sufficiently 
activate model parameters responsible for simulating high 
flows during calibration. Wet years are more likely to con- 
tain both high and low flows and so they provide more 
ample information for calibration. However, when a model 
calibrated with wet years was validated with dry years, the 
chances of getting an over-estimated dry year flows tend 
to be higher than an under estimation. Test II shows that 
moving from calibration (2 wet years) to validation (2-dry 
years) runs, there is an increase in BIAS from-0.55 % to 
20.4 %. In Test III, moving from calibration (2-dry years) 
to validation (2-wet years) runs, BIAS only increased from 
-0.79 to 3.31%. Since using wet years as calibration data 
tend to produce parameters that over-estimate streamflows 
at the validation stage or vice versa, this again shows 
the dependency of parameters on the data used for 
calibration. 

5.4. Effects of Parameter Interactions-Xinanjiang Model 
(XNJ) 

Besides data, the automatic calibration of parameters also 
depends on the model structure, that almost always suffers 
from parameter interactions and parameter identifiability 
problems, irrespective of what CRR we use. Some prelimi- 
nary results on parameter interactions (indicated by cross- 
correlation, p) obtained for XNJ applied to three catchments 
of different degree of wetness are shown in Tables 6 to 9. 
The relatively small standard deviations found among the 
100 sets of optimal parameters obtained for each test case 
(Table 9) shows that SCE-UA could still identify the opti- 
mal parameters fairly consistently despite of the variability 
introduced in the contaminated calibration data described in 

Section 4.3. However, the differences between each set of 

optimized parameters are substantial enough that the p 
between various parameters are generally small, except 
parameters suffering from interaction problems. 

The results provide some indications on the degree of 
parameter interactions resulted mainly from the model 
structure, e.g., parameters explicitly inter-related or coupled 
in the model, and partly from the calibration data or some 
unknown reasons. For example, the upper and lower layer 
tension zones of XNJ, WUM and WLM expressed in terms 
of X [WUM/WM] and Y [WLM/((1-X)WM)] generally 
exhibit higher degree of correlation with each other partly 
because they are inter-related by WM = WUM + WLM + 
WDM, where WDM is the deep layer tension zone. There is 
considerably less correlation between these parameters, and 

CI, CC• IM, C, KI, KG etc. because the latter represent dif- 
ferent components of basin hydrology. 

The next obvious factor affecting the degree of parameter 
interaction is the watershed's hydroclimatic condition 
embedded in the calibration data. It seems that wet or semi- 

wet catchments suffer from less parameter interactions than 
the dry catchment, Bird Creek. From a total of 105 parame- 
ter pairs examined in each case, the number ofp exceeding 
0.4 is 16 for Sunkosi2, 12 for Shiquan2 and 31 for the Bird 
Creek. Among all correlation p > 0.4, only 4 parameter pairs 
are common among all three catchments, which are WM-K, 
X-Y, Ex-Imp and KI-KG. From the perspective of XNJ's 
model structure, it is not surprising to find these 4 pairs of 
parameters showing consistent interactions in all three 
cases. For example, K (ratio of potential ET to pan evapo- 
ration) should be related to the areal mean tension water 
capacity (WM), tension water in the upper (WUM) and 
lower (WLM) layers should be coupled, and coefficients to 
interflow (KI) and groundwater (KG) are expected to be 
closely related, etc. 

Beyond these 4 parameter pairs, there are 3 common pairs 
of p > 0.4 between Sunkosi2 and Bird Creek (WUM-Imp, 
WUM-C, and WLM-Imp) and 2 pairs of p > 0.4 between 
Shiquan2 and Bird Creek only (CI-CG and CI-KG). On 
the basis of model structure, we would expect the latter 2 
pairs to be related but less likely the former 3 pairs of param- 
eters. For the former, it is harder to understand why the upper 
and lower tension water should be related to the impervious 
area (Imp). Partly because of Bird Creek's noisy data, and 
possibly because of some unclear reasons, WUM of Bird 
Creek was strongly (p > 0.4) related to a total 6 parameters 
(Table 6). 

For pairs of parameters with p > 0.4 that are unique in 
each test case, some are expected, but some are less explain- 
able, especially those found for Bird Creek. A perusal of 
Table 8 shows that parameters related to evaporation, name- 
ly WM, X, K, and B show more interactions with other 
parameters, e.g., 6 cases of p > 0.4 for WM and X, 4 cases 
for K and 3 for B. This possibly reflects the influence of 
evaporation that dominated the water budget of Bird Creek, 
e.g., the mean potential ET is 3.58mm/day while the mean 
streamflow is only 0.61mm/day (Table 2). SM, is strongly 
related to 4 parameters on free water or reservoir. Some of 
the aforementioned parameters are supposed to be sensitive 
to model output but some are not. According to Zhao 
(1992), model parameters sensitive to model output are K, 
SM, KC• KI, CC• CS and L. Apparently parameter interac- 
tions could be the result of model structure, as well as cali- 

bration data, especially for dry catchments such as Bird 
Creek. More results are needed to confirm the above obser- 

vations on parameter interactions, especially as to whether 



Table 6. Cross Correlation Matric (p) Showing Parameter Interaction of Xinanjiang Model (XNJ) 
Applied to the Semi-Wet Shiquan River Basin of China. 
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WM X Y K B SM Ex CI CG IM C KI KG n Nk 
WM 1 
X 0.37 1 

y -0.38 -0.98 1 

K -0.43 -0.94 0.89 1 
B -0.52 -0.11 0.09 0.18 1 
SM -0.05 -0.09 0.07 0.11 0.17 
Ex -0.02 -0.03 0.01 -0.06 0.07 

CI -0.04 -0.04 0.03 0.03 0.09 
CG 0.04 0.05 -0.04 -0.04 -0.09 
IM -0.08 -0.01 0.03 0.14 -0.18 

C 0.06 0.11 -0.14 -0.08 0.09 
KI 0.06 -0.01 0.02 -0.03 -0.10 

KG -o.o8 -o.o9 0.10 o.o7 0.12 
N 0.10 o.o8 -o.o8 -o.o8 o.o2 

Nk -o.o3 -o.o8 o.o7 o.o8 0.085 

1 

-o. 12 1 

0.02 O.Ol 1 

-0.04 -O.Ol -1.o 1 

o. 18 -0.65 -0.08 0.09 

0.04 0.04 0.07 -.07 

-0.04 0.06 -0.84 0.84 

0.05 -0.02 0.83 -.83 

0.05 0.25 -0.07 0.07 

-0.09 -0.13 -0.06 0.06 

1 

-.07 1 

0.01 -.03 

-.10 0.04 

-.25 0.12 

0.16 -.01 

1 

-.63 1 

0.0 -.09 

0.06 -.06 

1 

-.28 

Table 7. Cross Correlation Matrix (p) Showing Parameter Interaction of Xinanjiang Model (XNJ) Applied to 
the Wet, Sunkosi River Basin of Nepal. 

WM X Y K B SM Ex CI CG IM C KI KG n Nk 

WM 1 

X 0.19 1 
y -0.15 -0.96 1 
K -0.51 -0.09 -0.06 1 

B 0.01 0.05 0.03 -.58 1 

SM 0.30 0.24 -0.29 -.26 0.29 
Ex 0.26 0.29 -0.37 -.14 0.22 

CI 0.05 -0.08 -0.01 -.03 0.12 
CG 0.01 -0.01 0.05 0.05 -0.04 
IM -0.20 -0.44 0.60 -.18 -0.04 
C -0.20 0.74 -0.80 0.02 0.19 
rI -0.20 -0.16 0.09 0.31 -0.12 
KG 0.32 0.05 -.001 -.16 -0.12 
N -0.43 -0.15 0.05 0.75 -0.49 

Nk -0.25 -0.12 0.19 -0.01 -0.13 

1 

0.97 1 

0.24 0.23 1 

-0.15 -0.14 -0.26 1 

-0.60 -0.72 -0.16 0.11 

0.27 0.31 0.10 -.08 

0.00 0.01 -0.04 -.01 

0.oo 0.01 0.01 -.07 

-0.18 -0.08 0.01 0.15 

-0.25 -0.24 -0.09 0.14 

1 

-.44 1 

-.13 -.09 

0.11 -.11 

-.05 -. 11 

0.44 -.14 

1 

-.56 1 

0.36 -.15 

-.35 0.20 

1 

0.04 

dry catchments would generally lead to more parameter 
interactions than wet or semi-wet catchments. 

6. CONCLUDING REMARKS 

To study the effects of model complexity and structure, 
and parameter interactions on conceptual hydrologic model- 
ing of dry and wet catchments, 37 sets of CRR model-data 
calibration and validation experiments were formulated out 
of 5 CRR models and 5 catchments of wet, semi-wet and dry 
climate. Conclusions to the results are: 

(1) The parameters optimized by SCE-UA are data 
dependent, as confirmed by the case of PTM. Global 
optimum parameters are impossible to derive, given 
that CRR model structures suffer from parameter inter- 

action, identifiability problem, simplified and point rep- 
resentation of nature that is highly variable spatially, 
and data errors. However, realistic parameters are pos- 
sible to derive from current CRR models (as confirmed 
by validation results), if adequate data is available for 
model calibration; 

(2) Even though dry catchments undergo more complex 
and a wider range of hydrologic processes, it seems 
that a standard, good quality hydrologic data can still 
support modeling dry catchments with standard CRR 
models of 10 to 20 parameters. Model performance 
depends more on the model structure, data quality and 
a variety of information than model complexity or cal- 
ibration data length. On a whole, more dependable 
results are generally expected for wet than for dry 
catchments; 
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Table 8. Cross Correlation Matrix (p) Showing Parameter Interaction of XNJ Applied to Bird Creek of USA. 
WM X Y K B SM Ex CI CG IM C KI KG N Nk 

WIM 1 

X -0.36 1 

y -0.02 0.65 1 
K 0.61 -0.72 -0.21 1 
B 0.20 -0.09 -0.19 0.14 1 

SM 0.72 -0.41 -0.34 0.62 0.56 
Ex -0.27 -0.09 -0.23 -0.15 -0.01 
CI -0.73 0.38 0.30 -0.53 -0.55 
CG -0.68 0.42 0.30 -0.58 -0.60 
IM 0.20 0.56 0.57 -0.03 0.04 

C 0.50 -0.59 -0.24 0.46 0.10 
mI 0.04 -0.19 -0.26 0.02 -0.15 
KG -0.37 0.03 0.06 -0.15 0.02 
N 0.10 0.06 0.15 0.21 0.33 
Nk 0.44 -0.07 -0.04 0.18 0.05 

1 

-0.27 1 

-0.84 0.07 1 

0.89 0.09 0.79 1 

0.23 -0.39 -0.14 -0.17 

0.45 0.13 -0.43 -0.46 

-0.07 0.21 -0.21 0.22 

-0.34 0.17 0.46 0.07 

0.16 0.09 -0.15 -0.09 

0.45 -0.28 -0.37 -0.52 

1 

-0.18 1 

-0.20 0.11 

-0.18 -.23 

-0.07 -.06 

0.36 0.19 

1 

-.55 1 

-.07 -O.O6 

-0.1 -0.19 

1 

-.46 

Table 9. Three Sets of Average and Standard Deviations (Bracketed Values) for Over 100 Sets of Optimized 
Parameters Per Catchment for the Xinanjiang Model (XNJ). 

Par ameter Definition Sunkosi2 Shiquan2 Bird Creek 
WM Areal mean tension water capacity 114 (2.0) 287 (2.64) 162 (1.57) 
X Ratio of the upper (WUM) to WM storage capacity 0.25 (0.07) 0.237(0.05) 0.014 (.003) 
Y Ratio of lower (WLM) to (1-X)WM storage capacity 0.27 (0.2) 0.573(0.08) 0.80 (0.024) 
K Ratio of potential to pan evaporation 0.5 (0.002) 0.61 (0.008) 0.99(0.005) 
B Exponent of tension water capacity curve 1.95 (0.07) 1.92(0.062) 0.73(0.014) 
SM Areal mean free water storage capacity 46.5 (1.7) 48.8 (0.22) 20.66(1.97) 
Ex Exponent of the free water capacity curve 1.49 (0.22) 0.12(0.005) 1.14 (0.187) 
CI Interflow reservoir constant of the sub-basin 0.88 (0.12) 0.06(0.047) 0.056(0.092) 
CG Groundwater reservoir constant of the sub-basin 0.54 (0.16) 0.04(0.047) 0.070(0.092) 
IM Impervious area of the sub-basin 0.12(0.003) 0.002(0.002) 0.003(0.003) 
C ET contribution (less than 1) from the deep layer 0.27 (0.04) 0.15 (0.066) 0.297(0.002) 
KI The interflow recession coefficient (0 to 1) 0.95(0.001) 0.58 (0.113) 0.72 (0.085) 
KG The groundwater recession coefficient (0 to 1) 0.95(0.006) 0.635(0.135) 0.71 (0.078) 
N Number of cascade linear reservoir for runoff routing 0.80(0.004) 9.77 (0.146) 7.86 (0.19) 
Nk Scale parameter of cascade linear reservoir 0.91(0.003) 1.47 (0.002) 1.50 (0.004) 

(3) XNJ has been marginally (but consistently) doing better 
than other models in most catchments probably because 
it is the only model that considers the non-uniform dis- 
tribution of runoff producing areas in simulating the 
runoff, which is especially crucial for dry catchments; 

(4) Even though SMA is likely more complex than other 
CRR, it did relatively poorly especially partly because 
it uses only one set of unitgraph ordinates to route low 
and high flows together, and partly because model per- 
formance does not depend directly on model complex- 
ity. However, as the simplest model, SMAR may have 
a model structure that is a little too simple for dry 
catchments; 

(5) The need for hourly rainfall data to determine two of its 
model parameters makes PTM inapplicable in places 
without hourly data. Although developed for southern 
African basins, PTM's performance on the Great 
Usuthu catchment is still relatively poor at the valida- 
tion stage, perhaps because of the approach that PTM 

used to convert daily to hourly rainfall was not applied 
properly; 

(6) From the optimized parameters obtained for SMA, it 
seems less sensitive parameters and parameters explic- 
itly designed to inter-relate to a few other parameters 
suffer from more identifiability problem. Further, from 
the parameter interaction results obtained for XNJ, it is 
obvious that some significant parameter interactions 
(p>0.4) resulted directly from parameters explicitly 
coupled together in the model structure, but some also 
from the calibration data. 

Lastly, we believe the framework of our study is fairly 
independent of the optimization method used. In other 
words, given the same sets of calibration data and the same 
CRR models, we cannot expect much improvement over 
what we have already achieved in our calibration experi- 
ence using SCE-UA. 
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Parameter Sensitivity in Calibration and Validation of an 
Annualized Agricultural Non-Point Source Model 
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The capability of the new, continuous model Annualized AGricultural Non- 
Point Source (AnnAGNPS version 2) for simulating flow events, peak discharge, 
and generation of nitrogen and phosphorus loads was tested on extensive field 
data. The hydrologic and water quality data were obtained from an intensively 
monitored, small rural watershed within the Hawkesbury-Nepean river system of 
New South Wales, Australia. AnnAGNPS is a large environmental simulation 
model for which prediction uncertainty is inherent both in the model structure and 
in parameter identification depending on how well watershed heterogeneity is 
represented. In this study AnnAGNPS was coupled with the model independent, 
nonlinear parameter estimation code, PEST, for calibration and sensitivity testing. 
This approach provided insight into the sensitivities of output predictions with 
respect to the variation of parameters from a base value. The base values can be 
defined in relation to the calibrated model outputs and field measurements. As all 
AnnAGNPS input parameters represent measurable properties and conditions, 
ranges of the parameters need to be specified and violations of the range limits 
monitored to minimise prediction errors and problems of non-uniqueness in the 
parameter selection. PEST calibration and sensitivity routines can be used sys- 
tematically within these constraints for parameter optimization and identifiabili- 
ty. The measured event streamflows were matched satisfactorily by 
AnnAGNPS/PEST, but modelling of daily generation of particulate nitrogen and 
phosphorus achieved only moderate accuracy. The latter may reflect factors inher- 
ent in watershed processes as well as their representation by the model. 

1. INTRODUCTION 

Persistent algal outbreaks, low dissolved oxygen and ele- 
vated levels of nutrients are just a few symptoms of exces- 
sive eutrophication resulting in deterioration of aquatic 
habitat and water quality in major watersheds throughout 

Calibration of Watershed Models 

Water Science and Application Volume 6 
Copyright 2003 by the American Geophysical Union 
10/1029/006WS 24 

331 

southeastern Australia. These problems can be attributed to 
land use change and increasing nutrient loads in runoff from 
rural and urban land. Assessing contributions of nitrogen 
and phosphorus from nonpoint sources presents a constant 
challenge to researchers and water quality managers. The 
major difficulty with quantifying nutrient loads in runoff can 
be attributed to the fact that runoff events are highly unpre- 
dictable and rainfall has been long recognised as one of the 
major factors controlling nutrient movement in Australian 
watersheds [Eyre, 1995; McKee et al., 2000]. Furthermore, 
a simple aggregation of single sources distributed across the 
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watershed does not reflect a tributary load entering a water- 
way and rapidly changing land use patterns and manage- 
ment practices contribute even further to the complexity of 
the problem. 

An intensive, field monitoring study was conducted in a 
small subwatershed of Currency Creek to quantify nitrogen 
and phosphorus contributions from nonpoint sources and to 
provide improved long-term estimates of nutrient runoff 
from agriculture. The study area is situated on the southern 
slopes of the creek valley, 90 kilometres northwest of 
Sydney, Australia (Figure 1). It is a subwatershed of an 
unnamed, ephemeral stream draining 255 hectares of inten- 
sively used agricultural and rural residential land. The 
monitored area represents approximately 7.5% of the 
Currency Creek watershed and 0.01% of the Hawkesbury- 
Nepean watershed which, with an area of approximately 
22,000 km 2, is one of the largest and most diverse coastal 
watersheds in New South Wales. We extended the study by 
attempting to simulate the generation and transport of 
nitrogen and phosphorous through the Currency Creek 
watershed with the Annualized Agricultural Nonpoint 
Source Pollution (AnnAGNPS version 2) watershed mod- 
eling package. 

AnnAGNPS package is a large, environmental simulation 
model, which can suffer from the problems of parameter 
identifiability and sensitivity common to such models. 
Those models might be more applicable to rural watersheds 
with limited monitoring data, as they, in principle, do not 
require calibration. However, they require extensive 
amounts of information on watershed characteristics, which 
may or may not be readily available. Furthermore, Jamieson 
and Clausen [1988] maintain that all models must be care- 
fully calibrated or verified for site specific conditions even 
if no calibration is claimed to be necessary in general. 
Nevertheless, AGNPS has been used extensively to model 
nonpoint source pollution and to assist with the manage- 
ment of runoff, erosion and nutrient movement in rural 

landscapes [Summer et al., 1990; Tim and Jolly, 1994]. In 
Australia, Foerster and Milne-Home [1995] described the 
application of AGNPS to simulations of nutrient generation 
and movement under different farming practices in northern 
New South Wales. It was necessary in this case to calibrate 
the model for simulating peak flows by adjusting the runoff 
curve numbers. The calibrated model was then capable of 
simulating the effect of proposed best management prac- 
tices on nutrient movement in agricultural watersheds. 

The conversion of AGNPS to the annualized runoff and 

nutrient simulator, AnnAGNPS, lifted the capability of the 
package from modeling individual storm events to contin- 
uous simulation. This allows for better representation of the 
processes involved in transport and deposition of the sedi- 

ment generated by sheet and rill erosion. As part of the 
delivery process, the overland deposition of the eroded sed- 
iment rather than a complete delivery of the material to the 
stream system, is simulated. The generation of phosphorus 
(P) was improved in Version 2. Process based models such 
as AnnAGNPS can often be applied by simply adjusting 
parameters from the initial input of physically realistic val- 
ues until an acceptable fit is obtained to the observed field 
data. An effect of this procedure is the non-uniqueness of 
parameter estimates resulting from the over parameterisa- 
tion inherent in large complex models. This problem may 
be overcome partly through the sensitivity analysis of 
parameter values. 

Sensitivity analysis has been approached previously on a 
large scale within the parameter space [Hornberger and 
Spear, 1981; Spear, 1997] or on a restricted scale within a 
more localised region [Pastres et al., 1997]. Brun and 
Reichert [2001] point out that the best results are obtained 
from a combination of both methods in cases of a high 
dimensional parameter space, with local parameters being 
used to indicate those areas which result in the best fits 

among the model outputs. Our approach to the problem 
was to couple the model-independent Parameter 
ESTimation software, PEST, with AnnAGNPS. PEST 
allows for the optimization of an initial set of parameter 
values to obtain the best fit. A sensitivity analysis routine 
(SENSAN) is included in the package. Previous applica- 
tions of PEST have been with MODFLOW and HSPF mod- 

elling packages [Doherty and Johnston, 2002]. Our linked 
use of AnnAGNPS version 2 and PEST appears to be the 
first attempt in Australia to test the performance and appli- 
cability of these linked modeling packages for simulation 
and prediction of nutrient transport. 

2. MODEL STRUCTURE AND DATA INPUTS 

AnnAGNPS [Cronshey and Theurer, 1998] is a daily 
time-step model for the continuous simulation of pollutant 
loading on the scale of a watershed. The watershed is divid- 
ed into homogeneous areas (cells) on the basis of soils, cli- 
mate and land use. Runoff, sediment and nutrients are rout- 

ed through each cell via a network of channels to the water- 
shed outlet. The movement of contaminants from within 

their cell of origin can be tracked through the channel net- 
work in the watershed so that the relative contribution of 

point and non-point sources can be estimated. 
The key feature of the package is the Input Data 

Preparation Model into which the data required by the two 
input files, AnnAGNPS input and Daily Climate Data, are 
entered. Up to 33 sections of data may be needed including 
soil type, land use, crop characteristics, pesticide and fer- 



BAGINSKA AND MILNE-HOME 333 

Watershed Delineation 

..... .......... ................. ,: . •E '• •'•% • '":'• •::;""":: ........... ?: ......... ?•"• ::: :t • •: • • • 

Amorphous ........... ?• ...... • ....... :•'•";• ( L:=• ............ •rai•.i• •11 
E5- firdrol•i• •oil Group / Curv• 

Land Use 

Unimproved pasture 
TuffFarm 
Irigatcd dairy pasture 
Market garden 
Poultry. 
Poultry shed 
Residcn.ti:al 

Semi-improved p•Lsturet 
hobby farms 

Monitoring station 
Farm.dams 
Watercourse 

Station 5 - Rainfall-runoff records 

280 

160 116 
120 

80 ; 542'50 40 

Rainfall 

Discharge 

February •[ 
Event rain: 165 •1 

Event discharge: 214026/k 
........................................... l .......................................................................... l _•, •m=._. 

: o 

25 

50 

75 

100 

27/]/97 I ,Od97 6/Zt97 i 1/2/•97 16/2/97 

Time 

Figure 1. Map of the study area, watershed segmentation, land uses and typical rainfall-runoff records. 
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tiliser application, irrigation and land management prac- 
tices. The terrain-based parameters are automatically gener- 
ated by Flownet Generator Module which evaluates the 
topography and resultant drainage network of the watershed 
through the TopAGNPS, AGFlow and VBFlonet modules. 
Raster-type digital elevation model (DEM) data are 
required as input to TopAGNPS to delineate the modeled 
area into upstream and lateral subwatersheds and to set up 
the runoff and drainage channel network for the flow, sedi- 
ment yield and pollutant simulations. Intuitively this flow 
driven discretization accounts better for spatial variability in 
hydrologic controls. AGFlow generates the reach and cell 
topographic characteristics which control the flow from the 
output of TopAGNPS. VBFlonet is a module for the graph- 
ics display of the generated networks. Output from all these 
modules are passed to the Pollutant Loading Model for the 
actual simulations followed by the Output Processor Model. 

The surface runoff Pollutant Loading Model predicts non- 
point source pollutant generation and performs risk and 
cost/benefit analysis. It can simulate the chemical transport 
of particulate and soluble forms of phosphorus and nitrogen, 
organic carbon and pesticides using modified routines 
derived from the CREAMS model [Knisel, 1980]. 

2.1. Model Data Input 

The boundaries of the modeled area and hydrologic seg- 
mentation of the watershed into amorphous cells contribut- 
ing flow to channel links and the corresponding drainage 
divides required by AnnAGNPS were approximated 
through the analysis of the DEM obtained for this project 
from the Land and Property Information Centre, NSW. As a 
result of DEM data processing the modeled area of 264.9 
hectares was discretized into 13 drainage areas (amorphous 
cells) and 6 reaches (Figure 1). Terrain-based geomorphic 
parameters such as slope, aspect, elevation and reach length 
were also determined as a result of DEM interpretation. 

The AnnAGNPS Input Editor was used to develop and 
modify the input data to the pollutant-loading model. Most 
of the input parameters were sourced from measured data 
and where measured data were not available, the parame- 
ters were estimated based on the literature and the refer- 

ence data provided with the modeling system. The simula- 
tion period for the Currency Creek watershed extends from 
01/01/95 to 31/12/99. The key data inputs are the groups of 
parameters controlling rainfall, streamflow and related 
nutrient transport. 

Rainfall dependent parameters, which reflect the ability 
of a storm to cause erosion, are expressed by average annu- 
al rainfall erosivity (R) and rainfall energy-intensity factor 
(EI30) for a 10-year average recurrence interval (ARI) 

(Table 1). Spatial and temporal distribution of rainfall ero- 
sive power differs throughout Australia and during the year. 
In general, R increases during summer months when high 
intensity storms are most common. The average value of R 
for the study area was interpolated from a map showing the 
distribution of the R factor. A cumulative value of the R 

index based on a 15-day period formed part of the input 
data. The maximum rainfall intensity (I) for an event with a 
recurrence period of 10 years was determined from the IFD 
(intensity-frequency-duration) data for Richmond supplied 
by the Bureau of Meteorology, and the storm energy E 
(J/m2 mm) was estimated from the formula developed for 
eastern Australia by Rosewell, [1993]: 

E = 29.0 (1 - 0.596* 10 -0.041) 

where I is rainfall intensity (mm/h). 

The TR-55 method [USDA, 1986] is used in AnnAGNPS 
to generate runoff, compute runoff volumes and peak dis- 
charges and to route the resulting excess precipitation 
through the watershed. The method applies the unit hydro- 
graph theory and depends on travel time for peak discharge 
computation and watershed routing. Routing procedures 
describe the lagging and attenuation of water flow that 
occurs in the watershed. The simplified Manning's kine- 
matic solution is used to compute travel time for generated 
sheet flow. 

A 24-hour synthetic rainfall distribution provides means 
for estimation of peak discharges for a given watershed by 
specifying the length of the most intense rainfall duration 
contributing to the peak runoff. Each distribution is 
expressed as a mass curve of maximum rainfall intensities 
arranged in a sequence that is critical for producing runoff 
and is related to the time of concentration. The Type-II syn- 
thetic rainfall distribution was selected for the Currency 
Creek watershed. The selection was based on experimental 
studies [Browne, 1999] showing that it was the most repre- 
sentative hyetograph for areas where short-duration summer 
thunderstorms dominate. 

Table 1. Selected Parameters for Runoff and Sediment Generation 

Parameter Value Unit 

Rainfall Erosivity (R) 2500 

Energy Intensity (EI) 1888 
(1 O-year ARI) 

30-min rainfall intensity 65.2 
(1 O-year ARI) 

MJmm/ha-hr-annum 

MJmm/ha-hr 

mm/hr 

ARI- average recurrence interval. 
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The runoff volumes are predicted using the SCS curve 
number (CN) method, which uses commonly available 
information such as soil type, cover and hydrologic condi- 
tions to estimate runoff. The method has been applied to a 
wide range of watersheds and climatic conditions for esti- 
mation of runoff volumes for ungauged areas in the United 
States [Knisel, 1980; Rallison, 1980]. The application of the 
method is aided by numerous tables and graphs giving 
examples of relevant curve numbers for different conditions 
including soil type, permeability, percent of impervious 
area, land cover, land use and vegetation. 

The process of selecting runoff curve numbers for the 
purpose of the Currency Creek modeling is described here 
because simulated runoff volumes and nutrient transport 
proved to be sensitive to the values of these parameters. 

A comprehensive evaluation of the applicability of the CN 
method for Australian conditions is provided by Boughton 
[ 1989]. Dilshad and Peel [ 1994] tested the performance of 
the CN method for Australian semi-arid tropics. Although 
the usefulness of the method is acknowledged, the Australian 
results show large variations in calculated runoff volumes 
and the importance of antecedent moisture conditions in 
determining the appropriate CN. Furthermore, the estimated 
runoff volumes are very sensitive to the selection of the 
curve number, such that a relatively small change of 15% to 
20% in the selected CN may result in more than 100% dif- 
ference in the estimated runoff volume. 

In this study the initial curve numbers were selected using 
field measurements of rainfall and runoff. A method of CN 

curve fitting by graphical plotting of daily rainfall and 
runoff volumes was used [Boughton, 1989]. After con- 

structing the plot of rainfall (P) against direct runoff (Q), a 
visual comparison of plotted data with the USDA curve 
number plots was conducted to select the appropriate medi- 
an curve number for the Currency Creek watershed (Figure 
2). Although the curve numbers should be constant for a 
particular watershed, the comparison in Figure 2 shows con- 
siderable variations in the measured watershed responses. 
Three distinct groups of storm runoff curve numbers are 
noticeable, namely 50- 55, 75 - 80 and 90- 95 showing a 
very high runoff potential. The variations can be linked to 
soil characteristics and the high intensity and sporadic 
nature of the storm events recorded in the study watershed, 
which emphasises the importance of the soil moisture con- 
ditions to watershed responses. The CN plot represents 
solutions to the runoff equation for the average antecedent 
runoff conditions. Further adjustments to the CN are 
required to account for soil cover, land use and conditions 
preceding the storms, in order to fully describe Currency 
Creek watershed. 

During analysis of the rainfall data for this study it became 
apparent that the highest daily precipitation recorded corre- 
sponded with the lowest CN of 52 (Figure 2). Boughton 
[1989] has noted that curve numbers have the tendency to 
decrease as the rainfall depth increases due to the empirical 
nature of the method and nonlinearity of the runoff equation. 
As a result, the remaining two groups of curve numbers 
which account for different hydrologic conditions in the 
watershed, were used in the calibration process. The initial- 
ly selected curve numbers are documented in Table 2. 

AnnAGNPS also requires the input of the terrain-based 
parameters for each cell derived from the DEM data together 

6 
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Figure 2. Graphical comparison of runoff for the Currency Creek watershed and the Curve Number plot. 
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Table 2. Selection of curve numbers 

Land Use CN Range Hydrologic Soil Group Moisture Conditions Selected CN 

Pasture 75 - 80 

Market Garden 90 - 95 

B - moderate infiltration rate 

C - slow infiltration rate, 
surface sealing 

Average 75 

Wet 92 

with detailed land management and fertiliser application data. 
Information on crop types and land use, soils and climate are 
also needed. 

2.2. Field Data 

Five monitoring stations were established in the Currency 
Creek watershed to measure runoff and water quality in 
order to assess the contributions of different agricultural 
land uses to water pollution. The event-based water quality 
monitoring was conducted from May 1995 to March 1997. 
Fully automated sampling and logging equipment was 
deployed to collect the data and runoff samples. In addition, 
a weather station was installed at the monitoring station St.3 
(Figure 1) for validation of rainfall records and monitoring 
of climatic data. A continuous record of water level and 

stream flow and discrete water quality samples were col- 
lected during flow events. 

The variable discharge-increment approach was selected 
as the most suitable for water quality sampling. This 
approach enabled the adjustable distribution of sampling 
through an event which prevented filling the autosampler 
bottles too soon. The datalogger continuously estimated 
streamflow and demonstrated the progressive increase in 
discharge increments from low to high flows. A good 
record of flow data together with the selective sampling 
approach allowed for a relatively high accuracy of assess- 
ment of watershed nutrient exports. Table 3 shows the 
hydrologic characteristics of the observed major events and 
corresponding measured loads of soluble and particulate 
nitrogen (N) and phosphorus (P) measured at the outlet of 
the watershed. The number of events sampled by each sta- 

tion ranged from 3 to 13 depending on the duration of the 
monitoring period, the watershed area and performance of 
the sampling equipment. In general, only 13 out of 34 rain- 
fall events were significant enough to result in runoff. 
Stations 1, 4 and 5 recorded the most comprehensive dis- 
charge and water quality data. 

Altogether 420 water samples were collected over 23 
months of monitoring and analysed for suspended solids, 
soluble and particulate forms of nitrogen and phosphorus as 
well as for total nitrogen (TN) and total phosphorus (TP). 
Discharge and concentration data were used to determine 
nutrient exports at each monitoring station for every event 
monitored. The period-weighted method was used to com- 
pute event nutrient loads which were then summed over 12 
months to determine annual watershed loads. The pollutant 
load was computed as a product of average concentrations 
measured in samples taken at the beginning and at the end 
of an interval and the volume of water leaving the monitor- 
ing point during that interval. The interval length depended 
on the monitoring location and magnitude of the monitored 
storm and, in general, ranged from 5 minutes to 2 hours. 

The detected concentrations of different species of N and 
P varied significantly between the monitoring sites and 
events. Nitrate was found as the dominant form of soluble N 

in irrigation runoff from different land uses in the watershed 
while the elevated concentrations of soluble P dominated in 

the uppermost part of the watershed where it could be 
attributed to grazing of improved pastures irrigated with 
dairy effluent. Typically a reduction in concentration and 
load of TP between sites 1 and 5 occurred despite the pres- 
ence of vegetable farms contributing large amounts of phos- 
phorus to runoff [Baginska et al., 1998]. The concentrations 

Table 3. Characteristics of the Events Monitored at the Outlet of Currency Creek 

Event Duration Rainfall Discharge Peak Discharge Soluble N Sediment N Soluble P Sediment P 
(mm) (m 3) (m3/s) (kg) (kg) (kg) (kg) 

24-25 / 09 / 1995 95.0 70225 2.82 554.3 36.6 29.3 10.0 

30-31 / 08 / 1996 85.8 74572 1.69 598.7 84.6 86.7 37.1 

29 / 09 / 1996 54.1 8773 0.29 30.2 16.2 6.9 5.1 

28-31 /O1 / 1997 115.8 54246 0.75 361.6 57.2 41.5 29.2 

11-12 / 02 / 1997 164.6 214026 5.15 798.5 162.3 257.8 101.7 
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of nitrogen usually increased during runoff. Also, nitrogen 
dominated the nutrient loads at the outlet of the watershed. 

3. SENSITIVITY ANALYSIS AND PARAMETER 

ESTIMATION WITH PEST 

Performing sensitivity analysis of AnnAGNPS respons- 
es to varying the initial input values is critical to identify- 
ing key model parameters and guiding the calibration 
process. It is particularly important in the case of the 
AnnAGNPS model, which has extensive data require- 
ments and may often suffer from poor parameter identifia- 
bility in respect of available observation data. Despite the 
fact that all input parameters required by the model 
attempt to represent measurable properties and conditions, 
we are only able to assign parameter values within physi- 
cally acceptable ranges based on usually sparse point 
measurements within a watershed. Initial runs of the 

model clearly indicated that modeled discharges and nutri- 
ent loads both displayed complex and often contradictory 
responses to changing input variables. We used PEST to 
examine the non-linear model responses, optimize select- 
ed model inputs and to assess model sensitivity over a 
large region of the parameter space. 

PEST offers a unique combination of model-independent 
calibration tools. The tools include parameter optimization 
routines for typical model calibration, predictive analysis 
module and a sensitivity module (SENSAN). PEST uses the 
Gauss-Marquardt-Levenberg algorithm in the model calibra- 
tion/parameter optimization process. This procedure com- 
bines the advantages of the inverse Hessian method and the 
steepest descent method [Press et al., 1989]. It attempts to 
minimize the weighted sum of squared differences between 
the model-generated values and those measured in the field 
by varying user defined model inputs. The goodness of fit is 
apparent from the value of the optimized objective function 
and is also provided by a computed correlation coefficient. 
The coefficient is independent of the number of observations 
and levels of uncertainty associated with those observations, 
thus allowing for direct comparison of different parameter 
estimation runs. A user can observe the results of iterative 

runs in tabular and graphical forms while PEST optimization 
process is in progress and intervene in the execution of the 
model at any time. PEST offers many additional options, such 
as parameter scaling and weighting and freezing of sensitive 
parameters to support the identification of an optimal objec- 
tive function and to avoid local minima [Doherty, 2001]. 

SENSAN is a command-line program, which facilitates 
sensitivity analysis by allowing a user to initiate numerous 
model runs and post-processing the results of those runs. It 
subsequently generates a range of formatted output files 

from user specified model outputs. This is particularly use- 
ful for interpreting large parameter space models such as 
AnnAGNPS as it allows testing of a large number of input 
variables at a time. The three sensitivity output files from 
SENSAN contain: 1) predictions read from the model out- 
come file for the range of values specified by the user, 2) 
relative differences between the model generated responses 
for a given/tested range of input parameters and a user 
defined base set of input data, and 3) model outcome sensi- 
tivities defined with respect to parameter variations from 
their base values. Sensitivity is calculated as the difference 
between the model outcome for a particular set of input 
variables and the pertinent outcomes for the base values, 
divided by the difference between the current parameter set 
and the base parameter set. For a simplified scenario, when 
only a single parameter p varies from the base set, the rela- 
tive sensitivity is defined as: 

S r = (O - O0)/( p - P0) 

where O b and pb are the model outcome and the parameter 
base values and O and p are the model outcome and the 
parameter values pertaining to a particular model run. 

SENSAN uses the same model interface protocol as the 
PEST optimization routines and the same structure and for- 
mat of the control files. 

3.1. Initial Conditions for Sensitivity Testing and 
Parameter Optimization 

Approximately 770 data fields had to be assigned in the 
model application to the study watershed. These fields 
ranged from simple vegetation codes or links between the 
model cells and data sections to detailed topographic, hydro- 
logic, geomorphic and agronomic parameters. Topographic 
features of the watershed, such as slope, overland flow seg- 
ment length, drainage dimensions and the subsequent time of 
concentration may substantially influence the magnitude and 
the dynamics of runoff. However, these parameters were not 
optimized as they were computed from the DEM data. 

Sensitivity analysis was conducted only for those input 
variables, which exhibited large physical variations due to 
natural heterogeneity within the watershed, or variables for 
which data was not routinely collected. Due to the com- 
plexity of the model, sensitivity testing and parameter opti- 
mization were carried out in two steps. This approach min- 
imized interactions between the calibrated parameters and 
enabled clear determination of the input parameters affect- 
ing model-simulated discharges and respective nutrient 
exports. Table 4 shows the groups of parameters included in 
the sensitivity analysis. 
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Better optimization of input parameters was necessary to 
compensate for the possible underperformance of 
AnnAGNPS because the degree of variation exhibited by 
the results of sensitivity analysis was quite large. 
Calibration was undertaken using PEST, as the usual step- 
wise adjustment of input parameters until model outputs 
matched observations was ineffective due to model nonlin- 

earlties and interdependencies between inputs. 
Optimization focused on the input variables displaying the 

highest sensitivities. Parameters representing soil and fertiliz- 
er properties were optimized with PEST such that discrepan- 
cies between AnnAGNPS generated outputs and field meas- 
urements were minimized. The optimization runs were car- 
ried out separately for hydrologic responses and for daily 
nutrient loads of soluble and particulate N and P. Scaling of 
parameters and weighting of measured loads of N and P were 
used to minimize the impact of oufliers on the computed 
objective function. The best initial values for all parameters 
and limits for all physically based parameters had to be sup- 
plied. Performance assessment of the optimization process 
and the subsequent adjustments of the parameters controlling 
calibration were based upon achieved reductions in the objec- 
tive function and the values of correlation coefficient as 

defined by Cooley and Naff [1990]. The correlation coeffi- 
cient, R, is calculated as follows: 

Z - - mo) 
[Z -too ) -too 

For the range of tested parameters c i represents ith 
observed value, Coi is the relevant model generated value, m 
is the mean of weighted observed values and m o is the mean 

Table 4. Parameters Tested in the Sensitivity Analysis 

Testing Scenarios Selected Parameters 

Discharge Curve numbers (CN), Field capacity, 
Saturated conductivity 

Nutrients pH a, Field capacity a, Saturated 
conductivity b, Organic and inorganic N 
ratio in soil c, Organic and inorganic P 
ratio in soil c Fraction of organic and 

femhzer, Annual inorganic N and P in .. d 
mass root for pasture, 

aTested for two soil types and subsequent two soil layers 
bTested for two soil types, topsoil layers only 
C Tested for the soil representative for the cropping area. Organic 

and inorganic ratios represent the initial amounts of nitrogen (N) and 
phosphorus (P) at the start of the simulation 

d Fertilizer fraction which is organic N and P and mineralizable 
(inorganic) N and P 

of weighted model-generated outcomes. R is independent 
from the number of observed model outputs included in the 
optimization process and from the absolute levels of uncer- 
tainty associated with those outputs. It therefore allows for 
direct comparison of different parameter estimation runs in 
the context of goodness of fit. Values of R above 0.9 indicate 
good agreement between the observed and simulated results. 

Sensitivity of model responses was based on the analysis 
of outputs generated at the oufiet of the Currency Creek 
watershed. A 4-day rainfall event observed in January 1997, 
plotted in Figure 1, was selected for comparison of simulat- 
ed and observed values of daily flows and soluble and par- 
ticulate loads of nitrogen and phosphorus. This event was 
used because it was observed at all sampling stations in the 
catchment. The subsequent optimization was first undertak- 
en with reference to the January 1997 event, then all major 
events were included in the optimization process to detect 
temporal patterns in model responses. 

3.2. Sensitivity of Model Inputs 

Sensitivity testing showed a complex matrix of responses 
depending on the observed outputs and the range of the ini- 
tially selected base parameter values in relation to which the 
relative sensitivities were calculated (Table 5). The analyzed 
patterns were further obscured by correlations between 
parameters and by inherent differences in processes govern- 
ing generation and delivery of soluble and sediment associ- 
ated forms of N and P. Nevertheless, sensitivity testing aided 
by SENSAN, enabled evaluation of a large parameter space 
and resulted in identifying the key model input parameters, 
and in determination of uncertainty and degree of influence 
of parameter perturbation on the model outcomes. 

Table 5 shows a relative comparison of the sensitive 
model parameters and their implications for the modeled 
results. As can be expected, curve numbers (CN), soil mois- 
ture properties (FC1, FC2) and hydraulic properties (SC1, 
SC2) are the sole factors determining the capacity of the 
watershed to generate runoff. They also have a visible 
impact on the computed emissions of soluble N and P. 
Although calculated sensitivities for runoff and soluble N 
indicate gradual and steady change within the tested param- 
eter space of the representative curve numbers (Figure 3), 
they result in the generation of opposing responses. That is, 
increasing surface runoff due to raising curve numbers 
results in higher flow velocities and less contact with soil, 
which, subsequently, reduces the amounts of soluble nutri- 
ents generated by the model. 

The response of soluble P to parameter perturbation 
exhibits a large local variability in the computed sensitivi- 
ties (Figure 3) and is the most susceptible to changes of pH 
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Table 5. Sensitive Parameters and the Expected Level of Change in Model Predictions 

Parameter 

Discharge 

Particulate N 

Soluble N 

Particulate P 

Soluble P 

CN SC1 SC2 FC1 pill pH3 Norg Ninorg 

L 

':H .H:. 

Pinorg RM FNinorg 

CN - Curve Number; SC1,SC2 - saturated conductivity, FC1, FC2 - field capacity; Norg, Ninorg, Pinorg'- organic and 
inorganic ratios of N and P in soil, RM - root mass, FNinor •- inorganic ratio of N in fertilizers 
L- Low change - up to 5% change in the output 
M - Medium change - up to 25% change in the output 
H- High change - often more than 25% change in the output 

in the top layer of soil (Figure 4). Maximum changes induced 
by pH perturbations in the top soil layer can be two to three 
fold in magnitude. The increase of pH from 4 to 5 could result 
in reduction in particulate and soluble phosphorus generation 
by 12 - 25% and 9 - 34%, respectively. The importance of pH 
values for the model outcomes was examined by comparing 
the extent of differences between the observed and model 

generated daily phosphorus loads for the full parameter space 
of pH and field capacity. The results given in Figure 4 demon- 
strate very steep gradients resulting almost exclusively from 
the change in pH and identify two matching regions of sensi- 
tivity in the tested parameter space. For the given structure of 
the model for the Currency Creek watershed, the best match 
between the observed and modeled phosphorus loads can be 
achieved by applying two entirely different sets of pH values 
ranging from 4.5 to 5.2 or from 7 to 8. Large changes in pH 
measured in the Currency Creek watershed, which varied 
from 4.4 to 8.1, and the occurrence of identical regions in the 
objective function, may be the source of significant discrep- 
ancies in model predictions. 
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Figure 3. Sensitivities of discharge and soluble N and P to curve 
numbers. 

The intrinsic correlation between parameters and a local 
minimum is evident in the response surfaces generated for 
runoff (Figure 5). While attempting to minimize differences 
between the observed and model generated daily discharges 
it was noted that an incremental change in curve numbers 
from 70 to 75 could have a significant effect on the values 
of contributing parameters. Although the general shape of 
the response surface remained unchanged, the best match 
between the observed and predicted discharges was 
achieved for reversed values of the saturated conductivity 
and field capacity data. 

The observed changes in soluble and particulate N and P 
due to variations in field capacity provide a snapshot of 
model sensitivities and indicate links to land management 
practices. Field capacity was tested for two soil groups and 
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•i•m 4. Difference between the obse•ed and predicted daily 
loads of total phosphorus (TP) with unit change of pH in the 
topsoil. 
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for pertinent land uses representing predominantly unim- 
proved pasture (FC1) and a mixture of intensive agricultur- 
al activities dominated by vegetable growing (FC2). The 
results indicated that under natural conditions only soluble 
N was susceptible to changes in field capacity, as the total 
available pool of nutrients would determine the outer limits 
of the extent of change in model predictions. In addition, 
sensitivity testing identified a distinct group of parameters, 
which exhibited exceptionally high sensitivities and for 
which no measured data were available. These parameters 
were fertilizer properties, as a proportion of inorganic nitro- 
gen, land use reference data, such as annual root mass, and 
soil properties listed in Table 5. The selection of appropriate 
values for these parameters remains difficult and may intro- 
duce considerable uncertainty in the estimated nutrient 
loads. The difficulties stem from the likely heterogeneity of 
these parameters on the field scale as values may range 
across most of their recommended domain. 

3.3. Optimization Results 

It is sometimes claimed that agricultural nonpoint pollu- 
tion models are not to be calibrated as they contain numer- 
ous interdependent variables resulting in complex interac- 
tions between them [Shepherd and Geter, 1995]. 
Furthermore, process based models, such as AnnAGNPS, 
are designed to characterize watershed processes well 
enough to enable the use of measurable properties and con- 
ditions and, therefore, they do not require formal calibra- 

tion. However, Ndiritu and Daniell [1997] claim that cali- 
bration is likely to remain one of the most important steps 
in model application, including and especially for process 
based models. Moreover, for large domain models, manual 
stepwise calibration may often result in underestimating or 
even entirely omitting key parameters and, therefore, auto- 
matic optimization procedures are more likely to warrant 
better results with less effort. 

In this study the aim of calibration was to optimize the 
model inputs so the differences between the simulated and 
observed data could be minimized and better accuracy of 
model predictions accomplished. In addition, calibration 
allowed for basic verification of the initial assumptions of 
watershed parameterization and provided means for assess- 
ment of how well the model input parameters described the 
relevant characteristics of the Currency Creek watershed. 
Detailed optimization of Anr•GNPS using PEST started 
with 4 parameters controlling daily runoff volumes (Table 6). 
This was followed by the optimization of 11 parameters hav- 
ing major impacts on the simulated soluble and particulate N 
and P, such as pH, soil moisture, annual root mass and ratios 
of soil and fertilizer N and P. The values of optimized param- 
eters are shown in Table 6. Optimization of discharge related 
parameters for the January 1997 event required ordy 4 itera- 
tions and a very high correlation coefficient R, exceeding 0.9, 
was achieved. As expected, the addition of extra events added 
inherent variability in watershed responses, and subsequently 
caused alterations in the optimized parameter values mainly 
by increasing the curve numbers. Nevertheless, a relatively 
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Figure 5. Contour graphs of differences between the observed and predicted runoff in the parameter space of saturated 
conductivity, field capacity and curve numbers. Contour values represent differences between observed and predicted 
daily runoff in cubic meters x1000. Regions outlined by a dotted line indicate the range of parameters for which the min- 
imum discrepancy was observed. 
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high value of R, reaching 0.7, was maintained, and a good 
match between the observed and simulated daily discharge is 
clearly visible in Figure 6. 

Despite good correlation achieved for simulation of event 
and daily discharges, in the subsequent optimization runs for 
nutrient emissions R values did not improve beyond 0.54 - 
0.61. The objective function computed by PEST during the 
entire estimation process was dominated by contributions 
from soluble N and P. Sediment-associated P contributions 

exhibited two orders of magnitude lower impact (Figure 7) 
and showed insignificant variability despite the magnitude of 
the events tested. The main improvement in the optimization 
results came from assigning weights to the observations of 
particulate P and from scaling parameters, such as annual 
root mass for which the range of representative values was at 
least two orders of magnitude larger than for any other 
parameter used in the optimization. Although high sensitivi- 
ties to pH were observed, in order to satisfy the criteria for 
minimizing the difference between the observed and simu- 
lated nutrient loads the optimized pH values had to remain 
close to the lower end of the pH range measured in field sur- 
veys (4.5 - 5.0). The very strong pH dependency and appar- 
ent inability of the model to adequately simulate daily varia- 
tions in particulate N and P may introduce large uncertainties 
to model predictions for ungauged watersheds. 

4. MODEL PREDICTIONS AND PERFORMANCE 

Evaluation of the AnnAGNPS ability to predict flow and 
nutrient rates in the ephemeral stream subwatershed of 
Currency Creek involved sensitivity testing, systematic 
optimization of the key input parameters with PEST and 
verification of N and P loads generated by the model against 

Table 6. Optimized Parameters 

Parameter 
Optimization Scenarios 

January Event All Events 

Field capacity 0.17 0.1 

Saturated conductivity 21.90 27.2 

Curve Number 1 73 79 

Curve Number 2 80 90 

those measured in the field. This verification phase focused 
on how well the model could simulate runoff in the upland 
section of the watershed (Figure 1, St. 1) and at the outlet of 
the watershed. The quality of predictions for nutrient gener- 
ation was then tested by comparing simulated and observed 
loads on daily, event and annual basis. 

Despite a few simplifying assumptions made in the 
process of runoff simulation, acceptable goodness of fit was 
achieved for runoff volumes. The level of calibration was 

quantified with the coefficient of efficiency (E) [Nash and 
Sutcliffe, 1970] and the mean, used as measures of degree of 
model accuracy and distribution of central tendency, respec- 
tively. Generally, acceptance criteria for rainfall-runoff 
modeling are still very much subjective and may vary sig- 
nificantly from application to application. The quality of 
AnnAGNPS hydrologic predictions was assessed with the 
criteria suggested by Chiew et al. [1993], which were based 
on 112 monthly streamflow simulations conducted through- 
out Australia. According to their findings flow estimates can 
be classified as acceptable if they have coefficient of effi- 
ciency (E) greater than 0.6 and mean simulated flow is 
always within 15% of mean recorded flow. The E criterion 
for event flows was met spatially for the study watershed, as 
the coefficient consistently exceeded 0.8 for the upper gaug- 
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Figure 6. Correlation between the observed and predicted daily and event flows. 
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Figure 7. Objective function versus iteration number. 

ing site (St. 1, Figure 1) and at the outlet of the watershed 
(Figure 6). However, the model did not perform equally 
well for daily and event-based assessments, representing the 
two temporal scales tested. 

The simulated daily flows showed a wider scatter, which 
often caused the coefficient of efficiency (E) to be lower 
than the threshold limit for an acceptable simulation. For the 
majority of the events, the model predictions overestimated 
the recorded daily flows at the upper gauging site (St. 1). 
The optimization of hydrologic parameters helped reduce 
previously observed significant variations around the 1:1 
line for daily flows at the outlet of the watershed, causing 
low E values range between 0.26 and 0.44. 

In order to determine the predictive capabilities of the 
model for simulation of nitrogen and phosphorus loads in 
semi-arid conditions, considerable effort was directed 

towards not only optimization of input parameters but also 
to revisions of the structure of the model. As recommended 

by Novotny and Olem [1994], in order to avoid temporal 
and spatial error propagation, hydrology and sediment need 
to be calibrated before any attempts to model water quality 
are made. Despite achieving acceptable levels of optimiza- 
tion for flow, predictions of nitrogen and phosphorus loads 
with the calibrated model still differed significantly from 
the observed values (Figure 8, 9). 

The best fit between the observed and the simulated nitro- 

gen load was achieved while comparing the results on an 
event basis. Despite the mean values for the predicted and 
measured loads matching closely, the calculated coefficient 
of efficiency (E) was usually negative indicating high devi- 
ations of the predicted nitrogen exports from the measured 
ones. Large deviations from the measured data were 
observed for daily simulations regardless of calibration 
efforts. Notwithstanding the uncertainty in absolute predic- 
tions of nutrient exports, relatively close patterns between 
the simulated and the observed data could be seen for total 

nitrogen and phosphorus (Figure 8, 9). The simulated total 

Figure 8. Measured and predicted event loads of total nitrogen at 
the watershed outlet. 

nitrogen loads at the outlet of the watershed were mostly 
underestimated while the opposite occurred for the total 
phosphorus loads. It seems evident that the current model 
formulation underestimates particulate N, which subse- 
quently results in lower than expected ability of the model 
to simulate TN loads. 

The model failed in its ability to predict particulate phos- 
phorus and nitrogen loads on all temporal and spatial levels 
tested. Those predictions were consistently low, exhibited 
small sensitivity to the event magnitude and underestimated 
the observed data by at least an order of magnitude. Despite 
extensive optimization and sensitivity testing the results of 
particulate N and P simulations were not changing much 
unless unrealistically high erosion rates were allowed. This 
indicates that the model cannot adequately simulate trans- 
port, immobilization and re-suspension of particle-bound 
pollutants in the Currency Creek watershed. The somewhat 
low overall quality of the model predictive capacity indicat- 
ed by this study may result from a combination of factors 
and may be specific for the watershed and not necessarily 
for the model. Internal model deficiencies may be related to 
the representation of watershed processes and the selection 
of relevant assessment methods, while external problems 
may be related to the conditions within the modeled water- 
shed and the quality of observed data. 

The description of physical processes of runoff genera- 
tion in the model may not be adequate. As mentioned earli- 
er, calculation of runoff is based on the SCS Curve Number 

technique which was designed to predict the total channel 
flow at the watershed outlet, for which considerations of 
watershed flow paths and runoff generation areas were not 
essential [Garen et al., 1999]. Although the method is still 
quite useful, its original design and applications are extend- 
ed in the model to account for runoff occurring on the land 
surface and not in the stream channel. A high number of input 
parameters can also contribute to difficulties in calibration 
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Figure 9. Measured and predicted event loads of total phosphorus 
at the gauging site St. 1 (top) and at the watershed outlet (bottom). 

resulting from interdependence of various parameters and 
discontinuities in the response surface of the model [Chiew et 
al., 1993]. In every model application, including this one, the 
assessment of the model's ability to simulate watershed 
responses is based on a fundamental assumption of absolute 
quality of the measured data. However, the data is error prone 
because of uncertainty usually associated with the estimation 
of event flow, in particular for short-lasting, high-magnitude 
events. Furthermore, simulation of stream flow and water 

quality in the Currency Creek watershed is complicated by 
the fact that flow occurs only as a result of significant rain- 
falls and watershed responses to a particular storm can be to 
a high degree modified by the antecedent moisture conditions 
which are highly unpredictable. The factors mentioned above 
can influence the predictive capacity of the AnnAGNPS 
model and reduce significantly its ability to simulate phos- 
phorus emissions in ephemeral stream watersheds. 

5. CONCLUSIONS 

The objective of this study was to model nitrogen and 
phosphorus loadings from nonpoint sources for the subwa- 
tershed of Currency Creek in order to examine applicabili- 
ty, predictive power and implementation effort of the new 
continuous simulation AnnAGNPS model. The Currency 

Creek subwatershed is characterized by a mixture of agri- 
cultural and rural-residential land uses and is representative 
of management practices and land use patterns common in 
the Hawkesbury-Nepean watershed. The modeled subwater- 
shed also experiences widespread environmental and water 
quality problems often related to agriculture. These prob- 
lems such as extensive soil erosion and high losses of nutri- 
ents in runoff, in turn, may contribute to the deterioration of 
water quality in the entire Hawkesbury-Nepean river system. 

The quantification of nutrient loads from nonpoint sources 
is the primary focus of many watershed studies. Estimates of 
nutrient loads form the basic prerequisite for the subsequent 
assessment of how agriculture may influence the long-term 
quality of surface and ground water. On the other hand, 
direct measurements of nonpoint nutrient loads are always 
difficult, costly and even impractical in some management 
applications. Consequently, new generation water quality 
models capable of simulating erosion rates and water quality 
on a watershed scale are highly desirable in the light of 
increasing need for such models in land management plan- 
ning and implementation of conservation measures. 

Evaluation of the model predictions undertaken in this 
study demonstrates that AnnAGNPS produces results of sat- 
isfactory quality when simulating event flows but a high 
degree of uncertainty is associated with predictions of nutri- 
ent loadings. The ability of the model to adequately simulate 
phosphorus loads in watersheds with no permanent flow and 
multi-peak runoff events is, at this stage questionable. 

This deficiency does not discredit the quality of model 
predictions other than particulate nitrogen and phosphorus 
loads and does not prevent a more successful use of the 
model in Australian conditions. There is indication that the 

model predictive capacity increases in perennial streams. 
An improvement in water quality predictions can be noticed 
at the watershed outlet where a stream channel is better 

defined and baseflow occurs due to limited groundwater 
recharge which makes the flow and soil moisture conditions 
more predictable. 

In addition, the results suggest that the model may be bet- 
ter suited for studies on a larger regional scale than for small 
subwatersheds. Local conditions may prevail in the latter 
and over-parameterization is likely, causing adverse effects 
on model predictive capacity. It should also be noted that 
annual and event based predictions are better than those for 
shorter time increments, which is not uncommon in contin- 

uous simulation models. Despite the fact that all model 
inputs have physical meaning and can be measured in the 
field, calibration is always recommended as it allows tuning 
of the parameters controlling major delivery processes and, 
subsequently, may improve the quality of the results. 
Although the popularity of models similar to AnnAGNPS 
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comes to some extent from the fact that they can be applied 
in data-poor watersheds, the need for calibration should be 
recognized, as it also helps to understand the uncertainty 
associated with the results. Nevertheless, as interdepend- 
ence of model parameters is evident, calibration can be a 
difficult process. The issues of parameter identification and 
sensitivity can be addressed by including an optimization 
process as part of the modeling. This study has shown that 
coupling AnnAGNPS and PEST provided a semi-quantita- 
tive estimation of parameter sensitivity. The SENSAN fea- 
ture of PEST allows the modeler to track and control the 

incremental change in parameter values. 
Runoff generation and sediment predictions are simulated 

in the model with separate functions, but nitrogen and phos- 
phorus transport is flow dependent. Therefore, particular 
attention is needed during the verification process so the 
predicted flow volumes match those at the gauging stations, 
if available. Otherwise, any inconsistencies originating 
from inadequate predictions of the flow volumes and event 
patterns are likely to be transferred and amplified in the 
water quality simulations which follow. 

The model input requirements can be very extensive and 
a considerable amount of time should be allowed for assess- 

ment of the initial input data and watershed conceptualiza- 
tion. The structure of the model input file permits a reason- 
able level of flexibility in selection of data sections to rep- 
resent the desired watershed complexity depending on the 
aim of the modeling and the expected prediction accuracy. 
A high level of empirical knowledge and, in particular, prior 
knowledge of the watershed, agricultural activities, soil and 
climatic conditions is a big advantage during all phases of 
modeling, from watershed discrefization to optimization 
and interpretation of the results. 
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